Science.gov

Sample records for methyl alcohol ethyl

  1. Methyl ethyl ketone (MEK)

    Integrated Risk Information System (IRIS)

    Methyl ethyl ketone ( MEK ) ( CASRN 78 - 93 - 3 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonc

  2. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ethyl alcohol containing ethyl acetate. 584.200... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100...

  3. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ethyl alcohol containing ethyl acetate. 584.200... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100...

  4. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ethyl alcohol containing ethyl acetate. 584.200... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100...

  5. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ethyl alcohol containing ethyl acetate. 584.200... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100...

  6. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethyl alcohol containing ethyl acetate. 584.200... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100...

  7. Ethyl alcohol production

    SciTech Connect

    Hofman, V.; Hauck, D.

    1980-11-01

    Recent price increases and temporary shortages of petroleum products have caused farmers to search for alternate sources of fuel. The production of ethyl alcohol from grain is described and the processes involved include saccharification, fermentation and distillation. The resulting stillage has potential as a livestock feed.

  8. Fatal ethyl and methyl alcohol-related poisoning in Ankara: A retrospective analysis of 10,720 cases between 2001 and 2011.

    PubMed

    Celik, Safa; Karapirli, Mustafa; Kandemir, Eyup; Ucar, Fatma; Kantarcı, Muhammed Nabi; Gurler, Mukaddes; Akyol, Omer

    2013-04-01

    Methyl and ethyl alcohol poisoning are still responsible for high morbidity and mortality rates. The purpose of this retrospective study was to examine ethyl and methyl alcohol poisoning related deaths in Ankara and surrounding cities between 2001 and 2011 and compare them with previous studied conducted in Turkey and other countries. For this purpose, 10,720 medico-legal autopsy cases performed in Ankara Branch of the Council of Forensic Medicine were reviewed in terms of alcohol poisonings. The deaths due to methanol and ethanol poisoning were 74 (0.69% of all medico-legal autopsies performed) and the distribution among them was 35 (47.3%) for methanol poisoning and 39 (52.7%) for ethanol poisoning. Overwhelming majority of the cases were male (n = 67, 90.5%). The mean age of the victims was 44.9 ± 10.9 years and ranging from 21 to 92 years. The age group of 35-49 years was the mostly affected. Most of the cases were seen in 2004 (n = 12, 16.2%). The levels of postmortem blood alcohol levels were available for all cases and the mean alcohol levels were 322.8 ± 155.5 mg/dL ranging from 74 to 602 mg/dL for methanol and 396.8 ± 87.1 mg/dL and ranging from 136 to 608 mg/dL for ethanol. Early diagnosis is essential for successful treatment in methanol and ethanol poisoning. Besides increased awareness, more sensitive/specific diagnostic tools, and the prompt approach to the poisoned individual should be implemented in the hospitals.

  9. 21 CFR 184.1293 - Ethyl alcohol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethyl alcohol. 184.1293 Section 184.1293 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1293 Ethyl alcohol. (a) Ethyl alcohol (ethanol) is the chemical C2H5OH....

  10. 21 CFR 184.1293 - Ethyl alcohol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethyl alcohol. 184.1293 Section 184.1293 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1293 Ethyl alcohol. (a) Ethyl alcohol (ethanol) is the chemical C2H5OH....

  11. 21 CFR 184.1293 - Ethyl alcohol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethyl alcohol. 184.1293 Section 184.1293 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1293 Ethyl alcohol. (a) Ethyl alcohol (ethanol) is the chemical C2H5OH. (b) The ingredient meets...

  12. 21 CFR 184.1293 - Ethyl alcohol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl alcohol. 184.1293 Section 184.1293 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1293 Ethyl alcohol. (a) Ethyl alcohol (ethanol) is the chemical C2H5OH....

  13. 21 CFR 184.1293 - Ethyl alcohol.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethyl alcohol. 184.1293 Section 184.1293 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1293 Ethyl alcohol. (a) Ethyl alcohol (ethanol) is the chemical C2H5OH....

  14. Methyl Ethyl Ketoxime; Final Test Rule

    EPA Pesticide Factsheets

    EPA is issuing this final test rule under section 4 of the Toxic Substances Control Act (TSCA), requiring manufacturers and processors of methyl ethyl ketoxime (MEKO, CAS No. 96-29-7) to perform testing for health effects.

  15. Final report on the safety assessment of Methyl Alcohol.

    PubMed

    Lanigan, S

    2001-01-01

    Methyl Alcohol is an aliphatic alcohol with use in a few cosmetic formulations as a solvent and denaturant. Concentrations up to 5% are typically used to denature ethyl alcohol in cosmetic products. Methyl Alcohol is readily absorbed through the skin and from the gastrointestinal and respiratory tracts, is distributed throughout all organs and tissues (in direct relation to the body's water distribution), and is eliminated primarily via the lungs. Undiluted Methyl Alcohol is an ocular and skin irritant. Inhalation studies showed a no-effect level for maternal damage of 10,000 ppm and for teratogenic effects of 5,000 ppm. Overall, Methyl Alcohol is not considered mutagenic. Carcinogenicity data were unavailable. The toxicity of Methyl Alcohol in humans results from the metabolism of the alcohol to formate and formic acid through a formaldehyde intermediate. Formate accumulation causes metabolic acidosis and inhibits cellular respiration. Methyl Alcohol toxicity is time and concentration dependent, and its toxic effect is competitively inhibited with ethyl alcohol. Because of the moderating effect of ethyl alcohol, it was concluded that Methyl Alcohol is safe as used to denature ethyl alcohol used in cosmetic products. No conclusion was reached regarding any other use of Methyl Alcohol.

  16. [Ethyl glucuronide: a biomarker of alcohol consumption].

    PubMed

    Kharbouche, H; Sporkert, F; Staub, C; Mangin, P; Augsburger, M

    2009-11-04

    Excessive alcohol consumption represents a major risk factor for morbidity and mortality. It is therefore indispensable to be able to detect at-risk drinking. Ethyl glucuronide (EtG) is a specific marker of alcohol consumption. The determination of ethyl glucuronide in urine or blood can be used to prove recent driving under the influence of alcohol, even if ethanol is no longer detectable. The commercialization of an EtG specific immunological assay now allows to obtain preliminary results rapidly and easily with satisfying sensitivity. Moreover, the detection of ethyl glucuronide in hair offers the opportunity to evaluate an alcohol consumption over a long period. The EtG concentration in hair is in correlation with the amount of ingested alcohol. Thus, the analysis of ethyl glucuronide can be used to monitor abstinence, to detect alcohol relapse and to identify at-risk drinkers. However, a cut off allowing to detect chronic alcohol abuser reliably still does not exist. Therefore, it is recommended to perform the analysis of ethyl glucuronide in complement to the existing blood markers. A study financed by the Swiss Foundation for Alcohol Research is actually conducted by the West Switzerland University Center of Legal Medicine in order to establish an objective cut-off.

  17. Experimental Determination of Densities and Isobaric Vapor-Liquid Equilibria of Methyl Acetate and Ethyl Acetate with Alcohols (C3 and C4) at 0.3 MPa

    NASA Astrophysics Data System (ADS)

    Susial, Pedro; Estupiñan, Esteban J.; Castillo, Victor D.; Rodríguez-Henríquez, José J.; Apolinario, José C.

    2013-10-01

    The densities and excess volumes were determined at 298.15 K for the methyl acetate + 1-propanol, methyl acetate + 1-butanol, and ethyl acetate + 1-butanol mixtures. The vapor-liquid equilibria data at 0.3 MPa for these binary systems were obtained using a stainless steel equilibrium still. The activity coefficients were obtained from the experimental data using the Hayden and O’Connell method and the Yen and Woods equation. The binary systems in this study showed positive deviations from ideality. The experimental VLE data were verified with the point-to-point test of van Ness using the Barker routine and the Fredenslund criterion. The different versions of the UNIFAC and the ASOG group contribution models were applied.

  18. Tension of Ethyl Alcohol and Hexadecane by Shock Waves

    NASA Astrophysics Data System (ADS)

    Utkin, A. V.; Sosikov, V. A.; Fortov, V. E.

    2006-07-01

    The influences of strain rate and shock wave amplitude on the negative pressure in ethyl alcohol, and hexadecane have been investigated. The method of spall strength measurements was applied and wave profiles were registered by laser interferometer VISAR. Unlike other liquids the process of destruction in methyl alcohol and hexadecane are double staged. At the first stage formation of cavities starts and there is a kinked at free velocity profile was observed. At the second stage the cavity grow rate increases and the spall pulse occurs. The dependence of negative pressure from the strain rate was instigated. The value of the negative pressure correspondent to the kinked at free velocity profile was practically constant and equal to 14MPa for methyl alcohol, and the maximal strength value may be much higher and equal to about 50MPa. Theory of homogeneous bubble nucleation was used to explain the experimental results.

  19. IRIS Toxicological Review of Methyl Ethyl Ketone (2003 Final)

    EPA Science Inventory

    EPA announced the release of the final report, Toxicological Review of Methyl Ethyl Ketone: in support of the Integrated Risk Information System (IRIS). The updated Summary for Methyl Ethyl Ketone and accompanying toxicological review have been added to the IRIS Database....

  20. IRIS TOXICOLOGICAL REVIEW OF METHYL ETHYL KETONE (2003 Final)

    EPA Science Inventory

    EPA is announcing the release of the final report, "Toxicological Review of Methyl Ethyl Ketone: in support of the Integrated Risk Information System (IRIS)". The updated Summary for Methyl Ethyl Ketone and accompanying Quickview have also been added to the IRIS Database.

  1. IRIS Toxicological Review of Methyl Ethyl Ketone (2003 Final)

    EPA Science Inventory

    EPA announced the release of the final report, Toxicological Review of Methyl Ethyl Ketone: in support of the Integrated Risk Information System (IRIS). The updated Summary for Methyl Ethyl Ketone and accompanying toxicological review have been added to the IRIS Database....

  2. Production of ethyl alcohol from bananas

    SciTech Connect

    Jones, R.L.; Towns, T.

    1983-12-01

    The production of ethyl alcohol from waste bananas presents many special problems. During cooking, matting of the latex fibers from the banana peel recongeal when cooled and left untreated. This problem has been addressed by Alfaro by the use of CaC1/sub 2/. Separation of solids prior to distillation of the mashes in an economical fashion and use of the by product are also of concern to banana processors.

  3. Uptake of Ethyl Alcohol Vapor in Sulfuric Acid Solutions

    NASA Astrophysics Data System (ADS)

    Leu, M.

    2002-12-01

    The uptake of ethyl alcohol vapor in liquid sulfuric acid has been investigated over the composition range of 40 - 80 wt % H2SO4 and between the temperatures of 193-273 K. Laboratory studies were performed using a flow-tube reactor coupled to an electron-impact ionization mass spectrometer for detection of ethanol and possible reaction products, ethyl hydrogen sulfate and diethyl sulfate. The uptake coefficients (gamma) have been measured and found to vary from 0.018 to 0.065, depending upon the acid composition and temperature. For example, at concentrated acids greater than 70 wt % and dilute solutions (<70 wt %) colder than 210 K, the gamma values are approaching ~ 0.06. Under other conditions, the gamma values are smaller. The adsorption and thermal desorption measurements have been used to distinguish the possible uptake mechanisms, either solubility or reactive uptake. The results suggest that reactive uptakes are greater than 50 % under all conditions. For dilute acids, we also determine the effective Henry's law constants (H*). We will compare the results with the uptake of gaseous methyl alcohol and acetone in H2SO4 determined previously in our laboratory. The potential implications to the budget of ethyl alcohol in the global troposphere will also be discussed.

  4. Going the distance with ethyl alcohol

    SciTech Connect

    Hairston, D.W.

    1995-12-01

    If all had gone according to plan, ethyl alcohol would be in the driver`s seat now, cruising down the highway and getting ready to speed into high gear. Instead, this renewable fuel, chemical reagent and solvent is navigating a complex obstacle course, watching warily for sharp turns and mixed signals. Globally, the supply and demand for all grades of ethyl alcohol is awry. Production of industrial-grade material is running at full throttle and prices are going up. Much of the upheaval over ethanol can be traced to the US Environmental Protection Agency and the renewable oxygenate standard (ROS) of the Clean Air Act. Under ROS, 15% of oxygenates used in gasoline sold this year was to be derived from a renewable source. Next month, that percentage was to have been doubled to 30%. Enticed by projections of upwards of 2 billion gal/yr of fermentation alcohol to comply with ROS, producers rushed to expand capacity. But to the producers` dismay, EPA was forced to backpedal on ROS. When representatives of the petroleum industry filed suit and won a stay, EPA rescinded its ROS regulation and ethanol producers were left in the lurch. High prices for corn is also putting the squeeze on inventories of industrial alcohol. Synthetic ethanol production, from ethylene for example, is booming, however. This paper discusses the ethanol market factors.

  5. A morphogenetic regulatory role for ethyl alcohol in Candida albicans.

    PubMed

    Chauhan, Nitin M; Raut, Jayant S; Karuppayil, S Mohan

    2011-11-01

    Regulation of morphogenesis through the production of chemical signalling molecules such as isoamyl alcohol, 2-phenylethyl alcohol, 1-dodecanol, E-nerolidol and farnesol is reported in Candida albicans. The present study focuses on the effect of ethyl alcohol on C. albicans dimorphism and biofilm development. Ethyl alcohol inhibited germ tube formation induced by the four standard inducers in a concentration-dependent manner. The germ tube inhibitory concentration (4%) did not have any effect on the growth and viability of C. albicans cells. Ethyl alcohol also inhibited the elongation of germ tubes. Four percentage of ethyl alcohol significantly inhibited biofilm development on polystyrene and silicone surfaces. We suggest a potential morphogenetic regulatory role for ethyl alcohol, which may influence dissemination, virulence and establishment of infection. © 2011 Blackwell Verlag GmbH.

  6. EXTRACTION OF TETRAVALENT PLUTONIUM VALUES WITH METHYL ETHYL KETONE, METHYL ISOBUTYL KETONE ACETOPHENONE OR MENTHONE

    DOEpatents

    Seaborg, G.T.

    1961-08-01

    A process is described for extracting tetravalent plutonium from an aqueous acid solution with methyl ethyl ketone, methyl isobutyl ketone, or acetophenone and with the extraction of either tetravalent or hexavalent plutonium into menthone. (AEC)

  7. Rotational spectra of methyl ethyl and methyl propyl nitrosamines. Conformational assignment, internal rotation and quadrupole coupling

    NASA Astrophysics Data System (ADS)

    Walker, A. R. Hight; Lou, Qi; Bohn, Robert K.; Novick, Stewart E.

    1995-02-01

    A structural determination of two carcinogenic nitrosamines, methyl ethyl and methyl propyl nitrosamine, was performed. Microwave spectra were gathered from both a Stark cell spectrometer and a pulsed jet Fabry-Perot Fourier transform microwave spectrometer. Each rotational transition is split into quadrupole hyperfine components by two nitrogen nuclei. This quadrupole pattern is doubled by a low barrier methyl rotor which produces resolvable A and E states. Rotational spectra were assigned for one conformer of methyl ethyl nitrosamine and two conformers of methyl propyl nitrosamine. The lowest energy conformers of each compound, according to empirical force field calculations, were assigned. The structure found for methyl ethyl nitrosamine has the nitrosyl oxygen on the methyl side with the terminal methyl group of the ethyl chain in the gauche position (OMG). Both conformers of methyl propyl nitrosamine have the same skeletal structure as the methyl ethyl compound; one conformer has the terminal methyl of the propyl group in the anti position (OMGA) while the other conformer has this methyl in the gauche position (OMGG -). Rotational constants and quadrupole coupling constants are reported for each assigned species. A barrier to internal rotation of the N-methyl group in each compound is also reported.

  8. 19 CFR 10.99 - Importation of ethyl alcohol for nonbeverage purposes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Importation of ethyl alcohol for nonbeverage... Provisions Ethyl Alcohol § 10.99 Importation of ethyl alcohol for nonbeverage purposes. (a) If claim is made... of ethyl alcohol of an alcoholic strength by volume of 80 percent volume or higher under subheading...

  9. 19 CFR 10.99 - Importation of ethyl alcohol for nonbeverage purposes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Importation of ethyl alcohol for nonbeverage... Provisions Ethyl Alcohol § 10.99 Importation of ethyl alcohol for nonbeverage purposes. (a) If claim is made... of ethyl alcohol of an alcoholic strength by volume of 80 percent volume or higher under subheading...

  10. 19 CFR 10.99 - Importation of ethyl alcohol for nonbeverage purposes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Importation of ethyl alcohol for nonbeverage... Provisions Ethyl Alcohol § 10.99 Importation of ethyl alcohol for nonbeverage purposes. (a) If claim is made... of ethyl alcohol of an alcoholic strength by volume of 80 percent volume or higher under...

  11. 19 CFR 10.99 - Importation of ethyl alcohol for nonbeverage purposes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Importation of ethyl alcohol for nonbeverage... Provisions Ethyl Alcohol § 10.99 Importation of ethyl alcohol for nonbeverage purposes. (a) If claim is made... of ethyl alcohol of an alcoholic strength by volume of 80 percent volume or higher under...

  12. 19 CFR 10.99 - Importation of ethyl alcohol for nonbeverage purposes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Importation of ethyl alcohol for nonbeverage... Provisions Ethyl Alcohol § 10.99 Importation of ethyl alcohol for nonbeverage purposes. (a) If claim is made... of ethyl alcohol of an alcoholic strength by volume of 80 percent volume or higher under...

  13. Alcohol, DNA Methylation, and Cancer

    PubMed Central

    Varela-Rey, Marta; Woodhoo, Ashwin; Martinez-Chantar, Maria-Luz; Mato, José M.; Lu, Shelly C.

    2013-01-01

    Cancer is one of the most significant diseases associated with chronic alcohol consumption, and chronic drinking is a strong risk factor for cancer, particularly of the upper aerodigestive tract, liver, colorectum, and breast. Several factors contribute to alcohol-induced cancer development (i.e., carcinogenesis), including the actions of acetaldehyde, the first and primary metabolite of ethanol, and oxidative stress. However, increasing evidence suggests that aberrant patterns of DNA methylation, an important epigenetic mechanism of transcriptional control, also could be part of the pathogenetic mechanisms that lead to alcohol-induced cancer development. The effects of alcohol on global and local DNA methylation patterns likely are mediated by its ability to interfere with the availability of the principal biological methyl donor, S-adenosylmethionine (SAMe), as well as pathways related to it. Several mechanisms may mediate the effects of alcohol on DNA methylation, including reduced folate levels and inhibition of key enzymes in one-carbon metabolism that ultimately lead to lower SAMe levels, as well as inhibition of activity and expression of enzymes involved in DNA methylation (i.e., DNA methyltransferases). Finally, variations (i.e., polymorphisms) of several genes involved in one-carbon metabolism also modulate the risk of alcohol-associated carcinogenesis. PMID:24313162

  14. Alcohol, DNA methylation, and cancer.

    PubMed

    Varela-Rey, Marta; Woodhoo, Ashwin; Martinez-Chantar, Maria-Luz; Mato, José M; Lu, Shelly C

    2013-01-01

    Cancer is one of the most significant diseases associated with chronic alcohol consumption, and chronic drinking is a strong risk factor for cancer, particularly of the upper aerodigestive tract, liver, colorectum, and breast. Several factors contribute to alcohol-induced cancer development (i.e., carcinogenesis), including the actions of acetaldehyde, the first and primary metabolite of ethanol, and oxidative stress. However, increasing evidence suggests that aberrant patterns of DNA methylation, an important epigenetic mechanism of transcriptional control, also could be part of the pathogenetic mechanisms that lead to alcohol-induced cancer development. The effects of alcohol on global and local DNA methylation patterns likely are mediated by its ability to interfere with the availability of the principal biological methyl donor, S-adenosylmethionine (SAMe), as well as pathways related to it. Several mechanisms may mediate the effects of alcohol on DNA methylation, including reduced folate levels and inhibition of key enzymes in one-carbon metabolism that ultimately lead to lower SAMe levels, as well as inhibition of activity and expression of enzymes involved in DNA methylation (i.e., DNA methyltransferases). Finally, variations (i.e., polymorphisms) of several genes involved in one-carbon metabolism also modulate the risk of alcohol-associated carcinogenesis.

  15. A comparison of two alcohol biomarkers in clinical practice: ethyl glucuronide versus ethyl sulfate.

    PubMed

    Lande, R Gregory; Marin, Barbara

    2013-01-01

    This study compared the characteristics of two direct alcohol biomarkers, ethyl glucuronide and ethyl sulfate. Both biomarkers were analyzed from urine specimens submitted by 58 active duty service members at Walter Reed National Military Medical Center's Addiction Treatment Service. These 58 individuals, as a result of serial testing, submitted a total of 374 urine specimens for laboratory analysis. Of 374 specimens, the paired tests were most often negative (n = 295, 78.9%).The paired tests were both positive less frequently (n = 38, 10.2%). In an interesting development ethyl sulfate produced more positive results than ethyl glucuronide (n = 32, 8.6%).

  16. Value of Ethyl Glucuronide and Ethyl Sulfate in Serum as Biomarkers of Alcohol Consumption

    PubMed Central

    Shukla, Lekhansh; Sharma, Priyamvada; Ganesha, Suhas; Ghadigaonkar, Deepak; Thomas, Evan; Kandasamy, Arun; Murthy, Pratima; Benegal, Vivek

    2017-01-01

    Background: Urinary Ethyl glucuronide (EtG) and Ethyl sulfate (EtS) are established markers of alcohol conumption. Measurement of these markers in serum offers certain advantages. This outpatient department based study evaluated performance of serum Ethyl glucuronide (EtG) and Ethyl sulphate (EtS) as biomarkers of recent alcohol consumption in alcohol dependent subjects. It also evaluated effect of alcohol dose and time since consumption on serum EtG and EtS concentration. Methods: Information regarding alcohol intake was collected using Time line follow back calendar method from 152 subjects. Blood samples were collected to determine serum EtG and EtS concentration. Results: The results revealed that serum EtG (at a threshold of 45 ng/mL) could detect recent moderate to heavy alcohol consumption with 85 percent sensitivity and 89 percent specificity. The results also show that simultaneous measurement of EtS does not increase test accuracy. We found that dose of alcohol and time since alcohol consumption explain 68 and 62 percent variance in serum EtG and EtS levels. Conclusion: EtG testing in blood was found useful as a way to detect recent drinking. This sensitive and specific short-term biomarker provides valuable information about recent alcohol consumption. PMID:28852244

  17. Value of Ethyl Glucuronide and Ethyl Sulfate in Serum as Biomarkers of Alcohol Consumption.

    PubMed

    Shukla, Lekhansh; Sharma, Priyamvada; Ganesha, Suhas; Ghadigaonkar, Deepak; Thomas, Evan; Kandasamy, Arun; Murthy, Pratima; Benegal, Vivek

    2017-01-01

    Urinary Ethyl glucuronide (EtG) and Ethyl sulfate (EtS) are established markers of alcohol conumption. Measurement of these markers in serum offers certain advantages. This outpatient department based study evaluated performance of serum Ethyl glucuronide (EtG) and Ethyl sulphate (EtS) as biomarkers of recent alcohol consumption in alcohol dependent subjects. It also evaluated effect of alcohol dose and time since consumption on serum EtG and EtS concentration. Information regarding alcohol intake was collected using Time line follow back calendar method from 152 subjects. Blood samples were collected to determine serum EtG and EtS concentration. The results revealed that serum EtG (at a threshold of 45 ng/mL) could detect recent moderate to heavy alcohol consumption with 85 percent sensitivity and 89 percent specificity. The results also show that simultaneous measurement of EtS does not increase test accuracy. We found that dose of alcohol and time since alcohol consumption explain 68 and 62 percent variance in serum EtG and EtS levels. EtG testing in blood was found useful as a way to detect recent drinking. This sensitive and specific short-term biomarker provides valuable information about recent alcohol consumption.

  18. 40 CFR 721.10326 - 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2... 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2,2'-(1,2-diazenediyl)bis - and 2,2'-(1,2...

  19. 27 CFR 21.116 - Methyl alcohol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Methyl alcohol. 21.116 Section 21.116 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants §...

  20. 27 CFR 21.116 - Methyl alcohol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Methyl alcohol. 21.116 Section 21.116 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants §...

  1. Reactions of methyl and ethyl radicals with uranium hexafluoride

    NASA Astrophysics Data System (ADS)

    Lyman, John L.; Laguna, Glenn

    1985-01-01

    We have measured the rates of reaction of both methyl and ethyl radicals with uranium hexafluoride (UF6) in the gas phase. The method we used was to photolyze samples of UF6 in the presence of either methane or ethane. The radicals produced by reaction of fluorine atoms with these species then react with either themselves or with UF6. We inferred the rate constants from ratios of the reaction products and the published rate constants for radical recombination. The diagnostic technique was gas chromatography. The resulting rate constants for reaction with UF6 were (1.6±0.8)×10-14 cm3 molecule-1 s-1 for methyl radicals and (4±2)×10-11 cm3 molecule-1 s-1 for ethyl radicals.

  2. Voucher-Based Reinforcement for Alcohol Abstinence Using the Ethyl-Glucuronide Alcohol Biomarker

    ERIC Educational Resources Information Center

    McDonell, Michael G.; Howell, Donelle N,; McPherson, Sterling; Cameron, Jennifer M.; Srebnik, Debra; Roll, John M.; Ries, Richard K.

    2012-01-01

    This study assessed the effects of a contingency management (CM) intervention for alcohol consumption in 10 alcohol-dependent participants. An ABCA design was used. Vouchers were provided contingent on results of ethyl glucuronide (EtG) urine tests (an alcohol biomarker with a 2-day detection period) and alcohol breath tests during the C phase.…

  3. Voucher-Based Reinforcement for Alcohol Abstinence Using the Ethyl-Glucuronide Alcohol Biomarker

    ERIC Educational Resources Information Center

    McDonell, Michael G.; Howell, Donelle N,; McPherson, Sterling; Cameron, Jennifer M.; Srebnik, Debra; Roll, John M.; Ries, Richard K.

    2012-01-01

    This study assessed the effects of a contingency management (CM) intervention for alcohol consumption in 10 alcohol-dependent participants. An ABCA design was used. Vouchers were provided contingent on results of ethyl glucuronide (EtG) urine tests (an alcohol biomarker with a 2-day detection period) and alcohol breath tests during the C phase.…

  4. Ethyl acetate production by the elusive alcohol acetyltransferase from yeast.

    PubMed

    Kruis, Aleksander J; Levisson, Mark; Mars, Astrid E; van der Ploeg, Max; Garcés Daza, Fernando; Ellena, Valeria; Kengen, Servé W M; van der Oost, John; Weusthuis, Ruud A

    2017-05-01

    Ethyl acetate is an industrially relevant ester that is currently produced exclusively through unsustainable processes. Many yeasts are able to produce ethyl acetate, but the main responsible enzyme has remained elusive, hampering the engineering of novel production strains. Here we describe the discovery of a new enzyme (Eat1) from the yeast Wickerhamomyces anomalus that resulted in high ethyl acetate production when expressed in Saccharomyces cerevisiae and Escherichia coli. Purified Eat1 showed alcohol acetyltransferase activity with ethanol and acetyl-CoA. Homologs of eat1 are responsible for most ethyl acetate synthesis in known ethyl acetate-producing yeasts, including S. cerevisiae, and are only distantly related to known alcohol acetyltransferases. Eat1 is therefore proposed to compose a novel alcohol acetyltransferase family within the α/β hydrolase superfamily. The discovery of this novel enzyme family is a crucial step towards the development of biobased ethyl acetate production and will also help in selecting improved S. cerevisiae brewing strains. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. 27 CFR 21.116 - Methyl alcohol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Methyl alcohol. 21.116 Section 21.116 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants §...

  6. 27 CFR 21.116 - Methyl alcohol.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Methyl alcohol. 21.116 Section 21.116 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants §...

  7. 27 CFR 21.116 - Methyl alcohol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Methyl alcohol. 21.116 Section 21.116 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants §...

  8. 40 CFR 721.10365 - Butanoic acid, 3-mercapto-2-methyl-, ethyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-, ethyl ester. 721.10365 Section 721.10365 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10365 Butanoic acid, 3-mercapto-2-methyl-, ethyl ester. (a) Chemical... acid, 3-mercapto-2-methyl-, ethyl ester (PMN P-10-56; CAS No. 888021-82-7) is subject to...

  9. 40 CFR 721.10365 - Butanoic acid, 3-mercapto-2-methyl-, ethyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-, ethyl ester. 721.10365 Section 721.10365 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10365 Butanoic acid, 3-mercapto-2-methyl-, ethyl ester. (a) Chemical... acid, 3-mercapto-2-methyl-, ethyl ester (PMN P-10-56; CAS No. 888021-82-7) is subject to...

  10. 40 CFR 721.10365 - Butanoic acid, 3-mercapto-2-methyl-, ethyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, ethyl ester. 721.10365 Section 721.10365 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10365 Butanoic acid, 3-mercapto-2-methyl-, ethyl ester. (a) Chemical... acid, 3-mercapto-2-methyl-, ethyl ester (PMN P-10-56; CAS No. 888021-82-7) is subject to...

  11. Separation of ethyl acetate and ethanol from methyl ethyl ketone and water, and ethyl acetate from ethanol and water by extractive distillation

    SciTech Connect

    Ratanapupech, P.

    1983-01-01

    A number of extractive distillation agents were investigated to separate ethyl acetate and ethanol from methyl ethyl ketone and water in an ethyl acetate-ethanol-methyl ethyl ketone-water mixture, and ethyl acetate from ethanol and water in an ethyl acetate-ethanol-water mixture by means of extractive distillation. A measure of separation is the relative volatility, which was calculated by the Fenske equation. The results showed that it is possible to separate the components from these two mixtures by extractive distillation with a distillation column containing relatively few theoretical plates. It was found that the proper extractive distillation agent completely eliminated azeotrope formation among the components in the mixtures investigated. Packed columns can be used in extractive distillation even though they are not quite as efficient as perforated plate columns. For the separation of ethyl acetate and ethanol from methyl ethyl ketone and water one of the more attractive extractive agents is comprised of 25.0 wt.% hydroquinone, 25.0 wt.% ortho-tertbutylphenol, 25.0 wt.% catechol and 25.0 wt.% dimethylformamide, and the relative volatilities of ethnaol to methyl ethyl ketone obtained was 1.51 and ethyl acetate to methyl ethyl ketone was 1.69. For the separation of ethyl acetate from ethanol and water a typical attractive extractive agent is comprised of 33.33 wt.% glycerol, 33.33 wt.% ethylene glycol and 33.33 wt.% triethylene glycol, and the relative volatility of ethyl acetate to ethanol obtained was 3.93.

  12. 78 FR 9938 - Ethyl Alcohol for Fuel Use: Determination of the Base Quantity of Imports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... COMMISSION Ethyl Alcohol for Fuel Use: Determination of the Base Quantity of Imports AGENCY: United States... is equal to 7 percent of the U.S. domestic market for fuel ethyl alcohol during the 12-month period...'' of imports of fuel ethyl alcohol, and the Commission transmitted it determinations to the...

  13. 2-Ethyl-6-methyl­anilinium 4-methyl­benzene­sulfonate

    PubMed Central

    Wu, Tian-Quan; Xia, Lin; Hu, Ai-Xi; Ye, Jiao

    2009-01-01

    The title compound, C9H14N+·C7H7SO3 −, contains a 2-ethyl-6-methyl­anilinium cation and a 4-methyl­benzene­sulfonic anion. The cations are anchored between the anions through N—H⋯O hydrogen bonds. Electrostatic and van der Waals inter­actions, as well as hydrogen bonds, maintain the structural cohesion. PMID:21581966

  14. Production of ethyl alcohol from sugar beets

    SciTech Connect

    Larsen, D.H.; Doney, D.L.; Orien, H.A.

    1981-01-01

    Various methods of processing sugar beets prior to fermentation of EtOH were compared. Water slurries of whole beets, expressed juice, and industrially produced diffusion juice were fermented readily by Saccharomyces cerevisiae without the addition of nutrient supplements. Yields of alcohol in both the slurries and juices were 43-47%. Heating the slurries or juices to boiling for 1 min often increased the yield of alcohol and the vigor of the fermentation; however, some yields of greater than 46% were obtained in unheated expressed juice. Difficulty in processing slurries of homogenized or ground whole beets, together with the restriction on the concentration of sugar in the slurry imposed by dilution with water, would probably favor some method of separating the beet tissues from the juice prior to fermentation in an industrial process. Alcohol yields of 4 cultivars varying in sugar content ranged from 38.4 to 46.0% of sugar and 18.0 to 26.1 gallon of alcohol per ton of fresh beets.

  15. Kinetics and products of gas-phase reactions of ozone with methyl methacrylate, methyl acrylate, and ethyl acrylate.

    PubMed

    Bernard, F; Eyglunent, G; Daële, V; Mellouki, A

    2010-08-19

    The kinetics and products of the gas-phase reactions of ozone with methyl methacrylate, methyl acrylate, and ethyl acrylate have been investigated at 760 Torr total pressure of air and 294 +/- 2 K. The rate coefficients obtained (in cm(3) molecule(-1) s(-1) units) were as follows: k(methyl methacrylate) = (6.7 +/- 0.9) x 10(-18), k(methyl acrylate) = (0.95 +/- 0.07) x 10(-18), and k(ethyl acrylate) = (1.3 +/- 0.1) x 10(-18). In addition to formaldehyde being observed as a product of the three reactions, the other major reaction products were methyl pyruvate from reaction of ozone with methyl methacrylate, methyl glyoxylate from reaction of ozone with methyl acrylate, and ethyl glyoxylate from reaction of ozone with ethyl acrylate. Possible reaction mechanisms leading to the observed products are presented and discussed.

  16. Formation and Degradation of Furfuryl Alcohol, 5-Methylfurfuryl Alcohol, Vanillyl Alcohol, and Their Ethyl Ethers in Barrel-Aged Wines.

    PubMed

    Spillman; Pollnitz; Liacopoulos; Pardon; Sefton

    1998-02-16

    Furfural, 5-methylfurfural, and vanillin co-occurred in 64 barrel-aged red, white, and model wines with the reduction products, furfuryl alcohol, 5-methylfurfuryl alcohol, and vanillyl alcohol, and with the corresponding ethyl ethers of these alcohols. Hydrolytic studies in a model wine have shown that 5-methylfurfuryl ethyl ether is formed rapidly from 5-methylfurfuryl alcohol, but both decomposed quickly under the conditions. Vanillyl ethyl ether was also formed relatively rapidly, and both this ether and vanillyl alcohol were stable in the model wine. The formation of furfuryl ethyl ether from furfuryl alcohol and the subsequent decomposition of these two compounds were comparatively slow. The relative concentration of these aromatic alcohols and ethers in the barrel-aged wines was consistent with the observed stability of the furan derivatives, but low concentrations of vanillyl alcohol and vanillyl ethyl ether observed in all samples showed that factors other than solvolytic degradation were responsible for reducing the concentration of these compounds in wine. Furfuryl ethyl ether, which had an aroma threshold of 430 µg/L in a white wine, was found at approximate concentrations of up to 230 µg/L in the wines.

  17. Crystal structure of azilsartan methyl ester ethyl acetate hemisolvate.

    PubMed

    Li, Zhengyi; Liu, Rong; Zhu, Meilan; Chen, Liang; Sun, Xiaoqiang

    2015-02-01

    The title compound, C26H22N4O5 (systematic name: methyl 2-eth-oxy-1-{4-[2-(5-oxo-4,5-di-hydro-1,2,4-oxa-diazol-3-yl)phenyl]benz-yl}-1H-1,3-benzo-diazole-7-carboxyl-ate ethyl acetate hemisolvate), was obtained via cyclization of methyl (Z)-2-eth-oxy-1-{(2'-(N'-hy-droxy-carbamimido-yl)-[1,1'-biphen-yl]-4-yl)meth-yl}-1H-benzo[d]imidazole-7-carboxyl-ate with diphen-yl carbonate. There are two independent mol-ecules (A and B) with different conformations and an ethyl acetate solvent mol-ecule in the asymmetric unit. In mol-ecule A, the dihedral angle between the benzene ring and its attached oxa-diazole ring is 59.36 (17); the dihedral angle between the benzene rings is 43.89 (15) and that between the benzene ring and its attached imidazole ring system is 80.06 (11)°. The corres-ponding dihedral angles in mol-ecule B are 58.45 (18), 50.73 (16) and 85.37 (10)°, respectively. The C-O-C-Cm (m = meth-yl) torsion angles for the eth-oxy side chains attached to the imidazole rings in mol-ecules A and B are 93.9 (3) and -174.6 (3)°, respectively. In the crystal, the components are linked by N-H⋯N and C-H⋯O hydrogen bonds, generating a three-dimensional network. Aromatic π-π stacking inter-actions [shortest centroid-centroid separation = 3.536 (3)Å] are also observed.

  18. Favoured conformations of methyl isopropyl, ethyl isopropyl, methyl tert-butyl, and ethyl tert-butyl 2-(triphenylphosphoranylidene)malonate.

    PubMed

    Castañeda, Fernando; Silva, Paul; Bunton, Clifford A; Garland, María Teresa; Baggio, Ricardo

    2008-07-01

    The conformations of organic compounds determined in the solid state are important because they can be compared with those in solution and/or from theoretical calculations. In this work, the crystal and molecular structures of four closely related diesters, namely methyl isopropyl 2-(triphenylphosphoranylidene)malonate, C(25)H(25)O(4)P, ethyl isopropyl 2-(triphenylphosphoranylidene)malonate, C(26)H(27)O(4)P, methyl tert-butyl 2-(triphenylphosphoranylidene)malonate, C(26)H(27)O(4)P, and ethyl tert-butyl 2-(triphenylphosphoranylidene)malonate, C(27)H(29)O(4)P, have been analysed as a preliminary step for such comparative studies. As a result of extensive electronic delocalization, as well as intra- and intermolecular interactions, a remarkably similar pattern of preferred conformations in the crystal structures results, viz. a syn-anti conformation of the acyl groups with respect to the P atom, with the bulkier alkoxy groups oriented towards the P atom. The crystal structures are controlled by nonconventional hydrogen-bonding and intramolecular interactions between cationoid P and acyl and alkoxy O atoms in syn positions.

  19. Supercritical extraction and desulphurization of Beypazari lignite by ethyl alcohol/NaOH treatment; Effect of ethyl alcohol/coal ratio and NaOH

    SciTech Connect

    Yurum, Y.; Tugluhan, A. )

    1990-02-01

    The authors report an investigation of the solubilization and desulphurization of Beypazari lignite with supercritical ethyl alcohol/NaOH. Supercritical experiments of 60 minutes were done in microreactors of 15 ml at 245{sup 0}C by changing the ethyl alcohol/coal ratio from 3 to 20 under a nitrogen atmosphere. As the ethyl alcohol/coal ratio was increased the yield of solubilization and desulphurization also increased. Higher yields of extraction in the case of ethyl alcohol/NaOH experiments may be due to the fact that alcohols can transfer hydrogen more easily in the presence of bases. The average molecular weights of liquid products obtained in experiments with ethyl alcohol/coal ratios of 3, 6 and 20 were 430, 450 and 465, respectively. In experiments with ethyl alcohol/NaOH system as the ethyl alcohol/coal ratio was increased from 3 to 20 the sulphur content of the coal decreased to 0.75%. In experiments with greater ethyl alcohol/coal ratios mercaptane type sulphur chemicals have been extracted, disulphides were missing in these extracts.

  20. Separation optimization for the recovery of phenyl ethyl alcohol.

    PubMed

    Priddy, S A; Hanley, T R; Effler, W T

    1999-01-01

    Phenyl ethyl alcohol is a compound that occurs naturally in flower petals and in many common beverages, such as beer. Desire for the floral, rose-like notes imparted by phenyl ethyl alcohol has created a unique niche for this chemical in flavor and fragrance industries. Phenyl ethyl alcohol can be produced by Saccharomyces cerevisiae via bioconversion. Often this method of production results in extremely low yields, thus placing a great deal of importance on recovery and purification of the valuable metabolite. To determine the best method for recovering the chemical, a primary recovery step and a secondary recovery step were developed. The primary recovery step consisted of comparing dead-end filtration with crossflow ultrafiltration. Crossflow ultrafiltration was ultimately selected to filter the fermentation broth because of its high flow rates and low affinity for the product. The secondary recovery step consisted of a comparison of liquid- liquid extraction and hydrophobic resin recovery. The hydrophobic resin was selected because of its higher rate of recovery and a higher purity than the liquid-liquid extraction, the current practice of Brown-Forman.

  1. Possibility of removing heavy impurities from ethyl alcohol by rectification under reduced pressure

    SciTech Connect

    Zuereva, V.I.; Elliev, Y.E.

    1986-01-10

    This paper develops a method of gas-chromatographic determination of trace amounts of higher alcohols in ethyl alcohol and examines the possibility of removing these impurities from ethyl alcohol by rectification under reduced pressure. The Tsvet-102 chromatograph with a flame-ionization detector was used in development of a method for gas-chromatographic analysis of ethyl alcohol. The experimental results show that good separation of the impurities is achieved in the capillary column where the impurities were separated. The relative retention volumes of the components are given. The best separation is achieved at 50 mm pressure. At this pressure the content of higher alcohols in ethyl alcohol is lowered by rectification from 1.5.10/sup -1/ to 5.10/sup -4/ vol. %. Thus, rectification of ethyl alcohol under reduced pressure is an effective method of removing heavy impurities from ethyl alcohol.

  2. 76 FR 82320 - Ethyl Alcohol for Fuel Use: Determination of the Base Quantity of Imports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... COMMISSION Ethyl Alcohol for Fuel Use: Determination of the Base Quantity of Imports AGENCY: United States.... domestic market for fuel ethyl alcohol during the 12-month period ending on the preceding September 30. This determination is to be used to establish the ``base quantity'' of imports of fuel ethyl...

  3. Inert Reassessment Document for Ethyl Alcohol - CAS No. 64-17-5

    EPA Pesticide Factsheets

    The main use of ethyl alcohol is in the consumption of alcoholic beverage and as a solvent in the laboratory and industry, and in the manufacture of denatured alcohol, pharmaceuticals, perfumes, and organic synthesis.

  4. 40 CFR 721.1085 - Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzenamine,4,4â²-methylenebis[N-ethyl-N-methyl-. 721.1085 Section 721.1085 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1085 Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-. (a) Chemical...

  5. 40 CFR 721.1085 - Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzenamine,4,4â²-methylenebis[N-ethyl-N-methyl-. 721.1085 Section 721.1085 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1085 Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-. (a) Chemical...

  6. 40 CFR 721.1085 - Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzenamine,4,4â²-methylenebis[N-ethyl-N-methyl-. 721.1085 Section 721.1085 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1085 Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-. (a) Chemical...

  7. 40 CFR 721.1085 - Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzenamine,4,4â²-methylenebis[N-ethyl-N-methyl-. 721.1085 Section 721.1085 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1085 Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-. (a)...

  8. 40 CFR 721.1085 - Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenamine,4,4â²-methylenebis[N-ethyl-N-methyl-. 721.1085 Section 721.1085 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1085 Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-. (a) Chemical...

  9. 40 CFR 721.10326 - 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2...-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2,2′-(1,2-diazenediyl)bis - and 2,2... butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2...

  10. 40 CFR 721.10326 - 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2...-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2,2′-(1,2-diazenediyl)bis - and 2,2... butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2...

  11. Searching for trans ethyl methyl ether in Orion KL(.)

    PubMed

    Tercero, B; Cernicharo, J; López, A; Brouillet, N; Kolesniková, L; Motiyenko, R A; Margulès, L; Alonso, J L; Guillemin, J-C

    2015-10-01

    We report on the tentative detection of trans ethyl methyl ether (tEME), t-CH3CH2OCH3, through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauche-trans-n-propanol, Gt-n-CH3CH2CH2OH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30 m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are ≤(4.0 ± 0.8) × 10(15) cm(-2) and ≤(1.0 ± 0.2)× 10(15) cm(-2) for tEME and Gt-n-propanol, respectively. The rotational temperature is ~100 K for both molecules. We also provide maps of CH3OCOH, CH3CH2OCOH, CH3OCH3, CH3OH, and CH3CH2OH to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio N(CH3OCH3)/N(tEME) ≥ 150 in the compact ridge of Orion.

  12. Cross-reaction of propyl and butyl alcohol glucuronides with an ethyl glucuronide enzyme immunoassay.

    PubMed

    Arndt, Torsten; Beyreiß, Reinhild; Schröfel, Stefanie; Stemmerich, Karsten

    2014-08-01

    Ethyl glucuronide (EtG) in urine is considered a marker of recent alcohol consumption. Using immunoassays for EtG screening without confirmatory analysis bears a risk of getting false-positives as shown for trichloroethyl glucuronide from chloral hydrate medication and 1-propyl glucuronide from propanol-based hand disinfection. The aim of the study was to check whether glucuronides of frequently used aliphatic short chain alcohols aside from EtG and 1-propyl glucuronide can cross-react with the DRI(®) Ethyl Glucuronide Assay. Aliquots of EtG-free urine were individually spiked with methyl β-D-glucuronide, 1-propyl β-D-glucuronide, 2-propyl β-D-glucuronide, 1-butyl β-D-glucuronide, 2-butyl β-D-glucuronide, and tert-butyl β-D-glucuronide. To check the response rate of the DRI(®) Ethyl Glucuronide Assay to its target analyte, EtG was also added to a native EtG-free urine sample. The spiked alcohol glucuronide concentrations (seven levels up to 10mg/L) and the DRI(®) Ethyl Glucuronide Assay results were evaluated by Passing-Bablok regression analysis. The 95% confidence interval ranges for the slope of the regression function were considered a measure of cross-reaction of the individual alcohol glucuronides with the enzyme immunoassay. 2-Propyl glucuronide showed a cross-reactivity of 69-84% at the 95% probability level, methyl glucuronide, 1-propyl glucuronide, and 1- and 2-butyl glucuronide of 4-9%, and tert-butyl glucuronide almost no cross-reactivity. The response rate for EtG was 87-94% at the 95% probability level. The DRI(®) Ethyl Glucuronide Assay shows cross-reaction rates with aliphatic short chain alcohol glucuronides aside from EtG which bear a risk of getting false-positives regarding ethanol consumption. Mass spectrometric detection of EtG is mandatory for confirmation of positive immunological EtG screenings. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. VOUCHER-BASED REINFORCEMENT FOR ALCOHOL ABSTINENCE USING THE ETHYL-GLUCURONIDE ALCOHOL BIOMARKER

    PubMed Central

    McDonell, Michael G; Howell, Donelle N; McPherson, Sterling; Cameron, Jennifer M; Srebnik, Debra; Roll, John M; Ries, Richard K

    2012-01-01

    This study assessed the effects of a contingency management (CM) intervention for alcohol consumption in 10 alcohol-dependent participants. An ABCA design was used. Vouchers were provided contingent on results of ethyl glucuronide (EtG) urine tests (an alcohol biomarker with a 2-day detection period) and alcohol breath tests during the C phase. The percentage of negative urines was 35% during the first baseline phase, 69% during the C phase, and 20% during the return-to-baseline phase. Results suggest that EtG urine tests may be a feasible method to deliver CM to promote alcohol abstinence. PMID:22403460

  14. Voucher-based reinforcement for alcohol abstinence using the ethyl-glucuronide alcohol biomarker.

    PubMed

    McDonell, Michael G; Howell, Donelle N; McPherson, Sterling; Cameron, Jennifer M; Srebnik, Debra; Roll, John M; Ries, Richard K

    2012-01-01

    This study assessed the effects of a contingency management (CM) intervention for alcohol consumption in 10 alcohol-dependent participants. An ABCA design was used. Vouchers were provided contingent on results of ethyl glucuronide (EtG) urine tests (an alcohol biomarker with a 2-day detection period) and alcohol breath tests during the C phase. The percentage of negative urines was 35% during the first baseline phase, 69% during the C phase, and 20% during the return-to-baseline phase. Results suggest that EtG urine tests may be a feasible method to deliver CM to promote alcohol abstinence.

  15. Drying of ethyl alcohol by extractive rectification and choosing a fractionating agent

    SciTech Connect

    Sobolev, A.S.; Borisov, A.V.; Raskina, M.G. Chesnokov, B.B.

    1987-11-10

    Ethyl alcohol can be dried by extractive rectification with monoethylene glycol more efficiently than with the triethylene glycol used industrially. The extractive rectification of ethyl alcohol does not require stabilization of the column with the distillate of dried alcohol, which can only worsen the process characteristics. The required reflux ratio is generated as a result of absorption of ethyl alcohol vapor by the extractant. To reduce the water content of ethyl alcohol from 6 to 0.5 wt. % with a yield not less than 70% the rectifying section of the column must have not less than six theoretical plates.

  16. Ethyl glucuronide for detecting alcohol lapses in patients with an alcohol use disorder.

    PubMed

    Lahmek, Pierre; Michel, Laurent; Diviné, Catherine; Meunier, Nadine; Pham, Béatrice; Cassereau, Catherine; Aussel, Christian; Aubin, Henri-Jean

    2012-03-01

    Urine ethyl glucuronide (EtG) was screened in 75 patients during a hospital-based treatment for an alcohol use disorder. During follow-up, EtG was detected in 35 (14.6%) of the 239 urine samples. Positive screens were found in 22 patients (29%), of whom nine were outpatients (39.1% of all outpatients) and 13 inpatients (25.0% of all inpatients). Of the 22 patients with positive EtG, five (22%) also gave a positive breath alcohol test and 10 (45.5%) reported recent alcohol consumption; 12 (54.5%) gave a negative breath alcohol test and declared no alcohol lapse. Ethyl glucuronide has been found useful in detecting covered lapses.

  17. [Carbohydrate deficient transferrin and ethyl glucuronide: markers for alcohol use].

    PubMed

    Paling, Erik P; Mostert, Leendert J

    2013-01-01

    In this article, we report on the usefulness of physicians testing for carbohydrate deficient transferrin (CDT) and ethyl glucuronide (EtG) when there are doubts about alcohol use by their patients. A 44-year-old male consulted his general practitioner with depressive symptoms and denied using alcohol. Laboratory examination revealed an elevated CDT value. The latter was caused by chronic alcohol use. The second patient, a 32-year-old female with known alcohol dependence and receiving inpatient treatment at an addiction clinic, came back from leave. She denied having consumed alcohol and her blood alcohol concentration was zero. Examination of her urine showed an elevated EtG/creatinine ratio. This was caused by having had a few drinks during her leave and could not have been caused by using mouthwash or disinfection soap. We describe how to use the results of CDT and EtG testing in the therapeutic process and give recommendations for patient communication before performing these two tests.

  18. Detection times for urinary ethyl glucuronide and ethyl sulfate in heavy drinkers during alcohol detoxification.

    PubMed

    Helander, Anders; Böttcher, Michael; Fehr, Christoph; Dahmen, Norbert; Beck, Olof

    2009-01-01

    Ethyl glucuronide (EtG) and ethyl sulfate (EtS) are conjugated ethanol metabolites formed in low amounts after alcohol consumption. Compared with ethanol, EtG and EtS are excreted in urine for a prolonged time, making them useful as sensitive alcohol biomarkers. This study determined the detection times for EtG and EtS in alcoholic patients undergoing alcohol detoxification. Alcohol-dependent patients (n = 32) with an initial alcohol concentration >or=1 g/L based on breath testing were followed during detoxification. Urine samples for determination of EtG, EtS, ethanol and creatinine were collected on admission to the hospital and thereafter once daily for several days. EtG and EtS measurements were performed by liquid chromatography-mass spectrometry (LC-MS) and EtG also using an immunochemical assay (DRI-EtG EIA, ThermoFisher/Microgenics). The detection time for urinary EtG was weakly correlated (r = 0.434, P = 0.013) with the initial alcohol concentration (range 1.0-3.4 g/L). For EtG, the individual time range until return to below the applied cut-off limit (<0.5 mg/L) was approximately 40-130 h (median 78) with a similar time course observed for EtS. After correction for urine dilution, the time until an EtG/creatinine ratio <0.5 mg/g was approximately 40- 90 h (median 65). The detection times after an estimated zero ethanol concentration were approximately 30-110 h (median 66) for EtG and approximately 30- 70 h (median 56) for EtG/creatinine. The EtG results by LC-MS and the immunoassay were in good agreement. During alcohol detoxification, EtG and EtS remained detectable in urine for several days. The detection times showed wide inter-individual variations, also after adjusting values for urine dilution and to the estimated times for a completed ethanol elimination.

  19. 21 CFR 173.250 - Methyl alcohol residues.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl alcohol residues. 173.250 Section 173.250... and Related Substances § 173.250 Methyl alcohol residues. Methyl alcohol may be present in the... specifies the presence of methyl alcohol and provides for the use of the hops extract only as prescribed...

  20. 40 CFR 63.61 - Deletion of methyl ethyl ketone from the list of hazardous air pollutants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Deletion of methyl ethyl ketone from... Designations, Source Category List § 63.61 Deletion of methyl ethyl ketone from the list of hazardous air pollutants. The substance methyl ethyl ketone (MEK, 2-Butanone) (CAS Number 78-93-3) is deleted from the list...

  1. 40 CFR 63.61 - Deletion of methyl ethyl ketone from the list of hazardous air pollutants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Deletion of methyl ethyl ketone from... Designations, Source Category List § 63.61 Deletion of methyl ethyl ketone from the list of hazardous air pollutants. The substance methyl ethyl ketone (MEK, 2-Butanone) (CAS Number 78-93-3) is deleted from the list...

  2. 40 CFR 63.61 - Deletion of methyl ethyl ketone from the list of hazardous air pollutants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Deletion of methyl ethyl ketone from... Designations, Source Category List § 63.61 Deletion of methyl ethyl ketone from the list of hazardous air pollutants. The substance methyl ethyl ketone (MEK, 2-Butanone) (CAS Number 78-93-3) is deleted from the list...

  3. 40 CFR 63.61 - Deletion of methyl ethyl ketone from the list of hazardous air pollutants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Deletion of methyl ethyl ketone from... Designations, Source Category List § 63.61 Deletion of methyl ethyl ketone from the list of hazardous air pollutants. The substance methyl ethyl ketone (MEK, 2-Butanone) (CAS Number 78-93-3) is deleted from the list...

  4. 40 CFR 63.61 - Deletion of methyl ethyl ketone from the list of hazardous air pollutants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Deletion of methyl ethyl ketone from... Designations, Source Category List § 63.61 Deletion of methyl ethyl ketone from the list of hazardous air pollutants. The substance methyl ethyl ketone (MEK, 2-Butanone) (CAS Number 78-93-3) is deleted from the list...

  5. Ethyl alcohol boiling heat transfer on multilayer meshed surfaces

    NASA Astrophysics Data System (ADS)

    Dåbek, Lidia; Kapjor, Andrej; Orman, Łukasz J.

    2016-06-01

    The paper presents the problem of heat transfer enhancement with the application of multilayer metal mesh structures during boiling of ethyl alcohol at ambient pressure. The preparation of samples involved sintering fine copper meshes with the copper base in the reduction atmosphere in order to prevent oxidation of the samples. The experiments included testing up to 4 layers of copper meshes. Significant augmentation of boiling heat transfer is possible, however, considerable number of meshes actually hinders heat transfer conditions and leads to the reduction in the heat flux transferred from the heater surface.

  6. Micellar phase boundaries under the influence of ethyl alcohol

    PubMed Central

    Bergeron, Denis E.

    2016-01-01

    The Compton spectrum quenching technique is used to monitor the effect of ethyl alcohol (EtOH) additions on phase boundaries in two systems. In toluenic solutions of the nonionic surfactant, Triton X-100, EtOH shifts the boundary separating the first clear phase from the first turbid phase to higher water:surfactant ratios. In a commonly used scintillant, Ultima Gold AB, the critical micelle concentration is not shifted. The molecular interactions behind the observations and implications for liquid scintillation counting are discussed. PMID:26585642

  7. Searching for trans ethyl methyl ether in Orion KL⋆

    NASA Astrophysics Data System (ADS)

    Tercero, B.; Cernicharo, J.; López, A.; Brouillet, N.; Kolesniková, L.; Motiyenko, R. A.; Margulès, L.; Alonso, J. L.; Guillemin, J.-C.

    2015-10-01

    We report on the tentative detection of trans ethyl methyl ether (tEME), t-CH3CH2OCH3, through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauche-trans-n-propanol, Gt-n-CH3CH2CH2OH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30 m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are ≤(4.0 ± 0.8) × 1015 cm-2 and ≤(1.0 ± 0.2) × 1015 cm-2 for tEME and Gt-n-propanol, respectively. The rotational temperature is ~100 K for both molecules. We also provide maps of CH3OCOH, CH3CH2OCOH, CH3OCH3, CH3OH, and CH3CH2OH to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio N(CH3OCH3)/N(tEME) ≥ 150 in the compact ridge of Orion. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00009.SV. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan) with NRC (Canada), NSC, and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. This work was also based on observations carried out with the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Appendix A is available in electronic form at http://www.aanda.org

  8. Fatty Acid Ethyl Esters in Meconium: Are They Biomarkers of Fetal Alcohol Exposure and Effect?

    PubMed Central

    Ostrea, Enrique M.; Hernandez, Joel D.; Bielawski, Dawn M.; Kan, Jack M.; Leonardo, Gregorio M.; Abela, Michelle Buda; Church, Michael W.; Hannigan, John H.; Janisse, James J.; Ager, Joel W.; Sokol, Robert J.

    2011-01-01

    Background Biomarkers of fetal exposure to alcohol are important to establish so that early detection and intervention can be made on these infants to prevent undesirable outcomes. The aim of this study was to analyze long-chain fatty acid ethyl esters (FAEEs) in meconium as potential biomarkers of fetal alcohol exposure and effect. Methods Fatty acid ethyl esters were analyzed in the meconium of 124 singleton infants by positive chemical ionization gas chromatography/mass spectrometry (GC/MS) and correlated to maternal ethanol use. Results A total of 124 mother/infant dyads were enrolled in the study: 31 were in the control group and 93 were in the alcohol-exposed group. The incidence (28% vs 9.7%, p=0.037) of ethyl linoleate detected in meconium was significantly higher in the alcohol-exposed groups than the control groups. Similarly, when the concentrations of ethyl linoleate in meconium were grouped (trichotomized), there was a significant linear by linear association between alcohol exposure and group concentrations of ethyl linoleate (p=0.013). Furthermore, only alcohol-exposed infants were found in the group with the highest ethyl linoleate concentration. The sensitivity of ethyl linoleate in detecting prenatal alcohol exposure was only 26.9%, and its specificity and positive predictive value were 96.8 and 96.2%, respectively. There was no significant correlation between the concentration of ethyl linoleate in meconium and absolute alcohol consumed (oz) per drinking day across pregnancy, although a trend toward a positive correlation is seen at lower amounts of alcohol consumed. Among the polyunsaturated, long-chain FAEEs, there was weak evidence that the incidence (21.5% vs 6.5%, p=0.057) and concentration (p=0.064) of ethyl arachidonate (AA) were significantly higher in the alcohol-exposed groups than the control groups. Ethyl linolenate and ethyl docosahexanoate (DHA) in meconium were found only in the alcohol group, although not at statistically

  9. Determination of acetone and methyl ethyl ketone in water

    USGS Publications Warehouse

    Tai, D.Y.

    1978-01-01

    Analytical procedures for the determination of acetone and methyl ethyl ketone in water samples were developed. Concentrations in the milligram-per-liter range were determined by injecting an aqueous sample into the analysis system through an injection port, trapping the organics on Tenax-GC at room temperature, and thermally desorbing the organics into a gas chromatograph with a flame ionization detector for analysis. Concentrations in the microgram-per-liter range were determined by sweeping the headspace vapors over a water sample at 50C, trapping on Tenax-GC, and thermally desorbing the organics into the gas chromatograph. The precision for two operators of the milligram-per-liter concentration procedure, expressed as the coefficient of variation, was generally less than 2 percent for concentrations ranging from 16 to 160 milligrams per liter. The precision from two operators of the microgram-per-liter concentration procedure was between 2 and 4 percent for concentrations of 20 and 60 micrograms per liter. (Woodard-USGS)

  10. Controlled Degradation of Poly(Ethyl Cyanoacrylate-Co-Methyl Methacrylate)(PECA-Co-PMMA) Copolymers

    USDA-ARS?s Scientific Manuscript database

    This paper describes a method for modifying poly(ethyl cyanoacrylate) in order to control the degradation and the stability as well as the glass transition temperatures. Copolymers of poly(ethyl cyanoacrylate-co-methyl methacrylate) (PECA-co-PMMA) with various compositions were synthesized by free ...

  11. Selective determination of ethyl acetate, acetone, ethanol, and methyl ethyl ketone using quartz crystal nanobalance combined with principle component analysis.

    PubMed

    Mirmohseni, A; Razzaghi, M A; Pourata, R; Rastgouye-Hojagan, M; Zavareh, S

    2009-07-15

    Quartz crystal nanobalance (QCN) sensors are considered as powerful mass sensitive sensors to determine materials in the subnanogram level. In the current study a method based on QCN modified with polyethylene glycol (PEG) has been developed to determine organic vapors (ethyl acetate, acetone, ethanol and methyl ethyl ketone). The frequency shift of QCN was found to be linear against analytes concentrations in the range between 4 to 35 mg/L for acetone vapor and 4-70 mg/L for 3 other vapors. The correlation coefficients for ethyl acetate, acetone, ethanol, and methyl ethyl ketone were 0.9971, 0.9976, 0.9984 and 0.9927, respectively. The principal component analysis was also utilized to process the frequency response data of the organic vapors. Using principal component analysis, it was found that over 95% of the data variance could still be explained by use of two principal components (PC1 and PC2). Subsequently, the successful discrimination of ethyl acetate and other compounds was possible through the principal component analysis of the transient responses of the PEG-modified QCN sensor.

  12. Effect of succinic acid and tween-80 on glucuronidation of 2-ethyl-6-methyl-3-hydroxypyridine.

    PubMed

    Baranov, P A; Kravtsova, O U; Sariev, A K; Sherdev, V P

    2008-07-01

    We studied the effect of succinic acid on the process of glucuronidation of 2-ethyl-6-methyl-3-hydroxypyridine after peroral and intraperitoneal administration in the form of succinate or a base. Since the basic form of 2-ethyl-6-methyl-3-hydroxypyridine is insoluble in water, it was administered in 5% Tween-80. It was necessary to evaluate also the effect of Tween-80 on glucuronidation of 2-ethyl-6-methyl-3-hydroxypyridine in different administration routes. Quantitative assay of glucuronidated fractions was performed by the method of reversed-phase HPLC with fluorometrical detection. The detection limit for this method was 10 ng/ml. We confirmed that the major excretion pathway for 2-ethyl-6-methyl-3-hydroxypyridine is conjugation with glucuronic acid. It was found that succinic acid increased excretion of glucuronidated metabolite after both peroral and intraperitoneal administration of 2-ethyl-6-methyl-3-hydroxypyridine in the form of succinate and base in 5% Tween-80. The effect of Tween-80 was detected only after peroral administration, which was probably related to its effect on absorption of this compound. Tween-80 increased excretion of glucuronate after peroral administration of 2-ethyl-6-methyl-3-hydroxypyridine in the form of succinate and in 5% Tween solution.

  13. Interaction of Ethyl Alcohol Vapor with Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2006-01-01

    We investigated the uptake of ethyl alcohol (ethanol) vapor by sulfuric acid solutions over the range approx.40 to approx.80 wt % H2SO4 and temperatures of 193-273 K. Laboratory studies used a fast flow-tube reactor coupled to an electron-impact ionization mass spectrometer for detection of ethanol and reaction products. The uptake coefficients ((gamma)) were measured and found to vary from 0.019 to 0.072, depending upon the acid composition and temperature. At concentrations greater than approx.70 wt % and in dilute solutions colder than 220 K, the values approached approx.0.07. We also determined the effective solubility constant of ethanol in approx.40 wt % H2SO4 in the temperature range 203-223 K. The potential implications to the budget of ethanol in the global troposphere are briefly discussed.

  14. Interaction of Ethyl Alcohol Vapor with Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2006-01-01

    We investigated the uptake of ethyl alcohol (ethanol) vapor by sulfuric acid solutions over the range approx.40 to approx.80 wt % H2SO4 and temperatures of 193-273 K. Laboratory studies used a fast flow-tube reactor coupled to an electron-impact ionization mass spectrometer for detection of ethanol and reaction products. The uptake coefficients ((gamma)) were measured and found to vary from 0.019 to 0.072, depending upon the acid composition and temperature. At concentrations greater than approx.70 wt % and in dilute solutions colder than 220 K, the values approached approx.0.07. We also determined the effective solubility constant of ethanol in approx.40 wt % H2SO4 in the temperature range 203-223 K. The potential implications to the budget of ethanol in the global troposphere are briefly discussed.

  15. The Performance of Alcohol Markers Including Ethyl Glucuronide and Ethyl Sulphate to Detect Alcohol Use in Clients in a Community Alcohol Treatment Programme.

    PubMed

    Armer, Jane M; Gunawardana, Lihini; Allcock, Rebecca L

    2017-01-01

    The ethanol metabolites ethyl glucuronide (EtG) and ethyl sulphate (EtS) are detectable for longer in urine than breath ethanol or urine ethanol after alcohol intake. This study compared the performance of breath ethanol, urine ethanol, urine EtG and EtS to detect alcohol consumption in clients in community alcohol treatment. Clients attending the community alcohol treatment programme were asked to provide an alcohol diary, breathalyser test and urine for ethanol, EtG and EtS measurement (n = 42). Positive results were defined using the detection limits (breath ethanol and urine ethanol) or clinical cut-offs (EtG: 0.26 mg/L and EtS: 0.22 mg/L). The sensitivities and specificities of each marker to detect alcohol intake <24 and 48-72 h prior were calculated. The sensitivities of each alcohol marker to detect alcohol intake <24 h prior were 57, 71, 100 and 100% for breath ethanol, urine ethanol, urine EtG and urine EtS, respectively. The specificity was 100% for urine ethanol and urine EtS. The EtG specificity could be increased to 100% by using a higher cut-off (0.50 mg/L). The sensitivity of all markers (including EtG and EtS) to detect alcohol intake of ≤10 units 48-72 h earlier decreased to 0%. In community alcohol treatment clients, urine EtG and EtS showed the optimum diagnostic performance to detect alcohol intake in the previous 24 h. We propose a flowchart to routinely use EtG and EtS for clients in community alcohol treatment. The ability of breath ethanol, urine ethanol, urine EtG and urine EtS to detect continued alcohol consumption in clients in community alcohol treatment were compared. Urine EtG and EtS showed the optimum diagnostic performance and we propose a flowchart to routinely use EtG and EtS in community alcohol treatment. © The Author 2016. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  16. A DNA methylation biomarker of alcohol consumption.

    PubMed

    Liu, C; Marioni, R E; Hedman, Å K; Pfeiffer, L; Tsai, P-C; Reynolds, L M; Just, A C; Duan, Q; Boer, C G; Tanaka, T; Elks, C E; Aslibekyan, S; Brody, J A; Kühnel, B; Herder, C; Almli, L M; Zhi, D; Wang, Y; Huan, T; Yao, C; Mendelson, M M; Joehanes, R; Liang, L; Love, S-A; Guan, W; Shah, S; McRae, A F; Kretschmer, A; Prokisch, H; Strauch, K; Peters, A; Visscher, P M; Wray, N R; Guo, X; Wiggins, K L; Smith, A K; Binder, E B; Ressler, K J; Irvin, M R; Absher, D M; Hernandez, D; Ferrucci, L; Bandinelli, S; Lohman, K; Ding, J; Trevisi, L; Gustafsson, S; Sandling, J H; Stolk, L; Uitterlinden, A G; Yet, I; Castillo-Fernandez, J E; Spector, T D; Schwartz, J D; Vokonas, P; Lind, L; Li, Y; Fornage, M; Arnett, D K; Wareham, N J; Sotoodehnia, N; Ong, K K; van Meurs, J B J; Conneely, K N; Baccarelli, A A; Deary, I J; Bell, J T; North, K E; Liu, Y; Waldenberger, M; London, S J; Ingelsson, E; Levy, D

    2016-11-15

    The lack of reliable measures of alcohol intake is a major obstacle to the diagnosis and treatment of alcohol-related diseases. Epigenetic modifications such as DNA methylation may provide novel biomarkers of alcohol use. To examine this possibility, we performed an epigenome-wide association study of methylation of cytosine-phosphate-guanine dinucleotide (CpG) sites in relation to alcohol intake in 13 population-based cohorts (ntotal=13 317; 54% women; mean age across cohorts 42-76 years) using whole blood (9643 European and 2423 African ancestries) or monocyte-derived DNA (588 European, 263 African and 400 Hispanic ancestry) samples. We performed meta-analysis and variable selection in whole-blood samples of people of European ancestry (n=6926) and identified 144 CpGs that provided substantial discrimination (area under the curve=0.90-0.99) for current heavy alcohol intake (⩾42 g per day in men and ⩾28 g per day in women) in four replication cohorts. The ancestry-stratified meta-analysis in whole blood identified 328 (9643 European ancestry samples) and 165 (2423 African ancestry samples) alcohol-related CpGs at Bonferroni-adjusted P<1 × 10(-7). Analysis of the monocyte-derived DNA (n=1251) identified 62 alcohol-related CpGs at P<1 × 10(-7). In whole-blood samples of people of European ancestry, we detected differential methylation in two neurotransmitter receptor genes, the γ-Aminobutyric acid-A receptor delta and γ-aminobutyric acid B receptor subunit 1; their differential methylation was associated with expression levels of a number of genes involved in immune function. In conclusion, we have identified a robust alcohol-related DNA methylation signature and shown the potential utility of DNA methylation as a clinically useful diagnostic test to detect current heavy alcohol consumption.Molecular Psychiatry advance online publication, 15 November 2016; doi:10.1038/mp.2016.192.

  17. Identification of 2-ethyl-4-methyl-3-thiazoline and 2-isopropyl-4-methyl-3-thiazoline for the first time in nature by the comprehensive analysis of sesame seed oil.

    PubMed

    Agyemang, David; Bardsley, Kathryn; Brown, Sharon; Kraut, Kenneth; Psota-Kelty, Linda; Trinnaman, Laurence

    2011-04-01

    Toasted sesame seed oil was comprehensively analyzed. It was extracted using the SAFE (Solvent-Assisted Flavor Evaporation) technique. The extract was analyzed by GC and GC-MS on 2 phases and a total of 87 components were identified, confirmed, and are presented in this paper. The major components were methylpyrazine; 2,5-dimethylpyrazine; 2,6-dimethylpyrazine; 2-ethyl-3,6-dimethylpyrazine; furfuryl alcohol; and guaiacol. In addition, as part of this analysis, 2-ethyl-4-methyl-3-thiazoline and 2-isopropyl-4-methyl-3-thiazoline were confirmed as being present in a natural product for the first time. Their identification, confirmation, and sensory evaluation have been documented here.

  18. 21 CFR 173.250 - Methyl alcohol residues.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl alcohol residues. 173.250 Section 173.250... CONSUMPTION Solvents, Lubricants, Release Agents and Related Substances § 173.250 Methyl alcohol residues. Methyl alcohol may be present in the following foods under the conditions specified: (a) In...

  19. 21 CFR 173.250 - Methyl alcohol residues.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl alcohol residues. 173.250 Section 173.250... CONSUMPTION Solvents, Lubricants, Release Agents and Related Substances § 173.250 Methyl alcohol residues. Methyl alcohol may be present in the following foods under the conditions specified: (a) In...

  20. 21 CFR 173.250 - Methyl alcohol residues.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl alcohol residues. 173.250 Section 173.250... CONSUMPTION Solvents, Lubricants, Release Agents and Related Substances § 173.250 Methyl alcohol residues. Methyl alcohol may be present in the following foods under the conditions specified: (a) In...

  1. 21 CFR 173.250 - Methyl alcohol residues.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl alcohol residues. 173.250 Section 173.250... CONSUMPTION Solvents, Lubricants, Release Agents and Related Substances § 173.250 Methyl alcohol residues. Methyl alcohol may be present in the following foods under the conditions specified: (a) In...

  2. Ethyl sulphate: a direct ethanol metabolite reflecting recent alcohol consumption.

    PubMed

    Wurst, Friedrich Martin; Dresen, Sebastian; Allen, John P; Wiesbeck, Gerhard; Graf, Marc; Weinmann, Wolfgang

    2006-02-01

    Ethyl sulphate (EtS), a direct ethanol metabolite, appears to offer potential as a biomarker for recent alcohol consumption. Although its window of assessment is similar to that of ethyl glucuronide (EtG), there are differences between the two markers in their pathways for formation and degradation. (a) To assess the excretion of EtS compared to EtG and ethanol in drinking experiments with healthy volunteers, and (b) to elucidate the possibility of using the two metabolites for monitoring abstinence in substance use disorder patients during rehabilitation treatment. (a) Nine drinking experiments were performed by six healthy volunteers (two females, four males), with a mean age of 34.1 years (20-62), average oral intake of 0.2 g/kg ethanol (0.1-0.61), and having 74 spot urine samples. (b) Thirty-six substance abuse patients (mean age 41.9 years, 20-59; 22 males, 14 females) in a rehabilitation programme after withdrawal, producing 98 urine samples. Ethyl glucuronide and ethyl sulphate were measured using liquid chromatography tandem mass spectrometry (LC-MS/MS) using d5-EtG and d5-EtS, respectively, as an internal standard. (a) EtG and EtS were detectable for up to 36 hours and reached the limits of determination in urine at 20.6 hours and 21.2 hours (median), respectively, after ethanol intake. EtG-100 (standardized to a creatinine of 100 mg/dl) reached its maximum level at 2.8 hours and EtS-100 at 2.1 hours (median) after the beginning of the experiment. Of the ethanol ingested, 0.022% was excreted as EtS in one volunteer. Eight samples were positive for EtS only and six for EtG only. Spearman's rank correlation coefficients of 0.84 (P < 0.0001) between EtG and EtS and 0.87 (P < 0.0001) between EtG-100 and EtS-100 were found. (b) of the 98 urine samples evaluated, 27 were positive for EtS and of these only 20 were also positive for EtG. Spearman's rank correlation coefficients of 0.84 (P < 0.0001) between EtG and EtS and 0.82 (P < 0.0001) between EtG-100 and Et

  3. Analysis and interpretation of specific ethanol metabolites, ethyl sulfate, and ethyl glucuronide in sewage effluent for the quantitative measurement of regional alcohol consumption.

    PubMed

    Reid, Malcolm J; Langford, Katherine H; Mørland, Jørg; Thomas, Kevin V

    2011-09-01

    The quantitative measurement of urinary metabolites in sewage streams and the subsequent estimation of consumption rates of the parent compounds have previously been demonstrated for pharmaceuticals and narcotics. Ethyl sulfate and ethyl glucuronide are excreted in urine following the ingestion of alcohol, and are useful biomarkers for the identification of acute alcohol consumption. This study reports a novel ion-exchange-mediated chromatographic method for the quantitative measurement of ethyl sulfate and ethyl glucuronide in sewage effluent, and presents a novel calculation method for the purposes of relating the resulting sewage concentrations with rates of alcohol consumption in the region. A total of 100 sewage samples covering a 25-day period were collected from a treatment plant servicing approximately 500,000 people, and analyzed for levels of ethyl sulfate and ethyl glucuronide. The resulting data were then used to estimate combined alcohol consumption rates for the region, and the results were compared with alcohol related sales statistics for the same region. Ethyl glucuronide was found to be unstable in sewage effluent. Ethyl sulfate was stable and measurable in all samples at concentrations ranging from 16 to 246 nM. The highest concentrations of the alcohol biomarker were observed during weekend periods. Sixty one percent of the total mass of ethyl sulfate in sewage effluent corresponds to alcohol consumption on Friday and Saturday. Sales statistics for alcohol show that consumption in the region is approximately 6,750 kg/d. The quantity of ethyl sulfate passing through the sewage system is consistent with consumption of 4,900 to 7,800 kg/d.   Sewage epidemiology assessments of ethyl sulfate can provide accurate estimates of community alcohol consumption, and detailed examination of the kinetics of this biomarker in sewage streams can also identify time-dependent trends in alcohol consumption patterns. 2011 by the Research Society on Alcoholism.

  4. Intermittent trickling bed filter for the removal of methyl ethyl ketone and methyl isobutyl ketone.

    PubMed

    Farnazo, Danvir Mark C; Nisola, Grace M; Han, Mideok; Yoo, Namjong; Chung, Wook-Jin

    2012-05-01

    Biodegradations of methyl ethyl ketone and methyl isobutyl ketone were performed in intermittent biotrickling filter beds (ITBF) operated at two different trickling periods: 12 h/day (ITBF-12) and 30 min/day (ITBF-0.5). Ralstonia sp. MG1 was able to degrade both ketones as evidenced by growth kinetic experiments. Results show that trickling period is an important parameter to achieve high removal performance and to maintain the robustness of Ralstonia sp. MG1. Overall, ITBF-12 outperformed ITBF-0.5 regardless of the target compound. ITBF-12 had high performance recovery at various inlet gas concentrations. The higher carbon dioxide production rates in ITBF-12 suggest higher microbial activity than in ITBF-0.5. Additionally, lower concentrations of absorbed volatile organic compound (VOC) in trickling solutions of ITBF-12 systems also indicate VOC removal through biodegradation. Pressure drop levels in ITBF-12 were relatively higher than in ITBF-0.5 systems, which can be attributed to the decrease in packed bed porosity as Ralstonia sp. MG1 grew well in ITBF-12. Nonetheless, the obtained pressure drop levels did not have any adverse effect on the performance of ITBF-12. Biokinetic constants were also obtained which indicated that ITBF-12 performed better than ITBF-0.5 and other conventional biotrickling filter systems.

  5. Gauche Ethyl Alcohol: Laboratory Assignments and Interstellar Identification

    NASA Technical Reports Server (NTRS)

    Pearson, J. C.; Sastry, K. V. L. N.; Herbst, Eric; DeLucia, Frank C.

    1997-01-01

    Ethyl alcohol (ethanol) is known to possess a pair of closely spaced excited torsional substates (gauche+, gauche-) at an energy of approximately 57 K above the ground (trans) torsional substate. We report an extended analysis of some gauche - gauche+ Q-branch ((Delta)J = 0) transitions with a three-substate fixed frame axis method (FFAM) Hamiltonian. Our approach accounts for complex trans-gauche interactions for the first time. In addition, we are able to obtain intensities for perturbed rotational transitions, and to determine the trans to gauche+ separation to be 1185399.1 MHz. A complete ground state rotational-torsional partition function accounting for the previously neglected gauche substates is presented. Based on our analysis, a total of 14 U lines obtained towards Orion KL can now be assigned to gauche substates of ethanol. Analysis of these lines yields a rotational temperature of 223 K and a total (trans + gauche) column density of 7.0 x 10(exp 15)/sq cm. The column density is in reasonable agreement with the recent value of 2-3 x 10(exp 15)/sq cm based on observations of trans-ethanol by Ohishi et al., although there is some disparity in the rotational temperatures. Eight additional U lines in the literature are assigned to transitions of gauche ethanol.

  6. Gauche Ethyl Alcohol: Laboratory Assignments and Interstellar Identification

    NASA Astrophysics Data System (ADS)

    Pearson, J. C.; Sastry, K. V. L. N.; Herbst, Eric; De Lucia, Frank C.

    1997-05-01

    Ethyl alcohol (ethanol) is known to possess a pair of closely spaced excited torsional substates (gauche+, gauche-) at an energy of approximately 57 K above the ground (trans) torsional substate. We report an extended analysis of some gauche- -gauche+ Q-branch (ΔJ = 0) transitions with a three-substate fixed frame axis method (FFAM) Hamiltonian. Our approach accounts for complex trans-gauche interactions for the first time. In addition, we are able to obtain intensities for perturbed rotational transitions, and to determine the trans to gauche+ separation to be 1185399.1 MHz. A complete ground state rotational-torsional partition function accounting for the previously neglected gauche substates is presented. Based on our analysis, a total of 14 U lines obtained towards Orion KL can now be assigned to gauche substates of ethanol. Analysis of these lines yields a rotational temperature of 223 K and a total (trans + gauche) column density of 7.0 × 1015 cm-2. The column density is in reasonable agreement with the recent value of 2-3 × 1015 cm-2 based on observations of trans-ethanol by Ohishi et al., although there is some disparity in the rotational temperatures. Eight additional U lines in the literature are assigned to transitions of gauche ethanol.

  7. A critical comparison of methyl and ethyl esters production from soybean and rice bran oil in the presence of microwaves.

    PubMed

    Kanitkar, Akanksha; Balasubramanian, Sundar; Lima, Marybeth; Boldor, Dorin

    2011-09-01

    Transesterification of vegetable oils (from soybeans and rice bran) into methyl and ethyl esters using a batch microwave system was investigated in this study. A critical comparison between the two alcohols was performed in terms of yields, quality, and reaction kinetics. Parameters tested were temperature (60, 70 and 80°C) and time (5, 10, 15 and 20 min). At all tested conditions, more than 96% conversion rates were obtained for both ethanol and methanol. Use of microwave technology to assist the transesterification process resulted in faster reaction times and reduced catalyst requirement (about ten-fold decrease). Methanol required lower alcohol:oil ratios than normally used in conventional heating, whereas ethanol required higher molar ratios. All esters produced using this method met ASTM biodiesel quality specifications. Methanol performed better in terms of performance and costs, while ethanol may have some environmental and safety benefits.

  8. Microwave Spectroscopy of Trans-Ethyl Methyl Ether in the Torsionally Excited State 3

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kaori; Murata, Keigo; Tsunekawa, Shozo; Ohashi, Nobukimi

    2010-06-01

    The trans-ethyl methyl ether molecule (CH_3CH_2OCH_3) has two methyl group internal rotors which are equivalent to the two vibrational motions, ν28 and ν29. There is another low-lying torsional motion which is a skeltal torsion (ν30) and does not cause splitting. The microwave spectra of the trans-ethyl methyl ether molecule in the ν28 = 1, ν29 = 1, and ν30 = 1 have been studied and interactions between these states were discussed. In this paper we report results on the ν30 = 2, and 3 state. The analysis based on Hougen's tunneling matrix formulation considering two methyl groups are used. We try to interpret tunneling parameters obtained in the present analysis quantitatively from the viewpoint of torsion-torsion interaction.

  9. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to...

  10. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  11. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  12. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  13. Lignin biodegradation and the production of ethyl alcohol from cellulose

    SciTech Connect

    Rosenberg, S.L.; Wilke, C.R.

    1981-02-01

    During the last few years our group has been engaged in developing a biochemical process for the conversion of lignocellulosic materials to ethyl alcohol. Lignin is a barrier to complete cellulose saccharification in this process, but chemical and physical delignification steps are too expensive to be used at the present time. An enzymatic delignification process might be attractive for several reasons: little energy would be expected to be needed, enzymes could be recovered and reused, and useful chemicals might be produced from dissolved lignin. A number of thermophilic and thermotolerant fungi were examined for the ability to rapidly degrade lignocellulose in order to find an organism whcih produced an active lignin-degrading enzyme system. Chryosporium pruinosum and Sporotrichum pulverulentum were found to be active lignocellulose degraders, and C. pruinosum was chosen for further study. Lignin and carbohydrate were degraded when the substrate remained moistened by, but not submerged in, the liquid medium. Attempts were made to demonstrate a cell-free lignin degrading system by both extraction and pressing of cultures grown on moist lignocellulose. Carbohydrate-degrading activity was found but not lignin-degrading activity. This led us to ask whether diffusible lignin-degrading activity could be demonstrated in this organism. The data indicate that the lignin degradation system, or one or more of its components, produced by this organism is either unstable, non-diffusible, or inactive at small distances (about 1 mm) from growing hyphae. At present, studies are being conducted using diffusion cultures to select mutants of C. pruinosum that do produce a diffusible lignin degradation system. We are also examining a number of mesophilic lignin-degrading molds for this ability.

  14. Transformation kinetics and mechanism of the sulfonylurea herbicides pyrazosulfuron ethyl and halosulfuron methyl in aqueous solutions

    USDA-ARS?s Scientific Manuscript database

    Pyrazosulfuron ethyl (PE) and halosulfuron methyl (HM) are two new highly active sulfonylurea herbicides which have been widely used for weed control in a variety of vegetables and other crops. These two herbicides have similar molecular structure, differing only in the substitutions on the pyrazole...

  15. Comparative study of the effect of ferrocyanide and EDTA on the production of ethyl alcohol from molasses by Saccharomyces cerevisiae

    SciTech Connect

    Oderinde, R.A.; Ngoka, L.C.; Adesogan, E.K.

    1986-01-01

    The effects of potassium ferrocyanide and EDTA on ethyl alcohol production from molasses by Saccharomyces cerevisiae were investigated on simulated batch pilot-plant-scale conditions for alcoholic fermentation of molasses. Ethyl alcohol production was more sensitive to ferrocyanide than to EDTA. When ferrocyanide was introduced into the cultures at the time of inoculation, there was stimulation of ethyl alcohol production, with 261 ppm ferrocyanide producing the maximum effect, which was 3.0% more than n control cultures. When added during the propagation of the yeast, ferrocyanide depressed ethyl alcohol production by 4.0% maximum whereas EDTA stimulated ethyl alcohol production by 2.0%. Addition of ferrocyanide during the fermentation stage produced no significant effect on alcohol production, whereas over a wide range of EDTA concentration there was a steady increase in alcohol yield.

  16. Biomarkers of the alcohol hangover state: Ethyl glucuronide (EtG) and ethyl sulfate (EtS).

    PubMed

    Mackus, Marlou; van de Loo, Aurora J A E; Raasveld, S Jorinde; Hogewoning, Anna; Sastre Toraño, Javier; Flesch, Frits M; Korte-Bouws, Gerdien A H; van Neer, Renier H P; Wang, Xiaochun; Nguyen, Thomas T; Brookhuis, Karel A; Kraneveld, Aletta D; Garssen, Johan; Verster, Joris C

    2017-09-01

    The aim of this study was to investigate the usefulness of ethyl glucuronide (EtG) and ethyl sulfate (EtS) as biomarkers of the hangover state. Thirty-sixhealthy social drinkers participated in this study, being of naturalistic design. Eighteen participants experience regular hangovers (the hangover group), whereas the other 18 claim to not experience a hangover (the hangover-immune group). On a control day (alcohol-free) day and a post-alcohol day, urine EtG and EtS concentrations were determined and hangover severity assessed. Urinary EtG and EtS concentrations were significantly increased on post-alcohol day compared to the control day (p = .0001). Both EtG and EtS concentrations did not significantly correlate with the overall hangover score, nor with the estimated peak blood alcohol concentrations and number of alcoholic drinks. EtG correlated significantly only with the individual hangover symptom "headache" (p = .033; r = .403). No significant correlations were found with the EtG to EtS ratio. EtG and EtS concentrations significantly correlated with urine ethanol concentrations. Although urine EtG and EtS concentration did not significantly correlate to estimated peak blood alcohol concentrations or the number of alcoholic drinks consumed, a significant correlation was found with urine ethanol concentration. However, urine EtG and EtS concentrations did not significantly correlate with overall hangover severity. © 2017 The Authors. Human Psychopharmacology: Clinical & Experimental Published by John Wiley & Sons Ltd.

  17. Urine tested positive for ethyl glucuronide and ethyl sulphate after the consumption of "non-alcoholic" beer.

    PubMed

    Thierauf, Annette; Gnann, Heike; Wohlfarth, Ariane; Auwärter, Volker; Perdekamp, Markus Grosse; Buttler, Klaus-Juergen; Wurst, Friedrich M; Weinmann, Wolfgang

    2010-10-10

    In abstinence maintenance programs, for reissuing the driving licence and in workplace monitoring programs abstinence from ethanol and its proof are demanded. Various monitoring programs that mainly use ethyl glucuronide (EtG) as alcohol consumption marker have been established. To abstain from ethanol, but not from the taste of alcoholic beverages, in particular non-alcoholic beer has become more and more popular. In Germany, these "alcohol-free" beverages may still have an ethanol content of up to 0.5vol.% without the duty of declaration. Due to severe negative consequences resulting from positive EtG tests, a drinking experiment with 2.5L of non-alcoholic beer per person was performed to address the question of measurable concentrations of the direct metabolites EtG and EtS (ethyl sulphate) in urine and blood. Both alcohol consumption markers - determined by LC-MS/MS - were found in high concentrations: maximum concentrations in urine found in three volunteers were EtG 0.30-0.87mg/L and EtS 0.04-0.07mg/L, i.e., above the often applied cut-off value for the proof of abstinence of 0.1mg EtG/L. In the urine samples of one further volunteer, EtG and EtS concentrations cumulated over-night and reached up to 14.1mg/L EtG and 16.1mg/L EtS in the next morning's urine. Ethanol concentrations in blood and urine samples were negative (determined by HS-GC-FID and by an ADH-based method).

  18. Fumigation of wheat using liquid ethyl formate plus methyl isothiocyanate in 50-tonne farm bins.

    PubMed

    Ren, Yonglin; Lee, Byungho; Mahon, Daphne; Xin, Ni; Head, Matthew; Reid, Robin

    2008-04-01

    Australian Standard White wheat, Triticum aestivum L. (a marketing grade with mixed grain hardness),with a moisture content of 12.5% was fumigated with a new ethyl formate formulation (95% ethyl formate plus 5% methyl isothiocyanate) identified and developed by Commonwealth Scientific and Industrial Research Organization Entomology, Canberra, Australia. Wheat was fumigated with the formulation at a calculated application rate of 80 g/m3 in two 50-tonne sealed metal vertical silos located at Fisherman Islands, Queensland, Australia. Access was gained through the top of the silo where the application of the formulation was completed within a few minutes by pouring it onto the top of the wheat. After 2 h of recirculation, using a 0.5-kW fan, the in-bin concentrations of ethyl formate achieved equilibrium with a concentration variation < 7%. The ethyl formate concentration, in both silos 1 and 2, during the first day's exposure period remained above 10 g/m3. The concentration of ethyl formate by time product achieved was 790 and 650 g h/m3 in silos 1 and 2, respectively. In silo 1, the formulation was sufficient to kill all life stages of mixed age cultures of Sitophilus oryzae (L.), Rhyzopertha dominica (F.), and Tribolium castaneum (Herbst). In silo 2, control was 100% for R. dominica and T. castaneum and 99.4% for S. oryzae. After 5 d fumigation, the silo top-hatch was opened but no forced aeration was initiated. The in-bin concentration of ethyl formate was lower than the Australian experimental threshold limit value of 100 ppm. The ethyl formate and methyl isothiocyanate residues in the grain had declined to below the Australian experimental maximum residue limit of 0.2 and 0.1 mg/kg, respectively. The workspace and environmental levels of ethyl formate and methyl isothiocyanate were less than the detection limit of 0.1 ppm. The treatment with ethyl formate formulation had no affect on the wheat germination and seed color compared with untreated controls.

  19. Chemodynamics of methyl parathion and ethyl parathion: adsorption models for sustainable agriculture.

    PubMed

    Tabassum, Noshabah; Rafique, Uzaira; Balkhair, Khaled S; Ashraf, Muhammad Aqeel

    2014-01-01

    The toxicity of organophosphate insecticides for nontarget organism has been the subject of extensive research for sustainable agriculture. Pakistan has banned the use of methyl/ethyl parathions, but they are still illegally used. The present study is an attempt to estimate the residual concentration and to suggest remedial solution of adsorption by different types of soils collected and characterized for physicochemical parameters. Sorption of pesticides in soil or other porous media is an important process regulating pesticide transport and degradation. The percentage removal of methyl parathion and ethyl parathion was determined through UV-Visible spectrophotometer at 276 nm and 277 nm, respectively. The results indicate that agricultural soil as compared to barren soil is more efficient adsorbent for both insecticides, at optimum batch condition of pH 7. The equilibrium between adsorbate and adsorbent was attained in 12 hours. Methyl parathion is removed more efficiently (by seven orders of magnitude) than ethyl parathion. It may be attributed to more available binding sites and less steric hindrance of methyl parathion. Adsorption kinetics indicates that a good correlation exists between distribution coefficient (Kd) and soil organic carbon. A general increase in Kd is noted with increase in induced concentration due to the formation of bound or aged residue.

  20. Chemodynamics of Methyl Parathion and Ethyl Parathion: Adsorption Models for Sustainable Agriculture

    PubMed Central

    Rafique, Uzaira; Balkhair, Khaled S.; Ashraf, Muhammad Aqeel

    2014-01-01

    The toxicity of organophosphate insecticides for nontarget organism has been the subject of extensive research for sustainable agriculture. Pakistan has banned the use of methyl/ethyl parathions, but they are still illegally used. The present study is an attempt to estimate the residual concentration and to suggest remedial solution of adsorption by different types of soils collected and characterized for physicochemical parameters. Sorption of pesticides in soil or other porous media is an important process regulating pesticide transport and degradation. The percentage removal of methyl parathion and ethyl parathion was determined through UV-Visible spectrophotometer at 276 nm and 277 nm, respectively. The results indicate that agricultural soil as compared to barren soil is more efficient adsorbent for both insecticides, at optimum batch condition of pH 7. The equilibrium between adsorbate and adsorbent was attained in 12 hours. Methyl parathion is removed more efficiently (by seven orders of magnitude) than ethyl parathion. It may be attributed to more available binding sites and less steric hindrance of methyl parathion. Adsorption kinetics indicates that a good correlation exists between distribution coefficient (Kd) and soil organic carbon. A general increase in Kd is noted with increase in induced concentration due to the formation of bound or aged residue. PMID:24689059

  1. Probabilistic dietary exposure to ethyl carbamate from fermented foods and alcoholic beverages in the Korean population.

    PubMed

    Choi, B; Ryu, D; Kim, C-I; Lee, J-Y; Choi, A; Koh, E

    2017-09-04

    The occurrence of ethyl carbamate was investigated in fermented foods and alcoholic beverages of the Korean total diet study. The concentrations of ethyl carbamate ranged from not detected to 166.5 μg kg(-1). Dietary exposure to ethyl carbamate was estimated by the probabilistic method. Estimated intakes of ethyl carbamate from foods and alcoholic beverages were 4.12 ng kg(-1) body weight (bw) per day for average consumers and 12.37 ng kg(-1) bw/day for 95th percentile high consumers. The major foods contributing to ethyl carbamate exposure were soy sauce (63%), followed by maesilju (plum liqueur, 30%), whisky (5%), and bokbunjaju (black raspberry wine, 2%). On the basis of the benchmark dose lower confidence limit 10% (BMDL10) of 0.3 mg kg(-1) bw/day, margins of exposure were 128,000 for mean exposure and 40,000 for 95th percentile exposure. This indicates that the exposure of the Korean general population for ethyl carbamate is of low concern. However, careful vigilance should be continued for high consumers of fermented foods and alcoholic beverages.

  2. Surface-enhanced Raman scattering for quantitative detection of ethyl carbamate in alcoholic beverages.

    PubMed

    Yang, Danting; Zhou, Haibo; Ying, Yibin; Niessner, Reinhard; Haisch, Christoph

    2013-11-01

    Ethyl carbamate, a by-product of fermentation and storage with widespread occurrence in fermented food and alcoholic beverages, is a compound potentially toxic to humans. In this work, a new approach for quantitative detection of ethyl carbamate in alcoholic beverages, based on surface-enhanced Raman scattering (SERS), is reported. Individual silver-coated gold nanoparticle colloids are used as SERS amplifiers, yielding high Raman enhancement of ethyl carbamate in three kinds of alcoholic beverages (vodka, Obstler, and white rum). The characteristic band at 1,003 cm(-1), which is the strongest and best reproducible peak in the SERS spectra, was used for quantitative evaluation of ethyl carbamate. The limit of detection, which corresponds to a signal-to-noise ratio of 3, was 9.0 × 10(-9) M (0.8 μg · L(-1)), 1.3 × 10(-7) M (11.6 μg · L(-1)), and 7.8 × 10(-8) M (6.9 μg · L(-1)), respectively. Surface-enhanced Raman spectroscopy offers great practical potential for the in situ assessment and identification of ethyl carbamate in the alcoholic beverage industry.

  3. Biosynthesis and urinary excretion of methyl sulfonium derivatives of the sulfur mustard analog, 2-chloroethyl ethyl sulfide, and other thioethers

    SciTech Connect

    Mozier, N.M.; Hoffman, J.L. )

    1990-12-01

    Thioether methyltransferase was previously shown to catalyze the S-adenosylmethionine-dependent methylation of diemthyl selenide, dimethyl telluride, and various thioethers to produce the corresponding methyl onium ions. In this paper we show that the following thioethers are also substrates for this enzyme in vitro: 2-hydroxyethyl ethyl sulfide, 2-chloroethyl ethyl sulfide, thiodiglycol, t-butyl sulfide, and isopropyl sulfide. To demonstrate thioether methylation in vivo, mice were injected with (methyl-{sup 3}H)methionine plus different thioethers, and extracts of lungs, livers, kidneys, and urine were analyzed by high-performance liquid chromatography for the presence of ({sup 3}H)methyl sulfonium ions. The following thioethers were tested, and all were found to be methylated in vivo: dimethyl sulfide, diethyl sulfide, methyl n-propyl sulfide, tetrahydrothiophene, 2-(methylthio)ethylamine, 2-hydroxyethyl ethyl sulfide, and 2-chloroethyl ethyl sulfide. This supports our hypothesis that the physiological role of thioether methyltransferase is to methylate seleno-, telluro-, and thioethers to more water-soluble onium ions suitable for urinary excretion. Conversion of the mustard gas analog, 2-chloroethyl ethyl sulfide, to the methyl sulfonium derivative represents a newly discovered mechanism for biochemical detoxification of sulfur mustards, as this conversion blocks formation of the reactive episulfonium ion that is the ultimate alkylating agent for this class of compounds.

  4. Biodegradation of ethyl t-butyl ether (ETBE), methyl t-butyl ether (MTBE) and t-amyl methyl ether (TAME) by Gordonia terrae.

    PubMed

    Hernandez-Perez, G; Fayolle, F; Vandecasteele, J P

    2001-01-01

    Gordonia terrae strain IFP 2001 was selected from activated sludge for its capacity to grow on ethyl t-butyl ether (ETBE) as sole carbon and energy source. ETBE was stoichiometrically degraded to t-butyl alcohol (TBA) and the activity was inducible. A constitutive strain, G. terrae IFP 2007, derived from strain IFP 2001, was also selected. Methyl t-butyl ether (MTBE) and t-amyl methyl ether (TAME) were not used as carbon and energy sources by the two strains, but cometabolic degradation of MTBE and TAME was demonstrated, to TBA and t-amyl alcohol (TAA) respectively, in the presence of a carbon source such as ethanol. No two-carbon compound was detected during growth on ETBE, but formate was produced during cometabolic degradation of MTBE or TAME. A monooxygenase was involved in the degradation of ethers, because no degradation of ETBE was observed under anaerobic conditions and the presence of a cytochrome P-450 was demonstrated in G. terrae IFP 2001 after induction by cultivation on ETBE.

  5. Detecting alcohol abuse: traditional blood alcohol markers compared to ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs) measurement in hair.

    PubMed

    Hastedt, Martin; Büchner, Mara; Rothe, Michael; Gapert, René; Herre, Sieglinde; Krumbiegel, Franziska; Tsokos, Michael; Kienast, Thorsten; Heinz, Andreas; Hartwig, Sven

    2013-12-01

    Alcohol abuse is a common problem in society; however, the technical capabilities of evaluating individual alcohol consumption using objective biomarkers are rather limited at present. In recent years research has focused on alcohol markers using hair analysis but data on performance and reliable cut-off values are still lacking. In this study 169 candidates were tested to compare traditional biomarkers, such as carbohydrate-deficient-transferrin (CDT), gamma glutamyl transferase (GGT), aspartate amino transferase, alanine amino transferase and the mean corpuscular volume of the erythrocytes, with alcohol markers detectable in hair such as ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs). This study revealed that EtG, GGT and CDT showed the best results, demonstrating areas under the curve calculated from receiver operating characteristics of 0.941, 0.943 and 0.899 respectively. The lowest false-negative and false-positive rates were obtained by using a combined interpretation system for hair EtG and FAEEs. All markers demonstrated only low to moderate correlations. Optimum cut-off values for differentiation between social and chronic excessive drinking calculated for hair EtG and FAEEs were 28 pg/mg and 0.675 ng/mg, respectively. The critical values published in the "Consensus on Alcohol Markers 2012" by the Society of Hair Testing were confirmed.

  6. Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria.

    PubMed

    Steffan, R J; McClay, K; Vainberg, S; Condee, C W; Zhang, D

    1997-11-01

    Several propane-oxidizing bacteria were tested for their ability to degrade gasoline oxygenates, including methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME). Both a laboratory strain and natural isolates were able to degrade each compound after growth on propane. When propane-grown strain ENV425 was incubated with 20 mg of uniformly labeled [14C]MTBE per liter, the strain converted > 60% of the added MTBE to 14CO2 in < 30 h. The initial oxidation of MTBE and ETBE resulted in the production of nearly stoichiometric amounts of tert-butyl alcohol (TBA), while the initial oxidation of TAME resulted in the production of tert-amyl alcohol. The methoxy methyl group of MTBE was oxidized to formaldehyde and ultimately to CO2. TBA was further oxidized to 2-methyl-2-hydroxy-1-propanol and then 2-hydroxy isobutyric acid; however, neither of these degradation products was an effective growth substrate for the propane oxidizers. Analysis of cell extracts of ENV425 and experiments with enzyme inhibitors implicated a soluble P-450 enzyme in the oxidation of both MTBE and TBA. MTBE was oxidized to TBA by camphor-grown Pseudomonas putida CAM, which produces the well-characterized P-450cam, but not by Rhodococcus rhodochrous 116, which produces two P-450 enzymes. Rates of MTBE degradation by propane-oxidizing strains ranged from 3.9 to 9.2 nmol/min/mg of cell protein at 28 degrees C, whereas TBA was oxidized at a rate of only 1.8 to 2.4 nmol/min/mg of cell protein at the same temperature.

  7. Size effects on cation heats of formation. IV. Methyl and ethyl substitutions in methyl, methylene, acetylene and ethene

    NASA Astrophysics Data System (ADS)

    Leach, Sydney

    2015-08-01

    An empirical relation between the heat of formation of molecular ions and cation size is used to study the effects of methyl and ethyl substitution of hydrogen atoms on the cations of the CnHm hydrocarbons methyl, methylene, acetylene and ethene. The results provide tests of the graphical method, revealing regularities and irregularities in the empirical size relation used, as well as its value as a predictive tool for determining cation and neutral heats of formation. Of the 36 CnHm cations studied, only 5 have heats of formation listed in the renowned ATcT tables. Some CnHm cation heats of formation are questioned or eliminated, mainly in cases where multiple choices are available in the literature. Proposals are made for investigating or re-investigating the ionisation energies and the heats of formation of several of the molecules studied where no data previously exist or where our analysis suggests that more reliable values are needed. The relative effects of methyl and ethyl substitution on the thermodynamic stability of the series of alkyl-substituted CnHm cations are discussed.

  8. 75 FR 82069 - Ethyl Alcohol for Fuel Use: Determination of the Base Quantity of Imports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... for Fuel Use: Determination of the Base Quantity of Imports AGENCY: United States International Trade... be used to establish the ``base quantity'' of imports of fuel ethyl alcohol with a zero percent local... base quantity to be used by U.S. Customs and Border Protection in the administration of the law is the...

  9. Nosocomial pseudoepidemic caused by Bacillus cereus traced to contaminated ethyl alcohol from a liquor factory.

    PubMed

    Hsueh, P R; Teng, L J; Yang, P C; Pan, H L; Ho, S W; Luh, K T

    1999-07-01

    From September 1990 to October 1990, 15 patients who were admitted to four different departments of the National Taiwan University Hospital, including nine patients in the emergency department, three in the hematology/oncology ward, two in the surgical intensive care unit, and one in a pediatric ward, were found to have positive blood (14 patients) or pleural effusion (1 patient) cultures for Bacillus cereus. After extensive surveillance cultures, 19 additional isolates of B. cereus were recovered from 70% ethyl alcohol that had been used as a skin disinfectant (14 isolates from different locations in the hospital) and from 95% ethyl alcohol (5 isolates from five alcohol tanks in the pharmacy department), and 10 isolates were recovered from 95% ethyl alcohol from the factory which supplied the alcohol to the hospital. In addition to these 44 isolates of B. cereus, 12 epidemiologically unrelated B. cereus isolates, one Bacillus sphaericus isolate from a blood specimen from a patient seen in May 1990, and two B. sphaericus isolates from 95% alcohol in the liquor factory were also studied for their microbiological relatedness. Among these isolates, antibiotypes were determined by using the disk diffusion method and the E test, biotypes were created with the results of the Vitek Bacillus Biochemical Card test, and random amplified polymorphic DNA (RAPD) patterns were generated by arbitrarily primed PCR. Two clones of the 15 B. cereus isolates recovered from patients were identified (clone A from 2 patients and clone B from 13 patients), and all 29 isolates of B. cereus recovered from 70 or 95% ethyl alcohol in the hospital or in the factory belonged to clone B. The antibiotype and RAPD pattern of the B. sphaericus isolate from the patient were different from those of isolates from the factory. Our data show that the pseudoepidemic was caused by a clone (clone B) of B. cereus from contaminated 70% ethyl alcohol used in the hospital, which we successfully traced to

  10. Practical use of ethyl glucuronide and ethyl sulfate in postmortem cases as markers of antemortem alcohol ingestion.

    PubMed

    Høiseth, Gudrun; Karinen, Ritva; Christophersen, Asbjørg; Mørland, Jørg

    2010-03-01

    In postmortem toxicology, it could be difficult to determine whether a positive blood ethanol concentration reflects antemortem ingestion or postmortem synthesis of alcohol. Measurement of the nonoxidative ethanol metabolite ethyl glucuronide (EtG) has been suggested as a marker of antemortem ingestion of alcohol, but EtG might degrade postmortem which could make interpretation difficult. So far, the published articles concern EtG only. Another nonoxidative metabolite, ethyl sulfate (EtS), which is more stable, has therefore been included in this study. We present a material of 36 deaths where postmortem formation of ethanol was suspected and where both EtG and EtS were measured in blood and urine to assist the interpretation. In 19 cases, EtG and EtS were positive in the body fluids analyzed. The median concentration of EtG and EtS in blood was 0.4 (range 0.1-23.2) and 0.9 mg/L (range 0.04-7.9), respectively. The median concentration of EtG and EtS in urine was 35.9 (range 1.0-182) and 8.5 mg/L (range 0.3-99), respectively. In another 16 cases, there was no trace of EtG or EtS in the specimens analyzed. In one case, there was inconsistency between the results of EtG and EtS; they were both positive in urine, while only EtS was positive in blood. This study showed that, out of 36 cases, antemortem ingestion of alcohol was very likely in 19 and unlikely in 16, according to EtG and EtS results. In the last case, the interpretation was more difficult. One possible explanation would be postmortem degradation of EtG in blood.

  11. Alkali metal ion catalysis and inhibition in nucleophilic displacement reactions at phosphorus centers: ethyl and methyl paraoxon and ethyl and methyl parathion.

    PubMed

    Um, Ik-Hwan; Shin, Young-Hee; Lee, Seung-Eun; Yang, Kiyull; Buncel, Erwin

    2008-02-01

    We report on the ethanolysis of the P=O and P=S compounds ethyl and methyl paraoxon (1a and 1b) and ethyl and methyl parathion (2a and 2b). Plots of spectrophotometrically measured rate constants, kobsd versus [MOEt], the alkali ethoxide concentration, show distinct upward and downward curvatures, pointing to the importance of ion-pairing phenomena and a differential reactivity of free ions and ion pairs. Three types of reactivity and selectivity patterns have been discerned: (1) For the P=O compounds 1a and 1b, LiOEt > NaOEt > KOEt > EtO-; (2) for the P=S compound 2a, KOEt > EtO- > NaOEt > LiOEt; (3) for P=S, 2b, 18C6-crown-complexed KOEt > KOEt = EtO(-) > NaOEt > LiOEt. These selectivity patterns are characteristic of both catalysis and inhibition by alkali-metal cations depending on the nature of the electrophilic center, P=O vs P=S, and the metal cation. Ground-state (GS) vs transition-state (TS) stabilization energies shed light on the catalytic and inhibitory tendencies. The unprecedented catalytic behavior of crowned-K(+) for the reaction of 2b is noteworthy. Modeling reveals an extreme steric interaction for the reaction of 2a with crowned-K(+), which is responsible for the absence of catalysis in this system. Overall, P=O exhibits greater reactivity than P=S, increasing from 50- to 60-fold with free EtO(-) and up to 2000-fold with LiOEt, reflecting an intrinsic P=O vs P=S reactivity difference (thio effect). The origin of reactivity and selectivity differences in these systems is discussed on the basis of competing electrostatic effects and solvational requirements as function of anionic electric field strength and cation size (Eisenman's theory).

  12. A Simple and Fast Method for the Production and Characterization of Methylic and Ethylic Biodiesels from Tucum Oil via an Alkaline Route

    PubMed Central

    de Oliveira, Marcelo Firmino; Vieira, Andressa Tironi; Batista, Antônio Carlos Ferreira; Rodrigues, Hugo de Souza; Stradiotto, Nelson Ramos

    2011-01-01

    A simple, fast, and complete route for the production of methylic and ethylic biodiesel from tucum oil is described. Aliquots of the oil obtained directly from pressed tucum (pulp and almonds) were treated with potassium methoxide or ethoxide at 40°C for 40 min. The biodiesel form was removed from the reactor and washed with 0.1 M HCl aqueous solution. A simple distillation at 100°C was carried out in order to remove water and alcohol species from the biodiesel. The oxidative stability index was obtained for the tucum oil as well as the methylic and ethylic biodiesel at 6.13, 2.90, and 2.80 h, for storage times higher than 8 days. Quality control of the original oil and of the methylic and ethylic biodiesels, such as the amount of glycerin produced during the transesterification process, was accomplished by the TLC, GC-MS, and FT-IR techniques. The results obtained in this study indicate a potential biofuel production by simple treatment of tucum, an important Amazonian fruit. PMID:21629751

  13. Novel 4-methyl-2-oxopentanoate reductase involved in synthesis of the Japanese sake flavor, ethyl leucate.

    PubMed

    Shimizu, Motoyuki; Yamamoto, Tatsuya; Okabe, Natsumi; Sakai, Kiyota; Koide, Emiri; Miyachi, Yuta; Kurimoto, Maki; Mochizuki, Mai; Yoshino-Yasuda, Shoko; Mitsui, Shun; Ito, Akitoshi; Murano, Hirotatsu; Takaya, Naoki; Kato, Masashi

    2016-04-01

    Ethyl-2-hydroxy-4-methylpentanoate (ethyl leucate) contributes to a fruity flavor in Japanese sake. The mold Aspergillus oryzae synthesizes leucate from leucine and then the yeast Saccharomyces cerevisiae produces ethyl leucate from leucate during sake fermentation. Here, we investigated the enzyme involved in leucate synthesis by A. oryzae. The A. oryzae gene/cDNA encoding the enzyme involved in leucate synthesis was identified and expressed in E. coli and A. oryzae host cells. The purified recombinant enzyme belonged to a D-isomer-specific 2-hydroxyacid dehydrogenase family and it NADPH- or NADH-dependently reduced 4-methyl-2-oxopentanate (MOA), a possible intermediate in leucine synthesis, to D-leucate with a preference for NADPH. Thus, we designated this novel enzyme as MOA reductase A (MorA). Furthermore, an A. oryzae strain overexpressing morA produced 125-fold more leucate than the wild-type strain KBN8243. The strain overexpressing MorA produced 6.3-fold more ethyl leucate in the sake than the wild-type strain. These findings suggest that the strain overexpressing morA would help to ferment high-quality sake with an excellent flavor. This is the first study to identify the MOA reductase responsible for producing D-leucate in fungi.

  14. Urinary ethyl glucuronide and ethyl sulfate testing for recent drinking in alcohol-dependent outpatients treated with acamprosate or placebo.

    PubMed

    Dahl, Helen; Hammarberg, Anders; Franck, Johan; Helander, Anders

    2011-01-01

    Ethyl glucuronide (EtG) and ethyl sulfate (EtS) are sensitive and specific biomarkers for recent alcohol ingestion. This study compared urinary EtG and EtS measurement with self-reports for detection of prior drinking in alcohol-dependent outpatients treated with the anti-craving medication acamprosate or placebo. Alcohol-dependent outpatients (26 women, 30 men) were randomized to 21 days of oral acamprosate (2 g/day) or placebo treatment in a double-blind design. They were instructed to refrain from drinking during the study. Return visits to the ward for blood and urine sampling and filling out questionnaires were made on Day 7, 14 (urine sample optional) and 22 (urine sample mandatory). EtG and EtS were determined by liquid chromatography-mass spectrometry. On the first day (Day 0), 72% of all patients (acamprosate 65%, placebo 78%) tested positive for recent drinking according to urinary EtG (reporting limit ≥ 0.5 mg/l) and EtS (≥ 0.1 mg/l). On the final day (Day 22), the frequency of positive tests was significantly reduced to 30% in the acamprosate group (P = 0.0374) and 33% for placebo (P = 0.0050). However, there was no difference between the treatment groups. When both groups were combined, the EtG (P = 0.025) and EtS (P = 0.015) concentrations were lower on the final day. Altogether, EtG and EtS were detected in 76 of 156 (49%) urine samples. When drinking in the day before sampling was admitted, 93% of urines tested positive; when drinking was denied, still 28% of the samples were positive. These results confirmed the value of urinary EtG and EtS as reliable indicators of recent drinking during outpatient treatment of persons with alcohol-related problems, and as objective outcome measures when evaluating new alcohol treatment strategies and pharmacotherapies.

  15. Characterization of N-methylated amino acids by GC-MS after ethyl chloroformate derivatization.

    PubMed

    Reddy, B Sudarshana; Chary, V Naresh; Pavankumar, P; Prabhakar, S

    2016-08-01

    Methylation is an essential metabolic process in the biological systems, and it is significant for several biological reactions in living organisms. Methylated compounds are known to be involved in most of the bodily functions, and some of them serve as biomarkers. Theoretically, all α-amino acids can be methylated, and it is possible to encounter them in most animal/plant samples. But the analytical data, especially the mass spectral data, are available only for a few of the methylated amino acids. Thus, it is essential to generate mass spectral data and to develop mass spectrometry methods for the identification of all possible methylated amino acids for future metabolomic studies. In this study, all N-methyl and N,N-dimethyl amino acids were synthesized by the methylation of α-amino acids and characterized by a GC-MS method. The methylated amino acids were derivatized with ethyl chloroformate and analyzed by GC-MS under EI and methane/CI conditions. The EI mass spectra of ethyl chloroformate derivatives of N-methyl (1-18) and N,N-dimethyl amino acids (19-35) showed abundant [M-COOC2 H5 ](+) ions. The fragment ions due to loss of C2 H4 , CO2 , (CO2  + C2 H4 ) from [M-COOC2 H5 ](+) were of structure indicative for 1-18. The EI spectra of 19-35 showed less number of fragment ions when compared with those of 1-18. The side chain group (R) caused specific fragment ions characteristic to its structure. The methane/CI spectra of the studied compounds showed [M + H](+) ions to substantiate their molecular weights. The detected EI fragment ions were characteristic of the structure that made easy identification of the studied compounds, including isomeric/isobaric compounds. Fragmentation patterns of the studied compounds (1-35) were confirmed by high-resolution mass spectra data and further substantiated by the data obtained from (13) C2 -labeled glycines and N-ethoxycarbonyl methoxy esters. The method was applied to human plasma samples for the identification

  16. Ethyl glucuronide in hair: Is it a reliable marker of chronic high levels of alcohol consumption?

    PubMed

    Politi, Lucia; Morini, Luca; Leone, Fabio; Polettini, Aldo

    2006-10-01

    This study aims to investigate the relationship between ethanol daily intake (EDI) and the levels of ethyl glucuronide in hair. Ethyl glucuronide concentration was determined in hair samples from different classes of ethanol drinkers and results were compared with the reported information about drinking habits. Pavia, Italy. Twenty-two known alcoholics, 21 volunteers self-reporting an EDI from 2 to 60 g, and seven teetotallers were involved in this study. Ethyl glucuronide determination in hair samples was performed by liquid chromatography-tandem mass spectrometry (limit of detection: 2 pg/mg, lower limit of quantification: 3 pg/mg). Current known alcoholics (n = 21) had ethyl glucuronide hair concentration in the range 4.0-434.7 pg/mg (average: 62.8, median 37.4 pg/mg); ethyl glucuronide was not detected in hair samples from teetotallers (n = 7); all volunteers reporting an EDI of at least 30 g ('non-moderate drinkers' according to the US Department of Health and Human Services) tested positive for ethyl glucuronide (cut-off: 4 pg/mg). All volunteers declaring an ethanol daily intake higher than 40 g ('heavy drinkers' according to the World Health Organization, Regional Committee for Europe) tested positive for this compound (cut-off: 5 pg/mg). The application of a cut-off of either 4 pg/mg or 5 pg/mg resulted in one false positive, coming from a volunteer asserting an ethanol daily intake of 30 g. No false negatives were found. The concentration of ethyl glucuronide in hair appears to correlate with EDI.

  17. Effects on wildlife of ethyl and methyl parathion applied to California rice fields

    USGS Publications Warehouse

    Custer, T.W.; Hill, E.F.; Ohlendorf, H.M.

    1985-01-01

    Selected rice fields on the Sacramento National Wildlife Refuge Complex were aerially sprayed one time during May or June 1982 with either ethyl (0.11 kg Al/ha) or methyl (0.84 kg AI/ha) parathion for control of tadpole shrimp, Triops longicaudatus. No sick or dead vertebrate wildlife were found or adjacent to the treated rice fields after spraying. Specimens of the following birds and mammals were assayed for brain cholinesterase (ChE) activity to determine exposure to either form of parathion; house mouse, Mus musculus; black-tailed jackrabbit, Lepus californicus; mallard, Anas platyrhynchos; ring-necked pheasant, Phasianus colchicus; American coot, Fulica americana; and red-winged blackbird, Agelaius phoeniceus. Both mice and pheasants from methyl parathion-treated fields had overall mean ChE activities that were significantly (P < 0.05) inhibited compared with controls, and 7, 40, 54 and 57% of individual blackbirds, pheasant, mice, and coots, respectively, had inhibited brain ChE activities (i.e., less than -2 SD of control mean). Although no overall species effect was detected for ethyl parathoid treatment, pheasants (43%), coots (33%), and mice (37%) had significantly inhibited brain ChE activities. Neither of the parathion treatment appeared acutely hazardous to wildlife in or adjacent to rice fields, but sufficient information on potential hazards was obtained to warrant caution in use of these chemicals, especially methyl parathion, in rice fields.

  18. Effects of wildlife of ethyl and methyl parathion applied to California USA rice fields

    USGS Publications Warehouse

    Custer, T.W.; Hill, E.F.; Ohlendorf, H.M.

    1985-01-01

    Selected rice fields on the Sacramento National Wildlife Refuge Complex were aerially sprayed one time during May or June 1982 with either ethyl (0.11 kg Al/ha) or methyl (0.84 kg AI/ha) parathion for control of tadpole shrimp, Triops longicaudatus. No sick or dead vertebrate wildlife were found or adjacent to the treated rice fields after spraying. Specimens of the following birds and mammals were assayed for brain cholinesterase (ChE) activity to determine exposure to either form of parathion; house mouse, Mus musculus; black-tailed jackrabbit, Lepus californicus; mallard, Anas platyrhynchos; ring-necked pheasant, Phasianus colchicus; American coot, Fulica americana; and red-winged blackbird, Agelaius phoeniceus. Both mice and pheasants from methyl parathion-treated fields had overall mean ChE activities that were significantly (P < 0.05) inhibited compared with controls, and 7, 40, 54 and 57% of individual blackbirds, pheasant, mice, and coots, respectively, had inhibited brain ChE activities (i.e., less than -2 SD of control mean). Although no overall species effect was detected for ethyl parathoid treatment, pheasants (43%), coots (33%), and mice (37%) had significantly inhibited brain ChE activities. Neither of the parathion treatment appeared acutely hazardous to wildlife in or adjacent to rice fields, but sufficient information on potential hazards was obtained to warrant caution in use of these chemicals, especially methyl parathion, in rice fields.

  19. 40 CFR 721.10665 - 2-Propenoic acid, (2-ethyl-2-methyl-1,3-dioxolan-4-yl)methyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10665 2-Propenoic acid, (2-ethyl-2-methyl-1,3-dioxolan-4-yl)methyl ester. (a) Chemical substance and significant new uses subject to reporting. (1)...

  20. Kinetic and mechanistic studies of methylated liver alcohol dehydrogenase.

    PubMed Central

    Tsai, C S

    1978-01-01

    Reductive methylation of lysine residues activates liver alcohol dehydrogenase in the oxidation of primary alcohols, but decreases the activity of the enzyme towards secondary alcohols. The modification also desensitizes the dehydrogenase to substrate inhibition at high alcohol concentrations. Steady-state kinetic studies of methylated liver alcohol dehydrogenase over a wide range of alcohol concentrations suggest that alcohol oxidation proceeds via a random addition of coenzyme and substrate with a pathway for the formation of the productive enzyme-NADH-alcohol complex. To facilitate the analyses of the effects of methylation on liver alcohol dehydrogenase and factors affecting them, new operational kinetic parameters to describe the results at high substrate concentration were introduced. The changes in the dehydrogenase activity on alkylation were found to be associated with changes in the maximum velocities that are affected by the hydrophobicity of alkyl groups introduced at lysine residues. The desensitization of alkylated liver alcohol dehydrogenase to substrate inhibition is identified with a decrease in inhibitory Michaelis constants for alcohols and this is favoured by the steric effects of substituents at the lysine residues. PMID:697732

  1. Hair ethyl glucuronide as a biomarker of alcohol consumption in alcohol-dependent patients: role of gender differences.

    PubMed

    Crunelle, Cleo L; Cappelle, Delphine; Covaci, Adrian; van Nuijs, Alexander L N; Maudens, Kristof E; Sabbe, Bernard; Dom, Geert; Michielsen, Peter; Yegles, Michel; Neels, Hugo

    2014-08-01

    Ethyl glucuronide (EtG) is a minor alcohol metabolite that accumulates in hair and is proposed as a stable marker for the detection of chronic and excessive alcohol consumption above a cut-off level of 30pg/mg hair. A correlation between drinking behavior and EtG hair concentrations is observed, but large variability exists. To investigate the correlation between alcohol consumption and hair EtG concentrations in alcohol dependent patients, and the effect of gender differences as a factor for the variability on this correlation. EtG was measured by gas chromatography coupled to mass spectrometry in the hairs (first 3cm) of 36 alcohol dependent patients (25 males/11 females) starting and alcohol detoxification program. Factors that possibly influence EtG content in hair (except age and gender) were excluded. Detailed retrospective alcohol consumption was obtained over the last 3 months using the Timeline Follow Back interview. Median total alcohol consumption over 3 months was 13,050g pure alcohol (range 60-650g/day). Hair EtG concentrations varied between 32 and 662pg/mg. There was a statistically significant linear and positive correlation between hair EtG and amounts of alcohol consumed (Pearson r=0.83; p<0.001), in both males (Pearson r=0.83; p<0.001) and females (Pearson r=0.76; p=0.007). There is a linear correlation, with no significant effect of gender, between hair EtG concentrations and amounts of alcohol consumed in alcohol-dependent individuals. Analysis of EtG in hair can be applied to estimate retrospective alcohol consumption in both male and female alcohol dependent subjects using the same cut-off. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Ethyl 2-(2-methyl-1H-benzimidazol-1-yl)acetate

    PubMed Central

    Xu, Guang-Hai; Wang, Wei

    2008-01-01

    A new benzimidazole compound, C12H14N2O2, has been synthesized by the reaction of 2-methyl-1H-benzimidazole and ethyl 2-bromo­acetate. In the crystal structure, weak inter­molecular C—H⋯N hydrogen bonds link the mol­ecules into chains. π⋯π Contacts (centroid⋯centroid distance = 3.713 Å) are observed. A C—H⋯π inter­action is also present. The N—C—C—O torsion angle is 178.4 (2)°. PMID:21201788

  3. Cinnamyl alcohols and methyl esters of fatty acids from Wedelia prostrata callus cultures.

    PubMed

    El-Mawla, Ahmed M A Abd; Farag, Salwa F; Beuerle, Till

    2011-01-01

    Two methyl esters of fatty acids, namely octadecanoic acid methyl ester (methyl stearate) and hexadecanoic acid methyl ester (methyl palmitate), in addition to four cinnamyl alcohol derivatives, sinapyl alcohol, coniferyl alcohol, p-coumaryl alcohol and coniferyl alcohol 4-O-glucoside (coniferin), were isolated from callus cultures of Wedelia prostrata. The structure of coniferin was established by spectroscopic and chemical methods, while the other compounds were identified by gas chromatography-mass spectrometry and thin layer chromatography in comparison with standards.

  4. Combined use of fatty acid ethyl esters and ethyl glucuronide in hair for diagnosis of alcohol abuse: interpretation and advantages.

    PubMed

    Pragst, F; Rothe, M; Moench, B; Hastedt, M; Herre, S; Simmert, D

    2010-03-20

    In this study the combined use of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) for diagnoses of chronically excessive alcohol abuse is investigated at 174 hair samples from driving ability examination, workplace testing and child custody cases for family courts and evaluated with respect to the basics of interpretation. Using the cut-off values of 0.50 ng/mg for FAEE and 25 pg/mg for EtG, both markers were in agreement in 75% of the cases with 103 negative and 28 positive results and there were 30 cases with FAEE positive and EtG negative and 13 cases with FAEE negative and EtG positive. As the theoretical basis of interpretation, the pharmacokinetics of FAEE and EtG is reviewed for all steps between drinking of ethanol to incorporation in hair with particular attention to relationships between alcohol dose and concentrations in hair. It is shown that the concentrations of both markers are essentially determined by the area under the ethanol concentration in blood vs. time curve AUC(EtOH), despite large inter-individual variations. It is demonstrated by calculation of AUC(EtOH) on monthly basis for moderate, risky and heavy drinking that AUC(EtOH) increases very strongly in the range between 60 and 120 g ethanol per day. This specific feature which is caused by the zero-order elimination of ethanol is a favorable prerequisite for a high discrimination power of the hair testing for alcohol abuse. From the consideration of the different profiles of FAEE and EtG along the hair and in agreement with the literature survey, a standardized hair segment 0-3 cm is proposed with cut-off values of 0.5 ng/mg for FAEE and 30 pg/mg for EtG. This improves also the agreement between FAEE and EtG results in the cases of the present study. A scheme for combined interpretation of FAEE and EtG is proposed which uses the levels of abstinence and the double of the cut-off values as criteria in addition to the cut-off's. Considering the large variations in the relationship

  5. Consecutive radical S-adenosylmethionine methylations form the ethyl side chain in thienamycin biosynthesis

    PubMed Central

    Marous, Daniel R.; Lloyd, Evan P.; Buller, Andrew R.; Moshos, Kristos A.; Grove, Tyler L.; Blaszczyk, Anthony J.; Booker, Squire J.; Townsend, Craig A.

    2015-01-01

    Despite their broad anti-infective utility, the biosynthesis of the paradigm carbapenem antibiotic, thienamycin, remains largely unknown. Apart from the first two steps shared with a simple carbapenem, the pathway sharply diverges to the more structurally complex members of this class of β-lactam antibiotics, such as thienamycin. Existing evidence points to three putative cobalamin-dependent radical S-adenosylmethionine (RS) enzymes, ThnK, ThnL, and ThnP, as potentially being responsible for assembly of the ethyl side chain at C6, bridgehead epimerization at C5, installation of the C2-thioether side chain, and C2/3 desaturation. The C2 substituent has been demonstrated to be derived by stepwise truncation of CoA, but the timing of these events with respect to C2–S bond formation is not known. We show that ThnK of the three apparent cobalamin-dependent RS enzymes performs sequential methylations to build out the C6-ethyl side chain in a stereocontrolled manner. This enzymatic reaction was found to produce expected RS methylase coproducts S-adenosylhomocysteine and 5′-deoxyadenosine, and to require cobalamin. For double methylation to occur, the carbapenam substrate must bear a CoA-derived C2-thioether side chain, implying the activity of a previous sulfur insertion by an as-yet unidentified enzyme. These insights allow refinement of the central steps in complex carbapenem biosynthesis. PMID:26240322

  6. Curative effect of lauromacrogol and absolute ethyl alcohol injection guided by ultrasound on simplex hepatic cyst.

    PubMed

    Xue, Jie; Geng, Xianhui

    2015-03-01

    This research aims to analyze the curative effect and security of lauromacrogol injection and absolute ethyl alcohol treating simplex hepatic cyst respectively. The simplex hepatic cyst patients were divided into lauromacrogol group (86 cases, research group) and absolute ethyl alcohol group (80 cases, control group). Both two groups received sclerotherapy of thoracic drainage under ultrasonic guidance and the curative effect and untoward effect were observed. The result showed there was no hemorrhage or infection within two groups. During the therapeutic process, 45 patients (56.3%) suffered from pain at different degrees and 23 cases were found with symptom of drunkenness in control group, while the patients in the research group were found with no obvious discomfort. A week after treatment, 23 patients (25.0%) in control group still remained to have swelling pain at upper right stomach, while there were only 9 in treatment group (10.5%), and the difference was of statistical significance (X(2)=6.037, P<0.05). through 6 months of follow-up visit after the operation, we found the cure rate of lauromacrogol group was 94.6% and absolute ethyl alcohol was 92.6%, and the difference between these two groups was of no statistical significance (P>0.05). The results showed that, in the treatment of cystosclerosis with absolute ethyl alcohol injection under ultrasonic guidance, some patients suffered pain and the symptom of drunkenness at different degrees, whereas, lauromacrogol was effective with no untoward effects, therefore it is worthy of clinical popularization and application.

  7. Large and small scale ethyl alcohol manufacturing processes from agricultural raw materials

    SciTech Connect

    Paul, J.K.

    1980-01-01

    This volume provides the reader with process descriptions and economic evaluations for ethyl alcohol manufacturing plants with capacities ranging from 25 gallons per hour to 100 million gallons per year. Most fully described are the 50 million gallon per year and 25 gallon per hour facilities. The book is divided into four parts. Each part details a specific sized system from a particular starting material, with possible excursions on additional sized systems. Part 1: Alcohol manufacture from corn on a 50 million gallon per year scale, with excursions to 10 and 100 million gallons per year. Part 2: Wheat straw conversion via enzymatic hydrolysis for a 25 million gallon per year facility. Part 3: Molasses fermentation to produce 14 million gallons per year. Part 4: A guide to small scale (25 gallons per hour) production. Also included are discussions of legislation and permit information pertinent to alcohol plant operation, environmental considerations, plus lists of resource people and organizations involved in alcohol promotion.

  8. Degradation characteristics of methyl ethyl ketone by Pseudomonas sp. KT-3 in liquid culture and biofilter.

    PubMed

    Lee, Tae Ho; Kim, Jaisoo; Kim, Min-Joo; Ryu, Hee Wook; Cho, Kyung-Suk

    2006-04-01

    With ketone pollution forming an ever-growing problem, it is important to identify a ketone-degrading microorganism and establish its effect. Here, a methyl ethyl ketone (MEK)-degrading bacterium, Pseudomonas sp. KT-3, was isolated and its MEK degradation characteristics were examined in liquid cultures and a polyurethane-packed biofilter. In liquid cultures, strain KT-3 could degrade other ketone solvents, including diethyl ketone (DK), methyl propyl ketone (MPK), methyl isopropyl ketone (MIPK), methyl isobutyl ketone (MIBK), methyl butyl ketone (MBK) and methyl isoamyl ketone (MIAK). The maximum specific growth rate (mumax) of the isolate was 0.136 h(-1) in MEK medium supplemented with MEK as a sole carbon source, and kinetically, the maximum removal rate (Vm) and saturation constant (Km) for MEK were 12.28 mM g(-1)DCW h(-1) (DCW: dry cell weight) and 1.64 mM, respectively. MEK biodegradation by KT-3 was suppressed by the addition of MIBK or acetone, but not by toluene. In the tested biofilter, KT-3 exhibited a>90% removal efficiency for MEK inlet concentrations of around 500 ppmv at a space velocity (SV) of 150 h(-1). The elimination capacity of MEK was more influenced by SV than by the inlet concentration. Kinetic analysis showed that the maximum MEK removal rate (Vm) was 690 g m(-3) h(-1) and the saturation constant (Km) was 490 ppmv. Collectively, these results indicate the polyurethane sequencing batch biofilter with Pseudomonas sp. KT-3 will provide an excellent performance in the removal of gaseous MEK.

  9. Crystal structure of the tetra-gonal polymorph of bis-(1-ethyl-3-methyl-imidazolium) tetra-bromido-cadmate.

    PubMed

    Đorđević, Tamara; Gerger, Sabrina; Karanović, Ljiljana

    2016-07-01

    Both unique Cd atoms in the tetra-gonal polymorph of bis-(1-ethyl-3-methyl-imidazolium) tetra-bromido-cadmate, (C6H11N2)2[CdBr4], occupy special positions (site symmetry -4). The crystal structure consists of isolated tetra-hedral [CdBr4](2-) anions which are surrounded by 1-ethyl-3-methyl-imidazolium cations. The methyl and ethyl side chains of the cations show positional disorder in a 0.590 (11):0.410 (11) ratio. In the crystal, (C6H11N2)(+) cations display three weak C-H⋯Br hydrogen-bond inter-actions through the imidazolium ring H atoms with the Br(-) ligands of the surrounding complex anions. The alkyl groups of the side chains are not involved in hydrogen bonding.

  10. Quantification of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) in meconium for detection of alcohol abuse during pregnancy: Correlation study between both biomarkers.

    PubMed

    Cabarcos, Pamela; Tabernero, María Jesús; Otero, José Luís; Míguez, Martha; Bermejo, Ana María; Martello, Simona; De Giovanni, Nadia; Chiarotti, Marcello

    2014-11-01

    This article presents results from 47 meconium samples, which were analyzed for fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) for detection of gestational alcohol consumption. A validated microwave assisted extraction (MAE) method in combination with GC-MS developed in the Institute of Forensic Science (Santiago de Compostela) was used for FAEE and the cumulative concentration of ethyl myristate, ethyl palmitate and ethyl stearate with a cut-off of 600ng/g was applied for interpretation. A simple method for identification and quantification of EtG has been evaluated by ultrasonication followed solid phase extraction (SPE). Successful validation parameters were obtained for both biochemical markers of alcohol intake. FAEE and EtG concentrations in meconium ranged between values lower than LOD and 32,892ng/g or 218ng/g respectively. We have analyzed FAEE and EtG in the same meconium aliquot, enabling comparison of the efficiency of gestational ethanol exposure detection. Certain agreement between the two biomarkers was found as they are both a very specific alcohol markers, making it a useful analysis for confirmation. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Determination of Ethyl Glucuronide in Hair for Detection of Alcohol Consumption in Patients After Liver Transplantation.

    PubMed

    Andresen-Streichert, Hilke; von Rothkirch, Gregor; Vettorazzi, Eik; Mueller, Alexander; Lohse, Ansgar W; Frederking, Dorothea; Seegers, Barbara; Nashan, Bjoern; Sterneck, Martina

    2015-08-01

    Early detection of alcohol misuse in orthotopic liver transplantation recipients is essential to offer patients support and prevent organ damage. Here, ethyl glucuronide, a metabolite of ethanol found in hair (hEtG), was evaluated for detection of alcohol consumption. In 104 transplant recipients, 31 with underlying alcoholic liver disease (ALD) and 73 with non-ALD, hEtG was determined in addition to the alcohol markers urine EtG, blood ethanol, methanol, and carbohydrate-deficient transferrin. Results were compared with patients' self-reports in a questionnaire and with physicians' assessments. By physicians' assessments, 22% of the patients were suspected of consuming alcohol regularly, although only 6% of the patients acknowledged consumption of a moderate or high amount of alcohol. By testing all markers except for hEtG, alcohol consumption was detected in 7% of the patients. When hEtG testing was added to the assessment, consumption was detected in 17% of the patients. Hair-EtG determination alone revealed chronic alcohol consumption of >10 g/d in 15% of the patients. ALD patients had a positive hEtG result significantly more often than non-ALD patients did (32% versus 8%; P = 0.003). Also, the concentration of hEtG was higher in ALD patients (P = 0.049) and revealed alcohol abuse with consumption of >60 g ethanol per day in 23% of ALD and 3% of non-ALD patients. Patients' self-reports and physicians' assessments had a low sensitivity of 27% and 67%, respectively, for detecting regular alcohol intake as indicated by hEtG. Hair-EtG determination improved the detection of liver transplant patients who used alcohol, and revealed regular alcohol consumption in 32% of ALD and 8% of non-ALD patients.

  12. Microwave Spectroscopy of Trans-Ethyl Methyl Ether in the Ground State

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kaori; Sakai, Yusuke; Tsunekawa, Shozo; Miyamoto, Taihei; Fujitake, Masaharu; Ohashi, Nobukimi

    2013-06-01

    The trans-ethyl methyl ether molecule (CH_3CH_2OCH_3) has two inequivalent methyl group internal rotors which corresponds to the two vibrational motions, ν_{28} and ν_{29}. Due to these internal rotations, a rotational transition could be split into maximum five components. The skeletal torsion (ν_{30}) is another low-lying state (ν_{30}) that interacts with the ν_{28} and ν_{29} modes. The microwave spectra of the trans-ethyl methyl ether molecule in the ν_{28} = 1, ν_{29} = 1, and ν_{30} = 1, 2 and 3 have been extensively studied by using Hougen's tunneling matrix formalism. The microwave spectroscopy in the ground state was studied by several groups. The splitting due to the ν_{28} mode (C-CH_3 internal rotation) is small in the ground state and was not fully resolved in most of the previous studied rotational transitions. In this paper, we report the results of the pulsed nozzle-jet Fourier transform microwave spectroscopy so as to measure the fully resolved spectra. The submillmeter wave spectroscopy was also carried out. Our analysis including the previously reported transitions would be useful for astronomical observations. K. Kobayashi, T. Matsui, N. Mori, S. Tsunekawa, and N. Ohashi J. Mol. Spectrosc. {269}, 242 2011. K. Kobayashi, T. Matsui, S. Tsunekawa, and N. Ohashi J. Mol. Spectrosc. {255}, 164 2009. K. Kobayashi, T. Matsui, N. Mori, S. Tsunekawa, and N. Ohashi J. Mol. Spectrosc.{251}, 301 2008. K. Kobayashi, K. Murata, S. Tsunekawa, and N. Ohashi Int. Symposium on Mol. Spectrosc., 65th Meeting TH15 2010.} M. Hayashi, and K. Kuwada J. Mol. Structure {28}, 147 1975. M. Hayashi, and M. Adachi J. Mol. Structure {78}, 53 1982. S. Tsunekawa, Y. Kinai, Y. Kondo, H. Odashima, and K. Takagi Molecules {8}, 103 2003. U. Fuchs, G. Winnewisser, P. Groner, F. C. De Lucia, and E. Herbst Astrophys. J. Suppl. {144}, 277 2003.

  13. A case of severe corrosive esophagitis, gastritis, and liver necrosis caused by ingestion of methyl ethyl ketone peroxide

    PubMed Central

    Chang, Jung Oh; Choi, Jeong Woo; Hwang, Yong

    2016-01-01

    The plastic hardener methyl ethyl ketone peroxide is unstable peroxide that releases free oxygen radicals. Ingestion of this compound induces widespread liver necrosis, severe metabolic acidosis, corrosive esophagitis and gastritis, that is often fatal. A 49-year-old man unintentionally ingested approximately 100 mL (55%) of this compound in solution, which was purchased as plastic hardener. Despite resuscitation, he died about 11 hours after admission. We report a patient with poisoning due to methyl ethyl ketone peroxide who presented with corrosive esophagitis and gastritis, gastrointestinal bleeding, and developed ischemia of the bowel and necrosis of the liver and died of severe metabolic acidosis and multiorgan failure. PMID:28168233

  14. Derivatization followed by gas chromatography-mass spectrometry for quantification of ethyl carbamate in alcoholic beverages.

    PubMed

    Xu, Xuejiao; Gao, Yihan; Cao, Xiujun; Wang, Xiang; Song, Guoxin; Zhao, Jianfeng; Hu, Yaoming

    2012-04-01

    A sensitive and rapid analytical methodology based on derivatization followed by gas chromatography-mass spectrometry (GC-MS) was developed for the quantitative determination of the toxic contaminant ethyl carbamate (EC, urethane, C(2)H(5)OCONH(2)) in alcoholic samples. EC was extracted using liquid-liquid extraction technique, and then silylated with bis-(trimethylsilyl)trifluoroacetamide, analysed finally by GC-MS. The isopropyl carbamate was used as the internal standard for quantitative analysis of EC in alcoholic samples. In this work, the sample extraction and derivatization reaction conditions were investigated, and the optimal extraction conditions obtained were: pH 9 and solvent of ethyl acetate, and the derivatization conditions were: derivatization reaction temperature of 80°C and time duration of 30 min. With the optimal conditions, the method validations were also studied. In the validation studies, EC exhibited good linearity with a regression coefficient of 0.9999. The limit of detection and limit of quantification were 0.30 and 5.0 μg/kg, respectively. The precision was less than 8.4%. Finally, the proposed technique was successfully applied to the analysis of EC in 35 kinds of alcoholic samples. The experimental results have demonstrated that the proposed technique is a fast, reliable and low-cost method for determination of EC in alcoholic samples. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 40 CFR 721.8450 - 2-Propenoic acid, 2-methyl-, 2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]ethyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ester. 721.8450 Section 721.8450 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.8450 2-Propenoic acid, 2-methyl-, 2- ethyl ester. (a) Chemical substance... acid, 2-methyl-, 2- ethyl ester, (PMN P-90-333) is subject to reporting under this section for the...

  16. 40 CFR 721.8450 - 2-Propenoic acid, 2-methyl-, 2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]ethyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ester. 721.8450 Section 721.8450 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.8450 2-Propenoic acid, 2-methyl-, 2- ethyl ester. (a) Chemical substance... acid, 2-methyl-, 2- ethyl ester, (PMN P-90-333) is subject to reporting under this section for the...

  17. CCSD(T) study of the infrared spectrum of ethyl-methyl-ether isotopic varieties

    NASA Astrophysics Data System (ADS)

    Senent, M. L.; Ruiz, R.; Villa, M.; Domínguez-Gómez, R.

    2010-02-01

    Band positions for the infrared bands of various ethyl-methyl-ether isotopomers (CH 3CH 2OCH 2D, CH 2DCH 2OCH 3, CH 3CH 2OCD 3, CD 3CH 2OCH 3, CH 3CD 2OCH 3, CH 3CH 2O 13CH 3, 13CH 3CH 2OCH 3, and CH 313CH 2OCH 3) are determined using second order perturbation theory. For species showing G18 symmetry, band position are calculated variationally from a CCSD(T)/cc-pVTZ three-dimensional potential energy surface corrected vibrationally. Potential energy barriers, fundamental frequencies, and rotational constants for excited vibrational levels, are also provided. Calculated frequencies for CH 3CH 2OCD 3 confirm experimental assignments and our predictions for the most abundant isotopomer [4].

  18. [HPLC-MS determination of 2-ethyl-6-methyl-3-oxypyridine].

    PubMed

    Baranov, P A; Appolonova, S A; Dikunets, M A; Rodchenkov, G M; Sariev, A K; Zherdev, V P

    2009-01-01

    An HPLC-ESI-MS method has been developed for determining 2-ethyl-6-methyl-3-oxypyridine (EMO) in human urine upon peroral administration of this substance in form ofmexidol. Various sample preparation (extraction) procedures were tested and compared for evaluating the recovery and matrix effect. Solid-phase extraction procedure followed by derivation with dansyl chloride is proposed as a method of choice. The recovery of analyte was 48.1 +/- 3.4%, and the matrix effect was 99.4 +/- 4.1%. The MS and MS/MS spectra of EMO and its dansyl derivatives are presented and interpreted. The analyses were performed using a mass spectrometer of the ion trap type with electrospray ionization at atmospheric pressure, operating in the regime of positive ion detection.

  19. Interactions in 1-ethyl-3-methyl imidazolium tetracyanoborate ion pair: Spectroscopic and density functional study

    SciTech Connect

    Mao, James X.; Lee, Anita S.; Kitchin, John R.; Nulwala, Hunaid B.; Luebke, David R.; Damodaran, Krishnan

    2013-01-25

    Density Functional Theory is used to investigate a weakly coordinating room-temperature ionic liquid, 1-ethyl-3-methyl imidazolium tetracyanoborate ([Emim]{sup +}[TCB]{sup -}). Four locally stable conformers of the ion pair were located. Atoms-in-molecules (AIM) and electron density analysis indicated the existence of several hydrogen bonds. Further investigation through the Natural Bond Orbital (NBO) and Natural Energy Decomposition Analysis (NEDA) calculations provided insight into the origin of interactions in the [Emim]{sup +}[TCB]{sup -} ion pair. Strength of molecular interactions in the ionic liquid was correlated with frequency shifts of the characteristic vibrations of the ion pair. Harmonic vibrations of the ion pair were also compared with the experimental Raman and Infrared spectra. Vibrational frequencies were assigned by visualizing displacements of atoms around their equilibrium positions and through Potential Energy Distribution (PED) analysis.

  20. Interactions in 1-ethyl-3-methyl imidazolium tetracyanoborate ion pair: Spectroscopic and density functional study

    NASA Astrophysics Data System (ADS)

    Mao, James X.; Lee, Anita S.; Kitchin, John R.; Nulwala, Hunaid B.; Luebke, David R.; Damodaran, Krishnan

    2013-04-01

    Density Functional Theory is used to investigate a weakly coordinating room-temperature ionic liquid, 1-ethyl-3-methyl imidazolium tetracyanoborate ([Emim]+[TCB]-). Four locally stable conformers of the ion pair were located. Atoms-in-molecules (AIMs) and electron density analysis indicated the existence of several hydrogen bonds. Further investigation through the Natural Bond Orbital (NBO) and Natural Energy Decomposition Analysis (NEDA) calculations provided insight into the origin of interactions in the [Emim]+[TCB]- ion pair. Strength of molecular interactions in the ionic liquid was correlated with frequency shifts of the characteristic vibrations of the ion pair. Harmonic vibrations of the ion pair were also compared with the experimental Raman and Infrared spectra. Vibrational frequencies were assigned by visualizing displacements of atoms around their equilibrium positions and through Potential Energy Distribution (PED) analysis.

  1. Searching for trans ethyl methyl ether in Orion KL★,★★

    PubMed Central

    Tercero, B.; Cernicharo, J.; López, A.; Brouillet, N.; Kolesniková, L.; Motiyenko, R. A.; Margulès, L.; Alonso, J. L.; Guillemin, J.-C.

    2015-01-01

    We report on the tentative detection of trans ethyl methyl ether (tEME), t-CH3CH2OCH3, through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauche-trans-n-propanol, Gt-n-CH3CH2CH2OH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30 m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are ≤(4.0 ± 0.8) × 1015 cm−2 and ≤(1.0 ± 0.2)× 1015 cm−2 for tEME and Gt-n-propanol, respectively. The rotational temperature is ~100 K for both molecules. We also provide maps of CH3OCOH, CH3CH2OCOH, CH3OCH3, CH3OH, and CH3CH2OH to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio N(CH3OCH3)/N(tEME) ≥ 150 in the compact ridge of Orion. PMID:26869726

  2. Effect of ethylic alcohol on attentive functions involved in driving abilities.

    PubMed

    Bivona, Umberto; Garbarino, Sergio; Rigon, Jessica; Buzzi, Maria Gabriella; Onder, Graziano; Matteis, Maria; Catani, Sheila; Giustini, Marco; Mancardi, Giovanni Luigi; Formisano, Rita

    2015-01-01

    The burden of injuries due to drunk drivers has been estimated only indirectly. Indeed, alcohol is considered one of the most important contributing cause of car crash injuries and its effect on cognitive functions needs to be better elucidated. Aims of the study were i) to examine the effect of alcohol on attentive abilities involved while driving, and ii) to investigate whether Italian law limits for safe driving are sufficiently accurate to prevent risky behaviours and car crash risk while driving. We conducted a cross-over study at IRCCS Fondazione Santa Lucia Rehabilitation Hospital in Rome. Thirty-two healthy subjects were enrolled in this experiment. Participants were submitted to an attentive test battery assessing attention before taking Ethylic Alcohol (EA-) and after taking EA (EA+). In the EA+ condition subjects drank enough wine until the blood alcohol concentration, measured by means of Breath Analyzer, was equal to or higher than 0.5 g/l. Data analysis revealed that after alcohol assumption, tonic and phasic alertness, selective, divided attention and vigilance were significantly impaired when BAC level was at least 0.5 g/l. These data reveal that alcohol has a negative effect on attentive functions which are primarily involved in driving skills and that Italian law limits are adequate to prevent risky driving behaviour.

  3. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the following prescribed conditions: (a)...

  4. Complete Genome of Rhodococcus pyridinivorans SB3094, a Methyl-Ethyl-Ketone-Degrading Bacterium Used for Bioaugmentation

    PubMed Central

    Albertsen, Mads; D’Imperio, Seth; Tale, Vaibhav P.; Lewis, Derrick; Nielsen, Per Halkjær; Nielsen, Jeppe Lund

    2014-01-01

    Here, we present the complete genome of Rhodococcus pyridinivorans SB3094, a methyl-ethyl-ketone (MEK)-degrading strain used for bioaugmentation relating to the treatment of wastewater contamination with petrochemical hydrocarbons. The genome highlights important features for bioaugmentation, including the genes involved in the degradation of MEK. PMID:24874690

  5. Complete Genome of Rhodococcus pyridinivorans SB3094, a Methyl-Ethyl-Ketone-Degrading Bacterium Used for Bioaugmentation.

    PubMed

    Dueholm, Morten S; Albertsen, Mads; D'Imperio, Seth; Tale, Vaibhav P; Lewis, Derrick; Nielsen, Per Halkjær; Nielsen, Jeppe Lund

    2014-05-29

    Here, we present the complete genome of Rhodococcus pyridinivorans SB3094, a methyl-ethyl-ketone (MEK)-degrading strain used for bioaugmentation relating to the treatment of wastewater contamination with petrochemical hydrocarbons. The genome highlights important features for bioaugmentation, including the genes involved in the degradation of MEK.

  6. Ultrasound-Guided 50% Ethyl Alcohol Injection for Patients With Malleolar and Olecranon Bursitis: A Prospective Pilot Study

    PubMed Central

    Hong, Ji Seong; Lee, Jin Hyung

    2016-01-01

    Objective To evaluate the feasibility and effect of ultrasound-guided ethyl alcohol injection on malleolar and olecranon synovial proliferative bursitis. Methods Twenty-four patients received ultrasound-guided 50% diluted ethyl alcohol injection at the site of synovial proliferative bursitis after aspiration of the free fluid. Results Swelling and symptoms significantly decreased in 13 of the 24 patients without any complications. Eleven patients had partial improvement in swelling and symptoms. Conclusion Ultrasound-guided alcohol injection could be an alternative therapeutic option before surgery in patients with chronic intractable malleolar and olecranon synovial proliferative bursitis. PMID:27152282

  7. Acute alcohol intoxication in a child following ingestion of an ethyl-alcohol-based hand sanitizer.

    PubMed

    Hertzog, James H; Radwick, Allison

    2015-07-01

    While uncommon, ingestion of ethanol-based hand sanitizers by children may be associated with significant intoxication. We report the case of a 7-year-old with acute alcohol intoxication following hand sanitizer ingestion. Alcohol elimination in this patient followed zero-order kinetics with a clearance rate of 22.5 mg/kg/h, consistent with the limited pharmacokinetic information available for children who experience alcohol intoxication from more traditional sources.

  8. Ethyl glucuronide concentrations in hair: a controlled alcohol-dosing study in healthy volunteers.

    PubMed

    L Crunelle, Cleo; Cappelle, Delphine; Yegles, Michel; De Doncker, Mireille; Michielsen, Peter; Dom, Geert; van Nuijs, Alexander L N; Maudens, Kristof E; Covaci, Adrian; Neels, Hugo

    2016-03-01

    Ethyl glucuronide (EtG) is a minor phase II metabolite of alcohol that accumulates in hair. It has been established as a sensitive marker to assess the retrospective consumption of alcohol over recent months using a cut-off of ≥7 pg/mg hair to assess repeated alcohol consumption. The primary aim was to assess whether amounts of alcohol consumed correlated with EtG concentrations in hair. Additionally, we investigated whether the current applied cut-off value of 7 pg/mg hair was adequate to assess the regular consumption of low-to-moderate amounts of alcohol. A prospective controlled alcohol-dosing study in 30 healthy individuals matched on age and gender. Individuals were instructed to drink no alcohol (N = 10), 100 g alcohol per week (N = 10) or 150 g alcohol per week (N = 10) for 12 consecutive weeks, before and after which hair was collected. Throughout the study, compliance to daily alcohol consumption was assessed by analyzing urine EtG three times weekly. Participants in the non-drinking group had median EtG concentrations of 0.5 pg/mg hair (interquartile range (IQR) 1.7 pg/mg; range < 0.21-4.5 pg/mg). Participants consuming 100 and 150 g alcohol per week showed median EtG concentrations of 5.6 pg/mg hair (IQR 4.7 pg/mg; range 2.0-9.8 pg/mg) and 11.3 pg/mg hair (IQR 5.0 pg/mg; range 7.7-38.9 pg/mg), respectively. Hair EtG concentrations between the three study groups differed significantly from one another (p < 0.001). Hair EtG concentrations can be used to differentiate between repeated (low-to-moderate) amounts of alcohol consumed over a long time period. For the assessment of repeated alcohol use, we propose that the current cut-off of 7 pg/mg could be re-evaluated.

  9. Reaction rate coefficients of OH radicals and Cl atoms with ethyl propanoate, n-propyl propanoate, methyl 2-methylpropanoate, and ethyl n-butanoate.

    PubMed

    Cometto, Pablo M; Daële, Véronique; Idir, Mahmoud; Lane, Silvia I; Mellouki, Abdelwahid

    2009-10-08

    Kinetics of the reactions of OH radicals and Cl atoms with four saturated esters have been investigated. Rate coefficients for the gas-phase reactions of OH radicals with ethyl propanoate (k(1)), n-propyl propanoate (k(2)), methyl 2-methylpropanoate (k(3)), and ethyl n-butanoate (k(4)) were measured using a conventional relative rate method and the pulsed laser photolysis-laser induced fluorescence technique. At (296 +/- 2) K, the rate coefficients obtained by the two methods were in good agreement. Significant curvatures in the Arrhenius plots have been observed in the temperature range 243-372 K for k(1), k(3), and k(4). The rate coefficients for the reactions of the four esters with Cl atoms were determined using the relative rate method at (296 +/- 2) K and atmospheric pressure. The values obtained are presented, compared with the literature values when they exist, and discussed. Reactivity trends and atmospheric implications for these esters are also presented.

  10. Flexural properties of ethyl or methyl methacrylate-UDMA blend polymers.

    PubMed

    Kanie, Takahito; Kadokawa, Akihiko; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2010-10-01

    Light-curing polyethyl methacrylate (PEMA)-urethane dimethacrylate (UDMA) resins and polymethyl methacrylate (PMMA)-UDMA resins were prepared by two processes. For first step, PEMA or PMMA powders were fully dissolved in ethyl methacrylate (EMA) or methyl methacrylate (MMA) and then the PEMA-EMA/PMMA-MMA mixtures were mixed with UDMA. The flexural properties of cured PEMA-UDMA and PMMA-UDMA polymers were measured using two PEMA (Mw: 300,000-400,000 and 650,000-1,000,000) and three PMMA (Mw: 30,000-60,000, 350,000 and 650,000-1,000,000) powders with different molecular weight, four mixing ratios of PMMA-MMA, and three mixing ratios of PMMA-MMA mixture and UDMA oligomer. Polymers with PMMA(Mw: 350,000) MMA=25/50, and with PMMA(Mw: 350,000)-MMA/UDMA=1/2 and =1/1, showed no-fracture in a flexural test at 1 mm/min and flexural strength and flexural modulus showed no significant difference compared with those of commercially available heat- and self-curing acrylic resins (p>0.01). Within limitation of this investigation, methyl methacrylate-UDMA blend polymer of this composition is available for denture base resin.

  11. CCSD(T) study of the far-infrared spectrum of ethyl methyl ether.

    PubMed

    Senent, M L; Ruiz, R; Villa, M; Domínguez-Gómez, R

    2009-02-14

    Band positions and intensities for the far-infrared bands of ethyl methyl ether are variationally determined from a three-dimensional (3D) potential energy surface calculated with CCSD(T)/cc-pVTZ theory. For this purpose, the energies of 181 selected geometries computed optimizing 3n-9 parameters are fitted to a 3D Fourier series depending on three torsional coordinates. The zero point vibrational energy correction and the search of a correct definition of the methyl torsional coordinate are taken into consideration for obtaining very accurate frequencies. In addition, second order perturbation theory is applied on the two molecular conformers, trans and cis-gauche, in order to test the validity of the 3D model. Consequently, a new assignment of previous experimental bands, congruent with the new ab initio results, is proposed. For the most stable trans-conformer, the nu(30), nu(29), and nu(28) fundamental transitions, computed at 115.3, 206.5, and 255.2 cm(-1), are correlated with the observed bands at 115.4, 202, and 248 cm(-1). For the cis-gauche the three band positions are computed at 91.0, 192.5, and 243.8 cm(-1). Calculations on the -d(3) isotopomer confirm our assignment. Intensities are determined at room temperature and at 10 K. Structural parameters, potential energy barriers, anharmonic frequencies for the 3n-9 neglected modes, and rotational parameters (rotational and centrifugal distortion constants), are also provided.

  12. CCSD(T) study of the far-infrared spectrum of ethyl methyl ether

    NASA Astrophysics Data System (ADS)

    Senent, M. L.; Ruiz, R.; Villa, M.; Domínguez-Gómez, R.

    2009-02-01

    Band positions and intensities for the far-infrared bands of ethyl methyl ether are variationally determined from a three-dimensional (3D) potential energy surface calculated with CCSD(T)/cc-pVTZ theory. For this purpose, the energies of 181 selected geometries computed optimizing 3n-9 parameters are fitted to a 3D Fourier series depending on three torsional coordinates. The zero point vibrational energy correction and the search of a correct definition of the methyl torsional coordinate are taken into consideration for obtaining very accurate frequencies. In addition, second order perturbation theory is applied on the two molecular conformers, trans and cis-gauche, in order to test the validity of the 3D model. Consequently, a new assignment of previous experimental bands, congruent with the new ab initio results, is proposed. For the most stable trans-conformer, the ν30, ν29, and ν28 fundamental transitions, computed at 115.3, 206.5, and 255.2 cm-1, are correlated with the observed bands at 115.4, 202, and 248 cm-1. For the cis-gauche the three band positions are computed at 91.0, 192.5, and 243.8 cm-1. Calculations on the -d3 isotopomer confirm our assignment. Intensities are determined at room temperature and at 10 K. Structural parameters, potential energy barriers, anharmonic frequencies for the 3n-9 neglected modes, and rotational parameters (rotational and centrifugal distortion constants), are also provided.

  13. Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts.

    PubMed

    Lange, Jean-Paul; van de Graaf, Wouter D; Haan, René J

    2009-01-01

    Furfural, a potential coproduct of levulinic acid, can be converted into levulinic acid via hydrogenation to furfuryl alcohol and subsequent ethanolysis to ethyl levulinate. The ethanolysis reaction is known to proceed in the presence of H(2)SO(4). We show here that several strongly acidic resins are comparably effective catalysts for this reaction. Optimal performance is achieved by balancing the number of acid sites with their accessibility in the resin. Acidic zeolites such as H-ZSM-5 also catalyze this reaction, although with a lower activity and a higher co-production of diethyl ether.

  14. Determination of Ethyl Carbamate in Alcoholic Beverages and Fermented Foods Sold in Korea.

    PubMed

    Ryu, Dayeon; Choi, Bogyoung; Kim, Eunjoo; Park, Seri; Paeng, Hwijin; Kim, Cho-Il; Lee, Jee-Yeon; Yoon, Hae Jung; Koh, Eunmi

    2015-09-01

    Ethyl carbamate (EC) classified as a probable human carcinogen (Group 2A) is naturally formed in alcoholic beverages and fermented foods during fermentation process and/or during storage. The objective of this study was to analyze EC in 34 food items including 14 alcoholic beverages and 20 fermented foods sold in Korea. Each food was collected from 18 supermarkets in 9 metropolitan cities in Korea, and then made into composite. According to food composition and alcohol content, samples were divided into four matrices such as apple juice, milk, Soju (liquor containing about 20% alcohol), and rice porridge. The maximum EC value of 151.06 µg/kg was found in Maesilju (liquor made from Maesil and Soju). Whisky and Bokbunjaju (Korean black raspberry wine) contained 9.90 µg/kg and 6.30 µg/kg, respectively. EC was not detected in other alcoholic beverages. Of 20 fermented foods, Japanese-style soy sauce had highest level of 15.59 µg/kg and traditional one contained 4.18 µg/kg. Soybean paste had 1.18 µg/kg, however, EC was not found in other fermented foods.

  15. Determination of Ethyl Carbamate in Alcoholic Beverages and Fermented Foods Sold in Korea

    PubMed Central

    Ryu, Dayeon; Choi, Bogyoung; Kim, Eunjoo; Park, Seri; Paeng, Hwijin; Kim, Cho-il; Lee, Jee-yeon; Yoon, Hae Jung

    2015-01-01

    Ethyl carbamate (EC) classified as a probable human carcinogen (Group 2A) is naturally formed in alcoholic beverages and fermented foods during fermentation process and/or during storage. The objective of this study was to analyze EC in 34 food items including 14 alcoholic beverages and 20 fermented foods sold in Korea. Each food was collected from 18 supermarkets in 9 metropolitan cities in Korea, and then made into composite. According to food composition and alcohol content, samples were divided into four matrices such as apple juice, milk, Soju (liquor containing about 20% alcohol), and rice porridge. The maximum EC value of 151.06 µg/kg was found in Maesilju (liquor made from Maesil and Soju). Whisky and Bokbunjaju (Korean black raspberry wine) contained 9.90 µg/kg and 6.30 µg/kg, respectively. EC was not detected in other alcoholic beverages. Of 20 fermented foods, Japanese-style soy sauce had highest level of 15.59 µg/kg and traditional one contained 4.18 µg/kg. Soybean paste had 1.18 µg/kg, however, EC was not found in other fermented foods. PMID:26483888

  16. Two cases of methyl alcohol intoxication by sub-chronic inhalation and dermal exposure during aluminum CNC cutting in a small-sized subcontracted factory.

    PubMed

    Ryu, Jia; Lim, Key Hwan; Ryu, Dong-Ryeol; Lee, Hyang Woon; Yun, Ji Young; Kim, Seoung-Wook; Kim, Ji-Hoon; Jung-Choi, Kyunghee; Kim, Hyunjoo

    2016-01-01

    Methyl alcohol poisoning has been mainly reported in community. Two cases of methyl alcohol poisoning occurred in a small-sized subcontracted factory which manufactured smartphone parts in Korea. One young female patient presented with dyspnea and visual disturbance. Another young male patient presented with visual disturbance and myalgia. They treated with sodium bicarbonate infusion and hemodialysis for metabolic acidosis. In addition, he received ethyl alcohol per oral treatment. Her and his urinary methyl alcohol concentration was detected as 7.632 mg/L, 46.8 mg/L, respectively, although they were treated hemodialysis. Results of the working environment measurement showed that the concentration of methyl alcohol (1030.1-2220.5 ppm) in the air exceeded the time weighted average (200 ppm). They were diagnosed with optic neuropathy due to methyl alcohol poisoning and still have visual impairment. Workers who hired as dispatched employees in a small-sized subcontracted factory were exposed to high concentrations of methyl alcohol. The workplace had poor ventilation system. In addition, workers did not wear proper personal protect equipment. Working environment measurement and annual chekups for workers were not performed. They were in a blind spot to occupational safety and health. More attention is needed to protect vulnerable workers' health.

  17. Associative DNA methylation changes in children with prenatal alcohol exposure.

    PubMed

    Laufer, Benjamin I; Kapalanga, Joachim; Castellani, Christina A; Diehl, Eric J; Yan, Liying; Singh, Shiva M

    2015-01-01

    Prenatal alcohol exposure (PAE) can cause fetal alcohol spectrum disorders (FASD). Previously, we assessed PAE in brain tissue from mouse models, however whether these changes are present in humans remains unknown. In this report, we show some identical changes in DNA methylation in the buccal swabs of six children with FASD using the 450K array. The changes occur in genes related to protocadherins, glutamatergic synapses, and hippo signaling. The results were found to be similar in another heterogeneous replication group of six FASD children. The replicated results suggest that children born with FASD have unique DNA methylation defects that can be influenced by sex and medication exposure. Ultimately, with future clinical development, assessment of DNA methylation from buccal swabs can provide a novel strategy for the diagnosis of FASD.

  18. Ultrasonic studies of mixtures of ethyl formate and n-alcohols in carbon tetrachloride

    NASA Astrophysics Data System (ADS)

    Elangovan, S.; Mullainathan, S.

    2013-04-01

    Density ( ρ), viscosity ( η) and ultrasonic velocity ( U) have been measured for the ternary mixtures of ethyl formate with 1-butanol, 1-pentanol and 1-hexanol in carbon tetrachloride at 303 K. From the experimental data, several acoustic parameters such as adiabatic compressibility ( β), acoustic impedance( Z), viscous relaxation time( τ), free length ( L f ), free volume ( V f ), internal pressure ( π i ) and Gibb's free energy (Δ G) have been determined. The excess values of the above parameters ( β E , Z E , τ E , L f E , V f E , π i E and Δ G E ) were also determined and interpreted in terms of molecular association such as hydrogen bonding formed between the liquid mixtures. The results show that hetero-association and homo-association of molecules decrease with the increase in chain length of carbon atoms in alcohols. It is observed that the molecular interaction of alcohols with ethyl formate is in the order of 1-butanol < 1-pentanol < 1-hexanol.

  19. Commercial Ethyl Glucuronide (EtG) and Ethyl Sulfate (EtS) Testing is Not Vulnerable to Incidental Alcohol Exposure in Pregnant Women.

    PubMed

    Ondersma, Steven J; Beatty, Jessica R; Rosano, Thomas G; Strickler, Ronald C; Graham, Amy E; Sokol, Robert J

    2016-01-02

    Ethyl Glucoronide (EtG) and Ethyl Sulfate (EtS) have shown promise as biomarkers for alcohol and may be sensitive enough for use with pregnant women in whom even low-level alcohol use is important. However, there have been reports of over-sensitivity of EtG and EtS to incidental exposure to sources such as alcohol-based hand sanitizer. Further, few studies have evaluated these biomarkers among pregnant women, in whom the dynamics of these metabolites may differ. This study evaluated whether commercial EtG-EtS testing was vulnerable to high levels of environmental exposure to alcohol in pregnant women. Two separate samples of five nurses-one pregnant and the other postpartum, all of whom reported high levels of alcohol-based hand sanitizer use-provided urine samples before and 4-8 hours after rinsing with alcohol-based mouthwash and using hand sanitizer. The five pregnant nurses provided urine samples before, during, and after an 8-hour nursing shift, during which they repeatedly cleansed with alcohol-based hand sanitizer (mean 33.8 uses). The five postpartum nurses used hand sanitizer repeatedly between baseline and follow-up urine samples. No urine samples were positive for EtG-EtS at baseline or follow-up, despite use of mouthwash and-in the pregnant sample-heavy use of hand sanitizer (mean of 33.8 uses) throughout the 8-hour shift. Current, commercially available EtG-EtS testing does not appear vulnerable to even heavy exposure to incidental sources of alcohol among pregnant and postpartum women.

  20. Commercial Ethyl Glucuronide (EtG) and Ethyl Sulfate (EtS) Testing is not Vulnerable to Incidental Alcohol Exposure in Pregnant Women

    PubMed Central

    Beatty, Jessica R.; Rosano, Thomas G.; Strickler, Ronald C.; Graham, Amy E.; Sokol, Robert J.

    2016-01-01

    Background Ethyl Glucoronide (EtG) and Ethyl Sulfate (EtS) have shown promise as biomarkers for alcohol and may be sensitive enough for use with pregnant women in whom even low-level alcohol use is important. However, there have been reports of over-sensitivity of EtG and EtS to incidental exposure to sources such as alcohol-based hand sanitizer. Further, few studies have evaluated these biomarkers among pregnant women, in whom the dynamics of these metabolites may differ. Objectives This study evaluated whether commercial EtG-EtS testing was vulnerable to high levels of environmental exposure to alcohol in pregnant women. Methods Two separate samples of five nurses—one pregnant and the other postpartum, all of whom reported high levels of alcohol-based hand sanitizer use—provided urine samples before and 4–8 hours after rinsing with alcohol-based mouthwash and using hand sanitizer. The five pregnant nurses provided urine samples before, during, and after an 8-hour nursing shift, during which they repeatedly cleansed with alcohol-based hand sanitizer (mean 33.8 uses). The five postpartum nurses used hand sanitizer repeatedly between baseline and follow-up urine samples. Results No urine samples were positive for EtG-EtS at baseline or follow-up, despite use of mouthwash and—in the pregnant sample—heavy use of hand sanitizer (mean of 33.8 uses) throughout the 8-hour shift. Conclusions/Importance Current, commercially available EtG-EtS testing does not appear vulnerable to even heavy exposure to incidental sources of alcohol among pregnant and postpartum women. PMID:26771303

  1. Designed biosynthesis of 25-methyl and 25-ethyl ivermectin with enhanced insecticidal activity by domain swap of avermectin polyketide synthase.

    PubMed

    Zhang, Ji; Yan, Yi-Jun; An, Jing; Huang, Sheng-Xiong; Wang, Xiang-Jing; Xiang, Wen-Sheng

    2015-09-24

    Avermectin and milbemycin are important 16-membered macrolides that have been widely used as pesticides in agriculture. However, the wide use of these pesticides inevitably causes serious drug resistance, it is therefore imperative to develop new avermectin and milbemycin analogs. The biosynthetic gene clusters of avermectin and milbemycin have been identified and the biosynthetic pathways have been elucidated. Combinatorial biosynthesis by domain swap provides an efficient strategy to generate chemical diversity according to the module polyketide synthase (PKS) assembly line. The substitution of aveDH2-KR2 located in avermectin biosynthetic gene cluster in the industrial avermectin-producing strain Streptomyces avermitilis NA-108 with the DNA regions milDH2-ER2-KR2 located in milbemycin biosynthetic gene cluster in Streptomyces bingchenggensis led to S. avermitilis AVE-T27, which produced ivermectin B1a with high yield of 3450 ± 65 μg/ml. The subsequent replacement of aveLAT-ACP encoding the loading module of avermectin PKS with milLAT-ACP encoding the loading module of milbemycin PKS led to strain S. avermitilis AVE-H39, which produced two new avermectin derivatives 25-ethyl and 25-methyl ivermectin (1 and 2) with yields of 951 ± 46 and 2093 ± 61 μg/ml, respectively. Compared to commercial insecticide ivermectin, the mixture of 25-methyl and 25-ethyl ivermectin (2:1 = 3:7) exhibited 4.6-fold increase in insecticidal activity against Caenorhabditis elegans. Moreover, the insecticidal activity of the mixture of 25-methyl and 25-ethyl ivermectin was 2.5-fold and 5.7-fold higher than that of milbemycin A3/A4 against C. elegans and the second-instar larva of Mythimna separate, respectively. Two new avermectin derivatives 25-methyl and 25-ethyl ivermectin were generated by the domain swap of avermectin PKS. The enhanced insecticidal activity of 25-methyl and 25-ethyl ivermectin implied the potential use as insecticide in agriculture. Furthermore, the

  2. Ultrasound-assisted emulsification-microextraction for the sensitive determination of ethyl carbamate in alcoholic beverages.

    PubMed

    Liao, Qie Gen; Li, Wei Hong; Luo, Lin Guang

    2013-08-01

    A method based on ultrasound-assisted emulsification-microextraction (USAEME) was proposed in this contribution for the determination of ethyl carbamate (EC) in alcoholic beverages using gas chromatography coupled to triple quadrupole mass spectrometry. To achieve the determination of EC in alcoholic beverages, the influences on the extraction efficiency of type and volume of extraction solvent, temperature, ionic strength, alcohol content, and extraction time were studied, once the extraction solvent had been selected. The optimized conditions were 200.0 μL of chloroform at 30 °C during 5 min with 15% (m/v) sodium chloride addition. The detection limit, relative standard deviations, linear range, and recoveries under the optimized conditions were 0.03 μg L(-1), 4.2-6.1%, 0.1-50.0 μg L(-1), and 80.5-87.9%, respectively. Moreover, the feasibility of the present method was also validated by real samples. To the best of our knowledge, this is the first time that USAEME has been applied to determine a strongly hydrophilic compound in alcoholic beverages.

  3. Determination of ethyl glucuronide in hair to assess excessive alcohol consumption in a student population.

    PubMed

    Oppolzer, David; Barroso, Mário; Gallardo, Eugenia

    2016-03-01

    Hair analysis for ethyl glucuronide (EtG) was used to evaluate the pattern of alcohol consumption amongst the Portuguese university student population. A total of 975 samples were analysed. For data interpretation, the 2014 guidelines from the Society of Hair Testing (SoHT) for the use of alcohol markers in hair for the assessment of both abstinence and chronic excessive alcohol consumption were considered. EtG concentrations were significantly higher in the male population. The effect of hair products and cosmetics was evaluated by analysis of variance (ANOVA), and significant lower concentrations were obtained when conditioner or hair mask was used or when hair was dyed. Based on the analytical data and information obtained in the questionnaires from the participants, receiver operating characteristic (ROC) curves were constructed in order to determine the ideal cut-offs for our study population. Optimal cut-off values were estimated at 7.3 pg/mg for abstinence or rare occasional drinking control and 29.8 pg/mg for excessive consumption. These values are very close to the values suggested by the SoHT, proving their adequacy to the studied population. Overall, the obtained EtG concentrations demonstrate that participants are usually well aware of their consumption pattern, correlating with the self-reported consumed alcohol quantity, consumption habits and excessive consumption close to the time of hair sampling.

  4. Determining ethyl glucuronide cutoffs when detecting self-reported alcohol use in addiction treatment patients.

    PubMed

    Lowe, Jessica M; McDonell, Michael G; Leickly, Emily; Angelo, Frank A; Vilardaga, Roger; McPherson, Sterling; Srebnik, Debra; Roll, John; Ries, Richard K

    2015-05-01

    Ethyl glucuronide (EtG) is an alcohol biomarker with potential utility as a clinical research and alcohol treatment outcome. Debate exists regarding the appropriate cutoff level for determining alcohol use, particularly with the EtG immunoassay. This study determined the EtG immunoassay cutoff levels that most closely correspond to self-reported drinking in alcohol-dependent outpatients. Eighty adults with alcohol dependence and mental illness, taking part in an alcohol treatment study, provided urine samples 3 times per week for up to 16 weeks (1,589 samples). Self-reported drinking during 120 hours prior to each sample collection was assessed. Receiver operating characteristic analyses were conducted to assess the ability of the EtG immunoassay to detect self-reported alcohol use across 24- to 120-hour time periods. Sensitivity and specificity of EtG immunoassay cutoff levels was compared in 100 ng/ml increments (100 to 500 ng/ml) across 24 to 120 hours. Over half (57%) of the 1,589 samples indicated recent alcohol consumption. The EtG immunoassay closely corresponded to self-reported drinking from 24 (area under the curve [AUC] = 0.90, 95% confidence interval [CI]: 0.88, 0.92) to 120 hours (AUC = 0.88, 95% CI: 0.87, 0.90). When cutoff levels were compared across 24 to 120 hours, 100 ng/ml had the highest sensitivity (0.93 to 0.78) and lowest specificity (0.67 to 0.85). Relative to 100 ng/ml, the 200 ng/ml cutoff demonstrated a reduction in sensitivity (0.89 to 0.67), but improved specificity (0.78 to 0.94). The 300, 400, and 500 ng/ml cutoffs demonstrated the lowest sensitivity (0.86 to 0.33) and highest specificity (0.86 to 0.97) over 24 to 120 hours. For detecting alcohol use for >24 hours, the 200 ng/ml cutoff level is recommended for use as a research and clinical outcome. Copyright © 2015 by the Research Society on Alcoholism.

  5. Mouse Pig-a and micronucleus assays respond to N-ethyl-N-nitrosourea, benzo[a]pyrene, and ethyl carbamate, but not pyrene or methyl carbamate.

    PubMed

    Labash, Carson; Avlasevich, Svetlana L; Carlson, Kristine; Berg, Ariel; Torous, Dorothea K; Bryce, Steven M; Bemis, Jeffrey C; MacGregor, James T; Dertinger, Stephen D

    2016-01-01

    This laboratory previously described a method for scoring the incidence of peripheral blood Pig-a mutant phenotype rat erythrocytes using immunomagnetic separation in conjunction with flow cytometric analysis (In Vivo MutaFlow®). The current work extends the method to mouse blood, using the frequency of CD24-negative reticulocytes (RET(CD24-)) and erythrocytes (RBC(CD24-)) as phenotypic reporters of Pig-a gene mutation. Following assay optimization, reconstruction experiments demonstrated the ability of the methodology to return expected values. Subsequently, the responsiveness of the assay to the genotoxic carcinogens N-ethyl-N-nitrosourea, benzo[a]pyrene, and ethyl carbamate was studied in male CD-1 mice exposed for 3 days to several dose levels via oral gavage. Blood samples were collected on Day 4 for micronucleated reticulocyte analyses, and on Days 15 and 30 for determination of RET(CD24-) and RBC(CD24-) frequencies. The same design was used to study pyrene, with benzo[a]pyrene as a concurrent positive control, and methyl carbamate, with ethyl carbamate as a concurrent positive control. The three genotoxicants produced marked dose-related increases in the frequencies of Pig-a mutant phenotype cells and micronucleated reticulocytes. Ethyl carbamate exposure resulted in moderately higher micronucleated reticulocyte frequencies relative to N-ethyl-N-nitrosourea or benzo[a]pyrene (mean ± SEM = 3.0 ± 0.36, 2.3 ± 0.17, and 2.3 ± 0.49%, respectively, vs. an aggregate vehicle control frequency of 0.18 ± 0.01%). However, it was considerably less effective at inducing Pig-a mutant cells (e.g., Day 15 mean no. RET(CD24-) per 1 million reticulocytes = 7.6 ± 3, 150 ± 9, and 152 ± 43 × 10(-6), respectively, vs. an aggregate vehicle control frequency of 0.6 ± 0.13 × 10(-6)). Pyrene and methyl carbamate, tested to maximum tolerated dose or limit dose levels, had no effect on mutant cell or micronucleated reticulocyte frequencies. Collectively, these results

  6. Immunoassay for ethyl glucuronide in vitreous humor: a new tool for postmortem diagnostics of alcohol use.

    PubMed

    Rainio, Juha; Kultti, Johanna; Kangastupa, Päivikki; Tuomi, Heidi; Ahola, Sanna; Karhunen, Pekka J; Helander, Anders; Niemelä, Onni

    2013-03-10

    Although excessive alcohol consumption plays a major role in fatal events, the role of alcohol use as a possible contributing factor at the time of death is not easy to establish due to lack of suitable biomarkers for postmortem analyses. We used an immunological approach to measure ethyl glucuronide (EtG) concentrations from vitreous humor (VH) and serum from 58 individuals representing a forensic autopsy population of cases with either a well-documented history of excessive alcohol use (n=37) or cases without such history (n=21), according to medical and police records and blood alcohol determinations (BAC). The immunoassay was based on the Microgenics DRI-EtG EIA reagents applied on an automated Abbott Architect c8000 clinical chemistry analyzer. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) determination of EtG and ethyl sulfate (EtS) was used as a reference method. At a cut-off of 0.3mg/l for VH-EtG, the immunoassay correctly identified 92% of the cases with a history of excessive alcohol use, whereas the BAC was positive (cut-off 10mg/dl) in 68% of the cases. A significant correlation emerged between VH-EtG and serum EtG (r=0.77, p<0.001) and between VH-EtG and BAC (r=0.62, p<0.001), although VH-EtG was frequently elevated also in cases with no detectable BAC. The EtG immunoassay showed a strong correlation with the LC-MS/MS reference method (r=0.94, p<0.001) and there was 100% agreement in the frequency of marker positive and negative findings between the immunoassay EtG results and the LC-MS/MS analysis of EtG and EtS. The present data indicate that the immunoassay for VH-EtG is a useful forensic tool for screening of antemortem alcohol use. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Calorimetric studies on the thermal hazard of methyl ethyl ketone peroxide with incompatible substances.

    PubMed

    Chang, Ron-Hsin; Shu, Chi-Min; Duh, Yih-Shing; Jehng, Jih-Mirn

    2007-03-22

    In Taiwan, Japan, and China, methyl ethyl ketone peroxide (MEKPO) has caused many severe thermal explosions owing to its thermal instability and reactivity originating from the complexity of its structure. This study focused on the incompatible features of MEKPO as detected by calorimetry. The thermal decomposition and runaway behaviors of MEKPO with about 10wt.% incompatibilities, such as H(2)SO(4), HCl, NaOH, KOH, FeCl(3), and FeSO(4), were analyzed by dynamic calorimeter, differential scanning calorimetry (DSC) and adiabatic calorimeter, vent sizing package 2 (VSP2). Thermokinetic data, such as onset temperature, heat of decomposition, adiabatic temperature rise, and self-heat rate, were obtained and assessed. Experimental data were used for determining the incompatibility rating on hazards. From the thermal curves of MEKPO with assumed incompatible substances detected by DSC, all the onset temperatures in the other tests occurring earlier advanced, especially with alkaline or ferric materials. In some tests, significant incompatible reactions were found. Adiabatic runaway behaviors for simulating the worst case scenario were performed by using VSP2. These calorimetric data led to the same results that the alkaline or ferric solution was the most incompatible with MEKPO.

  8. Thermal explosion analysis of methyl ethyl ketone peroxide by non-isothermal and isothermal calorimetric applications.

    PubMed

    Chi, Jen-Hao; Wu, Sheng-Hung; Shu, Chi-Min

    2009-11-15

    In the past, process incidents attributed to organic peroxides (OPs) that involved near misses, over-pressures, runaway reactions, and thermal explosions occurred because of poor training, human error, incorrect kinetic assumptions, insufficient change management, and inadequate chemical knowledge in the manufacturing process. Calorimetric applications were employed broadly to test organic peroxides on a small-scale because of their thermal hazards, such as exothermic behavior and self-accelerating decomposition in the laboratory. In essence, methyl ethyl ketone peroxide (MEKPO) is highly reactive and exothermically unstable. In recent years, it has undergone many thermal explosions and runaway reaction incidents in the manufacturing process. Differential scanning calorimetry (DSC), vent sizing package 2 (VSP2), and thermal activity monitor (TAM) were employed to analyze thermokinetic parameters and safety index. The intent of the analyses was to facilitate the use of various auto-alarm equipments to detect over-pressure, over-temperature, and hazardous materials leaks for a wide spectrum of operations. Results indicated that MEKPO decomposition is detected at low temperatures (30-40 degrees C), and the rate of decomposition was shown to exponentially increase with temperature and pressure. Determining time to maximum rate (TMR), self-accelerating decomposition temperature (SADT), maximum temperature (T(max)), exothermic onset temperature (T(0)), and heat of decomposition (DeltaH(d)) was essential for identifying early-stage runaway reactions effectively for industries.

  9. Leaf uptake of methyl ethyl ketone and croton aldehyde by Castanopsis sieboldii and Viburnum odoratissimum saplings

    NASA Astrophysics Data System (ADS)

    Tani, Akira; Tobe, Seita; Shimizu, Sachie

    2013-05-01

    Methyl ethyl ketone (MEK) is an abundant ketone in the urban atmosphere and croton aldehyde (CA) is a strong irritant to eye, nose, and throat. The use of plants able to absorb these compounds is one suggested mitigation method. In order to investigate this method, we determined the uptake rate of these compounds by leaves of two tree species, Castanopsis sieboldii and Viburnum odoratissimum var. awabuki. Using a flow-through chamber method, we found that these species were capable of absorbing both compounds. We also confirmed that the uptake rate of these compounds normalized to the fumigated concentration (AN) was higher at higher light intensities and that there was a linear relationship between AN and stomatal conductance (gS) for both tree species. In concentration-varying experiments, the uptake of MEK and CA seemed to be restricted by partitioning of MEK between leaf water and air. The ratio of the intercellular VOC concentration (Ci) to the fumigated concentration (Ca) for CA was zero, and the ratio ranged from 0.63 to 0.76 for MEK. The more efficient CA uptake ability may be the result of higher partitioning of CA into leaf water. Our present and previous results also suggest that plant MEK uptake ability was different across plant species, depending on the VOC conversion speed inside leaves.

  10. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models

    SciTech Connect

    Saeed, Noha M.; El-Demerdash, Ebtehal; Abdel-Rahman, Hanaa M.; Algandaby, Mardi M.; Al-Abbasi, Fahad A.; Abdel-Naim, Ashraf B.

    2012-10-01

    Methyl palmitate (MP) and ethyl palmitate (EP) are naturally occurring fatty acid esters reported as inflammatory cell inhibitors. In the current study, the potential anti-inflammatory activity of MP and EP was evaluated in different experimental rat models. Results showed that MP and EP caused reduction of carrageenan-induced rat paw edema in addition to diminishing prostaglandin E2 (PGE2) level in the inflammatory exudates. In lipopolysaccharide (LPS)-induced endotoxemia in rats, MP and EP reduced plasma levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). MP and EP decreased NF-κB expression in liver and lung tissues and ameliorated histopathological changes caused by LPS. Topical application of MP and EP reduced ear edema induced by croton oil in rats. In the same animal model, MP and EP reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In conclusion, this study demonstrates the effectiveness of MP and EP in combating inflammation in several experimental models. -- Highlights: ► Efficacy of MP and EP in combating inflammation was displayed in several models. ► MP and EP reduced carrageenan-induced rat paw edema and prostaglandin E2 level. ► MP and EP decreased TNF-α and IL-6 levels in experimental endotoxemia. ► MP and EP reduced NF-κB expression and histological changes in rat liver and lung. ► MP and EP reduced croton oil-induced ear edema and neutrophil infiltration.

  11. Inhalation developmental toxicology studies: Teratology study of methyl ethyl ketone in mice: Final report

    SciTech Connect

    Mast, T.J.; Dill, J.A.; Evanoff, J.J.; Rommereim, R.L.; Weigel, R.J.; Westerberg, R.B.

    1989-02-01

    Methyl ethyl ketone (MEK) is a widely used industrial solvent which results in considerable human exposure. In order to assess the potential for MEK to cause developmental toxicity in rodents, four groups of Swiss (CD-1) mice were exposed to 0, 400, 1000 or 3000 ppM MEK vapors, 7 h/day, 7 dy/wk. Ten virgin females and approx.30 plug-positive females per group were exposed concurrently for 10 consecutive days (6--15 dg for mated mice). Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice on 18 dg. Uterine implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. Exposure of pregnant mice to these concentrations of MEK did not result in apparent maternal toxicity, although there was a slight, treatment-correlated increase in liver to body weight ratios which was significant for the 3000-ppM group. Mild developmental toxicity was evident at 3000-ppM as a reduction in mean fetal body weight. This reduction was statistically significant for the males only, although the relative decrease in mean fetal body weight was the same for both sexes. 17 refs., 4 figs., 10 tabs.

  12. Augmented lipid accumulation in ethyl methyl sulphonate mutants of oleaginous microalga for biodiesel production.

    PubMed

    Mehtani, Juhi; Arora, Neha; Patel, Alok; Jain, Priyanka; Pruthi, Parul A; Poluri, Kirshna Mohan; Pruthi, Vikas

    2017-10-01

    The aim of this work was to generate high lipid accumulating mutants of Chlorella minutissima (CM) using ethyl methyl sulphonate (EMS) as a random chemical mutagen. Amid the 5% surviving cells after exposure to EMS (2M), three fast growing mutants (CM2, CM5, CM7) were selected and compared with wild type for lipid productivity and biochemical composition. Among these mutants, CM7 showed the maximum biomass (2.4g/L) and lipid content (42%) as compared to wild type (1.5g/L; 27%). Further, the mutant showed high photosynthetic pigments with low starch content signifying the re-allocation of carbon flux to lipid. The obtained mutant showed no visible morphological changes in comparison to its WT. The fatty acid profile showed increase in monounsaturated fatty acids while decreased saturated and polyunsaturated fatty acids signifying good quality biodiesel. The mutant strain thus obtained can be optimized further and applied for enhanced biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models.

    PubMed

    Saeed, Noha M; El-Demerdash, Ebtehal; Abdel-Rahman, Hanaa M; Algandaby, Mardi M; Al-Abbasi, Fahad A; Abdel-Naim, Ashraf B

    2012-10-01

    Methyl palmitate (MP) and ethyl palmitate (EP) are naturally occurring fatty acid esters reported as inflammatory cell inhibitors. In the current study, the potential anti-inflammatory activity of MP and EP was evaluated in different experimental rat models. Results showed that MP and EP caused reduction of carrageenan-induced rat paw edema in addition to diminishing prostaglandin E2 (PGE2) level in the inflammatory exudates. In lipopolysaccharide (LPS)-induced endotoxemia in rats, MP and EP reduced plasma levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). MP and EP decreased NF-κB expression in liver and lung tissues and ameliorated histopathological changes caused by LPS. Topical application of MP and EP reduced ear edema induced by croton oil in rats. In the same animal model, MP and EP reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In conclusion, this study demonstrates the effectiveness of MP and EP in combating inflammation in several experimental models.

  14. Atmospheric mixing ratios of methyl ethyl ketone (2-butanone) in tropical, boreal, temperate and marine environments

    NASA Astrophysics Data System (ADS)

    Yáñez-Serrano, A. M.; Nöslcher, A.; Bourtsoukidis, E.; Derstroff, B.; Zannoni, N.; Gros, V.; Matteo, L.; Brito, J.; Noe, S.; House, E. R.; Hewitt, C. N.; Langford, B.; Nemitz, E.; Behrendt, T.; Williams, J.; Artaxo, P.; Andreae, M. O.; Kesselmeier, J.

    2016-12-01

    Methyl ethyl ketone (MEK) enters the atmosphere following direct emission from vegetation and anthropogenic activities, as well as being produced by the gas-phase oxidation of volatile organic compounds (VOCs) such as n-butane. This study presents the first overview of ambient MEK measurements at six different locations, characteristic of forested, urban and marine environments. In order to understand better the occurrence and behaviour of MEK in the atmosphere, we analyse diel cycles of MEK mixing ratios, vertical profiles, ecosystem flux data, and HYSPLIT back trajectories, and compare with co-measured VOCs. MEK measurements were primarily conducted with proton transfer reaction - mass spectrometer (PTR-MS) instruments. Results from the sites under biogenic influence demonstrate that vegetation is an important source of MEK. The diel cycle of MEK follows that of ambient temperature and the forest structure plays an important role in air mixing. At such sites a high correlation of MEK with acetone was observed (e.g. r2 = 0.96 for the SMEAR-Estonia site in a remote hemi-boreal forest in Tartumaa, Estonia, and r2 = 0.89 at the ATTO pristine tropical rainforest site in central Amazonia). Under polluted conditions, we observed strongly enhanced MEK mixing ratios. Overall, the MEK mixing ratios and flux data presented here indicate that both biogenic and anthropogenic sources contribute to its occurrence in the global atmosphere.

  15. Atmospheric mixing ratios of methyl ethyl ketone (2-butanone) in tropical, boreal, temperate and marine environments

    NASA Astrophysics Data System (ADS)

    Yáñez-Serrano, A. M.; Nölscher, A. C.; Bourtsoukidis, E.; Derstroff, B.; Zannoni, N.; Gros, V.; Lanza, M.; Brito, J.; Noe, S. M.; House, E.; Hewitt, C. N.; Langford, B.; Nemitz, E.; Behrendt, T.; Williams, J.; Artaxo, P.; Andreae, M. O.; Kesselmeier, J.

    2016-09-01

    Methyl ethyl ketone (MEK) enters the atmosphere following direct emission from vegetation and anthropogenic activities, as well as being produced by the gas-phase oxidation of volatile organic compounds (VOCs) such as n-butane. This study presents the first overview of ambient MEK measurements at six different locations, characteristic of forested, urban and marine environments. In order to understand better the occurrence and behaviour of MEK in the atmosphere, we analyse diel cycles of MEK mixing ratios, vertical profiles, ecosystem flux data, and HYSPLIT back trajectories, and compare with co-measured VOCs. MEK measurements were primarily conducted with proton-transfer-reaction mass spectrometer (PTR-MS) instruments. Results from the sites under biogenic influence demonstrate that vegetation is an important source of MEK. The diel cycle of MEK follows that of ambient temperature and the forest structure plays an important role in air mixing. At such sites, a high correlation of MEK with acetone was observed (e.g. r2 = 0.96 for the SMEAR Estonia site in a remote hemiboreal forest in Tartumaa, Estonia, and r2 = 0.89 at the ATTO pristine tropical rainforest site in central Amazonia). Under polluted conditions, we observed strongly enhanced MEK mixing ratios. Overall, the MEK mixing ratios and flux data presented here indicate that both biogenic and anthropogenic sources contribute to its occurrence in the global atmosphere.

  16. An experimental study of the combined effects of n-hexane and methyl ethyl ketone.

    PubMed Central

    Takeuchi, Y; Ono, Y; Hisanaga, N; Iwata, M; Aoyama, M; Kitoh, J; Sugiura, Y

    1983-01-01

    This study was intended to determine whether or not methyl ethyl ketone (MEK) enhances the neurotoxicity of n-hexane at low concentration and after long term exposure. Separate groups of eight rats were exposed to 100 ppm n-hexane, 200 ppm MEK, 100 ppm n-hexane plus 200 ppm MEK, or fresh air in an exposure chamber for 12 hours a day for 24 weeks. The body weight, motor nerve conduction velocity (MCV), distal motor latency (DL), and mixed nerve conduction velocities (MNCVs) were measured before exposure and after four, eight, 12, 16, 20, and 24 weeks' exposure. One rat of each group was histopathologically examined after 24 weeks' exposure. Exposure of 100 ppm n-hexane did not significantly decrease the functions of the peripheral nerve throughout the experiment. Exposure to 200 ppm MEK significantly increased MCV and MNCVs and decreased DL after four weeks' exposure, but at this later stage no significant changes were found throughout the experiment by comparison with the controls. Mixed exposure to 100 ppm n-hexane plus 200 ppm MEK significantly decreased by comparison with the controls. On histopathological examination of the tail nerve, however, no changes were found in any of the exposed groups or the controls. These results suggest that MEK might enhance the neurotoxicity of n-hexane at a low concentration, and mixed exposures to n-hexane and MEK should be avoided. PMID:6830718

  17. Determining Ethyl Glucuronide Cutoffs When Detecting Self-Reported Alcohol Use In Addiction Treatment Patients

    PubMed Central

    Lowe, Jessica M.; McDonell, Michael G.; Leickly, Emily; Angelo, Frank A.; Vilardaga, Roger; McPherson, Sterling; Srebnik, Debra; Roll, John; Ries, Richard K.

    2015-01-01

    Background Ethyl glucuronide (EtG) is an alcohol biomarker with potential utility as a clinical research and alcohol treatment outcome. Debate exists regarding the appropriate cutoff level for determining alcohol use, particularly with the EtG immunoassay. This study determined the EtG immunoassay cutoff levels that most closely correspond to self-reported drinking in alcohol dependent outpatients. Methods Eighty adults with alcohol dependence and mental illness, taking part in an alcohol treatment study, provided urine samples three times per week for up to 16-weeks (1589 samples). Self-reported drinking during 120 hours prior to each sample collection was assessed. Receiver Operating Characteristic analyses were conducted to assess the ability of the EtG immunoassay to detect self-reported alcohol use across 24–120 hour time periods. Sensitivity and specificity of EtG immunoassay cutoff levels was compared in 100 ng/mL increments (100 ng/mL–500 ng/mL) across 24–120 hours. Results Over half (57%) of the 1589 samples indicated recent alcohol consumption. The EtG immunoassay closely corresponded to self-reported drinking from 24 (AUC=0.90, 95% CI:0.88, 0.92) to 120 hours (AUC=0.88, 95% CI:0.87, 0.90). When cutoff levels were compared across 24–120 hours, 100 ng/mL had the highest sensitivity (0.93–0.78) and lowest specificity (0.67–0.85). Relative to 100 ng/mL, the 200 ng/mL cutoff demonstrated a reduction in sensitivity (0.89–0.67), but improved specificity (0.78–0.94). The 300 ng/mL, 400 ng/mL, and 500 ng/mL cutoffs demonstrated the lowest sensitivity (0.86 to 0.33) and highest specificity (0.86–0.97) over 24 to 120 hours. Conclusions For detecting alcohol use for greater than 24 hours, the 200 ng/mL cutoff level is recommended for use as a research and clinical outcome. PMID:25866234

  18. Agreement between the fatty acid ethyl ester hair test for alcohol and social workers' reports.

    PubMed

    Kulaga, Vivian; Gareri, Joey; Fulga, Netta; Koren, Gideon

    2010-06-01

    The purpose of this study was to examine the relationship between social worker reports and the fatty acid ethyl ester (FAEE) test as a biomarker for heavy alcohol use. In 2005, a diagnostic program to detect excessive alcohol use by FAEE hair analysis in parents at high risk of having children with fetal alcohol spectrum disorders was established. All cases submitted by Child Protective Services between May and December of 2007 (n = 172) were included comparing social worker reports with FAEE test outcome by odds ratio analysis. A subanalysis of mothers (n = 119), excluding fathers, was also performed. Factors associated with testing positive for hair FAEE in parents, and mothers alone, were: knowledge of a specific instance of problem drinking within the past 6 months (odds ratio [OR] = 5.11, 2.57-10.16 and OR = 8.51, 3.59-20.18, respectively) and third party reports alleging alcohol abuse (OR = 3.31, 1.69-6.46 and OR = 3.30, 1.45-7.50, respectively). Mothers who admitted to heavy drinking were also seven times more likely to test positive for hair FAEE (OR = 6.74, 1.50-30.38) than those who did not. Factors negatively associated with testing positive for hair FAEE in parents, and mothers alone, were: social workers testing for FAEE without the suspicion of alcohol use but rather as a measure to "cover all bases" (OR = 0.09, 0.02-0.40 and (OR = 0.13, 0.03-0.58, respectively) or because of a history/suspicion of illicit drug use (OR = 0.2, 0.07-0.55 and OR = 0.26, 0.08-0.80, respectively). Eleven of 15 reports, indicating levels of consumption, were also in clinical agreement with FAEE test outcome. The FAEE hair test is being applied for the first time in the present context. Our results show the test corroborates well with social workers' suspicion of alcohol use. Reported factors directly related to alcohol use were significantly associated with testing positive for excessive alcohol use, whereas factors not directly related to alcohol use were negatively

  19. Analgesic effects of intraneural injection of ethyl alcohol or formaldehyde in the palmar digital nerves of horses.

    PubMed

    Schneider, Christine P; Ishihara, Akikazu; Adams, Todd P; Zekas, Lisa J; Oglesbee, Michael; Bertone, Alicia L

    2014-09-01

    To determine analgesic effects of intraneural injection of ethyl alcohol or formaldehyde in the palmar digital nerves of horses. 6 horses. Ethyl alcohol was injected in the medial palmar digital nerve of 1 forelimb, and formaldehyde was injected in the contralateral nerve. The lateral palmar digital nerve in 1 forelimb was surgically exposed, but not injected, and the contralateral lateral palmar digital nerve was not treated. For each heel, severity of lameness in response to experimentally induced heel pain (lameness score and peak vertical force), thermal reaction time, and heel skin sensitivity scores were recorded. Heel pain was experimentally induced by advancing a threaded bolt through a custom-made horseshoe to apply pressure to the palmar horned aspect of the hoof. Horses were followed up for 112 days, when a subset of nerves was sampled for histologic analysis. Alcohol and formaldehyde significantly reduced all measures of heel pain, and analgesia was evident over the 112 days of the study. Pastern circumference was significantly greater for formaldehyde-treated than for alcohol-treated limbs. Histologic evaluation showed preservation of nerve fiber alignment with an intact epineurium, loss of axons, axon degeneration, fibrosis, and inflammation in alcohol-treated and formaldehyde-treated nerves. Results suggested that intraneural injection of either ethyl alcohol or formaldehyde in the palmar digital nerves of horses resulted in substantial, but partial, heel analgesia that persisted for at least 112 days. No advantage of formaldehyde over alcohol was found, and formaldehyde resulted in greater soft tissue inflammation.

  20. Quantification of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) in meconium from newborns for detection of alcohol abuse in a maternal health evaluation study.

    PubMed

    Bakdash, Abdulsallam; Burger, Pascal; Goecke, Tamme W; Fasching, Peter A; Reulbach, Udo; Bleich, Stefan; Hastedt, Martin; Rothe, Michael; Beckmann, Matthias W; Pragst, Fritz; Kornhuber, Johannes

    2010-04-01

    Fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) were determined in 602 meconium samples in a maternal health evaluation study for detection of gestational alcohol consumption. A validated headspace solid phase microextraction method in combination with GC-MS was used for FAEE and the cumulative concentration of ethyl palmitate, ethyl linoleate, ethyl oleate, and ethyl stearate with a cut-off of 500 ng/g was applied for interpretation. A new and simple method was developed and validated for quantification of EtG from 10-20 mg meconium with D(5)-EtG as internal standard consisting of 30 min. extraction with methanol/water (1:1, v/v), evaporation of methanol, filtration of the aqueous solution through a cellulose filter and injection into LC-MS-MS. The limits of detection and quantification for EtG were 10 and 30 ng/g, the recovery 86.6 to 106.4% and the standard deviation of the concentrations ranged from 13% at 37 ng/g to 5% at 46,700 ng/g (N = 6). FAEE above the cut-off were found in 43 cases (7.1%) with cumulative concentrations between 507 and 22,580 ng/g and with one outlier of about 150,000 ng/g (EtG not detected). EtG was detected in 97 cases (16.3%) and concentrations between LOD and 10,200 ng/g with another outlier of 82,000 ng/g (FAEE 10,500 ng/g). Optimal agreement between the two markers was obtained with a cut-off for EtG of 274 ng/g and 547 cases with both FAEE- and EtG-negative, 33 cases with both FAEE- and EtG-positive, nine cases with FAEE-positive and EtG-negative, and seven cases with FAEE-negative and EtG-positive. Differences in physical, chemical, and biochemical properties and in the pharmacokinetic behavior are discussed as reasons for the deviating cases. In none of the 602 cases, serious alcohol consumption was reported by the mothers and no evidence for gestational ethanol exposure was observed in the medical investigation of the newborns. It is concluded that the combined use of FAEE and EtG in meconium as markers for fetal

  1. rac-Ethyl 2-amino-3-hy-droxy-3-[4-(methyl-sulfon-yl)phen-yl]propano-ate.

    PubMed

    Hu, Hao; Chen, Yue-Hu; Qian, Shao-Song; Kang, Shou-Kai

    2011-01-08

    In the title compound, C(12)H(17)NO(5)S, the orientations of the 2-ethyl-2-amino-3-hy-droxy-propano-ate group and the 4-methyl-sulfonyl moiety towards the aromatic ring are periplanar and (-)-anti-clinal, respectively. In the crystal packing, the dominant inter-action is O-H⋯N hydrogen bonding, which generates a chain running along [100]. N-H⋯O and C-H⋯O interactions are also observed.

  2. An XAFS study of nickel chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride/ aluminum chloride

    SciTech Connect

    D Roeper; G Cheek; K Pandya; W OGrady

    2011-12-31

    Nickel chloride was studied with cyclic voltammetry and X-ray absorption spectroscopy in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride (EMIC) ionic liquids. Acidic melts display metal stripping peaks which are not observed in the basic melt. EXAFS analysis shows that the nickel is tetrahedrally coordinated with chloride ions in the basic solution. In the acidic solution the nickel is coordinated by six chloride ions that are also associated with aluminum ions.

  3. 4-Hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as potent anti-tumor agents.

    PubMed

    Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi

    2004-01-19

    Based on the structure of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which exhibits selective cytotoxicity against a tumorigenic cell line, (2,4-dimethoxyphenyl)-(4-hydroxy-3-methyl-6-phenylbenzofuran-2-yl)-methanone (18m) was designed and synthesized as a biologically stable derivative containing no ester group. Although the potency of 18m was almost the same as our initial hit compound 1, 18m is expected to last longer in the human body as an anticancer agent.

  4. Ethyl glucuronide in hair and fingernails as a long-term alcohol biomarker

    PubMed Central

    Berger, Lisa; Fendrich, Michael; Jones, Joseph; Fuhrmann, Daniel; Plate, Charles; Lewis, Douglas

    2014-01-01

    Aims This study aimed to evaluate the performance of ethyl glucuronide (EtG) in hair and fingernails as a long-term alcohol biomarker. Design Cross-sectional survey with probability sampling. Setting Midwestern United States. Participants Participants were 606 undergraduate college students between the ages of 18 and 25 years at the time of selection for potential study participation. Measurements EtG concentrations in hair and fingernails were measured by liquid chromatography-tandem mass spectrometry at three thresholds [30 picograms (pg) per milligram (mg); 20 pg/mg; and 8 pg/mg]. Any weekly alcohol use, increasing-risk drinking and high-risk drinking on average during the past 12 weeks was assessed by participant interview using the time-line follow-back method. Findings In both hair and fingernails at all three EtG thresholds, sensitivity was greatest for the high-risk drinking group [hair: 0.43, confidence interval (CI) = 0.17, 0.69 at 30 pg/mg, 0.71, CI = 0.47, 0.95 at 20 pg/mg; 0.93, CI = 0.79, 1.00 at 8 pg/mg; fingernails: 1.00, CI = 1.00–1.00 at 30, 20 and 8 pg/mg] and specificity was greatest for any alcohol use (hair: 1.00, CI = 1.00, 1.00 at 30 and 20 pg/mg; 0.97, CI = 0.92–0.99 at 8 pg/mg; fingernails: 1.00, CI = 1.00–1.00 at 30, 20 and 8 pg/mg). Areas under the receiver operating characteristic curves were significantly higher for EtG concentration in fingernails than hair for any weekly alcohol use (P = 0.02, DeLong test, two-tailed) and increasing-risk drinking (P = 0.02, DeLong test, two-tailed). Conclusions Ethyl glucuronide, especially in fingernails, may have potential as a quantitative indicator of alcohol use. PMID:24524319

  5. Ethyl glucuronide in hair and fingernails as a long-term alcohol biomarker.

    PubMed

    Berger, Lisa; Fendrich, Michael; Jones, Joseph; Fuhrmann, Daniel; Plate, Charles; Lewis, Douglas

    2014-03-01

    This study aimed to evaluate the performance of ethyl glucuronide (EtG) in hair and fingernails as a long-term alcohol biomarker. Cross-sectional survey with probability sampling. Midwestern United States. Participants were 606 undergraduate college students between the ages of 18 and 25 years at the time of selection for potential study participation. EtG concentrations in hair and fingernails were measured by liquid chromatography-tandem mass spectrometry at three thresholds [30 picograms (pg) per milligram (mg); 20 pg/mg; and 8 pg/mg]. Any weekly alcohol use, increasing-risk drinking and high-risk drinking on average during the past 12 weeks was assessed by participant interview using the time-line follow-back method. In both hair and fingernails at all three EtG thresholds, sensitivity was greatest for the high-risk drinking group [hair: 0.43, confidence interval (CI)=0.17, 0.69 at 30 pg/mg, 0.71, CI=0.47, 0.95 at 20 pg/mg; 0.93, CI=0.79, 1.00 at 8 pg/mg; fingernails: 1.00, CI=1.00-1.00 at 30, 20 and 8 pg/mg] and specificity was greatest for any alcohol use (hair: 1.00, CI=1.00, 1.00 at 30 and 20 pg/mg; 0.97, CI=0.92-0.99 at 8 pg/mg; fingernails: 1.00, CI=1.00-1.00 at 30, 20 and 8 pg/mg). Areas under the receiver operating characteristic curves were significantly higher for EtG concentration in fingernails than hair for any weekly alcohol use (P = 0.02, DeLong test, two-tailed) and increasing-risk drinking (P = 0.02, DeLong test, two-tailed). Ethyl glucuronide, especially in fingernails, may have potential as a quantitative indicator of alcohol use. © 2013 The Authors. Addiction published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.

  6. Crystal structure of (eth­oxy­ethyl­idene)di­methyl­aza­nium ethyl sulfate

    PubMed Central

    Tiritiris, Ioannis; Saur, Stefan; Kantlehner, Willi

    2015-01-01

    In the title salt, C6H14NO+·C2H5SO4 −, the C—N bond lengths in the cation are 1.2981 (14), 1.4658 (14) and 1.4707 (15) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.3157 (13) Å shows double-bond character, indicating charge delocalization within the NCO plane of the iminium ion. In the crystal, C—H⋯O hydrogen bonds between H atoms of the cations and O atoms of neighbouring ethyl sulfate anions are present, generating a three-dimensional network. PMID:26870525

  7. Ethyl-alcohol-fuel production from the Jerusalem artichoke. Alcohol-Fuels Grant Program

    SciTech Connect

    Middaugh, P.R.

    1983-03-01

    The project objective is to evaluate the commercial feasibility for production of fuel alcohol by fermentation of the carbohydrates in the tops of the Jerusalem artichoke. The maximum top biomass yields of the mammoth French white variety of Jerusalem artichoke was obtained at 119 days after plant emergence and maximum fresh weight of the tops was 31.6 tons per acre. During rapid growth the fresh stalks had 2% to 4% carbohydrate. After the plant reached a maximum height of 168 inches, and started to bud the stalk had a maximum of 4% carbohydrate. During blossoming the stalk carbohydrates rapidly translocated to the tuber. Single versus multiple cuttings demonstrated the maximum carbohydrate was obtained with a single harvest of the mature plants immediately following bud formation. The total carbohydrate yield from the top biomass was 1.26 tons per acre. The equivalent yield of fermentation alcohol is 180.6 gallons of anhydrous ethanol per acre. The tuber yield at both Mesa and Toppenish, WA, was 14 to 15 tons of fresh tubers with 18% total carbohydrates. The carbohydrate yield was 2.52 tons per acre. This is equivalent to a yield of 360 gallons of anhydrous ethanol per acre. Commercial scale fuel alcohol equipment was used to hammer mill and batch ferment tops and tubers. The steps for commercial processing of the biomass tops and tubers was discussed including extracting and fermentation of the carbohydrates to ethanol and their concentration by distillation and dehydration by molecular sieves to anhydrous fuel alcohol. The use of molecular sieves reduced the energy for dehydration of 95% ethanol to 5000 Btu per gallon. The economic feasibility and energy requirement for commercial processing was discussed.

  8. Analysis Of The Different Zones Of Glow Discharge Of Ethyl Alcohol (C2H6O)

    NASA Astrophysics Data System (ADS)

    Torres, C.; Reyes, P. G.; Mulia, J.; Castillo, F.; Martínez, H.

    2014-05-01

    The aim of this work is to explore the emission spectroscopy of ethyl alcohol in some regions, also is determine the result elements of the glow discharge, the spectrums were observed in a range of 200 at 1100 nm in the different zones inside of the tube at different distances of 20 and 30 cm. The elements are: in anode region C6H5 (483.02nm), CHO (519.56nm) and H2 (560.47nm), in the positive column CO2+ (315.52 y 337.00nm), O+ (357.48nm), CH+ (380.61nm) and CO+ (399.73nm); in the cathode region we observed O+ (391.19nm), CHOCHO (428.00nm), CO+ (471.12nm) and H2 (656.52nm). C6H5, CHO y H2 species occurring in all regions analyzed varying the glow discharge emission intensity.

  9. [Some histological criteria for the renal and hepatic lesions in the case of death from acute intoxication with ethyl alcohol].

    PubMed

    Os'minkin, D

    2015-01-01

    The objective of the present study was to evaluate the results of the microscopic studies of acute intoxication with ethyl alcohol at the territory of the Udmurtian Republic during the period from 2003 till 2013. A total of 5941 cases of death caused by acute intoxication with ethyl alcohol were documented among both men and women, largely able-bodied ones. Concentration of ethyl alcohol in their blood corresponded to the one known to result in severe or lethal intoxication, The forensic histological study of the available tissue samples gave evidence of vascular disturbances, enhanced permeability of the vascular walls, dystrophic changes in the internal organs, the signs of necronephrosis, and concomitant disorders. Epithelium of renal tubules obtained from 0.4% of the corpses contained the pigment particles of different structure and colour; other pathological changes included cholestasis, necrosis of hepatocytes, various lesions and injuries. Similar alterations were identified in the detoxificating organs of the subjects who had died from causes other than acute intoxication with ethyl alcohol. These findings suggest disturbances of pigment metabolism and make it possible to elucidate the peculiar features of patho- and tanatogenesis.

  10. Estimation of alcohol consumption during "Fallas" festivity in the wastewater of Valencia city (Spain) using ethyl sulfate as a biomarker.

    PubMed

    Andrés-Costa, María Jesús; Escrivá, Úrsula; Andreu, Vicente; Picó, Yolanda

    2016-01-15

    Alcohol consumption has been increasing in the last years and it has become a sociological problem due its derived health and safety problems. Ethyl sulfate is a secondary metabolite of the alcohol degradation that is excreted through the urine (0.010-0.016%) after alcohol ingestion and it is quite stable in water. In this study, a new methodology to determine ethyl sulfate by ion-pair liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. Different ion-pairs and additives were tested directly in the sample extracts or in the mobile phase. The best ion-pair was set up adding 0.5M of tributylamine and 0.1% of formic acid to the sample. The limit of quantification was 0.3 μg L(-1) and the intra-day and inter-day precision of the method were ≤ 2.8 and ≤ 3.0%, respectively. Good linearity (r(2)<0.999) and low matrix effect (<30% corrected by using internal isotopically labelled internal standard) were achieved. The sampling campaign was from 4th to 20th March of 2014 covering the festivity of Fallas (15th to 19th March). Ethyl sulfate was determined in all influents of the 3 wastewater treatment plants (Pinedo I, Pinedo II and Quart-Benàger) belonging to Valencia and surrounding area. Ethyl sulfate concentrations ranged from 1.46 to 19.85 μg L(-1) and alcohol consumption ranged from 1.07 to 56.11 mL day(-1) inhab(-1), being the highest value of alcohol consumption determined during Fallas. This study presents a reliable and alternative method to traditional ones to determine alcohol consumption by population that provides real-time information of alcohol consumption.

  11. Kinetic and microbial community analysis of methyl ethyl ketone biodegradation in aquifer sediments.

    PubMed

    Fahrenfeld, N; Pruden, A; Widdowson, M

    2017-02-01

    Methyl ethyl ketone (MEK) is a common groundwater contaminant often present with more toxic compounds of primary interest. Because of this, few studies have been performed to determine the effect of microbial community structure on MEK biodegradation rates in aquifer sediments. Here, microcosms were prepared with aquifer sediments containing MEK following a massive spill event and compared to laboratory-spiked sediments, with MEK biodegradation rates quantified under mixed aerobic/anaerobic conditions. Biodegradation was achieved in MEK-contaminated site sediment microcosms at about half of the solubility (356 mg/L) with largely Firmicutes population under iron-reducing conditions. MEK was biodegraded at a higher rate [4.0 ± 0.74 mg/(L days)] in previously exposed site samples compared to previously uncontaminated sediments [0.51 ± 0.14 mg/(L days)]. Amplicon sequencing and denaturing gradient gel electrophoresis of 16S rRNA genes were combined to understand the relationship between contamination levels, biodegradation, and community structure across the plume. More heavily contaminated sediments collected from an MEK-contaminated field site had the most similar communities than less contaminated sediments from the same site despite differences in sediment texture. The more diverse microbial community observed in the laboratory-spiked sediments reduced MEK concentration 47 % over 92 days. Results of this study suggest lower rates of MEK biodegradation in iron-reducing aquifer sediments than previously reported for methanogenic conditions and biodegradation rates comparable to previously reported nitrate- and sulfate-reducing conditions.

  12. Stability studies on methyl and ethyl fatty acid esters of sunflower seed oil

    SciTech Connect

    Du Plessis, L.M.; De Villiers, J.B.M.; Van der Walt, W.H.

    1985-04-01

    Fatty acid esters, high in linoleic acid, were prepared and stored for long-term engine tests. Storage tests were undertaken to obtain data on optimal storage requirements and general stability characteristics. Samples were kept at three temperature levels (20 C, 30C and fluctuating around 50 C) for a 90-day period and were removed at regular intervals for chemical and physical analysis. The influence of air, temperature, light, TBHQ and contact with mild steel was evaluated by comparing the free fatty acid, peroxide, anisidine, ultraviolet absorption, viscosity and inducation periods. A statistical model was used to evaluate the data and to reduce the data points to comparable curves. Storage of esters in contact with air, especially at a temperature above 30 C, resulted in significant increases in peroxide, ultraviolet absorption, free fatty acid, viscosity and anisidine values. Exclusion of air retarded oxidation at all temperature levels. A direct relationship between viscosity increases and oxidation parameters was evident. Exposure to light caused a small increase in the oxidation parameters of esters stored at the highest temperature level. Addition of TBHQ prevented oxidation of samples stored under moderate conditions. Under unfavorable storage conditions the anti-oxidant was no longer effective. Mild steel had very little effect on the oxidation parameters. The anisidine values of samples stored at the highest temperature level were slightly increased. Methyl esters performed slightly better than ethyl esters during the storage test. The recommended guidelines for storage of fatty acid ester fuels are: (1) airtight containers should be used, (2) the storage temperature should be less than 30 C, (3) mild steel (rust free) containers may be used, and (4) TBHQ has a beneficial effect on oxidation stability. 13 references.

  13. Methyl ethyl ketone blocks status epilepticus induced by lithium-pilocarpine in rats

    PubMed Central

    Inoue, Osamu; Sugiyama, Eriko; Hasebe, Nobuyoshi; Tsuchiya, Noriko; Hosoi, Rie; Yamaguchi, Masatoshi; Abe, Kohji; Gee, Antony

    2009-01-01

    Background and purpose: A ketogenic diet has been used successfully to treat patients with intractable epilepsy, although the mechanism is unknown. Acetone has been shown to have an anticonvulsive effect in various animal models. The main purpose of this study was to determine whether other ketones, 2-butanone (methyl ethyl ketone: MEK) and 3-pentanone (diethyl ketone: DEK), also show anticonvulsive effects in lithium-pilocarpine (Li-pilocarpine)-induced status epilepticus (SE) in rats. Experimental approach: Anticonvulsive effects of MEK and DEK in Li-pilocarpine SE rats were measured by behavioural scoring. Anti-seizure effects of MEK were also evaluated using electroencephalography (EEG). Neuroprotective effect of MEK was investigated by haematoxylin and eosin staining 4 weeks after the treatment with pilocarpine. Key results: Acetone, MEK and DEK showed anticonvulsant effects in Li-pilocarpine-induced SE rats. Treatment with MEK twice (8 mmol·kg−1 and 5 mmol·kg−1) almost completely blocked spontaneous recurrent cortical seizure EEG up to 4 weeks after the administration of pilocarpine. MEK also showed strong neuroprotective effects in Li-pilocarpine-treated rats 4 weeks following the administration of pilocarpine. Significant neural cell death occurred in the hippocampus of Li-pilocarpine SE rats, especially in the CA1 and CA3 subfields. In contrast, normal histological characteristics were observed in these regions in the MEK-pretreated rats. Conclusions and implications: Both MEK and DEK showed strong anticonvulsive effects in Li-pilocarpine-induced SE rats. They also inhibited continuous recurrent seizure and neural damage in hippocampal region for 4 weeks after the treatment with pilocarpine. These findings appear to be of value in the investigation of epilepsy. PMID:19694724

  14. In vitro dermal absorption of methyl salicylate, ethyl parathion, and malathion: first responder safety.

    PubMed

    Moody, Richard P; Akram, Mohammed; Dickson, Eva; Chu, Ih

    2007-06-01

    In vitro tests with fresh dermatomed (0.3 to 0.4 mm thick) female breast skin and one leg skin specimen were conducted in Bronaugh flow-through Teflon diffusion cells with three chemicals used to simulate chemical warfare agents: 14C-radiolabeled methyl salicylate (MES), ethyl parathion (PT), and malathion (MT), at three dose levels (2, 20, and 200 mM). Tests were conducted at a skin temperature of 29 degrees C using a brief 30-min exposure to the chemical and a 6.5-h receivor collection period. Rapid absorption of all three chemicals was observed, with MES absorbed about 10-fold faster than PT and MT. For MES, PT, and MT, respectively, there was 32%, 7%, and 12% absorption into the receivor solution (Hank's HEPES buffered saline with 4% bovine serum albumin [BSA], pH 7.4) at the low dose (2 mM), 17%, 2%, and 3% at the medium dose (20 mM), and 11%, 1%, and 1% at the high dose (200 mM) levels. Including the skin depot for MES, PT, and MT, respectively, there was 40%, 41%, and 21% (low dose), 26%, 16%, and 8% (medium dose), and 13%, 19%, and 10% (high does) absorption. Efficacy of skin soap washing conducted at the 30 min exposure time ranged from 31% to 86%, varying by chemical and dose level. Skin depot levels were highest for the relatively lipophilic PT. "Pseudo" skin permeability coefficient (K(p)) data declined with dose level, suggesting skin saturation had occurred. An in-depth comparison with literature data was conducted and risk assessment of first responder exposure was briefly considered.

  15. Brahmarasayana protects against Ethyl methanesulfonate or Methyl methanesulfonate induced chromosomal aberrations in mouse bone marrow cells

    PubMed Central

    2012-01-01

    Background Ayurveda, the traditional Indian system of medicine has given great emphasis to the promotion of health. Rasayana is one of the eight branches of Ayurveda which refers to rejuvenant therapy. It has been reported that rasayanas have immuno-modulatory, antioxidant and antitumor functions, however, the genotoxic potential and modulation of DNA repair of many rasayanas have not been evaluated. Methods The present study assessed the role of Brahmarasayana (BR) on Ethyl methanesulfonate (EMS)-and Methyl methanesulfonate (MMS)-induced genotoxicity and DNA repair in in vivo mouse test system. The mice were orally fed with BR (5 g or 8 mg / day) for two months and 24 h later EMS or MMS was given intraperitoneally. The genotoxicity was analyzed by chromosomal aberrations, sperm count, and sperm abnormalities. Results The results have revealed that BR did not induce significant chromosomal aberrations when compared to that of the control animals (p >0.05). On the other hand, the frequencies of chromosomal aberrations induced by EMS (240 mg / kg body weight) or MMS (125 mg / kg body weight) were significantly higher (p<0.05) to that of the control group. The treatment of BR for 60 days and single dose of EMS or MMS on day 61, resulted in significant (p <0.05) reduction in the frequency of chromosomal aberrations in comparison to EMS or MMS treatment alone, indicating a protective effect of BR. Constitutive base excision repair capacity was also increased in BR treated animals. Conclusion The effect of BR, as it relates to antioxidant activity was not evident in liver tissue however rasayana treatment was observed to increase constitutive DNA base excision repair and reduce clastogenicity. Whilst, the molecular mechanisms of such repair need further exploration, this is the first report to demonstrate these effects and provides further evidence for the role of brahmarasayana in the possible improvement of quality of life. PMID:22853637

  16. Physiological and biochemical effects of allelochemical ethyl 2-methyl acetoacetate (EMA) on cyanobacterium Microcystis aeruginosa.

    PubMed

    Hong, Yu; Hu, Hong-Ying; Li, Feng-Min

    2008-10-01

    The physiological and biochemical effects of an allelochemical ethyl 2-methyl acetoacetate (EMA) isolated from reed (Phragmites communis) on bloom-forming cyanobacterium, Microcystis aeruginosa, were investigated. EMA significantly inhibited the growth of M. aeruginosa in a concentration-dependent way. The metabolic indices (represented by esterase and total dehydrogenase activities), the cellular redox status (represented by the level of reactive oxygen species (ROS)), and the oxidative damage index (represented by the content of malondialdehyde (MDA), the product of membrane lipid peroxidation) were used to evaluate the physiological and biochemical changes in M. aeruginosa after EMA exposure. Esterase activity in M. aeruginosa did not change (P>0.05) after 2 h of exposure to EMA, but increased greatly after 24 and 48 h (P<0.05). EMA exposure (>0.5 mg L(-1)) resulted in a remarkable loss of total dehydrogenase activity in M. aeruginosa after 4 h (P<0.01), but an increase after 40 h (P<0.05). EMA caused a great increase in ROS level of the algal cells. At high EMA concentration (4 mg L(-1)), the ROS level was remarkably elevated to 1.91 times as much as that in the controls after 2 h. Increases in the ROS level also occurred after 24 and 48 h. The increase in lipid peroxidation of M. aeruginosa was dependent upon EMA concentration and the exposure time. After 40 h of exposure, the MDA content at 4 mg L(-1) of EMA reached approximately 3.5 times (P<0.01) versus the controls. These results suggest that the cellular structure and metabolic activity of M. aeruginosa are influenced by EMA; the increased metabolic activity perhaps reflects the fact that the resistance of cellular response system to the stress from EMA is initiated during EMA exposure, and the oxidative damage induced by EMA via the oxidation of ROS may be an important factor responsible for the inhibition of EMA on the growth of M. aeruginosa.

  17. Brahmarasayana protects against Ethyl methanesulfonate or Methyl methanesulfonate induced chromosomal aberrations in mouse bone marrow cells.

    PubMed

    Guruprasad, Kanive Parashiva; Subramanian, Advait; Singh, Vikram Jeet; Sharma, Raghavendra Sudheer Kumar; Gopinath, Puthiya Mundyat; Sewram, Vikash; Varier, Panniyampilly Madhavankutty; Satyamoorthy, Kapaettu

    2012-08-01

    Ayurveda, the traditional Indian system of medicine has given great emphasis to the promotion of health. Rasayana is one of the eight branches of Ayurveda which refers to rejuvenant therapy. It has been reported that rasayanas have immuno-modulatory, antioxidant and antitumor functions, however, the genotoxic potential and modulation of DNA repair of many rasayanas have not been evaluated. The present study assessed the role of Brahmarasayana (BR) on Ethyl methanesulfonate (EMS)-and Methyl methanesulfonate (MMS)-induced genotoxicity and DNA repair in in vivo mouse test system. The mice were orally fed with BR (5 g or 8 mg / day) for two months and 24 h later EMS or MMS was given intraperitoneally. The genotoxicity was analyzed by chromosomal aberrations, sperm count, and sperm abnormalities. The results have revealed that BR did not induce significant chromosomal aberrations when compared to that of the control animals (p >0.05). On the other hand, the frequencies of chromosomal aberrations induced by EMS (240 mg / kg body weight) or MMS (125 mg / kg body weight) were significantly higher (p<0.05) to that of the control group. The treatment of BR for 60 days and single dose of EMS or MMS on day 61, resulted in significant (p <0.05) reduction in the frequency of chromosomal aberrations in comparison to EMS or MMS treatment alone, indicating a protective effect of BR. Constitutive base excision repair capacity was also increased in BR treated animals. The effect of BR, as it relates to antioxidant activity was not evident in liver tissue however rasayana treatment was observed to increase constitutive DNA base excision repair and reduce clastogenicity. Whilst, the molecular mechanisms of such repair need further exploration, this is the first report to demonstrate these effects and provides further evidence for the role of brahmarasayana in the possible improvement of quality of life.

  18. Li-Ion Cells Employing Electrolytes With Methyl Propionate and Ethyl Butyrate Co-Solvents

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    Future NASA missions aimed at exploring Mars and the outer planets require rechargeable batteries that can operate at low temperatures to satisfy the requirements of such applications as landers, rovers, and penetrators. A number of terrestrial applications, such as hybrid electric vehicles (HEVs) and electric vehicles (EVs) also require energy storage devices that can operate over a wide temperature range (i.e., -40 to +70 C), while still providing high power capability and long life. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-30 to +40 C); however, the rate capability at the lower temperatures is very poor. These limitations at very low temperatures are due to poor electrolyte conductivity, poor lithium intercalation kinetics over the electrode surface layers, and poor ionic diffusion in the electrode bulk. Two wide-operating-temperature-range electrolytes have been developed based on advances involving lithium hexafluorophosphate-based solutions in carbonate and carbonate + ester solvent blends, which have been further optimized in the context of the technology and targeted applications. The approaches employed include further optimization of electrolytes containing methyl propionate (MP) and ethyl butyrate (EB), which are effective co-solvents, to widen the operating temperature range beyond the baseline systems. Attention was focused on further optimizing ester-based electrolyte formulations that have exhibited the best performance at temperatures ranging from -60 to +60 C, with an emphasis upon improving the rate capability at -20 to -40 C. This was accomplished by increasing electrolyte salt concentration to 1.20M and increasing the ester content to 60 percent by volume to increase the ionic conductivity at low temperatures. Two JPL-developed electrolytes 1.20M LiPF6 in EC+EMC+MP (20:20:60 v/v %) and 1.20M LiPF6 in EC+EMC+EB (20:20:60 v/v %) operate effectively over a wide

  19. Reaction Rate Coefficients of OH Radicals and Cl Atoms with Ethyl Propanoate, n-Propyl Propanoate, Methyl 2-Methylpropanoate, and Ethyl n-Butanoate

    NASA Astrophysics Data System (ADS)

    Cometto, Pablo M.; Daële, Véronique; Idir, Mahmoud; Lane, Silvia I.; Mellouki, Abdelwahid

    2009-09-01

    Kinetics of the reactions of OH radicals and Cl atoms with four saturated esters have been investigated. Rate coefficients for the gas-phase reactions of OH radicals with ethyl propanoate (k1), n-propyl propanoate (k2), methyl 2-methylpropanoate (k3), and ethyl n-butanoate (k4) were measured using a conventional relative rate method and the pulsed laser photolysis-laser induced fluorescence technique. At (296 ± 2) K, the rate coefficients obtained by the two methods were in good agreement. Significant curvatures in the Arrhenius plots have been observed in the temperature range 243-372 K for k1, k3, and k4. The rate coefficients for the reactions of the four esters with Cl atoms were determined using the relative rate method at (296 ± 2) K and atmospheric pressure. The values obtained are presented, compared with the literature values when they exist, and discussed. Reactivity trends and atmospheric implications for these esters are also presented.

  20. 1-Ethyl-2-phenyl-3-[2-(tri-methyl-sil-yl)ethyn-yl]-1H-indole.

    PubMed

    Baglai, Iaroslav; Maraval, Valérie; Duhayon, Carine; Chauvin, Remi

    2013-06-01

    The title compound, C21H23NSi, was synthesized by Sonogashira-type reaction of 1-ethyl-3-iodo-2-phenyl-1H-indole with tri-methyl-silyl-acetyl-ene. The indole ring system is nearly planar [maximum atomic deviation = 0.0244 (15) Å] and is oriented at a dihedral angle of 51.48 (4)° with respect to the phenyl ring. The supramolecular aggregation is completed by weak C-H⋯π inter-actions of the methylene and phenyl groups with the benzene and pyrrole rings of the indole ring system. The methyl groups of the tri-methyl-silyl unit are equally disordered over two sets of sites.

  1. Preliminary investigations on ethyl glucuronide and ethyl sulfate cutoffs for detecting alcohol consumption on the basis of an ingestion experiment and on data from withdrawal treatment.

    PubMed

    Albermann, Maria Elena; Musshoff, Frank; Doberentz, Elke; Heese, Peter; Banger, Markus; Madea, Burkhard

    2012-09-01

    Ethyl glucuronide (EtG) and ethyl sulfate (EtS) are commonly used alcohol markers for previous alcohol consumption. Nevertheless, the optimum EtG cutoff for urinary abstinence tests is still being discussed, and no cutoff has been recommended for EtS yet. The aim of this study was to verify cutoffs by investigating EtG and EtS concentrations (c(EtG) and c(EtS)) in the urine of healthy persons after drinking small, but realistic amounts of alcohol (one or two glasses of beer or white wine), and to look for the window of detection in strongly alcohol-intoxicated patients who were beginning withdrawal treatment. Very high EtG and EtS concentrations were measured in the first urine samples of patients under withdrawal treatment. However, 24 h later, concentrations decreased considerably, and c (EtG) < 0.5 mg/l and c (EtS) < 0.1 mg/l were determined in 26.7 % (4/13) and 13.3 % (2/13) of the samples, respectively. Concentrations above 0.1 mg/l (EtG) and 0.05 mg/l (EtS) were measured for 23.5 and 20.5 h after consuming 0.1 l of white wine or 0.33 l of beer, and 24 h after the experiment, 75 % (9/12) of the urine samples were tested negative for EtG and EtS using the following cutoffs: EtG 0.5 mg/l and EtS 0.1 mg/l. In half of the samples, concentrations below 0.1 mg/l (EtG) and 0.05 mg/l (EtS) were detected. Urinary cutoffs for EtG of 0.5 mg/l or higher are not suitable for testing abstinence. Even 0.1 mg/l is not effective to detect the intake of small amounts of alcohol in the context of abstinence tests. For EtS, 0.05 mg/l were found to be a potential cutoff to exclude the repeated intake of alcohol. Yet, further research is required to verify this cutoff. For a limited time period, EtG and EtS concentrations within the range of these cutoffs are also detectable after unintentional consumption of alcohol. Participants of abstinence programs have to be informed about the alcohol content of certain foods and beverages whose consumption is in conflict with strict

  2. Kinetics of the gas-phase reaction between ozone and three unsaturated oxygenated compounds: Ethyl 3,3-dimethyl acrylate, 2-methyl-2-pentenal and 6-methyl-5-hepten-2-one at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Gaona Colmán, Elizabeth; Blanco, María B.; Barnes, Ian; Teruel, Mariano A.

    2015-05-01

    Rate coefficients for the gas-phase reactions of O3 molecules with three unsaturated oxygenated compounds have been determined using the relative kinetic technique in an environmental chamber with FTIR detection of the reactants at (298 ± 2) K in 760 Torr total pressure of synthetic air. The following rate coefficients (in units of 10-17 cm3 molecule-1 s-1) were determined: ethyl 3,3-dimethyl acrylate (0.82 ± 0.19), 2-methyl-2-pentenal (0.71 ± 0.16) and 6-methyl-5-hepten-2-one (26 ± 7). The different reactivity of the unsaturated oxygenated compounds toward O3 is discussed in terms of their chemical structure. In addition, a correlation between the reactivity of structurally different unsaturated compounds (alkenes and unsaturated oxygenated VOCs, such as ethers, esters, aldehydes, ketones and alcohols) toward O3 molecules and the HOMO (Highest Occupied Molecular Orbital) of the compounds is presented. Using the kinetic parameters determined in this work, residence times of these unsaturated compounds in the atmosphere with respect to reaction with O3 have been calculated. In urban and rural areas the main sink of 6-methyl-5-hepten-2-one is reaction with O3 molecules with a residence time in the order of few minutes.

  3. Using ethyl glucuronide in urine to detect light and heavy drinking in alcohol dependent outpatients.

    PubMed

    McDonell, Michael G; Skalisky, Jordan; Leickly, Emily; McPherson, Sterling; Battalio, Samuel; Nepom, Jenny R; Srebnik, Debra; Roll, John; Ries, Richard K

    2015-12-01

    This study investigated which ethyl glucuronide immunoassay (EtG-I) cutoff best detects heavy versus light drinking over five days in alcohol dependent outpatients. A total of 121 adults with alcohol use disorders and co-occurring psychiatric disorders took part in an alcohol treatment study. Participants provided self-reported drinking data and urine samples three times per week for 16-weeks (total samples=2761). Agreement between low (100 ng/mL, 200 ng/mL), and moderate (500 ng/mL) EtG-I cutoffs and light (women ≤3 standard drinks, men ≤4 standard drinks) and heavy drinking (women >3, men >4 standard drinks) were calculated over one to five days. The 100 ng/mL cutoff detected >76% of light drinking for two days, and 66% at five days. The 100 ng/mL cutoff detected 84% (1 day) to 79% (5 days) of heavy drinking. The 200 ng/mL cutoff detected >55% of light drinking across five days and >66% of heavy drinking across five days. A 500 ng/mL cutoff identified 68% of light drinking and 78% of heavy drinking for one day, with detection of light (2-5 days <58%) and heavy drinking (2-5 days <71%) decreasing thereafter. Relative to 100 ng/mL, the 200 ng/mL and 500 ng/mL cutoffs were less likely to result in false positives. An EtG-I cutoff of 100 ng/mL is most likely to detect heavy drinking for up to five days and any drinking during the previous two days. Cutoffs of ≥500 ng/mL are likely to only detect heavy drinking during the previous day. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Using Ethyl Glucuronide in Urine to Detect Light and Heavy Drinking in Alcohol Dependent Outpatients

    PubMed Central

    McDonell, Michael G.; Skalisky, Jordan; Leickly, Emily; McPherson, Sterling; Battalio, Samuel; Nepom, Jenny R.; Srebnik, Debra; Roll, John; Ries, Richard K.

    2015-01-01

    Aims This study investigated which ethyl glucuronide immunoassay (EtG-I) cutoff best detects heavy versus light drinking over five days in alcohol dependent outpatients. Methods A total of 121 adults with alcohol use disorders and co-occurring psychiatric disorders taking part in an alcohol treatment study. Participants provided self-reported drinking data and urine samples three time per week for 16-weeks (total samples = 2761). Agreement between low (100 ng/mL, 200 ng/mL), and moderate (500 ng/mL) EtG-I cutoffs and light (women ≤3 standard drinks, men ≤ 4 standard drinks) and heavy drinking (women >3, men >4 standard drinks) were calculated over one to five days. Results The 100 ng/mL cutoff detected >76% of light drinking for two days, and 66% at five days. The 100 ng/mL cutoff detected 84% (1 day) to 79% (5 days) of heavy drinking. The 200 ng/mL cutoff detected >55% of light drinking across five days and >66% of heavy drinking across five days. A 500 ng/mL cutoff identified 68% of light drinking and 78% of heavy drinking for one day, with detection of light (2–5 days <58%) and heavy drinking (2–5 days <71%) decreasing thereafter. Relative to 100 ng/mL, the 200 ng/mL and 500 ng/mL cutoffs were less likely to result in false positives. Conclusions An EtG-I cutoff of 100 ng/mL is most likely to detect heavy drinking for up to five days and any drinking during the previous two days. Cutoffs of ≥ 500 ng/mL are likely to only detect heavy drinking during the previous day. PMID:26475403

  5. Determination of ethyl glucuronide in hair improves evaluation of long-term alcohol abstention in liver transplant candidates.

    PubMed

    Sterneck, Martina; Yegles, Michel; Rothkirch von, Gregor; Staufer, Katharina; Vettorazzi, Eik; Schulz, Karl-Heinz; Tobias, Niels; Graeser, Christian; Fischer, Lutz; Nashan, Bjoern; Andresen-Streichert, Hilke

    2014-03-01

    Prior to listing patients for Orthotopic liver transplantation (OLT) an abstention period of 6 months is required. Ethyl glucuronide in the hair is a new reliable marker for the assessment of alcohol consumption. Here, the diagnostic value of determining the ethyl glucuronide concentration in the hair of liver transplant candidates was evaluated. In 63 transplant candidates with alcoholic liver cirrhosis and 25 control patients with cirrhosis of other aetiologies alcohol markers, i.e. hEtG, urine EtG, blood ethanol, methanol and carbohydrate deficient transferrin were determined in parallel to an interview with a psychologist. A total of 19 (30%) transplant candidates admitted alcohol consumption within the last 6 months, while 39/63 (62%) were positive for at least one alcohol marker. In 52% of the 44 candidates denying alcohol consumption, abstention was disproved by detecting at least one positive alcohol marker, in 83% of cases by a positive hEtG result. In the control patients stating abstention from alcohol all hEtG tests were negative. No impact of renal or liver function on hEtG results was detected. A specificity of 98% and a positive predictive value of 92% were calculated for testing hEtG in proximal hair segment and applying a cut-off of 30 pg/mg. In 52% of patients denying alcohol consumption within the last 6 months, alcohol abstention was disproved, in 83% of cases by hEtG testing. Therefore, hEtG is a promising new marker for the evaluation of long-term alcohol abstention in liver transplant candidates. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Promotion of dropwise condensation of ethyl alcohol, methyl alcohol, and acetone by polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Kirby, C. E.

    1972-01-01

    Coating condensing surfaces with thin layer of nonpolar Teflon results in dropwise condensation of polar organic vapor. Greater heat transfer coefficients are produced increasing effectiveness of condensing system. Investigation shows that vapors with strong dipole moment tend to condense dropwise.

  7. Reactive compatibilization of PBT/ABS blends by methyl methacrylate, glycidyl methacrylate, ethyl acrylate terpolymers

    NASA Astrophysics Data System (ADS)

    Hale, Wesley Raymond

    The impact resistance of poly(butylene terephthalate), PBT, has been improved by blending with acrylonitrile-butadiene-styrene terpolymers, ABS, as a minor dispersed phase; however, extensive coarsening of the dispersed phase in the blends occurs under certain heat fabrication conditions. The incorporation of certain reactive polymers (compatibilizers) that are miscible with the styrene/acrylonitrile (SAN) matrix of ABS should result in more stable morphologies. Terpolymers of methyl methacrylate, glycidyl methacrylate (GMA), ethyl acrylate, MGE, are effective as reactive compatibilizers for blends of PBT with SAN and ABS materials. The epoxide groups of MGE react with the carboxyl endgroups of PBT to form a MGE-g-PBT graft copolymer at the PBT/SAN interface to provide improved SAN or ABS dispersion, morphological stability, and a broadening of the melt processing window. Additionally, compatibilization produces large improvements in the low temperature fracture toughness of PBT/ABS blends; however, the toughness depends on the order of mixing blend components due to crosslinking reactions involving the epoxide groups of MGE catalyzed by residual acids present in some emulsion-made ABS materials. The PBT, ABS, and MGE type, content, and composition have been examined to evaluate their effects on the mechanical and morphological properties of PBT/ABS blends. Additionally, the effects of different processing conditions have been examined. High PBT melt viscosity is desirable for improving ABS dispersion and low temperature toughness of the blends. Generally, ABS materials with a high rubber content and low melt viscosity are desirable for toughening PBT. Moderate amounts of GMA in the blend were found to significantly improve blend properties. Melt blending can be performed using a variety of equipment; however, a co-rotating intermeshing twin screw extruder is the most effective for producing blends with excellent properties. The fracture properties of PBT

  8. Development of ethyl alcohol-precipitated silk sericin/polyvinyl alcohol scaffolds for accelerated healing of full-thickness wounds.

    PubMed

    Siritienthong, Tippawan; Ratanavaraporn, Juthamas; Aramwit, Pornanong

    2012-12-15

    Silk sericin has been recently reported for its advantageous biological properties to promote wound healing. In this study, we established that the ethyl alcohol (EtOH) could be used to precipitate sericin and form the stable sericin/polyvinyl alcohol (PVA) scaffolds without the crosslinking. The sericin/PVA scaffolds were fabricated via freeze-drying and subsequently precipitating in various concentrations of EtOH. The EtOH-precipitated sericin/PVA scaffolds showed denser structure, higher compressive modulus, but lower water swelling ability than the non-precipitated scaffolds. Sericin could be released from the EtOH-precipitated sericin/PVA scaffolds in a sustained manner. After cultured with L929 mouse fibroblasts, the 70 vol% EtOH-precipitated sericin/PVA scaffolds showed the highest potential to promote cell proliferation. After applied to the full-thickness wounds of rats, the 70 vol% EtOH-precipitated sericin/PVA scaffolds showed significantly higher percentage of wound size reduction and higher extent of type III collagen formation and epithelialization, compared with the control scaffolds without sericin. The accelerated wound healing by the 70 vol% EtOH-precipitated sericin/PVA scaffolds was possibly due to (1) the bioactivity of sericin itself to promote wound healing, (2) the sustained release of precipitated sericin from the scaffolds, and (3) the activation and recruitment of wound healing-macrophages by sericin to the wounds. This finding suggested that the EtOH-precipitated sericin/PVA scaffolds were more effective for the wound healing, comparing with the EtOH-precipitated PVA scaffolds without sericin. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Mössbauer studies of solid state decomposition of methyl methacrylate-ethyl methacrylate copolymers containing ferric chloride

    NASA Astrophysics Data System (ADS)

    Kapur, G. S.; Brar, A. S.

    1990-07-01

    Methyl methacrylate (MMA)-ethyl methacrylate (EMA) copolymers of different monomer concentrations containing anhydrous ferric chloride were prepared by bulk polymerization at 70°C. TGA studies showed that inclusion of iron salt increases the thermal stability of copolymers by 50°C. Mössbauer spectra of copolymers heated at different temperatures showed the presence of Fe3+ species only, in different environments. The mechanism of thermal stabilization of copolymer has been proposed on the basis of IR, TGA and Mössbauer spectroscopy studies.

  10. An XAFS Study of Niobium chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride/ aluminum chloride

    SciTech Connect

    D Roeper; K Pandya; G Cheek; W OGrady

    2011-12-31

    Niobium chloride was studied with extended X-ray absorption fine structure spectroscopy (EXAFS) in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride (EMIC) ionic liquids. Although anhydrous Nb2Cl10 is more soluble in the basic melt than in the acidic melt, the EXAFS data shows that the coordination shell around the niobium does not change in the different ionic liquids. Both the acidic and basic melts show a coordination of five chlorides in the first shell. This indicates that in this series of ionic liquids, the Nb2Cl10 breaks up into two NbCl5 entities in both the acidic and the basic melts.

  11. 11-nor-Delta9-tetrahydrocannabinol-9-carboxylic acid ethyl ester (THC-COOEt): unsuccessful search for a marker of combined cannabis and alcohol consumption.

    PubMed

    Nadulski, Thomas; Bleeck, Simona; Schräder, Johannes; Bork, Wolf-Rainer; Pragst, Fritz

    2010-03-20

    11-Nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid ethyl ester (THC-COOEt) can be presumed to be a mixed metabolite formed during combined consumption of cannabinoids and alcohol. In order to examine this hypothesis, THC-COOEt and its deuterated analogue D(3)-THC-COOEt were synthesized as reference substance and internal standard from the corresponding carboxylic acids and diazoethane and methods were developed for the sensitive detection of THC-COOEt in plasma and hair based on gas chromatography-electron impact mass spectrometry after silylation with N-methyl-N-tert-butyldimethylsilyl-trifluoroacetamide and gas chromatography-negative chemical ionization mass spectrometry (GC-NCI-MS) as well as tandem mass spectrometry (GC-NCI-MS-MS) after derivatization with pentafluoropropionyl anhydride. The methods were applied for THC-COOEt determination to plasma samples from 22 drunk driving cases which contained both ethanol (0.30-2.16 mg/g) and THC-COOH (15-252 ng/mL) as well as to 12 hair samples from drug fatalities which were both positive for THC (0.09-2.04 ng/mg) and fatty acid ethyl esters as markers of chronic alcohol abuse (0.70-6.3 ng/mg). In none of these samples THC-COOEt could be found with limits of detection of 0.3 ng/mL in plasma and 2 pg/mg in hair in 11 samples using GC-NCI-MS and 0.2 pg/mg in one sample using GC-NCI-MS. Therefore, the use of this compound as a marker for combined cannabis and alcohol consumption could not be achieved.

  12. Carrying out thermodynamic calculations and definition of the main reactions of decomposition of vapours of ethyl alcohol

    NASA Astrophysics Data System (ADS)

    Sechin, A. I.; Kyrmakova, O. S.; Ivanova, T. A.

    2015-04-01

    Thermodynamic opportunities of course of chemical reactions of decomposition of the vapors of ethyl alcohol necessary at development of devices where these reactions will take place are considered. The entalpiyny method of calculation of constants of balance of probable chemical reactions is given in the Excel editor. Independent reactions of process of oxidation are defined. By result of thermodynamic calculation of each reaction schedules of dependence of a constant of balance on environment temperature from which follows are constructed that one reactions proceed until the end of aside formation of the final products, and others are improbable or impossible. The analysis of the received results shows that reactions of oxidation will successfully proceed in the established directions, and for an intensification of process of decomposition it is necessary to provide a supply of some energy which quantity will be sufficient for oxidation of vapors of ethyl alcohol. Results of calculations showed good convergence with programs of thermodynamic calculations like "Aster - 4" and "TERRA".

  13. 1-Ethyl-1-methyl piperidinium bis(trifluoromethanesulfonyl)imide as a co-solvent in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Ketack; Cho, Young-Hyun; Shin, Heon-Cheol

    2013-03-01

    1-Ethyl-1-methyl piperidinium bis(trifluoromethanesulfonyl)imide (EMP-TFSI) is an ionic liquid with a melting temperature of 85 °C. Although it is a solid salt, it shows good miscibility with carbonate solvents, which allows EMP-TFSI to be used as a co-solvent in these systems. Ethylene carbonate is another solid co-solvent used in Li-ion batteries. Due to its smaller cationic size, EMP-TFSI provides better conductivity as a co-solvent than 1-methyl-1-propyl piperidinium bis(trifluoromethanesulfonyl)imide (MPP-TFSI), which is the smallest room-temperature piperidinium liquid salt known. In cells with 50 wt% IL and 50 wt% carbonate electrolyte, an EMP-TFSI mixed electrolyte performs better than an MPP-TFSI mixed electrolyte. Additionally, the discharge capacity values obtained from rate capability tests carried out with mixed EMP-TFSI are as good as those conducted with a pure carbonate electrolyte.

  14. Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy)

    PubMed Central

    Biver, Nicolas; Bockelée-Morvan, Dominique; Moreno, Raphaël; Crovisier, Jacques; Colom, Pierre; Lis, Dariusz C.; Sandqvist, Aage; Boissier, Jérémie; Despois, Didier; Milam, Stefanie N.

    2015-01-01

    The presence of numerous complex organic molecules (COMs; defined as those containing six or more atoms) around protostars shows that star formation is accompanied by an increase of molecular complexity. These COMs may be part of the material from which planetesimals and, ultimately, planets formed. Comets represent some of the oldest and most primitive material in the solar system, including ices, and are thus our best window into the volatile composition of the solar protoplanetary disk. Molecules identified to be present in cometary ices include water, simple hydrocarbons, oxygen, sulfur, and nitrogen-bearing species, as well as a few COMs, such as ethylene glycol and glycine. We report the detection of 21 molecules in comet C/2014 Q2 (Lovejoy), including the first identification of ethyl alcohol (ethanol, C2H5OH) and the simplest monosaccharide sugar glycolaldehyde (CH2OHCHO) in a comet. The abundances of ethanol and glycolaldehyde, respectively 5 and 0.8% relative to methanol (0.12 and 0.02% relative to water), are somewhat higher than the values measured in solar-type protostars. Overall, the high abundance of COMs in cometary ices supports the formation through grain-surface reactions in the solar system protoplanetary disk. PMID:26601319

  15. Yeast contribution to melatonin, melatonin isomers and tryptophan ethyl ester during alcoholic fermentation of grape musts.

    PubMed

    Vigentini, Ileana; Gardana, Claudio; Fracassetti, Daniela; Gabrielli, Mario; Foschino, Roberto; Simonetti, Paolo; Tirelli, Antonio; Iriti, Marcello

    2015-05-01

    Melatonin (MEL) has been found in some medicinal and food plants, including grapevine, a commodity of particular interest for the production of wine, a beverage of economic relevance. It has also been suggested that MEL in wine may, at least in part, contribute to the health-promoting properties attributed to this beverage and, possibly, to other traditional Mediterranean foodstuffs. After a preliminary screening of 9 yeast strains in laboratory medium, three selected strains (Saccharomyces cerevisiae EC1118, Torulaspora delbrueckii CBS1146(T) and Zygosaccharomyces bailii ATCC36947(T) ) were inoculated in experimental musts obtained from 2 white (Moscato and Chardonnay) and 2 red (Croatina and Merlot) grape varieties. The production of MEL, melatonin isomers (MIs) and tryptophan ethyl ester (TEE) was monitored during the alcoholic fermentation. The screening showed that the three investigated strains produced the highest concentrations of MEL and two MIs in optimal growth conditions. However, MEL and MIs were not produced in oenological conditions, but the three strains synthesized high concentrations of a new MI and TEE in musts.

  16. The Millimeter- and Submillimeter-Wave Spectrum of Gauche-Ethyl Alcohol

    NASA Technical Reports Server (NTRS)

    Pearson, J. C.; Sastry, K. V. L. N.; Herbst, Eric; DeLucia, Frank C.

    1996-01-01

    We report an investigation of the rotational-torsional spectrum of the gauche rotational isomers of ethyl alcohol in the 51-505 GHz frequency region. Over a thousand transitions between rotational levels in the gauche substates of the ground OH torsional state have been measured and assigned. These transitions involve rotational quantum numbers J and K(sub a) up to 30 and 15, respectively, and are of two types: alpha-type transitions between levels in either the gauche+ or the gauche-substate, and c-type transitions between rotational levels in the different substates. The majority of these transitions have been fit satisfactorily using a two-state Hamiltonian based on the Fixed Framework Axis Method (FFAM). The rotation, distortion, and interaction constants have been determined along with the energy difference between the two gauche substates. The derived constants can be used to predict many more transitions accurately for astronomical purposes. The J and K(sub a) region where the two-state analysis can be used has been determined. The basis for a three-state analysis including the trans substate is presented and the applicability of the FFAM approach is discussed.

  17. Ethyl alcohol (ethanol)-containing cologne, perfume, and after-shave ingestions in children.

    PubMed

    Scherger, D L; Wruk, K M; Kulig, K W; Rumack, B H

    1988-06-01

    Colognes, perfumes, and after-shaves containing ethyl alcohol (ethanol) are frequently ingested by children. These products may contain from 50% to 99% ethanol. To determine if ingestion of colognes, perfumes, or after-shaves by children results in serious ethanol toxic reactions, this retrospective study was performed. One hundred twenty-three cases of children younger than 6 years old who ingested these products were reviewed. The cases were arbitrarily divided into three groups based on the amount ingested by history. Group 1 included children in whom less than 30 mL was ingested; group 2, 30 to 60 mL was ingested; and group 3, more than 60 to 105 mL was ingested. Of the 102 patients in group 1, no children experienced symptoms or signs. One of 17 children in group 2 was described by parents as sleepy but was asymptomatic one hour later. Two of four children in group 3 behaved as if intoxicated, yet blood ethanol levels were undetectable within 2 1/2 hours after ingestion. Based on our study, asymptomatic children who ingested by history less than 105 mL of a cologne, perfume, or after-shave and remain asymptomatic can be safely watched at home. All children with symptoms of intoxication need health care facility referral.

  18. Feasibility study for the production of ethyl alcohol and xanthan polymer from barley fermentation. Final report

    SciTech Connect

    Not Available

    1982-11-01

    Feasibility study results indicate that the project meets most criteria for economic and technical viability. The final process selected will produce an aftertax discounted cash flow rate of return between 33 and 41%. This level of return will occur over the range of raw material, energy and product unit prices that are probable over the next decade. In a typical year, using present day costs, the plant will produce gross revenue of $11,531,000 against production costs of $6,836,000. Pretax cash flow will be $5,947,000. This appears adequate to service acceptable levels of debt required to finance the $12,521,000 anticipated construction cost. The first year total cost including an initial three-month working capital reserve will be $13,620,000. The plant is designed to produce three major products: ethyl alcohol, distiller's dried grains and solubles and xanthan polymer. The individual process steps chosen to produce these products have all been demonstrated at the commercial level at other facilities. A pilot program has been in operation for nine months at the RBI facility to develop fermentation and recovery data on the xanthan process and to provide samples for customer comment and evaluation.

  19. A survey of levels of ethyl carbamate in alcoholic beverages in 2009-2012, Hebei Province, China.

    PubMed

    Liu, Yinping; Wang, Shuhui; Hu, Ping

    2013-01-01

    Results of a survey of levels of ethyl carbamate (EC) (urethane) in alcoholic beverages carried out in four successive years from 2009 to 2012 by gas chromatography-mass spectrometry (GC/MS) are presented. The beverages were purchased for sampling from Hebei Province of China, including eight main areas of production. The samples comprised wines (n = 212), grain spirits (n = 143) and wine sauces (n = 164). The data show that the average EC content in these kinds of alcoholic beverages remains nearly constant over the years. The results provide valuable data for food authorities to establish maximum limits for EC in China.

  20. Reactivity and regioselectivity in reactions of methyl and ethyl azides with cyclooctynes: activation strain model and energy decomposition analysis.

    PubMed

    de S Vilhena, Felipe; de M Carneiro, José Walkimar

    2017-01-01

    The structures and energies for the Huisgen 1,3-dipolar cycloaddition reactions of methyl and ethyl azides with some cyclooctynes and dibenzocyclooctynes were computed at the B3LYP/6-311++G(d,p) level. The activation strain model (ASM) and quantitative molecular orbital (MO) theory were used to investigate the reactivity and regiochemistry in these reactions. The energy decomposition analysis (EDA) was used to identify the intrinsic electronic factor that lead to the preferential formation of 1,7-regiochemistry products. The reactivity order agrees with formation of more synchronous transition states and lower distortion energies. For the reaction of N3Met with azacyclooctyne, the 1,7-regiochemistry preference is attributed to a lower FMO gap and a higher contribution of the polarization term of the interaction energy than for the 1,8-transition state. For the reaction with aza-dibenzocyclooctyne, the 1,7-preference is due to a lower strain energy and a more pronounced contribution of the exchange term of the interaction energy. Graphical Abstract In the reactions between methyl and ethyl azides with azacyclooctynes the regiochemistry is governed by the intrinsic electronic factors.

  1. A project to improve the capabilities of minorities in energy fields and a cost benefit analysis of an ethyl alcohol plant

    SciTech Connect

    Sara, T.S.; Jones, M. Jr.

    1986-08-01

    The project being reported in this document had three components: (1) a research project to carry out cost-benefit analysis of an ethyl alcohol plant at Tuskegee University, (2) seminars to improve the high-technology capabilities of minority persons, and (3) a class in energy management. The report provides a background on the three components listed above. The results from the research on the ethyl alcohol plant, are discussed, along with the seminars, and details of the energy management class.

  2. A project to improve the capabilities of minorities in energy fields and a cost benefit analysis of an ethyl alcohol plant

    SciTech Connect

    Sara, T.S.; Jones, M. Jr.

    1986-08-01

    The project being reported in this document had three components: (1) a research project to carry out cost-benefit analysis of an ethyl alcohol plant at Tuskegee University, (2) seminars to improve the high-technology capabilities of minority persons, and (3) a class in energy management. The report provides a background on the three components listed above. The results from the research on the ethyl alcohol plant, are discussed, along with the seminars, and details of the energy management class.

  3. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by... methacrylate-dye reaction product listed under this section into commerce shall submit to the Food and...

  4. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by... methacrylate-dye reaction product listed under this section into commerce shall submit to the Food and...

  5. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by... methacrylate-dye reaction product listed under this section into commerce shall submit to the Food and...

  6. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by... methacrylate-dye reaction product listed under this section into commerce shall submit to the Food and...

  7. Confirmation analysis of ethyl glucuronide and ethyl sulfate in human serum and urine by CZE-ESI-MS(n) after intake of alcoholic beverages.

    PubMed

    Caslavska, Jitka; Jung, Balthasar; Thormann, Wolfgang

    2011-06-01

    CZE coupled to sheath liquid-based electrospray ionization (ESI) and multiple-stage ion trap mass spectrometry (MS(n) ) was used for the confirmation analysis of ethyl glucuronide (EtG) and ethyl sulfate (EtS) in human serum and urine collected after intake of alcoholic beverages. Electrophoretic separations were performed in uncoated fused-silica capillaries using a pH 9.5 ammonium acetate background electrolyte and normal polarity. MS detection of EtG and EtS occurred after negative ionization using a spray liquid containing 0.5% v/v ammonia in isopropanol/water (60:40%, v/v). CZE-MS and CZE-MS² results obtained after injection of solid-phase extracts for EtG and EtS and of diluted urine confirmed the presence of EtG and EtS in samples whose levels were previously determined by CZE with indirect UV detection. Detection limits of each compound were estimated to be around 2.0 (injection of diluted urine) and 0.2 μg/mL (extracts). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Crystal structure of the tetra­gonal polymorph of bis­(1-ethyl-3-methyl­imidazolium) tetra­bromido­cadmate

    PubMed Central

    Đorđević, Tamara; Gerger, Sabrina; Karanović, Ljiljana

    2016-01-01

    Both unique Cd atoms in the tetra­gonal polymorph of bis­(1-ethyl-3-methyl­imidazolium) tetra­bromido­cadmate, (C6H11N2)2[CdBr4], occupy special positions (site symmetry -4). The crystal structure consists of isolated tetra­hedral [CdBr4]2− anions which are surrounded by 1-ethyl-3-methyl­imidazolium cations. The methyl and ethyl side chains of the cations show positional disorder in a 0.590 (11):0.410 (11) ratio. In the crystal, (C6H11N2)+ cations display three weak C—H⋯Br hydrogen-bond inter­actions through the imidazolium ring H atoms with the Br− ligands of the surrounding complex anions. The alkyl groups of the side chains are not involved in hydrogen bonding. PMID:27555953

  9. Depolymerization of lignin by microwave-assisted methylation of benzylic alcohols.

    PubMed

    Zhu, Guodian; Qiu, Xueqing; Zhao, Ying; Qian, Yong; Pang, Yuxia; Ouyang, Xinping

    2016-10-01

    A new two-step lignin depolymerization strategy was developed, in which the benzylic alcohols in lignin was methylated under microwave irradiation, followed by a hydrogenolysis for the cleavage of βO4 bond with Pd/C as the catalyst. The results showed that an efficient and selective catalytic methylation of benzylic alcohols was achieved with various lignin model compounds, and the acidic environment promoted the methylation of benzylic alcohol. Methylation of benzylic alcohol increased the βO4 bond cleavage rate by 55.9%, and improved products selectivity. Preliminary study of lignin depolymerization illustrated that methylation pretreatment of benzylic alcohols facilitated lignin depolymerization to produce aromatic monomers and reduced the oxygen content of aromatic monomers.

  10. Biomarkers for detection of prenatal alcohol exposure: a critical review of fatty acid ethyl esters in meconium.

    PubMed

    Burd, Larry; Hofer, Ryan

    2008-07-01

    The objective of this study was a review of published studies utilizing measurement of fatty acid ethyl esters (FAEE) in meconium as biomarkers for prenatal alcohol exposure. We completed a literature search of PubMed using the terms meconium, fatty acid ethyl esters, biomarkers, and prenatal alcohol exposure. We included only peer reviewed studies utilizing analysis of meconium for the presence of FAEE in humans through the year 2007. We found 10 articles reporting on original research examining the relationship of FAEE from meconium and prenatal alcohol exposure (PAE). The 10 articles used six different PAE assessment strategies and four different analytical techniques for determining FAEE endpoints. The articles included 2,221 subjects (range 4 to 725) with 455 (20.5%) subjects identified as exposed using the methods stated in the articles. FAEE levels above the studies' respective cutoffs were reported for 502 (22.6%) subjects. The accurate identification of alcohol-exposed pregnancies represents a significant challenge in the development of FAEE detection cutoffs to maximize the sensitivity and specificity of the test. We present several options for the improvement of exposure assessment in future studies of FAEE as biomarkers for PAE. (c) 2008 Wiley-Liss, Inc.

  11. Acid-Catalyzed Conversion of Furfuryl Alcohol to Ethyl Levulinate in Liquid Ethanol.

    PubMed

    González Maldonado, Gretchen M; Assary, Rajeev S; Dumesic, James; Curtiss, Larry A

    2012-09-20

    Reaction pathways for the acid-catalyzed conversion of furfuryl alcohol (FAL) to ethyl levulinate (EL) in ethanol were investigated using liquid chromatography-mass spectrometry (LC-MS), 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, and ab initio high-level quantum chemical (G4MP2) calculations. Our combined studies show that the production of EL at high yields from FAL is not accompanied by stoichiometric production of diethyl either (DEE), indicating that ethoxymethyl furan (EMF) is not an intermediate in the major reaction pathway. Several intermediates were observed using an LC-MS system, and three of these intermediates were isolated and subjected to reaction conditions. The structures of two intermediates were elucidated using 1D and 2D NMR techniques. One of these intermediates is EMF, which forms EL and DEE in a secondary reaction pathway. The second intermediate identified is 4,5,5-triethoxypentan-2-one, which is analogous to one of the intermediates observed in the conversion of FAL to LA in water (i.e. 4,5,5-trihydroxypentan-2-one). Furthermore, conversion of this intermediate to EL again involves the formation of DEE, indicating that it is also part of a secondary pathway. The primary pathway for production of EL involves solvent-assisted transfer of a water molecule from the partially detached protonated hydroxyl group of FAL to a ring carbon, followed by intra-molecular hydrogen shift, where the apparent reaction barrier for the hydrogen shift is relatively smaller in ethanol (21.1 kcal/mol) than that in water (26.6 kcal/mol).

  12. Detection thresholds for phenyl ethyl alcohol using serial dilutions in different solvents.

    PubMed

    Tsukatani, Toshiaki; Miwa, Takaki; Furukawa, Mitsuru; Costanzo, Richard M

    2003-01-01

    Detection thresholds are typically obtained by presenting a subject with serial dilutions of an odorant. Many factors, including the solvent used to dilute the odorant, can influence the measurement of detection thresholds. Differences have been reported in detection thresholds for phenyl ethyl alcohol (PEA) when different solvents are used. In this study we used gas chromatography (GC) to investigate further the effect of solvent on odor detection thresholds. We used a single ascending method and serial dilutions of PEA in four different solvents--liquid paraffin (LP), mineral oil (MO), propylene glycol (PG) and dipropylene glycol (DPG)--to determine the PEA thresholds for 31 adult subjects. For each solvent, we prepared eight serial log base 10 step dilutions (1-8), with corresponding liquid PEA concentrations of 6.3 x 10(1)-6.3 x 10(-6) (% v/v). We found that the threshold concentrations for PEA in LP (step 6.5) and PEA in MO (step 5.5) were significantly lower (P < 0.05) than for PEA in PG (step 4.0) and DPG (step 4.0) We then used GC to measure both the liquid and gas PEA concentrations for the dilution steps prepared with LP and PG. Although there were large threshold differences in the liquid concentrations of PEA in LP and PG, the headspace gas concentrations of PEA were the same. These results demonstrate the importance of determining the gas concentration of odorant stimuli when performing odor threshold measurements, in particular when comparing odor detection thresholds obtained using different solvents.

  13. An improved method for rapidly quantifying fatty acid ethyl esters in meconium suitable for prenatal alcohol screening.

    PubMed

    Hutson, Janine R; Rao, Chitra; Fulga, Netta; Aleksa, Katarina; Koren, Gideon

    2011-03-01

    Fatty acid ethyl esters (FAEEs) are nonoxidative metabolites of ethanol, and elevated levels of FAEE in meconium are a useful biomarker for heavy prenatal alcohol exposure. FAEE in meconium has been recommended as useful and cost-effective for universal screening for prenatal alcohol exposure. To support an efficient universal screening program, an analytical method to detect and quantify FAEE in meconium needs to be accurate, inexpensive, and rapid. The purpose of this study was to develop an analytical method that would satisfy these criteria and to validate this method using established laboratory guidelines. A method was developed and validated to detect and quantify four FAEEs (ethyl palmitate, ethyl linoleate, ethyl oleate, and ethyl stearate) from 0.5 g of meconium using d(5)-ethyl esters as internal standards. The sample undergoes liquid-liquid extraction with heptane:acetone, the heptane layer is isolated and evaporated, and then, the resulting residue undergoes headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. The detection limits of the four FAEEs ranged from 0.020 to 0.042 nmol/g and are 6- to 25-fold lower than the individual FAEE threshold concentrations (0.5 nmol/g). This method also has good precision with the coefficient of variation ranging from 2.6 to 19.4% for concentrations of individual FAEE between 0.5 and 2.62 nmol/g meconium (n=4). Calculated concentrations of FAEE that underwent extraction from meconium were 100-101% of the expected concentration, demonstrating the accuracy of the method. The peak shape and retention time of each FAEE were unaffected by the presence of the matrix, and there is no carryover at clinically relevant concentrations. This method was also able to produce clean chromatograms from meconium samples that could not be quantified using a previous method because of high chromatographic background. This method provides an optimal approach to detecting and quantifying FAEE in

  14. Stereoselective degradation of Diclofop-methyl during alcohol fermentation process.

    PubMed

    Lu, Yuele; Diao, Jinling; Gu, Xu; Zhang, Yanfeng; Xu, Peng; Wang, Peng; Zhou, Zhiqiang

    2011-05-01

    Stereoselective degradation of Diclofop-methyl (DM) has been found in alcohol fermentation of grape must and sucrose solution with dry yeast. A method was developed for separation and determination the two enantiomers of DM during the fermentation process by high-performance liquid chromatography based on cellulose tri-(3,5-dimethylphenyl-carbamate) chiral stationary phase. The results showed that the enantiomers of DM degraded following the first-order kinetics in the sucrose solution and the degradation of DM enantiomers in grape must were biphasic (slow-fast-slow process). In the sucrose solution, half lives of (+)-(R)-DM and (-)-(S)-DM were calculated to be 8.5 h and 3.1 h, respectively. In the grape must, half life of (+)-(R)-DM was calculated to be 41.7 h while (-)-(S)-DM was 16.0 h. The result was that (-)-(S)-enantiomer degraded faster than the (+)-(R)-enantiomer in both alcohol fermentation. The results also showed that the differences of the enantioselective degradation of DM depended on the fermentation matrix. DM was configurationally stable in fermentation, showing no interconversion of (-)-(S)- to (+)-(R)- enantiomer, and vice-versa.

  15. Ethyl glucuronide and ethyl sulfate assays in clinical trials, interpretation, and limitations: results of a dose ranging alcohol challenge study and 2 clinical trials.

    PubMed

    Jatlow, Peter I; Agro, Ann; Wu, Ran; Nadim, Haleh; Toll, Benjamin A; Ralevski, Elizabeth; Nogueira, Christine; Shi, Julia; Dziura, James D; Petrakis, Ismene L; O'Malley, Stephanie S

    2014-07-01

    The ethanol metabolites, ethyl glucuronide (EtG) and ethyl sulfate (EtS), are biomarkers of recent alcohol consumption that provide objective measures of abstinence. Our goals are to better understand the impact of cutoff concentration on test interpretation, the need for measuring both metabolites, and how best to integrate test results with self-reports in clinical trials. Subjects (n = 18) were administered, 1 week apart, 3 alcohol doses calibrated to achieve blood concentrations of 20, 80, and 120 mg/dl, respectively. Urinary EtG/EtS was measured at timed intervals during a 24-hour hospitalization and twice daily thereafter. In addition, participants from 2 clinical trials provided samples for EtG/EtS and drinking histories. Cutoffs for EtG/EtS of 100/50, 200/100, and 500/250 ng/ml were evaluated. Twelve hours following each challenge, EtG was always positive at the 100 and 200 cutoffs, but at 24 hours sensitivity was poor at all cutoffs following the low dose, and poor after 48 hours regardless of dose or cutoff. Similarly, in the clinical trials EtG sensitivity was good for detecting any drinking during the last 24 hours at the 2 lowest cutoffs, but under 40% during the last 24 to 48 hours. Sensitivity was reduced at the 500 ng/ml cutoff. Discrepancies between EtG and EtS were few. Comparison of self-reports of abstinence and EtG-confirmed abstinence indicated underreporting of drinking. Any drinking the night before should be detectable the following morning with EtG cutoffs of 100 or 200 ng/ml. Twenty-four hours after drinking, sensitivity is poor for light drinking, but good for heavier consumption. At 48 hours, sensitivity is low following 6 drinks or less. Increasing the cutoff to 500 ng/ml leads to substantially reduced sensitivity. Monitoring both EtG and EtS should usually be unnecessary. We recommend EtG-confirmed self-reports of abstinence for evaluation of outcomes in clinical trials. Copyright © 2014 by the Research Society on Alcoholism.

  16. Mechanism for prevention of alcohol-induced liver injury by dietary methyl donors.

    PubMed

    Powell, Christine L; Bradford, Blair U; Craig, Christopher Patrick; Tsuchiya, Masato; Uehara, Takeki; O'Connell, Thomas M; Pogribny, Igor P; Melnyk, Stepan; Koop, Dennis R; Bleyle, Lisa; Threadgill, David W; Rusyn, Ivan

    2010-05-01

    Alcohol-induced liver injury (ALI) has been associated with, among other molecular changes, abnormal hepatic methionine metabolism, resulting in decreased levels of S-adenosylmethionine (SAM). Dietary methyl donor supplements such as SAM and betaine mitigate ALI in animal models; however, the mechanisms of protection remain elusive. It has been suggested that methyl donors may act via attenuation of alcohol-induced oxidative stress. We hypothesized that the protective action of methyl donors is mediated by an effect on the oxidative metabolism of alcohol in the liver. Male C57BL/6J mice were administered a control high-fat diet or diet enriched in methyl donors with or without alcohol for 4 weeks using the enteral alcohol feeding model. As expected, attenuation of ALI and an increase in reduced glutathione:oxidized glutathione ratio were achieved with methyl donor supplementation. Interestingly, methyl donors led to a 35% increase in blood alcohol elimination rate, and while there was no effect on alcohol metabolism in the stomach, a profound effect on liver alcohol metabolism was observed. The catalase-dependent pathway of alcohol metabolism was induced, yet the increase in CYP2E1 activity by alcohol was blunted, which may be mitigating production of oxidants. Additional factors contributing to the protective effects of methyl donors in ALI were increased activity of low- and high-K(m) aldehyde dehydrogenases leading to lower hepatic acetaldehyde, maintenance of the efficient mitochondrial energy metabolism, and promotion of peroxisomal beta-oxidation. Profound changes in alcohol metabolism represent additional important mechanism of the protective effect of methyl donors in ALI.

  17. Ethyl glucuronide and ethyl sulfate.

    PubMed

    Walsham, Natalie E; Sherwood, Roy A

    2014-01-01

    Alcohol misuse is associated with significant morbidity and mortality. Although clinical history, examination, and the use of self-report questionnaires may identify subjects with harmful patterns of alcohol use, denial or under-reporting of alcohol intake is common. Existing biomarkers for detecting alcohol misuse include measurement of blood or urine ethanol for acute alcohol consumption, and carbohydrate-deficient transferrin and gamma-glutamyl transferase for chronic alcohol misuse. There is a need for a biomarker that can detect excessive alcohol consumption in the timeframe between 1 day and several weeks. Ethyl glucuronide (EtG) is a direct metabolite of ethanol detectable in urine for up to 90 h and longer in hair. Because EtG has high specificity for excess alcohol intake, it has great potential for use in detecting "binge" drinking. Using urine or hair, this noninvasive marker has a role in a variety of clinical and forensic settings. © 2014 Elsevier Inc. All rights reserved.

  18. Influence of repeated permanent coloring and bleaching on ethyl glucuronide concentrations in hair from alcohol-dependent patients.

    PubMed

    Crunelle, Cleo L; Yegles, Michel; De Doncker, Mireille; Dom, Geert; Cappelle, Delphine; Maudens, Kristof E; van Nuijs, Alexander L N; Covaci, Adrian; Neels, Hugo

    2015-02-01

    Ethyl glucuronide (EtG), a minor metabolite of alcohol, is used as a sensitive marker in hair to detect the retrospective consumption of alcohol. The proximal 0-3 cm hair segment is often used for analysis, providing information on alcohol consumption over the past 3 months. Using more distal segments would allow the detection of alcohol consumption over longer time periods, thereby addressing the chronicity of the consumption. In view of this, permanent coloring and bleaching were shown in vitro to alter EtG concentrations in hair, but no in vivo studies are available to prove or disprove this. To investigate the influence of repeated bleaching and permanent coloring on EtG concentrations in vivo and to assess the stability of EtG concentrations in distal compared to proximal hair segments. Hair samples from alcohol-dependent patients with uncolored/unbleached (N=4), permanent coloration (N=5) and bleached hair (N=5) were analyzed in two to six 3 cm long segments for EtG concentrations, and alcohol consumption and hair cosmetic treatments were assessed. We observed that hair bleaching and permanent coloring reduces EtG concentrations by 82±11% and 65±24%, respectively, with correlations between the number of cosmetic treatments and the decrease in EtG concentrations. EtG remained stable in untreated hair samples up to 18 cm. EtG is a sensitive marker to assess chronic alcohol consumption up to 18 months in alcohol-dependent patients with no cosmetic hair treatments. However, in alcohol-dependent patients who color or bleach their hair, care should be taken when interpreting EtG measurements. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Biocatalytic Resolution of Rac-α-Ethyl-2-Oxo-Pyrrolidineacetic Acid Methyl Ester by Immobilized Recombinant Bacillus cereus Esterase.

    PubMed

    Zheng, Jian-Yong; Liu, Yin-Yan; Luo, Wei-Feng; Zheng, Ren-Chao; Ying, Xiang-Xian; Wang, Zhao

    2016-04-01

    A new esterase-producing strain (Bacillus cereus WZZ001) which exhibiting high hydrolytic activity and excellent enantioselectivity on rac-α-ethyl-2-oxo-pyrrolidineacetic acid methyl ester (R, S-1) has been isolated from soil sample by our laboratory. In this study, the stereoselective hydrolysis of (R, S-1) was performed using the recombinant Bacillus cereus esterase which expressed in Escherichia coli BL21 (DE3). Under the optimized conditions of pH 8.0, 35 °C, and concentration of substrate 400 mM, a successful enzymatic resolution was achieved with an e.e. s of 99.5 % and conversion of 49 %. Immobilization considerably increased the reusability of the recombinant esterase; the immobilized enzyme showed excellent reusability during 6 cycles of repeated 2 h reactions at 35 °C. Thereby, it makes the recombinant B. cereus esterase a usable biocatalyst for industrial application.

  20. ETBE (ethyl tert butyl ether) and TAME (tert amyl methyl ether) affect microbial community structure and function in soils.

    PubMed

    Bartling, Johanna; Esperschütz, Jürgen; Wilke, Berndt-Michael; Schloter, Michael

    2011-03-15

    Ethyl tert butyl ether (ETBE) and tert amyl methyl ether (TAME) are oxygenates used in gasoline in order to reduce emissions from vehicles. The present study investigated their impact on a soil microflora that never was exposed to any contamination before. Therefore, soil was artificially contaminated and incubated over 6 weeks. Substrate induced respiration (SIR) measurements and phospholipid fatty acid (PLFA) analysis indicated shifts in both, microbial function and structure during incubation. The results showed an activation of microbial respiration in the presence of ETBE and TAME, suggesting biodegradation by the microflora. Furthermore, PLFA concentrations decreased in the presence of ETBE and TAME and Gram-positive bacteria became more dominant in the microbial community.

  1. An XAFS Study of Tantalum Chloride in the Ionic Liquid 1-ethyl-3-methyl Imidazolium Chloride/ aluminum Chloride

    SciTech Connect

    D Roeper; K Pandya; G Cheek; W OGrady

    2011-12-31

    Tantalum chloride was studied with extended X-ray absorption fine structure spectroscopy (XAFS) in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride ionic liquids (ILs). Anhydrous Ta2Cl10 is more soluble in the basic solution than in the acidic solution and the X-ray absorption data shows that the coordination shell of chlorides around the tantalum is larger in the basic solution. In the acidic solution, tantalum has five chlorides in its coordination shell while in the basic solution; the tantalum is coordinated by seven chlorides. This indicates that the Lewis acidity of the tantalum chloride causes the Ta to coordinate differently in the acidic and the basic solutions.

  2. Chronic neuropsychological and neurological impairment following acute exposure to a solvent mixture of toluene and methyl ethyl ketone (MEK).

    PubMed

    Welch, L; Kirshner, H; Heath, A; Gilliland, R; Broyles, S

    1991-01-01

    A 38 year-old laborer experienced solvent intoxication during each of two spray paintings of a dump truck and other heavy equipment in an enclosed, unventilated garage. The paint base consisted primarily of toluene and methyl ethyl ketone. Nausea, headaches, dizziness, respiratory difficulty and other symptoms began after exposures. Over the next several days he developed impaired concentration, memory loss and cerebellar signs including an intention tremor, gait ataxia and dysarthria. MRI of the brain and EGG early in the work-up were normal, although later MRIs demonstrated fluid collection over the left parietal area. Examination by a toxicologist and neurologist revealed likely toxic encephalopathy with dementia and cerebellar ataxia. Three formal neuropsychological assessments over 2 1/2 years quantified cognitive, motor and behavioral changes. Despite similar findings in chronic exposure to these solvents, lasting sequelae following acute exposure have not been widely reported.

  3. Efficacy of scalp hair decontamination following exposure to vapours of sulphur mustard simulants 2-chloroethyl ethyl sulphide and methyl salicylate.

    PubMed

    Spiandore, Marie; Piram, Anne; Lacoste, Alexandre; Prevost, Philippe; Maloni, Pascal; Torre, Franck; Asia, Laurence; Josse, Denis; Doumenq, Pierre

    2017-04-01

    Chemical warfare agents are an actual threat and victims' decontamination is a main concern when mass exposure occurs. Skin decontamination with current protocols has been widely documented, as well as surface decontamination. However, considering hair ability to trap chemicals in vapour phase, we investigated hair decontamination after exposure to sulphur mustard simulants methyl salicylate and 2-chloroethyl ethyl sulphide. Four decontamination protocols were tested on hair, combining showering and emergency decontamination (use of Fuller's earth or Reactive Skin Decontamination Lotion RSDL(®)). Both simulants were recovered from hair after treatment, but contents were significantly reduced (42-85% content allowance). Showering alone was the least efficient protocol. Concerning 2-chloroethyl ethyl sulphide, protocols did not display significant differences in decontamination efficacy. For MeS, use of emergency decontaminants significantly increased showering efficacy (10-20% rise), underlining their usefulness before thorough decontamination. Our results highlighted the need to extensively decontaminate hair after chemical exposure. Residual amounts after decontamination are challenging, as their release from hair could lead to health issues. Copyright © 2016. Published by Elsevier B.V.

  4. [Role of mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate) in the obtaining of stabilized magnetite nanoparticles for biomedical application].

    PubMed

    Vazhnichaya, Ye M; Mokliak, Ye V; Kurapov, Yu A; Zabozlaev, A A

    2015-01-01

    Magnetite nanoparticles (NPs) are studied as agents for magnetic resonance imaging, hyperthermia of malignant tumors, targeted drug delivery as well as anti-anemic action. One of the main problems of such NPs is their aggregation that requires creation of methods for magnetite NPs stabilization during preparation of liquid medicinal forms on their basis. The present work is devoted to the possibility of mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate) use for solubilization of magnetite NPs in hydrophilic medium. For this purpose, the condensate produced by electron-beam evaporation and condensation, with magnetite particles of size 5-8 nm deposited into the crystals of sodium chloride were used in conjunction with substance of mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate), and low molecular weight polyvinylpyrrolidone (PVP). The NP condensate was dispersed in distilled water or PVP or mexidol solutions. NPs size distribution in the liquid phase of the systems was determined by photon correlation spectroscopy, iron (Fe) concentration was evaluated by atomic emission spectrometry. It is shown that in the dispersion prepared in distilled water, the major amount of NPs was of 13-120 nm in size, in mexidol solution - 270-1700 nm, in PVP solution - 30-900 nm. In the fluid containing magnetite NPs together with mexidol and PVP, the main fraction (99.9%) was characterized by the NPs size of 14-75 nm with maximum of 25 nm. This system had the highest iron concentration: it was similar to that in the sample with mexidol solution and 6.6-7.3 times higher than the concentration in the samples with distilled water or PVP. Thus, in the preparation of aqueous dispersions based on magnetite NPs condensate, mexidol provides a transition of Fe to the liquid phase in amount necessary to achieve its biological activity, and PVP stabilizes such modified NPs.

  5. TLR4 Methylation Moderates the Relationship Between Alcohol Use Severity and Gray Matter Loss.

    PubMed

    Karoly, Hollis C; Thayer, Rachel E; Hagerty, Sarah L; Hutchison, Kent E

    2017-09-01

    Alcohol use disorders (AUDs) are associated with decreased gray matter, and neuroinflammation is one mechanism through which alcohol may confer such damage, given that heavy alcohol use may promote neural damage via activation of toll-like receptor 4 (TLR4)-mediated inflammatory signaling cascades. We previously demonstrated that TLR4 is differentially methylated in AUD compared with control subjects, and the present study aims to extend this work by examining whether TLR4 methylation moderates the relationship between alcohol use and gray matter. We examined TLR4 methylation and gray matter thickness in a large sample (N = 707; 441 males) of adults (ages 18-56) reporting a range of AUD severity (mean Alcohol Use Disorders Identification Test score = 13.18; SD = 8.02). We used a series of ordinary least squares multiple regression equations to regress gray matter in four bilateral brain regions (precuneus, lateral orbitofrontal, inferior parietal, and superior temporal) on alcohol use, TLR4 methylation, and their interaction, controlling for demographic, psychological, and other substance use variables. After we corrected for multiple tests, a significant Alcohol × TLR4 Methylation interaction emerged in the equations modeling left precuneus and right inferior parietal gray matter. Follow-up analyses examining the nature of these interactions demonstrated a significant negative association between alcohol and precuneus and inferior parietal gray matter in individuals with low TLR4 methylation, but no relationship between alcohol and gray matter in the high methylation group. These findings suggest that TLR4 methylation may be protective against the damage conferred by alcohol on precuneus and inferior parietal gray matter, thereby implicating TLR4 for further investigation as a possible AUD treatment target.

  6. DNA methylation in the medial prefrontal cortex regulates alcohol-induced behavior and plasticity.

    PubMed

    Barbier, Estelle; Tapocik, Jenica D; Juergens, Nathan; Pitcairn, Caleb; Borich, Abbey; Schank, Jesse R; Sun, Hui; Schuebel, Kornel; Zhou, Zhifeng; Yuan, Qiaoping; Vendruscolo, Leandro F; Goldman, David; Heilig, Markus

    2015-04-15

    Recent studies have suggested an association between alcoholism and DNA methylation, a mechanism that can mediate long-lasting changes in gene transcription. Here, we examined the contribution of DNA methylation to the long-term behavioral and molecular changes induced by a history of alcohol dependence. In search of mechanisms underlying persistent rather than acute dependence-induced neuroadaptations, we studied the role of DNA methylation regulating medial prefrontal cortex (mPFC) gene expression and alcohol-related behaviors in rats 3 weeks into abstinence following alcohol dependence. Postdependent rats showed escalated alcohol intake, which was associated with increased DNA methylation as well as decreased expression of genes encoding synaptic proteins involved in neurotransmitter release in the mPFC. Infusion of the DNA methyltransferase inhibitor RG108 prevented both escalation of alcohol consumption and dependence-induced downregulation of 4 of the 7 transcripts modified in postdependent rats. Specifically, RG108 treatment directly reversed both downregulation of synaptotagmin 2 (Syt2) gene expression and hypermethylation on CpG#5 of its first exon. Lentiviral inhibition of Syt2 expression in the mPFC increased aversion-resistant alcohol drinking, supporting a mechanistic role of Syt2 in compulsive-like behavior. Our findings identified a functional role of DNA methylation in alcohol dependence-like behavioral phenotypes and a candidate gene network that may mediate its effects. Together, these data provide novel evidence for DNA methyltransferases as potential therapeutic targets in alcoholism.

  7. DNA Methylation in the Medial Prefrontal Cortex Regulates Alcohol-Induced Behavior and Plasticity

    PubMed Central

    Tapocik, Jenica D.; Juergens, Nathan; Pitcairn, Caleb; Borich, Abbey; Schank, Jesse R.; Sun, Hui; Schuebel, Kornel; Zhou, Zhifeng; Yuan, Qiaoping; Vendruscolo, Leandro F.; Goldman, David; Heilig, Markus

    2015-01-01

    Recent studies have suggested an association between alcoholism and DNA methylation, a mechanism that can mediate long-lasting changes in gene transcription. Here, we examined the contribution of DNA methylation to the long-term behavioral and molecular changes induced by a history of alcohol dependence. In search of mechanisms underlying persistent rather than acute dependence-induced neuroadaptations, we studied the role of DNA methylation regulating medial prefrontal cortex (mPFC) gene expression and alcohol-related behaviors in rats 3 weeks into abstinence following alcohol dependence. Postdependent rats showed escalated alcohol intake, which was associated with increased DNA methylation as well as decreased expression of genes encoding synaptic proteins involved in neurotransmitter release in the mPFC. Infusion of the DNA methyltransferase inhibitor RG108 prevented both escalation of alcohol consumption and dependence-induced downregulation of 4 of the 7 transcripts modified in postdependent rats. Specifically, RG108 treatment directly reversed both downregulation of synaptotagmin 2 (Syt2) gene expression and hypermethylation on CpG#5 of its first exon. Lentiviral inhibition of Syt2 expression in the mPFC increased aversion-resistant alcohol drinking, supporting a mechanistic role of Syt2 in compulsive-like behavior. Our findings identified a functional role of DNA methylation in alcohol dependence-like behavioral phenotypes and a candidate gene network that may mediate its effects. Together, these data provide novel evidence for DNA methyltransferases as potential therapeutic targets in alcoholism. PMID:25878287

  8. Measurement of ethyl glucuronide, ethyl sulphate and their ratio in the urine and serum of healthy volunteers after two doses of alcohol.

    PubMed

    Lostia, Alfonso Maria; Vicente, Joana Lobo; Cowan, David A

    2013-01-01

    Ethyl glucuronide (EtG) and ethyl sulphate (EtS) are minor metabolites of ethanol, and their presence in urine provides a strong indication of recent alcohol administration. In this study, we performed a drinking experiment to investigate the kinetics of EtG and EtS formation and elimination after the administration of two doses of alcohol. Nineteen volunteers provided urine and serum (only 18) after administration of 4 and 8 units of alcohol (1 unit corresponds to 10 ml or ∼8 g of pure ethanol). The analysis was performed using a validated ultra-performance liquid chromatography-mass spectrometry (UPLC(®)-MS/MS) method. After 4 units, the median EtG maximum concentration (C(max)) was 0.4 µg/ml and the interquartile range (0.3 µg/ml) in serum and 3.5 mg/h (1.2 mg/h) in urine and were reached (T(max)) after 2.0 h (0.8 h) and 3.0 h (1.0 h), respectively. EtS C(max) was 0.2 µg/ml (0.1 µg/ml) in serum and 1.3 mg/h (0.6 mg/h) in urine, and the corresponding T(max) were 1.0 h (1.0 h) and 2.0 h (0.5 h). After 8 units, EtG C(max) was 1.3 µg/ml (0.4 µg/ml) in serum and 10 mg/h (3.4 mg/h) in urine and was reached after 4.0 h (1.8 h) and 4.0 h (2.0 h), respectively. EtS C(max) was 0.6 µg/ml (0.1 µg/ml) in serum and 3.5 mg/h (1.1 mg/h) in urine, the corresponding T(max) were 3.0 h (1.0 h) and 3.0 h (1.0 h). The EtG/EtS ratio increased as a function of the time after alcohol administration in both serum and urine samples but to a lesser extent after 8 units than 4. These results correlate with values obtained in previous studies. T(max) of EtG and EtS increased between 4 and 8 units. The EtG:EtS ratio increased in the serum and urine samples of all volunteers as a function of time at least up to 4 h after alcohol administration.

  9. Alcohol alters DNA methylation patterns and inhibits neural stem cell differentiation.

    PubMed

    Zhou, Feng C; Balaraman, Yokesh; Teng, MingXiang; Liu, Yunlong; Singh, Rabindra P; Nephew, Kenneth P

    2011-04-01

    Potential epigenetic mechanisms underlying fetal alcohol syndrome (FAS) include alcohol-induced alterations of methyl metabolism, resulting in aberrant patterns of DNA methylation and gene expression during development. Having previously demonstrated an essential role for epigenetics in neural stem cell (NSC) development and that inhibiting DNA methylation prevents NSC differentiation, here we investigated the effect of alcohol exposure on genome-wide DNA methylation patterns and NSC differentiation. Neural stem cells in culture were treated with or without a 6-hour 88 mM ("binge-like") alcohol exposure and examined at 48 hours, for migration, growth, and genome-wide DNA methylation. The DNA methylation was examined using DNA-methylation immunoprecipitation followed by microarray analysis. Further validation was performed using Independent Sequenom analysis.   Neural stem cell differentiated in 24 to 48 hours with migration, neuronal expression, and morphological transformation. Alcohol exposure retarded the migration, neuronal formation, and growth processes of NSC, similar to treatment with the methylation inhibitor 5-aza-cytidine. When NSC departed from the quiescent state, a genome-wide diversification of DNA methylation was observed-that is, many moderately methylated genes altered methylation levels and became hyper- and hypomethylated. Alcohol prevented many genes from such diversification, including genes related to neural development, neuronal receptors, and olfaction, while retarding differentiation. Validation of specific genes by Sequenom analysis demonstrated that alcohol exposure prevented methylation of specific genes associated with neural development [cut-like 2 (cutl2), insulin-like growth factor 1 (Igf1), epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (Efemp1), and SRY-box-containing gene 7 (Sox 7)]; eye development, lens intrinsic membrane protein 2 (Lim 2); the epigenetic mark Smarca2 (SWI/SNF related, matrix

  10. Practical experiences in application of hair fatty acid ethyl esters and ethyl glucuronide for detection of chronic alcohol abuse in forensic cases.

    PubMed

    Suesse, S; Pragst, F; Mieczkowski, T; Selavka, C M; Elian, A; Sachs, H; Hastedt, M; Rothe, M; Campbell, J

    2012-05-10

    This article presents results from 1872 hair samples, which were analyzed for fatty acid ethyl esters (FAEEs) and ethyl glucuronide (EtG). The results were evaluated in the context of self-reported drinking behavior, the use of hair cosmetics, the gender of the sample donors and hair sample length. For comparison, CDT and GGT in serum were available in 477 and 454 cases, respectively. A number of alcohol abstainers or low moderate drinkers and excessive drinkers were selected for assessment of cut-offs for FAEEs in the proximal 6cm hair segments and for EtG in the proximal 3cm hair segments. Cut-off values were assessed by ROC analysis. It was found that the cut-offs of 1.0ng/mg FAEE and 30pg/mg EtG presently used for excessive drinking lead to a low portion of false positives (4% and 3% respectively) but to a higher portion of false negatives (23% and 25% respectively). Comparison of the mean and medium concentrations in samples without any reported hair cosmetics (N=1079) and in samples with reported use of hair spray (N=79) showed an increase by the factor of about two for FAEE but no significant difference for EtG. Mean values of EtG were decreased by 80% in bleached samples (N=164) and by 63% in dyed samples (N=96). There was no significant effect of bleaching and dyeing on FAEE. Hair gel and hair wax, oil or grease showed no significant effect on both FAEE and EtG. With respect to gender and investigated hair length ambiguous results were obtained because of major differences in the compared subpopulations of male with higher alcohol consumption and mainly shorter hair, and less drinking female with longer hair. For excessive drinkers FAEEs in the 0-6cm hair segment and EtG in the 0-3cm segment decreased with increasing time of reported abstinence before sample collection. These drinkers attain the level of teetotalers only after more than 10 months of abstinence. In comparison to scalp hair, FAEEs recovered from armpit hair and leg hair were lower and from

  11. The synthesis and investigation of impurities found in Clandestine Laboratories: Baeyer-Villiger Route Part I; Synthesis of P2P from benzaldehyde and methyl ethyl ketone.

    PubMed

    Doughty, David; Painter, Ben; Pigou, Paul E; Johnston, Martin R

    2016-06-01

    The synthesis of impurities detected in clandestinely manufactured Amphetamine Type Stimulants (ATS) has emerged as more desirable than simple "fingerprint" profiling. We have been investigating the impurities formed when phenyl-2-propanone (P2P) 5, a key ATS precursor, is synthesised in three steps; an aldol condensation of benzaldehyde and methyl ethyl ketone (MEK); a Baeyer-Villiger reaction; and ester hydrolysis. We have identified and selectively synthesised several impurities that may be used as route specific markers for this series of synthetic steps. Specifically these impurities are 3-methyl-4-phenyl-3-buten-2-one 3, 2-methyl-1,5-diphenylpenta-1,4-diene-3-one 9, 2-(methylamino)-3-methyl-4-phenyl-3-butene 16, 2-(Methylamino)-3-methyl-4-phenylbutane 17, and 1-(methylamino)-2-methyl-1,5-diphenylpenta-4-ene-3-one 22.

  12. Utility of urinary ethyl glucuronide analysis in post-mortem toxicology when investigating alcohol-related deaths.

    PubMed

    Sundström, M; Jones, A W; Ojanperä, I

    2014-08-01

    Use and abuse of alcohol are common findings when unnatural deaths are investigated as evidenced by high blood- and urine- alcohol concentrations (BAC and UAC) at autopsy. Because ethanol is metabolized in the liver until the time of death, the autopsy BAC or UAC might be negative even though the deceased had consumed alcohol in the immediate ante-mortem period. Analysis of the non-oxidative metabolite of ethanol [ethyl glucuronide (EtG)] offers a more sensitive test of recent drinking. In this paper, we determined the concentrations of ethanol and EtG in urine samples from 972 consecutive forensic autopsies. In 425 cases (44%) both EtG and ethanol were positive, which supports ante-mortem drinking. In 342 cases (35%), both EtG and ethanol was negative, which speaks against any consumption of alcohol just before death. In 181 cases, ethanol was negative in urine (<0.2 g/kg), whereas EtG was positive (>0.5 mg/L), which points towards ingestion of alcohol some time before death. In these cases, mean and median concentrations of EtG were 53.2 mg/L and 23.7 mg/L, respectively, although there was no mention of alcohol on 131 of the death certificates. Alcohol was mentioned on death certificates as an underlying or immediate cause of death or a contributing factor in 435 (45%) cases, which rose to 566 (58%) cases when positive EtG results were included. This article demonstrates the usefulness of EtG analysis in routine post-mortem toxicology when ante-mortem drinking and alcohol-related deaths are investigated. Copyright © 2014. Published by Elsevier Ireland Ltd.

  13. Hair ethyl glucuronide and serum carbohydrate deficient transferrin for the assessment of relapse in alcohol-dependent patients.

    PubMed

    Crunelle, Cleo L; Verbeek, Jef; Dom, Geert; Covaci, Adrian; Yegles, Michel; Michielsen, Peter; De Doncker, Mireille; Nevens, Frederik; Cappelle, Delphine; van Nuijs, Alexander L N; Neels, Hugo

    2016-05-01

    Ethyl glucuronide in hair (hEtG) and serum carbohydrate deficient transferrin (%CDT) are valuable markers for alcohol abuse, but their diagnostic accuracy to monitor abstinence and relapse is unclear. Here, we investigate to what extent repeated measurements of hEtG and %CDT can be used to monitor relapse in alcohol-dependent patients during abstinence treatment. HEtG and %CDT were measured in individuals starting treatment for alcohol dependence both at treatment entry and 3months later. Alcohol consumption and relapse episodes were recorded using the Time Line Follow Back and by alcohol breath and urine tests, and correlated with hEtG and %CDT measurements. Fifteen patients completed the study, of which nine had one or more relapses. Hair EtG and serum %CDT identified whether a relapse occurred in 78% and 57% of cases, respectively. Only hEtG correlated with the amount of alcohol consumed before treatment entry (Pearson r=0.92; p<0.001). The specificity of %CDT to assess abstinence during treatment was 100%. HEtG had a specificity of only 17%; however, in all patients who remained abstinent, hEtG decreased with >85% from initial values. Mean hEtG, but not %CDT, differed significantly between patients who relapsed and patients who remained abstinent (p=0.034). HEtG was more sensitive than serum %CDT to assess relapse in alcohol-dependent patients and was positively correlated with the amounts of alcohol consumed. In contrast, serum %CDT was more specific for assessing abstinence. We highlight the benefit of repeated measurements of hEtG and serum %CDT for monitoring abstinence during treatment. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  14. Ethanol and ethyl glucuronide urine concentrations after ethanol-based hand antisepsis with and without permitted alcohol consumption.

    PubMed

    Gessner, Stephan; Below, Elke; Diedrich, Stephan; Wegner, Christian; Gessner, Wiebke; Kohlmann, Thomas; Heidecke, Claus-Dieter; Bockholdt, Britta; Kramer, Axel; Assadian, Ojan; Below, Harald

    2016-09-01

    During hand antisepsis, health care workers (HCWs) are exposed to alcohol by dermal contact and by inhalation. Concerns have been raised that high alcohol absorptions may adversely affect HCWs, particularly certain vulnerable individuals such as pregnant women or individuals with genetic deficiencies of aldehyde dehydrogenase. We investigated the kinetics of HCWs' urinary concentrations of ethanol and its metabolite ethyl glucuronide (EtG) during clinical work with and without previous consumption of alcoholic beverages by HCWs. The median ethanol concentration was 0.7 mg/L (interquartile range [IQR], 0.5-1.9 mg/L; maximum, 9.2 mg/L) during abstinence and 12.2 mg/L (IQR, 1.5-139.6 mg/L; maximum, 1,020.1 mg/L) during alcohol consumption. During abstinence, EtG reached concentrations of up to 958 ng/mL. When alcohol consumption was permitted, the median EtG concentration of all samples was 2,593 ng/mL (IQR, 890.8-3,576 ng/mL; maximum, 5,043 ng/mL). Although alcohol consumption was strongly correlated with both EtG and ethanol in urine, no significant correlation for the frequency of alcoholic hand antisepsis was observed in the linear mixed models. The use of ethanol-based handrub induces measurable ethanol and EtG concentrations in urine. Compared with consumption of alcoholic beverages or use of consumer products containing ethanol, the amount of ethanol absorption resulting from handrub applications is negligible. In practice, there is no evidence of any harmful effect of using ethanol-based handrubs as much as it is clinically necessary. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  15. False-positive ethyl glucuronide immunoassay screening caused by a propyl alcohol-based hand sanitizer.

    PubMed

    Arndt, Torsten; Grüner, Joachim; Schröfel, Stefanie; Stemmerich, Karsten

    2012-11-30

    Urine ethyl glucuronide (EtG) is considered as a specific marker of recent ethanol consumption. We describe false-positive DRI(®) EIA EtG enzyme immunoassay results caused by propyl glucuronides in urine after using a propanol-based hand sanitizer. EtG screening was done with the DRI(®) EIA EtG assay (Microgenics), using a cut-off of 0.5 mg/L as recommended by the manufacturer and of 0.1 mg/L as demanded by the German Regulations for Reissuing Drivers Licenses. Confirmatory EtG analysis was done with the ClinMass(®) EtG LC-MS/MS testkit (Recipe), extended by the mass transitions 235.1→75.1, 235.1→85.1, and 235.1→113.1 for the detection of the 1- and 2-propyl glucuronides. Self-experiments were done by staff members of our lab (n=7), using 3 mL Sterillium(®) Classic Pure (30 g/100 g 1-propanol and 45 g/100 g 2-propanol) for hand sanitation every quarter of an hour for 8 h according to DIN EN 1500:2011-05 with and without an exhauster and by passive inhalation of the sanitizer vapor. Spot urine samples were taken immediately before and up to 24 h after the first sanitizer use. False-positive immunoassay results of up to 4 mg/L or 2.3 mg/g creatinine were obtained after normal use of the sanitizer and also after passive inhalation of the sanitizer vapor (up to 0.89 mg/L or 0.61 mg/g). Immunoassay results were positive even after 4-fold use of the sanitizer (up to 0.14 mg/L or 0.38 mg/g) and up to 6 h after the last sanitizer contact (maximum 0.63 mg/L and 0.33 mg/g for sanitizer users and 0.25 mg/g after passive inhalation). Spiking of EtG-free urine with 1-propyl glucuronide (Athena Environmental Sciences) between 0.05 and 10 mg/L clearly demonstrated a cross reaction of the immunoassay of approx. 10% as compared to EtG. LC-MS/MS of urines with a positive immunoassay EtG result did not show EtG signals, but distinct signals of 1-propyl glucuronide (n-propyl glucuronide) and 2-propyl glucuronide (iso-propyl glucuronide). An exhauster effectively prevented

  16. Effect of alcohol consumption on peripheral blood Alu methylation in Korean men.

    PubMed

    Kim, Dong-Sun; Kim, Young Hun; Lee, Won Kee; Na, Yeon Kyung; Hong, Hae Sook

    2016-01-01

    Alcohol use disorders (AUD) are defined as alcohol abuse and alcohol dependence, which create a substantial public health problem worldwide. To date, no therapeutic can effectively solve these problems. They are complex diseases characterized by both genetic and environmental factors. DNA methylation can act as a downstream effector of environmental signals and account for multi-factorial nature of the disease. Global DNA methylation of peripheral blood cells has recently been proposed as a potential biomarker for disease risk. Alu elements host one-quarter of CpG dinucelotides in the genome to function as proxies for global DNA methylation. In this study, we evaluated the Alu methylation in the peripheral blood DNA of healthy volunteers and AUD patients using the pyrosequencing technology. The Alu methylation level is significantly higher in AUD compared to healthy controls (23.4 ± 1.6 versus 22.1 ± 1.0, t = 7.83, p < 0.0001). Moreover, significant correlation was found between Alu methylation and alcohol use disorders identification test score (r = 0.250, p < 0.0001), alcohol problem (r = 0.294, p < 0.0001), and life position (r = -0.205, p = 0.0005). Overall, these novel findings indicate that alcohol-related increase in Alu methylation might play a complex role in the etiology and pathogenesis of AUD. Further studies are required to elucidate the mechanisms underlying this relationship.

  17. Expression of DNA damage-inducible genes of Escherichia coli upon treatment with methylating, ethylating and propylating agents.

    PubMed

    Volkert, M R; Gately, F H; Hajec, L I

    1989-03-01

    Several alkylation-inducible genes have been identified by construction of Mu-d1 (Apr lac) fusions to genes whose expression is increased in response to alkylation treatment, but not UV treatment. We have examined the induction of 4 different alkylation-inducible genes by treatment with a variety of methylating and ethylating agents, and a propylating agent. We have compared the induction of the alkylation-inducible genes with the induction of the sulA gene, which is a component of the SOS response to DNA damage. We find that the Ada-regulated adaptive response genes (ada-alkB, alkA and aidB) are induced primarily in response to methylation treatment. The ada-independent aidC gene is induced upon treatment with agents that alkylate predominantly by SN1 nucleophilic attack. aidC induction occurs only when cells are not aerated during treatment. The SOS response, as indicated by sulA induction, is strongly induced by all types of alkylating agents used.

  18. Synthesis, and anticonvulsant activity of new amides derived from 3-methyl- or 3-ethyl-3-methyl-2,5-dioxo-pyrrolidin-1-yl-acetic acids.

    PubMed

    Obniska, Jolanta; Rapacz, Anna; Rybka, Sabina; Góra, Małgorzata; Kamiński, Krzysztof; Sałat, Kinga; Żmudzki, Paweł

    2016-04-15

    This paper describes the synthesis of the library of 22 new 3-methyl- and 3-ethyl-3-methyl-2,5-dioxo-pyrrolidin-1-yl-acetamides as potential anticonvulsant agents. The maximal electroshock (MES) and the subcutaneous pentylenetetrazole (scPTZ) seizure models were used for screening all the compounds. The 6 Hz model of pharmacoresistant limbic seizures was applied for studying selected derivatives. Six amides were chosen for pharmacological characterization of their antinociceptive activity in the formalin model of tonic pain as well as local anesthetic activity was assessed in mice. The pharmacological data indicate on the broad spectra of activity across the preclinical seizure models. Compounds 10 (ED50=32.08 mg/kg, MES test) and 9 (ED50=40.34 mg/kg, scPTZ test) demonstrated the highest potency. These compounds displayed considerably better safety profiles than clinically relevant antiepileptic drugs phenytoin, ethosuximide, or valproic acid. Several molecules showed antinociceptive and local anesthetic properties. The in vitro radioligand binding studies demonstrated that the influence on the sodium and calcium channels may be one of the essential mechanisms of action. Copyright © 2016. Published by Elsevier Ltd.

  19. Selection and identification of bacterial strains with methyl-tert-butyl ether, ethyl-tert-butyl ether, and tert-amyl methyl ether degrading capacities.

    PubMed

    Purswani, Jessica; Pozo, Clementina; Rodríguez-Díaz, Marina; González-López, Jesús

    2008-11-01

    Nine bacterial strains isolated from two hydrocarbon-contaminated soils were selected because of their capacity for growth in culture media amended with 200 mg/L of one of the following gasoline oxygenates: Methyl-tert-butyl ether (MTBE), ethyl-tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME). These strains were identified by amplification of their 16S rRNA gene, using fDl and rD1 primers, and were tested for their capacity to grow and biotransform these oxygenates in both mineral and cometabolic media. The isolates were classified as Bacillus simplex, Bacillus drentensis, Arthrobacter sp., Acinetobacter calcoaceticus, Acinetobacter sp., Gordonia amicalis (two strains), Nocardioides sp., and Rhodococcus ruber. Arthrobacter sp. (strain MG) and A. calcoaceticus (strain M10) consumed 100 (cometabolic medium) and 82 mg/L (mineral medium) of oxygenate TAME in 21 d, respectively, under aerobic conditions. Rhodococcus ruber (strain E10) was observed to use MTBE and ETBE as the sole carbon and energy source, whereas G. amicalis (strain T3) used TAME as the sole carbon and energy source for growth. All the bacterial strains transformed oxygenates better in the presence of an alternative carbon source (ethanol) with the exception of A. calcoaceticus (strain M10). The capacity of the selected strains to remove MTBE, ETBE, and TAME looks promising for application in bioremediation technologies.

  20. Synthesis and characterization of bis-(2-cyano-1-methyl-3-{2- {{(5-methylimidazol-4-yl)methyl}thio}ethyl)guanidine copper(II) sulfate tetrahydrate

    NASA Astrophysics Data System (ADS)

    Rahardjo, Sentot B.; Endah Saraswati, Teguh; Pramono, Edy; Fitriana, Nur

    2016-02-01

    Complex of copper(II) with 2-cyano-1-methyl-3-{2-{{(5-methylimidazol-4- yl)methyl}thio}ethyl)guanidin(xepamet) had been synthesized in 1 : 4 mole ratio of metal to the ligand in methanol. The complex was characterized by metal analysis, thermal gravimetry/differential thermal analyzer (TG/DTA), molar conductivity meter, (Fourier transform infrared spectroscopy) FT-IR, UV-Vis spectroscopy, and magnetic susceptibility balance. The molar conductivity measurement shows that the complex was 2: 1 for electrolyte and SO42- which was acting as a counter ion. The thermal analysis by Thermogravimetric (TG) indicates that the complex contained four molecules of H2O. The Infrared spectral data indicates that functional groups of (C=N) imidazole and (C-S) are coordinated to the center ion Cu2+. Magnetic moment measurement shows that the complex is paramagnetic with peff = 1.78 ± 0.01 BM. Electronic spectra of the complex show a broad band at 608 nm (16447.23 cm-1) are due to Eg→T2g transition. Based on those of characteristics, The complex formula was estimated as [Cu(xepamet)2]SO4.4H2O. The structure of [Cu(xepamet)2]SO4.4H2O complex is probably square planar.

  1. 1-Ethyl-3-methyl-1H-imidazol-3-ium spiro­penta­borate

    PubMed Central

    Parker, T. Gannon; Pubbi, Divya; Beehler, Austin; Albrecht-Schmitt, Thomas E.

    2014-01-01

    In the anion of the title compound, (C6H11N2)[B5O6(OH)4], both six-membered borate rings adopt a flattened boat conformation with the spiro-B atom and its opposite O atom deviating from the remainders of the rings by 0.261 (3)/0.101 (2) and 0.160 (3)/0.109 (2) Å, respectively. The imidazolium cation also deviates from planarity due to rotation of the ethyl group (as indicated by the C—N—C—C torsion angle) by 71.4 (2)° out of the plane of the heterocycle. In the crystal, the anions are connected in a three-dimensional network through O—H⋯O hydrogen bonds, forming channels along the a-axis direction. The cations are situated in the channels, forming C—H⋯O hydrogen bonds with the anions. PMID:24764887

  2. Bromidotetra-kis-(1H-2-ethyl-5-methyl-imidazole-κN)copper(II) bromide.

    PubMed

    Godlewska, Sylwia; Baranowska, Katarzyna; Socha, Joanna; Dołęga, Anna

    2011-12-01

    The Cu(II) ion in the title compound, [CuBr(C(6)H(10)N(2))(4)]Br, is coordinated in a square-based-pyramidal geometry by the N atoms of four imidazole ligands and a bromide anion in the apical site. Both the Cu(II) and Br(-) atoms lie on a crystallographic fourfold axis. In the crystal, the [CuBr(C(6)H(10)N(2))(4)](+) complex cations are linked to the uncoordinated Br(-) anions (site symmetry [Formula: see text]) by N-H⋯Br hydrogen bonds, generating a three-dimensional network. The ethyl group of the imidazole ligand was modelled as disordered over two orientations with occupancies of 0.620 (8) and 0.380 (8).

  3. Simultaneous determination of ethyl carbamate and urea in alcoholic beverages by high-performance liquid chromatography coupled with fluorescence detection.

    PubMed

    Zhang, Jian; Liu, Guoxin; Zhang, Ying; Gao, Qiang; Wang, Depei; Liu, Hao

    2014-04-02

    On the basis of the similar fluorescence of ethyl carbamate (EC) and urea derivatives, a high-performance liquid chromatography method coupled with fluorescence detection was developed for the simultaneous determination of EC and urea in alcoholic beverages. The chromatographic separation and derivatization conditions of EC and urea were optimized. Under the established conditions, the detection limit, relative standard deviation, linear range, and recovery were 4.8 μg/L, 1.0-4.2%, 10-500 μg/L, and 93.8-104.6%, respectively, for EC; the corresponding values were 0.003 mg/L, 1.2-4.8%, 0.01-100 mg/L, and 90.7-104.8%, respectively, for urea. The method showed satisfactory values for precision, recovery, and sensitivity for both analytes and is well-suited for routine analysis and kinetic studies of the formation of EC from urea alcoholysis in alcoholic beverages.

  4. Inert Reassessment Document for Methyl Alcohol - CAS No. 67-56-1

    EPA Pesticide Factsheets

    Methyl Alcohol is used as an inert ingredient in agricultural and residential-use pesticides. It is also found in a wide-array of consumer products including paints, cleaning products, adhesives, and alternative fuels.

  5. Gas Chromatographic Determination of Methyl Salicylate in Rubbing Alcohol: An Experiment Employing Standard Addition.

    ERIC Educational Resources Information Center

    Van Atta, Robert E.; Van Atta, R. Lewis

    1980-01-01

    Provides a gas chromatography experiment that exercises the quantitative technique of standard addition to the analysis for a minor component, methyl salicylate, in a commercial product, "wintergreen rubbing alcohol." (CS)

  6. Gas Chromatographic Determination of Methyl Salicylate in Rubbing Alcohol: An Experiment Employing Standard Addition.

    ERIC Educational Resources Information Center

    Van Atta, Robert E.; Van Atta, R. Lewis

    1980-01-01

    Provides a gas chromatography experiment that exercises the quantitative technique of standard addition to the analysis for a minor component, methyl salicylate, in a commercial product, "wintergreen rubbing alcohol." (CS)

  7. Homogeneous catalysis of ethyl tert-butyl ether formation from tert-butyl alcohol in hot, compressed liquid ethanol

    SciTech Connect

    Habenicht, C.; Kam, L.C.; Wilschut, M.J.; Antal, M.J. Jr.

    1995-11-01

    Ethyl tert-butyl ether (ETBE) and isobutene are the only significant products of the sulfuric acid ({le} 0.001 M) catalyzed reactions of tert-butyl alcohol in water/ethanol mixtures at 3 MPa and 170 C. Equilibrium is established after a few minutes or less. A 10 parameter kinetic model which embodies a first order elimination reaction and a first order nucleophilic substitution reaction adequately describes the influences of reactant (ethanol, water, and tert-butyl alcohol) concentrations, acid concentration, and residence time on product yields. The fit of the model to the data improves when the influence of water on the solvent`s dielectric constant is included by the addition of two more parameters. One finding of the simulation effort is that protonated isobutene (the key ingredient in ETBE formation) forms only from tert-butyl alcohol (not isobutene) under the conditions employed in this work. Thus tert-butyl alcohol should be preferred over isobutene as a reactant for ETBE synthesis at elevated pressures and temperatures.

  8. In vitro antiproliferative and apoptosis-inducing activities of crude ethyle alcohole extract of Quercus brantii L. acorn and subsequent fractions.

    PubMed

    Moradi, Mohammad-Taghi; Karimi, Ali; Alidadi, Somayeh

    2016-03-01

    Cancer cell resistance to widely used chemotherapeutic agents is gradually developed. Natural products, mainly isolated from medicinal plants, have been considered as valuable sources for herbal anticancer drugs. The present study aimed to evaluate in vitro antiproliferative and apoptosis-inducing activities of crude ethyle alcohole extract and four fractions of Q. brantii acorn. Crude ethyle alcohole extract of Q. brantii acorn was prepared and subjected to fractionation with different polarity. Subsequently, the extract and the fractions wereevaluated for their in vitro antiproliferative activity in two cancerous (Hela and AGS) and one normal (HDFs) cell lines using MTT [3-(4, 5-dimethylthiazol-2ol) 2, 5 diphenyltetrazoliumbromide] assay. To determine whether the cytotoxicity of these compounds involved the induction of apoptosis, Hela cells were treated with IC50 concentrations of test compounds, stained with both propidium iodide (PI) and Annexin V-fluorescein isothiocyanate (FITC), and analyzed by flow cytometry. In vitro cytotoxicity assay showed that the cell viability was significantly reduced in a dose-dependent manner following treatment with crude ethyle alcohole extract and Cholophorm and n-Butanol fractions. Based on the probit regression model, antiproliferative activities of crude ethyle alcohole extract, Cholophorm fraction, and n-Butanol fraction on Hela and AGS cells and HDFs cells were significantly different (P < 0.001). The results of flow cytometric analysis showed that crude ethyle alcohole extract and two fractions of Q. brantii acorn induced early apoptotic cell death. These findings suggest that crude ethyle alcohole extract and Cholophorm and n-Butanol fractions of Q. brantii acorn suppress the proliferation of cancer cells through induction of early apoptosis.

  9. Chirped Pulse-Fourier Transform Microwave Spectroscopy of Ethyl 3-METHYL-3-PHENYLGLYCIDATE (strawberry Aldehyde)

    NASA Astrophysics Data System (ADS)

    Shipman, Steven T.; Neill, Justin L.; Muckle, Matt T.; Suenram, Richard D.; Pate, Brooks H.

    2009-06-01

    Strawberry aldehyde (C_{12} O_3 H_{14}), a common artificial flavoring compound, has two non-interconvertible conformational families defined by the relative stereochemistry around its epoxide carbons. In one family, referred to as the trans because the two large substituents (a phenyl ring and an ethyl ester) are on opposite sides of the epoxide ring, these two substituents are unable to interact with each other. However, in the cis family, there is a long-range interaction that is difficult to accurately capture in electronic structure calculations. Three trans and two cis conformations have been assigned by broadband chirped pulse Fourier transform microwave spectroscopy, along with the C-13 isotopomers in natural abundance for one conformer from each of the families. The agreement of the rotational constants, relative dipole moments, and relative energies between theory and experiment is excellent, even at relatively crude levels of theory, for the trans family, but is quite poor for the cis conformers. In addition, due to the reactivity of strawberry aldehyde and the high temperature to which it must be heated to yield a suitable vapor pressure, several decomposition products have been assigned, and more, as of yet unassigned, are likely to be present. This project demonstrates some of the challenges in performing large-molecule rotational spectroscopy.

  10. [Validity of carbohydrate-deficient transferrine (CDT) in assessing chronic abuse of ethyl alcohol in urban public transport workers].

    PubMed

    Fustinoni, Silvia; De Vecchi, M; Bordini, L; Todaro, A; Riboldi, L; Bertazzi, P A

    2009-01-01

    The aim of this study was to verify the ability of some chemical-clinical parameters, with particular emphasis on carbohydrate-deficient transferrin (CDT), in assessing chronic abuse of ethanol in a group of urban public transport workers. In the 512 subjects, public transport tram drivers, all males, who entered the study, information on the intake of alcoholic beverages was collected during the periodical health surveillance controls performed according to Italian legislation (DM88/99). In the study subjects the following clinical-chemical parameters were measured: CDT gamma-glutamyltransferase (GGT), mean corpuscular volume of erythrocytes (MCV), aspartate aminotransferase (AST), alanine aminotransferase (ALT). The subjects were divided into five groups according to different levels of alcohol intake: non-drinkers, occasional drinkers, moderate drinkers, habitual drinkers and heavy drinkers. The median values of CDT GGT and MCV were higher in drinkers than in non-drinkers, with an increasing trend in proportion to the amount of ethanol ingested. The validity of each parameter in determining chronic abuse of ethyl alcohol was calculated taking as true the statement on alcohol intake made spontaneously by the subject. CDT was confirmed as the parameter with the best sensitivity and specificity: 90% and 98%, respectively, the negative predictive value was 99%, while the positive predictive power was 45%. The combination of CDT with GGT or MCV led to small improvements in the positive predictive ability, which reached 50% for CDT and MCV and 60% for CDT and GGT. Our results confirmed that, also in the workplace, CDT is the most important parameter for the diagnosis of chronic abuse of alcohol intake, but also showed that the positivity of this marker cannot be taken as certainty of abuse. The adoption of further diagnostic tools is therefore proposed, such as a specific questionnaire to collect information on alcohol intake, and in case of positive CDT a second

  11. Effects of Blending Alcohols with Poultry Fat Methyl Esters on Cold Flow Properties

    USDA-ARS?s Scientific Manuscript database

    The low temperature operability, kinematic viscosity, and acid value of poultry fat methyl esters were improved with addition of ethanol, isopropanol, and butanol in a linear fashion with increasing alcohol content. The flash point decreased and moisture content increased upon addition of alcohols t...

  12. Effect of combined administration of aripiprazole and fluoxetine on cognitive functions in female rats exposed to ethyl alcohol.

    PubMed

    Kus, Krzysztof; Ratajczak, Piotr; Czaja, Natasza; Zaprutko, Tomasz; Nowakowska, Elżbieta

    2017-01-01

    Alcoholism is a chronic and recurrent disease. The studies on ethyl alcohol show a progressive deterioration of cognitive functions (motor hyperactivity, operating memory). The aim of the study was to establish whether combined single and chronic administration of aripiprazole (ARI) and fluoxetine (FLU) affects animal locomotor activity or modifies spatial memory functions in female rats exposed to ethyl alcohol. Female Wistar rats were studied in the Morris Water Maze (MWM) and locomotor activity test. Rats undergoing the MWM and locomotor activity test were injected with saline on day 1, 7, 14 and 21 of testing. Results showed a statistically significant mobility increase in the group of ethanol‑exposed females (CEt) (21 days) compared to the non-ethanol-exposed group (CNEt). Upon ARI administration to CEt, no statistically significant differences in animal mobility were found, either upon single or chronic administration. Chronic administration of FLU (21 days) as well as combined administration of ARI+FLU (14 and 21 days) caused a statistically significant reduction of the females' mobility compared to the control CEt group. Single and chronic administration of ARI (7x) both show a spatial memory improvement in CEt. No memory improvement was observed, however, after 14 and 21 days of ARI administration. FLU, likewise, improved spatial memory both upon single and chronic administration. Combined administration of ARI+FLU improved memory in CEt only upon single administration. Lack of effect upon chronic administration may be due to tolerance to memory improvement developing upon combined administration of ARI+FLU. It can be concluded that ARI (1.5 mg/kg), FLU (5 mg/kg), and combined administration of these drugs improves spatial memory in CEt.

  13. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation.

    PubMed

    Liu, Yunlong; Balaraman, Yokesh; Wang, Guohua; Nephew, Kenneth P; Zhou, Feng C

    2009-10-01

    Alcohol exposure during development can cause variable neurofacial deficit and growth retardation known as fetal alcohol spectrum disorders (FASD). The mechanism underlying FASD is not fully understood. However, alcohol, which is known to affect methyl donor metabolism, may induce aberrant epigenetic changes contributing to FASD. Using a tightly controlled whole-embryo culture, we investigated the effect of alcohol exposure (88mM) at early embryonic neurulation on genome-wide DNA methylation and gene expression in the C57BL/6 mouse. The DNA methylation landscape around promoter CpG islands at early mouse development was analyzed using MeDIP (methylated DNA immunoprecipitation) coupled with microarray (MeDIP-chip). At early neurulation, genes associated with high CpG promoters (HCP) had a lower ratio of methylation but a greater ratio of expression. Alcohol-induced alterations in DNA methylation were observed, particularly in genes on chromosomes 7, 10, and X; remarkably, a >10 fold increase in the number of genes with increased methylation on chromosomes 10 and X was observed in alcohol-exposed embryos with a neural tube defect phenotype compared to embryos without a neural tube defect. Significant changes in methylation were seen in imprinted genes, genes known to play roles in cell cycle, growth, apoptosis, cancer, and in a large number of genes associated with olfaction. Altered methylation was associated with significant (p<0.01) changes in expression for 84 genes. Sequenom EpiTYPER DNA methylation analysis was used for validation of the MeDIP-chip data. Increased methylation of genes known to play a role in metabolism (Cyp4f13) and decreased methylation of genes associated with development (Nlgn3, Elavl2, Sox21 and Sim1), imprinting (Igf2r) and chromatin (Hist1h3d) was confirmed. In a mouse model for FASD, we show for the first time that alcohol exposure during early neurulation can induce aberrant changes in DNA methylation patterns with associated changes in

  14. Chloromethane, Methyl Donor in Veratryl Alcohol Biosynthesis in Phanerochaete chrysosporium and Other Lignin-Degrading Fungi

    PubMed Central

    Harper, David B.; Buswell, John A.; Kennedy, James T.; Hamilton, John T. G.

    1990-01-01

    Chloromethane, a gaseous natural product implicated in methylation processes in Phellinus pomaceus, has been shown to act as methyl donor in veratryl alcohol biosynthesis in the lignin-degrading fungi Phanerochaete chrysosporium, Phlebia radiata, and Coriolus versicolor, none of which released detectable amounts of CH3Cl during growth. When P. chrysosporium was grown in a medium containing C2H3Cl, levels of C2H3 incorporation into the 3- and 4-O-methyl groups of veratryl alcohol were very high and initially similar to those observed when the medium was supplemented with l-[methyl-2H3]methionine. When C2H3Cl was added to cultures actively synthesizing veratryl alcohol, incorporation of C2H3 was very rapid, with 81% of veratryl alcohol labeled after 12 h. By contrast, incorporation of C2H3 from l-[methyl-2H3]methionine was comparatively slow, attaining 10% after 12 h. It is proposed that these lignin-degrading fungi possess a tightly channeled multienzyme system in which CH3Cl biosynthesis is closely coupled to CH3Cl utilization for methylation of veratryl alcohol precursors. PMID:16348350

  15. Ageing, chronic alcohol consumption and folate are determinants of genomic DNA methylation, p16 promoter methylation and the expression of p16 in the mouse colon

    USDA-ARS?s Scientific Manuscript database

    Elder age and chronic alcohol consumption are important risk factors for the development of colon cancer. Each factor can alter genomic and gene-specific DNA methylation. This study examined the effects of aging and chronic alcohol consumption on genomic and p16-specific methylation, and p16 express...

  16. Aging and chronic alcohol consumption are determinants of p16 gene expression, genomic DNA methylation and p16 promoter methylation in the mouse colon

    USDA-ARS?s Scientific Manuscript database

    Elder age and chronic alcohol consumption are important risk factors for the development of colon cancer. Each factor can alter genomic and gene-specific DNA methylation. This study examined the effects of aging and chronic alcohol consumption on genomic and p16-specific methylation, and p16 express...

  17. Experimental and theoretical investigations of the rate constant for the reaction of the hydroxyl radical with methyl ethyl ketone

    NASA Astrophysics Data System (ADS)

    Vimal, D.; Stevens, P. S.

    2007-12-01

    Methyl ethyl ketone (MEK) or 2-butanone is a high-volume industrial solvent with a production rate greater than 70 million lbs yr-1. It is also a photo-oxidation product of several volatile organic compounds (VOCs) in the atmosphere. MEK is removed from the atmosphere primarily by its reaction with hydroxyl (OH) radical. As a result, knowledge of the chemical mechanism and temperature dependence of this reaction is important as MEK may be transported to the upper troposphere and influence the chemistry of this region of the atmosphere. We present absolute measurements of the rate constant and the kinetic isotope effect for the reaction of MEK with OH radicals at low pressure and over the temperature range 263-388 K using a discharge-flow technique coupled with resonance fluorescence detection of OH radicals. Theoretical studies of the potential energy surface suggest that the reaction of MEK and OH proceeds by H-abstraction mediated by the formation of a 7- membered hydrogen-bonded complex. This mechanism is similar to that of several other atmospherically relevant oxygenated VOCs such as acetone, acetic acid and hydroxyacetone. The influence of the pre-reactive complex on the temperature dependence for this reaction will be discussed.

  18. DFT study on the adsorption of diethyl, ethyl methyl, and dimethyl ethers on the surface of gallium doped graphene

    NASA Astrophysics Data System (ADS)

    Shokuhi Rad, Ali; Sani, Emad; Binaeian, Ehsan; Peyravi, Majid; Jahanshahi, Mohsen

    2017-04-01

    In this study, we used density functional theory (DFT) to search on the adsorption properties of three important compounds of ether family; diethyl ether (DEE), ethyl methyl ether (EME), and dimethyl ether (DME) on the surface of Gallium doped graphene (GaG). We used three functionals (B3LYP, wb97xd, and MPW1PW91) for optimization and calculation of adsorption energy. After fully optimization, we scrutinized on the charge allocations on the adsorbed ethers as well as GaG (at the area of interaction) based on natural bond orbitals (NBO). Besides, we have calculated the amount of charge transfer upon adsorption of each analyte. We revel that GaG is an ideal adsorbent for chemisorption of all above-mentioned ethers. There is a little difference between the values of adsorption; -123.5, -120, and -118.3 kJ/mol (based on wb97xd) for DEE, EME, and DME, respectively. We found significant changes in the electronic structure of both adsorbent and adsorbate upon adsorption. Moreover, results of charge analyses confirm GaG is a p-type semiconductor.

  19. Potentiometric stripping analysis of methyl and ethyl parathion employing carbon nanoparticles and halloysite nanoclay modified carbon paste electrode.

    PubMed

    Sanghavi, Bankim J; Hirsch, Gary; Karna, Shashi P; Srivastava, Ashwini K

    2012-07-20

    Carbon nanoparticles (CNPs) and halloysite nanoclay (HNC) modified carbon paste electrode (HNC-CNP-CPE) was developed for the determination of methyl parathion (MP) and ethyl parathion (EP). The electrochemical behavior of these molecules was investigated employing cyclic voltammetry (CV), chronocoulometry (CC), electrochemical impedance spectroscopy (EIS) and potentiometric stripping analysis (PSA). After optimization of analytical conditions employing this electrode at pH 5.0 in acetate buffer (0.1 M), the peak currents were found to vary linearly with its concentration in the range of 1.55×10(-9) to 3.67×10(-6) M and 1.21×10(-9) to 4.92×10(-6) M for MP and EP, respectively. The detection limits (S/N=3) of 4.70×10(-10) M and 3.67×10(-10) M were obtained for MP and EP, respectively, using PSA. The prepared modified electrode showed several advantages such as simple preparation method, high sensitivity, very low detection limits and excellent reproducibility. The proposed method was employed for the determination of MP and EP in fruits, vegetables, water and soil samples.

  20. Effects of a novel allelochemical ethyl 2-methyl acetoacetate (EMA) on the ultrastructure and pigment composition of cyanobacterium Microcystis aeruginosa.

    PubMed

    Hong, Yu; Huang, Jing-Jing; Hu, Hong-Ying

    2009-10-01

    Allelochemical ethyl 2-methyl acetoacetate (EMA) can significantly inhibit the growth of bloom-forming Microcystis aeruginosa. In order to assess the implication of the damage of EMA on the algal photosynthetic apparatus, the effects of EMA on the algal ultrastructure and pigment composition were investigated. At initial exposure time to EMA (0-40 h), algal allophycocyanin, phycoerythrin and carotenoid degraded firstly; chlorophyll a increased, especially by 47% in the algae exposed to 2 mg L(-1) of EMA; phycocyanin was not significantly affected; lipid bodies increased remarkably. After 40 h of EMA exposure, chlorophyll a decreased gradually, especially by 45% in the algae exposed to 4 mg L(-1) of EMA; lipid bodies greatly reduced but cyanophycin granules accumulated; thylakoid structures were dissolved or disappeared with the presence of numerous vacuoles. These results showed that all ophycocyanin, phycoerythrin and carotenoid were more sensitive to EMA than other pigments, the cells of M. aeruginosa was stressed by EMA with the occurrence of cyanophycin granules and the photosynthesis pigments and ultrastructure of M. aeruginosa were quickly destroyed by EMA with exposure time increasing.

  1. Long-Term Stability of Inorganic, Methyl and Ethyl Mercury in Whole Blood: Effects of Storage Temperature and Time

    PubMed Central

    Sommer, Yuliya L.; Ward, Cynthia D.; Pan, Yi; Caldwell, Kathleen L.; Jones, Robert L.

    2016-01-01

    In this study, we evaluated the effect of temperature on the long-term stability of three mercury species in bovine blood. We used inductively coupled plasma mass spectrometry (ICP-MS) analysis to determine the concentrations of inorganic (iHg), methyl (MeHg) and ethyl (EtHg) mercury species in two blood pools stored at temperatures of −70, −20, 4, 23°C (room temperature) and 37°C. Over the course of a year, we analyzed aliquots of pooled specimens at time intervals of 1, 2, 4 and 6 weeks and 2, 4, 6, 8, 10 and 12 months. We applied a fixed-effects linear model, step-down pairwise comparison and coefficient of variation statistical analysis to examine the temperature and time effects on changes in mercury species concentrations. We observed several instances of statistically significant differences in mercury species concentrations between different temperatures and time points; however, with considerations of experimental factors (such as instrumental drift and sample preparation procedures), not all differences were scientifically important. We concluded that iHg, MeHg and EtHg species in bovine whole blood were stable at −70, −20, 4 and 23°C for 1 year, but blood samples stored at 37°C were stable for no more than 2 weeks. PMID:26912563

  2. A comparison between serum carbohydrate-deficient transferrin and hair ethyl glucuronide in detecting chronic alcohol consumption in routine.

    PubMed

    Bianchi, Vincenza; Premaschi, Simone; Raspagni, Alessia; Secco, Serena; Vidali, Matteo

    2015-05-01

    In heavy alcohol consumption laboratory tests represent an objective evidence. In this study we compared older and newer biomarkers in blood and in hair. Carbohydrate-deficient transferrin (CDT), ethyl glucuronide (EtG), AST, ALT, GGT, MCV were measured in a large sample (n = 562). All people declared no alcohol consumption within the last 3 months. Serum CDT was measured by the candidate HPLC reference method and expressed as relative amount of disialotransferrin (%DST: cutoff 1.7%). EtG was measured in hair by a validated in-house method by LC-MS/MS (cutoff 30 pg/mg). Respectively, 42 (7.5%) and 76 (13.5%) subjects were positive to CDT and EtG. In particular, 30 (5.3%) subjects were positive to both tests, 12 (2.1%) only to CDT, while 46 (8.2%) only to EtG. The agreement (positive and negative pairs) between CDT and EtG was 89.7%. Interestingly, 6 out of 12 (50%) CDT-positive subjects had EtG < 15 pg/mg, whereas 27 out of 46 (59%) EtG-positive subjects had CDT < 1.1%. Forty-one out of 76 (54%) EtG-positive subjects display EtG values within 30-50 pg/mg. Large variability exists between CDT and EtG in detecting chronic alcohol consumption. We suggest to use CDT, or a combination of different biomarkers, to identify alcohol abuse in a forensic context. EtG results close to the cutoff (30-50 pg/mg) should be cautiously considered before any sanction is assigned. © The Author 2015. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  3. [The Use of the abundance ratio of 13C and 12C isotopes for characteristic of the origin of ethyl alcohol].

    PubMed

    Ziakun, A M; Zakharchenko, V N; Kudriavtseva, A I; Peshenko, V P; Mashkina, L P; Vozniak, V M; Shurukhin, Iu V

    2000-01-01

    During alcohol fermentation, the carbon isotope composition of ethyl alcohol produced depended on the substrate used and was characterized by the value of delta 13C equal to -24.7 +/- 0.8/1000 (wheat grain), -22 +/- 0.1/1000 (rye grain), -22 +/- 0.5/1000 (products of wood hydrolysis), -15.3 +/- 0.3/1000 (maize grain) and -10 +/- 0.1/1000 (sugar cane). The isotope composition of carbon of ethyl alcohol obtained during catalytic hydroxylation of ethylene has a delta 13C of -30.6 +/- 0.3/1000. The possibility of quantitative determination of specific components in mixtures of ethanol samples with various isotope compositions (chemical synthesis and alcohol fermentation of raw material from C3- or C4-plants) was shown.

  4. Synthesis of fruity ethyl esters by acyl coenzyme A: alcohol acyltransferase and reverse esterase activities in Oenococcus oeni and Lactobacillus plantarum.

    PubMed

    Costello, P J; Siebert, T E; Solomon, M R; Bartowsky, E J

    2013-03-01

    To assess the abilities of commercial wine lactic acid bacteria (LAB) to synthesize potentially flavour active fatty acid ethyl esters and determine mechanisms involved in their production. Oenococcus oeni AWRI B551 produced significant levels of ethyl hexanoate and ethyl octanoate following growth in an ethanolic test medium, and ester formation generally increased with increasing pH (4.5 > 3.5), anaerobiosis and precursor supplementation. Cell-free extracts of commercial O. oeni strains and Lactobacillus plantarum AWRI B740 were also tested for ester-synthesizing capabilities in a phosphate buffer via: (i) acyl coenzyme A: alcohol acyltransferase (AcoAAAT) activity and (ii) reverse esterase activity. For both ester-synthesizing activities, strain-dependent variation was observed, with AcoAAAT activity generally greater than reverse esterase. Reverse esterase in O. oeni AWRI B551 also esterified 1-propanol to produce propyl octanoate, and deuterated substrates ([(2)H(6)]ethanol and [(2)H(15)]octanoic acid) to produce the fully deuterated ester, [(2)H(5)]ethyl [(2)H(15)]octanoate. Wine LAB exhibit ethyl ester-synthesizing capability and possess two different ester-synthesizing activities, one of which is associated with an acyl coenzyme A: alcohol acyltransferase. This study demonstrates that wine LAB exhibit enzyme activities that can augment the ethyl ester content of wine. This knowledge will facilitate greater control over the impacts of malolactic fermentation on the fruity sensory properties and quality of wine. © 2012 Australian Wine Research Institute © 2012 The Society for Applied Microbiology.

  5. The effects of hyperbaric air in combination with ethyl alcohol and dextroamphetamine on serial choice-reaction time.

    PubMed

    Hamilton, K; Fowler, B; Porlier, G

    1989-04-01

    The effects of ethyl alcohol (1.5 ml/kg body weight) and dextroamphetamine (15 mg) on nitrogen narcosis were investigated in two experiments using a 2-, 3- and 4-choice serial reaction time (RT) task with accuracy held constant. Narcosis was induced with air at 6.4 atmospheres absolute (ATA) and a heliox mixture was used as a control. Heliox at 6.4 ATA did not affect RT. Alcohol alone and air at 6.4 ATA increased the intercept of the Hick-Hyman function whereas amphetamine alone decreased it. The increased intercept with air at 6.4 ATA was exacerbated additively by alcohol and ameliorated antagonistically by amphetamine. The slope of the Hick-Hyman function was unaffected. Frequency distributions were shifted as a whole and their shapes were unaltered. It is concluded that these data are consistent with the slowed processing model which proposes that the effects of narcosis on performance are due to a decrease in arousal in conjunction with secondary changes in task strategy.

  6. Laboratory simulated dissipation of metsulfuron methyl and chlorimuron ethyl in soils and their residual fate in rice, wheat and soybean at harvest.

    PubMed

    Sanyal, Nilanjan; Pramanik, Sukhendu Kumar; Pal, Raktim; Chowdhury, Ashim

    2006-03-01

    Two sulfonylurea herbicides, metsulfuron methyl (Ally 20 WP) and chlorimuron ethyl (Classic 25 WP) were evaluated for their dissipation behaviour in alluvial, coastal saline and laterite soils under laboratory incubated condition at 60% water holding capacity of soils and 30 degrees C temperature was maintained. In field study herbicides were applied twice for the control of grasses, annual and perennials broad leaves weeds and sedges in rice, wheat and soybean to find out the residual fate of both the herbicides on different matrices of respective crops after harvest. Extraction and clean up methodologies for the herbicides were standardized and subsequently analyzed by HPLC. The study revealed that the half-lives of metsulfuron methyl and chlorimuron ethyl ranged from 10.75 to 13.94 d irrespective of soils and doses applied. Field trials with rice, wheat and soybean also revealed that these two herbicides could safely be recommended for application as no residues were detected in the harvest samples.

  7. Effect of hair care and hair cosmetics on the concentrations of fatty acid ethyl esters in hair as markers of chronically elevated alcohol consumption.

    PubMed

    Hartwig, Sven; Auwärter, Volker; Pragst, Fritz

    2003-01-28

    Fatty acid ethyl esters (FAEE) can be used as alcohol markers in hair. It was investigated in this study whether this diagnostic method is disturbed by hair care and hair cosmetics. Traces of ethyl myristate, ethyl palmitate, ethyl oleate and ethyl stearate were detected in all of 49 frequently applied hair care products by headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The highest concentration was 0.003% in a hair wax. From experiments with separated hair samples of alcoholics as well as from the evaluation of the FAEE concentrations and the data about hair care of 75 volunteers (alcoholics, social drinkers and teetotalers) follows that usual shampooing, permanent wave, dyeing, bleaching or shading are of minor importance as compared to the drinking amount and other individual features. However, false positive results were found after daily treatment with a hair lotion containing 62.5% ethanol, with a deodorant and with a hair spray. As an explanation, it is assumed that FAEE are formed in the sebum glands also after regular topical application of products with a higher ethanol content.

  8. Heat-activated persulfate oxidation of methyl- and ethyl-parabens: Effect, kinetics, and mechanism.

    PubMed

    Chen, Yiqun; Deng, Pinya; Xie, Pengchao; Shang, Ran; Wang, Zongping; Wang, Songlin

    2017-02-01

    We evaluated the degradation of methylparaben (MeP) and ethylparaben (EtP), two representative parabens, using the heat-activated persulfate system in a laboratory. Both sulfate and hydroxyl radicals contributed to the removal of the two parabens. The degradations of both MeP and EtP were improved by increasing the heating temperature or persulfate dose in accordance with a pseudo-first-order reaction model. The oxidation efficiency of parabens was found to be pH-dependent; decreasing in the order pH 5.0 > 7.0 > 9.0. The presence of chloride, bicarbonate, or humic acid was found to inhibit the degradation of the two parabens to some extent because of competition for the reactive radicals, with humic acid having the most serious effect. Dealkylation of the methyl unit, decarboxylation of the carboxylic group, and subsequent hydrolysis are proposed to be involved in the degradation pathway of MeP. The results suggest that the heat-activated persulfate system might be efficiently applied in the treatment of paraben-containing water samples. This was also supported by the results of applying this system to treat a real water sample containing both MeP and EtP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-ethyl-3-methyl-imidazolium nitrate.

    PubMed

    Sobota, Marek; Dohnal, Vladimír; Vrbka, Pavel

    2009-04-02

    Infinite dilution activity coefficients gamma(1)(infinity) and gas-liquid partition coefficients K(L) of 30 selected hydrocarbons, alcohols, ketones, ethers, esters, haloalkanes, nitrogen- and sulfur-containing compounds in the ionic liquid (IL) 1-ethyl-3-methylimidazolium nitrate [EMIM][NO(3)] were determined by gas-liquid chromatography at five temperatures in the range from 318.15 to 353.15 K. Relative contribution of adsorption at gas-liquid interphase to the overall solute retention, as examined by varying sample size and IL loading in the column, was found negligible. Partial molar excess enthalpies and entropies at infinite dilution were derived from the temperature dependence of the gamma(1)(infinity) values. The linear free energy relationship (LFER) solvation model was used to correlate successfully the KL values. The LFER correlation parameters and excess thermodynamic functions were analyzed to disclose molecular interactions operating between the IL and the individual solutes. In addition, the promising potential of [EMIM][NO(3)] for applications in solvent-aided separation processes was identified, the selectivities of [EMIM][NO(3)] for separation of aromatic hydrocarbons and thiophene from saturated hydrocarbons ranking among the highest ever observed with ILs or molecular solvents.

  10. Kinetic study of the reaction of the hydroxyl radical (OH) with methyl ethyl ketone (2-butanone) and its deuterated isotopomers at low pressure

    NASA Astrophysics Data System (ADS)

    Liljegren, J. A.; Stevens, P. S.

    2012-12-01

    Methyl ethyl ketone (2-butanone) in the atmosphere comes from a variety of sources. It is produced commercially as an industrial ketone. It can be formed as a result of the OH or Cl-initiated oxidation of C4-C6 alkanes, primarily n-butane, or from the reaction of some alkenes with OH or O3. Biogenic sources include direct emissions from certain plants as well as emissions from decaying plant matter. Methyl ethyl ketone is removed from the atmosphere primarily by its reaction with OH. A product of this reaction includes acetaldehyde, which is a hazardous air pollutant, can further react to produce peroxy acetyl nitrate (PAN), and can be a significant source of free radicals to the atmosphere. The absolute rate constant for the reaction of OH with methyl ethyl ketone has been measured as a function of temperature at low pressure using discharge-flow techniques coupled with laser induced fluorescence (LIF) detection of OH. In addition, measurements of the rate constants for the reactions of OH with two deuterated isotopomers of methyl ethyl ketone, including CD3C(O)CH2CH3 and CH3C(O)CD2CD3, will be presented to gain a better understanding of the mechanism for this reaction. Theoretical studies of the potential energy surface for this reaction suggest that the reaction proceeds through the formation of a hydrogen-bonded pre-reactive complex, similar to that of several other atmospherically relevant oxygenated VOCs such as acetone, acetic acid, and hydroxyacetone.

  11. A library synthesis of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as anti-tumor agents.

    PubMed

    Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi

    2004-09-06

    As a result of a hit-to-lead program using a technique of solution-phase parallel synthesis, a highly potent (2,4-dimethoxyphenyl)-[6-(3-fluorophenyl)-4-hydroxy-3-methylbenzofuran-2-yl]methanone (15b) was synthesized as an optimized derivative of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which was discovered as a screening hit from small-molecule libraries and exhibited selective cytotoxicity against a tumorigenic cell line.

  12. Ethyl Carbamate in Alcoholic Beverages from Mexico (Tequila, Mezcal, Bacanora, Sotol) and Guatemala (Cuxa): Market Survey and Risk Assessment

    PubMed Central

    Lachenmeier, Dirk W.; Kanteres, Fotis; Kuballa, Thomas; López, Mercedes G.; Rehm, Jürgen

    2009-01-01

    Ethyl carbamate (EC) is a recognized genotoxic carcinogen, with widespread occurrence in fermented foods and beverages. No data on its occurrence in alcoholic beverages from Mexico or Central America is available. Samples of agave spirits including tequila, mezcal, bacanora and sotol (n=110), and of the sugarcane spirit cuxa (n=16) were purchased in Mexico and Guatemala, respectively, and analyzed for EC. The incidence of EC contamination was higher in Mexico than in Guatemala, however, concentrations were below international guideline levels (<0.15 mg/L). Risk assessment found the Margin of Exposure (MOE) in line with that of European spirits. It is therefore unlikely that EC plays a role in high rates of liver cirrhosis reported in Mexico. PMID:19440288

  13. H sub 3 PMo sub 12 O sub 40 -doped polyacetylene as a catalyst for ethyl alcohol conversion

    SciTech Connect

    Pozniczek, J.; Bielanski, A. ); Kulszewicz-Bajer, I.; Zagorska, M. ); Kruczala, K.; Dyrek, K. ); Pron, A. )

    1991-12-01

    A new and highly efficient catalyst was obtained by exploiting the unique ability of polyacetylene to incorporate heteropolyanions (HPA) of the Keggin type via oxidative doping. 12-Molybdophosphoric acid, 20.8 wt%, was introduced into the polymer. A uniform distribution of HPA over the cross section of the polymer film was found. However, the concentration of HPA seemed to be higher at the surface of the polymer fibers than in their bulk. The conversion of ethyl alcohol was used as a catalytic test reaction. The catalyst exhibited both acid-base activity (formation of ethylene and diethyl ether) as well as redox activity (formation of acetaldehyde). The acid-base activity was 10 times higher than that of unsupported H{sub 3}PMo{sub 12}O{sub 40}, and the redox activity was about 40 times higher.

  14. Ethyl carbamate in alcoholic beverages from Mexico (tequila, mezcal, bacanora, sotol) and Guatemala (cuxa): market survey and risk assessment.

    PubMed

    Lachenmeier, Dirk W; Kanteres, Fotis; Kuballa, Thomas; López, Mercedes G; Rehm, Jürgen

    2009-01-01

    Ethyl carbamate (EC) is a recognized genotoxic carcinogen, with widespread occurrence in fermented foods and beverages. No data on its occurrence in alcoholic beverages from Mexico or Central America is available. Samples of agave spirits including tequila, mezcal, bacanora and sotol (n=110), and of the sugarcane spirit cuxa (n=16) were purchased in Mexico and Guatemala, respectively, and analyzed for EC. The incidence of EC contamination was higher in Mexico than in Guatemala, however, concentrations were below international guideline levels (<0.15 mg/L). Risk assessment found the Margin of Exposure (MOE) in line with that of European spirits. It is therefore unlikely that EC plays a role in high rates of liver cirrhosis reported in Mexico.

  15. Solubility of anthracene in binary alcohol + 2-methyl-1-propanol and alcohol + 3-methyl-1-butanol solvent mixtures

    SciTech Connect

    Zvaigzne, A.I.; Acree, W.E. Jr.

    1995-07-01

    Solid-liquid equilibrium data of organic nonelectrolyte systems are becoming increasingly important in the petroleum industry, particularly in light of present rends toward heavier feedstocks and known carcinogenicity/mutagenicity of many of the larger polycyclic aromatic compounds. Experimental solubilities are reported for anthracene dissolved in binary 2-propanol + 3-methyl-1-butanol, 2-propanol + 2-methyl-1-propanol, 1-propanol + 2-methyl-1-propanol, 1-octanol + 2-methyl-1-propanol, 1-butanol + 3-methyl-1-butanol, 2-butanol + 3-methyl-1-butanol, 2-butanol + 2-methyl-1-propanol, 1-octanol + 3-methyl-1-butanol, and 2-methyl-1-propanol + 3-methyl-1-butanol solvent mixtures at 25 C. Results of these measurements are used to test two mathematical representations based upon the combined nearly ideal binary solvent (NIBS)/Redlich-Kister equation and modified Wilson model. For the systems studied, the combined NIBS/Redlich-Kister and modified Wilson equations were found to provide very reasonable mathematical representations, with most deviations between experimental and back-calculated values being on the order of {+-} 1.0% or less.

  16. Influence of tobacco smoke exposure on pharmacokinetics of ethyl alcohol in alcohol preferring and non-preferring rats.

    PubMed

    Florek, Ewa; Kulza, Maksymilian; Piekoszewski, Wojciech; Gomółka, Ewa; Jawień, Wojciech; Teżyk, Artur; Napierała, Marta

    2015-10-01

    A vast majority of people who abuse alcohol are also defined as "heavy smokers". Tobacco smokes induces CYP1A1, CYP1A2, CYP2A6 isoenzymes, but on the other hand, ethanol activates CYP2E1, which can be important during combined, chronic use of both of them. The aim of the study was to evaluate the influence of tobacco smoke xenobiotics on ethanol pharmacokinetics and the level of its metabolites in alcohol preferring and non-preferring rats. Ethanol, acetaldehyde, methanol, n-propanol and n-butanol were determined in whole blood by means of gas chromatography. Cotinine in serum was determined by LC-MS/MS. A non-compartmental analysis (cotinine, acetaldehyde) and Widmark equation (ethanol) were used for pharmacokinetic parameters calculation. Ethanol levels were lower in animals exposed to tobacco smoke compared to rats receiving this xenobiotic, without a prior exposure to tobacco smoke. Lower values of the studied pharmacokinetic parameters were observed in the alcohol preferring males compared to the non-alcohol preferring rats. Both n-propanol and n-butanol had higher values of the pharmacokinetic parameters analyzed in the animals exposed to tobacco smoke and ethanol compared to those, which ethanol was administered only once. An increase in maximum concentration and the area under concentration-time curve for ethanol after its administration to rats preferring alcohol and exposed to tobacco smoke are accompanied by a decrease in the volume of distribution. The changes in the volume of distribution may be caused by an increase in the first-pass effect, in the intestinal tract and/or in the liver. The acetaldehyde elimination rate constant was significantly higher in alcohol-preferring animals. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. The impact of recent alcohol use on genome wide DNA methylation signatures.

    PubMed

    Philibert, Robert A; Plume, Jeffrey M; Gibbons, Frederick X; Brody, Gene H; Beach, Steven R H

    2012-01-01

    Chronic alcohol intake is associated with a wide variety of adverse health outcomes including depression, diabetes, and heart disease. Unfortunately, the molecular mechanisms through which these effects are conveyed are not clearly understood. To examine the potential role of epigenetic factors in this process, we examined the relationship of recent alcohol intake to genome wide methylation patterns using the Illumina 450 Methylation Bead Chip and lymphoblast DNA derived from 165 female subjects participating in the Iowa Adoption Studies. We found that the pattern of alcohol use over the 6-months immediately prior to phlebotomy was associated with, severity-dependent changes in the degree of genome wide methylation that preferentially hypermethylate the central portion of CpG islands with methylation at cg05600126, a probe in ABR, and the 5' untranslated region of BLCAP attaining genome wide significance in two point and sliding window analyses of probe methylation data, respectively. We conclude that recent alcohol use is associated with widespread changes in DNA methylation in women and that further study to confirm these findings and determine their relationship to somatic function are in order.

  18. 2-Ethyl-6,6-ethyl­enedisulfanediyl-7-methoxy­methyl-1,2,3,4,5,6-hexa­hydro-1,5-methano­azocino[4,3-b]indol-3-one

    PubMed Central

    Tercan, Barış; Şahin, Ertan; Patır, Süleyman; Hökelek, Tuncer

    2010-01-01

    The title compound, C20H24N2O2S2, consists of a tetra­cyclic ring system containing an azocino skeleton with ethyl, dithiol­ane and methoxy­methyl groups as substituents. The benzene and five-membered rings are nearly coplanar, with a dihedral angle of 2.78 (11)°. The dithiol­ane ring adopts an envelope conformation. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains nearly parallel to the c axis. Two C—H⋯π inter­actions are also present. PMID:21579758

  19. Squalene in hair--a natural reference substance for the improved interpretation of fatty acid ethyl ester concentrations with respect to alcohol misuse.

    PubMed

    Auwärter, V; Kiessling, B; Pragst, F

    2004-10-29

    Fatty acid ethyl esters (FAEE) are incorporated into hair mainly from sebum. For this reason, the use of their concentration CFAEE as marker of excessive alcohol consumption is complicated by interindividual differences of the activity of the sebum glands and of elimination by hair care and hair cosmetics. Furthermore, an influence of the investigated hair length due to increasing accumulation from proximal to distal was found. Therefore, it was examined whether these sources of error can be avoided if in addition to CFAEE the relative FAEE concentrations CFAEE/CSQ related to squalene SQ as a natural reference compound were used for interpretation. Sebum contains about 10-20% SQ. A sensitive and reliable method for the determination of SQ in addition to FAEE from the same hair extracts by high performance liquid chromatography with photo diode array detector (HPLC-DAD) was developed. The concentrations of ethyl myristate, ethyl palmitate, ethyl oleate, ethyl stearate and squalene were determined and CFAEE/CSQ was calculated for 13 teetotallers, 16 social drinkers, 12 fatalities with excessive alcohol abuse at life time and 9 cases with unclear alcohol anamnesis. CSQ ranged from 0.02 to 1.97 microg/mg (mean 0.67 microg/mg). From the results follows that squalene enables a control of the lipid content of hair and a correction of CFAEE in cases with deviations from the usual lipid content in a similar way as creatinine in urine. Preliminary values of CFAEE/CSQ were suggested for the upper limit for teetotallers (< 0.6 ng/microg) and the lower limit for excessive alcohol abuse (> 1.5 ng/microg). However, the relative concentration CFAEE/CSQ cannot completely replace the absolute concentration CFAEE, and both should regularly be used for an improved interpretation with respect to alcohol abuse.

  20. Integrative epigenetic profiling analysis identifies DNA methylation changes associated with chronic alcohol consumption.

    PubMed

    Weng, Julia Tzu-Ya; Wu, Lawrence Shih-Hsin; Lee, Chau-Shoun; Hsu, Paul Wei-Che; Cheng, Andrew T A

    2015-09-01

    Alcoholism has always been a major public health concern in Taiwan, especially in the aboriginal communities. Emerging evidence supports the association between DNA methylation and alcoholism, though very few studies have examined the effect of chronic alcohol consumption on the epignome. Since 1986, we have been following up on the mental health conditions of four major aboriginal peoples of Taiwan. The 993 aboriginal people who underwent the phase 1 (1986) clinical interviews were followed up through phase 2 (1990-1992), and phase 3 (2003-2009). Selected individuals for the current study included 10 males from the phase 1 normal cohort who remained normal at phase 2 and became dependent on alcohol by phase 3 and 10 control subjects who have not had any drinking problems throughout the study. We profiled the DNA methylation changes in the blood samples collected at phases 2 and 3. Enrichment analyses have identified several biological processes related to immune system responses and aging in the control group. In contrast, differentially methylated genes in the case group were mostly associated with susceptibility to infections, as well as pathways related to muscular contraction and neural degeneration. The methylation levels of six genes were found to correlate with alcohol consumption. These include genes involved in neurogenesis (NPDC1) and inflammation (HERC5), as well as alcoholism-associated genes ADCY9, CKM, and PHOX2A. Given the limited sample size, our approach uncovered genes and disease pathways associated with chronic alcohol consumption at the epigenetic level. The results offer a preliminary methylome map that enhances our understanding of alcohol-induced damages and offers new targets for alcohol injury research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Determination of ethyl glucuronide levels in hair for the assessment of alcohol abstinence.

    PubMed

    Pirro, V; Di Corcia, D; Seganti, F; Salomone, A; Vincenti, M

    2013-10-10

    This study examined the potential of a highly sensitive LC-MS/MS method for the determination of EtG in head hair (i) to ascertain alcohol abstinence, (ii) to estimate the basal level of EtG (sub-ppb concentrations) in head hair in a population of alcohol abstainers and (iii) to suggest a revision of cut-off values for assessing alcohol abstinence. An UHPLC-MS/MS protocol previously developed was modified and validated again to detect low EtG levels in head hair samples from a population of 44 certain abstainers and teetotalers. Basal level of EtG in hair was determined by a standard addition quantification method. The validated UHPLC-MS/MS method allowed detecting and quantifying 0.5 and 1.0 pg/mg of EtG in hair, respectively. EtG concentrations lower than 1.0 pg/mg were determined for 95% of abstainers; 30% of them had non-detectable (<0.5 pg/mg) EtG values. Two samples evidenced EtG concentrations higher than 1.0 pg/mg that were subsequently explained by unintentional ethanol exposure. The method's feature of high analytical sensitivity makes it particularly suitable for alcohol abstinence ascertainment and, in the same time, allows to tentatively estimate basal EtG concentrations in hair around 0.8±0.4 pg/mg. This finding opens a discussion on the possible origin of basal EtG concentration and potential sources of bias in the evaluation of alcohol abstinence. Cut-off value in the range of 1.0-2.0 pg/mg can be reliably proposed to support alcohol abstinence. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Atomistic simulations of the solid-liquid transition of 1-ethyl-3-methyl imidazolium bromide ionic liquid

    NASA Astrophysics Data System (ADS)

    Feng, Haijun; Zhou, Jian; Qian, Yu

    2011-10-01

    Achieving melting point around room temperature is important for applications of ionic liquids. In this work, molecular dynamics simulations are carried out to investigate the solid-liquid transition of ionic liquid 1-ethyl-3-methyl imidazolium bromide ([emim]Br) by direct heating, hysteresis, void-nucleation, sandwich, and microcanonical ensemble approaches. Variations of the non-bonded energy, density, diffusion coefficient, and translational order parameter of [emim]Br are analyzed as a function of temperature, and a coexisting solid-liquid system is achieved in the microcanonical ensemble method. The melting points obtained from the first three methods are 547 ± 8 K, 429 ± 8 K, and 370 ± 6 K; while for the sandwich method, the melting points are 403 ± 4 K when merging along the x-axis by anisotropic isothermal-isobaric (NPT) ensemble, 393 ± 4 K when along the y-axis by anisotropic NPT ensemble, and 375 ± 4 K when along the y-axis by isotropic NPT ensemble. For microcanonical ensemble method, when the slabs are merging along different directions (x-axis, y-axis, and z-axis), the melting points are 364 ± 3 K, 365 ± 3 K, and 367 ± 3 K, respectively, the melting points we get by different methods are approximately 55.4%, 21.9%, 5.1%, 14.5%, 11.6%, 6.5%, 3.4%, 3.7%, and 4.3% higher than the experimental value of 352 K. The advantages and disadvantages of each method are discussed. The void-nucleation and microcanonical ensemble methods are most favorable for predicting the solid-liquid transition.

  3. s-Ethyl Cysteine and s-Methyl Cysteine Protect Human Bronchial Epithelial Cells Against Hydrogen Peroxide Induced Injury.

    PubMed

    Hsia, Te-chun; Yin, Mei-chin

    2015-09-01

    Protective effects and actions from s-ethyl cysteine (SEC) and s-methyl cysteine (SMC) for BEAS-2B cells were examined. BEAS-2B cells were pretreated with SEC or SMC at 4, 8, or 16 μmol/L, and followed by hydrogen peroxide (H2 O2 ) treatment. Data showed that H2 O2 enhanced Bax, caspase-3 and caspase-8 expression, and declined Bcl-2 expression. However, SEC or SMC dose-dependently decreased caspase-3 expression and reserved Bcl-2 expression. H2 O2 increased reactive oxygen species (ROS) production, and lowered glutathione level, glutathione peroxide, and glutathione reductase activities in BEAS-2B cells. SEC or SMC pretreatments reduced ROS generation, and maintained glutathione redox cycle in those cells. H2 O2 upregulated the expression of both p47(phox) and gp91(phox) . SEC and SMC downregulated p47(phox) expression. SEC or SMC at 8 and 16 μmol/L decreased H2 O2 -induced release of inflammatory cytokines. H2 O2 stimulated the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase. SEC and SMC pretreatments dose-dependently downregulated NF-κB p65 and p-p38 expression. Pyrrolidine dithiocarbamate or SB203580 inhibited NF-κB activation and p38 phosphorylation; thus, SEC or SMC pretreatments failed to affect protein expression of these factors. These novel findings suggest that SEC or SMC could protect bronchial cells and benefit respiratory epithelia stability and functions.

  4. Oxidation of Methyl and Ethyl Nitrosamines by Cytochromes P450 2E1 and 2B1

    PubMed Central

    Chowdhury, Goutam; Calcutt, M. Wade; Nagy, Leslie D.; Guengerich, F. Peter

    2012-01-01

    Cytochrome P450 (P450) 2E1 is the major enzyme that oxidizes N-nitrosodimethylamine (N,N-dimethylnitrosamine, DMN), a carcinogen and also a representative of some nitrosamines formed endogenously. Oxidation of DMN by rat or human P450 2E1 to HCHO showed a high apparent intrinsic kinetic deuterium isotope effect (KIE), ≥ 8. The KIE was not attenuated in non-competitive intermolecular experiments with rat liver microsomes (DV 12.5, D(V/K) 10.9, nomenclature of Northrop, D.B. (1982) Methods Enzymol. 87, 607–625) but was with purified human P450 2E1 (DV 3.3, D(V/K) 3.7), indicating that C-H bond breaking is partially rate-limiting with human P450 2E1. With N-nitrosodiethylamine (N,N-diethylnitrosamine, DEN), the intrinsic KIE was slightly lower and was not expressed (e.g., D(V/K) 1.2) in non-competitive intermolecular experiments. The same general pattern of KIEs was also seen in the D(V/K) results with DMN and DEN for the minor products resulting from the denitrosation reactions (CH3NH2, CH3CH2NH2, and NO2−). Experiments with deuterated N-nitroso-N-methyl,N-ethylamine demonstrated that the lower KIEs associated for ethyl compared to methyl oxidation could be distinguished within a single molecule. P450 2E1 oxidized DMN and DEN to aldehydes and then to the carboxylic acids. No kinetic lags were observed in acid formation; pulse-chase experiments with carrier aldehydes showed only limited equilibration with P450 2E1-bound aldehydes, indicative of processive reactions, as reported for P450 2A6 (Chowdhury, G. et al. (2010) J. Biol. Chem. 285, 8031–8044). These same features (no lag phase for HCO2H formation, lack of equilibration in pulse-chase assays) were also seen with (rat) P450 2B1, which has lower catalytic efficiency for DMN oxidation and a larger active site. Thus, the processivity of dialkylnitrosamine oxidation appears to be shared by a number of P450s. PMID:23186213

  5. Oxidation of methyl and ethyl nitrosamines by cytochrome P450 2E1 and 2B1.

    PubMed

    Chowdhury, Goutam; Calcutt, M Wade; Nagy, Leslie D; Guengerich, F Peter

    2012-12-18

    Cytochrome P450 (P450) 2E1 is the major enzyme that oxidizes N-nitrosodimethylamine [N,N-dimethylnitrosamine (DMN)], a carcinogen and also a representative of some nitrosamines formed endogenously. Oxidation of DMN by rat or human P450 2E1 to HCHO showed a high apparent intrinsic kinetic deuterium isotope effect (KIE), ≥8. The KIE was not attenuated in noncompetitive intermolecular experiments with rat liver microsomes {(D)V = 12.5; (D)(V/K) = 10.9 [nomenclature of Northrop, D. B. (1982) Methods Enzymol. 87, 607-625]} but was with purified human P450 2E1 [(D)V = 3.3; (D)(V/K) = 3.7], indicating that C-H bond breaking is partially rate-limiting with human P450 2E1. With N-nitrosodiethylamine [N,N-diethylnitrosamine (DEN)], the intrinsic KIE was slightly lower and was not expressed [e.g., (D)(V/K) = 1.2] in noncompetitive intermolecular experiments. The same general pattern of KIEs was also seen in the (D)(V/K) results with DMN and DEN for the minor products resulting from the denitrosation reactions (CH(3)NH(2), CH(3)CH(2)NH(2), and NO(2)(-)). Experiments with deuterated N-nitroso-N-methyl-N-ethylamine demonstrated that the lower KIEs associated with ethyl versus methyl oxidation could be distinguished within a single molecule. P450 2E1 oxidized DMN and DEN to aldehydes and then to the carboxylic acids. No kinetic lags were observed in acid formation; pulse-chase experiments with carrier aldehydes showed only limited equilibration with P450 2E1-bound aldehydes, indicative of processive reactions, as reported for P450 2A6 [Chowdhury, G., et al. (2010) J. Biol. Chem. 285, 8031-8044]. These same features (no lag phase for HCO(2)H formation and a lack of equilibration in pulse-chase assays) were also seen with (rat) P450 2B1, which has a lower catalytic efficiency for DMN oxidation and a larger active site. Thus, the processivity of dialkyl nitrosamine oxidation appears to be shared by a number of P450s.

  6. A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat

    NASA Astrophysics Data System (ADS)

    Panneer Selvam, Anjan; Muthukumar, Sriram; Kamakoti, Vikramshankar; Prasad, Shalini

    2016-03-01

    We demonstrate for the first time a wearable biochemical sensor for monitoring alcohol consumption through the detection and quantification of a metabolite of ethanol, ethyl glucuronide (EtG). We designed and fabricated two co-planar sensors with gold and zinc oxide as sensing electrodes. We also designed a LED based reporting for the presence of EtG in the human sweat samples. The sensor functions on affinity based immunoassay principles whereby monoclonal antibodies for EtG were immobilized on the electrodes using thiol based chemistry. Detection of EtG from human sweat was achieved through chemiresistive sensing mechanism. In this method, an AC voltage was applied across the two coplanar electrodes and the impedance across the sensor electrodes was measured and calibrated for physiologically relevant doses of EtG in human sweat. EtG detection over a dose concentration of 0.001–100 μg/L was demonstrated on both glass and polyimide substrates. Detection sensitivity was lower at 1 μg/L with gold electrodes as compared to ZnO, which had detection sensitivity of 0.001 μg/L. Based on the detection range the wearable sensor has the ability to detect alcohol consumption of up to 11 standard drinks in the US over a period of 4 to 9 hours.

  7. A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat.

    PubMed

    Selvam, Anjan Panneer; Muthukumar, Sriram; Kamakoti, Vikramshankar; Prasad, Shalini

    2016-03-21

    We demonstrate for the first time a wearable biochemical sensor for monitoring alcohol consumption through the detection and quantification of a metabolite of ethanol, ethyl glucuronide (EtG). We designed and fabricated two co-planar sensors with gold and zinc oxide as sensing electrodes. We also designed a LED based reporting for the presence of EtG in the human sweat samples. The sensor functions on affinity based immunoassay principles whereby monoclonal antibodies for EtG were immobilized on the electrodes using thiol based chemistry. Detection of EtG from human sweat was achieved through chemiresistive sensing mechanism. In this method, an AC voltage was applied across the two coplanar electrodes and the impedance across the sensor electrodes was measured and calibrated for physiologically relevant doses of EtG in human sweat. EtG detection over a dose concentration of 0.001-100 μg/L was demonstrated on both glass and polyimide substrates. Detection sensitivity was lower at 1 μg/L with gold electrodes as compared to ZnO, which had detection sensitivity of 0.001 μg/L. Based on the detection range the wearable sensor has the ability to detect alcohol consumption of up to 11 standard drinks in the US over a period of 4 to 9 hours.

  8. A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat

    PubMed Central

    Panneer Selvam, Anjan; Muthukumar, Sriram; Kamakoti, Vikramshankar; Prasad, Shalini

    2016-01-01

    We demonstrate for the first time a wearable biochemical sensor for monitoring alcohol consumption through the detection and quantification of a metabolite of ethanol, ethyl glucuronide (EtG). We designed and fabricated two co-planar sensors with gold and zinc oxide as sensing electrodes. We also designed a LED based reporting for the presence of EtG in the human sweat samples. The sensor functions on affinity based immunoassay principles whereby monoclonal antibodies for EtG were immobilized on the electrodes using thiol based chemistry. Detection of EtG from human sweat was achieved through chemiresistive sensing mechanism. In this method, an AC voltage was applied across the two coplanar electrodes and the impedance across the sensor electrodes was measured and calibrated for physiologically relevant doses of EtG in human sweat. EtG detection over a dose concentration of 0.001–100 μg/L was demonstrated on both glass and polyimide substrates. Detection sensitivity was lower at 1 μg/L with gold electrodes as compared to ZnO, which had detection sensitivity of 0.001 μg/L. Based on the detection range the wearable sensor has the ability to detect alcohol consumption of up to 11 standard drinks in the US over a period of 4 to 9 hours. PMID:26996103

  9. Some enzymatic/nonenzymatic antioxidants as potential stress biomarkers of trichloroethylene, heavy metal mixture, and ethyl alcohol in rat tissues.

    PubMed

    Tabrez, Shams; Ahmad, Masood

    2011-04-01

    Enzymatic and nonenzymatic antioxidants serve as an important biological defense against environmental pollutants. Various enzymatic and nonenzymatic antioxidants as a stress biomarker in liver and kidney of rat were investigated. The antioxidant enzymes that were analyzed included superoxide dismutase (SOD), catalase, glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase. Levels of lipid peroxidation (LPO), reduced glutathione (GSH), as well as hydrogen peroxide (H(2)O(2)) were also measured in homogenates of the liver and kidney of the treated animals to determine oxidative stress induced by trichloroethylene (TCE), ethyl alcohol, and heavy metal mixture (H.M.M) individually and in different combinations. An increase up to the extent of 382% in malonaldehyde, a marker of LPO, was recorded in almost all the treatment groups in both the tissues. Similarly, a rise of 218% in GST activity was also recorded in kidney of TCE-treated animals. Although H.M.M ingestion resulted in significant change of 125% in SOD activity of hepatic tissue, the level of GR was increased by 93% in the renal tissue of the exposed rats. Solitary dose of alcohol in general did not show a significant change. Moreover, the changes in the levels of antioxidants were much more prominent when these toxicants were given in combination rather than alone. Overall, these results demonstrate the changes in the levels of antioxidant enzymes and GSH system, as well as alterations in the LPO and H(2)O(2) levels as a result of test toxicants.

  10. Application of the Technicon Chem 1+ chemistry analyzer to the Syva Emit ethyl alcohol assay in plasma and urine.

    PubMed

    Urry, F M; Kralik, M; Wozniak, E; Crockett, H; Jennison, T A

    1993-09-01

    The performance of the Technicon Chem 1+ chemistry analyzer with the Syva Emit ethyl alcohol assay in plasma and urine was evaluated. Spiked specimens from 0 to 600 mg/dL were tested, and expected versus measured concentrations were monitored. Linear regression line equations of y = 0.9314x + 5.4 and y = 0.9005x + 4.6, and correlation coefficients (r) of 0.9997 and 0.9995, were obtained for plasma and urine, respectively. A limit of detection of 5 mg/dL for plasma and urine, and a limit of quantitation of 20 mg/dL for plasma and 15 mg/dL for urine were obtained. Recovery was within 10% of expected concentration from 20 to 600 mg/dL. Precision was evaluated, giving the following coefficients of variation: within-run precision: plasma, 1.31-2.20; urine, 1.16-1.21; total precision: plasma, 2.72-3.38; urine, 2.98-4.64. No carry-over was detected when alternating 600 mg/dL and negative specimens. No interference from acetone, isopropanol, or methanol was detected. No significant differences in evaporation of alcohol at two concentrations, or from the two matrices were observed. Evaporation from a small cup (200 microL) was more than twice as great as from a large cup (2 mL). The Chem 1+ was compared to a gas chromatographic method. Plasma specimens of 0-352 mg/dL produced a linear regression line of y = 1.0112x + 6.0, r = 0.9859; urine specimens of 0-313 mg/dL produced a line of y = 1.0493x - 0.3, r = 0.9910. The capability to separate positive and negative specimens at 20% around a cutoff concentration of 20 mg/dL was examined. Four hundred specimens were analyzed, with only one specimen incorrectly classified (a false positive). The Chem 1+ chemistry analyzer demonstrated reliable performance of the Emit ethyl alcohol assay of plasma and urine specimens.

  11. The influence of aripiprazole and olanzapine on the anxiolytic-like effect observed in prenatally stressed rats (animal model of schizophrenia) exposed to the ethyl alcohol.

    PubMed

    Ratajczak, Piotr; Kus, Krzysztof; Giermaziak, Wojciech; Nowakowska, Elżbieta

    2016-04-01

    Schizophrenia is a common disease which affect about 1% of global population. In that point of view animal model of schizophrenia seem to be an important tool for better understanding the key theories related to the disease. The aim of the study was to find whether anxiety-like behavior is found in prenatally stressed rats (animal model of schizophrenia) and whether aripiprazole (ARI, 1.5mg/kg) and olanzapine (OLA, 0.5mg/kg) modify those functions. We also were able to determine whether ethyl alcohol consumption has an impact on ARI's and OLA's efficacy as well as anxiety-like behavior of animals. The anxiolytic effects of ARI, OLA and ethyl alcohol were determined in a two compartment exploratory test. The anxiolytic effect was studied in the NSCG (non-stressed control group), NSAG (non-stressed alcohol group), and PSG (prenatally stressed group), PSAG (prenatally stressed alcohol group). Single and chronic treatment of both ARI and OLA produced a statistically significant increase in the number of entries in the white compartment of the two compartment exploratory test in the NSCG rats. In turn in the PSG rats only ARI showed the anxiolytic effect. Moreover ethyl alcohol intake showed anxiolytic effect in both NSAG and PSAG rats. Results also indicate that after prolonged administration of drugs, tolerance related to the anxiolytic effect was observed. ARI and OLA can reduce the level of anxiety which proves drugs effectiveness in course anxiety-like behavior. On the other hand only ARI generated anxiolytic effect in exposure to ethyl alcohol conditions. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  12. Subtle Decreases in DNA Methylation and Gene Expression at the Mouse Igf2 Locus Following Prenatal Alcohol Exposure: Effects of a Methyl-Supplemented Diet

    PubMed Central

    Downing, Chris; Johnson, Thomas E; Larson, Colin; Leakey, Tatiana I; Siegfried, Rachel N; Rafferty, Tonya M; Cooney, Craig A

    2010-01-01

    C57BL/6J (B6) mice are susceptible to in utero growth retardation and a number of morphological malformations following prenatal alcohol exposure, while DBA/2J (D2) mice are relatively resistant. We have previously shown that genomic imprinting may play a role in differential sensitivity between B6 and D2 (Downing and Gilliam 1999). The best characterized mechanism mediating genomic imprinting is differential DNA methylation. In the present study we examined DNA methylation and gene expression, in both embryonic and placental tissue, at the mouse Igf2 locus following in utero ethanol exposure. We also examined the effects of a methyl-supplemented diet on methylation and ethanol teratogenesis. In embryos from susceptible B6 mice, we found small decreases in DNA methylation at four CpG sites in one of the differentially methylated regions of the Igf2 locus; only one of the four sites showed a statistically significant decrease. We observed no significant decreases in methylation in placentae. All Igf2 transcripts showed approximately 1.5 fold decreases following intrauterine alcohol exposure. Placing dams on a methyl-supplemented diet before pregnancy and throughout gestation brought methylation back up to control levels. Methyl-supplementation also resulted in lower prenatal mortality, greater prenatal growth, and decreased digit malformations; it dramatically reduced vertebral malformations. Thus, while prenatal alcohol had only small effects on DNA methylation at the Igf2 locus, placing dams on a methyl-supplemented diet partially ameliorated ethanol teratogenesis. PMID:20705422

  13. Subtle decreases in DNA methylation and gene expression at the mouse Igf2 locus following prenatal alcohol exposure: effects of a methyl-supplemented diet.

    PubMed

    Downing, Chris; Johnson, Thomas E; Larson, Colin; Leakey, Tatiana I; Siegfried, Rachel N; Rafferty, Tonya M; Cooney, Craig A

    2011-02-01

    C57BL/6J (B6) mice are susceptible to in utero growth retardation and a number of morphological malformations following prenatal alcohol exposure, while DBA/2J (D2) mice are relatively resistant. We have previously shown that genomic imprinting may play a role in differential sensitivity between B6 and D2. The best-characterized mechanism mediating genomic imprinting is differential DNA methylation. In the present study we examined DNA methylation and gene expression, in both embryonic and placental tissue, at the mouse Igf2 locus following in utero ethanol exposure. We also examined the effects of a methyl-supplemented diet on methylation and ethanol teratogenesis. In embryos from susceptible B6 mice, we found small decreases in DNA methylation at four CpG sites in one of the differentially methylated regions of the Igf2 locus; only one of the four sites showed a statistically significant decrease. We observed no significant decreases in methylation in placentae. All Igf2 transcripts showed approximately 1.5-fold decreases following intrauterine alcohol exposure. Placing dams on a methyl-supplemented diet before pregnancy and throughout gestation brought methylation back up to control levels. Methyl supplementation also resulted in lower prenatal mortality, greater prenatal growth, and decreased digit malformations; it dramatically reduced vertebral malformations. Thus, although prenatal alcohol had only small effects on DNA methylation at the Igf2 locus, placing dams on a methyl-supplemented diet partially ameliorated ethanol teratogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. 1-Ethyl-2-phenyl-3-[2-(tri­methyl­sil­yl)ethyn­yl]-1H-indole

    PubMed Central

    Baglai, Iaroslav; Maraval, Valérie; Duhayon, Carine; Chauvin, Remi

    2013-01-01

    The title compound, C21H23NSi, was synthesized by Sonogashira-type reaction of 1-ethyl-3-iodo-2-phenyl-1H-indole with tri­methyl­silyl­acetyl­ene. The indole ring system is nearly planar [maximum atomic deviation = 0.0244 (15) Å] and is oriented at a dihedral angle of 51.48 (4)° with respect to the phenyl ring. The supramolecular aggregation is completed by weak C—H⋯π inter­actions of the methylene and phenyl groups with the benzene and pyrrole rings of the indole ring system. The methyl groups of the tri­methyl­silyl unit are equally disordered over two sets of sites. PMID:23795091

  15. Rationally designed PKA inhibitors for positron emission tomography: Synthesis and cerebral biodistribution of N-(2-(4-bromocinnamylamino)ethyl)-N- [11C]methyl-isoquinoline-5-sulfonamide

    PubMed Central

    Vasdev, Neil; LaRonde, Frank J.; Woodgett, James R.; Garcia, Armando; Rubie, Elizabeth A.; Meyer, Jeffrey H.; Houle, Sylvain; Wilson, Alan A.

    2016-01-01

    Potein kinase A (PKA) is an important signal transduction target for drug development because it influences critical cellular processes implicated in neuropsychiatric illnesses such as major depressive disorder. The goal of the present study was to develop the first imaging agent for measuring the levels of PKA with positron emission tomography (PET). By rational derivatization of 5-isoquinoline sulfonamides, it was found that the introduction of a methyl group to the sulphonamidic nitrogen on the known PKA inhibitors N-(2-aminoethyl)isoquinoline-5-sulfonamide (H-9, 1) and N-(2-(4-bromocinnamylamino)ethyl)isoquinoline-5-sulfonamide (H-89, 2), (yielding N-(2-aminoethyl)-N-methyl-isoquinoline-5-sulfonamide (4) and N-(2-(4-bromocinnamylamino) ethyl)-N-methyl-isoquinoline-5-sulfonamide (5), respectively) does not appreciably reduce in vitro potency toward PKA. We have facilitated the synthesis of 4 by reacting isoquinoline-5-sulfonyl chloride with N-methylethylenediamine (20% yield). Several techniques were used to thoroughly characterize 4 including multi (1H, 13C and 15N) NMR spectroscopy and X-ray crystallography. Compound 4 and 1-(4-bromophenyl)-1-propen-3-yl bromide were reacted to produce 5 in 16% yield. Compound 2 was reacted with [11C]CH3I to prepare N-(2-(4-bromocinnamylamino) ethyl)-N-[11C]methyl-isoquinoline-5-sulfonamide ([11C]5), with a decay-corrected radiochemical yield of 32%, based on [11C]CO2. [11C]5 was produced with >98% radiochemical purity and 1130 mCi/μmol specific activity after 40 min (end of synthesis). Conscious rats were administered [11C] 5 and sacrificed at 5, 15, 30 and 60 min after injection. Radioactivity from all excised brain regions was <0.2%ID/g at all time points. The modest brain penetration of [11C]5 may limit its use for studying PKA in the central nervous system. PMID:18346896

  16. 21 CFR 184.1295 - Ethyl formate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1295 Ethyl formate. (a) Ethyl formate (C3H6O2, CAS Reg. No. 109-94-4) is also referred to as ethyl methanoate. It is an ester of formic acid and is prepared by esterification of formic acid with ethyl alcohol or by distillation of ethyl acetate and formic acid in the...

  17. 21 CFR 184.1295 - Ethyl formate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Substances Affirmed as GRAS § 184.1295 Ethyl formate. (a) Ethyl formate (C3H6O2, CAS Reg. No. 109-94-4) is also referred to as ethyl methanoate. It is an ester of formic acid and is prepared by esterification of formic acid with ethyl alcohol or by distillation of ethyl acetate and formic acid in the...

  18. Ethyl-tertiary-butyl-ether (ETBE) as an aviation fuel: Eleventh international symposium on alcohol fuels

    SciTech Connect

    Maben, G.D.; Shauck, M.E.; Zanin, M.G.

    1996-12-31

    This paper discusses the preliminary flight testing of an aircraft using neat burning ethyl-tertiary-butyl-ether (ETBE) as a fuel. No additional changes were made to the fuel delivery systems which had previously been modified to provide the higher fuel flow rates required to operate the engine on neat ethanol. Air-fuel ratios were manually adjusted with the mixture control. This system allows the pilot to adjust the mixture to compensate for changes in air density caused by altitude, pressure and temperature. The engine was instrumented to measure exhaust gas temperatures (EGT), cylinder head temperatures (CHT), and fuel flows, while the standard aircraft instruments were used to collect aircraft performance data. Baseline engine data for ETBE and Avgas are compared. Preliminary data indicates the technical and economic feasibility of using ETBE as an aviation fuel for the piston engine fleet. Furthermore, the energy density of ETBE qualifies it as a candidate for a turbine engine fuel of which 16.2 billion gallons are used in the US each year.

  19. Crystal structure of (Z)-ethyl 3-[2-(5-methyl-7-nitro-1H-indole-2-carbon-yl)hydrazinyl-idene]butano-ate.

    PubMed

    Errossafi, Amal; El Kihel, Abdellatif; Guesmi, Salaheddine; Saadi, Mohamed; El Ammari, Lahcen

    2015-09-01

    The reaction of 5-methyl-7-nitro-1H-indole-2-carbohydrazide with ethyl aceto-acetate yielded the title mol-ecule, C16H18N4O5, in which the indole ring is almost planar, with the greatest deviation from the mean plane being 0.006 (2) Å. The nine atoms of the indole ring are almost perpendicular to the mean plane through the ethyl acetate group, as indicated by the dihedral angle of 87.02 (4)° between them. In the crystal, centrosymmetric supra-molecular dimers are formed via N-H⋯O hydrogen bonds and eight-membered amide {⋯HNCO}2 synthons. These are consolidated into a three-dimensional architecture by C-H⋯O contacts, and by π-π inter-actions between six-membered rings [inter-centroid distance = 3.499 (2) Å].

  20. Production of ethyl alcohol by fermentation and its utilization as automotive fuel

    SciTech Connect

    Lima, J.E.

    1980-03-01

    Alcohol has an excellent future as a fuel, and its large-scale production from sugar-bearing feedstocks should definitely be a stabilizing factor in the economics of the international sugar industry. This article approaches the subject from the sugar industry viewpoint, with emphasis on the underdeveloped countries. The economic data presented here are only approximations so as to give some idea as to the order of magnitude of the capital and operating costs involved. All economic projections are based on conditions prevailing during the third quarter of 1979.

  1. Adsorption-desorption characteristics of methyl ethyl ketone with modified activated carbon and inhibition of 2,3-butanediol production.

    PubMed

    Nien, Kai Chun; Chang, Feng Tang; Chang, Moo Been

    2015-11-01

    Activated carbon (AC) is seldom applied for recovering ketone-based volatile organic compounds because of safety concerns. Adsorption of methyl ethyl ketone (MEK) with AC is a highly exothermic reaction that potentially causes fires in AC beds. Moreover, 2,3-butanediol (BDO) is produced in the desorbed solvent, causing yellowing and odor of the recovered solvent. This study applied a continuous adsorption-desorption apparatus for evaluating the operating capacities and BDO concentration in recovered MEK containing modified and original ACs. AC-1 (TAKETA- G2X) was used as the target for modification. The experimental results indicate that using MgO as the modifier increases the ignition point by 12°C and that applying KNO3 as the modifier reduces the AC ignition point by 28°C (compared with AC-1). The BDO concentration of the desorbed MEK solvent can be reduced by increasing the loading of the modifying agent (Ethanolamine) (Im-1: 3.1 wt%; Im-5: 6.2 wt%). Moreover, applying the AC pretreated with nitrogen (Im-6) as adsorbent significantly reduces the BDO concentration (from 0.123 wt% to 0.073 wt%). Because desorption and purging procedures were performed in N2 atmospheres, the BDO concentrations of the desorbed MEK solvents were relatively low and ranged from 0.032 wt% to 0.043 wt%. When the MEK concentration was reduced to 2000 ppm, lower BDO concentrations (0.012-0.022 wt%) were measured in the recovered MEK solvent. The way to modify activated carbon and a better desorbing sequence to effectively inhibit the oxidation of MEK to BDO are developed. The results obtained indicate that the BDO concentration in the desorbed solvent was lower than the original MEK solvent (0.023 wt%). Different approaches can be applied simultaneously to achieve high inhibition effects; however, carbon adsorption performance may be negatively affected. The study is motivated to improve the quality of recovered solvent and reduce fire hazards, particularly when AC is applied for

  2. Poly(methyl methacrylate-co-ethyl acrylate) latex particles with poly(ethylene glycol) grafts: structure and film formation.

    PubMed

    Schantz, Staffan; Carlsson, Hans T; Andersson, Thomas; Erkselius, Stefan; Larsson, Anders; Karlsson, Ola J

    2007-03-27

    Water-based copolymer dispersions were prepared using methyl methacrylate (MMA), ethyl acrylate (EA) (MMA/EA = 1:2), and a series of nonionic polymerizable surfactants, i.e., "surfmers" based on poly(ethylene glycol)-(meth)acrylates. The latexes were compared with the behavior of a conventionally stabilized (nonionic nonylphenol ethoxylate, NP100 with 84 ethylene oxide units) dispersion with the same MMA-EA composition (PMMAEA). A number of techniques were employed in order to characterize structure, dynamics, and film formation properties: solution/solid-state NMR, dynamic/static light scattering (DLS/SLS), differential scanning calorimetry (DSC), tensile/shear mode dynamic mechanical thermal analysis (DMTA), and atomic force microscopy (AFM). The surfmers were found to be miscible with the MMA-EA copolymer at room temperature, with 46-85 mol % of the reacted surfmer detected at the particle surfaces, and the remaining part buried in the particle bulk. In contrast, the NP100 surfactant formed a separate interphase between the copolymer particles with no mixing detected at room temperature or at 90 degrees C. For a 4.0% dry weight concentration, NP100 phase separated and further crystallized at room temperature over a period of several months. Composition fluctuations related to a limited blockiness on a length scale above approximately 2 nm were detected for PMMAEA particles, whereas the surfmer particles were found to be homogeneous also below this limit. On a particle-particle level, the dispersions tended to form colloidal crystals unless hindered by a broadened particle size distribution or, in the case of PMMAEA, by the action of NP100. Finally, a surface roughness (Rq) master plot was constructed for data above the glass transition temperature (Tg) from Tg + 11 degrees C to Tg + 57 degrees C and compared with the complex shear modulus over 11 frequency decades. Shift factors from the 2 methods obeyed the same Williams-Landel-Ferry (WLF) temperature

  3. Microbial degradation of methyl tert-butyl ether and tert-butyl alcohol in the subsurface

    NASA Astrophysics Data System (ADS)

    Schmidt, Torsten C.; Schirmer, Mario; Weiß, Holger; Haderlein, Stefan B.

    2004-06-01

    The fate of fuel oxygenates such as methyl tert-butyl ether (MTBE) in the subsurface is governed by their degradability under various redox conditions. The key intermediate in degradation of MTBE and ethyl tert-butyl ether (ETBE) is tert-butyl alcohol (TBA) which was often found as accumulating intermediate or dead-end product in lab studies using microcosms or isolated cell suspensions. This review discusses in detail the thermodynamics of the degradation processes utilizing various terminal electron acceptors, and the aerobic degradation pathways of MTBE and TBA. It summarizes the present knowledge on MTBE and TBA degradation gained from either microcosm or pure culture studies and emphasizes the potential of compound-specific isotope analysis (CSIA) for identification and quantification of degradation processes of slowly biodegradable pollutants such as MTBE and TBA. Microcosm studies demonstrated that MTBE and TBA may be biodegradable under oxic and nearly all anoxic conditions, although results of various studies are often contradictory, which suggests that site-specific conditions are important parameters. So far, TBA degradation has not been shown under methanogenic conditions and it is currently widely accepted that TBA is a recalcitrant dead-end product of MTBE under these conditions. Reliable in situ degradation rates for MTBE and TBA under various geochemical conditions are not yet available. Furthermore, degradation pathways under anoxic conditions have not yet been elucidated. All pure cultures capable of MTBE or TBA degradation isolated so far use oxygen as terminal electron acceptor. In general, compared with hydrocarbons present in gasoline, fuel oxygenates biodegrade much slower, if at all. The presence of MTBE and related compounds in groundwater therefore frequently limits the use of in situ biodegradation as remediation option at gasoline-contaminated sites. Though degradation of MTBE and TBA in field studies has been reported under oxic

  4. Methyl alcohol used as penetrant inspection medium for porous materials

    NASA Technical Reports Server (NTRS)

    Hendron, J. A.

    1971-01-01

    Porous material thoroughly wetted with alcohol shows persistent wet line or area at locations of cracks or porosity. Inspection is qualitative and repeatable, but is used quantitatively with select samples to grade density variations in graphite blocks. Photography is employed to achieve permanent record of results.

  5. Co-nonsolvency effects for surface-initiated poly(2-(methacryloyloxy)ethyl phosphorylcholine) brushes in alcohol/water mixtures.

    PubMed

    Edmondson, Steve; Nguyen, Nam T; Lewis, Andrew L; Armes, Steven P

    2010-05-18

    Surface-initiated atom transfer radical polymerization (SI-ATRP) has been used to grow brushes of poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) from silicon wafers using a polyelectrolytic macroinitiator on planar silicon wafers. Film thicknesses of up to 450 nm were possible within 21 h, and the effect of adding activator and deactivator species on the brush growth rate was studied. The solvation of PMPC brushes in mixed alcohol/water solvents was investigated using in situ ellipsometry. Co-nonsolvency (a re-entrant swelling transition) behavior was observed in water/ethanol binary mixtures; that is, the PMPC brushes were highly swollen in either pure ethanol or water but became deswollen at specific ethanol-rich solvent compositions. A similar effect was obtained with water/2-propanol mixtures, except that in this case pure 2-propanol was not a particularly good solvent for the PMPC chains. However, co-nonsolvency was not observed for water/methanol binary mixtures, since the brushes remained well swollen at all solvent compositions. This is consistent with prior reports of co-nonsolvency effects in both PMPC gels and linear PMPC chains. However, this is the first report of this phenomenon for PMPC brushes and one of the first examples of co-nonsolvency observed for any polymer brush system. A direct comparison of brush and gel swelling reveals an approximate power-law relationship between the equilibrium volumes of these two systems at various solvent compositions, which is interpreted by treating the brush layer as a surface-attached gel. We believe this to be the first quantitative comparison of brush and gel swelling using the same polymer under the same conditions. The kinetics of the PMPC brush response to adjustment of the alcohol/water composition is relatively fast, with the brush volume change occurring on time scales of less than 1 min as judged by in situ ellipsometry.

  6. Alterations in ethyl alcohol pharmacokinetics during oral consumption of malt liquor beverages in African Americans.

    PubMed

    Taylor, Robert E; Raysor, Byron R; Kwagyan, John; Ramchandani, Vijay A; Kalu, Nnenna; Powell-Davis, Monique; Ferguson, Clifford L; Carr, Lucinda; Scott, Denise M

    2008-12-01

    Malt liquor (ML) beverages have become increasingly popular among urban minority groups, due partly to their inexpensive price and targeted advertising. We hypothesized that nonfermented by-products contained in ML beverages will alter the pharmacokinetics (PK) and pharmacodynamic (PD) effects of its ethanol content. In addition, we determined the effect of alcohol dehydrogenase (ADH) genotypes on the PK following consumption of ML beverages. The study was conducted in 31 healthy adult African-American social drinkers, mean +/- SD age of 22.3 +/- 1.3 years, and weight of 70.7 +/- 10.9 kg. Participants were administered ethanol, in randomized order, 2-weeks apart, in the form of oral ML beverage (6%v/v), or isocaloric solution of diet soda-ethanol (DS-Etoh) beverage (6%v/v). During each session the beverage was consumed over 4 minutes and breath alcohol concentrations (BrAC) as well as subjective and behavioral effects of ethanol were evaluated over 180 minutes. Pharmacokinetic parameters of ethanol were calculated using Michaelis-Menten elimination kinetics. The effect of ML and ADH genotype on PK was evaluated using the Wilcoxon rank-sum test and the Wilcoxon signed rank test, respectively. Results show a slower mean rate of absorption, K(a), (0.12 vs. 0.15 min(-1), p = 0.03) and a longer time to reach maximum concentration, T(max), (28 vs. 23 minute, p < 0.01) for the ML compared with DS-Etoh beverage. The ML beverage resulted in a larger area under the BrAC-time curve compared with DS-Etoh beverage (8.4 vs. 6.8 min g/dl, p = 0.02). There was no difference in the subjective PD effects between the 2 beverages. Results show that exposure to ethanol following the consumption of ML beverages is different compared to that following nonmalt beverages in African-Americans. These differences may be related to nonfermented by-products present in commercially available ML products. These PK differences do not appear to result in significant perceived alcohol PD changes

  7. Alterations in Ethyl Alcohol Pharmacokinetics During Oral Consumption of Malt Liquor Beverages in African Americans

    PubMed Central

    Taylor, Robert E.; Raysor, Byron R.; Kwagyan, John; Ramchandani, Vijay A.; Kalu, Nnenna; Powell-Davis, Monique; Ferguson, Clifford L.; Carr, Lucinda; Scott, Denise M.

    2008-01-01

    Background Malt liquor (ML) beverages have become increasingly popular among urban minority groups, due partly to their inexpensive price and targeted advertising. We hypothesized that non-fermented by-products contained in ML beverages will alter the pharmacokinetics (PK) and pharmacodynamic (PD) effects of its ethanol content. In addition, we determined the effect of alcohol dehydrogenase (ADH) genotypes on the PK following consumption of malt liquor beverages. Methods The study was conducted in 31 healthy adult African-American social drinkers, mean ±SD age of 22.3±1.3 years, and weight of 70.7±10.9 kg. Participants were administered ethanol, in randomized order, two-weeks apart, in the form of oral ML beverage (6%v/v), or isocaloric solution of diet soda–ethanol (DS-Etoh) beverage (6%v/v). During each session the beverage was consumed over 4 minutes and breath alcohol concentrations (BrAC) as well as subjective and behavioral effects of ethanol were evaluated over 180 minutes. Pharmacokinetic parameters of ethanol were calculated using Michaelis-Menten elimination kinetics. The effect of ADH genotype on PK was evaluated using the Wilcoxon Signed rank test. Results Results show a slower mean rate of absorption, Ka, (0.12 vs. 0.15 min−1, p=0.03) and a longer time to reach maximum concentration, Tmax, (28 vs. 23 min. p<0.01) for the ML compared to DS-Etoh beverage. The ML beverage resulted in a larger area under the BrAC-time curve compared to DS-Etoh beverage (8.4 vs. 6.8 min*g/dL, p=0.02). There was no difference in the subjective PD effects between the 2 beverages. Conclusion Results show that exposure to ethanol following consumption of ML beverages is different compared to that following non-malt beverages in African Americans. These differences may be related to non-fermented by-products present in commercially available ML products. These PK differences do not appear to result in significant perceived alcohol PD changes, nor are they related to ADH

  8. Molecular modelling, synthesis and acetylcholinesterase inhibition of ethyl 5-amino-2-methyl-6,7,8,9-tetrahydrobenzo[b][1,8]naphthyridine-3-carboxylate.

    PubMed

    Soriano, Elena; Samadi, Abdelouahid; Chioua, Mourad; de los Ríos, Cristóbal; Marco-Contelles, José

    2010-05-01

    In silico analysis of ethyl 5-amino-2-methyl-6,7,8,9-tetrahydrobenzo[b][1,8]naphthyridine-3-carboxylate (2) predicts that this molecule should be successfully docked in the PAS, and easily accommodated in the CAS of AChE. The synthesis and the AChE/BuChE inhibition studies are reported, confirming that compound 2 is a potent and selective AChE inhibitor, and consequently, a new lead compound for further development into new dual CAS/PAS cholinergic agents for the treatment of Alzheimer's disease.

  9. 1-Hydroxy­ethyl-2-methyl-5-nitro­imidazolium 3-carb­oxy-4-hydroxy­benzene­sulfonate

    PubMed Central

    Yang, Bo

    2008-01-01

    Cocrystallization of 1-hydroxy­ethyl-2-methyl-5-nitroimidazole (metronidazole) and 5-sulfosalicylic acid (5-H2SSA) from methanol solution yields the title salt, C6H10N3O3 +·C7H5O6S−. In the crystal structure, the ions are linked by a combination of inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional framework. The hydroxyl group of the cation is disordered over two sites in a 0.860 (4):0.140 (4) ratio. PMID:21202961

  10. Comparative Effects of 3-Ethyl-8-Methyl-1,3,8-Triazabicyclo[4,4,0]Decan-2-one and Diethylcarbamazine Against Litomosoides carinii in Rodents

    PubMed Central

    Thompson, Paul E.; Zeigler, Julianne B.; McCall, John W.

    1973-01-01

    3-Ethyl-8-methyl-1,3,8-triazabicyclo[4,4,0]decan-2-one and diethylcarbamazine were tested comparatively against Litomosoides carinii in Mongolian jirds and cotton rats. The drugs were compared in jirds by oral and by intraperitoneal administration. Comparisons in cotton rats were done by intraperitoneal administration. The drugs were given in a wide range of doses twice daily for 4 consecutive days. Parameters used for judging efficacy included the rate, degree, and duration of microfilaremia suppression as well as effects on adult worms. The two drugs exhibited similar strong but transient effect against microfilariae; neither drug had appreciable effect in killing adult worms. PMID:4790619

  11. Epigenetic Interactions between Alcohol and Cannabinergic Effects: Focus on Histone Modification and DNA Methylation

    PubMed Central

    Parira, Tiyash; Laverde, Alejandra; Agudelo, Marisela

    2017-01-01

    Epigenetic studies have led to a more profound understanding of the mechanisms involved in chronic conditions. In the case of alcohol addiction, according to the National Institute on Alcohol Abuse and Alcoholism, 16 million adults suffer from Alcohol Use Disorders (AUDs). Even though therapeutic interventions like behavioral therapy and medications to prevent relapse are currently available, no robust cure exists, which stems from the lack of understanding the mechanisms of action of alcohol and the lack of development of precision medicine approaches to treat AUDs. Another common group of addictive substance, cannabinoids, have been studied extensively to reveal they work through cannabinoid receptors. Therapeutic applications have been found for the cannabinoids and a deeper understanding of the endocannabinoid system has been gained over the years. Recent reports of cannabinergic mechanisms in AUDs has opened an exciting realm of research that seeks to elucidate the molecular mechanisms of alcohol-induced end organ diseases and hopefully provide insight into new therapeutic strategies for the treatment of AUDs. To date, several epigenetic mechanisms have been associated with alcohol and cannabinoids independently. Therefore, the scope of this review is to compile the most recent literature regarding alcohol and cannabinoids in terms of a possible epigenetic connection between the endocannabinoid system and alcohol effects. First, we will provide an overview of epigenetics, followed by an overview of alcohol and epigenetic mechanisms with an emphasis on histone modifications and DNA methylations. Then, we will provide an overview of cannabinoids and epigenetic mechanisms. Lastly, we will discuss evidence of interactions between alcohol and cannabinergic pathways and possible insights into the novel epigenetic mechanisms underlying alcohol-cannabinergic pathway activity. Finalizing the review will be a discussion of future directions and therapeutic applications

  12. Crystal structures of ethyl 6-(4-methyl-phen-yl)-4-oxo-4H-chromene-2-carboxyl-ate and ethyl 6-(4-fluoro-phen-yl)-4-oxo-4H-chromene-2-carboxyl-ate.

    PubMed

    Gomes, Ligia R; Low, John Nicolson; Fernandes, Carlos; Gaspar, Alexandra; Borges, Fernanda

    2016-01-01

    The crystal structures of two chromone derivatives, viz. ethyl 6-(4-methyl-phen-yl)-4-oxo-4H-chromene-2-carboxyl-ate, C19H16O4, (1), and ethyl 6-(4-fluoro-phen-yl)-4-oxo-4H-chromene-2-carboxyl-ate C18H13FO4, (2), have been determined: (1) crystallizes with two mol-ecules in the asymmetric unit. A comparison of the dihedral angles beween the mean planes of the central chromone core with those of the substituents, an ethyl ester moiety at the 2-position and a para-substituted phenyl ring at the 6-position shows that each mol-ecule differs significantly from the others, even the two independent mol-ecules (a and b) of (1). In all three mol-ecules, the carbonyl groups of the chromone and the carboxyl-ate are trans-related. The supra-molecular structure of (1) involves only weak C-H⋯π inter-actions between H atoms of the substituent phenyl group and the phenyl group, which link mol-ecules into a chain of alternating mol-ecules a and b, and weak π-π stacking inter-actions between the chromone units. The packing in (2) involves C-H⋯O inter-actions, which form a network of two inter-secting ladders involving the carbonyl atom of the carboxyl-ate group as the acceptor for H atoms at the 7-position of the chromone ring and from an ortho-H atom of the exocyclic benzene ring. The carbonyl atom of the chromone acts as an acceptor from a meta-H atom of the exocyclic benzene ring. π-π inter-actions stack the mol-ecules by unit translation along the a axis.

  13. Fragrance material review on 2-ethyl-1-butanol.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2010-07-01

    A toxicologic and dermatologic review of 2-ethyl-1-butanol when used as a fragrance ingredient is presented. 2-Ethyl-1-butanol is a member of the fragrance structural group branched chain saturated alcohols. The common characteristic structural elements of the alcohols with saturated branched chain are one hydroxyl group per molecule, and a C(4)-C(12) carbon chain with one or several methyl side chains. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  14. The role of hydrogen bonding in the selectivity of L-cysteine methyl ester (CYSM) and L-cysteine ethyl ester (CYSE) for chloride ion

    NASA Astrophysics Data System (ADS)

    Mosier-Boss, P. A.; Lieberman, S. H.

    2005-03-01

    The interaction of cysteamine (CY), L-cysteine methyl ester (CYSM), and L-cysteine ethyl ester (CYSE) with nitrate, sulfate, perchlorate, dihydrogen phosphate, and chloride ions was investigated using surface enhanced Raman spectroscopy (SERS). CYSM and CYSE are chemical derivatives of CY. These thiols have a quaternary ammonium group to attract the anions to the SERS surface. Dihydrogen phosphate did not interact with these cationic thiols. The CY interaction with perchlorate, nitrate, and sulfate is stronger than the interaction with chloride. However, replacing a hydrogen on the carbon adjacent to the quaternary ammonium group with either a methyl or ethyl ester group results in stronger complexation with chloride ion than with either sulfate or nitrate ion. In the case of CYSM, the chloride interaction is five times stronger than the interaction with perchlorate. Molecular modeling indicates that the high selectivity of CYSM/CYSE for chloride is due to hydrogen bonding between the chloride ion and the hydrogen of the CH 3 moeities of adjacent ester groups.

  15. Laboratory simulated dissipation of metsulfuron methyl and chlorimuron ethyl in soils and their residual fate in rice, wheat and soybean at harvest

    PubMed Central

    Sanyal, Nilanjan; Pramanik, Sukhendu Kumar; Pal, Raktim; Chowdhury, Ashim

    2006-01-01

    Two sulfonylurea herbicides, metsulfuron methyl (Ally 20 WP) and chlorimuron ethyl (Classic 25 WP) were evaluated for their dissipation behaviour in alluvial, coastal saline and laterite soils under laboratory incubated condition at 60% water holding capacity of soils and 30 °C temperature was maintained. In field study herbicides were applied twice for the control of grasses, annual and perennials broad leaves weeds and sedges in rice, wheat and soybean to find out the residual fate of both the herbicides on different matrices of respective crops after harvest. Extraction and clean up methodologies for the herbicides were standardized and subsequently analyzed by HPLC. The study revealed that the half-lives of metsulfuron methyl and chlorimuron ethyl ranged from 10.75 to 13.94 d irrespective of soils and doses applied. Field trials with rice, wheat and soybean also revealed that these two herbicides could safely be recommended for application as no residues were detected in the harvest samples. PMID:16502507

  16. [Comparative morphological characteristics of changes in the liver in case of poisoning with alcohol-containing liquids in human and following subacute treatment of animals with ethyl and propyl alcohols, ethylene glycol and their mixtures].

    PubMed

    Benemanskiĭ, V V; Solodun, Iu V; Iushkov, G G; Bun, M M; Piskareva, T A

    2010-01-01

    The authors present results of comparative morphological studies of changes in the liver after intoxication with alcohol-containing liquids in human and following subacute treatment of animals with ethyl and propyl alcohols, ethylene glycol and their mixtures. It was shown that poisoning caused by individual chemical substances and their mixtures induced significantly different changes in the liver of animals. The mixtures produced much more serious toxic lesions in the parenchymal tissue than individual spirits (including development of necrotization foci) and contributed to enhanced mortality of experimental animals. The morphological picture of the liver in human subjects poisoned by a mixture of alcohols resembled that after intoxication with carbon tetrachloride and was consistent with the changes in people who had died during episodes of mass poisoning with surrogate alcoholic beverages and alcohol-containing liquids.

  17. Alcohol-dose-dependent DNA methylation and expression in the nucleus accumbens identifies coordinated regulation of synaptic genes

    PubMed Central

    Cervera-Juanes, R; Wilhelm, L J; Park, B; Grant, K A; Ferguson, B

    2017-01-01

    Alterations in DNA methylation have been associated with alcohol exposure and proposed to contribute to continued alcohol use; however, the molecular mechanisms involved remain obscure. We investigated the escalating effects of alcohol use on DNA methylation, gene expression and predicted neural effects in the nucleus accumbens of rhesus macaques that self-administered 4% alcohol for over 12 months. Using an exploratory approach to identify CpG-rich regions, followed by bisulfite sequencing, the methylation levels of 2.7 million CpGs were compared between seven low-binge drinkers and nine heavy–very heavy drinking subjects. We identified 17 significant differential methylation regions (DMRs), including 14 with methylation levels that were correlated with average daily alcohol consumption. The size of the DMRs ranged from 29 to 158 bp (mean=63.7), included 4–19 CpGs per DMR (mean=8.06) and spanned a range of average methylation values from 5 to 34%. Eight of the DMRs mapped to genes implicated in modulating synaptic plasticity. Six of the synaptic genes have not previously been linked to alcohol use. Validation studies of these eight DMRs using bisulfite amplicon sequencing and an expanded set of 30 subjects confirmed the significant alcohol-dose-associated methylation of the DMRs. Expression analysis of three of the DMR-associated genes, LRP5, GPR39 and JAKMIP1, revealed significant correlations between DMR methylation and whole-gene or alternative transcript expression, supporting a functional role in regulating gene expression. Together, these studies suggest that alcohol-associated synaptic remodeling may be regulated and coordinated at the level of DNA methylation. PMID:28072409

  18. Fatty acid ethyl esters (FAEEs) as markers for alcohol in meconium: method validation and implementation of a screening program for prenatal drug exposure.

    PubMed

    Hastedt, Martin; Krumbiegel, Franziska; Gapert, René; Tsokos, Michael; Hartwig, Sven

    2013-09-01

    Alcohol consumption during pregnancy is a widespread problem and can cause severe fetal damage. As the diagnosis of fetal alcohol syndrome is difficult, the implementation of a reliable marker for alcohol consumption during pregnancy into meconium drug screening programs would be invaluable. A previously published gas chromatography mass spectrometry method for the detection of fatty acid ethyl esters (FAEEs) as alcohol markers in meconium was optimized and newly validated for a sample size of 50 mg. This method was applied to 122 cases from a drug-using population. The meconium samples were also tested for common drugs of abuse. In 73 % of the cases, one or more drugs were found. Twenty percent of the samples tested positive for FAEEs at levels indicating significant alcohol exposure. Consequently, alcohol was found to be the third most frequently abused substance within the study group. This re-validated method provides an increase in testing sensitivity, is reliable and easily applicable as part of a drug screening program. It can be used as a non-invasive tool to detect high alcohol consumption in the last trimester of pregnancy. The introduction of FAEEs testing in meconium screening was found to be of particular use in a drug-using population.

  19. Integration of Clinical Examination, Self-Report, and Hair Ethyl Glucuronide Analysis for Evaluation of Patients With Alcoholic Liver Disease Prior to Liver Transplantation.

    PubMed

    Beckmann, Mingo; Paslakis, Georgios; Böttcher, Michael; Helander, Anders; Erim, Yesim

    2016-03-01

    A large proportion of liver transplants (LTXs) are performed due to alcoholic liver disease (ALD) in the final stage of organ insufficiency. In order to list patients for LTX, transplant centers commonly require 6 months abstinence from alcohol. However, significant differences have been reported between alcohol intake as indicated by self-report and biochemical markers of alcohol. In the present study, the usefulness of ethyl glucuronide analysis in hair (hETG) was examined during the evaluation procedure before listing patients with ALD for an LTX. Cross-sectional survey. Psychosomatic evaluation. Seventy patients with ALD prior to listing for an LTX. According to clinical assessment before listing patients with ALD (n = 233) for an LTX, hETG analysis was only performed in the patients who were assumed to deny or underreport their alcohol consumption (n = 70). The analysis of hETG by liquid chromatography-mass spectrometry, clinical interview. By hETG analyses, 27 (38.6%) of the 70 patients tested positive for ongoing alcohol consumption. Selective use of hETG based on the clinical interview rather than widespread screening is a possible way to detect excessive alcohol consumption in patients with ALD in the transplant setting. The primary evaluation of a patient's situation in its entirety should remain the superordinate standard procedure. An interdisciplinary approach to transplant candidates with an ALD is asked for. © 2016, NATCO.

  20. Ethyl glucuronide concentrations in beard hair after a single alcohol dose: evidence for incorporation in hair root.

    PubMed

    Schräder, Johannes; Rothe, Michael; Pragst, Fritz

    2012-09-01

    Despite the growing importance of ethyl glucuronide (EtG) in hair for detection of chronic excessive alcohol consumption, the mechanism of incorporation is not yet clear. Deposition from sweat is believed to be the main route. In order to get more information, EtG was determined in daily shaved beard hair after single higher alcohol doses. Three volunteers drank within 5.5 h 153, 165 and 200 g ethanol followed by abstinence. Daily shaved beard hair was analysed for EtG using a validated liquid chromatography-tandem mass spectrometry method with a limit of quantification of 2 pg/mg. For all three volunteers, small concentrations of EtG were already detected 9 h after end of drinking. The concentrations increased to maxima of 182, 242 and 74 pg/mg on days 2 to 4 and then gradually decreased to limit of quantification on days 8 to 10. The time course of EtG is discussed based on literature data about anatomic dimensions of the hair root, physiology of hair growth, kinetics of EtG formation and elimination in blood, and in comparison to literature results about drugs in beard hair. It follows that for beard hair the predominant portion of EtG is incorporated in the upper part of the hair root between suprabulbar region and isthmus leading to a positive zone of about 3 mm (8-9 days) after a single drinking event. Deposition from sweat which is only possible into the residual hair stubble after shaving and in the infundibulum down to the sebaceous gland mouth was found to be of minor importance but could play a greater role in long hair. It is concluded that EtG in hair fulfils the prerequisites for time-resolved interpretation of segmental concentrations and that a single excessive drinking can be well detected in sufficiently short hair segments. However, in the routinely investigated 3-cm proximal scalp hair segment and using the cutoff of 7 pg/mg, a negative result can be expected with high probability because of dilution by negative hair.

  1. Absorption of the nerve agent VX (O-ethyl-S-[2(di-isopropylamino)ethyl] methyl phosphonothioate) through pig, human and guinea pig skin in vitro.

    PubMed

    Dalton, Christopher H; Hattersley, Ian J; Rutter, Stephen J; Chilcott, Robert P

    2006-12-01

    The physico-chemical properties of VX make the skin the most likely route of absorption into the human body. The development of effective medical countermeasures against such percutaneous threat agents relies on the use of appropriate animal models, as the inherent toxicity of nerve agents precludes the use of human volunteers. Previous studies have characterised the mechanism of nerve agent toxicity in rodent models, however, it is generally accepted that one of the most appropriate animal models for human skin absorption is the domestic pig. The purpose of the present study was to measure and compare the skin absorption kinetics of VX in vitro using pig, human and guinea pig skin to highlight any potential species differences in skin permeability. When undiluted VX was applied directly to the skin, the permeability of guinea pig skin was approximately 7-fold greater than human skin. There was no significant difference in the permeability of pig and human skin. When VX diluted with isopropyl alcohol was applied to the skin, the permeability of guinea pig skin was approximately 4-fold greater than human skin. There was no significant difference in the permeability of pig and human skin. From this data it may be inferred that dermatomed, abdominal pig skin is an appropriate model for the human skin absorption of VX.

  2. Oxidation of alcohols and reduction of aldehydes derived from methyl- and dimethylpyrenes by cDNA-expressed human alcohol dehydrogenases.

    PubMed

    Kollock, Ronny; Frank, Heinz; Seidel, Albrecht; Meinl, Walter; Glatt, Hansruedi

    2008-03-12

    Some methylated pyrenes can form DNA adducts in rat tissues after benzylic hydroxylation and sulpho conjugation. However, oxidation of the intermediate alcohols to carboxylic acids is an important competing pathway leading to detoxification. We previously showed that co-administration of ethanol or 4-methylpyrazole strongly enhances DNA adduct formation by 1-hydroxymethylpyrene, indicating an involvement of alcohol dehydrogenases (ADHs) in the detoxification. This mechanism may be involved in the observed synergism of smoking and alcohol consumption in certain human cancers. In a preceding study, cDNA-expressed human ADH2 efficiently oxidised 1-, 2- and 4-hydroxymethylpyrene; these reactions were inhibited in the presence of ethanol or 4-methylpyrazole. Here we report that ADH1C, ADH3 and ADH4 also show substantial activity towards these substrates and two further congeners, 1-hydroxymethyl-6-methylpyrene and 1-hydroxymethyl-8-methylpyrene. All four ADH forms also catalysed the reverse reaction, implying that the aldehydes have to be sequestered by other enzymes, such as aldehyde dehydrogenases, for final detoxification. ADH1C and ADH4 activities towards hydroxymethylpyrenes were more strongly inhibited in the presence of ethanol and 4-methylpyrazole than those of ADH2. ADH3 was only inhibited at very high concentrations of the modulators. In conclusions, several human ADHs are capable of detoxifying benzylic alcohols of alkylated polycyclic aromatic hydrocarbons. However, some competing substrates and inhibitors may affect all these redundant detoxification systems, although to various extents.

  3. Methyl tert-butyl ether and tert-butyl alcohol degradation by Fusarium solani.

    PubMed

    Magaña-Reyes, Miguel; Morales, Marcia; Revah, Sergio

    2005-11-01

    Fusarium solani degraded methyl tert-butyl ether (MTBE) and other oxygenated compounds from gasoline including tert-butyl alcohol (TBA). The maximum degradation rate of MTBE was 16 mg protein h and 46 mg/g protein h for TBA. The culture transformed 77% of the total carbon to 14CO2. The estimated yield for MTBE was 0.18 g dry wt/g MTBE.

  4. MAOA methylation is associated with nicotine and alcohol dependence in women.

    PubMed

    Philibert, Robert A; Gunter, Tracy D; Beach, Steven R H; Brody, Gene H; Madan, Anup

    2008-07-05

    In recent years, the role of epigenetic phenomenon, such as methylation, in mediating vulnerability to behavioral illness has become increasingly appreciated. One prominent locus at which epigenetic phenomena are thought to be in play is the monoamine oxidase A (MAOA) locus. In order to examine the role of methylation at this locus, we performed quantitative methylation analysis across the promoter region of this gene in lymphoblast lines derived from 191 subjects participating in the Iowa Adoption Studies (IAS). We analyzed the resulting data with respect to genotype and lifetime symptom counts for the more common major behavioral disorders in the IAS, antisocial personality disorder (ASPD), and substance use disorders (alcohol (AD) and nicotine dependence (ND)). We found that methylation status was significantly associated with lifetime symptom counts for ND (P < 0.001) and AD (P < 0.008) in women, but not men. Furthermore, a trend was found for women homozygous for the 3,3 allele to have a higher degree of overall methylation than women homozygous for the 4,4 allele (P < 0.10). We conclude that methylation of MAOA may play a significant role in common psychiatric illness and that further examination of epigenetic processes at this locus is in order. Copyright 2008 Wiley-Liss, Inc.

  5. Alcohol, one-carbon nutrient intake, and risk of colorectal cancer according to tumor methylation level of IGF2 differentially methylated region.

    PubMed

    Nishihara, Reiko; Wang, Molin; Qian, Zhi Rong; Baba, Yoshifumi; Yamauchi, Mai; Mima, Kosuke; Sukawa, Yasutaka; Kim, Sun A; Inamura, Kentaro; Zhang, Xuehong; Wu, Kana; Giovannucci, Edward L; Chan, Andrew T; Fuchs, Charles S; Ogino, Shuji; Schernhammer, Eva S

    2014-12-01

    Although a higher consumption of alcohol, which is a methyl-group antagonist, was previously associated with colorectal cancer risk, mechanisms remain poorly understood. We hypothesized that excess alcohol consumption might increase risk of colorectal carcinoma with hypomethylation of insulin-like growth factor 2 (IGF2) differentially methylated region-0 (DMR0), which was previously associated with a worse prognosis. With the use of a molecular pathologic epidemiology database in 2 prospective cohort studies, the Nurses' Health Study and Health Professionals Follow-up Study, we examined the association between alcohol intake and incident colorectal cancer according to the tumor methylation level of IGF2 DMR0. Duplication-method Cox proportional cause-specific hazards regression for competing risk data were used to compute HRs and 95% CIs. In addition, we investigated intakes of vitamin B-6, vitamin B-12, methionine, and folate as exposures. During 3,206,985 person-years of follow-up, we identified 993 rectal and colon cancer cases with an available tumor DNA methylation status. Compared with no alcohol consumption, the consumption of ≥15 g alcohol/d was associated with elevated risk of colorectal cancer with lower levels of IGF2 DMR0 methylation [within the first and second quartiles: HRs of 1.55 (95% CI: 1.08, 2.24) and 2.11 (95% CI: 1.44, 3.07), respectively]. By contrast, alcohol consumption was not associated with cancer with higher levels of IGF2 DMR0 methylation. The association between alcohol and cancer risk differed significantly by IGF2 DMR0 methylation level (P-heterogeneity = 0.006). The association of vitamin B-6, vitamin B-12, and folate intakes with cancer risk did not significantly differ according to IGF2 DMR0 methylation level (P-heterogeneity > 0.2). Higher alcohol consumption was associated with risk of colorectal cancer with IGF2 DMR0 hypomethylation but not risk of cancer with high-level IGF2 DMR0 methylation. The association between alcohol

  6. Alcohol, one-carbon nutrient intake, and risk of colorectal cancer according to tumor methylation level of IGF2 differentially methylated region123456

    PubMed Central

    Nishihara, Reiko; Wang, Molin; Qian, Zhi Rong; Baba, Yoshifumi; Yamauchi, Mai; Mima, Kosuke; Sukawa, Yasutaka; Kim, Sun A; Inamura, Kentaro; Zhang, Xuehong; Wu, Kana; Giovannucci, Edward L; Chan, Andrew T; Fuchs, Charles S; Ogino, Shuji; Schernhammer, Eva S

    2014-01-01

    Background: Although a higher consumption of alcohol, which is a methyl-group antagonist, was previously associated with colorectal cancer risk, mechanisms remain poorly understood. Objective: We hypothesized that excess alcohol consumption might increase risk of colorectal carcinoma with hypomethylation of insulin-like growth factor 2 (IGF2) differentially methylated region-0 (DMR0), which was previously associated with a worse prognosis. Design: With the use of a molecular pathologic epidemiology database in 2 prospective cohort studies, the Nurses’ Health Study and Health Professionals Follow-up Study, we examined the association between alcohol intake and incident colorectal cancer according to the tumor methylation level of IGF2 DMR0. Duplication-method Cox proportional cause-specific hazards regression for competing risk data were used to compute HRs and 95% CIs. In addition, we investigated intakes of vitamin B-6, vitamin B-12, methionine, and folate as exposures. Results: During 3,206,985 person-years of follow-up, we identified 993 rectal and colon cancer cases with an available tumor DNA methylation status. Compared with no alcohol consumption, the consumption of ≥15 g alcohol/d was associated with elevated risk of colorectal cancer with lower levels of IGF2 DMR0 methylation [within the first and second quartiles: HRs of 1.55 (95% CI: 1.08, 2.24) and 2.11 (95% CI: 1.44, 3.07), respectively]. By contrast, alcohol consumption was not associated with cancer with higher levels of IGF2 DMR0 methylation. The association between alcohol and cancer risk differed significantly by IGF2 DMR0 methylation level (P-heterogeneity = 0.006). The association of vitamin B-6, vitamin B-12, and folate intakes with cancer risk did not significantly differ according to IGF2 DMR0 methylation level (P-heterogeneity > 0.2). Conclusions: Higher alcohol consumption was associated with risk of colorectal cancer with IGF2 DMR0 hypomethylation but not risk of cancer with high

  7. Synthesis and Characterization of bis[(2-ethyl-5-methyl-imidazo-4-yl)methyl]Sulfide and Its Coordination Behavior toward Cu(II) as a Possible Approach of a Copper Site Type I

    PubMed Central

    Barrón-Garcés, Juan D.; Mendoza-Díaz, Guillermo; Vilchez-Aguado, Florina; Bernès, Sylvain

    2009-01-01

    The synthesis and characterization of a novel ligand, bis[(2-ethyl-5-methyl-imidazo-4-yl)methyl]sulfide (bemims), as well as a bemims-containing copper(II) coordination complex are described. In this complex, [Cu(bemims)X 2] with X = NO3 −, bemims acts as a tridentate ligand and two monodentate nitrate ions complete the coordination sphere. Both imidazole N atoms and the thioether S atom of bemims participate in coordination. The Cu(II) ion is five-coordinated with a slightly distorted square-pyramidal geometry (τ = .09). Electrochemical studies and spectroscopic data for this complex are compared with some blue copper proteins in order to assess its ability to mimic the copper center of type I copper proteins. PMID:19587830

  8. Validation (in-house and collaboratory) of the quantification method for ethyl carbamate in alcoholic beverages and soy sauce by GC-MS.

    PubMed

    Huang, Zhu; Pan, Xiao-Dong; Wu, Ping-Gu; Chen, Qing; Han, Jian-Long; Shen, Xiang-Hong

    2013-12-15

    A method for ethyl carbamate (EC) determination in alcoholic beverages and soy sauce was developed by GC-MS. We adopted the diatomaceous earth solid-phase extraction (SPE) column and elution solvent of ethyl acetate/diethyl ether (5:95 v/v) for sample cleaning. The in-house validation showed the limit of quantification (LOQ) was 5.0 μg/kg. In the accuracy assay, the total average recovery for was 96.7%. The relative standard deviations (RSDs) were <5%. Subsequently, a collaborative trial was organized for the further validation. The RSDs for repeatability and reproducibility were 1.2-7.8% and 2.3-9.6% respectively. It indicated that the present method performed well in different laboratories.

  9. Fetal exposure to alcohol as evidenced by fatty acid ethyl esters in meconium in the absence of maternal drinking history in pregnancy.

    PubMed

    Chan, Daphne; Klein, Julia; Karaskov, Tatyana; Koren, Gideon

    2004-10-01

    The detection of fatty acid ethyl esters (FAEE) in neonatal meconium has been proposed as a novel screening method for intrauterine exposure to alcohol. We investigated the potential use of meconium FAEE screening in a high-risk neonatal population in the absence of maternal drinking history. One hundred forty-two meconium samples of neonates suspected of intrauterine illicit substance exposure and referred to the Motherisk Laboratory were analyzed for the existence of drugs by enzyme-linked immunosorbent assay (ELISA) and FAEE by gas chromatography-flame ionization detection (GC-FID). A positive FAEE test was previously defined as a cumulative measurement of 7 individual FAEE > or = 2 nmol/g. Seventy-one percent of the samples tested positive for at least 1 illicit drug, with cannabis being the most prevalent (52.3%). Fourteen percent of all samples tested positive for prenatal alcohol exposure, as evidenced by cumulative meconium FAEE > or = 2 nmol/g. Ethyl oleate, linoleate, palmitate, and arachidonate were detected most often and at the highest levels. At least 3 individual FAEE were detected in 95% of all positive samples, and none could be identified by the use of 1 selected FAEE. Significantly elevated levels of FAEE above the baseline and the presence of multiple FAEE species in meconium are exclusive to neonates who have likely been exposed to excessive amounts of alcohol in utero. Babies born to mothers who are suspected to use illicit drugs in pregnancy are at elevated risk for exposure also to alcohol in utero. Meconium FAEE are emerging biologic markers that can potentially facilitate earlier diagnosis and intervention for less apparent forms of alcohol-related disabilities that cannot be confirmed in the absence of maternal drinking history.

  10. The effects of N-ethyl-N'-methyl imidazolium chloride on the solubility, stability and aggregation of tc-rPA.

    PubMed

    Tischer, Alexander; Pultke, Heiko; Topf, Andrea; Auton, Matthew; Lange, Christian; Lilie, Hauke

    2014-04-01

    The ionic liquid N-ethyl-N'-methyl imidazolium chloride (EMIMCl) has been described as being very efficient in promoting refolding of the recombinant plasminogen activator rPA. Our study reveals that molar concentrations of EMIMCl increase the solubility of native and unfolded proteins due to favorable interactions with amino acid side chains rather than favorably interacting with the peptide backbone. This delicate balance of favorable interactions with side chains and unfavorable interactions with the peptide backbone provides a molecular explanation of how EMIMCl suppresses protein aggregation and simultaneously promotes refolding. By contrast, high concentrations of EMIMCl denature proteins because of a reduced water content and strong favorable interactions with amino acid side chains. This denatured species is not soluble and aggregates because, in contrast to the classical denaturants, guanidine hydrochloride and urea, EMIMCl does not solubilize the peptide backbone. PNP and PNP bind by molecular sieving (1, 2, 3, 4). © 2014 FEBS.

  11. Development of microporous drug-releasing films cast from artificial nanosized latexes of poly(styrene-co-methyl methacrylate) or poly(styrene-co-ethyl methacrylate).

    PubMed

    Otto, Daniel P; Vosloo, Hermanus C M; Liebenberg, Wilna; de Villiers, Melgardt M

    2008-08-01

    Two sets of copolymers comprising of styrene and either methyl or ethyl methacrylate as comonomer were conveniently synthesized by microemulsion copolymerization. The purified materials were characterized by GPC-MALLS and were shown to form artificial nanolatexes in THF. ATR-FTIR analysis revealed differences in copolymer composition and based on the copolymer properties, a selection of copolymers was chosen to cast drug-loaded, microporous films that exhibit microencapsulation of drug agglomerates. The contact angles of the copolymers suggested potential applications in medical devices to prevent the formation of bacterial biofilms that commonly result in infections. Additionally, the different copolymeric films showed two phases of drug release characterized by a rapid initial drug release followed by a zero-order phase. Depending on the application, one could select the copolymer films that best suited the application i.e. for short-term drug release applications such as urinary catheters or long-term applications such as artificial implants.

  12. Kinetics and thermodynamics of oxidation mediated reaction in L-cysteine and its methyl and ethyl esters in dimethyl sulfoxide-d6 by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dougherty, Ryan J.; Singh, Jaideep; Krishnan, V. V.

    2017-03-01

    L-Cysteine (L-Cys), L-Cysteine methyl ester (L-CysME) or L-Cysteine ethyl ester (L-CysEE), when dissolved in dimethyl sulfoxide, undergoes an oxidation process. This process is slow enough and leads to nuclear magnetic resonance (NMR) spectral changes that could be monitored in real time. The oxidation mediated transition is modeled as a pseudo-first order kinetics and the thermodynamic parameters are estimated using the Eyring's formulation. L-Cysteine and their esters are often used as biological models due to the remarkable thiol group that can be found in different oxidation states. This oxidation mediated transition is due to the combination of thiol oxidation to a disulfide followed by solvent-induced effects may be relevant in designing cysteine-based molecular models.

  13. Ethyl 2-(3-methyl-5-sulfanyl­idene-4,5-dihydro-1H-1,2,4-triazol-4-yl)acetate

    PubMed Central

    Karczmarzyk, Zbigniew; Pitucha, Monika; Wysocki, Waldemar; Fruziński, Andrzej; Olender, Ewa

    2012-01-01

    The title compound, C7H11N3O2S, exists in the 5-thioxo tautomeric form. The 1,2,4-triazoline ring is essentially planar, with a maximum deviation of 0.010 (2) Å for the substituted N atom. The ethyl acetate substituent is almost planar, with a maximum deviation of 0.061 (4) Å for the methyl­ene C atom of the eth­oxy group. The angle between the mean plane of this substituent and the mean plane of the 1,2,4-triazoline ring is 89.74 (8)°. In the crystal, mol­ecules are linked by a combination of N—H⋯S, C—H⋯N and C—H⋯O hydrogen bonds into chains parallel to [100]. PMID:23468781

  14. Electrical conductivity of seven binary systems containing 1-ethyl-3-methyl imidazolium alkyl sulfate ionic liquids with water or ethanol at four temperatures.

    PubMed

    Rilo, E; Vila, J; García-Garabal, S; Varela, L M; Cabeza, O

    2013-02-07

    We present experimental measurements of specific electrical (or ionic) conductivity of seven binary systems of 1-ethyl-3-methyl imidazolium alkyl sulfate (EMIM-C(n)S) with water or ethanol. Electrical conductivity was measured at 298.15 K in all ranges of concentrations and selected mixtures also at 288.15, 308.15, and 318.15 K. The alkyl chains of the anions used are ethyl (EMIM-ES), butyl (EMIM-BS), hexyl (EMIM-HS), and, only for mixtures with ethanol, octyl (EMIM-OS). Let us note that the four ionic liquids (ILs) measured are miscible in water and ethanol at those temperatures and atmospheric pressure in all ranges of concentrations, but EMIM-OS jellifies for a given range of concentration with water. We compare the measured data in terms of the alkyl chain length and solvent nature. Data are compared with previously scarce results for these same systems and also for other aqueous and ethanol mixtures with ILs. In addition, we verify that our data fit the universal theoretical expression with no fitting parameters given by the pseudolattice-based Bahe-Varela model, except for IL concentrated mixtures. To fit well all ranges of concentrations, we add to the original equation two phenomenological terms with one fitting parameter each. Finally, we calculate the molar conductivity and fit it successfully with an expression derived from Onsager theory.

  15. Crystal structure of (Z)-ethyl 3-[2-(5-methyl-7-nitro-1H-indole-2-carbon­yl)hydrazinyl­idene]butano­ate

    PubMed Central

    Errossafi, Amal; El Kihel, Abdellatif; Guesmi, Salaheddine; Saadi, Mohamed; El Ammari, Lahcen

    2015-01-01

    The reaction of 5-methyl-7-nitro-1H-indole-2-carbohydrazide with ethyl aceto­acetate yielded the title mol­ecule, C16H18N4O5, in which the indole ring is almost planar, with the greatest deviation from the mean plane being 0.006 (2) Å. The nine atoms of the indole ring are almost perpendicular to the mean plane through the ethyl acetate group, as indicated by the dihedral angle of 87.02 (4)° between them. In the crystal, centrosymmetric supra­molecular dimers are formed via N—H⋯O hydrogen bonds and eight-membered amide {⋯HNCO}2 synthons. These are consolidated into a three-dimensional architecture by C—H⋯O contacts, and by π–π inter­actions between six-membered rings [inter-centroid distance = 3.499 (2) Å]. PMID:26396904

  16. Direct quantitative gas chromatographic separation of C2-C6 fatty acids, methanol, and ethyl alcohol in aqueous microbial fermentation media.

    PubMed

    Rogosa, M; Love, L L

    1968-02-01

    A method is described for the direct quantitative gas chromatographic separation of C(2)-C(6) lower fatty acid homologues, methanol, and ethyl alcohol in aqueous microbial fermentation media. A hydrogen flame detector and a single-phase solid column packing, comprising beads of a polyaromatic resin (polystyrene cross-linked with divinyl benzene), were employed. Direct injections of 1 to 10 muliters of aqueous culture supernatant fluids were made. Quantitative recoveries of C(2)-C(6) acids added to culture supernatant fluids were obtained.

  17. Direct Quantitative Gas Chromatographic Separation of C2-C6 Fatty Acids, Methanol, and Ethyl Alcohol in Aqueous Microbial Fermentation Media

    PubMed Central

    Rogosa, M.; Love, L. L.

    1968-01-01

    A method is described for the direct quantitative gas chromatographic separation of C2-C6 lower fatty acid homologues, methanol, and ethyl alcohol in aqueous microbial fermentation media. A hydrogen flame detector and a single-phase solid column packing, comprising beads of a polyaromatic resin (polystyrene cross-linked with divinyl benzene), were employed. Direct injections of 1 to 10 μliters of aqueous culture supernatant fluids were made. Quantitative recoveries of C2-C6 acids added to culture supernatant fluids were obtained. PMID:5645415

  18. Analysis of ethyl sulfate in raw wastewater for estimation of alcohol consumption and its correlation with drugs of abuse in the city of Barcelona.

    PubMed

    Mastroianni, Nicola; Lopez de Alda, Miren; Barcelo, Damia

    2014-09-19

    The increasing, generalized consumption of alcohol, especially among young people, generates great concern in our society due to its negative consequences on public health and safety. Besides the traditional, official methods employed for estimation of alcohol consumption, the monitoring of ethyl sulfate (EtS), a urinary biomarker of alcohol ingestion, in raw wastewater has been recently proposed as an additional tool to estimate alcohol use at community level through the so-called sewage epidemiology approach. In the presented study, a fast and reliable analytical method based on ion-pair liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been optimized and further applied to the analysis of EtS in seven 24h composite samples collected along one week at the inlet of a large sewage treatment plant (STP) located in the Barcelona area. EtS was measured in the entire set of analysed samples, with concentrations ranging from 5.5 to 33μg/L, which correspond to an absolute alcohol consumption of around 11,000 (Wednesday) to 25,000 (Sunday) kg/day. The average per capita absolute alcohol consumption calculated was 18mL/day/inhabitant. Moreover, the levels of EtS measured throughout the week showed high correlation with those of some recreational illicit drugs and metabolites, namely, cocaethylene (r(2)=0.9391, n=5), benzoylecgonine (r(2)=0.9252, n=7), ecstasy (r(2)=0.8950, n=7), amphetamine (r(2)=0.8707, n=7) and cocaine (r(2)=0.6425, n=7), measured in the same samples. This study confirms that the analysis of EtS in raw wastewater can be a useful tool for the estimation of alcohol consumption in an anonymous, fast and economic way, and indicates that consumption of alcohol and some illicit drugs occurs often together. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Fragrance material review on 2-ethyl-1-hexanol.

    PubMed

    McGinty, D; Scognamiglio, J; Letizia, C S; Api, A M

    2010-07-01

    A summary of the safety data available for 2-ethyl-1-hexanol when used as a fragrance ingredient is presented. 2-Ethyl-1-hexanol is a member of the fragrance structural group branched chain saturated alcohols in which the common characteristic structural element is one hydroxyl group per molecule, and a C(4) to C(12) carbon chain with one or several methyl side chains. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. A safety assessment of the entire branched chain saturated alcohol group will be published simultaneously with this document; please refer to Belsito et al. (2010) for an overall assessment of the safe use of this material and all other branched chain saturated alcohols in fragrances.

  20. Dose-response and time-response analysis of total fatty acid ethyl esters in meconium as a biomarker of prenatal alcohol exposure.

    PubMed

    Kwak, Ho-Seok; Han, Jung-Yeol; Choi, June-Seek; Ahn, Hyun-Kyong; Kwak, Dong-Wook; Lee, Yeon-Kyung; Koh, Sun-Young; Jeong, Go-Un; Velázquez-Armenta, E Yadira; Nava-Ocampo, Alejandro A

    2014-09-01

    Little is known on how the dose and timing of exposure co-influence the cumulative concentration of fatty acid ethyl esters (FAEEs) in meconium. The objective of the study was to assess the cumulative concentration of FAEEs in meconium as a biomarker of light, moderate, or heavy prenatal alcohol exposure occurring at either first, second, or third trimesters of pregnancy. History of prenatal alcohol exposure was obtained in the 34th week of gestation from 294 pregnant women. Meconium was collected from their babies within the first 6 to 12 h after birth and examined for the presence of nine FAEEs. No significant differences were identified between the cumulative levels of FAEEs in the meconium from the babies born to abstainers and those born to mothers with history of light-to-moderate prenatal alcohol exposure during their pregnancy. Light-to-moderate prenatal alcohol exposure cannot be reliably predicted by the cumulative FAEE concentrations in meconium of exposed babies. A cumulative FAEE level of >10 nmol/g would be required to consider that prenatal alcohol exposure during the second to third trimesters occurred at risky levels in the absence of reliable maternal history of ethanol exposure. © 2014 John Wiley & Sons, Ltd.

  1. [Effect of alcoholic strength on the determination of ethyl carbamate in Chinese spirits by high performance liquid chromatography-fluorescence detection].

    PubMed

    Chen, Dawei; Miao, Hong; Zhao, Yunfeng; Wu, Yongning

    2013-12-01

    A high performance liquid chromatography-fluorescence detection (HPLC-FLD) method was established for rapid determination of ethyl carbamate (EC) in Chinese spirits. Through the analysis and comparison of the EC peak areas in different alcoholic strengths determined by HPLC-FLD, the effect of alcoholic strength on the determination of the content of EC was found. The alcoholic strength and the peak area of EC showed good linearity in the range of 5% to 65% (v/v) alcohol content, and the correlation coefficients (R2) were higher than 0.98. Furthermore, the conversion between the peak area of EC with different alcoholic strengths was established by the relative correction coefficient. The method showed a good linearity in the range of 10 to 500 microg/L for EC with the average recoveries of 98.9%-108.2% and RSDs of 0.6%-4.9%. The reliability of the established HPLC-FLD method was evaluated by comparison with GC-MS method. The results showed that the results of two methods were not significantly different. The developed method is simple, sensitive, accurate, and suitable for the rapid determination of EC in Chinese spirits.

  2. Synthesis of (2-amino)ethyl derivatives of quercetin 3-O-methyl ether and their antioxidant and neuroprotective effects.

    PubMed

    Lee, Young Hun; Kim, Hyoung Ja; Yoo, Ho; Jung, Seo Yun; Kwon, Bong Jin; Kim, Nam-Jung; Jin, Changbae; Lee, Yong Sup

    2015-08-01

    Reactive oxygen species have been implicated in several diseases, particularly in ischemia-reperfusion injury. Quercetin 3-O-methyl ether has been reported to show potent antioxidant and neuroprotective activity against neuronal damage induced by reactive oxygen species. Several aminoethyl-substituted derivatives of quercetin 3-O-methyl ether have been synthesized to increase water solubility while retaining antioxidant and neuroprotective activity. Among such derivatives, compound 3a shows potent and well-balanced antioxidant activity in three types of cell-free assay systems and has in vivo neuroprotective effects on transient focal ischemic injury induced by the occlusion of the middle cerebral artery in rats.

  3. [Ethyl alcohol and psychoactive drugs in patients with head and trunk injuries treated at the Department of General Surgery, Provincial Hospital in Siedlce].

    PubMed

    Sienkiewicz, Piotr

    2011-01-01

    Drug abuse is a social, moral, and penal problem in Poland since many years. Ethyl alcohol remains the prime cause of concern. The effect of narcotics (including alcohol) on trauma has been the object of investigations for years. 1) To determine the reliability of subjective assessment of sobriety of the patient by the physician. 2) To determine correlations between inebriety, duration of hospital stay, type and extent of surgical intervention, and death. 3) To compare blood alcohol content measured with an immunoenzyme assay and the reference gas chromatographic method (GC-headspace). 4) To assess correlations between GCS score, type of trauma, and blood alcohol content. The study was done in 207 patients referred between 1.07.2008 and 30.06.2009 to the hospital's emergency department due to trauma of the head and/or trunk. The significant role of ethyl alcohol in trauma of the head and trunk has been corroborated, in particular in young males admitted from Friday to Monday between 8:00 pm and 8:00 am. Ethyl alcohol in serum was detected in 34% of patients (40.1% of males and 12.5% of females) qualified to the test. The presence of alcohol in blood correlated with pedestrian or cyclist road accidents or violence (assault). Fractures of the skull and surgical treatment of wounds were significantly more frequent in inebriated patients. Inebriated patients were more inclined to leave the hospital on demand. According to the GCS score, 55.8% of patients with less than 15 points were inebriated. Disorders of speech were observed by the physician in only 47.9% of inebriated patients. The smell of alcohol on the breath was noted in 81.69% of inebriated patients and 60.42% of them admitted drinking alcohol. Subjective assessment of sobriety/inebriety by the physician was correct in 81.7% of patients. The involvement of drugs acting like alcohol in trauma is marginal in Siedlce and its region. Xenobiotics were found in just three of 207 patients qualified to the test. The

  4. Infrared reflection absorption spectroscopic studies on the adsorption structures of dimethyl sulfide and methyl ethyl sulfide on Ag(1 1 0) and Cu(1 1 0)

    NASA Astrophysics Data System (ADS)

    Kasahara, T.; Shinohara, H.; Oshima, Y.; Kadokura, K.; Uriu, Y.; Ohe, C.; Itoh, K.

    2004-06-01

    Infrared reflection absorption (IRA) spectra were measured for dimethyl sulfide (CH 3SCH 3, DMS) and methyl ethyl sulfide (CH 3SCH 2CH 3, MES) with increasing exposure to metal substrates, Ag(1 1 0) and Cu(1 1 0), at 80 K. The spectral simulations performed by using the DFT calculation at the B3LYP/6-311++G** level indicated that (i) DMS adsorbs on the substrates with the CSC plane appreciably tilted from the surface normal, the tilt angle being about 80° for the adsorbate on Ag(1 1 0) and about 60° for the adsorbate on Cu(1 1 0), (ii) MES on Ag(1 1 0) at a submonolayer coverage state takes on the trans form with the molecular plane tilted from the surface normal by about 60°, and (iii) MES on Cu(1 1 0) takes the gauche form with the CSC plane almost perpendicular to the surface. The tilting of DMS is contrasted to dimethyl ether (DME) adsorbs on Ag(1 1 0) and Cu(1 1 0), where the molecular plane is perpendicular to the substrate surfaces [J. Phys. Chem. B 106 (2002) 3469]. The adsorption structures of DMS and DME are mainly determined by the coordination of the sulfur and oxygen atoms, the sulfur atom tending to coordinate to the Ag and Cu atoms through one of the 3p lone pairs (atop coordination) and the oxygen atom to the metal atoms through both of the 2p lone pairs (bridging coordination). It has been known that methyl ethyl ether (MEE) on Ag(1 1 0) takes on the trans form with the molecular plane tilted by about 45° and MEE on Cu(1 1 0) the gauche form with the COC plane almost perpendicular to the surface [J. Phys. Chem. B 107 (2003) 5008]. These results suggest that an attractive van der Waals interaction between the ethyl group of the adsorbates and the substrate surfaces play an important role in addition to the coordination of the sulfur and oxygen atoms in determining the rotational isomerism and orientation of MES and MEE on Ag(1 1 0) and Cu(1 1 0).

  5. Pretreatment ethyl glucuronide levels predict response to a contingency management intervention for alcohol use disorders among adults with serious mental illness.

    PubMed

    McDonell, Michael Gerard; Leickly, Emily; McPherson, Sterling; Skalisky, Jordan; Hirchak, Katherine; Oluwoye, Oladunni; Srebnik, Debra; Roll, John Michael; Ries, Richard Kirkland

    2017-08-18

    This study investigated if pretreatment ethyl glucuronide (EtG) levels corresponding to light (100 ng/mL), heavy (500 ng/mL), and very heavy (1,000 ng/mL) drinking predicted longest duration of alcohol abstinence (LDA) and proportion of EtG-negative urine tests in outpatients receiving a 12-week EtG-based contingency management (CM) intervention for alcohol dependence. Participants were 40 adults diagnosed with alcohol use disorders and serious mental illness who submitted up to 12 urine samples for EtG analysis during a 4-week observation period and were then randomized to 12-weeks of CM for alcohol abstinence and addiction treatment attendance. Alcohol use outcomes during CM as assessed by EtG and self-report were compared across those who did and did not attain a pre-treatment average EtG level of 500 ng/mL-a level that equates to frequent heavy drinking. Only the 500 ng/mL cutoff was associated with significant differences in LDA and proportion of EtG-negative samples during CM. Those with a pre-treatment EtG < 500 ng/mL attained a LDA 2.3 (alcohol) to 2.9 (drugs) weeks longer than pre-treatment heavy drinkers. The EtG biomarker can be used to determine who will respond to a CM intervention for alcohol use disorders and could inform future trials that are designed to be tailored to individual patients. Results suggest pre-treatment EtG cutoffs equivalent to heavy and very heavy drinking predict outcomes in CM. (Am J Addict 2017;XX:1-3). Copyright © 2017 American Academy of Addiction Psychiatry.

  6. Hair ethyl glucuronide levels as a marker for alcohol use and abuse: a review of the current state of the art.

    PubMed

    Crunelle, Cleo L; Yegles, Michel; Nuijs, Alexander L N van; Covaci, Adrian; De Doncker, Mireille; Maudens, Kristof E; Sabbe, Bernard; Dom, Geert; Lambert, Willy E; Michielsen, Peter; Neels, Hugo

    2014-01-01

    Ethyl glucuronide (EtG) is a minor alcohol metabolite that has been proposed as a stable marker in hair to detect and quantify alcohol consumption over long time periods. We provide an outline of currently available techniques for EtG hair sample analysis and highlight the pitfalls related to data interpretation. The literature of EtG analysis has been reviewed from January 1980 up to August 2013. In addition, we present an overview of the clinical and forensic studies which have used EtG quantification in hair as a marker for alcohol consumption/abstinence and we provide suggestions for future research. EtG is a stable marker in hair that can be used to detect and quantify alcohol consumption over long time periods. This alcohol metabolite remains in hair after complete elimination of alcohol. Currently, there are three main analytical techniques used to quantify EtG in hair: gas chromatography-mass spectrometry (GC-MS), gas chromatography-tandem mass spectrometry (GC-MS/MS), and liquid chromatography-tandem mass spectrometry (LC-MS/MS). No standardized protocols are yet available for the analysis of EtG levels in hair samples, and the current protocols vary in sample preparation and extraction procedures. Variables such as hair length, cosmetic treatment, gender, and pathophysiological conditions influence the final results and should be taken into account. EtG quantification in hair is a useful tool for the objective detection of alcohol consumption over extended time periods, but care should be taken when interpreting the results. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. 2,6-Dithiopurine blocks toxicity and mutagenesis in human skin cells exposed to sulfur mustard analogues, 2-chloroethyl ethyl sulfide and 2-chloroethyl methyl sulfide.

    PubMed

    Powell, K Leslie; Boulware, Stephen; Thames, Howard; Vasquez, Karen M; MacLeod, Michael C

    2010-03-15

    Sulfur mustard (bis-(2-chloroethyl)sulfide) is a well-known chemical warfare agent that induces debilitating cutaneous toxicity in exposed individuals. It is also known to be carcinogenic and mutagenic because of its ability to damage DNA via electrophilic attack. We previously showed that a nucleophilic scavenger, 2,6-dithiopurine (DTP), reacts chemically with several electrophilic carcinogens, blocking DNA damage in vitro and in vivo and abolishing tumor formation in a two-stage mouse skin carcinogenesis model. To assess the potential of DTP as an antagonist of sulfur mustard, we have utilized monofunctional chemical analogues of sulfur mustard, 2-chloroethyl ethyl sulfide (CEES) and 2-chloroethyl methyl sulfide (CEMS), to induce toxicity and mutagenesis in a cell line, NCTC2544, derived from a human skin tumor. We show that DTP blocks cytotoxicity in CEMS- and CEES-treated cells when present at approximately equimolar concentration. A related thiopurine, 9-methyl-6-mercaptopurine, is similarly effective. Correlated with this, we find that DTP is transported into these cells and that adducts between DTP and CEES are found intracellularly. Using a shuttle vector-based mutagenesis system, which allows enumeration of mutations induced in the skin cells by a blue/white colony screen, we find that DTP completely abolishes the mutagenesis induced by CEMS and CEES in human cells.

  8. 2,6-Dithiopurine blocks toxicity and mutagenesis in human skin cells exposed to sulfur mustard analogs, 2-chloroethyl ethyl sulfide and 2-chloroethyl methyl sulfide

    PubMed Central

    Powell, K. Leslie; Boulware, Stephen; Thames, Howard; Vasquez, Karen M.; MacLeod, Michael C.

    2010-01-01

    Sulfur mustard (bis-(2-chloroethyl)sulfide) is a well known chemical warfare agent that induces debilitating cutaneous toxicity in exposed individuals. It is also known to be carcinogenic and mutagenic due to its ability to damage DNA via electrophilic attack. We previously showed that a nucleophilic scavenger, 2,6-dithiopurine (DTP), reacts chemically with several electrophilic carcinogens, blocking DNA damage in vitro and in vivo and abolishing tumor formation in a two-stage mouse skin carcinogenesis model. To assess the potential of DTP as an antagonist of sulfur mustard, we have utilized monofunctional chemical analogs of sulfur mustard, 2-chloroethyl ethyl sulfide (CEES) and 2-chloroethyl methyl sulfide (CEMS), to induce toxicity and mutagenesis in a cell line, NCTC2544, derived from a human skin tumor. We show that DTP blocks cytotoxicity in CEMS- and CEES-treated cells when present at approximately equimolar concentration. A related thiopurine, 9-methyl-6-mercaptopurine, is similarly effective. Correlated with this, we find that DTP is transported into these cells, and that adducts between DTP and CEES are found intracellularly. Using a shuttle vector-based mutagenesis system, which allows enumeration of mutations induced in the skin cells by a blue/white colony screen, we find that DTP completely abolishes mutagenesis induced by CEMS and CEES in the human cells. PMID:20050631

  9. Photocatalytic oxidation of methyl ethyl ketone over sol-gel and commercial TiO2 for the improvement of indoor air.

    PubMed

    Raillard, C; Héquet, V; Le Cloirec, P; Legrand, J

    2006-01-01

    This work focuses on the photocatalytic oxidation of gaseous methyl ethyl ketone chosen as a typical indoor air pollutant. Two types of TiO coatings were prepared and deposited on glass plates: one using the commercial Degussa P25 TiO2 and the other one by sol-gel method. The first objective of this study was to compare different ways of preparing thin films of sol-gel TiO2 coated on glass plates, taking into account their general aspect and their photocatalytic efficiency. Several parameters were tested, such as the stabilising agent, the glass type of the support, the number of coatings and the calcination temperature. One of the synthesised materials was then kept to carry out the following study. The study aimed to assess the influence of TiO2 coating types on the effect of water vapour. This was achieved by performing MEK photocatalytic degradation kinetics under two levels of humidity at a fixed temperature. Experimental results were then modelled by the Langmuir-Hinshelwood equation. The obtained parameters gave specific trends in function of the considered catalyst. The second part of this work was to identify MEK degradation byproducts during its photocatalytic oxidation. The main detected intermediate was acetaldehyde, followed by methyl formate. A MEK degradation pathway was then proposed.

  10. Allium cepa anaphase-telophase root tip chromosome aberration assay on N-methyl-N-nitrosourea, maleic hydrazide, sodium azide, and ethyl methanesulfonate.

    PubMed

    Rank, J; Nielsen, M H

    1997-04-24

    The Allium anaphase-telophase assay was used to show genotoxicity of N-methyl-N-nitrosourea (MNU), maleic hydrazide (MH), sodium azide (NaN3) and ethyl methanesulfonate (EMS). All agents induced chromosome aberrations at statistically significant levels. The rank of the lowest doses with positive effect was as follows: NaN3 0.3 mg/l < MH 1 mg/l < MNU 41 mg/l < EMS 100 mg/l. The results were compared with results from other plant assays (Arabidopsis, Vicia, Tradescantia) and for MH and MNU the values were found to be within the same range, whereas the results in the Allium test for NaN3 and EMS were in a lower range than that found for the other plant assays. EMS and MMS (methyl methanesulfonate), two chemicals used as positive controls in mutagenicity testing, were compared in the Allium test, and MMS was found to be about ten times more potent in inducing chromosome aberrations than EMS. Recording of micronuclei in interphase cells showed that this endpoint does not give more information of clastogenicity than recording of chromosome aberrations in anaphase-telophase cells.

  11. Fatty acid ethyl esters in hair as alcohol markers: estimating a reliable cut-off point by evaluation of 1,057 autopsy cases.

    PubMed

    Hastedt, Martin; Bossers, Lydia; Krumbiegel, Franziska; Herre, Sieglinde; Hartwig, Sven

    2013-06-01

    Alcohol abuse is a widespread problem, especially in Western countries. Therefore, it is important to have markers of alcohol consumption with validated cut-off points. For many years research has focused on analysis of hair for alcohol markers, but data on the performance and reliability of cut-off values are still lacking. Evaluating 1,057 cases from 2005 to 2011, included a large sample group for the estimation of an applicable cut-off value when compared to earlier studies on fatty acid ethyl esters (FAEEs) in hair. The FAEEs concentrations in hair, police investigation reports, medical history, and the macroscopic and microscopic alcohol-typical results from autopsy, such as liver, pancreas, and cardiac findings, were taken into account in this study. In 80.2 % of all 1,057 cases pathologic findings that may be related to alcohol abuse were reported. The cases were divided into social drinkers (n = 168), alcohol abusers (n = 502), and cases without information on alcohol use. The median FAEEs concentration in the group of social drinkers was 0.302 ng/mg (range 0.008-14.3 ng/mg). In the group of alcohol abusers a median of 1.346 ng/mg (range 0.010-83.7 ng/mg) was found. Before June 2009 the hair FAEEs test was routinely applied to a proximal hair segment of 0-6 cm, changing to a routinely investigated hair length of 3 cm after 2009, as proposed by the Society of Hair Testing (SoHT). The method showed significant differences between the groups of social drinkers and alcoholics, leading to an improvement in the postmortem detection of alcohol abuse. Nevertheless, the performance of the method was rather poor, with an area under the curve calculated from receiver operating characteristic (ROC curve AUC) of 0.745. The optimum cut-off value for differentiation between social and chronic excessive drinking calculated for hair FAEEs was 1.08 ng/mg, with a sensitivity of 56 % and a specificity of 80 %. In relation to the "Consensus on Alcohol Markers 2012

  12. Crystal structure of bis-(η(2)-ethyl-ene)(η(5)-penta-methyl-cyclo-penta-dien-yl)cobalt.

    PubMed

    Ramful, Chandika D; Robertson, Katherine N; Ylijoki, Kai E O

    2016-09-01

    The title compound, [Co(C10H15)(C2H4)2], was prepared by Na/Hg reduction of [Co2(C10H15)2(μ-Cl)2] in THF under an ethyl-ene atmosphere and crystallized from pentane at 193 K. The Co-C(olefin) bonds have an average length of 2.022 (2) Å, while the Co-C(penta-dien-yl) bonds average 2.103 (19) Å. The olefin C=C bonds are 1.410 (1) Å. The dihedral angle between the planes defined by the cyclo-penta-dienyl ligand and the two olefin ligands is 0.25 (12)°. In the crystal, mol-ecules are linked into chains by C-H⋯π inter-actions.

  13. Effect of 4-methylpyrazole on antioxidant enzyme status and lipid peroxidation in the liver of rats after exposure to ethylene glycol and ethyl alcohol.

    PubMed

    Sommerfeld, Karina; Zielińska-Psuja, Barbara; Przystanowicz, Jędrzej; Kowalówka-Zawieja, Joanna; Orłowski, Jerzy

    2012-01-01

    The aim of the conducted studies was to evaluate the effect of 4-methylpyrazole, increasingly used in detoxifying treatments after ethylene glycol poisoning, on the activity of some antioxidant enzymes and lipid peroxidation formation in the liver of rats after experimental co-exposure to ethylene glycol and ethyl alcohol. The trials were conducted on adult male Wistar rats. Ethylene glycol (EG) at the dose of 3.83 g/kg bw and ethyl alcohol (EA) at the dose of 1 g/kg bw were administered po, and 4-methylpyrazole (4-MP) at the dose of 0.01 g/kg bw was administered ip. Parameters of antioxidant balance were evaluated in hepatic cytosol, including the activity of the following enzymes: glutathione S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and lipid peroxidation level (TBARS). The results suggest that evaluation of the effects of administrated 4-MP after co-exposure to EG and EA in the liver revealed statistically significant changes on antioxidant enzyme system and malondialdehyde formation. The changes in biomarkers activity indicate a greater production of free radicals which exceeds the capability of antioxidant system, appearing with oxidative stress in the group of animals treated by 4-MP combined with EG and EA.

  14. Photochromic and microstructural properties of methyl orange doped poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Bhajantri, R. F.; Sali, Renuka; Ravindrachary, V.; Pujari, P. K.; Sheela, T.; Rathod, Sunil G.

    2013-02-01

    The effect of Methyl Orange (MO) dye on microstructural, optical and fluorescence properties of the polymer Poly(vinyl alcohol) (PVA) is studied. The FTIR study shows the appearance of new peaks indicates the interaction of MO with PVA. The UV-Vis study shows three absorption regions with the first two shows red shift and the third one shows blue shift and hence correspondingly three optical energy band gaps. In fluorescence study, it is observed that the intensity increases with increasing wavelength. These results are understood by invoking the hydrogen bonding and hydrophobic interaction between PVA and MO, forms the charge transfer complex (CTC).

  15. Isobaric vapor-liquid equilibria in the system methyl propanoate + n-butyl alcohol

    SciTech Connect

    Susial, P.; Ortega, J. . Lab. de Termodinamica y Fisicoquimica)

    1993-10-01

    Isobaric vapor-liquid equilibria were determined at 74.66, 101.32, and 127.99 kPa for binary mixtures containing methyl propanoate + n-butyl alcohol by using a dynamic still with vapor and liquid circulation. No azeotrope was detected. The data were found to be thermodynamically consistent according to the point to point test. Application of the group-contribution models ASOG, UNIFAC, and modified UNIFAC to the activity coefficients at the three pressures studied gives average errors of less than 10%, 11%, and 3%, respectively.

  16. 27 CFR 21.108 - Ethyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ethyl ether. 21.108 Section 21.108 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT....108 Ethyl ether. (a) Odor. Characteristic odor. (b) Specific gravity at 15.56 °/15.56 °C. Not...

  17. A fully validated method for the quantification of ethyl glucuronide and ethyl sulphate in urine by UPLC-ESI-MS/MS applied in a prospective alcohol self-monitoring study.

    PubMed

    Kummer, Natalie; Wille, Sarah; Di Fazio, Vincent; Lambert, Willy; Samyn, Nele

    2013-06-15

    A method for the quantification of ethyl glucuronide (EtG) and ethyl sulphate (EtS) in human urine is developed and fully validated according to international guidelines. Protein precipitation is used as sample preparation. During the development of the method on an UPLC-ESI-MS/MS system using a CSH C18 column, special attention was paid to reduce matrix effects to improve assay sensitivity and to improve detection of the second transition for EtS for specificity purposes. The method was linear from 0.1 to 10μg/mL for both analytes. Ion suppression less than 24% (RSD<15%) was observed for EtG and no significant matrix effect was measured for EtS. The recovery was around 80% (RSD<14%) for both compounds. This method provides good precision (RSDr and RSDt<10%) and bias (<15%) for internal and external quality control samples. The reproducibility of the method was demonstrated by the successful participation to proficiency tests (z-score<0.86). This method was finally used to analyze urine samples obtained from twenty-seven volunteers whose alcohol consumption during the 5 days before sampling was monitored. Concentrations between 0.5 and 101.9μg/mL (mean 10.9, median 1.4) for EtG and between 0.1 and 37.9μg/mL (mean 3.6, median 0.3) for EtS were detected in urine samples of volunteers who declared having consumed alcohol the day before the sampling. EtG and EtS concentrations in urine were highly correlated (r=0.996, p<0.001). A moderate correlation between the number of drinks the day before sampling and the concentration of EtG (r=0.448, p<0.02) or EtS (r=0.406, p<0.04) was observed. Using a cut-off value at 0.1μg/mL for EtG and EtS, this method is able to detect social alcohol consumption approximately 24h after the intake, without showing any false positive result. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Linear Versus Non-Linear Dose-Response Relationship Between Prenatal Alcohol Exposure and Meconium Concentration of Nine Different Fatty Acid Ethyl Esters

    PubMed Central

    Yang, J.Y.; Kwak, H.S.; Choi, J.S.; Ahn, H.K.; Oh, Y.J.; Velázquez-Armenta, E.Y.; Nava-Ocampo, A.A.

    2015-01-01

    Presence of individual fatty acid ethyl esters (FAEEs) in meconium is considered to be a reliable biomarker of prenatal alcohol exposure, and their concentration has been found to be linearly associated with poor postnatal development, supporting the widely extended idea that ethanol is a non-threshold teratogen. However, a growing number of epidemiological studies have consistently found a lack of adverse short- and long-term fetal outcomes at low exposure levels. We therefore aimed to investigate the relationship between the concentration of individual FAEEs and prenatal alcohol exposure in meconium samples collected within the first 6 to 12?h after birth from 182 babies born to abstainer mothers and from 54 babies born to women who self-reported either light or moderate alcohol ingestion in the second or third trimester of pregnancy. In most cases, the individual FAEE concentrations were negligible and not significantly different (P >0.05) between exposed and control babies. The concentrations appeared to increase linearly with the dose only in the few babies born to mothers who reported >3 drinks/week. These results provide evidence that the correlation between prenatal alcohol exposure and individual FAEE concentrations in meconium is non-linear shape, with a threshold probably at 3 drinks/week. PMID:26691866

  19. Sustained-release oral delivery of theophylline by use of polyvinyl alcohol and polyvinyl alcohol-methyl acrylate polymers.

    PubMed

    DiLuccio, R C; Hussain, M A; Coffin-Beach, D; Torosian, G; Shefter, E; Hurwitz, A R

    1994-01-01

    Crystalline polyvinyl alcohol (PVA) polymer and low-crystallinity polyvinyl alcohol-methyl acrylate copolymer (PVA-MA) were examined as sustained-release tablet excipients with theophylline as a model drug. By blending of different proportions of the crystalline polymer and the low-crystallinity copolymer, it was possible to affect the release characteristics of the tablets. Tablets made with crystalline PVA provided instant release of theophylline in vitro. Tablets made with a larger proportion of PVA-MA relative to PVA provided a very prolonged release profile in vitro. A formulation containing PVA-MA:PVA:theophylline in a ratio of 1:9:10 provided sustained-release profiles in vitro and in vivo in dogs. The dissolution release profile of this PVA-blend tablet formulation in vitro agreed extremely well with the percentage of bioavailable dose absorbed over time in vivo. The formulation provided a plateau of levels in plasma over 16 h. The oral bioavailability of theophylline from this formulation in dogs was approximately 80% and was equivalent to that obtained after administration of Theo-Dur, a marketed extended-release theophylline tablet from Key Pharmaceuticals.

  20. Purification and properties of methyl formate synthase, a mitochondrial alcohol dehydrogenase, participating in formaldehyde oxidation in methylotrophic yeasts.

    PubMed Central

    Murdanoto, A P; Sakai, Y; Konishi, T; Yasuda, F; Tani, Y; Kato, N

    1997-01-01

    Methyl formate synthase, which catalyzes methyl formate formation during the growth of methylotrophic yeasts, was purified to homogeneity from methanol-grown Candida boidinii and Pichia methanolica cells. Both purified enzymes were tetrameric, with identical subunits with molecular masses of 42 to 45 kDa, containing two atoms of zinc per subunit. The enzymes catalyze NAD(+)-linked dehydrogenation of the hydroxyl group of the hemiacetal adduct [CH2(OH)OCH3] of methanol and formaldehyde, leading to the formation of a stoichiometric amount of methyl formate. Although neither methanol nor formaldehyde alone acted as a substrate for the enzymes, they showed simple NAD(+)-linked alcohol dehydrogenase activity toward aliphatic long-chain alcohols such as octanol, showing that they belong to the class III alcohol dehydrogenase family. The methyl formate synthase activity of C. boidinii was found in the mitochondrial fraction in subcellular fractionation experiments, suggesting that methyl formate synthase is a homolog of Saccharomyces cerevisiae Adh3p. These results indicate that formaldehyde could be oxidized in a glutathione-independent manner by methyl formate synthase in methylotrophic yeasts. The significance of methyl formate synthase in both formaldehyde resistance and energy metabolism is also discussed. PMID:9143107

  1. A Randomized Controlled Trial of Ethyl Glucuronide-Based Contingency Management for Outpatients With Co-Occurring Alcohol Use Disorders and Serious Mental Illness.

    PubMed

    McDonell, Michael G; Leickly, Emily; McPherson, Sterling; Skalisky, Jordan; Srebnik, Debra; Angelo, Frank; Vilardaga, Roger; Nepom, Jenny R; Roll, John M; Ries, Richard K

    2017-04-01

    The authors examined whether a contingency management intervention using the ethyl glucuronide (EtG) alcohol biomarker resulted in increased alcohol abstinence in outpatients with co-occurring serious mental illnesses. Secondary objectives were to determine whether contingency management was associated with changes in heavy drinking, treatment attendance, drug use, cigarette smoking, psychiatric symptoms, and HIV-risk behavior. Seventy-nine (37% female, 44% nonwhite) outpatients with serious mental illness and alcohol dependence receiving treatment as usual completed a 4-week observation period and were randomly assigned to 12 weeks of contingency management for EtG-negative urine samples and addiction treatment attendance, or reinforcement only for study participation. Contingency management included the variable magnitude of reinforcement "prize draw" procedure contingent on EtG-negative samples (<150 ng/mL) three times a week and weekly gift cards for outpatient treatment attendance. Urine EtG, drug test, and self-report outcomes were assessed during the 12-week intervention and 3-month follow-up periods. Contingency management participants were 3.1 times (95% CI=2.2-4.5) more likely to submit an EtG-negative urine test during the 12-week intervention period, attaining nearly 1.5 weeks of additional alcohol abstinence compared with controls. Contingency management participants had significantly lower mean EtG levels, reported less drinking and fewer heavy drinking episodes, and were more likely to submit stimulant-negative urine and smoking-negative breath samples, compared with controls. Differences in self-reported alcohol use were maintained at the 3-month follow-up. This is the first randomized trial utilizing an accurate and validated biomarker (EtG) to demonstrate the efficacy of contingency management for alcohol dependence in outpatients with serious mental illness.

  2. Molecular compressibility of some halides in alcohols

    NASA Technical Reports Server (NTRS)

    Serban, C.; Auslaender, D.

    1974-01-01

    After measuring ultrasonic velocity and density, the molecular compressibility values from Wada's formula were calculated, for alkali metal halide solutions in methyl, ethyl, butyl, and glycol alcohol. The temperature and concentration dependence were studied, finding deviations due to the hydrogen bonds of the solvent.

  3. Cancer risk assessment of ethyl carbamate in alcoholic beverages from Brazil with special consideration to the spirits cachaça and tiquira

    PubMed Central

    2010-01-01

    Background Ethyl carbamate (EC) is a multi-site carcinogen in experimental animals and probably carcinogenic to humans (IARC group 2A). Traces of EC below health-relevant ranges naturally occur in several fermented foods and beverages, while higher concentrations above 1 mg/l are regularly detected in only certain spirits derived from cyanogenic plants. In Brazil this concerns the sugarcane spirit cachaça and the manioc (cassava) spirit tiquira, which both regularly exceed the national EC limit of 0.15 mg/l. This study aims to estimate human exposure in Brazil and provide a quantitative risk assessment. Methods The human dietary intake of EC via alcoholic beverages was estimated based on WHO alcohol consumption data in combination with own surveys and literature data. This data comprises the EC contents of the different beverage groups cachaça, tiquira, other spirits, beer, wine, and unrecorded alcohol (as defined by the WHO; including alcohol which is not captured in routine government statistics nor taxed). The risk assessment was conducted using the margin of exposure (MOE) approach with benchmark doses obtained from dose-response modelling of animal experiments. Lifetime cancer risk was calculated using the T25 dose descriptor. Results Considering differences between pot-still and column-still cachaça, its average EC content would be 0.38 mg/l. Tiquira contained a considerably higher average EC content of 2.34 mg/l. The whole population exposure from all alcoholic beverages was calculated to be around 100 to 200 ng/kg bw/day, with cachaça and unrecorded alcohol as the major contributing factors. The MOE was calculated to range between 400 and 2,466, with the lifetime cancer risk at approximately 3 cases in 10,000. An even higher risk may exist for binge-drinkers of cachaça and tiquira with MOEs of up to 80 and 15, respectively. Conclusions According to our risk assessment, EC poses a significant cancer risk for the alcohol-drinking population in Brazil, in

  4. Theoretical and kinetic study of the reaction of ethyl methyl ketone with HO2 for T = 600-1600 K. Part II: addition reaction channels.

    PubMed

    Zhou, Chong-Wen; Mendes, Jorge; Curran, Henry J

    2013-06-06

    The temperature and pressure dependence of the addition reaction of ethyl methyl ketone (EMK) with HO2 radical has been calculated using the master equation method employing conventional transition state theory estimates for the microcanonical rate coefficients in the temperature range of 600-1600 K. Geometries, frequencies, and hindrance potentials were obtained at the B3LYP/6-311G(d,p) level of theory. A modified G3(MP2,CC) method has been used to calculate accurate electronic energies for all of the species involved in the reactions. The rigid-rotor harmonic oscillator approximation has been used for all of the vibrations except for the torsional degrees of freedom which are being treated as 1D hindered rotors. Asymmetric Eckart barriers were used to model tunneling effect in a one-dimensional reaction coordinate through saddle points. Our calculated results show that the four reaction channels forming 1-buten-2-ol + HO2 radical (R5), 2-buten-2-ol + HO2 radical (R10), acetic acid + ethylene + OH radical (R13), and 2-methyl-2-oxetanol + OH radical (R15) are the dominant channels. When the temperature is below 1000 K, the reaction R15 forming the cyclic ether, 2-methyl-2-oxetanol, is dominant while the reaction R13 forming acetic acid + ethylene + OH radical becomes increasingly dominant at temperatures above 1000 K. The other two channels forming 1-buten-2-ol, 2-buten-2-ol, and HO2 radical are not dominant but are still important product channels over the whole temperature range investigated here. No pressure dependence has been found for the reaction channels forming 2-methyl-2-oxetanol + OH radical and acetic acid + ethylene + OH radical. A slightly negative pressure dependence has been found for the reaction channels producing the two butenols. Rate constants for the four important reaction channels at 1 atm (in cm(3) mol(-1) s(-1)) are k(R5) = 2.67 × 10(15) × T(-1.32)exp(-16637/T), k(R10) = 1.62 × 10(8) × T(0.57)exp(-13142/T), k(R13) = 2.29 × 10(17) × T

  5. Effects of prenatal alcohol consumption on cognitive development and ADHD-related behaviour in primary-school age: a multilevel study based on meconium ethyl glucuronide.

    PubMed

    Eichler, Anna; Hudler, Linda; Grunitz, Juliane; Grimm, Jennifer; Raabe, Eva; Goecke, Tamme W; Fasching, Peter A; Beckmann, Matthias W; Kratz, Oliver; Moll, Gunther H; Kornhuber, Johannes; Heinrich, Hartmut

    2017-09-11

    Alcohol intake during pregnancy is considered to be a risk factor for child development. Child biomarkers of intrauterine alcohol exposure have been rarely studied. We investigated whether a meconium alcohol metabolite (ethyl glucuronide, EtG) was associated with cognitive development, ADHD-related behaviour and neurophysiological markers of attention and executive control of children at primary-school age. Mothers provided self-report on prenatal alcohol consumption during their 3rd trimester. Meconium samples were collected at birth. A total of 44 children with a meconium EtG above the detection limit (≥10 ng/g) and 44 nonexposed matched controls were compared. A second threshold (≥154 ng/g) was applied to study the dose effects. When children reached primary-school age, mothers rated ADHD-related behaviour, child cognitive development was measured using an IQ test battery, and event-related potentials were recorded during a cued go/nogo task. Children in both EtG-positive groups allocated fewer attentional resources than controls to the go/nogo task (reduced P3 component in go-trials). Children with a meconium EtG above 154 ng/g were also found to have an IQ that was six points lower than the other groups. Within the EtG ≥ 154 ng/g group, there was a positive correlation between EtG value and ADHD-related behaviour. These significant effects were not observed in relation to the maternal self-report data. Associations between EtG and cognitive deficits, attentional resource capacity and ADHD-related behaviour could be documented with effects that were partially dose-dependent. In addition to maternal self-reports, this biomarker of intrauterine alcohol exposure may be considered as a predictor of child development. © 2017 Association for Child and Adolescent Mental Health.

  6. Single-walled carbon nanotubes as an effective adsorbent in solid-phase microextraction of low level methyl tert-butyl ether, ethyl tert-butyl ether and methyl tert-amyl ether from human urine.

    PubMed

    Rastkari, Noushin; Ahmadkhaniha, Reza; Yunesian, Masud

    2009-05-15

    Carbon nanotubes (CNTs) are a kind of new carbon-based nano-materials which have drawn great attention in many application fields. The potential single-walled carbon nanotubes (SWCNTs) as solid-phase microextraction (SPME) adsorbents for the preconcentration of environmental pollutants have been investigated in recent years. The goal of this work was to investigate the feasibility of SWCNTs used as adsorbents for solid-phase microextraction of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME) in human urine. SWCNTs were attached onto a stainless steel wire through organic binder. Potential factors affecting the extraction efficiency were optimized, including extraction time, extraction temperature, desorption time, desorption temperature, and salinity. The developed method showed good performance according to the ICH performance criteria for bioanalytical methods. The calibration curves of the ethers were linear (r(2)>or=0.992) in the range from 10 to 5000 ng L(-1). The limits of detection at a signal-to-noise (S/N) ratio of 3 were 10 ng L(-1) for all the analytes. In addition, compared with the commercial carboxen/polydimethylsiloxane (CAR/PDMS) fiber, the SWCNT fiber showed better thermal stability (over 350 degrees C) and longer life span (over 150 times). The developed method was applied successfully to determine trace level of the ethers in urine of 10 healthy male volunteers.

  7. Determination of low level methyl tert-butyl ether, ethyl tert-butyl ether and methyl tert-amyl ether in human urine by HS-SPME gas chromatography/mass spectrometry.

    PubMed

    Scibetta, Licia; Campo, Laura; Mercadante, Rosa; Foà, Vito; Fustinoni, Silvia

    2007-01-02

    Methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME) are oxygenated compounds added to gasoline to enhance octane rating and to improve combustion. They may be found as pollutants of living and working environments. In this work a robotized method for the quantification of low level MTBE, ETBE and TAME in human urine was developed and validated. The analytes were sampled in the headspace of urine by SPME in the presence of MTBE-d12 as internal standard. Different fibers were compared for their linearity and extraction efficiency: carboxen/polydimethylsiloxane, polydimethylsiloxane/divinylbenzene, and polydimethylsiloxane. The first, although highly efficient, was discarded due to deviation of linearity for competitive displacement, and the polydimethylsiloxane/divinylbenzene fiber was chosen instead. The analysis was performed by GC/MS operating in the electron impact mode. The method is very specific, with range of linearity 30-4600 ng L(-1), within- and between-run precision, as coefficient of variation, <22 and <16%, accuracy within 20% the theoretical level, and limit of detection of 6 ng L(-1) for all the analytes. The influence of the matrix on the quantification of these ethers was evaluated analysing the specimens of seven traffic policemen exposed to autovehicular emissions: using the calibration curve and the method of standard additions comparable levels of MTBE (68-528 ng L(-1)), ETBE (<6 ng L(-1)), and TAME (<6 ng L(-1)) were obtained.

  8. Vapor intrusion risk of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME) and ethyl tert-butyl ether (ETBE): A modeling study.

    PubMed

    Ma, Jie; Xiong, Desen; Li, Haiyan; Ding, Yi; Xia, Xiangcheng; Yang, Yongqi

    2017-06-15

    Vapor intrusion of synthetic fuel additives represents a critical yet still neglected problem at sites contaminated by petroleum fuel releases. This study used an advanced numerical model to investigate the vapor intrusion potential of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME), and ethyl tert-butyl ether (ETBE). Simulated indoor air concentration of these compounds can exceed USEPA indoor air screening level for MTBE (110μg/m(3)). Our results also reveal that MTBE has much higher chance to cause vapor intrusion problems than TAME and ETBE. This study supports the statements made by USEPA in the Petroleum Vapor Intrusion (PVI) Guidance that the vertical screening criteria for petroleum hydrocarbons may not provide sufficient protectiveness for fuel additives, and ether oxygenates in particular. In addition to adverse impacts on human health, ether oxygenate vapor intrusion may also cause aesthetic problems (i.e., odour and flavour). Overall, this study points out that ether oxygenates can cause vapor intrusion problems. We recommend that USEPA consider including the field measurement data of synthetic fuel additives in the existing PVI database and possibly revising the PVI Guidance as necessary.

  9. Experimental and theoretical studies of the molecular structure of 7-Methyl-3-[(3-methyl-3-mesityl-cyclobutyl]-5-phenyl-5H-thiazolo[3,2-α]pyrimidine-6-carboxylic acid ethyl ester

    NASA Astrophysics Data System (ADS)

    Acar, Betül; Yilmaz, Ibrahim; Çalışkan, Nezihe; Cukurovali, Alaaddin

    2017-07-01

    In this work, the title molecule, 7-Methyl-3-[(3-methyl-3-mesityl-cyclobutyl]-5-phenyl-5H-thiazolo[3,2-α]pyrimidine-6-carboxylic acid ethyl ester (C30H34N2O2S1), was synthesized and characterized by FT-IR spectroscopy and single crystal X-ray diffraction. The compound crystallizes in the triclinic space group P21/c. with Z = 4, a = 14.1988(6), b = 19.0893(5), c = 10.1325(4) Å, V = 2674.56(17) A3. The optimized structure parameters of the studied molecule was determined theoretically using HF/6-31G(d) and B3LYP/6-31G(d) methods for ground state, and compared with previously reported experimental findings. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental frequencies obtained by FT-IR spectra. The electronic properties, such as HOMO and LUMO energies, and molecular electrostatic potential (MEP) are also performed.

  10. 3-Ethyl-2-methyl-5-methyl­ene-6,7-di­hydroindol-4(5H)-one

    PubMed Central

    Sonar, Vijayakumar N.; Parkin, Sean; Crooks, Peter A.

    2008-01-01

    The title compound, C12H15NO, a degradation product of molindone hydro­chloride, was prepared by the reaction of molindone with methyl iodide and subsequent reaction of the resulting quaternary ammonium salt with 2N aqueous sodium hydroxide. The newly formed double bond is exocyclic in nature and the carbonyl group is conjugated with the π-electrons of the pyrrole ring. The six-membered ring is in the half-chair conformation. The H atom attached to the N atom is involved in an inter­molecular hydrogen bond with the O atom of a screw-related mol­ecule, thus forming a continuous chain. PMID:21200723

  11. Reanalysis of the ground and three torsional excited states of trans-ethyl methyl ether by using an IAM-like tunneling matrix formalism

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kaori; Sakai, Yusuke; Tsunekawa, Shozo; Miyamoto, Taihei; Fujitake, Masaharu; Ohashi, Nobukimi

    2016-03-01

    The trans-ethyl methyl ether has two inequivalent methyl internal rotors and shows tunneling splittings of maximum up to five components. However, the barrier of these two internal rotation potentials were relatively high and the five components were not resolved in the ground state microwave spectra. In this study, well-resolved Fourier transform microwave ground state spectrum was measured for the first time to resolve the five components. The ground state microwave spectra were reanalyzed based on these new measurements and the additional millimeter-wave spectra as well as those studied previously by Fuchs et al. Ninety Fourier transform microwave spectral lines were assigned to 107 transitions in the ground state and 3508 conventional microwave absorption lines were assigned up to Ka = 16 of the ground state, including all 707 lines reported by Fuchs et al. In addition, 10 transitions were observed by the double resonance experiment. They were least-squares-analyzed by the use of an internal axis method (IAM)-like tunneling matrix formalism based on an extended permutation-inversion group theoretical idea. Twenty-two molecular parameters composed of rotational constants, centrifugal distortion constants, internal rotation parameters and internal rotation tunneling parameters were determined for the ground state. The microwave spectra in the three torsionally excited states, that is, the ν28 = 1 C-CH3 torsional state, the ν29 = 1 O-CH3 torsional state and the ν30 = 1 skeletal torsional state, were also reanalyzed by using the IAM-like tunneling matrix formalism and somewhat extended line assignments.

  12. Emissions characteristics of ethyl and methyl ester of rapeseed oil compared with low sulfur diesel control fuel in a chassis dynamometer test of a pickup truck

    SciTech Connect

    Peterson, C.; Reece, D.

    1996-05-01

    Comprehensive tests were performed on an on-road vehicle in cooperation with the Los Angeles County Metropolitan Transit Authority emissions test facility. All tests were with a transient chassis dynamometer. Tests included both a double arterial cycle of 768 s duration and an EPA heavy duty vehicle cycle of 1,060 s duration. The test vehicle was a 1994 pickup truck with a 5.9-L turbocharged and intercooled, direct injection diesel engine. Rapeseed methyl (RME) and ethyl esters (REE) and blends were compared with low sulfur diesel control fuel. Emissions data include all regulated emissions: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter (PM). In these tests the average of 100% RME and 100% REE reduced HC (52.4%), CO (47.6%), NO{sub x} (10.0%), and increases in CO{sub 2} (0.9%) and PM (9.9%) compared to the diesel control fuel. Also, 100% REE reduced HC (8.7%), CO (4.3%), and NO{sub x} (3.4%) compared to 100% RME. 33 refs., 1 figs., 8 tabs.

  13. Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: the potential of commercialization

    PubMed Central

    Zheng, Junlin; Zhu, Junhua; Xu, Xuan; Wang, Wanmin; Li, Jiwen; Zhao, Yan; Tang, Kangjian; Song, Qi; Qi, Xiaolan; Kong, Dejin; Tang, Yi

    2016-01-01

    Hydrogenation of levulinic acid (LA) and its esters to produce γ-valerolactone (GVL) and 2-methyl tetrahydrofuran (2-MTHF) is a key step for the utilization of cellulose derived LA. Aiming to develop a commercially feasible base metal catalyst for the production of GVL from LA, with satisfactory activity, selectivity, and stability, Al2O3 doped Cu/SiO2 and Cu/SiO2 catalysts were fabricated by co-precipitation routes in parallel. The diverse physio-chemical properties of these two catalysts were characterized by XRD, TEM, dissociative N2O chemisorptions, and Py-IR methods. The catalytic properties of these two catalysts were systematically assessed in the continuous hydrogenation of ethyl levulinate (EL) in a fixed-bed reactor. The effect of acidic property of the SiO2 substrate on the catalytic properties was investigated. To justify the potential of its commercialization, significant attention was paid on the initial activity, proper operation window, by-products control, selectivity, and stability of the catalyst. The effect of reaction conditions, such as temperature and pressure, on the performance of the catalyst was also thoroughly studied. The development of alumina doped Cu/SiO2 catalyst strengthened the value-chain from cellulose to industrially important chemicals via LA and GVL. PMID:27377401

  14. Dopaminergic neurotoxicity of S-ethyl N,N-dipropylthiocarbamate (EPTC), molinate, and S-methyl-N,N-diethylthiocarbamate (MeDETC) in Caenorhabditis elegans

    PubMed Central

    Caito, Samuel W.; Valentine, William M.; Aschner, Michael

    2013-01-01

    Epidemiological studies corroborate a correlation between pesticide use and Parkinson’s disease (PD). Thiocarbamate and dithiocarbamate pesticides are widely used and produce neurotoxicity in the peripheral nervous system. Recent evidence from rodent studies suggests that these compounds also cause dopaminergic (DAergic) dysfunction and altered protein processing, two hallmarks of PD. However, DAergic neurotoxicity has yet to be documented. We assessed DAergic dysfunction in Caenorhabditis elegans (C. elegans) to investigate the ability of thiocarbamate pesticides to induce DAergic neurodegeneration. Acute treatment with either S-ethyl N,N-dipropylthiocarbamate (EPTC), molinate, or a common reactive intermediate of dithiocarbamate and thiocarbamate metabolism, S-methyl-N,N-diethylthiocarbamate (MeDETC), to gradual loss of DAergic cell morphology and structure over the course of 6 days in worms expressing green fluorescent protein (GFP) under a DAergic cell specific promoter. HPLC analysis revealed decreased DA content in the worms immediately following exposure to MeDETC, EPTC, and molinate. Additionally, worms treated with the three test compounds showed a drastic loss of DAergic-dependent behavior over a time course similar to changes in DAergic cell morphology. Alterations in the DAergic system were specific, as loss of cell structure and neurotransmitter content was not observed in cholinergic, glutamatergic, or GABAergic systems. Overall, our data suggest that thiocarbamate pesticides promote neurodegeneration and DAergic cell dysfunction in C. elegans, and may be an environmental risk factor for PD. PMID:23786526

  15. Effects of pressure and solvents on the infrared absorption intensities of C-I stretching modes of methyl and ethyl iodides in solutions.

    PubMed

    Isogai, Hideto; Kato, Minoru; Taniguchi, Yoshihiro

    2008-02-01

    We have investigated effects of pressure and solvents on infrared intensities of methyl and ethyl iodides in solutions using a hydrostatic high-pressure cell with synthetic diamond windows. We focused on the absolute intensity of the C-I stretching mode, which was measured in carbon disulfide solvent up to 300MPa and at 293K, and in n-hexane solvent at 298K. For comparison, we investigated the effect of solvents on the absorption intensity. Effects of pressure and solvents on the infrared intensity were analyzed using two electrostatic models, which assume the shape of solute cavity as sphere or spheroid. The latter model is approximately in agreement with both effects on the intensity, particularly, for the pressure effect. This paper demonstrated that the electrostatic model taking the shape of the cavity into account is useful to explain the medium effect on the infrared intensity and also suggests that more improved models could provide information of the solvation structure from the medium effect on the infrared intensity.

  16. Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: the potential of commercialization.

    PubMed

    Zheng, Junlin; Zhu, Junhua; Xu, Xuan; Wang, Wanmin; Li, Jiwen; Zhao, Yan; Tang, Kangjian; Song, Qi; Qi, Xiaolan; Kong, Dejin; Tang, Yi

    2016-07-05

    Hydrogenation of levulinic acid (LA) and its esters to produce γ-valerolactone (GVL) and 2-methyl tetrahydrofuran (2-MTHF) is a key step for the utilization of cellulose derived LA. Aiming to develop a commercially feasible base metal catalyst for the production of GVL from LA, with satisfactory activity, selectivity, and stability, Al2O3 doped Cu/SiO2 and Cu/SiO2 catalysts were fabricated by co-precipitation routes in parallel. The diverse physio-chemical properties of these two catalysts were characterized by XRD, TEM, dissociative N2O chemisorptions, and Py-IR methods. The catalytic properties of these two catalysts were systematically assessed in the continuous hydrogenation of ethyl levulinate (EL) in a fixed-bed reactor. The effect of acidic property of the SiO2 substrate on the catalytic properties was investigated. To justify the potential of its commercialization, significant attention was paid on the initial activity, proper operation window, by-products control, selectivity, and stability of the catalyst. The effect of reaction conditions, such as temperature and pressure, on the performance of the catalyst was also thoroughly studied. The development of alumina doped Cu/SiO2 catalyst strengthened the value-chain from cellulose to industrially important chemicals via LA and GVL.

  17. Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: the potential of commercialization

    NASA Astrophysics Data System (ADS)

    Zheng, Junlin; Zhu, Junhua; Xu, Xuan; Wang, Wanmin; Li, Jiwen; Zhao, Yan; Tang, Kangjian; Song, Qi; Qi, Xiaolan; Kong, Dejin; Tang, Yi

    2016-07-01

    Hydrogenation of levulinic acid (LA) and its esters to produce γ-valerolactone (GVL) and 2-methyl tetrahydrofuran (2-MTHF) is a key step for the utilization of cellulose derived LA. Aiming to develop a commercially feasible base metal catalyst for the production of GVL from LA, with satisfactory activity, selectivity, and stability, Al2O3 doped Cu/SiO2 and Cu/SiO2 catalysts were fabricated by co-precipitation routes in parallel. The diverse physio-chemical properties of these two catalysts were characterized by XRD, TEM, dissociative N2O chemisorptions, and Py-IR methods. The catalytic properties of these two catalysts were systematically assessed in the continuous hydrogenation of ethyl levulinate (EL) in a fixed-bed reactor. The effect of acidic property of the SiO2 substrate on the catalytic properties was investigated. To justify the potential of its commercialization, significant attention was paid on the initial activity, proper operation window, by-products control, selectivity, and stability of the catalyst. The effect of reaction conditions, such as temperature and pressure, on the performance of the catalyst was also thoroughly studied. The development of alumina doped Cu/SiO2 catalyst strengthened the value-chain from cellulose to industrially important chemicals via LA and GVL.

  18. Evaluation of microwave irradiation for analysis of carbonyl sulfide, carbon disulfide, cyanogen, ethyl formate, methyl bromide, sulfuryl fluoride, propylene oxide, and phosphine in hay.

    PubMed

    Ren, Yonglin; Mahon, Daphne

    2007-01-10

    Fumigant residues in hay were "extracted" by microwave irradiation. Hay, in gastight glass flasks, was placed in a domestic microwave oven, and fumigants were released into the headspace by microwave irradiation. Power settings for maximum release of fumigants were determined for carbonyl sulfide (COS), carbon disulfide (CS(2)), cyanogen (C(2)N(2)), ethyl formate (EF), methyl bromide (CH(3)Br), sulfuryl fluoride (SF), propylene oxide (PPO), and phosphine (PH(3)). Recoveries of fortified samples were >91% for COS, CS(2), CH(3)Br, SF, PPO, and PH(3) and >76% for C(2)N(2) and EF. Completeness of extraction was assessed from the amount of fumigant retained by the microwaved hay. This amount was determined from further microwave irradiation and was always small (<5% of the amount obtained from the initial procedure). Limits of quantification were <0.1 mg/kg for COS, CS(2), C(2)N(2), EF, and PH(3) and <0.5 mg/kg for CH(3)Br, SF, and PPO. These low limits were essentially due to the absence of interference from solvents and no necessity to inject large-volume gas samples. The microwave method is rapid and solvent-free. However, care is required in selecting the appropriate power setting. The safety implications of heating sealed flasks in microwave ovens should be noted.

  19. Dendrite-Free Aluminum Electrodeposition from AlCl3-1-Ethyl-3-Methyl-Imidazolium Chloride Ionic Liquid Electrolytes

    NASA Astrophysics Data System (ADS)

    Pradhan, Debabrata; Reddy, Ramana G.

    2012-06-01

    A novel, dendrite-free electrorefining of aluminum scrap alloys (A360) was investigated by using a low-temperature AlCl3-1-ethyl-3-methyl-imidazolium chloride (EMIC) ionic liquid electrolyte on copper/aluminum cathodes. The bulk electrodeposition of aluminum was carried out at a fixed voltage of 1.5 V, temperatures 323 K to 383 K (50 °C to 110 °C), stirring rate (0 to 120 rpm), concentration (molar ratio AlCl3:EMIC = 1.25 to 2.0), and electrode surface modification (modified/unmodified). The study investigated the effect of electrode surface modification, cathode materials, temperature, stirring rate, electrolyte concentration, and deposition time on the deposit morphology of aluminum, cathode current density, and their role in production of dendrite-free aluminum deposit, which is essential for decreasing the production cost. The deposits were characterized using scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD). It was shown that electrode surface modification, cathode overpotential, and stirring rate play an important role in dendrite-free deposit. Modified electrodes and stirring (60 rpm) eliminate dendritic deposition by reducing cathode overpotential below critical overpotential ( η_{{crt}} ≈ - 0.53V ) for dendrite formation. Pure aluminum (>99 pct) was deposited for all experiments with a current efficiency of 84 to 99 pct and energy consumption of 4.51 to 5.32 kWh/kg Al.

  20. The Structure of Nickel Chloride in the Ionic Liquid 1-Ethyl-3-methyl Imidazolium Chloride/Aluminum Chloride: X-ray Absorption Spectroscopy

    SciTech Connect

    D Roeper; K Pandya; G Cheek; W OGrady

    2011-12-31

    The structure of anhydrous nickel chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride and aluminum chloride has been investigated with extended X-ray absorption fine structure (EXAFS) in both Lewis acid and Lewis base solutions. The EXAFS data of NiCl{sub 2} {center_dot} 6H{sub 2}O crystals were also recorded and analyzed to demonstrate the difference file technique. The difference file technique is used to obtain the structural information for the very closely spaced coordination shells of chloride and oxygen in NiCl{sub 2} {center_dot} 6H{sub 2}O and they are found to agree very closely with the X-ray diffraction data. The difference file technique is then used to analyze the nickel chloride in the ionic liquid solutions. Even though anhydrous NiCl{sub 2} is more soluble in the basic solution than in the acidic solution, the EXAFS data show a single coordination of four chlorides in a tetrahedron around the nickel atom in the basic solution. In a weak acid solution, there are six chlorides in a single octahedral coordination shell around the nickel. However, in a strong acid solution, in addition to the octahedral chloride-coordination shell, there is a second coordination shell of eight aluminum atoms in the form of a simple cube.

  1. Dopaminergic neurotoxicity of S-ethyl N,N-dipropylthiocarbamate (EPTC), molinate, and S-methyl-N,N-diethylthiocarbamate (MeDETC) in Caenorhabditis elegans.

    PubMed

    Caito, Samuel W; Valentine, William M; Aschner, Michael

    2013-12-01

    Epidemiological studies corroborate a correlation between pesticide use and Parkinson's disease (PD). Thiocarbamate and dithiocarbamate pesticides are widely used and produce neurotoxicity in the peripheral nervous system. Recent evidence from rodent studies suggests that these compounds also cause dopaminergic (DAergic) dysfunction and altered protein processing, two hallmarks of PD. However, DAergic neurotoxicity has yet to be documented. We assessed DAergic dysfunction in Caenorhabditis elegans (C. elegans) to investigate the ability of thiocarbamate pesticides to induce DAergic neurodegeneration. Acute treatment with either S-ethyl N,N-dipropylthiocarbamate (EPTC), molinate, or a common reactive intermediate of dithiocarbamate and thiocarbamate metabolism, S-methyl-N,N-diethylthiocarbamate (MeDETC), to gradual loss of DAergic cell morphology and structure over the course of 6 days in worms expressing green fluorescent protein (GFP) under a DAergic cell specific promoter. HPLC analysis revealed decreased DA content in the worms immediately following exposure to MeDETC, EPTC, and molinate. In addition, worms treated with the three test compounds showed a drastic loss of DAergic-dependent behavior over a time course similar to changes in DAergic cell morphology. Alterations in the DAergic system were specific, as loss of cell structure and neurotransmitter content was not observed in cholinergic, glutamatergic, or GABAergic systems. Overall, our data suggest that thiocarbamate pesticides promote neurodegeneration and DAergic cell dysfunction in C. elegans, and may be an environmental risk factor for PD.

  2. Nervous system responses of rats to subchronic inhalation of N-hexane and N-hexane + methyl-ethyl-ketone mixtures.

    PubMed

    Altenkirch, H; Wagner, H M; Stoltenburg, G; Spencer, P S

    1982-12-01

    The effects of long-term continuous and intermittent inhalation exposure to selected concentrations of n-hexane and mixtures of n-hexane and methyl-ethyl-ketone (MEK) on the nervous system of rats were investigated. Animals exposed continuously (24 h/d, 7 d/week) to 500 ppm n-hexane displayed complete hindlimb paralysis after 9 weeks. Histological examination showed hexacarbon-specific axonal lesions in peripheral nerves, particularly tibial branches to calf muscles, and in the gracile tract at cervical levels of the spinal cord. Similar clinical and pathological signs of neuropathy appeared one week earlier in animals treated with a mixture of 500 ppm n-hexane/MEK (4:1 or 3:2) and 5 weeks earlier with 700 n-hexane/MEK mixture (5:2) or 700 ppm of n-hexane alone. Rats exposed to the latter concentrations intermittently, 8 hours daily for 40 weeks, did not develop clinical or morphological signs of a hexacarbon neuropathy.

  3. Comparative analysis of skin sensitization potency of acrylates (methyl acrylate, ethyl acrylate, butyl acrylate, and ethylhexyl acrylate) using the local lymph node assay.

    PubMed

    Dearman, Rebecca J; Betts, Catherine J; Farr, Craig; McLaughlin, James; Berdasco, Nancy; Wiench, Karin; Kimber, Ian

    2007-10-01

    There are currently available no systematic experimental data on the skin sensitizing properties of acrylates that are of relevance in occupational settings. Limited information from previous guinea-pig tests or from the local lymph node assay (LLNA) is available; however, these data are incomplete and somewhat contradictory. For those reasons, we have examined in the LLNA 4 acrylates: butyl acrylate (BA), ethyl acrylate (EA), methyl acrylate (MA), and ethylhexyl acrylate (EHA). The LLNA data indicated that all 4 compounds have some potential to cause skin sensitization. In addition, the relative potencies of these acrylates were measured by derivation from LLNA dose-response analyses of EC3 values (the effective concentration of chemical required to induce a threefold increase in proliferation of draining lymph node cells compared with control values). On the basis of 1 scheme for the categorization of skin sensitization potency, BA, EA, and MA were each classified as weak sensitizers. Using the same scheme, EHA was considered a moderate sensitizer. However, it must be emphasized that the EC3 value for this chemical of 9.7% is on the borderline between moderate (<10%) and weak (>10%) categories. Thus, the judicious view is that all 4 chemicals possess relatively weak skin sensitizing potential.

  4. Short-range order and fractal cluster structure of aggregates of barium titanate microparticles in a composite based on cyano-ethyl ester of polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Krasovskii, A. N.; Novikov, D. V.; Vasina, E. S.; Matveichikova, P. V.; Sychev, M. M.; Rozhkova, N. N.

    2015-12-01

    The distribution of barium titanate (BaTiO3) microparticles in the matrix of cyano-ethyl ester of polyvinyl alcohol and the change in the surface energy upon introduction of shungite carbon nanoclusters into the dielectric composite have been investigated using the methods of scanning electron microscopy and contact angles. The computer processing of the electron microscopy data has demonstrated that the introduction of 0.04% shungite carbon nanoparticles into the composite leads to a decrease in the spatial homogeneity of the quasi-lattice and to an increase in the local density distribution of BaTiO3 microparticles, as well as in the correlation length corresponding to the formation of an infinite cluster of BaTiO3 particles. It has been found that, in this case, the surface energy and dielectric permittivity of the composite extremely increase.

  5. XAFS Studies of Ni Ta and Nb Chlorides in the Ionic Liquid 1-Ethyl-3-Methyl Imidazolium Chloride / Aluminum Chloride

    SciTech Connect

    W OGrady; D Roeper; K Pandya; G Cheek

    2011-12-31

    The structures of anhydrous nickel, niobium, and tantalum chlorides have been investigated in situ in acidic and basic ionic liquids (ILs) of 1-methyl-3-ethylimidazolium chloride (EMIC)/AlCl{sub 3} with X-ray absorption spectroscopy (XAS). The coordination of NiCl{sub 2} changes from tetrahedral in basic solution to octahedral in acidic solution. The NiCl{sub 2} is a strong Lewis acid in that it can induce the AlCl{sub 3} to share its chlorides in the highly acidic IL, forming a structure with six near Cl{sup -} ions and eight further distant Al ions which share the chloride ions surrounding the Ni{sup 2+}. When Nb{sub 2}Cl{sub 10}, a dimer, is added to the acidic or basic solution, the dimer breaks apart and forms two species. In the acid solution, two trigonal bipyramids are formed with five equal chloride distances, while in the basic solution, a square pyramid with four chlorides forming a square base and one shorter axial chloride bond. Ta{sub 2}Cl{sub 10} is also a dimer and divides into half in the acidic solution and forms two trigonal bipyramids. In the basic solution, the dimer breaks apart but the species formed is sufficiently acidic that it attracts two additional chloride ions and forms a seven coordinated tantalum species.

  6. Molecular basis of neuroprotective activities of rasagiline and the anti-Alzheimer drug TV3326 [(N-propargyl-(3R)aminoindan-5-YL)-ethyl methyl carbamate].

    PubMed

    Youdim, M B; Weinstock, M

    2001-12-01

    Rasagiline (N-propargyl-1-(R)-aminoindan) is a selective, irreversible monoamine oxidase B (MAO B) inhibitor which has been developed as an anti-Parkinson drug. In controlled monotherapy and as adjunct to L-dopa it has shown anti-Parkinson activity. In cell culture (PC-12 and neuroblastoma SH-SY5Y cells) it exhibits neuroprotective and anti-apoptotic activity against several neurotoxins (SIN-1, MPTP, 6-hydroxydopamine and N-methyl-(R)-salsolinol) and ischemia. In vivo, it reduces the sequelae of traumatic brain injury in mice and speeds their recovery. The neuroprotective activity of rasagaline does not result from MAO B inhibition, since its S-enantiomer, TVP1022, which has 1000-fold weaker MAO inhibitory activity, exhibits similar neuroprotective properties. Introduction of a carbamate moiety into the rasagiline molecule to confer cholinesterase inhibitory activity for the treatment of Alzheimer's disease, resulted in compounds TV3326 [(N-Propargyl-(3R)Aminoindan-5-YL)-Ethyl Methyl Carbamate] and its S-enantiomer TV3279 [(N-Propargyl-(3S)Aminoindan-5-YL)-Ethyl Methyl Carbamate], which retain the neuroprotective activities of rasagiline and TVP1022. They also antagonize scopolamine-induced impairments in spatial memory. In addition, TV3326 exhibits brain-selective MAO A and B inhibitory activity after chronic administration and has antidepressant-like activity in the forced swim test. This is associated with an increase in brain levels of serotonin. The anti-apoptotic activity of these propargylamine-containing derivatives may be related to their ability to delay the opening of voltage-dependent anion channels (VDAC), which are part of the mitochondrial permeability transition pore. The propargylamine moiety is responsible for the increase in the mitochondrial family of Bcl-2 proteins, prevention in the fall in mitochondrial membrane potential, prevention of the activation of caspase 3, and of translocation of glyceraldehyde-3-phosphate dehydrogenase from the

  7. EVALUATION OF METHYL TERT-BUTYL ETHER (MTBE) AS AN INTERFERENCE ON COMMERCIAL BREATH-ALCOHOL ANALYZERS

    EPA Science Inventory

    Anecdotal reports suggest that high environmental or occupational exposures to the fuel oxygenate methyl tert-butyl ether (MTBE) may result in breath concentrations that are sufficiently elevated to cause a false positive on commercial breath-alcohol analyzers. We evaluated th...

  8. EVALUATION OF METHYL TERT-BUTYL ETHER (MTBE) AS AN INTERFERENCE ON COMMERCIAL BREATH-ALCOHOL ANALYZERS

    EPA Science Inventory

    Anecdotal reports suggest that high environmental or occupational exposures to the fuel oxygenate methyl tert-butyl ether (MTBE) may result in breath concentrations that are sufficiently elevated to cause a false positive on commercial breath-alcohol analyzers. We evaluated th...

  9. Fabrication of Poly (methyl methacrylate) and Poly(vinyl alcohol) Thin Film Capacitors on Flexible Substrates

    NASA Astrophysics Data System (ADS)

    Salim, Bindu; Meenaa Pria KNJ, Jaisree; Alagappan, M.; Kandaswamy, A.

    2015-11-01

    Flexible electronics is becoming more popular with introduction of more and more organic conducting materials and processes for making thin films. The use of polymers as gate dielectric has over ruled the usage of conventional inorganic oxides in Organic Thin Film Transistors (OTFTs) on account of its solution process ability and ease of making highly insulating thin film. In this work Capacitance is fabricated with polymeric dielectrics namely poly (methyl methacrylate) - PMMA and poly (vinyl alcohol) - PVA. The electrodes used for these capacitors are Indium Tin Oxide (ITO) and Aluminium. Capacitance value of 9.5nF/cm2 and 33.12nF/cm2 is achieved for thickness of 510 nm of PMMA and 80 nm of PVA respectively. This study on capacitance can be used for assessing the suitability of these polymers as gate insulators in OTFTs.

  10. Changes in Physical Property of Epoxy Resin with Absorption of Methyl Alcohol and Water

    NASA Astrophysics Data System (ADS)

    Wada, Ken; Nohara, Hiroshi; Shintani, Ryuichi

    1994-05-01

    Changes in physical properties with absorption of methyl alcohol and water were investigated. Upon CH3OH absorption, a boundary front appeared between the shell and core. The change in physical properties with absorption depended on the solvent and the volume absorbed. For example, when CH3OH of about 11 wt% was absorbed, Young's modulus decreased from 3.0×108 to 4.9×106 N/m2. In the case of H2O absorption (1 wt%), Young's modulus changed only slightly to 1.7×108 N/m2. The glass transition temperature T g shifted down to room temperature upon CH3OH absorption, but did not shift upon H2O absorption.

  11. Long-term alterations to DNA methylation as a biomarker of prenatal alcohol exposure: From mouse models to human children with fetal alcohol spectrum disorders.

    PubMed

    Laufer, Benjamin I; Chater-Diehl, Eric J; Kapalanga, Joachim; Singh, Shiva M

    2017-05-01

    Rodent models of Fetal Alcohol Spectrum Disorders (FASD) have revealed that prenatal alcohol exposure (PAE) results in differential DNA cytosine methylation in the developing brain. The resulting genome-wide methylation changes are enriched in genes with neurodevelopmental functions. The profile of differential methylation is dynamic and present in some form for life. The methylation changes are transmitted across subsequent mitotic divisions, where they are maintained and further modified over time. More recent follow up has identified a profile of the differential methylation in the buccal swabs of young children born with FASD. While distinct from the profile observed in brain tissue from rodent models, there are similarities. These include changes in genes belonging to a number of neurodevelopmental and behavioral pathways. Specifically, there is increased methylation at the clustered protocadherin genes and deregulation of genomically imprinted genes, even though no single gene is affected in all patients studied to date. These novel results suggest further development of a methylation based strategy could enable early and accurate diagnostics and therapeutics, which have remained a challenge in FASD research. There are two aspects of this challenge that must be addressed in the immediate future: First, the long-term differential methylomics observed in rodent models must be functionally confirmed. Second, the similarities in differential methylation must be further established in humans at a methylomic level and overcome a number of technical limitations. While a cure for FASD is challenging, there is an opportunity for the development of early diagnostics and attenuations towards a higher quality of life. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  12. Prenatal alcohol exposure alters methyl metabolism and programs serotonin transporter and glucocorticoid receptor expression in brain

    PubMed Central

    Ngai, Ying Fai; Sulistyoningrum, Dian C.; O'Neill, Ryan; Innis, Sheila M.; Weinberg, Joanne

    2015-01-01

    Prenatal alcohol exposure (PAE) programs the fetal hypothalamic-pituitary-adrenal (HPA) axis, resulting in HPA dysregulation and hyperresponsiveness to stressors in adulthood. Molecular mechanisms mediating these alterations are not fully understood. Disturbances in one-carbon metabolism, a source of methyl donors for epigenetic processes, contributes to alcoholic liver disease. We assessed whether PAE affects one-carbon metabolism (including Mtr, Mat2a, Mthfr, and Cbs mRNA) and programming of HPA function genes (Nr3c1, Nr3c2, and Slc6a4) in offspring from ethanol-fed (E), pair-fed (PF), and ad libitum-fed control (C) dams. At gestation day 21, plasma total homocysteine and methionine concentrations were higher in E compared with C dams, and E fetuses had higher plasma methionine concentrations and lower whole brain Mtr and Mat2a mRNA compared with C fetuses. In adulthood (55 days), hippocampal Mtr and Cbs mRNA was lower in E compared with C males, whereas Mtr, Mat2a, Mthfr, and Cbs mRNA were higher in E compared with C females. We found lower Nr3c1 mRNA and lower nerve growth factor inducible protein A (NGFI-A) protein in the hippocampus of E compared with PF females, whereas hippocampal Slc6a4 mRNA was higher in E than C males. By contrast, hypothalamic Slc6a4 mRNA was lower in E males and females compared with C offspring. This was accompanied by higher hypothalamic Slc6a4 mean promoter methylation in E compared with PF females. These findings demonstrate that PAE is associated with alterations in one-carbon metabolism and has long-term and region-specific effects on gene expression in the brain. These findings advance our understanding of mechanisms of HPA dysregulation associated with PAE. PMID:26180184

  13. Early maternal alcohol consumption alters hippocampal DNA methylation, gene expression and volume in a mouse model.

    PubMed

    Marjonen, Heidi; Sierra, Alejandra; Nyman, Anna; Rogojin, Vladimir; Gröhn, Olli; Linden, Anni-Maija; Hautaniemi, Sampsa; Kaminen-Ahola, Nina

    2015-01-01

    The adverse effects of alcohol consumption during pregnancy are known, but the molecular events that lead to the phenotypic characteristics are unclear. To unravel the molecular mechanisms, we have used a mouse model of gestational ethanol exposure, which is based on maternal ad libitum ingestion of 10% (v/v) ethanol for the first 8 days of gestation (GD 0.5-8.5). Early neurulation takes place by the end of this period, which is equivalent to the developmental stage early in the fourth week post-fertilization in human. During this exposure period, dynamic epigenetic reprogramming takes place and the embryo is vulnerable to the effects of environmental factors. Thus, we hypothesize that early ethanol exposure disrupts the epigenetic reprogramming of the embryo, which leads to alterations in gene regulation and life-long changes in brain structure and function. Genome-wide analysis of gene expression in the mouse hippocampus revealed altered expression of 23 genes and three miRNAs in ethanol-exposed, adolescent offspring at postnatal day (P) 28. We confirmed this result by using two other tissues, where three candidate genes are known to express actively. Interestingly, we found a similar trend of upregulated gene expression in bone marrow and main olfactory epithelium. In addition, we observed altered DNA methylation in the CpG islands upstream of the candidate genes in the hippocampus. Our MRI study revealed asymmetry of brain structures in ethanol-exposed adult offspring (P60): we detected ethanol-induced enlargement of the left hippocampus and decreased volume of the left olfactory bulb. Our study indicates that ethanol exposure in early gestation can cause changes in DNA methylation, gene expression, and brain structure of offspring. Furthermore, the results support our hypothesis of early epigenetic origin of alcohol-induced disorders: changes in gene regulation may have already taken place in embryonic stem cells and therefore can be seen in different tissue

  14. Prenatal alcohol exposure alters methyl metabolism and programs serotonin transporter and glucocorticoid receptor expression in brain.

    PubMed

    Ngai, Ying Fai; Sulistyoningrum, Dian C; O'Neill, Ryan; Innis, Sheila M; Weinberg, Joanne; Devlin, Angela M

    2015-09-01

    Prenatal alcohol exposure (PAE) programs the fetal hypothalamic-pituitary-adrenal (HPA) axis, resulting in HPA dysregulation and hyperresponsiveness to stressors in adulthood. Molecular mechanisms mediating these alterations are not fully understood. Disturbances in one-carbon metabolism, a source of methyl donors for epigenetic processes, contributes to alcoholic liver disease. We assessed whether PAE affects one-carbon metabolism (including Mtr, Mat2a, Mthfr, and Cbs mRNA) and programming of HPA function genes (Nr3c1, Nr3c2, and Slc6a4) in offspring from ethanol-fed (E), pair-fed (PF), and ad libitum-fed control (C) dams. At gestation day 21, plasma total homocysteine and methionine concentrations were higher in E compared with C dams, and E fetuses had higher plasma methionine concentrations and lower whole brain Mtr and Mat2a mRNA compared with C fetuses. In adulthood (55 days), hippocampal Mtr and Cbs mRNA was lower in E compared with C males, whereas Mtr, Mat2a, Mthfr, and Cbs mRNA were higher in E compared with C females. We found lower Nr3c1 mRNA and lower nerve growth factor inducible protein A (NGFI-A) protein in the hippocampus of E compared with PF females, whereas hippocampal Slc6a4 mRNA was higher in E than C males. By contrast, hypothalamic Slc6a4 mRNA was lower in E males and females compared with C offspring. This was accompanied by higher hypothalamic Slc6a4 mean promoter methylation in E compared with PF females. These findings demonstrate that PAE is associated with alterations in one-carbon metabolism and has long-term and region-specific effects on gene expression in the brain. These findings advance our understanding of mechanisms of HPA dysregulation associated with PAE.

  15. Iron-catalyzed AGET ATRP of methyl methacrylate using an alcohol as a reducing agent in a polar solvent.

    PubMed

    Xue, Zhigang; Zhou, Jun; He, Dan; Wu, Fan; Yang, Danfeng; Ye, Yun Sheng; Liao, Yonggui; Zhou, Xingping; Xie, Xiaolin

    2014-11-21

    The alcohols, methanol, ethanol, ethylene glycol (EG), and glycerol, were used as reducing agents for iron(III)-catalyzed activators generated by electron transfer atom transfer radical polymerizations (AGET ATRPs) of methyl methacrylate in polar solvents (N,N-dimethylformamide, N-methylpyrrolidone, or acetonitrile). The effects of the iron catalyst, initiator and alcohol on polymerization were investigated, and most of the systems showed the typical features of controlled radical polymerization. In studies of the ATRP behavior, polymerizations were well controlled with a linear increase in the molecular weight (Mn) versus conversion in agreement with the theoretical one, and low molecular weight distributions (Mw/Mn) were observed throughout the reactions. To gain a deeper understanding of the iron(III)/polar solvent-mediated ATRP, the polymerizations of various monomers (methyl acrylate, methyl methacrylate, n-butyl acrylate, and n-butyl methacrylate) were also investigated.

  16. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry.

    PubMed

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  17. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  18. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    SciTech Connect

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-15

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  19. Interstellar Alcohols

    NASA Technical Reports Server (NTRS)

    Charnley, S. B.; Kress, M. E.; Tielens, A. G. G. M.; Millar, T. J.

    1995-01-01

    We have investigated the gas-phase chemistry in dense cores where ice mantles containing ethanol and other alcohols have been evaporated. Model calculations show that methanol, ethanol, propanol, and butanol drive a chemistry leading to the formation of several large ethers and esters. Of these molecules, methyl ethyl ether (CH3OC2H5) and diethyl ether (C2H5)2O attain the highest abundances and should be present in detectable quantities within cores rich in ethanol and methanol. Gas-phase reactions act to destroy evaporated ethanol and a low observed abundance of gas-phase C,H,OH does not rule out a high solid-phase abundance. Grain surface formation mechanisms and other possible gas-phase reactions driven by alcohols are discussed, as are observing strategies for the detection of these large interstellar molecules.

  20. Optimization of headspace solid-phase microextraction for analysis of ethyl carbamate in alcoholic beverages using a face-centered cube central composite design.

    PubMed

    Zhang, Ying; Zhang, Jian

    2008-10-10

    The headspace solid-phase microextraction (HS-SPME) of ethyl carbamate from alcoholic beverages was optimized for the first time using a face-centered cube central composite design (CCD). The factors expected to influence the extraction process are discussed. Firstly, some of factors are fixed based on the opinion of expert and previous experiments, which reduce the number of factors and then avoid very complex response models and large variability. Secondly, for three remaining inexplicit factors, sample temperature, pH and %NaCl, a face-centered cube central composite design was performed and a response surface equation was derived. The statistical parameters of the derived model were r=0.974 and F=20.183. The optimum conditions were obtained using a grid method. Next, the method was analytically evaluated using the optimum conditions. The detection limit, relative standard deviation, linear range and recovery were 3microgL(-1), 4.3-8.6%, 10-160microgL(-1), and 92.8-97.5%, respectively. Finally, the method was applied to a variety of alcoholic beverages.

  1. Infrared reflection absorption spectroscopic study of the adsorption structures of dimethyl ether and methyl ethyl ether on Cu(1 1 1) and Ag(1 1 1)

    NASA Astrophysics Data System (ADS)

    Kasahara, Takahiro; Itoh, Koichi

    2007-02-01

    Infrared reflection absorption (IRA) spectra measured for dimethyl ether (DME) adsorbed at 80 K on Cu(1 1 1) and Ag(1 1 1) give IR bands belonging only to the A 1 and B 2 species, indicating that the adsorbate takes on an orientation in which the C2 axis bisecting the COC bond angle tilts away from the surface normal within the plane perpendicular to the substrates. The DFT method was applied to simulate the IRA spectra, indicating that the tilt angles of DME on Cu(1 1 1) and Ag(1 1 1) are about 50° and 55°, respectively, at submonolayer coverages. The results are in contrast to the case of DME on Cu(1 1 0) and Ag(1 1 0), where the C2 axis is perpendicular to the substrates [T. Kiyohara et al., J. Phys. Chem. A 106 (2002) 3469]. Methyl ethyl ether (MEE) adsorbed at 80 K on Cu(1 1 1) gives IRA bands mainly ascribable to the gauche ( G) form, whereas the IRA spectra measured for MEE on Ag(1 1 1) are characterized by the trans ( T) form. The rotational isomers are identical with those on Cu(1 1 0) and Ag(1 1 0); i.e., MEE on Cu(1 1 0) takes the G form and the adsorbate on Ag(1 1 0) the T form [T. Kiyohara et al., J. Phys. Chem. B 107 (2003) 5008]. The simulation of the IRA spectra indicated that (i) the G form adsorbate on Cu(1 1 1) takes an orientation, in which the axis bisecting the COC bond angle tilts away from the surface normal by ca. 30° within the plane perpendicular to the surface to make the CH 3-CH 2 bond almost parallel to the surface, and (ii) the T form adsorbate on Ag(1 1 1) takes an orientation, in which the bisecting axis tilts away by ca. 60° from the surface normal within the perpendicular plane. Comparison of these adsorption structures of MEE on the (1 1 1) substrates with those of MEE on Cu(1 1 0) and Ag(1 1 0) indicates that the structures are mainly determined by a coordination interaction of the oxygen atom to the surface metals and an attractive van der Waals interaction between the ethyl group of MEE and the substrate surfaces. The

  2. Anxiolytic- and antidepressant-like effects of the methadone metabolite 2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline (EMDP).

    PubMed

    Forcelli, Patrick A; Turner, Jill R; Lee, Bridgin G; Olson, Thao T; Xie, Teresa; Xiao, Yingxian; Blendy, Julie A; Kellar, Kenneth J

    2016-02-01

    The enhancement of GABAergic and monoaminergic neurotransmission has been the mainstay of pharmacotherapy and the focus of drug-discovery for anxiety and depressive disorders for several decades. However, the significant limitations of drugs used for these disorders underscores the need for novel therapeutic targets. Neuronal nicotinic acetylcholine receptors (nAChRs) may represent one such target. For example, mecamylamine, a non-competitive antagonist of nAChRs, displays positive effects in preclinical tests for anxiolytic and antidepressant activity in rodents. In addition, nicotine elicits similar effects in rodent models, possibly by receptor desensitization. Previous studies (Xiao et al., 2001) have identified two metabolites of methadone, EMDP (2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline) and EDDP (2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine), which are considered to be inactive at opiate receptors, as relatively potent noncompetitive channel blockers of rat α3β4 nAChRs. Here, we show that these compounds are likewise highly effective blockers of human α3β4 and α4β2 nAChRs. Moreover, we show that they display relatively low affinity for opiate binding sites labeled by [(3)H]-naloxone. We then evaluated these compounds in rats and mice in preclinical behavioral models predictive of potential anxiolytic and antidepressant efficacy. We found that EMDP, but not EDDP, displayed robust effects predictive of anxiolytic and antidepressant efficacy without significant effects on locomotor activity. Moreover, EMDP at behaviorally active doses, unlike mecamylamine, did not produce eyelid ptosis, suggesting it may produce fewer autonomic side effects than mecamylamine. Thus, the methadone metabolite EMDP may represent a novel therapeutic avenue for the treatment of some affective disorders.

  3. Anxiolytic- and Antidepressant-like Effects of the Methadone Metabolite 2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline (EMDP)

    PubMed Central

    Lee, Bridgin G.; Olson, Thao T.; Xie, Teresa; Xiao, Yingxian; Blendy, Julie A.; Kellar, Kenneth J.

    2015-01-01

    The enhancement of GABAergic and monoaminergic neurotransmission has been the mainstay of pharmacotherapy and the focus of drug-discovery for anxiety and depressive disorders for several decades. However, the significant limitations of drugs used for these disorders underscores the need for novel therapeutic targets. Neuronal nicotinic acetylcholine receptors (nAChRs) may represent one such target. For example, mecamylamine, a non-competitive antagonist of nAChRs, displays positive effects in preclinical tests for anxiolytic and antidepressant activity in rodents. In addition, nicotine elicits similar effects in rodent models, possibly by receptor desensitization. Previous studies (Xiao et al., 2001) have identified two metabolites of methadone, EMDP (2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline) and EDDP (2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine), which are considered to be inactive at opiate receptors, as relatively potent noncompetitive channel blockers of rat α3β4 nAChRs. Here, we show that these compounds are likewise highly effective blockers of human α3β4 and α4β2 nAChRs. Moreover, we show that they display relatively low affinity for opiate binding sites labeled by [3H]-naloxone. We then evaluated these compounds in rats and mice in preclinical behavioral models predictive of potential anxiolytic and antidepressant efficacy. We found that EMDP, but not EDDP, displayed robust effects predictive of anxiolytic and antidepressant efficacy without significant effects on locomotor activity. Moreover, EMDP at behaviorally active doses, unlike mecamylamine, did not produce eyelid ptosis, suggesting it may produce fewer autonomic side effects than mecamylamine. Thus, the methadone metabolite EMDP may represent a novel therapeutic avenue for the treatment of some affective disorders. PMID:26365569

  4. Identification of covalent binding sites of ethyl 2-cyanoacrylate, methyl methacrylate and 2-hydroxyethyl methacrylate in human hemoglobin using LC/MS/MS techniques.

    PubMed

    Jeppsson, Marina C; Mörtstedt, Harriet; Ferrari, Giovanni; Jönsson, Bo A G; Lindh, Christian H

    2010-10-01

    Acrylates are used in vast quantities, for instance in paints, adhesive glues, molding. They are potent contact allergens and known to cause respiratory hypersensitivity and asthma. Here we study ethyl 2-cyanoacrylate (ECA), methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA). There are only limited possibilities to measure the exposure to acrylates, especially for biological monitoring. The aim of the present study was to investigate the chemical structures of adducts formed after reaction of hemoglobin (Hb) with ECA, MMA, and HEMA. This information may be used to identify adducted Hb peptides for biological monitoring of exposure to acrylates. Hb-conjugates with ECA, MMA, and HEMA were synthesized in vitro. The conjugates were digested by trypsin and pronase E. Adducted peptides were characterized and analyzed by liquid chromatography and nano electro spray/hybrid quadrupole time-of-flight mass spectrometry (MS) as well as tandem quadrupole MS. The search for the adducted peptides was facilitated by visualizing the MS data by different computer programs. The results showed that ECA binds covalently to cysteines at the 104 position in the α and the position 112 in the β-chains in Hb. MMA and HEMA bound to all the cysteines in both chains, Cys(104) in the α-chain and Cys(93) and 112 in the β-chain. The full-length spectra of in un-digested Hb confirmed this binding pattern. There was no reaction with N-acetyl-L-lysine at physiological pH. The adducted peptides were possible to measure using LC/MS/MS in selected reaction monitoring mode. These peptides may be used for biological monitoring of exposure to ECA, MMA and HEMA.

  5. Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on label exchange and ethane formation with the homologous substrate ethyl-coenzyme M.

    PubMed

    Scheller, Silvan; Goenrich, Meike; Thauer, Rudolf K; Jaun, Bernhard

    2013-10-09

    Ethyl-coenzyme M (CH3CH2-S-CH2CH2-SO3(-), Et-S-CoM) serves as a homologous substrate for the enzyme methyl-coenzyme M reductase (MCR) resulting in the product ethane instead of methane. The catalytic reaction proceeds via an intermediate that already contains all six C-H bonds of the product. Because product release occurs after a second, rate-limiting step, many cycles of intermediate formation and reconversion to substrate occur before a substantial amount of ethane is released. In deuterated buffer, the intermediate becomes labeled, and C-H activation in the back reaction rapidly leads to labeled Et-S-CoM, which enables intermediate formation to be detected. Here, we present a comprehensive analysis of this pre-equilibrium. (2)H- and (13)C-labeled isotopologues of Et-S-CoM were used as the substrates, and the time course of each isotopologue was followed by NMR spectroscopy. A kinetic simulation including kinetic isotope effects allowed determination of the primary and α- and β-secondary isotope effects for intermediate formation and for the C-H/C-D bond activation in the ethane-containing intermediate. The values obtained are in accordance with those found for the native substrate Me-S-CoM (see preceding publication, Scheller, S.; Goenrich, M.; Thauer, R. K.; Jaun, B. J. Am. Chem. Soc. 2013, 135, DOI: 10.1021/ja406485z) and thus imply the same catalytic mechanism for both substrates. The experiment by Floss and co-workers, demonstrating a net inversion of configuration to chiral ethane with CH3CDT-S-CoM as the substrate, is compatible with the observed rapid isotope exchange if the isotope effects measured here are taken into account.

  6. Gas-phase oxidation of methyl crotonate and ethyl crotonate. kinetic study of their reactions toward OH radicals and Cl atoms.

    PubMed

    Teruel, Mariano A; Benitez-Villalba, Julio; Caballero, Norma; Blanco, María B

    2012-06-21

    Rate coefficients for the reactions of hydroxyl radicals and chlorine atoms with methyl crotonate and ethyl crotonate have been determined at 298 K and atmospheric pressure. The decay of the organics was monitored using gas chromatography with flame ionization detection (GC-FID), and the rate constants were determined using the relative rate method with different reference compounds. Room temperature rate coeficcients were found to be (in cm(3) molecule(-1) s(-1)): k(1)(OH + CH(3)CH═CHC(O)OCH(3)) = (4.65 ± 0.65) × 10(-11), k(2)(Cl + CH(3)CH═CHC(O)OCH(3)) = (2.20 ± 0.55) × 10(-10), k(3)(OH + CH(3)CH═CHC(O)OCH(2)CH(3)) = (4.96 ± 0.61) × 10(-11), and k(4)(Cl + CH(3)CH═CHC(O)OCH(2)CH(3)) = (2.52 ± 0.62) × 10(-10) with uncertainties representing ±2σ. This is the first determination of k(1), k(3), and k(4) under atmospheric pressure. The rate coefficients are compared with previous determinations for other unsaturated and oxygenated VOCs and reactivity trends are presented. In addition, a comparison between the experimentally determined k(OH) with k(OH) predicted from k vs E(HOMO) relationships is presented. On the other hand, product identification under atmospheric conditions has been performed for the first time for these unsaturated esters by the GC-MS technique in NO(x)-free conditions. 2-Hydroxypropanal, acetaldehyde, formaldehyde, and formic acid were positively observed as degradation products in agreement with the addition of OH to C2 and C3 of the double bond, followed by decomposition of the 2,3- or 3,2-hydroxyalkoxy radicals formed. Atmospheric lifetimes, based on of the homogeneous sinks of the unsaturated esters studied, are estimated from the kinetic data obtained in the present work.

  7. Graphene-Fiber-Based Supercapacitors Favor N-Methyl-2-pyrrolidone/Ethyl Acetate as the Spinning Solvent/Coagulant Combination.

    PubMed

    He, Nanfei; Pan, Qin; Liu, Yixin; Gao, Wei

    2017-07-26

    One-dimensional flexible fiber supercapacitors (FSCs) have attracted great interest as promising energy-storage units that can be seamlessly incorporated into textiles via weaving, knitting, or braiding. The major challenges in this field are to develop tougher and more efficient FSCs with a relatively easy and scalable process. Here, we demonstrate a wet-spinning process to produce graphene oxide (GO) fibers from GO dispersions in N-methyl-2-pyrrolidone (NMP), with ethyl acetate as the coagulant. Upon chemical reduction of GO, the resulting NMP-based reduced GO (rGO) fibers (rGO@NMP-Fs) are twice as high in the surface area and toughness but comparable in tensile strength and conductivity as that of the water-based rGO fibers (rGO@H2O-Fs). When assembled into parallel FSCs, rGO@NMP-F-based supercapacitors (rGO@NMP-FSCs) offered a specific capacitance of 196.7 F cm(-3) (147.5 mF cm(-2)), five times higher than that of rGO@H2O-F-based supercapacitors (rGO@H2O-FSCs) and also higher than most existing wet-spun rGO-FSCs, as well as those FSCs built with metal wires, graphene/carbon nanotube (CNT) fibers, or even pseudocapacitive materials. In addition, our rGO@NMP-FSCs can provide good bending and cycling stability. The energy density of our rGO@NMP-FSCs reaches ca. 6.8 mWh cm(-3), comparable to that of a Li thin-film battery (4 V/500 μAh).

  8. Responses of enzymatic antioxidants and non-enzymatic antioxidants in the cyanobacterium Microcystis aeruginosa to the allelochemical ethyl 2-methyl acetoacetate (EMA) isolated from reed (Phragmites communis).

    PubMed

    Hong, Yu; Hu, Hong-Ying; Xie, Xing; Li, Feng-Min

    2008-08-25

    Macrophytic allelochemicals are considered an environment-friendly and promising alternative to control algal bloom. However, studies examining the potential mechanisms of inhibitory allelochemicals on algae are few. The allelochemical ethyl 2-methyl acetoacetate (EMA), isolated from reed (Phragmites communis), was a strong allelopathic inhibitor on the growth of Microcystis aeruginosa. EMA-induced antioxidant responses were investigated in the cyanobacterium M. aeruginosa to understand the mechanism of EMA inhibition on algal growth. The activities of enzymatic antioxidants superoxide dismutase (SOD) and catalase (CAT), and the contents of non-enzymatic antioxidants reduced glutathione (GSH) and ascorbic acid (AsA) of M. aeruginosa cells were analyzed after treatments with different concentrations of EMA. Exposure of M. aeruginosa to EMA caused changes in enzyme activities and contents of non-enzymatic antioxidants in different manners. The decrease in SOD activity occurred first after 4 h of EMA exposure, and more markedly after 40 h. CAT activity did not change after 4 h of EMA exposure, but increased obviously after 40 h. The contents of AsA and GSH were increased greatly by EMA after 4 h. After 60 h, low EMA concentrations still increased the CAT activity and the contents of AsA and GSH, but high EMA concentrations started to impose a marked suppression on them. EMA increased dehydroascorbate (DHAsA) and oxidized glutathione (GSSG) contents during all exposure times. After 60 h, the regeneration rates of AsA and GSH (represented by the AsA/DHAsA ratio and GSH/GSSG ratio, respectively) were reduced by high EMA concentrations. These results suggest that the activation of CAT and the availability of AsA and GSH at early exposure are important to counteract the oxidative stress induced by EMA, and the inactivation of SOD may be crucial to the growth inhibition of M. aeruginosa by EMA.

  9. Why are ionic liquid ions mainly associated in water? A Car-Parrinello study of 1-ethyl-3-methyl-imidazolium chloride water mixture.

    PubMed

    Spickermann, C; Thar, J; Lehmann, S B C; Zahn, S; Hunger, J; Buchner, R; Hunt, P A; Welton, T; Kirchner, B

    2008-09-14

    In this study we present the results of a first principles molecular dynamics simulation of a single 1-ethyl-3-methyl-imidazolium chloride [C(2)C(1)im][Cl] ion pair dissolved in 60 water molecules. We observe a preference of the in plane chloride coordination with respect to the cation ring plane as compared to the energetic slightly more demanding on top coordination. Evaluation of the different radial distribution functions demonstrates that the structure of the hydration shell around the ion pair differs significantly from bulk water and that no true ion pair dissociation in terms of completely autonomous solvation shells takes place on the timescale of the simulation. In addition, dipole moment distributions of the solvent in distinct solvation shells around different functional parts of the [C(2)C(1)im][Cl] ion pair are calculated from maximally localized Wannier functions. The analysis of these distributions gives evidence for a depolarization of water molecules close to the hydrophobic parts of the cation as well as close to the anion. Examination of the angular distribution of different OH(H(2)O)-X angles in turn shows a linear coordination of chloride accompanied by a tangential orientation of water molecules around the hydrophobic groups, being a typical feature of hydrophobic hydration. Based on these orientational aspects, a structural model for the obvious preference of ion pair association is developed, which justifies the associating behavior of solvated [C(2)C(1)im][Cl] ions in terms of an energetically favorable interface between the solvation shells of the anion and the hydrophobic parts of the cation.

  10. Why are ionic liquid ions mainly associated in water? A Car-Parrinello study of 1-ethyl-3-methyl-imidazolium chloride water mixture

    NASA Astrophysics Data System (ADS)

    Spickermann, C.; Thar, J.; Lehmann, S. B. C.; Zahn, S.; Hunger, J.; Buchner, R.; Hunt, P. A.; Welton, T.; Kirchner, B.

    2008-09-01

    In this study we present the results of a first principles molecular dynamics simulation of a single 1-ethyl-3-methyl-imidazolium chloride [C2C1im][Cl] ion pair dissolved in 60 water molecules. We observe a preference of the in plane chloride coordination with respect to the cation ring plane as compared to the energetic slightly more demanding on top coordination. Evaluation of the different radial distribution functions demonstrates that the structure of the hydration shell around the ion pair differs significantly from bulk water and that no true ion pair dissociation in terms of completely autonomous solvation shells takes place on the timescale of the simulation. In addition, dipole moment distributions of the solvent in distinct solvation shells around different functional parts of the [C2C1im][Cl] ion pair are calculated from maximally localized Wannier functions. The analysis of these distributions gives evidence for a depolarization of water molecules close to the hydrophobic parts of the cation as well as close to the anion. Examination of the angular distribution of different OH(H2O )-X angles in turn shows a linear coordination of chloride accompanied by a tangential orientation of water molecules around the hydrophobic groups, being a typical feature of hydrophobic hydration. Based on these orientational aspects, a structural model for the obvious preference of ion pair association is developed, which justifies the associating behavior of solvated [C2C1im][Cl] ions in terms of an energetically favorable interface between the solvation shells of the anion and the hydrophobic parts of the cation.

  11. Ethyl-eicosapentaenoate modulates changes in neurochemistry and brain lipids induced by parkinsonian neurotoxin 1-methyl-4-phenylpyridinium in mouse brain slices.

    PubMed

    Meng, QingJia; Luchtman, Dirk W; El Bahh, Bouchaib; Zidichouski, Jeffrey A; Yang, Jun; Song, Cai

    2010-12-15

    Evidence suggests a link between Parkinson's disease and the dietary intake of omega (n)-3 and n-6 polyunsaturated fatty acids (PUFAs). Presently, we investigated whether an acute dose of parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) affects brain n-3 and n-6 PUFA content and expression of fatty acid metabolic enzymes cytosolic phospholipase A2 (cPLA2) and cyclooxygenase-2 (COX-2) in brain slices from C57Bl/6 mice. Furthermore, we investigated whether feeding a diet of n-3 PUFA ethyl-eicosapentaenoate (E-EPA) to these mice can attenuate the MPP(+) induced changes in brain PUFA content and expression of cPLA2 and COX-2, and attenuate MPP(+) induced changes in neurotransmitters and metabolites and apoptotic markers, bax, bcl-2 and caspase-3. MPP(+) increased brain content of n-6 PUFAs linoleic acid and arachidonic acid, and increased the mRNA expression of cPLA2. MPP(+) also depleted striatal dopamine levels and increased dopamine turnover, and depleted noradrenaline levels in the frontal cortex. The neurotoxin induced increases in bax, bcl-2 and caspase-3 mRNA expression that approached significance. E-EPA by itself increased brain n-3 content, including EPA and docosapentaenoic acid (C22:5, n-3), and increased cortical dopamine. More importantly, E-EPA attenuated the MPP(+) induced increase in n-6 fatty acids content, partially attenuated the striatal dopaminergic turnover, and prevented the increases of pro-apoptotic bax and caspase-3 mRNAs. In conclusion, increases in n-6 PUFAs in the acute stage of exposure to parkinsonian neurotoxins may promote pro-inflammatory conditions. EPA may provide modest beneficial effects in Parkinson's disease, but further investigation is warranted.

  12. Effect of ethyl methyl sulfonate concentration and different treatment conditions on germination and seedling growth of the cucumber cultivar Chinese long (9930).

    PubMed

    Shah, S N M; Gong, Z-H; Arisha, M H; Khan, A; Tian, S-L

    2015-03-30

    We attempted to create a new germplasm of cucumber cultivar Chinese long (9930) using different doses of ethyl methyl sulfonate (EMS) to induce variability. We tested EMS concentration (0, 0.5, 1.0, 1.5, 2, 3% v/v) with post-treatment (0.1 M Na2S2O3 and water), EMS concentration (0, 0.5, 1.0, 1.5% v/v) over different treatment times (8, 16, 24 h), and EMS concentration (0, 0.5, 1.0, 1.5% v/v) with different treatment temperatures (20 and 28°C). In all experiments with increasing EMS concentration, germination percent, index, and rate were decreased. After addition of stop solution (0.1 M Na2S2O3), post-treatment mutated seeds showed higher germination (84.44%) and rate (37.5%) than seeds treated with water (80 and 34.07%, respectively), while the germination index was high in seeds treated with water. At 20°C, the germination index (4.13) and rate (56.25%) were affected to a greater extent than at 28°C (7.68 and 91.31%, respectively). Treatment times of 16 and 24 h showed similar results for germination percent and rate, while the germination index was decreased over time. There were significant differences in seedling height, fresh true leaf weight, seedling weight, and plant survival with increasing EMS concentration and time. Higher variations in the form of dwarf seedlings were recorded after treatment with 1.5% EMS for 24 h. Based on germination and morphological data, an EMS concentration of 1.5% for 24 h at 20°C and post-treatment with stop solution (0.1 M Na2S2O3) efficiently caused mutation.

  13. Catalytic conversion of secondary butyl alcohol on Sn-Mo-O system in the presence of oxygen

    SciTech Connect

    Adzhamov, K.Yu.; Klaime, S.R.; Alkhazov, T.G.

    1988-02-01

    It has been established that the optimal catalyst composition for the conversion of secondary butyl alcohol to methyl ethyl ketone in the presence of oxygen is Sn:Mo = 9.1. A comparative investigation of the conversions of 1-butene, isopropyl alcohol, and secondary butyl alcohol on Sn-Mo-O catalysts with various compositions has demonstrated the feasibility of using secondary butyl alcohol in evaluating the acid-base properties of oxide systems.

  14. Physiologically based pharmacokinetic model for ethyl tertiary-butyl ether and tertiary-butyl alcohol in rats: Contribution of binding to α2u-globulin in male rats and high-exposure nonlinear kinetics to toxicity and cancer outcomes.

    PubMed

    Borghoff, Susan J; Ring, Caroline; Banton, Marcy I; Leavens, Teresa L

    2017-05-01

    In cancer bioassays, inhalation, but not drinking water exposure to ethyl tertiary-butyl ether (ETBE), caused liver tumors in male rats, while tertiary-butyl alcohol (TBA), an ETBE metabolite, caused kidney tumors in male rats following exposure via drinking water. To understand the contribution of ETBE and TBA kinetics under varying exposure scenarios to these tumor responses, a physiologically based pharmacokinetic model was developed based on a previously published model for methyl tertiary-butyl ether, a structurally similar chemical, and verified against the literature and study report data. The model included ETBE and TBA binding to the male rat-specific protein α2u-globulin, which plays a role in the ETBE and TBA kidney response observed in male rats. Metabolism of ETBE and TBA was described as a single, saturable pathway in the liver. The model predicted similar kidney AUC0-∞ for TBA for various exposure scenarios from ETBE and TBA cancer bioassays, supporting a male-rat-specific mode of action for TBA-induced kidney tumors. The model also predicted nonlinear kinetics at ETBE inhalation exposure concentrations above ~2000 ppm, based on blood AUC0-∞ for ETBE and TBA. The shift from linear to nonlinear kinetics at exposure concentrations below the concentration associated with liver tumors in rats (5000 ppm) suggests the mode of action for liver tumors operates under nonlinear kinetics following chronic exposure and is not relevant for assessing human risk. Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd.

  15. DNA Methylation-Independent Growth Restriction and Altered Developmental Programming in a Mouse Model of Preconception Male Alcohol Exposure.

    PubMed

    Chang, Richard C; Skiles, William M; Sarah, S Chronister; Wang, Haiqing; Sutton, Gabrielle I; Bedi, Yudhishtar S; Snyder, Matthew; Long, Charles R; Golding, Michael C

    2017-08-17

    The preconception environment is a significant modifier of dysgenesis and the development of environmentally-induced disease. To date, Fetal Alcohol Spectrum Disorders (FASDs) have been exclusively associated with maternal exposures, yet emerging evidence suggests male-inherited alterations in the developmental program of sperm may be relevant to the growth-restriction phenotypes of this condition. Using a mouse model of voluntary consumption, we find chronic preconception male ethanol exposure associates with fetal growth restriction, decreased placental efficiency, abnormalities in cholesterol trafficking, sex-specific alterations in the genetic pathways regulating hepatic fibrosis, and disruptions in the regulation of imprinted genes. Alterations in the DNA methylation profiles of imprinted loci have been identified in clinical studies of alcoholic sperm, suggesting the legacy of paternal drinking may transmit via heritable disruptions in the regulation of imprinted genes. However, the capacity of sperm-inherited changes in DNA methylation to broadly transmit environmentally-induced phenotypes remains unconfirmed. Using bisulphite mutagenesis and second-generation deep sequencing, we find no evidence to suggest that these phenotypes or any of the associated transcriptional changes are linked to alterations in the sperm-inherited DNA methylation profile. These observations are consistent with recent studies examining the male transmission of diet-induced phenotypes and emphasize the importance of epigenetic mechanisms of paternal inheritance beyond DNA methylation. This study challenges the singular importance of maternal alcohol exposures and suggests paternal alcohol abuse is a significant, yet overlooked epidemiological factor complicit in the genesis of alcohol-induced growth defects, and may provide mechanistic insight into the failure of FASD children to thrive postnatally.

  16. FTIR gas-phase kinetic study on the reactions of OH radicals and Cl atoms with unsaturated esters: Methyl-3,3-dimethyl acrylate, (E)-ethyl tiglate and methyl-3-butenoate

    NASA Astrophysics Data System (ADS)

    Colomer, Juan P.; Blanco, María B.; Peñéñory, Alicia B.; Barnes, Ian; Wiesen, Peter; Teruel, Mariano A.

    2013-11-01

    The relative-rate technique has been used to obtain rates coefficients for the reactions of the unsaturated esters methyl-3,3-dimethyl acrylate, (E)-ethyl tiglate and methyl-3-butenoate with OH radicals and chlorine atoms at (298 ± 2) K in synthetic air at a total pressure of (760 ± 10) Torr. The experiments were performed in an environmental chamber using in situ FTIR detection to monitor the decay of the esters relative to different reference compounds. The following room temperature rate coefficients (in units of cm3 molecule-1 s-1) were obtained: k1(OH + (CH3)2Cdbnd CHC(O)OCH3) = (4.46 ± 1.05) × 10-11, k2(Cl + (CH3)2Cdbnd CHC(O)OCH3) = (2.78 ± 0.46) × 10-10, k3(OH + CH3CHdbnd C(CH3)C(O)OCH2CH3) = (8.32 ± 1.93) × 10-11, k4(Cl + CH3CHdbnd C(CH3)C(O)OCH2CH3) = (2.53 ± 0.35) × 10-10, k5(OH + CH2dbnd CHCH2C(O)OCH3) = (3.16 ± 0.57) × 10-11, k4(Cl + CH2dbnd CHCH2C(O)OCH3) = (2.10 ± 0.35) × 10-10. With the exception of the reaction of Cl with methyl-3,3-dimethyl acrylate (k2), for which one determination exists in the literature, this study is the first kinetic study for these reactions under atmospheric pressure. Reactivity trends are discussed in terms of the effect of the alkyl and ester groups attached to the double bond on the overall rate coefficients towards OH radicals. The atmospheric implications of the reactions were assessed by the estimation of the tropospheric lifetimes of the title reactions.

  17. Ethylglucuronide and Ethyl Sulfate Assays in Clinical Trials, Interpretation and Limitations: Results of a Dose Ranging Alcohol Challenge Study and Two Clinical Trials

    PubMed Central

    Jatlow, Peter I.; Agro, Ann; Wu, Ran; Nadim, Haleh; Toll, Benjamin A.; Ralevski, Elizabeth; Nogueira, Christine; Shi, Julia; Dziura, James D.; Petrakis, Ismene L.; O'Malley, Stephanie S.

    2014-01-01

    Background The ethanol metabolites, ethyl glucuronide (EtG) and ethyl sulfate (EtS) are biomarkers of recent alcohol consumption that provide objective measures of abstinence. Our goals are to better understand the impact of cutoff concentration on test interpretation, the need for measuring both metabolites, and how best to integrate test results with self-reports in clinical trials. Methods Subjects (n=18) were administered, one week apart, 3 alcohol doses calibrated to achieve blood concentrations of 20, 80 and 120 mg/dL respectively. Urinary EtG/EtS were measured at timed intervals during a 24 hour hospitalization and twice daily thereafter. In addition, participants from 2 clinical trials provided samples for EtG/EtS and drinking histories. Cutoffs for EtG/EtS of 100/50, 200/100 and 500/250 ng/mL were evaluated. Results Twelve hours following each challenge, EtG was always positive at the 100 and 200 cutoffs, but at 24 hours sensitivity was poor at all cutoffs following the low dose, and poor after 48 hours regardless of dose or cutoff. Similarly, in the clinical trials EtG sensitivity was good for detecting any drinking during the last 24 hours at the two lowest cutoffs, but under 40% during the last 24-48 hours. Sensitivity was reduced at the 500 ng/mL cutoff. Discrepancies between EtG and EtS were few. Comparison of self- reports of abstinence and EtG confirmed abstinence indicated under-reporting of drinking. Conclusions Any drinking the night before should be detectable the following morning with EtG cutoffs of 100 or 200 ng/mL. Twenty-four hours after drinking, sensitivity is poor for light drinking, but good for heavier consumption. At 48 hours, sensitivity is low following 6 drinks or less. Increasing the cutoff to 500 ng/mL leads to substantially reduced sensitivity. Monitoring both EtG and EtS should usually be unnecessary. We recommend EtG confirmed self-reports of abstinence for evaluation of outcomes in clinical trials. PMID:24773137

  18. NTP Toxicity Studies of Methyl Ethyl Ketoxime Administered in Drinking Water to F344/N Rats and B6C3F1 Mice (CAS No. 96-29-7).

    PubMed

    1999-08-01

    Methyl ethyl ketoxime is used primarily as an antiskinning agent in alkyd coating resins. Methyl ethyl ketoxime was selected for study because of the potential for human exposure and because of interest in oximes as a chemical class. Toxicity studies of methyl ethyl ketoxime (greater than 99% pure) were carried out in male and female F344/N rats and B6C3F1 mice. The compound was administered in drinking water for 14 days or 13 weeks. In addition, the genetic toxicity of methyl ethyl ketoxime was evaluated by determining mutagenicity in Salmonella typhimurium and induction of sister chromatid exchanges and chromosomal aberrations in cultured Chinese hamster ovary cells in vitro, with and without S9 activation. The frequency of micronucleated normochromatic erythrocytes in the peripheral blood of mice from the 13-week study was also determined. In the 14-day studies, groups of five male and five female rats and mice were given drinking water containing 0, 106, 312, 625, 1,250, or 2,500 ppm methyl ethyl ketoxime. The mean body weight gain of male rats in the 2,500 ppm group was significantly less than that of the controls; the final mean body weight of male mice in the 2,500 ppm group was also less than that of the controls. Spleen weights were increased in male and female rats in the 1,250 and 2,500 ppm groups. No chemical-related gross lesions were observed. Microscopic tissue evaluations were not performed. In the 13-week studies, groups of 10 male and 10 female rats were given drinking water containing 0, 312, 625, 1,250, 2,500, or 5,000 ppm and groups of 10 male and 10 female mice were given drinking water containing 0, 625, 1,250, 2,500, 5,000, or 10,000 ppm. Mean body weights and body weight gains of 2,500 and 5,000 ppm male rats and 10,000 ppm male and female mice were less than those of the controls; mean body weight gains of male rats in the 1,250, 2,500 and 5,000 ppm groups and females in the 2,500 and 5,000 ppm groups were also less than those of the

  19. Novel selectfluor and deoxo-fluor-mediated rearrangements. New 5(6)-methyl and phenyl methanopyrrolidine alcohols and fluorides.

    PubMed

    Krow, Grant R; Lin, Guoliang; Moore, Keith P; Thomas, Andrew M; DeBrosse, Charles; Ross, Charles W; Ramjit, Harri G

    2004-05-13

    Stereoselective syntheses of novel 5,6-difunctionalized-2-azabicyclo[2.1.1]hexanes containing 5-anti-fluoro or hydroxyl in one methano bridge and a variety of syn- or anti-chloro, fluoro, hydroxy, methyl, or phenyl substituents in the other methano bridge have been effected. Rearrangements of iodides to alcohols were initiated using Selectfluor. Rearrangement of alcohols to fluorides was initiated using Deoxo-Fluor. Ring opening of 2-azabicyclo[2.2.0]hex-5-ene exo-epoxide with organocopper reagents is regioselective at C(5).

  20. Did you drink alcohol during pregnancy? Inaccuracy and discontinuity of women's self-reports: On the way to establish meconium ethyl glucuronide (EtG) as a biomarker for alcohol consumption during pregnancy.

    PubMed

    Eichler, Anna; Grunitz, Juliane; Grimm, Jennifer; Walz, Lisa; Raabe, Eva; Goecke, Tamme W; Beckmann, Matthias W; Kratz, Oliver; Heinrich, Hartmut; Moll, Gunther H; Fasching, Peter A; Kornhuber, Johannes

    2016-08-01

    Consuming alcohol during pregnancy is one of the most verified prenatal risk factors for impaired child development. Information about the amount of alcohol consumed prenatally is needed to anticipate negative effects and to offer timely support. Women's self-reports are not reliable, often influenced by social stigmas and retrospective recall bias, causing biomarkers of intrauterine ethanol exposure to become more and more relevant. The present study compares both women's gestational and retrospective self-reports of prenatal alcohol consumption with levels of ethyl glucuronide (EtG) in meconium. Women (n = 180) gave self-reports of prenatal alcohol consumption both during their 3rd trimester (gestational self-report) and when their children were 6-8 years old (retrospective self-report). Child meconium was collected after birth and analyzed for EtG. No individual feedback of children's EtG level was given to the women. All analyses were run separately for two cut-offs: 10 ng/g (limit of detection) and 120 ng/g (established by Goecke et al., 2014). Mothers of children with EtG values above 10 ng/g (n = 42) tended to report prenatal alcohol consumption more frequently. There was no trend or significance for the EtG cut-off of 120 ng/g (n = 26) or for retrospective self-report. When focusing on women who retrospectively reported alcohol consumption during pregnancy, a claim to five or more consumed glasses per month made an EtG over the 10 ng/g and the 120 ng/g cut-off more probable. Women whose children were over the 10 ng/g EtG cut-off were the most inconsistent in their self-report behavior, whereas the consistency in the above 120 ng/g EtG group was higher than in any other group. The next step to establish EtG as a biomarker for intrauterine alcohol exposure is to correlate EtG values in meconium with child developmental impairments. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Wipe-test and patch-test for alcohol misuse based on the concentration ratio of fatty acid ethyl esters and squalene CFAEE/CSQ in skin surface lipids.

    PubMed

    Pragst, F; Auwärter, V; Kiessling, B; Dyes, C

    2004-07-16

    Fatty acid ethyl esters (FAEE) are known to be formed in blood and almost all human tissues after alcohol consumption and to be incorporated from sebum into hair where they can be used as long-term markers for excessive alcohol consumption. In order to examine whether skin surface lipids which consist mainly of sebum are an equally useful matrix for measurement of FAEE as alcohol abuse markers, samples were collected by a wipe-test from the forehead of 13 teetotallers, 16 social drinkers, 10 death cases with known recent alcohol misuse and five death cases without indications of alcohol misuse. The samples were analysed by headspace solid-phase microextraction and gas chromatography-mass spectrometry for ethyl myristate, ethyl palmitate, ethyl oleate and ethyl stearate and by high performance liquid chromatography with photodiode array detector for squalene, (SQ), as a natural reference substance which the FAEE concentrations were related to. The ratio mFAEE/mSQ ranged between 0.16 and 1.12 ng/microg (mean 0.34 ng/microg) for the teetotallers and between 0.08 and 0.94 ng/microg (mean 0.37 ng/microg) for the social drinkers with no significant difference between both groups. For the alcoholics 2.4-24.2 ng/microg (mean 13.1 ng/microg) were found. For two volunteers the course of mFAEE/mSQ 2 weeks before and 3 weeks after a single high alcohol dose was pursued by daily wipe tests. A strong increase of mFAEE/mSQ occurred between 7 and 12 days after the drinking event. This delay can be explained by the transition time of about 8 days between sebum production and its appearance on the skin surface known from literature. For seven social drinkers skin surface lipid samples were also collected using drug of abuse patches of the firm PharmCheck. The ratios mFAEE/mSQ in these samples were in the same range as from the wipe-test. The comparison with the self-reported ethanol amounts consumed the week before and during the test gave no good correlation (R2 = 0.42). It can be

  2. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure.

    PubMed

    Chater-Diehl, Eric J; Laufer, Benjamin I; Castellani, Christina A; Alberry, Bonnie L; Singh, Shiva M

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse's lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as "Free radical scavenging". We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was "Peroxisome biogenesis"; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD.

  3. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure

    PubMed Central

    Chater-Diehl, Eric J.; Castellani, Christina A.; Alberry, Bonnie L.; Singh, Shiva M.

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse’s lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as “Free radical scavenging”. We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was “Peroxisome biogenesis”; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD. PMID:27136348

  4. Monitoring cytotoxic potentials of furfuryl alcohol and 2-furyl methyl ketone in mice.

    PubMed

    Sujatha, P S

    2008-01-01

    Furfuryl alcohol (FA) and 2-furyl methyl ketone (2FMK) are two dietary furans with wide industrial applications and also found in a variety of food items. In a mouse test system, the mutagenicity of these two compounds after five days of exposure has been reported. In the present study histopathological changes and biochemical alterations after a period of 5-90 days of exposure have been evaluated in target organs like liver and kidney. Hepatotoxicity in the form of pycnosis, vacuolation and focal necrosis was observed after 60 and 90 days of treatment with 2000 and 4000 ppm of FA. Kidney showed damage to tubular epithelium only after treatment with 4000 ppm of FA. 2-FMK did not show any noticeable damage to liver or kidney. Significant variations in total protein content and activity of aspartate and alanine aminotransferase (ASAT and ALAT) were observed in both liver and kidney after longer exposure to both the furans. There was an increased expression of two proteins of 92 and 94 KD in the liver of treated animals irrespective of the concentration or duration. It is apparent from the present study that dietary contamination with furans has definite hepatic and renal toxicity potentials in man.

  5. Efficacy of Angelica archangelica essential oil, phenyl ethyl alcohol and α- terpineol against isolated molds from walnut and their antiaflatoxigenic and antioxidant activity.

    PubMed

    Prakash, Bhanu; Singh, Priyanka; Goni, Reema; Raina, Ajay Kumar Pandit; Dubey, N K

    2015-04-01

    Mold association, aflatoxin B1 contamination as well as oxidative deterioration of agri-food items during storage and processing are some global task for food industries. In view of the adverse effects of some synthetic preservatives on treated food items and subsequently on consumers health, recently plant based chemicals are encouraged by food industries as better alternatives of synthetics. The present study recommends the combination (1:1:1) of Angelica archangelica essential oil: Phenyl ethyl alcohol (PEA): α- terpineol as botanical preservative against molds, aflatoxin contamination and oxidative deterioration of walnut samples. Eight mold species were procured from stored walnut samples, including some aflatoxigenic Aspergillus flavus strains. The combination inhibited growth of aflatoxigenic strain Aspergillus flavus NKDW-7 and aflatoxin B1 production at 2.25 and 2.0 μL mL(-1) respectively. The IC50 value of the combination was recorded as 3.89 μL mL(-1), showing strong antioxidant potential. The antifungal action of the combination showed > 90 % decrease in ergosterol content in plasma membrane of A. flavus at 2.0 μL mL(-1). The LD50 of the combination, through oral administration on mice, was 9562.9 μL kg(-1) body weight, indication favourable safety profile as a plant based preservative. The combination may be recommended as safe preservative against molds, aflatoxin contamination and oxidative deterioration of walnut samples.

  6. Rat Pig-a mutation assay responds to the genotoxic carcinogen ethyl carbamate but not the non-genotoxic carcinogen methyl carbamate.

    PubMed

    Bemis, Jeffrey C; Labash, Carson; Avlasevich, Svetlana L; Carlson, Kristine; Berg, Ariel; Torous, Dorothea K; Barragato, Matthew; MacGregor, James T; Dertinger, Stephen D

    2015-05-01

    Determination of the mode of action of carcinogenic agents is an important factor in risk assessment and regulatory practice. To assess the ability of the erythrocyte-based Pig-a mutation assay to discriminate between genotoxic and non-genotoxic modes of action, the mutagenic response of Sprague Dawley rats exposed to methyl carbamate (MC) or ethyl carbamate (EC) was investigated. EC, a potent carcinogen, is believed to induce DNA damage through the formation of a DNA-reactive epoxide group, whereas the closely structurally related compound, MC, cannot form this epoxide and its weaker carcinogenic activity is thought to be secondary to inflammation and promotion of cell proliferation. The frequency of Pig-a mutant phenotype cells was monitored before, during, and after 28 consecutive days of oral gavage exposure to either MC (doses ranging from 125 to 500 mg/kg/day) or EC (250 mg/kg/day). Significant increases in the frequency of mutant reticulocytes were observed from Days 15 through 43, with a peak mean frequency of 19.9×10(-6) on Day 29 (i.e. 24.9-fold increase relative to mean vehicle control across all four sampling times). As expected, mutant erythrocyte responses lagged behind mutant reticulocyte responses, with a maximal mean frequency of 8.2×10(-6) on Day 43 (i.e. 16.4-fold increase). No mutagenic effects were observed with MC. A second indicator of in vivo genotoxicity, peripheral blood micronucleated reticulocytes, was also studied. This endpoint was responsive to EC (3.3-fold mean increase), but not to MC. These results support the hypothesis that genotoxicity contributes to the carcinogenicity of EC but not of MC, and illustrates the value of the Pig-a assay for discriminating between genotoxic and non-genotoxic modes of action. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. In vivo pharmacological characterization of (+/-)-4-[2-(1-methyl-2-pyrrolidinyl)ethyl]thiophenol hydrochloride (SIB-1553A), a novel cholinergic ligand: microdialysis studies.

    PubMed

    Rao, Tadimeti S; Reid, Richard T; Correa, Lucia D; Santori, Emily M; Gardner, Michael F; Sacaan, Aida I; Lorrain, Daniel; Vernier, Jean-Michel

    2003-10-03

    SIB-1553A ((+/-)-4-[2-(1-methyl-2-pyrrolidinyl)ethyl]thiophenol HCl) is a neuronal nicotinic acetylcholine receptor (nAChR) ligand which is active in rodent and primate models of cognition. In functional assays, SIB-1553A exhibits marked subtype selectivity for nAChRs as compared to nicotine. In addition SIB-1553A also exhibits affinities to histaminergic (H3) and serotonergic (5-HT1 and 5HT2) receptors and sigma binding sites. In the present investigation, we characterized SIB-1553A-induced neurotransmitter release in vivo. Following subcutaneous injection (s.c., 10 mg/kg), SIB-1553A rapidly entered the brain achieving concentration of approximately 20 microM 15 min post-injection and was eliminated from plasma with a terminal half-life of approximately 32 min. In freely moving rats, SIB-1553A (1-40 mg/kg, s.c.), markedly increased ACh release in the hippocampus and prefrontal cortex. In both regions, the magnitude of SIB-1553A-induced ACh release was greater than that seen with the prototypical nAChR agonist, nicotine (0.4 mg/kg, s.c.). Both isomers of SIB-1553A induced similar levels of increase in hippocampal ACh release. Increased hippocampal ACh release was also observed following oral administration of SIB-1553A (40 mg/kg) or after local perfusion into the hippocampus (1 mM). SIB-1553A-induced hippocampal ACh release was significantly attenuated by two nAChR antagonists, mecamylamine (MEC) and dihydro-beta-erythroidine (DHbetaE), and by the dopamine (DA) (D1) antagonist, SCH-23390, arguing that ACh release, in part, involves activation of nAChRs and a permissive DA synapse. In contrast to its robust effects on ACh release, SIB-1553A (40 mg/kg, s.c.) modestly increased striatal DA release (approximately 180% of baseline). Due to the proposed role of cholinergic pathways in learning and memory, the neurochemical profile of SIB-1553A suggests a potential for it to treat cognitive dysfunction.

  8. (S)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-5-[125I]iodo- 2-methoxybenzamide hydrochloride, a new selective radioligand for dopamine D-2 receptors.

    PubMed

    de Paulis, T; Janowsky, A; Kessler, R M; Clanton, J A; Smith, H E

    1988-10-01

    From salicyclic acid, the two enantiomers of N-[(1-ethyl-2-pyrrolidinyl)methyl]-5-iodo-2-methoxybenzamide (6b) were prepared in a five-step synthesis. With use of Heindel's triazene method for introduction of the radionuclide, the iodine-125-labeled substituted benzamide was obtained with a calculated specific activity of 136 Ci/mmol and 14% radiochemical yield. For the preparation of the iodine-125-labeled benzamide with higher specific activity, this method was unsuccessful and utilization of the corresponding tri-n-butyltin derivative was required. Treatment of the latter in dilute hydrochloric acid with sodium iodide-125 and chloramine-T gave [125I](S)-6b in 56% radiochemical yield and at least 97% radiochemical purity. The displacement of [125I](S)-6b and [3H](S)-sulpiride from their respective binding sites in striatal rat brain homogenates using various neuroleptic agents showed that (S)-6b has the same binding profile but more potent binding for dopamine D-2 receptors than has sulpiride. These experiments also indicate that the S enantiomer of 6b is a specific ligand (KD = 1.2 nM) for the D-2 receptor. Further, the octanol-water partition coefficient of (S)-6b as determined by reverse-phase high-performance liquid chromatography was found to be 40 times greater than that for sulpiride. Thus (S)-6b has a lipophilicity that will allow a relatively higher uptake into the brain compared to sulpiride. In vivo experiments with rats show that [125I](S)-6b penetrates readily into the brain and is preferentially localized in the striatum as compared to the cerebellum, the ratio of uptake being 7.2 to 1, 60 min after injection. These observations of good brain penetration and high affinity and selectivity for D-2 receptors indicate that the corresponding iodine-123-labeled benzamide may be a useful ligand for the noninvasive visualization study of dopamine D-2 receptor sites in vivo by single photon emission computed tomography.

  9. Changes in the methylation status of DAT, SERT, and MeCP2 gene promoters in the blood cell in families exposed to alcohol during the periconceptional period.

    PubMed

    Lee, Bom-Yi; Park, So-Yeon; Ryu, Hyun-Mee; Shin, Chan-Young; Ko, Ki-Nam; Han, Jung-Yeol; Koren, Gideon; Cho, Youl-Hee

    2015-02-01

    Alcohol exposure has been shown to cause devastating effects on neurobehavioral development in numerous animal and human studies. The alteration of DNA methylation levels in gene-specific promoter regions has been investigated in some studies of human alcoholics. This study was aimed to investigate whether social alcohol consumption during periconceptional period is associated with epigenetic alteration and its generational transmission in the blood cells. We investigated patterns of alcohol intake in a prospective cohort of 355 pairs of pregnant women and their spouses who reported alcohol intake during the periconceptional period. A subpopulation of 164 families was established for the epigenetic study based on the availability of peripheral blood and cord blood DNA. The relative methylation changes of dopamine transporter (DAT), serotonin transporter (SERT), and methyl CpG binding protein 2 (MeCP2) gene promoters were analyzed using methylation-specific endonuclease digestion followed by quantitative real-time polymerase chain reaction. The relative methylation level of the DAT gene promoter was decreased in the group of mothers reporting above moderate drinking (p = 0.029) and binge drinking (p = 0.037) during pregnancy. The relative methylation level of the DAT promoter was decreased in the group of fathers reporting heavy binge drinking (p = 0.003). The relative methylation levels of the SERT gene promoter were decreased in the group of newborns of light drinking mothers before pregnancy (p = 0.012) and during pregnancy (p = 0.003). The methylation level in the MeCP2 promoter region of babies whose mothers reported above moderate drinking during pregnancy was increased (p = 0.02). In addition, methylation pattern in the DAT promoter region of babies whose fathers reported heavy binge drinking was decreased (p = 0.049). These findings suggest that periconceptional alcohol intake may cause epigenetic changes in specific locus of parental and

  10. Bioefficacy of Alpinia galanga (Zingiberaceae) rhizome extracts, (E)-p-acetoxycinnamyl alcohol, and (E)-p-coumaryl alcohol ethyl ether against Bactrocera dorsalis (Diptera: Tephritidae) and the impact on detoxification enzyme activities.

    PubMed

    Sukhirun, N; Pluempanupat, W; Bullangpoti, V; Koul, O

    2011-10-01

    The application of insecticides to control oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae), is a principal component of the current management of these fruit flies. However, we evaluated four extracts of Alpinia galanga Wild Linn (Zingiberaceae) rhizomes against adult flies and found hexane and ethanol extracts to be most effective (LC50 = 4,866 and 6,337 ppm, respectively, after 24 h). This suggested that both nonpolar and polar compounds could be active in the candidate plant. Accordingly, the hexane extract was further processed to isolate nonpolar active compounds from this plant source. Two compounds, (E)-p-acetoxycinnamyl alcohol and (E)-p-coumaryl alcohol ethyl ether, were identified as active ingredients and found to be more active than total hexane extract (LC50 = 3,654 and 4,044 ppm, respectively, after 24 h). The data suggested that the compounds were not synergistic but may have some additive effect in a mixture. The activity of the hexane extract against detoxification enzymes, carboxylesterase (CE) and glutathione transferase (GST) also was determined in vitro. CE was inhibited by 70%, whereas GST was not significantly inhibited. Insect CEs mediate insecticide resistance via their induction; therefore, inhibition of these enzymes by plant allelochemicals could be a useful alternative approach for the management of the pest in the field.

  11. Urine ethyl glucuronide and ethyl sulphate using liquid chromatography-tandem mass spectrometry in a routine clinical laboratory.

    PubMed

    Armer, Jane M; Allcock, Rebecca L

    2017-01-01

    Background Detection of alcohol consumption in clients undergoing treatment for alcohol dependence can be difficult. The ethanol metabolites ethyl glucuronide and ethyl sulphate are detectable for longer in urine than either breath ethanol or urine ethanol. Our aim was to develop a liquid chromatography-tandem mass spectrometry method for urine ethyl glucuronide and ethyl sulphate for use in a routine clinical laboratory and define clinical cut-offs in a large population who had not consumed alcohol for at least two weeks. Methods Urine samples were diluted in 0.05% formic acid in HPLC grade water and then directly injected onto a Waters Acquity ultra high performance liquid chromatography coupled to a Waters TQ Detector. Eighty participants were recruited who had not consumed alcohol for at least two weeks to define cut-offs for urine ethyl glucuronide and ethyl sulphate. Samples and alcohol diaries were also collected from 12 alcohol-dependent clients attending a treatment programme. Results The assay was validated with a lower limit of quantitation of 0.20 mg/L for ethyl glucuronide and 0.04 mg/L for ethyl sulphate. Accuracy, precision, linearity and recovery were acceptable. Cut-offs were established for ethyl glucuronide, ethyl sulphate and ethyl sulphate/creatinine ratio (≤0.26 mg/L, ≤0.22 mg/L and ≤0.033 mg/mmol, respectively) in a non-drinking population. The validated cut-offs correctly identified clients in alcohol treatment who were continuing to drink alcohol. Conclusions A simple liquid chromatography-tandem mass spectrometry method for urine ethyl glucuronide and ethyl sulphate has been validated and cut-offs defined using 80 participants who had not consumed alcohol for at least two weeks. This is the largest study to date to define cut-offs for ethyl glucuronide, ethyl sulphate and ethyl sulphate/creatinine ratio.

  12. Bis(1-ethyl-3-methyl-imidazolium) 3,6-diselanyl-idene-1,2,4,5-tetra-selena-3,6-diphospha-cyclo-hexane-3,6-di-selen-olate.

    PubMed

    Cody, Jason A; Alexander, Grant C B; Guillot-Deudon, Catherine

    2013-01-01

    In the title compound, 2C6H11N2 (+)·P2Se8 (2-) or [EMIM]2P2Se8 (EMIM = 1-ethyl-3-methyl-imidazolium), the anions, located about inversion centers between EMIM cations, exhibit a cyclo-hexane-like chair conformation. The cations are found in columns along the a axis, with centroid-centroid distances of 3.8399 (3) and 4.7530 (2) Å. The observed P-Se distances and Se-P-Se angles agree with other salts of this anion.

  13. Investigation of 60Co γ-irradiated L-(-) malic acid, N-methyl- DL-valine and L-glutamic acid γ-ethyl ester by electron paramagnetic resonance technique

    NASA Astrophysics Data System (ADS)

    Başkan, M. Halim; Aydın, Murat; Osmanoğlu, Şemsettin

    The electron paramagnetic resonance spectra of γ-irradiated L-(-) malic acid, N-methyl- DL-valine and L-glutamic acid γ-ethyl ester powders have been investigation at room temperature. Radiation damage centres are attributed to HOOCCH 2ĊHCOOH, (CH 3) 2ĊCH(NHCH 3)COOH and C 2H 5OCOCH 2CH 2Ċ(NH 2)COOH radicals, respectively. The spectra have been computer simulated. The EPR parameters of the observed radicals have been determined and discussed.

  14. Ultrasound-guided percutaneous sclerosis of congenital splenic cysts using ethyl alcohol 96% and minocycline hydrochloride 10%: A pediatric series.

    PubMed

    Accinni, Antonella; Bertocchini, Arianna; Madafferi, Silvia; Natali, Gianluigi; Inserra, Alessandro

    2016-09-01

    The management of congenital splenic cysts continues to evolve. In the past the standard treatment was splenectomy, but increased knowledge about the spleen's immunologic function has led most pediatric surgeons to preserve splenic tissue. A great number of studies using sclerosing substances have been published, but to date reports in children have been limited. Our study concerns a group of 15 children with congenital splenic cysts treated with percutaneous drainage and sclerosis with alcohol. We performed the procedure under general anesthesia and checked radiologically for possible leakage. In 2000 our group started managing pediatric patients with splenic cysts. During the first eight years surgery was the treatment of choice. From April 2008 to December 2014, a prospective study was conducted on 15 consecutive patients treated with percutaneous sclerotherapy. The outcomes regarding cystic dimensional variations before and after treatment were analyzed. In 20% of patients complete disappearance of the cystic lesion was achieved. In 67% of the patients the maximum diameter of the cyst was reduced to below 50mm. Our results should encourage the use of this treatment because it is a valid and safe option in childhood. The high success rate achieved with percutaneous drainage and sclerotherapy of cystic lesions supports our results. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Aging, chronic alcohol consumption, and low folate intake are determinants of genomic DNA methylation in the liver and colon of mice

    USDA-ARS?s Scientific Manuscript database

    Advanced age and chronic alcohol consumption are important risk factors in the development of colon and liver cancer. Both factors are known to be associated with altered DNA methylation. Inadequate folate intake can also derange biological methylation pathways. We investigated the effects of aging,...

  16. Catalyst-free ethyl biodiesel production from rice bran under subcritical condition

    NASA Astrophysics Data System (ADS)

    Zullaikah, Siti; Afifudin, Riza; Amalia, Rizky

    2015-12-01

    In-situ ethyl biodiesel production from rice bran under subcritical water and ethanol with no catalyst was employed. This process is environmentally friendly and is very flexible in term of feedstock utilization since it can handle relatively high moisture and free fatty acids (FFAs) contents. In addition, the alcohol, i.e. bioethanol, is a non-toxic, biodegradable, and green raw material when produced from non-edible biomass residues, leading to a 100% renewable biodiesel. The fatty acid ethyl esters (FAEEs, ethyl biodiesel) are better than fatty acid methyl esters (FAMEs, methyl biodiesel) in terms of fuel properties, including cetane number, oxidation stability and cold flow properties. The influences of the operating variables such as reaction time (1 - 10 h), ethanol concentration (12.5 - 87.5%), and pressurizing gas (N2 and CO2) on the ethyl biodiesel yield and purity have been investigated systematically while the temperature and pressure were kept constant at 200 °C and 40 bar. The optimum results were obtained at 5 h reaction time and 75% ethanol concentration using CO2 as compressing gas. Ethyl biodiesel yield and purity of 58.78% and 61.35%, respectively, were obtained using rice bran with initial FFAs content of 37.64%. FFAs level was reduced to 14.22% with crude ethyl biodiesel recovery of 95.98%. Increasing the reaction time up to 10 h only increased the yield and purity by only about 3%. Under N2 atmosphere and at the same operating conditions (5h and 75% ethanol), ethyl biodiesel yield and purity decreased to 54.63% and 58.07%, respectively, while FFAs level was increased to 17.93% and crude ethyl biodiesel recovery decreased to 87.32%.

  17. KEY COMPARISON: Final report on international key comparison CCQM-K65: Gas standards containing methyl and ethyl mercaptans (at the level of 20-30 µmol/mol) in methane

    NASA Astrophysics Data System (ADS)

    Konopelko, L. A.; Kustikov, Y. A.; Vishnyakov, I. M.; Pavlov, M. V.; Efremova, O. V.; Woo, Jin-Chun; Kim, Yong-Doo; Wessel, Rob M.; Ziel, Paul R.; Milton, Martin J. T.; Vargha, G.; Brown, A.; Uprichard, Ian

    2010-01-01

    The key comparison CCQM-K65 was intended to compare the capabilities for the preparation and value assignment of gas standards for methyl and ethyl mercaptans in methane, maintained at the participating national metrological institutes: VNIIM (Russia), KRISS (Korea), VSL (Netherlands) and NPL (United Kingdom). The range of the nominal amount of substance fractions of the comparison gas mixtures was 20 µmol/mol to 30 µmol/mol, which is close to regulatory level (in several countries including Russia) for mercaptans in odorated natural gas. This comparison was proposed at the 12th GAWG meeting in October 2004 and was conducted in 2008. Conclusions are as follows: The results of all laboratories are consistent with the reference values. The observed differences between the reference and reported values are within +/-0.9% for methyl mercaptan and +/-0.75% for ethyl mercaptan relative to the gravimetric values, and do not exceed the appropriate assigned expanded uncertainties. The prepared mixtures were found to be stable during about a year within the uncertainty of the measurements. The gravimetric values were successfully validated with a dynamic method. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  18. A pilot examination of the genome-wide DNA methylation signatures of subjects entering and exiting short-term alcohol dependence treatment programs

    PubMed Central

    Philibert, Robert A; Penaluna, Brandan; White, Teresa; Shires, Sarah; Gunter, Tracy; Liesveld, Jill; Erwin, Cheryl; Hollenbeck, Nancy; Osborn, Terry

    2014-01-01

    Alcoholism has a profound impact on millions of people throughout the world. However, the ability to determine if a patient needs treatment is hindered by reliance on self-reporting and the clinician’s capability to monitor the patient’s response to treatment is challenged by the lack of reliable biomarkers. Using a genome-wide approach, we have previously shown that chronic alcohol use is associated with methylation changes in DNA from human cell lines. In this pilot study, we now examine DNA methylation in peripheral mononuclear cell DNA gathered from subjects as they enter and leave short-term alcohol treatment. When compared with abstinent controls, subjects with heavy alcohol use show widespread changes in DNA methylation that have a tendency to reverse with abstinence. Pathway analysis demonstrates that these changes map to gene networks involved in apoptosis. There is no significant overlap of the alcohol signature with the methylation signature previously derived for smoking. We conclude that DNA methylation may have future clinical utility in assessing acute alcohol use status and monitoring treatment response. PMID:25147915

  19. Do drug users use less alcohol than non-drug users? A comparison of ethyl glucuronide concentrations in hair between the two groups in medico-legal cases.

    PubMed

    Paul, Richard; Kingston, Robert; Tsanaclis, Lolita; Berry, Anthony; Guwy, Alan

    2008-03-21

    Two groups were selected from the remainder of hair samples that had been tested for drugs at TrichoTech for medico-legal cases: samples that tested negative (drug-negative group; N=42, age 33.4+/-7.2 years) and samples that tested positive for drugs (drug-positive group; N=57, age 32.5+/-8.8 years). A rapid, simple method to detect the ethanol metabolite, ethyl glucuronide (EtG) in hair has been developed. The hair samples were sectioned, and then submitted to overnight sonication in water. Samples then underwent SPE using anion exchange cartridges, followed by derivatisation with N,O-bis[trimethylsilyl]trifluoroacetamide (BSTFA), before confirmation by GC-MS/MS. The assay produced excellent linearity and sensitivity over the calibration range 0.02-1.0 ng/mg, assuming a 10 mg hair sample. The mean age of the two groups was not statistically different (p=0.575, Student t-test), indicating a homogeneous group. Twelve of the 57 (21.0%) hair samples of the drug-positive group tested positive for EtG, and 17 of the 42 (40.5%) hair samples of the drug-negative group tested positive for EtG. The mean concentration of EtG in the drug-positive group was 0.011 ng/mg compared to 0.107 ng/mg in the drug-negative group. When the full results of this study were subjected to statistical analysis it was shown that EtG levels in the drug-negative group were statistically higher than those found in the drug-positive group (p<0.05). This preliminary finding may be of use in the study of addiction and adds valuable data to previous studies regarding the use of EtG as a valuable marker for alcohol levels in hair.

  20. Chemometric evaluation of nine alcohol biomarkers in a large population of clinically-classified subjects: pre-eminence of ethyl glucuronide concentration in hair for confirmatory classification.

    PubMed

    Pirro, Valentina; Valente, Valeria; Oliveri, Paolo; De Bernardis, Angela; Salomone, Alberto; Vincenti, Marco

    2011-10-01

    An important goal of forensic and clinical toxicology is to identify biological markers of ethanol consumption that allow an objective diagnosis of chronic alcohol misuse. Blood and head hair samples were collected from 175 subjects-objectively classified as non-drinkers (N=65), social drinkers (N=51) and active heavy drinkers (N=59)-and analyzed to determine eight traditional indirect biomarkers of ethanol consumption [aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyltransferase (γ-GT), alkaline phosphatase (ALP), mean corpuscular volume (MCV), carbohydrate-deficient transferrin (CDT), and cholesterol and triglycerides in blood] and one direct biomarker [ethyl glucuronide (EtG) in head hair]. The experimental values obtained from these determinations were submitted to statistical evaluations. In particular, Kruskal-Wallis, Mann-Whitney and ROC curve analyses, together with principal component analysis (PCA), allowed the diagnostic performances of the various biomarkers to be evaluated and compared consistently. From these evaluations, it was possible to deduce that EtG measured in head hair is the only biomarker that can conclusively discriminate active heavy drinkers from social and non-drinkers, using a cut-off value of 30 pg/mg. In contrast, a few indirect biomarkers such as ALP, cholesterol, and triglycerides showed extremely low diagnostic abilities and may convey misleading information. AST and ALT proved to be highly correlated and exhibited quite low sensitivity and specificity. Consequently, either of these parameters can be discarded without compromising the classification efficiency. Among the indirect biomarkers, γ-GT provided the highest diagnostic accuracy, while CDT and MCV yielded high specificity but low sensitivity. It was therefore concluded that EtG in head hair is the only biomarker capable of supporting a confirmatory diagnosis of chronic alcohol abuse in both forensic and clinical practice, while it was found

  1. Detection of fatty acid ethyl esters in skin surface lipids as biomarkers of ethanol consumption in alcoholics, social drinkers, light drinkers, and teetotalers using a methodology based on microwave-assisted extraction followed by solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    González-Illán, Fernando; Ojeda-Torres, Geovannie; Díaz-Vázquez, Liz M; Rosario, Osvaldo

    2011-05-01

    Fatty acid ethyl esters (FAEE) are known to be a direct alcohol marker and are mainly investigated in hair samples for their ability to be incorporated into this matrix from sebum. The present study used an already developed methodology to provide and confirm information about the use of FAEEs in skin surface lipids as markers of alcohol consumption. The skin surface lipids were collected with Sebutapes(®) from the foreheads of teetotalers, light drinkers, social drinkers, and alcoholics. The samples were analyzed by direct solid-phase microextraction and gas chromatography-mass spectrometry for ethyl myristate, ethyl palmitate, ethyl oleate, and ethyl stearate. Relative FAEE/sebum allowed an evaluation of alcohol consumption. The ranges obtained for relative FAEEs in each category were as follows, teetotalers (0-13.85 pg/mg), light drinkers (11.10-26.80 pg/mg), social drinkers (20.55-86.55 pg/mg), and alcoholics (109.00-1243.40 pg/mg). A social drinker volunteer was monitored during a period of two months. The highest m(FAEE)/m(sebum) were generally detected 7-9 days after the days of high alcohol consumption. From these results, a clear distinction of teetotalers, social drinkers, and alcoholics could be established with the methodology used.

  2. Ethyl chloride

    Integrated Risk Information System (IRIS)

    Ethyl chloride ; CASRN 75 - 00 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  3. Ethyl carbamate

    Integrated Risk Information System (IRIS)

    Ethyl carbamate ; CASRN 51 - 79 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  4. Ethyl acetate

    Integrated Risk Information System (IRIS)

    Ethyl acetate ; CASRN 141 - 78 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  5. Ethyl ether

    Integrated Risk Information System (IRIS)

    Ethyl ether ; CASRN 60 - 29 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  6. Fe(OTf)3-catalyzed α-benzylation of aryl methyl ketones with electrophilic secondary and aryl alcohols.

    PubMed

    Pan, Xiaojuan; Li, Minghao; Gu, Yanlong

    2014-01-01

    Acid-catalyzed Friedel-Crafts alkylation of 1,3-dicarbonyl compounds with electrophilic alcohols, is known to be an effective C-C bond forming reaction. However, until now, this reaction has not been amenable for α-alkylation of aryl methyl ketones because of the notoriously low nucleophilicities of these compounds. Therefore, α-alkylation of aryl methyl ketone relies on precious metal catalysts and also, the use of primary alcohols is mandatory. In this study, we found that a system composed of a Fe(OTf)3 catalyst and chlorobenzene solvent is sufficient to promote the title Friedel-Crafts reaction by using benzhydrols as electrophiles. 3,4-Dihydro-9-(2-hydroxy-4,4-dimethyl-6-oxo-1-cyclohexen-1-yl)-3,3-dimethyl-xanthen-1(2H)-one was also applicable as an electrophile in this type of benzylation reaction. On the basis of this result, a three-component reaction of salicylaldehyde, dimedone, and aryl methyl ketone was also developed, and this provided an efficient way for the synthesis of densely substituted 4H-chromene derivatives.

  7. Screening for Hazardous Drinking in Nursing Home Residents: Evaluating the Validity of the Current Cutoffs of the Alcohol Use Disorder Identification Test-Consumption Questions by Using Ethyl Glucuronide in Hair.

    PubMed

    Dreher-Weber, Monika; Laireiter, Anton-Rupert; Kühberger, Anton; Kunz, Isabella; Yegles, Michel; Binz, Tina; Rumpf, Hans-Jürgen; Hoffmann, Rainer; Praxenthaler, Verena; Lang, Siegfried; Wurst, Friedrich M

    2017-09-01

    Because of physiological changes, elderly people are much more exposed to the adverse effects of alcohol. Therefore, hazardous drinking is defined at lower levels as compared to younger adults. This work aimed to evaluate the validity of the current cutoff levels of the Alcohol Use Disorder Identification Test-Consumption (AUDIT-C) questions to detect hazardous drinking in the elderly by using ethyl glucuronide in hair (HEtG). In a border region between Austria and Germany, 344 nursing home residents were included from 33 of the 107 nursing homes. Residents were asked to answer the AUDIT-C questions, hair samples were obtained, and nursing staff members were asked for their assessments of the residents' alcohol consumption. Hair samples were analyzed for HEtG using gas chromatography-mass spectrometry. Receiver-operating characteristic (ROC) curve analysis was performed to determine the validity of cutoff values for the AUDIT-C to detect an alcohol consumption of ≥10 g of alcohol/d. A total of 11.3% of the nursing home residents (n = 344) drank ≥10 g of alcohol/d (4.9% >60 g of alcohol/d, 6.4% 10 to 60 g of alcohol/d, 88.7% <10 g of alcohol/d)). For the drinking limit of ≥10 g of alcohol/d, ROC curve analysis showed a balanced sensitivity and specificity, with an AUDIT-C cutoff of ≥4 for men (sensitivity: 70%, specificity: 83.6%; AUC = 0.823, CI = 0.718 to 0.928, p < 0.001) and ≥2 for women (sensitivity: 73.7%, specificity: 81.9%; AUC = 0.783, CI = 0.653 to 0.914, p < 0.001). Nursing staff (n = 274) underestimated alcohol consumption and evaluated 40% of the chronic-excessive alcohol consumers (>60 g of alcohol/d) as being abstinent. Our data suggest that an AUDIT-C cutoff of ≥4 for men and ≥2 for women can be recommended to detect the consumption of ≥10 g of alcohol/d in the elderly. Because the nursing staff to a large extent underestimates the alcohol consumption among nursing home residents, further teaching of the staff

  8. Synthesis, crystal structure, insecticidal activity and DFT study on the geometry and vibration of O-( E)-1-{1-[(6-chloropyridin-3-yl)methyl]-5-methyl-1 H-1,2,3-triazol-4-yl}ethyleneamino- O-ethyl- O-phenylphosphorothioate

    NASA Astrophysics Data System (ADS)

    Shi, De-Qing; Zhu, Xiao-Fei; Song, Yuan-Zhi

    2008-12-01

    The title compound, O-( E)-1-{1-[(6-chloropyridin-3-yl)methyl]-5-methyl-1 H-1,2,3-triazol-4-yl}ethyleneamino- O-ethyl- O-phenylphosphorothioate, has been synthesized via the condensation reaction of 1-{1-[(6-chloropyridin-3-yl)methyl]-5-methyl-1 H-1,2,3-triazol-4-yl}ethanone oxime and O-ethyl- O-phenylphosphorochloridothioate in the presence of NaOH powder in refluxing EtOH. Its structure was characterized by 1H NMR, FTIR, Raman, elemental analysis and X-ray single crystal diffraction. The results of preliminary bioassays indicated that the title compound displays good insecticidal activity. Density functional (DFT) calculations have been carried out for the title compound by using the Becke-Lee-Yang-Parr's three-parameter hybrid functional (B3LYP) method at 6-31G** and 6-31G* basis sets. The calculated results show that the predicted geometry can well reproduce the structural parameters. The vibrational wave numbers of the title compound were calculated at same level. Predicted vibrational frequencies have been assigned and compared with experimental IR and Raman spectra and they are supported each other.

  9. Alcohol and nicotine codependence-associated DNA methylation changes in promoter regions of addiction-related genes

    PubMed Central

    Xu, Hongqin; Wang, Fan; Kranzler, Henry R.; Gelernter, Joel; Zhang, Huiping

    2017-01-01

    Altered DNA methylation in addiction-related genes may modify the susceptibility to alcohol or drug dependence (AD or ND). We profiled peripheral blood DNA methylation levels of 384 CpGs in promoter regions of 82 addiction-related genes in 256 African Americans (AAs) (117 cases with AD-ND codependence and 139 controls) and 196 European Americans (103 cases with AD-ND codependence and 93 controls) using Illumina’s GoldenGate DNA methylation array assays. AD-ND codependence-associated DNA methylation changes were analyzed using linear mixed-effects models with consideration of batch effects and covariates age, sex, and ancestry proportions. Seventy CpGs (in 41 genes) showed nominally significant associations (P < 0.05) with AD-ND codependence in both AAs and EAs. One CpG (HTR2B cg27531267) was hypomethylated in AA cases (P = 7.2 × 10−5), while 17 CpGs in 16 genes (including HTR2B cg27531267) were hypermethylated in EA cases (5.6 × 10−9 ≤ P ≤ 9.5 × 10−5). Nevertheless, 13 single nucleotide polymorphisms (SNPs) nearby HTR2B cg27531267 and the interaction of these SNPs and cg27531267 did not show significant effects on AD-ND codependence in either AAs or EAs. Our study demonstrated that DNA methylation changes in addiction-related genes could be potential biomarkers for AD-ND co-dependence. Future studies need to explore whether DNA methylation alterations influence the risk of AD-ND codependence or the other way around. PMID:28165486

  10. The antifungal activity of the cuticular and internal fatty acid methyl esters and alcohols in Calliphora vomitoria.

    PubMed

    Gołębiowski, Marek; Cerkowniak, Magdalena; Dawgul, Małgorzata; Kamysz, Wojciech; Boguś, Mieczysława I; Stepnowski, Piotr

    2013-07-01

    SUMMARY The composition of the fatty acid methyl ester (FAME) and alcohol fractions of the cuticular and internal lipids of Calliphora vomitoria larvae, pupae and male/female adults was obtained by separating these two fractions by HPLC-LLSD and analysing them quantitatively using GC-MS. Analysis of the cuticular lipids of the worldwide, medically important ectoparasite C. vomitoria revealed 6 FAMEs with odd-numbered carbon chains from C15:0 to C19:0 in the larvae, while internal lipids contained 9 FAMEs ranging from C15:1 to C19:0. Seven FAMEs from C15:0 to C19:0 were identified in the cuticular lipids of the pupae, whereas the internal lipids of the pupae contained 10 FAMEs from C13:0 to C19:0. The cuticular lipids of males and females and also the internal lipids of males contained 5, 7 and 6 FAMEs from C15:0 to C19:0 respectively. Seven FAMEs from C13:0 to C19:0 were identified in the internal lipids of females, and 7, 6, 5 and 3 alcohols were found in the cuticular lipids of larvae, pupae, males and females respectively. Only saturated alcohols with even-numbered carbon chains were present in these lipids. Only 1 alcohol (C22:0) was detected in the internal lipids of C. vomitoria larvae, while just 4 alcohols from - C18:0 to C24:0 - were identified in the internal lipids of pupae, and males and females. We also identified glycerol and cholesterol in the larvae, pupae, males and females of C. vomitoria. The individual alcohols and FAMEs, as well as their mixtures isolated from the cuticular and internal lipids of larvae, pupae, males and females of C. vomitoria, demonstrated antimicrobial activity against entomopathogenic fungi.

  11. Validation of differential GDAP1 DNA methylation in alcohol dependence and its potential function as a biomarker for disease severity and therapy outcome.

    PubMed

    Brückmann, Christof; Di Santo, Adriana; Karle, Kathrin Nora; Batra, Anil; Nieratschker, Vanessa

    2016-06-02

    Alcohol dependence is a severe disorder contributing substantially to the global burden of disease. Despite the detrimental consequences of chronic alcohol abuse and dependence, effective prevention strategies as well as treatment options are largely missing to date. Accumulating evidence suggests that gene-environment interactions, including epigenetic mechanisms, play a role in the etiology of alcohol dependence. A recent epigenome-wide study reported widespread alterations of DNA methylation patterns in alcohol dependent patients compared to control individuals. In the present study, we validate and replicate one of the top findings from this previous investigation in an independent cohort: the hypomethylation of GDAP1 in patients. To our knowledge, this is the first independent replication of an epigenome-wide finding in alcohol dependence. Furthermore, the AUDIT as well as the GSI score were negatively associated with GDAP1 methylation and we found a trend toward a negative association between GDAP1 methylation and the years of alcohol dependency, pointing toward a potential role of GDAP1 hypomethylation as biomarker for disease severity. In addition, we show that the hypomethylation of GDAP1 in patients reverses during a short-term alcohol treatment program, suggesting that GDAP1 DNA methylation could also serve as a potential biomarker for treatment outcome. Our data add to the growing body of knowledge on epigenetic effects in alcohol dependence and support GDAP1 as a novel candidate gene implicated in this disorder. As the role of GDAP1 in alcohol dependence is unknown, this novel candidate gene should be followed up in future studies.

  12. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-(sulfooxy)ethyl)sulfonyl)-2-naphthalenyl)azo)-2,7-naphthalenedisulfonic acid, tetrasodium salt] (CAS Reg. No. 98114-32-0). (2) C.I. Reactive Black 5 [2,7-naphthalenedisulfonic acid, 4-amino-5-hydroxy-3,6-bis((4-((2... Reg. No. 60958-41-0). (5) C.I. Reactive Blue No. 19 [2-anthracenesulfonic acid, 1-amino-9,10-dihydro-9...

  13. Alcohol

    MedlinePlus

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  14. Alcohol

    MedlinePlus

    ... that's how many accidents occur. continue What Is Alcoholism? What can be confusing about alcohol is that ... develop a problem with it. Sometimes, that's called alcoholism (say: al-kuh-HOL - ism) or being an ...

  15. Impact of exercise and a complex environment on hippocampal dendritic morphology, Bdnf gene expression, and DNA methylation in male rat pups neonatally exposed to alcohol.

    PubMed

    Boschen, K E; McKeown, S E; Roth, T L; Klintsova, A Y

    2016-09-06

    Alcohol exposure in utero can result in Fetal Alcohol Spectrums Disorders (FASD). Measures of hippocampal neuroplasticity, including long-term potentiation, synaptic and dendritic organization, and adult neurogenesis, are consistently disrupted in rodent models of FASD. The current study investigated whether third trimester-equivalent binge-like alcohol exposure (AE) [postnatal days (PD) 4-9] affects dendritic morphology of immature dentate gyrus granule cells, and brain-derived neurotrophic factor (Bdnf) gene expression and DNA methylation in hippocampal tissue in adult male rats. To understand immediate impact of alcohol, DNA methylation was measured in the PD10 hippocampus. In addition, two behavioral interventions, wheel running (WR) and environmental complexity (EC), were utilized as rehabilitative therapies for alcohol-induced deficits. AE significantly decreased dendritic complexity of the immature neurons, demonstrating the long-lasting impact of neonatal alcohol exposure on dendritic morphology of immature neurons in the hippocampus. Both housing conditions robustly enhanced dendritic complexity in the AE animals. While Bdnf exon I DNA methylation was lower in the AE and sham-intubated animals compared with suckle controls on PD10, alterations to Bdnf DNA methylation and gene expression levels were not present at PD72. In control animals, exercise, but not exercise followed by housing in EC, resulted in higher levels of hippocampal Bdnf gene expression and lower DNA methylation. These studies demonstrate the long-lasting negative impact of developmental alcohol exposure on hippocampal dendritic morphology and support the implementation of exercise and complex environments as therapeutic interventions for individuals with FASD. © 2016 Wiley Periodicals, Inc. Develop Neurobiol, 2016.

  16. Clarification of anomalous chiroptical behaviour and determination of the absolute configuration of 1-(3,4-dimethoxyphenyl)-4-methyl-5-ethyl-7,8-dimethoxy-5 H-2,3-benzodiazepine

    NASA Astrophysics Data System (ADS)

    Fogassy, Elemér; Ács, Mária; Tóth, Gábor; Simon, Kálmán; Láng, Tibor; Ladányi, L.; Párkányi, L.

    1986-09-01

    An optically active hydrogen bromide salt of 1-(3,4-dimethoxyphenyl)-4-methyl-5-ethyl-7,8-dimethoxy-5 H-2,3-benzodiazepine has been prepared and the R5 configuration studied by single-crystal X-ray analysis. The crystals are triclinic with space group P1, with two molecules in a unit cell of dimensions a = 10.798(1), b = 12.669(1) and c = 8.681(1) Å, and α = 97.15(1), β = 99.36(1) and γ = 68.74(1)°. The anomalous chiroptical behaviour is explained on the basis of the chiral interactions between the optically active conformers.

  17. Final amended repo