Science.gov

Sample records for methyl aluminum sesquibromide

  1. [Research of aluminum to the cognitive ability and genome-wide methylation in rats].

    PubMed

    Yuan, Yuzhou; Yang, Xiaojuan; Ren, Pei; Kang, Pan; Li, Zhaoyang; Niu, Qiao

    2015-05-01

    To investigate the effects of aluminum exposure on cognition ability and genome-wide methylation in rats. Seventy-two healthy SD male rats were randomly assigned by weight into two parts and nine groups (eight rats/group). Exposure part included control group and low, medium and high dose aluminum maltolate group (0.27, 0.54 and 1.08 mg/kg alumium maltolate). Intervention part included control group, 1.08 mg/kg aluminum maltolate group, 1.08 mg/kg aluminum maltolate and low,medium and high dose folic acid group (0.7, 1.5 and. 3.4 mg/kg folic acid). Aluminum maltolate were subjected to peritoneal injection (0.2 ml/d) and folic acid were subjected to intragastric administration in 1 ml/100 g for 60 days. The learning and memory abilities were examined by using Morris water maze test and genome-wide methylation was determined via ELISA assay. It was revealed by Morris water maze test that target quadrant residence time and through the original position were markedly shortened as a result of medium and high dose aluminum exposure when compared with control group (both P < 0.05). The target quadrant residence time and through the original position were extended as a result of folic acid intervention when compared with 1.08 mg/kg aluminum maltolate exposure group. Both of them had statistical difference between 1.08 mg/kg aluminum maltolate and (1.5 mg/kg and 3.4 mg/kg) folic acid intervention group and 1.08 mg/kg aluminum maltolate exposure group (both P < 0.05). Considerable decrease in genome-wide methylation rate was associated with elevated dosage of aluminum maltolate (0.54 mg/kg and 1.08 mg/kg) as compared with control group (both P < 0.05). The genome-wide methylation rate was gradually increase as a result of high-dose folic acid intervention when compared with high-dose aluminum maltolate exposure group (both P < 0.05). Both of them had no statistical difference when compared with control group (both P > 0.05). Aluminum may induce learning and memory abilities

  2. Quantitative NIR-Raman analysis of methyl-parathion pesticide microdroplets on aluminum substrates.

    PubMed

    Sato-Berrú, R Ysacc; Medina-Valtierra, Jorge; Medina-Gutiérrez, Cirilo; Frausto-Reyes, Claudio

    2004-08-01

    The potential of Raman spectroscopy in the quantitative analysis of dilute organic contaminants on aluminum substrates is evidenced in this work. Methyl-parathion microdroplets, an organophosphorus pesticide, has been used as a probe for this purpose. The samples were analyzed on an aluminum foil, which is very easy to acquire and to adapt. Moreover, aluminum foil does not need a previous treatment. Linear and no-linear curves as a function of the concentration of methyl-parathion versus the Raman intensity of the 1345 and 1110 cm(-1) peaks were established by means of a simple mathematical expression. A comparison with calibration curves fits very well, allowing quantification at concentration levels as low as parts per million.

  3. An XAFS study of nickel chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride/ aluminum chloride

    SciTech Connect

    D Roeper; G Cheek; K Pandya; W OGrady

    2011-12-31

    Nickel chloride was studied with cyclic voltammetry and X-ray absorption spectroscopy in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride (EMIC) ionic liquids. Acidic melts display metal stripping peaks which are not observed in the basic melt. EXAFS analysis shows that the nickel is tetrahedrally coordinated with chloride ions in the basic solution. In the acidic solution the nickel is coordinated by six chloride ions that are also associated with aluminum ions.

  4. An XAFS Study of Niobium chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride/ aluminum chloride

    SciTech Connect

    D Roeper; K Pandya; G Cheek; W OGrady

    2011-12-31

    Niobium chloride was studied with extended X-ray absorption fine structure spectroscopy (EXAFS) in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride (EMIC) ionic liquids. Although anhydrous Nb2Cl10 is more soluble in the basic melt than in the acidic melt, the EXAFS data shows that the coordination shell around the niobium does not change in the different ionic liquids. Both the acidic and basic melts show a coordination of five chlorides in the first shell. This indicates that in this series of ionic liquids, the Nb2Cl10 breaks up into two NbCl5 entities in both the acidic and the basic melts.

  5. Surface modification of magnesium aluminum hydroxide nanoparticles with poly(methyl methacrylate) via one-pot in situ polymerization

    NASA Astrophysics Data System (ADS)

    Guo, Xiaojun; Zhao, Leihua; Zhang, Li; Li, Jing

    2012-01-01

    Hydrophobic magnesium aluminum hydroxide composite particles (PMMA-MAH) were obtained by means of grafting poly(methyl methacrylate) (PMMA) onto the surface of magnesium aluminum hydroxide(MAH) nanoparticles after a novel type of phosphate coupling agent (DN-27) modification. The introduction of functional double bonds was firstly conducted on the surface of nanoparticles by DN-27 modification, followed by one-pot in situ polymerization on the particles surface using methyl methacrylate (MMA) as monomer, azoisobutyronitrile (AIBN) as initiator and sodium dodecyl sulfate (SDS) as stabilizer to graft PMMA on the surface of DN-27-modified MAH particles. The obtained composite particles were characterized by field-emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD). The results show that the organic macromolecule PMMA could be successfully grafted on the surface of DN-27-modified MAH nanoparticles and the thermal stability of the PMMA-MAH composite particles had been improved. Compared with unmodified blank MAH sample, the product obtained with this method possesses better hydrophobic properties such as a higher water contact angle of 108° and a well dispersion.

  6. An XAFS Study of Tantalum Chloride in the Ionic Liquid 1-ethyl-3-methyl Imidazolium Chloride/ aluminum Chloride

    SciTech Connect

    D Roeper; K Pandya; G Cheek; W OGrady

    2011-12-31

    Tantalum chloride was studied with extended X-ray absorption fine structure spectroscopy (XAFS) in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride ionic liquids (ILs). Anhydrous Ta2Cl10 is more soluble in the basic solution than in the acidic solution and the X-ray absorption data shows that the coordination shell of chlorides around the tantalum is larger in the basic solution. In the acidic solution, tantalum has five chlorides in its coordination shell while in the basic solution; the tantalum is coordinated by seven chlorides. This indicates that the Lewis acidity of the tantalum chloride causes the Ta to coordinate differently in the acidic and the basic solutions.

  7. Dendrite-Free Aluminum Electrodeposition from AlCl3-1-Ethyl-3-Methyl-Imidazolium Chloride Ionic Liquid Electrolytes

    NASA Astrophysics Data System (ADS)

    Pradhan, Debabrata; Reddy, Ramana G.

    2012-06-01

    A novel, dendrite-free electrorefining of aluminum scrap alloys (A360) was investigated by using a low-temperature AlCl3-1-ethyl-3-methyl-imidazolium chloride (EMIC) ionic liquid electrolyte on copper/aluminum cathodes. The bulk electrodeposition of aluminum was carried out at a fixed voltage of 1.5 V, temperatures 323 K to 383 K (50 °C to 110 °C), stirring rate (0 to 120 rpm), concentration (molar ratio AlCl3:EMIC = 1.25 to 2.0), and electrode surface modification (modified/unmodified). The study investigated the effect of electrode surface modification, cathode materials, temperature, stirring rate, electrolyte concentration, and deposition time on the deposit morphology of aluminum, cathode current density, and their role in production of dendrite-free aluminum deposit, which is essential for decreasing the production cost. The deposits were characterized using scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD). It was shown that electrode surface modification, cathode overpotential, and stirring rate play an important role in dendrite-free deposit. Modified electrodes and stirring (60 rpm) eliminate dendritic deposition by reducing cathode overpotential below critical overpotential ( η_{{crt}} ≈ - 0.53V ) for dendrite formation. Pure aluminum (>99 pct) was deposited for all experiments with a current efficiency of 84 to 99 pct and energy consumption of 4.51 to 5.32 kWh/kg Al.

  8. Aluminum and iron doped graphene for adsorption of methylated arsenic pollutants

    NASA Astrophysics Data System (ADS)

    Cortés-Arriagada, Diego; Toro-Labbé, Alejandro

    2016-11-01

    The ability of Al and Fe-doped graphene for the adsorption of trivalent and pentavalent methylated arsenic compounds was studied by quantum chemistry computations. The adsorption of trivalent methylarsenicals is reached with adsorption energies of 1.5-1.7 eV at neutral conditions; while, adsorption of pentavalent methylarsenicals reaches adsorption energies of 3.3-4.2 eV and 1.2-2.4 eV from neutral to low pH conditions, respectively. Moreover, the weakening of the interacting σAssbnd O bond in the pollutant structure played an important role in the stability of the adsorbent-adsorbate systems, determining the adsorption strength. In addition, the pollutant adsorption appears to be efficient in aqueous environments, with even high stability at ambient temperature; in this regard, it was determined that the trivalent and petavalent forms are mainly adsorbed in their neutral and anionic forms at neutral pH, respectively. Therefore, Al and Fe-doped graphene are considered as potential future materials for the removal of methylated arsenic pollutants.

  9. Characterization of electronic structure of aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) for phosphorescent organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Chu, Ta-Ya; Wu, Yao-Shan; Chen, Jenn-Fang; Chen, Chin H.

    2005-03-01

    The structure of the triplet host material, aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq), has been optimized by density functional theory (DFT) with B3LYP methods to study the electronic distribution of its HOMO and LUMO energy states. Calculated triplet bandgap energy of BAlq is shown to be consistent with the experimental data. By analyzing the partial density states (PDOS) of these ligands contributing to the total density of states (TDOS), it is concluded that the HOMO and LUMO orbitals of BAlq are mainly localized on the 4-phenylphenol and 2-methyl-8-hydroxyquinoline ligands, respectively.

  10. On the mechanism of aluminum ion-induced neurotoxicity: The effects of aluminum species on G-protein-mediated processes and on drug interactions with the N-methyl-D-aspartate modulated ionophore

    SciTech Connect

    Hubbard, C.M.

    1989-01-01

    To establish what effects Al{sup 3+} may have on G-protein mediate signal transduction, the effects of Al{sup 3+} on the signal-coupling G-protein from retinal rod outer segments (G{sub t} or transducin) have been investigated as a model for the effects of Al{sup 3+} on signal transduction by G-proteins in general. In this investigation, we have studied the effects of Al{sup 3+} on the isolated, light-dependent rhodopsin catalyzed GTP-GDP exchange on G{sub t}; the light-dependent GTPase activity of G{sub t}; the light-independent cGMP hydrolysis by PDE; and the light activated, rhodopsin catalyzed, cGMP hydrolysis by PDE in vitro. To determine the effects of two defined species of aluminum on N-methyl-D-aspartic acid (NMDA) receptor-channel modulation we utilized a specific radioligand binding assay. This allowed us to compare the effects of aluminum to other metal ions on specific ({sup 3}H)MK-801 binding to the NMDA receptor-channel complex. This complex is involved in long-term potentiation, which is currently being investigated as the mechanism by which learning and memory occur and has been implicated in the pathology of Alzheimer's disease. We have investigated the effects of two different species of aluminum, as well as Ca{sup 2+}, Zn{sup 2+}, Mg{sup 2+}, and Li{sup +} on the specific binding of ({sup 3}H)MK-801 to the NMDA receptor-channel complex under depolarized conditions.

  11. The Structure of Nickel Chloride in the Ionic Liquid 1-Ethyl-3-methyl Imidazolium Chloride/Aluminum Chloride: X-ray Absorption Spectroscopy

    SciTech Connect

    D Roeper; K Pandya; G Cheek; W OGrady

    2011-12-31

    The structure of anhydrous nickel chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride and aluminum chloride has been investigated with extended X-ray absorption fine structure (EXAFS) in both Lewis acid and Lewis base solutions. The EXAFS data of NiCl{sub 2} {center_dot} 6H{sub 2}O crystals were also recorded and analyzed to demonstrate the difference file technique. The difference file technique is used to obtain the structural information for the very closely spaced coordination shells of chloride and oxygen in NiCl{sub 2} {center_dot} 6H{sub 2}O and they are found to agree very closely with the X-ray diffraction data. The difference file technique is then used to analyze the nickel chloride in the ionic liquid solutions. Even though anhydrous NiCl{sub 2} is more soluble in the basic solution than in the acidic solution, the EXAFS data show a single coordination of four chlorides in a tetrahedron around the nickel atom in the basic solution. In a weak acid solution, there are six chlorides in a single octahedral coordination shell around the nickel. However, in a strong acid solution, in addition to the octahedral chloride-coordination shell, there is a second coordination shell of eight aluminum atoms in the form of a simple cube.

  12. A study on the in vitro percutaneous absorption of silver nanoparticles in combination with aluminum chloride, methyl paraben or di-n-butyl phthalate.

    PubMed

    Domeradzka-Gajda, Katarzyna; Nocuń, Marek; Roszak, Joanna; Janasik, Beata; Quarles, C Derrick; Wąsowicz, Wojciech; Grobelny, Jarosław; Tomaszewska, Emilia; Celichowski, Grzegorz; Ranoszek-Soliwoda, Katarzyna; Cieślak, Małgorzata; Puchowicz, Dorota; Gonzalez, Jhanis J; Russo, Richard E; Stępnik, Maciej

    2017-04-15

    Some reports indicate that the silver released from dermally applied products containing silver nanoparticles (AgNP) (e.g. wound dressings or cosmetics) can penetrate the skin, particularly if damaged. AgNP were also shown to have cytotoxic and genotoxic activity. In the present study percutaneous absorption of AgNP of two different nominal sizes (Ag15nm or Ag45nm by STEM) and surface modification, i.e. citrate or PEG stabilized nanoparticles, in combination with cosmetic ingredients, i.e. aluminum chloride (AlCl3), methyl paraben (MPB), or di-n-butyl phthalate (DBPH) was assessed using in vitro model based on dermatomed pig skin. The inductively coupled plasma mass spectrometry (ICP-MS) measurements after 24h in receptor fluid indicated low, but detectable silver absorption and no statistically significant differences in the penetration between the 4 types of AgNP studied at 47, 470 or 750μg/ml. Similarly, no significant differences were observed for silver penetration when the AgNP were used in combinations with AlCl3 (500μM), MPB (1250μM) or DBPH (35μM). The measured highest amount of Ag that penetrated was 0.45ng/cm(2) (0.365-0.974ng/cm(2)) for PEG stabilized Ag15nm+MPB. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Aluminum-phthalocyanine chloride associated to poly(methyl vinyl ether-co-maleic anhydride) nanoparticles as a new third-generation photosensitizer for anticancer photodynamic therapy.

    PubMed

    Muehlmann, Luis Alexandre; Ma, Beatriz Chiyin; Longo, João Paulo Figueiró; Almeida Santos, Maria de Fátima Menezes; Azevedo, Ricardo Bentes

    2014-01-01

    Photodynamic therapy is generally considered to be safer than conventional anticancer therapies, and it is effective against different kinds of cancer. However, its clinical application has been significantly limited by the hydrophobicity of photosensitizers. In this work, a system composed of the hydrophobic photosensitizer aluminum-phthalocyanine chloride (AlPc) associated with water dispersible poly(methyl vinyl ether-co-maleic anhydride) nanoparticles is described. AlPc was associated with nanoparticles produced by a method of solvent displacement. This system was analyzed for its physicochemical characteristics, and for its photodynamic activity in vitro in cancerous (murine mammary carcinoma cell lineage 4T1, and human mammary adenocarcinoma cells MCF-7) and noncancerous (murine fibroblast cell lineage NIH/3T3, and human mammary epithelial cell lineage MCF-10A) cell lines. Cell viability and the elicited mechanisms of cell death were evaluated after the application of photodynamic therapy. This system showed improved photophysical and photochemical properties in aqueous media in comparison to the free photosensitizer, and it was effective against cancerous cells in vitro.

  14. XAFS Studies of Ni Ta and Nb Chlorides in the Ionic Liquid 1-Ethyl-3-Methyl Imidazolium Chloride / Aluminum Chloride

    SciTech Connect

    W OGrady; D Roeper; K Pandya; G Cheek

    2011-12-31

    The structures of anhydrous nickel, niobium, and tantalum chlorides have been investigated in situ in acidic and basic ionic liquids (ILs) of 1-methyl-3-ethylimidazolium chloride (EMIC)/AlCl{sub 3} with X-ray absorption spectroscopy (XAS). The coordination of NiCl{sub 2} changes from tetrahedral in basic solution to octahedral in acidic solution. The NiCl{sub 2} is a strong Lewis acid in that it can induce the AlCl{sub 3} to share its chlorides in the highly acidic IL, forming a structure with six near Cl{sup -} ions and eight further distant Al ions which share the chloride ions surrounding the Ni{sup 2+}. When Nb{sub 2}Cl{sub 10}, a dimer, is added to the acidic or basic solution, the dimer breaks apart and forms two species. In the acid solution, two trigonal bipyramids are formed with five equal chloride distances, while in the basic solution, a square pyramid with four chlorides forming a square base and one shorter axial chloride bond. Ta{sub 2}Cl{sub 10} is also a dimer and divides into half in the acidic solution and forms two trigonal bipyramids. In the basic solution, the dimer breaks apart but the species formed is sufficiently acidic that it attracts two additional chloride ions and forms a seven coordinated tantalum species.

  15. Two cases of methyl alcohol intoxication by sub-chronic inhalation and dermal exposure during aluminum CNC cutting in a small-sized subcontracted factory.

    PubMed

    Ryu, Jia; Lim, Key Hwan; Ryu, Dong-Ryeol; Lee, Hyang Woon; Yun, Ji Young; Kim, Seoung-Wook; Kim, Ji-Hoon; Jung-Choi, Kyunghee; Kim, Hyunjoo

    2016-01-01

    Methyl alcohol poisoning has been mainly reported in community. Two cases of methyl alcohol poisoning occurred in a small-sized subcontracted factory which manufactured smartphone parts in Korea. One young female patient presented with dyspnea and visual disturbance. Another young male patient presented with visual disturbance and myalgia. They treated with sodium bicarbonate infusion and hemodialysis for metabolic acidosis. In addition, he received ethyl alcohol per oral treatment. Her and his urinary methyl alcohol concentration was detected as 7.632 mg/L, 46.8 mg/L, respectively, although they were treated hemodialysis. Results of the working environment measurement showed that the concentration of methyl alcohol (1030.1-2220.5 ppm) in the air exceeded the time weighted average (200 ppm). They were diagnosed with optic neuropathy due to methyl alcohol poisoning and still have visual impairment. Workers who hired as dispatched employees in a small-sized subcontracted factory were exposed to high concentrations of methyl alcohol. The workplace had poor ventilation system. In addition, workers did not wear proper personal protect equipment. Working environment measurement and annual chekups for workers were not performed. They were in a blind spot to occupational safety and health. More attention is needed to protect vulnerable workers' health.

  16. Aluminum Hydroxide

    MedlinePlus

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  17. Synthesis of stereotetrads by regioselective cleavage of diastereomeric MEM-protected 2-methyl-3,4-epoxy alcohols with diethylpropynyl aluminum

    PubMed Central

    Torres, Wildeliz; Torres, Gerardo

    2013-01-01

    The regioselectivity of the epoxide ring opening of 2-methyl-3,4-epoxy alcohols with diethylpropynylalane has been studied as a function of the C1 alcohol protecting group. An efficient selective method was developed using MEM as the protecting group. The reaction proceeded in a highly regioselective manner providing the useful 1,3-diol motif. The undesired 1,4-diol product produced by some free alcohol diastereomers was not observed. This highly stereoselective method provides access to termini-differentiated stereotetrads, which are essential building bocks for polypropionate synthesis. PMID:24163500

  18. Aluminum Analysis.

    ERIC Educational Resources Information Center

    Sumrall, William J.

    1998-01-01

    Presents three problems based on the price of aluminum designed to encourage students to be cooperative and to use an investigative approach to learning. Students collect and synthesize information, analyze results, and draw conclusions. (AIM)

  19. Aluminum Analysis.

    ERIC Educational Resources Information Center

    Sumrall, William J.

    1998-01-01

    Presents three problems based on the price of aluminum designed to encourage students to be cooperative and to use an investigative approach to learning. Students collect and synthesize information, analyze results, and draw conclusions. (AIM)

  20. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  1. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  2. Rechargeable Aluminum-Ion Batteries

    SciTech Connect

    Paranthaman, Mariappan Parans; Liu, Hansan; Sun, Xiao-Guang; Dai, Sheng; Brown, Gilbert M

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  3. Aluminum phosphide

    Integrated Risk Information System (IRIS)

    Aluminum phosphide ; CASRN 20859 - 73 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  4. Polyphenol-Aluminum Complex Formation: Implications for Aluminum Tolerance in Plants.

    PubMed

    Zhang, Liangliang; Liu, Ruiqiang; Gung, Benjamin W; Tindall, Steven; Gonzalez, Javier M; Halvorson, Jonathan J; Hagerman, Ann E

    2016-04-20

    Natural polyphenols may play an important role in aluminum detoxification in some plants. We examined the interaction between Al(3+) and the purified high molecular weight polyphenols pentagalloyl glucose (940 Da) and oenothein B (1568 Da), and the related compound methyl gallate (184 Da) at pH 4 and 6. We used spectrophotometric titration and chemometric modeling to determine stability constants and stoichiometries for the aluminum-phenol (AlL) complexes. The structures and spectral features of aluminum-methyl gallate complexes were evaluated with quantum chemical calculations. The high molecular weight polyphenols formed Al3L2 complexes with conditional stability constants (β) ∼ 1 × 10(23) at pH 6 and AlL complexes with β ∼ 1 × 10(5) at pH 4. Methyl gallate formed AlL complexes with β = 1 × 10(6) at pH 6 but did not complex aluminum at pH 4. At intermediate metal-to-polyphenol ratios, high molecular weight polyphenols formed insoluble Al complexes but methyl gallate complexes were soluble. The high molecular weight polyphenols have high affinities and solubility features that are favorable for a role in aluminum detoxification in the environment.

  5. Brazing dissimilar aluminum alloys

    NASA Technical Reports Server (NTRS)

    Dalalian, H.

    1979-01-01

    Dip-brazing process joins aluminum castings to aluminum sheet made from different aluminum alloy. Process includes careful cleaning, surface preparation, and temperature control. It causes minimum distortion of parts.

  6. Design for aluminum recycling

    SciTech Connect

    Not Available

    1993-10-01

    This article describes the increasing use of aluminum in automobiles and the need to recycle to benefit further growth of aluminum applications by assuring an economical, high-quality source of metal. The article emphasizes that coordination of material specifications among designers can raise aluminum scrap value and facilitate recycling. Applications of aluminum in automobile construction are discussed.

  7. Polyphenol-aluminum complex formation: Implications for aluminum tolerance in plants

    USDA-ARS?s Scientific Manuscript database

    Natural polyphenols may play an important role in aluminum detoxification in some plants. We examined the interaction between Al3+ and the purified high molecular weight polyphenols pentagalloyl glucose (940 Da) and oenothein B (1568 Da), and the related compound methyl gallate (184 Da) at pH 4 and ...

  8. Methylation matters

    PubMed Central

    Costello, J.; Plass, C.

    2001-01-01

    DNA methylation is not just for basic scientists any more. There is a growing awareness in the medical field that having the correct pattern of genomic methylation is essential for healthy cells and organs. If methylation patterns are not properly established or maintained, disorders as diverse as mental retardation, immune deficiency, and sporadic or inherited cancers may follow. Through inappropriate silencing of growth regulating genes and simultaneous destabilisation of whole chromosomes, methylation defects help create a chaotic state from which cancer cells evolve. Methylation defects are present in cells before the onset of obvious malignancy and therefore cannot be explained simply as a consequence of a deregulated cancer cell. Researchers are now able to detect with exquisite sensitivity the cells harbouring methylation defects, sometimes months or years before the time when cancer is clinically detectable. Furthermore, aberrant methylation of specific genes has been directly linked with the tumour response to chemotherapy and patient survival. Advances in our ability to observe the methylation status of the entire cancer cell genome have led us to the unmistakable conclusion that methylation abnormalities are far more prevalent than expected. This methylomics approach permits the integration of an ever growing repertoire of methylation defects with the genetic alterations catalogued from tumours over the past two decades. Here we discuss the current knowledge of DNA methylation in normal cells and disease states, and how this relates directly to our current understanding of the mechanisms by which tumours arise.


Keywords: methylation; cancer PMID:11333864

  9. Corrosion of aluminum and aluminum alloys

    SciTech Connect

    Davis, J.R.

    1999-01-01

    This new handbook presents comprehensive coverage of the corrosion behavior of aluminum and aluminum alloys, with emphasis on practical information about how to select and process these materials in order to prevent corrosion attack. Described are the characteristics of these materials and the influences of composition, mechanical working, heat treatment, joining methods, microstructure, and environmental variables on their corrosion.

  10. Aluminum extraction from aluminum industrial wastes

    NASA Astrophysics Data System (ADS)

    Amer, A. M.

    2010-05-01

    Aluminum dross tailings, an industrial waste from the Egyptian Aluminum Company (Egyptalum), was used to produce two types of alums: aluminum sulfate alum (Al2(SO4)3·12H2O) and ammonium aluminum alum {(NH4)2SO4AL2 (SO4)3·24H2O}. This was carried out in two processes. The first involves leaching the impurities using diluted H2SO4 with different solid/liquid ratios at different temperatures to dissolve the impurities present in the starting material in the form of aluminum sulfates. The second process is the extraction of aluminum (as aluminum sulfate) from the purified aluminum dross tailings thus produced. This was carried out in an autoclave. The effects of temperature, time of reaction, and acid concentration on pressure leaching and extraction processes were studied in order to specify the optimum conditions to be applied in the bench scale production as well as the kinetics of leaching process.

  11. ALUMINUM-CONTAINING POLYMERS

    DTIC Science & Technology

    ALUMINUM COMPOUNDS, *ORGANOMETALLIC COMPOUNDS, *POLYMERIZATION, *POLYMERS, ACRYLIC RESINS, ALKYL RADICALS, CARBOXYLIC ACIDS, COPOLYMERIZATION, LIGHT TRANSMISSION, STABILITY, STYRENES, TRANSPARENT PANELS.

  12. Aluminum and Young Artists.

    ERIC Educational Resources Information Center

    Anderson, Thomas

    1980-01-01

    The author suggests a variety of ways in which aluminum and aluminum foil can be used in elementary and junior high art classes: relief drawing and rubbing; printing; repousse; sculpture; mobiles; foil sculpture; and three dimensional design. Sources of aluminum supplies are suggested. (SJL)

  13. Aluminum and Young Artists.

    ERIC Educational Resources Information Center

    Anderson, Thomas

    1980-01-01

    The author suggests a variety of ways in which aluminum and aluminum foil can be used in elementary and junior high art classes: relief drawing and rubbing; printing; repousse; sculpture; mobiles; foil sculpture; and three dimensional design. Sources of aluminum supplies are suggested. (SJL)

  14. Fast-Acting Rubber-To-Coated-Aluminum Adhesive

    NASA Technical Reports Server (NTRS)

    Comer, Dawn A.; Novak, Howard; Vazquez, Mark

    1991-01-01

    Cyanoacrylate adhesive used to join rubber to coated aluminum easier to apply and more effective. One-part material applied in single coat to aluminum treated previously with epoxy primer and top coat. Parts mated as soon as adhesive applied; no drying necessary. Sets in 5 minutes. Optionally, accelerator brushed onto aluminum to reduce setting time to 30 seconds. Clamping parts together unnecessary. Adhesive comes in four formulations, all based on ethyl cyanoacrylate with various amounts of ethylene copolymer rubber, poly(methyl methacrylate), silicon dioxide, hydroquinone, and phthalic anhydride.

  15. Aluminum reference electrode

    DOEpatents

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  16. Aluminum reference electrode

    DOEpatents

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  17. Methyl chloroform

    SciTech Connect

    Wray, T.K.

    1994-04-01

    Methyl chloroform is identified as a Class 1 ozone-depleting substance under Title VI of the CAA Amendments. On Nov. 30, 1993, EPA ordered the phaseout of Class 1 ozone-depleting substances -- chlorofluorocarbons (CFCs), halons, carbon tetrachloride and methyl chloroform -- by Jan. 1, 1996. Methyl chloroform and other Class 1 substances may be used after the dead-line if sources can be found through recycling or existing inventories. Methyl chloroform is listed as a hazardous air pollutant under CAA. It also is a SARA Title III, Sec. 313 compound with a reportable quantity of 1,000 pounds. OSHA and the American Conference of Government Industrial Hygienists have set 350 ppm as the time-weighted average airborne exposure level for methyl chloroform. NIOSH lists its immediately dangerous to life or health'' concentration as 1,000 parts per million. DOT identifies the substance as a hazardous material, Class 6.1 (poison).

  18. Aluminum: Recycling of Aluminum Dross/Saltcake

    SciTech Connect

    Blazek, S.

    1999-01-29

    As this NICE3 publication details, the objective of this project is to commercialize the process technology to eliminate all landfill waste associated with black dross and saltcake generated from aluminum recycling in the United States.

  19. Aspects of aluminum toxicity

    SciTech Connect

    Hewitt, C.D.; Savory, J.; Wills, M.R. )

    1990-06-01

    Aluminum is the most abundant metal in the earth's crust. The widespread occurrence of aluminum, both in the environment and in foodstuffs, makes it virtually impossible for man to avoid exposure to this metal ion. Attention was first drawn to the potential role of aluminum as a toxic metal over 50 years ago, but was dismissed as a toxic agent as recently as 15 years ago. The accumulation of aluminum, in some patients with chronic renal failure, is associated with the development of toxic phenomena; dialysis encephalopathy, osteomalacic dialysis osteodystrophy, and an anemia. Aluminum accumulation also occurs in patients who are not on dialysis, predominantly infants and children with immature or impaired renal function. Aluminum has also been implicated as a toxic agent in the etiology of Alzheimer's disease, Guamiam amyotrophic lateral sclerosis, and parkinsonism-dementia. 119 references.

  20. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  1. Aluminum powder metallurgy processing

    SciTech Connect

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  2. Aluminum Cartridge Case Concept

    DTIC Science & Technology

    2005-05-01

    carried by the soldier, a lightweight alternative to the brass cartridge case is an aluminum cartridge case. This comprehensive detailed report describes...AD AD-E403 044 Technical Report ARAEW-TR-05003 ALUMINUM CARTRIDGE CASE CONCEPT Brian Tasson ATK Ordnance and Ground Systems LLC 4700 Nathan Lane...TITLE AND SUBTITLE 5a. CONTRACT NUMBER DAAE30-03-C-1 128 ALUMINUM CARTRIDGE CASE CONCEPT 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHORS 5d

  3. Methyl methacrylate

    Integrated Risk Information System (IRIS)

    TOXICOLOGICAL REVIEW of METHYL METHACRYLATE ( CAS No . 80 - 62 - 6 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) January 1998 U.S . Environmental Protection Agency Washington , DC TABLE OF CONTENTS DISCLAIMER . . . . . . . . . . . . . . . . . . . . . . . . .

  4. CG methylation.

    PubMed

    Vinson, Charles; Chatterjee, Raghunath

    2012-12-01

    A striking feature of mammalian genomes is the paucity of the CG dinucleotide. There are approximately 20,000 regions termed CpG islands where CGs cluster. This represents 5% of all CGs and 1% of the genome. CpG islands are typically unmethylated and are often promoters for housekeeping genes. The remaining 95% of CG dinucleotides are disposed throughout 99% of the genome and are typically methylated and found in half of all promoters. CG methylation facilitates binding of the C/EBP family of transcription factors, proteins critical for differentiation of many tissues. This allows these proteins to localize in the methylated CG poor regions of the genome where they may produce advantageous changes in gene expression at nearby or more distant regions of the genome. In this review, our growing understanding of the consequences of CG methylation will be surveyed.

  5. Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant

    DOEpatents

    LaCamera, Alfred F.

    2002-11-05

    A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.

  6. Experimental study of trimethyl aluminum decomposition

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi; Pan, Yang; Yang, Jiuzhong; Jiang, Zhiming; Fang, Haisheng

    2017-09-01

    Trimethyl aluminum (TMA) is an important precursor used for metal-organic chemical vapor deposition (MOCVD) of most Al-containing structures, in particular of nitride structures. The reaction mechanism of TMA with ammonia is neither clear nor certain due to its complexity. Pyrolysis of trimethyl metal is the start of series of reactions, thus significantly affecting the growth. Experimental study of TMA pyrolysis, however, has not yet been conducted in detail. In this paper, a reflectron time-of-flight mass spectrometer is adopted to measure the TMA decomposition from room temperature to 800 °C in a special pyrolysis furnace, activated by soft X-ray from the synchrotron radiation. The results show that generation of methyl, ethane and monomethyl aluminum (MMA) indicates the start of the pyrolysis process. In the low temperature range from 25 °C to 700 °C, the main product is dimethyl aluminum (DMA) from decomposition of TMA. For temperatures larger than 700 °C, the main products are MMA, DMA, methyl and ethane.

  7. High energy density aluminum battery

    DOEpatents

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  8. Is the Aluminum Hypothesis Dead?

    PubMed Central

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  9. Is the Aluminum Hypothesis dead?

    PubMed

    Lidsky, Theodore I

    2014-05-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust.

  10. Aluminum: Reducing chloride emissions from aluminum production

    SciTech Connect

    Simon, P.

    1999-09-29

    Reynolds Metals Company (RMC), with assistance from a NICE{sup 3} grant, is developing for commercialization a closed-loop control process that greatly reduces chlorine emissions and increases plant efficiency while maintaining metal quality. The process still utilizes chlorine to remove impurities during aluminum processing, but is more effective than current methods. With the new technology chlorine in the stack is monitored and input chlorine is adjusted continuously. This optimization of chlorine use results in substantially less waste because less chlorine has to be bought or produced by aluminum manufacturers. This innovation is a significant improvement over conventional aluminum treatments, in which chlorine is injected in a more costly and wasteful manner. By the year 2010, the new technology has the potential to reduce the energy it takes to create chlorine by 8.4 billion Btu per year and to cut greenhouse gas emissions by 1,377 tons per year.

  11. Anodizing Aluminum with Frills.

    ERIC Educational Resources Information Center

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are…

  12. Aluminum space frame technology

    SciTech Connect

    Birch, S.

    1994-01-01

    This article examines the increased application of aluminum to the construction of automobile frames. The topics of the article include a joint venture between Audi and Alcoa, forms in which aluminum is used, new alloys and construction methods, meeting rigidity and safety levels, manufacturing techniques, the use of extrusions, die casting, joining techniques, and pollution control during manufacturing.

  13. Anodizing Aluminum with Frills.

    ERIC Educational Resources Information Center

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are…

  14. DNA Methylation

    PubMed Central

    Marinus, M.G.; Løbner-Olesen, A.

    2014-01-01

    The DNA of E. coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholerae, Caulobacter crescentus) adenine methylation is essential and in C. crescentus, it is important for temporal gene expression which, in turn, is required for coordinating chromosome initiation, replication and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage; decrease transformation frequency in certain bacteria; decrease the stability of short direct repeats; are necessary for site-directed mutagenesis; and to probe eukaryotic structure and function. PMID:26442938

  15. Aluminum structural applications

    SciTech Connect

    Lucas, G.

    1996-05-01

    Extensive research by aluminum producers and automakers in the 1980s resulted in the development of technologies that enable building of aluminum cars that meet and exceed all the expectations of today`s drivers and passengers, yet weigh several hundred pounds less than their steel counterparts. The Acura NSX sports car, the Audi A8, and the Jaguar XJ220 have all been introduced. Ford has built 40 aluminum-intensive automobiles based on the Taurus/Sable for test purposes, and General Motors recently announced an aluminum-structured electric vehicle. The design flexibility that aluminum allows is shown by these examples. Each uses a somewhat different technology that is particularly suited to the vehicle and its market.

  16. The Aluminum Smelting Process

    PubMed Central

    2014-01-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development. PMID:24806722

  17. Synthesis of fatty acid methyl ester from the transesterification of high- and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium-lanthanum-aluminum mixed-oxides catalyst.

    PubMed

    Syamsuddin, Y; Murat, M N; Hameed, B H

    2016-08-01

    The synthesis of fatty acid methyl ester (FAME) from the high- and low-acid-content feedstock of crude palm oil (CPO) and karanj oil (KO) was conducted over CaO-La2O3-Al2O3 mixed-oxide catalyst. Various reaction parameters were investigated using a batch reactor to identify the best reaction condition that results in the highest FAME yield for each type of oil. The transesterification of CPO resulted in a 97.81% FAME yield with the process conditions of 170°C reaction temperature, 15:1 DMC-to-CPO molar ratio, 180min reaction time, and 10wt.% catalyst loading. The transesterification of KO resulted in a 96.77% FAME yield with the conditions of 150°C reaction temperature, 9:1 DMC-to-KO molar ratio, 180min reaction time, and 5wt.% catalyst loading. The properties of both products met the ASTM D6751 and EN 14214 standard requirements. The above results showed that the CaO-La2O3-Al2O3 mixed-oxide catalyst was suitable for high- and low-acid-content vegetable oil.

  18. Clinical biochemistry of aluminum

    SciTech Connect

    King, S.W.; Savory, J.; Wills, M.R.

    1981-05-01

    Aluminum toxicity has been implicated in the pathogenesis of a number of clinical disorders in patients with chronic renal failure on long-term intermittent hemodialysis treatment. The predominant disorders have been those involving either bone (osteomalacic dialysis osteodystrophy) or brain (dialysis encephalopathy). In nonuremic patients, an increased brain aluminum concentration has been implicated as a neurotoxic agent in the pathogenesis of Alzheimer's disease and was associated with experimental neurofibrillary degeneration in animals. The brain aluminum concentrations of patients dying with the syndrome of dialysis encephalopathy (dialysis dementia) are significantly higher than in dialyzed patients without the syndrome and in nondialyzed patients. Two potential sources for the increased tissue content of aluminum in patients on hemodialysis have been proposed: (1) intestinal absorption from aluminum containing phosphate-binding gels, and (2) transfer across the dialysis membrane from aluminum in the water used to prepare the dialysate. These findings, coupled with our everyday exposure to the ubiquitous occurrence of aluminum in nature, have created concerns over the potential toxicity of this metal.

  19. Methyl parathion

    Integrated Risk Information System (IRIS)

    Methyl parathion ; CASRN 298 - 00 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  20. Methyl chlorocarbonate

    Integrated Risk Information System (IRIS)

    Methyl chlorocarbonate ; CASRN 79 - 22 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  1. Methyl chloride

    Integrated Risk Information System (IRIS)

    EPA / 635 / R01 / 003 TOXICOLOGICAL REVIEW OF METHYL CHLORIDE ( CAS No . 74 - 87 - 3 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) June 2001 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been reviewed in accordance with U.

  2. Methyl iodide

    Integrated Risk Information System (IRIS)

    Methyl iodide ; CASRN 74 - 88 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effe

  3. Methyl acrylate

    Integrated Risk Information System (IRIS)

    Methyl acrylate ; CASRN 96 - 33 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  4. Methyl isocyanate

    Integrated Risk Information System (IRIS)

    Methyl isocyanate ; CASRN 624 - 83 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  5. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  6. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  7. Cast Aluminum Bonding Study

    DTIC Science & Technology

    1988-05-01

    fabricated using P?-’r;est11 bur)ld II19 te(hnll I Oly with 6 cIsL nqs. The cast a lumi num alloy used was A357 . The sur- face preparation was phosphoric acid...from a cast aluminum alloy designated A357 . The bonding surfaces of the adherends were prepared using PAA. One primer and two adhesives considered...System, Cast Aluminum Lap Shear 18 11 Bond Area of 350°F Adhesive System, Cast Aluminum Lap Shear 19 vi LIST OF TABLES TABLE PAGE 1 A357 Chemical

  8. Aluminum Nitride Crystal Growth

    DTIC Science & Technology

    1979-12-01

    UOSR-TR- 80 - 04 2 4EL4- G LEYEL ALUMINUM NITRIDE CRYSTAL GROWTH G.A. Slack FINAL REPORT Contract F49620-78-C-0021 DTIC Period Covered ELECTE I...Laboratory personnel worked on the problem of Aluminum Nitride Heat Sink Crystal Growth for the U.S. Air Force Office of Scientific Research under Contract...Number F44620-76-C-0039. From November 1, 1977 to the present we have worked on Aluminum Nitride and Boron Phosphide Crystal Growth under Contract NUmber

  9. Walnut Hulls Clean Aluminum

    NASA Technical Reports Server (NTRS)

    Colberg, W. R.; Gordon, G. H.; Jackson, C. H.

    1984-01-01

    Hulls inflict minimal substrate damage. Walnut hulls found to be best abrasive for cleaning aluminum surfaces prior to painting. Samples blasted with walnut hulls showed no compressive stress of surface.

  10. Corrosion Inhibitors for Aluminum.

    ERIC Educational Resources Information Center

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  11. Corrosion Inhibitors for Aluminum.

    ERIC Educational Resources Information Center

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  12. CORROSION PROTECTION OF ALUMINUM

    DOEpatents

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  13. Corrosion Protection of Aluminum

    DOEpatents

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  14. Aluminum powder applications

    SciTech Connect

    Gurganus, T.B.

    1995-08-01

    Aluminum powders have physical and metallurgical characteristics related to their method of manufacture that make them extremely important in a variety of applications. They can propel rockets, improve personal hygiene, increase computer reliability, refine exotic alloys, and reduce weight in the family sedan or the newest Air Force fighter. Powders formed into parts for structural and non-structural applications hold the key to some of the most exciting new developments in the aluminum future.

  15. Methyl eucomate

    PubMed Central

    Li, Linglin; Zhou, Guang-Xiong; Jiang, Ren-Wang

    2008-01-01

    The crystal structure of the title compound [systematic name: methyl 3-carboxy-3-hydr­oxy-3-(4-hydroxy­benz­yl)propanoate], C12H14O6, is stabilized by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds. The mol­ecules are arranged in layers, parallel to (001), which are inter­connected by the O—H⋯O hydrogen bonds. PMID:21202973

  16. Aluminum, parathyroid hormone, and osteomalacia

    SciTech Connect

    Burnatowska-Hledin, M.A.; Kaiser, L.; Mayor, G.H.

    1983-01-01

    Aluminum exposure in man is unavoidable. The occurrence of dialysis dementia, vitamin D-resistant osteomalacia, and hypochromic microcytic anemia in dialysis patients underscores the potential for aluminum toxicity. Although exposure via dialysate and hyperalimentation leads to significant tissue aluminum accumulation, the ubiquitous occurrence of aluminum and the severe pathology associated with large aluminum burdens suggest that smaller exposures via the gastrointestinal tract and lungs could represent an important, though largely unrecognized, public health problem. It is clear that some aluminum absorption occurs with the ingestion of small amounts of aluminum in the diet and medicines, and even greater aluminum absorption is seen in individuals consuming large amounts of aluminum present in antacids. Aluminum absorption is enhanced in the presence of elevated circulating parathyroid hormone. In addition, elevated PTH leads to the preferential deposition of aluminum in brain and bone. Consequently, PTH is likely to be involved in the pathogenesis of toxicities in those organs. PTH excess also seems to lead to the deposition of aluminum in the parathyroid gland. The in vitro demonstration that aluminum inhibits parathyroid hormone release is consistent with the findings of a euparathyroid state in dialysis patients with aluminum related vitamin D-resistant osteomalacia. Nevertheless, it seems likely that hyperparathyroidism is at least initially involved in the pathogenesis of aluminum neurotoxicity and osteomalacia; the increases in tissue aluminum stores are followed by suppression of parathyroid hormone release, which is required for the evolution of osteomalacia. Impaired renal function is not a prerequisite for increased tissue aluminum burdens, nor for aluminum-related organ toxicity. Consequently, it is likely that these diseases will be observed in populations other than those with chronic renal disease.

  17. Determination of dissolved aluminum in water samples

    USGS Publications Warehouse

    Afifi, A.A.

    1983-01-01

    A technique has been modified for determination of a wide range of concentrations of dissolved aluminum (Al) in water and has been tested. In this technique, aluminum is complexed with 8-hydroxyquinoline at pH 8.3 to minimize interferences, then extracted with methyl isobutyl ketone (MIBK). The extract is analyzed colorimetrically at 395 nm. This technique is used to analyze two forms of monomeric Al, nonlabile (organic complexes) and labile (free, Al, Al sulfate, fluoride and hydroxide complexes). A detection limit 2 ug/L is possible with 25-ml samples and 10-ml extracts. The detection limit can be decreased by increasing the volume of the sample and (or) decreasing the volume of the methyl isobutyl ketone extract. The analytical uncertainty of this method is approximately + or - 5 percent. The standard addition technique provides a recovery test for this technique and ensures precision in samples of low Al concentrations. The average percentage recovery of the added Al plus the amount originally present was 99 percent. Data obtained from analyses of filtered standard solutions indicated that Al is adsorbed on various types of filters. However, the relationship between Al concentrations and adsorption remains linear. A test on standard solutions also indicated that Al is not adsorbed on nitric acid-washed polyethylene and polypropylene bottle wells. (USGS)

  18. Fatal aluminum phosphide poisoning.

    PubMed

    Anger, F; Paysant, F; Brousse, F; Le Normand, I; Develay, P; Gaillard, Y; Baert, A; Le Gueut, M A; Pepin, G; Anger, J P

    2000-03-01

    A 39-year-old man committed suicide by ingestion of aluminum phosphide, a potent mole pesticide, which was available at the victim's workplace. The judicial authority ordered an autopsy, which ruled out any other cause of death. The victim was discovered 10 days after the ingestion of the pesticide. When aluminum phosphide comes into contact with humidity, it releases large quantities of hydrogen phosphine (PH3), a very toxic gas. Macroscopic examination during the autopsy revealed a very important asphyxia syndrome with major visceral congestion. Blood, urine, liver, kidney, adrenal, and heart samples were analyzed. Phosphine gas was absent in the blood and urine but present in the brain (94 mL/g), the liver (24 mL/g), and the kidneys (41 mL/g). High levels of phosphorus were found in the blood (76.3 mg/L) and liver (8.22 mg/g). Aluminum concentrations were very high in the blood (1.54 mg/L), brain (36 microg/g), and liver (75 microg/g) compared to the usual published values. Microscopic examination revealed congestion of all the organs studied and obvious asphyxia lesions in the pulmonary parenchyma. All these results confirmed a diagnosis of poisoning by aluminum phosphide. This report points out that this type of poisoning is rare and that hydrogen phosphine is very toxic. The phosphorus and aluminum concentrations observed and their distribution in the different viscera are discussed in relation to data in the literature.

  19. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J.

    2009-04-21

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  20. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  1. Elevated temperature aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, Peter (Inventor); Lederich, Richard J. (Inventor); O'Neal, James E. (Inventor)

    1989-01-01

    Three aluminum-lithium alloys are provided for high performance aircraft structures and engines. All three alloys contain 3 wt % copper, 2 wt % lithium, 1 wt % magnesium, and 0.2 wt % zirconium. Alloy 1 has no further alloying elements. Alloy 2 has the addition of 1 wt % iron and 1 wt % nickel. Alloy 3 has the addition of 1.6 wt % chromium to the shared alloy composition of the three alloys. The balance of the three alloys, except for incidentql impurities, is aluminum. These alloys have low densities and improved strengths at temperatures up to 260.degree. C. for long periods of time.

  2. PROCESS FOR REMOVING ALUMINUM COATINGS

    DOEpatents

    Flox, J.

    1959-07-01

    A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least

  3. Aluminum Alloy 7068 Mechanical Characterization

    DTIC Science & Technology

    2009-08-01

    strength of 99 ksi (2). The commonly specified material properties for extruded 7068 aluminum are shown in table 1, along with 7050 and 7075 aluminum ...alloys for comparison (3). Table 1. Mechanical property comparison of high-strength aluminum alloys. Property Alloy 7068 7075 7050 Elastic... Aluminum Alloy 7068 Mechanical Characterization by Michael Minnicino, David Gray, and Paul Moy ARL-TR-4913 August 2009

  4. Electrically conductive anodized aluminum coatings

    NASA Technical Reports Server (NTRS)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  5. Reaction of 1-chloro-1-methylcyclohexane with phenyl- and benzyl-trimethylsilanes in the presence of aluminum chloride

    SciTech Connect

    Bolestova, G.I.; Parnes, Z.N.; Vol'pin, M.E.

    1988-10-20

    In the reaction of 1-chloro-1-methylcyclohexane with phenyltrimethylsilane and benzyltrimethylsilane in the presence of aluminum chloride the chlorine atom is substituted by a phenyl or benzyl group with the formation of 1-methyl-1-phenyl- and 1-methyl-1-benzylcyclohexane, respectively. In the case of benzyltrimethylsilane the products from alkylation of the benzene ring of the benzyltrimethylsilane by the 1-methylcyclohexyl carbocation in the Friedel-Crafts reaction are formed in addition to 1-methyl-1-benzylcyclohexane.

  6. Aluminum Sulfate 18 Hydrate

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  7. Mechanisms of aluminum tolerance

    USDA-ARS?s Scientific Manuscript database

    Aluminum (Al) toxicity limits agricultural productivity over much of the world’s arable land by inhibiting root growth and development. Affected plants have difficulty in acquiring adequate water and nutrition from their soil environments and thus have stunted shoot development and diminished yield....

  8. Maize aluminum tolerance

    USDA-ARS?s Scientific Manuscript database

    Maize is one of the most economically important food crops grown on acid soils, where aluminum (Al) toxicity greatly limits crop yields. Considerable variation for Al tolerance exists in maize, and this variation has been exploited for many years by plant breeders to enhance maize Al tolerance. Curr...

  9. Markets for recovered aluminum

    SciTech Connect

    Not Available

    1993-04-01

    The study describes the operation of the markets for scrap aluminum as an example of how recycling markets are structured, what factors influence the supply of and demand for materials, what projections can be made about recycling markets, and how government policies to increase recycling may affect these markets.

  10. Building an aluminum car

    SciTech Connect

    Ashley, S.

    1994-05-01

    This article examines the increasing use of aluminum in automobiles to decrease weight and consequently increase fuel economy. The topics of the article include federal fuel economy goals, the development of optimum body structure and manufacturing techniques, comparison with steel, cost of materials, weight reduction and recycling of materials.

  11. Fluxless aluminum brazing

    DOEpatents

    Werner, W.J.

    1974-01-01

    This invention relates to a fluxless brazing alloy for use in forming brazed composites made from members of aluminum and its alloys. The brazing alloy consists of 35-55% Al, 10--20% Si, 25-60% Ge; 65-88% Al, 2-20% Si, 2--18% In; 65--80% Al, 15-- 25% Si, 5- 15% Y. (0fficial Gazette)

  12. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  13. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  14. Aluminum Sulfate 18 Hydrate

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  15. REMOVAL OF ALUMINUM COATINGS

    DOEpatents

    Peterson, J.H.

    1959-08-25

    A process is presented for dissolving aluminum jackets from uranium fuel elements without attack of the uranium in a boiling nitric acid-mercuric nitrate solution containing up to 50% by weight of nitrtc acid and mercuric nitrate in a concentration of between 0.05 and 1% by weight.

  16. Bonding aluminum beam leads

    NASA Technical Reports Server (NTRS)

    Burkett, F. S.

    1978-01-01

    Report makes it relatively easy for hybrid-circuit manufacturers to convert integrated circuit chips with aluminum bead leads. Report covers: techniques for handling tiny chips; proper geometries for ultrasonic bonding tips; best combinations of pressure, pulse time, and ultrasonic energy for bonding; and best thickness for metal films to which beam leads are bonded.

  17. SOLDERING OF ALUMINUM BASE METALS

    DOEpatents

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  18. Rapid manufacturing of aluminum components.

    PubMed

    Sercombe, T B; Schaffer, G B

    2003-08-29

    A manufacturing technique for the production of aluminum components is described. A resin-bonded part is formed by a rapid prototyping technique and then debound and infiltrated by a second aluminum alloy under a nitrogen atmosphere. During thermal processing, the aluminum reacts with the nitrogen and is partially transformed into a rigid aluminum nitride skeleton, which provides the structural rigidity during infiltration. The simplicity and rapidity of this process in comparison to conventional production routes, combined with the ability to fabricate complicated parts of almost any geometry and with high dimensional precision, provide an additional means to manufacture aluminum components.

  19. Fundamental studies on electrochemical production of dendrite-free aluminum and titanium-aluminum alloys

    NASA Astrophysics Data System (ADS)

    Pradhan, Debabrata

    A novel dendrite-free electrorefining of aluminum scrap was investigated by using AlCl3-1-Ethyl-3-methyl-imidazolium chloride (EMIC) ionic liquid electrolyte. Electrodeposition of aluminum were conducted on copper/aluminum cathodes at voltage of 1.5 V, temperatures (50-110°C), stirring rate (0-120 rpm), molar ratio (MR) of AlCl3:EMIC (1.25-2.0) and electrode surface modification (modified/unmodified). The study was focused to investigate the effect of process variables on deposit morphology, cathode current density and their role in production of dendrite-free aluminum. The deposits were characterized using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Modified electrodes and stirring rate (60 rpm) eliminate dendritic deposition by reducing cathode overpotential below critical overpotential (etacrt≈ -0.54 V) for dendrite formation. Pure aluminum (>99%) was deposited with current efficiency of 84-99%. Chronoamperometry study was conducted using AlCl3-EMIC and AlCl3-1-Butyl-3-methyl-imidazolium chloride (BMIC) (MR = 1.65:1) at 90°C to understand the mechanism of aluminum electrodeposition and find out diffusion parameter of electroactive species Al2C 7-. It was concluded that electrodeposition of aluminum is a diffusion controlled instantaneous nucleation process and diffusion coefficient of Al2C7- was found to be 5.2-6.9 x 10-11 m2/s and 2.2 x 10-11 m2/s for AlCl3-EMIC and AlCl3-BMIC, respectively. A novel production route of Ti-Al alloys was investigated using AlCl 3-BMIC-TiCl4 (MR = 2:1:0.019) and AlCl3-BMIC (MR = 2:1) electrolytes at constant voltages of 1.5-3.0 V and temperatures (70-125°C). Ti sheet was used as anode and cathode. Characterization of electrodeposited Ti-Al alloys was carried out using SEM, EDS, XRD and inductively coupled plasma-optical emission spectrometer (ICP-OES). Effect of voltage and temperature on cathode current density, current efficiency, composition and morphology of Ti

  20. Behavior of aluminum in aluminum welders and manufacturers of aluminum sulfate--impact on biological monitoring.

    PubMed

    Riihimäki, Vesa; Valkonen, Sinikka; Engström, Bernt; Tossavainen, Antti; Mutanen, Pertti; Aitio, Antero

    2008-12-01

    The suitability of determining aluminum in serum or urine as a form of biological monitoring was critically assessed. Airborne and internal aluminum exposure was assessed for 12 aluminum welders in a shipyard and 5 manufacturers of aluminum sulfate. Particles were characterized with X-ray diffraction and scanning electron microscopy. Aluminum in air and biological samples was analyzed using electrothermal atomic absorption spectrometry. Basic toxicokinetic features were inferred from the data. The mean 8-hour time-weighted average concentration of aluminum was 1.1 (range 0.008-6.1) mg/m(3) for the shipyard and 0.13 (range 0.02-0.5) mg/m(3) for the aluminum sulfate plant. Welding fume contained aluminum oxide particles <0.1 microm in diameter and their agglomerates, whereas bauxite and aluminum sulfate particles ranged from 1 to 10 microm in diameter. The shipyard welders' mean postshift serum and urinary concentrations of aluminum (S-Al and U-Al, respectively) were 0.22 and 3.4 micromol/l, respectively, and the aluminum sulfate workers' corresponding values were 0.13 and 0.58 micromol/l. Between two shifts, the welders' S-Al concentration decreased by about 50% (P<0.01), but their U-Al concentration did not change (P=0.64). No corresponding temporal changes occurred among the aluminum sulfate workers. After aluminum welding at the shipyard had ceased, the median S-Al concentration decreased by about 50% (P=0.007) within a year, but there was no change (P=0.75) in the corresponding U-Al concentration. About 1% of aluminum in welding fume appears to be rapidly absorbed from the lungs, whereas an undetermined fraction is retained and forms a lung burden. A higher fractional absorption of aluminum seems possible for aluminum sulfate workers without evidence of a lung burden. After rapid absorption, aluminum is slowly mobilized from the lung burden and dominates the S-Al and U-Al concentrations of aluminum welders. For kinetic reasons, S-Al or U-Al concentrations cannot

  1. Aluminum toxicity and albumin.

    PubMed

    Kelly, A T; Short, B L; Rains, T C; May, J C; Progar, J J

    1989-01-01

    During a study of priming solutions for extracorporeal membrane oxygenation (ECMO) in the intensive care nursery, it was discovered that those solutions using certain brands of 25% albumin contained aluminum levels within the toxic range. When the brand was changed to a brand known to have a lower aluminum (Al) content, a marked drop in priming solution Al levels was measured. The heat exchanger was examined as a possible source of soluble Al. No evidence of elevated Al levels was found in fluids perfusing this heat exchanger when compared with a stainless steel heat exchanger. The Al content of various blood products was evaluated along with various brands of 5% albumin and 25% albumin.

  2. Aluminum Alloy 7050 Extrusions.

    DTIC Science & Technology

    1977-03-01

    Artificial Aging Conditions 250 A-l Fatigue Crack Growth Data for C5A Extruded Panel, 7050-T7351X, L-T Orientation, R=0.1 254 A-2 Fatigue...cooldd aluminum and steel bottom blocks (Figure 2) were fabricated for use with this tooling. Metal was melted in a 10,000-lb capacity open- hearth ...time factor, effects of heating through this temperature range to the maximum artificial agirg temperature are additive. The solution of the

  3. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum. It...

  4. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum. It...

  5. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum. It...

  6. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum. It...

  7. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum. It...

  8. Aluminum Carbothermic Technology

    SciTech Connect

    Bruno, Marshall J.

    2005-03-31

    This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stages 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry. Major

  9. Extracting aluminum from dross tailings

    NASA Astrophysics Data System (ADS)

    Amer, A. M.

    2002-11-01

    Aluminum dross tailings, an industrial waste, from the Egyptian Aluminium Company (Egyptalum) was used to produce two types of alums: aluminum-sulfate alum [itAl2(SO4)3.12H2O] and ammonium-aluminum alum [ (NH 4)2SO4AL2(SO4)3.24H2O]. This was carried out in two processes. The first process is leaching the impurities using diluted H2SO4 with different solid/liquid ratios at different temperatures to dissolve the impurities present in the starting material in the form of solute sulfates. The second process is the extraction of aluminum (as aluminum sulfate) from the purifi ed aluminum dross tailings thus produced. The effects of temperature, time of reaction, and acid concentration on leaching and extraction processes were studied. The product alums were analyzed using x-ray diffraction and thermal analysis techniques.

  10. Carbon Nanotube Aluminum Matrix Composites

    DTIC Science & Technology

    2010-08-01

    replacement of air space with the polymer matrix. A similar affinity is not known to exist between CNTs and aluminum , where the wetting angle between...Carbon Nanotube Aluminum Matrix Composites by Brent J. Carey, Jerome T. Tzeng, and Shashi Karna ARL-TR-5252 August 2010...Nanotube Aluminum Matrix Composites Brent J. Carey, Jerome T. Tzeng, and Shashi Karna Weapons and Materials Research Directorate, ARL

  11. Laser welding of aluminum alloys

    SciTech Connect

    Leong, K.H.; Sabo, K.R.; Sanders, P.G.; Spawr, W.J.

    1997-03-01

    Recent interest in reducing the weight of automobiles to increase fuel mileage has focused attention on the use of aluminum and associated joining technologies. Laser beam welding is one of the more promising methods for high speed welding of aluminum. Consequently, substantial effort has been expended in attempting to develop a robust laser beam welding process. Early results have not been very consistent in the process requirements but more definitive data has been produced recently. This paper reviews the process parameters needed to obtain consistent laser welds on 5,000 series aluminum alloys and discusses the research necessary to make laser processing of aluminum a reality for automotive applications.

  12. Mineral of the month: aluminum

    USGS Publications Warehouse

    Plunkert, Patricia A.

    2005-01-01

    Aluminum is the second most abundant metallic element in Earth’s crust after silicon. Even so, it is a comparatively new industrial metal that has been produced in commercial quantities for little more than 100 years. Aluminum is lightweight, ductile, malleable and corrosion resistant, and is a good conductor of heat and electricity. Weighing about one-third as much as steel or copper per unit of volume, aluminum is used more than any other metal except iron. Aluminum can be fabricated into desired forms and shapes by every major metalworking technique to add to its versatility.

  13. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  14. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  15. Production of aluminum metal by electrolysis of aluminum sulfide

    SciTech Connect

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1984-08-07

    A method is disclosed for production of metallic aluminum by the electrolysis of A1/sub 2/S/sub 3/ at 700/sup 0/-800/sup 0/ C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  16. Photoemission study of tris(8-hydroxyquinoline) aluminum/aluminum oxide/tris(8-hydroxyquinoline) aluminum interface

    SciTech Connect

    Ding Huanjun; Zorba, Serkan; Gao Yongli; Ma Liping; Yang Yang

    2006-12-01

    The evolution of the interface electronic structure of a sandwich structure involving aluminum oxide and tris(8-hydroxyquinoline) aluminum (Alq), i.e. (Alq/AlO{sub x}/Alq), has been investigated with photoemission spectroscopy. Strong chemical reactions have been observed due to aluminum deposition onto the Alq substrate. The subsequent oxygen exposure releases some of the Alq molecules from the interaction with aluminum. Finally, the deposition of the top Alq layer leads to an asymmetry in the electronic energy level alignment with respect to the AlO{sub x} interlayer.

  17. Critical properties of aluminum.

    PubMed

    Bhatt, Divesh; Jasper, Ahren W; Schultz, Nathan E; Siepmann, J Ilja; Truhlar, Donald G

    2006-04-05

    Gibbs ensemble Monte Carlo calculations are performed using a validated embedded-atom potential to obtain the vapor-liquid coexistence curve for elemental aluminum in good agreement with available experimental data up to the boiling point. These calculations are then extended to make a reliable prediction of the critical temperature, pressure, and density of Al, which have previously been known only with very large uncertainties. This demonstrates the ability of modern simulations to predict fundamental physical properties that are extremely difficult to measure directly.

  18. Characterization of ultradispersed aluminum

    SciTech Connect

    Simpson, R.L.; Maienschein, J.L.; Swansiger, R.W.; Garcia, F.; Darling, D.H.

    1994-12-08

    Samples of ultradispersed Al were received, which were produced by electrically exploding Al wires in argon. These samples comprised very small particles that were not significantly oxidized and that were stable in air. Particle morphology were studied with SE, micropycnometry, and gas adsorption surface area. Composition were determined using various techniques, as were thermal stability and reaction exotherms. The inexplicable reports of an Al-Ar compound and of an exothermic reaction were not confirmed. The material is a stable, nonoxidized, small-particle, highly reactive form of aluminum that is of interest in energetic materials formulations.

  19. Aluminum nitride grating couplers.

    PubMed

    Ghosh, Siddhartha; Doerr, Christopher R; Piazza, Gianluca

    2012-06-10

    Grating couplers in sputtered aluminum nitride, a piezoelectric material with low loss in the C band, are demonstrated. Gratings and a waveguide micromachined on a silicon wafer with 600 nm minimum feature size were defined in a single lithography step without partial etching. Silicon dioxide (SiO(2)) was used for cladding layers. Peak coupling efficiency of -6.6 dB and a 1 dB bandwidth of 60 nm have been measured. This demonstration of wire waveguides and wideband grating couplers in a material that also has piezoelectric and elasto-optic properties will enable new functions for integrated photonics and optomechanics.

  20. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    SciTech Connect

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  1. Time exposure studies on stress corrosion cracking of aluminum 2014-T6, aluminum 7075-T651, and titanium 6Al-4V

    NASA Technical Reports Server (NTRS)

    Terrell, J.

    1972-01-01

    The effect of a constant applied stress in crack initiation of aluminum 2014-T6, 7075-T651 and titanium 6A1-4V has been investigated. Aluminum c-ring specimens (1-inch diameter) and u-band titanium samples were exposed continuously to a 3.5% NaCl solution (pH 6) and organic fluids of ethyl, methyl, and iso-propyl alcohol (reagent purity). Corrosive action was observed to begin during the first and second day of constant exposure as evidenced by accumulation of hydrogen bubbles on the surface of stressed aluminum samples. However, a similar observation was not noted for titanium stressed specimens. Results of this investigation seems to suggest that aluminum 2014-T6, aluminum 7075-T651 are susceptible to stress corrosion cracking in chloride solution (NaCl); while they (both alloys) seem to resist stress corrosion cracking in methyl alcohol, ethyl alcohol, iso-propyl alcohol, and demineralized distilled water. Titanium 6A1-4V showed some evidence of susceptibility to SCC in methanol, while no such susceptibility was exhibited in ethanol, iso-propyl alcohol and demineralized distilled water.

  2. Aluminum Nanoholes for Optical Biosensing.

    PubMed

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-07-09

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation--which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports--the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  3. Aluminum Nanoholes for Optical Biosensing

    PubMed Central

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-01-01

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs. PMID:26184330

  4. Aluminum-Lead Composite Materials

    NASA Astrophysics Data System (ADS)

    Kovtunov, A. I.; Khokhlov, Yu. Yu.; Myamin, S. V.

    2017-05-01

    A process of fabrication of aluminum-lead sliding bearings is suggested on the basis of impregnation of foam aluminum with lead or lead-base alloys. The results of tests of physical, mechanical and operating properties of the composite materials are presented.

  5. The Benefits of Aluminum Windows.

    ERIC Educational Resources Information Center

    Goyal, R. C.

    2002-01-01

    Discusses benefits of aluminum windows for college construction and renovation projects, including that aluminum is the most successfully recycled material, that it meets architectural glass deflection standards, that it has positive thermal energy performance, and that it is a preferred exterior surface. (EV)

  6. Lost-Soap Aluminum Casting.

    ERIC Educational Resources Information Center

    Mihalow, Paula

    1980-01-01

    Lost-wax casting in sterling silver is a costly experience for the average high school student. However, this jewelry process can be learned at no cost if scrap aluminum is used instead of silver, and soap bars are used instead of wax. This lost-soap aluminum casting process is described. (Author/KC)

  7. Measuring Hydrogen Properties in Aluminum

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.

    1982-01-01

    System in use at Langley Research Center measures concentration and diffusion coefficient of hydrogen in pure aluminum. Principal components are high-temperature ultra-high-vacuum furnace and quadrupole mass spectrometer. Quantities of hydrogen and other gases that evolve from heated metal are measured in real time and correlated with data on aluminum porosity.

  8. The Benefits of Aluminum Windows.

    ERIC Educational Resources Information Center

    Goyal, R. C.

    2002-01-01

    Discusses benefits of aluminum windows for college construction and renovation projects, including that aluminum is the most successfully recycled material, that it meets architectural glass deflection standards, that it has positive thermal energy performance, and that it is a preferred exterior surface. (EV)

  9. Lost-Soap Aluminum Casting.

    ERIC Educational Resources Information Center

    Mihalow, Paula

    1980-01-01

    Lost-wax casting in sterling silver is a costly experience for the average high school student. However, this jewelry process can be learned at no cost if scrap aluminum is used instead of silver, and soap bars are used instead of wax. This lost-soap aluminum casting process is described. (Author/KC)

  10. Primary Aluminum Plants Worldwide - 1998

    USGS Publications Warehouse

    1999-01-01

    The 1990 U.S. Bureau of Mines publication, Primary Aluminum Plants Worldwide, has been updated and is now available. The 1998 USGS edition of Primary Aluminum Plants Worldwide is published in two parts. Part I—Detail contains information on individual primary smelter capacity, location, ownership, sources of energy, and other miscellaneous information. Part II—Summary summarizes the capacity data by country

  11. Methyl nutrients, DNA methylation, and cardiovascular disease.

    PubMed

    Glier, Melissa B; Green, Timothy J; Devlin, Angela M

    2014-01-01

    Diet plays an important role in the development and prevention of cardiovascular disease (CVD), but the molecular mechanisms are not fully understood. DNA methylation has been implicated as an underlying molecular mechanism that may account for the effect of dietary factors on the development and prevention of CVD. DNA methylation is an epigenetic process that provides "marks" in the genome by which genes are set to be transcriptionally activated or silenced. Epigenomic marks are heritable but are also responsive to environmental shifts, such as changes in nutritional status, and are especially vulnerable during development. S-adenosylmethionine is the methyl group donor for DNA methylation and several nutrients are required for the production of S-adenosylmethionine. These methyl nutrients include vitamins (folate, riboflavin, vitamin B12, vitamin B6, choline) and amino acids (methionine, cysteine, serine, glycine). As such, imbalances in the metabolism of these nutrients have the potential to affect DNA methylation. The focus of this review is to provide an overview on the current understanding of the relationship between methyl nutrient status and DNA methylation patterns and the potential role of this interaction in CVD pathology. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Aluminum alloys for aerostructures

    SciTech Connect

    Staley, J.T.; Liu, J.; Hunt, W.H. Jr.

    1997-10-01

    Demands on the airframe industry have shifted over the years, but they have always moved in the direction of lower weight, higher damage tolerance, and longer-term durability. Up to the 1960s, the greatest need was for high strength to reduce weight. In the 1970s, higher fracture toughness and corrosion resistance were sought for enhanced damage tolerance and durability. In the early 1980s, the requirement for reduced weight was renewed, but by the late 1980s and early 1990s, durability became a concern again. Today`s focus is on materials that can help achieve low-cost manufacturing without sacrificing performance; future needs are likely to include both affordability and higher performance. This article describes the development of high-strength aluminum alloy materials that have satisfied past and current requirements, and identifies possible aluminum-intensive approaches that combine alternate design concepts and emerging materials technologies for low-cost, low-weight, damage-tolerant, and durable airframe structures of the future.

  13. Hot Extrusion of Aluminum Chips

    NASA Astrophysics Data System (ADS)

    Tekkaya, A. Erman; Güley, Volkan; Haase, Matthias; Jäger, Andreas

    The process of hot extrusion is a promising approach for the direct recycling of aluminum machining chips to aluminum profiles. The presented technology is capable of saving energy, as remelting of aluminum chips can be avoided. Depending on the deformation route and process parameters, the chip-based aluminum extradates showed mechanical properties comparable or superior to cast aluminum billets extruded under the same conditions. Using different metal flow schemes utilizing different extrusion dies the mechanical properties of the profiles extruded from chips can be improved. The energy absorption capacity of the profiles the rectangular hollow profiles extruded from chips and as-cast billets were analyzed using the drop hammer test set-up. The formability of the profiles extruded from chips and as-cast material were compared using tube bending tests in a three-roller-bending machine.

  14. Wettability of Aluminum on Alumina

    NASA Astrophysics Data System (ADS)

    Bao, Sarina; Tang, Kai; Kvithyld, Anne; Tangstad, Merete; Engh, Thorvald Abel

    2011-12-01

    The wettability of molten aluminum on solid alumina substrate has been investigated by the sessile drop technique in a 10-8 bar vacuum or under argon atmosphere in the temperature range from 1273 K to 1673 K (1000 °C to 1400 °C). It is shown that the reduction of oxide skin on molten aluminum is slow under normal pressures even with ultralow oxygen potential, but it is enhanced in high vacuum. To describe the wetting behavior of the Al-Al2O3 system at lower temperatures, a semiempirical calculation was employed. The calculated contact angle at 973 K (700 °C) is approximately 97 deg, which indicates that aluminum does not wet alumina at aluminum casting temperatures. Thus, a priming height is required for aluminum to infiltrate a filter. Wetting in the Al-Al2O3 system increases with temperature.

  15. Methyl salicylate overdose

    MedlinePlus

    Methyl salicylate (oil of wintergreen) is a chemical that smells like wintergreen. It is used in many over- ... muscle ache creams. It is related to aspirin. Methyl salicylate overdose occurs when someone swallows a dangerous amount ...

  16. [Influence of occupational aluminum exposure on cognitive function and glutamate receptor protein expression in workers].

    PubMed

    Ren, P; Li, R; Yuan, Y Z; Lu, X T; Niu, Q

    2017-02-20

    Objective: To investigate the influence of occupational aluminum exposure on cognitive function and glutamate receptor protein expression in peripheral blood lymphocytes in workers and the possibility of glutamate receptor being used as a biomarker for cognitive impairment in aluminum workers. Methods: From October to December, 2014, cluster sampling was performed to select 121 workers in aluminum electrolysis workshop as exposure group and 231 workers in thermoelectric workshop and logistics department as control group. Mini-Mental State Examination, clock drawing test, digit span test (DST) , verbal fluency test (VFT) , and Fuld Object-Memory (FOM) Evaluation were used to analyze cognitive function. Graphite furnace atomic absorption spectrophotometry was used to measure plasma aluminum level as an exposure indicator. Enzyme-linked immunosorbent assay was used to measure the content of glutamate receptor proteins in peripheral blood lymphocytes, including the subunits of N-methyl-D-aspartate receptor NR1, NR2A, and NR2B and metabotropic glutamate receptor 1 (mGluR1) . The correlation between cognitive function indices and the content of glutamate receptor proteins was analyzed. Results: There was no significant difference in plasma aluminum level between the control group and the exposure group (132.52±80.40 μg/L vs 182.88±72.32 μg/L, P>0.05) . According to the plasma aluminum level, the study subjects were divided into control group and low-, medium-, and high-level plasma aluminum groups, and there were significant differences in plasma aluminum level between these groups (all P<0.01) . The high-level plasma aluminum group had a significantly lower memory ability score than the control group and the low- and medium-level plasma aluminum groups (all P<0.05) . The high-level plasma aluminum group had lower DST and digital span forward (DSF) scores than the control group and the low-and medium-level plasma aluminum groups. The low-, medium-, and high

  17. Reduction of Viologen Bisphosphonate Dihalide with Aluminum Foil

    NASA Astrophysics Data System (ADS)

    Abeta Iyere, Peter

    1996-05-01

    An elegant undergraduate experiment similar to the popular "Iodine Clock Reaction" employs the reduction of methyl viologen by hydroxide ion. A major problem with the hydroxide reduction demonstration is that the mechanism is complicated by the existence of competing reaction pathways. It has been suggested that layered metal viologen phosphonates could be used in the design and construction of molecular materials. The active unit in the reversible photocoloration of these layered materials is the viologen bisphosphonate dihalide (VPX). During our study of these phoshponate systems, we discovered the reduction of viologen bisphosphonate dihalide by aluminum foil, mossy zinc, or magnesium turnings in dilute aqueous hydrofluoric acid solution. When we demonstrated this phenomenon with aluminum foil and VPBr in the classroom, the response of our students was enthusiastic. This demonstration can be used as prelaboratory discussion for an undergraduate kinetic experiment based on the same phenomenon.

  18. First principles pseudopotential calculations on aluminum and aluminum alloys

    SciTech Connect

    Davenport, J.W.; Chetty, N.; Marr, R.B.; Narasimhan, S.; Pasciak, J.E.; Peierls, R.F.; Weinert, M.

    1993-12-31

    Recent advances in computational techniques have led to the possibility of performing first principles calculations of the energetics of alloy formation on systems involving several hundred atoms. This includes impurity concentrations in the 1% range as well as realistic models of disordered materials (including liquids), vacancies, and grain boundaries. The new techniques involve the use of soft, fully nonlocal pseudopotentials, iterative diagonalization, and parallel computing algorithms. This approach has been pioneered by Car and Parrinello. Here the authors give a review of recent results using parallel and serial algorithms on metallic systems including liquid aluminum and liquid sodium, and also new results on vacancies in aluminum and on aluminum-magnesium alloys.

  19. Use of Aluminum in Air-Brazing Aluminum Oxide

    SciTech Connect

    Kim, Jin Yong Y.; Hardy, John S.; Weil, K. Scott

    2004-06-01

    A commercial aluminum foil was used to braze alumina plates in air. Although the outer surface of the aluminum oxidizes in air, the majority of the aluminum underneath remains unoxidized during brazing, allowing the ceramic pieces to be joined together with adequate strength. In fact, the joint exhibits a modest increase in bend strength when exposed to air at 850ºC for a prolonged period of time. Joint strength testing and subsequent examination of the fracture surfaces of the joints indicate that the joints are inherently ductile, even after long-term, high-temperature air exposure.

  20. Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity

    NASA Astrophysics Data System (ADS)

    Cho, Young-Joo; Park, In-Jun; Lee, Hyeok-Jae; Kim, Jung-Gu

    2015-03-01

    2N5 commercial grade aluminum (99.5% purity) leads to the lower aluminum-air battery performances than 4N high pure grade aluminum (99.99% purity) due to impurities itself and formed impurity complex layer which contained Fe, Si, Cu and others. The impurity complex layer of 2N5 grade Al declines the battery voltage on standby status. It also depletes discharge current and battery efficiency at 1.0 V which is general operating voltage of aluminum-air battery. However, the impurity complex layer of 2N5 grade Al is dissolved with decreasing discharge voltage to 0.8 V. This phenomenon leads to improvement of discharge current density and battery efficiency by reducing self-corrosion reaction. This study demonstrates the possibility of use of 2N5 grade Al which is cheaper than 4N grade Al as the anode for aluminum-air battery.

  1. Aluminum plasmonic photocatalysis

    PubMed Central

    Hao, Qi; Wang, Chenxi; Huang, Hao; Li, Wan; Du, Deyang; Han, Di; Qiu, Teng; Chu, Paul K.

    2015-01-01

    The effectiveness of photocatalytic processes is dictated largely by plasmonic materials with the capability to enhance light absorption as well as the energy conversion efficiency. Herein, we demonstrate how to improve the plasmonic photocatalytic properties of TiO2/Al nano-void arrays by overlapping the localized surface plasmon resonance (LSPR) modes with the TiO2 band gap. The plasmonic TiO2/Al arrays exhibit superior photocatalytic activity boasting an enhancement of 7.2 folds. The underlying mechanisms concerning the radiative energy transfer and interface energy transfer processes are discussed. Both processes occur at the TiO2/Al interface and their contributions to photocatalysis are evaluated. The results are important to the optimization of aluminum plasmonic materials in photocatalytic applications. PMID:26497411

  2. Aluminum cluster reactions

    SciTech Connect

    Leuchtner, R.E.; Harms, A.C.; Castleman, A.W. Jr. )

    1991-01-15

    Aluminum clusters, both anion and cation, are produced using laser vaporization and reacted under thermal conditions with oxygen in a flow tube reactor. An etching reaction is observed and bimolecular rate constants are reported for Al{sup +}{sub {ital n}}, {ital n}=1--33, and Al{sup {minus}}{sub {ital n}}, {ital n}=5--37. For certain clusters, namely Al{sup +}{sub 7}, Al{sup {minus}}{sub 13}, and Al{sup {minus}}{sub 23}, no apparent reactivity is observed (they are found to be produced from larger species). Interestingly, these correspond to predicted jellium shell closings with 20, 40, and 70 electrons, respectively. Besides these exceptions, and a small odd/even alternation in reaction rates, the overall reactivity is relatively insensitive to cluster size, and is found to range between about 1 {times} 10{sup {minus}12} and 5 {times} 10{sup {minus}12} cm{sup 3}/s.

  3. Aluminum: Industry of the future

    SciTech Connect

    1998-11-01

    For over a century, the US aluminum industry has led the global market with advances in technology, product development, and marketing. Industry leaders recognize both the opportunities and challenges they face as they head into the 21st century, and that cooperative R and D is key to their success. In a unique partnership, aluminum industry leaders have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to focus on innovative technologies that will help to strengthen the competitive position of the US aluminum industry and, at the same time, further important national goals. This industry-led partnership, the Aluminum Industry of the Future, promotes technologies that optimize the use of energy and materials in operations and reduce wastes and energy-related emissions. Led by The Aluminum Association, industry leaders began by developing a unified vision of future market, business, energy, and environmental goals. Their vision document, Partnerships for the Future, articulates a compelling vision for the next 20 years: to maintain and grow the aluminum industry through the manufacture and sale of competitively priced, socially desirable, and ecologically sustainable products. Continued global leadership in materials markets will require the combined resources of industry, universities, and government laboratories. By developing a unified vision, the aluminum industry has provided a framework for the next step in the Industries of the Future process, the development of a technology roadmap designed to facilitate cooperative R and D.

  4. Spray Rolling Aluminum Strip

    SciTech Connect

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  5. Aluminum toxicity. Hematological effects.

    PubMed

    Mahieu, S; del Carmen Contini, M; Gonzalez, M; Millen, N; Elias, M M

    2000-01-05

    Sequential effects of intoxication with aluminum hydroxide (Al) (80 mg/Kg body weight, i.p., three times a week), were studied on rats from weaning and up to 28 weeks. The study was carried out on hematological and iron metabolism-related parameters on peripheral blood, at the end of the 1st, 2nd, 3rd, 4th, 5th and 6th months of exposure. As it was described that hematotoxic effects of Al are mainly seen together with high levels of uremia, renal function was measured at the same periods. The animals treated developed a microcytosis and was accompanied by a decrease in mean corpuscular hemoglobin (MCH). Significantly lower red blood cell counts (RBC million/microl) were found in rats treated during the 1st month. These values matched those obtained for control rats during the 2nd month. From the 3rd month onwards, a significant increase was observed as compared to control groups, and the following values were obtained by the 6th month: (T) 10.0 +/- 0.3 versus (C) 8.7 +/- 0.2 (million/microl). Both MCH and mean corpuscular volume (MCV) were found to be significantly lower in groups treated from the 2nd month. At the end of the 6th month the following values were found: MCH (T) 13.3 +/- 0.1 versus (C) 16.9 +/- 0.3 (pg); MCV (T) 42.1 +/- 0.7 versus (C) 51.8 +/- 0.9 (fl). Al was found responsible for lower serum iron concentration levels and in the percentage of transferrin saturation. Thus, although microcytic anemia constitutes an evidence of chronic aluminum exposure, prolonged exposure could lead to a recovery of hematocrit and hemoglobin concentration values with an increase in red cell number. Nevertheless, both microcytosis and the decrease of MCH would persist. These modifications took place without changes being observed in the renal function during the observation period.

  6. Enrichment of methylated DNA by methyl-CpG immunoprecipitation.

    PubMed

    Sonnet, Miriam; Baer, Constance; Rehli, Michael; Weichenhan, Dieter; Plass, Christoph

    2013-01-01

    Normal DNA methylation is an epigenetic modification required for proper development. Aberrant DNA methylation, in contrast, is frequently observed in many different malignancies including leukemias and lymphomas. Global DNA methylation profiling addresses the methylated sequences (methylome) of patient genomes to identify disease-specific methylation patterns. Workload in methylome analyses can be considerably reduced by methylome enrichment using proteins or antibodies with high affinity to methylated DNA. Methyl-CpG Immunoprecipitation (MCIp) employs an immobilized recombinant human methyl-CpG binding domain protein 2, MBD2, which binds methylated CpGs in double-stranded DNA. Elution with increasing salt concentrations allows the fractionated enrichment of different degrees of methylation.

  7. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  8. Non-Chromate Aluminum Pretreatments, Phase 2

    DTIC Science & Technology

    2004-09-01

    September 2004 78 ALUMINUM AL2024-T3 ALUMINUM AL7075 -T6 PNL ID 4 Control 5...ALUMINUM - AL2024-T3 192 ALUMINUM - AL7075 -T6 112 Table 5.13: AMCOM – NAVAIR PANEL TEST MATRIX OCTOBER 2003 NCAP Phase II Interim Report

  9. Subsurface Aluminum Nitride Formation in Iron-Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Bott, June H.

    Transformation-induced plasticity (TRIP) steels containing higher amounts of aluminum than conventional steels are ideal for structural automotive parts due to their mechanical properties. However, the aluminum tends to react with any processing environment at high temperatures and therefore presents significant challenges during manufacturing. One such challenge occurs during secondary cooling, reheating, and hot-rolling and is caused by a reaction with nitrogen-rich atmospheres wherein subsurface aluminum nitride forms in addition to internal and external oxides. The nitrides are detrimental to mechanical properties and cause surface cracks. It is important to understand how these nitrides and oxides form and their consequences for the quality of steel products. This study looks at model iron-aluminum (up to 8 wt.% aluminum) alloys and uses confocal laser scanning microscopy, x-ray diffraction, scanning electron microscopy with energy dispersive x-ray spectrometry, and transmission electron microscopy to study the effect of various conditions on the growth and development of these precipitates in a subsurface oxygen-depleted region. By using model alloys and controlling the experimental atmosphere, this study is able to understand some of the more fundamental materials science behind aluminum nitride formation in aluminum-rich iron alloys and the relationship between internal nitride and oxide precipitation and external oxide scale morphology and composition. The iron-aluminum alloys were heated in N2 atmospheres containing oxygen impurities. It was found that nitrides formed when bulk aluminum content was below 8 wt.% when oxygen was sufficiently depleted due to the internal oxidation. In the samples containing 1 wt.% aluminum, the depth of the internal oxide and nitride zones were in agreement with a diffusion-based model. Increasing aluminum content to 3 and 5 wt% had the effects of modifying the surface-oxide scale composition and increasing its continuity

  10. [Microbiological corrosion of aluminum alloys].

    PubMed

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples.

  11. 75 FR 70689 - Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum-Greenwood Forge Division; Currently...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... Employment and Training Administration Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum- Greenwood... Aluminum Fabricated Products, LLC, Kaiser Aluminum-Greenwood Forge Division, including on- site leased... are engaged in the production of aluminum alloy forgings. Information shows that on July 28, 2010...

  12. Electrolyte treatment for aluminum reduction

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-01-01

    A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

  13. Chrome - Free Aluminum Coating System

    NASA Technical Reports Server (NTRS)

    Bailey, John H.; Gugel, Jeffrey D.

    2010-01-01

    This slide presentation concerns the program to qualify a chrome free coating for aluminum. The program was required due to findings by OSHA and EPA, that hexavalent chromium, used to mitigate corrosion in aerospace aluminum alloys, poses hazards for personnel. This qualification consisted of over 4,000 tests. The tests revealed that a move away from Cr+6, required a system rather than individual components and that the maximum corrosion protection required pretreatment, primer and topcoat.

  14. Ballistic Evaluation of 7085 Aluminum

    DTIC Science & Technology

    2012-03-01

    tempers of aluminum alloy (AA) 7085 produced by Alcoa . The tempers included a high-strength variant, 7085-T7E01, for utilization as an appliqué against... Alcoa ) for providing the aluminum plates for testing and Donald Little (U.S. Army Research Laboratory, Armor Mechanisms Branch), Phil Davis...investigated for armor utilization by Alcoa . Two tempers were developed, a high-strength variant, 7085-T7E01, for utilization as an appliqué against

  15. Ballistic Evaluation of 6055 Aluminum

    DTIC Science & Technology

    2015-09-01

    alloy (AA) 6055-T651 produced by Alcoa as part of a Defense Acquisition Challenge Program. Ballistic evaluation was performed using armor-piercing...compared to other ballistic-grade aluminum alloys , namely AA6061 and AA7039. The results of these experiments were used to derive the acceptance tables...as those of M2 Bradley Infantry Fighting Vehicles. Also in 2012, the Aluminum Association assigned a new 6XXX-series alloy designation to Alcoa for

  16. Ballistic Evaluation of 2060 Aluminum

    DTIC Science & Technology

    2016-05-24

    aluminum alloy (AA) 2060-T8 produced by Alcoa as part of a Defense Acquisition Challenge Program. Ballistic evaluation was performed using armor-piercing...included in the updated military specification MIL-DTL-32341A (MR). 15. SUBJECT TERMS aluminum, armor, V50, 2060, 6055, Defense Acquisition Challenge ...BLANK. Approved for public release; distribution is unlimited. 1 1. Introduction In 2012 a Defense Acquisition Challenge (DAC) program proposal

  17. A Virtual Aluminum Reduction Cell

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Zhou, Chenn Q.; Wu, Bing; Li, Jie

    2013-11-01

    The most important component in the aluminum industry is the aluminum reduction cell; it has received considerable interests and resources to conduct research to improve its productivity and energy efficiency. The current study focused on the integration of numerical simulation data and virtual reality technology to create a scientifically and practically realistic virtual aluminum reduction cell by presenting complex cell structures and physical-chemical phenomena. The multiphysical field simulation models were first built and solved in ANSYS software (ANSYS Inc., Canonsburg, PA, USA). Then, the methodology of combining the simulation results with virtual reality was introduced, and a virtual aluminum reduction cell was created. The demonstration showed that a computer-based world could be created in which people who are not analysis experts can see the detailed cell structure in a context that they can understand easily. With the application of the virtual aluminum reduction cell, even people who are familiar with aluminum reduction cell operations can gain insights that make it possible to understand the root causes of observed problems and plan design changes in much less time.

  18. Neurobehavioral performance in aluminum welders.

    PubMed

    Bast-Pettersen, R; Skaug, V; Ellingsen, D; Thomassen, Y

    2000-02-01

    Twenty aluminum welders (mean age 33 years; range 21-52), who had been exposed to aluminum for an average of 8.1 years (range 2-21), were tested for tremor and reaction time and screened for neuropsychiatric symptoms in a cross-sectional study. The welders' median urinary aluminum concentration was 1.5 micromol/L (range 0. 7-4.8). Aluminum in air, measured inside the respiratory protection, was 0.9 mg/m(3) (range 0.6-3.8). The welders were compared with twenty construction workers matched for age. Welders reported more symptoms than referents did (median 2 vs. 1; P=0.047). Although the welders as a group performed better than the referents on a tremor test, years of exposure, but not age, was predictive of poorer performance. The welders' reaction times were rapid by clinical standards (mean simple reaction time (SRT): 221 milliseconds; mean continuous performance test (CPT): 364 milliseconds). Although, as a group, they performed better than the referents, there was a statistically significant relation between longer reaction times and aluminum in air (air-Al). The relations between hand steadiness and years exposed, and between reaction time and air-Al, could indicate slight effects from exposure to aluminum. The possibility of selection of workers with high manual skills into welding work and a possible job-related training effect, might partly serve to explain the good performance among the welders. Copyright 2000 Wiley-Liss, Inc.

  19. Optomechanics of Single Aluminum Nanodisks.

    PubMed

    Su, Man-Nung; Dongare, Pratiksha D; Chakraborty, Debadi; Zhang, Yue; Yi, Chongyue; Wen, Fangfang; Chang, Wei-Shun; Nordlander, Peter; Sader, John E; Halas, Naomi J; Link, Stephan

    2017-04-12

    Aluminum nanostructures support tunable surface plasmon resonances and have become an alternative to gold nanoparticles. Whereas gold is the most-studied plasmonic material, aluminum has the advantage of high earth abundance and hence low cost. In addition to understanding the size and shape tunability of the plasmon resonance, the fundamental relaxation processes in aluminum nanostructures after photoexcitation must be understood to take full advantage of applications such as photocatalysis and photodetection. In this work, we investigate the relaxation following ultrafast pulsed excitation and the launching of acoustic vibrations in individual aluminum nanodisks, using single-particle transient extinction spectroscopy. We find that the transient extinction signal can be assigned to a thermal relaxation of the photoexcited electrons and phonons. The ultrafast heating-induced launching of in-plane acoustic vibrations reveals moderate binding to the glass substrate and is affected by the native aluminum oxide layer. Finally, we compare the behavior of aluminum nanodisks to that of similarly prepared and sized gold nanodisks.

  20. The determination of aluminum, copper, iron, and lead in glycol formulations by atomic absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.

  1. Managing aluminum phosphide poisonings.

    PubMed

    Gurjar, Mohan; Baronia, Arvind K; Azim, Afzal; Sharma, Kalpana

    2011-07-01

    Aluminum phosphide (AlP) is a cheap, effective and commonly used pesticide. However, unfortunately, it is now one of the most common causes of poisoning among agricultural pesticides. It liberates lethal phosphine gas when it comes in contact either with atmospheric moisture or with hydrochloric acid in the stomach. The mechanism of toxicity includes cellular hypoxia due to the effect on mitochondria, inhibition of cytochrome C oxidase and formation of highly reactive hydroxyl radicals. The signs and symptoms are nonspecific and instantaneous. The toxicity of AlP particularly affects the cardiac and vascular tissues, which manifest as profound and refractory hypotension, congestive heart failure and electrocardiographic abnormalities. The diagnosis of AlP usually depends on clinical suspicion or history, but can be made easily by the simple silver nitrate test on gastric content or on breath. Due to no known specific antidote, management remains primarily supportive care. Early arrival, resuscitation, diagnosis, decrease the exposure of poison (by gastric lavage with KMnO(4), coconut oil), intensive monitoring and supportive therapy may result in good outcome. Prompt and adequate cardiovascular support is important and core in the management to attain adequate tissue perfusion, oxygenation and physiologic metabolic milieu compatible with life until the tissue poison levels are reduced and spontaneous circulation is restored. In most of the studies, poor prognostic factors were presence of acidosis and shock. The overall outcome improved in the last decade due to better and advanced intensive care management.

  2. Managing aluminum phosphide poisonings

    PubMed Central

    Gurjar, Mohan; Baronia, Arvind K; Azim, Afzal; Sharma, Kalpana

    2011-01-01

    Aluminum phosphide (AlP) is a cheap, effective and commonly used pesticide. However, unfortunately, it is now one of the most common causes of poisoning among agricultural pesticides. It liberates lethal phosphine gas when it comes in contact either with atmospheric moisture or with hydrochloric acid in the stomach. The mechanism of toxicity includes cellular hypoxia due to the effect on mitochondria, inhibition of cytochrome C oxidase and formation of highly reactive hydroxyl radicals. The signs and symptoms are nonspecific and instantaneous. The toxicity of AlP particularly affects the cardiac and vascular tissues, which manifest as profound and refractory hypotension, congestive heart failure and electrocardiographic abnormalities. The diagnosis of AlP usually depends on clinical suspicion or history, but can be made easily by the simple silver nitrate test on gastric content or on breath. Due to no known specific antidote, management remains primarily supportive care. Early arrival, resuscitation, diagnosis, decrease the exposure of poison (by gastric lavage with KMnO4, coconut oil), intensive monitoring and supportive therapy may result in good outcome. Prompt and adequate cardiovascular support is important and core in the management to attain adequate tissue perfusion, oxygenation and physiologic metabolic milieu compatible with life until the tissue poison levels are reduced and spontaneous circulation is restored. In most of the studies, poor prognostic factors were presence of acidosis and shock. The overall outcome improved in the last decade due to better and advanced intensive care management. PMID:21887030

  3. [DNA methylation and epigenetics].

    PubMed

    Vaniushin, B F

    2006-09-01

    In eukaryotic cells, nuclear DNA is subject to enzymatic methylation with the formation of 5-methylcytosine residues, mostly within the CG and CNG sequences. In plants and animals this DNA methylation is species-, tissue-, and organelle-specific. It changes (decreases) with age and is regulated by hormones. On the other hand, genome methylation can control hormonal signal. Replicative and post-replicative DNA methylation types are distinguished. They are mediated by multiple DNA methyltransferases with different site-specificity. Replication is accompanied by the appearance of hemimethylated DNA sites. Pronounced asymmetry of the DNA strand methylation disappears to the end of the cell cycle. A model of methylation-regulated DNA replication is proposed. DNA methylation controls all genetic processes in the cell (replication, transcription, DNA repair, recombination, and gene transposition). It is the mechanism of cell differentiation, gene discrimination and silencing. In animals, suppression of DNA methylation stops development (embryogenesis), switches on apoptosis, and is usually lethal. Disruption of DNA methylation pattern results in the malignant cell transformation and serves as one of the early diagnostic features of carcinogenesis. In malignant cell the pattern of DNA methylation, as well as the set of DNA methyltransferase activities, differs from that in normal cell. In plants inhibition of DNA methylation is accompanied by the induction of seed storage and florescence genes. In eukaryotes one and the same gene can be simultaneously methylated both at cytosine and adenine residues. It can be thus suggested, that the plant cell contains at least two different, and probably, interdependent systems of DNA methylation. The first eukaryotic adenine DNA methyltransferase was isolated from plants. This enzyme methylates DNA with the formation of N6-methyladenine residues in the sequence TGATCA (TGATCA-->TGm6ATCA). Plants possess AdoMet-dependent endonucleases

  4. Histone Arginine Methylation

    PubMed Central

    Lorenzo, Alessandra Di; Bedford, Mark T.

    2012-01-01

    Arginine methylation is a common posttranslational modification (PTM). This type of PTM occurs on both nuclear and cytoplasmic proteins, and is particularly abundant on shuttling proteins. In this review, we will focus on one aspect of this PTM: the diverse roles that arginine methylation of the core histone tails play in regulating chromatin function. A family of nine protein arginine methyltransferases (PRMTs) catalyze methylation reactions, and a subset target histones. Importantly, arginine methylation of histone tails can promote or prevent the docking of key transcriptional effector molecules, thus playing a central role in the orchestration of the histone code. PMID:21074527

  5. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations;

    SciTech Connect

    Not Available

    2006-04-01

    DOE Industrial Technologies Program case study describes the savings possible if Commonwealth Aluminum (now Aleris Rolled Products) makes improvements noted in energy assessments at two aluminum mills.

  6. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations

    SciTech Connect

    2006-04-01

    DOE Industrial Technologies Program case study describes the savings possible if Commonwealth Aluminum (now Aleris Rolled Products) makes improvements noted in energy assessments at two aluminum mills.

  7. Low-aluminum content iron-aluminum alloys

    SciTech Connect

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  8. Weld Repair of Thin Aluminum Sheet

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Mitchell, M. J.

    1986-01-01

    Weld repairing of thin aluminum sheets now possible, using niobium shield and copper heat sinks. Refractory niobium shield protects aluminum adjacent to hole, while copper heat sinks help conduct heat away from repair site. Technique limits tungsten/inert-gas (TIG) welding bombardment zone to melt area, leaving surrounding areas around weld unaffected. Used successfully to repair aluminum cold plates on Space Shuttle, Commercial applications, especially in sealing fractures, dents, and holes in thin aluminum face sheets or clad brazing sheet in cold plates, heat exchangers, coolers, and Solar panels. While particularly suited to thin aluminum sheet, this process also used in thicker aluminum material to prevent surface damage near weld area.

  9. Aluminum Metal Matrix Composites

    SciTech Connect

    Hunt, Warren; Herling, Darrell R.

    2004-02-01

    Metal matrix composites comprise a relatively wide range of materials defined by the metal matrix, reinforcement type, and reinforcement geometry. In the area of the matrix, most metallic systems have been explored for use in metal matrix composites, including Al, Be, Mg, Ti, Fe, Ni, Co, and Ag. By far, the largest usage is in aluminum matrix composites. From a reinforcement perspective, the materials used are typically ceramics since they provide a very desirable combination of stiffness, strength, and relatively low density. Candidate reinforcement materials include SiC, Al2O3, B4C, TiC, TiB2, graphite, and a number of other ceramics. In addition, there has been work on metallic materials as reinforcements, notably W and steel fibers. The morphology of the reinforcement material is another variable of importance in metal matrix composites. The three major classes of reinforcement morphology are continuous fiber, chopped fiber or whisker, and particulate. Typically, the selection of the reinforcement morphology is determined by the desired property/cost combination. Generally, continuous fiber reinforced MMCs provide the highest properties in the direction of the fiber orientation but are the most expensive. Chopped fiber and whisker reinforced materials can produce significant property improvements in the plane or direction of their orientation, at somewhat lower cost. Particulates provide a comparatively more moderate but isotropic increase in properties and are typically available at the lowest cost. By adding to the three variables of metallic matrix, reinforcement material, and reinforcement morphology the further options of reinforcement volume fraction, orientation, and matrix alloy composition and heat treatment, it is apparent that there is a very wide range of available material combinations and resultant properties. This paper will focus on how MMCs have been applied in specific application areas.

  10. Scaleable Clean Aluminum Melting Systems

    SciTech Connect

    Han, Q.; Das, S.K.

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  11. Chemical synthesis of aluminum nanoparticles

    NASA Astrophysics Data System (ADS)

    Ghanta, Sekher Reddy; Muralidharan, Krishnamurthi

    2013-06-01

    An alternate synthetic route has been described for the production of aluminum nanoparticles (Al-NPs). These Al-NPs were obtained through a reduction of aluminum acetylacetonate [Al(acac)3] by lithium aluminum hydride (LiAlH4) in mestitylene at 165 °C. The side products were removed by repeated washing with dry, ice cold methanol and the reaction mixture was filtered to obtain gray-colored Al-NPs. The synthesized nanoparticles were characterized by Powder X-ray diffraction pattern and 27Al-MAS-NMR spectrum. The X-ray diffraction pattern confirmed the formation of face-centered cubic (fcc) form of aluminum. The size and morphology were investigated by scanning electron microscope and transmission electron microscope which showed particle of varying shapes with size ranging from 50 to 250 nm. The weight loss from the nanoparticles was studied by thermo gravimetric analysis which indicated that the nanoparticles were tightly bound with an unknown amorphous organic residue which cannot be removed by simple washing. The carbonaceous residue might be outcome of the decomposition of acac ligand which was responsible in stabilizing aluminum nanoparticles.

  12. Aluminum industry applications for OTEC

    SciTech Connect

    Jones, M.S.; Leshaw, D.; Sathyanarayana, K.; Sprouse, A.M.; Thiagarajan, V.

    1980-12-01

    The objective of the program is to study the integration issues which must be resolved to realize the market potential of ocean thermal energy conversion (OTEC) power for the aluminum industry. The study established, as a baseline, an OTEC plant with an electrical output of 100 MWe which would power an aluminum reduction plant. The reduction plant would have a nominal annual output of about 60,000 metric tons of aluminum metal. Three modes of operation were studied, viz: 1. A reduction plant on shore and a floating OTEC power plant moored offshore supplying energy by cable. 2. A reduction plant on shore and a floating OTEC power plant at sea supplying energy by means of an ''energy bridge.'' 3. A floating reduction plant on the same platform as the OTEC power plant. For the floating OTEC/aluminum plantship, three reduction processes were examined. 1. The conventional Hall process with prebaked anodes. 2. The drained cathode Hall cell process. 3. The aluminum chloride reduction process.

  13. Thermophysical Properties of Liquid Aluminum

    NASA Astrophysics Data System (ADS)

    Leitner, Matthias; Leitner, Thomas; Schmon, Alexander; Aziz, Kirmanj; Pottlacher, Gernot

    2017-06-01

    Ohmic pulse-heating with sub-microsecond time resolution is used to obtain thermophysical properties for aluminum in the liquid phase. Measurement of current through the sample, voltage drop across the sample, surface radiation, and volume expansion allow the calculation of specific heat capacity and the temperature dependencies of electrical resistivity, enthalpy, and density of the sample at melting and in the liquid phase. Thermal conductivity and thermal diffusivity as a function of temperature are estimated from resistivity data using the Wiedemann-Franz law. Data for liquid aluminum obtained by pulse-heating are quite rare because of the low melting temperature of aluminum with 933.47 K (660.32 °C), as the fast operating pyrometers used for the pulse-heating technique with rise times of about 100 ns generally might not be able to resolve the melting plateau of aluminum because they are not sensitive enough for such low temperature ranges. To overcome this obstacle, we constructed a new, fast pyrometer sensitive in this temperature region. Electromagnetic levitation, as the second experimental approach used, delivers data for surface tension (this quantity is not available by means of the pulse-heating technique) and for density of aluminum as a function of temperature. Data obtained will be extensively compared to existing literature data.

  14. PREPARATION OF DIBASIC ALUMINUM NITRATE

    DOEpatents

    Gresky, A.T.; Nurmi, E.O.; Foster, D.L.; Wischow, R.P.; Savolainen, J.E.

    1960-04-01

    A method is given for the preparation and recovery of basic aluminum nltrates having an OH: Al ratio of at least two, comprising two steps. First, metallic aluminum is dissolved in aqueous Al(NO/sub 3/)/sub 3/, in the presence of a small quantity of elemental or ionic mercury, to increase its Al: NO/sub 3/ ratio into the range 1 to 1.2. The resulting aqueous solution is then added to an excess of a special organic solvent, typically a mixture of five parts methanol and six parts diethyl ether, whereupon the basic aluminum nitrate, e.g. Al/sub 6/(OH)/sub 13/-(NO/sub 3/)/sub 5/, recoverably precipitates.

  15. Recycling of aluminum salt cake

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Karvelas, D.E.

    1991-12-01

    The secondary aluminum industry generates more than 110 {times} 10{sup 3} tons of salt-cake waste every year. This waste stream contains about 3--5% aluminum, 15--30% aluminum oxide, 30--40% sodium chloride, and 20--30% potassium chloride. As much as 50% of the content of this waste is combined salt (sodium and potassium chlorides). Salt-cake waste is currently disposed of in conventional landfills. In addition, over 50 {times} 10{sup 3} tons of black dross that is not economical to reprocess a rotary furnace for aluminum recovery ends up in landfills. The composition of the dross is similar to that of salt cake, except that it contains higher concentrations of aluminum (up to 20%) and correspondingly lower amounts of salts. Because of the high solubility of the salts in water, these residues, when put in landfills, represent a potential source of pollution to surface-water and groundwater supplies. The increasing number of environmental regulations on the generation and disposal of industrial wastes are likely to restrict the disposal of these salt-containing wastes in conventional landfills. Processes exist that employ the dissolution and recovery of the salts from the waste stream. These wet-processing methods are economical only when the aluminum concentration in that waste exceeds about 10%. Argonne National Laboratory (ANL) conducted a study in which existing technologies were reviewed and new concepts that are potentially more cost-effective than existing processes were developed and evaluated. These include freeze crystallization, solvent/antisolvent extraction, common-ion effect, high-pressure/high-temperature process, and capillary-effect systems. This paper presents some of the technical and economic results of the aforementioned ANL study.

  16. Dissolution and Separation of Aluminum and Aluminosilicates

    DOE PAGES

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; ...

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as amore » function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.« less

  17. Inert Reassessment Document for Aluminum Isopropoxide

    EPA Pesticide Factsheets

    Aluminum isopropylate is used to make aluminum soaps, paints, waterproofingfinishes for textiles, and other chemicals. It is used as a dehydrating agent, a viscosity adjustor forvarnishes, an intermediate for pharmaceuticals, and as an antitranspirant.

  18. Dissolution and Separation of Aluminum and Aluminosilicates

    SciTech Connect

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; Felker, Leslie Kevin; Mattus, Catherine H.

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  19. The effect of zinc on the aluminum anode of the aluminum-air battery

    NASA Astrophysics Data System (ADS)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  20. Advances in aluminum casting technology

    SciTech Connect

    Tiryakioglu, M.; Campbell, J.

    1998-01-01

    This symposium focuses on the improvements of aluminum casting quality and reliability through a better understanding of processes and process variables, and explores the latest innovations in casting-process design that allow increasing use of the castings to replace complex assemblies and heavy steel and cast-iron components in aerospace and automotive applications. Presented are 35 papers by international experts in the various aspects of the subject. The contents include: Semisolid casting; Computer-aided designing of molds and castings; Casting-process modeling; Aluminum-matrix composite castings; HIPing of castings; Progress in the US car project; Die casting and die design; and Solidification and properties.

  1. Aluminum-carbon composite electrode

    DOEpatents

    Farahmandi, C. Joseph; Dispennette, John M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  2. Aluminum-carbon composite electrode

    DOEpatents

    Farahmandi, C.J.; Dispennette, J.M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg. 3 figs.

  3. Mineral resource of the month: aluminum

    USGS Publications Warehouse

    Bray, E. Lee

    2012-01-01

    The article offers information on aluminum, a mineral resource which is described as the third-most abundant element in Earth's crust. According to the article, aluminum is the second-most used metal. Hans Christian Oersted, a Danish chemist, was the first to isolate aluminum in the laboratory. Aluminum is described as lightweight, corrosion-resistant and an excellent conductor of electricity and heat.

  4. RECOVERY OF ALUMINUM FROM FISSION PRODUCTS

    DOEpatents

    Blanco, R.E.; Higgins, I.R.

    1962-11-20

    A method is given for recovertng aluminum values from aqueous solutions containing said values together with fission products. A mixture of Fe/sub 2/O/ sub 3/ and MnO/sub 2/ is added to a solution containing aluminum and fission products. The resulting aluminum-containing supernatant is then separated from the fission product-bearing metal oxide precipitate and is contacted with a cation exchange resin. The aluminum sorbed on the resin is then eluted and recovered. (AEC)

  5. All-Aluminum Transverse Platelet Injector

    DTIC Science & Technology

    1978-01-25

    to the low density material. The 1xx$nafter described lightweight platelet injector includes an aluminum transverse platelet faceplate joined to an... aluminum body 15 with the electron beam 20 welds 21. This allows the fabrication of an all aluminum transverse platelet iinjector capable of replacing the...1 87 1-93 Serial No _ 872,?193 Filing 1)’ 25Jan 78( * Inventg/ Samuel E./Adair --: i - ------ NOC E . . . / All- Aluminum Transverse Platelet

  6. Blood aluminum levels as a function of aluminum intake from drinking water

    SciTech Connect

    Turnquest, E.M.; Hallenbeck, W.H. )

    1991-04-01

    Questions regarding the health effects of aluminum are still unanswered. The speciation, pharmacokinetics, and toxicity of aluminum are not well understood. Furthermore, no animal or human studies of aluminum absorption have been reported using drinking water as the source of aluminum. The following experiment attempted to reach a better understanding of the bioavailability of aluminum from drinking water. Its objective was to determine whether or not increased aluminum ingestion from drinking water would be reflected in increased serum and whole blood aluminum levels in the baboon experimental model.

  7. 21 CFR 172.310 - Aluminum nicotinate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum nicotinate. 172.310 Section 172.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be safely...

  8. 21 CFR 73.2645 - Aluminum powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Aluminum powder. 73.2645 Section 73.2645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications. The color additive aluminum powder shall conform in identity and specifications to the requirements of...

  9. 21 CFR 73.2645 - Aluminum powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Aluminum powder. 73.2645 Section 73.2645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications. The color additive aluminum powder shall conform in identity and specifications to the requirements of...

  10. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  11. 21 CFR 172.310 - Aluminum nicotinate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum nicotinate. 172.310 Section 172.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be safely...

  12. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  13. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  14. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  15. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  16. 21 CFR 73.2645 - Aluminum powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.2645 Section 73.2645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications. The color additive aluminum powder shall conform in identity and specifications to the requirements of...

  17. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  18. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  19. 21 CFR 172.310 - Aluminum nicotinate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum nicotinate. 172.310 Section 172.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be safely used as a source of niacin in...

  20. 75 FR 80527 - Aluminum Extrusions From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... COMMISSION Aluminum Extrusions From China AGENCY: United States International Trade Commission. ACTION... retarded, by reason of subsidized and less-than-fair-value imports from China of aluminum extrusions... contained in Aluminum Extrusions From the People's Republic of China: Notice of Preliminary Determination of...

  1. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  2. 21 CFR 73.2645 - Aluminum powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Aluminum powder. 73.2645 Section 73.2645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications. The color additive aluminum powder shall conform in identity and specifications to the requirements of...

  3. 21 CFR 73.2645 - Aluminum powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Aluminum powder. 73.2645 Section 73.2645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications. The color additive aluminum powder shall conform in identity and specifications to the requirements of...

  4. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  5. 21 CFR 172.310 - Aluminum nicotinate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum nicotinate. 172.310 Section 172.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be safely...

  6. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance is generally recognized as safe when used in...

  7. [Cognitive disorders among welders exposed to aluminum].

    PubMed

    Giorgianni, C; Faranda, M; Brecciaroli, R; Beninato, G; Saffioti, G; Muraca, G; Congia, P; Catanoso, R; Agostani, G; Abbate, C

    2003-01-01

    In order to evaluate the relationship between exposure to aluminum and cognitive functions, a group of 50 aluminum welders underwent to the following neuropsychological tests: Wechsler Memory Scale, Color-Word Test and Raven Progressives Matrices test. The results of the tests showed a reduction of memory, of concentration and a slight reduction of attention. The authors conclude that aluminum exposure leads cognitive changes.

  8. Deposition of Amorphous Aluminum Alloys as a Replacement for Aluminum Cladding

    DTIC Science & Technology

    2009-02-05

    1 DEPOSITION OF AMORPHOUS ALUMINUM ALLOYS AS A REPLACEMENT FOR ALUMINUM CLADDING US Army Corrosion Summit February 3-5, 2009 Clearwater, FL Ben...REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Depostion of Amorphous Aluminum Alloys as a Replacement for Aluminum ...Tantalum for gun barrel applications WC-Co-Cr for landing gear ID Co-Cr-Al-Y bond coat for thermal barrier system Pure aluminum for Cd replacement

  9. Recovering aluminum from aluminum dross in a DC electric-arc rotary furnace

    NASA Astrophysics Data System (ADS)

    Tzonev, Tz.; Lucheva, B.

    2007-11-01

    The recycling of aluminum scrap and dross yields significant economic and energy savings, as well environmental benefits. The recovery of aluminum depends on many factors. The aim of this work is to experimentally investigate aluminum recovery under different conditions. In this study, aluminum dross was processed in a direct-current electric-arc rotary furnace. The presence of crushing refractory bodies during processing was found to increase the degree of aluminum recovery by about ten percent.

  10. Polyphosphate gel/methyl orange supramolecular composites

    NASA Astrophysics Data System (ADS)

    Galembeck, André; Silva, Sidicleia B. C.; Silva, José Augusto P.; Del Nero, J.

    2004-01-01

    The aims of this work were to investigate theoretically the optical properties of methyl orange (MO) and the synthesis of new supramolecular composites based on the incorporation of this dye in an aluminum polyphosphate gel network. The theoretical methodology was based in semiempirical (AM1 and INDO/S-CI) and ab initio (3-21G*) methods. Our results reveal the existence of different electronic patterns for the acidic and basic forms of these molecules. Also, we present a theoretical spectroscopic study for the molecules including interactions with water molecules. MO was successfully incorporated in its acidic form within the host matrix, leading to pink-red transparent self-standing films. The dye could be converted to its basic form upon exposure to ammonia vapor. The spectrum of MO basic form within the gel network differs from its behavior in aqueous solution.

  11. Aluminum alloys with improved strength

    NASA Technical Reports Server (NTRS)

    Deiasi, R.; Adler, P.

    1975-01-01

    Mechanical strength and stress corrosion of new BAR and 7050 alloys that include Zn instead of Cr have been studied and compared with those of 7075 aluminum alloy. Added mechanical strength of new alloys is attributed to finer grain size of 5 to 8 micrometers, however, susceptibility to stress corrosion attack is increased.

  12. Age-forming aluminum panels

    NASA Technical Reports Server (NTRS)

    Baxter, G. I.

    1976-01-01

    Contoured-stiffened 63 by 337 inch 2124 aluminum alloy panels are machined in-the-flat to make integral, tapered T-capped stringers, parallel with longitudinal centerline. Aging fixture, which includes net contour formers made from lofted contour templates, has eggcrate-like structure for use in forming and checking panels.

  13. Aluminum and its light alloys

    NASA Technical Reports Server (NTRS)

    Merica, Paul D

    1920-01-01

    Report is a summary of research work which has been done here and abroad on the constitution and mechanical properties of the various alloy systems with aluminum. The mechanical properties and compositions of commercial light alloys for casting, forging, or rolling, obtainable in this country are described.

  14. ENZYMOLOGY OF ARSENIC METHYLATION

    EPA Science Inventory

    Enzymology of Arsenic Methylation

    David J. Thomas, Pharmacokinetics Branch, Experimental Toxicology Division, National
    Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park...

  15. Thiophanate-methyl

    Integrated Risk Information System (IRIS)

    Integrated Risk Information System ( IRIS ) Chemical Assessment Summary U.S . Environmental Protection Agency National Center for Environmental Assessment This IRIS Summary has been removed from the IRIS database and is available for historical reference purposes . ( July 2016 ) Thiophanate - methyl

  16. ENZYMOLOGY OF ARSENIC METHYLATION

    EPA Science Inventory

    Enzymology of Arsenic Methylation

    David J. Thomas, Pharmacokinetics Branch, Experimental Toxicology Division, National
    Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park...

  17. Aluminum-induced granulomas in a tattoo

    SciTech Connect

    McFadden, N.; Lyberg, T.; Hensten-Pettersen, A.

    1989-05-01

    A patient who developed localized, granulomatous reactions in a tattoo is described. With the use of scanning electron microscopy and energy dispersive x-ray microanalysis, both aluminum and titanium particles were found in the involved skin sections. Intradermal provocation testing with separate suspensions of aluminum and titanium induced a positive response only in the case of aluminum. Examination by scanning electron microscopy and energy dispersive x-ray microanalysis of the provoked response established aluminum as the only nonorganic element present in the test site tissue. This is the first report of confirmed aluminum-induced, delayed-hypersensitivity granulomas in a tattoo.

  18. Fabrication of aluminum based nanomaterials

    NASA Astrophysics Data System (ADS)

    Poirier, Dominique

    2009-11-01

    Structural applications in transportation necessitate materials with high specific strength and stiffness. With its low density, aluminum (Al) is an interesting candidate, but further strengthening would be beneficial. In this work, the benefits and limitations of nanoreinforcements for aluminum strengthening has been assessed through the addition of carbon nanotube (CNTs) and nanometric alumina (n-Al2O3) to an aluminum matrix by powder metallurgy. It has been found that mechanical milling can homogeneously disperse n-Al2O3 in aluminum. Furthermore, mechanical milling offers the advantages of strengthening the aluminum powder through grain refinement, cold working, solid solution and precipitation. However, CNTs are damaged by mechanical milling, and their homogeneous dispersion cannot be achieved with a chemical dispersant. Nanocomposite consolidation has presented several challenges as hot pressing resulted in a lack of bonding, grain growth and the formation of Al4C3 from damaged CNTs. Cold spraying of Al2O3/Al has resulted in a porous coating with decreased hardness. The microhardness and compression properties of an Al2O 3/Al nanocomposite produced by mechanical milling followed by hot pressing were measured. Comparison with modeled values and literature results indicates that higher experimental yield strength obtained with the addition of n-Al 2O3 versus micron size Al2O3 is due to in-situ matrix strengthening. Modeling shows that CNTs offer high potential gains in stiffness due to their high aspect ratio and their high Young modulus. On the other hand, as yield gains associated with the addition of nanoreinforcement are mainly due to matrix strengthening, discontinuous nanocomposites do not benefit from the CNT's exceptional strength. In this case, n-Al 2O3 would be selected over CNTs as it is cheaper and more easily dispersed.

  19. METHYL GREEN-PYRONIN

    PubMed Central

    Kurnick, N. B.

    1950-01-01

    1. Methyl green stains selectively highly polymerized desoxyribonucleic acid, and fails to stain, to any significant extent, depolymerized desoxyribonucleic acid and ribonucleic acid. 2. Pyronin stains preferentially low polymers of nucleic acid. 3. Triphenylmethane dyes with two amino groups appear to share the selectivity of methyl green. Those with three amino groups are not selective. 4. A stereochemical hypothesis is offered to account for these observations. PMID:15402708

  20. Molecular Scale Assessment of Methylarsenic Sorption on Aluminum Oxide

    SciTech Connect

    Shimizu, M.; Ginder-Vogel, M; Parikh, S; Sparks, D

    2010-01-01

    Methylated forms of arsenic (As), monomethylarsenate (MMA) and dimethylarsenate (DMA), have historically been used as herbicides and pesticides. Because of their large application to agriculture fields and the toxicity of MMA and DMA, the sorption of methylated As to soil constituents requires investigation. MMA and DMA sorption on amorphous aluminum oxide (AAO) was investigated using both macroscopic batch sorption kinetics and molecular scale extended X-ray absorption fine structure (EXAFS) and Fourier transform infrared (FTIR) spectroscopic techniques. Sorption isotherm studies revealed sorption maxima of 0.183, 0.145, and 0.056 mmol As/mmol Al for arsenate (As{sup V}), MMA, and DMA, respectively. In the sorption kinetics studies, 100% of added As{sup V} was sorbed within 5 min, while 78% and 15% of added MMA and DMA were sorbed, respectively. Desorption experiments, using phosphate as a desorbing agent, resulted in 30% release of absorbed As{sup V}, while 48% and 62% of absorbed MMA and DMA, respectively, were released. FTIR and EXAFS studies revealed that MMA and DMA formed mainly bidentate binuclear complexes with AAO. On the basis of these results, it is proposed that increasing methyl group substitution results in decreased As sorption and increased As desorption on AAO.

  1. Molecular scale assessment of methylarsenic sorption on aluminum oxide.

    PubMed

    Shimizu, Masayuki; Ginder-Vogel, Matthew; Parikh, Sanjai J; Sparks, Donald L

    2010-01-15

    Methylated forms of arsenic (As), monomethylarsenate (MMA) and dimethylarsenate (DMA), have historically been used as herbicides and pesticides. Because of their large application to agriculture fields and the toxicity of MMA and DMA, the sorption of methylated As to soil constituents requires investigation. MMA and DMA sorption on amorphous aluminum oxide (AAO) was investigated using both macroscopic batch sorption kinetics and molecular scale extended X-ray absorption fine structure (EXAFS) and Fourier transform infrared (FTIR) spectroscopic techniques. Sorption isotherm studies revealed sorption maxima of 0.183, 0.145, and 0.056 mmol As/mmol Al for arsenate (As(V)), MMA, and DMA, respectively. In the sorption kinetics studies, 100% of added As(V) was sorbed within 5 min, while 78% and 15% of added MMA and DMA were sorbed, respectively. Desorption experiments, using phosphate as a desorbing agent, resulted in 30% release of absorbed As(V), while 48% and 62% of absorbed MMA and DMA, respectively, were released. FTIR and EXAFS studies revealed that MMA and DMA formed mainly bidentate binuclear complexes with AAO. On the basis of these results, it is proposed that increasing methyl group substitution results in decreased As sorption and increased As desorption on AAO.

  2. Time exposure studies on stress corrosion cracking of aluminum 2014-T6, 2219-T87, 2014-T651, 7075-T651, and titanium 6Al-4V

    NASA Technical Reports Server (NTRS)

    Terrell, J.

    1973-01-01

    The effect of a constant applied stress in crack initiation of aluminum 2014-T6, 2219-T87, 2014-T651, 7075-T651 and titanium 6Al-4V has been investigated. Aluminum c-ring specimens (1-inch diameter) and u-band titanium samples were exposed continuously to a 3.5% NaCl solution (pH 7) and organic fluids of ethyl, methyl, and iso-propyl alcohol (reagent purity), and demineralized distilled water. Corrosive action was observed to begin during the first and second day of constant exposure as evidenced by accumulation of hydrogen bubbles on the surface of stressed aluminum samples. However, titanium stressed specimens showed no reactions to its environment. Results of this investigation seems to suggest that aluminum 2014-T6, aluminum 7075-T651 and aluminum 2014-T651 are susceptible to stress corrosion cracking in chloride solution (NaCl), while aluminum 2219-T87 seem to resist stress corrosion cracking in sodium chloride at three levels of stress (25%, 50%, and 75% Y.S.). In organic fluids of methyl, ethyl, and iso-propyl alcohol, 2014-T6 and 7075-T651 did not fail by SCC; but 2014-T651 was susceptible to SCC in methly alcohol, but resistant in ethyl alcohol, iso-propyl alcohol and demineralized distilled water.

  3. DNA methylation and differentiation.

    PubMed Central

    Michalowsky, L A; Jones, P A

    1989-01-01

    The methylation of specific cytosine residues in DNA has been implicated in regulating gene expression and facilitating functional specialization of cellular phenotypes. Generally, the demethylation of certain CpG sites correlates with transcriptional activation of genes. 5-Azacytidine is an inhibitor of DNA methylation and has been widely used as a potent activator of suppressed genetic information. Treatment of cells with 5-azacytidine results in profound phenotypic alterations. The drug-induced hypomethylation of DNA apparently perturbs DNA-protein interactions that may consequently alter transcriptional activity and cell determination. The inhibitory effect of cytosine methylation may be exerted via altered DNA-protein interactions specifically or may be transduced by a change in the conformation of chromatin. Recent studies have demonstrated that cytosine methylation also plays a central role in parental imprinting, which in turn determines the differential expression of maternal and paternal genomes during embryogenesis. In other words, methylation is the mechanism whereby the embryo retains memory of the gametic origin of each component of genetic information. A memory of this type would probably persist during DNA replication and cell division as methylation patterns are stable and heritable. PMID:2466640

  4. Decarbonization process for carbothermically produced aluminum

    DOEpatents

    Bruno, Marshall J.; Carkin, Gerald E.; DeYoung, David H.; Dunlap, Sr., Ronald M.

    2015-06-30

    A method of recovering aluminum is provided. An alloy melt having Al.sub.4C.sub.3 and aluminum is provided. This mixture is cooled and then a sufficient amount of a finely dispersed gas is added to the alloy melt at a temperature of about 700.degree. C. to about 900.degree. C. The aluminum recovered is a decarbonized carbothermically produced aluminum where the step of adding a sufficient amount of the finely dispersed gas effects separation of the aluminum from the Al.sub.4C.sub.3 precipitates by flotation, resulting in two phases with the Al.sub.4C.sub.3 precipitates being the upper layer and the decarbonized aluminum being the lower layer. The aluminum is then recovered from the Al.sub.4C.sub.3 precipitates through decanting.

  5. Reactively Deposited Aluminum Oxide and Fluoropolymer Filled Aluminum Oxide Protective Coatings for Polymers

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.; Hunt, Jason

    1995-01-01

    Reactive ion beam sputter deposition of aluminum simultaneous with low energy arrival of oxygen ions at the deposition surface enables the formation of highly transparent aluminum oxide films. Thick (12 200 A), adherent, low stress, reactively deposited aluminum oxide films were found to provide some abrasion resistance to polycarbonate substrates. The reactively deposited aluminum oxide films are also slightly more hydrophobic and more transmitting in the UV than aluminum oxide deposited from an aluminum oxide target. Simultaneous reactive sputter deposition of aluminum along with polytetrafluoroethylene (PTFE Teflon) produces fluoropolymer-filled aluminum oxide films which are lower in stress, about the same in transmittance, but more wetting than reactively deposited aluminum oxide films. Deposition properties, processes and potential applications for these coatings will be discussed.

  6. Complex foamed aluminum parts as permanent cores in aluminum castings

    SciTech Connect

    Simancik, F.; Schoerghuber, F.

    1998-12-31

    The feasibility of complex shaped aluminum foam parts as permanent cores in aluminum castings has been investigated. The foamed samples were prepared by injection of the foam into sand molds. It turned out that sound castings can be produced if the foam core is properly preheated and/or surface treated before casting. The effect of the foam core on the performance of the casting was evaluated by in compression testing and by measuring structural damping. The gain in the related properties turned out to be much higher than the weight increase of the casting due to the presence of the core. The weight increase may be partially offset through a reduction of the wall-thickness of the shell.

  7. Microstructure and Mechanical Properties of AA1235 Aluminum Foil Stocks Produced Directly from Electrolytic Aluminum Melt

    NASA Astrophysics Data System (ADS)

    Xiong, Hanqing; Yu, Kun; Wen, Li; Yao, Sujuan; Dai, Yilong; Wang, Zhifeng

    2016-02-01

    A new process is developed to obtain high-quality AA1235 aluminum foil stocks and to replace the traditional manufacture process. During the new manufacture process, AA1235 aluminum sheets are twin-roll casted directly through electrolytic aluminum melt (EAM), and subsequently the sheets are processed into aluminum foil stocks by cold rolling and annealing. Microstructure and mechanical properties of the AA1235 aluminum sheets produced through such new process are investigated in each state by optimal microscope, scanning electron microscopy, X-ray diffraction, orientation imaging microscopy, transmission electron microscopy, etc. The results show that compared with the traditional AA1235 aluminum foil stocks produced through re-melted aluminum melt (RAM), the amount of impurities is decreased in the EAM aluminum foil stocks. The EAM aluminum foil stock obtains less β-FeSiAl5 phases, but more α-Fe2SiAl8 phases. The elongation of EAM aluminum foil stocks is improved significantly owing to more cubic orientation. Especially, the elongation value of the EAM aluminum foil stocks is approximately 25 pct higher than that of the RAM aluminum foil stocks. As a result, the EAM aluminum foil stocks are at an advantage in increasing the processing performance for the aluminum foils during subsequent processes.

  8. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  9. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2002-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  10. Aluminum Alloys--Industrial Deformable, Sintered and Light Aluminum Alloys

    DTIC Science & Technology

    1974-10-30

    thin film on the particles of the highly dispersed aluminum powder when it is ground in spherical mills in a nitrogen atmosphere in which the...principal elements, certain small admixtures are introduced into the alloys, which have a considerable effect on the decay kinetics of the oversaturated...strengthened by the insoluble dispersed alumina particles. Fine grinding of the original powder provides the dispersion of the oxide films and particles

  11. Modeling dissolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Durbin, Tracie Lee

    2005-07-01

    Aluminum and its alloys are used in many aspects of modern life, from soda cans and household foil to the automobiles and aircraft in which we travel. Aluminum alloy systems are characterized by good workability that enables these alloys to be economically rolled, extruded, or forged into useful shapes. Mechanical properties such as strength are altered significantly with cold working, annealing, precipitation-hardening, and/or heat-treatments. Heat-treatable aluminum alloys contain one or more soluble constituents such as copper, lithium, magnesium, silicon and zinc that individually, or with other elements, can form phases that strengthen the alloy. Microstructure development is highly dependent on all of the processing steps the alloy experiences. Ultimately, the macroscopic properties of the alloy depend strongly on the microstructure. Therefore, a quantitative understanding of the microstructural changes that occur during thermal and mechanical processing is fundamental to predicting alloy properties. In particular, the microstructure becomes more homogeneous and secondary phases are dissolved during thermal treatments. Robust physical models for the kinetics of particle dissolution are necessary to predict the most efficient thermal treatment. A general dissolution model for multi-component alloys has been developed using the front-tracking method to study the dissolution of precipitates in an aluminum alloy matrix. This technique is applicable to any alloy system, provided thermodynamic and diffusion data are available. Treatment of the precipitate interface is explored using two techniques: the immersed-boundary method and a new technique, termed here the "sharp-interface" method. The sharp-interface technique is based on a variation of the ghost fluid method and eliminates the need for corrective source terms in the characteristic equations. In addition, the sharp-interface method is shown to predict the dissolution behavior of precipitates in aluminum

  12. A relative quantitative Methylation-Sensitive Amplified Polymorphism (MSAP) method for the analysis of abiotic stress.

    PubMed

    Bednarek, Piotr T; Orłowska, Renata; Niedziela, Agnieszka

    2017-04-21

    We present a new methylation-sensitive amplified polymorphism (MSAP) approach for the evaluation of relative quantitative characteristics such as demethylation, de novo methylation, and preservation of methylation status of CCGG sequences, which are recognized by the isoschizomers HpaII and MspI. We applied the technique to analyze aluminum (Al)-tolerant and non-tolerant control and Al-stressed inbred triticale lines. The approach is based on detailed analysis of events affecting HpaII and MspI restriction sites in control and stressed samples, and takes advantage of molecular marker profiles generated by EcoRI/HpaII and EcoRI/MspI MSAP platforms. Five Al-tolerant and five non-tolerant triticale lines were exposed to aluminum stress using the physiologicaltest. Total genomic DNA was isolated from root tips of all tolerant and non-tolerant lines before and after Al stress following metAFLP and MSAP approaches. Based on codes reflecting events affecting cytosines within a given restriction site recognized by HpaII and MspI in control and stressed samples demethylation (DM), de novo methylation (DNM), preservation of methylated sites (MSP), and preservation of nonmethylatedsites (NMSP) were evaluated. MSAP profiles were used for Agglomerative hierarchicalclustering (AHC) based on Squared Euclidean distance and Ward's Agglomeration method whereas MSAP characteristics for ANOVA. Relative quantitative MSAP analysis revealed that both Al-tolerant and non-tolerant triticale lines subjected to Al stress underwent demethylation, with demethylation of CG predominating over CHG. The rate of de novo methylation in the CG context was ~3-fold lower than demethylation, whereas de novo methylation of CHG was observed only in Al-tolerant lines. Our relative quantitative MSAP approach, based on methylation events affecting cytosines within HpaII-MspI recognition sequences, was capable of quantifying de novo methylation, demethylation, methylation, and non-methylated status in control

  13. DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes.

    PubMed

    Tran, Robert K; Henikoff, Jorja G; Zilberman, Daniel; Ditt, Renata F; Jacobsen, Steven E; Henikoff, Steven

    2005-01-26

    Cytosine DNA methylation in vertebrates is widespread, but methylation in plants is found almost exclusively at transposable elements and repetitive DNA. Within regions of methylation, methylcytosines are typically found in CG, CNG, and asymmetric contexts. CG sites are maintained by a plant homolog of mammalian Dnmt1 acting on hemi-methylated DNA after replication. Methylation of CNG and asymmetric sites appears to be maintained at each cell cycle by other mechanisms. We report a new type of DNA methylation in Arabidopsis, dense CG methylation clusters found at scattered sites throughout the genome. These clusters lack non-CG methylation and are preferentially found in genes, although they are relatively deficient toward the 5' end. CG methylation clusters are present in lines derived from different accessions and in mutants that eliminate de novo methylation, indicating that CG methylation clusters are stably maintained at specific sites. Because 5-methylcytosine is mutagenic, the appearance of CG methylation clusters over evolutionary time predicts a genome-wide deficiency of CG dinucleotides and an excess of C(A/T)G trinucleotides within transcribed regions. This is exactly what we find, implying that CG methylation clusters have contributed profoundly to plant gene evolution. We suggest that CG methylation clusters silence cryptic promoters that arise sporadically within transcription units.

  14. 49 CFR 173.193 - Bromoacetone, methyl bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... methyl bromide or methyl chloride mixtures, etc. 173.193 Section 173.193 Transportation Other Regulations... bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc. (a) Bromoacetone must be...) Bromoacetone, methyl bromide, chloropicrin and methyl bromide mixtures, chloropicrin and methyl...

  15. 49 CFR 173.193 - Bromoacetone, methyl bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... methyl bromide or methyl chloride mixtures, etc. 173.193 Section 173.193 Transportation Other Regulations... bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc. (a) Bromoacetone must be...) Bromoacetone, methyl bromide, chloropicrin and methyl bromide mixtures, chloropicrin and methyl...

  16. The use of primary dross from the aluminum industry for manufacturing aluminum sulfate

    SciTech Connect

    Osborne, B.W.

    1995-12-31

    The use of primary dross as a source for aluminum ion in the manufacture of aluminum sulfate offers opportunities for an inexpensive raw material. The aluminum sulfate industry in the US is a mature market with numerous small plants operating close to major users. The majority of manufacturers use either bauxite or aluminum oxide trihydrate as a source for the aluminum ion. However, using process technology developed and patented by IWC, the oxides are removed from primary dross for use in manufacturing aluminum sulfate prior to metal recovery. This process offers the benefit of reducing costs for metal recovery. This paper discusses some of the methodology used in this process.

  17. Stability Studies of Aluminum Hydride

    NASA Astrophysics Data System (ADS)

    Tang, Xia; Laube, Bruce; Anton, Donald; Hwang, Son-Jong; Bowman, Robert

    2007-03-01

    Aluminum hydride has attracted research attention recently as a promising hydrogen storage material due to its high gravimetric, volumetric storage capacity and very low enthalpy. AlH3 forms several phases, all of which are sensitive to moisture. In this study, the discharge kinetics of a stabilized form of alpha aluminum hydride newly synthesized was evaluated. Its desorption kinetics were measured in the temperature range of 60-120^oC at one atmosphere of hydrogen pressure. The material was stable at ambient temperature and no significant dehydrogenation was observed at 60^oC after 70 hours. Approximately 10 wt% hydrogen was rapidly (quantify in wt%/min.) released at 100^oC with no additional catalization. The activation energy for desorption was measured at 97.0 KJ/mole H2. The surface and bulk characterization methods Auger, SEM, XRD, and solid state NMR were used to investigate the mechanism of stabilization.

  18. Formability of Aluminum Mild Detonating Fuse

    SciTech Connect

    HALL, AARON C.

    2002-10-01

    Mild detonating fuse is an extruded aluminum tube that contains explosive material. Fuse prepared by a new supplier (Company B) exhibited a formability problem and was analyzed to determine the source of that formability problem. The formability problem was associated with cracking of the aluminum tube when it was bent around a small radius. Mild detonating fuse prepared by the existing supplier of product (Company A) did not exhibit a formability problem. The two fuses were prepared using different aluminum alloys. The microstructure and chemical composition of the two aluminum alloys were compared. It was found that the microstructure of the Company A aluminum exhibited clear signs of dynamic recrystallization while the Company B aluminum did not. Recrystallization results in the removal of dislocations associated with work hardening and will dramatically improve formability. Comparison of the chemical composition of the two aluminum alloys revealed that the Company A aluminum contained significantly lower levels of impurity elements (specifically Fe and Si) than the COMPANY B aluminum. It has been concluded that the formability problem exhibited by the COMPANY B material will be solved by using an aluminum alloy with low impurity content such as 1190-H18 or 1199-0.

  19. Metalloid Aluminum Clusters with Fluorine

    DTIC Science & Technology

    2016-12-01

    high energy density compared to explosives, but typically release this energy slowly via diffusion-limited combustion. There is recent interest in using...examine the cluster binding energy and electronic structure. Partial fluorine substitution in a prototypical aluminum-cyclopentadienyl cluster results...molecular dynamics, binding energy , siesta code, density of states, projected density of states 15. NUMBER OF PAGES 69 16. PRICE CODE 17. SECURITY

  20. Electrically Conductive Anodized Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to < or = 10(exp 9) Omega-cm. The present treatment does this. The treatment is a direct electrodeposition process in which the outer anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic

  1. Carbothermal synthesis of aluminum nitride

    SciTech Connect

    Silverman, L.D. )

    1988-07-01

    A synthetic route is described for making carbothermally reduced powders from colloidal oxide precursors trapped in a polymer matrix. The entrapping resin, which is formed by polymerization of a monomer dissolved in the colloid, serves both to minimize particle agglomeration during reaction and as the source of carbon for reduction. Following reduction, the remaining carbon matrix is removed by oxidation. This strategy was used to synthesize aluminum nitride powder via trapping of colloidal alumina in poly(furfuryl alcohol) resin.

  2. Cast Aluminum Components. Volume 1

    DTIC Science & Technology

    1983-02-01

    program was to produce a one-piece cast aluminum alloy turret to replace a welded lightweight turret and reduce the cost of manu- facturing. During...PIECES ii LIST OF ILLUSTRATIONS Figure and Title Page Figure I Welded Lightweight Turret ....... ... .............. 2 Figure 2 Potential Replacement ...Phase I. 1 Figure 1 Welded Lightweight Turret L Figure 2 Potential Replacement Casting 3 D CHANGES FROM STANDARO M2 TURRET Figure 3 Cast Turret Showing

  3. Fundamental Studies on Aluminum Soaps

    DTIC Science & Technology

    1944-06-01

    It oxhibits a monoolinle crystalline struc- ture similar to that of the gamma sodium soaps and the oorro* ■ponding fatty acids« 4. Proa the point ...of water. The use of phosphorus pentoxide as well as use of potassium hydroxide pellets and of metalllo sodium results in condensation products...soap ..... 145 ii in water 146 iiiSpecific effects of aluminum .... 148 (8) The system sodium stoarate-cyclohoxano . • . 149

  4. Aluminum foil lined composite tubing

    SciTech Connect

    Gernert, N.J.; Sarraf, D.B.; Armstrong, D.L.; Blood, S.A.

    1996-03-01

    This paper describes the development of lightweight aluminum foil lined polymer matrix composite tubing for applications ranging from heat pipe construction to fluid transport tubing and tankage structure for future spacecraft. The metal lining is completely hermetic and endows the tubing with metal like characteristics without compromising its lightweight or strength advantages. It consists of one wrap of 0.076 mm thick aluminum foil that is rolled in a cylindrical shape and seam welded. Each end of the foil tube transitions to a short section of heavy wall aluminum tubing that is welded to the foil tube creating a leak tight lining. Composite fibers are braided over the lining and then resin transfer molded. The epoxy resin bonds to the fibers and to the lining, forming an integral tube. The demonstration tubing that was constructed was 25.4 mm in diameter, 4.57 m long and had an average mass per unit length of 0.131 kg/m. Extension of this technology to other metal lining materials for containment of various fluids is feasible. {copyright} {ital 1996 American Institute of Physics.}

  5. Recycling of aluminum matrix composites

    SciTech Connect

    Nishida, Yoshinori; Izawa, Norihisa; Kuramasu, Yukio

    1999-03-01

    Separation of matrix metals in composites was tried on alumina short fiber-reinforced aluminum and 6061 alloy composites and SiC whisker-reinforced 6061 alloy composite for recycling. It is possible to separate molten matrix metals from fibers in the composites using fluxes that are used for melt treatment to remove inclusions. About 50 vol pct of the matrix metals was separated from the alumina short fiber-reinforced composites. The separation ratio of the matrix from the SiC whisker-reinforced 6061 alloy composite was low and about 20 vol pct. The separation mechanism was discussed thermodynamically using interface free energies. Since the flux/fiber interface energy is smaller than the aluminum/fiber interface energy, the replacement of aluminum with fluxes in composites takes place easily. Gases released by the decomposition of fluxes act an important role in pushing out the molten matrix metal from the composite. The role was confirmed by the great amount cavity formed in the composite after the matrix metal flowed out.

  6. Microbial corrosion of aluminum alloy.

    PubMed

    Yang, S S; Chen, C Y; Wei, C B; Lin, Y T

    1996-11-01

    Several microbes were isolated from the contaminated fuel-oil in Taiwan and the microbial corrosion of aluminum alloy A356-T6 was tested by MIL-STD-810E test method. Penicillium sp. AM-F5 and Cladosporium resinac ATCC 22712 had significant adsorption and pitting on the surface of aluminum alloy, Pseudomonas acruginosa AM-B5 had weak adsorption and some precipitation in the bottom, and Candida sp. AM-Y1 had the less adsorption and few cavities formation on the surface. pH of the aqueous phase decreased 0.3 to 0.7 unit for 4 months of incubation. The corrosion of aluminum alloy was very significant in the cultures of Penicillium sp. AM-F2, Penicillium sp. AM-F5 and C. resinac ATCC 22712. The major metabolites in the aqueous phase with the inoculation of C. resinac were citric acid and oxalic acid, while succinic acid and fumaric acid were the minors.

  7. Aluminum-lithium target behavior

    SciTech Connect

    McDonell, W.R.

    1989-10-01

    Information on physical properties and irradiation behavior of aluminum-lithium target alloys employed for the production of tritium in Savannah River reactors has been reviewed to support development of technology for the New Production Reactor (NPR). Phase compositions and microstructures, thermal conductivity, mechanical properties, and constituent diffusion phenomena of the alloys, established in prior site studies, are presented. Irradiation behavior, including distributions of product tritium and helium and related exposure limits due to swelling and cracking of the target alloys is discussed, along with gas release processes occurring during subsequent product recovery operations. The property review supports designation of the aluminum-lithium alloys as ideally well-suited target materials for low-temperature, tritium-producing reactors, demonstrated over 35 years of Savannah River reactor operation. Low temperature irradiation and reaction with lithium in the alloy promotes tritium retention during reactor exposure, and the aluminum provides a matrix from which the product is readily recovered on heating following irradiation. 33 refs., 26 figs., 8 tabs.

  8. Production of anhydrous aluminum chloride composition

    DOEpatents

    Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

    1981-10-08

    A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  9. [Link between aluminum neurotoxicity and neurodegenerative disorders].

    PubMed

    Kawahara, Masahiro

    2016-07-01

    Aluminum is an old element that has been known for a long time, but some of its properties are only now being discovered. Although environmentally abundant, aluminum is not essential for life; in fact, because of its specific chemical properties, aluminum inhibits more than 200 biologically important functions and exerts various adverse effects in plants, animals, and humans. Aluminum is a widely recognized neurotoxin. It has been suggested that there is a relationship between exposure to aluminum and neurodegenerative diseases, including dialysis encephalopathy, amyotrophic lateral sclerosis and parkinsonism dementia in the Kii Peninsula and Guam, as well as Alzheimer' s disease: however, this claim remains to be verified. In this chapter, we review the detailed characteristics of aluminum neurotoxicity and the link between Alzheimer' s disease and other neurodegenerative diseases, based on recent findings on metal-metal interactions and the functions of metalloproteins in synapses.

  10. Aluminum welding fume-induced pneumoconiosis.

    PubMed

    Hull, Mindy J; Abraham, Jerrold L

    2002-08-01

    Chronic exposure to high concentrations of fumes during aluminum arc welding causes a severe pneumoconiosis characterized by diffuse pulmonary accumulation of aluminum metal and a corresponding reduction in lung function. Aluminum fume-induced pneumoconiosis is a rarely reported entity, of which the true incidence is unknown. We report the clinical, radiographic, microscopic, and microanalytic results of 2 coworkers, employed by the same aluminum shipbuilding facility, who died of complications from this disease. Scanning electron microscopy and energy dispersive x-ray analysis of the exogenous particle content in the lung tissue of these cases revealed the highest concentrations of aluminum particles (average of 9.26 billion aluminum particles per cm(3) of lung tissue) among the 812 similar analyses in our pneumoconiosis database. One patient had an original clinical diagnosis of sarcoidosis but no evidence of granulomatous inflammation. Copyright 2002, Elsevier Science (USA). All rights reserved.

  11. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  12. Cold Spray Aluminum for Magnesium Gearbox Repair

    DTIC Science & Technology

    2008-02-01

    Cold Spray Aluminum for Magnesium Gearbox Repair Phillip F Leyman . US Army Research Laboratory Weapons & Materials Research Directorate...AND SUBTITLE Cold Spray Aluminum for Magnesium Gearbox Repair 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...tirogram ec ves • Develop the densest, thinnest, most corrosion resistant Aluminum -based Cold Spray coating ith th t t dh i b d t th tw e grea es

  13. Metallurgical Characterization of Aluminum Powder Consolidation.

    DTIC Science & Technology

    1987-05-01

    At02 165 METALLURGICAL CHARACTERIZATION OF ALUMINUM POWDER 1/$ CONSOLIDATION(U) MCDONNELL DOUGLAS RESEARCH LABS ST LOUIS MO S M SASTRY ET AL MAY 87...METALLURGICAL CHARACTERIZATION OF ALUMINUM POWDER CONSOLIDATION (0 S. M. L. Sastry R. J. Lederich T. C. Peng .o J. E. O’Neal I McDonnell Douglas...W ETALLURGICAL CHARACTERIZATION OF ALUMINUM Final Technical Report POWDER CONSOLIDATION 1 Sep. 1983-1 Mar. 1987 6. PERFORMING ORqG. REPORT NUMBER 7

  14. Damping Studies of Ceramic Reinforced Aluminum

    DTIC Science & Technology

    1991-03-01

    13 3. Microstructure of A356 aluminum with 0 and 20 v/o SiC .................................. 13 4. The effect of temperature...15 7. Damping capacity versus storage modulus for A356 Aluminum matrix composites measured at 0.1, 1, and 10 Hz from -10 to 250°C...15 8. The effect of frequency on the damping capacity of A356 aluminum matrix composites measured at 0.1, 1, and 10 Hz

  15. Fabrication of Porous Aluminum Using Gases Intrinsically Contained in Aluminum Alloy Die Castings

    NASA Astrophysics Data System (ADS)

    Hangai, Yoshihiko; Utsunomiya, Takao

    2009-06-01

    Closed-cell porous aluminum was fabricated using gases intrinsically contained in aluminum alloy die castings without using a blowing agent. By incorporating the friction stir processing technique, porous aluminum with a porosity of more than 50 pct was successfully obtained at a holding temperature of 923 to 948 K and a holding time of 10 minutes. This proposed die-casting route has high potential for fabricating porous aluminum at a low cost by a higher productivity process.

  16. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... organic HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753...) National Emission Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum... aluminum wipedown solvents and aluminum recreational boat surface coatings? (a) Use equation 1 of this...

  17. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Aluminum isopropoxide and aluminum... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a tolerance. Aluminum isopropoxide (CAS Reg. No. 555...

  18. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... organic HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753...) National Emission Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum... aluminum wipedown solvents and aluminum recreational boat surface coatings? (a) Use equation 1 of this...

  19. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Aluminum isopropoxide and aluminum... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a tolerance. Aluminum isopropoxide (CAS Reg. No. 555...

  20. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Aluminum isopropoxide and aluminum... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a tolerance. Aluminum isopropoxide (CAS Reg. No. 555...

  1. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Aluminum isopropoxide and aluminum... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a tolerance. Aluminum isopropoxide (CAS Reg. No. 555...

  2. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753...) National Emission Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum... aluminum wipedown solvents and aluminum recreational boat surface coatings? (a) Use equation 1 of this...

  3. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Aluminum isopropoxide and aluminum... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a tolerance. Aluminum isopropoxide (CAS Reg. No. 555...

  4. Electrical Resistivity of Aluminum and Manganese.

    DTIC Science & Technology

    1983-03-01

    Aluminum Alloys ,’ J. Pliys. Soc. lpu., JIM(3, 684-91 (1975). 57 26Srivastava* S.K., ’Model Pseudopotentials and Eiectron4c Properties ...1965). 6 3Powell, R.W.. Tye, R.P., and Metcalf, S.C.. ’Molten Aluminum and an Aluminum Alloy .’ in 3rd Symposium on Thermophvsical Properties (Gratch, S...Transport Properties of Commercial Metals and Alloys . II. Aluminums ,’ J. Appl. Phys., Ul(3), 496-503 (1960). 73Bedgcock, F.T., Muir, W.B., and Wallingford,

  5. Nd:YAG laser welding aluminum alloys

    SciTech Connect

    Jimenez, E. Jr.

    1992-02-01

    Autogenous Nd:YAG laser welding wrought 4047, 1100, 3003, 2219, 5052, 5086, 5456, and 6061 and cast A356 aluminum alloys to cast A356 aluminum alloy in restrained annular weld joints was investigated. The welds were 12.7 mm (0.375 in.) and 9.5 mm (0.375 in.) diameter with approximately 0.30 mm (0.012 in.) penetration. This investigation determined 4047 aluminum alloy to be the optimum alloy for autogenous Nd:YAG laser welding to cast A356 aluminum alloy. This report describes the investigation and its results.

  6. Aluminum-stabilized NB3SN superconductor

    DOEpatents

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  7. Anodic Behavior of the Aluminum Current Collector in Imide-Based Electrolytes: Influence of Solvent, Operating Temperature, and Native Oxide-Layer Thickness.

    PubMed

    Meister, Paul; Qi, Xin; Kloepsch, Richard; Krämer, Elisabeth; Streipert, Benjamin; Winter, Martin; Placke, Tobias

    2017-02-22

    The inability of imide salts to form a sufficiently effective passivation layer on aluminum current collectors is one of the main obstacles that limit their broad application in electrochemical energy-storage systems. However, under certain circumstances, the use of electrolytes with imide electrolyte salts in combination with the aluminum current collector is possible. In this contribution, the stability of the aluminum current collector in electrolytes containing either lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) or lithium fluorosulfonyl-(trifluoromethanesulfonyl) imide (LiFTFSI) as conductive salt was investigated by electrochemical techniques, that is, cyclic voltammetry (CV) and chronocoulometry (CC) in either room-temperature ionic liquids or in ethyl methyl sulfone. In particular, the influence of the solvent, operating temperature, and thickness of the native oxide layer of aluminum on the pit formation at the aluminum current collector surface was studied by means of scanning electron microscopy. In general, a more pronounced aluminum dissolution and pit formation was found at elevated temperatures as well as in solvents with a high dielectric constant. An enhanced thickness of the native aluminum oxide layer increases the oxidative stability versus dissolution. Furthermore, we found a different reaction rate depending on dwell time at the upper cut-off potential for aluminum dissolution in TFSI- and FTFSI-based electrolytes during the CC measurements; the use of LiFTFSI facilitated the dissolution of aluminum compared to LiTFSI. Overall, the mechanism of anodic aluminum dissolution is based on: i) the attack of the Al2 O3 surface by acidic species and ii) the dissolution of bare aluminum into the electrolyte, which, in turn, is influenced by the electrolyte's dielectric constant.

  8. Aluminum reclamation from dross. (Latest citations from the Aluminum Industry Abstracts database). Published Search

    SciTech Connect

    1996-06-01

    The bibliography contains citations concerning aluminum reclamation from dross. Topics include dross treatment technology, the environmental benefits of aluminum recovery from dross, and the economics of aluminum reclamation in dross processing systems. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Pirimiphos-methyl

    Integrated Risk Information System (IRIS)

    Pirimiphos - methyl ; CASRN 29232 - 93 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  10. Kapok oil methyl esters

    USDA-ARS?s Scientific Manuscript database

    The increased need for biodiesel feedstocks has caused various vegetable oils to be examined for this purpose. In the present work, the methyl esters of kapok (Ceiba pentandra) oil were prepared. The essential fuel properties were comprehensively determined and evaluated in comparison to specificati...

  11. Methyl ethyl ketone (MEK)

    Integrated Risk Information System (IRIS)

    Methyl ethyl ketone ( MEK ) ( CASRN 78 - 93 - 3 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonc

  12. Haloxyfop-methyl

    Integrated Risk Information System (IRIS)

    Haloxyfop - methyl ; CASRN 69806 - 40 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  13. Nutrients and DNA Methylation

    USDA-ARS?s Scientific Manuscript database

    Epigenetics is a new mechanism responsible for development, aging, and disease process such as cancer development. One major epigenetic phenomenon is DNA methylation, which attributes to gene expression and integrity. Deepening the knowledge on one-carbon metabolism is very important to understandin...

  14. Methyl isobutyl ketone (MIBK)

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 03 / 002 TOXICOLOGICAL REVIEW OF METHYL ISOBUTYL KETONE ( CAS No . 108 - 10 - 1 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) March 2003 U.S . Environmental Protection Agency Washington DC DISCLAIMER This document has been reviewed in accordan

  15. Chloromethyl methyl ether (CMME)

    Integrated Risk Information System (IRIS)

    Chloromethyl methyl ether ( CMME ) ; CASRN 107 - 30 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  16. Kenaf methyl esters

    USDA-ARS?s Scientific Manuscript database

    Additional or alternative feedstocks are one of the major areas of interest regarding biodiesel. In this paper, for the first time, the fuel properties of kenaf (Hibiscus cannabinus L.) seed oil methyl esters are comprehensively reported. This biodiesel is also relatively unique by containing small ...

  17. DNA Methylation and Cancer Diagnosis

    PubMed Central

    Delpu, Yannick; Cordelier, Pierre; Cho, William C.; Torrisani, Jérôme

    2013-01-01

    DNA methylation is a major epigenetic modification that is strongly involved in the physiological control of genome expression. DNA methylation patterns are largely modified in cancer cells and can therefore be used to distinguish cancer cells from normal tissues. This review describes the main technologies available for the detection and the discovery of aberrantly methylated DNA patterns. It also presents the different sources of biological samples suitable for DNA methylation studies. We discuss the interest and perspectives on the use of DNA methylation measurements for cancer diagnosis through examples of methylated genes commonly documented in the literature. The discussion leads to our consideration for why DNA methylation is not commonly used in clinical practice through an examination of the main requirements that constitute a reliable biomarker. Finally, we describe the main DNA methylation inhibitors currently used in clinical trials and those that exhibit promising results. PMID:23873296

  18. DNA Methylation within Transcribed Regions

    PubMed Central

    To, Taiko K.; Saze, Hidetoshi; Kakutani, Tetsuji

    2015-01-01

    DNA methylation within transcribed genes is commonly found in diverse animals and plants. Here, we provide an overview of recent advances and the remaining mystery regarding intragenic DNA methylation. PMID:26143255

  19. Aluminum core structures brazed without use of flux

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Aluminum alloy face sheets are brazed to aluminum alloy honeycomb cores without using corrosive flux by means of one or three methods. The completed brazed structure has the high-strength characteristics of heat treated aluminum alloys.

  20. Hair as an indicator of excessive aluminum exposure

    SciTech Connect

    Yokel, R.A.

    1982-04-01

    To determine if excessive systemic exposure to aluminum would be reflected in increased aluminum concentration in hair, rabbits were given a series of aluminum lactate injections. Hair was collected before the aluminum lactate administration from the site of injections and twice after the injections from this site as well as from an area adjoining the injection site. Aluminum was determined by flameless atomic absorption analysis of acid-digested samples. The concentration of aluminum in the hair increased after the injections in samples taken at both times from both sites. Considerable variability in hair aluminum was found before excessive exposure, as has been reported in humans, and in response to the exposure. The increase in hair aluminum did not correlate with the amount of hair produced. Nevertheless, because some subjects exposed to excessive aluminum showed a very large increase in hair aluminum, hair may be a useful indicator of aluminum body burden in such aluminum-induced conditions as dialysis encephalopathy.

  1. Cryomilled Aluminum Stabilized by Diamondoid Nanoparticles

    NASA Astrophysics Data System (ADS)

    Maung, Khinlay

    Nanocrystalline aluminum powder with an average grain size of 22nm was prepared via cryomilling. Hot Isostatic Pressing was used to consolidate the powder followed by hot extrusion to homogenize the consolidated material. The high homologous temperature processes tend to increase the average grain diameter beyond the nanoscle classification, which is less than 100 nm. Diamantane was added during cryomilling to enhance the thermal stability in nanocrystalline aluminum. The thermal stability test data show that aluminum reinforced with 1 wt% diamantane exhibit two to three fold better thermal stability than non-reinforced aluminum when annealed at 773K (0.84 Tm) for ten hours. A similar trend is shown for the samples consolidated at 693K. This finding is explained through Burke's model for grain growth in materials containing secondary particles to inhibit grain boundary motion. The mechanical properties of cryomilled aluminum stabilized by 0.5 wt% and 1 wt% diamantane particles are compared with cryomilled commercial purity (CP) aluminum with no diamantane after high strain rate deformation (trap extrusion). The grain size of cryomilled CP aluminum is 0.6 to 1.2 times larger than the samples containing diamantane. In contrast to Hall-petch predictions, cryomilled aluminum with diamantane has relatively lower flow stress while demonstrating a 2.7-3.7 time higher ductility compared to cryomilled CP aluminum. Possible reasons for this behavior are suggested in mechnical property section. A combination of higher temperature and pressure resulted in formation of Aluminum tris (Al(C9H6NO)3) precipitates from diamantane in the cryomilled aluminum matrix. The precipitates were formed during trap extrusion process but only seen in samples containing 1 wt% diamantane and HIP'ed at 521°C. Therefore, the HIP'ng temperature plays an important role in formation of these precipitates.

  2. 49 CFR 173.193 - Bromoacetone, methyl bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... methyl bromide or methyl chloride mixtures, etc. 173.193 Section 173.193 Transportation Other Regulations... bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc. (a) Bromoacetone must be... Group I performance level. (b) Bromoacetone, methyl bromide, chloropicrin and methyl bromide...

  3. 49 CFR 173.193 - Bromoacetone, methyl bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... methyl bromide or methyl chloride mixtures, etc. 173.193 Section 173.193 Transportation Other Regulations... bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc. (a) Bromoacetone must be... Group I performance level. (b) Bromoacetone, methyl bromide, chloropicrin and methyl bromide...

  4. Cast Aluminum Primary Aircraft Structure

    DTIC Science & Technology

    1979-12-01

    ABSTRAC R A A A357 cast aluminum alloy forward fuselage pressure bulkhead has been developed and manufactured for the AMST-YC-14 aircraft. This work...urring in castings. Test coupons were! removed from castings containing defU-ts and subjected to repeated loads. The shift of the S-N curve for A357 ...selected for the casting is A357 . The cast bulkhead (Fig 2) measures approximately 2.29 m (7.5 ft) by 1.37 m (4.5 ft). It is designed to replace the

  5. Chemical interactions in the aluminum-carbon and aluminum-silicon carbide systems

    NASA Technical Reports Server (NTRS)

    Maruyama, Benji; Ohuchi, Fumio S.; Rabenberg, L.

    1990-01-01

    XPS was used to investigate the influence of O2 and H2O on the formation of aluminum carbide at Al-C and Al-SiC interfaces. It was determined that dosing the interfaces with H2O catalyzed the formation of aluminum carbide in both systems. This result is consistent with the oxidation model of carbide formation (developed to understand the kinetics of aluminum carbide formation at graphite-aluminum interfaces). These results imply that the formation of aluminum carbide in graphite- and SiC-reinforced metal-matrix composites, which severely degrades the composite mechanical properties by degrading the fiber and interface strength is catalyzed.

  6. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    DTIC Science & Technology

    2016-01-04

    AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD...Hydride and Boron Aluminum Hydride Clusters 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0324 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT...of both Aluminum Hydride Cluster Anions and Boron Aluminum Hydride Cluster Anions with Oxygen: Anionic Products The anionic products of reactions

  7. The effect of aluminum hydroxide dissolution on the bleeding of aluminum lake dyes.

    PubMed

    Desai, A; Peck, G E; Lovell, J E; White, J L; Hem, S L

    1993-10-01

    The effect of pH on the bleeding of FD&C yellow No. 5 aluminum lake and FD&C red No. 40 aluminum lake was investigated. The pH-bleeding profiles corresponded to the pH-solubility profile of aluminum hydroxide. The similarity of the bleeding profiles of both lake dyes and the pH-solubility profile of aluminum hydroxide indicates that pH related bleeding, other than that occurring by competition with anions, is a result of dissolution of the aluminum hydroxide substrate. This dissolution is related to the properties of the substrate rather than to the structure of adsorbed dye.

  8. Methods to Prepare Aluminum Salt-Adjuvanted Vaccines.

    PubMed

    Thakkar, Sachin G; Cui, Zhengrong

    2017-01-01

    Many human vaccines contain certain insoluble aluminum salts such as aluminum oxyhydroxide and aluminum hydroxyphosphate as vaccine adjuvants to boost the immunogenicity of the vaccines. Aluminum salts have been used as vaccine adjuvants for decades and have an established, favorable safety profile. However, preparing aluminum salts and aluminum salt-adjuvanted vaccines in a consistent manner remains challenging. This chapter discusses methods to prepare aluminum salts and aluminum salt-adjuvanted vaccines, factors to consider during preparation, and methods to characterize the vaccines after preparation.

  9. Excess dietary aluminum increases Drosophila's rate of aging.

    PubMed

    Massie, H R; Williams, T R; Aiello, V R

    1985-01-01

    Aluminum concentrations in the whole organism increased during development and aging of Drosophila melanogaster. The amount of aluminum in the flies was also reflected by the dietary content of aluminum. Additional dietary aluminum, in the form of aluminum salts, decreased the life span by as much as 20%. A significant reduction in life span was found for 1 X 10(-4) M aluminum chloride and for 1 X 10(-3) M aluminum nitrate and aluminum sulfate. Dietary sodium fluoride failed to increase life span.

  10. INTERIOR VIEW OF ENTRANCE TO LABORATORY, SHOWING HANDHAMMERED ALUMINUM DOORS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF ENTRANCE TO LABORATORY, SHOWING HAND-HAMMERED ALUMINUM DOORS AND MARBLE. NOTE ALUMINUM LIGHT FIXTURE - Alcoa Research Laboratory, Freeport Road, New Kensington, Westmoreland County, PA

  11. Nanostructure of aluminum oxide inclusion and formation of hydrogen bubbles in molten aluminum.

    PubMed

    Zeng, Jianmin; Li, Dezhi; Kang, Minglong; He, Huan; Hu, Zhiliu

    2013-10-01

    Hydrogen in molten aluminum is one of the major factors that lead to pore formation in the solidification process of aluminum castings. Previous research showed that aluminum oxide inclusion had a close correlation with the hydrogen content in molten aluminum. Though some researchers thought there must have been a relationship between surface morphology of the inclusion and hydrogen concentration in molten aluminum, very few documents have reported on the surface property of aluminum oxide inclusion. In the present work, AFM (Atomic Force Microscope) was first used to investigate surface morphology of aluminum oxide inclusion in molten aluminum. It was found that there were a large number of nanoscale micropores on the surface of aluminum oxide inclusion. The interior of the micropores was approximated as a tapered shape. These micropores were thought to be helpful to heterogeneous nucleation for hydrogen atoms aggregation because they provided necessary concentration fluctuation and energy undulation for the growth of hydrogen bubbles. Based on the nanostructure observed on the surface of aluminum oxide inclusion, a theoretical model was developed to describe the hydrogen pore formation in aluminum casting under the condition of heterogeneous nucleation.

  12. METHOD FOR JOINING ALUMINUM TO STAINLESS STEEL

    DOEpatents

    Lemon, L.C.

    1960-05-24

    Aluminum may be joined to stainless steel without the use of flux by tinning the aluminum with a tin solder containing 1% silver and 1% lead, tinning the stainless steel with a 50% lead 50% tin solder, and then sweating the tinned surfaces together.

  13. Recovery of aluminum from composite propellants

    NASA Technical Reports Server (NTRS)

    Shaw, G. C. (Inventor)

    1980-01-01

    Aluminum was recovered from solid rocket propellant containing a small amount of oxidizer by depolymerizing and dissolving propellant binders (containing functional or hydrolyzable groups in a solution of sodium methoxide) in an alcohol solvent optionally containing an aliphatic or aromatic hydrocarbon co-solvent. The solution was filtered to recover substantially all the aluminum in active form.

  14. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  15. Aluminum low temperature smelting cell metal collection

    DOEpatents

    Beck, Theodore R.; Brown, Craig W.

    2002-07-16

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten salt electrolyte in an electrolytic cell having an anodic liner for containing the electrolyte, the liner having an anodic bottom and walls including at least one end wall extending upwardly from the anodic bottom, the anodic liner being substantially inert with respect to the molten electrolyte. A plurality of non-consumable anodes is provided and disposed vertically in the electrolyte. A plurality of cathodes is disposed vertically in the electrolyte in alternating relationship with the anodes. The anodes are electrically connected to the anodic liner. An electric current is passed through the anodic liner to the anodes, through the electrolyte to the cathodes, and aluminum is deposited on said cathodes. Oxygen bubbles are generated at the anodes and the anodic liner, the bubbles stirring the electrolyte. Molten aluminum is collected from the cathodes into a tubular member positioned underneath the cathodes. The tubular member is in liquid communication with each cathode to collect the molten aluminum therefrom while excluding electrolyte. Molten aluminum is delivered through the tubular member to a molten aluminum reservoir located substantially opposite the anodes and cathodes. The molten aluminum is collected from the cathodes and delivered to the reservoir while avoiding contact of the molten aluminum with the anodic bottom.

  16. SOLID STATE BONDING OF THORIUM WITH ALUMINUM

    DOEpatents

    Storchhelm, S.

    1959-12-01

    A method is described for bonding thorium and aluminum by placing clean surfaces of thorium and aluminum in contact with each other and hot pressing the metals together in a protective atmosphere at a temperature of about 375 to 575 deg C and at a pressure of at least 10 tsi to effect a bond.

  17. Application of modern aluminum alloys to aircraft

    NASA Astrophysics Data System (ADS)

    Starke, E. A., Jr.; Staley, J. T.

    Aluminum alloys have been the primary material of choice for structural components of aircraft since about 1930. Although polymer matrix composites are being used extensively in high-performance military aircraft and are being specified for some applications in modern commercial aircraft, aluminum alloys are the overwhelming choice for the fuselage, wing, and supporting structure of commercial airliners and military cargo and transport. Well known performance characteristics, known fabrication costs, design experience, and established manufacturing methods and facilities, are just a few of the reasons for the continued confidence in aluminum alloys that will ensure their use in significant quantities for the rest of this century and likely well into the next one. But most significantly, there have been major advances in aluminum aircraft alloys that continue to keep them in a competitive position. In the early years aluminum alloys were developed by trial and error, but over the past thirty years there have been significant advances in our understanding of the relationships among composition, processing, microstructural characteristics and properties. This knowledge base has led to improvements in properties that are important to aircraft applications. This review covers the performance and property requirements for airframe components in current aircraft and describes aluminum alloys and product forms which meet these requirements. It also discusses the structure/property relationships of aluminum aircraft alloys and describes the background and drivers for the development of modern aluminum alloys to improve performance. Finally, technologies under development for future aircraft are discussed.

  18. Virus inactivation in aluminum and polyaluminum coagulation.

    PubMed

    Matsui, Yoshihiko; Matsushita, Taku; Sakuma, Satoru; Gojo, Takahito; Mamiya, Teppei; Suzuoki, Hiroshi; Inoue, Takanobu

    2003-11-15

    Inorganic aluminum salts, such as aluminum sulfate, are coagulants that cause small particles, such as bacteria and viruses as well as inorganic particles, to destabilize and combine into larger aggregates. In this investigation, batch coagulation treatments of water samples spiked with Qbeta, MS2, T4, and P1 viruses were conducted with four different aluminum coagulants. The total infectious virus concentration in the suspension of floc particles that eventually formed by dosing with coagulant was measured after the floc particles were dissolved by raising the pH with an alkaline beef extract solution. The virus concentrations were extremely reduced after the water samples were dosed with aluminum coagulants. Viruses mixed with and adsorbed onto preformed aluminum hydroxide floc were, however, completely recovered after the floc dissolution. These results indicated that the aluminum coagulation process inactivates viruses. Virucidal activity was most prominent with the prehydrolyzed aluminum salt coagulant, polyaluminum chloride (PACl). Virucidal activity was lower in river water than in ultrapure water--natural organic matter in the river water depressed the virucidal activity. Mechanisms and kinetics of the virus inactivation were discussed. Our results suggest that intermediate polymers formed during hydrolysis of the aluminum coagulants sorbed strongly to viruses, either rendering them inactive or preventing infectivity.

  19. RECOVERY OF METAL USING ALUMINUM DISPLACEMENT

    EPA Science Inventory

    The removal of typical metals (Cu, Pb, Sn, Ni) from printed circuit and metal finishing waste streams was evaluated using displacement with aluminum. he metal is recovered as non-hazardous metal particles and can be recycled by smelting. n acceptable aluminum metal configuration ...

  20. RECOVERY OF METAL USING ALUMINUM DISPLACEMENT

    EPA Science Inventory

    The removal of typical metals (Cu, Pb, Sn, Ni) from printed circuit and metal finishing waste streams was evaluated using displacement with aluminum. he metal is recovered as non-hazardous metal particles and can be recycled by smelting. n acceptable aluminum metal configuration ...

  1. Welding high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Parks, P. G.; Hoppes, R. V.; Hasemeyer, E. A.; Masubuchi, K.

    1974-01-01

    Handbook has been published which integrates results of 19 research programs involving welding of high-strength aluminum alloys. Book introduces metallurgy and properties of aluminum alloys by discussing commercial alloys and heat treatments. Several current welding processes are reviewed such as gas tungsten-arc welding and gas metal-arc welding.

  2. Improved dual flow aluminum hydrogen peroxide battery

    SciTech Connect

    Marsh, C.; Licht, S.L.; Matthews, D.

    1993-11-30

    A novel dual flow battery configuration is provided comprising an aqueous hydrogen peroxide catholyte, an aqueous anolyte, a porous solid electrocatalyst capable of reducing said hydrogen peroxide and separating said anolyte, and an aluminum anode positioned within said anolyte. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode.

  3. Improved dual flow aluminum hydrogen peroxide battery

    NASA Astrophysics Data System (ADS)

    Marsh, Catherine; Licht, Stuart L.; Matthews, Donna

    1993-11-01

    A novel dual flow battery configuration is provided comprising an aqueous hydrogen peroxide catholyte, an aqueous anolyte, a porous solid electrocatalyst capable of reducing said hydrogen peroxide and separating said anolyte, and an aluminum anode positioned within said anolyte. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode.

  4. Numerical simulation of the aluminum production

    NASA Astrophysics Data System (ADS)

    Popov, P. A.; Vabishchevich, P. N.

    2014-11-01

    Discusses the peculiarities of scientific and technical research problems based on mathematical modeling and computational experiment. Modern computer technology used in the modernization and development of new technologies of aluminum production. Marked features of mathematical models and software applications of multiphysics modeling of the aluminum electrolyzer.

  5. Aluminum induced proteome changes in tomato cotyledons

    USDA-ARS?s Scientific Manuscript database

    Cotyledons of tomato seedlings that germinated in a 20 µM AlK(SO4)2 solution remained chlorotic while those germinated in an aluminum free medium were normal (green) in color. Previously, we have reported the effect of aluminum toxicity on root proteome in tomato seedlings (Zhou et al. J Exp Bot, 20...

  6. DYNAMIC TESTS OF STRUCTURAL ALUMINUM ALLOYS.

    DTIC Science & Technology

    A series of dynamic tests was conducted on three grades of structural aluminum alloys: (a) 6061-T6, (b) 6063 - T5 , and (c) 5456-H321. The effects of...at the maximum test rates. The 6063 - T5 aluminum shoed no change in yield stress and a 5.8% increase in tensile strength at the maximum test rate

  7. DNA methylation dynamics in neurogenesis.

    PubMed

    Wang, Zhiqin; Tang, Beisha; He, Yuquan; Jin, Peng

    2016-03-01

    Neurogenesis is not limited to the embryonic stage, but continually proceeds in the adult brain throughout life. Epigenetic mechanisms, including DNA methylation, histone modification and noncoding RNA, play important roles in neurogenesis. For decades, DNA methylation was thought to be a stable modification, except for demethylation in the early embryo. In recent years, DNA methylation has proved to be dynamic during development. In this review, we summarize the latest understanding about DNA methylation dynamics in neurogenesis, including the roles of different methylation forms (5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine), as well as their 'writers', 'readers' and interactions with histone modifications.

  8. Selected fretting-wear-resistant coatings for titanium - 6-percent-aluminum - 4-percent-vanadium alloy

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1976-01-01

    A titanium - 6-percent-aluminum - 4-percent-vanadium alloy (Ti-6Al-4V) was subjected to fretting-wear exposures against uncoated Ti-6Al-4V as a baseline and against various coatings and surface treatments applied to Ti-6Al-4V. The coatings evaluated included plasma-sprayed tungsten carbide with 12 percent cobalt, aluminum oxide with 13 percent titanium oxide, chromium oxide, and aluminum bronze with 10 percent aromatic polyester; polymer-bonded polyimide, polyimide with graphite fluoride, polyimide with molybdenum disulfide (MoS2), and methyl phenyl silicone bonded MoS2, preoxidation surface treatment, a nitride surface treatment, and a sputtered MoS2 coating. Results of wear measurements on both the coated and uncoated surfaces after 300,000 fretting cycles indicated that the polyimide coating was the most wear resistant and caused the least wear to the uncoated mating surface.

  9. Environmental effects on aluminum fracture

    NASA Technical Reports Server (NTRS)

    Schwartzberg, F. R.; Shepic, J. A.

    1976-01-01

    The sustained load stress corrosion cracking (SCC) threshold for aluminum alloy 214 was determined using smooth (sigma sub TH) and precracked (K sub ISCC) specimens, and cyclic load growth behavior in 3.5% NaCl salt solution was studied. The relationship between K sub ISCC and sigma sub TH was also studied. The work showed that 2124-T851 aluminum alloy in plate gage has a moderately high resistance to stress corrosion attack. Experimental results showed that no SCC occurred in the longitudinal and long transverse directions in any of the tests. Some SCC was found by smooth tests in the short transverse direction, and the data were confirmed by two test methods-sigma sub TH = 275 MN/sq m (40 ksi). No SCC was found from compact specimen tests in any direction: surface flaw and center notch specimens evaluated in the short transverse direction exhibited SCC. The data indicate that stress corrosion behavior is defect, size, and stress dependent, but not entirely in accordance with a stress intensity controlled mechanism.

  10. Gating of Permanent Molds for ALuminum Casting

    SciTech Connect

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-03-30

    This report summarizes a two-year project, DE-FC07-01ID13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings.

  11. Aluminum-based metal-air batteries

    DOEpatents

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  12. Trends in the global aluminum fabrication industry

    NASA Astrophysics Data System (ADS)

    Das, Subodh; Yin, Weimin

    2007-02-01

    The aluminum fabrication industry has become more vital to the global economy as international aluminum consumption has grown steadily in the past decades. Using innovation, value, and sustainability, the aluminum industry is strengthening its position not only in traditional packaging and construction applications but also in the automotive and aerospace markets to become more competitive and to face challenges from other industries and higher industrial standards. The aluminum fabrication industry has experienced a significant geographical shift caused by rapid growth in emerging markets in countries such as Brazil, Russia, India, and China. Market growth and distribution will vary with different patterns of geography and social development; the aluminum industry must be part of the transformation and keep pace with market developments to benefit.

  13. ALUMINUM AIR BRAZING FOR JOINING CERAMICS

    SciTech Connect

    Kim, Jin Yong Y.; Hardy, John S.; Weil, K. Scott

    2008-01-01

    Aluminum foils were used to braze ceramic plates directly in air. Since aluminum forms an inert oxide layer, aluminum air brazing can provide significant benefits in ceramic joining such as chemical tolerance in dual atmospheres. In using aluminum to air braze, the key factor is optimizing the brazing conditions in order to obtain good interface between braze and substrates by controling the kinetics of melting and oxidation of aluminum and sintering of oxide scale. In this study, joint strength was found to be largely dependent on brazing conditions such as temperature and hold time. Effects of these conditions on the mechanical properties and the microstructure of the Al-brazed ceramic joints will be discussed in this paper.

  14. DNA Methylation in Mammals

    PubMed Central

    Li, En; Zhang, Yi

    2014-01-01

    DNA methylation is one of the best characterized epigenetic modifications. In mammals it is involved in various biological processes including the silencing of transposable elements, regulation of gene expression, genomic imprinting, and X-chromosome inactivation. This article describes how DNA methylation serves as a cellular memory system and how it is dynamically regulated through the action of the DNA methyltransferase (DNMT) and ten eleven translocation (TET) enzymes. Its role in the regulation of gene expression, through its interplay with histone modifications, is also described, and its implication in human diseases discussed. The exciting areas of investigation that will likely become the focus of research in the coming years are outlined in the summary. PMID:24789823

  15. An in Situ Generated Palladium on Aluminum Oxide: Applications in Gram-Scale Matsuda-Heck Reactions.

    PubMed

    Pape, Simon; Daukšaitė, Lauryna; Lucks, Sandra; Gu, Xiaoting; Brunner, Heiko

    2016-12-16

    In situ generated palladium on aluminum oxide provides an active catalytic system for Matsuda-Heck reactions in gram-scale. The novel catalyst proceeded through a significantly higher catalytic activity compared to the classical Pd/C system. Based on the high catalytic activity the first α,β,β-triarylation of methyl acrylate in good yields could be provided in one-step.

  16. Orbital fabrication of aluminum foam and apparatus therefore

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S. (Inventor)

    2010-01-01

    A process for producing foamed aluminum in space comprising the steps of: heating aluminum until it is molten; applying the force of gravity to the molten aluminum; injecting gas into the molten aluminum to produce molten foamed aluminum; and allowing the molten foamed aluminum to cool to below melting temperature. The apparatus for carrying out this invention comprises: a furnace which rotates to simulate the force of gravity and heats the aluminum until it is molten; a door on the furnace, which is opened for charging the aluminum into the furnace, closed for processing and opened again for removal of the foamed aluminum; a gas injection apparatus for injecting gas into the molten aluminum within the furnace; and an extraction apparatus adjacent the door for removing the foamed aluminum from the furnace.

  17. Methylation profiling using methylated DNA immunoprecipitation and tiling array hybridization.

    PubMed

    Cheung, Hoi-Hung; Lee, Tin-Lap; Rennert, Owen M; Chan, Wai-Yee

    2012-01-01

    DNA methylation is an important epigenetic modification that regulates development and plays a role in the pathophysiology of many diseases. It is dynamically changed during germline development. Methylated DNA immunoprecipitation (MeDIP) is an efficient, cost-effective method for locus-specific and genome-wide analysis. Methylated DNA fragments are enriched by a 5-methylcytidine-recognizing antibody, therefore allowing the analysis of both CpG and non-CpG methylation. The enriched DNA fragments can be amplified and hybridized to tiling arrays covering CpG islands, promoters, or the entire genome. Comparison of different methylomes permits the discovery of differentially methylated regions that might be important in disease- or tissue-specific expression. Here, we describe an established MeDIP protocol and tiling array hybridization method for profiling methylation of testicular germ cells.

  18. Event extraction for DNA methylation.

    PubMed

    Ohta, Tomoko; Pyysalo, Sampo; Miwa, Makoto; Tsujii, Jun'ichi

    2011-10-06

    We consider the task of automatically extracting DNA methylation events from the biomedical domain literature. DNA methylation is a key mechanism of epigenetic control of gene expression and implicated in many cancers, but there has been little study of automatic information extraction for DNA methylation. We present an annotation scheme for DNA methylation following the representation of the BioNLP shared task on event extraction, select a set of 200 abstracts including a representative sample of all PubMed citations relevant to DNA methylation, and introduce manual annotation for this corpus marking nearly 3000 gene/protein mentions and 1500 DNA methylation and demethylation events. We retrain a state-of-the-art event extraction system on the corpus and find that automatic extraction of DNA methylation events, the methylated genes, and their methylation sites can be performed at 78% precision and 76% recall. Our results demonstrate that reliable extraction methods for DNA methylation events can be created through corpus annotation and straightforward retraining of a general event extraction system. The introduced resources are freely available for use in research from the GENIA project homepage http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA.

  19. Process for anodizing aluminum foil

    SciTech Connect

    Ball, J.A.; Scott, J.W.

    1984-11-06

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 80/sup 0/ C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V.

  20. Modification of galvannealed steel through aluminum addition

    NASA Astrophysics Data System (ADS)

    Coddington, Trevor Q.; Cook, Desmond C.

    1998-12-01

    Aluminum is believed to modify and to some extent control the coating characteristics of commercially produced galvanneal sheet steel. These include mechanical, chemical, and aesthetic properties. Whereas the aluminum added to the molten zinc bath is known to form intermetallics before the steel is annealed, our research is primarily concerned with the effect aluminum has on suppression or enhancement of the particular iron--zinc alloy phases in the coating during galvannealing. The microstructure of four commercially important iron--zinc intermetallic phases containing varying aluminum content between 0--1.5 weight percent has been studied. It is also believed that an iron--aluminum alloy, known as the inhibition layer, forms on the steel surface following hot dipping and prior to annealing. Transmission and scattering Mössbauer spectroscopy as well as X-ray diffraction have been used to identify iron--zinc and iron--aluminum alloys present in the coatings. Discussion will be presented on the effect aluminum has on phase suppression for Fe--Zn alloys prepared in commercially produced galvanneal.

  1. Evaluating the aluminum content of pressed dross

    NASA Astrophysics Data System (ADS)

    Kevorkijan, V.

    2002-02-01

    Pressing of skimmed hot drosses in a press is a very popular technology for cooling hot dross and obtaining the maximum in-house recovery of aluminum alloy. As a result of the pressing action, part of the molten aluminum alloy is squeezed out, while the rest of the free metal remains in the pressed skulls. Thus, pressed skulls are a valuable waste product, consisting of 30 70 wt.% free aluminum. Other constituents are aluminum oxide and oxides of alloying metals. Pressed skulls are generally valued on a free-metal recovery basis, which necessarily involves practical determination of their free aluminum content. Because most analytical methods are limited to the laboratory level and representative sub-samples, there is a practical interest in developing a routine, cost-effective, and non-destructive method to predict the free aluminum content in entire pressed skulls, based on their density. To develop such a method, a relation between the bulk density, porosity, and free aluminum content of pressed skulls was established. This article offers a review of those experiments and an analysis of their results.

  2. The biological speciation and toxicokinetics of aluminum.

    PubMed Central

    DeVoto, E; Yokel, R A

    1994-01-01

    This review discusses recent literature on the chemical and physiological factors that influence the absorption, distribution, and excretion of aluminum in mammals, with particular regard to gastrointestinal absorption and speciation in plasma. Humans encounter aluminum, a ubiquitous yet highly insoluble element in most forms, in foods, drinking water, and pharmaceuticals. Exposure also occurs by inhalation of dust and aerosols, particularly in occupational settings. Absorption from the gut depends largely on pH and the presence of complexing ligands, particularly carboxylic acids, with which the metal can form absorbable neutral aluminum species. Uremic animals and humans experience higher than normal body burdens of aluminum despite increased urinary clearance of the metal. In plasma, 80-90% of aluminum binds to transferrin, an iron-transport protein for which receptors exist in many tissue. The remaining fraction of plasma aluminum takes the form of small-molecule hydroxy species and small complexes with carboxylic acids, phosphate, and, to a much lesser degree, amino acids. Most of these species have not been observed in vivo but are predicted from equilibrium models derived from potentiometric methods and NMR investigations. These models predict that the major small-molecule aluminum species under plasma conditions are charged and hence unavailable for uptake into tissues. PMID:9738208

  3. Decontamination and reuse of ORGDP aluminum scrap

    SciTech Connect

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

    1996-12-01

    The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UF{sub 6}. This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of the stator and rotor blades were made from 214-X aluminum casting alloy. Used compressor blades were contaminated with uranium both as a result of surface contamination and as an accumulation held in surface-connected voids inside of the blades. A variety of GDP studies were performed to evaluate the amounts of uranium retained in the blades; the volume, area, and location of voids in the blades; and connections between surface defects and voids. Based on experimental data on deposition, uranium content of the blades is 0.3%, or roughly 200 times the value expected from blade surface area. However, this value does correlate with estimated internal surface area and with lengthy deposition times. Based on a literature search, it appears that gaseous decontamination or melt refining using fluxes specific for uranium removal have the potential for removing internal contamination from aluminum blades. A melt refining process was used to recycle blades during the 1950s and 1960s. The process removed roughly one-third of the uranium from the blades. Blade cast from recycled aluminum appeared to perform as well as blades from virgin material. New melt refining and gaseous decontamination processes have been shown to provide substantially better decontamination of pure aluminum. If these techniques can be successfully adapted to treat aluminum 214-X alloy, internal and, possibly, external reuse of aluminum alloys may be possible.

  4. Study of crevice-galvanic corrosion of aluminum

    NASA Technical Reports Server (NTRS)

    Draley, J. E.; Loess, R. E.; Mori, S.

    1967-01-01

    Corrosion effects of aluminum-copper and aluminum-nickel couples in oxygenated distilled water, and aluminum alloys in oxygenated copper sulfate solution were studied. One of each of the couples had a water tight seal, and showed no substantial corrosion, and of the unsealed couples, only the aluminum-copper developed corrosion.

  5. 49 CFR 229.51 - Aluminum main reservoirs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Aluminum main reservoirs. 229.51 Section 229.51... Aluminum main reservoirs. (a) Aluminum main reservoirs used on locomotives shall be designed and fabricated as follows: (1) The heads and shell shall be made of Aluminum Association Alloy No. 5083-0, produced...

  6. 49 CFR 178.505 - Standards for aluminum drums.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Standards for aluminum drums. 178.505 Section 178...-bulk Performance-Oriented Packaging Standards § 178.505 Standards for aluminum drums. (a) The following are the identification codes for aluminum drums: (1) 1B1 for a non-removable head aluminum drum; and...

  7. 49 CFR 229.51 - Aluminum main reservoirs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Aluminum main reservoirs. 229.51 Section 229.51... Aluminum main reservoirs. (a) Aluminum main reservoirs used on locomotives shall be designed and fabricated as follows: (1) The heads and shell shall be made of Aluminum Association Alloy No. 5083-0, produced...

  8. 49 CFR 178.505 - Standards for aluminum drums.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for aluminum drums. 178.505 Section 178... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.505 Standards for aluminum drums. (a) The following are the identification codes for aluminum drums: (1) 1B1 for a non-removable head aluminum drum...

  9. 49 CFR 178.505 - Standards for aluminum drums.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Standards for aluminum drums. 178.505 Section 178...-bulk Performance-Oriented Packaging Standards § 178.505 Standards for aluminum drums. (a) The following are the identification codes for aluminum drums: (1) 1B1 for a non-removable head aluminum drum; and...

  10. 49 CFR 229.51 - Aluminum main reservoirs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Aluminum main reservoirs. 229.51 Section 229.51... Aluminum main reservoirs. (a) Aluminum main reservoirs used on locomotives shall be designed and fabricated as follows: (1) The heads and shell shall be made of Aluminum Association Alloy No. 5083-0, produced...

  11. 49 CFR 178.505 - Standards for aluminum drums.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Standards for aluminum drums. 178.505 Section 178...-bulk Performance-Oriented Packaging Standards § 178.505 Standards for aluminum drums. (a) The following are the identification codes for aluminum drums: (1) 1B1 for a non-removable head aluminum drum; and...

  12. 49 CFR 178.505 - Standards for aluminum drums.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Standards for aluminum drums. 178.505 Section 178...-bulk Performance-Oriented Packaging Standards § 178.505 Standards for aluminum drums. (a) The following are the identification codes for aluminum drums: (1) 1B1 for a non-removable head aluminum drum; and...

  13. 49 CFR 229.51 - Aluminum main reservoirs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Aluminum main reservoirs. 229.51 Section 229.51... Aluminum main reservoirs. (a) Aluminum main reservoirs used on locomotives shall be designed and fabricated as follows: (1) The heads and shell shall be made of Aluminum Association Alloy No. 5083-0, produced...

  14. Formulation and method for preparing gels comprising hydrous aluminum oxide

    DOEpatents

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  15. 49 CFR 229.51 - Aluminum main reservoirs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Aluminum main reservoirs. 229.51 Section 229.51... Aluminum main reservoirs. (a) Aluminum main reservoirs used on locomotives shall be designed and fabricated as follows: (1) The heads and shell shall be made of Aluminum Association Alloy No. 5083-0, produced...

  16. Explosive welding technique for joining aluminum and steel tubes

    NASA Technical Reports Server (NTRS)

    Wakefield, M. E.

    1975-01-01

    Silver sheet is wrapped around aluminum portion of joint. Mylar powder box is wrapped over silver sheet. Explosion welds silver to aluminum. Stainless-steel tube is placed over silver-aluminum interface. Mylar powder box, covered with Mylar tape, is wrapped around steel member. Explosion welds steel to silver-aluminum interface.

  17. Domestic aluminum resources: dilemmas of development

    SciTech Connect

    Staats, E.B.

    1980-07-17

    Concerns about supply disruptions and price gouging that could endanger aluminum production in the United States have spurred research in this country on processes to manufacture aluminum from ores other than bauxite. The United States has no large bauxite deposits but it has plentiful resources of other aluminum ores if the technology can be developed to use them economically. Sources of aluminium include alunite, anorthosite, dawsonite, and clay/acid. Miniplants for clay/nitric acid and clay/hydrochloric acid, gas-induced crystallization have been constructed.

  18. Non-Chromate Surface Preparation of Aluminum

    DTIC Science & Technology

    1988-08-01

    SURFACE PREPARATION OF ALUMINUM 1. INTRODUCTION The surface preparation procedure originally develnped by Forest Products Laboratories (FPL)[(], and...boehm0te (A1 2 0 3 • 2 H2 0), and then bayerite (Al(OH) 3 or A1 2 0 3 • 3 H2 0). As hydration proceeds, the adhesion of the oxide to the aluminum...pseudo-boehmite. In the third stage, the surface hydrates further to become bayerite . The dissolution of the aluminum phosphate is the rate

  19. Cathode for aluminum producing electrolytic cell

    DOEpatents

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.

  20. Spray Rolling Aluminum Strip for Transportation Applications

    SciTech Connect

    Kevin M. McHugh; Y. Lin; Y. Zhou; E. J. Lavernia; J.-P. Delplanque; S. B. Johnson

    2005-02-01

    Spray rolling is a novel strip casting technology in which molten aluminum alloy is atomized and deposited into the roll gap of mill rolls to produce aluminum strip. A combined experimental/modeling approach has been followed in developing this technology with active participation from industry. The feasibility of this technology has been demonstrated at the laboratory scale and it is currently being scaled-up. This paper provides an overview of the process and compares the microstructure and properties of spray-rolled 2124 aluminum alloy with commercial ingot-processed material

  1. Effect of microplasma discharges on aluminum surfaces

    SciTech Connect

    Ivanov, V. A. Konyzhev, M. E.; Kuksenova, L. I.; Lapteva, V. G.; Sakharov, A. S.; Dorofeyuk, A. A.; Kamolova, T. I.; Satunin, S. N.; Letunov, A. A.

    2011-12-15

    Excitation of microplasma discharges on the surfaces of V95 aluminum alloy samples placed in a uniform pulsed plasma flow was studied experimentally. Strong localized interaction of microplasma discharges with aluminum leads to the melting and subsequent fast cooling of micrometer-size regions on the sample surface. Due to the multiple action of microplasma discharges, a continuous remelted layer with a thickness of up to 20 {mu}m forms on the aluminum surface. The physical, structural, and tribotechnical properties of this layer differ substantially from those before microplasma processing.

  2. Electrically conductive containment vessel for molten aluminum

    DOEpatents

    Holcombe, Cressie E.; Scott, Donald G.

    1985-01-01

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  3. Electrically conductive containment vessel for molten aluminum

    DOEpatents

    Holcombe, C.E.; Scott, D.G.

    1984-06-25

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal 10 borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  4. Purification using high pressure molten aluminum

    NASA Astrophysics Data System (ADS)

    Sample, Vivek M.; Cassada, William A.

    A novel technique has been developed to separate eutectic forming elements using a continuous supply of high pressure molten aluminum. In this continuous process, enriched liquid in the mushy zone is selectively expelled from the solidifying mold through a permeable membrane. The fraction of expelled liquid and the level of purification attained can be controlled in real time. Applications of this technique for refining smelter grade aluminum as well as recycling aluminum scrap are being explored. Unique aspects and advantages of the process will be discussed.

  5. Aluminum Hydride Catalyzed Hydroboration of Alkynes.

    PubMed

    Bismuto, Alessandro; Thomas, Stephen P; Cowley, Michael J

    2016-12-05

    An aluminum-catalyzed hydroboration of alkynes using either the commercially available aluminum hydride DIBAL-H or bench-stable Et3 Al⋅DABCO as the catalyst and H-Bpin as both the boron reagent and stoichiometric hydride source has been developed. Mechanistic studies revealed a unique mode of reactivity in which the reaction is proposed to proceed through hydroalumination and σ-bond metathesis between the resultant alkenyl aluminum species and HBpin, which acts to drive turnover of the catalytic cycle. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Genetic effects of methylation diets.

    PubMed

    Van den Veyver, Ignatia B

    2002-01-01

    DNA methylation at cytosines in CpG dinucleotides can lead to changes in gene expression and function without altering the primary sequence of the DNA. Methylation can be affected by dietary levels of methyl-donor components, such as folic acid. This may be an important mechanism for environmentally induced changes in gene expression. Recent literature supports a role for DNA-methylation changes in a number of adult-onset disorders and during development. These changes may be significant for better understanding certain birth defects (e.g., neural tube defects) and the long-term consequences of early environmental influences on gene expression (metabolic programming). Optimal "methylation diets" should be investigated as part of the prevention and treatment of all these conditions, as well as in disorders such as Rett syndrome, whose primary defects may lie in DNA methylation-dependent gene regulation.

  7. Diffuse Parenchymal Diseases Associated With Aluminum Use and Primary Aluminum Production

    PubMed Central

    2014-01-01

    Aluminum use and primary aluminum production results in the generation of various particles, fumes, gases, and airborne materials with the potential for inducing a wide range of lung pathology. Nevertheless, the presence of diffuse parenchymal or interstitial lung disease related to these processes remains controversial. The relatively uncommon occurrence of interstitial lung diseases in aluminum-exposed workers—despite the extensive industrial use of aluminum—the potential for concurrent exposure to other fibrogenic fibers, and the previous use of inhaled aluminum powder for the prevention of silicosis without apparent adverse respiratory effects are some of the reasons for this continuing controversy. Specific aluminum-induced parenchymal diseases described in the literature, including existing evidence of interstitial lung diseases, associated with primary aluminum production are reviewed. PMID:24806728

  8. X-ray photoelectron spectroscopy study of catalyzed aluminum carbide formation at aluminum-carbon interfaces

    NASA Technical Reports Server (NTRS)

    Rabenberg, L.; Maruyama, Benji

    1990-01-01

    Aluminum carbide may form at aluminum-graphite interfaces during the high-temperature processing of graphite fiber-reinforced aluminum metal matrix composites. The chemical interactions leading to the formation of the aluminum carbide in the solid state involve the breaking of the carbon-carbon bonds within the graphite, the transport of the carbon atoms across the interface, and the reaction with the aluminum to form Al4C3. The aluminum carbide formation process has been followed using X-ray photoelectron spectroscopy of model, thin-film, reaction couples. The overall reaction is shown to be catalyzed by the presence of water vapor. Water at the interface increases reaction kinetics by apparently weakening the bonds between the surface carbon atoms and their substrate. This result is in general agreement with what is known to occur during the oxidation of graphite in air.

  9. A simple aluminum gasket for use with both stainless steel and aluminum flanges

    SciTech Connect

    Langley, R.A.

    1991-01-01

    A technique has been developed for making aluminum wire seal gaskets of various sizes and shapes for use with both stainless steel and aluminum alloy flanges. The gasket material used is 0.9999 pure aluminum, drawn to a diameter of 3 mm. This material can be easily welded and formed into various shapes. A single gasket has been successfully used up to five times without baking. The largest gasket tested to date is 3.5 m long and was used in the shape of a parallelogram. Previous use of aluminum wire gaskets, including results for bakeout at temperatures from 20 to 660{degree}C, is reviewed. A search of the literature indicates that this is the first reported use of aluminum wire gaskets for aluminum alloy flanges. The technique is described in detail, and the results are summarized. 11 refs., 4 figs.

  10. 49 CFR 173.193 - Bromoacetone, methyl bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bromoacetone, methyl bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc. 173.193 Section 173.193 Transportation Other Regulations... bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc. (a) Bromoacetone must be...

  11. (Polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interefere in the ethylene polymerization process, while affecting the the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  12. Chromatin methylation and cardiovascular aging.

    PubMed

    Illi, Barbara; Ciarapica, Roberta; Capogrossi, Maurizio C

    2015-06-01

    DNA and histone methylation are well characterized epigenetic marks that are altered during the aging process. In aged cells and tissues, DNA cytosine tagging by methylation undergoes the so-called "epigenetic drift", in parallel with a change in the methylated histone profile. Despite the large body of knowledge regarding age-dependent epigenetic changes, there are few reports related to this topic in the cardiovascular field. This review summarizes age-dependent changes in DNA and histone methylation with a specific focus on age-related cardiovascular diseases (CVDs). Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753... Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5753 How do I calculate the combined organic HAP content of aluminum...

  14. 46 CFR 148.255 - Ferrosilicon, aluminum ferrosilicon, and aluminum silicon containing more than 30% but less than...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ferrosilicon, aluminum ferrosilicon, and aluminum... SPECIAL HANDLING Special Requirements for Certain Materials § 148.255 Ferrosilicon, aluminum ferrosilicon, and aluminum silicon containing more than 30% but less than 90% silicon. (a) This section applies to...

  15. 46 CFR 148.255 - Ferrosilicon, aluminum ferrosilicon, and aluminum silicon containing more than 30% but less than...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Ferrosilicon, aluminum ferrosilicon, and aluminum... SPECIAL HANDLING Special Requirements for Certain Materials § 148.255 Ferrosilicon, aluminum ferrosilicon, and aluminum silicon containing more than 30% but less than 90% silicon. (a) This section applies to...

  16. 46 CFR 148.255 - Ferrosilicon, aluminum ferrosilicon, and aluminum silicon containing more than 30% but less than...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Ferrosilicon, aluminum ferrosilicon, and aluminum... SPECIAL HANDLING Special Requirements for Certain Materials § 148.255 Ferrosilicon, aluminum ferrosilicon, and aluminum silicon containing more than 30% but less than 90% silicon. (a) This section applies to...

  17. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753... Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5753 How do I calculate the combined organic HAP content of aluminum...

  18. 46 CFR 148.255 - Ferrosilicon, aluminum ferrosilicon, and aluminum silicon containing more than 30% but less than...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ferrosilicon, aluminum ferrosilicon, and aluminum... SPECIAL HANDLING Special Requirements for Certain Materials § 148.255 Ferrosilicon, aluminum ferrosilicon, and aluminum silicon containing more than 30% but less than 90% silicon. (a) This section applies to...

  19. Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminum hydroxide microparticles

    PubMed Central

    Li, Xinran; Aldayel, Abdulaziz M.; Cui, Zhengrong

    2013-01-01

    Aluminum hydroxide is used as a vaccine adjuvant in various human vaccines. Unfortunately, despite its favorable safety profile, aluminum hydroxide can only weakly or moderately potentiate antigen-specific antibody responses. When dispersed in an aqueous solution, aluminum hydroxide forms particulates of 1–20 µm. There is increasing evidence that nanoparticles around or less than 200 nm as vaccine or antigen carriers have a more potent adjuvant activity than large microparticles. In the present study, we synthesized aluminum hydroxide nanoparticles of 112 nm. Using ovalbumin and Bacillus anthracis protective antigen protein as model antigens, we showed that protein antigens adsorbed on the aluminum hydroxide nanoparticles induced a stronger antigen-specific antibody response than the same protein antigens adsorbed on the traditional aluminum hydroxide microparticles of around 9.3 µm. The potent adjuvant activity of the aluminum hydroxide nanoparticles was likely related to their ability to more effectively facilitate the uptake of the antigens adsorbed on them by antigen-presenting cells. Finally, the local inflammation induced by aluminum hydroxide nanoparticles in the injection sites was milder than that induced by microparticles. Simply reducing the particle size of the traditional aluminum hydroxide adjuvant into nanometers represents a novel and effective approach to improve its adjuvanticity. PMID:24188959

  20. Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminum hydroxide microparticles.

    PubMed

    Li, Xinran; Aldayel, Abdulaziz M; Cui, Zhengrong

    2014-01-10

    Aluminum hydroxide is used as a vaccine adjuvant in various human vaccines. Unfortunately, despite its favorable safety profile, aluminum hydroxide can only weakly or moderately potentiate antigen-specific antibody responses. When dispersed in an aqueous solution, aluminum hydroxide forms particulates of 1-20μm. There is increasing evidence that nanoparticles around or less than 200nm as vaccine or antigen carriers have a more potent adjuvant activity than large microparticles. In the present study, we synthesized aluminum hydroxide nanoparticles of 112nm. Using ovalbumin and Bacillus anthracis protective antigen protein as model antigens, we showed that protein antigens adsorbed on the aluminum hydroxide nanoparticles induced a stronger antigen-specific antibody response than the same protein antigens adsorbed on the traditional aluminum hydroxide microparticles of around 9.3μm. The potent adjuvant activity of the aluminum hydroxide nanoparticles was likely related to their ability to more effectively facilitate the uptake of the antigens adsorbed on them by antigen-presenting cells. Finally, the local inflammation induced by aluminum hydroxide nanoparticles in the injection sites was milder than that induced by microparticles. Simply reducing the particle size of the traditional aluminum hydroxide adjuvant into nanometers represents a novel and effective approach to improve its adjuvanticity. © 2013.

  1. Influence of Aluminum Coating and Diffusion Affecting Additives on Dissimilar Laser Joining of Steel and Aluminum

    NASA Astrophysics Data System (ADS)

    Bergmann, J. P.; Stambke, M.; Schmidt, S.

    Steel as well as aluminum play an essential role for multi-material construction in the field of lightweight design. However, the thermal metallurgical joining of these materials is difficult due to their different physical properties and the formation of intermetallic phases. This paper describes investigations on laser joining of aluminum plated steel with aluminum. Furthermore examinations with additives acting as diffusion barriers were carried out. The results indicate that the aluminum coating is advantageous for the joint. The growth of intermetallic phases can be reduced by application of carbon and tungsten to the steel sheet tip.

  2. Facile Route to Rare Heterobimetallic Aluminum-Copper and Aluminum-Zinc Selenide Clusters.

    PubMed

    Li, Bin; Li, Jiancheng; Liu, Rui; Zhu, Hongping; Roesky, Herbert W

    2017-03-20

    Heterobimetallic aluminum-copper and aluminum-zinc clusters were prepared from the reaction of LAl(SeH)2 [1; L = HC(CMeNAr)2 and Ar = 2,6-iPr2C6H3] with (MesCu)4 and ZnEt2, respectively. The resulting clusters with the core structures of Al2Se4Cu4 and Al2Se4Zn3 exhibit unique metal-organic frameworks. This is a novel pathway for the synthesis of aluminum-copper and aluminum-zinc selenides. The products have been characterized by spectroscopic methods and single-crystal X-ray structural characterization.

  3. Aluminum recovery as a product with high added value using aluminum hazardous waste.

    PubMed

    David, E; Kopac, J

    2013-10-15

    The samples of hazardous aluminum solid waste such as dross were physically and chemically characterized. A relationship between density, porosity and metal content of dross was established. The paper also examines the chemical reactions involving aluminum dross in landfill and the negative consequences. To avoid environmental problems and to recovery the aluminum, a processing method was developed and aluminum was recovered as an added value product such as alumina. This method refers to a process at low temperature, in more stages: acid leaching, purification, precipitation and calcination. At the end of this process aluminum was extracted, first as Al(3+) soluble ions and final as alumina product. The composition of the aluminum dross and alumina powder obtained were measured by applying the leaching tests, using atomic absorption spectrometry (AAS) and chemical analysis. The mineralogical composition of aluminum dross samples and alumina product were determined by X-ray diffraction (XRD) and the morphological characterization was performed by scanning electron microscopy (SEM). The method presented in this work allows the use of hazardous aluminum solid waste as raw material to recover an important fraction from soluble aluminum content as an added value product, alumina, with high grade purity (99.28%).

  4. Polytetrafluoroethylene-Impregnated Anodization For Aluminum

    NASA Technical Reports Server (NTRS)

    Danford, Merlin D.

    1990-01-01

    Technical memorandum describes experiments on ability of two commercial coatings and of standard hard anodization to protect aluminum against corrosion. Both commercial coatings, Polylube and Tufram, polytetrafluoroethylene-impregnated anodizations. Standard hard-anodized coating found to provide greatest protection.

  5. Tested Demonstrations: Dyeing of Anodized Aluminum.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Provides a list of needed materials, required preparations, and instructions for demonstrating the dyeing of anodized aluminum. Discusses the chemistry involved and gives equations for reactions occurring at the anode and cathode. (JM)

  6. Ultrahigh-Efficiency Aluminum Production Cells

    SciTech Connect

    2009-11-01

    This factsheet describes a research project to develop a commercially viable inert anode aluminum electrolysis cell technology. Accompanying enabling technologies will also be developed, including a wetted cathode design and a novel low-temperature electrolyte.

  7. PROCESS OF ELECTROPLATING METALS WITH ALUMINUM

    DOEpatents

    Schickner, W.C.

    1960-04-26

    A process of electroplating aluminum on metals from a nonaqueous bath and a novel method of pretreating or conditioning the metal prior to electrodeposition of the aluminum are given. The process of this invention, as applied by way of example to the plating of uranium, comprises the steps of plating the uranium with the barrier inetal, immersing the barrier-coated uranium in fatty acid, and electrolyzing a water-free diethyl ether solution of aluminum chloride and lithium hydride while making the uranium the cathode until an aluminum deposit of the desired thickness has been formed. According to another preferred embodiment the barrier-coated uranium is immersed in an isopropyl alcohol solution of sterato chromic chloride prior to the fatty acid treatment of this invention.

  8. Respiratory Disorders in Aluminum Smelter Workers

    PubMed Central

    Søyseth, Vidar

    2014-01-01

    Objectives: Summarizing the knowledge status, including the morphology, possible etiological factors, and clinical expression of aluminum potroom asthma and chronic obstructive pulmonary disease related to aluminum potroom exposure. Methods: A review of the literature from the last two decades as it appears in PubMed. Results: There is substantial evidence for the existence of potroom asthma, although the incidence seems to decline over the last 10 years. Increased mortality from chronic obstructive pulmonary disease and longitudinal decline in forced expiratory volume in the first second of expiration has been shown in aluminum potroom workers. Morphological manifestations in bronchial biopsies and the inflammatory markers NO and eosinophils in airway tissue and blood are consistent with asthma in general. The causative agent(s) is (are) not known. Conclusions: Reduction of exposure and cessation of smoking seem to be the major preventive measures to avoid respiratory disorders in the aluminum industry. PMID:24806727

  9. 76 FR 23490 - Aluminum tris (O

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ..., fosthiazate, propetamphos, and tebufenozide; the fungicide aluminum tris (O-ethylphosphonate); the herbicides...-ethylphosphonate) and fenarimol; the herbicides butylate, clethodim, clomazone, fenoxaprop-ethyl, flumetsulam... residues. (a) General. Tolerances are established for residues of the herbicide butylate, including...

  10. Solution Potentials Indicate Aluminum-Alloy Tempers

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1985-01-01

    Report discusses use of solution potential as measure of temper of aluminum alloys. Technique based on fact that different tempers or heat treatments exhibit different solution potentials as function of aging time.

  11. The Cleaning of Aluminum Frame Assembly Units

    SciTech Connect

    Shen, T H

    2001-05-16

    The Brulin immersion and the precision cleaning experiments have shown that neither the Brulin solution nor the precision cleaning in AstroPak causes the smut formation on aluminum surfaces. The acid-bath cleaning in GTC is the primary source of the smut formation. The current GTC acid formulation etches the aluminum matrix quite aggressively, but does not appear to appreciably attack the Si particles. Therefore, this acid-bath cleaning will leave the cast-aluminum part surfaces with many protruded Si particles, which could potentially cause smut problems in the cleaning process down-stream. To ensure the removal of all loose Si particles from the cast-aluminum parts, it is necessary to physically hand-wipe and vigorously wash the acid-bath cleaned surfaces. Furthermore, the casting porosity in alloy A356 could be another source in causing high swipe readings in the FAU parts.

  12. Dry lubricant films for aluminum forming.

    SciTech Connect

    Wei, J.; Erdemir, A.; Fenske, G. R.

    1999-03-30

    During metal forming process, lubricants are crucial to prevent direct contact, adhesion, transfer and scuffing of workpiece materials and tools. Boric acid films can be firmly adhered to the clean aluminum surfaces by spraying their methanol solutions and provide extremely low friction coefficient (about 0.04). The cohesion strengths of the bonded films vary with the types of aluminum alloys (6061, 6111 and 5754). The sheet metal forming tests indicate that boric acid films and the combined films of boric acid and mineral oil can create larger strains than the commercial liquid and solid lubricants, showing that they possess excellent lubricities for aluminum forming. SEM analyses indicate that boric acid dry films separate the workpiece and die materials, and prevent their direct contact and preserve their surface qualities. Since boric acid is non-toxic and easily removed by water, it can be expected that boric acid films are environmentally friendly, cost effective and very efficient lubricants for sheet aluminum cold forming.

  13. Macrodeformation Twins in Single-Crystal Aluminum

    NASA Astrophysics Data System (ADS)

    Zhao, F.; Wang, L.; Fan, D.; Bie, B. X.; Zhou, X. M.; Suo, T.; Li, Y. L.; Chen, M. W.; Liu, C. L.; Qi, M. L.; Zhu, M. H.; Luo, S. N.

    2016-02-01

    Deformation twinning in pure aluminum has been considered to be a unique property of nanostructured aluminum. A lingering mystery is whether deformation twinning occurs in coarse-grained or single-crystal aluminum at scales beyond nanotwins. Here, we present the first experimental demonstration of macrodeformation twins in single-crystal aluminum formed under an ultrahigh strain rate (˜106 s-1 ) and large shear strain (200%) via dynamic equal channel angular pressing. Large-scale molecular dynamics simulations suggest that the frustration of subsonic dislocation motion leads to transonic deformation twinning. Deformation twinning is rooted in the rate dependences of dislocation motion and twinning, which are coupled, complementary processes during severe plastic deformation under ultrahigh strain rates.

  14. Seacoast stress corrosion cracking of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1981-01-01

    The stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere was investigated and the results were compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and stressed up to 100 percent of their yield strengths were exposed to the seacoast and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater were indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the results was very good among the three test media using the selected exposure periods. It is concluded that either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

  15. Properties of hot expanded liquid aluminum

    SciTech Connect

    Gathers, G.R.; Ross, M.

    1983-07-01

    Measurements of temperature, volume, enthalpy, and electrical resistivity have been made on aluminum expanded isobarically by 50% in volume to temperatures of about 4000/sup 0/K. These measurements are compared with the predictions of liquid-metal pseudopotential theory.

  16. Mixed ether bath for electrodeposition of aluminum

    NASA Technical Reports Server (NTRS)

    Lui, K.

    1969-01-01

    Anisole added to the bath mixture improves Brenner aluminum plating bath technique. Mixture has lower bath vapor-pressure and the electro-deposits obtained have greater physical strength than deposits from the Brenner bath.

  17. Electrometallurgical treatment of aluminum-based fuels.

    SciTech Connect

    Willit, J. L.

    1998-07-29

    We have successfully demonstrated aluminum electrorefining from a U-Al-Si alloy that simulates spent aluminum-based reactor fuel. The aluminum product contains less than 200 ppm uranium. All the results obtained have been in agreement with predictions based on equilibrium thermodynamics. We have also demonstrated the need for adequate stirring to achieve a low-uranium product. Most of the other process steps have been demonstrated in other programs. These include uranium electrorefining, transuranic fission product scrubbing, fission product oxidation, and product consolidation by melting. Future work will focus on the extraction of active metal and rare earth fission products by a molten flux salt and scale-up of the aluminum electrorefining.

  18. Aluminum plasmonic multicolor meta-hologram.

    PubMed

    Huang, Yao-Wei; Chen, Wei Ting; Tsai, Wei-Yi; Wu, Pin Chieh; Wang, Chih-Ming; Sun, Greg; Tsai, Din Ping

    2015-05-13

    We report a phase-modulated multicolor meta-hologram (MCMH) that is polarization-dependent and capable of producing images in three primary colors. The MCMH structure is made of aluminum nanorods that are arranged in a two-dimensional array of pixels with surface plasmon resonances in red, green, and blue. The aluminum nanorod array is patterned on a 30 nm thick SiO2 spacer layer sputtered on top of a 130 nm thick aluminum mirror. With proper design of the structure, we obtain resonances of narrow bandwidths to allow for implementation of the multicolor scheme. Taking into account of the wavelength dependence of the diffraction angle, we can project images to specific locations with predetermined size and order. With tuning of aluminum nanorod size, we demonstrate that the image color can be continuously varied across the visible spectrum.

  19. Small-scale explosive welding of aluminum

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1972-01-01

    Welding technique uses very small quantities of explosive ribbon to accomplish small-scale lap-welding of aluminum plates. Technique can perform small controlled welding with no length limitations and requires minimal protective shielding.

  20. ALUMINUM NITRIDE AS A HIGH TEMPERATURE TRANSDUCER

    SciTech Connect

    Parks, D. A.; Tittmann, B. R.; Kropf, M. M.

    2010-02-22

    The high temperature capabilities of bulk single crystal aluminum nitride are investigated experimentally. Temperatures in excess of 1100 deg. Celsius are obtained and held for eight hours. Variation in the performance of single crystal samples is demonstrated.

  1. Aluminum fluoride interactions with troponin C.

    PubMed Central

    Phan, B C; Reisler, E

    1993-01-01

    The increasing interest in the metal ion aluminum fluoride and beryllium fluoride complexes as phosphate analogs in the myosin ATPase reaction and in muscle fiber studies prompted the examination of their interactions with the regulatory system of troponin and tropomyosin. In this work, the effects of these metal ion analogs on the spectral properties of the Ca(2+)-binding subunit of troponin, troponin C (TnC), were examined. In contrast to beryllium fluoride which did not change the spectral properties of TnC, aluminum fluoride binding induced an increase in both the alpha-helicity and the tyrosine fluorescence of TnC and exposed a hydrophobic region on this protein for fluorescent probe binding. Aluminum fluoride also reduced the Ca2+ and/or Mg(2+)-induced changes on TnC. These results indicate a direct interaction of aluminum fluoride with TnC and merit consideration in designing muscle fiber experiments with this phosphate analog. PMID:8312488

  2. Aluminum Company of America, Massena, NY

    EPA Pesticide Factsheets

    Alcoa, Inc. has owned and operated an aluminum product manufacturing facility called Alcoa West facility in the Town of Massena, New York, since 1903. In connection with its past operations at the facility, Alcoa released hazardous substances, including

  3. Interpretation of aluminum-alloy weld radiography

    NASA Technical Reports Server (NTRS)

    Duren, P. C.; Risch, E. R.

    1971-01-01

    Report proposes radiographic terminology standardization which allows scientific interpretation of radiographic films to replace dependence on individual judgement and experience. Report includes over 50 photographic pages where radiographs of aluminum welds with defects are compared with prepared weld sections photomacrographs.

  4. The pro-oxidant activity of aluminum.

    PubMed

    Exley, Christopher

    2004-02-01

    Aluminum, a non-redox-active metal is, nevertheless, a pro-oxidant both in in vitro preparations and in vivo. It facilitates both superoxide- and iron-driven biological oxidation by mechanisms that remain to be resolved. More than 10 years ago Fridovich and colleagues suggested that the facilitation of superoxide-driven biological oxidation by aluminum was due to an interaction between the metal and the superoxide radical anion (Free Radic. Biol. Med. 13: 79-81; 1992). This thesis has been examined herein and it is concluded that much, if not all, of the pro-oxidant activity of aluminum might be explained by the formation of an aluminum superoxide semireduced radical ion.

  5. Masking of aluminum surface against anodizing

    NASA Technical Reports Server (NTRS)

    Crawford, G. B.; Thompson, R. E.

    1969-01-01

    Masking material and a thickening agent preserve limited unanodized areas when aluminum surfaces are anodized with chromic acid. For protection of large areas it combines well with a certain self-adhesive plastic tape.

  6. Cluster model of aluminum dense vapor plasma

    NASA Astrophysics Data System (ADS)

    Khomkin, A. L.; Shumikhin, A. S.

    2009-08-01

    The chemical model of aluminum vapor plasma, that take into account the formation of neutral and charged clusters, is suggested. Caloric and thermal equations of state and composition of plasma were received using the available information about properties of metal clusters. It is shown, that aluminum vapors are clusterized with decrease of temperature and with increase of density. Pressure dependence on internal energy is calculated and comparison with experimental data is made. The important role of aluminum clusters, especially in an initial phase of the metals vapor heating, is demonstrated. It is shown, that the region of plasma clusterization in gaseous phase agree with known literature data for binodal of vapor-liquid transition from gaseous region. Suggested cluster model may be used to forecast the location of metal vapors binodal. The conductivity of aluminum vapor plasma was calculated. The satisfactory agreement with available experimental data is received.

  7. Aluminum exclusion and aluminum tolerance in woody plants

    PubMed Central

    Brunner, Ivano; Sperisen, Christoph

    2013-01-01

    The aluminum (Al) cation Al3+ is highly rhizotoxic and is a major stress factor to plants on acid soils, which cover large areas of tropical and boreal regions. Many woody plant species are native to acid soils and are well adapted to high Al3+ conditions. In tropical regions, both woody Al accumulator and non-Al accumulator plants occur, whereas in boreal regions woody plants are non-Al accumulators. The mechanisms of these adaptations can be divided into those that facilitate the exclusion of Al3+ from root cells (exclusion mechanisms) and those that enable plants to tolerate Al3+ once it has entered the root and shoot symplast (internal tolerance mechanisms). The biochemical and molecular basis of these mechanisms have been intensively studied in several crop plants and the model plant Arabidopsis. In this review, we examine the current understanding of Al3+ exclusion and tolerance mechanisms from woody plants. In addition, we discuss the ecology of woody non-Al accumulator and Al accumulator plants, and present examples of Al3+ adaptations in woody plant populations. This paper complements previous reviews focusing on crop plants and provides insights into evolutionary processes operating in plant communities that are widespread on acid soils. PMID:23781222

  8. Dry machinability of aluminum alloys.

    SciTech Connect

    Shareef, I.; Natarajan, M.; Ajayi, O. O.; Energy Technology; Department of IMET

    2005-01-01

    Adverse effects of the use of cutting fluids and environmental concerns with regard to cutting fluid disposability is compelling industry to adopt Dry or near Dry Machining, with the aim of eliminating or significantly reducing the use of metal working fluids. Pending EPA regulations on metal cutting, dry machining is becoming a hot topic of research and investigation both in industry and federal research labs. Although the need for dry machining may be apparent, most of the manufacturers still consider dry machining to be impractical and even if possible, very expensive. This perception is mainly due to lack of appropriate cutting tools that can withstand intense heat and Built-up-Edge (BUE) formation during dry machining. The challenge of heat dissipation without coolant requires a completely different approach to tooling. Special tooling utilizing high-performance multi-layer, multi-component, heat resisting, low friction coatings could be a plausible answer to the challenge of dry machining. In pursuit of this goal Argonne National Labs has introduced Nano-crystalline near frictionless carbon (NFC) diamond like coatings (DLC), while industrial efforts have led to the introduction of composite coatings such as titanium aluminum nitride (TiAlN), tungsten carbide/carbon (WC/C) and others. Although, these coatings are considered to be very promising, they have not been tested either from tribological or from dry machining applications point of view. As such a research program in partnership with federal labs and industrial sponsors has started with the goal of exploring the feasibility of dry machining using the newly developed coatings such as Near Frictionless Carbon Coatings (NFC), Titanium Aluminum Nitride (TiAlN), and multi-layer multicomponent nano coatings such as TiAlCrYN and TiAlN/YN. Although various coatings are under investigation as part of the overall dry machinability program, this extended abstract deals with a systematic investigation of dry

  9. Automobile bodies: Can aluminum be an economical alternative to steel?

    NASA Astrophysics Data System (ADS)

    Roth, Richard; Clark, Joel; Kelkar, Ashish

    2001-08-01

    Although the use of aluminum in cars has been increasing for the past two decades, progress has been limited in developing aluminum auto bodies. In fact, most aluminum substitution has come in the form of castings and forgings in the transmission, wheels, etc. Car manufacturers have developed all-aluminum cars with two competing designs: conventional unibody and the spaceframe. However, aluminum is far from being a material of choice for auto bodies. The substitution of aluminum for steel is partly influenced by regulatory pressures to meet fuel efficiency standards by reducing vehicle weight, and to meet recycling standards. The key obstacles are the high cost of primary aluminum as compared to steel and added fabrication costs of aluminum panels. Both the aluminum and the automotive industries have attempted to make aluminum a cost-effective alternative to steel. This paper analyzes the cost of fabrication and assembly of four different aluminum car body designs, making comparisons with conventional steel designs at current aluminum prices and using current aluminum fabrication technology. It then attempts to determine if aluminum can be an alternative to steel at lower primary aluminum prices, and improved fabrication processes.

  10. Transfer and transport of aluminum in filtration unit.

    PubMed

    Wen-dong, Wang; Hong-wei, Yang; Hua-zhang, Zhao; Zhan-peng, Jiang

    2007-01-01

    Aluminum salt coagulants were used prevalently in various water works. In this article, the effects of filtration on residual aluminum concentration and species distribution were researched by determining the concentration of different aluminum species before and after single layer filter, double layer filter, and membrane filtration units. In the research, size exclusion chromatography (SEC) was used to separate colloidal and soluble aluminum, ion exchange chromatography (IEC) was used to separate organic and inorganic aluminum, and inductivity coupled plasma-atomic emission spectrometry (ICP-AES) was used to determine the aluminum concentration. The results showed that the rapid filtration process had the ability of removing residual aluminum from coagulant effluent water, and that double layer filtration was more effective in residual aluminum removal than single layer filtration, while nano filtration was more effective than micro filtration. It was found that when the residual aluminum concentration was below 1 mg/L in sediment effluent, the residual aluminum concentration in treated water was above 0.2 mg/L. The direct rapid filtration process mainly removed the suspended aluminum. The removal of soluble and colloidal aluminum was always less than 10% and the natural small particles that adsorbed the amount of soluble or small particles aluminum on their surface were difficult to be removed in this process. Micro filtration and nano filtration were good technologies for removing aluminum; the residual aluminum concentration in the effluent was less than 0.05 mg/L.

  11. Advanced powder metallurgy aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  12. FABRICATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Saller, H.A.

    1959-12-15

    A process is presented for producing a workable article of a uranium- aluminum alloy in which the uranium content is between 14 and 70% by weight; aluminum powder and powdered UAl/sub 2/, UAl/sub 3/, UAl/sub 5/, or UBe/sub 9/ are mixed, and the mixture is compressed into the shape desired and sintered at between 450 and 600 deg C.

  13. Tin soldering of aluminum and its alloys

    NASA Technical Reports Server (NTRS)

    Gallo, Gino

    1921-01-01

    A method is presented for soldering aluminum to other metals. The method adopted consists of a galvanic application to the surface of the light-metal parts to be soldered, of a layer of another metal, which, without reacting electrolytically on the aluminum, adheres strongly to the surface to which it is applied, and is, on the other hand, adapted to receive the soft solder. The metal found to meet the criteria best was iron.

  14. Rinne revisited: steel versus aluminum tuning forks.

    PubMed

    MacKechnie, Cheryl A; Greenberg, Jesse J; Gerkin, Richard C; McCall, Andrew A; Hirsch, Barry E; Durrant, John D; Raz, Yael

    2013-12-01

    (1) Determine whether tuning fork material (aluminum vs stainless steel) affects Rinne testing in the clinical assessment of conductive hearing loss (CHL). (2) Determine the relative acoustic and mechanical outputs of 512-Hz tuning forks made of aluminum and stainless steel. Prospective, observational. Outpatient otology clinic. Fifty subjects presenting May 2011 to May 2012 with negative or equivocal Rinne in at least 1 ear and same-day audiometry. Rinne test results using aluminum and steel forks were compared and correlated with the audiometric air-bone gap. Bench top measurements using sound-level meter, microphone, and artificial mastoid. Patients with CHL were more likely to produce a negative Rinne test with a steel fork than with an aluminum fork. Logistic regression revealed that the probability of a negative Rinne reached 50% at a 19 dB air-bone gap for stainless steel versus 27 dB with aluminum. Bench top testing revealed that steel forks demonstrate, in effect, more comparable air and bone conduction efficiencies while aluminum forks have relatively lower bone conduction efficiency. We have found that steel tuning forks can detect a lesser air-bone gap compared to aluminum tuning forks. This is substantiated by observations of clear differences in the relative acoustic versus mechanical outputs of steel and aluminum forks, reflecting underlying inevitable differences in acoustic versus mechanical impedances of these devices, and thus efficiency of coupling sound/vibratory energy to the auditory system. These findings have clinical implications for using tuning forks to determine candidacy for stapes surgery.

  15. Electrolysis of aluminum sulfide in molten chlorides

    SciTech Connect

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-01-01

    A laboratory-scale investigation of the production of aluminum by the electrolysis of aluminum sulfide in molten salt electrolytes has been carried out at Argonne National Laboratory. The solubility, electrochemical behavior, and electrolysis of Al/sub 2/S/sub 3/ were studied in MgCl/sub 2/-NaCl-KCl eutectic and in the eutectic containing AlCl/sub 3/ at 1023K.

  16. The mathematical modeling of aluminum reduction cells

    NASA Astrophysics Data System (ADS)

    Arkhipov, G. V.

    2006-02-01

    In order to expand its primary aluminum capacity, Rusal has focused on improving its technological base. Toward that end, the company created the Engineering and Technological Center (ETC). Within the ETC the Division of Mathematical Modeling was established to enable technical decisions to be made based not only on engineering intuition and practical experience, but also on the calculations of technological processes and constructions. This article describes the ETC's work in the mathematical modeling of aluminum reduction cells.

  17. Methyl and skeletal torsion interaction in methyl thiolfluoroformate

    NASA Astrophysics Data System (ADS)

    Caminati, Walther; Meyer, Rolf

    1981-12-01

    The microwave spectrum of methyl thiolfluoroformate (FCOSCH 3) is reported for the ground state and seven vibrational satellites. The methyl group is in the syn conformation to the carbonyl group. The dipole moment components are μa = 2.89(2) D, μb = 0.30(8) D, and μc = 0. Spacings of A and E levels due to methyl internal rotation are analyzed for the ground state, the first excited methyl torsional state, and the first excited skeletal torsional state. An anomalous sequence of A and E levels occurring in the latter satellite arises from torsional interaction, according to two-dimensional model calculations. Potential parameters consistent with the three observed level separations are V3 = 304(5) cm -1, V6 = 23(1) cm -1 for the methyl torsion and either k = 1.912 or k = 2.936 cm -1 deg -2 for the skeletal torsional force constant.

  18. The determination of specific forms of aluminum in natural water

    USGS Publications Warehouse

    Barnes, R.B.

    1975-01-01

    A procedure for analysis and pretreatment of natural-water samples to determine very low concentrations of Al is described which distinguishes the rapidly reacting equilibrium species from the metastable or slowly reacting macro ions and colloidal suspended material. Aluminum is complexed with 8-hydroxyquinoline (oxine), pH is adjusted to 8.3 to minimize interferences, and the aluminum oxinate is extracted with methyl isobutyl ketone (MIBK) prior to analysis by atomic absorption. To determine equilibrium species only, the contact time between sample and 8-hydroxyquinoline is minimized. The Al may be extracted at the sample site with a minimum of equipment and the MIBK extract stored for several weeks prior to atomic absorption analysis. Data obtained from analyses of 39 natural groundwater samples indicate that filtration through a 0.1-??m pore size filter is not an adequate means of removing all insoluble and metastable Al species present, and extraction of Al immediately after collection is necessary if only dissolved and readily reactive species are to be determined. An average of 63% of the Al present in natural waters that had been filtered through 0.1-??m pore size filters was in the form of monomeric ions. The total Al concentration, which includes all forms that passed through a 0.1-??m pore size filter, ranged 2-70 ??g/l. The concentration of Al in the form of monomeric ions ranged from below detection to 57 ??g/l. Most of the natural water samples used in this study were collected from thermal springs and oil wells. ?? 1975.

  19. Plasma ARC keyhole welding of aluminum

    NASA Astrophysics Data System (ADS)

    Fostervoll, H.

    1993-02-01

    An increasing and more advanced use of aluminum as a construction material make higher demands to the effectiveness and quality in aluminum joining. Furthermore, if the advantages of aluminum shall be exploited in the best possible way, it is necessary to use the best processes available for the certain application. Today, the most widely used processes of aluminum welding are gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW). Plasma arc welding (PAW) is another interesting process, which is rather newly adopted for aluminum welding. However, up to now the use is limited and most of the users are within the space industry in USA (NASA); also the new space industry in Europe has adopted the process. The reason for the great interest for PAW in the space industry is, according to NASA, higher weld quality and less repair costs, less heat distortion, and less groove preparations costs. Of these reasons, PAW should also be of interest for the aluminum industry in Scandinavia. The aim of the project is to focus on the possibilities and to some extent testing the PAW process.

  20. Studies of aluminum in rat brain

    SciTech Connect

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  1. Contact dermatitis to methyl methacrylate.

    PubMed

    Kassis, V; Vedel, P; Darre, E

    1984-07-01

    2 cases of contact dermatitis to methyl methacrylate monomer are presented. The patients are nurses who mixed bone cement at orthopedic operations. During the procedure, they used 2 pairs of gloves (latex). Butyl rubber gloves are recommended for methyl methacrylate monomer to avoid sensitization and/or cumulative irritant contact dermatitis on the hands.

  2. Managing Nematodes without Methyl Bromide

    USDA-ARS?s Scientific Manuscript database

    Methyl bromide is an effective pre-plant soil fumigant used to control nematodes in many high-input, high-value production systems including vegetables, nurseries, ornamentals, tree fruits, strawberries, and grapes. Because methyl bromide has provided a reliable return on investment for nematode c...

  3. Aluminum complexes derived from a hexadentate salen-type Schiff base: synthesis, structure, and catalysis for cyclic carbonate synthesis.

    PubMed

    Xu, Ya; Yuan, Dan; Wang, Yaorong; Yao, Yingming

    2017-05-09

    Different aluminum complexes were synthesized by the reaction of aluminum alkyls with a hexadentate salen-type Schiff base. The reaction of N,N'-bis(3,5-di-tert-butylsalicylidene)-2,2'-(ethylenedioxy)dianiline (LH2) with one equiv. of AlMe3 in toluene at 100 °C proceeded by methane elimination to produce the intermediate methyl complex [AlMeL] (1), and then subsequent intramolecular methyl migration to give the aluminum complex [AlL'] (2) [L' = (2-O-3,5-(t)Bu2C6H2)CH[double bond, length as m-dash]NC6H4OCH2CH2OC6H4NCH(Me)(2'-O-3',5'-(t)Bu2C6H2)]. The reaction of the same ligand with AlEt3 under the same experimental conditions involved ethane elimination, ethylene elimination and intramolecular hydrogen migration, and led to the complex [AlL''] (3) [L'' = (2-O-3,5-(t)Bu2C6H2)CH[double bond, length as m-dash]NC6H4OCH2CH2OC6H4NCH2(2'-O-3',5'-(t)Bu2C6H2)]. However, the interaction of two equivalents of AlMe3 and AlEt3 afforded the corresponding binuclear complexes [(AlMe2)2L] (4) and [(AlEt2)2L] (5), respectively, and no methyl or hydrogen migration was found. The solid-state structures of aluminum complexes 1-3 were determined by single-crystal X-ray diffraction. It was found that complexes 2-5 show a very effective catalytic activity for the cycloaddition of epoxides and CO2 in the presence of NBu4Br as a cocatalyst at atmospheric pressure.

  4. Unusual dicationic trimetallic aluminum chelates

    NASA Astrophysics Data System (ADS)

    Liu, S.; Munoz-Hernandez, M.-A.; Wei, P.; Atwood, D. A.

    2000-09-01

    The bimetallic compounds, L(AlMeCl) 2 with L=Salpen(tBu) ( N, N'-1,3-propylenenebis(3,5-di- tert-butylsalicylideneimine), Salben(tBu) ( N, N'-1,4-butylenebis(3,5-di- tert-butylsalicylideneimine)) and Salhen(tBu) ( N, N'-1,6 hexylenebis(3,5-di- tert-butylsalicylideneimine)) form the unusual trimetallic dicationic complexes, {[Salpen( tBu) ∗] 2(AlCl) 3]} 2+[GaCl 4] -[GaMe 2Cl 2] - ( 1), {[Salben( tBu) ∗] 2(AlCl) 3]} 2+[GaCl 4] -[GaMe 2Cl 2] - ( 2) and {[Salhen( tBu) ∗] 2(AlCl) 3]} 2+[GaCl 4] -[GaMe 2Cl 2] - ( 3) when combined with GaCl 3 in toluene. In their formation, the ligands of the compounds undergo a unique dealkylation reaction to lose one tBu group from each ligand (marked with an asterisk). These compounds are a new and unique class of aluminum cations. The compounds were characterized by Mp, analyses, IR, 1H NMR, and in the case of 1 and 2, by single-crystal X-ray diffractometry.

  5. Shear Strength of Aluminum Oxynitride

    NASA Astrophysics Data System (ADS)

    Dandekar, Dattatraya P.; Vaughan, Brian A. M.; Proud, William G.

    2007-06-01

    Aluminum oxynitride (AlON) is a transparent, polycrystalline cubic spinel. The results of investigations^1-4 on shock response of AlON permit determination of the equation of state, and shear strength retained under shock compression. Whereas the values of the HEL of AlON holds no surprises, the inelastic response of AlON reported in Ref. 1-4 differ significantly and is stress dependent. The results of Ref. 1-2 show that AlON retains a shear strength of 3 to 4 GPa when shocked up to around 20 GPa, but the results of Ref, 3-4 seem to suggest a possible loss of shear strength when shocked to 16 GPa and beyond. Our analysis examines the observed differences in the inelastic response of AlON reported in these four studies . 1. J. U. Cazamias, et. al., in Fundamental Issues and Applications of Shock-Wave and High Strain Rate Phenomena, Eds. Staudhammer, Murr, and Meyers, Elsevier, NY, 173 (2001). 2. B. A. M. Vaughn, et.al., Shock Physics, Cavendish Laboratory, Report SP/1092 (2001) 3. T. Sekine, et.al., J. Appl. Phys. 94, 4803 (2003). 4. T. F. Thornhill, et.al., Shock Compression of Matter-2005, Eds. Furnish, Elert, Russell, White, AIP, NY, 143 (2006).

  6. Heat capacities of aluminum clusters

    NASA Astrophysics Data System (ADS)

    Starace, Anne; Cao, Baopeng; Judd, Oscar; Jarrold, Martin

    2009-03-01

    Clusters of certain elements are known to undergo phase transitions from solid-like to liquid-like states. Aluminum clusters have emerged as a model system for metal cluster phase transitions [1]. We report here the measurement of heat capacities of cationic clusters containing 84 to 127 Al atoms using a multi-collision induced dissociation mass spectrometry method [2]. We find two major changes in the heat capacities with increasing cluster size: (1) the fluctuations in the temperature of the phase transition vary more smoothly and (2) the peaks in heat capacity become sharper. Furthermore, we have found a range of cluster sizes (115-117 atoms) that contain two distinct peaks, separated by baseline, in their heat capacities. The origin of the extra peaks in the heat capacity, which is suspected to be due either to a pre-melting transition or to a solid-to-solid transition prior to the melting transition, will be further investigated by means of annealing experiments. The current work extends prior work on singly charged Al cluster cations having 16-83 atoms [2, 3]. [1] Breaux, G. A.; Neal, C. M.; Cao, B.; Jarrold, M. F. Physical Review Letters 2005, 94. [2] Neal, C. M.; Starace, A. K.; Jarrold, M. F. Journal of the American Society for Mass Spectrometry 2007, 18, 74-81. [3] Neal, C. M.; Starace, A. K.; Jarrold, M. F. Physical Review B 2007, 76. [4] This work is supported by NSF.

  7. Aluminum bioavailability from tea infusion

    PubMed Central

    Yokel, Robert A.; Florence, Rebecca L.

    2008-01-01

    The objective was to estimate oral Al bioavailability from tea infusion in the rat, using the tracer 26Al. 26Al citrate was injected into tea leaves. An infusion was prepared from the dried leaves and given intra-gastrically to rats which received concurrent intravenous 27Al infusion. Oral Al bioavailability (F) was calculated from the area under the 26Al, compared to 27Al, serum concentration × time curves. Bioavailability from tea averaged 0.37%; not significantly different from water (F = 0.3%), or basic sodium aluminum phosphate (SALP) in cheese (F = 0.1 to 0.3%), but greater than acidic SALP in a biscuit (F = 0.1%). Time to maximum serum 26Al concentration was 1.25, 1.5, 8 and 4.8 h, respectively. These results of oral Al bioavailability × daily consumption by the human suggest tea can provide a significant amount of the Al that reaches systemic circulation. This can allow distribution to its target organs of toxicity, the central nervous, skeletal and hematopoietic systems. Further testing of the hypothesis that Al contributes to Alzheimer's disease may be more warranted with studies focusing on total average daily food intake, including tea and other foods containing appreciable Al, than drinking water. PMID:18848597

  8. Nanostructures Using Anodic Aluminum Oxide

    NASA Astrophysics Data System (ADS)

    Valmianski, Ilya; Monton, Carlos M.; Pereiro, Juan; Basaran, Ali C.; Schuller, Ivan K.

    2013-03-01

    We present two fabrication methods for asymmetric mesoscopic dot arrays over macroscopic areas using anodic aluminum oxide templates. In the first approach, metal is deposited at 45o to the template axis to partially close the pores and produce an elliptical shadow-mask. In the second approach, now underway, nanoimprint lithography on a polymer intermediary layer is followed by reactive ion etching to generate asymmetric pore seeds. Both these techniques are quantified by an analysis of the lateral morphology and lattice of the pores or dots using scanning electron microscopy and a newly developed MATLAB based code (available for free download at http://ischuller.ucsd.edu). The code automatically provides a segmentation of the measured area and the statistics of morphological properties such as area, diameter, and eccentricity, as well as the lattice properties such as number of nearest neighbors, and unbiased angular and radial two point correlation functions. Furthermore, novel user defined statistics can be easily obtained. We will additionally present several applications of these methods to superconducting, ferromagnetic, and organic nanostructures. This work is supported by AFOSR FA9550-10-1-0409

  9. Biodiscovery of aluminum binding peptides

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  10. Methods of DNA methylation detection

    NASA Technical Reports Server (NTRS)

    Maki, Wusi Chen (Inventor); Filanoski, Brian John (Inventor); Mishra, Nirankar (Inventor); Rastogi, Shiva (Inventor)

    2010-01-01

    The present invention provides for methods of DNA methylation detection. The present invention provides for methods of generating and detecting specific electronic signals that report the methylation status of targeted DNA molecules in biological samples.Two methods are described, direct and indirect detection of methylated DNA molecules in a nano transistor based device. In the direct detection, methylated target DNA molecules are captured on the sensing surface resulting in changes in the electrical properties of a nano transistor. These changes generate detectable electronic signals. In the indirect detection, antibody-DNA conjugates are used to identify methylated DNA molecules. RNA signal molecules are generated through an in vitro transcription process. These RNA molecules are captured on the sensing surface change the electrical properties of nano transistor thereby generating detectable electronic signals.

  11. Programming of DNA methylation patterns.

    PubMed

    Cedar, Howard; Bergman, Yehudit

    2012-01-01

    DNA methylation represents a form of genome annotation that mediates gene repression by serving as a maintainable mark that can be used to reconstruct silent chromatin following each round of replication. During development, germline DNA methylation is erased in the blastocyst, and a bimodal pattern is established anew at the time of implantation when the entire genome gets methylated while CpG islands are protected. This brings about global repression and allows housekeeping genes to be expressed in all cells of the body. Postimplantation development is characterized by stage- and tissue-specific changes in methylation that ultimately mold the epigenetic patterns that define each individual cell type. This is directed by sequence information in DNA and represents a secondary event that provides long-term expression stability. Abnormal methylation changes play a role in diseases, such as cancer or fragile X syndrome, and may also occur as a function of aging or as a result of environmental influences.

  12. DNA Methylation in Schizophrenia.

    PubMed

    Pries, Lotta-Katrin; Gülöksüz, Sinan; Kenis, Gunter

    2017-01-01

    Schizophrenia is a highly heritable psychiatric condition that displays a complex phenotype. A multitude of genetic susceptibility loci have now been identified, but these fail to explain the high heritability estimates of schizophrenia. In addition, epidemiologically relevant environmental risk factors for schizophrenia may lead to permanent changes in brain function. In conjunction with genetic liability, these environmental risk factors-likely through epigenetic mechanisms-may give rise to schizophrenia, a clinical syndrome characterized by florid psychotic symptoms and moderate to severe cognitive impairment. These pathophysiological features point to the involvement of epigenetic processes. Recently, a wave of studies examining aberrant DNA modifications in schizophrenia was published. This chapter aims to comprehensively review the current findings, from both candidate gene studies and genome-wide approaches, on DNA methylation changes in schizophrenia.

  13. Low Temperature Aluminum Dissolution Of Sludge Waste

    SciTech Connect

    Keefer, M.T.; Hamm, B.A.; Pike, J.A.

    2008-07-01

    High Level Waste (HLW) at the Savannah River Site (SRS) is currently stored in aging underground storage tanks. This waste is a complex mixture of insoluble solids, referred to as sludge, and soluble salts. Continued long-term storage of these radioactive wastes poses an environmental risk. The sludge is currently being stabilized in the Defense Waste Processing Facility (DWPF) through a vitrification process immobilizing the waste in a borosilicate glass matrix for long-term storage in a federal repository. Without additional treatment, the existing volume of sludge would produce nearly 8000 canisters of vitrified waste. Aluminum compounds, along with other non-radioactive components, represent a significant portion of the sludge mass currently planned for vitrification processing in DWPF. Removing the aluminum from the waste stream reduces the volume of sludge requiring vitrification and improves production rates. Treating the sludge with a concentrated sodium hydroxide (caustic) solution at elevated temperatures (>90 deg. C) to remove aluminum is part of an overall sludge mass reduction effort to reduce the number of vitrified canisters, shorten the life cycle for the HLW system, and reduce the risk associated with the long term storage of radioactive wastes at SRS. A projected reduction of nearly 900 canisters will be achieved by performing aluminum dissolution on six targeted sludge batches; however, a project to develop and install equipment will not be ready for operation until 2013. The associated upgrades necessary to implement a high temperature process in existing facilities are costly and present many technical challenges. Efforts to better understand the characteristics of the sludge mass and dissolution kinetics are warranted to overcome these challenges. Opportunities to further reduce the amount of vitrified waste and increase production rates should also be pursued. Sludge staged in Tank 51 as the next sludge batch for feed to DWPF consisted

  14. Methyl Halide Production by Fungi

    NASA Astrophysics Data System (ADS)

    Dailey, G. D.; Varner, R. K.; Blanchard, R. O.; Sive, B. C.; Crill, P. M.

    2005-12-01

    Methyl chloride (CH3Cl), methyl bromide (CH3Br) and methyl iodide (CH3I) are methyl halide gases that contribute significant amounts of halogen radicals to the atmosphere. In an effort to better understand the global budget of methyl halides and their impact on the atmosphere, we need to identify the natural sources in addition to the known anthropogenic sources of these compounds. We are investigating the role of fungi in the production of methyl halides in the soils and wetlands in southern New Hampshire, USA. Previous research has shown that wood decay fungi and ectomycorrhizal fungi, which are within a group of fungi called basidiomycetes, emit methyl halides. In our study, measurements of headspace gas extracted from flasks containing fungi grown in culture demonstrate that a variety of fungi, including basidiomycetes and non-basidiomycetes, emit methyl halides. Our research sites include four ecosystems: an agricultural field, a temperate forest, a fresh water wetland, and coastal salt marshes. We have collected and isolated fungi at each site by culturing tissue samples of fruiting bodies and plant material, by using wood baits, and from the direct culture of soil. We compared the rates of methyl halide emissions from the fungi in the four ecosystems. In addition, we measured emissions from previously assayed fungal isolates after reintroducing them to sterilized soils that were collected from their original environments. Fungal biomass was determined by substrate-induced respiration (SIR). The emission rate by the fungus was determined by a linear regression of the concentration of methyl halide in the sample headspace over time divided by the fungal biomass.

  15. Occupational exposure to aluminum and its biomonitoring in perspective.

    PubMed

    Riihimäki, Vesa; Aitio, Antero

    2012-11-01

    Exposure to aluminum at work is widespread, and people are exposed to several species of aluminum, which differ markedly as to the kinetics and toxicity. Especially welding of aluminum is widely applied and continuously expanding. Inhalation of fine particles of sparsely soluble aluminum results in the retention of deposited particles in the lungs. From the lungs, aluminum is released to the blood and distributed to bones and the brain, and excreted to urine. Soluble aluminum compounds are not accumulated in the lungs. Neurotoxicity is the critical effect of exposure to sparsely soluble aluminum compounds. Studies on workers exposed to aluminum welding fumes have revealed disturbances of cognitive processes, memory and concentration, and changes in mood and EEG. Early pulmonary effects have been observed among aluminum powder-production workers using high-resolution computed tomography. The primary objective of aluminum biomonitoring (BM) is to help prevent the formation of aluminum burden in the lungs and thereby to prevent harmful accumulation of aluminum in target organs. BM of aluminum can be effectively used for this purpose in the production/use of aluminum powders, aluminum welding, as well as plasma cutting, grinding, polishing and thermal spraying of aluminum. BM of aluminum may also be similarly useful in the smelting of aluminum and probably in the production of corundum. BM can help identify exposed individuals and roughly quantitate transient exposure but cannot predict health effects in the production/use of soluble aluminum salts. For urinary aluminum (U-Al) we propose an action limit of 3 µmol/L, corrected to a relative density of 1.021, in a sample collected preshift after two days without occupational exposure, and without use of aluminum-containing drugs. This value corresponds roughly to 2.3 µmol/g creatinine. Compliance with this limit is expected to protect the worker against the critical effect of aluminum in exposure to sparsely soluble

  16. Advantages of Oxide Films as Bases for Aluminum Pigmented Surface Coatings for Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Buzzard, R W; Mutchler, W H

    1931-01-01

    Both laboratory and weather-exposure corrosion tests showed conclusively that the protection afforded by aluminum pigmented spar varnish coatings applied to previously anodized aluminum surfaces was greatly superior to that afforded by the same coatings applied to surfaces which had simply been cleaned free from grease and not anodized.

  17. The viability of aluminum Zintl anion moieties within magnesium-aluminum clusters

    SciTech Connect

    Wang, Haopeng; Jae Ko, Yeon; Zhang, Xinxing; Gantefoer, Gerd; Bowen, Kit H. E-mail: akandalam@wcupa.edu; Schnoeckel, Hansgeorg; Eichhorn, Bryan W.; Jena, Puru; Kiran, Boggavarapu E-mail: akandalam@wcupa.edu; Kandalam, Anil K. E-mail: akandalam@wcupa.edu

    2014-03-28

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have investigated the extent to which the aluminum moieties within selected magnesium-aluminum clusters are Zintl anions. Magnesium-aluminum cluster anions were generated in a pulsed arc discharge source. After mass selection, photoelectron spectra of Mg{sub m}Al{sub n}{sup −} (m, n = 1,6; 2,5; 2,12; and 3,11) were measured by a magnetic bottle, electron energy analyzer. Calculations on these four stoichiometries provided geometric structures and full charge analyses for the cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra). Calculations revealed that, unlike the cases of recently reported sodium-aluminum clusters, the formation of aluminum Zintl anion moieties within magnesium-aluminum clusters was limited in most cases by weak charge transfer between the magnesium atoms and their aluminum cluster moieties. Only in cases of high magnesium content, e.g., in Mg{sub 3}Al{sub 11} and Mg{sub 2}Al{sub 12}{sup −}, did the aluminum moieties exhibit Zintl anion-like characteristics.

  18. Mapping the global flow of aluminum: from liquid aluminum to end-use goods.

    PubMed

    Cullen, Jonathan M; Allwood, Julian M

    2013-04-02

    Demand for aluminum in final products has increased 30-fold since 1950 to 45 million tonnes per year, with forecasts predicting this exceptional growth to continue so that demand will reach 2-3 times today's levels by 2050. Aluminum production uses 3.5% of global electricity and causes 1% of global CO2 emissions, while meeting a 50% cut in emissions by 2050 against growing demand would require at least a 75% reduction in CO2 emissions per tonne of aluminum produced--a challenging prospect. In this paper we trace the global flows of aluminum from liquid metal to final products, revealing for the first time a complete map of the aluminum system and providing a basis for future study of the emissions abatement potential of material efficiency. The resulting Sankey diagram also draws attention to two key issues. First, around half of all liquid aluminum (~39 Mt) produced each year never reaches a final product, and a detailed discussion of these high yield losses shows significant opportunities for improvement. Second, aluminum recycling, which avoids the high energy costs and emissions of electrolysis, requires signification "dilution" (~ 8 Mt) and "cascade" (~ 6 Mt) flows of higher aluminum grades to make up for the shortfall in scrap supply and to obtain the desired alloy mix, increasing the energy required for recycling.

  19. Aluminum nitride as a novel aluminum-26 ion source material for accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Flarend, R.; Hasan, M. E.; Reed, C. S.

    2004-08-01

    A high intensity cesium sputter source was used to measure the current of secondary Al- ions from aluminum nitride (AlN), aluminum diboride (AlB2), aluminum carbide (Al4C3), aluminum powder and aluminum oxide (Al2O3). It was found that AlN produced a substantially higher beam current than Al2O3. Aluminum diboride produced about the same amount of Al- current as the oxide while Al4C3 and the aluminum powder did not perform as well as the oxide. The performance of AlN as a target material for Al- ions depended heavily upon the exposure of AlN to air before being placed in the ion source. For samples with no exposure to air, the AlN produced much less current than Al2O3. For samples with a very short exposure to air, AlN yielded a fivefold improvement in the Al- current compared to the oxide. Thus aluminum nitride shows the promise of increasing the sensitivity and precision of low-level 26Al-accelerator mass spectrometry.

  20. Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong

    2017-02-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.

  1. Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong

    2016-10-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.

  2. Methods for both coating a substrate with aluminum oxide and infusing the substrate with elemental aluminum

    DOEpatents

    Choi, Jung-Pyung; Weil, Kenneth Scott

    2016-11-01

    Methods of aluminizing the surface of a metal substrate. The methods of the present invention do not require establishment of a vacuum or a reducing atmosphere, as is typically necessary. Accordingly, aluminization can occur in the presence of oxygen, which greatly simplifies and reduces processing costs by allowing deposition of the aluminum coating to be performed, for example, in air. Embodiments of the present invention can be characterized by applying a slurry that includes a binder and powder granules containing aluminum to the metal substrate surface. Then, in a combined step, a portion of the aluminum is diffused into the substrate and a portion of the aluminum is oxidized by heating the slurry to a temperature greater than the melting point of the aluminum in an oxygen-containing atmosphere.

  3. Lead exposure from aluminum cookware in Cameroon.

    PubMed

    Weidenhamer, Jeffrey D; Kobunski, Peter A; Kuepouo, Gilbert; Corbin, Rebecca W; Gottesfeld, Perry

    2014-10-15

    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (<1000 ppm by X-ray fluorescence), however significant amounts of lead, as well as aluminum and cadmium were released from many of the samples using dilute acetic acid extractions at boiling and ambient temperatures. Potential exposures to lead per serving were estimated to be as high as 260 μg, indicating that such cookware can pose a serious health hazard. We conclude that lead, aluminum and cadmium can migrate from this aluminum cookware during cooking and enter food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted.

  4. Photodissociation of methyl chloride and methyl bromide in the atmosphere

    NASA Technical Reports Server (NTRS)

    Robbins, D. E.

    1976-01-01

    Methyl chloride (CH3Cl) and methyl bromide (CH3Br) have been suggested to be significant sources of the stratospheric halogens. The breakup of these compounds in the stratosphere by photodissociation or reaction with OH releases halogen atoms which catalytically destroy ozone. Experimental results are presented for ultraviolet photoabsorption cross sections of CH3Cl and CH3Br. Calculations are presented of loss rates for the methyl halides due to photodissociation and reaction with OH and of mixing ratios of these species in the stratosphere.

  5. DNA methylation pathways and their crosstalk with histone methylation

    PubMed Central

    Du, Jiamu; Johnson, Lianna M.; Jacobsen, Steven E.; Patel, Dinshaw J.

    2015-01-01

    Methylation of DNA and of histone 3 at Lys 9 (H3K9) are highly correlated with gene silencing in eukaryotes from fungi to humans. Both of these epigenetic marks need to be established at specific regions of the genome and then maintained at these sites through cell division. Protein structural domains that specifically recognize methylated DNA and methylated histones are key for targeting enzymes that catalyse these marks to appropriate genome sites. Genetic, genomic, structural and biochemical data reveal connections between these two epigenetic marks, and these domains mediate much of the crosstalk. PMID:26296162

  6. Wastewater sludge dewaterability enhancement using hydroxyl aluminum conditioning: Role of aluminum speciation.

    PubMed

    Cao, Bingdi; Zhang, Weijun; Wang, Qiandi; Huang, Yangrui; Meng, Chenrui; Wang, Dongsheng

    2016-11-15

    Chemical conditioning is one of the most important processes for improve the performance of sludge dewatering device. Aluminum salt coagulant has been widely used in wastewater and sludge treatment. It is generally accepted that pre-formed speciation of aluminum salt coagulants (ASC) has an important influence on coagulation/flocculation performance. In this study, the interaction mechanisms between sludge particles and aluminum salt coagulants with different speciation of hydroxy aluminum were investigated by characterizing the changes in morphological and EPS properties. It was found that middle polymer state aluminum (Alb) and high polymer state aluminum (Alc) performed better than monomer aluminum and oligomeric state aluminum (Ala) in reduction of specific resistance to filtration (SRF) and compressibility of wastewater sludge due to their higher charge neutralization and formed more compact flocs. Sludge was significantly acidified after addition Ala, while pH was much more stable under Alb and Alc conditioning due to their hydrolysis stability. The size of sludge flocs conditioned with Alb and Alc was small but flocs structure was denser and more compact, and floc strength is higher, while that formed from Ala is relatively large, but floc structure was loose, floc strength is relatively lower. Scanning environmental microscope analysis revealed that sludge flocs conditioned by Alb and Alc (especially PAC2.5 and Al13) exhibited obvious botryoidal structure, this is because sludge flocs formed by Alb and Alc were more compact and floc strength is high, it was easy generated plentiful tiny channels for water release. In addition, polymeric aluminum salt coagulant (Alb, Alc) had better performance in compressing extracellular polymeric substances (EPS) structure and removing sticky protein-like substances from soluble EPS fraction, contributing to improvement of sludge filtration performance. Therefore, this study provides a novel solution for improving sludge

  7. Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation.

    PubMed

    Zhang, Yue; Shi, Baoyou; Zhao, Yuanyuan; Yan, Mingquan; Lytle, Darren A; Wang, Dongsheng

    2016-04-01

    Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7.

  8. Oxidation kinetics of aluminum diboride

    SciTech Connect

    Whittaker, Michael L.; Sohn, H.Y.; Cutler, Raymond A.

    2013-11-15

    The oxidation characteristics of aluminum diboride (AlB{sub 2}) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB{sub 2} in the onset of oxidation and final conversion fraction, with AlB{sub 2} beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB{sub 2} and Al+2B in both air and oxygen. AlB{sub 2} exhibited O{sub 2}-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O{sub 2} than in air. Differences in the composition and morphology between oxidized Al+2B and AlB{sub 2} suggested that Al{sub 2}O{sub 3}–B{sub 2}O{sub 3} interactions slowed Al+2B oxidation by converting Al{sub 2}O{sub 3} on aluminum particles into a Al{sub 4}B{sub 2}O{sub 9} shell, while the same Al{sub 4}B{sub 2}O{sub 9} developed a needle-like morphology in AlB{sub 2} that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB{sub 2}, but both appear to be resistant to oxidation in cool, dry environments. - Graphical abstract: Isothermal kinetic data for AlB{sub 2} in air, showing a constantly decreasing activation energy with increasing conversion. Model-free analysis allowed for the calculation of global kinetic parameters despite many simultaneous mechanisms occurring concurrently. (a) Time

  9. Aluminum stress signaling in plants

    PubMed Central

    Baluska, Frantisek; Matsumoto, Hideaki

    2009-01-01

    Aluminum (Al) toxicity is a major constraint for crop production in acidic soil worldwide. When the soil pH is lower than 5, Al3+ is released to the soil and enters into root tip cell ceases root development of plant. In acid soil with high mineral content, Al is the major cause of phytotoxicity. The target of Al toxicity is the root tip, in which Al exposure causes inhibition of cell elongation and cell division, leading to root stunting accompanied by reduced water and nutrient uptake. A variety of genes have been identified that are induced or repressed upon Al exposure. At tissue level, the distal part of the transition zone is the most sensitive to Al. At cellular and molecular level, many cell components are implicated in the Al toxicity including DNA in nucleus, numerous cytoplastic compounds, mitochondria, the plasma membrane and the cell wall. Although it is difficult to distinguish the primary targets from the secondary effects so far, understanding of the target sites of the Al toxicity is helpful for elucidating the mechanisms by which Al exerts its deleterious effects on root growth. To develop high tolerance against Al stress is the major goal of plant sciences. This review examines our current understanding of the Al signaling with the physiological, genetic and molecular approaches to improve the crop performance under the Al toxicity. New discoveries will open up new avenues of molecular/physiological inquiry that should greatly advance our understanding of Al tolerance mechanisms. Additionally, these breakthroughs will provide new molecular resources for improving the crop Al tolerance via molecular-assisted breeding and biotechnology. PMID:19820334

  10. Kinetics of aluminum lithium alloys

    NASA Astrophysics Data System (ADS)

    Pletcher, Ben A.

    2009-12-01

    Aluminum lithium alloys are increasingly used in aerospace for their high strength-to-weight ratio. Additions of lithium, up to 4.2 wt% decrease the alloy density while increasing the modulus and yield strength. The metastable, second phase Al3Li or delta' is intriguing, as it remains spherical and coherent with the matrix phase, alpha, well into the overaged condition. Small interfacial strain energy allows these precipitates to remain spherical for volume fractions (VV ) of delta' less than 0.3, making this alloy system ideal for investigation of late-stage coarsening phenomena. Experimental characterization of three binary Al-Li alloys are presented as a critical test of diffusion screening theory and multi-particle diffusion simulations. Quantitative transmission electron microscopy is used to image the precipitates directly using the centered dark-field technique. Images are analyzed autonomously within a novel Matlab function that determines the center and size of each precipitate. Particle size distribution, particle growth kinetics, and maximum particle size are used to track the precipitate growth and correlate with the predictions of screening theory and multi-particle diffusion simulations. This project is the first extensive study of Al-Li alloys, in over 25 years, applying modern transmission electron microscopy and image analysis techniques. Previous studies sampled but a single alloy composition, and measured far fewer precipitates. This study investigates 3 alloys with volume fractions of the delta precipitates, VV =0.1-0.27, aged at 225C for 1 to 10 days. More than 1000 precipitates were sampled per aging time, creating more statistically significant data. Experimental results are used to test the predictions based on diffusion screening theory and multi-particle aging simulations. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  11. Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness.

    PubMed

    Zhang, Youfa; Ge, Dengteng; Yang, Shu

    2014-06-01

    A superhydrophobic aluminum alloy was prepared by one-step spray coating of an alcohol solution consisting of hydrophobic silica nanoparticles (15-40 nm) and methyl silicate precursor on etched aluminum alloy with pitted morphology. The as-sprayed metal surface showed a water contact angle of 155° and a roll-off angle of 4°. The coating was subjected to repeated mechanical tests, including high-pressure water jetting, sand particles impacting, and sandpaper shear abrasion. It remained superhydrophobic with a roll-off angle <10° up to three cycles of water jetting (25 kPa for 10 min) and sand particle impinging. After five cycles, the roll-off angle increased, but no more than 19° while the water contact angle remained greater than 150°. The superhydrophobic state was also maintained after three cycles of sandpaper abrasion. It was found that the micro-protrusion structures on the etched aluminum alloy played an important role to enhance the coating mechanical robustness, where the nanoparticles could grab on the rough surface, specifically in the groove structures, in comparison with the smooth glass substrates spray coated with the same materials. Further, we showed that the superhydrophobicity could be restored by spray a new cycle of the nanocomposite solution on the damaged surface.

  12. Plasma treatment of aluminum for adhesive bonding

    NASA Astrophysics Data System (ADS)

    Taylor, Catherine Elizabeth

    Plasma polymerized silicon-containing films were deposited onto aluminum coupons and used as primers for structural adhesive bonding. Hexamethyldisiloxane was polymerized within radio frequency (RF) and microwave (MW) plasmas to deposit coatings that were less than 1000 A thick. Substrate pre-treatments, carrier gas, excitation frequency, and plasma post-treatments were varied to produce films that performed well as primers. These plasma polymerized films were characterized with reflection absorption infrared spectroscopy (RAIR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM), and ellipsometry. Lap joints were used to measure the strength and durability of the bonding between pre-treated aluminum, the primer and the epoxy adhesive. Lap joints were placed under load and subjected to 24 hour cycles of immersion in salt water, heat and humidity to test corrosion resistance. The interface between the aluminum oxide on the substrate surface and the plasma polymerized primer was investigated with RAIR and XPS depth profiling techniques. Changes in processing variables were related to differences in the chemical structure of the plasma polymerized films and to their performance as primers. Siloxane-like coatings, deposited in the RF reactor with argon as a carrier gas, did not bond well to the epoxy adhesive, performing poorly as primers. An oxygen plasma post-treatment resulted in a more wettable surface which enhanced this bonding. However, the siloxane-like films proved to be mechanically weak. Silica-like primers deposited in the RF and MW reactors onto acid etched, Ar plasma pre-treated aluminum were excellent primers forming strong, durable bonds to the aluminum substrate and the epoxy adhesive. The plasma pre-treatment of the aluminum coupons was found to be important for durability. Ar and Ar/Hsb2 plasma pre-treatments removed some hydrocarbon contamination and adsorbed water, hydroxyl and oxyhydroxide groups from the aluminum surface

  13. Relationship of aluminum to Alzheimer's disease.

    PubMed Central

    Perl, D P

    1985-01-01

    Alzheimer's disease is a progressive degenerative brain disease of unknown etiology, characterized by the development of large numbers of neurofibrillary tangles and senile plaques in the brain. Aluminum salts may be used experimentally to produce lesions which are similar, but not identical, to the neurofibrillary tangle. Although some studies have reported increased amounts of aluminum in the brains of Alzheimer's disease victims, these bulk analysis studies have been difficult to replicate and remain controversial. Using scanning electron microscopy with X-ray spectrometry, we have investigated this question on the cellular level. We have identified abnormal accumulations of aluminum within neurons derived from Alzheimer's disease patients containing neurofibrillary tangles. Similar accumulations have been detected in the numerous neurofibrillary tangle-bearing neurons seen in the brains of the indigenous native population of the island of Guam who suffer from amyotrophic lateral sclerosis and parkinsonism with dementia. Epidemiologic evidence strongly suggests a causal role for local environmental conditions relating to availability of aluminum, calcium, and magnesium. In view of the fact that a major consequence of acid rain is the liberation of large amounts of aluminum in bioavailable forms, concerns are raised about possible human health risks of this environmental phenomenon. PMID:4076080

  14. Opportunities for aluminum-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Weiland, H.

    2017-07-01

    High performance aluminum alloys are conventionally made by heat treating alloys containing a variety of alloying elements in solid solution. Key performance attributes are controlled at the microstructural level by tailoring sizes and morphology of nano-sized second phases. This enabled the successful development of aluminum alloys having properties optimized in strength, damage tolerance and corrosion resistance. However, this process is naturally limited by the solubility of alloying elements in the aluminum matrix. In real world products, significant effort is deployed to achieve a homogeneous distribution of the alloying elements both at the macro and micro scales. Despite these efforts, heat treatable alloys can exhibit chemical gradients at grain boundaries, resulting in sub-optimized properties. Additionally, due to the very nature of the strengthening mechanisms, the properties of heat-treatable alloys are decreasing when exposed to elevated temperatures. To step outside the boundaries given by the solubility of alloying elements in the aluminum matrix, the extrinsic addition of nano-sized particles to the aluminum matrix is being evaluated.

  15. Aluminum Alloy and Article Cast Therefrom

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2003-01-01

    A cast article from an aluminum alloy, which has improved mechanical properties at elevated temperatures, has the following composition in weight percent: Silicon 14 - 25.0, Copper 5.5 - 8.0, Iron 0.05 - 1.2, Magnesium 0.5 - 1.5, Nickel 0.05 - 0.9, Manganese 0.05 - 1.0, Titanium 0.05 - 1.2, Zirconium 0.05 - 1.2, Vanadium 0.05 - 1.2, Zinc 0.05 - 0.9, Phosphorus 0.001 - 0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10 - 25, and the copper-to-magnesium ratio is 4 - 15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2, crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix and containing up to about 60% by volume of a secondary filler material.

  16. Aluminum vaccine adjuvants: are they safe?

    PubMed

    Tomljenovic, L; Shaw, C A

    2011-01-01

    Aluminum is an experimentally demonstrated neurotoxin and the most commonly used vaccine adjuvant. Despite almost 90 years of widespread use of aluminum adjuvants, medical science's understanding about their mechanisms of action is still remarkably poor. There is also a concerning scarcity of data on toxicology and pharmacokinetics of these compounds. In spite of this, the notion that aluminum in vaccines is safe appears to be widely accepted. Experimental research, however, clearly shows that aluminum adjuvants have a potential to induce serious immunological disorders in humans. In particular, aluminum in adjuvant form carries a risk for autoimmunity, long-term brain inflammation and associated neurological complications and may thus have profound and widespread adverse health consequences. In our opinion, the possibility that vaccine benefits may have been overrated and the risk of potential adverse effects underestimated, has not been rigorously evaluated in the medical and scientific community. We hope that the present paper will provide a framework for a much needed and long overdue assessment of this highly contentious medical issue.

  17. Brazing of dispersion-strengthened aluminum

    SciTech Connect

    Bjoerneklett, B.; Grong, O.; Anisdahl, L.; Hellum, E.; Sande, V.

    1996-03-01

    In recent years, the use of rapid solidification powder metallurgy has made it possible to develop a new family of aluminum alloys exhibiting unique properties. One of these materials, dispersion-strengthened (DS) aluminum, is currently being produced for commercial purposes at Raufoss Technology AS, Norway. Dispersion-strengthened aluminum derives its high strength from nanoscale AlN particles embedded in an aluminum matrix. DS Al is expected to be well suited as construction material for high-temperature applications where weight reductions are of particular concern. The present investigation has focused on the wetting behavior of DS aluminum under conditions applicable to brazing. The results from the Sessile drop experiments show that a eutectic Al-Si brazing alloy will completely wet the base metal both under high-vacuum conditions and in controlled argon atmospheres, provided that the partial pressure of oxygen is sufficiently low. The main problem appears to be the stability of the matrix grain structure. In general, the process of grain erosion and coarsening can be controlled by restricting the supply of the brazing alloy so that only a small metal volume is exposed to erosion. In addition, there is a great potential for reducing the thermodynamic driving force of the erosion reaction by proper adjustments of the brazing alloy composition and/or the brazing temperature. Sill, grain boundary liquidation may be a problem which, in turn, may require additions of surface active elements to the filler metal to control the wetting behavior.

  18. Graphene tunnel junctions with aluminum oxide barrier

    NASA Astrophysics Data System (ADS)

    Feng, Ying; Trainer, Daniel J.; Chen, Ke

    2016-10-01

    We report a development of graphene tunnel junctions made by chemical vapor deposition grown graphene and sputtered aluminum insulating by an in-situ grown aluminum oxide. The thin oxide layer formed in between the metal layer and the two-dimensional material is a crucial part of a tunnel junction. We characterized surface morphology of oxide layers and studied tunneling spectra of lead and silver tunnel junctions to estimate the quality of the aluminum oxide. The Brinkman-Rowell-Dynes model was applied to fit the conductance-voltage plots to calculate the thickness of oxide layers. Junctions with graphene both on bottom and on top were fabricated and their tunneling properties were characterized after exposure to air for weeks to test time stability. Furthermore, the resistances of graphene tunnel junctions with aluminum oxide formed naturally and in an oxygen atmosphere were studied. Our results demonstrate that in-situ aluminum oxide is an effective barrier for graphene tunnel junctions. The methods of barrier formation enable the realization of more tunnel devices and circuits based on graphene.

  19. Formation and properties of stabilized aluminum nanoparticles.

    PubMed

    Meziani, Mohammed J; Bunker, Christopher E; Lu, Fushen; Li, Heting; Wang, Wei; Guliants, Elena A; Quinn, Robert A; Sun, Ya-Ping

    2009-03-01

    The wet-chemical synthesis of aluminum nanoparticles was investigated systematically by using dimethylethylamine alane and 1-methylpyrrolidine alane as precursors and molecules with one or a pair of carboxylic acid groups as surface passivation agents. Dimethylethylamine alane was more reactive, capable of yielding well-defined and dispersed aluminum nanoparticles. 1-Methylpyrrolidine alane was less reactive and more complex in the catalytic decomposition reaction, for which various experimental parameters and conditions were used and evaluated. The results suggested that the passivation agent played dual roles of trapping aluminum particles to keep them nanoscale during the alane decomposition and protecting the aluminum nanoparticles postproduction from surface oxidation and that an appropriate balance between the rate of alane decomposition (depending more sensitively on the reaction temperature) and the timing in the introduction of the passivation agent into the reaction mixture was critical to the desired product mixes and/or morphologies. Some fundamental and technical issues on the alane decomposition and the protection of the resulting aluminum nanoparticles are discussed.

  20. 76 FR 30650 - Aluminum Extrusions from the People's Republic of China: Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... forms, produced by an extrusion process, made from aluminum alloys having metallic elements corresponding to the alloy series designations published by The Aluminum Association commencing with the numbers... subject merchandise made from aluminum alloy with an Aluminum Association series designation...

  1. 40 CFR 440.20 - Applicability; description of the aluminum ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aluminum ore subcategory. 440.20 Section 440.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Aluminum Ore Subcategory § 440.20 Applicability; description of the aluminum ore subcategory. The... an aluminum ore. ...

  2. 40 CFR 440.20 - Applicability; description of the aluminum ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... aluminum ore subcategory. 440.20 Section 440.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Aluminum Ore Subcategory § 440.20 Applicability; description of the aluminum ore subcategory. The... an aluminum ore. ...

  3. 40 CFR 440.20 - Applicability; description of the aluminum ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aluminum ore subcategory. 440.20 Section 440.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Aluminum Ore Subcategory § 440.20 Applicability; description of the aluminum ore subcategory. The... an aluminum ore. ...

  4. Synthesis of (R)-(-)- and (S)-(+)-4-fluorodeprenyl and (R)-(-)- and (S)-(+)-(N- sup 11 C-methyl)-4-fluorodeprenyl and positron emission tomography studies in baboon brain

    SciTech Connect

    Plenevaux, A.; Dewey, S.L.; Fowler, J.S.; Guillaume, M.; Wolf, A.P. )

    1990-07-01

    (R)-(-)- and (S)-(+)-alpha-methyl-beta-4-(fluorophenyl)-N-methyl-N- propynylethylamine (R)-(-)- and (S)-(+)-4-fluorodeprenyl were synthesized via the reaction of 4-fluorobenzaldehyde with nitroethane followed by reduction with lithium aluminum hydride to produce racemic 4-fluoroamphetamine, which was resolved by recrystallization with L- or D-N-acetylleucine to yield (R)-(-)-4-fluoroamphetamine or (S)-(+)-4-fluoroamphetamine in greater than 96% enantiomeric excesses and in yields of 42 and 39%, respectively. Alkylation with propargyl bromide gave (R)-(-)- or (S)-(+)-4-fluoronordeprenyl which was reductively methylated (Borch conditions) to produce (R)-(-)- or (S)-(+)-4-fluorodeprenyl. Alkylation of (R)-(-)- or (S)-(+)-4-fluoronordeprenyl with carbon-11 labeled methyl iodide gave (R)-(-)- or (S)-(+)-(N-11C-methyl)-4-fluorodeprenyl in a radiochemical yield of 30-40%. Comparative PET studies of the two labeled enantiomers in baboons showed a significantly lower retention of radioactivity in the striatum for the (S)-(+) enantiomer relative to the (R)-(-) enantiomer.

  5. Synthesis of (R)-(-)- and (S)-(+)-4-fluorodeprenyl and (R)-(-)- and (S)-(+)-[N-11C-methyl]-4-fluorodeprenyl and positron emission tomography studies in baboon brain.

    PubMed

    Plenevaux, A; Dewey, S L; Fowler, J S; Guillaume, M; Wolf, A P

    1990-07-01

    (R)-(-)- and (S)-(+)-alpha-methyl-beta-4-(fluorophenyl)-N-methyl-N- propynylethylamine [R)-(-)- and (S)-(+)-4-fluorodeprenyl) were synthesized via the reaction of 4-fluorobenzaldehyde with nitroethane followed by reduction with lithium aluminum hydride to produce racemic 4-fluoroamphetamine, which was resolved by recrystallization with L- or D-N-acetylleucine to yield (R)-(-)-4-fluoroamphetamine or (S)-(+)-4-fluoroamphetamine in greater than 96% enantiomeric excesses and in yields of 42 and 39%, respectively. Alkylation with propargyl bromide gave (R)-(-)- or (S)-(+)-4-fluoronordeprenyl which was reductively methylated (Borch conditions) to produce (R)-(-)- or (S)-(+)-4-fluorodeprenyl. Alkylation of (R)-(-)- or (S)-(+)-4-fluoronordeprenyl with carbon-11 labeled methyl iodide gave (R)-(-)- or (S)-(+)-[N-11C-methyl]-4-fluorodeprenyl in a radiochemical yield of 30-40%. Comparative PET studies of the two labeled enantiomers in baboons showed a significantly lower retention of radioactivity in the striatum for the (S)-(+) enantiomer relative to the (R)-(-) enantiomer.

  6. Methylation of cysteine in hemoglobin following exposure to methylating agents

    SciTech Connect

    Bailey, E.; Connors, T.A.; Farmer, P.B.; Gorf, S.M.; Rickard, J.

    1981-06-01

    In addition to reacting with biologically important nucleophilic sites in DNA, alkylating agents also interact with amino acids in proteins. Measurements of the extent of formation of these alkyl amino acids may be used as a means of determining exposure to these compounds. The degree of S-methylation of cysteine in hemoglobin was studied following in vivo exposure of rats to methyl methanesulfonate, dimethylnitrosamine, and 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide. A linear dose-response curve was observed for methyl methanesulfonate over a 100-fold dose range. For dimethylnitrosamine, there was a threshold of doses where no methylation could be detected, and a curved dose-response curve was obtained. At high doses, the degree of methylation of hemoglobin cysteine was 7-fold lower than that with methyl methanesulfonate. In vivo, no alkylation could be observed with 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide; however, the existence of naturally occurring S-methylcysteine in the rat hemoglobin may have overshadowed small increases in alkylation arising from exposure to this compound. The natural occurrence of S-methylcysteine was studied in 13 species, and amounts ranging from 5.6 nmol/g globin (hamster) to 481 nmol/g globin (partridge) were observed. The reason for its occurrence is unknown but is under investigation.

  7. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    PubMed

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  8. The Effect of Anodic Oxide Films on the Nickel-Aluminum Reaction in Aluminum Braze Sheet

    NASA Astrophysics Data System (ADS)

    Tadgell, Colin A.; Wells, Mary A.; Corbin, Stephen F.; Colley, Leo; Cheadle, Brian; Winkler, Sooky

    2017-01-01

    The influence of an anodic oxide surface film on the nickel-aluminum reaction at the surface of aluminum brazing sheet has been investigated. Samples were anodized in a barrier-type solution and subsequently sputtered with nickel. Differential scanning calorimetry (DSC) and metallography were used as the main investigative techniques. The thickness of the anodic film was found to control the reaction between the aluminum substrate and nickel coating. Solid-state formation of nickel-aluminum intermetallic phases occurred readily when a relatively thin oxide film (13 to 25 nm) was present, whereas intermetallic formation was suppressed in the presence of thicker oxides ( 60 nm). At an intermediate oxide film thickness of 35 nm, the Al3Ni phase formed shortly after the initiation of melting in the aluminum substrate. Analysis of DSC traces showed that formation of nickel-aluminum intermetallic phases changed the melting characteristics of the aluminum substrate, and that the extent of this change can be used as an indirect measure of the amount of nickel incorporated into the intermetallic phases.

  9. Properties Data for Adhesion and Surface Chemistry of Aluminum: Sapphire-Aluminum, Single-Crystal Couple

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Pohlchuck, Bobby; Whitle, Neville C.; Hector, Louis G., Jr.; Adams, Jim

    1998-01-01

    An investigation was conducted to examine the adhesion and surface chemistry of single-crystal aluminum in contact with single-crystal sapphire (alumina). Pull-off force (adhesion) measurements were conducted under loads of 0. I to I mN in a vacuum of 10(exp -1) to 10(exp -9) Pa (approx. 10(exp -10) to 10(exp -11) torr) at room temperature. An Auger electron spectroscopy analyzer incorporated directly into an adhesion-measuring vacuum system was primarily used to define the chemical nature of the surfaces before and after adhesion measurements. The surfaces were cleaned by argon ion sputtering. With a clean aluminum-clean -sapphire couple the mean value and standard deviation of pull-off forces required to separate the surfaces were 3015 and 298 micro-N, respectively. With a contaminated aluminum-clean sapphire couple these values were 231 and 241 micro-N. The presence of a contaminant film on the aluminum surface reduced adhesion by a factor of 13. Therefore, surfaces cleanliness, particularly aluminum cleanliness, played an important role in the adhesion of the aluminum-sapphire couples. Pressures on the order of 10(exp -8) to 10(exp -9) Pa (approx. 10(exp -10) to 10(exp -11) torr) maintained a clean aluminum surface for only a short time (less then 1 hr) but maintained a clean sapphire surface, once it was achieved, for a much longer time.

  10. Nonequilibrium cross-plane energy transport in aluminum-silicon-aluminum wafer

    NASA Astrophysics Data System (ADS)

    Bin Mansoor, Saad; Yilbas, Bekir Sami

    2015-05-01

    Transient phonon transport across cross-planes of aluminum-silicon-aluminum combined films is investigated and the Boltzmann transport equation is incorporated to formulate the energy transport in the combined films. Since electrons and phonons thermally separate in the thin aluminum film during heating, the Boltzmann equation is used separately in the electron and lattice subsystems to account for the energy transport in the aluminum film. Electron-phonon coupling is incorporated for the energy exchange between electron and lattice subsystems in the film. Thermal boundary resistance (TBR) is introduced at the interfaces of the silicon-aluminum films. In order to examine the ballistic contribution of phonons on the phonon intensity distribution in the silicon film, frequency-dependent solution of the Boltzmann equation is used in the silicon film and the film thickness is varied to investigate the size effect on the thermal conductivity in the film. It is found that equivalent equilibrium temperature of phonons remains high at silicon-aluminum interface because of the ballistic contribution of the phonons. Equivalent equilibrium temperature for the electron subsystem becomes higher than that corresponding to phonon temperature at the aluminum-silicon interface.

  11. Reducing aluminum dust explosion hazards: case study of dust inerting in an aluminum buffing operation.

    PubMed

    Myers, Timothy J

    2008-11-15

    Metal powders or dusts can represent significant dust explosion hazards in industry, due to their relatively low ignition energy and high explosivity. The hazard is well known in industries that produce or use aluminum powders, but is sometimes not recognized by facilities that produce aluminum dust as a byproduct of bulk aluminum processing. As demonstrated by the 2003 dust explosion at aluminum wheel manufacturer Hayes Lemmerz, facilities that process bulk metals are at risk due to dust generated during machining and finishing operations [U.S. Chemical Safety and Hazard Investigation Board, Investigation Report, Aluminum Dust Explosion Hayes Lemmerz International, Inc., Huntington, Indiana, Report No. 2004-01-I-IN, September 2005]. Previous studies have shown that aluminum dust explosions are more difficult to suppress with flame retardants or inerting agents than dust explosions fueled by other materials such as coal [A.G. Dastidar, P.R. Amyotte, J. Going, K. Chatrathi, Flammability limits of dust-minimum inerting concentrations, Proc. Saf. Progr., 18-1 (1999) 56-63]. In this paper, an inerting method is discussed to reduce the dust explosion hazard of residue created in an aluminum buffing operation as the residue is generated. This technique reduces the dust explosion hazard throughout the buffing process and within the dust collector systems making the process inherently safer. Dust explosion testing results are presented for process dusts produced during trials with varying amounts of flame retardant additives.

  12. The Effect of Anodic Oxide Films on the Nickel-Aluminum Reaction in Aluminum Braze Sheet

    NASA Astrophysics Data System (ADS)

    Tadgell, Colin A.; Wells, Mary A.; Corbin, Stephen F.; Colley, Leo; Cheadle, Brian; Winkler, Sooky

    2017-03-01

    The influence of an anodic oxide surface film on the nickel-aluminum reaction at the surface of aluminum brazing sheet has been investigated. Samples were anodized in a barrier-type solution and subsequently sputtered with nickel. Differential scanning calorimetry (DSC) and metallography were used as the main investigative techniques. The thickness of the anodic film was found to control the reaction between the aluminum substrate and nickel coating. Solid-state formation of nickel-aluminum intermetallic phases occurred readily when a relatively thin oxide film (13 to 25 nm) was present, whereas intermetallic formation was suppressed in the presence of thicker oxides ( 60 nm). At an intermediate oxide film thickness of 35 nm, the Al3Ni phase formed shortly after the initiation of melting in the aluminum substrate. Analysis of DSC traces showed that formation of nickel-aluminum intermetallic phases changed the melting characteristics of the aluminum substrate, and that the extent of this change can be used as an indirect measure of the amount of nickel incorporated into the intermetallic phases.

  13. Lithium-aluminum-magnesium electrode composition

    DOEpatents

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  14. Lithium-aluminum-iron electrode composition

    DOEpatents

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  15. NASA-427: A New Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  16. Aluminum phosphate ceramics for waste storage

    DOEpatents

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  17. Combined surface modification of commercial aluminum

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu; Lopatin, I.; Akhmadeev, Yu; Petrikova, E.; Teresov, A.; Shugurov, V.; Tolkachev, O.; Koval, N.

    2017-01-01

    The paper analyzes research data on the structure and properties of surface layers of commercially pure A7-grade aluminum subjected to treatment that combines deposition of a thin metal film, intense pulsed electron beam irradiation, and nitriding in low-pressure arc plasma. The analysis shows that the combined method of surface modification provides the formation of a multilayer structure with submicro- and nano-sized phases in the material through a depth of up to 40 μm, allowing a manifold increase in its surface microhardness and wear resistance (up to 4 and 9 times, respectively) compared to the material core. The main factors responsible for the high surface strength are the saturation of the aluminum lattice with nitrogen atoms and the formation of nano-sized particles of aluminum nitride and iron aluminides.

  18. Improved aluminum coatings for the ultraviolet

    SciTech Connect

    Edwards, D.F.; LaDelfe, P.; Ochoa, E.

    1981-01-01

    Highly reflective aluminum coatings or aluminum coatings with dielectric overcoats are frequently used in the ultraviolet. The reflectance values published by Hass and his group are generally accepted for this uv region. We have produced evaporated aluminum coatings for a wide range of deposition conditions and none of our coatings exhibit the Hass reflectance characteristics. The reflectance of our coatings appear to be independent of the evaporation pressure and deposition time or rate. Our coatings do not have the characteristic decrease in reflectance with decreasing wavelength. Our main attention has been focused on the origin of a reflectance dip for each of our coatings near 300 nm. This dip has apparently not been reported before and does not appear to be due to adsorbed layers on the film or due to trapped impurities within the film.

  19. Aluminum: New challenges in downstream activities

    NASA Astrophysics Data System (ADS)

    Becker, Miklos N.

    1999-11-01

    During its history, aluminum’s attractive features, such as high strength-to-weight ratio, good electrical mass conductivity, and unique corrosion behavior, have led to a spectacular expansion in its use. The role of aluminum in non-aluminum-based materials is also very important; its contribution to the improvement of magnesium and titanium alloys and to highly complex packaging materials are some of the noteworthy examples. Significant cost reductions on the basic metal production level, near-to-shape fabricating methods, and the well-functioning recycling system are also major contributors to aluminum success. Imminent challenges for the industry are the need for products with very close tolerances on a mass fabricating repetitive basis and just-in-time delivery to original-equipment manufacturers and small users through distributors. A significant part of the challenges remains in the applications area, particularly automotive and aerospace.

  20. Roll Casting of Aluminum Alloy Clad Strip

    SciTech Connect

    Nakamura, R.; Tsuge, H.; Haga, T.; Watari, H.; Kumai, S.

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connected when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.

  1. Water based adhesive primers on aluminum substrates

    SciTech Connect

    Wightman, J.P.; Mori, S.

    1996-12-31

    The number of aluminum alloy bonding applications has been increasing recently in the automobile industry. Primer coating of aluminum substrates is one of the main processes used to promote bond performance. Solvent based organic primers have been used for a long time but environmental regulations now require the substitution of volatile organic compounds (VOC) by alternate materials such as water based adhesive primers. However, the bond strengths obtained with many water based primers are generally lower than for solvent based ones. Water based primers which have some reactive functional groups have been proposed recently but such primers require special treatment. This paper describes a study conducted to optimize bond strength using a water based adhesive as a primer in the adhesive bonding of anodized aluminum.

  2. Aluminum-based hot carrier plasmonics

    NASA Astrophysics Data System (ADS)

    Gong, Tao; Munday, Jeremy N.

    2017-01-01

    Aluminum has recently arisen as an excellent alternative plasmonic material due to its tunability, low optical loss, and CMOS compatibility. However, its use in optoelectronic applications has been limited due to Al oxidation. Herein, we report a semiconductor-free aluminum hot carrier device that exploits the self-terminating oxidation to create an interface barrier for high performance metal-insulator-transparent conducting oxide devices. We find a 300% enhancement of the responsivity compared to similarly reported Au-based devices, resulting in a responsivity up to ˜240 nA/W, and a clear dependence of the open-circuit voltage on incident photon energy. We show that further improvement can be obtained by coupling to plasmonic modes of a metal-insulator-metal structure composed of a nanowire array adjacent to a thin aluminum film, increasing light absorption by a factor of three and enabling tunability of the hot carrier response for improved device performance.

  3. Hydrogenation of passivated aluminum with hydrogen fluid

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Machida, A.; Katayama, Y.; Aoki, K.

    2009-04-01

    Hydrogenation conditions of passivated aluminum were examined in a pressure and temperature range of 6-10 GPa and 300-800 °C, respectively. The relationship between the hydrogenation reaction yields and holding time was analyzed by Johnson-Mehl-Avrami equation. An Avrami exponent n of 0.3 indicated that the reaction decreased with time due to the low diffusivity of hydrogen in AlH3. The oxide layer on passivated aluminum seemed to be partly removed or modified by pressure-temperature treatment above 6 GPa and 600 °C in hydrogen fluid. The hydrogenation pressure of 9 GPa for the passivated aluminum was reduced to 6 GPa.

  4. ALUMINUM AND CHROMIUM LEACHING WORKSHOP WHITEPAPER

    SciTech Connect

    McCabe, D; Jeff Pike, J; Bill Wilmarth, B

    2007-04-25

    A workshop was held on January 23-24, 2007 to discuss the status of processes to leach constituents from High Level Waste (HLW) sludges at the Hanford and Savannah River Sites. The objective of the workshop was to examine the needs and requirements for the HLW flowsheet for each site, discuss the status of knowledge of the leaching processes, communicate the research plans, and identify opportunities for synergy to address knowledge gaps. The purpose of leaching of non-radioactive constituents from the sludge waste is to reduce the burden of material that must be vitrified in the HLW melter systems, resulting in reduced HLW glass waste volume, reduced disposal costs, shorter process schedules, and higher facility throughput rates. The leaching process is estimated to reduce the operating life cycle of SRS by seven years and decrease the number of HLW canisters to be disposed in the Repository by 1000 [Gillam et al., 2006]. Comparably at Hanford, the aluminum and chromium leaching processes are estimated to reduce the operating life cycle of the Waste Treatment Plant by 20 years and decrease the number of canisters to the Repository by 15,000-30,000 [Gilbert, 2007]. These leaching processes will save the Department of Energy (DOE) billions of dollars in clean up and disposal costs. The primary constituents targeted for removal by leaching are aluminum and chromium. It is desirable to have some aluminum in glass to improve its durability; however, too much aluminum can increase the sludge viscosity, glass viscosity, and reduce overall process throughput. Chromium leaching is necessary to prevent formation of crystalline compounds in the glass, but is only needed at Hanford because of differences in the sludge waste chemistry at the two sites. Improving glass formulations to increase tolerance of aluminum and chromium is another approach to decrease HLW glass volume. It is likely that an optimum condition can be found by both performing leaching and improving

  5. Anodization process produces opaque, reflective coatings on aluminum

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Opaque, reflective coatings are produced on aluminum articles by an anodizing process wherein the anodizing bath contains an aqueous dispersion of finely divided insoluble inorganic compounds. These particles appear as uniformly distributed occlusions in the anodic deposit on the aluminum.

  6. 1. GENERAL VIEW OF ENTRANCE INTO ALUMINUM CITY TERRACE ALONG ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF ENTRANCE INTO ALUMINUM CITY TERRACE ALONG EAST HILL DRIVE. BUILDING 1 ON RIGHT, BUILDING 2 ON LEFT, FACING EAST. - Aluminum City Terrace, East Hill Drive, New Kensington, Westmoreland County, PA

  7. Method of winning aluminum metal from aluminous ore

    DOEpatents

    Loutfy, R.O.; Keller, R.; Yao, N.P.

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (A1S) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  8. Method of winning aluminum metal from aluminous ore

    DOEpatents

    Loutfy, Raouf O.; Keller, Rudolf; Yao, Neng-Ping

    1981-01-01

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (AlS) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  9. Protective coating for copper in aluminum heat exchangers

    NASA Technical Reports Server (NTRS)

    Avazian, R.

    1978-01-01

    Application of ultrathin layer of molybdenum disulfied coating to copper tubing permits utilization of tubing in cast-aluminum heat exchangers. Coating prevents formation of copper/aluminum eutectic, but does not impede heat transfer.

  10. Aluminum content of human semen: implications for semen quality.

    PubMed

    Klein, J P; Mold, M; Mery, L; Cottier, M; Exley, C

    2014-12-01

    A deterioration of human semen quality has been observed over recent decades. A possible explanation could be an increased exposure to environmental pollutants, including aluminum. Our aim was to measure the aluminum concentration in the semen of 62 patients and to carry out a preliminary evaluation on its impact on specific semen parameters. For each patient, semen analyses were performed according to WHO guidelines. A graphite furnace atomic absorption spectrometry method was used to determine semen aluminum concentration. A cytological analysis using an aluminum-specific fluor, lumogallion, was also performed. The mean aluminum concentration in human semen was 339 μg/L. Patients with oligozoospermia had a statistically higher aluminum concentration than others. No significant difference was observed for other semen parameters. Cytological analysis showed the presence of aluminum in spermatozoa. This study provided unequivocal evidence of high concentrations of aluminum in human semen and suggested possible implications for spermatogenesis and sperm count. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Understanding Aspects of Aluminum Exposure in Alzheimer's Disease Development.

    PubMed

    Kandimalla, Ramesh; Vallamkondu, Jayalakshmi; Corgiat, Edwin B; Gill, Kiran Dip

    2016-03-01

    Aluminum is a ubiquitously abundant nonessential element. Aluminum has been associated with neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis, and dialysis encephalopathy. Many continue to regard aluminum as controversial although increasing evidence supports the implications of aluminum in the pathogenesis of AD. Aluminum causes the accumulation of tau protein and Aβ protein in the brain of experimental animals. Aluminum induces neuronal apoptosis in vivo and in vitro, either by endoplasmic stress from the unfolded protein response, by mitochondrial dysfunction, or a combination of them. Some, people who are exposed chronically to aluminum, either from through water and/or food, have not shown any AD pathology, apparently because their gastrointestinal barrier is more effective. This article is written keeping in mind mechanisms of action of aluminum neurotoxicity with respect to AD. © 2015 International Society of Neuropathology.

  12. Performance comparison: Aluminum electrolytic and solid tantalum capacitor

    NASA Technical Reports Server (NTRS)

    Hawthornthwaite, B. G.; Piper, J.; Holland, H. W.

    1981-01-01

    Several key electrical and environmental parameters of latest technology aluminum electrolytic and solid tantalum capacitors were evaluated in terms of price fluctuations of tantalum metal. Performance differences between solid tantalums and aluminum electrolytics are examined.

  13. [Aluminum induces chromosome aberrations in wheat root meristem cells].

    PubMed

    Bulanova, N V; Synzynys, B I; Koz'min, G V

    2001-12-01

    The yield and pattern of chromosome structure aberrations in wheat seedlings treated with aluminum nitrate and aluminum sulfate at various concentrations have been determined by the anaphase method. Aluminum has a genotoxic effect causing genome, chromatid, and chromosome aberrations in apical root meristem cells. The relationship between the total yield of structural mutations and the aluminum concentration follows a bell-shaped curve. The mutagenic activity of aluminum nitrate peaks at 10(-3) mg/ml, which is twice as high as the permissible concentration limit (PCL) of aluminum in potable water. The maximum of the mutagenic activity of aluminum sulfate is observed at 5 x 10(-4) mg/ml, i.e., one PCL. Tap water boiled for 2 h in an aluminum vessel has virtually no genotoxic effect on wheat cells.

  14. Aluminum electrolytic capacitors for tablet PC

    NASA Astrophysics Data System (ADS)

    Liu, Longchun; Dong, Liangwei; Li, Qinglong; Xu, Xiangyang

    2017-07-01

    Based on the operating conditions of tablet PC, this paper presents the design of a long load life aluminum electrolytic capacitor. Due to the key technology breakthrough of electrolyte with low resistance and excellent temperature stability, the capacitor boasts low leakage current, low impedance, high frequency, high ripple resistance and high temperature resistance. In the meantime, it can pass 5000 h of durability test with load at 105∘C. The aluminum electrolytic capacitor can be used in tablet PC with long load life.

  15. Summary of Repair Techniques for Aluminum Bridging.

    DTIC Science & Technology

    1982-10-01

    OCT 82 CERL-TR-M-324 UNCLASSIFIED F/G 13/8 NL mEEEimuinuIEEBI-EEIIIIIE 111-2 11112.2~ 111L25 nu 111I. M RO f PIHULL]TIN 7[ ..k contrutio of Enginrs ...aluminum bridging. A literature search was conducted to identify the various aluminum repair processes available. The merits of each method as a field...Army C’onsfruclion EnPrincering Restarch A literature search was conducted to assess various L.a jratorv I(’I.RIl, 1I’P. welding and joining repair

  16. Aluminum plasmonic metamaterials for structural color printing

    DOE PAGES

    Cheng, Fei; Gao, Jie; Stan, Liliana; ...

    2015-05-26

    We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer for ambient use with further improved color performance. The demonstrated structural color printing with aluminum plasmonic metamaterials offers great potential for relevant applications such as security marking and information storage.

  17. Aluminum plasmonic metamaterials for structural color printing

    SciTech Connect

    Cheng, Fei; Gao, Jie; Stan, Liliana; Rosenmann, Daniel; Czaplewski, David; Yang, Xiaodong

    2015-06-01

    We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer for ambient use with further improved color performance. The demonstrated structural color printing with aluminum plasmonic metamaterials offers great potential for relevant applications such as security marking and information storage.

  18. Development of deep drawn aluminum piston tanks

    SciTech Connect

    Whitehead, J.C.; Bronder, R.L.; Kilgard, L.W.; Evans, M.C.; Ormsby, A.E.; Spears, H.R.; Wilson, J.D.

    1990-06-08

    An aluminum piston tank has been developed for applications requiring lightweight, low cost, low pressure, positive-expulsion liquid storage. The 3 liter (183 in{sup 3}) vessel is made primarily from aluminum sheet, using production forming and joining operations. The development process relied mainly on pressurizing prototype parts and assemblies to failure, as the primary source of decision making information for driving the tank design toward its optimum minimum-mass configuration. Critical issues addressed by development testing included piston operation, strength of thin-walled formed shells, alloy choice, and joining the end cap to the seamless deep drawn can. 9 refs., 8 figs.

  19. Aluminum plasmonic metamaterials for structural color printing.

    PubMed

    Cheng, Fei; Gao, Jie; Stan, Liliana; Rosenmann, Daniel; Czaplewski, David; Yang, Xiaodong

    2015-06-01

    We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer for ambient use with further improved color performance. The demonstrated structural color printing with aluminum plasmonic metamaterials offers great potential for relevant applications such as security marking and information storage.

  20. Aluminum plasmonic metamaterials for structural color printing

    SciTech Connect

    Cheng, Fei; Gao, Jie; Stan, Liliana; Rosenmann, Daniel; Czaplewski, David; Yang, Xiaodong

    2015-05-26

    We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer for ambient use with further improved color performance. The demonstrated structural color printing with aluminum plasmonic metamaterials offers great potential for relevant applications such as security marking and information storage.

  1. Aluminum-lithium alloys with hafnium

    SciTech Connect

    Rioja, R.J.; Bretz, P.E.; Jacoby, J.

    1989-09-26

    This patent describes an aluminum base alloy suitable for forming into a wrought product having improved combinations of strength and fracture toughness. The alloy consisting essentially of 0.2 to 5.0 wt % Li, 0.05 to 6.0 wt % Mg, 0.2 to 5.0 wt % Cu, 0 to 2.0 wt % Mn, 0 to 1.0 wt, % Zr, 0.05 to 12.0 wt. % Zn, 0.05 to 1.0 wt. % Hf, 0.5 wt.% Fe, 0.5 wt. % max. Si, the balance aluminum and incidental impurities.

  2. Surface alloying of silicon into aluminum substrate.

    SciTech Connect

    Xu, Z.

    1998-10-28

    Aluminum alloys that are easily castable tend to have lower silicon content and hence lower wear resistance. The use of laser surface alloying to improve the surface wear resistance of 319 and 320 aluminum alloys was examined. A silicon layer was painted onto the surface to be treated. A high power pulsed Nd:YAG laser with fiberoptic beam delivery was used to carry out the laser surface treatment to enhance the silicon content. Process parameters were varied to minimize the surface roughness from overlap of the laser beam treatment. The surface-alloyed layer was characterized and the silicon content was determined.

  3. Mechanical Properties of Aluminum-alloy Rivets

    NASA Technical Reports Server (NTRS)

    Brueggeman, Wm C

    1936-01-01

    The development of metal construction for aircraft has created a need for accurate and detailed information regarding the strength of riveted joints in aluminum-alloy structures. To obtain this information the National Bureau of Standards in cooperation with the National Advisory Committee for Aeronautics is investigating the strength of riveted joints in aluminum alloys. The strength of riveted joints may be influenced by the form of the head, the ratio of the rivet diameter to the sheet thickness, the driving stress, and other factors. This note gives the results of tests to develop the riveting technique for test specimens and to determine the effects of these factors.

  4. Aluminum-oxygen batteries for space applications

    NASA Technical Reports Server (NTRS)

    Niksa, Marilyn J.; Wheeler, Douglas J.

    1987-01-01

    An aluminum oxygen fuel cell is under development. Several highly efficient cell designs were constructed and tested. Air cathodes catalyzed with cobalt tetramethoxy porphorin have demonstrated more than 2000 cycles in intermittant use conditions. Aluminum alloys have operated at 4.2 kWH/kg at 200 mA/sq cm. A novel separator device, an impeller fluidizer was coupled with the battery to remove the solid hydrargillite discharge product. A 60 kW, 720 kWH battery system is projected to weigh about 2200 lbs., for an energy density of 327 WH lb.

  5. Stringent programming of DNA methylation in humans.

    PubMed

    Aung, Hnin T; Harrison, Dion K; Findlay, Ian; Mattick, John S; Martin, Nicholas G; Carroll, Bernard J

    2010-10-01

    We describe a PCR-based method called Amplified Methylation Polymorphism (AMP) for scanning genomes for DNA methylation changes. AMP detects tissue-specific DNA methylation signatures often representing junctions between methylated and unmethylated DNA close to intronexon junctions and/or associated with CpG islands. Identical AMP profiles are detected for healthy, young, monozygotic twins.

  6. Cigarette smoking and DNA methylation

    PubMed Central

    Lee, Ken W. K.; Pausova, Zdenka

    2013-01-01

    DNA methylation is the most studied epigenetic modification, capable of controlling gene expression in the contexts of normal traits or diseases. It is highly dynamic during early embryogenesis and remains relatively stable throughout life, and such patterns are intricately related to human development. DNA methylation is a quantitative trait determined by a complex interplay of genetic and environmental factors. Genetic variants at a specific locus can influence both regional and distant DNA methylation. The environment can have varying effects on DNA methylation depending on when the exposure occurs, such as during prenatal life or during adulthood. In particular, cigarette smoking in the context of both current smoking and prenatal exposure is a strong modifier of DNA methylation. Epigenome-wide association studies have uncovered candidate genes associated with cigarette smoking that have biologically relevant functions in the etiology of smoking-related diseases. As such, DNA methylation is a potential mechanistic link between current smoking and cancer, as well as prenatal cigarette-smoke exposure and the development of adult chronic diseases. PMID:23882278

  7. Method And Reactor For Production Of Aluminum By Carbothermic Reduction Of Alumina

    DOEpatents

    Aune, Jan Arthur; Johansen, Kai

    2004-10-19

    A hollow partition wall is employed to feed carbon material to an underflow of a carbothermic reduction furnace used to make aluminum. The partition wall divides a low temperature reaction zone where aluminum oxide is reacted with carbon to form aluminum carbide and a high temperature reaction zone where the aluminum carbide and remaining aluminum oxide are reacted to form aluminum and carbon monoxide.

  8. Specific features of aluminum nanoparticle water and wet air oxidation

    NASA Astrophysics Data System (ADS)

    Lozhkomoev, Aleksandr S.; Glazkova, Elena A.; Svarovskaya, Natalia V.; Bakina, Olga V.; Kazantsev, Sergey O.; Lerner, Marat I.

    2015-10-01

    The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation.

  9. Aluminum base alloy powder metallurgy process and product

    NASA Technical Reports Server (NTRS)

    Paris, Henry G. (Inventor)

    1986-01-01

    A metallurgical method including cooling molten aluminum particles and consolidating resulting solidified particles into a multiparticle body, wherein the improvement comprises the provision of greater than 0.15% of a metal which diffuses in the aluminum solid state at a rate less than that of Mn. Aluminum containing greater than 0.15% of a metal which diffuses in the aluminum solid state at a rate less than that of Mn.

  10. Defect reduction in seeded aluminum nitride crystal growth

    DOEpatents

    Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.; Stack, Glen A.

    2017-04-18

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  11. Defect reduction in seeded aluminum nitride crystal growth

    DOEpatents

    Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.; Slack, Glen A.

    2017-06-06

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density .ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  12. Updated aluminum pharmacokinetics following infant exposures through diet and vaccination.

    PubMed

    Mitkus, Robert J; King, David B; Hess, Maureen A; Forshee, Richard A; Walderhaug, Mark O

    2011-11-28

    Aluminum is a ubiquitous element that is released naturally into the environment via volcanic activity and the breakdown of rocks on the earth's surface. Exposure of the general population to aluminum occurs primarily through the consumption of food, antacids, and buffered analgesics. Exposure to aluminum in the general population can also occur through vaccination, since vaccines often contain aluminum salts (frequently aluminum hydroxide or aluminum phosphate) as adjuvants. Because concerns have been expressed by the public that aluminum in vaccines may pose a risk to infants, we developed an up-to-date analysis of the safety of aluminum adjuvants. Keith et al. [1] previously analyzed the pharmacokinetics of aluminum for infant dietary and vaccine exposures and compared the resulting body burdens to those based on the minimal risk levels (MRLs) established by the Agency for Toxic Substances and Disease Registry. We updated the analysis of Keith et al. [1] with a current pediatric vaccination schedule [2]; baseline aluminum levels at birth; an aluminum retention function that reflects changing glomerular filtration rates in infants; an adjustment for the kinetics of aluminum efflux at the site of injection; contemporaneous MRLs; and the most recent infant body weight data for children 0-60 months of age [3]. Using these updated parameters we found that the body burden of aluminum from vaccines and diet throughout an infant's first year of life is significantly less than the corresponding safe body burden of aluminum modeled using the regulatory MRL. We conclude that episodic exposures to vaccines that contain aluminum adjuvant continue to be extremely low risk to infants and that the benefits of using vaccines containing aluminum adjuvant outweigh any theoretical concerns. Published by Elsevier Ltd.

  13. Specific features of aluminum nanoparticle water and wet air oxidation

    SciTech Connect

    Lozhkomoev, Aleksandr S. Glazkova, Elena A. Svarovskaya, Natalia V. Bakina, Olga V. Kazantsev, Sergey O. Lerner, Marat I.

    2015-10-27

    The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation.

  14. New developments in aluminum for aircraft and automobiles

    NASA Technical Reports Server (NTRS)

    Petit, Jocelyn I.

    1994-01-01

    A common bond for the aircraft and automobile industry is the need for cost-efficient, lightweight structures such as provided by aluminum based materials. The topics are presented in viewgraph form and cover the following: new developments in aluminum for aircraft and automobiles; forces shaping future automotive materials needs; aluminum strength/weakness versus competitive materials; evolution of aluminum aerospace alloys; forces shaping future aircraft materials needs; fiber/metal structural laminates; and property requirements for jetliner and military transport applications.

  15. Pectins esterification in the apoplast of aluminum-treated pea root nodules.

    PubMed

    Sujkowska-Rybkowska, Marzena; Borucki, Wojciech

    2015-07-20

    Aiming to elucidate the possible involvement of pectins in aluminum-mediated growth inhibition the distribution of pectins in the apoplast of root nodules was investigated. Experiments were performed on the pea (Pisum sativum L.) root nodules treated with aluminum (50 μM AlCl3, for 2 or 24h). For histochemical acidic pectin localization we used ruthenium red staining. Immunolabeling techniques with monoclonal antibodies specific to high methyl-esterified pectin (JIM7), low methyl-esterified pectin (JIM5) and calcium cross-linked pectin (2F4) were used to re-examine the pattern of pectin esterification and distribution. After immunolabeling the samples were observed using a fluorescent and transmission electron microscope. Ruthenium red staining showed that acid pectin content increased in the apoplast of Al-treated nodules and immunolocalization of pectin epitopes revealed that the fraction of de-esterified pectins increased significantly under Al stress. JIM5 and 2F4 epitopes were located on the inner surface of the primary cell wall with higher intensity at cell corners lining the intercellular spaces and at infection threads (ITs) walls. By contrast, JIM 7 labels all walls uniformly throughout the nodule. In the presence of Al, the increase of JIM5 and 2F4 labeling in thick plant and IT walls, together with a decrease of JIM7 labeling was observed. These results indicate a specific role for pectin de-esterification in the process of wall thickening and growth inhibition. In particular, Al-dependent increase in pectin content and their low methyl esterification degree correlate with wall thickness and higher rigidity, and in this way, may affect IT and nodules growth.

  16. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover...

  17. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover...

  18. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover...

  19. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover...

  20. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its dome must be enclosed by the vessel's hull structure or a separate steel cover. (b) The steel cover...