Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2.
Nan, X; Meehan, R R; Bird, A
1993-01-01
MeCP2 is a chromosomal protein which binds to DNA that is methylated at CpG. In situ immunofluorescence in mouse cells has shown that the protein is most concentrated in pericentromeric heterochromatin, suggesting that MeCP2 may play a role in the formation of inert chromatin. Here we have isolated a minimal methyl-CpG binding domain (MBD) from MeCP2. MBD is 85 amino acids in length, and binds exclusively to DNA that contains one or more symmetrically methylated CpGs. MBD has negligable non-specific affinity for DNA, confirming that non-specific and methyl-CpG specific binding domains of MeCP2 are distinct. In vitro footprinting indicates that MBD binding can protect a 12 nucleotide region surrounding a methyl-CpG pair, with an approximate dissociation constant of 10(-9) M. Images PMID:8177735
Arginine methylation of REF/ALY promotes efficient handover of mRNA to TAP/NXF1
Hung, Ming-Lung; Hautbergue, Guillaume M.; Snijders, Ambrosius P. L.; Dickman, Mark J.; Wilson, Stuart A.
2010-01-01
The REF/ALY mRNA export adaptor binds TAP/NXF1 via an arginine-rich region, which overlaps with its RNA-binding domain. When TAP binds a REF:RNA complex, it triggers transfer of the RNA from REF to TAP. Here, we have examined the effects of arginine methylation on the activities of the REF protein in mRNA export. We have mapped the arginine methylation sites of REF using mass spectrometry and find that several arginines within the TAP and RNA binding domains are methylated in vivo. However, arginine methylation has no effect on the REF:TAP interaction. Instead, arginine methylation reduces the RNA-binding activity of REF in vitro and in vivo. The reduced RNA-binding activity of REF in its methylated state is essential for efficient displacement of RNA from REF by TAP in vivo. Therefore, arginine methylation fine-tunes the RNA-binding activity of REF such that the RNA–protein interaction can be readily disrupted by export factors further down the pathway. PMID:20129943
Small Molecule Ligands of Methyl-Lysine Binding Proteins
Herold, J. Martin; Wigle, Tim J.; Norris, Jacqueline L.; Lam, Robert; Korboukh, Victoria K.; Gao, Cen; Ingerman, Lindsey A.; Kireev, Dmitri B.; Senisterra, Guillermo; Vedadi, Masoud; Tripathy, Ashutosh; Brown, Peter J.; Arrowsmith, Cheryl H.; Jin, Jian; Janzen, William P.; Frye, Stephen V.
2011-01-01
Proteins which bind methylated lysines (“readers” of the histone code) are important components in the epigenetic regulation of gene expression and can also modulate other proteins that contain methyl-lysine such as p53 and Rb. Recognition of methyl-lysine marks by MBT domains leads to compaction of chromatin and a repressed transcriptional state. Antagonists of MBT domains would serve as probes to interrogate the functional role of these proteins and initiate the chemical biology of methyl-lysine readers as a target class. Small molecule MBT antagonists were designed based on the structure of histone peptide-MBT complexes and their interaction with MBT domains determined using a chemiluminescent assay and ITC. The ligands discovered antagonize native histone peptide binding, exhibiting 5-fold stronger binding affinity to L3MBTL1 than its preferred histone peptide. The first co-crystal structure of a small molecule bound to L3MBTL1 was determined and provides new insights into binding requirements for further ligand design. PMID:21417280
Claveria-Gimeno, Rafael; Lanuza, Pilar M; Morales-Chueca, Ignacio; Jorge-Torres, Olga C; Vega, Sonia; Abian, Olga; Esteller, Manel; Velazquez-Campoy, Adrian
2017-01-31
Methyl-CpG binding protein 2 (MeCP2) preferentially interacts with methylated DNA and it is involved in epigenetic regulation and chromatin remodelling. Mutations in MeCP2 are linked to Rett syndrome, the leading cause of intellectual retardation in girls and causing mental, motor and growth impairment. Unstructured regions in MeCP2 provide the plasticity for establishing interactions with multiple binding partners. We present a biophysical characterization of the methyl binding domain (MBD) from MeCP2 reporting the contribution of flanking domains to its structural stability and dsDNA interaction. The flanking disordered intervening domain (ID) increased the structural stability of MBD, modified its dsDNA binding profile from an entropically-driven moderate-affinity binding to an overwhelmingly enthalpically-driven high-affinity binding. Additionally, ID provided an additional site for simultaneously and autonomously binding an independent dsDNA molecule, which is a key feature linked to the chromatin remodelling and looping activity of MeCP2, as well as its ability to interact with nucleosomes replacing histone H1. The dsDNA interaction is characterized by an unusually large heat capacity linked to a cluster of water molecules trapped within the binding interface. The dynamics of disordered regions together with extrinsic factors are key determinants of MeCP2 global structural properties and functional capabilities.
Claveria-Gimeno, Rafael; Lanuza, Pilar M.; Morales-Chueca, Ignacio; Jorge-Torres, Olga C.; Vega, Sonia; Abian, Olga; Esteller, Manel; Velazquez-Campoy, Adrian
2017-01-01
Methyl-CpG binding protein 2 (MeCP2) preferentially interacts with methylated DNA and it is involved in epigenetic regulation and chromatin remodelling. Mutations in MeCP2 are linked to Rett syndrome, the leading cause of intellectual retardation in girls and causing mental, motor and growth impairment. Unstructured regions in MeCP2 provide the plasticity for establishing interactions with multiple binding partners. We present a biophysical characterization of the methyl binding domain (MBD) from MeCP2 reporting the contribution of flanking domains to its structural stability and dsDNA interaction. The flanking disordered intervening domain (ID) increased the structural stability of MBD, modified its dsDNA binding profile from an entropically-driven moderate-affinity binding to an overwhelmingly enthalpically-driven high-affinity binding. Additionally, ID provided an additional site for simultaneously and autonomously binding an independent dsDNA molecule, which is a key feature linked to the chromatin remodelling and looping activity of MeCP2, as well as its ability to interact with nucleosomes replacing histone H1. The dsDNA interaction is characterized by an unusually large heat capacity linked to a cluster of water molecules trapped within the binding interface. The dynamics of disordered regions together with extrinsic factors are key determinants of MeCP2 global structural properties and functional capabilities. PMID:28139759
Structure of the MLL CXXC domain – DNA complex and its functional role in MLL-AF9 leukemia
Cierpicki, Tomasz; Risner, Laurie E.; Grembecka, Jolanta; Lukasik, Stephen M.; Popovic, Relja; Omonkowska, Monika; Shultis, David S.; Zeleznik-Le, Nancy J.; Bushweller, John H.
2010-01-01
MLL (Mixed Lineage Leukemia) is the target of chromosomal translocations which cause leukemias with poor prognosis. All leukemogenic MLL fusion proteins retain the CXXC domain which binds to nonmethylated CpG DNA. We present the solution structure of the MLL CXXC domain in complex with DNA, showing for the first time how the CXXC domain distinguishes nonmethylated from methylated CpG DNA. Based on the structure, we designed point mutations which disrupt DNA binding. Introduction of these mutations into MLL-AF9 results in increased DNA methylation of specific CpG nucleotides in Hoxa9, increased H3K9 methylation, decreased expression of Hoxa9 locus transcripts, loss of immortalization potential, and inability to induce leukemia in mice. These results establish that DNA binding by the CXXC domain and protection against DNA methylation is essential for MLL fusion leukemia. They also provide support for this interaction as a potential target for therapeutic intervention. PMID:20010842
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjuts, Hanno; Dunstan, Mark S.; Fisher, Karl
2013-08-01
The first crystal structure of the vitamin B12-binding protein from a three-component O-demethylase enzyme system is reported. During O-demethylation methyl groups are transferred from phenyl methyl ethers to tetrahydrofolate via methyl-B12 intermediates. This study describes the identification and the structural and spectroscopic analysis of a cobalamin-binding protein (termed CobDH) implicated in O-demethylation by the organohalide-respiring bacterium Desulfitobacterium hafniense DCB-2. The 1.5 Å resolution crystal structure of CobDH is presented in the cobalamin-bound state and reveals that the protein is composed of an N-terminal helix-bundle domain and a C-terminal Rossmann-fold domain, with the cobalamin coordinated in the base-off/His-on conformation similar tomore » other cobalamin-binding domains that catalyse methyl-transfer reactions. EPR spectroscopy of CobDH confirms cobalamin binding and reveals the presence of a cob(III)alamin superoxide, indicating binding of oxygen to the fully oxidized cofactor. These data provide the first structural insights into the methyltransferase reactions that occur during O-demethylation by D. hafniense.« less
Wyhs, Nicolas; Walker, David; Giovinazzo, Hugh; Yegnasubramanian, Srinivasan; Nelson, William G
2014-08-01
Methylated DNA binding proteins such as Methyl-CpG Binding Domain Protein 2 (MBD2) can transduce DNA methylation alterations into a repressive signal by recruiting transcriptional co-repressor complexes. Interfering with MBD2 could lead to reactivation of tumor suppressor genes and therefore represents an attractive strategy for epigenetic therapy. We developed and compared fluorescence polarization (FP) and time-resolved fluorescence resonance energy transfer (TR-FRET)-based high-throughput screening (HTS) assays to identify small-molecule inhibitors of the interaction between the methyl binding domain of MBD2 (MBD2-MBD) and methylated DNA. Although both assays performed well in 96-well format, the TR-FRET assay (Z' factor = 0.58) emerged as a superior screening strategy compared with FP (Z' factor = 0.08) when evaluated in an HTS 384-well plate format. Using TR-FRET, we screened the Sigma LOPAC library for MBD2-MBD inhibitors and identified four compounds that also validated in a dose-response series. This included two known DNA intercalators (mitoxantrone and idarubicin) among two other inhibitory compounds (NF449 and aurintricarboxylic acid). All four compounds also inhibited the binding of SP-1, a transcription factor with a GC-rich binding sequence, to a methylated oligonucleotide, demonstrating that the activity was nonspecific. Our results provide proof of principle for using TR-FRET-based HTS to identify small-molecule inhibitors of MBD2 and other DNA-protein interactions. © 2014 Society for Laboratory Automation and Screening.
Cho, Hyun-Soo; Kang, Jeong Gu; Lee, Jae-Hye; Lee, Jeong-Ju; Jeon, Seong Kook; Ko, Jeong-Heon; Kim, Dae-Soo; Park, Kun-Hyang; Kim, Yong-Sam; Kim, Nam-Soon
2015-09-15
TALE-nuclease chimeras (TALENs) can bind to and cleave specific genomic loci and, are used to engineer gene knockouts and additions. Recently, instead of using the FokI domain, epigenetically active domains, such as TET1 and LSD1, have been combined with TAL effector domains to regulate targeted gene expression via DNA and histone demethylation. However, studies of histone methylation in the TALE system have not been performed. Therefore, in this study, we established a novel targeted regulation system with a TAL effector domain and a histone methylation domain. To construct a TALE-methylation fusion protein, we combined a TAL effector domain containing an E-Box region to act as a Snail binding site and the SET domain of EHMT 2 to allow for histone methylation. The constructed TALE-SET module (TSET) repressed the expression of E-cadherin via by increasing H3K9 dimethylation. Moreover, the cells that overexpressed TSET showed increased cell migration and invasion. This is the first phenotype-based study of targeted histone methylation by the TALE module, and this new system can be applied in new cancer therapies to reduce side effects.
Structural and Histone Binding Ability Characterizations of Human PWWP Domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hong; Zeng, Hong; Lam, Robert
2013-09-25
The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members,more » implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical {beta}-barrel core, an insertion motif between the second and third {beta}-strands and a C-terminal {alpha}-helix bundle. Both the canonical {beta}-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.« less
Koester-Eiserfunke, Nora; Fischle, Wolfgang
2011-01-01
MBT domain proteins are involved in developmental processes and tumorigenesis. In vitro binding and mutagenesis studies have shown that individual MBT domains within clustered MBT repeat regions bind mono- and dimethylated histone lysine residues with little to no sequence specificity but discriminate against the tri- and unmethylated states. However, the exact function of promiscuous histone methyl-lysine binding in the biology of MBT domain proteins has not been elucidated. Here, we show that the Caenorhabditis elegans four MBT domain protein LIN-61, in contrast to other MBT repeat factors, specifically interacts with histone H3 when methylated on lysine 9, displaying a strong preference for di- and trimethylated states (H3K9me2/3). Although the fourth MBT repeat is implicated in this interaction, H3K9me2/3 binding minimally requires MBT repeats two to four. Further, mutagenesis of residues conserved with other methyl-lysine binding MBT regions in the fourth MBT repeat does not abolish interaction, implicating a distinct binding mode. In vivo, H3K9me2/3 interaction of LIN-61 is required for C. elegans vulva development within the synMuvB pathway. Mutant LIN-61 proteins deficient in H3K9me2/3 binding fail to rescue lin-61 synMuvB function. Also, previously identified point mutant synMuvB alleles are deficient in H3K9me2/3 interaction although these target residues that are outside of the fourth MBT repeat. Interestingly, lin-61 genetically interacts with two other synMuvB genes, hpl-2, an HP1 homologous H3K9me2/3 binding factor, and met-2, a SETDB1 homologous H3K9 methyl transferase (H3K9MT), in determining C. elegans vulva development and fertility. Besides identifying the first sequence specific and di-/trimethylation binding MBT domain protein, our studies imply complex multi-domain regulation of ligand interaction of MBT domains. Our results also introduce a mechanistic link between LIN-61 function and biology, and they establish interplay of the H3K9me2/3 binding proteins, LIN-61 and HPL-2, as well as the H3K9MT MET-2 in distinct developmental pathways. PMID:21437264
Moorman, Veronica R.; Valentine, Kathleen G.; Bédard, Sabrina; Kasinath, Vignesh; Dogan, Jakob; Love, Fiona M.; Wand, A. Joshua
2014-01-01
Human cell division cycle protein 42 (Cdc42Hs) is a small, Rho-type GTPase involved in multiple cellular processes through its interactions with downstream effectors. The binding domain of one such effector, the actin cytoskeleton-regulating p21 activated kinase 3 (PAK3) is known as PBD46. Nitrogen-15 backbone and carbon-13 methyl NMR relaxation were measured to investigate the dynamical changes in activated GMPPCP•Cdc42Hs upon PBD46 binding. Changes in internal motion of the Cdc42Hs, as revealed by methyl axis order parameters, were observed not only near the Cdc42Hs–PBD46 interface but also in remote sites on the Cdc42Hs molecule. The binding-induced changes in side chain dynamics propagate along the long axis of Cdc42Hs away from the site of PBD46 binding with a sharp distance dependence. Overall, the binding of the PBD46 effector domain on the dynamics of methyl bearing side chains of Cdc42Hs results in a modest rigidification, which is estimated to correspond to an unfavorable change in conformational entropy of approximately −10 kcal mol−1 at 298 K. A cluster of methyl probes closest to the nucleotide-binding pocket of Cdc42Hs become more rigid upon binding of PBD46 and is proposed to slow the catalytic hydrolysis of the γ phosphate moiety. An additional cluster of methyl probes surrounding the guanine ring become more flexible on binding of PBD46, presumably facilitating nucleotide exchange mediated by a guanosine exchange factor. In addition, the Rho insert helix, which is located at a site remote from the PBD46 binding interface, shows a significant dynamic response to PBD46 binding. PMID:25109462
Anosova, Irina; Melnik, Svitlana; Tripsianes, Konstantinos; Kateb, Fatiha; Grummt, Ingrid; Sattler, Michael
2015-05-26
The chromatin remodeling complex NoRC, comprising the subunits SNF2h and TIP5/BAZ2A, mediates heterochromatin formation at major clusters of repetitive elements, including rRNA genes, centromeres and telomeres. Association with chromatin requires the interaction of the TAM (TIP5/ARBP/MBD) domain of TIP5 with noncoding RNA, which targets NoRC to specific genomic loci. Here, we show that the NMR structure of the TAM domain of TIP5 resembles the fold of the MBD domain, found in methyl-CpG binding proteins. However, the TAM domain exhibits an extended MBD fold with unique C-terminal extensions that constitute a novel surface for RNA binding. Mutation of critical amino acids within this surface abolishes RNA binding in vitro and in vivo. Our results explain the distinct binding specificities of TAM and MBD domains to RNA and methylated DNA, respectively, and reveal structural features for the interaction of NoRC with non-coding RNA. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Woo, Hye Ryun; Dittmer, Travis A.; Richards, Eric J.
2008-01-01
Methylcytosine-binding proteins decipher the epigenetic information encoded by DNA methylation and provide a link between DNA methylation, modification of chromatin structure, and gene silencing. VARIANT IN METHYLATION 1 (VIM1) encodes an SRA (SET- and RING-associated) domain methylcytosine-binding protein in Arabidopsis thaliana, and loss of VIM1 function causes centromere DNA hypomethylation and centromeric heterochromatin decondensation in interphase. In the Arabidopsis genome, there are five VIM genes that share very high sequence similarity and encode proteins containing a PHD domain, two RING domains, and an SRA domain. To gain further insight into the function and potential redundancy among the VIM proteins, we investigated strains combining different vim mutations and transgenic vim knock-down lines that down-regulate multiple VIM family genes. The vim1 vim3 double mutant and the transgenic vim knock-down lines showed decreased DNA methylation primarily at CpG sites in genic regions, as well as repeated sequences in heterochromatic regions. In addition, transcriptional silencing was released in these plants at most heterochromatin regions examined. Interestingly, the vim1 vim3 mutant and vim knock-down lines gained ectopic CpHpH methylation in the 5S rRNA genes against a background of CpG hypomethylation. The vim1 vim2 vim3 triple mutant displayed abnormal morphological phenotypes including late flowering, which is associated with DNA hypomethylation of the 5′ region of FWA and release of FWA gene silencing. Our findings demonstrate that VIM1, VIM2, and VIM3 have overlapping functions in maintenance of global CpG methylation and epigenetic transcriptional silencing. PMID:18704160
Methyl group reorientation under ligand binding probed by pseudocontact shifts.
Lescanne, Mathilde; Ahuja, Puneet; Blok, Anneloes; Timmer, Monika; Akerud, Tomas; Ubbink, Marcellus
2018-06-02
Liquid-state NMR spectroscopy is a powerful technique to elucidate binding properties of ligands on proteins. Ligands binding in hydrophobic pockets are often in close proximity to methyl groups and binding can lead to subtle displacements of methyl containing side chains to accommodate the ligand. To establish whether pseudocontact shifts can be used to characterize ligand binding and the effects on methyl groups, the N-terminal domain of HSP90 was tagged with caged lanthanoid NMR probe 5 at three positions and titrated with a ligand. Binding was monitored using the resonances of leucine and valine methyl groups. The pseudocontact shifts (PCS) caused by ytterbium result in enhanced dispersion of the methyl spectrum, allowing more resonances to be observed. The effects of tag attachment on the spectrum and ligand binding are small. Significant changes in PCS were observed upon ligand binding, indicating displacements of several methyl groups. By determining the cross-section of PCS iso-surfaces generated by two or three paramagnetic centers, the new position of a methyl group can be estimated, showing displacements in the range of 1-3 Å for methyl groups in the binding site. The information about such subtle but significant changes may be used to improve docking studies and can find application in fragment-based drug discovery.
Shoji, Tatsuma; Takaya, Akiko; Sato, Yoshiharu; Kimura, Satoshi; Suzuki, Tsutomu; Yamamoto, Tomoko
2015-01-01
Adenine at position 752 in a loop of helix 35 from positions 745 to 752 in domain II of 23S rRNA is involved in binding to the ribosome of telithromycin (TEL), a member of ketolides. Methylation of guanine at position 748 by the intrinsic methyltransferase RlmAII enhances binding of telithromycin (TEL) to A752 in Streptococcus pneumoniae. We have found that another intrinsic methylation of the adjacent uridine at position 747 enhances G748 methylation by RlmAII, rendering TEL susceptibility. U747 and another nucleotide, U1939, were methylated by the dual-specific methyltransferase RlmCD encoded by SP_1029 in S. pneumoniae. Inactivation of RlmCD reduced N1-methylated level of G748 by RlmAII in vivo, leading to TEL resistance when the nucleotide A2058, located in domain V of 23S rRNA, was dimethylated by the dimethyltransferase Erm(B). In vitro methylation of rRNA showed that RlmAII activity was significantly enhanced by RlmCD-mediated pre-methylation of 23S rRNA. These results suggest that RlmCD-mediated U747 methylation promotes efficient G748 methylation by RlmAII, thereby facilitating TEL binding to the ribosome. PMID:26365244
Jin, Seung-Gi; Jiang, Chun-Ling; Rauch, Tibor; Li, Hongwei; Pfeifer, Gerd P
2005-04-01
MBD2 and MBD3 are two proteins that contain methyl-CpG binding domains and have a transcriptional repression function. Both proteins are components of a large CpG-methylated DNA binding complex named MeCP1, which consists of the nucleosome remodeling and histone deacetylase complex Mi2-NuRD and MBD2. MBD3L2 (methyl-CpG-binding protein 3-like 2) is a protein with substantial homology to MBD2 and MBD3, but it lacks the methyl-CpG-binding domain. Unlike MBD3L1, which is specifically expressed in haploid male germ cells, MBD3L2 expression is more widespread. MBD3L2 interacts with MBD3 in vitro and in vivo, co-localizes with MBD3 but not MBD2, and does not localize to methyl-CpG-rich regions in the nucleus. In glutathione S-transferase pull-down assays, MBD3L2 is found associated with several known components of the Mi2-NuRD complex, including HDAC1, HDAC2, MTA1, MBD3, p66, RbAp46, and RbAp48. Gel shift experiments with nuclear extracts and a CpG-methylated DNA probe indicate that recombinant MBD3L2 can displace a form of the MeCP1 complex from methylated DNA. MBD3L2 acts as a transcriptional repressor when tethered to a GAL4-DNA binding domain. Repression by GAL4-MBD3L2 is relieved by MBD2 and vice versa, and repression by MBD2 from a methylated promoter is relieved by MBD3L2. The data are consistent with a role of MBD3L2 as a transcriptional modulator that can interchange with MBD2 as an MBD3-interacting component of the NuRD complex. Thus, MBD3L2 has the potential to recruit the MeCP1 complex away from methylated DNA and reactivate transcription.
Identification of functional domains in Arabidopsis thaliana mRNA decapping enzyme (AtDcp2)
Gunawardana, Dilantha; Cheng, Heung-Chin; Gayler, Kenwyn R.
2008-01-01
The Arabidopsis thaliana decapping enzyme (AtDcp2) was characterized by bioinformatics analysis and by biochemical studies of the enzyme and mutants produced by recombinant expression. Three functionally significant regions were detected: (i) a highly disordered C-terminal region with a putative PSD-95, Discs-large, ZO-1 (PDZ) domain-binding motif, (ii) a conserved Nudix box constituting the putative active site and (iii) a putative RNA binding domain consisting of the conserved Box B and a preceding loop region. Mutation of the putative PDZ domain-binding motif improved the stability of recombinant AtDcp2 and secondary mutants expressed in Escherichia coli. Such recombinant AtDcp2 specifically hydrolysed capped mRNA to produce 7-methyl GDP and decapped RNA. AtDcp2 activity was Mn2+- or Mg2+-dependent and was inhibited by the product 7-methyl GDP. Mutation of the conserved glutamate-154 and glutamate-158 in the Nudix box reduced AtDcp2 activity up to 400-fold and showed that AtDcp2 employs the catalytic mechanism conserved amongst Nudix hydrolases. Unlike many Nudix hydrolases, AtDcp2 is refractory to inhibition by fluoride ions. Decapping was dependent on binding to the mRNA moiety rather than to the 7-methyl diguanosine triphosphate cap of the substrate. Mutational analysis of the putative RNA-binding domain confirmed the functional significance of an 11-residue loop region and the conserved Box B. PMID:18025047
Shoji, Tatsuma; Takaya, Akiko; Sato, Yoshiharu; Kimura, Satoshi; Suzuki, Tsutomu; Yamamoto, Tomoko
2015-10-15
Adenine at position 752 in a loop of helix 35 from positions 745 to 752 in domain II of 23S rRNA is involved in binding to the ribosome of telithromycin (TEL), a member of ketolides. Methylation of guanine at position 748 by the intrinsic methyltransferase RlmA(II) enhances binding of telithromycin (TEL) to A752 in Streptococcus pneumoniae. We have found that another intrinsic methylation of the adjacent uridine at position 747 enhances G748 methylation by RlmA(II), rendering TEL susceptibility. U747 and another nucleotide, U1939, were methylated by the dual-specific methyltransferase RlmCD encoded by SP_1029 in S. pneumoniae. Inactivation of RlmCD reduced N1-methylated level of G748 by RlmA(II) in vivo, leading to TEL resistance when the nucleotide A2058, located in domain V of 23S rRNA, was dimethylated by the dimethyltransferase Erm(B). In vitro methylation of rRNA showed that RlmA(II) activity was significantly enhanced by RlmCD-mediated pre-methylation of 23S rRNA. These results suggest that RlmCD-mediated U747 methylation promotes efficient G748 methylation by RlmA(II), thereby facilitating TEL binding to the ribosome. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Expression regulation by a methyl-CpG binding domain in an E. coli based, cell-free TX-TL system
NASA Astrophysics Data System (ADS)
Schenkelberger, M.; Shanak, S.; Finkler, M.; Worst, E. G.; Noireaux, V.; Helms, V.; Ott, A.
2017-04-01
Cytosine methylation plays an important role in the epigenetic regulation of eukaryotic gene expression. The methyl-CpG binding domain (MBD) is common to a family of eukaryotic transcriptional regulators. How MBD, a stretch of about 80 amino acids, recognizes CpGs in a methylation dependent manner, and as a function of sequence, is only partly understood. Here we show, using an Escherichia coli cell-free expression system, that MBD from the human transcriptional regulator MeCP2 performs as a specific, methylation-dependent repressor in conjunction with the BDNF (brain-derived neurotrophic factor) promoter sequence. Mutation of either base flanking the central CpG pair changes the expression level of the target gene. However, the relative degree of repression as a function of MBD concentration remains unaltered. Molecular dynamics simulations that address the DNA B fiber ratio and the handedness reveal cooperative transitions in the promoter DNA upon MBD binding that correlate well with our experimental observations. We suggest that not only steric hindrance, but also conformational changes of the BDNF promoter as a result of MBD binding are required for MBD to act as a specific inhibitory element. Our work demonstrates that the prokaryotic transcription machinery can reproduce features of epigenetic mammalian transcriptional regulatory elements.
Assanasen, Chatchawin; Mineo, Chieko; Seetharam, Divya; Yuhanna, Ivan S.; Marcel, Yves L.; Connelly, Margery A.; Williams, David L.; de la Llera-Moya, Margarita; Shaul, Philip W.; Silver, David L.
2005-01-01
The binding of HDL to scavenger receptor–BI (SR-BI) mediates cholesterol movement. HDL also induces multiple cellular signals, which in endothelium occur through SR-BI and converge to activate eNOS. To determine the molecular basis of a signaling event induced by HDL, we examined the proximal mechanisms in HDL activation of eNOS. In endothelial cells, HDL and methyl-β-cyclodextrin caused comparable eNOS activation, whereas cholesterol-loaded methyl-β-cyclodextrin had no effect. Phosphatidylcholine-loaded HDL caused greater stimulation than native HDL, and blocking antibody against SR-BI, which prevents cholesterol efflux, prevented eNOS activation. In a reconstitution model in COS-M6 cells, wild-type SR-BI mediated eNOS activation by both HDL and small unilamellar vesicles (SUVs), whereas the SR-BI mutant AVI, which is incapable of efflux to SUV, transmitted signal by only HDL. In addition, eNOS activation by methyl-β-cyclodextrin was SR-BI dependent. Studies of mutant and chimeric class B scavenger receptors revealed that the C-terminal cytoplasmic PDZ-interacting domain and the C-terminal transmembrane domains of SR-BI are both necessary for HDL signaling. Furthermore, we demonstrated direct binding of cholesterol to the C-terminal transmembrane domain using a photoactivated derivative of cholesterol. Thus, HDL signaling requires cholesterol binding and efflux and C-terminal domains of SR-BI, and SR-BI serves as a cholesterol sensor on the plasma membrane. PMID:15841181
Targeting lysine specific demethylase 4A (KDM4A) tandem TUDOR domain - A fragment based approach.
Upadhyay, Anup K; Judge, Russell A; Li, Leiming; Pithawalla, Ron; Simanis, Justin; Bodelle, Pierre M; Marin, Violeta L; Henry, Rodger F; Petros, Andrew M; Sun, Chaohong
2018-06-01
The tandem TUDOR domains present in the non-catalytic C-terminal half of the KDM4A, 4B and 4C enzymes play important roles in regulating their chromatin localizations and substrate specificities. They achieve this regulatory role by binding to different tri-methylated lysine residues on histone H3 (H3-K4me3, H3-K23me3) and histone H4 (H4-K20me3) depending upon the specific chromatin environment. In this work, we have used a 2D-NMR based fragment screening approach to identify a novel fragment (1a), which binds to the KDM4A-TUDOR domain and shows modest competition with H3-K4me3 binding in biochemical as well as in vitro cell based assays. A co-crystal structure of KDM4A TUDOR domain in complex with 1a shows that the fragment binds stereo-specifically to the methyl lysine binding pocket forming a network of strong hydrogen bonds and hydrophobic interactions. We anticipate that the fragment 1a can be further developed into a novel allosteric inhibitor of the KDM4 family of enzymes through targeting their C-terminal tandem TUDOR domain. Copyright © 2018 Elsevier Ltd. All rights reserved.
Histone demethylase KDM5A is regulated by its reader domain through a positive-feedback mechanism
NASA Astrophysics Data System (ADS)
Torres, Idelisse Ortiz; Kuchenbecker, Kristopher M.; Nnadi, Chimno I.; Fletterick, Robert J.; Kelly, Mark J. S.; Fujimori, Danica Galonić
2015-02-01
The retinoblastoma binding protein KDM5A removes methyl marks from lysine 4 of histone H3 (H3K4). Misregulation of KDM5A contributes to the pathogenesis of lung and gastric cancers. In addition to its catalytic jumonji C domain, KDM5A contains three PHD reader domains, commonly recognized as chromatin recruitment modules. It is unknown whether any of these domains in KDM5A have functions beyond recruitment and whether they regulate the catalytic activity of the demethylase. Here using biochemical and nuclear magnetic resonance (NMR)-based structural studies, we show that the PHD1 preferentially recognizes unmethylated H3K4 histone tail, product of KDM5A-mediated demethylation of tri-methylated H3K4 (H3K4me3). Binding of unmodified H3 peptide to the PHD1 stimulates catalytic domain-mediated removal of methyl marks from H3K4me3 peptide and nucleosome substrates. This positive-feedback mechanism—enabled by the functional coupling between a reader and a catalytic domain in KDM5A—suggests a model for the spread of demethylation on chromatin.
Abi Habib, Walid; Azzi, Salah; Brioude, Frédéric; Steunou, Virginie; Thibaud, Nathalie; Das Neves, Cristina; Le Jule, Marilyne; Chantot-Bastaraud, Sandra; Keren, Boris; Lyonnet, Stanislas; Michot, Caroline; Rossi, Massimiliano; Pasquier, Laurent; Gicquel, Christine; Rossignol, Sylvie; Le Bouc, Yves; Netchine, Irène
2014-11-01
Isolated gain of methylation (GOM) at the IGF2/H19 imprinting control region 1 (ICR1) accounts for about 10% of patients with BWS. A subset of these patients have genetic defects within ICR1, but the frequency of these defects has not yet been established in a large cohort of BWS patients with isolated ICR1 GOM. Here, we carried out a genetic analysis in a large cohort of 57 BWS patients with isolated ICR1 GOM and analyzed the methylation status of the entire domain. We found a new point mutation in two unrelated families and a 21 bp deletion in another unrelated child, both of which were maternally inherited and affected the OCT4/SOX2 binding site in the A2 repeat of ICR1. Based on data from this and previous studies, we estimate that cis genetic defects account for about 20% of BWS patients with isolated ICR1 GOM. Methylation analysis at eight loci of the IGF2/H19 domain revealed that sites surrounding OCT4/SOX2 binding site mutations were fully methylated and methylation indexes declined as a function of distance from these sites. This was not the case in BWS patients without genetic defects identified. Thus, GOM does not spread uniformly across the IGF2/H19 domain, suggesting that OCT4/SOX2 protects against methylation at local sites. These findings add new insights to the mechanism of the regulation of the ICR1 domain. Our data show that mutations and deletions within ICR1 are relatively common. Systematic identification is therefore necessary to establish appropriate genetic counseling for BWS patients with isolated ICR1 GOM. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Walavalkar, Ninad M.; Cramer, Jason M.; Buchwald, William A.; Scarsdale, J. Neel; Williams, David C.
2014-01-01
Unlike other members of the methyl-cytosine binding domain (MBD) family, MBD4 serves as a potent DNA glycosylase in DNA mismatch repair specifically targeting mCpG/TpG mismatches arising from spontaneous deamination of methyl-cytosine. The protein contains an N-terminal MBD (MBD4MBD) and a C-terminal glycosylase domain (MBD4GD) separated by a long linker. This arrangement suggests that the MBD4MBD either directly augments enzymatic catalysis by the MBD4GD or targets the protein to regions enriched for mCpG/TpG mismatches. Here we present structural and dynamic studies of MBD4MBD bound to dsDNA. We show that MBD4MBD binds with a modest preference formCpG as compared to mismatch, unmethylated and hydroxymethylated DNA. We find that while MBD4MBD exhibits slow exchange between molecules of DNA (intermolecular exchange), the domain exhibits fast exchange between two sites in the same molecule of dsDNA (intramolecular exchange). Introducing a single-strand defect between binding sites does not greatly reduce the intramolecular exchange rate, consistent with a local hopping mechanism for moving along the DNA. These results support a model in which the MBD4MBD4 targets the intact protein to mCpG islands and promotes scanning by rapidly exchanging between successive mCpG sites which facilitates repair of nearby mCpG/TpG mismatches by the glycosylase domain. PMID:25183517
PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response
Liao, Hsin-Wei; Hsu, Jung-Mao; Xia, Weiya; Wang, Hung-Ling; Wang, Ying-Nai; Chang, Wei-Chao; Arold, Stefan T.; Chou, Chao-Kai; Tsou, Pei-Hsiang; Yamaguchi, Hirohito; Fang, Yueh-Fu; Lee, Hong-Jen; Lee, Heng-Huan; Tai, Shyh-Kuan; Yang, Mhu-Hwa; Morelli, Maria P.; Sen, Malabika; Ladbury, John E.; Chen, Chung-Hsuan; Grandis, Jennifer R.; Kopetz, Scott; Hung, Mien-Chie
2015-01-01
Posttranslational modifications to the intracellular domain of the EGFR are known to regulate EGFR functions; however, modifications to the extracellular domain and their effects remain relatively unexplored. Here, we determined that methylation at R198 and R200 of the EGFR extracellular domain by protein arginine methyltransferase 1 (PRMT1) enhances binding to EGF and subsequent receptor dimerization and signaling activation. In a mouse orthotopic colorectal cancer xenograft model, expression of a methylation-defective EGFR reduced tumor growth. Moreover, increased EGFR methylation sustained signaling activation and cell proliferation in the presence of the therapeutic EGFR monoclonal antibody cetuximab. In colorectal cancer patients, EGFR methylation level also correlated with a higher recurrence rate after cetuximab treatment and reduced overall survival. Together, these data indicate that R198/R200 methylation of the EGFR plays an important role in regulating EGFR functionality and resistance to cetuximab treatment. PMID:26571401
Hemi-methylated DNA opens a closed conformation of UHRF1 to facilitate its histone recognition
NASA Astrophysics Data System (ADS)
Fang, Jian; Cheng, Jingdong; Wang, Jiaolong; Zhang, Qiao; Liu, Mengjie; Gong, Rui; Wang, Ping; Zhang, Xiaodan; Feng, Yangyang; Lan, Wenxian; Gong, Zhou; Tang, Chun; Wong, Jiemin; Yang, Huirong; Cao, Chunyang; Xu, Yanhui
2016-04-01
UHRF1 is an important epigenetic regulator for maintenance DNA methylation. UHRF1 recognizes hemi-methylated DNA (hm-DNA) and trimethylation of histone H3K9 (H3K9me3), but the regulatory mechanism remains unknown. Here we show that UHRF1 adopts a closed conformation, in which a C-terminal region (Spacer) binds to the tandem Tudor domain (TTD) and inhibits H3K9me3 recognition, whereas the SET-and-RING-associated (SRA) domain binds to the plant homeodomain (PHD) and inhibits H3R2 recognition. Hm-DNA impairs the intramolecular interactions and promotes H3K9me3 recognition by TTD-PHD. The Spacer also facilitates UHRF1-DNMT1 interaction and enhances hm-DNA-binding affinity of the SRA. When TTD-PHD binds to H3K9me3, SRA-Spacer may exist in a dynamic equilibrium: either recognizes hm-DNA or recruits DNMT1 to chromatin. Our study reveals the mechanism for regulation of H3K9me3 and hm-DNA recognition by URHF1.
Harrison, Joseph S; Cornett, Evan M; Goldfarb, Dennis; DaRosa, Paul A; Li, Zimeng M; Yan, Feng; Dickson, Bradley M; Guo, Angela H; Cantu, Daniel V; Kaustov, Lilia; Brown, Peter J; Arrowsmith, Cheryl H; Erie, Dorothy A; Major, Michael B; Klevit, Rachel E; Krajewski, Krzysztof; Kuhlman, Brian; Strahl, Brian D; Rothbart, Scott B
2016-09-06
The epigenetic inheritance of DNA methylation requires UHRF1, a histone- and DNA-binding RING E3 ubiquitin ligase that recruits DNMT1 to sites of newly replicated DNA through ubiquitylation of histone H3. UHRF1 binds DNA with selectivity towards hemi-methylated CpGs (HeDNA); however, the contribution of HeDNA sensing to UHRF1 function remains elusive. Here, we reveal that the interaction of UHRF1 with HeDNA is required for DNA methylation but is dispensable for chromatin interaction, which is governed by reciprocal positive cooperativity between the UHRF1 histone- and DNA-binding domains. HeDNA recognition activates UHRF1 ubiquitylation towards multiple lysines on the H3 tail adjacent to the UHRF1 histone-binding site. Collectively, our studies are the first demonstrations of a DNA-protein interaction and an epigenetic modification directly regulating E3 ubiquitin ligase activity. They also define an orchestrated epigenetic control mechanism involving modifications both to histones and DNA that facilitate UHRF1 chromatin targeting, H3 ubiquitylation, and DNA methylation inheritance.
Wood, Kathleen H; Johnson, Brian S; Welsh, Sarah A; Lee, Jun Y; Cui, Yue; Krizman, Elizabeth; Brodkin, Edward S; Blendy, Julie A; Robinson, Michael B; Bartolomei, Marisa S; Zhou, Zhaolan
2016-04-01
DNA methylation is recognized by methyl-CpG-binding domain (MBD) proteins. Multiple MBDs are linked to neurodevelopmental disorders in humans and mice. However, the functions of MBD2 are poorly understood. We characterized Mbd2 knockout mice and determined spatiotemporal expression of MBDs and MBD2-NuRD (nucleosome remodeling deacetylase) interactions. We analyzed behavioral phenotypes, generated biotin-tagged MBD1 and MBD2 knockin mice, and performed biochemical studies of MBD2-NuRD. Most behavioral measures are minimally affected in Mbd2 knockout mice. In contrast to other MBDs, MBD2 shows distinct expression patterns. Unlike most MBDs, MBD2 is ubiquitously expressed in all tissues examined and appears dispensable for brain functions measured in this study. We provide novel genetic tools and reveal new directions to investigate MBD2 functions in vivo.
Parrilla-Doblas, Jara Teresa; Ariza, Rafael R.; Roldán-Arjona, Teresa
2017-01-01
ABSTRACT DNA methylation is a crucial epigenetic mark associated to gene silencing, and its targeted removal is a major goal of epigenetic editing. In animal cells, DNA demethylation involves iterative 5mC oxidation by TET enzymes followed by replication-dependent dilution and/or replication-independent DNA repair of its oxidized derivatives. In contrast, plants use specific DNA glycosylases that directly excise 5mC and initiate its substitution for unmethylated C in a base excision repair process. In this work, we have fused the catalytic domain of Arabidopsis ROS1 5mC DNA glycosylase (ROS1_CD) to the DNA binding domain of yeast GAL4 (GBD). We show that the resultant GBD-ROS1_CD fusion protein binds specifically a GBD-targeted DNA sequence in vitro. We also found that transient in vivo expression of GBD-ROS1_CD in human cells specifically reactivates transcription of a methylation-silenced reporter gene, and that such reactivation requires both ROS1_CD catalytic activity and GBD binding capacity. Finally, we show that reactivation induced by GBD-ROS1_CD is accompanied by decreased methylation levels at several CpG sites of the targeted promoter. All together, these results show that plant 5mC DNA glycosylases can be used for targeted active DNA demethylation in human cells. PMID:28277978
Hori, Yuichiro; Otomura, Norimichi; Nishida, Ayuko; Nishiura, Miyako; Umeno, Maho; Suetake, Isao; Kikuchi, Kazuya
2018-02-07
Hybrid probes consisting of synthetic molecules and proteins are powerful tools for detecting biological molecules and signals in living cells. To date, most targets of the hybrid probes have been limited to pH and small analytes. Although biomacromolecules are essential to the physiological function of cells, the hybrid-probe-based approach has been scarcely employed for live-cell detection of biomacromolecules. Here, we developed a hybrid probe with a chemical switch for live-cell imaging of methylated DNA, an important macromolecule in the repression of gene expression. Using a protein labeling technique, we created a hybrid probe containing a DNA-binding fluorogen and a methylated-DNA-binding domain. The hybrid probe enhanced fluorescence intensity upon binding to methylated DNA and successfully monitored methylated DNA during mitosis. The hybrid probe offers notable advantages absent from probes based on small molecules or fluorescent proteins and is useful for live-cell analyses of epigenetic phenomena and diseases related to DNA methylation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Debamita; Chatterjee, Abhishek; Begley, Tadhg P.
2010-11-15
THI6 is a bifunctional enzyme found in the thiamin biosynthetic pathway in eukaryotes. The N-terminal domain of THI6 catalyzes the ligation of the thiamin thiazole and pyrimidine moieties to form thiamin phosphate, and the C-terminal domain catalyzes the phosphorylation of 4-methyl-5-hydroxyethylthiazole in a salvage pathway. In prokaryotes, thiamin phosphate synthase and 4-methyl-5-hydroxyethylthiazole kinase are separate gene products. Here we report the first crystal structure of a eukaryotic THI6 along with several complexes that characterize the active sites responsible for the two chemical reactions. THI6 from Candida glabrata is a homohexamer in which the six protomers form a cage-like structure. Eachmore » protomer is composed of two domains, which are structurally homologous to their monofunctional bacterial counterparts. Two loop regions not found in the bacterial enzymes provide interactions between the two domains. The structures of different protein-ligand complexes define the thiazole and ATP binding sites of the 4-methyl-5-hydroxyethylthiazole kinase domain and the thiazole phosphate and 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate binding sites of the thiamin phosphate synthase domain. Our structural studies reveal that the active sites of the two domains are 40 {angstrom} apart and are not connected by an obvious channel. Biochemical studies show 4-methyl-5-hydroxyethylthiazole phosphate is a substrate for THI6; however, adenosine diphospho-5{beta}-ethyl-4-methylthiazole-2-carboxylic acid, the product of THI4, is not a substrate for THI6. This suggests that an unidentified enzyme is necessary to produce the substrate for THI6 from the THI4 product.« less
Cui, Wei; Yoneda, Ryoma; Ueda, Naomi; Kurokawa, Riki
2018-05-21
Translocated in liposarcoma (TLS) is an RNA-binding protein and a transcription-regulatory sensor of DNA damage. TLS binds promoter-associated noncoding RNA (pncRNA) and inhibits histone acetyltransferase (HAT) activity of CREB-binding protein (CBP)/E1A-binding protein P300 (p300) on the cyclin D1 (CCND1) gene. Although post-translational modifications of TLS, such as arginine methylation, are known to regulate TLS's nucleocytoplasmic shuttling and assembly in stress granules, its interactions with RNAs remain poorly characterized. Herein, using various biochemical assays, we confirmed the earlier observations that TLS is methylated by protein arginine methyltransferase 1 (PRMT1) in vitro. The arginine methylation of TLS disrupted binding to pncRNA and also prevented binding of TLS to and inhibition of CBP/p300. This result indicated that arginine methylation of TLS abrogates both binding to pncRNA and TLS-mediated inhibition of CBP/p300 HAT activities. We also report that an arginine residue within the Arg-Gly-Gly domain of TLS, Arg-476, serves as the major determinant for binding to pncRNA. Either methylation or mutation of Arg-476 of TLS significantly decreased pncRNA binding and thereby prevented a pncRNA-induced allosteric alteration in TLS that is required for its interaction with CBP/p300. Moreover, unlike wildtype TLS, an R476A TLS mutant did not inhibit CCND1 promoter activity in luciferase reporter assays. Taken together, we propose the hypothesis that arginine methylation of TLS regulates both TLS-nucleic acid and TLS-protein interactions and thereby participates in transcriptional regulation. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Delineation of Methyl-DNA Binding Protein Interactions in the Prostate Cancer Genome
2013-07-01
smaller portion was used for isolation of mRNAs - see below.) Chromatin immunoprecipitations were carried out using antibodies that recognize MeCP2...tissues were performed with antibodies directed against MeCP2, MBD1, MBD2 and MBD4 (methyl-CpG binding domain containing proteins) - “ChIP DNA” from...the matched tissues and these antibodies . - The analysis of NGS data was initiated. Differences in the MBD association profiles between matched
Tenayuca, John; Cousins, Kimberley; Yang, Shumei; Zhang, Lubo
2017-01-01
Cytosine methylation at CpG dinucleotides is a chief mechanism in epigenetic modification of gene expression patterns. Previous studies demonstrated that increased CpG methylation of Sp1 sites at -268 and -346 of protein kinase C ε promoter repressed the gene expression. The present study investigated the impact of CpG methylation on the Sp1 binding via molecular modeling and electrophoretic mobility shift assay. Each of the Sp1 sites contain two CpGs. Methylation of either CpG lowered the binding affinity of Sp1, whereas methylation of both CpGs produced a greater decrease in the binding affinity. Computation of van der Waals (VDW) energy of Sp1 in complex with the Sp1 sites demonstrated increased VDW values from one to two sites of CpG methylation. Molecular modeling indicated that single CpG methylation caused underwinding of the DNA fragment, with the phosphate groups at C1, C4 and C5 reoriented from their original positions. Methylation of both CpGs pinched the minor groove and increased the helical twist concomitant with a shallow, hydrophobic major groove. Additionally, double methylation eliminated hydrogen bonds on recognition helix residues located at positions -1 and 1, which were essential for interaction with O6/N7 of G-bases. Bonding from linker residues Arg565, Lys595 and Lys596 were also reduced. Methylation of single or both CpGs significantly affected hydrogen bonding from all three Sp1 DNA binding domains, demonstrating that the consequences of cytosine modification extend beyond the neighboring nucleotides. The results indicate that cytosine methylation causes subtle structural alterations in Sp1 binding sites consequently resulting in inhibition of side chain interactions critical for specific base recognition and reduction of the binding affinity of Sp1. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
YY1 as a controlling factor for the Peg3 and Gnas imprinted domains
Kim, Jeong Do; Hinz, Angela K.; Choo, Jung Ha; Stubbs, Lisa; Kim, Joomyeong
2007-01-01
Imprinting Control Regions (ICRs) often harbor tandem arrays of transcription factor binding sites, as demonstrated by the identification of multiple YY1 binding sites within the ICRs of Peg3, Nespas, and Xist/Tsix domains. In the current study, we have sought to characterize possible roles of YY1 in transcriptional control and epigenetic modification of these imprinted domains. RNA interference-based knockdown experiments in Neuro2A cells resulted in overall transcriptional up-regulation of most of the imprinted genes within the Peg3 domain and also, concomitantly, caused significant loss in the DNA methylation of Peg3-DMR (Differentially Methylated Regions). A similar overall and coordinated expression change was also observed for the imprinted genes of the Gnas domain: up-regulation of Nespas and down-regulation of Nesp and Gnasxl. YY1 knockdown also resulted in changes in the expression levels of Xist and Snrpn. These results support the idea that YY1 plays a major role, as a trans factor, for the control of these imprinted domains. PMID:17067777
Zhang, Yi; Ng, Huck-Hui; Erdjument-Bromage, Hediye; Tempst, Paul; Bird, Adrian; Reinberg, Danny
1999-01-01
ATP-dependent nucleosome remodeling and core histone acetylation and deacetylation represent mechanisms to alter nucleosome structure. NuRD is a multisubunit complex containing nucleosome remodeling and histone deacetylase activities. The histone deacetylases HDAC1 and HDAC2 and the histone binding proteins RbAp48 and RbAp46 form a core complex shared between NuRD and Sin3-histone deacetylase complexes. The histone deacetylase activity of the core complex is severely compromised. A novel polypeptide highly related to the metastasis-associated protein 1, MTA2, and the methyl-CpG-binding domain-containing protein, MBD3, were found to be subunits of the NuRD complex. MTA2 modulates the enzymatic activity of the histone deacetylase core complex. MBD3 mediates the association of MTA2 with the core histone deacetylase complex. MBD3 does not directly bind methylated DNA but is highly related to MBD2, a polypeptide that binds to methylated DNA and has been reported to possess demethylase activity. MBD2 interacts with the NuRD complex and directs the complex to methylated DNA. NuRD may provide a means of gene silencing by DNA methylation. PMID:10444591
The Replication Focus Targeting Sequence (RFTS) Domain Is a DNA-competitive Inhibitor of Dnmt1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syeda, Farisa; Fagan, Rebecca L.; Wean, Matthew
Dnmt1 (DNA methyltransferase 1) is the principal enzyme responsible for maintenance of cytosine methylation at CpG dinucleotides in the mammalian genome. The N-terminal replication focus targeting sequence (RFTS) domain of Dnmt1 has been implicated in subcellular localization, protein association, and catalytic function. However, progress in understanding its function has been limited by the lack of assays for and a structure of this domain. Here, we show that the naked DNA- and polynucleosome-binding activities of Dnmt1 are inhibited by the RFTS domain, which functions by virtue of binding the catalytic domain to the exclusion of DNA. Kinetic analysis with a fluorogenicmore » DNA substrate established the RFTS domain as a 600-fold inhibitor of Dnmt1 enzymatic activity. The crystal structure of the RFTS domain reveals a novel fold and supports a mechanism in which an RFTS-targeted Dnmt1-binding protein, such as Uhrf1, may activate Dnmt1 for DNA binding.« less
NASA Astrophysics Data System (ADS)
Csizmok, Veronika; Orlicky, Stephen; Cheng, Jing; Song, Jianhui; Bah, Alaji; Delgoshaie, Neda; Lin, Hong; Mittag, Tanja; Sicheri, Frank; Chan, Hue Sun; Tyers, Mike; Forman-Kay, Julie D.
2017-01-01
The ubiquitin ligase SCFCdc4 mediates phosphorylation-dependent elimination of numerous substrates by binding one or more Cdc4 phosphodegrons (CPDs). Methyl-based NMR analysis of the Cdc4 WD40 domain demonstrates that Cyclin E, Sic1 and Ash1 degrons have variable effects on the primary Cdc4WD40 binding pocket. Unexpectedly, a Sic1-derived multi-CPD substrate (pSic1) perturbs methyls around a previously documented allosteric binding site for the chemical inhibitor SCF-I2. NMR cross-saturation experiments confirm direct contact between pSic1 and the allosteric pocket. Phosphopeptide affinity measurements reveal negative allosteric communication between the primary CPD and allosteric pockets. Mathematical modelling indicates that the allosteric pocket may enhance ultrasensitivity by tethering pSic1 to Cdc4. These results suggest negative allosteric interaction between two distinct binding pockets on the Cdc4WD40 domain may facilitate dynamic exchange of multiple CPD sites to confer ultrasensitive dependence on substrate phosphorylation.
Li, B; Luo, H; Weng, Q; Wang, S; Pan, Z; Xie, Z; Wu, W; Liu, H; Li, Q
2016-12-01
FK506-binding protein 6 (FKBP6) is essential for meiosis during mammalian spermatogenesis. However, the molecular regulation of FKBP6 during spermatogenesis remains unclear. In the present study, we performed molecular characterization of the meiosis-specific gene FKBP6 in yak testes. Yak FKBP6 encodes a polypeptide of 295 amino acid residues with an FK506-binding domain (FKBP_C) and three tetratricopeptide repeat domains. The methylation level of the FKBP6 promoter in testes was significantly higher in cattle-yak with male sterility than in yak, and the FKBP6 promoter was methylated in liver tissues in which FKBP6 is not expressed. FKBP6 promoter activity was significantly decreased after treatment with the M.SssI methyltransferase in vitro. Furthermore, the FKBP6 gene was remarkably activated in bovine mammary epithelial cells treated with the DNA methyltransferase inhibitor 5-aza-2-deoxycytidine. Taken together, our results demonstrate for the first time that the FKBP6 promoter is differentially methylated in testes; together with the functional promoter analysis, this suggests that methylation of this promoter may contribute to cattle-yak male infertility. © 2016 Blackwell Verlag GmbH.
2015-01-01
The protein MeCP2 mediates epigenetic regulation by binding methyl-CpG (mCpG) sites on chromatin. MeCP2 consists of six domains of which one, the methyl binding domain (MBD), binds mCpG sites in duplex DNA. We show that solution conditions with physiological or greater salt concentrations or the presence of nonspecific competitor DNA is necessary for the MBD to discriminate mCpG from CpG with high specificity. The specificity for mCpG over CpG is >100-fold under these solution conditions. In contrast, the MBD does not discriminate hydroxymethyl-CpG from CpG. The MBD is unusual among site-specific DNA binding proteins in that (i) specificity is not conferred by the enhanced affinity for the specific site but rather by suppression of its affinity for generic DNA, (ii) its specific binding to mCpG is highly electrostatic, and (iii) it takes up as well as displaces monovalent cations upon DNA binding. The MBD displays an unusually high affinity for single-stranded DNA independent of modification or sequence. In addition, the MBD forms a discrete dimer on DNA via a noncooperative binding pathway. Because the affinity of the second monomer is 1 order of magnitude greater than that of nonspecific binding, the MBD dimer is a unique molecular complex. The significance of these results in the context of neuronal function and development and MeCP2-related developmental disorders such as Rett syndrome is discussed. PMID:24828757
Paliwal, Anupam; Temkin, Alexis M; Kerkel, Kristi; Yale, Alexander; Yotova, Iveta; Drost, Natalia; Lax, Simon; Nhan-Chang, Chia-Ling; Powell, Charles; Borczuk, Alain; Aviv, Abraham; Wapner, Ronald; Chen, Xiaowei; Nagy, Peter L; Schork, Nicholas; Do, Catherine; Torkamani, Ali; Tycko, Benjamin
2013-08-01
Allele-specific DNA methylation (ASM) is well studied in imprinted domains, but this type of epigenetic asymmetry is actually found more commonly at non-imprinted loci, where the ASM is dictated not by parent-of-origin but instead by the local haplotype. We identified loci with strong ASM in human tissues from methylation-sensitive SNP array data. Two index regions (bisulfite PCR amplicons), one between the C3orf27 and RPN1 genes in chromosome band 3q21 and the other near the VTRNA2-1 vault RNA in band 5q31, proved to be new examples of imprinted DMRs (maternal alleles methylated) while a third, between STEAP3 and C2orf76 in chromosome band 2q14, showed non-imprinted haplotype-dependent ASM. Using long-read bisulfite sequencing (bis-seq) in 8 human tissues we found that in all 3 domains the ASM is restricted to single differentially methylated regions (DMRs), each less than 2kb. The ASM in the C3orf27-RPN1 intergenic region was placenta-specific and associated with allele-specific expression of a long non-coding RNA. Strikingly, the discrete DMRs in all 3 regions overlap with binding sites for the insulator protein CTCF, which we found selectively bound to the unmethylated allele of the STEAP3-C2orf76 DMR. Methylation mapping in two additional genes with non-imprinted haplotype-dependent ASM, ELK3 and CYP2A7, showed that the CYP2A7 DMR also overlaps a CTCF site. Thus, two features of imprinted domains, highly localized DMRs and allele-specific insulator occupancy by CTCF, can also be found in chromosomal domains with non-imprinted ASM. Arguing for biological importance, our analysis of published whole genome bis-seq data from hES cells revealed multiple genome-wide association study (GWAS) peaks near CTCF binding sites with ASM.
Kerkel, Kristi; Yale, Alexander; Yotova, Iveta; Drost, Natalia; Lax, Simon; Nhan-Chang, Chia-Ling; Powell, Charles; Borczuk, Alain; Aviv, Abraham; Wapner, Ronald; Chen, Xiaowei; Nagy, Peter L.; Schork, Nicholas; Do, Catherine; Torkamani, Ali; Tycko, Benjamin
2013-01-01
Allele-specific DNA methylation (ASM) is well studied in imprinted domains, but this type of epigenetic asymmetry is actually found more commonly at non-imprinted loci, where the ASM is dictated not by parent-of-origin but instead by the local haplotype. We identified loci with strong ASM in human tissues from methylation-sensitive SNP array data. Two index regions (bisulfite PCR amplicons), one between the C3orf27 and RPN1 genes in chromosome band 3q21 and the other near the VTRNA2-1 vault RNA in band 5q31, proved to be new examples of imprinted DMRs (maternal alleles methylated) while a third, between STEAP3 and C2orf76 in chromosome band 2q14, showed non-imprinted haplotype-dependent ASM. Using long-read bisulfite sequencing (bis-seq) in 8 human tissues we found that in all 3 domains the ASM is restricted to single differentially methylated regions (DMRs), each less than 2kb. The ASM in the C3orf27-RPN1 intergenic region was placenta-specific and associated with allele-specific expression of a long non-coding RNA. Strikingly, the discrete DMRs in all 3 regions overlap with binding sites for the insulator protein CTCF, which we found selectively bound to the unmethylated allele of the STEAP3-C2orf76 DMR. Methylation mapping in two additional genes with non-imprinted haplotype-dependent ASM, ELK3 and CYP2A7, showed that the CYP2A7 DMR also overlaps a CTCF site. Thus, two features of imprinted domains, highly localized DMRs and allele-specific insulator occupancy by CTCF, can also be found in chromosomal domains with non-imprinted ASM. Arguing for biological importance, our analysis of published whole genome bis-seq data from hES cells revealed multiple genome-wide association study (GWAS) peaks near CTCF binding sites with ASM. PMID:24009515
Selective DNA demethylation by fusion of TDG with a sequence-specific DNA-binding domain
Gregory, David J.; Mikhaylova, Lyudmila; Fedulov, Alexey V.
2012-01-01
Our ability to selectively manipulate gene expression by epigenetic means is limited, as there is no approach for targeted reactivation of epigenetically silenced genes, in contrast to what is available for selective gene silencing. We aimed to develop a tool for selective transcriptional activation by DNA demethylation. Here we present evidence that direct targeting of thymine-DNA-glycosylase (TDG) to specific sequences in the DNA can result in local DNA demethylation at potential regulatory sequences and lead to enhanced gene induction. When TDG was fused to a well-characterized DNA-binding domain [the Rel-homology domain (RHD) of NFκB], we observed decreased DNA methylation and increased transcriptional response to unrelated stimulus of inducible nitric oxide synthase (NOS2). The effect was not seen for control genes lacking either RHD-binding sites or high levels of methylation, nor in control mock-transduced cells. Specific reactivation of epigenetically silenced genes may thus be achievable by this approach, which provides a broadly useful strategy to further our exploration of biological mechanisms and to improve control over the epigenome. PMID:22419066
Recent advances in MeCP2 structure and function1
Hite, Kristopher C.; Adams, Valerie H.; Hansen, Jeffrey C.
2010-01-01
Mutations in methyl DNA binding protein 2 (MeCP2) cause the neurodevelopmental disorder Rett syndrome (RTT). The mechanism(s) by which the native MeCP2 protein operates in the cell are not well understood. Historically, MeCP2 has been characterized as a proximal gene silencer with 2 functional domains: a methyl DNA binding domain and a transcription repression domain. However, several lines of new data indicate that MeCP2 structure and function relationships are more complex. In this review, we first discuss recent studies that have advanced understanding of the basic structural biochemistry of MeCP2. This is followed by an analysis of cell-based experiments suggesting MeCP2 is a regulator, rather than a strict silencer, of transcription. The new data establish MeCP2 as a multifunctional nuclear protein, with potentially important roles in chromatin architecture, regulation of RNA splicing, and active transcription. We conclude by discussing clinical correlations between domain-specific mutations and RTT pathology to stress that all structural domains of MeCP2 are required to properly mediate cellular function of the intact protein. PMID:19234536
Structural plasticity of the TDRD3 Tudor domain probed by a fragment screening hit.
Liu, Jiuyang; Zhang, Shuya; Liu, Mingqing; Liu, Yaqian; Nshogoza, Gilbert; Gao, Jia; Ma, Rongsheng; Yang, Yang; Wu, Jihui; Zhang, Jiahai; Li, Fudong; Ruan, Ke
2018-04-12
As a reader of di-methylated arginine on various proteins, such as histone, RNA polymerase II, PIWI and Fragile X mental retardation protein, the Tudor domain of Tudor domain-containing protein 3 (TDRD3) mediates transcriptional activation in nucleus and formation of stress granules in the cytoplasm. Despite the TDRD3 implication in cancer cell proliferation and invasion, warheads to block the di-methylated arginine recognition pocket of the TDRD3 Tudor domain have not yet been uncovered. Here we identified 14 small molecule hits against the TDRD3 Tudor domain through NMR fragment-based screening. These hits were further cross-validated by using competitive fluorescence polarization and isothermal titration calorimetry experiments. The crystal structure of the TDRD3 Tudor domain in complex with hit 1 reveals a distinct binding mode from the nature substrate. Hit 1 protrudes into the aromatic cage of the TDRD3 Tudor domain, where the aromatic residues are tilted to accommodate a sandwich-like π-π interaction. The side chain of the conserved residue N596 swings away 3.1 Å to form a direct hydrogen bond with hit 1. Moreover, this compound shows a decreased affinity against the single Tudor domain of survival motor neuron protein, but no detectable binding to neither the tandem Tudor domain of TP53-binding protein 1 nor the extended Tudor domain of staphylococcal nuclease domain-containing protein 1. Our work depicts the structural plasticity of the TDRD3 Tudor domain and paves the way for the subsequent structure-guided discovery of selective inhibitors targeting Tudor domains. Structural data are available in the PDB under the accession number 5YJ8. © 2018 Federation of European Biochemical Societies.
Zhang, Cui-Jun; Hou, Xiao-Mei; Tan, Lian-Mei; Shao, Chang-Rong; Huang, Huan-Wei; Li, Yong-Qiang; Li, Lin; Cai, Tao; Chen, She; He, Xin-Jian
2016-01-01
Transposable elements and other repetitive DNA sequences are usually subject to DNA methylation and transcriptional silencing. However, anti-silencing mechanisms that promote transcription in these regions are not well understood. Here, we describe an anti-silencing factor, Bromodomain and ATPase domain-containing protein 1 (BRAT1), which we identified by a genetic screen in Arabidopsis thaliana. BRAT1 interacts with an ATPase domain-containing protein, BRP1 (BRAT1 Partner 1), and both prevent transcriptional silencing at methylated genomic regions. Although BRAT1 mediates DNA demethylation at a small set of loci targeted by the 5-methylcytosine DNA glycosylase ROS1, the involvement of BRAT1 in anti-silencing is largely independent of DNA demethylation. We also demonstrate that the bromodomain of BRAT1 binds to acetylated histone, which may facilitate the prevention of transcriptional silencing. Thus, BRAT1 represents a potential link between histone acetylation and transcriptional anti-silencing at methylated genomic regions, which may be conserved in eukaryotes. PMID:27273316
Noh, Kyung-Min; Wang, Haibo; Kim, Hyunjae R; Wenderski, Wendy; Fang, Fang; Li, Charles H; Dewell, Scott; Hughes, Stephen H; Melnick, Ari M; Patel, Dinshaw J; Li, Haitao; Allis, C David
2015-07-02
Histone modification and DNA methylation are associated with varying epigenetic "landscapes," but detailed mechanistic and functional links between the two remain unclear. Using the ATRX-DNMT3-DNMT3L (ADD) domain of the DNA methyltransferase Dnmt3a as a paradigm, we apply protein engineering to dissect the molecular interactions underlying the recruitment of this enzyme to specific regions of chromatin in mouse embryonic stem cells (ESCs). By rendering the ADD domain insensitive to histone modification, specifically H3K4 methylation or H3T3 phosphorylation, we demonstrate the consequence of dysregulated Dnmt3a binding and activity. Targeting of a Dnmt3a mutant to H3K4me3 promoters decreases gene expression in a subset of developmental genes and alters ESC differentiation, whereas aberrant binding of another mutant to H3T3ph during mitosis promotes chromosome instability. Our studies support the general view that histone modification "reading" and DNA methylation are closely coupled in mammalian cells, and suggest an avenue for the functional assessment of chromatin-associated proteins. Copyright © 2015 Elsevier Inc. All rights reserved.
DNA methylation in amphioxus: from ancestral functions to new roles in vertebrates.
Albalat, Ricard; Martí-Solans, Josep; Cañestro, Cristian
2012-03-01
In vertebrates, DNA methylation is an epigenetic mechanism that modulates gene transcription, and plays crucial roles during development, cell fate maintenance, germ cell pluripotency and inheritable genome imprinting. DNA methylation might also play a role as a genome defense mechanism against the mutational activity derived from transposon mobility. In contrast to the heavily methylated genomes in vertebrates, most genomes in invertebrates are poorly or just moderately methylated, and the function of DNA methylation remains unclear. Here, we review the DNA methylation system in the cephalochordate amphioxus, which belongs to the most basally divergent group of our own phylum, the chordates. First, surveys of the amphioxus genome database reveal the presence of the DNA methylation machinery, DNA methyltransferases and methyl-CpG-binding domain proteins. Second, comparative genomics and analyses of conserved synteny between amphioxus and vertebrates provide robust evidence that the DNA methylation machinery of amphioxus represents the ancestral toolkit of chordates, and that its expansion in vertebrates was originated by the two rounds of whole-genome duplication that occurred in stem vertebrates. Third, in silico analysis of CpGo/e ratios throughout the amphioxus genome suggests a bimodal distribution of DNA methylation, consistent with a mosaic pattern comprising domains of methylated DNA interspersed with domains of unmethylated DNA, similar to the situation described in ascidians, but radically different to the globally methylated vertebrate genomes. Finally, we discuss potential roles of the DNA methylation system in amphioxus in the context of chordate genome evolution and the origin of vertebrates.
Live-Cell Imaging of DNA Methylation Based on Synthetic-Molecule/Protein Hybrid Probe.
Kumar, Naresh; Hori, Yuichiro; Kikuchi, Kazuya
2018-06-04
The epigenetic modification of DNA involves the conversion of cytosine to 5-methylcytosine, also known as DNA methylation. DNA methylation is important in modulating gene expression and thus, regulating genome and cellular functions. Recent studies have shown that aberrations in DNA methylation are associated with various epigenetic disorders or diseases including cancer. This stimulates great interest in the development of methods that can detect and visualize DNA methylation. For instance, fluorescent proteins (FPs) in conjugation with methyl-CpG-binding domain (MBD) have been employed for live-cell imaging of DNA methylation. However, the FP-based approach showed fluorescence signals for both the DNA-bound and -unbound states and thus differentiation between these states is difficult. Synthetic-molecule/protein hybrid probes can provide an alternative to overcome this restriction. In this article, we discuss the synthetic-molecule/protein hybrid probe that we developed recently for live-cell imaging of DNA methylation, which exhibited fluorescence enhancement only after binding to methylated DNA. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Jinhee; Yoshida, Wataru; Abe, Koichi; Nakabayashi, Kazuhiko; Wakeda, Hironobu; Hata, Kenichiro; Marquette, Christophe A; Blum, Loïc J; Sode, Koji; Ikebukuro, Kazunori
2017-07-15
DNA methylation level at a certain gene region is considered as a new type of biomarker for diagnosis and its miniaturized and rapid detection system is required for diagnosis. Here we have developed a simple electrochemical detection system for DNA methylation using methyl CpG-binding domain (MBD) and a glucose dehydrogenase (GDH)-fused zinc finger protein. This analytical system consists of three steps: (1) methylated DNA collection by MBD, (2) PCR amplification of a target genomic region among collected methylated DNA, and (3) electrochemical detection of the PCR products using a GDH-fused zinc finger protein. With this system, we have successfully measured the methylation levels at the promoter region of the androgen receptor gene in 10 6 copies of genomic DNA extracted from PC3 and TSU-PR1 cancer cell lines. Since no sequence analysis or enzymatic digestion is required for this detection system, DNA methylation levels can be measured within 3h with a simple procedure. Copyright © 2016 Elsevier B.V. All rights reserved.
Das, Kalyan; Acton, Thomas; Chiang, Yiwen; Shih, Lydia; Arnold, Eddy; Montelione, Gaetano T.
2004-01-01
The RlmA class of enzymes (RlmAI and RlmAII) catalyzes N1-methylation of a guanine base (G745 in Gram-negative and G748 in Gram-positive bacteria) of hairpin 35 of 23S rRNA. We have determined the crystal structure of Escherichia coli RlmAI at 2.8-Å resolution, providing 3D structure information for the RlmA class of RNA methyltransferases. The dimeric protein structure exhibits features that provide new insights into its molecular function. Each RlmAI molecule has a Zn-binding domain, responsible for specific recognition and binding of its rRNA substrate, and a methyltransferase domain. The asymmetric RlmAI dimer observed in the crystal structure has a well defined W-shaped RNA-binding cleft. Two S-adenosyl-l-methionine substrate molecules are located at the two valleys of the W-shaped RNA-binding cleft. The unique shape of the RNA-binding cleft, different from that of known RNA-binding proteins, is highly specific and structurally complements the 3D structure of hairpin 35 of bacterial 23S rRNA. Apart from the hairpin 35, parts of hairpins 33 and 34 also interact with the RlmAI dimer. PMID:14999102
Cook, Peter C; Owen, Heather; Deaton, Aimée M; Borger, Jessica G; Brown, Sheila L; Clouaire, Thomas; Jones, Gareth-Rhys; Jones, Lucy H; Lundie, Rachel J; Marley, Angela K; Morrison, Vicky L; Phythian-Adams, Alexander T; Wachter, Elisabeth; Webb, Lauren M; Sutherland, Tara E; Thomas, Graham D; Grainger, John R; Selfridge, Jim; McKenzie, Andrew N J; Allen, Judith E; Fagerholm, Susanna C; Maizels, Rick M; Ivens, Alasdair C; Bird, Adrian; MacDonald, Andrew S
2015-04-24
Dendritic cells (DCs) direct CD4(+) T-cell differentiation into diverse helper (Th) subsets that are required for protection against varied infections. However, the mechanisms used by DCs to promote Th2 responses, which are important both for immunity to helminth infection and in allergic disease, are currently poorly understood. We demonstrate a key role for the protein methyl-CpG-binding domain-2 (Mbd2), which links DNA methylation to repressive chromatin structure, in regulating expression of a range of genes that are associated with optimal DC activation and function. In the absence of Mbd2, DCs display reduced phenotypic activation and a markedly impaired capacity to initiate Th2 immunity against helminths or allergens. These data identify an epigenetic mechanism that is central to the activation of CD4(+) T-cell responses by DCs, particularly in Th2 settings, and reveal methyl-CpG-binding proteins and the genes under their control as possible therapeutic targets for type-2 inflammation.
DNA methylation directs genomic localization of Mbd2 and Mbd3 in embryonic stem cells
Hainer, Sarah J; McCannell, Kurtis N; Yu, Jun; Ee, Ly-Sha; Zhu, Lihua J; Rando, Oliver J; Fazzio, Thomas G
2016-01-01
Cytosine methylation is an epigenetic and regulatory mark that functions in part through recruitment of chromatin remodeling complexes containing methyl-CpG binding domain (MBD) proteins. Two MBD proteins, Mbd2 and Mbd3, were previously shown to bind methylated or hydroxymethylated DNA, respectively; however, both of these findings have been disputed. Here, we investigated this controversy using experimental approaches and re-analysis of published data and find no evidence for methylation-independent functions of Mbd2 or Mbd3. We show that chromatin localization of Mbd2 and Mbd3 is highly overlapping and, unexpectedly, we find Mbd2 and Mbd3 are interdependent for chromatin association. Further investigation reveals that both proteins are required for normal levels of cytosine methylation and hydroxymethylation in murine embryonic stem cells. Furthermore, Mbd2 and Mbd3 regulate overlapping sets of genes that are also regulated by DNA methylation/hydroxymethylation factors. These findings reveal an interdependent regulatory mechanism mediated by the DNA methylation machinery and its readers. DOI: http://dx.doi.org/10.7554/eLife.21964.001 PMID:27849519
Localization of SERBP1 in stress granules and nucleoli.
Lee, Yu-Jen; Wei, Hung-Ming; Chen, Ling-Yun; Li, Chuan
2014-01-01
SERPINE1 mRNA-binding protein 1 (SERBP1) is an arginine-methylated RNA-binding protein whose modification affects protein interaction and intracellular localization. In the present study, we show that, under normal growth conditions without stress, SERBP1 interacts with arginine-methylated and stress granule-associated proteins such as heterogeneous nuclear ribonucleoprotein A1, fragile X mental retardation protein and fragile X mental retardation syndrome-related protein 1 in an RNA-dependent manner. We also show that, after arsenite treatment, a proportion of full-length SERBP1 protein co-localizes with the typical stress granule marker T-cell intracellular antigen-1 in the cytoplasmic stress granules. Truncated SERBP1 with an N-terminal, central RG or C-terminal deletion, or single-domain segments comprising the N-terminal, central or C-terminal region, were recruited to stress granules upon arsenite treatment but with reduced efficiency. In addition, upon arsenite treatment, the localization of SERBP1 changed from a diffuse cytoplasmic localization to nuclear-dominant (concentrated in the nucleolus) A similar distribution was observed when cells were treated with the methylation inhibitor adenosine periodate, and was also detected for N- or C-terminal domain deletions and all three single-domain fragments even without stress induction. We further demonstrate that adenosine periodate treatment delays the association/dissociation of SERBP1 with stress granules. Hypomethylation retains SERBP1 in the nucleus/nucleolus regardless of arsenite treatment. Our study indicates that arginine methylation is correlated with recruitment of SERBP to stress granules and nucleoli and its retention therein. To our knowledge, this is the first report of an RNA-binding protein that is shifted simultaneously to cytoplasmic stress granules and nucleoli, two ribonucleoprotein-enriched subcellular compartments, upon stress. © 2013 FEBS.
Sagan, S; Lequin, O; Frank, F; Convert, O; Ayoub, M; Lavielle, S; Chassaing, G
2001-05-01
Two binding sites NK-1M (major, more abundant) and NK-1m (minor) are associated with the neurokinin-1 receptor. For the first time with a bioactive peptide, the Calpha methylation constraint, shown to be a helix stabiliser in model peptides, was systematically used to probe the molecular requirements of NK-1M and NK-1m binding sites and the previously postulated bioactive helical conformation of substance P (SP). Seven Calpha methylated analogues of the undecapeptide SP (from position 5-11) have been assayed for their affinities and their potencies to stimulate second messenger production. The consequences of Calpha methylation on the structure of SP have been analysed by circular dichroism and nuclear magnetic resonance combined with restrained molecular dynamics. The decreased potencies of six out of these seven Calpha methylated SP analogues do not allow the identification of any clear-cut differences in the structural requirements between the two binding sites. Strikingly, the most active analogue, [alphaMeMet5]SP, leads to variable subnanomolar affinity and potency when interacting with the NK-1m binding site. The conformational analyses show that the structural consequences associated with Calpha methylation of SP are sequence dependent. Moreover, a single Calpha methylation is not sufficient by itself to drastically stabilize a helical structure even pre-existing in solution, except when Gly9 is substituted by an alpha-aminoisobutyric acid. Furthermore, Calpha methylation of residues 5 and 6 of SP in the middle of the postulated helix does not stabilize, but decreases (to different extents) the stability of the helical structure previously observed in the 4-8 domain of other potent SP analogues.
Arginine methylation-dependent reader-writer interplay governs growth control by E2F-1
Zheng, Shunsheng; Moehlenbrink, Jutta; Lu, Yi-Chien; Zalmas, Lykourgos-Panagiotis; Sagum, Cari A.; Carr, Simon; McGouran, Joanna F.; Alexander, Leila; Fedorov, Oleg; Munro, Shonagh; Kessler, Benedikt; Bedford, Mark T.; Yu, Qiang; La Thangue, Nicholas B.
2014-01-01
Summary The mechanisms that underlie and dictate the different biological outcomes of E2F-1 activity have yet to be elucidated. We describe the residue-specific methylation of E2F-1 by the asymmetric dimethylating protein arginine methyltransferase (PRMT) 1 and symmetric dimethylating PRMT5, and relate the marks to different functional consequences of E2F-1 activity. Methylation by PRMT1 hinders methylation by PRMT5, which augments E2F-1-dependent apoptosis, whereas PRMT5-dependent methylation favours proliferation by antagonising methylation by PRMT1. The ability of E2F-1 to prompt apoptosis in DNA damaged cells coincides with enhanced PRMT1 methylation. In contrast, cyclin A binding to E2F-1 impedes PRMT1 methylation and augments PRMT5 methylation, thus ensuring that E2F-1 is locked into its cell cycle progression mode. The Tudor domain protein p100-TSN reads the symmetric methylation mark, and binding of p100-TSN down-regulates E2F-1 apoptotic activity. Our results define an exquisite level of precision in the reader-writer interplay that governs the biological outcome of E2F-1 activity. PMID:24076217
Sadiq, Irfan; Keren, Ido; Citovsky, Vitaly
2016-01-01
Histone lysine demethylases of the LSD1/KDM1 family play important roles in epigenetic regulation of eukaryotic chromatin, and they are conserved between plants and animals. Mammalian LSD1 is thought to be targeted to its substrates, i.e., methylated histones, by an MBT-domain protein SFMBT1 that represents a component of the LSD1-based repressor complex and binds methylated histones. Because MBT-domain proteins are conserved between different organisms, from animals to plants, we examined whether the KDM1-type histone lysine demethylases KDM1C and FLD of Arabidopsis interact with the Arabidopsis Tudor/PWWP/MBT-domain SFMBT1-like proteins SL1, SL2, SL3, and SL4. No such interaction was detected using the bimolecular fluorescence complementation assay in living plant cells. Thus, plants most likely direct their KDM1 chromatin-modifying enzymes to methylated histones of the target chromatin by a mechanism different from that employed by the mammalian cells. PMID:26826387
Sadiq, Irfan; Keren, Ido; Citovsky, Vitaly
2016-02-19
Histone lysine demethylases of the LSD1/KDM1 family play important roles in epigenetic regulation of eukaryotic chromatin, and they are conserved between plants and animals. Mammalian LSD1 is thought to be targeted to its substrates, i.e., methylated histones, by an MBT-domain protein SFMBT1 that represents a component of the LSD1-based repressor complex and binds methylated histones. Because MBT-domain proteins are conserved between different organisms, from animals to plants, we examined whether the KDM1-type histone lysine demethylases KDM1C and FLD of Arabidopsis interact with the Arabidopsis Tudor/PWWP/MBT-domain SFMBT1-like proteins SL1, SL2, SL3, and SL4. No such interaction was detected using the bimolecular fluorescence complementation assay in living plant cells. Thus, plants most likely direct their KDM1 chromatin-modifying enzymes to methylated histones of the target chromatin by a mechanism different from that employed by the mammalian cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Charron, Jean-Benoit Frenette; Breton, Ghislain; Danyluk, Jean; Muzac, Ingrid; Ibrahim, Ragai K.; Sarhan, Fathey
2002-01-01
A cDNA that encodes a methyltransferase (MT) was cloned from a cold-acclimated wheat (Triticum aestivum) cDNA library. Molecular analysis indicated that the enzyme WPEAMT (wheat phosphoethanolamine [P-EA] MT) is a bipartite protein with two separate sets of S-adenosyl-l-Met-binding domains, one close to the N-terminal end and the second close to the C-terminal end. The recombinant protein was found to catalyze the three sequential methylations of P-EA to form phosphocholine, a key precursor for the synthesis of phosphatidylcholine and glycine betaine in plants. Deletion and mutation analyses of the two S-adenosyl-l-Met-binding domains indicated that the N-terminal domain could perform the three N-methylation steps transforming P-EA to phosphocholine. This is in contrast to the MT from spinach (Spinacia oleracea), suggesting a different functional evolution for the monocot enzyme. The truncated C-terminal and the N-terminal mutated enzyme were only able to methylate phosphomonomethylethanolamine and phosphodimethylethanolamine, but not P-EA. This may suggest that the C-terminal part is involved in regulating the rate and the equilibrium of the three methylation steps. Northern and western analyses demonstrated that both Wpeamt transcript and the corresponding protein are up-regulated during cold acclimation. This accumulation was associated with an increase in enzyme activity, suggesting that the higher activity is due to de novo protein synthesis. The role of this enzyme during cold acclimation and the development of freezing tolerance are discussed. PMID:12011366
Diehl, Carl; Engström, Olof; Delaine, Tamara; Håkansson, Maria; Genheden, Samuel; Modig, Kristofer; Leffler, Hakon; Ryde, Ulf; Nilsson, Ulf J; Akke, Mikael
2010-10-20
Rational drug design is predicated on knowledge of the three-dimensional structure of the protein-ligand complex and the thermodynamics of ligand binding. Despite the fundamental importance of both enthalpy and entropy in driving ligand binding, the role of conformational entropy is rarely addressed in drug design. In this work, we have probed the conformational entropy and its relative contribution to the free energy of ligand binding to the carbohydrate recognition domain of galectin-3. Using a combination of NMR spectroscopy, isothermal titration calorimetry, and X-ray crystallography, we characterized the binding of three ligands with dissociation constants ranging over 2 orders of magnitude. (15)N and (2)H spin relaxation measurements showed that the protein backbone and side chains respond to ligand binding by increased conformational fluctuations, on average, that differ among the three ligand-bound states. Variability in the response to ligand binding is prominent in the hydrophobic core, where a distal cluster of methyl groups becomes more rigid, whereas methyl groups closer to the binding site become more flexible. The results reveal an intricate interplay between structure and conformational fluctuations in the different complexes that fine-tunes the affinity. The estimated change in conformational entropy is comparable in magnitude to the binding enthalpy, demonstrating that it contributes favorably and significantly to ligand binding. We speculate that the relatively weak inherent protein-carbohydrate interactions and limited hydrophobic effect associated with oligosaccharide binding might have exerted evolutionary pressure on carbohydrate-binding proteins to increase the affinity by means of conformational entropy.
Deletion and site-specific mutagenesis of nucleolin's carboxy GAR domain.
Pellar, Gregory J; DiMario, Patrick J
2003-04-01
Vertebrate nucleolin is an abundant RNA-binding protein in the dense fibrillar component of active nucleoli. Nucleolin is modular in composition. Its amino-terminal third contains alternating acidic and basic domains, its middle section contains four consensus RNA-binding domains (cRBDs), and its carboxy-terminus contains a distinctive glycine/arginine-rich (GAR) domain with several RGG motifs. The arginines within these motifs are asymmetrically dimethylated. Several laboratories have shown that the GAR domain is necessary but not sufficient for the efficient localization of nucleolin to nucleoli. We examined the distribution of endogenous fibrillarin, Nopp140, and B23 when full-length and DeltaGAR nucleolin were expressed exogenously as enhanced green fluorescent protein (EGFP)-tagged fusions. Only B23 redistributed when DeltaGAR-EGFP was expressed at moderate to high levels, suggesting an in vivo interaction between nucleolin and B23. Next we substituted all ten arginines within the GAR domain of Chinese hamster ovary (CHO) nucleolin with lysines to test the hypothesis that methylation of the carboxy GAR domain is necessary for the nucleolar association of nucleolin. The lysine-substituted mutant was not an in vitro substrate for the yeast protein methyltransferase, Hmt1p/Rmt1. It was, however, able to associate properly with interphase nucleoli and with interphase pre-nucleolar bodies upon recovery from hypotonic shock. We conclude, therefore, that although the GAR domain is necessary for the efficient localization of nucleolin to nucleoli, methylation of this domain is not required for proper nucleolar localization.
TIRR regulates 53BP1 by masking its histone methyl-lysine binding function.
Drané, Pascal; Brault, Marie-Eve; Cui, Gaofeng; Meghani, Khyati; Chaubey, Shweta; Detappe, Alexandre; Parnandi, Nishita; He, Yizhou; Zheng, Xiao-Feng; Botuyan, Maria Victoria; Kalousi, Alkmini; Yewdell, William T; Münch, Christian; Harper, J Wade; Chaudhuri, Jayanta; Soutoglou, Evi; Mer, Georges; Chowdhury, Dipanjan
2017-03-09
P53-binding protein 1 (53BP1) is a multi-functional double-strand break repair protein that is essential for class switch recombination in B lymphocytes and for sensitizing BRCA1-deficient tumours to poly-ADP-ribose polymerase-1 (PARP) inhibitors. Central to all 53BP1 activities is its recruitment to double-strand breaks via the interaction of the tandem Tudor domain with dimethylated lysine 20 of histone H4 (H4K20me2). Here we identify an uncharacterized protein, Tudor interacting repair regulator (TIRR), that directly binds the tandem Tudor domain and masks its H4K20me2 binding motif. Upon DNA damage, the protein kinase ataxia-telangiectasia mutated (ATM) phosphorylates 53BP1 and recruits RAP1-interacting factor 1 (RIF1) to dissociate the 53BP1-TIRR complex. However, overexpression of TIRR impedes 53BP1 function by blocking its localization to double-strand breaks. Depletion of TIRR destabilizes 53BP1 in the nuclear-soluble fraction and alters the double-strand break-induced protein complex centring 53BP1. These findings identify TIRR as a new factor that influences double-strand break repair using a unique mechanism of masking the histone methyl-lysine binding function of 53BP1.
MtrA of the sodium ion pumping methyltransferase binds cobalamin in a unique mode
Wagner, Tristan; Ermler, Ulrich; Shima, Seigo
2016-01-01
In the three domains of life, vitamin B12 (cobalamin) is primarily used in methyltransferase and isomerase reactions. The methyltransferase complex MtrA–H of methanogenic archaea has a key function in energy conservation by catalysing the methyl transfer from methyl-tetrahydromethanopterin to coenzyme M and its coupling with sodium-ion translocation. The cobalamin-binding subunit MtrA is not homologous to any known B12-binding proteins and is proposed as the motor of the sodium-ion pump. Here, we present crystal structures of the soluble domain of the membrane-associated MtrA from Methanocaldococcus jannaschii and the cytoplasmic MtrA homologue/cobalamin complex from Methanothermus fervidus. The MtrA fold corresponds to the Rossmann-type α/β fold, which is also found in many cobalamin-containing proteins. Surprisingly, the cobalamin-binding site of MtrA differed greatly from all the other cobalamin-binding sites. Nevertheless, the hydrogen-bond linkage at the lower axial-ligand site of cobalt was equivalently constructed to that found in other methyltransferases and mutases. A distinct polypeptide segment fixed through the hydrogen-bond linkage in the relaxed Co(III) state might be involved in propagating the energy released upon corrinoid demethylation to the sodium-translocation site by a conformational change. PMID:27324530
Structure of the Zinc-Bound Amino-Terminal Domain of the NMDA Receptor NR2B Subunit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karakas, E.; Simorowski, N; Furukawa, H
2009-01-01
N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors (iGluRs) that mediate the majority of fast excitatory synaptic transmission in the mammalian brain. One of the hallmarks for the function of NMDA receptors is that their ion channel activity is allosterically regulated by binding of modulator compounds to the extracellular amino-terminal domain (ATD) distinct from the L-glutamate-binding domain. The molecular basis for the ATD-mediated allosteric regulation has been enigmatic because of a complete lack of structural information on NMDA receptor ATDs. Here, we report the crystal structures of ATD from the NR2B NMDA receptor subunit in the zinc-freemore » and zinc-bound states. The structures reveal the overall clamshell-like architecture distinct from the non-NMDA receptor ATDs and molecular determinants for the zinc-binding site, ion-binding sites, and the architecture of the putative phenylethanolamine-binding site.« less
Jayakar, Selwyn S.; Zhou, Xiaojuan; Savechenkov, Pavel Y.; Chiara, David C.; Desai, Rooma; Bruzik, Karol S.; Miller, Keith W.; Cohen, Jonathan B.
2015-01-01
In the process of developing safer general anesthetics, isomers of anesthetic ethers and barbiturates have been discovered that act as convulsants and inhibitors of γ-aminobutyric acid type A receptors (GABAARs) rather than potentiators. It is unknown whether these convulsants act as negative allosteric modulators by binding to the intersubunit anesthetic-binding sites in the GABAAR transmembrane domain (Chiara, D. C., Jayakar, S. S., Zhou, X., Zhang, X., Savechenkov, P. Y., Bruzik, K. S., Miller, K. W., and Cohen, J. B. (2013) J. Biol. Chem. 288, 19343–19357) or to known convulsant sites in the ion channel or extracellular domains. Here, we show that S-1-methyl-5-propyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (S-mTFD-MPPB), a photoreactive analog of the convulsant barbiturate S-MPPB, inhibits α1β3γ2 but potentiates α1β3 GABAAR responses. In the α1β3γ2 GABAAR, S-mTFD-MPPB binds in the transmembrane domain with high affinity to the γ+-β− subunit interface site with negative energetic coupling to GABA binding in the extracellular domain at the β+-α− subunit interfaces. GABA inhibits S-[3H]mTFD-MPPB photolabeling of γ2Ser-280 (γM2–15′) in this site. In contrast, within the same site GABA enhances photolabeling of β3Met-227 in βM1 by an anesthetic barbiturate, R-[3H]methyl-5-allyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (mTFD-MPAB), which differs from S-mTFD-MPPB in structure only by chirality and two hydrogens (propyl versus allyl). S-mTFD-MPPB and R-mTFD-MPAB are predicted to bind in different orientations at the γ+-β− site, based upon the distance in GABAAR homology models between γ2Ser-280 and β3Met-227. These results provide an explanation for S-mTFD-MPPB inhibition of α1β3γ2 GABAAR function and provide a first demonstration that an intersubunit-binding site in the GABAAR transmembrane domain binds negative and positive allosteric modulators. PMID:26229099
Transcription factors as readers and effectors of DNA methylation.
Zhu, Heng; Wang, Guohua; Qian, Jiang
2016-08-01
Recent technological advances have made it possible to decode DNA methylomes at single-base-pair resolution under various physiological conditions. Many aberrant or differentially methylated sites have been discovered, but the mechanisms by which changes in DNA methylation lead to observed phenotypes, such as cancer, remain elusive. The classical view of methylation-mediated protein-DNA interactions is that only proteins with a methyl-CpG binding domain (MBD) can interact with methylated DNA. However, evidence is emerging to suggest that transcription factors lacking a MBD can also interact with methylated DNA. The identification of these proteins and the elucidation of their characteristics and the biological consequences of methylation-dependent transcription factor-DNA interactions are important stepping stones towards a mechanistic understanding of methylation-mediated biological processes, which have crucial implications for human development and disease.
Transcription factors as readers and effectors of DNA methylation
Zhu, Heng; Wang, Guohua; Qian, Jiang
2017-01-01
Recent technological advances have made it possible to decode DNA methylomes at single-base-pair resolution under various physiological conditions. Many aberrant or differentially methylated sites have been discovered, but the mechanisms by which changes in DNA methylation lead to observed phenotypes, such as cancer, remain elusive. The classical view of methylation-mediated protein-DNA interactions is that only proteins with a methyl-CpG binding domain (MBD) can interact with methylated DNA. However, evidence is emerging to suggest that transcription factors lacking a MBD can also interact with methylated DNA. The identification of these proteins and the elucidation of their characteristics and the biological consequences of methylation-dependent transcription factor-DNA interactions are important stepping stones towards a mechanistic understanding of methylation-mediated biological processes, which have crucial implications for human development and disease. PMID:27479905
Crystal structure of SAM-dependent methyltransferase from Pyrococcus horikoshii.
Pampa, K J; Madan Kumar, S; Hema, M K; Kumara, Karthik; Naveen, S; Kunishima, Naoki; Lokanath, N K
2017-12-01
Methyltransferases (MTs) are enzymes involved in methylation that are needed to perform cellular processes such as biosynthesis, metabolism, gene expression, protein trafficking and signal transduction. The cofactor S-adenosyl-L-methionine (SAM) is used for catalysis by SAM-dependent methyltransferases (SAM-MTs). The crystal structure of Pyrococcus horikoshii SAM-MT was determined to a resolution of 2.1 Å using X-ray diffraction. The monomeric structure consists of a Rossmann-like fold (domain I) and a substrate-binding domain (domain II). The cofactor (SAM) molecule binds at the interface between adjacent subunits, presumably near to the active site(s) of the enzyme. The observed dimeric state might be important for the catalytic function of the enzyme.
A novel isoform of TET1 that lacks a CXXC domain is overexpressed in cancer
Good, Charly R.; Madzo, Jozef; Patel, Bela; Maegawa, Shinji; Engel, Nora; Jelinek, Jaroslav
2017-01-01
Abstract TET1 oxidizes methylated cytosine into 5-hydroxymethylcytosine (5hmC), resulting in regulation of DNA methylation and gene expression. Full length TET1 (TET1FL) has a CXXC domain that binds to unmethylated CpG islands (CGIs). This CXXC domain allows TET1 to protect CGIs from aberrant methylation, but it also limits its ability to regulate genes outside of CGIs. Here, we report a novel isoform of TET1 (TET1ALT) that has a unique transcription start site from an alternate promoter in intron 2, yielding a protein with a unique translation start site. Importantly, TET1ALT lacks the CXXC domain but retains the catalytic domain. TET1ALT is repressed in embryonic stem cells (ESCs) but becomes activated in embryonic and adult tissues while TET1FL is expressed in ESCs, but repressed in adult tissues. Overexpression of TET1ALT shows production of 5hmC with distinct (and weaker) effects on DNA methylation or gene expression when compared to TET1FL. TET1ALT is aberrantly activated in multiple cancer types including breast, uterine and glioblastoma, and TET1 activation is associated with a worse overall survival in breast, uterine and ovarian cancers. Our data suggest that the predominantly activated isoform of TET1 in cancer cells does not protect from CGI methylation and likely mediates dynamic site-specific demethylation outside of CGIs. PMID:28531272
Lou, Xiangdi; Ran, Tingting; Han, Ning; Gao, Yanyan; He, Jianhua; Tang, Lin; Xu, Dongqing; Wang, Weiwu
2014-04-25
Prodigiosin, a tripyrrole red pigment synthesized by Serratia and some other microbes through a bifurcated biosynthesis pathway, MBC (4-methoxy-2,2'-bipyrrole-5-carbaldehyde) and MAP (2-methyl-3-n-amyl-pyrrole) are synthesized separately and then condensed by PigC to form prodigiosin. MAP is synthesized sequentially by PigD, PigE and PigB. PigE catalyzes the transamination of an amino group to the aldehyde group of 3-acetyloctanal, resulting in an aminoketone, which spontaneously cyclizes to form H2MAP. Here we report the crystal structure of the catalytic domain of PigE which involved in the biosynthesis of prodigiosin precursor MAP for the first time to a resolution of 2.3Å with a homodimer in the asymmetric unit. The monomer of PigE catalytic domain is composed of three domains with PLP as cofactor: a small N-terminal domain connecting the catalytic domain with the front part of PigE, a large PLP-binding domain and a C-terminal domain. The residues from both monomers build the PLP binding site at the interface of the dimer which resembles the other PLP-dependent enzymes. Structural comparison of PigE with Thermus thermophilus AcOAT showed a higher hydrophobic and smaller active site of PigE, these differences may be the reason for substrate specificity. Copyright © 2014 Elsevier Inc. All rights reserved.
Baglivo, Ilaria; Esposito, Sabrina; De Cesare, Lucia; Sparago, Angela; Anvar, Zahra; Riso, Vincenzo; Cammisa, Marco; Fattorusso, Roberto; Grimaldi, Giovanna; Riccio, Andrea; Pedone, Paolo V.
2013-01-01
In the mouse, ZFP57 contains three classical Cys2His2 zinc finger domains (ZF) and recognizes the methylated TGCmetCGC target sequence using the first and the second ZFs. In this study, we demonstrate that the human ZFP57 (hZFP57) containing six Cys2His2 ZFs, binds the same methylated sequence through the third and the fourth ZFs, and identify the aminoacids critical for DNA interaction. In addition, we present evidences indicating that hZFP57 mutations and hypomethylation of the TNDM1 ICR both associated with Transient Neonatal Diabetes Mellitus type 1 result in loss of hZFP57 binding to the TNDM1 locus, likely causing PLAGL1 activation. PMID:23499433
Partners in crime: The role of tandem modules in gene transcription.
Sharma, Rajal; Zhou, Ming-Ming
2015-09-01
Histones and their modifications play an important role in the regulation of gene transcription. Numerous modifications, such as acetylation, phosphorylation, methylation, ubiquitination, and SUMOylation, have been described. These modifications almost always co-occur and thereby increase the combinatorial complexity of post-translational modification detection. The domains that recognize these histone modifications often occur in tandem in the context of larger proteins and complexes. The presence of multiple modifications can positively or negatively regulate the binding of these tandem domains, influencing downstream cellular function. Alternatively, these tandem domains can have novel functions from their independent parts. Here we summarize structural and functional information known about major tandem domains and their histone binding properties. An understanding of these interactions is key for the development of epigenetic therapy. © 2015 The Protein Society.
Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage.
Lavoie, Mathieu; Abou Elela, Sherif
2008-08-19
Members of the bacterial RNase III family recognize a variety of short structured RNAs with few common features. It is not clear how this group of enzymes supports high cleavage fidelity while maintaining a broad base of substrates. Here we show that the yeast orthologue of RNase III (Rnt1p) uses a network of 2'-OH-dependent interactions to recognize substrates with different structures. We designed a series of bipartite substrates permitting the distinction between binding and cleavage defects. Each substrate was engineered to carry a single or multiple 2'- O-methyl or 2'-fluoro ribonucleotide substitutions to prevent the formation of hydrogen bonds with a specific nucleotide or group of nucleotides. Interestingly, introduction of 2'- O-methyl ribonucleotides near the cleavage site increased the rate of catalysis, indicating that 2'-OH are not required for cleavage. Substitution of nucleotides in known Rnt1p binding site with 2'- O-methyl ribonucleotides inhibited cleavage while single 2'-fluoro ribonucleotide substitutions did not. This indicates that while no single 2'-OH is essential for Rnt1p cleavage, small changes in the substrate structure are not tolerated. Strikingly, several nucleotide substitutions greatly increased the substrate dissociation constant with little or no effect on the Michaelis-Menten constant or rate of catalysis. Together, the results indicate that Rnt1p uses a network of nucleotide interactions to identify its substrate and support two distinct modes of binding. One mode is primarily mediated by the dsRNA binding domain and leads to the formation of stable RNA/protein complex, while the other requires the presence of the nuclease and N-terminal domains and leads to RNA cleavage.
Im, Ha Na; Kim, Hyoun Sook; An, Doo Ri; Jang, Jun Young; Kim, Jieun; Yoon, Hye-Jin; Yang, Jin Kuk; Suh, Se Won
2016-03-01
The Mycobacterium tuberculosis Rv2258c protein is an S-adenosyl-L-methionine (SAM)-dependent methyltransferase (MTase). Here, we have determined its crystal structure in three forms: a ligand-unbound form, a binary complex with sinefungin (SFG), and a binary complex with S-adenosyl-L-homocysteine (SAH). The monomer structure of Rv2258c consists of two domains which are linked by a long α-helix. The N-terminal domain is essential for dimerization and the C-terminal domain has the Class I MTase fold. Rv2258c forms a homodimer in the crystal, with the N-terminal domains facing each other. It also exists as a homodimer in solution. A DALI structural similarity search with Rv2258c reveals that the overall structure of Rv2258c is very similar to small-molecule SAM-dependent MTases. Rv2258c interacts with the bound SFG (or SAH) in an extended conformation maintained by a network of hydrogen bonds and stacking interactions. Rv2258c has a relatively large hydrophobic cavity for binding of the methyl-accepting substrate, suggesting that bulky nonpolar molecules with aromatic rings might be targeted for methylation by Rv2258c in M. tuberculosis. However, the ligand-binding specificity and the biological role of Rv2258c remain to be elucidated due to high variability of the amino acid residues defining the substrate-binding site. Copyright © 2016 Elsevier Inc. All rights reserved.
Roy, A; Roy Chattopadhyay, N
2013-07-01
Cancer involves various sets of altered gene functions which embrace all the three basic mechanisms of regulation of gene expression. However, no common mechanism is inferred till date for this versatile disease and thus no full proof remedy can be offered. Here we show that the basic mechanisms are interlinked and indicate towards one of those mechanisms as being the superior one; the methylation of cytosines in specific DNA sequences, for the initiation and maintenance of carcinogenesis. The analyses of the previous reports and the nucleotide sequences of the DNA methyltransferases strongly support the assumption that the mutation(s) in the DNA-binding site(s) of DNA-methyltransferases acts as a master regulator; though it continues the cycle from mutation to repair to methylation. We anticipate that our hypothesis will start a line of study for the proposal of a treatment regime for cancers by introducing wild type methyltransferases in the diseased cells and/or germ cells, and/or by targeting ligands to the altered binding domain(s) where a mutation in the concerned enzyme(s) is seen. Copyright © 2013. Published by Elsevier Ltd.
Roles of the SH2 and SH3 domains in the regulation of neuronal Src kinase functions.
Groveman, Bradley R; Xue, Sheng; Marin, Vedrana; Xu, Jindong; Ali, Mohammad K; Bienkiewicz, Ewa A; Yu, Xian-Min
2011-02-01
Previous studies demonstrated that intra-domain interactions between Src family kinases (SFKs), stabilized by binding of the phosphorylated C-terminus to the SH2 domain and/or binding of the SH2 kinase linker to the SH3 domain, lock the molecules in a closed conformation, disrupt the kinase active site, and inactivate SFKs. Here we report that the up-regulation of N-methyl-D-aspartate receptors (NMDARs) induced by expression of constitutively active neuronal Src (n-Src), in which the C-terminus tyrosine is mutated to phenylalanine (n-Src/Y535F), is significantly reduced by dysfunctions of the SH2 and/or SH3 domains of the protein. Furthermore, we found that dysfunctions of SH2 and/or SH3 domains reduce auto-phosphorylation of the kinase activation loop, depress kinase activity, and decrease NMDAR phosphorylation. The SH2 domain plays a greater regulatory role than the SH3 domain. Our data also show that n-Src binds directly to the C-terminus of the NMDAR NR2A subunit in vitro, with a K(D) of 108.2 ± 13.3 nM. This binding is not Src kinase activity-dependent, and dysfunctions of the SH2 and/or SH3 domains do not significantly affect the binding. These data indicate that the SH2 and SH3 domains may function to promote the catalytic activity of active n-Src, which is important in the regulation of NMDAR functions. © 2010 The Authors Journal compilation © 2010 FEBS.
Kemme, Catherine A.; Marquez, Rolando; Luu, Ross H.
2017-01-01
Abstract Eukaryotic genomes contain numerous non-functional high-affinity sequences for transcription factors. These sequences potentially serve as natural decoys that sequester transcription factors. We have previously shown that the presence of sequences similar to the target sequence could substantially impede association of the transcription factor Egr-1 with its targets. In this study, using a stopped-flow fluorescence method, we examined the kinetic impact of DNA methylation of decoys on the search process of the Egr-1 zinc-finger protein. We analyzed its association with an unmethylated target site on fluorescence-labeled DNA in the presence of competitor DNA duplexes, including Egr-1 decoys. DNA methylation of decoys alone did not affect target search kinetics. In the presence of the MeCP2 methyl-CpG-binding domain (MBD), however, DNA methylation of decoys substantially (∼10-30-fold) accelerated the target search process of the Egr-1 zinc-finger protein. This acceleration did not occur when the target was also methylated. These results suggest that when decoys are methylated, MBD proteins can block them and thereby allow Egr-1 to avoid sequestration in non-functional locations. This effect may occur in vivo for DNA methylation outside CpG islands (CGIs) and could facilitate localization of some transcription factors within regulatory CGIs, where DNA methylation is rare. PMID:28486614
Functional conservation of MBD proteins: MeCP2 and Drosophila MBD proteins alter sleep.
Gupta, T; Morgan, H R; Bailey, J A; Certel, S J
2016-11-01
Proteins containing a methyl-CpG-binding domain (MBD) bind 5mC and convert the methylation pattern information into appropriate functional cellular states. The correct readout of epigenetic marks is of particular importance in the nervous system where abnormal expression or compromised MBD protein function, can lead to disease and developmental disorders. Recent evidence indicates that the genome of Drosophila melanogaster is methylated and two MBD proteins, dMBD2/3 and dMBD-R2, are present. Are Drosophila MBD proteins required for neuronal function, and as MBD-containing proteins have diverged and evolved, does the MBD domain retain the molecular properties required for conserved cellular function across species? To address these questions, we expressed the human MBD-containing protein, hMeCP2, in distinct amine neurons and quantified functional changes in sleep circuitry output using a high throughput assay in Drosophila. hMeCP2 expression resulted in phase-specific sleep loss and sleep fragmentation with the hMeCP2-mediated sleep deficits requiring an intact MBD domain. Reducing endogenous dMBD2/3 and dMBD-R2 levels also generated sleep fragmentation, with an increase in sleep occurring upon dMBD-R2 reduction. To examine if hMeCP2 and dMBD-R2 are targeting common neuronal functions, we reduced dMBD-R2 levels in combination with hMeCP2 expression and observed a complete rescue of sleep deficits. Furthermore, chromosomal binding experiments indicate MBD-R2 and MeCP2 associate on shared genomic loci. Our results provide the first demonstration that Drosophila MBD-containing family members are required for neuronal function and suggest that the MBD domain retains considerable functional conservation at the whole organism level across species. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Identification of the ubiquinone-binding domain in the disulfide catalyst disulfide bond protein B.
Xie, Tong; Yu, Linda; Bader, Martin W; Bardwell, James C A; Yu, Chang-An
2002-01-18
Disulfide bond (Dsb) formation is catalyzed in the periplasm of prokaryotes by the Dsb proteins. DsbB, a key enzyme in this process, generates disulfides de novo by using the oxidizing power of quinones. To explore the mechanism of this newly described enzymatic activity, we decided to study the ubiquinone-protein interaction and identify the ubiquinone-binding domain in DsbB by cross-linking to photoactivatable quinone analogues. When purified Escherichia coli DsbB was incubated with an azidoubiquinone derivative, 3-azido-2-methyl-5-[(3)H]methoxy-6-decyl-1,4-benzoquinone ([(3)H]azido-Q), and illuminated with long wavelength UV light, the decrease in enzymatic activity correlated with the amount of 3-azido-2-methyl-5-methoxy-6-decyl-1,4-benzoquinone (azido-Q) incorporated into the protein. One azido-Q-linked peptide with a retention time of 33.5 min was obtained by high performance liquid chromatography of the V8 digest of [(3)H]azido-Q-labeled DsbB. This peptide has a partial NH(2)-terminal amino acid sequence of NH(2)-HTMLQLY corresponding to residues 91-97. This sequence occurs in the second periplasmic domain of the inner membrane protein DsbB in a loop connecting transmembrane helices 3 and 4. We propose that the quinone-binding site is within or very near to this sequence.
Azzi, Salah; Steunou, Virginie; Tost, Jörg; Rossignol, Sylvie; Thibaud, Nathalie; Das Neves, Cristina; Le Jule, Marilyne; Habib, Walid Abi; Blaise, Annick; Koudou, Yves; Busato, Florence; Le Bouc, Yves; Netchine, Irène
2015-01-01
The structural organisation of the human IGF2/ICR1/H19 11p15 domain is very complex, and the mechanisms underlying its regulation are poorly understood. The Imprinted Center Region 1 (ICR1) contains seven binding sites for the zinc-finger protein CTCF (CBS: CTCF Binding Sites); three additional differentially methylated regions (DMR) are located at the H19 promoter (H19DMR) and two in the IGF2 gene (DMR0 and DMR2), respectively. Loss of imprinting at the IGF2/ICR1/H19 domain results in two growth disorders with opposite phenotypes: Beckwith-Wiedemann syndrome and Russell Silver syndrome (RSS). Despite the IGF2/ICR1/H19 locus being widely studied, the extent of hypomethylation across the domain remains not yet addressed in patients with RSS. We assessed a detailed investigation of the methylation status of the 11p15 ICR1 CBS1-7, IGF2DMR0 and H19DMR (H19 promoter) in a population of controls (n=50) and RSS carrying (n=104) or not (n=65) carrying a hypomethylation at the 11p15 ICR1 region. The methylation indexes (MI) were balanced at all regions in the control population and patients with RSS without any as yet identified molecular anomaly. Interestingly, patients with RSS with ICR1 hypomethylation showed uneven profiles of methylation among the CBSs and DMRs. Furthermore, normal MIs at CBS1 and CBS7 were identified in 9% of patients. The hypomethylation does not spread equally throughout the IGF2/ICR1/H19 locus, and some loci could have normal MI, which may lead to underdiagnosis of patients with RSS with ICR1 hypomethylation. The uneven pattern of methylation suggests that some CBSs may play different roles in the tridimensional chromosomal looping regulation of this locus. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Astrophysics Data System (ADS)
Moreland, Blythe; Oman, Kenji; Curfman, John; Yan, Pearlly; Bundschuh, Ralf
Methyl-binding domain (MBD) protein pulldown experiments have been a valuable tool in measuring the levels of methylated CpG dinucleotides. Due to the frequent use of this technique, high-throughput sequencing data sets are available that allow a detailed quantitative characterization of the underlying interaction between methylated DNA and MBD proteins. Analyzing such data sets, we first found that two such proteins cannot bind closer to each other than 2 bp, consistent with structural models of the DNA-protein interaction. Second, the large amount of sequencing data allowed us to find rather weak but nevertheless clearly statistically significant sequence preferences for several bases around the required CpG. These results demonstrate that pulldown sequencing is a high-precision tool in characterizing DNA-protein interactions. This material is based upon work supported by the National Science Foundation under Grant No. DMR-1410172.
Pharmacophore screening of the protein data bank for specific binding site chemistry.
Campagna-Slater, Valérie; Arrowsmith, Andrew G; Zhao, Yong; Schapira, Matthieu
2010-03-22
A simple computational approach was developed to screen the Protein Data Bank (PDB) for putative pockets possessing a specific binding site chemistry and geometry. The method employs two commonly used 3D screening technologies, namely identification of cavities in protein structures and pharmacophore screening of chemical libraries. For each protein structure, a pocket finding algorithm is used to extract potential binding sites containing the correct types of residues, which are then stored in a large SDF-formatted virtual library; pharmacophore filters describing the desired binding site chemistry and geometry are then applied to screen this virtual library and identify pockets matching the specified structural chemistry. As an example, this approach was used to screen all human protein structures in the PDB and identify sites having chemistry similar to that of known methyl-lysine binding domains that recognize chromatin methylation marks. The selected genes include known readers of the histone code as well as novel binding pockets that may be involved in epigenetic signaling. Putative allosteric sites were identified on the structures of TP53BP1, L3MBTL3, CHEK1, KDM4A, and CREBBP.
Lee, Joon-Hwa; Jucker, Fiona; Pardi, Arthur
2008-01-01
The 2′-fluoro/2′-O-methyl modified RNA aptamer Macugen is a potent inhibitor of the angiogenic regulatory protein, VEGF165. Macugen binds with high affinity to the heparin-binding domain (HBD) of VEGF165. Hydrogen exchange rates of the imino protons were measured for free Macugen and Macugen bound to the HBD or full-length VEGF to better understand the mechanism for high affinity binding. The results here show that the internal loop and hairpin loop of Macugen are highly dynamic in the free state and are greatly stabilized and/or protected from solvent upon protein binding. PMID:18485899
Distinctive Klf4 mutants determine preference for DNA methylation status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, Hideharu; Wang, Dongxue; Steves, Alyse N.
Reprogramming of mammalian genome methylation is critically important but poorly understood. Klf4, a transcription factor directing reprogramming, contains a DNA binding domain with three consecutive C2H2 zinc fingers. Klf4 recognizes CpG or TpG within a specific sequence. Mouse Klf4 DNA binding domain has roughly equal affinity for methylated CpG or TpG, and slightly lower affinity for unmodified CpG. The structural basis for this key preference is unclear, though the side chain of Glu446 is known to contact the methyl group of 5-methylcytosine (5mC) or thymine (5-methyluracil). We examined the role of Glu446 by mutagenesis. Substituting Glu446 with aspartate (E446D) resultedmore » in preference for unmodified cytosine, due to decreased affinity for 5mC. In contrast, substituting Glu446 with proline (E446P) increased affinity for 5mC by two orders of magnitude. Structural analysis revealed hydrophobic interaction between the proline's aliphatic cyclic structure and the 5-methyl group of the pyrimidine (5mC or T). As in wild-type Klf4 (E446), the proline at position 446 does not interact directly with either the 5mC N4 nitrogen or the thymine O4 oxygen. In contrast, the unmethylated cytosine's exocyclic N4 amino group (NH2) and its ring carbon C5 atom hydrogen bond directly with the aspartate carboxylate of the E446D variant. Both of these interactions would provide a preference for cytosine over thymine, and the latter one could explain the E446D preference for unmethylated cytosine. Finally, we evaluated the ability of these Klf4 mutants to regulate transcription of methylated and unmethylated promoters in a luciferase reporter assay.« less
Pant, Vinod; Mariano, Piero; Kanduri, Chandrasekhar; Mattsson, Anita; Lobanenkov, Victor; Heuchel, Rainer; Ohlsson, Rolf
2003-01-01
The repression of the maternally inherited Igf2 allele has been proposed to depend on a methylation-sensitive chromatin insulator organized by the 11 zinc finger protein CTCF at the H19 imprinting control region (ICR). Here we document that point mutations of the nucleotides in physical contact with CTCF within the endogenous H19 ICR lead to loss of CTCF binding and Igf2 imprinting only when passaged through the female germline. This effect is accompanied by a significant loss of methylation protection of the maternally derived H19 ICR. Because CTCF interacts with other imprinting control regions, it emerges as a central factor responsible for interpreting and propagating gamete-derived epigenetic marks and for organizing epigenetically controlled expression domains. PMID:12629040
Goossens, Katty V. Y.; Stassen, Catherine; Stals, Ingeborg; Donohue, Dagmara S.; Devreese, Bart; De Greve, Henri; Willaert, Ronnie G.
2011-01-01
Saccharomyces cerevisiae cells possess a remarkable capacity to adhere to other yeast cells, which is called flocculation. Flocculation is defined as the phenomenon wherein yeast cells adhere in clumps and sediment rapidly from the medium in which they are suspended. These cell-cell interactions are mediated by a class of specific cell wall proteins, called flocculins, that stick out of the cell walls of flocculent cells. The N-terminal part of the three-domain protein is responsible for carbohydrate binding. We studied the N-terminal domain of the Flo1 protein (N-Flo1p), which is the most important flocculin responsible for flocculation of yeast cells. It was shown that this domain is both O and N glycosylated and is structurally composed mainly of β-sheets. The binding of N-Flo1p to d-mannose, α-methyl-d-mannoside, various dimannoses, and mannan confirmed that the N-terminal domain of Flo1p is indeed responsible for the sugar-binding activity of the protein. Moreover, fluorescence spectroscopy data suggest that N-Flo1p contains two mannose carbohydrate binding sites with different affinities. The carbohydrate dissociation constants show that the affinity of N-Flo1p for mono- and dimannoses is in the millimolar range for the binding site with low affinity and in the micromolar range for the binding site with high affinity. The high-affinity binding site has a higher affinity for low-molecular-weight (low-MW) mannose carbohydrates and no affinity for mannan. However, mannan as well as low-MW mannose carbohydrates can bind to the low-affinity binding site. These results extend the cellular flocculation model on the molecular level. PMID:21076009
Structures and Mechanism of the Monoamine Oxidase Family
Gaweska, Helena; Fitzpatrick, Paul F.
2011-01-01
Members of the monoamine oxidase family of flavoproteins catalyze the oxidation of primary and secondary amines, polyamines, amino acids, and methylated lysine side chains in proteins. The enzymes have similar overall structures, with conserved FAD-binding domains and varied substrate-binding sites. Multiple mechanisms have been proposed for the catalytic reactions of these enzymes. The present review compares the structures of different members of the family and the various mechanistic proposals. PMID:22022344
NASA Astrophysics Data System (ADS)
Wang, Tianming; Yang, Hongsheng; Zhao, Huan; Chen, Muyan; Wang, Bing
2011-11-01
The sea cucumber, Apostichopus japonicus, undergoes aestivation to improve survival during periods of high-temperature. During aestivation, the metabolic rate is depressed to reduce the consumption of reserved energy. We evaluated the role of epigenetic modification on global gene silencing during metabolic rate depression in the sea cucumber. We compared the expression of epigenetic modifiers in active and aestivating sea cucumbers. The expression of three genes involved in DNA methylation and chromatin remodeling (DNA (cytosine-5)-methyltransferase 1, Methyl-CpG-binding domain protein 2), and Chromodomain-helicase-DNA-binding protein 5) was significantly higher during aestivation (Days 20 and 40). Similarly, we observed an increase in the expression of genes involved in histone acetylation (Histone deacetylase 3) and Histone-binding protein RBBP4) during the early (Days 5 and 10) and late phases (Days 20 and 40) of aestivation. There was no change in the expression of KAT2B, a histone acetyltransferase. However, the expression of histone methylation associated modifiers (Histone-arginine methyltransferase CARMER and Histone-lysine N-methyltransferase MLL5) was significantly higher after 5 d in the aestivating group. The results suggest that the expression of epigenetic modifiers involved in DNA methylation, chromatin remodeling, histone acetylation, and histone methylation is upregulated during aestivation. We hypothesize that these changes regulate global gene silencing during aestivation in A. japonicus.
Bianchetti, Christopher M.; Harmann, Connor H.; Takasuka, Taichi E.; Hura, Gregory L.; Dyer, Kevin; Fox, Brian G.
2013-01-01
Streptomyces sp. SirexAA-E is a highly cellulolytic bacterium isolated from an insect/microbe symbiotic community. When grown on lignin-containing biomass, it secretes SACTE_2871, an aromatic ring dioxygenase domain fused to a family 5/12 carbohydrate-binding module (CBM 5/12). Here we present structural and catalytic studies of this novel fusion enzyme, thus providing insight into its function. The dioxygenase domain has the core β-sandwich fold typical of this enzyme family but lacks a dimerization domain observed in other intradiol dioxygenases. Consequently, the x-ray structure shows that the enzyme is monomeric and the Fe(III)-containing active site is exposed to solvent in a shallow depression on a planar surface. Purified SACTE_2871 catalyzes the O2-dependent intradiol cleavage of catechyl compounds from lignin biosynthetic pathways, but not their methylated derivatives. Binding studies show that SACTE_2871 binds synthetic lignin polymers and chitin through the interactions of the CBM 5/12 domain, representing a new binding specificity for this fold-family. Based on its unique structural features and functional properties, we propose that SACTE_2871 contributes to the invasive nature of the insect/microbial community by destroying precursors needed by the plant for de novo lignin biosynthesis as part of its natural wounding response. PMID:23653358
Kemme, Catherine A; Marquez, Rolando; Luu, Ross H; Iwahara, Junji
2017-07-27
Eukaryotic genomes contain numerous non-functional high-affinity sequences for transcription factors. These sequences potentially serve as natural decoys that sequester transcription factors. We have previously shown that the presence of sequences similar to the target sequence could substantially impede association of the transcription factor Egr-1 with its targets. In this study, using a stopped-flow fluorescence method, we examined the kinetic impact of DNA methylation of decoys on the search process of the Egr-1 zinc-finger protein. We analyzed its association with an unmethylated target site on fluorescence-labeled DNA in the presence of competitor DNA duplexes, including Egr-1 decoys. DNA methylation of decoys alone did not affect target search kinetics. In the presence of the MeCP2 methyl-CpG-binding domain (MBD), however, DNA methylation of decoys substantially (∼10-30-fold) accelerated the target search process of the Egr-1 zinc-finger protein. This acceleration did not occur when the target was also methylated. These results suggest that when decoys are methylated, MBD proteins can block them and thereby allow Egr-1 to avoid sequestration in non-functional locations. This effect may occur in vivo for DNA methylation outside CpG islands (CGIs) and could facilitate localization of some transcription factors within regulatory CGIs, where DNA methylation is rare. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Baglivo, Ilaria; Esposito, Sabrina; De Cesare, Lucia; Sparago, Angela; Anvar, Zahra; Riso, Vincenzo; Cammisa, Marco; Fattorusso, Roberto; Grimaldi, Giovanna; Riccio, Andrea; Pedone, Paolo V
2013-05-21
In the mouse, ZFP57 contains three classical Cys2His2 zinc finger domains (ZF) and recognizes the methylated TGC(met)CGC target sequence using the first and the second ZFs. In this study, we demonstrate that the human ZFP57 (hZFP57) containing six Cys2His2 ZFs, binds the same methylated sequence through the third and the fourth ZFs, and identify the aminoacids critical for DNA interaction. In addition, we present evidences indicating that hZFP57 mutations and hypomethylation of the TNDM1 ICR both associated with Transient Neonatal Diabetes Mellitus type 1 result in loss of hZFP57 binding to the TNDM1 locus, likely causing PLAGL1 activation. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yanqi; Levy, Dan; Horton, John R.
SET domain containing 6 (SETD6) monomethylates the RelA subunit of nuclear factor kappa B (NF-{kappa}B). The ankyrin repeats of G9a-like protein (GLP) recognizes RelA monomethylated at Lys310. Adjacent to Lys310 is Ser311, a known phosphorylation site of RelA. Ser311 phosphorylation inhibits Lys310 methylation by SETD6 as well as binding of Lys310me1 by GLP. The structure of SETD6 in complex with RelA peptide containing the methylation site, in the presence of S-adenosyl-l-methionine, reveals a V-like protein structure and suggests a model for NF-{kappa}B binding to SETD6. In addition, structural modeling of the GLP ankyrin repeats bound to Lys310me1 peptide provides insightmore » into the molecular basis for inhibition of Lys310me1 binding by Ser311 phosphorylation. Together, these findings provide a structural explanation for a key cellular signaling pathway centered on RelA Lys310 methylation, which is generated by SETD6 and recognized by GLP, and incorporate a methylation-phosphorylation switch of adjacent lysine and serine residues. Finally, SETD6 is structurally similar to the Rubisco large subunit methyltransferase. Given the restriction of Rubisco to plant species, this particular appearance of the protein lysine methyltransferase has been evolutionarily well conserved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Jungeun; Shin, Bongjin; Park, Eui-Soon
2010-01-01
Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain andmore » examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.« less
Structure of the antiviral assembly inhibitor CAP-1 complex with the HIV-1 CA protein.
Kelly, Brian N; Kyere, Sampson; Kinde, Isaac; Tang, Chun; Howard, Bruce R; Robinson, Howard; Sundquist, Wesley I; Summers, Michael F; Hill, Christopher P
2007-10-19
The CA domain of the human immunodeficiency virus type 1 (HIV-1) Gag polyprotein plays critical roles in both the early and late phases of viral replication and is therefore an attractive antiviral target. Compounds with antiviral activity were recently identified that bind to the N-terminal domain of CA (CA N) and inhibit capsid assembly during viral maturation. We have determined the structure of the complex between CA N and the antiviral assembly inhibitor N-(3-chloro-4-methylphenyl)-N'-{2-[({5-[(dimethylamino)-methyl]-2-furyl}-methyl)-sulfanyl]ethyl}-urea) (CAP-1) using a combination of NMR spectroscopy and X-ray crystallography. The protein undergoes a remarkable conformational change upon CAP-1 binding, in which Phe32 is displaced from its buried position in the protein core to open a deep hydrophobic cavity that serves as the ligand binding site. The aromatic ring of CAP-1 inserts into the cavity, with the urea NH groups forming hydrogen bonds with the backbone oxygen of Val59 and the dimethylamonium group interacting with the side-chains of Glu28 and Glu29. Elements that could be exploited to improve binding affinity are apparent in the structure. The displacement of Phe32 by CAP-1 appears to be facilitated by a strained main-chain conformation, which suggests a potential role for a Phe32 conformational switch during normal capsid assembly.
Li, Dongming; Palanca, Ana Marie S; Won, So Youn; Gao, Lei; Feng, Ying; Vashisht, Ajay A; Liu, Li; Zhao, Yuanyuan; Liu, Xigang; Wu, Xiuyun; Li, Shaofang; Le, Brandon; Kim, Yun Ju; Yang, Guodong; Li, Shengben; Liu, Jinyuan; Wohlschlegel, James A; Guo, Hongwei; Mo, Beixin; Chen, Xuemei; Law, Julie A
2017-01-01
DNA methylation is associated with gene silencing in eukaryotic organisms. Although pathways controlling the establishment, maintenance and removal of DNA methylation are known, relatively little is understood about how DNA methylation influences gene expression. Here we identified a METHYL-CpG-BINDING DOMAIN 7 (MBD7) complex in Arabidopsis thaliana that suppresses the transcriptional silencing of two LUCIFERASE (LUC) reporters via a mechanism that is largely downstream of DNA methylation. Although mutations in components of the MBD7 complex resulted in modest increases in DNA methylation concomitant with decreased LUC expression, we found that these hyper-methylation and gene expression phenotypes can be genetically uncoupled. This finding, along with genome-wide profiling experiments showing minimal changes in DNA methylation upon disruption of the MBD7 complex, places the MBD7 complex amongst a small number of factors acting downstream of DNA methylation. This complex, however, is unique as it functions to suppress, rather than enforce, DNA methylation-mediated gene silencing. DOI: http://dx.doi.org/10.7554/eLife.19893.001 PMID:28452714
Sun, Han; Zeng, Jun; Cao, Zhendong; Li, Yan; Qian, Weiqiang
2015-01-01
Active DNA demethylation plays crucial roles in the regulation of gene expression in both plants and animals. In Arabidopsis thaliana, active DNA demethylation is initiated by the ROS1 subfamily of 5-methylcytosine-specific DNA glycosylases via a base excision repair mechanism. Recently, IDM1 and IDM2 were shown to be required for the recruitment of ROS1 to some of its target loci. However, the mechanism(s) by which IDM1 is targeted to specific genomic loci remains to be determined. Affinity purification of IDM1- and IDM2- associating proteins demonstrated that IDM1 and IDM2 copurify together with two novel components, methyl-CpG-binding domain protein 7 (MBD7) and IDM2-like protein 1 (IDL1). IDL1 encodes an α-crystallin domain protein that shows high sequence similarity with IDM2. MBD7 interacts with IDM2 and IDL1 in vitro and in vivo and they form a protein complex associating with IDM1 in vivo. MBD7 directly binds to the target loci and is required for the H3K18 and H3K23 acetylation in planta. MBD7 dysfunction causes DNA hypermethylation and silencing of reporter genes and a subset of endogenous genes. Our results suggest that a histone acetyltransferase complex functions in active DNA demethylation and in suppression of gene silencing at some loci in Arabidopsis. PMID:25933434
Liu, Xu; Shepherd, Tyson R; Murray, Ann M; Xu, Zhen; Fuentes, Ernesto J
2013-03-05
PDZ (PSD-95/Dlg/ZO-1) domains are protein-protein interaction modules often regulated by ligand phosphorylation. Here, we investigated the specificity, structure, and dynamics of Tiam1 PDZ domain/ligand interactions. We show that the PDZ domain specifically binds syndecan1 (SDC1), phosphorylated SDC1 (pSDC1), and SDC3 but not other syndecan isoforms. The crystal structure of the PDZ/SDC1 complex indicates that syndecan affinity is derived from amino acids beyond the four C-terminal residues. Remarkably, the crystal structure of the PDZ/pSDC1 complex reveals a binding pocket that accommodates the phosphoryl group. Methyl relaxation experiments of PDZ/SCD1 and PDZ/pSDC1 complexes reveal that PDZ-phosphoryl interactions dampen dynamic motions in a distal region of the PDZ domain by decoupling them from the ligand-binding site. Our data are consistent with a selection model by which specificity and phosphorylation regulate PDZ/syndecan interactions and signaling events. Importantly, our relaxation data demonstrate that PDZ/phospho-ligand interactions regulate protein dynamics and their coupling to distal sites. Copyright © 2013 Elsevier Ltd. All rights reserved.
Persistence of Cytosine Methylation of DNA following Fertilisation in the Mouse
Li, Yan; O'Neill, Chris
2012-01-01
Normal development of the mammalian embryo requires epigenetic reprogramming of the genome. The level of cytosine methylation of CpG-rich (5meC) regions of the genome is a major epigenetic regulator and active global demethylation of 5meC throughout the genome is reported to occur within the first cell-cycle following fertilization. An enzyme or mechanism capable of catalysing such rapid global demethylation has not been identified. The mouse is a widely used model for studying developmental epigenetics. We have reassessed the evidence for this phenomenon of genome-wide demethylation following fertilisation in the mouse. We found when using conventional methods of immunolocalization that 5meC showed a progressive acid-resistant antigenic masking during zygotic maturation which gave the appearance of demethylation. Changing the unmasking strategy by also performing tryptic digestion revealed a persistence of a methylated state. Analysis of methyl binding domain 1 protein (MBD1) binding confirmed that the genome remained methylated following fertilisation. The maintenance of this methylated state over the first several cell-cycles required the actions of DNA methyltransferase activity. The study shows that any 5meC remodelling that occurs during early development is not explained by a global active loss of 5meC staining during the cleavage stage of development and global loss of methylation following fertilization is not a major component of epigenetic reprogramming in the mouse zygote. PMID:22292019
Sasmal, Dibyendu Kumar; Yadav, Rajeev; Lu, H Peter
2016-07-20
N-methyl-d-aspartate (NMDA) receptor ion channel is activated by the binding of two pairs of glycine and glutamate along with the application of action potential. Binding and unbinding of ligands changes its conformation that plays a critical role in the open-close activities of NMDA receptor. Conformation states and their dynamics due to ligand binding are extremely difficult to characterize either by conventional ensemble experiments or single-channel electrophysiology method. Here we report the development of a new correlated technical approach, single-molecule patch-clamp FRET anisotropy imaging and demonstrate by probing the dynamics of NMDA receptor ion channel and kinetics of glycine binding with its ligand binding domain. Experimentally determined kinetics of ligand binding with receptor is further verified by computational modeling. Single-channel patch-clamp and four-channel fluorescence measurement are recorded simultaneously to get correlation among electrical on and off states, optically determined conformational open and closed states by FRET, and binding-unbinding states of the glycine ligand by anisotropy measurement at the ligand binding domain of GluN1 subunit. This method has the ability to detect the intermediate states in addition to electrical on and off states. Based on our experimental results, we have proposed that NMDA receptor gating goes through at least one electrically intermediate off state, a desensitized state, when ligands remain bound at the ligand binding domain with the conformation similar to the fully open state.
Wagner, Tobias; Greschik, Holger; Burgahn, Teresa; Schmidtkunz, Karin; Schott, Anne-Kathrin; McMillan, Joel; Baranauskienė, Lina; Xiong, Yan; Fedorov, Oleg; Jin, Jian; Oppermann, Udo; Matulis, Daumantas; Schüle, Roland; Jung, Manfred
2016-01-01
Epigenetic modifications of histone tails play an essential role in the regulation of eukaryotic transcription. Writer and eraser enzymes establish and maintain the epigenetic code by creating or removing posttranslational marks. Specific binding proteins, called readers, recognize the modifications and mediate epigenetic signalling. Here, we present a versatile assay platform for the investigation of the interaction between methyl lysine readers and their ligands. This can be utilized for the screening of small-molecule inhibitors of such protein–protein interactions and the detailed characterization of the inhibition. Our platform is constructed in a modular way consisting of orthogonal in vitro binding assays for ligand screening and verification of initial hits and biophysical, label-free techniques for further kinetic characterization of confirmed ligands. A stability assay for the investigation of target engagement in a cellular context complements the platform. We applied the complete evaluation chain to the Tudor domain containing protein Spindlin1 and established the in vitro test systems for the double Tudor domain of the histone demethylase JMJD2C. We finally conducted an exploratory screen for inhibitors of the interaction between Spindlin1 and H3K4me3 and identified A366 as the first nanomolar small-molecule ligand of a Tudor domain containing methyl lysine reader. PMID:26893353
Wan, Emily S.; Qiu, Weiliang; Morrow, Jarrett; Beaty, Terri H.; Hetmanski, Jacqueline; Make, Barry J.; Lomas, David A.; Silverman, Edwin K.; DeMeo, Dawn L.
2015-01-01
Klinefelter syndrome (KS) (47 XXY) is a common sex-chromosome aneuploidy with an estimated prevalence of 1 in every 660 male births. Investigations into the associations between DNA methylation and the highly variable clinical manifestations of KS have largely focused on the supernumerary X chromosome; systematic investigations of the epigenome have been limited. We obtained genome-wide DNA methylation data from peripheral blood using the Illumina HumanMethylation450K platform in 5 KS (47 XXY), 102 male (46 XY), and 113 female (46 XX) control subjects participating in the chronic obstructive pulmonary disease (COPD) Gene Study. Empirical Bayes-mediated models were used to test for differential methylation by KS status. CpG sites with a false-discovery rate <0.05 from the first-generation HumanMethylation27K platform were further examined in an independent replication cohort of 2 KS subjects, 590 male, and 495 female controls drawn from the International COPD Genetics Network (ICGN). Differential methylation at sites throughout the genome were identified, including 86 CpG sites that were differentially methylated in KS subjects relative to both male and female controls. CpG sites annotated to the HEN1 methyltransferase homolog 1 (HENMT1), calcyclin-binding protein (CACYBP), and GTPase-activating protein (SH3 domain)-binding protein 1 (G3BP1) genes were among the “KS-specific” loci that were replicated in ICGN. We therefore conclude that site-specific differential methylation exists throughout the genome in KS. The functional impact and clinical relevance of these differentially methylated loci should be explored in future studies. PMID:25988574
Tobacco-expressed Brassica juncea chitinase BjCHI1 shows antifungal activity in vitro.
Fung, King-Leung; Zhao, Kai-Jun; He, Zhu-Mei; Chye, Mee-Len
2002-09-01
We have previously isolated a Brassica juncea cDNA encoding BjCHI1, a novel chitinase with two chitin-binding domains, and have shown that its mRNA is induced by wounding and methyl jasmonate treatment (K.-J. Zhao and M.-L. Chye, Plant Mol. Biol. 40 (1999) 1009-1018). By the presence of two chitin-binding domains, BjCHI1 resembles the precursor of UDA (Urtica dioica agglutinin) but, unlike UDA, BjCHI1 retains its chitinase catalytic domain after post-translational processing. Here, we indicate the role of BjCHI1 in plant defense by demonstrating its mRNA induction upon Aspergillus niger infection or caterpillar Pieris rapae (L.) feeding. To further investigate the biological properties of BjCHI1, we transformed tobacco with a construct expressing the BjCHI1 cDNA from the CaMV 35S promoter. Subsequently, we purified BjCHI1 from the resultant transgenic Ro plants using a regenerated chitin column followed by fast protein liquid chromatography (FPLC). Also, the significance of the second chitin-binding domain in BjCHI1 was investigated by raising transgenic tobacco plants expressing BjCHI2, a deletion derivative of BjCHI1 lacking one chitin-binding domain. Colorimetric chitinase assays at 25 degrees C, pH 5, showed no significant differences between the activities of BjCHI1 and BjCHI2, suggesting that chitinase activity, due to the catalytic domain, is not enhanced by the presence of a second chitin-binding domain. Both BjCHI1 and BjCHI2 show in vitro anti-fungal activity toward Trichoderma viride, causing reductions in hyphal diameter, hyphal branching and conidia size.
Rajakumara, Eerappa; Nakarakanti, Naveen Kumar; Nivya, M Angel; Satish, Mutyala
2016-02-04
5-Methylcytosine (5 mC) is associated with epigenetic gene silencing in mammals and plants. 5 mC is consecutively oxidized to 5-hydroxymethylcytosine (5 hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) by ten-eleven translocation enzymes. We performed binding and structural studies to investigate the molecular basis of the recognition of the 5 mC oxidation derivatives in the context of a CG sequence by the SET- and RING-associated domain (SRA) of the SUVH5 protein (SUVH5 SRA). Using calorimetric measurements, we demonstrate that the SRA domain binds to the hydroxymethylated CG (5hmCG) DNA duplex in a similar manner to methylated CG (5mCG). Interestingly, the SUVH5 SRA domain exhibits weaker affinity towards carboxylated CG (5caCG) and formylated CG (5fCG). We report the 2.6 Å resolution crystal structure of the SUVH5 SRA domain in a complex with fully hydroxymethyl-CG and demonstrate a dual flip-out mechanism, whereby the symmetrical 5hmCs are simultaneously extruded from the partner strands of the DNA duplex and are positioned within the binding pockets of individual SRA domains. The hydroxyl group of 5hmC establishes both intra- and intermolecular interactions in the binding pocket. Collectively, we show that SUVH5 SRA recognizes 5hmC in a similar manner to 5 mC, but exhibits weaker affinity towards 5 hmC oxidation derivatives.
Radical-mediated enzymatic methylation: a tale of two SAMS.
Zhang, Qi; van der Donk, Wilfred A; Liu, Wen
2012-04-17
Methylation is an essential and ubiquitous reaction that plays an important role in a wide range of biological processes. Most biological methylations use S-adenosylmethionine (SAM) as the methyl donor and proceed via an S(N)2 displacement mechanism. However, researchers have discovered an increasing number of methylations that involve radical chemistry. The enzymes known to catalyze these reactions all belong to the radical SAM superfamily. This family of enzymes utilizes a specialized [4Fe-4S] cluster for reductive cleavage of SAM to yield a highly reactive 5'-deoxyadenosyl (dAdo) radical. Radical chemistry is then imposed on a variety of organic substrates, leading to a diverse array of transformations. Until recently, researchers had not fully understood how these enzymes employ radical chemistry to mediate a methyl transfer reaction. Sequence analyses reveal that the currently identified radical SAM methyltransferases (RSMTs) can be grouped into three classes, which appear distinct in protein architecture and mechanism. Class A RSMTs mainly include the rRNA methyltransferases RlmN and Cfr from various origins. As exemplified by Escherichia coli RlmN, these proteins have a single canonical radical SAM core domain that includes an (βα)(6) partial barrel most similar to that of pyruvate formate lyase-activase. The exciting recent studies on RlmN and Cfr are beginning to provide insights into the intriguing chemistry of class A RSMTs. These enzymes utilize a methylene radical generated on a unique methylated cysteine residue. However, based on the variety of substrates used by the other classes of RSMTs, alternative mechanisms are likely to be discovered. Class B RSMTs contain a proposed N-terminal cobalamin binding domain in addition to a radical SAM domain at the C-terminus. This class of proteins methylates diverse substrates at inert sp(3) carbons, aromatic heterocycles, and phosphinates, possibly involving a cobalamin-mediated methyl transfer process. Class C RSMTs share significant sequence similarity with coproporphyrinogen III oxidase HemN. Despite methylating similar substrates (aromatic heterocycles), class C RSMTs likely employ a mechanism distinct from that of class A because two conserved cysteines that are required for class A are typically not found in class C RSMTs. Class A and class B enzymes probably share the use of two molecules of SAM: one to generate a dAdo radical and one to provide the methyl group to the substrate. In class A, a cysteine would act as a conduit of the methyl group whereas in class B cobalamin may serve this purpose. Currently no clues are available regarding the mechanism of class C RSMTs, but the sequence similarities between its members and HemN and the observation that HemN binds two SAM molecules suggest that class C enzymes could use two SAM molecules for catalysis. The diverse strategies for using two SAM molecules reflect the rich chemistry of radical-mediated methylation reactions and the remarkable versatility of the radical SAM superfamily.
Sylvestersen, Kathrine B.; Horn, Heiko; Jungmichel, Stephanie; Jensen, Lars J.; Nielsen, Michael L.
2014-01-01
The covalent attachment of methyl groups to the side-chain of arginine residues is known to play essential roles in regulation of transcription, protein function, and RNA metabolism. The specific N-methylation of arginine residues is catalyzed by a small family of gene products known as protein arginine methyltransferases; however, very little is known about which arginine residues become methylated on target substrates. Here we describe a proteomics methodology that combines single-step immunoenrichment of methylated peptides with high-resolution mass spectrometry to identify endogenous arginine mono-methylation (MMA) sites. We thereby identify 1027 site-specific MMA sites on 494 human proteins, discovering numerous novel mono-methylation targets and confirming the majority of currently known MMA substrates. Nuclear RNA-binding proteins involved in RNA processing, RNA localization, transcription, and chromatin remodeling are predominantly found modified with MMA. Despite this, MMA sites prominently are located outside RNA-binding domains as compared with the proteome-wide distribution of arginine residues. Quantification of arginine methylation in cells treated with Actinomycin D uncovers strong site-specific regulation of MMA sites during transcriptional arrest. Interestingly, several MMA sites are down-regulated after a few hours of transcriptional arrest. In contrast, the corresponding di-methylation or protein expression levels are not altered, confirming that MMA sites contain regulated functions on their own. Collectively, we present a site-specific MMA data set in human cells and demonstrate for the first time that MMA is a dynamic post-translational modification regulated during transcriptional arrest by a hitherto uncharacterized arginine demethylase. PMID:24563534
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, Alex J; Song, Jikui; Cheung, Peggie
The recognition of distinctly modified histones by specialized 'effector' proteins constitutes a key mechanism for transducing molecular events at chromatin to biological outcomes. Effector proteins influence DNA-templated processes, including transcription, DNA recombination and DNA repair; however, no effector functions have yet been identified within the mammalian machinery that regulate DNA replication. Here we show that ORC1 - a component of ORC (origin of replication complex), which mediates pre-DNA replication licensing - contains a bromo adjacent homology (BAH) domain that specifically recognizes histone H4 dimethylated at lysine 20 (H4K20me2). Recognition of H4K20me2 is a property common to BAH domains present withinmore » diverse metazoan ORC1 proteins. Structural studies reveal that the specificity of the BAH domain for H4K20me2 is mediated by a dynamic aromatic dimethyl-lysine-binding cage and multiple intermolecular contacts involving the bound peptide. H4K20me2 is enriched at replication origins, and abrogating ORC1 recognition of H4K20me2 in cells impairs ORC1 occupancy at replication origins, ORC chromatin loading and cell-cycle progression. Mutation of the ORC1 BAH domain has been implicated in the aetiology of Meier-Gorlin syndrome (MGS), a form of primordial dwarfism, and ORC1 depletion in zebrafish results in an MGS-like phenotype. We find that wild-type human ORC1, but not ORC1-H4K20me2-binding mutants, rescues the growth retardation of orc1 morphants. Moreover, zebrafish depleted of H4K20me2 have diminished body size, mirroring the phenotype of orc1 morphants. Together, our results identify the BAH domain as a novel methyl-lysine-binding module, thereby establishing the first direct link between histone methylation and the metazoan DNA replication machinery, and defining a pivotal aetiological role for the canonical H4K20me2 mark, via ORC1, in primordial dwarfism.« less
Gurd, J W; Bissoon, N
1997-08-01
The NMDA receptor has recently been found to be phosphorylated on tyrosine. To assess the possible connection between tyrosine phosphorylation of the NMDA receptor and signaling pathways in the postsynaptic cell, we have investigated the relationship between tyrosine phosphorylation and the binding of NMDA receptor subunits to the SH2 domains of phospholipase C-gamma (PLC-gamma). A glutathione S-transferase (GST) fusion protein containing both the N- and the C-proximal SH2 domains of PLC-gamma was bound to glutathione-agarose and reacted with synaptic junctional proteins and glycoproteins. Tyrosine-phosphorylated PSD-GP180, which has been identified as the NR2B subunit of the NMDA receptor, bound to the SH2-agarose beads in a phosphorylation-dependent fashion. Immunoblot analysis with antibodies specific for individual NMDA receptor subunits showed that both NR2A and NR2B subunits bound to the SH2-agarose. No binding occurred to GST-agarose lacking an associated SH2 domain, indicating that binding was specific for the SH2 domains. The binding of receptor subunits increased after the incubation of synaptic junctions with ATP and decreased after treatment of synaptic junctions with exogenous protein tyrosine phosphatase. Immunoprecipitation experiments confirmed that NR2A and NR2B were phosphorylated on tyrosine and further that tyrosine phosphorylation of each of the subunits was increased after incubation with ATP. The results demonstrate that NMDA receptor subunits NR2A and NR2B will bind to the SH2 domains of PLC-gamma and that isolated synaptic junctions contain endogenous protein tyrosine kinase(s) that can phosphorylate both NR2A and NR2B receptor subunits, and suggest that interaction of the tyrosine-phosphorylated NMDA receptor with proteins that contain SH2 domains may serve to link it to signaling pathways in the postsynaptic cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houtz, Robert, L.
This project focused on a molecular and biochemical characterization of the protein methyltransferases responsible for methylation of the LS and SS in Rubisco, and the associated functional consequences accompanying these modifications. Our results provided some of the most informative structural and mechanistic understandings of SET domain protein methyltransferases. These results also positioned us to provide the first unambiguous assignment of the kinetic reaction mechanism for SET-domain protein methyltransferases, and to design and engineer an alternative substrate for Rubisco LSMT, enabling substrate specificity and functional significance studies. We demonstrated that the minimal substrate recognized by Rubisco LSMT is free lysine asmore » well as monomethyllysine, an observation corroborated both by structural analyses as well as enzymatic activity and subsequent product distribution analyses. Ternary complexes between Rubisco LSMT and free lysine compared to complexes with monomethyllysine demonstrated that the structural basis for multiple methyl group additions is a consequence of hydrogen-bond driven spatial shifts in the amino group of Lys-14, which maintains the direct in-line geometry necessary for SN2 nucleophilic attack. The structural observations are also consistent with the previous proposal that the multiplicity of methyl group additions takes place through a processive mechanism, with successive methyl group additions to an enzyme protein complex which does not disassociate prior to the formation of trimethyllysine. This mechanism has important implications, since the regulation of gene expression by SET domain histone methyltransferases is not only dependent on site-specific lysine methylation, but also the degree of methylation. We examined the kinetic reaction mechanism for three different types of SET domain protein methyltransferases, each under conditions supporting mono-, di-, or trimethyllysine formation corroborated by product analyses. Additionally, the tight initial binding of Rubisco LSMT to Rubisco also allowed us to design a novel immobilized complex between Rubisco and Rubisco LSMT, which allowed for an unambiguous demonstration of the requirement for trimethyllysine formation prior to disassociation of the Rubisco LSMT:Rubisco complex, and therefore proof of the processive mechanism for methyl group transfer. These kinetic studies also demonstrated that an important factor has been overlooked in all kinetic analyses of SET domain protein methyltransferases reported to date. This factor is the influence of the low turnover number for SET domain protein methyltransferases and how, relative to the time-frame of kinetic enzyme assays, this can generate changes in kinetic profiles shifting reciprocal plot patterns from random/ordered bi-bi to the real kinetic reaction mechanism plots of ping-pong. Although the ternary complexes of Rubisco LSMT with S-Adenosylhomocysteine and lysine and monomethyllysine were informative in regard to reaction mechanism, they were not helpful in identifying the mechanism used by Rubisco LSMT for determining substrate specificity. We were unsuccessful at obtaining ternary complexes of Rubisco LSMT with bound synthetic polypeptide substrates, as has been reported for several histone methyltransferases. However, we were able to model a polypeptide sequence corresponding to the N-terminal region of the LS of Rubisco into the apparent substrate binding cleft in Rubisco LSMT. Knowledge of the determinants of polypeptide substrate specificity are important for identifying possible alternate substrates, as well as the possibility of generating more desirable substrates amenable to site-directed mutagenesis experiments unlike Rubisco. We determined that Rubisco LSMT is capable of methylating synthetic polypeptide mimics of the N-terminal region of the LS, both free as well as conjugated to keyhole limpet hemacyanin, but with considerable less efficiency than intact holoenzyme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akey, David L.; Li, Shengying; Konwerski, Jamie R.
2012-08-01
O-linked methylation of sugar substituents is a common modification in the biosynthesis of many natural products and is catalyzed by multiple families of S-adenosyl-l-methionine (SAM or AdoMet)-dependent methyltransferases (MTs). Mycinamicins, potent antibiotics from Micromonospora griseorubida, can be methylated at two positions on a 6-deoxyallose substituent. The first methylation is catalyzed by MycE, a SAM- and metal-dependent MT. Crystal structures were determined for MycE bound to the product S-adenosyl-l-homocysteine (AdoHcy) and magnesium, both with and without the natural substrate mycinamicin VI. This represents the first structure of a natural product sugar MT in complex with its natural substrate. MycE is amore » tetramer of a two-domain polypeptide, comprising a C-terminal catalytic MT domain and an N-terminal auxiliary domain, which is important for quaternary assembly and for substrate binding. The symmetric MycE tetramer has a novel MT organization in which each of the four active sites is formed at the junction of three monomers within the tetramer. The active-site structure supports a mechanism in which a conserved histidine acts as a general base, and the metal ion helps to position the methyl acceptor and to stabilize a hydroxylate intermediate. A conserved tyrosine is suggested to support activity through interactions with the transferred methyl group from the SAM methyl donor. The structure of the free enzyme reveals a dramatic order-disorder transition in the active site relative to the S-adenosyl-L-homocysteine complexes, suggesting a mechanism for product/substrate exchange through concerted movement of five loops and the polypeptide C-terminus.« less
Antonysamy, Stephen; Condon, Bradley; Druzina, Zhanna; Bonanno, Jeffrey B.; Gheyi, Tarun; Zhang, Feiyu; MacEwan, Iain; Zhang, Aiping; Ashok, Sheela; Rodgers, Logan; Russell, Marijane; Gately Luz, John
2013-01-01
The enhancer-of-zeste homolog 2 (EZH2) gene product is an 87 kDa polycomb group (PcG) protein containing a C-terminal methyltransferase SET domain. EZH2, along with binding partners, i.e., EED and SUZ12, upon which it is dependent for activity forms the core of the polycomb repressive complex 2 (PRC2). PRC2 regulates gene silencing by catalyzing the methylation of histone H3 at lysine 27. Both overexpression and mutation of EZH2 are associated with the incidence and aggressiveness of various cancers. The novel crystal structure of the SET domain was determined in order to understand disease-associated EZH2 mutations and derive an explanation for its inactivity independent of complex formation. The 2.00 Å crystal structure reveals that, in its uncomplexed form, the EZH2 C-terminus folds back into the active site blocking engagement with substrate. Furthermore, the S-adenosyl-L-methionine (SAM) binding pocket observed in the crystal structure of homologous SET domains is notably absent. This suggests that a conformational change in the EZH2 SET domain, dependent upon complex formation, must take place for cofactor and substrate binding activities to be recapitulated. In addition, the data provide a structural context for clinically significant mutations found in the EZH2 SET domain. PMID:24367637
Foti, M; Omichinski, J G; Stahl, S; Maloney, D; West, J; Schweitzer, B I
1999-02-05
We investigate here the effects of the incorporation of the nucleoside analogs araC (1-beta-D-arabinofuranosylcytosine) and ganciclovir (9-[(1,3-dihydroxy-2-propoxy)methyl] guanine) into the DNA binding recognition sequence for the GATA-1 erythroid transcription factor. A 10-fold decrease in binding affinity was observed for the ganciclovir-substituted DNA complex in comparison to an unmodified DNA of the same sequence composition. AraC substitution did not result in any changes in binding affinity. 1H-15N HSQC and NOESY NMR experiments revealed a number of chemical shift changes in both DNA and protein in the ganciclovir-modified DNA-protein complex when compared to the unmodified DNA-protein complex. These changes in chemical shift and binding affinity suggest a change in the binding mode of the complex when ganciclovir is incorporated into the GATA DNA binding site.
Rajakumara, Eerappa; Nakarakanti, Naveen Kumar; Nivya, M. Angel; Satish, Mutyala
2016-01-01
5-Methylcytosine (5 mC) is associated with epigenetic gene silencing in mammals and plants. 5 mC is consecutively oxidized to 5-hydroxymethylcytosine (5 hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) by ten-eleven translocation enzymes. We performed binding and structural studies to investigate the molecular basis of the recognition of the 5 mC oxidation derivatives in the context of a CG sequence by the SET- and RING-associated domain (SRA) of the SUVH5 protein (SUVH5 SRA). Using calorimetric measurements, we demonstrate that the SRA domain binds to the hydroxymethylated CG (5hmCG) DNA duplex in a similar manner to methylated CG (5mCG). Interestingly, the SUVH5 SRA domain exhibits weaker affinity towards carboxylated CG (5caCG) and formylated CG (5fCG). We report the 2.6 Å resolution crystal structure of the SUVH5 SRA domain in a complex with fully hydroxymethyl-CG and demonstrate a dual flip-out mechanism, whereby the symmetrical 5hmCs are simultaneously extruded from the partner strands of the DNA duplex and are positioned within the binding pockets of individual SRA domains. The hydroxyl group of 5hmC establishes both intra- and intermolecular interactions in the binding pocket. Collectively, we show that SUVH5 SRA recognizes 5hmC in a similar manner to 5 mC, but exhibits weaker affinity towards 5 hmC oxidation derivatives. PMID:26841909
Pros and cons of methylation-based enrichment methods for ancient DNA.
Seguin-Orlando, Andaine; Gamba, Cristina; Der Sarkissian, Clio; Ermini, Luca; Louvel, Guillaume; Boulygina, Eugenia; Sokolov, Alexey; Nedoluzhko, Artem; Lorenzen, Eline D; Lopez, Patricio; McDonald, H Gregory; Scott, Eric; Tikhonov, Alexei; Stafford, Thomas W; Alfarhan, Ahmed H; Alquraishi, Saleh A; Al-Rasheid, Khaled A S; Shapiro, Beth; Willerslev, Eske; Prokhortchouk, Egor; Orlando, Ludovic
2015-07-02
The recent discovery that DNA methylation survives in fossil material provides an opportunity for novel molecular approaches in palaeogenomics. Here, we apply to ancient DNA extracts the probe-independent Methylated Binding Domains (MBD)-based enrichment method, which targets DNA molecules containing methylated CpGs. Using remains of a Palaeo-Eskimo Saqqaq individual, woolly mammoths, polar bears and two equine species, we confirm that DNA methylation survives in a variety of tissues, environmental contexts and over a large temporal range (4,000 to over 45,000 years before present). MBD enrichment, however, appears principally biased towards the recovery of CpG-rich and long DNA templates and is limited by the fast post-mortem cytosine deamination rates of methylated epialleles. This method, thus, appears only appropriate for the analysis of ancient methylomes from very well preserved samples, where both DNA fragmentation and deamination have been limited. This work represents an essential step toward the characterization of ancient methylation signatures, which will help understanding the role of epigenetic changes in past environmental and cultural transitions.
Pros and cons of methylation-based enrichment methods for ancient DNA
Seguin-Orlando, Andaine; Gamba, Cristina; Sarkissian, Clio Der; Ermini, Luca; Louvel, Guillaume; Boulygina, Eugenia; Sokolov, Alexey; Nedoluzhko, Artem; Lorenzen, Eline D.; Lopez, Patricio; McDonald, H. Gregory; Scott, Eric; Tikhonov, Alexei; Stafford,, Thomas W.; Alfarhan, Ahmed H.; Alquraishi, Saleh A.; Al-Rasheid, Khaled A. S.; Shapiro, Beth; Willerslev, Eske; Prokhortchouk, Egor; Orlando, Ludovic
2015-01-01
The recent discovery that DNA methylation survives in fossil material provides an opportunity for novel molecular approaches in palaeogenomics. Here, we apply to ancient DNA extracts the probe-independent Methylated Binding Domains (MBD)-based enrichment method, which targets DNA molecules containing methylated CpGs. Using remains of a Palaeo-Eskimo Saqqaq individual, woolly mammoths, polar bears and two equine species, we confirm that DNA methylation survives in a variety of tissues, environmental contexts and over a large temporal range (4,000 to over 45,000 years before present). MBD enrichment, however, appears principally biased towards the recovery of CpG-rich and long DNA templates and is limited by the fast post-mortem cytosine deamination rates of methylated epialleles. This method, thus, appears only appropriate for the analysis of ancient methylomes from very well preserved samples, where both DNA fragmentation and deamination have been limited. This work represents an essential step toward the characterization of ancient methylation signatures, which will help understanding the role of epigenetic changes in past environmental and cultural transitions. PMID:26134828
Wojtczak, A; Luft, J R; Cody, V
1993-03-25
The crystal structure of human transthyretin (TTR) complexed with milrinone (2-methyl-5-cyano-3,4'-bipyridin-6(1H)-one), a positive inotropic cardiac agent, has been refined to R = 17.4% for 8-1.9-A resolution data. This report provides the first detailed description of protein interactions for an inotropic bipyridine agent which is an effective thyroid hormone binding competitor to transthyretin. Milrinone is bound along the 2-fold axis in the binding site with its substituted pyridone ring located deep within the channel of the two identical binding domains of the TTR tetramer. In this orientation the 5-cyano group occupies the same site as the 3'-iodine in the TTR complex with 3,3'-diiodothyronine (Wojtczak, A., Luft, J., and Cody, V. (1992) J. Biol. Chem. 267, 353-357), which is 3.5 A deeper in the channel than thyroxine (Blake, C. C. F., and Oately, S. J., (1977) Nature 268, 115-120). These structural results confirm computer modeling studies of milrinone structural homology with thyroxine and its TTR binding interactions and explain the effectiveness of milrinone competition for thyroxine binding to TTR. To understand the weaker binding affinity of the parent inotropic drug, amrinone (5-amino-3,4'-bipyridin-6(1H)-one), modeling studies of its TTR binding were carried out which indicate that the 5-amino group cannot participate in strong interactions with TTR and the lack of the 2-methyl further weakens amrinone binding.
Thomas, Christopher G; Krupp, Johannes J; Bagley, Elena E; Bauzon, Reginald; Heinemann, Stephen F; Vissel, Bryce; Westbrook, Gary L
2006-04-01
Several forms of macroscopic N-methyl-D-aspartate (NMDA) receptor desensitization affect the amplitude and duration of postsynaptic responses. In addition to its functional significance, desensitization provides one means to examine the conformational coupling of ligand binding to channel gating. Segments flanking the ligand binding domain in the extracellular N terminus of the NMDA receptor NR2 subunit influence the glycine-independent form of desensitization. The NR2A pre-M1 region, the linker between the glutamate binding domain and the channel pore, plays a critical role in desensitization. Thus, we used the substituted-cysteine accessibility method to scan the accessibility of residues in the pre-M1 region and the first transmembrane domain (M1) of NR2A. Cysteine mutants were expressed with NR1 in human embryonic kidney 293 cells and were assayed by whole-cell recording. With activation of the receptor by glutamate and glycine, only a single mutant, V557C, which is located at the beginning of M1, led to irreversible inhibition by the methanethiosulfonate derivative methanethiosulfonate ethyltrimethylammonium (MTSET). The NR2 ligand glutamate was insufficient on its own to induce modification of V557C by MTSET, suggesting that the change in accessibility required channel gating. The rate of MTSET modification of the homologous residue on NR1 (NR1-1a(L562C)/NR2A) was much slower than V557C. We also substituted cysteine in the V557 site of mutant subunits that exhibit either enhanced or reduced desensitization. Modification by MTSET correlated with the degree of desensitization for these subunits, suggesting that V557C is a sensitive detector of desensitization gating.
Romine, L E; Wood, J R; Lamia, L A; Prendergast, P; Edwards, D P; Nardulli, A M
1998-05-01
We have examined the ability of the high-mobility group protein 1 (HMG1) to alter binding of the estrogen receptor DNA-binding domain (DBD) to the estrogen response element (ERE). HMG1 dramatically enhanced binding of purified, bacterially expressed DBD to the consensus vitellogenin A2 ERE in a dose-dependent manner. The ability of HMG1 to stabilize the DBD-ERE complex resulted in part from a decrease in the dissociation rate of the DBD from the ERE. Antibody supershift experiments demonstrated that HMG1 was also capable of forming a ternary complex with the ERE-bound DBD in the presence of HMG1-specific antibody. HMG1 did not substantially affect DBD-ERE contacts as assessed by methylation interference assays, nor did it alter the ability of the DBD to induce distortion in ERE-containing DNA fragments. Because HMG1 dramatically enhanced estrogen receptor DBD binding to the ERE, and the DBD is the most highly conserved region among the nuclear receptor superfamily members, HMG1 may function to enhance binding of other nuclear receptors to their respective response elements and act in concert with coactivator proteins to regulate expression of hormone-responsive genes.
Identification of surface domain structure on enamel crystals using polyamidoamine dendrimer
NASA Astrophysics Data System (ADS)
Chen, Haifeng; Clarkson, Brian H.; Orr, Bradford; Majoros, Istvan; Banaszak Holl, Mark M.
2002-03-01
The control of hydroxyapatite crystal nucleation and crystal growth is central to the mineralization and remineralization of enamel and dentin of teeth. However, the precise biomolecular mechanisms involved remain obscure. The intimate association between the crystal's surface and extracellular protein components implies a modulating role for organic crystal interactions probably mediated via specific crystal surface domains. These include lattice defects and specific stereochemical arrays on associated organic molecules. The nature of protein-crystal interaction depends upon the physical forces of attraction / repulsion between specific biomolecular groups and crystal surface domains. The proposed study is to utilize specific polyamidoamine (PAMAM) dendrimers, also known as “artificial proteins”, acting as nanoprobe. These will be used to probe specific surface domain on the surface of the naturally derived crystals of hydroxyapatite and to determine how control of growth and dissolution may be affected at the biomolecular level. The hydroxyapatite crystals are extracted from the maturation stage enamel of rats. Three types of PAMAM dendrimers, respectively with amine-, carboxylic acid and methyl-capped surface, will be applied in the study. The dendrimer binding on the surface of the hydoxyapatite crystals will be characterized using atomic force microscopy (AFM). The different dendrimer binding on the crystals will disclose the specific surface domain structure on the crystals, which is assumed to be important in binding the extracellular protein.
In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites
Grey, Corinne; Clément, Julie A.J.; Buard, Jérôme; Leblanc, Benjamin; Gut, Ivo; Gut, Marta; Duret, Laurent
2017-01-01
In mouse and human meiosis, DNA double-strand breaks (DSBs) initiate homologous recombination and occur at specific sites called hotspots. The localization of these sites is determined by the sequence-specific DNA binding domain of the PRDM9 histone methyl transferase. Here, we performed an extensive analysis of PRDM9 binding in mouse spermatocytes. Unexpectedly, we identified a noncanonical recruitment of PRDM9 to sites that lack recombination activity and the PRDM9 binding consensus motif. These sites include gene promoters, where PRDM9 is recruited in a DSB-dependent manner. Another subset reveals DSB-independent interactions between PRDM9 and genomic sites, such as the binding sites for the insulator protein CTCF. We propose that these DSB-independent sites result from interactions between hotspot-bound PRDM9 and genomic sequences located on the chromosome axis. PMID:28336543
Leung, Danny; Du, Tingting; Wagner, Ulrich; Xie, Wei; Lee, Ah Young; Goyal, Preeti; Li, Yujing; Szulwach, Keith E; Jin, Peng; Lorincz, Matthew C; Ren, Bing
2014-05-06
During mammalian development, DNA methylation patterns need to be reset in primordial germ cells (PGCs) and preimplantation embryos. However, many LTR retrotransposons and imprinted genes are impervious to such global epigenetic reprogramming via hitherto undefined mechanisms. Here, we report that a subset of such genomic regions are resistant to widespread erasure of DNA methylation in mouse embryonic stem cells (mESCs) lacking the de novo DNA methyltransferases (Dnmts) Dnmt3a and Dnmt3b. Intriguingly, these loci are enriched for H3K9me3 in mESCs, implicating this mark in DNA methylation homeostasis. Indeed, deletion of the H3K9 methyltransferase SET domain bifurcated 1 (Setdb1) results in reduced H3K9me3 and DNA methylation levels at specific loci, concomitant with increased 5-hydroxymethylation (5hmC) and ten-eleven translocation 1 binding. Taken together, these data reveal that Setdb1 promotes the persistence of DNA methylation in mESCs, likely reflecting one mechanism by which DNA methylation is maintained at LTR retrotransposons and imprinted genes during developmental stages when DNA methylation is reprogrammed.
Horton, John R; Engstrom, Amanda; Zoeller, Elizabeth L; Liu, Xu; Shanks, John R; Zhang, Xing; Johns, Margaret A; Vertino, Paula M; Fu, Haian; Cheng, Xiaodong
2016-02-05
The KDM5/JARID1 family of Fe(II)- and α-ketoglutarate-dependent demethylases remove methyl groups from tri- and dimethylated lysine 4 of histone H3. Accumulating evidence from primary tumors and model systems supports a role for KDM5A (JARID1A/RBP2) and KDM5B (JARID1B/PLU1) as oncogenic drivers. The KDM5 family is unique among the Jumonji domain-containing histone demethylases in that there is an atypical insertion of a DNA-binding ARID domain and a histone-binding PHD domain into the Jumonji domain, which separates the catalytic domain into two fragments (JmjN and JmjC). Here we demonstrate that internal deletion of the ARID and PHD1 domains has a negligible effect on in vitro enzymatic kinetics of the KDM5 family of enzymes. We present a crystal structure of the linked JmjN-JmjC domain from KDM5A, which reveals that the linked domain fully reconstitutes the cofactor (metal ion and α-ketoglutarate) binding characteristics of other structurally characterized Jumonji domain demethylases. Docking studies with GSK-J1, a selective inhibitor of the KDM6/KDM5 subfamilies, identify critical residues for binding of the inhibitor to the reconstituted KDM5 Jumonji domain. Further, we found that GSK-J1 inhibited the demethylase activity of KDM5C with 8.5-fold increased potency compared with that of KDM5B at 1 mm α-ketoglutarate. In contrast, JIB-04 (a pan-inhibitor of the Jumonji demethylase superfamily) had the opposite effect and was ~8-fold more potent against KDM5B than against KDM5C. Interestingly, the relative selectivity of JIB-04 toward KDM5B over KDM5C in vitro translates to a ~10-50-fold greater growth-inhibitory activity against breast cancer cell lines. These data define the minimal requirements for enzymatic activity of the KDM5 family to be the linked JmjN-JmjC domain coupled with the immediate C-terminal helical zinc-binding domain and provide structural characterization of the linked JmjN-JmjC domain for the KDM5 family, which should prove useful in the design of KDM5 demethylase inhibitors with improved potency and selectivity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Dynamically Coupled Residues within the SH2 Domain of FYN Are Key to Unlocking Its Activity.
Huculeci, Radu; Cilia, Elisa; Lyczek, Agatha; Buts, Lieven; Houben, Klaartje; Seeliger, Markus A; van Nuland, Nico; Lenaerts, Tom
2016-11-01
Src kinase activity is controlled by various mechanisms involving a coordinated movement of kinase and regulatory domains. Notwithstanding the extensive knowledge related to the backbone dynamics, little is known about the more subtle side-chain dynamics within the regulatory domains and their role in the activation process. Here, we show through experimental methyl dynamic results and predicted changes in side-chain conformational couplings that the SH2 structure of Fyn contains a dynamic network capable of propagating binding information. We reveal that binding the phosphorylated tail of Fyn perturbs a residue cluster near the linker connecting the SH2 and SH3 domains of Fyn, which is known to be relevant in the regulation of the activity of Fyn. Biochemical perturbation experiments validate that those residues are essential for inhibition of Fyn, leading to a gain of function upon mutation. These findings reveal how side-chain dynamics may facilitate the allosteric regulation of the different members of the Src kinase family. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwase, Shigeki; Xiang, Bin; Ghosh, Sharmistha
ATR-X (alpha-thalassemia/mental retardation, X-linked) syndrome is a human congenital disorder that causes severe intellectual disabilities. Mutations in the ATRX gene, which encodes an ATP-dependent chromatin-remodeler, are responsible for the syndrome. Approximately 50% of the missense mutations in affected persons are clustered in a cysteine-rich domain termed ADD (ATRX-DNMT3-DNMT3L, ADD{sub ATRX}), whose function has remained elusive. Here we identify ADD{sub ATRX} as a previously unknown histone H3-binding module, whose binding is promoted by lysine 9 trimethylation (H3K9me3) but inhibited by lysine 4 trimethylation (H3K4me3). The cocrystal structure of ADD{sub ATRX} bound to H3{sub 1-15}K9me3 peptide reveals an atypical composite H3K9me3-binding pocket,more » which is distinct from the conventional trimethyllysine-binding aromatic cage. Notably, H3K9me3-pocket mutants and ATR-X syndrome mutants are defective in both H3K9me3 binding and localization at pericentromeric heterochromatin; thus, we have discovered a unique histone-recognition mechanism underlying the ATR-X etiology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
S Iwase; B Xiang; S Ghosh
ATR-X (alpha-thalassemia/mental retardation, X-linked) syndrome is a human congenital disorder that causes severe intellectual disabilities. Mutations in the ATRX gene, which encodes an ATP-dependent chromatin-remodeler, are responsible for the syndrome. Approximately 50% of the missense mutations in affected persons are clustered in a cysteine-rich domain termed ADD (ATRX-DNMT3-DNMT3L, ADD{sub ATRX}), whose function has remained elusive. Here we identify ADD{sub ATRX} as a previously unknown histone H3-binding module, whose binding is promoted by lysine 9 trimethylation (H3K9me3) but inhibited by lysine 4 trimethylation (H3K4me3). The cocrystal structure of ADD{sub ATRX} bound to H3{sub 1-15}K9me3 peptide reveals an atypical composite H3K9me3-binding pocket,more » which is distinct from the conventional trimethyllysine-binding aromatic cage. Notably, H3K9me3-pocket mutants and ATR-X syndrome mutants are defective in both H3K9me3 binding and localization at pericentromeric heterochromatin; thus, we have discovered a unique histone-recognition mechanism underlying the ATR-X etiology.« less
D'Annessa, Ilda; Gandaglia, Anna; Brivio, Elena; Stefanelli, Gilda; Frasca, Angelisa; Landsberger, Nicoletta; Di Marino, Daniele
2018-05-01
Mutations in the X-linked MECP2 gene represent the main origin of Rett syndrome, causing a profound intellectual disability in females. MeCP2 is an epigenetic transcriptional regulator containing two main functional domains: a methyl-CpG binding domain (MBD) and a transcription repression domain (TRD). Over 600 pathogenic mutations were reported to affect the whole protein; almost half of missense mutations affect the MBD. Understanding the impact of these mutations on the MBD structure and interaction with DNA will foster the comprehension of their pathogenicity and possibly genotype/phenotype correlation studies. Herein, we use molecular dynamics simulations to obtain a detailed view of the dynamics of WT and mutated MBD in the presence and absence of DNA. The pathogenic mutation Y120D is used as paradigm for our studies. Further, since the Y120 residue was previously found to be a phosphorylation site, we characterize the dynamic profile of the MBD also in the presence of Y120 phosphorylation (pY120). We found that addition of a phosphate group to Y120 or mutation in aspartic acid affect domain mobility that samples an alternative conformational space with respect to the WT, leading to impaired ability to interact with DNA. Experimental assays showing a significant reduction in the binding affinity between the mutated MBD and the DNA confirmed our predictions. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pejcha, Robert; Ludwig, Martha L.
2010-03-08
Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy) without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH), both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two ({beta}{alpha}){sub 8} barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domainmore » evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys){sub 3}Zn site in the related enzymes, MetH and betaine-homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E {center_dot} Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer.« less
Erdem, Fatma Asli; Salzer, Isabella; Heo, Seok; Chen, Wei-Qiang; Jung, Gangsoo; Lubec, Gert; Boehm, Stefan; Yang, Jae-Won
2017-10-01
Voltage-gated Kv7.2 potassium channels regulate neuronal excitability. The gating of these channels is tightly controlled by various mediators and neurotransmitters acting via G protein-coupled receptors; the underlying signaling cascades involve phosphatidylinositol-4,5-bisphosphate (PIP 2 ), Ca 2+ /calmodulin, and phosphorylation. Recent studies found that the PIP 2 sensitivity of Kv7.2 channels is affected by two posttranslational modifications, phosphorylation and methylation, harboured within putative PIP 2 -binding domains. In this study, we updated phosphorylation and methylation sites in Kv7.2 either heterologously expressed in mammalian cells or as GST-fusion proteins exposed to recombinant protein kinases by using LC-MS/MS. In vitro kinase assays revealed that CDK5, protein kinase C (PKC) alpha, PKA, p38 MAPK, CamKIIα, and GSK3β could mediate phosphorylation. Taken together, we provided a comprehensive map of phosphorylation and methylation in Kv7.2 within protein-protein and protein-lipid interaction domains. This may help to interpret the functional roles of individual PTM sites in Kv7.2 channels. All MS data are available via ProteomeXchange with the identifier PXD005567. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
McIlhinney, R A; Molnár, E
1996-04-01
To identify the location of the first transmembrane segment of the GluR1 glutamate receptor subunit artificial stop codons have been introduced into the N-terminal domain at amino acid positions 442, 510, and 563, namely just before and spanning the proposed first two transmembrane regions. The resultant truncated N-terminal fragments of GluR1, termed NT1, NT2, and NT3 respectively were expressed in Cos-7 cells and their cellular distribution and cell-surface expression analysed using an N-terminal antibody to GluR1. All of the fragments were fully glycosylated and were found to be associated with cell membranes but none was secreted. Differential extraction of the cell membranes indicated that both NT1 and NT2 behave as peripheral membrane proteins. In contrast NT3, like the full subunit, has integral membrane protein properties. Furthermore only NT3 is expressed at the cell surface as determined by immunofluorescence and cell-surface biotinylation. Protease protection assays indicated that only NT3 had a cytoplasmic tail. Binding studies using the selective ligand [(3)H]alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate ([(3)H]AMPA) demonstrated that NT3 does not bind ligand. Together these results indicate that the first transmembrane domain of the GluR1 subunit lies between residues 509 and 562, that the N-terminal domain alone cannot form a functional ligand-binding site and that this domain can be targeted to the cell surface provided that it has a transmembrane-spanning region.
Rahman, Mohummad Aminur; Kristiansen, Per E.; Veiseth, Silje V.; Andersen, Jan Terje; Yap, Kyoko L.; Zhou, Ming-Ming; Sandlie, Inger; Thorstensen, Tage; Aalen, Reidunn B.
2014-01-01
In eukaryotes, different chromatin states facilitate or repress gene expression and restrict the activity of transposable elements. Post-translational modifications (PTMs) of amino acid residues on the N-terminal tails of histones are suggested to define such states. The histone lysine methyltransferase (HKMTase) SU(VAR)3-9 RELATED4 (SUVR4) of Arabidopsis thaliana functions as a repressor of transposon activity. Binding of ubiquitin by the WIYLD domain facilitates the addition of two methyl groups to monomethylated lysine 9 of histone H3. By using nuclear magnetic resonance (NMR) spectroscopy, we identified SUVR4 WIYLD (S4WIYLD) as a domain with a four-helix bundle structure, in contrast to three-helix bundles of other ubiquitin binding domains. NMR titration analyses showed that residues of helix α1 (Q38, L39, and D40) and helix α4 (N68, T70, A71, V73, D74, I76, S78, and E82) of S4WIYLD and residues between the first and second β-strands (T9 and G10) and on β-strands 3 (R42, G47, K48, and Q49) and 4 (H68, R72, and L73) undergo significant chemical shift changes when the two proteins interact. A model of the complex, generated using HADDOCK, suggests that the N-terminal and C-terminal parts of S4WIYLD constitute a surface that interacts with charged residues close to the hydrophobic patch of ubiquitin. The WIYLD domains of the closely related SUVR1 and SUVR2 Arabidopsis proteins also bind ubiquitin, indicating that this is a general feature of this domain. The question of whether SUVR proteins act as both readers of monoubiquitinated H2B and writers of histone PTMs is discussed. PMID:24625295
Efficient targeted DNA methylation with chimeric dCas9–Dnmt3a–Dnmt3L methyltransferase
Stepper, Peter; Kungulovski, Goran; Jurkowska, Renata Z.; Chandra, Tamir; Krueger, Felix; Reinhardt, Richard
2017-01-01
Abstract DNA methylation plays a critical role in the regulation and maintenance of cell-type specific transcriptional programs. Targeted epigenome editing is an emerging technology to specifically regulate cellular gene expression in order to modulate cell phenotypes or dissect the epigenetic mechanisms involved in their control. In this work, we employed a DNA methyltransferase Dnmt3a–Dnmt3L construct fused to the nuclease-inactivated dCas9 programmable targeting domain to introduce DNA methylation into the human genome specifically at the EpCAM, CXCR4 and TFRC gene promoters. We show that targeting of these loci with single gRNAs leads to efficient and widespread methylation of the promoters. Multiplexing of several guide RNAs does not increase the efficiency of methylation. Peaks of targeted methylation were observed around 25 bp upstream and 40 bp downstream of the PAM site, while 20–30 bp of the binding site itself are protected against methylation. Potent methylation is dependent on the multimerization of Dnmt3a/Dnmt3L complexes on the DNA. Furthermore, the introduced methylation causes transcriptional repression of the targeted genes. These new programmable epigenetic editors allow unprecedented control of the DNA methylation status in cells and will lead to further advances in the understanding of epigenetic signaling. PMID:27899645
Binding of indomethacin methyl ester to cyclooxygenase-2. A computational study.
Sárosi, Menyhárt-Botond
2018-06-05
Inhibitors selective towards the second isoform of prostaglandin synthase (cyclooxygenase, COX-2) are promising nonsteroidal anti-inflammatory drugs and antitumor medications. Methylation of the carboxylate group in the relatively nonselective COX inhibitor indomethacin confers significant COX-2 selectivity. Several other modifications converting indomethacin into a COX-2 selective inhibitor have been reported. Earlier experimental and computational studies on neutral indomethacin derivatives suggest that the methyl ester derivative likely binds to COX-2 with a similar binding mode as that observed for the parent indomethacin. However, docking studies followed by molecular dynamics simulations revealed two possible binding modes in COX-2 for indomethacin methyl ester, which differs from the experimental binding mode found for indomethacin. Both alternative binding modes might explain the observed COX-2 selectivity of indomethacin methyl ester. Graphical abstract Binding of indomethacin methyl ester to cyclooxygenase-2.
High-throughput analysis of peptide binding modules
Liu, Bernard A.; Engelmann, Brett; Nash, Piers D.
2014-01-01
Modular protein interaction domains that recognize linear peptide motifs are found in hundreds of proteins within the human genome. Some protein interaction domains such as SH2, 14-3-3, Chromo and Bromo domains serve to recognize post-translational modification of amino acids (such as phosphorylation, acetylation, methylation etc.) and translate these into discrete cellular responses. Other modules such as SH3 and PDZ domains recognize linear peptide epitopes and serve to organize protein complexes based on localization and regions of elevated concentration. In both cases, the ability to nucleate specific signaling complexes is in large part dependent on the selectivity of a given protein module for its cognate peptide ligand. High throughput analysis of peptide-binding domains by peptide or protein arrays, phage display, mass spectrometry or other HTP techniques provides new insight into the potential protein-protein interactions prescribed by individual or even whole families of modules. Systems level analyses have also promoted a deeper understanding of the underlying principles that govern selective protein-protein interactions and how selectivity evolves. Lastly, there is a growing appreciation for the limitations and potential pitfalls of high-throughput analysis of protein-peptide interactomes. This review will examine some of the common approaches utilized for large-scale studies of protein interaction domains and suggest a set of standards for the analysis and validation of datasets from large-scale studies of peptide-binding modules. We will also highlight how data from large-scale studies of modular interaction domain families can provide insight into systems level properties such as the linguistics of selective interactions. PMID:22610655
In Planta Determination of the mRNA-Binding Proteome of Arabidopsis Etiolated Seedlings
Evers, Maurits; Alleaume, Anne-Marie; Horos, Rastislav
2016-01-01
RNA binding proteins (RBPs) control the fate and expression of a transcriptome. Despite this fundamental importance, our understanding of plant RBPs is rudimentary, being mainly derived via bioinformatic extrapolation from other kingdoms. Here, we adapted the mRNA-protein interactome capture method to investigate the RNA binding proteome in planta. From Arabidopsis thaliana etiolated seedlings, we captured more than 700 proteins, including 300 with high confidence that we have defined as the At-RBP set. Approximately 75% of these At-RBPs are bioinformatically linked with RNA biology, containing a diversity of canonical RNA binding domains (RBDs). As no prior experimental RNA binding evidence exists for the majority of these proteins, their capture now authenticates them as RBPs. Moreover, we identified protein families harboring emerging and potentially novel RBDs, including WHIRLY, LIM, ALBA, DUF1296, and YTH domain-containing proteins, the latter being homologous to animal RNA methylation readers. Other At-RBP set proteins include major signaling proteins, cytoskeleton-associated proteins, membrane transporters, and enzymes, suggesting the scope and function of RNA-protein interactions within a plant cell is much broader than previously appreciated. Therefore, our foundation data set has provided an unbiased insight into the RNA binding proteome of plants, on which future investigations into plant RBPs can be based. PMID:27729395
Manoharan, Herbert; Babcock, Karlee; Pitot, Henry C
2004-09-01
Monoallelic expression of the imprinted H19 and insulin-like growth factor-2 (Igf2) genes depends on the hypomethylation of the maternal allele and hypermethylation of the paternal allele of the H19 upstream region. Previous studies from our laboratory on liver carcinogenesis in the F1 hybrid of Fischer 344 (F344) and Sprague-Dawley Alb SV40 T Ag transgenic rat (SD) strains revealed the biallelic expression of H19 in hepatomas. We undertook a comparative study of the DNA methylation status of the upstream region of H19 in fetal, adult, and neoplastic liver. Bisulfite DNA sequencing analysis of a 3.745-kb DNA segment extending from 2950 to 6695 bp of the H19 upstream region revealed marked variations in the methylation patterns in fetal, adult, and neoplastic liver. In the fetal liver, equal proportions of hyper- and hypomethylated strands revealed the differentially methylated status of the parental alleles, but in neoplastic liver a pronounced change in the pattern of methylation was observed with a distinct change to hypomethylation in the short segments between 2984 and 3301 bp, 6033-6123 bp, and 6518-6548 bp. These results indicated that methylation of all cytosines in this region may contribute to the imprinting status of the rat H19 gene. This phenomenon of differential methylation-related epigenetic alteration in the key cis-regulatory domains of the H19 promoter influences switching to biallelic expression in hepatocellular carcinogenesis. Similar to mouse and human, we showed that the zinc-finger CCTCC binding factor (CTCF) binds to the unmethylated CTCF binding site in the upstream region to influence monoallelic imprinted expression in fetal liver. CTCF does not appear to be rate limiting in fetal, normal, and neoplastic liver. 3' to the CTCF binding sites, another DNA region exhibits methylation of CpG's in both DNA strands in adult liver, retention of the imprint in fetal liver, and complete demethylation in neoplastic liver. In this region is also a putative binding site for a basic helix-loop-helix leucine-zipper transcription factor, TFEB. The differential CpG methylation seen in the adult that involves the TFEB binding site may explain the lack of expression of the H19 gene in adult normal liver. Furthermore, these findings demonstrate that the loss of imprinting of the H19 gene in hepatic neoplasms of the SD Alb SV40 T Ag transgenic rat is directly correlated with and probably the result of differential methylation of CpG dinucleotides in two distinct regions of the gene that are within 4 kb 5' of the transcription start site. Cytogenetic analysis of hepatocytes in the transgenic animal prior to the appearance of nodules or neoplasms indicates a role of such loss of imprinting in the very early period of neoplastic development, possibly the transition from the stage of promotion to that of progression. Copyright 2004 Wiley-Liss, Inc.
Molecular basis for the role of oncogenic histone mutations in modulating H3K36 methylation
Zhang, Yinglu; Shan, Chun -Min; Wang, Jiyong; ...
2017-03-03
Histone H3 lysine 36 methylation (H3K36me) is critical for epigenetic regulation and mutations at or near H3K36 are associated with distinct types of cancers. H3K36M dominantly inhibits H3K36me on wild-type histones, whereas H3G34R/V selectively affects H3K36me on the same histone tail. Here we report the crystal structures of SETD2 SET domain in complex with an H3K36M peptide and SAM or SAH. There are large conformational changes in the substrate binding regions of the SET domain, and the K36M residue interacts with the catalytic pocket of SETD2. H3G34 is surrounded by a very narrow tunnel, which excludes larger amino acid sidemore » chains. H3P38 is in the trans configuration, and the cis configuration is incompatible with SETD2 binding. Lastly, mutations of H3G34 or H3P38 alleviate the inhibitory effects of H3K36M on H3K36me, demonstrating that the stable interaction of H3K36M with SETD2 is critical for its inhibitory effects.« less
Honda, Shinji; Bicocca, Vincent T.; Gessaman, Jordan D.; Rountree, Michael R.; Yokoyama, Ayumi; Yu, Eun Y.; Selker, Jeanne M. L.; Selker, Eric U.
2016-01-01
DNA methylation, heterochromatin protein 1 (HP1), histone H3 lysine 9 (H3K9) methylation, histone deacetylation, and highly repeated sequences are prototypical heterochromatic features, but their interrelationships are not fully understood. Prior work showed that H3K9 methylation directs DNA methylation and histone deacetylation via HP1 in Neurospora crassa and that the histone deacetylase complex HCHC is required for proper DNA methylation. The complex consists of the chromodomain proteins HP1 and chromodomain protein 2 (CDP-2), the histone deacetylase HDA-1, and the AT-hook motif protein CDP-2/HDA-1–associated protein (CHAP). We show that the complex is required for proper chromosome segregation, dissect its function, and characterize interactions among its components. Our analyses revealed the existence of an HP1-based DNA methylation pathway independent of its chromodomain. The pathway partially depends on CHAP but not on the CDP-2 chromodomain. CDP-2 serves as a bridge between the recognition of H3K9 trimethylation (H3K9me3) by HP1 and the histone deacetylase activity of HDA-1. CHAP is also critical for HDA-1 localization to heterochromatin. Specifically, the CHAP zinc finger interacts directly with the HDA-1 argonaute-binding protein 2 (Arb2) domain, and the CHAP AT-hook motifs recognize heterochromatic regions by binding to AT-rich DNA. Our data shed light on the interrelationships among the prototypical heterochromatic features and support a model in which dual recognition by the HP1 chromodomain and the CHAP AT-hooks are required for proper heterochromatin formation. PMID:27681634
Energetics of Glutamate Binding to an Ionotropic Glutamate Receptor.
Yu, Alvin; Lau, Albert Y
2017-11-22
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that are responsible for the majority of excitatory transmission at the synaptic cleft. Mechanically speaking, agonist binding to the ligand binding domain (LBD) activates the receptor by triggering a conformational change that is transmitted to the transmembrane region, opening the ion channel pore. We use fully atomistic molecular dynamics simulations to investigate the binding process in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, an iGluR subtype. The string method with swarms of trajectories was applied to calculate the possible pathways glutamate traverses during ligand binding. Residues peripheral to the binding cleft are found to metastably bind the ligand prior to ligand entry into the binding pocket. Umbrella sampling simulations were performed to compute the free energy barriers along the binding pathways. The calculated free energy profiles demonstrate that metastable interactions contribute substantially to the energetics of ligand binding and form local minima in the overall free energy landscape. Protein-ligand interactions at sites outside of the orthosteric agonist-binding site may serve to lower the transition barriers of the binding process.
Choi, Ucheor B.; Kazi, Rashek; Stenzoski, Natalie; Wollmuth, Lonnie P.; Uversky, Vladimir N.; Bowen, Mark E.
2013-01-01
The NMDA-sensitive glutamate receptor is a ligand-gated ion channel that mediates excitatory synaptic transmission in the nervous system. Extracellular zinc allosterically regulates the NMDA receptor by binding to the extracellular N-terminal domain, which inhibits channel gating. Phosphorylation of the intrinsically disordered intracellular C-terminal domain alleviates inhibition by extracellular zinc. The mechanism for this functional effect is largely unknown. Proline is a hallmark of intrinsic disorder, so we used proline mutagenesis to modulate disorder in the cytoplasmic domain. Proline depletion selectively uncoupled zinc inhibition with little effect on receptor biogenesis, surface trafficking, or ligand-activated gating. Proline depletion also reduced the affinity for a PDZ domain involved in synaptic trafficking and affected small molecule binding. To understand the origin of these phenomena, we used single molecule fluorescence and ensemble biophysical methods to characterize the structural effects of proline mutagenesis. Proline depletion did not eliminate intrinsic disorder, but the underlying conformational dynamics were changed. Thus, we altered the form of intrinsic disorder, which appears sufficient to affect the biological activity. These findings suggest that conformational dynamics within the intrinsically disordered cytoplasmic domain are important for the allosteric regulation of NMDA receptor gating. PMID:23782697
Zhu, Yuwei; Jiang, Xuguang; Wang, Chongyuan; Liu, Yang; Fan, Xiaojiao; Zhang, Linjuan; Niu, Liwen; Teng, Maikun; Li, Xu
2016-03-15
UbiG is a SAM-dependent O-methyltransferase, catalyzing two O-methyl transfer steps for ubiquinone biosynthesis in Escherichia coli. UbiG possesses a unique sequence insertion between β4 and α10, which is used for membrane lipid interaction. Interestingly, this sequence insertion also covers the methyl donor binding pocket. Thus, the relationship between membrane binding and entrance of the methyl donor of UbiG during the O-methyl transfer process is a question that deserves further exploration. In this study, we reveal that the membrane-binding region of UbiG gates the entrance of methyl donor. When bound with liposome, UbiG displays an enhanced binding ability toward the methyl donor product S-adenosylhomocysteine. We further employ protein engineering strategies to design UbiG mutants by truncating the membrane interacting region or making it more flexible. The ITC results show that the binding affinity of these mutants to SAH increases significantly compared with that of the wild-type UbiG. Moreover, we determine the structure of UbiG∆(165-187) in complex with SAH. Collectively, our results provide a new angle to cognize the relationship between membrane binding and entrance of the methyl donor of UbiG, which is of benefit for better understanding the O-methyl transfer process for ubiquinone biosynthesis.
Sakumi, K; Sekiguchi, M
1989-01-20
The Ada protein of Escherichia coli catalyzes transfer of methyl groups from methylated DNA to its own molecule, and the methylated form of Ada protein promotes transcription of its own gene, ada. Using an in vitro reconstituted system, we found that both the sigma factor and the methylated Ada protein are required for transcription of the ada gene. To elucidate molecular mechanisms involved in the regulation of the ada transcription, we investigated interactions of the non-methylated and methylated forms of Ada protein and the RNA polymerase holo enzyme (the core enzyme and sigma factor) with a DNA fragment carrying the ada promoter region. Footprinting analyses revealed that the methylated Ada protein binds to a region from positions -63 to -31, which includes the ada regulatory sequence AAAGCGCA. No firm binding was observed with the non-methylated Ada protein, although some DNase I-hypersensitive sites were produced in the promoter by both types of Ada protein. RNA polymerase did bind to the promoter once the methylated Ada protein had bound to the upstream sequence. To correlate these phenomena with the process in vivo, we used the DNAs derived from promoter-defective mutants. No binding of Ada protein nor of RNA polymerase occurred with a mutant DNA having a C to G substitution at position -47 within the ada regulatory sequence. In the case of a -35 box mutant with a T to A change at position -34, the methylated Ada protein did bind to the ada regulatory sequence, yet there was no RNA polymerase binding. Thus, the binding of the methylated Ada protein to the upstream region apparently facilitates binding of the RNA polymerase to the proper region of the promoter. The Ada protein possesses two known methyl acceptor sites, Cys69 and Cys321. The role of methylation of each cysteine residue was investigated using mutant forms of the Ada protein. The Ada protein with the cysteine residue at position 69 replaced by alanine was incapable of binding to the ada promoter even when the cysteine residue at position 321 of the protein was methylated. When the Ada protein with alanine at position 321 was methylated, it acquired the potential to bind to the ada promoter. These results are compatible with the notion that methylation of the cysteine residue at position 69 causes a conformational change of the Ada protein, thereby facilitating binding of the protein to the upstream regulatory sequence.
m6A RNA Methylation Controls Neural Development and Is Involved in Human Diseases.
Du, Kunzhao; Zhang, Longbin; Lee, Trevor; Sun, Tao
2018-06-16
RNA modifications are involved in many aspects of biological functions. N6-methyladenosine (m 6 A) is one of the most important forms of RNA methylation and plays a vital role in regulating gene expression, protein translation, cell behaviors, and physiological conditions in many species, including humans. The dynamic and reversible modification of m 6 A is conducted by three elements: methyltransferases ("writers"), such as methyltransferase-like protein 3 (METTL3) and METTL14; m 6 A-binding proteins ("readers"), such as the YTH domain family proteins (YTHDFs) and YTH domain-containing protein 1 (YTHDC1); and demethylases ("erasers"), such as fat mass and obesity-associated protein (FTO) and AlkB homolog 5 (ALKBH5). In this review, we summarize the current knowledge on mapping mRNA positions of m 6 A modification and revealing molecular processes of m 6 A. We further highlight the biological significance of m 6 A modification in neural cells during development of the nervous system and its association with human diseases. m 6 A RNA methylation is becoming a new frontier in neuroscience and should help us better understand neural development and neurological diseases from a novel point of view.
Landini, P; Bown, J A; Volkert, M R; Busby, S J
1998-05-22
The methylated form of the Ada protein (meAda) binds the ada and aidB promoters between 60 and 40 base pairs upstream from the transcription start and activates transcription of the Escherichia coli ada and aidB genes. This region is also a binding site for the alpha subunit of RNA polymerase and resembles the rrnB P1 UP element in A/T content and location relative to the core promoter. In this report, we show that deletion of the C-terminal domain of the alpha subunit severely decreases meAda-independent binding of RNA polymerase to ada and aidB, affecting transcription initiation at these promoters. We provide evidence that meAda activates transcription by direct interaction with the C-terminal domain of RNA polymerase sigma70 subunit (amino acids 574-613). Several negatively charged residues in the sigma70 C-terminal domain are important for transcription activation by meAda; in particular, a glutamic acid to valine substitution at position 575 has a dramatic effect on meAda-dependent transcription. Based on these observations, we propose that the role of the alpha subunit at ada and aidB is to allow initial binding of RNA polymerase to the promoters. However, transcription initiation is dependent on meAda-sigma70 interaction.
Qian, Wenjian; Park, Jung-Eun; Liu, Fa; Lee, Kyung S.; Burke, Terrence R.
2012-01-01
Protein-protein interactions (PPIs) mediated by the polo-box domain (PBD) of polo-like kinase 1 (Plk1) serve important roles in cell proliferation. Critical elements in the high affinity recognition of peptides and proteins by PBD are derived from pThr/pSer-residues in the binding ligands. However, there has been little examination of pThr/pSer mimetics within a PBD context. Our current paper compares the abilities of a variety of amino acid residues and derivatives to serve as pThr/pSer replacements by exploring the role of methyl functionality at the pThr β–position and by replacing the phosphoryl group by phosphonic acid, sulfonic acid and carboxylic acids. This work sheds new light on structure activity relationships for PBD recognition of phosphoamino acid mimetics. PMID:22743087
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunita, S.; Tkaczuk, K; Purta, E
2008-01-01
Methylation is the most common RNA modification in the three domains of life. Transfer of the methyl group from S-adenosyl-l-methionine (AdoMet) to specific atoms of RNA nucleotides is catalyzed by methyltransferase (MTase) enzymes. The rRNA MTase RlmI (rRNA large subunit methyltransferase gene I; previously known as YccW) specifically modifies Escherichia coli 23S rRNA at nucleotide C1962 to form 5-methylcytosine. Here, we report the crystal structure of RlmI refined at 2 {angstrom} to a final R-factor of 0.194 (R{sub free} = 0.242). The RlmI molecule comprises three domains: the N-terminal PUA domain; the central domain, which resembles a domain previously foundmore » in RNA:5-methyluridine MTases; and the C-terminal catalytic domain, which contains the AdoMet-binding site. The central and C-terminal domains are linked by a {Beta}-hairpin structure that has previously been observed in several MTases acting on nucleic acids or proteins. Based on bioinformatics analyses, we propose a model for the RlmI-AdoMet-RNA complex. Comparative structural analyses of RlmI and its homologs provide insight into the potential function of several structures that have been solved by structural genomics groups and furthermore indicate that the evolutionary paths of RNA and DNA 5-methyluridine and 5-methylcytosine MTases have been closely intertwined.« less
Moore, M H; Gulbis, J M; Dodson, E J; Demple, B; Moody, P C
1994-04-01
The mutagenic and carcinogenic effects of simple alkylating agents are mainly due to methylation at the O6 position of guanine in DNA. O6-methylguanine directs the incorporation of either thymine or cytosine without blocking DNA replication, resulting in GC to AT transition mutations. In prokaryotic and eukaryotic cells antimutagenic repair is effected by direct reversal of this DNA damage. A suicidal methyltransferase repair protein removes the methyl group from DNA to one of its own cysteine residues. The resulting self-methylation of the active site cysteine renders the protein inactive. Here we report the X-ray structure of the 19 kDa C-terminal domain of the Escherichia coli ada gene product, the prototype of these suicidal methyltransferases. In the crystal structure the active site cysteine is buried. We propose a model for the significant conformational change that the protein must undergo in order to bind DNA and effect methyl transfer.
Mosquera Orgueira, Adrián
2015-01-01
DNA methylation is a frequent epigenetic mechanism that participates in transcriptional repression. Variations in DNA methylation with respect to gene expression are constant, and, for unknown reasons, some genes with highly methylated promoters are sometimes overexpressed. In this study we have analyzed the expression and methylation patterns of thousands of genes in five groups of cancer and normal tissue samples in order to determine local and genome-wide differences. We observed significant changes in global methylation-expression correlation in all the neoplasms, which suggests that differential correlation events are frequent in cancer. A focused analysis in the breast cancer cohort identified 1662 genes whose correlation varies significantly between normal and cancerous breast, but whose DNA methylation and gene expression patterns do not change substantially. These genes were enriched in cancer-related pathways and repressive chromatin features across various model cell lines, such as PRC2 binding and H3K27me3 marks. Substantial changes in methylation-expression correlation indicate that these genes are subject to epigenetic remodeling, where the differential activity of other factors break the expected relationship between both variables. Our findings suggest a complex regulatory landscape where a redistribution of local and large-scale chromatin repressive domains at differentially correlated genes (DCGs) creates epigenetic hotspots that modulate cancer-specific gene expression.
A mutation-led search for novel functional domains in MeCP2.
Guy, Jacky; Alexander-Howden, Beatrice; FitzPatrick, Laura; DeSousa, Dina; Koerner, Martha V; Selfridge, Jim; Bird, Adrian
2018-04-27
Most missense mutations causing Rett syndrome affect domains of MeCP2 that have been shown to either bind methylated DNA or interact with a transcriptional co-repressor complex. Several mutations, however, including the C-terminal truncations that account for ∼10% of cases, fall outside these characterised domains. We studied the molecular consequences of four of these "non-canonical" mutations in cultured neurons and mice to see if they reveal additional essential domains without affecting known properties of MeCP2. The results show that the mutations partially or strongly deplete the protein and also in some cases interfere with co-repressor recruitment. These mutations therefore impact the activity of known functional domains and do not invoke new molecular causes of Rett syndrome. The finding that a stable C-terminal truncation does not compromise MeCP2 function raises the possibility that small molecules which stabilise these mutant proteins may be of therapeutic value.
Pokkuluri, P Raj; Dwulit-Smith, Jeff; Duke, Norma E; Wilton, Rosemarie; Mack, Jamey C; Bearden, Jessica; Rakowski, Ella; Babnigg, Gyorgy; Szurmant, Hendrik; Joachimiak, Andrzej; Schiffer, Marianne
2013-01-01
Anaeromyxobacter dehalogenans is a δ-proteobacterium found in diverse soils and sediments. It is of interest in bioremediation efforts due to its dechlorination and metal-reducing capabilities. To gain an understanding on A. dehalogenans' abilities to adapt to diverse environments we analyzed its signal transduction proteins. The A. dehalogenans genome codes for a large number of sensor histidine kinases (HK) and methyl-accepting chemotaxis proteins (MCP); among these 23 HK and 11 MCP proteins have a sensor domain in the periplasm. These proteins most likely contribute to adaptation to the organism's surroundings. We predicted their three-dimensional folds and determined the structures of two of the periplasmic sensor domains by X-ray diffraction. Most of the domains are predicted to have either PAS-like or helical bundle structures, with two predicted to have solute-binding protein fold, and another predicted to have a 6-phosphogluconolactonase like fold. Atomic structures of two sensor domains confirmed the respective fold predictions. The Adeh_2942 sensor (HK) was found to have a helical bundle structure, and the Adeh_3718 sensor (MCP) has a PAS-like structure. Interestingly, the Adeh_3718 sensor has an acetate moiety bound in a binding site typical for PAS-like domains. Future work is needed to determine whether Adeh_3718 is involved in acetate sensing by A. dehalogenans. PMID:23897711
RNA-dependent chromatin localization of KDM4D lysine demethylase promotes H3K9me3 demethylation
Zoabi, Muhammad; Nadar-Ponniah, Prathamesh T.; Khoury-Haddad, Hanan; Usaj, Marko; Budowski-Tal, Inbal; Haran, Tali; Henn, Arnon; Mandel-Gutfreund, Yael; Ayoub, Nabieh
2014-01-01
The JmjC-containing lysine demethylase, KDM4D, demethylates di-and tri-methylation of histone H3 on lysine 9 (H3K9me3). How KDM4D is recruited to chromatin and recognizes its histone substrates remains unknown. Here, we show that KDM4D binds RNA independently of its demethylase activity. We mapped two non-canonical RNA binding domains: the first is within the N-terminal spanning amino acids 115 to 236, and the second is within the C-terminal spanning amino acids 348 to 523 of KDM4D. We also demonstrate that RNA interactions with KDM4D N-terminal region are critical for its association with chromatin and subsequently for demethylating H3K9me3 in cells. This study implicates, for the first time, RNA molecules in regulating the levels of H3K9 methylation by affecting KDM4D association with chromatin. PMID:25378304
Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase.
Stepper, Peter; Kungulovski, Goran; Jurkowska, Renata Z; Chandra, Tamir; Krueger, Felix; Reinhardt, Richard; Reik, Wolf; Jeltsch, Albert; Jurkowski, Tomasz P
2017-02-28
DNA methylation plays a critical role in the regulation and maintenance of cell-type specific transcriptional programs. Targeted epigenome editing is an emerging technology to specifically regulate cellular gene expression in order to modulate cell phenotypes or dissect the epigenetic mechanisms involved in their control. In this work, we employed a DNA methyltransferase Dnmt3a-Dnmt3L construct fused to the nuclease-inactivated dCas9 programmable targeting domain to introduce DNA methylation into the human genome specifically at the EpCAM, CXCR4 and TFRC gene promoters. We show that targeting of these loci with single gRNAs leads to efficient and widespread methylation of the promoters. Multiplexing of several guide RNAs does not increase the efficiency of methylation. Peaks of targeted methylation were observed around 25 bp upstream and 40 bp downstream of the PAM site, while 20-30 bp of the binding site itself are protected against methylation. Potent methylation is dependent on the multimerization of Dnmt3a/Dnmt3L complexes on the DNA. Furthermore, the introduced methylation causes transcriptional repression of the targeted genes. These new programmable epigenetic editors allow unprecedented control of the DNA methylation status in cells and will lead to further advances in the understanding of epigenetic signaling. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Diversification of HP1-like Chromo Domain Proteins in Tetrahymena thermophila.
Wiley, Emily A; Horrell, Scott; Yoshino, Alyssa; Schornak, Cara C; Bagnani, Claire; Chalker, Douglas L
2018-01-01
Proteins that possess a chromo domain are well-known for their roles in heterochromatin assembly and maintenance. The Heterochromatin Protein 1 (HP1) family, with a chromo domain and carboxy-terminal chromo shadow domain, targets heterochromatin through interaction with histone H3 methylated on lysine 9 (H3K9me2/3). The structural and functional diversity of these proteins observed in both fission yeast and metazoans correlate with chromatin specialization. To expand these studies, we examined chromo domain proteins in the ciliate Tetrahymena thermophila, which has functionally diverse and developmentally regulated heterochromatin domains. We identified thirteen proteins similar to HP1. Together they possess only a fraction of the possible chromo domain subtypes and most lack a recognizable chromo shadow domain. Using fluorescence microscopy to track chromatin localization of tagged proteins through the life cycle, we show evidence that in T. thermophila this family has diversified with biological roles in RNAi-directed DNA elimination, germline genome structure, and somatic heterochromatin. Those proteins with H3K27me3 binding sequence characteristics localize to chromatin in mature nuclei, whereas those with H3K9me2/3 binding characteristics localize to developing nuclei undergoing DNA elimination. Findings point to an expanded and diversified family of chromo domain proteins that parallels heterochromatin diversity in ciliates. © 2017 The Authors. Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists.
Yegnasubramanian, Srinivasan; Lin, Xiaohui; Haffner, Michael C; DeMarzo, Angelo M; Nelson, William G
2006-02-09
Hypermethylation of CpG island (CGI) sequences is a nearly universal somatic genome alteration in cancer. Rapid and sensitive detection of DNA hypermethylation would aid in cancer diagnosis and risk stratification. We present a novel technique, called COMPARE-MS, that can rapidly and quantitatively detect CGI hypermethylation with high sensitivity and specificity in hundreds of samples simultaneously. To quantitate CGI hypermethylation, COMPARE-MS uses real-time PCR of DNA that was first digested by methylation-sensitive restriction enzymes and then precipitated by methyl-binding domain polypeptides immobilized on a magnetic solid matrix. We show that COMPARE-MS could detect five genome equivalents of methylated CGIs in a 1000- to 10,000-fold excess of unmethylated DNA. COMPARE-MS was used to rapidly quantitate hypermethylation at multiple CGIs in >155 prostate tissues, including benign and malignant prostate specimens, and prostate cell lines. This analysis showed that GSTP1, MDR1 and PTGS2 CGI hypermethylation as determined by COMPARE-MS could differentiate between malignant and benign prostate with sensitivities >95% and specificities approaching 100%. This novel technology could significantly improve our ability to detect CGI hypermethylation.
He, Chao; Li, Fudong; Zhang, Jiahai; Wu, Jihui; Shi, Yunyu
2013-02-15
The NSD (nuclear receptor SET domain-containing) family members, consisting of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1), are SET domain-containing methyltransferases and aberrant expression of each member has been implicated in multiple diseases. They have specific mono- and dimethylase activities for H3K36, whereas play nonredundant roles during development. Aside from the well characterized catalytic SET domain, NSD proteins have multiple potential chromatin-binding motifs that are clinically relevant, including the fifth plant homeodomain (PHD5) and the adjacent Cys-His-rich domain (C5HCH) located at the C terminus. Herein, we report the crystal structures of the PHD5-C5HCH module of NSD3, in the free state and in complex with H3(1-7) (H3 residues 1-7), H3(1-15) (H3 residues 1-15), and H3(1-15)K9me3 (H3 residues 1-15 with trimethylation on K9) peptides. These structures reveal that the PHD5 and C5HCH domains fold into a novel integrated PHD-PHD-like structural module with H3 peptide bound only on the surface of PHD5 and provide the molecular basis for the recognition of unmodified H3K4 and trimethylated H3K9 by NSD3 PHD5. Structural studies and binding assays show that differences exist in histone binding specificity of the PHD5 domain between three members of the NSD family. For NSD2, the PHD5-C5HCH:H3 N terminus interaction is largely conserved, although with a stronger preference for unmethylated H3K9 (H3K9me0) than trimethylated H3K9 (H3K9me3), and NSD1 PHD5-C5HCH does not bind to H3 peptides. Our results shed light on how NSD proteins that mediate H3K36 methylation are localized to specific genomic sites and provide implications for the mechanism of functional diversity of NSD proteins.
Sumner-Smith, M; Roy, S; Barnett, R; Reid, L S; Kuperman, R; Delling, U; Sonenberg, N
1991-01-01
The human immunodeficiency virus type 1 Tat protein binds to an RNA stem-loop structure called TAR which is present at the 5' end of all human immunodeficiency virus type 1 transcripts. This binding is centered on a bulge within the stem of TAR and is an essential step in the trans-activation process which results in a dramatic increase in viral gene expression. By analysis of a series of TAR derivatives produced by transcription or direct chemical synthesis, we determined the structural and chemical requirements for Tat binding. Tat binds well to structures which have a bulge of two to at least five unpaired bases bounded on both sides by a double-stranded RNA stem. This apparent flexibility in bulge size is in contrast to an absolute requirement for an unpaired uridine (U) in the 5'-most position of the bulge (+23). Substitution of the U with either natural bases or chemical analogs demonstrated that the imido group at the N-3 position and, possibly, the carbonyl group at the C-4 position of U are critical for Tat binding. Cytosine (C), which differs from U at only these positions, is not an acceptable substitute. Furthermore, methylation at N-3 abolishes binding. While methylation of U at the C-5 position has little effect on binding, fluorination reduces it, possibly because of its effects on relative tautomer stability at the N-3 and C-4 positions. Thus, we have identified key moieties in the U residue that are of importance for the binding of Tat to TAR RNA. We hypothesize that the invariant U is involved in hydrogen bond interactions with either another part of TAR or the TAR-binding domain in Tat. Images PMID:1895380
2012-01-01
Background The organization of higher order chromatin is an emerging epigenetic mechanism for understanding development and disease. We and others have previously observed dynamic changes during differentiation and oncogenesis in large heterochromatin domains such as Large Organized Chromatin K (lysine) modifications (LOCKs), of histone H3 lysine-9 dimethylation (H3K9me2) or other repressive histone posttranslational modifications. The microstructure of these regions has not previously been explored. Results We analyzed the genome-wide distribution of H3K9me2 in two human pluripotent stem cell lines and three differentiated cells lines. We identified > 2,500 small regions with very low H3K9me2 signals in the body of LOCKs, which were termed as euchromatin islands (EIs). EIs are 6.5-fold enriched for DNase I Hypersensitive Sites and 8-fold enriched for the binding of CTCF, the major organizer of higher-order chromatin. Furthermore, EIs are 2–6 fold enriched for differentially DNA-methylated regions associated with tissue types (T-DMRs), reprogramming (R-DMRs) and cancer (C-DMRs). Gene ontology (GO) analysis suggests that EI-associated genes are functionally related to organ system development, cell adhesion and cell differentiation. Conclusions We identify the existence of EIs as a finer layer of epigenomic architecture within large heterochromatin domains. Their enrichment for CTCF sites and DNAse hypersensitive sites, as well as association with DMRs, suggest that EIs play an important role in normal epigenomic architecture and its disruption in disease. PMID:23102236
Balasubramaniyan, Natarajan; Ananthanarayanan, Meena
2012-01-01
The farnesoid X receptor (FXR) is a ligand (bile acid)-dependent nuclear receptor that regulates target genes involved in every aspect of bile acid homeostasis. Upon binding of ligand, FXR recruits an array of coactivators and associated proteins, some of which have intrinsic enzymatic activity that modify histones or even components of the transcriptional complex. In this study, we show chromatin occupancy by the Set7/9 methyltransferase at the FXR response element (FXRE) and direct methylation of FXR in vivo and in vitro at lysine 206. siRNA depletion of Set7/9 in the Huh-7 liver cell line decreased endogenous mRNAs of the FXR target genes, the short heterodimer partner (SHP) and bile salt export pump (BSEP). Mutation of the methylation site at K206 of FXR to an arginine prevented methylation by Set7/9. A pan-methyllysine antibody recognized the wild-type FXR but not the K206R mutant form. An electromobility shift assay showed that methylation by Set7/9 enhanced binding of FXR/retinoic X receptor-α to the FXRE. Interaction between hinge domain of FXR (containing K206) and Set7/9 was confirmed by coimmunoprecipitation, GST pull down, and mammalian two-hybrid experiments. Set7/9 overexpression in Huh-7 cells significantly enhanced transactivation of the SHP and BSEP promoters in a ligand-dependent fashion by wild-type FXR but not the K206R mutant FXR. A Set7/9 mutant deficient in methyltransferase activity was also not effective in increasing transactivation of the BSEP promoter. These studies demonstrate that posttranslational methylation of FXR by Set7/9 contributes to the transcriptional activation of FXR-target genes. PMID:22345554
FACT is a sensor of DNA torsional stress in eukaryotic cells
Safina, Alfiya; Cheney, Peter; Pal, Mahadeb; Brodsky, Leonid; Ivanov, Alexander; Kirsanov, Kirill; Lesovaya, Ekaterina; Naberezhnov, Denis; Nesher, Elimelech; Koman, Igor; Wang, Dan; Wang, Jianming; Yakubovskaya, Marianna; Winkler, Duane
2017-01-01
Abstract Transitions of B-DNA to alternative DNA structures (ADS) can be triggered by negative torsional strain, which occurs during replication and transcription, and may lead to genomic instability. However, how ADS are recognized in cells is unclear. We found that the binding of candidate anticancer drug, curaxin, to cellular DNA results in uncoiling of nucleosomal DNA, accumulation of negative supercoiling and conversion of multiple regions of genomic DNA into left-handed Z-form. Histone chaperone FACT binds rapidly to the same regions via the SSRP1 subunit in curaxin-treated cells. In vitro binding of purified SSRP1 or its isolated CID domain to a methylated DNA fragment containing alternating purine/pyrimidines, which is prone to Z-DNA transition, is much stronger than to other types of DNA. We propose that FACT can recognize and bind Z-DNA or DNA in transition from a B to Z form. Binding of FACT to these genomic regions triggers a p53 response. Furthermore, FACT has been shown to bind to other types of ADS through a different structural domain, which also leads to p53 activation. Thus, we propose that FACT acts as a sensor of ADS formation in cells. Recognition of ADS by FACT followed by a p53 response may explain the role of FACT in DNA damage prevention. PMID:28082391
Druggability of methyl-lysine binding sites
NASA Astrophysics Data System (ADS)
Santiago, C.; Nguyen, K.; Schapira, M.
2011-12-01
Structural modules that specifically recognize—or read—methylated or acetylated lysine residues on histone peptides are important components of chromatin-mediated signaling and epigenetic regulation of gene expression. Deregulation of epigenetic mechanisms is associated with disease conditions, and antagonists of acetyl-lysine binding bromodomains are efficacious in animal models of cancer and inflammation, but little is known regarding the druggability of methyl-lysine binding modules. We conducted a systematic structural analysis of readers of methyl marks and derived a predictive druggability landscape of methyl-lysine binding modules. We show that these target classes are generally less druggable than bromodomains, but that some proteins stand as notable exceptions.
Insights into the nature of DNA binding of AbrB-like transcription factors
Sullivan, Daniel M.; Bobay, Benjamin G.; Kojetin, Douglas J.; Thompson, Richele J.; Rance, Mark; Strauch, Mark A.; Cavanagh, John
2008-01-01
Summary Understanding the DNA recognition and binding by the AbrB-like family of transcriptional regulators is of significant interest since these proteins enable bacteria to elicit the appropriate response to diverse environmental stimuli. Although these ‘transition-state regulator’ proteins have been well characterized at the genetic level, the general and specific mechanisms of DNA binding remain elusive. We present RDC-refined NMR solution structures and dynamic properties of the DNA-binding domains of three Bacillus subtilis transition-state regulators AbrB, Abh, and SpoVT. We combined previously investigated DNase I footprinting, DNA methylation, gel shift assays, mutagenic and NMR studies to generate a structural model of the complex between AbrBN55 and its cognate promoter, abrB8. These investigations have enabled us to generate the first model for the specific nature of the transition-state regulator-DNA interaction. PMID:19000822
Membrane Localization is Critical for Activation of the PICK1 BAR Domain
Madsen, Kenneth L.; Eriksen, Jacob; Milan-Lobo, Laura; Han, Daniel S.; Niv, Masha Y.; Ammendrup-Johnsen, Ina; Henriksen, Ulla; Bhatia, Vikram K.; Stamou, Dimitrios; Sitte, Harald H.; McMahon, Harvey T.; Weinstein, Harel; Gether, Ulrik
2013-01-01
The PSD-95/Discs-large/ZO-1 homology (PDZ) domain protein, protein interacting with C kinase 1 (PICK1) contains a C-terminal Bin/amphiphysin/Rvs (BAR) domain mediating recognition of curved membranes; however, the molecular mechanisms controlling the activity of this domain are poorly understood. In agreement with negative regulation of the BAR domain by the N-terminal PDZ domain, PICK1 distributed evenly in the cytoplasm, whereas truncation of the PDZ domain caused BAR domain-dependent redistribution to clusters colocalizing with markers of recycling endosomal compartments. A similar clustering was observed both upon truncation of a short putative α-helical segment in the linker between the PDZ and the BAR domains and upon coexpression of PICK1 with a transmembrane PDZ ligand, including the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR2 subunit, the GluR2 C-terminus transferred to the single transmembrane protein Tac or the dopamine transporter C-terminus transferred to Tac. In contrast, transfer of the GluR2 C-terminus to cyan fluorescent protein, a cytosolic protein, did not elicit BAR domain-dependent clustering. Instead, localizing PICK1 to the membrane by introducing an N-terminal myristoylation site produced BAR domain-dependent, but ligand-independent, PICK1 clustering. The data support that in the absence of PDZ ligand, the PICK1 BAR domain is inhibited through a PDZ domain-dependent and linker-dependent mechanism. Moreover, they suggest that unmasking of the BAR domain’s membrane-binding capacity is not a consequence of ligand binding to the PDZ domain per se but results from, and coincides with, recruitment of PICK1 to a membrane compartment. PMID:18466293
Neco, Antonio Hadson Bastos; Pinto-Junior, Vanir Reis; Araripe, David Alencar; Santiago, Mayara Queiroz; Osterne, Vinicius Jose Silva; Lossio, Claudia Figueiredo; Nobre, Clareane Avelino Simplicio; Oliveira, Messias Vital; Silva, Mayara Torquato Lima; Martins, Maria Gleiciane Queiroz; Cajazeiras, Joao Batista; Marques, Gabriela Fernandes Oliveira; Costa, Diego Rabelo; Nascimento, Kyria Santiago; Assreuy, Ana Maria Sampaio; Cavada, Benildo Sousa
2018-05-24
Lectins represent a class of proteins or glycoproteins capable of reversibly binding to carbohydrates. Seed lectins from the Dalbergieae tribe (Leguminosae) have structural variability, carbohydrate specificity, and biological effects, such as inflammation, vasorelaxation and cancer antigen binding. To comprehensively address these factors, the present work aimed to establish and characterize the three-dimensional structure of Centrolobium microchaete lectin (CML) by homology modeling, investigate protein-carbohydrate interactions and evaluate its inflammatory effect on mice. Molecular docking was performed to analyze interactions of the lectin with monosaccharides, disaccharides and N-glycans. Two dimannosides, methyl mannose-1,3-α-D-mannose (MDM) and mannose-1,3-α-D-mannose (M13), were used in molecular dynamics (MD) simulations to study the behavior of the carbohydrate-recognition domain (CRD) over time. Results showed an expanded domain within which hydrophobic interactions with the methyl group in the MDM molecule were established, thus revealing novel interactions for mannose-specific Dalbergieae lectins. To examine its biological activities, CML was purified in a single step by affinity chromatography on Sepharose-mannose matrix. The lectin demonstrated inflammatory response in the paw edema model and stimulated leukocyte migration to the animal peritoneal cavities, an effect elicited by CRD. For the first time, this work reports the molecular dynamics of a lectin from the Dalbergieae tribe. Copyright © 2018 Elsevier B.V. All rights reserved.
53BP1 is a reader of the DNA damage-induced H2A Lys15 ubiquitin mark
Fradet-Turcotte, Amélie; Canny, Marella D.; Escribano-Díaz, Cristina; Orthwein, Alexandre; Leung, Charles C.Y.; Huang, Hao; Landry, Marie-Claude; Kitevski-LeBlanc, Julianne; Noordermeer, Sylvie M.; Sicheri, Frank; Durocher, Daniel
2014-01-01
53BP1 (TP53BP1) is a chromatin-associated factor that promotes immunoglobulin class switching and DNA double-strand break (DSB) repair by non-homologous end joining. To accomplish its function in DNA repair, 53BP1 accumulates at DSB sites downstream of the RNF168 ubiquitin ligase. How ubiquitin recruits 53BP1 to break sites remains enigmatic since its relocalization involves recognition of H4 Lys20 (H4K20) methylation by its Tudor domain. Here we elucidate how 53BP1 is recruited to the chromatin that flanks DSB sites. We show that 53BP1 recognizes mono-nucleosomes containing dimethylated H4K20 (H4K20me2) and H2A ubiquitylated on Lys15 (H2AK15ub), the latter being a product of RNF168 action on chromatin. 53BP1 binds to nucleosomes minimally as a dimer using its previously characterized methyl-lysine-binding Tudor domain and a C-terminal extension, termed the ubiquitylation-dependent recruitment (UDR) motif, which interacts with the epitope formed by H2AK15ub and its surrounding residues on the H2A tail. 53BP1 is therefore a bivalent histone modification reader that recognizes a histone “code” produced by DSB signaling. PMID:23760478
Dutta, Aditya; Choudhary, Pratibha; Caruana, Julie; Raina, Ramesh
2017-09-01
Histone methylation is known to dynamically regulate diverse developmental and physiological processes. Histone methyl marks are written by methyltransferases and erased by demethylases, and result in modification of chromatin structure to repress or activate transcription. However, little is known about how histone methylation may regulate defense mechanisms and flowering time in plants. Here we report characterization of JmjC DOMAIN-CONTAINING PROTEIN 27 (JMJ27), an Arabidopsis JHDM2 (JmjC domain-containing histone demethylase 2) family protein, which modulates defense against pathogens and flowering time. JMJ27 is a nuclear protein containing a zinc-finger motif and a catalytic JmjC domain with conserved Fe(II) and α-ketoglutarate binding sites, and displays H3K9me1/2 demethylase activity both in vitro and in vivo. JMJ27 is induced in response to virulent Pseudomonas syringae pathogens and is required for resistance against these pathogens. JMJ27 is a negative modulator of WRKY25 (a repressor of defense) and a positive modulator of several pathogenesis-related (PR) proteins. Additionally, loss of JMJ27 function leads to early flowering. JMJ27 negatively modulates the major flowering regulator CONSTANS (CO) and positively modulates FLOWERING LOCUS C (FLC). Taken together, our results indicate that JMJ27 functions as a histone demethylase to modulate both physiological (defense) and developmental (flowering time) processes in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Cady, Sarah D.; Wang, Jun; Wu, Yibing; DeGrado, William F.; Hong, Mei
2011-01-01
The transmembrane domain of the influenza M2 protein (M2TM) forms a tetrameric proton channel important for the virus lifecycle. The proton-channel activity is inhibited by amine-containing adamantyl drugs amantadine and rimantadine, which have been shown to bind specifically to the pore of M2TM near Ser31. However, whether the polar amine points to the N- or C-terminus of the channel has not yet been determined. Elucidating the polar group direction will shed light on the mechanism by which drug binding inhibits this proton channel and will facilitate rational design of new inhibitors. In this study, we determine the polar amine direction using M2TM reconstituted in lipid bilayers as well as DPC micelles. 13C-2H rotational-echo double-resonance NMR experiments of 13C-labeled M2TM and methyl-deuterated rimantadine in lipid bilayers showed that the polar amine pointed to the C-terminus of the channel, with the methyl group close to Gly34. Solution NMR experiments of M2TM in dodecylphosphocholine (DPC) micelles indicate that drug binding causes significant chemical shift perturbations of the protein that are very similar to those seen for M2TM and M2(18–60) bound to lipid bilayers. Specific 2H-labeling of the drugs permitted the assignment of drug-protein cross peaks, which indicate that amantadine and rimantadine bind to the pore in the same fashion as for bilayer-bound M2TM. These results strongly suggest that adamantyl inhibition of M2TM is achieved not only by direct physical occlusion of the pore but also by perturbing the equilibrium constant of the proton-sensing residue His37. The reproduction of the pharmacologically relevant specific pore-binding site in DPC micelles, which was not observed with a different detergent, DHPC, underscores the significant influence of the detergent environment on the functional structure of membrane proteins. PMID:21381693
Nguyen, Khiem; Li, Jin; Puthenveetil, Robbins; Lin, Xiaochen; Poe, Michael M; Hsiao, Chia-Hung Christine; Vinogradova, Olga; Wiemer, Andrew J
2017-11-01
Small isoprenoid diphosphates, such as ( E )-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), are ligands of the internal domain of BTN3A1. Ligand binding in target cells promotes activation of Vγ9Vδ2 T cells. We demonstrate by small-angle X-ray scattering (SAXS) that HMBPP binding to the internal domain of BTN3A1 induces a conformational change in the position of the B30.2 domain relative to the juxtamembrane (JM) region. To better understand the molecular details of this conformational rearrangement, NMR spectroscopy was used to discover that the JM region interacts with HMBPP, specifically at the diphosphate. The spectral location of the affected amide peaks, partial NMR assignments, and JM mutants (ST 296 AA or T 304 A) investigated, confirm that the backbone amide of at least one Thr (Thr 304 ), adjacent to conserved Ser, comes close to the HMBPP diphosphate, whereas double mutation of nonconserved residues (Ser/Thr 296/297 ) may perturb the local fold. Cellular mutation of either of the identified Thr residues reduces the activation of Vγ9Vδ2 T cells by HMBPP, zoledronate, and POM 2 -C-HMBP, but not by a partial agonist BTN3 antibody. Taken together, our results show that ligand binding to BTN3A1 induces a conformational change within the intracellular domain that involves the JM region and is required for full activation.-Nguyen, K., Li, J., Puthenveetil, R., Lin, X., Poe, M. M., Hsiao, C.-H. C., Vinogradova, O., Wiemer, A. J. The butyrophilin 3A1 intracellular domain undergoes a conformational change involving the juxtamembrane region. © FASEB.
Mosquera Orgueira, Adrián
2015-01-01
DNA methylation is a frequent epigenetic mechanism that participates in transcriptional repression. Variations in DNA methylation with respect to gene expression are constant, and, for unknown reasons, some genes with highly methylated promoters are sometimes overexpressed. In this study we have analyzed the expression and methylation patterns of thousands of genes in five groups of cancer and normal tissue samples in order to determine local and genome-wide differences. We observed significant changes in global methylation-expression correlation in all the neoplasms, which suggests that differential correlation events are frequent in cancer. A focused analysis in the breast cancer cohort identified 1662 genes whose correlation varies significantly between normal and cancerous breast, but whose DNA methylation and gene expression patterns do not change substantially. These genes were enriched in cancer-related pathways and repressive chromatin features across various model cell lines, such as PRC2 binding and H3K27me3 marks. Substantial changes in methylation-expression correlation indicate that these genes are subject to epigenetic remodeling, where the differential activity of other factors break the expected relationship between both variables. Our findings suggest a complex regulatory landscape where a redistribution of local and large-scale chromatin repressive domains at differentially correlated genes (DCGs) creates epigenetic hotspots that modulate cancer-specific gene expression. PMID:26029238
Structure of 5-hydroxymethylcytosine-specific restriction enzyme, AbaSI, in complex with DNA.
Horton, John R; Borgaro, Janine G; Griggs, Rose M; Quimby, Aine; Guan, Shengxi; Zhang, Xing; Wilson, Geoffrey G; Zheng, Yu; Zhu, Zhenyu; Cheng, Xiaodong
2014-07-01
AbaSI, a member of the PvuRts1I-family of modification-dependent restriction endonucleases, cleaves deoxyribonucleic acid (DNA) containing 5-hydroxymethylctosine (5hmC) and glucosylated 5hmC (g5hmC), but not DNA containing unmodified cytosine. AbaSI has been used as a tool for mapping the genomic locations of 5hmC, an important epigenetic modification in the DNA of higher organisms. Here we report the crystal structures of AbaSI in the presence and absence of DNA. These structures provide considerable, although incomplete, insight into how this enzyme acts. AbaSI appears to be mainly a homodimer in solution, but interacts with DNA in our structures as a homotetramer. Each AbaSI subunit comprises an N-terminal, Vsr-like, cleavage domain containing a single catalytic site, and a C-terminal, SRA-like, 5hmC-binding domain. Two N-terminal helices mediate most of the homodimer interface. Dimerization brings together the two catalytic sites required for double-strand cleavage, and separates the 5hmC binding-domains by ∼70 Å, consistent with the known activity of AbaSI which cleaves DNA optimally between symmetrically modified cytosines ∼22 bp apart. The eukaryotic SET and RING-associated (SRA) domains bind to DNA containing 5-methylcytosine (5mC) in the hemi-methylated CpG sequence. They make contacts in both the major and minor DNA grooves, and flip the modified cytosine out of the helix into a conserved binding pocket. In contrast, the SRA-like domain of AbaSI, which has no sequence specificity, contacts only the minor DNA groove, and in our current structures the 5hmC remains intra-helical. A conserved, binding pocket is nevertheless present in this domain, suitable for accommodating 5hmC and g5hmC. We consider it likely, therefore, that base-flipping is part of the recognition and cleavage mechanism of AbaSI, but that our structures represent an earlier, pre-flipped stage, prior to actual recognition. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Structure of 5-hydroxymethylcytosine-specific restriction enzyme, AbaSI, in complex with DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horton, John R.; Borgaro, Janine G.; Griggs, Rose M.
2014-07-03
AbaSI, a member of the PvuRts1I-family of modification-dependent restriction endonucleases, cleaves DNA containing 5-hydroxymethylctosine (5hmC) and glucosylated 5hmC (g5hmC), but not DNA containing unmodified cytosine. AbaSI has been used as a tool for mapping the genomic locations of 5hmC, an important epigenetic modification in the DNA of higher organisms. Here we report the crystal structures of AbaSI in the presence and absence of DNA. These structures provide considerable, although incomplete, insight into how this enzyme acts. AbaSI appears to be mainly a homodimer in solution, but interacts with DNA in our structures as a homotetramer. Each AbaSI subunit comprises anmore » N-terminal, Vsr-like, cleavage domain containing a single catalytic site, and a C-terminal, SRA-like, 5hmC-binding domain. Two N-terminal helices mediate most of the homodimer interface. Dimerization brings together the two catalytic sites required for double-strand cleavage, and separates the 5hmC binding-domains by ~ 70 Å, consistent with the known activity of AbaSI which cleaves DNA optimally between symmetrically modified cytosines ~ 22 bp apart. The eukaryotic SET and RING-associated (SRA) domains bind to DNA containing 5-methylcytosine (5mC) in the hemi-methylated CpG sequence. They make contacts in both the major and minor DNA grooves, and flip the modified cytosine out of the helix into a conserved binding pocket. In contrast, the SRA-like domain of AbaSI, which has no sequence specificity, contacts only the minor DNA groove, and in our current structures the 5hmC remains intra-helical. A conserved, binding pocket is nevertheless present in this domain, suitable for accommodating 5hmC and g5hmC. We consider it likely, therefore, that base-flipping is part of the recognition and cleavage mechanism of AbaSI, but that our structures represent an earlier, pre-flipped stage, prior to actual recognition.« less
Shinzato, Naoya; Enoki, Miho; Sato, Hiroaki; Nakamura, Kohei; Matsui, Toru; Kamagata, Yoichi
2008-10-01
Two methyl coenzyme M reductases (MCRs) encoded by the mcr and mrt operons of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus DeltaH are expressed in response to H(2) availability. In the present study, cis elements and trans-acting factors responsible for the gene expression of MCRs were investigated by using electrophoretic mobility shift assay (EMSA) and affinity particle purification. A survey of their operator regions by EMSA with protein extracts from mrt-expressing cultures restricted them to 46- and 41-bp-long mcr and mrt upstream regions, respectively. Affinity particle purification of DNA-binding proteins conjugated with putative operator regions resulted in the retrieval of a protein attributed to IMP dehydrogenase-related protein VII (IMPDH VII). IMPDH VII is predicted to have a winged helix-turn-helix DNA-binding motif and two cystathionine beta-synthase domains, and it has been suspected to be an energy-sensing module. EMSA with oligonucleotide probes with unusual sequences showed that the binding site of IMPDH VII mostly overlaps the factor B-responsible element-TATA box of the mcr operon. The results presented here suggest that IMPDH VII encoded by MTH126 is a plausible candidate for the transcriptional regulator of the mcr operon in this methanogen.
Sano, Osamu; Ito, Shiho; Kato, Reiko; Shimizu, Yuji; Kobayashi, Aya; Kimura, Yasuhisa; Kioka, Noriyuki; Hanada, Kentaro; Ueda, Kazumitsu; Matsuo, Michinori
2014-01-01
ATP-binding cassette A1 (ABCA1), ABCG1, and ABCG4 are lipid transporters that mediate the efflux of cholesterol from cells. To analyze the characteristics of these lipid transporters, we examined and compared their distributions and lipid efflux activity on the plasma membrane. The efflux of cholesterol mediated by ABCA1 and ABCG1, but not ABCG4, was affected by a reduction of cellular sphingomyelin levels. Detergent solubility and gradient density ultracentrifugation assays indicated that ABCA1, ABCG1, and ABCG4 were distributed to domains that were solubilized by Triton X-100 and Brij 96, resistant to Triton X-100 and Brij 96, and solubilized by Triton X-100 but resistant to Brij 96, respectively. Furthermore, ABCG1, but not ABCG4, was colocalized with flotillin-1 on the plasma membrane. The amounts of cholesterol extracted by methyl-β-cyclodextrin were increased by ABCA1, ABCG1, or ABCG4, suggesting that cholesterol in non-raft domains was increased. Furthermore, ABCG1 and ABCG4 disturbed the localization of caveolin-1 to the detergent-resistant domains and the binding of cholera toxin subunit B to the plasma membrane. These results suggest that ABCA1, ABCG1, and ABCG4 are localized to distinct membrane meso-domains and disturb the meso-domain structures by reorganizing lipids on the plasma membrane; collectively, these observations may explain the different substrate profiles and lipid efflux roles of these transporters.
CpG methylation increases the DNA binding of 9-aminoacridine carboxamide Pt analogues.
Kava, Hieronimus W; Murray, Vincent
2016-10-01
This study investigated the effect of CpG methylation on the DNA binding of cisplatin analogues with an attached aminoacridine intercalator. DNA-targeted 9-aminoacridine carboxamide Pt complexes are known to bind at 5'-CpG sequences. Their binding to methylated and non-methylated 5'-CpG sequences was determined and compared with cisplatin. The damage profiles of each platinum compound were quantified via a polymerase stop assay with fluorescently labelled primers and capillary electrophoresis. Methylation at 5'-CpG was shown to significantly increase the binding intensity for the 9-aminoacridine carboxamide compounds, whereas no significant increase was found for cisplatin. 5'-CpG methylation had the largest effect on the 9-ethanolamine-acridine carboxamide Pt complex, followed by the 9-aminoacridine carboxamide Pt complex and the 7-fluoro complex. The methylation state of a cell's genome is important in maintaining normal gene expression, and is often aberrantly altered in cancer cells. An analogue of cisplatin which differentially targets methylated DNA may be able to improve its therapeutic activity, or alter its range of targets and evade the chemoresistance which hampers cisplatin efficacy in clinical use. Copyright © 2016 Elsevier Ltd. All rights reserved.
Region of interest methylation analysis: a comparison of MSP with MS-HRM and direct BSP.
Akika, Reem; Awada, Zainab; Mogharbil, Nahed; Zgheib, Nathalie K
2017-07-01
The aim of this study was to compare and contrast three DNA methylation methods of a specific region of interest (ROI): methylation-specific PCR (MSP), methylation-sensitive high resolution melting (MS-HRM) and direct bisulfite sequencing (BSP). The methylation of a CpG area in the promoter region of Estrogen receptor alpha (ESR1) was evaluated by these three methods with samples and standards of different methylation percentages. MSP data were neither reproducible nor sensitive, and the assay was not specific due to non-specific binding of primers. MS-HRM was highly reproducible and a step forward into categorizing the methylation status of the samples as percent ranges. Direct BSP was the most informative method regarding methylation percentage of each CpG site. Though not perfect, it was reproducible and sensitive. We recommend the use of either method depending on the research question and target amplicon, and provided that the designed primers and expected amplicons are within recommendations. If the research question targets a limited number of CpG sites and simple yes/no results are enough, MSP may be attempted. For short amplicons that are crowded with CpG sites and of single melting domain, MS-HRM may be the method of choice though it only indicates the overall methylation percentage of the entire amplicon. Although the assay is highly reproducible, being semi-quantitative makes it of lesser interest to study ROI methylation of samples with little methylation differences. Direct BSP is a step forward as it gives information about the methylation percentage at each CpG site.
Cousins, Sarah L; Stephenson, F Anne
2012-04-13
N-methyl-D-aspartate (NMDA) neurotransmitter receptors and the postsynaptic density-95 (PSD-95) membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins are integral components of post-synaptic macromolecular signaling complexes that serve to propagate glutamate responses intracellularly. Classically, NMDA receptor NR2 subunits associate with PSD-95 MAGUKs via a conserved ES(E/D)V amino acid sequence located at their C termini. We previously challenged this dogma to demonstrate a second non-ES(E/D)V PSD-95-binding site in both NMDA receptor NR2A and NR2B subunits. Here, using a combination of co-immunoprecipitations from transfected mammalian cells, yeast two-hybrid interaction assays, and glutathione S-transferase (GST) pulldown assays, we show that NR2A subunits interact directly with PSD-95 via the C-terminal ESDV motif and additionally via an Src homology 3 domain-binding motif that associates with the Src homology 3 domain of PSD-95. Peptide inhibition of co-immunoprecipitations of NR2A and PSD-95 demonstrates that both the ESDV and non-ESDV sites are required for association in native brain tissue. Furthermore, we refine the non-ESDV site within NR2B to residues 1149-1157. These findings provide a molecular basis for the differential association of NMDA receptor subtypes with PSD-95 MAGUK scaffold proteins. These selective interactions may contribute to the organization, lateral mobility, and ultimately the function of NMDA receptor subtypes at synapses. Furthermore, they provide a more general molecular mechanism by which the scaffold, PSD-95, may discriminate between potential interacting partner proteins.
Cousins, Sarah L.; Stephenson, F. Anne
2012-01-01
N-methyl-d-aspartate (NMDA) neurotransmitter receptors and the postsynaptic density-95 (PSD-95) membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins are integral components of post-synaptic macromolecular signaling complexes that serve to propagate glutamate responses intracellularly. Classically, NMDA receptor NR2 subunits associate with PSD-95 MAGUKs via a conserved ES(E/D)V amino acid sequence located at their C termini. We previously challenged this dogma to demonstrate a second non-ES(E/D)V PSD-95-binding site in both NMDA receptor NR2A and NR2B subunits. Here, using a combination of co-immunoprecipitations from transfected mammalian cells, yeast two-hybrid interaction assays, and glutathione S-transferase (GST) pulldown assays, we show that NR2A subunits interact directly with PSD-95 via the C-terminal ESDV motif and additionally via an Src homology 3 domain-binding motif that associates with the Src homology 3 domain of PSD-95. Peptide inhibition of co-immunoprecipitations of NR2A and PSD-95 demonstrates that both the ESDV and non-ESDV sites are required for association in native brain tissue. Furthermore, we refine the non-ESDV site within NR2B to residues 1149–1157. These findings provide a molecular basis for the differential association of NMDA receptor subtypes with PSD-95 MAGUK scaffold proteins. These selective interactions may contribute to the organization, lateral mobility, and ultimately the function of NMDA receptor subtypes at synapses. Furthermore, they provide a more general molecular mechanism by which the scaffold, PSD-95, may discriminate between potential interacting partner proteins. PMID:22375001
Kirby, Marie K; Ramaker, Ryne C; Roberts, Brian S; Lasseigne, Brittany N; Gunther, David S; Burwell, Todd C; Davis, Nicholas S; Gulzar, Zulfiqar G; Absher, Devin M; Cooper, Sara J; Brooks, James D; Myers, Richard M
2017-04-17
Current diagnostic tools for prostate cancer lack specificity and sensitivity for detecting very early lesions. DNA methylation is a stable genomic modification that is detectable in peripheral patient fluids such as urine and blood plasma that could serve as a non-invasive diagnostic biomarker for prostate cancer. We measured genome-wide DNA methylation patterns in 73 clinically annotated fresh-frozen prostate cancers and 63 benign-adjacent prostate tissues using the Illumina Infinium HumanMethylation450 BeadChip array. We overlaid the most significantly differentially methylated sites in the genome with transcription factor binding sites measured by the Encyclopedia of DNA Elements consortium. We used logistic regression and receiver operating characteristic curves to assess the performance of candidate diagnostic models. We identified methylation patterns that have a high predictive power for distinguishing malignant prostate tissue from benign-adjacent prostate tissue, and these methylation signatures were validated using data from The Cancer Genome Atlas Project. Furthermore, by overlaying ENCODE transcription factor binding data, we observed an enrichment of enhancer of zeste homolog 2 binding in gene regulatory regions with higher DNA methylation in malignant prostate tissues. DNA methylation patterns are greatly altered in prostate cancer tissue in comparison to benign-adjacent tissue. We have discovered patterns of DNA methylation marks that can distinguish prostate cancers with high specificity and sensitivity in multiple patient tissue cohorts, and we have identified transcription factors binding in these differentially methylated regions that may play important roles in prostate cancer development.
A novel mutation R190H in the AT-hook 1 domain of MeCP2 identified in an atypical Rett syndrome.
Zhou, Xiao; Liao, Yuangao; Xu, Miaojing; Ji, Zhong; Xu, Yunqi; Zhou, Liang; Wei, Xiaoming; Hu, Peiqian; Han, Peng; Yang, Fanghan; Pan, Suyue; Hu, Yafang
2017-10-10
Mutations in Methyl-CpG binding protein 2 ( MECP2 ) have been identified as the disease-causing mutations in Rett Syndrome (RTT). However, no mutation in the AT-hook 1 domain of MECP2 has been reported in RTT yet. The function of AT-hook 1 domain of MECP2 has not been described either. The clinical and radiological features of a girl with progressive hyperactivity and loss of acquired linguistic and motor functions were presented. Next generation sequencing was used to screen the causative gene. Effect of the mutant protein on histone 3 methylation was assessed in vitro experiment. The patient was diagnosed with an atypical RTT at the age of nine. Magnetic resonance imaging revealed a loss of whole-brain volume and abnormal myelination. Genetic analysis identified a de novo novel missense mutation of MECP2 (NM_004992, c.570G->A, p.Arg190His). This mutation is located in the AT-hook 1 domain of MeCP2 protein. Overexpression of the mutant MeCP2 in cultured neuroblastoma cells SH-SY5Y revealed increased level of dimethylated histone 3 lysine 9, a transcriptional repressor marker. A novel missense mutation in AT-hook 1 domain of MeCP2 was identified in a patient with atypical RTT. Clinical data and in vitro experiment result imply that R190H mutation in AT-hook1 may cause dysfunction of MeCP2 and be a pathogenic variant.
Glutamate receptors as seen by light: Spectroscopic studies of structure-function relationships
Mankiewicz, Kimberly A.; Jayaraman, Vasanthi
2010-01-01
Ionotropic glutamate receptors are major excitatory receptors in the central nervous system and also have far reaching influence in other areas of the body. Their modular nature has allowed for the isolation of the ligand binding domain and subsequent structural studies using a variety of spectroscopic techniques. This review will discuss the role of specific ligand:protein interactions in mediating activation in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of glutamate receptors as established by various spectroscopic investigations of the GluR2 and GluR4 subunits of this receptor. Specifically, this review will provide an introduction of the insight gained from X-ray crystallography and nuclear magnetic resonance (NMR) investigations and then go on to focus on studies utilizing vibrational spectroscopy and fluorescence resonance energy transfer (FRET) to study the behavior of the isolated ligand binding domain in solution and discuss the importance of specific ligand:protein interactions in the mechanism of receptor activation. PMID:17934637
The C. elegans PRMT-3 possesses a type III protein arginine methyltransferase activity.
Takahashi, Yuta; Daitoku, Hiroaki; Yokoyama, Atsuko; Nakayama, Kimihiro; Kim, Jun-Dal; Fukamizu, Akiyoshi
2011-04-01
Protein arginine methylation is a common post-translational modification in eukaryotes that is catalyzed by a family of the protein arginine methyltransferases (PRMTs). PRMTs are classified into three types: type I and type II add asymmetrically and symmetrically dimethyl groups to arginine, respectively, while type III adds solely monomethyl group to arginine. However, although the enzymatic activity of type I and type II PRMTs have been reported, the substrate specificity and the methylation activity of type III PRMTs still remains unknown. Here, we report the characterization of Caenorhabditis elegans PRMT-2 and PRMT-3, both of which are highly homologous to human PRMT7. We find that these two PRMTs can bind to S-adenosyl methionine (SAM), but only PRMT-3 has methyltransferase activity for histone H2A depending on its SAM-binding domain. Importantly, thin-layer chromatographic analysis demonstrates that PRMT-3 catalyzes the formation of monomethylated, but not dimethylated arginine. Our study thus identifies the first type III PRMT in C. elegans and provides a means to elucidate the physiological significance of arginine monomethylation in multicellular organisms.
Viejo-Borbolla, A; Pizzato, M; Blair, E D; Schulz, T F
2005-03-01
Several groups have inserted targeting domains into the envelope glycoprotein (Env) of Moloney murine leukemia virus (MoMLV) in an attempt to produce targeted retroviral vectors for human gene therapy. While binding of these modified Envs to the target molecule expressed on the surface of human cells was observed, specific high-titer infection of human cells expressing the target molecule was not achieved. Here we investigate the initial steps in the entry process of targeted MoMLV vectors both in murine and human cells expressing the MoMLV receptor, the mouse cationic amino acid transporter-1 (mCAT-1). We show that insertion of a small ligand targeted to E-selectin and of a single chain antibody (scFv) targeted to folate-binding protein (FBP) into the N-terminus of MoMLV Env results in the reduction of the infectivity and the kinetics of entry of the MoMLV vectors. The use of soluble receptor-binding domain (sRBD), bafilomycin A1 (BafA1) and methyl-beta-cyclodextrin (MbetaC) increase the infectivity of the MoMLV vectors targeted to FBP (MoMLV-FBP) suggesting that the scFv targeted to FBP increases the threshold for fusion and might re-route entry of the targeted MoMLV-FBP vector towards an endocytic, non-productive pathway.
Choi, Won-Il; Jeon, Bu-Nam; Yoon, Jae-Hyeon; Koh, Dong-In; Kim, Myung-Hwa; Yu, Mi-Young; Lee, Kyung-Mi; Kim, Youngsoo; Kim, Kyunggon; Hur, Sujin Susanne; Lee, Choong-Eun; Kim, Kyung-Sup; Hur, Man-Wook
2013-07-01
The tumour-suppressor gene CDKN1A (encoding p21Waf/Cip1) is thought to be epigenetically repressed in cancer cells. FBI-1 (ZBTB7A) is a proto-oncogenic transcription factor repressing the alternative reading frame and p21WAF/CDKN1A genes of the p53 pathway. FBI-1 interacts directly with MBD3 (methyl-CpG-binding domain protein 3) in the nucleus. We demonstrated that FBI-1 binds both non-methylated and methylated DNA and that MBD3 is recruited to the CDKN1A promoter through its interaction with FBI-1, where it enhances transcriptional repression by FBI-1. FBI-1 also interacts with the co-repressors nuclear receptor corepressor (NCoR), silencing mediator for retinoid and thyroid receptors (SMRT) and BCL-6 corepressor (BCoR) to repress transcription. MBD3 regulates a molecular interaction between the co-repressor and FBI-1. MBD3 decreases the interaction between FBI-1 and NCoR/SMRT but increases the interaction between FBI-1 and BCoR. Because MBD3 is a subunit of the Mi-2 autoantigen (Mi-2)/nucleosome remodelling and histone deacetylase (NuRD)-HDAC complex, FBI-1 recruits the Mi-2/NuRD-HDAC complex via MBD3. BCoR interacts with the Mi-2/NuRD-HDAC complex, DNMTs and HP1. MBD3 and BCoR play a significant role in the recruitment of the Mi-2/NuRD-HDAC complex- and the NuRD complex-associated proteins, DNMTs and HP. By recruiting DNMTs and HP1, Mi-2/NuRD-HDAC complex appears to play key roles in epigenetic repression of CDKN1A by DNA methylation.
INVOLVED IN DE NOVO 2-containing complex involved in RNA-directed DNA methylation in Arabidopsis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ausin, Israel; Greenberg, Maxim V.C.; Simanshu, Dhirendra K.
2012-10-23
At least three pathways control maintenance of DNA cytosine methylation in Arabidopsis thaliana. However, the RNA-directed DNA methylation (RdDM) pathway is solely responsible for establishment of this silencing mark. We previously described INVOLVED IN DE NOVO 2 (IDN2) as being an RNA-binding RdDM component that is required for DNA methylation establishment. In this study, we describe the discovery of two partially redundant proteins that are paralogous to IDN2 and that form a stable complex with IDN2 in vivo. Null mutations in both genes, termed IDN2-LIKE 1 and IDN2-LIKE 2 (IDNL1 and IDNL2), result in a phenotype that mirrors, but doesmore » not further enhance, the idn2 mutant phenotype. Genetic analysis suggests that this complex acts in a step in the downstream portion of the RdDM pathway. We also have performed structural analysis showing that the IDN2 XS domain adopts an RNA recognition motif (RRM) fold. Finally, genome-wide DNA methylation and expression analysis confirms the placement of the IDN proteins in an RdDM pathway that affects DNA methylation and transcriptional control at many sites in the genome. Results from this study identify and describe two unique components of the RdDM machinery, adding to our understanding of DNA methylation control in the Arabidopsis genome.« less
Ligand-specific Deactivation Time Course of GluN1/GluN2D NMDA Receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
K Vance; N Simorowski; S Traynelis
2011-12-31
N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors that mediate a majority of excitatory synaptic transmission. One unique property of GluN1/GluN2D NMDA receptors is an unusually prolonged deactivation time course following the removal of L-glutamate. Here we show, using x-ray crystallography and electrophysiology, that the deactivation time course of GluN1/GluN2D receptors is influenced by the conformational variability of the ligand-binding domain (LBD) as well as the structure of the activating ligand. L-glutamate and L-CCG-IV induce significantly slower deactivation time courses compared with other agonists. Crystal structures of the isolated GluN2D LBD in complex with various ligands revealmore » that the binding of L-glutamate induces a unique conformation at the backside of the ligand-binding site in proximity to the region at which the transmembrane domain would be located in the intact receptors. These data suggest that the activity of the GluN1/GluN2D NMDA receptor is controlled distinctively by the endogenous neurotransmitter L-glutamate.« less
Sensor Function for Butyrophilin 3A1 in Prenyl Pyrophosphate Stimulation of Human Vγ2Vδ2 T Cells
Wang, Hong; Morita, Craig T.
2016-01-01
Vγ2Vδ2 T cells play important roles in human immunity to pathogens and in cancer immunotherapy by responding to isoprenoid metabolites, such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate and isopentenyl pyrophosphate. The Ig superfamily protein butyrophilin (BTN)3A1 was shown to be required for prenyl pyrophosphate stimulation. We proposed that the intracellular B30.2 domain of BTN3A1 binds prenyl pyrophosphates, resulting in a change in the extracellular BTN3A1 dimer that is detected by Vγ2Vδ2 TCRs. Such B30.2 binding was demonstrated recently. However, other investigators reported that the extracellular BTN3A1 IgV domain binds prenyl pyrophosphates, leading to the proposal that the Vγ2Vδ2 TCR recognizes the complex. To distinguish between these mechanisms, we mutagenized residues in the two binding sites and tested the mutant BTN3A1 proteins for their ability to mediate prenyl pyrophosphate stimulation of Vγ2Vδ2 T cells to proliferate and secrete TNF-α. Mutagenesis of residues in the IgV site had no effect on Vγ2Vδ2 T cell proliferation or secretion of TNF-α. In contrast, mutagenesis of residues within the basic pocket and surrounding V regions of the B30.2 domain abrogated prenyl pyrophosphate-induced proliferation. Mutations of residues making hydrogen bonds to the pyrophosphate moiety also abrogated TNF-α secretion, as did mutation of aromatic residues making contact with the alkenyl chain. Some mutations further from the B30.2 binding site also diminished stimulation, suggesting that the B30.2 domain may interact with a second protein. These findings support intracellular sensing of prenyl pyrophosphates by BTN3A1 rather than extracellular presentation. PMID:26475929
Miranda, Tina Branscombe; Miranda, Mark; Frankel, Adam; Clarke, Steven
2004-05-28
We have identified a mammalian arginine N-methyltransferase, PRMT7, that can catalyze the formation of omega-NG-monomethylarginine in peptides. This protein is encoded by a gene on human chromosome 16q22.1 (human locus AK001502). We expressed a full-length human cDNA construct in Escherichia coli as a glutathione S-transferase (GST) fusion protein. We found that GST-tagged PRMT7 catalyzes the S-adenosyl-[methyl-3H]-l-methionine-dependent methylation of the synthetic peptide GGPGGRGGPGG-NH2 (R1). The radiolabeled peptide was purified by high-pressure liquid chromatography and acid hydrolyzed to free amino acids. When the hydrolyzed products were separated by high-resolution cation-exchange chromatography, we were able to detect one tritiated species which co-migrated with an omega-NG-monomethylarginine standard. Surprisingly, GST-PRMT7 was not able to catalyze the in vitro methylation of a GST-fibrillarin (amino acids 1-148) fusion protein (GST-GAR), a methyl-accepting substrate for the previously characterized PRMT1, PRMT3, PRMT4, PRMT5, and PRMT6 enzymes. Nor was it able to methylate myelin basic protein or histone H2A, in vitro substrates of PRMT5. This specificity distinguishes PRMT7 from all of the other known arginine methyltransferases. An additional unique feature of PRMT7 is that it seems to have arisen from a gene duplication event and contains two putative AdoMet-binding motifs. To see if both motifs were necessary for activity, each putative domain was expressed as a GST-fusion and tested for activity with peptides R1 and R2 (acetyl-GGRGG-NH2). These truncated proteins were enzymatically inactive, suggesting that both domains are required for functionality.
Romero-Hernandez, Annabel; Simorowski, Noriko; Karakas, Erkan
2016-01-01
Summary Zinc is vastly present in the mammalian brain and controls functions of various cell surface receptors to regulate neurotransmission. A distinctive characteristic of N-methyl-D-aspartate (NMDA) receptors containing a GluN2A subunit is that their ion channel activity is allosterically inhibited by a nano-molar concentration of zinc that binds to an extracellular domain called an amino terminal domain (ATD). Despite physiological importance, the molecular mechanism underlying the high-affinity zinc inhibition has been incomplete due to lack of a GluN2A ATD structure. Here we show the first crystal structures of the heterodimeric GluN1-GluN2A ATD, which provide the complete map of the high-affinity zinc binding site and reveals distinctive features from the ATD of the GluN1-GluN2B subtype. Perturbation of hydrogen bond networks at the hinge of the GluN2A bi-lobe structure affects both zinc inhibition and open probability supporting the general model where the bi-lobe motion in ATD regulates the channel activity in NMDA receptors. PMID:27916457
del Carmen Burón-Barral, Maria; Gosink, Khoosheh K.; Parkinson, John S.
2006-01-01
The Escherichia coli Aer protein contains an N-terminal PAS domain that binds flavin adenine dinucleotide (FAD), senses aerotactic stimuli, and communicates with the output signaling domain. To explore the roles of the intervening F1 and HAMP segments in Aer signaling, we isolated plasmid-borne aerotaxis-defective mutations in a host strain lacking all chemoreceptors of the methyl-accepting chemotaxis protein (MCP) family. Under these conditions, Aer alone established the cell's run/tumble swimming pattern and modulated that behavior in response to oxygen gradients. We found two classes of Aer mutants: null and clockwise (CW) biased. Most mutant proteins exhibited the null phenotype: failure to elicit CW flagellar rotation, no aerosensing behavior in MCP-containing hosts, and no apparent FAD-binding ability. However, null mutants had low Aer expression levels caused by rapid degradation of apparently nonnative subunits. Their functional defects probably reflect the absence of a protein product. In contrast, CW-biased mutant proteins exhibited normal expression levels, wild-type FAD binding, and robust aerosensing behavior in MCP-containing hosts. The CW lesions evidently shift unstimulated Aer output to the CW signaling state but do not block the Aer input-output pathway. The distribution and properties of null and CW-biased mutations suggest that the Aer PAS domain may engage in two different interactions with HAMP and the HAMP-proximal signaling domain: one needed for Aer maturation and another for promoting CW output from the Aer signaling domain. Most aerotaxis-defective null mutations in these regions seemed to affect maturation only, indicating that these two interactions involve structurally distinct determinants. PMID:16672601
Ismail, Basma; Hadizad, Tayebeh; Antoun, Rawad; Lortie, Mireille; deKemp, Robert A; Beanlands, Rob S B; DaSilva, Jean N
2015-11-01
The angiotensin II type 1 receptor (AT1R) is responsible for the main effects of the renin-angiotensin system (RAS), and its expression pattern is altered in several diseases. The [(11)C]methylated derivatives of the clinically used AT1R blocker (ARB) losartan and its active metabolite EXP3174, that binds with higher affinity to AT1R, were evaluated as potential PET imaging tracers in rat kidneys. [(11)C]Methyl-losartan and [(11)C]methyl-EXP3174 were synthesized by [(11)C]methylation of the tetrazole-protected analogs using [11C]methyl iodide. Tissue uptake and binding selectivity of [(11)C]methyl-losartan were assessed by ex-vivo biodistribution and in-vitro autoradiography. Radiolabeled metabolites in rat plasma and kidneys were analysed by column-switch HPLC. Both tracers were evaluated with small animal PET imaging. Due to better pharmacokinetics, [(11)C]methyl-EXP3174 was further investigated via PET by co-injection with AT1R antagonist candesartan or the AT2R antagonist PD123,319. Binding selectivity to renal AT1 over AT2 and Mas receptors was demonstrated for [(11)C]methyl-losartan. Plasma metabolite analysis at 10 min revealed stability of [(11)C]methyl-losartan and [(11)C]methyl-EXP3174 with the presence of unchanged tracer at 70.8 ± 9.9% and 81.4 ± 6.0%, of total radioactivity, respectively. Contrary to [(11)C]methyl-losartan, co-injection of candesartan with [(11)C]methyl-EXP3174 reduced the proportion of unchanged tracer (but not metabolites), indicating that these metabolites do not bind to AT1R in rat kidneys. MicroPET images for both radiotracers displayed high kidney-to-background contrast. Candesartan significantly reduced [(11)C]methyl-EXP3174 uptake in the kidney, whereas no difference was observed following PD123,319 indicating binding selectivity for AT1R. [(11)C]Methyl-EXP3174 displayed a favorable binding profile compared to [(11)C]methyl-losartan for imaging renal AT1Rs supporting further studies to assess its full potential as a quantitative probe for AT1R via PET. Copyright © 2015. Published by Elsevier Inc.
Ahmed, Ahmed H; Oswald, Robert E
2010-03-11
Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators.
Ahmed, Ahmed H.; Oswald, Robert E.
2010-01-01
Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to both GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators. PMID:20163115
Sano, Osamu; Ito, Shiho; Kato, Reiko; Shimizu, Yuji; Kobayashi, Aya; Kimura, Yasuhisa; Kioka, Noriyuki; Hanada, Kentaro; Ueda, Kazumitsu; Matsuo, Michinori
2014-01-01
ATP-binding cassette A1 (ABCA1), ABCG1, and ABCG4 are lipid transporters that mediate the efflux of cholesterol from cells. To analyze the characteristics of these lipid transporters, we examined and compared their distributions and lipid efflux activity on the plasma membrane. The efflux of cholesterol mediated by ABCA1 and ABCG1, but not ABCG4, was affected by a reduction of cellular sphingomyelin levels. Detergent solubility and gradient density ultracentrifugation assays indicated that ABCA1, ABCG1, and ABCG4 were distributed to domains that were solubilized by Triton X-100 and Brij 96, resistant to Triton X-100 and Brij 96, and solubilized by Triton X-100 but resistant to Brij 96, respectively. Furthermore, ABCG1, but not ABCG4, was colocalized with flotillin-1 on the plasma membrane. The amounts of cholesterol extracted by methyl-β-cyclodextrin were increased by ABCA1, ABCG1, or ABCG4, suggesting that cholesterol in non-raft domains was increased. Furthermore, ABCG1 and ABCG4 disturbed the localization of caveolin-1 to the detergent-resistant domains and the binding of cholera toxin subunit B to the plasma membrane. These results suggest that ABCA1, ABCG1, and ABCG4 are localized to distinct membrane meso-domains and disturb the meso-domain structures by reorganizing lipids on the plasma membrane; collectively, these observations may explain the different substrate profiles and lipid efflux roles of these transporters. PMID:25302608
Øbro, Jens; Sørensen, Iben; Derkx, Patrick; Madsen, Christian T; Drews, Martin; Willer, Martin; Mikkelsen, Jørn D; Willats, William G T
2009-04-01
Pectin methylesterases (PMEs) catalyse the removal of methyl esters from the homogalacturonan (HG) backbone domain of pectin, a ubiquitous polysaccharide in plant cell walls. The degree of methyl esterification (DE) impacts upon the functional properties of HG within cell walls and plants produce numerous PMEs that act upon HG in muro. Many microbial plant pathogens also produce PMEs, the activity of which renders HG more susceptible to cleavage by pectin lyase and polygalacturonase enzymes and hence aids cell wall degradation. We have developed a novel microarray-based approach to investigate the activity of a series of variant enzymes based on the PME from the important pathogen Erwinia chrysanthemi. A library of 99 E. chrysanthemi PME mutants was created in which seven amino acids were altered by various different substitutions. Each mutant PME was incubated with a highly methyl esterified lime pectin substrate and, after digestion the enzyme/substrate mixtures were printed as microarrays. The loss of activity that resulted from certain mutations was detected by probing arrays with a mAb (JIM7) that preferentially binds to HG with a relatively high DE. Active PMEs therefore resulted in diminished JIM7 binding to the lime pectin substrate, whereas inactive PMEs did not. Our findings demonstrate the feasibility of our approach for rapidly testing the effects on PME activity of substituting a wide variety of amino acids at different positions.
Shi, Song-Hai; Cheng, Tong; Jan, Lily Yeh; Jan, Yuh-Nung
2004-01-01
In the developing mammalian brain, a large fraction of excitatory synapses initially contain only N-methyl-d-aspartate receptor and thus are “silent” at the resting membrane potential. As development progresses, synapses acquire α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-Rs). Although this maturation of excitatory synapses has been well characterized, the molecular basis for this developmental change is not known. Here, we report that dendrite arborization and synapse maturation 1 (Dasm1), an Ig superfamily member, controls excitatory synapse maturation. Dasm1 is localized at the excitatory synapses. Suppression of Dasm1 expression by using RNA interference or expression of dominant negative deletion mutants of Dasm1 in hippocampal neurons at late developmental stage specifically impairs AMPA-R-mediated, but not N-methyl-d-aspartate receptor-mediated, synaptic transmission. The ability of Dasm1 to regulate synaptic AMPA-Rs requires its intracellular C-terminal PDZ domain-binding motif, which interacts with two synaptic PDZ domain-containing proteins involved in spine/synapse maturation, Shank and S-SCAM. Moreover, expression of dominant negative deletion mutants of Dasm1 leads to more immature silent synapses. These results suggest that Dasm1, as a transmembrane molecule, likely provides a link to bridge extracellular signals and intracellular signaling complexes in controlling excitatory synapse maturation. PMID:15340156
Phosphorylation of serine-515 activates the Mammalian maintenance methyltransferase Dnmt1.
Goyal, Rachna; Rathert, Philipp; Laser, Heike; Gowher, Humaira; Jeltsch, Albert
2007-09-01
DNA methyltransferase 1 methylates hemi-methylated CG sites generated during DNA replication. Serine 515 of this enzyme has been shown to be phosphorylated. To explore the importance of S515 phosphorylation, we generated mutants of Dnmt1 which removed the phosphorylation potential (S515A) or mimic phosphoserine (S515E), purified the proteins from insect cells and analyzed their DNA methylation activity in vitro. The S515E mutant was found to be active, while S515A mutant had severe loss in activity when compared to the wild type protein. The loss of activity of the S515A variant was not due to loss of DNA binding capacity. Furthermore, we show that a phosphorylated peptide whose sequence mimics the surrounding of Ser515 (EKIYIS(P)KIVVE) inhibited the activity of wild type Dnmt1 ten-fold more than the non-phosphorylated peptide. The inhibition was specific for Dnmt1 and for the particular peptide sequence. Our data suggest that phosphorylation of Ser515 is important for an interaction between the N-terminal domain of Dnmt1 and its catalytic domain that is necessary for activity and that this interaction is specifically disrupted by the phosphorylated peptide. We conclude that phosphorylation of Dnmt1 at Ser515 could be an important regulator of Dnmt1 activity during cell cycle and after proliferative stimuli.
Eisenstein, Sarah A.; Bischoff, Allison N.; Gredysa, Danuta M.; Antenor-Dorsey, Jo Ann V.; Koller, Jonathan M.; Al-Lozi, Amal; Pepino, Marta Y.; Klein, Samuel; Perlmutter, Joel S.; Moerlein, Stephen M.; Black, Kevin J.; Hershey, Tamara
2015-01-01
PET studies have provided mixed evidence regarding central D2/D3 dopamine receptor binding and its relationship with obesity as measured by body mass index (BMI). Other aspects of obesity may be more tightly coupled to the dopaminergic system. We characterized obesity-associated behaviors and determined if these related to central D2 receptor (D2R) specific binding independent of BMI. Twenty-two obese and 17 normal-weight participants completed eating- and reward-related questionnaires and underwent PET scans using the D2R-selective and nondisplaceable radioligand (N-[11C]methyl)benperidol. Questionnaires were grouped by domain (eating related to emotion, eating related to reward, non-eating behavior motivated by reward or sensitivity to punishment). Normalized, summed scores for each domain were compared between obese and normal-weight groups and correlated with striatal and midbrain D2R binding. Compared to normal-weight individuals, the obese group self-reported higher rates of eating related to both emotion and reward (p < 0.001), greater sensitivity to punishment (p = 0.06), and lower non-food reward behavior (p < 0.01). Across normal-weight and obese participants, self-reported emotional eating and non-food reward behavior positively correlated with striatal (p < 0.05) and midbrain (p < 0.05) D2R binding, respectively. In conclusion, an emotional eating phenotype may reflect altered central D2R function better than other commonly used obesity-related measures such as BMI. PMID:26066863
Emerging roles of post-translational modifications in signal transduction and angiogenesis.
Rahimi, Nader; Costello, Catherine E
2015-01-01
The vascular endothelial growth factor receptor-2 (VEGFR-2) belongs to the family of receptor tyrosine kinases and is a key player in vasculogenesis and pathological angiogenesis. An emerging picture of PTMs of VEGFR-2 suggests that they play central roles in generating a highly dynamic and complex signaling system that regulates key angiogenic responses ranging from endothelial cell differentiation, proliferation, migration to permeability. Recent MS analysis of VEGFR-2 uncovered previously unrecognized PTMs on VEGFR-2 with a distinct function. The ligand binding extracellular domain of VEGFR-2 is composed of seven immunoglobulin-like domains highly decorated with N-glycosylation, while its cytoplasmic domain is subject to multiple PTMs including Tyr, Ser/Thr phosphorylation, Arg and Lys methylation, acetylation and ubiquitination. Here we review the PTMs on VEGFR-2, their importance in angiogenic signaling relays and possible novel therapeutic potentials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Szurmant, Hendrik; Bunn, Michael W; Cho, Stephen H; Ordal, George W
2004-12-03
Previously, we characterized the organization of the transmembrane (TM) domain of the Bacillus subtilis chemoreceptor McpB using disulfide crosslinking. Cysteine residues were engineered into serial positions along the two helices through the membrane, TM1 and TM2, as well as double mutants in TM1 and TM2, and the extent of crosslinking determined to characterize the organization of the TM domain. In this study, the organization of the TM domain was studied in the presence and absence of ligand to address what ligand-induced structural changes occur. We found that asparagine caused changes in crosslinking rate on all residues along the TM1-TM1' helical interface, whereas the crosslinking rate for almost all residues along the TM2-TM2' interface did not change. These results indicated that helix TM1 rotated counterclockwise and that TM2 did not move in respect to TM2' in the dimer on binding asparagine. Interestingly, intramolecular crosslinking of paired substitutions in 34/280 and 38/273 were unaffected by asparagine, demonstrating that attractant binding to McpB did not induce a "piston-like" vertical displacement of TM2 as seen for Trg and Tar in Escherichia coli. However, these paired substitutions produced oligomeric forms of receptor in response to ligand. This must be due to a shift of the interface between different receptor dimers, within previously suggested trimers of dimers, or even higher order complexes. Furthermore, the extent of disulfide bond formation in the presence of asparagine was unaffected by the presence of the methyl-modification enzymes, CheB and CheR, or the coupling proteins, CheW and CheV, demonstrating that these proteins must have local structural effects on the cytoplasmic domain that is not translated to the entire receptor. Finally, disulfide bond formation was also unaffected by binding proline to McpC. We conclude that ligand-binding induced a conformational change in the TM domain of McpB dimers as an excitation signal that is likely propagated within the cytoplasmic region of receptors and that subsequent adaptational events do not affect this new TM domain conformation.
Solution Structure and Molecular Interactions of Lamin B Receptor Tudor Domain*
Liokatis, Stamatis; Edlich, Christian; Soupsana, Katerina; Giannios, Ioannis; Panagiotidou, Parthena; Tripsianes, Konstantinos; Sattler, Michael; Georgatos, Spyros D.; Politou, Anastasia S.
2012-01-01
Lamin B receptor (LBR) is a polytopic protein of the nuclear envelope thought to connect the inner nuclear membrane with the underlying nuclear lamina and peripheral heterochromatin. To better understand the function of this protein, we have examined in detail its nucleoplasmic region, which is predicted to harbor a Tudor domain (LBR-TD). Structural analysis by multidimensional NMR spectroscopy establishes that LBR-TD indeed adopts a classical β-barrel Tudor fold in solution, which, however, features an incomplete aromatic cage. Removal of LBR-TD renders LBR more mobile at the plane of the nuclear envelope, but the isolated module does not bind to nuclear lamins, heterochromatin proteins (MeCP2), and nucleosomes, nor does it associate with methylated Arg/Lys residues through its aromatic cage. Instead, LBR-TD exhibits tight and stoichiometric binding to the “histone-fold” region of unassembled, free histone H3, suggesting an interesting role in histone assembly. Consistent with such a role, robust binding to native nucleosomes is observed when LBR-TD is extended toward its carboxyl terminus, to include an area rich in Ser-Arg residues. The Ser-Arg region, alone or in combination with LBR-TD, binds both unassembled and assembled H3/H4 histones, suggesting that the TD/RS interface may operate as a “histone chaperone-like platform.” PMID:22052904
Nature and function of insulator protein binding sites in the Drosophila genome
Schwartz, Yuri B.; Linder-Basso, Daniela; Kharchenko, Peter V.; Tolstorukov, Michael Y.; Kim, Maria; Li, Hua-Bing; Gorchakov, Andrey A.; Minoda, Aki; Shanower, Gregory; Alekseyenko, Artyom A.; Riddle, Nicole C.; Jung, Youngsook L.; Gu, Tingting; Plachetka, Annette; Elgin, Sarah C.R.; Kuroda, Mitzi I.; Park, Peter J.; Savitsky, Mikhail; Karpen, Gary H.; Pirrotta, Vincenzo
2012-01-01
Chromatin insulator elements and associated proteins have been proposed to partition eukaryotic genomes into sets of independently regulated domains. Here we test this hypothesis by quantitative genome-wide analysis of insulator protein binding to Drosophila chromatin. We find distinct combinatorial binding of insulator proteins to different classes of sites and uncover a novel type of insulator element that binds CP190 but not any other known insulator proteins. Functional characterization of different classes of binding sites indicates that only a small fraction act as robust insulators in standard enhancer-blocking assays. We show that insulators restrict the spreading of the H3K27me3 mark but only at a small number of Polycomb target regions and only to prevent repressive histone methylation within adjacent genes that are already transcriptionally inactive. RNAi knockdown of insulator proteins in cultured cells does not lead to major alterations in genome expression. Taken together, these observations argue against the concept of a genome partitioned by specialized boundary elements and suggest that insulators are reserved for specific regulation of selected genes. PMID:22767387
Zhang, Chong; Xiang, Tingxiu; Li, Shuman; Ye, Lin; Feng, Yixiao; Pei, Lijiao; Li, Lili; Wang, Xiangyu; Sun, Ran; Tao, Qian; Ren, Guosheng
2018-05-14
Zinc finger proteins (ZFPs) are the largest transcription factor family in mammals. About one-third of ZFPs are Krüppel-associated box domain (KRAB)-ZFPs and involved in the regulation of cell differentiation/proliferation/apoptosis and neoplastic transformation. We recently identified ZNF382 as a novel KRAB-ZFP epigenetically inactivated in multiple cancers due to frequent promoter CpG methylation. However, its epigenetic alterations, biological functions/mechanism and clinical significance in oesophageal squamous cell carcinoma (ESCC) are still unknown. Here, we demonstrate that ZNF382 expression was suppressed in ESCC due to aberrant promoter methylation, but highly expressed in normal oesophagus tissues. ZNF382 promoter methylation is correlated with ESCC differentiation levels. Restoration of ZNF382 expression in silenced ESCC cells suppressed tumour cell proliferation and metastasis through inducing cell apoptosis. Importantly, ZNF382 suppressed Wnt/β-catenin signalling and downstream target gene expression, likely through binding directly to FZD1 and DVL2 promoters. In summary, our findings demonstrate that ZNF382 functions as a bona fide tumour suppressor inhibiting ESCC pathogenesis through inhibiting the Wnt/β-catenin signalling pathway.
Genome-wide analysis of day/night DNA methylation differences in Populus nigra.
Ding, Chang-Jun; Liang, Li-Xiong; Diao, Shu; Su, Xiao-Hua; Zhang, Bing-Yu
2018-01-01
DNA methylation is an important mechanism of epigenetic modification. Methylation changes during stress responses and developmental processes have been well studied; however, their role in plant adaptation to the day/night cycle is poorly understood. In this study, we detected global methylation patterns in leaves of the black poplar Populus nigra 'N46' at 8:00 and 24:00 by methylated DNA immunoprecipitation sequencing (MeDIP-seq). We found 10,027 and 10,242 genes to be methylated in the 8:00 and 24:00 samples, respectively. The methylated genes appeared to be involved in multiple biological processes, molecular functions, and cellular components, suggesting important roles for DNA methylation in poplar cells. Comparing the 8:00 and 24:00 samples, only 440 differentially methylated regions (DMRs) overlapped with genic regions, including 193 hyper- and 247 hypo-methylated DMRs, and may influence the expression of 137 downstream genes. Most hyper-methylated genes were associated with transferase activity, kinase activity, and phosphotransferase activity, whereas most hypo-methylated genes were associated with protein binding, ATP binding, and adenyl ribonucleotide binding, suggesting that different biological processes were activated during the day and night. Our results indicated that methylated genes were prevalent in the poplar genome, but that only a few of these participated in diurnal gene expression regulation.
Villapakkam, Anuradha C; Handke, Luke D; Belitsky, Boris R; Levdikov, Vladimir M; Wilkinson, Anthony J; Sonenshein, Abraham L
2009-11-01
Bacillus subtilis CodY protein is a DNA-binding global transcriptional regulator that responds to branched-chain amino acids (isoleucine, leucine, and valine) and GTP. Crystal structure studies have shown that the N-terminal region of the protein includes a GAF domain that contains a hydrophobic pocket within which isoleucine and valine bind. This region is well conserved in CodY homologs. Site-directed mutagenesis was employed to understand the roles of some of the residues in the GAF domain and hydrophobic pocket in interaction with isoleucine and GTP. The F40A, F71E, and F98A forms of CodY were inactive in vivo. They were activatable by GTP but to a much lesser extent by branched-chain amino acids in vitro. The CodY mutant R61A retained partial repression of target promoters in vivo and was able to respond to GTP in vitro but also responded poorly to branched-chain amino acids in vitro unless GTP was simultaneously present. Thus, the GAF domain includes residues essential for full activation of CodY by branched-chain amino acids, but these residues are not critical for activation by GTP. Binding studies with branched-chain amino acids and their analogs revealed that an amino group at position 2 and a methyl group at position 3 of valine are critical components of the recognition of the amino acids by CodY.
Influence of the protonation state on the binding mode of methyl orange with cucurbiturils
NASA Astrophysics Data System (ADS)
He, Suhang; Sun, Xuzhuo; Zhang, Haibo
2016-03-01
Binding modes of methyl orange (MO) with cucurbiturils (CBs) have been investigated by Single Crystal X-ray Diffraction and NMR Spectroscopy. Detailed study of intermolecular interactions was supported by the Hirshfeld surface analysis. Protonation state of the anionic part of methyl orange has greatly influenced the binding mode of the complex. Stabilized by hydrogen bonding at the portal, hydrophobic and dispersion interactions in the cavity, the protonated methyl orange was deeply inserted into the cavity. On the contrary, the anionic methyl orange has been pushed towards the outside of the cavity by the electrostatic repulsion between the azo group and the portal oxygen. A ;water bridge; was found in MO@CB8 linking both host and guest via hydrogen bonds.
Karthi, Natesan; Karthiga, Arumugasamy; Kalaiyarasu, Thangaraj; Stalin, Antony; Manju, Vaiyapuri; Singh, Sanjeev Kumar; Cyril, Ravi; Lee, Sang-Myeong
2017-10-01
Pelargonidin is an anthocyanidin isolated from plant resources. It shows strong cytotoxicity toward various cancer cell lines, even though the carcinogenesis-modulating pathway of pelargonidin is not yet known. One of our previous reports showed that pelargonidin arrests the cell cycle and induces apoptosis in HT29 cells. Flowcytometry and immunoblot analysis confirmed that pelargonidin specifically inhibits the activation of CDK1 and blocks the G2-M transition of the cell cycle. In addition, DNA fragmentation was observed along with induction of cytochrome c release-mediated apoptosis. Hence, the aim of the present study was to investigate the molecular mechanism of pelargonidin's action on cell cycle regulators CDK1, CDK4, and CDK6 as well as the substrate-binding domain of DNMT1 and DNMT3A, which regulate the epigenetic signals related to DNA methylation. The results of docking analysis, binding free energy calculation, and molecular dynamics simulation correlated with the experimental results, and pelargonidin showed a specific interaction with CDK1. In this context, pelargonidin may also inhibit the recognition of DNA and catalytic binding by DNMT1 and DNMT3A. The HOMO-LUMO analysis mapped the functional groups of pelargonidin. Prediction of pharmacological descriptors suggested that pelargonidin can serve as a multitarget inhibitor for cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
MeDReaders: a database for transcription factors that bind to methylated DNA.
Wang, Guohua; Luo, Ximei; Wang, Jianan; Wan, Jun; Xia, Shuli; Zhu, Heng; Qian, Jiang; Wang, Yadong
2018-01-04
Understanding the molecular principles governing interactions between transcription factors (TFs) and DNA targets is one of the main subjects for transcriptional regulation. Recently, emerging evidence demonstrated that some TFs could bind to DNA motifs containing highly methylated CpGs both in vitro and in vivo. Identification of such TFs and elucidation of their physiological roles now become an important stepping-stone toward understanding the mechanisms underlying the methylation-mediated biological processes, which have crucial implications for human disease and disease development. Hence, we constructed a database, named as MeDReaders, to collect information about methylated DNA binding activities. A total of 731 TFs, which could bind to methylated DNA sequences, were manually curated in human and mouse studies reported in the literature. In silico approaches were applied to predict methylated and unmethylated motifs of 292 TFs by integrating whole genome bisulfite sequencing (WGBS) and ChIP-Seq datasets in six human cell lines and one mouse cell line extracted from ENCODE and GEO database. MeDReaders database will provide a comprehensive resource for further studies and aid related experiment designs. The database implemented unified access for users to most TFs involved in such methylation-associated binding actives. The website is available at http://medreader.org/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Maier, Holly; Colbert, Jeff; Fitzsimmons, Daniel; Clark, Dawn R.; Hagman, James
2003-01-01
Methylation of cytosine in CpG dinucleotides promotes transcriptional repression in mammals by blocking transcription factor binding and recruiting methyl-binding proteins that initiate chromatin remodeling. Here, we use a novel cell-based system to show that retrovirally expressed Pax-5 protein activates endogenous early B-cell-specific mb-1 genes in plasmacytoma cells, but only when the promoter is hypomethylated. CpG methylation does not directly affect binding of the promoter by Pax-5. Instead, methylation of an adjacent CpG interferes with assembly of ternary complexes comprising Pax-5 and Ets proteins. In electrophoretic mobility shift assays, recruitment of Ets-1 is blocked by methylation of the Ets site (5′CCGGAG) on the antisense strand. In transfection assays, selective methylation of a single CpG within the Pax-5-dependent Ets site greatly reduces mb-1 promoter activity. Prior demethylation of the endogenous mb-1 promoter is required for its activation by Pax-5 in transduced cells. Although B-lineage cells have only unmethylated mb-1 genes and do not modulate methylation of the mb-1 promoter during development, other tissues feature high percentages of methylated alleles. Together, these studies demonstrate a novel DNA methylation-dependent mechanism for regulating transcriptional activity through the inhibition of DNA-dependent protein-protein interactions. PMID:12612069
Shi, Jie; Cao, Xinyun; Chen, Yaozong; Cronan, John E; Guo, Zhihong
2016-12-06
Pimeloyl-acyl carrier protein (ACP) methyl esterase is an α/β-hydrolase that catalyzes the last biosynthetic step of pimeloyl-ACP, a key intermediate in biotin biosynthesis. Intriguingly, multiple nonhomologous isofunctional forms of this enzyme that lack significant sequence identity are present in diverse bacteria. One such esterase, Escherichia coli BioH, has been shown to be a typical α/β-hydrolase fold enzyme. To gain further insights into the role of this step in biotin biosynthesis, we have determined the crystal structure of another widely distributed pimeloyl-ACP methyl esterase, Haemophilus influenzae BioG, at 1.26 Å. The BioG structure is similar to the BioH structure and is composed of an α-helical lid domain and a core domain that contains a central seven-stranded β-pleated sheet. However, four of the six α-helices that flank both sides of the BioH core β-sheet are replaced with long loops in BioG, thus forming an unusual α/β-hydrolase fold. This structural variation results in a significantly decreased thermal stability of the enzyme. Nevertheless, the lid domain and the residues at the lid-core interface are well conserved between BioH and BioG, in which an analogous hydrophobic pocket for pimelate binding as well as similar ionic interactions with the ACP moiety are retained. Biochemical characterization of site-directed mutants of the residues hypothesized to interact with the ACP moiety supports a similar substrate interaction mode for the two enzymes. Consequently, these enzymes package the identical catalytic function under a considerably different protein surface.
Kinetic Contributions to Gating by Interactions Unique to N-methyl-d-aspartate (NMDA) Receptors*
Borschel, William F.; Cummings, Kirstie A.; Tindell, LeeAnn K.; Popescu, Gabriela K.
2015-01-01
Among glutamate-gated channels, NMDA receptors produce currents that subside with unusually slow kinetics, and this feature is essential to the physiology of central excitatory synapses. Relative to the homologous AMPA and kainate receptors, NMDA receptors have additional intersubunit contacts in the ligand binding domain that occur at both conserved and non-conserved sites. We examined GluN1/GluN2A single-channel currents with kinetic analyses and modeling to probe these class-specific intersubunit interactions for their role in glutamate binding and receptor gating. We found that substitutions that eliminate such interactions at non-conserved sites reduced stationary gating, accelerated deactivation, and imparted sensitivity to aniracetam, an AMPA receptor-selective positive modulator. Abolishing unique contacts at conserved sites also reduced stationary gating and accelerated deactivation. These results show that contacts specific to NMDA receptors, which brace the heterodimer interface within the ligand binding domain, stabilize actively gating receptor conformations and result in longer bursts and slower deactivations. They support the view that the strength of the heterodimer interface modulates gating in both NMDA and non-NMDA receptors and that unique interactions at this interface are responsible in part for basic differences between the kinetics of NMDA and non-NMDA currents at glutamatergic synapses. PMID:26370091
A Heme-based Redox Sensor in the Methanogenic Archaeon Methanosarcina acetivorans*
Molitor, Bastian; Stassen, Marc; Modi, Anuja; El-Mashtoly, Samir F.; Laurich, Christoph; Lubitz, Wolfgang; Dawson, John H.; Rother, Michael; Frankenberg-Dinkel, Nicole
2013-01-01
Based on a bioinformatics study, the protein MA4561 from the methanogenic archaeon Methanosarcina acetivorans was originally predicted to be a multidomain phytochrome-like photosensory kinase possibly binding open-chain tetrapyrroles. Although we were able to show that recombinantly produced and purified protein does not bind any known phytochrome chromophores, UV-visible spectroscopy revealed the presence of a heme tetrapyrrole cofactor. In contrast to many other known cytoplasmic heme-containing proteins, the heme was covalently attached via one vinyl side chain to cysteine 656 in the second GAF domain. This GAF domain by itself is sufficient for covalent attachment. Resonance Raman and magnetic circular dichroism data support a model of a six-coordinate heme species with additional features of a five-coordination structure. The heme cofactor is redox-active and able to coordinate various ligands like imidazole, dimethyl sulfide, and carbon monoxide depending on the redox state. Interestingly, the redox state of the heme cofactor has a substantial influence on autophosphorylation activity. Although reduced protein does not autophosphorylate, oxidized protein gives a strong autophosphorylation signal independent from bound external ligands. Based on its genomic localization, MA4561 is most likely a sensor kinase of a two-component system effecting regulation of the Mts system, a set of three homologous corrinoid/methyltransferase fusion protein isoforms involved in methyl sulfide metabolism. Consistent with this prediction, an M. acetivorans mutant devoid of MA4561 constitutively synthesized MtsF. On the basis of our results, we postulate a heme-based redox/dimethyl sulfide sensory function of MA4561 and propose to designate it MsmS (methyl sulfide methyltransferase-associated sensor). PMID:23661702
Feng, Qin; Zhang, Yi
2001-01-01
Histone deacetylation plays an important role in methylated DNA silencing. Recent studies indicated that the methyl-CpG-binding protein, MBD2, is a component of the MeCP1 histone deacetylase complex. Interestingly, MBD2 is able to recruit the nucleosome remodeling and histone deacetylase, NuRD, to methylated DNA in vitro. To understand the relationship between the MeCP1 complex and the NuRD complex, we purified the MeCP1 complex to homogeneity and found that it contains 10 major polypeptides including MBD2 and all of the known NuRD components. Functional analysis of the purified MeCP1 complex revealed that it preferentially binds, remodels, and deacetylates methylated nucleosomes. Thus, our study defines the MeCP1 complex, and provides biochemical evidence linking nucleosome remodeling and histone deacetylation to methylated gene silencing. PMID:11297506
X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolevsky, Alexander I.; Rosconi, Michael P.; Gouaux, Eric
2010-02-02
Ionotropic glutamate receptors mediate most excitatory neurotransmission in the central nervous system and function by opening a transmembrane ion channel upon binding of glutamate. Despite their crucial role in neurobiology, the architecture and atomic structure of an intact ionotropic glutamate receptor are unknown. Here we report the crystal structure of the {alpha}-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive, homotetrameric, rat GluA2 receptor at 3.6 {angstrom} resolution in complex with a competitive antagonist. The receptor harbours an overall axis of two-fold symmetry with the extracellular domains organized as pairs of local dimers and with the ion channel domain exhibiting four-fold symmetry. A symmetry mismatchmore » between the extracellular and ion channel domains is mediated by two pairs of conformationally distinct subunits, A/C and B/D. Therefore, the stereochemical manner in which the A/C subunits are coupled to the ion channel gate is different from the B/D subunits. Guided by the GluA2 structure and site-directed cysteine mutagenesis, we suggest that GluN1 and GluN2A NMDA (N-methyl-D-aspartate) receptors have a similar architecture, with subunits arranged in a 1-2-1-2 pattern. We exploit the GluA2 structure to develop mechanisms of ion channel activation, desensitization and inhibition by non-competitive antagonists and pore blockers.« less
Lu, Yuanyuan; Fan, Chaonan; Liang, Aimin; Fan, Xiuqin; Wang, Rui; Li, Ping; Qi, Kemin
2018-06-21
Specific adipokines, such as adiponectin and resistin, are secreted from adipose tissue and are associated with the development of obesity. Supplementation of dietary SCFA can prevent and reverse high-fat-diet (HFD)-induced obesity. However, it is not clear whether SCFA ameliorate abnormal expression of adiponectin and resistin in the obese state. The aim of this study was to investigate the effects of SCFA on adiponectin and resistin's expressions in diet-induced obese mice, as well as the potential mechanisms associated with DNA methylation. C57BL/6J male mice were fed for 16 weeks with five types of HFD (34·9 % fat by wt., 60 % kJ) - a control HFD and four HFD with acetate (HFD-A), propionate (HFD-P), butyrate (HFD-B) and their admixture (HFD-SCFA). Meanwhile, a low-fat diet (4·3 % fat by wt., 10 % kJ) was used as the control group. The reduced mRNA levels of adiponectin and resistin in the adipose tissue of the HFD-fed mice were significantly reversed by dietary supplementation of acetate, propionate, butyrate or their admixture to the HFD. Moreover, the expressional changes of adiponectin and resistin induced by SCFA were associated with alterations in DNA methylation at their promoters, which was mediated by reducing the expressions of enzyme-catalysed DNA methyltransferase (DNMT1, 3a, 3b) and the methyl-CpG-binding domain protein 2 (MBD2) and suppressing the binding of these enzymes to the promoters of adiponectin and resistin. Our results indicate that SCFA may correct aberrant expressions of adiponectin and resistin in obesity by epigenetic regulation.
Tsai, F T; Singh, O M; Skarzynski, T; Wonacott, A J; Weston, S; Tucker, A; Pauptit, R A; Breeze, A L; Poyser, J P; O'Brien, R; Ladbury, J E; Wigley, D B
1997-05-01
Coumarin antibiotics, such as clorobiocin, novobiocin, and coumermycin A1, inhibit the supercoiling activity of gyrase by binding to the gyrase B (GyrB) subunit. Previous crystallographic studies of a 24-kDa N-terminal domain of GyrB from E. coli complexed with novobiocin and a cyclothialidine analogue have shown that both ligands act by binding at the ATP-binding site. Clorobiocin is a natural antibiotic isolated from several Streptomyces strains and differs from novobiocin in that the methyl group at the 8 position in the coumarin ring of novobiocin is replaced by a chlorine atom, and the carbamoyl at the 3' position of the noviose sugar is substituted by a 5-methyl-2-pyrrolylcarbonyl group. To understand the difference in affinity, in order that this information might be exploited in rational drug design, the crystal structure of the 24-kDa GyrB fragment in complex with clorobiocin was determined to high resolution. This structure was determined independently in two laboratories, which allowed the validation of equivalent interpretations. The clorobiocin complex structure is compared with the crystal structures of gyrase complexes with novobiocin and 5'-adenylyl-beta, gamma-imidodiphosphate, and with information on the bound conformation of novobiocin in the p24-novobiocin complex obtained by heteronuclear isotope-filtered NMR experiments in solution. Moreover, to understand the differences in energetics of binding of clorobiocin and novobiocin to the protein, the results from isothermal titration calorimetry are also presented.
The role of NSD family histone lysine methyltransferases in cancer
Bennett, Richard L.; Swaroop, Alok; Troche, Catalina; Licht, Jonathan D.
2017-01-01
The Nuclear receptor-binding SET Domain (NSD) family of histone H3 lysine 36 methyl transferases is comprised of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1). These enzymes recognize and catalyze methylation of histone lysine marks to regulate chromatin integrity and gene expression. The growing number of reports demonstrating that alterations or translocations of these genes fundamentally affect cell growth and differentiation leading to developmental defects illustrates the importance of this family. In addition, overexpression, gain of function somatic mutations and translocations of NSDs are associated with human cancer and can trigger cellular transformation in model systems. Here we review the functions of NSD family members and the accumulating evidence that these proteins play key roles in tumorigenesis. Since epigenetic therapy is an important emerging anti-cancer strategy, understanding the function of NSD family members may lead to the development of novel therapies. PMID:28193767
Planarian MBD2/3 is required for adult stem cell pluripotency independently of DNA methylation☆
Jaber-Hijazi, Farah; Lo, Priscilla J.K.P.; Mihaylova, Yuliana; Foster, Jeremy M.; Benner, Jack S.; Tejada Romero, Belen; Chen, Chen; Malla, Sunir; Solana, Jordi; Ruzov, Alexey; Aziz Aboobaker, A.
2013-01-01
Planarian adult stem cells (pASCs) or neoblasts represent an ideal system to study the evolution of stem cells and pluripotency as they underpin an unrivaled capacity for regeneration. We wish to understand the control of differentiation and pluripotency in pASCs and to understand how conserved, convergent or divergent these mechanisms are across the Bilateria. Here we show the planarian methyl-CpG Binding Domain 2/3 (mbd2/3) gene is required for pASC differentiation during regeneration and tissue homeostasis. The genome does not have detectable levels of 5-methylcytosine (5mC) and we find no role for a potential DNA methylase. We conclude that MBD proteins may have had an ancient role in broadly controlling animal stem cell pluripotency, but that DNA methylation is not involved in planarian stem cell differentiation. PMID:24063805
Novel GATAD2B loss-of-function mutations cause intellectual disability in two unrelated cases.
Luo, Xiaomei; Zou, Yongyi; Tan, Bo; Zhang, Yue; Guo, Jing; Zeng, Lanlan; Zhang, Rui; Tan, Hu; Wei, Xianda; Hu, Yiqiao; Zheng, Yu; Liang, Desheng; Wu, Lingqian
2017-04-01
GATA zinc finger domain-containing 2B (GATAD2B) is a subunit of the methyl-CpG-binding protein-1 complex (MECP1), which deacetylates methylated nucleosomes and regresses transcriptional activity. Recently, GATAD2B has been elucidated as a candidate gene in patients with intellectual disability (ID). In this study, we identified two novel heterozygous frameshift mutations of GATAD2B in two unrelated ID cases through next-generation sequencing (NGS). Both of the mutations c.80_81insGATGT and c.552_555delGAAA cause truncated proteins that might be detrimental to neurodevelopment. We performed western blotting and observed a reduction in the target protein compared with normal controls. This is the first report of GATAD2B in Chinese ID patients. Our findings will broaden the spectrum of GATAD2B mutations and facilitate genetic diagnosis and counseling.
Choi, Won-Il; Jeon, Bu-Nam; Yoon, Jae-Hyeon; Koh, Dong-In; Kim, Myung-Hwa; Yu, Mi-Young; Lee, Kyung-Mi; Kim, Youngsoo; Kim, Kyunggon; Hur, Sujin Susanne; Lee, Choong-Eun; Kim, Kyung-Sup; Hur, Man-Wook
2013-01-01
The tumour-suppressor gene CDKN1A (encoding p21Waf/Cip1) is thought to be epigenetically repressed in cancer cells. FBI-1 (ZBTB7A) is a proto-oncogenic transcription factor repressing the alternative reading frame and p21WAF/CDKN1A genes of the p53 pathway. FBI-1 interacts directly with MBD3 (methyl-CpG–binding domain protein 3) in the nucleus. We demonstrated that FBI-1 binds both non-methylated and methylated DNA and that MBD3 is recruited to the CDKN1A promoter through its interaction with FBI-1, where it enhances transcriptional repression by FBI-1. FBI-1 also interacts with the co-repressors nuclear receptor corepressor (NCoR), silencing mediator for retinoid and thyroid receptors (SMRT) and BCL-6 corepressor (BCoR) to repress transcription. MBD3 regulates a molecular interaction between the co-repressor and FBI-1. MBD3 decreases the interaction between FBI-1 and NCoR/SMRT but increases the interaction between FBI-1 and BCoR. Because MBD3 is a subunit of the Mi-2 autoantigen (Mi-2)/nucleosome remodelling and histone deacetylase (NuRD)-HDAC complex, FBI-1 recruits the Mi-2/NuRD-HDAC complex via MBD3. BCoR interacts with the Mi-2/NuRD-HDAC complex, DNMTs and HP1. MBD3 and BCoR play a significant role in the recruitment of the Mi-2/NuRD-HDAC complex– and the NuRD complex–associated proteins, DNMTs and HP. By recruiting DNMTs and HP1, Mi-2/NuRD-HDAC complex appears to play key roles in epigenetic repression of CDKN1A by DNA methylation. PMID:23658227
Lai, Run-Zhi; Bormans, Arjan F; Draheim, Roger R; Wright, Gus A; Manson, Michael D
2008-12-16
The Tar chemoreceptor-CheA-CheW ternary complex of Escherichia coli is a transmembrane allosteric enzyme in which binding of ligands to the periplasmic domain modulates the activity of CheA kinase. Kinase activity is also affected by reversible methylation of four glutamyl residues in the cytoplasmic domain of the receptor. E. coli Tar contains 553 residues. Residues 549-553 comprise the NWETF pentapeptide that binds the CheR methyltransferase and CheB methylesterase. The crystal structure of the similar Tsr chemoreceptor predicts that residues 263-289 and 490-515 of Tar form the most membrane-proximal portion of the extended CD1-CD2 four-helix bundle of the cytoplasmic domain. The last methylation site, Glu-491, is in the C19 heptad, and the N22-19 and C22-19 heptads are present in all classes of bacterial transmembrane chemoreceptors. Residues 516-548 probably serve as a flexible tether for the NWETF pentapeptide. Here, we present a mutational analysis of residues 505-548. The more of this region that is deleted, the less sensitive Tar is to inhibition by aspartate. Tar deleted from residue 505 through the NWETF sequence stimulates CheA in vitro but is not inhibited by aspartate. Thus, interaction of the last two heptads (C21 and C22) of CD2 with the first two heptads (N22 and N21) of CD1 must be important for transmitting an inhibitory signal from the HAMP domain to the four-helix bundle. The R514A, K523A, R529A, R540A, and R542A substitutions, singly or together, increase the level of activation of CheA in vitro, whereas the R505A substitution decreases the level of CheA stimulation by 40% and lowers the aspartate K(i) 7-fold. The R505E substitution completely abolishes stimulation of CheA in vitro. Glu-505 may interact electrostatically with Asp-273 to destabilize the "on" signaling state by loosening the four-helix bundle.
Wei, Yan; Qu, Mei-Hua; Wang, Xing-Sheng; Chen, Lan; Wang, Dong-Liang; Liu, Ying; Hua, Qian; He, Rong-Qiao
2008-07-02
Tau, an important microtubule associated protein, has been found to bind to DNA, and to be localized in the nuclei of both neurons and some non-neuronal cells. Here, using electrophoretic mobility shifting assay (EMSA) in the presence of DNA with different chain-lengths, we observed that tau protein favored binding to a 13 bp or a longer polynucleotide. The results from atomic force microscopy also showed that tau protein preferred a 13 bp polynucleotide to a 12 bp or shorter polynucleotide. In a competitive assay, a minor groove binder distamycin A was able to replace the bound tau from the DNA double helix, indicating that tau protein binds to the minor groove. Tau protein was able to protect the double-strand from digestion in the presence of DNase I that was bound to the minor groove. On the other hand, a major groove binder methyl green as a negative competitor exhibited little effect on the retardation of tau-DNA complex in EMSA. This further indicates the DNA minor groove as the binding site for tau protein. EMSA with truncated tau proteins showed that both the proline-rich domain (PRD) and the microtubule-binding domain (MTBD) contributed to the interaction with DNA; that is to say, both PRD and MTBD bound to the minor groove of DNA and bent the double-strand, as observed by electron microscopy. To investigate whether tau protein is able to prevent DNA from the impairment by hydroxyl free radical, the chemiluminescence emitted by the phen-Cu/H(2)O(2)/ascorbate was measured. The emission intensity of the luminescence was markedly decreased when tau protein was present, suggesting a significant protection of DNA from the damage in the presence of hydroxyl free radical.
FOXG1 Is Responsible for the Congenital Variant of Rett Syndrome
Ariani, Francesca; Hayek, Giuseppe; Rondinella, Dalila; Artuso, Rosangela; Mencarelli, Maria Antonietta; Spanhol-Rosseto, Ariele; Pollazzon, Marzia; Buoni, Sabrina; Spiga, Ottavia; Ricciardi, Sara; Meloni, Ilaria; Longo, Ilaria; Mari, Francesca; Broccoli, Vania; Zappella, Michele; Renieri, Alessandra
2008-01-01
Rett syndrome is a severe neurodevelopmental disease caused by mutations in the X-linked gene encoding for the methyl-CpG-binding protein MeCP2. Here, we report the identification of FOXG1-truncating mutations in two patients affected by the congenital variant of Rett syndrome. FOXG1 encodes a brain-specific transcriptional repressor that is essential for early development of the telencephalon. Molecular analysis revealed that Foxg1 might also share common molecular mechanisms with MeCP2 during neuronal development, exhibiting partially overlapping expression domain in postnatal cortex and neuronal subnuclear localization. PMID:18571142
Analysis of sDMA modifications of PIWI proteins
Honda, Shozo; Kirino, Yoriko; Kirino, Yohei
2015-01-01
Summary Arginine methylation is an important post-translational protein modification that modulates protein function for a wide range of biological processes. PIWI proteins, a subclade of the Argonaute family proteins, contain evolutionarily conserved symmetrical dimethylarginines (sDMAs). It has become increasingly apparent that the sDMAs of PIWI proteins serve as binding elements for TUDOR-domain containing proteins and that sDMA-dependent protein interactions play crucial roles in the biogenesis and function of PIWI-interacting RNAs (piRNAs). We describe a method for detecting PIWI sDMAs and purifying PIWI/piRNA complexes using anti-sDMA antibodies. PMID:24178562
Structural basis of molecular recognition of helical histone H3 tail by PHD finger domains.
Bortoluzzi, Alessio; Amato, Anastasia; Lucas, Xavier; Blank, Manuel; Ciulli, Alessio
2017-05-04
The plant homeodomain (PHD) fingers are among the largest family of epigenetic domains, first characterized as readers of methylated H3K4. Readout of histone post-translational modifications by PHDs has been the subject of intense investigation; however, less is known about the recognition of secondary structure features within the histone tail itself. We solved the crystal structure of the PHD finger of the bromodomain adjacent to zinc finger 2A [BAZ2A, also known as TIP5 (TTF-I/interacting protein 5)] in complex with unmodified N-terminal histone H3 tail. The peptide is bound in a helical folded-back conformation after K4, induced by an acidic patch on the protein surface that prevents peptide binding in an extended conformation. Structural bioinformatics analyses identify a conserved Asp/Glu residue that we name 'acidic wall', found to be mutually exclusive with the conserved Trp for K4Me recognition. Neutralization or inversion of the charges at the acidic wall patch in BAZ2A, and homologous BAZ2B, weakened H3 binding. We identify simple mutations on H3 that strikingly enhance or reduce binding, as a result of their stabilization or destabilization of H3 helicity. Our work unravels the structural basis for binding of the helical H3 tail by PHD fingers and suggests that molecular recognition of secondary structure motifs within histone tails could represent an additional layer of regulation in epigenetic processes. © 2017 The Author(s).
Peterson, R C; Reich, M F; Dunn, P E; Law, J H; Katzenellnbogen, J A
1977-05-17
A series of analogues of insect juvenile hormone (four geometric isomers of methyl epoxyfarnesenate, several para-substituted epoxygeranyl phenyl ethers, and epoxyfarnesol and its acetate and haloacetate derivatives) was prepared to investigate the binding specificity of the hemolymph juvenile hormone binding protein from the tobacco hornworm Manduct sexta. The relative binding affinities were determined by a competition assay against radiolabeled methyl (E,E)-3,11-dimethyl-7-ethyl-cis-10,11-epoxytrideca-2,6-dienoate (JH I). The ratio of dissociation constants was estimated by plotting competitor data according to a linear transformation of the dissociation equations describing competition of two ligands for a binding protein. The importance of the geometry of the sesquiterpene hydrocarbon chain is indicated by the fact that the binding affinity is decreased as Z (cis) double bonds are substituted for E (trans) double bonds in the methyl epoxyfarnesenate series; the unepoxidized analogues do not bind. A carboxylic ester function is important although its orientation can be reversed, as indicated by the good binding of epoxyfarnesyl acetate. In the monoterpene series, methyl epoxygeranoate shows no affinity for the binding protein, but substitution of a phenyl or p-carbomethoxyphenyl ether for the ester function imparts a low, but significant affinity. These data taken together with earlier results indicate that the binding site for juvenile hormone in the hemolymph binding protein is characterized by a sterically defined hydrophobic region with polar sites that recognize the epoxide and the ester functions.
Structural basis of recognition of farnesylated and methylated KRAS4b by PDEδ.
Dharmaiah, Srisathiyanarayanan; Bindu, Lakshman; Tran, Timothy H; Gillette, William K; Frank, Peter H; Ghirlando, Rodolfo; Nissley, Dwight V; Esposito, Dominic; McCormick, Frank; Stephen, Andrew G; Simanshu, Dhirendra K
2016-11-01
Farnesylation and carboxymethylation of KRAS4b (Kirsten rat sarcoma isoform 4b) are essential for its interaction with the plasma membrane where KRAS-mediated signaling events occur. Phosphodiesterase-δ (PDEδ) binds to KRAS4b and plays an important role in targeting it to cellular membranes. We solved structures of human farnesylated-methylated KRAS4b in complex with PDEδ in two different crystal forms. In these structures, the interaction is driven by the C-terminal amino acids together with the farnesylated and methylated C185 of KRAS4b that binds tightly in the central hydrophobic pocket present in PDEδ. In crystal form II, we see the full-length structure of farnesylated-methylated KRAS4b, including the hypervariable region. Crystal form I reveals structural details of farnesylated-methylated KRAS4b binding to PDEδ, and crystal form II suggests the potential binding mode of geranylgeranylated-methylated KRAS4b to PDEδ. We identified a 5-aa-long sequence motif (Lys-Ser-Lys-Thr-Lys) in KRAS4b that may enable PDEδ to bind both forms of prenylated KRAS4b. Structure and sequence analysis of various prenylated proteins that have been previously tested for binding to PDEδ provides a rationale for why some prenylated proteins, such as KRAS4a, RalA, RalB, and Rac1, do not bind to PDEδ. Comparison of all four available structures of PDEδ complexed with various prenylated proteins/peptides shows the presence of additional interactions due to a larger protein-protein interaction interface in KRAS4b-PDEδ complex. This interface might be exploited for designing an inhibitor with minimal off-target effects.
Laudenbach, Beatrice Theres; Martínez-Montero, Saúl; Cencic, Regina; Habjan, Matthias; Pichlmair, Andreas; Damha, Masad J.; Pelletier, Jerry; Nagar, Bhushan
2017-01-01
IFIT1 (IFN-induced protein with tetratricopeptide repeats-1) is an effector of the host innate immune antiviral response that prevents propagation of virus infection by selectively inhibiting translation of viral mRNA. It relies on its ability to compete with the translation initiation factor eIF4F to specifically recognize foreign capped mRNAs, while remaining inactive against host mRNAs marked by ribose 2′-O methylation at the first cap-proximal nucleotide (N1). We report here several crystal structures of RNA-bound human IFIT1, including a 1.6-Å complex with capped RNA. IFIT1 forms a water-filled, positively charged RNA-binding tunnel with a separate hydrophobic extension that unexpectedly engages the cap in multiple conformations (syn and anti) giving rise to a relatively plastic and nonspecific mode of binding, in stark contrast to eIF4E. Cap-proximal nucleotides encircled by the tunnel provide affinity to compete with eIF4F while allowing IFIT1 to select against N1 methylated mRNA. Gel-shift binding assays confirm that N1 methylation interferes with IFIT1 binding, but in an RNA-dependent manner, whereas translation assays reveal that N1 methylation alone is not sufficient to prevent mRNA recognition at high IFIT1 concentrations. Structural and functional analysis show that 2′-O methylation at N2, another abundant mRNA modification, is also detrimental for RNA binding, thus revealing a potentially synergistic role for it in self- versus nonself-mRNA discernment. Finally, structure-guided mutational analysis confirms the importance of RNA binding for IFIT1 restriction of a human coronavirus mutant lacking viral N1 methylation. Our structural and biochemical analysis sheds new light on the molecular basis for IFIT1 translational inhibition of capped viral RNA. PMID:28251928
Protein arginine methyltransferase 7 has a novel homodimer-like structure formed by tandem repeats.
Hasegawa, Morio; Toma-Fukai, Sachiko; Kim, Jun-Dal; Fukamizu, Akiyoshi; Shimizu, Toshiyuki
2014-05-21
Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyze the transfer of methyl groups from S-adenosyl-l-methionine to nitrogen atoms on arginine residues. Here, we describe the crystal structure of Caenorhabditis elegans PRMT7 in complex with its reaction product S-adenosyl-L-homocysteine. The structural data indicated that PRMT7 harbors two tandem repeated PRMT core domains that form a novel homodimer-like structure. S-adenosyl-L-homocysteine bound to the N-terminal catalytic site only; the C-terminal catalytic site is occupied by a loop that inhibits cofactor binding. Mutagenesis demonstrated that only the N-terminal catalytic site of PRMT7 is responsible for cofactor binding. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Lin, Lin; Liu, Yong; Xu, Fengping; Huang, Jinrong; Daugaard, Tina Fuglsang; Petersen, Trine Skov; Hansen, Bettina; Ye, Lingfei; Zhou, Qing; Fang, Fang; Yang, Ling; Li, Shengting; Fløe, Lasse; Jensen, Kristopher Torp; Shrock, Ellen; Chen, Fang; Yang, Huanming; Wang, Jian; Liu, Xin; Xu, Xun; Bolund, Lars; Nielsen, Anders Lade; Luo, Yonglun
2018-01-01
Abstract Background Fusion of DNA methyltransferase domains to the nuclease-deficient clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9 (dCas9) has been used for epigenome editing, but the specificities of these dCas9 methyltransferases have not been fully investigated. Findings We generated CRISPR-guided DNA methyltransferases by fusing the catalytic domain of DNMT3A or DNMT3B to the C terminus of the dCas9 protein from Streptococcus pyogenes and validated its on-target and global off-target characteristics. Using targeted quantitative bisulfite pyrosequencing, we prove that dCas9-BFP-DNMT3A and dCas9-BFP-DNMT3B can efficiently methylate the CpG dinucleotides flanking its target sites at different genomic loci (uPA and TGFBR3) in human embryonic kidney cells (HEK293T). Furthermore, we conducted whole genome bisulfite sequencing (WGBS) to address the specificity of our dCas9 methyltransferases. WGBS revealed that although dCas9-BFP-DNMT3A and dCas9-BFP-DNMT3B did not cause global methylation changes, a substantial number (more than 1000) of the off-target differentially methylated regions (DMRs) were identified. The off-target DMRs, which were hypermethylated in cells expressing dCas9 methyltransferase and guide RNAs, were predominantly found in promoter regions, 5΄ untranslated regions, CpG islands, and DNase I hypersensitivity sites, whereas unexpected hypomethylated off-target DMRs were significantly enriched in repeated sequences. Through chromatin immunoprecipitation with massive parallel DNA sequencing analysis, we further revealed that these off-target DMRs were weakly correlated with dCas9 off-target binding sites. Using quantitative polymerase chain reaction, RNA sequencing, and fluorescence reporter cells, we also found that dCas9-BFP-DNMT3A and dCas9-BFP-DNMT3B can mediate transient inhibition of gene expression, which might be caused by dCas9-mediated de novo DNA methylation as well as interference with transcription. Conclusion Our results prove that dCas9 methyltransferases cause efficient RNA-guided methylation of specific endogenous CpGs. However, there is significant off-target methylation indicating that further improvements of the specificity of CRISPR-dCas9 based DNA methylation modifiers are required. PMID:29635374
Lin, Lin; Liu, Yong; Xu, Fengping; Huang, Jinrong; Daugaard, Tina Fuglsang; Petersen, Trine Skov; Hansen, Bettina; Ye, Lingfei; Zhou, Qing; Fang, Fang; Yang, Ling; Li, Shengting; Fløe, Lasse; Jensen, Kristopher Torp; Shrock, Ellen; Chen, Fang; Yang, Huanming; Wang, Jian; Liu, Xin; Xu, Xun; Bolund, Lars; Nielsen, Anders Lade; Luo, Yonglun
2018-03-01
Fusion of DNA methyltransferase domains to the nuclease-deficient clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9 (dCas9) has been used for epigenome editing, but the specificities of these dCas9 methyltransferases have not been fully investigated. We generated CRISPR-guided DNA methyltransferases by fusing the catalytic domain of DNMT3A or DNMT3B to the C terminus of the dCas9 protein from Streptococcus pyogenes and validated its on-target and global off-target characteristics. Using targeted quantitative bisulfite pyrosequencing, we prove that dCas9-BFP-DNMT3A and dCas9-BFP-DNMT3B can efficiently methylate the CpG dinucleotides flanking its target sites at different genomic loci (uPA and TGFBR3) in human embryonic kidney cells (HEK293T). Furthermore, we conducted whole genome bisulfite sequencing (WGBS) to address the specificity of our dCas9 methyltransferases. WGBS revealed that although dCas9-BFP-DNMT3A and dCas9-BFP-DNMT3B did not cause global methylation changes, a substantial number (more than 1000) of the off-target differentially methylated regions (DMRs) were identified. The off-target DMRs, which were hypermethylated in cells expressing dCas9 methyltransferase and guide RNAs, were predominantly found in promoter regions, 5΄ untranslated regions, CpG islands, and DNase I hypersensitivity sites, whereas unexpected hypomethylated off-target DMRs were significantly enriched in repeated sequences. Through chromatin immunoprecipitation with massive parallel DNA sequencing analysis, we further revealed that these off-target DMRs were weakly correlated with dCas9 off-target binding sites. Using quantitative polymerase chain reaction, RNA sequencing, and fluorescence reporter cells, we also found that dCas9-BFP-DNMT3A and dCas9-BFP-DNMT3B can mediate transient inhibition of gene expression, which might be caused by dCas9-mediated de novo DNA methylation as well as interference with transcription. Our results prove that dCas9 methyltransferases cause efficient RNA-guided methylation of specific endogenous CpGs. However, there is significant off-target methylation indicating that further improvements of the specificity of CRISPR-dCas9 based DNA methylation modifiers are required.
Ng, Simon; Lin, Edith; Kitov, Pavel I.; ...
2015-04-10
Here we describe an approach to accelerate the search for competitive inhibitors for carbohydrate-recognition domains (CRDs). Genetically encoded fragment-based-discovery (GE-FBD) uses selection of phagedisplayed glycopeptides to dock a glycan fragment at the CRD and guide selection of Synergistic peptide motifs adjacent to the CRD. Starting from concanavalin A (ConA), a mannose (Man)-binding protein, as a bait, we narrowed a library of 10 8 glycopeptides to 86 leads that share a consensus motif, Man-WYD. Validation of synthetic leads yielded Man-WYDLF that exhibited 40 50-fold enhancement in affinity over methyl α-D-mannopyranoside (MeMan). Lectin array Suggested specificity: Man-WYD derivative bound only to 3more » out of 17 proteins-ConA, LcH, and PSA-that bind to Man. An X-ray structure of ConA.:Man-WYD proved that the trimannoside core and Man-WYD exhibit identical CRD docking; but their extra-CRD binding modes are significantly. different. Still, they have comparable affinity and selectivity for various Man-binding proteins. The intriguing observation provides new insight into functional mimicry :of carbohydrates by peptide ligands. GE-FBD may provide an alternative to rapidly search for competitive inhibitors for lectins.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Simon; Lin, Edith; Kitov, Pavel I.
Here we describe an approach to accelerate the search for competitive inhibitors for carbohydrate-recognition domains (CRDs). Genetically encoded fragment-based-discovery (GE-FBD) uses selection of phagedisplayed glycopeptides to dock a glycan fragment at the CRD and guide selection of Synergistic peptide motifs adjacent to the CRD. Starting from concanavalin A (ConA), a mannose (Man)-binding protein, as a bait, we narrowed a library of 10 8 glycopeptides to 86 leads that share a consensus motif, Man-WYD. Validation of synthetic leads yielded Man-WYDLF that exhibited 40 50-fold enhancement in affinity over methyl α-D-mannopyranoside (MeMan). Lectin array Suggested specificity: Man-WYD derivative bound only to 3more » out of 17 proteins-ConA, LcH, and PSA-that bind to Man. An X-ray structure of ConA.:Man-WYD proved that the trimannoside core and Man-WYD exhibit identical CRD docking; but their extra-CRD binding modes are significantly. different. Still, they have comparable affinity and selectivity for various Man-binding proteins. The intriguing observation provides new insight into functional mimicry :of carbohydrates by peptide ligands. GE-FBD may provide an alternative to rapidly search for competitive inhibitors for lectins.« less
Alivand, Mohammad Reza; Soheili, Zahra-Soheila; Pornour, Majid; Solali, Saeed; Sabouni, Farzaneh
2017-10-01
CpG methylation of DNA takes part in a specific epigenetic memory that plays crucial roles in the differentiation and abnormality of the cells. The methylation pattern aberration of genomes is affected in three ways, namely DNA methyltransferase (DNMT), ten-eleven translocation (TET), and methyl-binding domain (MBD) proteins. Of these, TET enzymes have recently been demonstrated to be master modifier enzymes in the DNA methylation process. Additionally, recent studies emphasize that not only epigenetic phenomena play a role in controlling hypoxia pathway, but the hypoxia condition also triggers hypomethylation of genomes that may help with the expression of hypoxia pathway genes. In this study, we suggested that TET1 and TET2 could play a role in the demethylation of genomes under chemical hypoxia conditions. Herein, the evaluating methylation status and mRNA expression of mentioned genes were utilized through real-time PCR and methylation-specific PCR (MSP), respectively. Our results showed that TET1 and TET2 genes were overexpressed (P < 0.05) under chemical hypoxia conditions in Retinal Pigment Epithelial (RPE) cells, whereas the promoter methylation status of them were hypomethylated in the same condition. Therefore, chemical hypoxia not only causes overexpression of TET1 and TET2 but also could gradually do promoter demethylation of same genes. This is the first study to show the relationship between epigenetics and the expression of mentioned genes related to hypoxia pathways. Furthermore, it seems that these associations in RPE cells are subjected to chemical hypoxia as a mechanism that could play a crucial role in methylation pattern changes of hypoxia-related diseases such as cancer and ischemia. J. Cell. Biochem. 118: 3193-3204, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
2012-01-01
Background The aim of this study was to clarify the role of global hypomethylation of repetitive elements in determining the genetic and clinical features of multiple myeloma (MM). Methods We assessed global methylation levels using four repetitive elements (long interspersed nuclear element-1 (LINE-1), Alu Ya5, Alu Yb8, and Satellite-α) in clinical samples comprising 74 MM samples and 11 benign control samples (7 cases of monoclonal gammopathy of undetermined significance (MGUS) and 4 samples of normal plasma cells (NPC)). We also evaluated copy-number alterations using array-based comparative genomic hybridization, and performed methyl-CpG binding domain sequencing (MBD-seq). Results Global levels of the repetitive-element methylation declined with the degree of malignancy of plasma cells (NPC>MGUS>MM), and there was a significant inverse correlation between the degree of genomic loss and the LINE-1 methylation levels. We identified 80 genomic loci as common breakpoints (CBPs) around commonly lost regions, which were significantly associated with increased LINE-1 densities. MBD-seq analysis revealed that average DNA-methylation levels at the CBP loci and relative methylation levels in regions with higher LINE-1 densities also declined during the development of MM. We confirmed that levels of methylation of the 5' untranslated region of respective LINE-1 loci correlated strongly with global LINE-1 methylation levels. Finally, there was a significant association between LINE-1 hypomethylation and poorer overall survival (hazard ratio 2.8, P = 0.015). Conclusion Global hypomethylation of LINE-1 is associated with the progression of and poorer prognosis for MM, possibly due to frequent copy-number loss. PMID:23259664
NASA Astrophysics Data System (ADS)
Rea, Matthew; Eckstein, Meredith; Eleazer, Rebekah; Smith, Caroline; Fondufe-Mittendorf, Yvonne N.
2017-02-01
Chronic low dose inorganic arsenic (iAs) exposure leads to changes in gene expression and epithelial-to-mesenchymal transformation. During this transformation, cells adopt a fibroblast-like phenotype accompanied by profound gene expression changes. While many mechanisms have been implicated in this transformation, studies that focus on the role of epigenetic alterations in this process are just emerging. DNA methylation controls gene expression in physiologic and pathologic states. Several studies show alterations in DNA methylation patterns in iAs-mediated pathogenesis, but these studies focused on single genes. We present a comprehensive genome-wide DNA methylation analysis using methyl-sequencing to measure changes between normal and iAs-transformed cells. Additionally, these differential methylation changes correlated positively with changes in gene expression and alternative splicing. Interestingly, most of these differentially methylated genes function in cell adhesion and communication pathways. To gain insight into how genomic DNA methylation patterns are regulated during iAs-mediated carcinogenesis, we show that iAs probably targets CTCF binding at the promoter of DNA methyltransferases, regulating their expression. These findings reveal how CTCF binding regulates DNA methyltransferase to reprogram the methylome in response to an environmental toxin.
Rea, Matthew; Eckstein, Meredith; Eleazer, Rebekah; Smith, Caroline; Fondufe-Mittendorf , Yvonne N.
2017-01-01
Chronic low dose inorganic arsenic (iAs) exposure leads to changes in gene expression and epithelial-to-mesenchymal transformation. During this transformation, cells adopt a fibroblast-like phenotype accompanied by profound gene expression changes. While many mechanisms have been implicated in this transformation, studies that focus on the role of epigenetic alterations in this process are just emerging. DNA methylation controls gene expression in physiologic and pathologic states. Several studies show alterations in DNA methylation patterns in iAs-mediated pathogenesis, but these studies focused on single genes. We present a comprehensive genome-wide DNA methylation analysis using methyl-sequencing to measure changes between normal and iAs-transformed cells. Additionally, these differential methylation changes correlated positively with changes in gene expression and alternative splicing. Interestingly, most of these differentially methylated genes function in cell adhesion and communication pathways. To gain insight into how genomic DNA methylation patterns are regulated during iAs-mediated carcinogenesis, we show that iAs probably targets CTCF binding at the promoter of DNA methyltransferases, regulating their expression. These findings reveal how CTCF binding regulates DNA methyltransferase to reprogram the methylome in response to an environmental toxin. PMID:28150704
Demarre, Gaëlle; Chattoraj, Dhruba K
2010-05-06
DNA adenine methylation is widely used to control many DNA transactions, including replication. In Escherichia coli, methylation serves to silence newly synthesized (hemimethylated) sister origins. SeqA, a protein that binds to hemimethylated DNA, mediates the silencing, and this is necessary to restrict replication to once per cell cycle. The methylation, however, is not essential for replication initiation per se but appeared so when the origins (oriI and oriII) of the two Vibrio cholerae chromosomes were used to drive plasmid replication in E. coli. Here we show that, as in the case of E. coli, methylation is not essential for oriI when it drives chromosomal replication and is needed for once-per-cell-cycle replication in a SeqA-dependent fashion. We found that oriII also needs SeqA for once-per-cell-cycle replication and, additionally, full methylation for efficient initiator binding. The requirement for initiator binding might suffice to make methylation an essential function in V. cholerae. The structure of oriII suggests that it originated from a plasmid, but unlike plasmids, oriII makes use of methylation for once-per-cell-cycle replication, the norm for chromosomal but not plasmid replication.
Arginine methylation promotes translation repression activity of eIF4G-binding protein, Scd6.
Poornima, Gopalakrishna; Shah, Shanaya; Vignesh, Venkadasubramanian; Parker, Roy; Rajyaguru, Purusharth I
2016-11-02
Regulation of translation plays a critical role in determining mRNA fate. A new role was recently reported for a subset of RGG-motif proteins in repressing translation initiation by binding eIF4G1. However the signaling mechanism(s) that leads to spatial and temporal regulation of repression activity of RGG-motif proteins remains unknown. Here we report the role of arginine methylation in regulation of repression activity of Scd6, a conserved RGG-motif protein. We demonstrate that Scd6 gets arginine methylated at its RGG-motif and Hmt1 plays an important role in its methylation. We identify specific methylated arginine residues in the Scd6 RGG-motif in vivo We provide evidence that methylation augments Scd6 repression activity. Arginine methylation defective (AMD) mutant of Scd6 rescues the growth defect caused by overexpression of Scd6, a feature of translation repressors in general. Live-cell imaging of the AMD mutant revealed that it is defective in inducing formation of stress granules. Live-cell imaging and pull-down results indicate that it fails to bind eIF4G1 efficiently. Consistent with these results, a strain lacking Hmt1 is also defective in Scd6-eIF4G1 interaction. Our results establish that arginine methylation augments Scd6 repression activity by promoting eIF4G1-binding. We propose that arginine methylation of translation repressors with RGG-motif could be a general modulator of their repression activity. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Bhattacharjee, Bornali; Sengupta, Sharmila
2006-10-25
Human papillomavirus type 16 (HPV-16) E2 protein negatively regulates transcription of the E6 and E7 genes. This study was done to test the hypothesis that methylation of the HPV 16 long control region (LCR) is overrepresented among cervical cancer (CaCx) cases compared to cytologically normal controls harboring intact E2 gene. Methylation of the E2 binding site (E2BS-I), proximal to the P97 promoter, was assessed by HpaII/ MspI restriction digestion while McrBC digestion was used to assess LCR-E6 (7289-540) for 57 CaCx samples and 15 normal controls. E2BS-I methylation was found to be significantly higher (56.14%) in cases compared to (20%) controls [OR(age-adjusted) (95% CI): 4.53 (1.05-19.43) p=0.042]. The difference between cases (54.39%) and controls (40%) with respect to LCR-E6 methylation status [OR(age-adjusted) (95% CI): 1.77(0.5-6.3); p=0.38] was not significant. Sequencing of a randomly selected set of 13 methylated malignant samples revealed absence or rare presence, of methylation at CpGs 7579, 7535, 7683 and 7862 respectively. Methylation was found to be more at CpGs within E2 binding sites proximal to the P97 promoter. These results indicate the involvement of E2 binding site methylation in presence of intact E2, leading to loss of E2 repressor activity in CaCx.
Martin, Elizabeth M.; Fry, Rebecca C.
2016-01-01
Abstract A biological mechanism by which exposure to environmental contaminants results in gene-specific CpG methylation patterning is currently unknown. We hypothesize that gene-specific CpG methylation is related to environmentally perturbed transcription factor occupancy. To test this hypothesis, a database of 396 genes with altered CpG methylation either in cord blood leukocytes or placental tissue was compiled from 14 studies representing assessments of six environmental contaminants. Subsequently, an in silico approach was used to identify transcription factor binding sites enriched among the genes with altered CpG methylation in relationship to the suite of environmental contaminants. For each study, the sequences of the promoter regions (representing −1000 to +500 bp from the transcription start site) of all genes with altered CpG methylation were analyzed for enrichment of transcription factor binding sites. Binding sites for a total of 56 unique transcription factors were identified to be enriched within the promoter regions of the genes. Binding sites for the Kidney-Enriched Krupple-like Factor 15, a known responder to endogenous stress, were enriched ( P < 0.001–0.041) among the genes with altered CpG methylation associated for five of the six environmental contaminants. These data support the transcription factor occupancy theory as a potential mechanism underlying environmentally-induced gene-specific CpG methylation. PMID:27066266
Structural Basis for Sequence-specific DNA Recognition by an Arabidopsis WRKY Transcription Factor*
Yamasaki, Kazuhiko; Kigawa, Takanori; Watanabe, Satoru; Inoue, Makoto; Yamasaki, Tomoko; Seki, Motoaki; Shinozaki, Kazuo; Yokoyama, Shigeyuki
2012-01-01
The WRKY family transcription factors regulate plant-specific reactions that are mostly related to biotic and abiotic stresses. They share the WRKY domain, which recognizes a DNA element (TTGAC(C/T)) termed the W-box, in target genes. Here, we determined the solution structure of the C-terminal WRKY domain of Arabidopsis WRKY4 in complex with the W-box DNA by NMR. A four-stranded β-sheet enters the major groove of DNA in an atypical mode termed the β-wedge, where the sheet is nearly perpendicular to the DNA helical axis. Residues in the conserved WRKYGQK motif contact DNA bases mainly through extensive apolar contacts with thymine methyl groups. The importance of these contacts was verified by substituting the relevant T bases with U and by surface plasmon resonance analyses of DNA binding. PMID:22219184
Marano, Grazia; Gronewold, Claas; Frank, Martin; Merling, Anette; Kliem, Christian; Sauer, Sandra; Wiessler, Manfred; Frei, Eva
2012-01-01
Summary Oligosaccharides aberrantly expressed on tumor cells influence processes such as cell adhesion and modulation of the cell’s microenvironment resulting in an increased malignancy. Schmidt’s imidate strategy offers an effective method to synthesize libraries of various oligosaccharide mimetics. With the aim to perturb interactions of tumor cells with extracellular matrix proteins and host cells, molecules with 3,4-bis(hydroxymethyl)furan as core structure were synthesized and screened in biological assays for their abilities to interfere in cell adhesion and other steps of the metastatic cascade, such as tumor-induced angiogenesis. The most active compound, (4-{[(β-D-galactopyranosyl)oxy]methyl}furan-3-yl)methyl hydrogen sulfate (GSF), inhibited the activation of matrix-metalloproteinase-2 (MMP-2) as well as migration of the human melanoma cells of the lines WM-115 and WM-266-4 in a two-dimensional migration assay. GSF inhibited completely the adhesion of WM-115 cells to the extracellular matrix (ECM) proteins, fibrinogen and fibronectin. In an in vitro angiogenesis assay with human endothelial cells, GSF very effectively inhibited endothelial tubule formation and sprouting of blood vessels, as well as the adhesion of endothelial cells to ECM proteins. GSF was not cytotoxic at biologically active concentrations; neither were 3,4-bis{[(β-D-galactopyranosyl)oxy]methyl}furan (BGF) nor methyl β-D-galactopyranoside nor 3,4-bis(hydroxymethyl)furan, which were used as controls, eliciting comparable biological activity. In silico modeling experiments, in which binding of GSF to the extracellular domain of the integrin αvβ3 was determined, revealed specific docking of GSF to the same binding site as the natural peptidic ligands of this integrin. The sulfate in the molecule coordinated with one manganese ion in the binding site. These studies show that this chemically easily accessible molecule GSF, synthesized in three steps from 3,4-bis(hydroxymethyl)furan and benzoylated galactose imidate, is nontoxic and antagonizes cell physiological processes in vitro that are important for the dissemination and growth of tumor cells in vivo. PMID:23015827
Horning, Aaron M; Awe, Julius A; Wang, Chiou-Miin; Liu, Joseph; Lai, Zhao; Wang, Vickie Yao; Jadhav, Rohit R; Louie, Anna D; Lin, Chun-Lin; Kroczak, Tad; Chen, Yidong; Jin, Victor X; Abboud-Werner, Sherry L; Leach, Robin J; Hernandez, Javior; Thompson, Ian M; Saranchuk, Jeff; Drachenberg, Darrel; Chen, Chun-Liang; Mai, Sabine; Huang, Tim Hui-Ming
2015-11-01
Altered DNA methylation in CpG islands of gene promoters has been implicated in prostate cancer (PCa) progression and can be used to predict disease outcome. In this study, we determine whether methylation changes of androgen biosynthesis pathway (ABP)-related genes in patients' plasma cell-free DNA (cfDNA) can serve as prognostic markers for biochemical recurrence (BCR). Methyl-binding domain capture sequencing (MBDCap-seq) was used to identify differentially methylated regions (DMRs) in primary tumors of patients who subsequently developed BCR or not, respectively. Methylation pyrosequencing of candidate loci was validated in cfDNA samples of 86 PCa patients taken at and/or post-radical prostatectomy (RP) using univariate and multivariate prediction analyses. Putative DMRs in 13 of 30 ABP-related genes were found between tumors of BCR (n = 12) versus no evidence of disease (NED) (n = 15). In silico analysis of The Cancer Genome Atlas data confirmed increased DNA methylation of two loci-SRD5A2 and CYP11A1, which also correlated with their decreased expression, in tumors with subsequent BCR development. Their aberrant cfDNA methylation was also associated with detectable levels of PSA taken after patients' post-RP. Multivariate analysis of the change in cfDNA methylation at all of CpG sites measured along with patient's treatment history predicted if a patient will develop BCR with 77.5% overall accuracy. Overall, increased DNA methylation of SRD5A2 and CYP11A1 related to androgen biosynthesis functions may play a role in BCR after patients' RP. The correlation between aberrant cfDNA methylation and detectable PSA in post-RP further suggests their utility as predictive markers for PCa recurrence. . © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Thapa, Mahendra Bahadur
Calbindin D9k (CAB) is a single domain calcium-binding protein and is the smallest members of the calmodulin superfamily, possessing a pair of calcium-binding EF-hands, and structures for all four states have been determined and extensively characterized experimentally. Because of the tremendous advancement in hardware and software computer technologies in recent years, longer and more realistic molecular dynamics (MD) simulations of a protein are possible now in reasonable periods of time. These advances were exploited to generate multiple, all-atom MD simulations of CAB via the AMBER software package, and the resulting trajectories were employed to calculate backbone order parameters of the apo, the singly and the doubly loaded states of calcium in CAB. The results are in very good agreement with corresponding experimental NMR-based (Nuclear Magnetic Resonance spectroscopy) results, and are improved in comparison to those calculated over a decade ago; use of modified force fields played a key role in the observed improvements. The apo state is the most flexible, and the singly loaded and the doubly loaded states are similar, thus supporting positive cooperativity in line with the experimental results. Further, B-factor calculations of backbone atoms for these calcium-binding states of calbindin D9k also support such cooperativity. Although changes in side-chain motions are not necessarily correlated to changes in protein backbone mobility, past studies on the comparison of experimental and simulated methyl side-chain NMR relaxation parameters of CAB for the doubly-loaded state reported significant improvements in the quantitative representation of side-chain motion by MD simulation. In this project, the order parameters for various side chains in apo, singly loaded and doubly loaded states of CAB were calculated. The primary goal of this work was to determine whether or not the allosteric effect of calcium binding, as observed via the backbone order parameters, also extended to the amino acid side chains, and if so, to what extent. Such information could be useful in better understanding the physical basis of cooperative calcium binding in CAB. Most of the residues which provide ligands to bind calcium at the binding sites support positive cooperativity, as observed when Ca-Cß, Cß-C?, C-C bond and C-O bonds of COO groups of aspartic and glutamic acid residues, the C-N bond of the side-chain amide group in asparagine and glutamine residues, and the N-H bonds of amide (NH2) group order parameters were studied. There are only a few residues containing methyl groups that are involved in providing ligands to the calcium, and the studies of order parameters of C-C bond and C-H bond of these methyl groups did not exhibit the cooperativity effect upon calcium binding; the simulated C-C bond order parameter of the methyl group symmetry axis did correlate well with the experimental results for the fully loaded state of CAB (4ICB). Analysis of the MD trajectories using GSATools and MutInf, provided valuable insights into possible pathways for communicating allosteric effects between the two calcium-binding sites of CAB.
Gilbert, Kathleen M.; Blossom, Sarah J.; Reisfeld, Brad; Erickson, Stephen W.; Vyas, Kanan; Maher, Mary; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A.; Bhattacharyya, Sudeepa
2017-01-01
Abstract Exposure to industrial solvent and water pollutant trichloroethylene (TCE) can promote autoimmunity, and expand effector/memory (CD62L) CD4+ T cells. In order to better understand etiology reduced representation bisulfite sequencing was used to study how a 40-week exposure to TCE in drinking water altered methylation of ∼337 770 CpG sites across the entire genome of effector/memory CD4+ T cells from MRL+/+ mice. Regardless of TCE exposure, 62% of CpG sites in autosomal chromosomes were hypomethylated (0–15% methylation), and 25% were hypermethylated (85–100% methylation). In contrast, only 6% of the CpGs on the X chromosome were hypomethylated, and 51% had mid-range methylation levels. In terms of TCE impact, TCE altered (≥ 10%) the methylation of 233 CpG sites in effector/memory CD4+ T cells. Approximately 31.7% of these differentially methylated sites occurred in regions known to bind one or more Polycomb group (PcG) proteins, namely Ezh2, Suz12, Mtf2 or Jarid2. In comparison, only 23.3% of CpG sites not differentially methylated by TCE were found in PcG protein binding regions. Transcriptomics revealed that TCE altered the expression of ∼560 genes in the same effector/memory CD4+ T cells. At least 80% of the immune genes altered by TCE had binding sites for PcG proteins flanking their transcription start site, or were regulated by other transcription factors that were in turn ordered by PcG proteins at their own transcription start site. Thus, PcG proteins, and the differential methylation of their binding sites, may represent a new mechanism by which TCE could alter the function of effector/memory CD4+ T cells. PMID:29129997
DNA-binding mechanism of the Escherichia coli Ada O6-alkylguanine–DNA alkyltransferase
Verdemato, Philip E.; Brannigan, James A.; Damblon, Christian; Zuccotto, Fabio; Moody, Peter C. E.; Lian, Lu-Yun
2000-01-01
The C-terminal domain of the Escherichia coli Ada protein (Ada-C) aids in the maintenance of genomic integrity by efficiently repairing pre-mutagenic O6-alkylguanine lesions in DNA. Structural and thermodynamic studies were carried out to obtain a model of the DNA-binding process. Nuclear magnetic resonance (NMR) studies map the DNA-binding site to helix 5, and a loop region (residues 151–160) which form the recognition helix and the ‘wing’ of a helix–turn–wing motif, respectively. The NMR data also suggest the absence of a large conformational change in the protein upon binding to DNA. Hence, an O6-methylguanine (O6meG) lesion would be inaccessible to active site nucleophile Cys146 if the modified base remained stacked within the DNA duplex. The experimentally determined DNA-binding face of Ada-C was used in combination with homology modelling, based on the catabolite activator protein, and the accepted base-flipping mechanism, to construct a model of how Ada-C binds to DNA in a productive manner. To complement the structural studies, thermodynamic data were obtained which demonstrate that binding to unmethylated DNA was entropically driven, whilst the demethylation reaction provoked an exothermic heat change. Methylation of Cys146 leads to a loss of structural integrity of the DNA-binding subdomain. PMID:11000262
Methylation of an alpha-foetoprotein gene intragenic site modulates gene activity.
Opdecamp, K; Rivière, M; Molné, M; Szpirer, J; Szpirer, C
1992-01-01
By comparing the methylation pattern of Mspl/Hpall sites in the 5' region of the mouse alpha-foetoprotein (AFP) gene of different cells (hepatoma cells, foetal and adult liver, fibroblasts), we found a correlation between gene expression and unmethylation of a site located in the first intron of the gene. Other sites did not show this correlation. In transfection experiments of unmethylated and methylated AFP-CAT chimeric constructions, we then showed that methylation of the intronic site negatively modulates expression of CAT activity. We also found that a DNA segment centered on this site binds nuclear proteins; however methylation did not affect protein binding. Images PMID:1371343
Chen, Hong-Qiang; Zhao, Ji; Li, Yan; He, Li-Xiong; Huang, Yu-Jing; Shu, Wei-Qun; Cao, Jia; Liu, Wen-Bin; Liu, Jin-Yi
2018-06-01
Microcystin (MC) is a cyclic heptapeptide compound which could lead to the development of hepatocellular carcinoma. However, the underlying epigenetic regulation mechanism is largely unknown. In this study, microcystin-LR (L: lysine, R: arginine, MC-LR) was used to induce the malignant transformation of human hepatocyte L02 cell line. The profile of gene expression, microRNA (miRNA) and DNA methylation were detected through high-throughput sequencing. Compared with control group, the expression of 826 genes and 187 miRNAs changed significantly in MC-LR treated group. DNA methylation sequencing analysis showed that 2592 CpG sites differentially methylated in promoter or the coding DNA sequence (CDS) of genes, while DNA methyltransferase 3 alpha (DNMT3a) and DNA methyltransferase 3 beta (DNMT3b) were dramatically up-regulated. Functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that significantly changed mRNAs and microRNAs were mainly involved in the formation of cancer, proliferation, invasion, migration and metabolism. MiRNA-mRNA network and mRNA-mRNA network analysis showed that hsa-miR-320a, hsa-miR-331-3p, hsa-miR-26a-5p, hsa-miR-196a-5p, hsa-miR-221-3p, coiled-coil domain containing 180 (CCDC180), melanoma antigen gene family member D1 (MAGED1), membrane spanning 4-domains A7 (MS4A7), hephaestin like 1 (HEPHL1), BH3 (Bcl-2 homology 3)-like motif containing, cell death inducer (BLID), matrix metallopeptidase 13 (MMP13), guanylate binding protein 5 (GBP5), adipogenesis regulatory factor (ADIRF), formin homology 2 domain containing 1 (FHDC1), protein kinase CAMP-dependent type II regulatory subunit beta (PRKAR2B), nodium leak channel, non-selective (NALCN), myosin light chain kinase 3 (MYLK3), epidermal growth factor receptor (EGFR) and zinc finger protein 704 (ZNF704) were key miRNAs and genes in the malignant transformation induced by MC-LR in L02 cells. Moreover, we found that expression of MYLK3, EGFR and ZNF704 were regulated by DNA methylation and miRNAs, and these genes affected the cell cycle and cell division. Our study suggested that characteristic gene alterations regulated by DNA methylation and miRNA could play an important role in environmental MC-LR induced hepatic carcinogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.
Perfilyev, Alexander; Dahlman, Ingrid; Gillberg, Linn; Rosqvist, Fredrik; Iggman, David; Volkov, Petr; Nilsson, Emma; Risérus, Ulf; Ling, Charlotte
2017-04-01
Background: Dietary fat composition can affect ectopic lipid accumulation and, thereby, insulin resistance. Diets that are high in saturated fatty acids (SFAs) or polyunsaturated fatty acids (PUFAs) have different metabolic responses. Objective: We investigated whether the epigenome of human adipose tissue is affected differently by dietary fat composition and general overfeeding in a randomized trial. Design: We studied the effects of 7 wk of excessive SFA ( n = 17) or PUFA ( n = 14) intake (+750 kcal/d) on the DNA methylation of ∼450,000 sites in human subcutaneous adipose tissue. Both diets resulted in similar body weight increases. We also combined the data from the 2 groups to examine the overall effect of overfeeding on the DNA methylation in adipose tissue. Results: The DNA methylation of 4875 Cytosine-phosphate-guanine (CpG) sites was affected differently between the 2 diets. Furthermore, both the SFA and PUFA diets increased the mean degree of DNA methylation in adipose tissue, particularly in promoter regions. However, although the mean methylation was changed in 1797 genes [e.g., alpha-ketoglutarate dependent dioxygenase ( FTO ), interleukin 6 ( IL6 ), insulin receptor ( INSR ), neuronal growth regulator 1 ( NEGR1 ), and proopiomelanocortin ( POMC )] by PUFAs, only 125 genes [e.g., adiponectin, C1Q and collagen domain containing ( ADIPOQ )] were changed by SFA overfeeding. In addition, the SFA diet significantly altered the expression of 28 transcripts [e.g., acyl-CoA oxidase 1 ( ACOX1 ) and FAT atypical cadherin 1 ( FAT1 )], whereas the PUFA diet did not significantly affect gene expression. When the data from the 2 diet groups were combined, the mean methylation of 1444 genes, including fatty acid binding protein 1 ( FABP1 ), fatty acid binding protein 2 ( FABP2 ), melanocortin 2 receptor ( MC2R ), MC3R , PPARG coactivator 1 α ( PPARGC1A ), and tumor necrosis factor ( TNF ), was changed in adipose tissue by overfeeding. Moreover, the baseline DNA methylation of 12 CpG sites that was annotated to 9 genes [e.g., mitogen-activated protein kinase 7 ( MAPK7 ), melanin concentrating hormone receptor 1 ( MCHR1 ), and splicing factor SWAP homolog ( SFRS8 )] was associated with the degree of weight increase in response to extra energy intake. Conclusions: SFA overfeeding and PUFA overfeeding induce distinct epigenetic changes in human adipose tissue. In addition, we present data that suggest that baseline DNA methylation can predict weight increase in response to overfeeding in humans. This trial was registered at clinicaltrials.gov as NCT01427140. © 2017 American Society for Nutrition.
Li, Yingzhong; Tessaro, Mark J; Li, Xin; Zhang, Yuelin
2010-07-01
Plant Resistance (R) genes encode immune receptors that recognize pathogens and activate defense responses. Because of fitness costs associated with maintaining R protein-mediated resistance, expression levels of R genes have to be tightly regulated. However, mechanisms on how R-gene expression is regulated are poorly understood. Here we show that MODIFIER OF snc1, 1 (MOS1) regulates the expression of SUPPRESSOR OF npr1-1, CONSTITUTIVE1 (SNC1), which encodes a Toll/interleukin receptor-nucleotide binding site-leucine-rich repeat type of R protein in Arabidopsis (Arabidopsis thaliana). In the mos1 loss-of-function mutant plants, snc1 expression is repressed and constitutive resistance responses mediated by snc1 are lost. The repression of snc1 expression in mos1 is released by knocking out DECREASE IN DNA METHYLATION1. In mos1 mutants, DNA methylation in a region upstream of SNC1 is altered. Furthermore, expression of snc1 transgenes using the native promoter does not require MOS1, indicating that regulation of SNC1 expression by MOS1 is at the chromatin level. Map-based cloning of MOS1 revealed that it encodes a novel protein with a HLA-B ASSOCIATED TRANSCRIPT2 (BAT2) domain that is conserved in plants and animals. Our study on MOS1 suggests that BAT2 domain-containing proteins may function in regulation of gene expression at chromatin level.
Kohorn, Bruce D.; Kohorn, Susan L.; Saba, Nicholas J.; Martinez, Victoriano Meco
2014-01-01
The wall-associated kinases (WAKs) have a cytoplasmic protein kinase domain that spans the plasma membrane and binds pectin in the extracellular matrix of plants. WAKs are required for cell expansion during Arabidopsis seedling development but are also an integral part of the response to pathogens and stress that present oligogalacturonides (OGs), which subsequently bind to WAKs and activate a MPK6 (mitogen-activated protein kinase)-dependent pathway. It was unclear how WAKs distinguish native pectin polymers and OGs to activate one or the other of these two pathways. A dominant allele of WAK2 constitutively activates the stress response, and we show here that the effect is dependent upon EDS1 and PAD4, transcriptional activators involved in the pathogen response. Moreover, the WAK2 dominant allele is suppressed by a null allele of a pectin methyl esterase (PME3) whose activity normally leads to cross-linking of pectins in the cell wall. Although OGs activate a transcriptional response in wild type, the response is enhanced in a pme3/pme3 null, consistent with a competition by OG and native polymers for activation of WAKs. This provides a plausible mechanism for WAKs to distinguish an expansion from a stress pathway. PMID:24855660
De Felice, Fernanda G; Velasco, Pauline T; Lambert, Mary P; Viola, Kirsten; Fernandez, Sara J; Ferreira, Sergio T; Klein, William L
2007-04-13
Oxidative stress is a major aspect of Alzheimer disease (AD) pathology. We have investigated the relationship between oxidative stress and neuronal binding of Abeta oligomers (also known as ADDLs). ADDLs are known to accumulate in brain tissue of AD patients and are considered centrally related to pathogenesis. Using hippocampal neuronal cultures, we found that ADDLs stimulated excessive formation of reactive oxygen species (ROS) through a mechanism requiring N-methyl-d-aspartate receptor (NMDA-R) activation. ADDL binding to neurons was reduced and ROS formation was completely blocked by an antibody to the extracellular domain of the NR1 subunit of NMDA-Rs. In harmony with a steric inhibition of ADDL binding by NR1 antibodies, ADDLs that were bound to detergent-extracted synaptosomal membranes co-immunoprecipitated with NMDA-R subunits. The NR1 antibody did not affect ROS formation induced by NMDA, showing that NMDA-Rs themselves remained functional. Memantine, an open channel NMDA-R antagonist prescribed as a memory-preserving drug for AD patients, completely protected against ADDL-induced ROS formation, as did other NMDA-R antagonists. Memantine and the anti-NR1 antibody also attenuated a rapid ADDL-induced increase in intraneuronal calcium, which was essential for stimulated ROS formation. These results show that ADDLs bind to or in close proximity to NMDA-Rs, triggering neuronal damage through NMDA-R-dependent calcium flux. This response provides a pathologically specific mechanism for the therapeutic action of memantine, indicates a role for ROS dysregulation in ADDL-induced cognitive impairment, and supports the unifying hypothesis that ADDLs play a central role in AD pathogenesis.
Structural and Biochemical Insights into MLL1 Core Complex Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avdic, Vanja; Zhang, Pamela; Lanouette, Sylvain
2012-05-02
Histone H3 Lys-4 methylation is predominantly catalyzed by a family of methyltransferases whose enzymatic activity depends on their interaction with a three-subunit complex composed of WDR5, RbBP5, and Ash2L. Here, we report that a segment of 50 residues of RbBP5 bridges the Ash2L C-terminal domain to WDR5. The crystal structure of WDR5 in ternary complex with RbBP5 and MLL1 reveals that both proteins binds peptide-binding clefts located on opposite sides of WDR5s {beta}-propeller domain. RbBP5 engages in several hydrogen bonds and van der Waals contacts within a V-shaped cleft formed by the junction of two blades on WDR5. Mutational analysesmore » of both the WDR5 V-shaped cleft and RbBP5 residues reveal that the interactions between RbBP5 and WDR5 are important for the stimulation of MLL1 methyltransferase activity. Overall, this study provides the structural basis underlying the formation of the WDR5-RbBP5 subcomplex and further highlight the crucial role of WDR5 in scaffolding the MLL1 core complex.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yinglu; Shan, Chun -Min; Wang, Jiyong
Histone H3 lysine 36 methylation (H3K36me) is critical for epigenetic regulation and mutations at or near H3K36 are associated with distinct types of cancers. H3K36M dominantly inhibits H3K36me on wild-type histones, whereas H3G34R/V selectively affects H3K36me on the same histone tail. Here we report the crystal structures of SETD2 SET domain in complex with an H3K36M peptide and SAM or SAH. There are large conformational changes in the substrate binding regions of the SET domain, and the K36M residue interacts with the catalytic pocket of SETD2. H3G34 is surrounded by a very narrow tunnel, which excludes larger amino acid sidemore » chains. H3P38 is in the trans configuration, and the cis configuration is incompatible with SETD2 binding. Lastly, mutations of H3G34 or H3P38 alleviate the inhibitory effects of H3K36M on H3K36me, demonstrating that the stable interaction of H3K36M with SETD2 is critical for its inhibitory effects.« less
ORC1 BAH domain links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome
Kuo, Alex J.; Song, Jikui; Cheung, Peggie; Ishibe-Murakami, Satoko; Yamazoe, Sayumi; Chen, James K.; Patel, Dinshaw J.; Gozani, Or
2012-01-01
Recognition of distinctly modified histones by specialized “effector” proteins constitutes a key mechanism for transducing molecular events at chromatin to biological outcomes1. Effector proteins influence DNA-templated processes, including transcription, DNA recombination, and DNA repair; however, no effector functions have yet been identified within the mammalian machinery that regulates DNA replication. Here we show that ORC1 – a component of ORC (origin of replication complex), which mediates pre-DNA replication licensing2 – contains a BAH (bromo adjacent homology) domain that specifically recognizes histone H4 dimethylated at lysine 20 (H4K20me2). Recognition of H4K20me2 is a property common to BAH domains present within diverse metazoan ORC1 proteins. Structural studies reveal that the specificity of the BAH domain for H4K20me2 is mediated by a dynamic aromatic dimethyllysine-binding cage and multiple intermolecular contacts involving the bound peptide. H4K20me2 is enriched at replication origins and abrogating ORC1 recognition of H4K20me2 in cells impairs ORC1 occupancy at origins, ORC chromatin loading, and cell-cycle progression. Mutation of the ORC1 BAH domain has been implicated in the etiology of Meier-Gorlin syndrome (MGS)3,4, a form of primordial dwarfism5, and ORC1 depletion in zebrafish results in an MGS-like phenotype4. We find that wild-type human ORC1, but not ORC1 H4K20me2-binding mutants, rescues the growth retardation of orc1 morphants. Moreover, zebrafish depleted of H4K20me2 have diminished body size, mirroring the phenotype of orc1 morphants. Together, our results identify the BAH domain as a novel methyllysine-binding module, thereby establishing the first direct link between histone methylation and the metazoan DNA replication machinery, and defining a pivotal etiologic role for the canonical H4K20me2 mark, via ORC1, in primordial dwarfism. PMID:22398447
Effect of arginine methylation on the RNA recognition and cellular uptake of Tat-derived peptides.
Li, Jhe-Hao; Chiu, Wen-Chieh; Yao, Yun-Chiao; Cheng, Richard P
2015-05-01
Arginine (Arg) methylation is a common post-translational modification that regulates gene expression and viral infection. The HIV-1 Tat protein is an essential regulatory protein for HIV proliferation, and is methylated in the cell. The basic region (residues 47-57) of the Tat protein contains six Arg residues, and is responsible for two biological functions: RNA recognition and cellular uptake. In this study, we explore the effect of three different methylation states at each Arg residue in Tat-derived peptides on the two biological functions. The Tat-derived peptides were synthesized by solid phase peptide synthesis. TAR RNA binding of the peptides was assessed by electrophoresis mobility shift assays. The cellular uptake of the peptides into Jurkat cells was determined by flow cytometry. Our results showed that RNA recognition was affected by both methylation state and position. In particular, asymmetric dimethylation at position 53 decreased TAR RNA binding affinity significantly, but unexpectedly less so upon asymmetric dimethylation at position 52. The RNA binding affinity even slightly increased upon methylation at some of the flanking Arg residues. Upon Arg methylation, the cellular uptake of Tat-derived peptides mostly decreased. Interestingly, cellular uptake of Tat-derived peptides with a single asymmetrically dimethylated Arg residue was similar to the native all Arg peptide (at 120 μM). Based on our results, TAR RNA binding apparently required both guanidinium terminal NH groups on Arg53, whereas cellular uptake apparently required guanidinium terminal NH₂ groups instead. These results should provide insight into how nature uses arginine methylation to regulate different biological functions, and should be useful for the development of functional molecules with methylated arginines. Copyright © 2015. Published by Elsevier Ltd.
The reaction mechanism of methyl-coenzyme M reductase: How an enzyme enforces strict binding order
Wongnate, Thanyaporn; Ragsdale, Stephen W.
2015-02-17
Methyl-coenzyme M reductase (MCR) is a nickel tetrahydrocorphinoid (coenzyme F430) containing enzyme involved in the biological synthesis and anaerobic oxidation of methane. MCR catalyzes the conversion of methyl-2-mercaptoethanesulfonate (methyl-SCoM) and N-7-mercaptoheptanoylthreonine phosphate (CoB 7SH) to CH 4 and the mixed disulfide CoBS-SCoM. In this study, the reaction of MCR from Methanothermobacter marburgensis, with its native substrates was investigated using static binding, chemical quench, and stopped-flow techniques. Rate constants were measured for each step in this strictly ordered ternary complex catalytic mechanism. Surprisingly, in the absence of the other substrate, MCR can bind either substrate; however, only one binary complex (MCR·methyl-SCoM)more » is productive whereas the other (MCR·CoB 7SH) is inhibitory. Moreover, the kinetic data demonstrate that binding of methyl-SCoM to the inhibitory MCR·CoB 7SH complex is highly disfavored ( Kd = 56 mM). However, binding of CoB 7SH to the productive MCR·methyl-SCoM complex to form the active ternary complex (CoB 7SH·MCR(Ni I)·CH 3SCoM) is highly favored ( Kd = 79 μM). Only then can the chemical reaction occur ( kobs = 20 s -1 at 25 °C), leading to rapid formation and dissociation of CH 4 leaving the binary product complex (MCR(Ni II)·CoB 7S -·SCoM), which undergoes electron transfer to regenerate Ni(I) and the final product CoBS-SCoM. In conclusion, this first rapid kinetics study of MCR with its natural substrates describes how an enzyme can enforce a strictly ordered ternary complex mechanism and serves as a template for identification of the reaction intermediates.« less
Development of Substrate-Selective Probes for Affinity Pulldown of Histone Demethylases
2015-01-01
JmjC-domain containing histone demethylases (JHDMs) play critical roles in many key cellular processes and have been implicated in multiple disease conditions. Each enzyme within this family is known to have a strict substrate scope, specifically the position of the lysine within the histone and its degree of methylation. While much progress has been made in determining the substrates of each enzyme, new methods with which to systematically profile each histone mark are greatly needed. Novel chemical tools have the potential to fill this role and, furthermore, can be used as probes to answer fundamental questions about these enzymes and serve as potential therapeutic leads. In this work, we first investigated three small-molecule probes differing in the degree of “methylation state” and their differential bindings to JHDM1A (an H3K36me1/2 demethylase) using a fluorescence polarization-based competition assay. We then applied this specificity toward the “methylation state” and combined it with specificity toward lysine position in the design and synthesis of a peptidic probe targeting H3K36me2 JHDMs. The probe is further functionalized with a benzophenone cross-linking moiety and a biotin for affinity purification. Results showed binding of the peptidic probe to JHDM1A and specific enrichment of this protein in the presence of its native histone substrates. Affinity purification pulldown experiments from nuclear lysate coupled with mass spectrometry revealed the capability of the probe to pull out and enrich JHDMs along with other epigenetic proteins and transcriptional regulators. PMID:25335116
DNA methylation pathways and their crosstalk with histone methylation
Du, Jiamu; Johnson, Lianna M.; Jacobsen, Steven E.; Patel, Dinshaw J.
2015-01-01
Methylation of DNA and of histone 3 at Lys 9 (H3K9) are highly correlated with gene silencing in eukaryotes from fungi to humans. Both of these epigenetic marks need to be established at specific regions of the genome and then maintained at these sites through cell division. Protein structural domains that specifically recognize methylated DNA and methylated histones are key for targeting enzymes that catalyse these marks to appropriate genome sites. Genetic, genomic, structural and biochemical data reveal connections between these two epigenetic marks, and these domains mediate much of the crosstalk. PMID:26296162
Mattar, P A; Holmes, K D; Dekaban, G A
2005-01-01
The N-methyl-D-aspartate receptor (NMDAR) plays a key role in the neural plasticity that underlies learning and memory in vivo. The plasticity exhibited by NMDARs may also contribute to disease pathogenesis, as a number of disorders are caused or exacerbated by exaggerated NMDAR activity. The NMDAR is composed of two obligatory types of subunits, NR1 and NR2. These transmembrane proteins include large intracellular C-termini that have yet to be fully characterized. We have developed a three-color fluorescence system in order to visualize NMDAR expression in living cells. Using excitotoxicity as a proxy for exaggerated NMDAR activity, we analyzed the effect of over-expressing NR1-4 and NR2A C-terminal domains on exaggerated NMDAR function. We demonstrate that a determinant within the C-terminal domain of NR1-4 (C02') is important for NMDAR excitotoxicity, whereas no novel determinants were identified in the NR2A C-terminus. Through the use of heterologous cells, and by examining the interaction between the prototypical NMDAR-binding partner postsynaptic density-95 (PSD-95), we show that this effect is unlikely to be mediated through a classical interaction with PSD-95.
Bhardwaj, Pardeep Kumar; Kaur, Jagdeep; Sobti, Ranbir Chander; Ahuja, Paramvir Singh; Kumar, Sanjay
2011-09-01
Lipoxygenase (LOX) catalyses oxygenation of free polyunsaturated fatty acids into oxylipins, and is a critical enzyme of the jasmonate signaling pathway. LOX has been shown to be associated with biotic and abiotic stress responses in diverse plant species, though limited data is available with respect to low temperature and the associated cues. Using rapid amplification of cDNA ends, a full-length cDNA (CjLOX) encoding lipoxygenase was cloned from apical buds of Caragana jubata, a temperate plant species that grows under extreme cold. The cDNA obtained was 2952bp long consisting of an open reading frame of 2610bp encoding 869 amino acids protein. Multiple alignment of the deduced amino acid sequence with those of other plants demonstrated putative LH2/ PLAT domain, lipoxygenase iron binding catalytic domain and lipoxygenase_2 signature sequences. CjLOX exhibited up- and down-regulation of gene expression pattern in response to low temperature (LT), abscisic acid (ABA), methyl jasmonate (MJ) and salicylic acid (SA). Among all the treatments, a strong up-regulation was observed in response to MJ. Data suggests an important role of jasmonate signaling pathway in response to LT in C. jubata. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moberly, James G; Miller, Carrie L; Brown, Steven D
2012-01-01
The biogeochemical transformations of mercury are a complex process, with the production of methylmercury, a potent human neurotoxin, repeatedly demonstrated in sulfate- and Fe(III)- reducing as well as methanogenic bacteria. However, little is known regarding the morphology, genes or proteins involved in methylmercury generation. Desulfovibrio africanus strain Walvis Bay is a Hg-methylating -proteobacterium with a sequenced genome and has unusual pleomorphic forms. In this study, a relationship between the pleomorphism and Hg methylation was investigated. Proportional increases in the sigmoidal (regular) cell form corresponded with increased net MeHg production, but decreased when the pinched cocci (persister) form became the majormore » morphotype. D. africanus microarrays indicated that the ferrous iron transport genes (feoAB), as well as ribosomal genes and several genes whose products are predicted to have metal binding domains (CxxC), were up-regulated during exposure to Hg in the exponential phase. While no specific methylation pathways were identified, the finding that Hg may interfere with iron transport and the correlation of growth-phase dependent morphology with MeHg production are notable. The identification of these relationships between differential gene expression, morphology, and the growth phase dependence of Hg transformations suggests that actively growing cells are primarily responsible for methylation, and so areas with ample carbon and electron-acceptor concentrations may also generate a higher proportion of methylmercury than more oligotrophic environments. The observation of increased iron transporter expression also suggests that Hg methylation may interfere with iron biogeochemical cycles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tingting; Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Chen, Man
Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a singlemore » site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: Black-Right-Pointing-Pointer Nicotine-induced StAR inhibition in two human adrenal cell models. Black-Right-Pointing-Pointer Nicotine-induced single CpG site methylation in StAR promoter. Black-Right-Pointing-Pointer Persistent StAR inhibition and single CpG methylation after nicotine termination. Black-Right-Pointing-Pointer Single CpG methylation located at Pax6 binding motif regulates StAR expression.« less
Effects of cytosine methylation on transcription factor binding sites
2014-01-01
Background DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important. Results We found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines “traffic lights”. We observed a strong selection against CpG “traffic lights” within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions. Conclusions Our results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription. PMID:24669864
Kibbey, Megan M; Jameson, Mark J; Eaton, Erin M; Rosenzweig, Steven A
2006-03-01
Signaling by the insulin-like growth factor (IGF)-1 receptor (IGF-1R) has been implicated in the promotion and aggressiveness of breast, prostate, colorectal, and lung cancers. The IGF binding proteins (IGFBPs) represent a class of natural IGF antagonists that bind to and sequester IGF-1/2 from the IGF-1R, making them attractive candidates as therapeutics for cancer prevention and control. Recombinant human IGFBP-2 significantly attenuated IGF-1-stimulated MCF-7 cell proliferation with coaddition of 20 or 100 nM IGFBP-2 (50 or 80% inhibition, respectively). We previously identified IGF-1 contact sites both upstream and downstream of the CWCV motif (residues 247-250) in human IGFBP-2 (J Biol Chem 276:2880-2889, 2001). To further test their contributions to IGFBP-2 function, the single tryptophan in human IGFBP-2, Trp-248, was selectively cleaved with 2-(2'nitrophenylsulfenyl)-3-methyl-3 bromoindolenine (BNPS-skatole) and the BNPS-skatole products IGFBP-2(1-248) and IGFBP-2(249-289) as well as IGFBP-2(1-190) were expressed as glutathione S-transferase-fusion proteins and purified. Based on competition binding analysis, deletion of residues 249 to 289 caused an approximately 20-fold decrease in IGF-1 binding affinity (IGFBP-2 EC50 = 0.35 nM and IGFBP-2(1-248) = 7 nM). Removal of the remainder of the C-terminal domain had no further effect on affinity (IGFBP-2(1-190) EC50 = 9.2 nM). In kinetic assays, IGFBP-2(1-248) and IGFBP-2(1-190) exhibited more rapid association and dissociation rates than full-length IGFBP-2. These results confirm that regions upstream and downstream of the CWCV motif participate in IGF-1 binding. They further support the development of full-length IGFBP-2 as a cancer therapeutic.
Zhang, Chun Li; McKinsey, Timothy A; Olson, Eric N
2002-10-01
Class II histone deacetylases (HDACs) 4, 5, 7, and 9 repress muscle differentiation through associations with the myocyte enhancer factor 2 (MEF2) transcription factor. MEF2-interacting transcription repressor (MITR) is an amino-terminal splice variant of HDAC9 that also potently inhibits MEF2 transcriptional activity despite lacking a catalytic domain. Here we report that MITR, HDAC4, and HDAC5 associate with heterochromatin protein 1 (HP1), an adaptor protein that recognizes methylated lysines within histone tails and mediates transcriptional repression by recruiting histone methyltransferase. Promyogenic signals provided by calcium/calmodulin-dependent kinase (CaMK) disrupt the interaction of MITR and HDACs with HP1. Since the histone methyl-lysine residues recognized by HP1 also serve as substrates for deacetylation by HDACs, the interaction of MITR and HDACs with HP1 provides an efficient mechanism for silencing MEF2 target genes by coupling histone deacetylation and methylation. Indeed, nucleosomal histones surrounding a MEF2-binding site in the myogenin gene promoter are highly methylated in undifferentiated myoblasts, when the gene is silent, and become acetylated during muscle differentiation, when the myogenin gene is expressed at high levels. The ability of MEF2 to recruit a histone methyltransferase to target gene promoters via HP1-MITR and HP1-HDAC interactions and of CaMK signaling to disrupt these interactions provides an efficient mechanism for signal-dependent regulation of the epigenetic events controlling muscle differentiation.
Zhang, Chun Li; McKinsey, Timothy A.; Olson, Eric N.
2002-01-01
Class II histone deacetylases (HDACs) 4, 5, 7, and 9 repress muscle differentiation through associations with the myocyte enhancer factor 2 (MEF2) transcription factor. MEF2-interacting transcription repressor (MITR) is an amino-terminal splice variant of HDAC9 that also potently inhibits MEF2 transcriptional activity despite lacking a catalytic domain. Here we report that MITR, HDAC4, and HDAC5 associate with heterochromatin protein 1 (HP1), an adaptor protein that recognizes methylated lysines within histone tails and mediates transcriptional repression by recruiting histone methyltransferase. Promyogenic signals provided by calcium/calmodulin-dependent kinase (CaMK) disrupt the interaction of MITR and HDACs with HP1. Since the histone methyl-lysine residues recognized by HP1 also serve as substrates for deacetylation by HDACs, the interaction of MITR and HDACs with HP1 provides an efficient mechanism for silencing MEF2 target genes by coupling histone deacetylation and methylation. Indeed, nucleosomal histones surrounding a MEF2-binding site in the myogenin gene promoter are highly methylated in undifferentiated myoblasts, when the gene is silent, and become acetylated during muscle differentiation, when the myogenin gene is expressed at high levels. The ability of MEF2 to recruit a histone methyltransferase to target gene promoters via HP1-MITR and HP1-HDAC interactions and of CaMK signaling to disrupt these interactions provides an efficient mechanism for signal-dependent regulation of the epigenetic events controlling muscle differentiation. PMID:12242305
Besschetnova, Tatiana Y.; Montefusco, David J.; Asinas, Abdalin E.; Shrout, Anthony L.; Antommattei, Frances M.; Weis, Robert M.
2008-01-01
All cells possess transmembrane signaling systems that function in the environment of the lipid bilayer. In the Escherichia coli chemotaxis pathway, the binding of attractants to a two-dimensional array of receptors and signaling proteins simultaneously inhibits an associated kinase and stimulates receptor methylation—a slower process that restores kinase activity. These two opposing effects lead to robust adaptation toward stimuli through a physical mechanism that is not understood. Here, we provide evidence of a counterbalancing influence exerted by receptor density on kinase stimulation and receptor methylation. Receptor signaling complexes were reconstituted over a range of defined surface concentrations by using a template-directed assembly method, and the kinase and receptor methylation activities were measured. Kinase activity and methylation rates were both found to vary significantly with surface concentration—yet in opposite ways: samples prepared at high surface densities stimulated kinase activity more effectively than low-density samples, whereas lower surface densities produced greater methylation rates than higher densities. FRET experiments demonstrated that the cooperative change in kinase activity coincided with a change in the arrangement of the membrane-associated receptor domains. The counterbalancing influence of density on receptor methylation and kinase stimulation leads naturally to a model for signal regulation that is compatible with the known logic of the E. coli pathway. Density-dependent mechanisms are likely to be general and may operate when two or more membrane-related processes are influenced differently by the two-dimensional concentration of pathway elements. PMID:18711126
Drouin, Simon; Laramée, Louise; Jacques, Pierre-Étienne; Forest, Audrey; Bergeron, Maxime; Robert, François
2010-10-28
Histone deacetylase Rpd3 is part of two distinct complexes: the large (Rpd3L) and small (Rpd3S) complexes. While Rpd3L targets specific promoters for gene repression, Rpd3S is recruited to ORFs to deacetylate histones in the wake of RNA polymerase II, to prevent cryptic initiation within genes. Methylation of histone H3 at lysine 36 by the Set2 methyltransferase is thought to mediate the recruitment of Rpd3S. Here, we confirm by ChIP-Chip that Rpd3S binds active ORFs. Surprisingly, however, Rpd3S is not recruited to all active genes, and its recruitment is Set2-independent. However, Rpd3S complexes recruited in the absence of H3K36 methylation appear to be inactive. Finally, we present evidence implicating the yeast DSIF complex (Spt4/5) and RNA polymerase II phosphorylation by Kin28 and Ctk1 in the recruitment of Rpd3S to active genes. Taken together, our data support a model where Set2-dependent histone H3 methylation is required for the activation of Rpd3S following its recruitment to the RNA polymerase II C-terminal domain.
m1A Post-Transcriptional Modification in tRNAs.
Oerum, Stephanie; Dégut, Clément; Barraud, Pierre; Tisné, Carine
2017-02-21
To date, about 90 post-transcriptional modifications have been reported in tRNA expanding their chemical and functional diversity. Methylation is the most frequent post-transcriptional tRNA modification that can occur on almost all nitrogen sites of the nucleobases, on the C5 atom of pyrimidines, on the C2 and C8 atoms of adenosine and, additionally, on the oxygen of the ribose 2'-OH. The methylation on the N1 atom of adenosine to form 1-methyladenosine (m1A) has been identified at nucleotide position 9, 14, 22, 57, and 58 in different tRNAs. In some cases, these modifications have been shown to increase tRNA structural stability and induce correct tRNA folding. This review provides an overview of the currently known m1A modifications, the different m1A modification sites, the biological role of each modification, and the enzyme responsible for each methylation in different species. The review further describes, in detail, two enzyme families responsible for formation of m1A at nucleotide position 9 and 58 in tRNA with a focus on the tRNA binding, m1A mechanism, protein domain organisation and overall structures.
Intrinsically disordered RGG/RG domains mediate degenerate specificity in RNA binding
Ozdilek, Bagdeser A.; Thompson, Valery F.; Ahmed, Nasiha S.; White, Connor I.
2017-01-01
Abstract RGG/RG domains are the second most common RNA binding domain in the human genome, yet their RNA-binding properties remain poorly understood. Here, we report a detailed analysis of the RNA binding characteristics of intrinsically disordered RGG/RG domains from Fused in Sarcoma (FUS), FMRP and hnRNPU. For FUS, previous studies defined RNA binding as mediated by its well-folded domains; however, we show that RGG/RG domains are the primary mediators of binding. RGG/RG domains coupled to adjacent folded domains can achieve affinities approaching that of full-length FUS. Analysis of RGG/RG domains from FUS, FMRP and hnRNPU against a spectrum of contrasting RNAs reveals that each display degenerate binding specificity, while still displaying different degrees of preference for RNA. PMID:28575444
Synthesis and characterization of DNA minor groove binding alkylating agents.
Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K; Mascara, Gerard P; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W; Bobola, Michael S; Silber, John R; Gold, Barry
2013-01-18
Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases, the N-terminus was appended with an O-methyl sulfonate ester, while the C-terminus group was varied with nonpolar and polar side chains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) versus major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is >10-fold higher than that of the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells overexpressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to the expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and the diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization.
Kransdorf, Evan P.; Wang, Shou Zhen; Zhu, Sheng Zu; Langston, Timothy B.; Rupon, Jeremy W.; Ginder, Gordon D.
2006-01-01
The chicken embryonic β-type globin gene, ρ, is a member of a small group of vertebrate genes whose developmentally regulated expression is mediated by DNA methylation. Previously, we have shown that a methyl cytosine-binding complex binds to the methylated ρ-globin gene in vitro. We have now chromatographically purified and characterized this complex from adult chicken primary erythroid cells. Four components of the MeCP1 transcriptional repression complex were identified: MBD2, RBAP48, HDAC2, and MTA1. These 4 proteins, as well as the zinc-finger protein p66 and the chromatin remodeling factor Mi2, were found to coelute by gel-filtration analysis and pull-down assays. We conclude that these 6 proteins are components of the MeCPC. In adult erythrocytes, significant enrichment for MBD2 is seen at the inactive ρ-globin gene by chromatin immunoprecipitation assay, whereas no enrichment is observed at the active βA-globin gene, demonstrating MBD2 binds to the methylated and transcriptionally silent ρ-globin gene in vivo. Knock-down of MBD2 resulted in up-regulation of a methylated ρ-gene construct in mouse erythroleukemic (MEL)-ρ cells. These results represent the first purification of a MeCP1-like complex from a primary cell source and provide support for a role for MBD2 in developmental gene regulation. PMID:16778143
Blessy, J Jino; Sharmila, D Jeya Sundara
2015-02-01
Molecular modeling of synthetic methyl-α-Neu5Ac analogues modified in C-9 position was investigated by molecular docking and molecular dynamics (MD) simulation methods. Methyl-α-Neu5Ac analogues were docked against cholera toxin (CT) B subunit protein and MD simulations were carried out for three Methyl-α-Neu5Ac analogue-CT complexes (30, 10 and 10 ns) to estimate the binding activity of cholera toxin-Methyl-α-Neu5Ac analogues using OPLS_2005 force field. In this study, direct and water mediated hydrogen bonds play a vital role that exist between the methyl-α-9-N-benzoyl-amino-9-deoxy-Neu5Ac (BENZ)-cholera toxin active site residues. The Energy plot, RMSD and RMSF explain that the simulation was stable throughout the simulation run. Transition of phi, psi and omega angle for the complex was calculated. Molecular docking studies could be able to identify the binding mode of methyl-α-Neu5Ac analogues in the binding site of cholera toxin B subunit protein. MD simulation for Methyl-α-9-N-benzoyl-amino-9-deoxy-Neu5Ac (BENZ), Methyl-α-9-N-acetyl-9-deoxy-9-amino-Neu5Ac and Methyl-α-9-N-biphenyl-4-acetyl-deoxy-amino-Neu5Ac complex with CT B subunit protein was carried out, which explains the stable nature of interaction. These methyl-α-Neu5Ac analogues that have computationally acceptable pharmacological properties may be used as novel candidates for drug design for cholera disease.
Elucidation of the binding preferences of peptide recognition modules: SH3 and PDZ domains.
Teyra, Joan; Sidhu, Sachdev S; Kim, Philip M
2012-08-14
Peptide-binding domains play a critical role in regulation of cellular processes by mediating protein interactions involved in signalling. In recent years, the development of large-scale technologies has enabled exhaustive studies on the peptide recognition preferences for a number of peptide-binding domain families. These efforts have provided significant insights into the binding specificities of these modular domains. Many research groups have taken advantage of this unprecedented volume of specificity data and have developed a variety of new algorithms for the prediction of binding specificities of peptide-binding domains and for the prediction of their natural binding targets. This knowledge has also been applied to the design of synthetic peptide-binding domains in order to rewire protein-protein interaction networks. Here, we describe how these experimental technologies have impacted on our understanding of peptide-binding domain specificities and on the elucidation of their natural ligands. We discuss SH3 and PDZ domains as well characterized examples, and we explore the feasibility of expanding high-throughput experiments to other peptide-binding domains. Copyright © 2012. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Shukla, P. K.; Mishra, P. C.; Suhai, S.
Density functional theory (DFT) at the B3LYP/6-31+G* and B3LYP/AUG-cc-pVDZ levels was employed to study O6-methylation of guanine due to its reactions with methyl chloride and methyl bromide and to obtain explanation as to why the methyl halides cause genotoxicity and possess mutagenic and carcinogenic properties. Geometries of the various isolated species involved in the reactions, reactant complexes (RCs), and product complexes (PCs) were optimized in gas phase. Transition states connecting the reactant complexes with the product complexes were also optimized in gas phase at the same levels of theory. The reactant complexes, product complexes, and transition states were solvated in aqueous media using the polarizable continuum model (PCM) of the self-consistent reaction field theory. Zero-point energy (ZPE) correction to total energy and the corresponding thermal energy correction to enthalpy were made in each case. The reactant complexes of the keto form of guanine with methyl chloride and methyl bromide in water are appreciably more stable than the corresponding complexes involving the enol form of guanine. The nature of binding in the product complexes was found to be of the charge transfer type (O6mG+ · X-, X dbond Cl, Br). Binding of HCl, HBr, and H2O molecules to the PCs obtained with the keto form of guanine did not alter the positions of the halide anions in the PCs, and the charge transfer character of the PCs was also not modified due to this binding. Further, the complexes obtained due to the binding of HCl, HBr, and H2O molecules to the PCs had greater stability than the isolated PCs. The reaction barriers involved in the formation of PCs were found to be quite high (?50 kcal/mol). Mechanisms of genotoxicity, mutagenesis and carcinogenesis caused by the methyl halides appear to involve charge transfer-type complex formation. Thus the mechanisms of these processes involving the methyl halides appear to be quite different from those that involve the other strongly carcinogenic methylating agents.
Paula, Stefan; Tabet, Michael R; Farr, Carol D; Norman, Andrew B; Ball, W James
2004-01-01
Human monoclonal antibodies (mAbs) designed for immunotherapy have a high potential for avoiding the complications that may result from human immune system responses to the introduction of nonhuman mAbs into patients. This study presents a characterization of cocaine/antibody interactions that determine the binding properties of the novel human sequence mAb 2E2 using three-dimensional quantitative structure-activity relationship (3D-QSAR) methodology. We have experimentally determined the binding affinities of mAb 2E2 for cocaine and 38 cocaine analogues. The K(d) of mAb 2E2 for cocaine was 4 nM, indicating a high affinity. Also, mAb 2E2 displayed good cocaine specificity, as reflected in its 10-, 1500-, and 25000-fold lower binding affinities for the three physiologically relevant cocaine metabolites benzoylecgonine, ecgonine methyl ester, and ecgonine, respectively. 3D-QSAR models of cocaine binding were developed by comparative molecular similarity index analysis (CoMSIA). A model of high statistical quality was generated showing that cocaine binds to mAb 2E2 in a sterically restricted binding site that leaves the methyl group attached to the ring nitrogen of cocaine solvent-exposed. The methyl ester group of cocaine appears to engage in attractive van der Waals interactions with mAb 2E2, whereas the phenyl group contributes to the binding primarily via hydrophobic interactions. The model further indicated that an increase in partial positive charge near the nitrogen proton and methyl ester carbonyl group enhances binding affinity and that the ester oxygen likely forms an intermolecular hydrogen bond with mAb 2E2. Overall, the cocaine binding properties of mAb 2E2 support its clinical potential for development as a treatment of cocaine overdose and addiction.
NASA Technical Reports Server (NTRS)
Yang, Tianbao; Poovaiah, B. W.
2002-01-01
We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.
Structure and function of flavivirus NS5 methyltransferase.
Zhou, Yangsheng; Ray, Debashish; Zhao, Yiwei; Dong, Hongping; Ren, Suping; Li, Zhong; Guo, Yi; Bernard, Kristen A; Shi, Pei-Yong; Li, Hongmin
2007-04-01
The plus-strand RNA genome of flavivirus contains a 5' terminal cap 1 structure (m7GpppAmG). The flaviviruses encode one methyltransferase, located at the N-terminal portion of the NS5 protein, to catalyze both guanine N-7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus methyltransferases from dengue, yellow fever, and West Nile virus (WNV) sequentially generate GpppA-->m7GpppA-->m7GpppAm. The 2'-O methylation can be uncoupled from the N-7 methylation, since m7GpppA-RNA can be readily methylated to m7GpppAm-RNA. Despite exhibiting two distinct methylation activities, the crystal structure of WNV methyltransferase at 2.8 A resolution showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. Therefore, substrate GpppA-RNA should be repositioned to accept the N-7 and 2'-O methyl groups from SAM during the sequential reactions. Electrostatic analysis of the WNV methyltransferase structure showed that, adjacent to the SAM-binding pocket, is a highly positively charged surface that could serve as an RNA binding site during cap methylations. Biochemical and mutagenesis analyses show that the N-7 and 2'-O cap methylations require distinct buffer conditions and different side chains within the K61-D146-K182-E218 motif, suggesting that the two reactions use different mechanisms. In the context of complete virus, defects in both methylations are lethal to WNV; however, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N-7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel target for flavivirus therapy.
NASA Technical Reports Server (NTRS)
Ramachandiran, S.; Takezawa, D.; Wang, W.; Poovaiah, B. W.
1997-01-01
A novel calcium-binding calcium/calmodulin-dependent protein kinase (CCaMK) with a catalytic domain, calmodulin-binding domain, and a neural visinin-like domain was cloned and characterized from plants [Patil et al., (1995) Proc. Natl. Acad. Sci. USA 92, 4797-4801; Takezawa et al. (1996) J. Biol. Chem. 271, 8126-8132]. The mechanisms of CCaMK activation by calcium and calcium/calmodulin were investigated using various deletion mutants. The use of deletion mutants of CCaMK lacking either one, two, or all three calcium-binding EF hands indicated that all three calcium-binding sites in the visinin-like domain were crucial for the full calcium/calmodulin-dependent kinase activity. As each calcium-binding EF hand was deleted, there was a gradual reduction in calcium/calmodulin-dependent kinase activity from 100 to 4%. Another mutant (amino acids 1-322) which lacks both the visinin-like domain containing three EF hands and the calmodulin-binding domain was constitutively active, indicating the presence of an autoinhibitory domain around the calmodulin-binding domain. By using various synthetic peptides and the constitutively active mutant, we have shown that CCaMK contains an autoinhibitory domain within the residues 322-340 which overlaps its calmodulin-binding domain. Kinetic studies with both ATP and the GS peptide substrate suggest that the autoinhibitory domain of CCaMK interacts only with the peptide substrate binding motif of the catalytic domain, but not with the ATP-binding motif.
Chang, Eric H.; Volpe, Bruce T.; Mackay, Meggan; Aranow, Cynthia; Watson, Philip; Kowal, Czeslawa; Storbeck, Justin; Mattis, Paul; Berlin, RoseAnn; Chen, Huiyi; Mader, Simone; Huerta, Tomás S.; Huerta, Patricio T.; Diamond, Betty
2015-01-01
Patients with systemic lupus erythematosus (SLE) experience cognitive abnormalities in multiple domains including processing speed, executive function, and memory. Here we show that SLE patients carrying antibodies that bind DNA and the GluN2A and GluN2B subunits of the N-methyl-d-aspartate receptor (NMDAR), termed DNRAbs, displayed a selective impairment in spatial recall. Neural recordings in a mouse model of SLE, in which circulating DNRAbs penetrate the hippocampus, revealed that CA1 place cells exhibited a significant expansion in place field size. Structural analysis showed that hippocampal pyramidal cells had substantial reductions in their dendritic processes and spines. Strikingly, these abnormalities became evident at a time when DNRAbs were no longer detectable in the hippocampus. These results suggest that antibody-mediated neurocognitive impairments may be highly specific, and that spatial cognition may be particularly vulnerable to DNRAb-mediated structural and functional injury to hippocampal cells that evolves after the triggering insult is no longer present. PMID:26286205
Complexes of polyadenylic acid and the methyl esters of amino acids
NASA Technical Reports Server (NTRS)
Khaled, M. A.; Mulins, D. W., Jr.; Swindle, M.; Lacey, J. C., Jr.
1983-01-01
A study of amino acid methyl esters binding to polyadenylic acid supports the theory that the genetic code originated through weak but selective affinities between amino acids and nucleotides. NMR, insoluble complex analysis, and ultraviolet spectroscopy are used to illustrate a correlation between the hydrophybicities of A amino acids and their binding constants, which, beginning with the largest, are in the order of Phe (having nominally a hydrophobic AAA anticodon), Ile, Leu, Val and Gly (having a hydrophilic anticodon with no A). In general, the binding constants are twice the values by Reuben and Polk (1980) for monomeric AMP, which suggests that polymer amino acids are interacting with only one base. No real differences are found betwen poly A binding for free Phe, Phe methyl ester or Phe amide, except that the amide value is slightly lower.
Bodell, W J; Banerjee, M R
1976-01-01
We have measured DNA repair in mouse satellite and main band DNA as resolved by Ag+-Cs2SO4 centrifugation in response to treatment with the alkylating agents, methyl methanesulfonate, and N-methyl-N-nitrosourea. We find that there is a statistically significant lower incorporation of 3H-Tdr into the satellite DNA as compared to the main band at varying periods after treatment with the alkylating agents. This suggests a reduced repair activity in the satellite DNA. We have measured the extent of binding of 14C-methyl methanesulfonate to the satellite, and main band DNA, and no difference in binding was observed, indicating that the reduced repair activity of satellite DNA is not due to a difference in binding of alkylating agents. We believe that the reduced incorporation of 3H-Tdr into satellite DNA may be due to its location in the condensed chromatin fraction. PMID:184436
Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; Kenniston, Jon A.; Mendrola, Jeannine M.; Ferguson, Kathryn M.; Lemmon, Mark A.
2015-01-01
SUMMARY F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here, we compare membrane-binding properties of the S. cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound to an inositol phosphate. The structures explain phospholipid-binding selectivity differences, and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip, and is partly retained in certain other F-BAR domains. Our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity, and provide a basis for its prediction from sequence. PMID:25620000
Expression profiling of clonal lymphocyte cell cultures from Rett syndrome patients
USDA-ARS?s Scientific Manuscript database
More than 85% of Rett syndrome (RTT) patients have heterozygous mutations in the X-linked MECP2 gene which encodes methyl-CpG-binding protein 2, a transcriptional repressor that binds methylated CpG sites. Because MECP2 is subject to X chromosome inactivation (XCI), girls with RTT express either the...
Yokoyama, Takao; Miura, Fumihito; Araki, Hiromitsu; Okamura, Kohji; Ito, Takashi
2015-08-12
Base-resolution methylome data generated by whole-genome bisulfite sequencing (WGBS) is often used to segment the genome into domains with distinct methylation levels. However, most segmentation methods include many parameters to be carefully tuned and/or fail to exploit the unsurpassed resolution of the data. Furthermore, there is no simple method that displays the composition of the domains to grasp global trends in each methylome. We propose to use changepoint detection for domain demarcation based on base-resolution methylome data. While the proposed method segments the methylome in a largely comparable manner to conventional approaches, it has only a single parameter to be tuned. Furthermore, it fully exploits the base-resolution of the data to enable simultaneous detection of methylation changes in even contrasting size ranges, such as focal hypermethylation and global hypomethylation in cancer methylomes. We also propose a simple plot termed methylated domain landscape (MDL) that globally displays the size, the methylation level and the number of the domains thus defined, thereby enabling one to intuitively grasp trends in each methylome. Since the pattern of MDL often reflects cell lineages and is largely unaffected by data size, it can serve as a novel signature of methylome. Changepoint detection in base-resolution methylome data followed by MDL plotting provides a novel method for methylome characterization and will facilitate global comparison among various WGBS data differing in size and even species origin.
Nardella, Jason; Terrado, Mailyn; Honson, Nicolette S; Plettner, Erika
2015-08-01
The gypsy moth utilizes a pheromone, (7R,8S)-2-methyl-7,8-epoxyoctadecane, for mate location. The pheromone is detected by sensory hairs (sensilla) on the antennae of adult males. Sensilla contain the dendrites of olfactory neurons bathed in lymph, which contains pheromone binding proteins (PBPs). We have extracted and identified free fatty acids from lymph of sensory hairs, and we demonstrate that these function as endogenous ligands for gypsy moth PBP1 and PBP2. Homology modeling of both PBPs, and docking of fatty acids reveal multiple binding sites: one internal, the others external. Pheromone binding assays suggest that these fatty acids increase PBP-pheromone binding affinity. We show that fatty acid binding causes an increase in α-helix content in the N-terminal domain, but not in the C-terminal peptide of both proteins. The C-terminal peptide was shown to form a α-helix in a hydrophobic, homogeneous environment, but not in the presence of fatty acid micelles. Through partition assays we show that the fatty acids prevent adsorption of the pheromone on hydrophobic surfaces and facilitate pheromone partition into an aqueous phase. We propose that lymph is an emulsion of fatty acids and PBP that influence each other and thereby control the partition equilibria of hydrophobic odorants. Copyright © 2015 Elsevier Inc. All rights reserved.
Utilizing Gold Nanoparticle Probes to Visually Detect DNA Methylation
NASA Astrophysics Data System (ADS)
Chen, Kui; Zhang, Mingyi; Chang, Ya-Nan; Xia, Lin; Gu, Weihong; Qin, Yanxia; Li, Juan; Cui, Suxia; Xing, Gengmei
2016-06-01
The surface plasmon resonance (SPR) effect endows gold nanoparticles (GNPs) with the ability to visualize biomolecules. In the present study, we designed and constructed a GNP probe to allow the semi-quantitative analysis of methylated tumor suppressor genes in cultured cells. To construct the probe, the GNP surfaces were coated with single-stranded DNA (ssDNA) by forming Au-S bonds. The ssDNA contains a thiolated 5'-end, a regulatory domain of 12 adenine nucleotides, and a functional domain with absolute pairing with methylated p16 sequence (Met- p16). The probe, paired with Met- p16, clearly changed the color of aggregating GNPs probe in 5 mol/L NaCl solution. Utilizing the probe, p16 gene methylation in HCT116 cells was semi-quantified. Further, the methylation of E-cadherin, p15, and p16 gene in Caco2, HepG2, and HCT116 cell lines were detected by the corresponding probes, constructed with three domains. This simple and cost-effective method was useful for the diagnosis of DNA methylation-related diseases.
Mu, Yi; Cai, Pengfei; Hu, Siqi; Ma, Sucan; Gao, Youhe
2014-01-01
Protein-protein interactions (PPIs) are essential events to play important roles in a series of biological processes. There are probably more ways of PPIs than we currently realized. Structural and functional investigations of weak PPIs have lagged behind those of strong PPIs due to technical difficulties. Weak PPIs are often short-lived, which may result in more dynamic signals with important biological roles within and/or between cells. For example, the characteristics of PSD-95/Dlg/ZO-1 (PDZ) domain binding to internal sequences, which are primarily weak interactions, have not yet been systematically explored. In the present study, we constructed a nearly random octapeptide yeast two-hybrid library. A total of 24 PDZ domains were used as baits for screening the library. Fourteen of these domains were able to bind internal PDZ-domain binding motifs (PBMs), and PBMs screened for nine PDZ domains exhibited strong preferences. Among 11 PDZ domains that have not been reported their internal PBM binding ability, six were confirmed to bind internal PBMs. The first PDZ domain of LNX2, which has not been reported to bind C-terminal PBMs, was found to bind internal PBMs. These results suggest that the internal PBMs binding ability of PDZ domains may have been underestimated. The data provided diverse internal binding properties for several PDZ domains that may help identify their novel binding partners.
Ethanol Inhibition of Constitutively Open N-Methyl-d-Aspartate Receptors
Xu, Minfu; Smothers, C. Thetford; Trudell, James
2012-01-01
N-Methyl-d-aspartate (NMDA) receptors gate a slow and calcium-rich component of the postsynaptic glutamate response. Like all ionotropic glutamate receptors, NMDA subunits contain a highly conserved motif (SYTANLAAF) in the transmembrane (TM) 3 domain that is critically involved in channel gating. Mutation of an alanine in this domain (A7; underlined above) results in constitutively open receptors that show reduced sensitivity to several allosteric modulators. In this study, we examined the effects of ethanol, a substance that inhibits NMDA currents via an unknown mechanism, on tonically active NMDA receptors expressed in human embryonic kidney 293 cells. Ethanol (100 mM) inhibited currents from GluN1(A7R)/GluN2A and GluN1(A7R)/GluN2B receptors by approximately 50%, whereas those from GluN1/GluN2B(A7R) receptors were reduced by less than 10%. In cysteine-substituted GluN1 and GluN2 A7 mutants, estimated ethanol IC50 values for agonist-gated currents were 101, 117, 103, and 69 mM for GluN1(A7C)/GluN2A, GluN1(A7C)/GluN2B, GluN1/GluN2A(A7C), and GluN1/GluN2B(A7C) receptors, respectively. After exposure to the thiol-modifying reagent 2-(trimethylammonium)ethyl methanethiosulfonate (MTSET), A7C mutants showed robust agonist-independent currents and reduced sensitivity to ethanol (IC50 values of 371, 256, 715, and 958 mM, respectively, as above). In contrast, cysteine modification of the ligand-binding domain resulted in constitutively open receptors that showed robust ethanol inhibition. Ethanol inhibition of MTSET-treated GluN1(A7C) receptors was further reduced by TM3/TM4 mutations previously shown to reduce ethanol sensitivity of agonist-gated receptors. Overall, these results show that ethanol affects NMDA receptor function at a site distal from agonist binding and appears to exert greater effects via perturbation of GluN2 subunits. PMID:22005043
Methyl Transfer by Substrate Signaling from a Knotted Protein Fold
Christian, Thomas; Sakaguchi, Reiko; Perlinska, Agata P.; Lahoud, Georges; Ito, Takuhiro; Taylor, Erika A.; Yokoyama, Shigeyuki; Sulkowska, Joanna I.; Hou, Ya-Ming
2017-01-01
Proteins with knotted configurations are restricted in conformational space relative to unknotted proteins. Little is known if knotted proteins have sufficient dynamics to communicate between spatially separated substrate-binding sites. In bacteria, TrmD is a methyl transferase that uses a knotted protein fold to catalyze methyl transfer from S-adenosyl methionine (AdoMet) to G37-tRNA. The product m1G37-tRNA is essential for life as a determinant to maintain protein synthesis reading-frame. Using an integrated approach of structure, kinetic, and computational analysis, we show here that the structurally constrained TrmD knot is required for its catalytic activity. Unexpectedly, the TrmD knot has complex internal movements that respond to AdoMet binding and signaling. Most of the signaling propagates the free energy of AdoMet binding to stabilize tRNA binding and to assemble the active site. This work demonstrates new principles of knots as an organized structure that captures the free energies of substrate binding to facilitate catalysis. PMID:27571175
Lin, Kevin N; Grandhi, Taraka Sai Pavan; Goklany, Sheba; Rege, Kaushal
2018-04-10
Plasmid DNA (pDNA) is an attractive therapeutic biomolecule in several diseases including cancer, AIDS, cystic fibrosis, Parkinson's disease, and Alzheimer's disease. Increasing demand for plasmid DNA as a therapeutic biomolecule for transgene expression or vaccine applications necessitate novel approaches to bioprocessing. The synthesis, characterization and evaluation of aminoglycoside-derived hydrogel microbeads (Amikabeads) for pDNA binding is described previously. Here, the generation and evaluation of novel chemotherapeutic drug-conjugated microbeads for application in pDNA binding and recovery is described. Chemotherapeutic drug-conjugated Amikabeads demonstrate higher binding of methylated pDNA compared to unmethylated pDNA in presence of high salt concentrations. Desorption of plasmids from drug-conjugated microbeads is facilitated by the use of organic modifiers. The observed differences in binding methylated versus unmethylated DNA can make drug-conjugated microbeads useful in diagnostic as well as therapeutic applications. These results demonstrate that anti-cancer drugs represent a diverse set of ligands that may be exploited for molecular engineering of novel DNA binding materials for applications in delivery, diagnostics, and biomanufacturing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pierard, Valérie; Guiguen, Allan; Colin, Laurence; Wijmeersch, Gaëlle; Vanhulle, Caroline; Van Driessche, Benoît; Dekoninck, Ann; Blazkova, Jana; Cardona, Christelle; Merimi, Makram; Vierendeel, Valérie; Calomme, Claire; Nguyên, Thi Liên-Anh; Nuttinck, Michèle; Twizere, Jean-Claude; Kettmann, Richard; Portetelle, Daniel; Burny, Arsène; Hirsch, Ivan; Rohr, Olivier; Van Lint, Carine
2010-06-18
Bovine leukemia virus (BLV) proviral latency represents a viral strategy to escape the host immune system and allow tumor development. Besides the previously demonstrated role of histone deacetylation in the epigenetic repression of BLV expression, we showed here that BLV promoter activity was induced by several DNA methylation inhibitors (such as 5-aza-2'-deoxycytidine) and that overexpressed DNMT1 and DNMT3A, but not DNMT3B, down-regulated BLV promoter activity. Importantly, cytosine hypermethylation in the 5'-long terminal repeat (LTR) U3 and R regions was associated with true latency in the lymphoma-derived B-cell line L267 but not with defective latency in YR2 cells. Moreover, the virus-encoded transactivator Tax(BLV) decreased DNA methyltransferase expression levels, which could explain the lower level of cytosine methylation observed in the L267(LTaxSN) 5'-LTR compared with the L267 5'-LTR. Interestingly, DNA methylation inhibitors and Tax(BLV) synergistically activated BLV promoter transcriptional activity in a cAMP-responsive element (CRE)-dependent manner. Mechanistically, methylation at the -154 or -129 CpG position (relative to the transcription start site) impaired in vitro binding of CRE-binding protein (CREB) transcription factors to their respective CRE sites. Methylation at -129 CpG alone was sufficient to decrease BLV promoter-driven reporter gene expression by 2-fold. We demonstrated in vivo the recruitment of CREB/CRE modulator (CREM) and to a lesser extent activating transcription factor-1 (ATF-1) to the hypomethylated CRE region of the YR2 5'-LTR, whereas we detected no CREB/CREM/ATF recruitment to the hypermethylated corresponding region in the L267 cells. Altogether, these findings suggest that site-specific DNA methylation of the BLV promoter represses viral transcription by directly inhibiting transcription factor binding, thereby contributing to true proviral latency.
Rooijakkers, Bart J M; Ikonen, Martina S; Linder, Markus B
2018-01-01
Six fungal-type cellulose binding domains were found in the genome of the coccolithophore Emiliania huxleyi and cloned and expressed in Escherichia coli. Sequence comparison indicate high similarity to fungal cellulose binding domains, raising the question of why these domains exist in coccolithophores. The proteins were tested for binding with cellulose and chitin as ligands, which resulted in the identification of two functional carbohydrate binding modules: EHUX2 and EHUX4. Compared to benchmark fungal cellulose binding domain Cel7A-CBM1 from Trichoderma reesei, these proteins showed slightly lower binding to birch and bacterial cellulose, but were more efficient chitin binders. Finally, a set of cellulose binding domains was created based on the shuffling of one well-functioning and one non-functional domain. These were characterized in order to get more information of the binding domain's sequence-function relationship, indicating characteristic differences between the molecular basis of cellulose versus chitin recognition. As previous reports have showed the presence of cellulose in coccoliths and here we find functional cellulose binding modules, a possible connection is discussed.
Tatton-Brown, Katrina; Seal, Sheila; Ruark, Elise; Harmer, Jenny; Ramsay, Emma; Del Vecchio Duarte, Silvana; Zachariou, Anna; Hanks, Sandra; O'Brien, Eleanor; Aksglaede, Lise; Baralle, Diana; Dabir, Tabib; Gener, Blanca; Goudie, David; Homfray, Tessa; Kumar, Ajith; Pilz, Daniela T; Selicorni, Angelo; Temple, I Karen; Van Maldergem, Lionel; Yachelevich, Naomi; van Montfort, Robert; Rahman, Nazneen
2014-04-01
Overgrowth disorders are a heterogeneous group of conditions characterized by increased growth parameters and other variable clinical features such as intellectual disability and facial dysmorphism. To identify new causes of human overgrowth, we performed exome sequencing in ten proband-parent trios and detected two de novo DNMT3A mutations. We identified 11 additional de novo mutations by sequencing DNMT3A in a further 142 individuals with overgrowth. The mutations alter residues in functional DNMT3A domains, and protein modeling suggests that they interfere with domain-domain interactions and histone binding. Similar mutations were not present in 1,000 UK population controls (13/152 cases versus 0/1,000 controls; P < 0.0001). Mutation carriers had a distinctive facial appearance, intellectual disability and greater height. DNMT3A encodes a DNA methyltransferase essential for establishing methylation during embryogenesis and is commonly somatically mutated in acute myeloid leukemia. Thus, DNMT3A joins an emerging group of epigenetic DNA- and histone-modifying genes associated with both developmental growth disorders and hematological malignancies.
Tatton-Brown, Katrina; Seal, Sheila; Ruark, Elise; Harmer, Jenny; Ramsay, Emma; del Vecchio Duarte, Silvana; Zachariou, Anna; Hanks, Sandra; O’Brien, Eleanor; Aksglaede, Lise; Baralle, Diana; Dabir, Tabib; Gener, Blanca; Goudie, David; Homfray, Tessa; Kumar, Ajith; Pilz, Daniela T; Selicorni, Angelo; Temple, I Karen; Van Maldergem, Lionel; Yachelevich, Naomi; van Montfort, Robert; Rahman, Nazneen
2014-01-01
Overgrowth disorders are a heterogeneous group of conditions characterised by increased growth parameters and variable other clinical features, such as intellectual disability and facial dysmorphism1. To identify novel causes of human overgrowth we performed exome sequencing in 10 proband-parent trios and detected two de novo DNMT3A mutations. We identified 11 additional de novo mutations through DNMT3A sequencing of a further 142 individuals with overgrowth. The mutations were all located in functional DNMT3A domains and protein modelling suggests they interfere with domain-domain interactions and histone binding. No similar mutations were present in 1000 UK population controls (13/152 vs 0/1000; P<0.0001). Mutation carriers had a distinctive facial appearance, intellectual disability and increased height. DNMT3A encodes a key methyltransferase essential for establishing the methylation imprint in embryogenesis and is commonly somatically mutated in acute myeloid leukaemia2-4. Thus DNMT3A joins an emerging group of epigenetic DNA and histone modifying genes associated with both developmental growth disorders and haematological malignancies5. PMID:24614070
A Whole Methylome CpG-SNP Association Study of Psychosis in Blood and Brain Tissue.
van den Oord, Edwin J C G; Clark, Shaunna L; Xie, Lin Ying; Shabalin, Andrey A; Dozmorov, Mikhail G; Kumar, Gaurav; Vladimirov, Vladimir I; Magnusson, Patrik K E; Aberg, Karolina A
2016-07-01
Mutated CpG sites (CpG-SNPs) are potential hotspots for human diseases because in addition to the sequence variation they may show individual differences in DNA methylation. We performed methylome-wide association studies (MWAS) to test whether methylation differences at those sites were associated with schizophrenia. We assayed all common CpG-SNPs with methyl-CpG binding domain protein-enriched genome sequencing (MBD-seq) using DNA extracted from 1408 blood samples and 66 postmortem brain samples (BA10) of schizophrenia cases and controls. Seven CpG-SNPs passed our FDR threshold of 0.1 in the blood MWAS. Of the CpG-SNPs methylated in brain, 94% were also methylated in blood. This significantly exceeded the 46.2% overlap expected by chance (P-value < 1.0×10(-8)) and justified replicating findings from blood in brain tissue. CpG-SNP rs3796293 in IL1RAP replicated (P-value = .003) with the same direction of effects. This site was further validated through targeted bisulfite pyrosequencing in 736 independent case-control blood samples (P-value < 9.5×10(-4)). Our top result in the brain MWAS (P-value = 8.8×10(-7)) was CpG-SNP rs16872141 located in the potential promoter of ENC1. Overall, our results suggested that CpG-SNP methylation may reflect effects of environmental insults and can provide biomarkers in blood that could potentially improve disease management. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Stage 4S neuroblastoma tumors show a characteristic DNA methylation portrait.
Decock, Anneleen; Ongenaert, Maté; De Wilde, Bram; Brichard, Bénédicte; Noguera, Rosa; Speleman, Frank; Vandesompele, Jo
2016-09-06
Stage 4S neuroblastoma (NB) is a special type of NB found in infants with metastases at diagnosis and is associated with an excellent outcome due to its remarkable capacity to undergo spontaneous regression. As genomics have not been able to explain this intriguing clinical presentation, we here aimed at profiling the DNA methylome of stage 4S NB to better understand this phenomenon. To this purpose, differential methylation analyses between International Neuroblastoma Staging System (INSS) stage 4S, stage 4 and stage 1/2 were performed, using methyl-CpG-binding domain (MBD) sequencing data of 14 stage 4S, 14 stage 4, and 13 stage 1/2 primary NB tumors (all MYCN non-amplified in order not to confound results). Stage 4S-specific hyper- and hypo-methylated promoters were determined and further characterized for genomic localization and function by cytogenetic band enrichment, gene set enrichment, transcription factor target enrichment and differential RNA expression analyses. We show that specific chromosomal locations are enriched for stage 4S differentially methylated promoters and that stage 4S tumors show characteristic hypermethylation of subtelomeres. Furthermore, genes involved in important oncogenic pathways, in neural crest development and differentiation, and in epigenetic processes are differentially methylated and expressed in stage 4S tumors. Based on these findings, we describe new biological mechanisms possibly contributing to the stage 4S-specific tumor biology and spontaneous regression. In conclusion, this study is the first to describe the highly characteristic stage 4S DNA methylome. These findings will open new avenues to further unravel the NB pathology in general and stage 4S disease specifically.
White, Helen E; Hall, Victoria J; Cross, Nicholas C P
2007-11-01
Angelman syndrome (AS) and Prader-Willi syndrome (PWS) are 2 distinct neurodevelopmental disorders caused primarily by deficiency of specific parental contributions at an imprinted domain within the chromosomal region 15q11.2-13. Lack of paternal contribution results in PWS either by paternal deletion (approximately 70%) or maternal uniparental disomy (UPD) (approximately 25%). Most cases of AS result from the lack of a maternal contribution from this same region, by maternal deletion (70%) or paternal UPD (approximately 5%). Analysis of allelic methylation differences at the small nuclear ribonucleoprotein polypeptide N (SNRPN) locus differentiates the maternally and paternally inherited chromosome 15 and can be used as a diagnostic test for AS and PWS. Methylation-sensitive high-resolution melting-curve analysis (MS-HRM) using the DNA binding dye EvaGreen was used to analyze methylation differences at the SNRPN locus in anonymized DNA samples from individuals with PWS (n = 39) or AS (n = 31) and from healthy control individuals (n = 95). Results from the MS-HRM assay were compared to those obtained by use of a methylation-specific PCR (MSP) protocol that is used commonly in diagnostic practice. With the MS-HRM assay 97.6% of samples were unambiguously assigned to the 3 diagnostic categories (AS, PWS, normal) by use of automated calling with an 80% confidence percentage threshold, and the failure rate was 0.6%. One PWS sample showed a discordant result for the MS-HRM assay compared to MSP data. MS-HRM is a simple, rapid, and robust method for screening methylation differences at the SNRPN locus and could be used as a diagnostic screen for PWS and AS.
Ogawara, Hiroshi
2016-09-01
PASTA domains (penicillin-binding protein and serine/threonine kinase-associated domains) have been identified in penicillin-binding proteins and serine/threonine kinases of Gram-positive Firmicutes and Actinobacteria. They are believed to bind β-lactam antibiotics, and be involved in peptidoglycan metabolism, although their biological function is not definitively clarified. Actinobacteria, especially Streptomyces species, are distinct in that they undergo complex cellular differentiation and produce various antibiotics including β-lactams. This review focuses on the distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases in Actinobacteria. In Actinobacteria, PASTA domains are detectable exclusively in class A but not in class B penicillin-binding proteins, in sharp contrast to the cases in other bacteria. In penicillin-binding proteins, PASTA domains distribute independently from taxonomy with some distribution bias. Particularly interesting thing is that no Streptomyces species have penicillin-binding protein with PASTA domains. Protein kinases in Actinobacteria possess 0 to 5 PASTA domains in their molecules. Protein kinases in Streptomyces can be classified into three groups: no PASTA domain, 1 PASTA domain and 4 PASTA domain-containing groups. The 4 PASTA domain-containing groups can be further divided into two subgroups. The serine/threonine kinases in different groups may perform different functions. The pocket region in one of these subgroup is more dense and extended, thus it may be involved in binding of ligands like β-lactams more efficiently.
A Type III Protein Arginine Methyltransferase from the Protozoan Parasite Trypanosoma brucei*
Fisk, John C.; Sayegh, Joyce; Zurita-Lopez, Cecilia; Menon, Sarita; Presnyak, Vladimir; Clarke, Steven G.; Read, Laurie K.
2009-01-01
Arginine methylation is a widespread post-translational modification of proteins catalyzed by a family of protein arginine methyltransferases (PRMTs). The ancient protozoan parasite, Trypanosoma brucei, possesses five putative PRMTs, a relatively large number for a single-celled eukaryote. Trypanosomatids lack gene regulation at the level of transcription, instead relying on post-transcriptional control mechanisms that act at the levels of RNA turnover, translation, and editing, all processes that likely involve multiple RNA-binding proteins, which are common targets of arginine methylation. Here, we report the characterization of a trypanosome PRMT, TbPRMT7, which is homologous to human PRMT7. Interestingly, trypanosomatids are the only single-celled eukaryotes known to harbor a PRMT7 homologue. TbPRMT7 differs dramatically from all known metazoan PRMT7 homologues in lacking the second AdoMet binding-like domain that is required for activity of the human enzyme. Nevertheless, bacterially expressed TbPRMT7 exhibits robust methyltransferase activity toward multiple targets in vitro. High resolution ion exchange chromatography analysis of methylated substrates reveals that TbPRMT7 is a type III PRMT, catalyzing the formation of only monomethylarginine, thereby representing the only exclusively type III PRMT identified to date. TbPRMT7 is expressed in both mammalian and insect stage T. brucei and is apparently dispensable for growth in both life cycle stages. The enzyme is cytoplasmically localized and is a component of several higher order complexes in vivo. Together, our studies indicate that TbPRMT7 is a Type III PRMT, and its robust activity and presence in numerous complexes suggest it plays multiple roles during the complex T. brucei life cycle. PMID:19254949
A type III protein arginine methyltransferase from the protozoan parasite Trypanosoma brucei.
Fisk, John C; Sayegh, Joyce; Zurita-Lopez, Cecilia; Menon, Sarita; Presnyak, Vladimir; Clarke, Steven G; Read, Laurie K
2009-04-24
Arginine methylation is a widespread post-translational modification of proteins catalyzed by a family of protein arginine methyltransferases (PRMTs). The ancient protozoan parasite, Trypanosoma brucei, possesses five putative PRMTs, a relatively large number for a single-celled eukaryote. Trypanosomatids lack gene regulation at the level of transcription, instead relying on post-transcriptional control mechanisms that act at the levels of RNA turnover, translation, and editing, all processes that likely involve multiple RNA-binding proteins, which are common targets of arginine methylation. Here, we report the characterization of a trypanosome PRMT, TbPRMT7, which is homologous to human PRMT7. Interestingly, trypanosomatids are the only single-celled eukaryotes known to harbor a PRMT7 homologue. TbPRMT7 differs dramatically from all known metazoan PRMT7 homologues in lacking the second AdoMet binding-like domain that is required for activity of the human enzyme. Nevertheless, bacterially expressed TbPRMT7 exhibits robust methyltransferase activity toward multiple targets in vitro. High resolution ion exchange chromatography analysis of methylated substrates reveals that TbPRMT7 is a type III PRMT, catalyzing the formation of only monomethylarginine, thereby representing the only exclusively type III PRMT identified to date. TbPRMT7 is expressed in both mammalian and insect stage T. brucei and is apparently dispensable for growth in both life cycle stages. The enzyme is cytoplasmically localized and is a component of several higher order complexes in vivo. Together, our studies indicate that TbPRMT7 is a Type III PRMT, and its robust activity and presence in numerous complexes suggest it plays multiple roles during the complex T. brucei life cycle.
Sun, D; Leung, C L; Liem, R K
2001-01-01
MACF (microtubule actin cross-linking factor) is a large, 608-kDa protein that can associate with both actin microfilaments and microtubules (MTs). Structurally, MACF can be divided into 3 domains: an N-terminal domain that contains both a calponin type actin-binding domain and a plakin domain; a rod domain that is composed of 23 dystrophin-like spectrin repeats; and a C-terminal domain that includes two EF-hand calcium-binding motifs, as well as a region that is homologous to two related proteins, GAR22 and Gas2. We have previously demonstrated that the C-terminal domain of MACF binds to MTs, although no homology was observed between this domain and other known microtubule-binding proteins. In this report, we describe the characterization of this microtubule-binding domain of MACF by transient transfection studies and in vitro binding assays. We found that the C-terminus of MACF contains at least two microtubule-binding regions, a GAR domain and a domain containing glycine-serine-arginine (GSR) repeats. In transfected cells, the GAR domain bound to and partially stabilized MTs to depolymerization by nocodazole. The GSR-containing domain caused MTs to form bundles that are still sensitive to nocodazole-induced depolymerization. When present together, these two domains acted in concert to bundle MTs and render them stable to nocodazole treatment. Recently, a study has shown that the N-terminal half of the plakin domain (called the M1 domain) of MACF also binds MTs. We therefore examined the microtubule binding ability of the M1 domain in the context of the entire plakin domain with and without the remaining N-terminal regions of two different MACF isoforms. Interestingly, in the presence of the surrounding sequences, the M1 domain did not bind MTs. In addition to MACF, cDNA sequences encoding the GAR and GSR-containing domains are also found in the partial human EST clone KIAA0728, which has high sequence homology to the 3' end of the MACF cDNA; hence, we refer to it as MACF2. The C-terminal domain of mouse MACF2 was cloned and characterized. The microtubule-binding properties of MACF2 C-terminal domain are similar to that of MACF. The GAR domain was originally found in Gas 2 protein and here we show that it can associate with MTs in transfected cells. Plectin and desmoplakin have GSR-containing domains at their C-termini and we further demonstrate that the GSR-containing domain of plectin, but not desmoplakin, can bind to MTs in vivo.
An m6A-YTH Module Controls Developmental Timing and Morphogenesis in Arabidopsis.
Arribas-Hernández, Laura; Bressendorff, Simon; Hansen, Mathias Henning; Poulsen, Christian; Erdmann, Susanne; Brodersen, Peter
2018-04-11
Methylation of N6-adenosine (m6A) in mRNA is an important post-transcriptional gene regulatory mechanism in eukaryotes. m6A provides a binding site for effector proteins ("readers") that influence pre-mRNA splicing, mRNA degradation or translational efficiency. YT521-B homology (YTH) domain proteins are important m6A readers with established functions in animals. Plants contain more YTH domain proteins than other eukaryotes, but their biological importance remains unknown. Here, we show that the cytoplasmic Arabidopsis thaliana YTH domain proteins EVOLUTIONARILY CONSERVED C-TERMINAL REGION2/3 (ECT2/3) are required for the correct timing of leaf formation and for normal leaf morphology. These functions depend fully on intact m6A binding sites of ECT2 and ECT3, indicating that they function as m6A readers. Mutation of the close ECT2 homolog, ECT4, enhances the delayed leaf emergence and leaf morphology defects of ect2/ect3 mutants, and all three ECT proteins are expressed at leaf formation sites in the shoot apex of young seedlings and in the division zone of developing leaves. ECT2 and ECT3 are also highly expressed at early stages of trichome development and are required for trichome morphology, as previously reported for m6A itself. Overall, our study establishes the relevance of a cytoplasmic m6A-YTH regulatory module in the timing and execution of plant organogenesis. © 2018 American Society of Plant Biologists. All rights reserved.
Singh, Smriti; Narayanan, Sathiya Pandi; Biswas, Kajal; Gupta, Amit; Ahuja, Neha; Yadav, Sandhya; Panday, Rajendra Kumar; Samaiya, Atul; Sharan, Shyam K.
2017-01-01
Aberrant alternative splicing and epigenetic changes are both associated with various cancers, but epigenetic regulation of alternative splicing in cancer is largely unknown. Here we report that the intragenic DNA methylation-mediated binding of Brother of Regulator of Imprinted Sites (BORIS) at the alternative exon of Pyruvate Kinase (PKM) is associated with cancer-specific splicing that promotes the Warburg effect and breast cancer progression. Interestingly, the inhibition of DNA methylation, BORIS depletion, or CRISPR/Cas9-mediated deletion of the BORIS binding site leads to a splicing switch from cancer-specific PKM2 to normal PKM1 isoform. This results in the reversal of the Warburg effect and the inhibition of breast cancer cell growth, which may serve as a useful approach to inhibit the growth of breast cancer cells. Importantly, our results show that in addition to PKM splicing, BORIS also regulates the alternative splicing of several genes in a DNA methylation-dependent manner. Our findings highlight the role of intragenic DNA methylation and DNA binding protein BORIS in cancer-specific splicing and its role in tumorigenesis. PMID:29073069
Williams, B A; Chervenak, M C; Toone, E J
1992-11-15
Despite years of study, a comprehensive picture of the binding of the lectin from Canavalia ensiformis, concanavalin A, to carbohydrates remains elusive. We report here studies on the interaction of concanavalin A with methyl 3,6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside, the minimum carbohydrate epitope that completely fills the oligosaccharide binding site, and the two conceptual disaccharide "halves" of the trisaccharide, methyl 3-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside and methyl 6-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside, using titration microcalorimetry. In all cases the interaction of protein and carbohydrate is enthalpically driven, with an unfavorable entropic contribution. The choice of concentration scales has an important impact on both the magnitude and, in some cases, the sign of the entropic component of the free energy of binding. The thermodynamic data suggest binding of the two disaccharides may take place in distinct sites, as opposed to binding in a single high affinity site. In contrast to carbohydrate-antibody binding, delta Cp values were small and negative, pointing to possible differences in the motifs used by the two groups of proteins to bind carbohydrates. The thermodynamic data are interpreted in terms of solvent reorganization. Cooperativity during lectin-carbohydrate binding was also investigated. Significant cooperativity was observed only for binding of the trisaccharide, and gave a Hill plot coefficient of 1.3 for dimeric protein.
In silico modeling of epigenetic-induced changes in photoreceptor cis-regulatory elements.
Hossain, Reafa A; Dunham, Nicholas R; Enke, Raymond A; Berndsen, Christopher E
2018-01-01
DNA methylation is a well-characterized epigenetic repressor of mRNA transcription in many plant and vertebrate systems. However, the mechanism of this repression is not fully understood. The process of transcription is controlled by proteins that regulate recruitment and activity of RNA polymerase by binding to specific cis-regulatory sequences. Cone-rod homeobox (CRX) is a well-characterized mammalian transcription factor that controls photoreceptor cell-specific gene expression. Although much is known about the functions and DNA binding specificity of CRX, little is known about how DNA methylation modulates CRX binding affinity to genomic cis-regulatory elements. We used bisulfite pyrosequencing of human ocular tissues to measure DNA methylation levels of the regulatory regions of RHO , PDE6B, PAX6 , and LINE1 retrotransposon repeats. To describe the molecular mechanism of repression, we used molecular modeling to illustrate the effect of DNA methylation on human RHO regulatory sequences. In this study, we demonstrate an inverse correlation between DNA methylation in regulatory regions adjacent to the human RHO and PDE6B genes and their subsequent transcription in human ocular tissues. Docking of CRX to the DNA models shows that CRX interacts with the grooves of these sequences, suggesting changes in groove structure could regulate binding. Molecular dynamics simulations of the RHO promoter and enhancer regions show changes in the flexibility and groove width upon epigenetic modification. Models also demonstrate changes in the local dynamics of CRX binding sites within RHO regulatory sequences which may account for the repression of CRX-dependent transcription. Collectively, these data demonstrate epigenetic regulation of CRX binding sites in human retinal tissue and provide insight into the mechanism of this mode of epigenetic regulation to be tested in future experiments.
Homology modeling, docking and structure-based pharmacophore of inhibitors of DNA methyltransferase
NASA Astrophysics Data System (ADS)
Yoo, Jakyung; Medina-Franco, José L.
2011-06-01
DNA methyltransferase 1 (DNMT1) is an emerging epigenetic target for the treatment of cancer and other diseases. To date, several inhibitors from different structural classes have been published. In this work, we report a comprehensive molecular modeling study of 14 established DNTM1 inhibitors with a herein developed homology model of the catalytic domain of human DNTM1. The geometry of the homology model was in agreement with the proposed mechanism of DNA methylation. Docking results revealed that all inhibitors studied in this work have hydrogen bond interactions with a glutamic acid and arginine residues that play a central role in the mechanism of cytosine DNA methylation. The binding models of compounds such as curcumin and parthenolide suggest that these natural products are covalent blockers of the catalytic site. A pharmacophore model was also developed for all DNMT1 inhibitors considered in this work using the most favorable binding conformations and energetic terms of the docked poses. To the best of our knowledge, this is the first pharmacophore model proposed for compounds with inhibitory activity of DNMT1. The results presented in this work represent a conceptual advance for understanding the protein-ligand interactions and mechanism of action of DNMT1 inhibitors. The insights obtained in this work can be used for the structure-based design and virtual screening for novel inhibitors targeting DNMT1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Supratim; Koutmos, Markos; Pattridge, Katherine A.
2008-07-08
B{sub 12}-dependent methionine synthase (MetH) from Escherichia coli is a large modular protein that is alternately methylated by methyltetrahydrofolate to form methylcobalamin and demethylated by homocysteine to form cob(I)alamin. Major domain rearrangements are required to allow cobalamin to react with three different substrates: homocysteine, methyltetrahydrofolate, and S-adenosyl-l-methionine (AdoMet). These same rearrangements appear to preclude crystallization of the wild-type enzyme. Disulfide cross-linking was used to lock a C-terminal fragment of the enzyme into a unique conformation. Cysteine point mutations were introduced at Ile-690 and Gly-743. These cysteine residues span the cap and the cobalamin-binding module and form a cross-link that reducesmore » the conformational space accessed by the enzyme, facilitating protein crystallization. Here, we describe an x-ray structure of the mutant fragment in the reactivation conformation; this conformation enables the transfer of a methyl group from AdoMet to the cobalamin cofactor. In the structure, the axial ligand to the cobalamin, His-759, dissociates from the cobalamin and forms intermodular contacts with residues in the AdoMet-binding module. This unanticipated intermodular interaction is expected to play a major role in controlling the distribution of conformers required for the catalytic and the reactivation cycles of the enzyme.« less
Kohorn, Bruce D; Kohorn, Susan L; Saba, Nicholas J; Martinez, Victoriano Meco
2014-07-04
The wall-associated kinases (WAKs) have a cytoplasmic protein kinase domain that spans the plasma membrane and binds pectin in the extracellular matrix of plants. WAKs are required for cell expansion during Arabidopsis seedling development but are also an integral part of the response to pathogens and stress that present oligogalacturonides (OGs), which subsequently bind to WAKs and activate a MPK6 (mitogen-activated protein kinase)-dependent pathway. It was unclear how WAKs distinguish native pectin polymers and OGs to activate one or the other of these two pathways. A dominant allele of WAK2 constitutively activates the stress response, and we show here that the effect is dependent upon EDS1 and PAD4, transcriptional activators involved in the pathogen response. Moreover, the WAK2 dominant allele is suppressed by a null allele of a pectin methyl esterase (PME3) whose activity normally leads to cross-linking of pectins in the cell wall. Although OGs activate a transcriptional response in wild type, the response is enhanced in a pme3/pme3 null, consistent with a competition by OG and native polymers for activation of WAKs. This provides a plausible mechanism for WAKs to distinguish an expansion from a stress pathway. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R; Kenniston, Jon A; Mendrola, Jeannine M; Ferguson, Kathryn M; Lemmon, Mark A
2015-02-03
F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although they are generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here, we compare membrane-binding properties of the Saccharomyces cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound to an inositol phosphate. The structures explain phospholipid-binding selectivity differences and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip and is partly retained in certain other F-BAR domains. Our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity and provide a basis for its prediction from sequence. Copyright © 2015 Elsevier Ltd. All rights reserved.
Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; ...
2015-01-22
F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although they are generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here in this paper, we compare membrane-binding properties of the Saccharomyces cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound tomore » an inositol phosphate. The structures explain phospholipid-binding selectivity differences and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip and is partly retained in certain other F-BAR domains. In conclusion, our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity and provide a basis for its prediction from sequence.« less
Landini, P; Volkert, M R
1995-04-07
The Escherichia coli aidB gene is part of the adaptive response to DNA methylation damage. Genes belonging to the adaptive response are positively regulated by the ada gene; the Ada protein acts as a transcriptional activator when methylated in one of its cysteine residues at position 69. Through DNaseI protection assays, we show that methylated Ada (meAda) is able to bind a DNA sequence between 40 and 60 base pairs upstream of the aidB transcriptional startpoint. Binding of meAda is necessary to activate transcription of the adaptive response genes; accordingly, in vitro transcription of aidB is dependent on the presence of meAda. Unmethylated Ada protein shows no protection against DNaseI digestion in the aidB promoter region nor does it promote aidB in vitro transcription. The aidB Ada-binding site shows only weak homology to the proposed consensus sequences for Ada-binding sites in E. coli (AAANNAA and AAAGCGCA) but shares a higher degree of similarity with the Ada-binding regions from other bacterial species, such as Salmonella typhimurium and Bacillus subtilis. Based on the comparison of five different Ada-dependent promoter regions, we suggest that a possible recognition sequence for meAda might be AATnnnnnnG-CAA. Higher concentrations of Ada are required for the binding of aidB than for the ada promoter, suggesting lower affinity of the protein for the aidB Ada-binding site. Common features in the Ada-binding regions of ada and aidB are a high A/T content, the presence of an inverted repeat structure, and their position relative to the transcriptional start site. We propose that these elements, in addition to the proposed recognition sequence, are important for binding of the Ada protein.
Sharma, Amit; Jenkins, Katherine R.; Héroux, Annie; Bowman, Gregory D.
2011-01-01
Chromatin remodelers are ATP-dependent machines that dynamically alter the chromatin packaging of eukaryotic genomes by assembling, sliding, and displacing nucleosomes. The Chd1 chromatin remodeler possesses a C-terminal DNA-binding domain that is required for efficient nucleosome sliding and believed to be essential for sensing the length of DNA flanking the nucleosome core. The structure of the Chd1 DNA-binding domain was recently shown to consist of a SANT and SLIDE domain, analogous to the DNA-binding domain of the ISWI family, yet the details of how Chd1 recognized DNA were not known. Here we present the crystal structure of the Saccharomyces cerevisiae Chd1 DNA-binding domain in complex with a DNA duplex. The bound DNA duplex is straight, consistent with the preference exhibited by the Chd1 DNA-binding domain for extranucleosomal DNA. Comparison of this structure with the recently solved ISW1a DNA-binding domain bound to DNA reveals that DNA lays across each protein at a distinct angle, yet contacts similar surfaces on the SANT and SLIDE domains. In contrast to the minor groove binding seen for Isw1 and predicted for Chd1, the SLIDE domain of the Chd1 DNA-binding domain contacts the DNA major groove. The majority of direct contacts with the phosphate backbone occur only on one DNA strand, suggesting that Chd1 may not strongly discriminate between major and minor grooves. PMID:22033927
A Single Glycine-Alanine Exchange Directs Ligand Specificity of the Elephant Progestin Receptor
Wierer, Michael; Schrey, Anna K.; Kühne, Ronald; Ulbrich, Susanne E.
2012-01-01
The primary gestagen of elephants is 5α-dihydroprogesterone (DHP), which is unlike all other mammals studied until now. The level of DHP in elephants equals that of progesterone in other mammals, and elephants are able to bind DHP with similar affinity to progesterone indicating a unique ligand-binding specificity of the elephant progestin receptor (PR). Using site-directed mutagenesis in combination with in vitro binding studies we here report that this change in specificity is due to a single glycine to alanine exchange at position 722 (G722A) of PR, which specifically increases DHP affinity while not affecting binding of progesterone. By conducting molecular dynamics simulations comparing human and elephant PR ligand-binding domains (LBD), we observed that the alanine methyl group at position 722 is able to push the DHP A-ring into a position similar to progesterone. In the human PR, the DHP A-ring position is twisted towards helix 3 of PR thereby disturbing the hydrogen bond pattern around the C3-keto group, resulting in a lower binding affinity. Furthermore, we observed that the elephant PR ligand-binding pocket is more rigid than the human analogue, which probably explains the higher affinity towards both progesterone and DHP. Interestingly, the G722A substitution is not elephant-specific, rather it is also present in five independent lineages of mammalian evolution, suggesting a special role of the substitution for the development of distinct mammalian gestagen systems. PMID:23209719
Dégut, Clément; Ponchon, Luc; Folly-Klan, Marcia; Barraud, Pierre; Tisné, Carine
2016-03-01
The enzymes of the TrmI family catalyze the formation of the m(1)A58 modification in tRNA. We previously solved the crystal structure of the Thermus thermophilus enzyme and conducted a biophysical study to characterize the interaction between TrmI and tRNA. TrmI enzymes are active as a tetramer and up to two tRNAs can bind to TrmI simultaneously. In this paper, we present the structures of two TrmI mutants (D170A and Y78A). These residues are conserved in the active site of TrmIs and their mutations result in a dramatic alteration of TrmI activity. Both structures of TrmI mutants revealed the flexibility of the N-terminal domain that is probably important to bind tRNA. The structure of TrmI Y78A catalytic domain is unmodified regarding the binding of the SAM co-factor and the conformation of residues potentially interacting with the substrate adenine. This structure reinforces the previously proposed role of Y78, i.e. stabilize the conformation of the A58 ribose needed to hold the adenosine in the active site. The structure of the D170A mutant shows a flexible active site with one loop occupying in part the place of the co-factor and the second loop moving at the entrance to the active site. This structure and recent data confirms the central role of D170 residue binding the amino moiety of SAM and the exocyclic amino group of adenine. Possible mechanisms for methyl transfer are then discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Feng, Hao; Wang, Xiaomin; Sun, Yanfei; Wang, Xiaojie; Chen, Xianming; Guo, Jun; Duan, Yinghui; Huang, Lili; Kang, Zhensheng
2011-08-01
Calcium is a ubiquitous and essential secondary messenger in eukaryotic signal transduction pathways. Calcium binding protein, as a component of pathways, plays various roles in response to biotic and abiotic stresses, as well as in developmental processes in plants. In this study, a calcium binding protein gene, designated as TaCab1 (Triticum aestivum calcium binding EF-hand protein 1), was isolated and characterized from wheat leaves (cv. Suwon 11) infected by Puccinia striiformis f. sp. tritici by in silico cloning and reverse transcription PCR (RT-PCR). TaCab1 did not have an intron and was predicted to encode a 216 amino acid protein which possesses an N-terminal region with a signal peptide, a transmembrane domain, an EF-hand motif and a caleosin domain. The results of transient assays with constructs of TaCab1 with green fluorescent protein (GFP) gene indicated that TaCab1 encodes a transmembrane protein. Quantitative real-time PCR (qRT-PCR) analyses revealed that TaCab1 was highly expressed in leaves than roots and stems. Although up-regulated expression profiles of TaCab1 were quite similar in both incompatible and compatible interactions, its transcript accumulation in the compatible interaction was much higher than in the incompatible interaction. The transcription of TaCab1 was also up-regulated at different degrees after treated by phytohormones [abscisic acid, benzyl adenine, ethylene, methyl jasmonate and salicylic acid (SA)] and stress stimuli [wounding, low temperature, polyethylene glycol and high salinity]. These results suggest that TaCab1 is involved in the plant-pathogen recognition, symptom development, and the basal tolerance to biotic and abiotic stresses through the SA signaling pathway.
László, Brigitta; Ferenczi, Annamária; Madar, László; Gyöngyösi, Eszter; Szalmás, Anita; Szakács, Levente; Veress, György; Kónya, József
2016-08-01
The mechanisms that regulate papillomavirus gene expression include DNA methylation. The transcription of papillomavirus oncogenes E6 and E7 is controlled by certain regulatory elements in the LCR, which include binding sites for the E2 protein, a viral regulator of oncogene expression. In HPV-31-infected exfoliated cervical cells, the CpG methylation of the entire LCR was determined by next-generation sequencing after bisulfite modification. Six of the 22 cases had methylated CpG sites in the HPV-31 LCR, including position 7479 and/or 7485, at the promoter distal E2 binding site, thus suggesting a potential regulatory mechanism for papillomavirus transcription.
Wang, Rui; Chang, Yong-sheng; Fang, Fu-de
2009-12-01
Peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) family is highly expressed in tissues with high energy metabolism. They coactivate transcription factors in regulating genes engaged in processes such as gluconeogenesis, adipose beta-oxydation, lipoprotein synthesis and secretion, mitochondrial biogenesis, and oxidative metabolism. Protein conformation studies demonstrated that they lack DNA binding domains and act as coactivators through physical interaction with transcription factors. PGC1 activity is regulated at transcription level or by multiple covalent chemical modifications such as phosphorylation, methylation and acetylation/deacetylation. Abnormal expression of PGC1 coactivators usually is closely correlated with diseases such as diabetes, obesity, hyperglycemia, hyperlipemia, and arterial and brain neuron necrosis diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo, Eric; Mans, Ben J.; Ribeiro, José M.C.
The mosquito D7 salivary proteins are encoded by a multigene family related to the arthropod odorant-binding protein (OBP) superfamily. Forms having either one or two OBP domains are found in mosquito saliva. Four single-domain and one two-domain D7 proteins from Anopheles gambiae and Aedes aegypti (AeD7), respectively, were shown to bind biogenic amines with high affinity and with a stoichiometry of one ligand per protein molecule. Sequence comparisons indicated that only the C-terminal domain of AeD7 is homologous to the single-domain proteins from A. gambiae, suggesting that the N-terminal domain may bind a different class of ligands. Here, we describemore » the 3D structure of AeD7 and examine the ligand-binding characteristics of the N- and C-terminal domains. Isothermal titration calorimetry and ligand complex crystal structures show that the N-terminal domain binds cysteinyl leukotrienes (cysLTs) with high affinities (50-60 nM) whereas the C-terminal domain binds biogenic amines. The lipid chain of the cysLT binds in a hydrophobic pocket of the N-terminal domain, whereas binding of norepinephrine leads to an ordering of the C-terminal portion of the C-terminal domain into an alpha-helix that, along with rotations of Arg-176 and Glu-268 side chains, acts to bury the bound ligand.« less
Theoretical Insights into Methane C–H Bond Activation on Alkaline Metal Oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aljama, Hassan; Nørskov, Jens K.; Abild-Pedersen, Frank
Here, we investigate the role of alkaline metal oxides (AMO) (MgO, CaO, and SrO) in activating the C–H bond in methane. We also use Density Functional Theory (DFT) and microkinetic modeling to study the catalytic elementary steps in breaking the C–H bond in methane and creating the methyl radical, a precursor prior to creating C2 products. We also study the effects of surface geometry on the catalytic activity of AMO by examining terrace and step sites. We observe that the process of activating methane depends strongly on the structure of the AMO. When the AMO surface is doped with anmore » alkali metal, the transition state (TS) structure has a methyl radical-like behavior, where the methyl radical interacts weakly with the AMO surface. In this case, the TS energy scales with the hydrogen binding energy. On pure AMO, the TS interacts with AMO surface oxygen as well as the metal atom on the surface, and consequently the TS energy scales with the binding energy of hydrogen and methyl. We study the activity of AMO using a mean-field microkinetic model. The results indicate that terrace sites have similar catalytic activity, with the exception of MgO(100). Step sites bind hydrogen more strongly, making them more active, and this confirms previously reported experimental results. We map the catalytic activity of AMO using a volcano plot with two descriptors: the methyl and the hydrogen binding energies, with the latter being a more significant descriptor. The microkinetic model results suggest that C–H bond dissociation is not always the rate-limiting step. At weak hydrogen binding, the reaction is limited by C–H bond activation. At strong hydrogen binding, the reaction is limited due to poisoning of the active site. We found an increase in activity of AMO as the basicity increased. Finally, the developed microkinetic model allows screening for improved catalysts using simple calculations of the hydrogen binding energy.« less
Theoretical Insights into Methane C–H Bond Activation on Alkaline Metal Oxides
Aljama, Hassan; Nørskov, Jens K.; Abild-Pedersen, Frank
2017-07-17
Here, we investigate the role of alkaline metal oxides (AMO) (MgO, CaO, and SrO) in activating the C–H bond in methane. We also use Density Functional Theory (DFT) and microkinetic modeling to study the catalytic elementary steps in breaking the C–H bond in methane and creating the methyl radical, a precursor prior to creating C2 products. We also study the effects of surface geometry on the catalytic activity of AMO by examining terrace and step sites. We observe that the process of activating methane depends strongly on the structure of the AMO. When the AMO surface is doped with anmore » alkali metal, the transition state (TS) structure has a methyl radical-like behavior, where the methyl radical interacts weakly with the AMO surface. In this case, the TS energy scales with the hydrogen binding energy. On pure AMO, the TS interacts with AMO surface oxygen as well as the metal atom on the surface, and consequently the TS energy scales with the binding energy of hydrogen and methyl. We study the activity of AMO using a mean-field microkinetic model. The results indicate that terrace sites have similar catalytic activity, with the exception of MgO(100). Step sites bind hydrogen more strongly, making them more active, and this confirms previously reported experimental results. We map the catalytic activity of AMO using a volcano plot with two descriptors: the methyl and the hydrogen binding energies, with the latter being a more significant descriptor. The microkinetic model results suggest that C–H bond dissociation is not always the rate-limiting step. At weak hydrogen binding, the reaction is limited by C–H bond activation. At strong hydrogen binding, the reaction is limited due to poisoning of the active site. We found an increase in activity of AMO as the basicity increased. Finally, the developed microkinetic model allows screening for improved catalysts using simple calculations of the hydrogen binding energy.« less
Mårtensson, Anna K F; Lincoln, Per
2018-04-25
Isothermal titration calorimetry (ITC) has been utilized to investigate the effect of methyl substituents on the intercalating dppz ligand of the enantiomers of the parent complex Ru(phen)2dppz2+ (phen = 1,10-phenanthroline; dppz = dipyrido[3,2-a:2',3'-c]phenazine) on DNA binding thermodynamics. The methylated complexes (10-methyl-dppz and 11,12-dimethyl-dppz) have large, concentration-dependent, positive heats of dilution, and a strong endothermic background is also apparent in the ITC-profiles from titration of methylated complexes into poly(dAdT)2, which make direct comparison between complexes difficult. By augmenting a simple cooperative binding model with one equilibrium for complex self-aggregation in solution and one equilibrium for complex aggregation on saturated DNA, it was possible to find an excellent global fit to the experimental data with DNA affinity parameters restricted to be equal for all Δ-enantiomers as well as for all Λ-enantiomers. In general, enthalpic differences, compared to the unsubstituted complex, were small and less than 4 kJ mol-1, except for the heat of intercalation of Δ-10-methyl-dppz (-11,6 kJ mol-1) and Λ-11,12-dimethyl-dppz (+4.3 kJ mol-1).
Radhakrishna, Uppala; Albayrak, Samet; Alpay-Savasan, Zeynep; Zeb, Amna; Turkoglu, Onur; Sobolewski, Paul; Bahado-Singh, Ray O
2016-01-01
Congenital heart defect (CHD) is the most common cause of death from congenital anomaly. Among several candidate epigenetic mechanisms, DNA methylation may play an important role in the etiology of CHDs. We conducted a genome-wide DNA methylation analysis using an Illumina Infinium 450k human methylation assay in a cohort of 24 newborns who had aortic valve stenosis (AVS), with gestational-age matched controls. The study identified significantly-altered CpG methylation at 59 sites in 52 genes in AVS subjects as compared to controls (either hypermethylated or demethylated). Gene Ontology analysis identified biological processes and functions for these genes including positive regulation of receptor-mediated endocytosis. Consistent with prior clinical data, the molecular function categories as determined using DAVID identified low-density lipoprotein receptor binding, lipoprotein receptor binding and identical protein binding to be over-represented in the AVS group. A significant epigenetic change in the APOA5 and PCSK9 genes known to be involved in AVS was also observed. A large number CpG methylation sites individually demonstrated good to excellent diagnostic accuracy for the prediction of AVS status, thus raising possibility of molecular screening markers for this disorder. Using epigenetic analysis we were able to identify genes significantly involved in the pathogenesis of AVS.
Radhakrishna, Uppala; Albayrak, Samet; Alpay-Savasan, Zeynep; Zeb, Amna; Turkoglu, Onur; Sobolewski, Paul; Bahado-Singh, Ray O.
2016-01-01
Congenital heart defect (CHD) is the most common cause of death from congenital anomaly. Among several candidate epigenetic mechanisms, DNA methylation may play an important role in the etiology of CHDs. We conducted a genome-wide DNA methylation analysis using an Illumina Infinium 450k human methylation assay in a cohort of 24 newborns who had aortic valve stenosis (AVS), with gestational-age matched controls. The study identified significantly-altered CpG methylation at 59 sites in 52 genes in AVS subjects as compared to controls (either hypermethylated or demethylated). Gene Ontology analysis identified biological processes and functions for these genes including positive regulation of receptor-mediated endocytosis. Consistent with prior clinical data, the molecular function categories as determined using DAVID identified low-density lipoprotein receptor binding, lipoprotein receptor binding and identical protein binding to be over-represented in the AVS group. A significant epigenetic change in the APOA5 and PCSK9 genes known to be involved in AVS was also observed. A large number CpG methylation sites individually demonstrated good to excellent diagnostic accuracy for the prediction of AVS status, thus raising possibility of molecular screening markers for this disorder. Using epigenetic analysis we were able to identify genes significantly involved in the pathogenesis of AVS. PMID:27152866
van den Goorbergh, J A; de Wit, H; Tijdens, R B; Mulder, G J; Meerman, J H
1987-02-01
In order to find potentially effective compounds that could prevent the covalent binding of the carcinogen N-hydroxy-2-acetylaminofluorene (N-OH-AAF) to rat liver macromolecules in vivo, the prevention of the covalent binding to RNA of the sulfate ester of the carcinogen N-OH-AAF by a series of thioethers was investigated in vitro. The most effective thioethers, which inhibited the covalent binding by 70% or more, were studied for their protection against acute hepatotoxicity of N-OH-AAF in the rat in vivo. Three of these thioethers, thiazolidine, methyl 4-(methylthio)benzoate, and 2-(methylthio)benzimidazole significantly decreased the hepatoxicity of N-OH-AAF, by 45, 71 and 83%, respectively. The effects of these thioethers on the covalent binding of N-OH-AAF to cellular macromolecules in vivo were also studied. Methyl 4-(methylthio)benzoate and 2-(methylthio)benzimidazole decreased the adduct formation of N-OH-AAF to DNA by 54 and 44%, respectively, but had no effect on protein adduct formation. Only 2-(methylthio)benzimidazole caused a slight decrease (23%) in the AAF-- protein adduct formation. 2-Acetylaminofluorene (AAF) and methyl 4-(methyl-sulfinyl)benzoate were the main products in the incubation of methyl 4-(methylthio)benzoate with AAF-N-sulfate in vitro. This suggests that the thioether attacks the nitrenium ion which is formed by spontaneous breakdown of AAF-N-sulfate; the formation of a sulfonium--AAF conjugate is postulated which decomposes into AAF and a sulfinyl compound.
Bruhat, A; Jost, J P
1995-01-01
We have previously shown that estradiol treatment of roosters resulted in a rapid loss of binding activity of the repressor MDBP-2-H1 (a member of the histone H1 family) to methylated DNA that was not due to a decrease in MDBP-2-H1 concentration. Here we demonstrate that MDBP-2-H1 from rooster liver nuclear extracts is a phosphoprotein. Phosphoamino acid analysis reveals that the phosphorylation occurs exclusively on serine residues. Two-dimensional gel electrophoresis and tryptic phosphopeptide analysis show that MDBP-2-H1 is phosphorylated at several sites. Treatment of roosters with estradiol triggers a dephosphorylation of at least two sites in the protein. Phosphatase treatment of purified rooster MDBP-2-H1 combined with gel mobility shift assay indicates that phosphorylation of MDBP-2-H1 is essential for the binding to methylated DNA and that the dephosphorylation can occur on the protein bound to methylated DNA causing its release from DNA. Thus, these results suggest that in vivo modification of the phosphorylation status of MDBP-2-H1 caused by estradiol treatment may be a key step for the down regulation of its binding to methylated DNA. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7731964
SH2 Domains Serve as Lipid-Binding Modules for pTyr-Signaling Proteins.
Park, Mi-Jeong; Sheng, Ren; Silkov, Antonina; Jung, Da-Jung; Wang, Zhi-Gang; Xin, Yao; Kim, Hyunjin; Thiagarajan-Rosenkranz, Pallavi; Song, Seohyeon; Yoon, Youngdae; Nam, Wonhee; Kim, Ilshin; Kim, Eui; Lee, Dong-Gyu; Chen, Yong; Singaram, Indira; Wang, Li; Jang, Myoung Ho; Hwang, Cheol-Sang; Honig, Barry; Ryu, Sungho; Lorieau, Justin; Kim, You-Me; Cho, Wonhwa
2016-04-07
The Src-homology 2 (SH2) domain is a protein interaction domain that directs myriad phosphotyrosine (pY)-signaling pathways. Genome-wide screening of human SH2 domains reveals that ∼90% of SH2 domains bind plasma membrane lipids and many have high phosphoinositide specificity. They bind lipids using surface cationic patches separate from pY-binding pockets, thus binding lipids and the pY motif independently. The patches form grooves for specific lipid headgroup recognition or flat surfaces for non-specific membrane binding and both types of interaction are important for cellular function and regulation of SH2 domain-containing proteins. Cellular studies with ZAP70 showed that multiple lipids bind its C-terminal SH2 domain in a spatiotemporally specific manner and thereby exert exquisite spatiotemporal control over its protein binding and signaling activities in T cells. Collectively, this study reveals how lipids control SH2 domain-mediated cellular protein-protein interaction networks and suggest a new strategy for therapeutic modulation of pY-signaling pathways. Copyright © 2016 Elsevier Inc. All rights reserved.
Methylated DNMT1 and E2F1 are targeted for proteolysis by L3MBTL3 and CRL4DCAF5 ubiquitin ligase.
Leng, Feng; Yu, Jiekai; Zhang, Chunxiao; Alejo, Salvador; Hoang, Nam; Sun, Hong; Lu, Fei; Zhang, Hui
2018-04-24
Many non-histone proteins are lysine methylated and a novel function of this modification is to trigger the proteolysis of methylated proteins. Here, we report that the methylated lysine 142 of DNMT1, a major DNA methyltransferase that preserves epigenetic inheritance of DNA methylation patterns during DNA replication, is demethylated by LSD1. A novel methyl-binding protein, L3MBTL3, binds the K142-methylated DNMT1 and recruits a novel CRL4 DCAF5 ubiquitin ligase to degrade DNMT1. Both LSD1 and PHF20L1 act primarily in S phase to prevent DNMT1 degradation by L3MBTL3-CRL4 DCAF5 . Mouse L3MBTL3/MBT-1 deletion causes accumulation of DNMT1 protein, increased genomic DNA methylation, and late embryonic lethality. DNMT1 contains a consensus methylation motif shared by many non-histone proteins including E2F1, a key transcription factor for S phase. We show that the methylation-dependent E2F1 degradation is also controlled by L3MBTL3-CRL4 DCAF5 . Our studies elucidate for the first time a novel mechanism by which the stability of many methylated non-histone proteins are regulated.
The effects of cytosine methylation on general transcription factors
NASA Astrophysics Data System (ADS)
Jin, Jianshi; Lian, Tengfei; Gu, Chan; Yu, Kai; Gao, Yi Qin; Su, Xiao-Dong
2016-07-01
DNA methylation on CpG sites is the most common epigenetic modification. Recently, methylation in a non-CpG context was found to occur widely on genomic DNA. Moreover, methylation of non-CpG sites is a highly controlled process, and its level may vary during cellular development. To study non-CpG methylation effects on DNA/protein interactions, we have chosen three human transcription factors (TFs): glucocorticoid receptor (GR), brain and muscle ARNT-like 1 (BMAL1) - circadian locomotor output cycles kaput (CLOCK) and estrogen receptor (ER) with methylated or unmethylated DNA binding sequences, using single-molecule and isothermal titration calorimetry assays. The results demonstrated that these TFs interact with methylated DNA with different effects compared with their cognate DNA sequences. The effects of non-CpG methylation on transcriptional regulation were validated by cell-based luciferase assay at protein level. The mechanisms of non-CpG methylation influencing DNA-protein interactions were investigated by crystallographic analyses and molecular dynamics simulation. With BisChIP-seq assays in HEK-293T cells, we found that GR can recognize highly methylated sites within chromatin in cells. Therefore, we conclude that non-CpG methylation of DNA can provide a mechanism for regulating gene expression through directly affecting the binding of TFs.
Structure and Function of Flavivirus NS5 Methyltransferase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou,Y.; Ray, D.; Zhao, Y.
2007-01-01
The plus-strand RNA genome of flavivirus contains a 5' terminal cap 1 structure (m{sup 7}GpppAmG). The flaviviruses encode one methyltransferase, located at the N-terminal portion of the NS5 protein, to catalyze both guanine N-7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus methyltransferases from dengue, yellow fever, and West Nile virus (WNV) sequentially generate GpppA {yields} m{sup 7}GpppA {yields} m{sup 7}GpppAm. The 2'-O methylation can be uncoupled from the N-7 methylation, since m{sup 7}GpppA-RNA can be readily methylated to m{sup 7}GpppAm-RNA. Despite exhibiting two distinct methylation activities, the crystal structure of WNV methyltransferase at 2.8 {angstrom} resolution showedmore » a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. Therefore, substrate GpppA-RNA should be repositioned to accept the N-7 and 2'-O methyl groups from SAM during the sequential reactions. Electrostatic analysis of the WNV methyltransferase structure showed that, adjacent to the SAM-binding pocket, is a highly positively charged surface that could serve as an RNA binding site during cap methylations. Biochemical and mutagenesis analyses show that the N-7 and 2'-O cap methylations require distinct buffer conditions and different side chains within the K{sub 61}-D{sub 146}-K{sub 182}-E{sub 218} motif, suggesting that the two reactions use different mechanisms. In the context of complete virus, defects in both methylations are lethal to WNV; however, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N-7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel target for flavivirus therapy.« less
Schuchardt, Brett J.; Mikles, David C.; Hoang, Lawrence M.; Bhat, Vikas; McDonald, Caleb B.; Sudol, Marius; Farooq, Amjad
2014-01-01
YAP2 transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well-documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules. PMID:25283809
Characterization of αX I-Domain Binding to Receptors for Advanced Glycation End Products (RAGE).
Buyannemekh, Dolgorsuren; Nham, Sang-Uk
2017-05-31
The β2 integrins are cell surface transmembrane proteins regulating leukocyte functions, such as adhesion and migration. Two members of β2 integrin, αMβ2 and αXβ2, share the leukocyte distribution profile and integrin αXβ2 is involved in antigen presentation in dendritic cells and transendothelial migration of monocytes and macrophages to atherosclerotic lesions. Receptor for advanced glycation end products (RAGE), a member of cell adhesion molecules, plays an important role in chronic inflammation and atherosclerosis. Although RAGE and αXβ2 play an important role in inflammatory response and the pathogenesis of atherosclerosis, the nature of their interaction and structure involved in the binding remain poorly defined. In this study, using I-domain as a ligand binding motif of αXβ2, we characterize the binding nature and the interacting moieties of αX I-domain and RAGE. Their binding requires divalent cations (Mg 2+ and Mn 2+ ) and shows an affinity on the sub-micro molar level: the dissociation constant of αX I-domains binding to RAGE being 0.49 μM. Furthermore, the αX I-domains recognize the V-domain, but not the C1 and C2-domains of RAGE. The acidic amino acid substitutions on the ligand binding site of αX I-domain significantly reduce the I-domain binding activity to soluble RAGE and the alanine substitutions of basic amino acids on the flat surface of the V-domain prevent the V-domain binding to αX I-domain. In conclusion, the main mechanism of αX I-domain binding to RAGE is a charge interaction, in which the acidic moieties of αX I-domains, including E244, and D249, recognize the basic residues on the RAGE V-domain encompassing K39, K43, K44, R104, and K107.
Ohashi, Nami; Nomura, Wataru; Narumi, Tetsuo; Lewin, Nancy E; Itotani, Kyoko; Blumberg, Peter M; Tamamura, Hirokazu
2011-01-19
Protein kinase C (PKC) is a critical cell signaling pathway involved in many disorders such as cancer and Alzheimer-type dementia. To date, evaluation of PKC ligand binding affinity has been performed by competitive studies against radiolabeled probes that are problematic for high-throughput screening. In the present study, we have developed a fluorescent-based binding assay system for identifying ligands that target the PKC ligand binding domain (C1 domain). An environmentally sensitive fluorescent dye (solvatochromic fluorophore), which has been used in multiple applications to assess protein-binding interactions, was inserted in proximity to the binding pocket of a novel PKCδ C1b domain. These resultant fluorescent-labeled δC1b domain analogues underwent a significant change in fluorescent intensity upon ligand binding, and we further demonstrate that the fluorescent δC1b domain analogues can be used to evaluate ligand binding affinity.
Src binds cortactin through an SH2 domain cystine-mediated linkage.
Evans, Jason V; Ammer, Amanda G; Jett, John E; Bolcato, Chris A; Breaux, Jason C; Martin, Karen H; Culp, Mark V; Gannett, Peter M; Weed, Scott A
2012-12-15
Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology (SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals regulating diverse cellular functions.
Src binds cortactin through an SH2 domain cystine-mediated linkage
Evans, Jason V.; Ammer, Amanda G.; Jett, John E.; Bolcato, Chris A.; Breaux, Jason C.; Martin, Karen H.; Culp, Mark V.; Gannett, Peter M.; Weed, Scott A.
2012-01-01
Summary Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology (SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals regulating diverse cellular functions. PMID:23097045
Gao, Yong-Guang; Yan, Xian-Zhong; Song, Ai-Xin; Chang, Yong-Gang; Gao, Xue-Chao; Jiang, Nan; Zhang, Qi; Hu, Hong-Yu
2006-12-01
The interactions of huntingtin (Htt) with the SH3 domain- or WW domain-containing proteins have been implicated in the pathogenesis of Huntington's disease (HD). We report the specific interactions of Htt proline-rich region (PRR) with the SH3GL3-SH3 domain and HYPA-WW1-2 domain pair by NMR. The results show that Htt PRR binds with the SH3 domain through nearly its entire chain, and that the binding region on the domain includes the canonical PxxP-binding site and the specificity pocket. The C terminus of PRR orients to the specificity pocket, whereas the N terminus orients to the PxxP-binding site. Htt PRR can also specifically bind to WW1-2; the N-terminal portion preferentially binds to WW1, while the C-terminal portion binds to WW2. This study provides structural insights into the specific interactions between Htt PRR and its binding partners as well as the alteration of these interactions that involve PRR, which may have implications for the understanding of HD.
Liu, Guohong; Weston, Christopher Q; Pham, Long K; Waltz, Shannon; Barnes, Helen; King, Paula; Sphar, Dan; Yamamoto, Robert T; Forsyth, R Allyn
2016-01-01
We describe continuing work to develop restriction endonucleases as tools to enrich targeted genomes of interest from diverse populations. Two approaches were developed in parallel to segregate genomic DNA based on cytosine methylation. First, the methyl-sensitive endonuclease HpaII was used to bind non-CG methylated DNA. Second, a truncated fragment of McrB was used to bind CpG methylated DNA. Enrichment levels of microbial genomes can exceed 100-fold with HpaII allowing improved genomic detection and coverage of otherwise trace microbial genomes from sputum. Additionally, we observe interesting enrichment results that correlate with the methylation states not only of bacteria, but of fungi, viruses, a protist and plants. The methods presented here offer promise for testing biological samples for pathogens and global analysis of population methylomes.
Zhou, Huan-Xiang
2006-11-01
Flexible linkers are often found to tether binding sequence motifs or connect protein domains. Here we analyze three usages of flexible linkers: 1), intramolecular binding of proline-rich peptides (PRPs) to SH3 domains for kinase regulation; 2), intramolecular binding of PRP for increasing the folding stability of SH3 domains; and 3), covalent linking of PRPs and other ligands for high-affinity bivalent binding. The basis of these analyses is a quantitative relation between intermolecular and intramolecular binding constants. This relation has the form K(i) = K(e0)p for intramolecular binding and K(e) = K(e01)K(e02)p for bivalent binding. The effective concentration p depends on the length of the linker and the distance between the linker attachment points in the bound state. Several applications illustrate the usefulness of the quantitative relation. These include intramolecular binding to the Itk SH3 domain by an internal PRP and to a circular permutant of the alpha-spectrin SH3 domain by a designed PRP, and bivalent binding to the two SH3 domains of Grb2 by two linked PRPs. These and other examples suggest that flexible linkers and sequence motifs tethered to them, like folded protein domains, are also subject to tight control during evolution.
Rooijakkers, Bart J. M.
2018-01-01
Six fungal-type cellulose binding domains were found in the genome of the coccolithophore Emiliania huxleyi and cloned and expressed in Escherichia coli. Sequence comparison indicate high similarity to fungal cellulose binding domains, raising the question of why these domains exist in coccolithophores. The proteins were tested for binding with cellulose and chitin as ligands, which resulted in the identification of two functional carbohydrate binding modules: EHUX2 and EHUX4. Compared to benchmark fungal cellulose binding domain Cel7A-CBM1 from Trichoderma reesei, these proteins showed slightly lower binding to birch and bacterial cellulose, but were more efficient chitin binders. Finally, a set of cellulose binding domains was created based on the shuffling of one well-functioning and one non-functional domain. These were characterized in order to get more information of the binding domain’s sequence–function relationship, indicating characteristic differences between the molecular basis of cellulose versus chitin recognition. As previous reports have showed the presence of cellulose in coccoliths and here we find functional cellulose binding modules, a possible connection is discussed. PMID:29782536
Mitamura, Toshiaki; Yamamura, Yoshimi; Kurosaki, Fumiya
2011-01-01
Translocation of two Rac/Rop guanosine 5'-triphosphate-binding proteins from Scoparia dulcis, Sdrac-1 and Sdrac-2, was examined employing transformed belladonna which overproduces these proteins as glutathione-S-transferase-tagged forms. The transferase activities of the fused proteins in microsomal fraction of belladonna markedly increased by the incubation with methyl jasmonate either in Sdrac-1 or Sdrac-2 transformant, while low and constant activities were observed in the untreated control. Recombinant Sdrac-2 protein was found to bind to prenyl chain in the presence of cell extracts prepared from methyl jasmonate-treated S. dulcis, however, Sdrac-1 was palmitoylated by the addition of the cell extracts. These results suggest that both Sdrac-1 and Sdrac-2 translocate to plant membranes by the stimulation with methyl jasmonate, however, targeting of these proteins is triggered by the independent modification mechanisms, palmitoylation for Sdrac-1 and prenylation for Sdrac-2.
Adduction of DNA with MTBE and TBA in mice studied by accelerator mass spectrometry.
Yuan, Y; Wang, H F; Sun, H F; Du, H F; Xu, L H; Liu, Y F; Ding, X F; Fu, D P; Liu, K X
2007-12-01
Methyl tert-butyl ether (MTBE) is a currently worldwide used octane enhancer substituting for lead alkyls and gasoline oxygenate. Our previous study using doubly (14)C-labeled MTBE [(CH(3))(3) (14)CO(14)CH(3)] has shown that MTBE binds DNA to form DNA adducts at low dose levels in mice. To elucidate the mechanism of the binding reaction, in this study, the DNA adducts with singly (14)C-labeled MTBE, which was synthesized from (14)C-methanol and tert-butyl alcohol (TBA), or (14)C-labeled TBA in mice have been measured by ultra sensitive accelerator mass spectrometry. The results show that the methyl group of MTBE and tert-butyl alcohol definitely form adducts with DNA in mouse liver, lung, and kidney. The methyl group of MTBE is the predominant binding part in liver, while the methyl group and the tert-butyl group give comparable contributions to the adduct formation in lung and kidney.
MIT domain of Vps4 is a Ca2+-dependent phosphoinositide-binding domain.
Iwaya, Naoko; Takasu, Hirotoshi; Goda, Natsuko; Shirakawa, Masahiro; Tanaka, Toshiki; Hamada, Daizo; Hiroaki, Hidekazu
2013-05-01
The microtubule interacting and trafficking (MIT) domain is a small protein module that is conserved in proteins of diverged function, such as Vps4, spastin and sorting nexin 15 (SNX15). The molecular function of the MIT domain is protein-protein interaction, in which the domain recognizes peptides containing MIT-interacting motifs. Recently, we identified an evolutionarily related domain, 'variant' MIT domain at the N-terminal region of the microtubule severing enzyme katanin p60. We found that the domain was responsible for binding to microtubules and Ca(2+). Here, we have examined whether the authentic MIT domains also bind Ca(2+). We found that the loop between the first and second α-helices of the MIT domain binds a Ca(2+) ion. Furthermore, the MIT domains derived from Vps4b and SNX15a showed phosphoinositide-binding activities in a Ca(2+)-dependent manner. We propose that the MIT domain is a novel membrane-associating domain involved in endosomal trafficking.
Polypeptides having xylanase activity and polynucleotides encoding same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spodsberg, Nikolaj; Shaghasi, Tarana
The present invention relates to polypeptides having xylanase activity, catalytic domains, and carbohydrate binding domains, and polynucleotides encoding the polypeptides, catalytic domains, and carbohydrate binding domains. The present invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains, and carbohydrate binding domains.
Polypeptides having endoglucanase activity and polynucleotides encoding same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spodsberg, Nikolaj; Shagasi, Tarana
The present invention relates to isolated polypeptides having endoglucanase activity, catalytic domains, cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains or cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or cellulose binding domains.
Polypeptides having endoglucanase activity and polynucleotides encoding same
Spodsberg, Nikolaj; Shagasi, Tarana
2015-06-30
The present invention relates to isolated polypeptides having endoglucanase activity, catalytic domains, cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains or cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or cellulose binding domains.
Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stringer, Mary Ann; McBrayer, Brett
2016-11-29
The present invention relates to isolated polypeptides having cellobiohydrolase activity, catalytic domains, and cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains, and cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains, or cellulose binding domains.
A low-complexity region in the YTH domain protein Mmi1 enhances RNA binding.
Stowell, James A W; Wagstaff, Jane L; Hill, Chris H; Yu, Minmin; McLaughlin, Stephen H; Freund, Stefan M V; Passmore, Lori A
2018-06-15
Mmi1 is an essential RNA-binding protein in the fission yeast Schizosaccharomyces pombe that eliminates meiotic transcripts during normal vegetative growth. Mmi1 contains a YTH domain that binds specific RNA sequences, targeting mRNAs for degradation. The YTH domain of Mmi1 uses a noncanonical RNA-binding surface that includes contacts outside the conserved fold. Here, we report that an N-terminal extension that is proximal to the YTH domain enhances RNA binding. Using X-ray crystallography, NMR, and biophysical methods, we show that this low-complexity region becomes more ordered upon RNA binding. This enhances the affinity of the interaction of the Mmi1 YTH domain with specific RNAs by reducing the dissociation rate of the Mmi1-RNA complex. We propose that the low-complexity region influences RNA binding indirectly by reducing dynamic motions of the RNA-binding groove and stabilizing a conformation of the YTH domain that binds to RNA with high affinity. Taken together, our work reveals how a low-complexity region proximal to a conserved folded domain can adopt an ordered structure to aid nucleic acid binding. © 2018 Stowell et al.
Hu, Chen; Fang, Jianwen; Borchardt, Ronald T; Schowen, Richard L; Kuczera, Krzysztof
2008-04-01
S-Adenosyl-L-homocysteine hydrolase (SAHH) is an enzyme regulating intracellular methylation reactions. The homotetrameric SAHH exists in an open conformation in absence of substrate, while enzyme:inhibitor complexes crystallize in the closed conformation, in which the ligands are engulfed by the protein due to an 18 degrees domain reorientation within each of the four subunits. We present a microscopic description of the structure and dynamics of the substrate-free, NAD(+)-bound SAHH in solution, based on a 15-ns molecular dynamics simulation in explicit solvent. In the trajectory, the four cofactor-binding domains formed a relatively rigid core with structure very similar to the crystal conformation. The four substrate-binding domains, located at the protein exterior, also retained internal structures similar to the crystal, while undergoing large amplitude rigid-body reorientations. The trajectory domain motions exhibited two interesting properties. First, within each subunit the domains fluctuated between open and closed conformations, while at the tetramer level 80% of the domain motions were perpendicular to the direction of the open-to-closed structural transition. Second, the domain reorientations in solution could be represented as a sum of two components, faster, with 20-50 ps correlation time and 3-4 degrees amplitude, and slower, with 8-23 ns correlation time and amplitude of 14-22 degrees . The faster motion is similar to the 1.5 cm(-1) frequency hinge-bending vibrations found in our recent normal mode analysis (Wang et al., Biochemistry 2005;44:7228-7239). The slower motion agrees with fluorescence anisotropy decay measurements, which detected a 10-20 ns domain reorientation of ca. 26 degrees amplitude in the substrate-free enzyme (Wang et al., Biochemistry 2006;45:7778-7786). Our simulations are thus in excellent agreement with experimental data. The simulations allow us to assign the observed nanosecond fluorescence anisotropy signal to fluctuations in domain orientations, and indicate that the microscopic mechanism of the motion involves rotational diffusion within a cone of 10-20 degrees . Overall, our simulation results complement the existing experimental data and provide important new insights into SAHH domain motions in solution, which play a crucial role in the catalytic mechanism of SAHH. (c) 2007 Wiley-Liss, Inc.
Small-Molecule Modulators of Methyl-Lysine Binding for the CBX7 Chromodomain
Ren, Chunyan; Morohashi, Keita; Plotnikov, Alexander N.; ...
2015-02-05
Chromobox homolog 7 (CBX7) plays an important role in gene transcription in a wide array of cellular processes, ranging from stem cell self-renewal and differentiation to tumor progression. CBX7 functions through its N-terminal chromodomain (ChD), which recognizes tri-methylated lysine 27 of histone 3 (H3K27me3), a conserved epigenetic mark that signifies gene transcriptional repression. Here in this study, we report discovery of small molecules that inhibit CBX7ChD binding to H3K27me3. Our crystal structures reveal the binding modes of these molecules that compete against H3K27me3 binding through interactions with key residues in the methyl-lysine binding pocket of CBX7ChD. We further show thatmore » a lead compound MS37452, derepresses transcription of Polycomb repressive complex target gene p16/CDKN2A by displacing CBX7 binding to the INK4A/ARF locus in prostate cancer cells. Ultimately, these small molecules have the potential to be developed into high-potency chemical modulators that target CBX7 functions in gene transcription in different disease pathways.« less
Ligand binding pocket function of drosophila USP is necessary for metamorphosis
USDA-ARS?s Scientific Manuscript database
The widely accepted paradigm that epoxidized methyl farnesoates (“juvenile hormones,” JHs) are the principle sesquiterpenoid hormones regulating insect metamorphosis was assessed in Drosophila melanogaster. GC-MS analysis showed that methyl farnesoate, rather than methyl epoxyfarnesoate (= JH III), ...
USDA-ARS?s Scientific Manuscript database
As a sequel of our investigations on the impact of epigenome in inducing fetal alcohol spectrum disorder (FASD) phenotypes in Japanese rice fish, we investigated on several DNA methylation machinery genes including DNA methyl transferase 3ba (dnmt3ba) and methyl binding proteins (MBPs), namely, mbdl...
Knuckles, Philip; Lence, Tina; Haussmann, Irmgard U.; Jacob, Dominik; Kreim, Nastasja; Carl, Sarah H.; Masiello, Irene; Hares, Tina; Villaseñor, Rodrigo; Hess, Daniel; Andrade-Navarro, Miguel A.; Biggiogera, Marco; Helm, Mark; Soller, Matthias; Bühler, Marc; Roignant, Jean-Yves
2018-01-01
N6-methyladenosine (m6A) is the most abundant mRNA modification in eukaryotes, playing crucial roles in multiple biological processes. m6A is catalyzed by the activity of methyltransferase-like 3 (Mettl3), which depends on additional proteins whose precise functions remain poorly understood. Here we identified Zc3h13 (zinc finger CCCH domain-containing protein 13)/Flacc [Fl(2)d-associated complex component] as a novel interactor of m6A methyltransferase complex components in Drosophila and mice. Like other components of this complex, Flacc controls m6A levels and is involved in sex determination in Drosophila. We demonstrate that Flacc promotes m6A deposition by bridging Fl(2)d to the mRNA-binding factor Nito. Altogether, our work advances the molecular understanding of conservation and regulation of the m6A machinery. PMID:29535189
Chen, Yihui; Zheng, Xiang; Dobhal, Mahabeer P; Gryshuk, Amy; Morgan, Janet; Dougherty, Thomas J; Oseroff, Allan; Pandey, Ravindra K
2005-06-02
Pyropheophorbides and their metal complexes were synthesized to investigate their applications as nonradioactive peripheral benzodiazepine receptor (PBR) binding probes and photosensitizers for use in photodynamic therapy. They were found to be localized in mitochondria and showed significant binding to PBR. In some cases, the PBR binding values were similar to that for 17 (PK11195, 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)isoquinoline-3-carboxamide). However, no direct correlation between 17 displacement ability and photosensitizing efficacy of photosensitizers was observed.
A ternary metal binding site in the C2 domain of phosphoinositide-specific phospholipase C-delta1.
Essen, L O; Perisic, O; Lynch, D E; Katan, M; Williams, R L
1997-03-11
We have determined the crystal structures of complexes of phosphoinositide-specific phospholipase C-delta1 from rat with calcium, barium, and lanthanum at 2.5-2.6 A resolution. Binding of these metal ions is observed in the active site of the catalytic TIM barrel and in the calcium binding region (CBR) of the C2 domain. The C2 domain of PLC-delta1 is a circularly permuted topological variant (P-variant) of the synaptotagmin I C2A domain (S-variant). On the basis of sequence analysis, we propose that both the S-variant and P-variant topologies are present among other C2 domains. Multiple adjacent binding sites in the C2 domain were observed for calcium and the other metal/enzyme complexes. The maximum number of binding sites observed was for the calcium analogue lanthanum. This complex shows an array-like binding of three lanthanum ions (sites I-III) in a crevice on one end of the C2 beta-sandwich. Residues involved in metal binding are contained in three loops, CBR1, CBR2, and CBR3. Sites I and II are maintained in the calcium and barium complexes, whereas sites II and III coincide with a binary calcium binding site in the C2A domain of synaptotagmin I. Several conformers for CBR1 are observed. The conformation of CBR1 does not appear to be strictly dependent on metal binding; however, metal binding may stabilize certain conformers. No significant structural changes are observed for CBR2 or CBR3. The surface of this ternary binding site provides a cluster of freely accessible liganding positions for putative phospholipid ligands of the C2 domain. It may be that the ternary metal binding site is also a feature of calcium-dependent phospholipid binding in solution. A ternary metal binding site might be a conserved feature among C2 domains that contain the critical calcium ligands in their CBR's. The high cooperativity of calcium-mediated lipid binding by C2 domains described previously is explained by this novel type of calcium binding site.
Brady, Pamlea N; Macnaughtan, Megan A
2015-12-15
Colorimetric protein assays, such as the Coomassie blue G-250 dye-binding (Bradford) and bicinchoninic acid (BCA) assays, are commonly used to quantify protein concentration. The accuracy of these assays depends on the amino acid composition. Because of the extensive use of reductive methylation in the study of proteins and the importance of biological methylation, it is necessary to evaluate the impact of lysyl methylation on the Bradford and BCA assays. Unmodified and reductively methylated proteins were analyzed using the absorbance at 280 nm to standardize the concentrations. Using model compounds, we demonstrate that the dimethylation of lysyl ε-amines does not affect the proteins' molar extinction coefficients at 280 nm. For the Bradford assay, the responses (absorbance per unit concentration) of the unmodified and reductively methylated proteins were similar, with a slight decrease in the response upon methylation. For the BCA assay, the responses of the reductively methylated proteins were consistently higher, overestimating the concentrations of the methylated proteins. The enhanced color formation in the BCA assay may be due to the lower acid dissociation constants of the lysyl ε-dimethylamines compared with the unmodified ε-amine, favoring Cu(II) binding in biuret-like complexes. The implications for the analysis of biologically methylated samples are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Brady, Pamlea N.; Macnaughtan, Megan A.
2015-01-01
Colorimetric protein assays, such as the Coomassie blue G-250 dye-binding (Bradford) and bicinchoninic acid (BCA) assays, are commonly used to quantify protein concentration. The accuracy of these assays depends on the amino acid composition. Because of the extensive use of reductive methylation in the study of proteins and the importance of biological methylation, it is necessary to evaluate the impact of lysyl methylation on the Bradford and BCA assays. Unmodified and reductively methylated proteins were analyzed using the absorbance at 280 nm to standardize the concentrations. Using model compounds, we demonstrate that the dimethylation of lysyl ε-amines does not affect the proteins’ molar extinction coefficients at 280 nm. For the Bradford assay, the response (absorbance per unit concentration) of the unmodified and reductively methylated proteins were similar with a slight decrease in the response upon methylation. For the BCA assay, the responses of the reductively methylated proteins were consistently higher, overestimating the concentrations of the methylated proteins. The enhanced color-formation in the BCA assay may be due to the lower acid dissociation constants of the lysyl ε-dimethylamines, compared to the unmodified ε-amine, favoring Cu(II) binding in biuret-like complexes. The implications for the analysis of biologically methylated samples are discussed. PMID:26342307
Schuchardt, Brett J; Mikles, David C; Hoang, Lawrence M; Bhat, Vikas; McDonald, Caleb B; Sudol, Marius; Farooq, Amjad
2014-12-01
YES-associated protein 2 (YAP2) transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of the WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules. © 2014 FEBS.
Lipid binding by the Unique and SH3 domains of c-Src suggests a new regulatory mechanism
Pérez, Yolanda; Maffei, Mariano; Igea, Ana; Amata, Irene; Gairí, Margarida; Nebreda, Angel R.; Bernadó, Pau; Pons, Miquel
2013-01-01
c-Src is a non-receptor tyrosine kinase involved in numerous signal transduction pathways. The kinase, SH3 and SH2 domains of c-Src are attached to the membrane-anchoring SH4 domain through the flexible Unique domain. Here we show intra- and intermolecular interactions involving the Unique and SH3 domains suggesting the presence of a previously unrecognized additional regulation layer in c-Src. We have characterized lipid binding by the Unique and SH3 domains, their intramolecular interaction and its allosteric modulation by a SH3-binding peptide or by Calcium-loaded calmodulin binding to the Unique domain. We also show reduced lipid binding following phosphorylation at conserved sites of the Unique domain. Finally, we show that injection of full-length c-Src with mutations that abolish lipid binding by the Unique domain causes a strong in vivo phenotype distinct from that of wild-type c-Src in a Xenopus oocyte model system, confirming the functional role of the Unique domain in c-Src regulation. PMID:23416516
Brant, Jason O; Riva, Alberto; Resnick, James L; Yang, Thomas P
2014-01-01
Reduced representation bisulfite sequencing (RRBS) was used to analyze DNA methylation patterns across the mouse brain genome in mice carrying a deletion of the Prader-Willi syndrome imprinting center (PWS-IC) on either the maternally- or paternally-inherited chromosome. Within the ∼3.7 Mb imprinted Angelman/Prader-Willi syndrome (AS/PWS) domain, 254 CpG sites were interrogated for changes in methylation due to PWS-IC deletion. Paternally-inherited deletion of the PWS-IC increased methylation levels ∼2-fold at each CpG site (compared to wild-type controls) at differentially methylated regions (DMRs) associated with 5′ CpG island promoters of paternally-expressed genes; these methylation changes extended, to a variable degree, into the adjacent CpG island shores. Maternal PWS-IC deletion yielded little or no changes in methylation at these DMRs, and methylation of CpG sites outside of promoter DMRs also was unchanged upon maternal or paternal PWS-IC deletion. Using stringent ascertainment criteria, ∼750,000 additional CpG sites were also interrogated across the entire mouse genome. This analysis identified 26 loci outside of the imprinted AS/PWS domain showing altered DNA methylation levels of ≥25% upon PWS-IC deletion. Curiously, altered methylation at 9 of these loci was a consequence of maternal PWS-IC deletion (maternal PWS-IC deletion by itself is not known to be associated with a phenotype in either humans or mice), and 10 of these loci exhibited the same changes in methylation irrespective of the parental origin of the PWS-IC deletion. These results suggest that the PWS-IC may affect DNA methylation at these loci by directly interacting with them, or may affect methylation at these loci through indirect downstream effects due to PWS-IC deletion. They further suggest the PWS-IC may have a previously uncharacterized function outside of the imprinted AS/PWS domain. PMID:25482058
Brant, Jason O; Riva, Alberto; Resnick, James L; Yang, Thomas P
2014-11-01
Reduced representation bisulfite sequencing (RRBS) was used to analyze DNA methylation patterns across the mouse brain genome in mice carrying a deletion of the Prader-Willi syndrome imprinting center (PWS-IC) on either the maternally- or paternally-inherited chromosome. Within the ~3.7 Mb imprinted Angelman/Prader-Willi syndrome (AS/PWS) domain, 254 CpG sites were interrogated for changes in methylation due to PWS-IC deletion. Paternally-inherited deletion of the PWS-IC increased methylation levels ~2-fold at each CpG site (compared to wild-type controls) at differentially methylated regions (DMRs) associated with 5' CpG island promoters of paternally-expressed genes; these methylation changes extended, to a variable degree, into the adjacent CpG island shores. Maternal PWS-IC deletion yielded little or no changes in methylation at these DMRs, and methylation of CpG sites outside of promoter DMRs also was unchanged upon maternal or paternal PWS-IC deletion. Using stringent ascertainment criteria, ~750,000 additional CpG sites were also interrogated across the entire mouse genome. This analysis identified 26 loci outside of the imprinted AS/PWS domain showing altered DNA methylation levels of ≥25% upon PWS-IC deletion. Curiously, altered methylation at 9 of these loci was a consequence of maternal PWS-IC deletion (maternal PWS-IC deletion by itself is not known to be associated with a phenotype in either humans or mice), and 10 of these loci exhibited the same changes in methylation irrespective of the parental origin of the PWS-IC deletion. These results suggest that the PWS-IC may affect DNA methylation at these loci by directly interacting with them, or may affect methylation at these loci through indirect downstream effects due to PWS-IC deletion. They further suggest the PWS-IC may have a previously uncharacterized function outside of the imprinted AS/PWS domain.
Marino, Michael; Banerjee, Manidipa; Jonquières, Renaud; Cossart, Pascale; Ghosh, Partho
2002-01-01
InlB, a surface-localized protein of Listeria monocytogenes, induces phagocytosis in non-phagocytic mammalian cells by activating Met, a receptor tyrosine kinase. InlB also binds glycosaminoglycans and the protein gC1q-R, two additional host ligands implicated in invasion. We present the structure of InlB, revealing a highly elongated molecule with leucine-rich repeats that bind Met at one end, and GW domains that dissociably bind the bacterial surface at the other. Surprisingly, the GW domains are seen to resemble SH3 domains. Despite this, GW domains are unlikely to act as functional mimics of SH3 domains since their potential proline-binding sites are blocked or destroyed. However, we do show that the GW domains, in addition to binding glycosaminoglycans, bind gC1q-R specifically, and that this binding requires release of InlB from the bacterial surface. Dissociable attachment to the bacterial surface via the GW domains may be responsible for restricting Met activation to a small, localized area of the host cell and for coupling InlB-induced host membrane dynamics with bacterial proximity during invasion. PMID:12411480
USDA-ARS?s Scientific Manuscript database
Maternal-effect mutations in NLRP7 cause rare biparentally inherited hydatidiform moles (BiHMs), abnormal pregnancies containing hypertrophic vesicular trophoblast but no embryo. BiHM trophoblasts display abnormal DNA methylation patterns affecting maternally methylated germline differentially methy...
Cui, Wei; Hawley, R. Scott
2005-01-01
Nod is a chromokinesin-like protein that plays a critical role in segregating achiasmate chromosomes during female meiosis. The C-terminal half of the Nod protein contains two putative DNA-binding domains. The first of these domains, known as the HMGN domain, consists of three tandemly repeated high-mobility group N motifs. This domain was previously shown to be both necessary and sufficient for binding of the C-terminal half of Nod to mitotic chromosomes in embryos. The second putative DNA-binding domain, denoted HhH(2)/NDD, is a helix-hairpin-helix(2)/Nod-like DNA-binding domain. Although the HhH(2)/NDD domain is not required or sufficient for chromosome binding in embryos, several well-characterized nod mutations have been mapped in this domain. To characterize the role of the HhH(2)/NDD domain in mediating Nod function, we created a series of UAS-driven transgene constructs capable of expressing either a wild-type Nod-GFP fusion protein or proteins in which the HhH(2)/NDD domain had been altered by site-directed mutagenesis. Although wild-type Nod-GFP localizes to the oocyte chromosomes and rescues the segregation defect in nod mutant oocytes, two of three proteins carrying mutants in the HhH(2)/NDD domain fail to either rescue the nod mutant phenotype or bind to oocyte chromosomes. However, these mutant proteins do bind to the polytene chromosomes in nurse-cell nuclei and enter the oocyte nucleus. Thus, even though the HhH(2)/NDD domain is not essential for chromosome binding in other cell types, it is required for chromosome binding in the oocyte. These HhH(2)/NDD mutants also block the localization of Nod to the posterior pole of stage 9–10A oocytes, a process that is thought to facilitate the interaction of Nod with the plus ends of microtubules (Cui et al. 2005). This observation suggests that the Nod HhH2/NDD domain may play other roles in addition to binding Nod to meiotic chromosomes. PMID:16143607
Cai, Minying; Marelli, Udaya Kiran; Mertz, Blake; Beck, Johannes G; Opperer, Florian; Rechenmacher, Florian; Kessler, Horst; Hruby, Victor J
2017-08-15
Systematic N-methylated derivatives of the melanocortin receptor ligand, SHU9119, lead to multiple binding and functional selectivity toward melanocortin receptors. However, the relationship between N-methylation-induced conformational changes in the peptide backbone and side chains and melanocortin receptor selectivity is still unknown. We conducted comprehensive conformational studies in solution of two selective antagonists of the third isoform of the melanocortin receptor (hMC3R), namely, Ac-Nle-c[Asp-NMe-His 6 -d-Nal(2') 7 -NMe-Arg 8 -Trp 9 -Lys]-NH 2 (15) and Ac-Nle-c[Asp-His 6 -d-Nal(2') 7 -NMe-Arg 8 -NMe-Trp 9 -NMe-Lys]-NH 2 (17). It is known that the pharmacophore (His 6 -DNal 7 -Arg 8 -Trp 9 ) of the SHU-9119 peptides occupies a β II-turn-like region with the turn centered about DNal 7 -Arg 8 . The analogues with hMC3R selectivity showed distinct differences in the spatial arrangement of the Trp 9 side chains. In addition to our NMR studies, we also carried out molecular-level interaction studies of these two peptides at the homology model of hMC3R. Earlier chimeric human melanocortin 3 receptor studies revealed insights regarding the binding and functional sites of hMC3R selectivity. Upon docking of peptides 15 and 17 to the binding pocket of hMC3R, it was revealed that Arg 8 and Trp 9 side chains are involved in a majority of the interactions with the receptor. While Arg 8 forms polar contacts with D154 and D158 of hMC3R, Trp 9 utilizes π-π stacking interactions with F295 and F298, located on the transmembrane domain of hMC3R. It is hypothesized that as the frequency of Trp 9 -hMC3R interactions decrease, antagonistic activity increases. The absence of any interactions of the N-methyl groups with hMC3R suggests that their primary function is to modulate backbone conformations of the ligands.
Zhang, Yunyue; Wu, Simin; Qin, Yinghui; Liu, Jiaxin; Liu, Jingwen; Wang, Qingyu; Ren, Fazheng; Zhang, Hao
2018-02-01
In this study, 111 phenolic acids and their derivatives were chosen to investigate their structure-affinity relationships when binding to human serum albumin (HSA), and effects on their antioxidant activity. A comprehensive mathematical model was employed to calculate the binding constants, using a fluorescence quenching method, and this was corrected for the inner-filter effect to improve accuracy. We found that a hydroxy group at the 2-position of the benzene ring exerted a positive effect on the affinities, while a 4-hydroxy substituent had a negative influence. Both methylation of the hydroxy groups and replacing the hydroxy groups with methyl groups at the 3- and 4-positions of the benzene ring enhanced the binding affinities. Hydrophobic force and hydrogen bonding were binding forces for the phenolic acids, and their methyl esters, respectively. The antioxidant activity of the HSA-phenolic acid interaction compounds was higher than that of the phenolic acids alone. Copyright © 2017. Published by Elsevier Ltd.
Biswas-Fiss, Esther E.; Affet, Stephanie; Ha, Malissa; Biswas, Subhasis B.
2012-01-01
The retina-specific ATP binding cassette transporter, ABCA4 protein, is associated with a broad range of inherited macular degenerations, including Stargardt disease, autosomal recessive cone rod dystrophy, and fundus flavimaculatus. In order to understand its role in retinal transport in rod out segment discs, we have investigated the interactions of the soluble domains of ABCA4 with both 11-cis- and all-trans-retinal. Using fluorescence anisotropy-based binding analysis and recombinant polypeptides derived from the amino acid sequences of the four soluble domains of ABCA4, we demonstrated that the nucleotide binding domain 1 (NBD1) specifically bound 11-cis-retinal. Its affinity for all-trans-retinal was markedly reduced. Stargardt disease-associated mutations in this domain resulted in attenuation of 11-cis-retinal binding. Significant differences in 11-cis-retinal binding affinities were observed between NBD1 and other cytoplasmic and lumenal domains of ABCA4. The results suggest a possible role of ABCA4 and, in particular, the NBD1 domain in 11-cis-retinal binding. These results also correlate well with a recent report on the in vivo role of ABCA4 in 11-cis-retinal transport. PMID:23144455
DNA Methylation of Cellular Retinoic Acid-Binding Proteins in Cervical Cancer.
Arellano-Ortiz, Ana L; Salcedo-Vargas, Mauricio; Vargas-Requena, Claudia L; López-Díaz, José A; De la Mora-Covarrubias, Antonio; Silva-Espinoza, Juan C; Jiménez-Vega, Florinda
2016-01-01
This study determined the methylation status of cellular retinoic acid-binding protein ( CRABP ) gene promoters and associated them with demographic characteristics, habits, and the presence of human papilloma virus (HPV) in patients with cervical cancer (CC), low and high squamous intraepithelial lesions, and no intraepithelial lesion. Women (n = 158) were selected from the Colposcopy Clinic of Sanitary Jurisdiction II in Ciudad Juarez, Chihuahua, Mexico. Demographic characteristics and habit information were collected. Cervical biopsy and endocervical scraping were used to determine methylation in promoter regions by methylation-specific polymerase chain reaction technique. We found hemi-methylation patterns in the promoter regions of CRABP1 and CRABP2 ; there was 28.5% hemi-methylation in CRABP1 and 7.0% in that of CRABP2 . Methylation in CRABP1 was associated with age (≥35 years, P = 0.002), family history of cancer ( P = 0.032), the presence of HPV-16 ( P = 0.013), and no alcohol intake ( P = 0.035). These epigenetic changes could be involved in the CC process, and CRABP1 has the potential to be a predictive molecular marker of retinoid therapy response.
DNA Methylation of Cellular Retinoic Acid-Binding Proteins in Cervical Cancer
Arellano-Ortiz, Ana L.; Salcedo-Vargas, Mauricio; Vargas-Requena, Claudia L.; López-Díaz, José A.; De la Mora-Covarrubias, Antonio; Silva-Espinoza, Juan C.; Jiménez-Vega, Florinda
2016-01-01
This study determined the methylation status of cellular retinoic acid-binding protein (CRABP) gene promoters and associated them with demographic characteristics, habits, and the presence of human papilloma virus (HPV) in patients with cervical cancer (CC), low and high squamous intraepithelial lesions, and no intraepithelial lesion. Women (n = 158) were selected from the Colposcopy Clinic of Sanitary Jurisdiction II in Ciudad Juarez, Chihuahua, Mexico. Demographic characteristics and habit information were collected. Cervical biopsy and endocervical scraping were used to determine methylation in promoter regions by methylation-specific polymerase chain reaction technique. We found hemi-methylation patterns in the promoter regions of CRABP1 and CRABP2; there was 28.5% hemi-methylation in CRABP1 and 7.0% in that of CRABP2. Methylation in CRABP1 was associated with age (≥35 years, P = 0.002), family history of cancer (P = 0.032), the presence of HPV-16 (P = 0.013), and no alcohol intake (P = 0.035). These epigenetic changes could be involved in the CC process, and CRABP1 has the potential to be a predictive molecular marker of retinoid therapy response. PMID:27867303
Dong, Heng; Liu, Dandan; Han, Tianyu; Zhao, Yuxue; Sun, Ji; Lin, Sue; Cao, Jiashu; Chen, Zhong-Hua; Huang, Li
2015-11-24
Histone lysine methylation, controlled by the SET Domain Group (SDG) gene family, is part of the histone code that regulates chromatin function and epigenetic control of gene expression. Analyzing the SDG gene family in Brassica rapa for their gene structure, domain architecture, subcellular localization, rate of molecular evolution and gene expression pattern revealed common occurrences of subfunctionalization and neofunctionalization in BrSDGs. In comparison with Arabidopsis thaliana, the BrSDG gene family was found to be more divergent than AtSDGs, which might partly explain the rich variety of morphotypes in B. rapa. In addition, a new evolutionary pattern of the four main groups of SDGs was presented, in which the Trx group and the SUVR subgroup evolved faster than the E(z), Ash groups and the SUVH subgroup. These differences in evolutionary rate among the four main groups of SDGs are perhaps due to the complexity and variability of the regions that bind with biomacromolecules, which guide SDGs to their target loci.
Dong, Heng; Liu, Dandan; Han, Tianyu; Zhao, Yuxue; Sun, Ji; Lin, Sue; Cao, Jiashu; Chen, Zhong-Hua; Huang, Li
2015-01-01
Histone lysine methylation, controlled by the SET Domain Group (SDG) gene family, is part of the histone code that regulates chromatin function and epigenetic control of gene expression. Analyzing the SDG gene family in Brassica rapa for their gene structure, domain architecture, subcellular localization, rate of molecular evolution and gene expression pattern revealed common occurrences of subfunctionalization and neofunctionalization in BrSDGs. In comparison with Arabidopsis thaliana, the BrSDG gene family was found to be more divergent than AtSDGs, which might partly explain the rich variety of morphotypes in B. rapa. In addition, a new evolutionary pattern of the four main groups of SDGs was presented, in which the Trx group and the SUVR subgroup evolved faster than the E(z), Ash groups and the SUVH subgroup. These differences in evolutionary rate among the four main groups of SDGs are perhaps due to the complexity and variability of the regions that bind with biomacromolecules, which guide SDGs to their target loci. PMID:26596461
Mechanism of partial agonism in AMPA-type glutamate receptors
Salazar, Hector; Eibl, Clarissa; Chebli, Miriam; Plested, Andrew
2017-01-01
Neurotransmitters trigger synaptic currents by activating ligand-gated ion channel receptors. Whereas most neurotransmitters are efficacious agonists, molecules that activate receptors more weakly—partial agonists—also exist. Whether these partial agonists have weak activity because they stabilize less active forms, sustain active states for a lesser fraction of the time or both, remains an open question. Here we describe the crystal structure of an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) ligand binding domain (LBD) tetramer in complex with the partial agonist 5-fluorowillardiine (FW). We validate this structure, and others of different geometry, using engineered intersubunit bridges. We establish an inverse relation between the efficacy of an agonist and its promiscuity to drive the LBD layer into different conformations. These results suggest that partial agonists of the AMPAR are weak activators of the receptor because they stabilize multiple non-conducting conformations, indicating that agonism is a function of both the space and time domains. PMID:28211453
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishino, Tasuku; Matsunaga, Ryota; Konishi, Hiroaki, E-mail: hkonishi@pu-hiroshima.ac.jp
2015-08-21
GAREM1 (Grb2-associated regulator of Erk/MAPK1) is an adaptor protein that is involved in the epidermal growth factor (EGF) pathway. The nuclear localization of GAREM1 depends on the nuclear localization sequence (NLS), which is located at the N-terminal CABIT (cysteine-containing, all in Themis) domain. Here, we identified 14-3-3ε as a GAREM-binding protein, and its binding site is closely located to the NLS. This 14-3-3 binding site was of the atypical type and independent of GAREM phosphorylation. Moreover, the binding of 14-3-3 had an effect on the nuclear localization of GAREM1. Unexpectedly, we observed that the CABIT domain had intramolecular association withmore » the C-terminal SAM (sterile alpha motif) domain. This association might be inhibited by binding of 14-3-3 at the CABIT domain. Our results demonstrate that the mechanism underlying the nuclear localization of GAREM1 depends on its NLS in the CABIT domain, which is controlled by the binding of 14-3-3 and the C-terminal SAM domain. We suggest that the interplay between 14-3-3, SAM domain and CABIT domain might be responsible for the distribution of GAREM1 in mammalian cells. - Highlights: • 14-3-3ε regulated the nuclear localization of GAREM1 as its binding partner. • The atypical 14-3-3 binding site of GAREM1 is located near the NLS in CABIT domain. • The CABIT domain had intramolecular association with the SAM domain in GAREM1. • Subcellular localization of GAREM1 is affected with its CABIT-SAM interaction.« less
Ortega Roldan, Jose L.; Casares, Salvador; Ringkjøbing Jensen, Malene; Cárdenes, Nayra; Bravo, Jerónimo; Blackledge, Martin; Azuaga, Ana I.; van Nuland, Nico A. J.
2013-01-01
SH3 domains constitute a new type of ubiquitin-binding domains. We previously showed that the third SH3 domain (SH3-C) of CD2AP binds ubiquitin in an alternative orientation. We have determined the structure of the complex between first CD2AP SH3 domain and ubiquitin and performed a structural and mutational analysis to decipher the determinants of the SH3-C binding mode to ubiquitin. We found that the Phe-to-Tyr mutation in CD2AP and in the homologous CIN85 SH3-C domain does not abrogate ubiquitin binding, in contrast to previous hypothesis and our findings for the first two CD2AP SH3 domains. The similar alternative binding mode of the SH3-C domains of these related adaptor proteins is characterised by a higher affinity to C-terminal extended ubiquitin molecules. We conclude that CD2AP/CIN85 SH3-C domain interaction with ubiquitin constitutes a new ubiquitin-binding mode involved in a different cellular function and thus changes the previously established mechanism of EGF-dependent CD2AP/CIN85 mono-ubiquitination. PMID:24039852
Wang, Tingting; Chen, Man; Liu, Lian; Cheng, Huaiyan; Yan, You-E; Feng, Ying-Hong; Wang, Hui
2011-01-01
Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt −377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. PMID:21971485
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jiusheng; van den Bedem, Henry; Brunger, Axel T.
Calmodulin (CaM) is the primary calcium signaling protein in eukaryotes and has been extensively studied using various biophysical techniques. Prior crystal structures have noted the presence of ambiguous electron density in both hydrophobic binding pockets of Ca 2+-CaM, but no assignment of these features has been made. In addition, Ca 2+-CaM samples many conformational substates in the crystal and accurately modeling the full range of this functionally important disorder is challenging. In order to characterize these features in a minimally biased manner, a 1.0 Å resolution single-wavelength anomalous diffraction data set was measured for selenomethionine-substituted Ca 2+-CaM. Density-modified electron-density mapsmore » enabled the accurate assignment of Ca 2+-CaM main-chain and side-chain disorder. These experimental maps also substantiate complex disorder models that were automatically built using low-contour features of model-phased electron density. Furthermore, experimental electron-density maps reveal that 2-methyl-2,4-pentanediol (MPD) is present in the C-terminal domain, mediates a lattice contact between N-terminal domains and may occupy the N-terminal binding pocket. The majority of the crystal structures of target-free Ca 2+-CaM have been derived from crystals grown using MPD as a precipitant, and thus MPD is likely to be bound in functionally critical regions of Ca 2+-CaM in most of these structures. The adventitious binding of MPD helps to explain differences between the Ca 2+-CaM crystal and solution structures and is likely to favor more open conformations of the EF-hands in the crystal.« less
Moskvin, Oleg V; Gilles-Gonzalez, Marie-Alda; Gomelsky, Mark
2010-10-01
The SCHIC domain of the B12-binding domain family present in the Rhodobacter sphaeroides AppA protein binds heme and senses oxygen. Here we show that the predicted SCHIC domain PpaA/AerR regulators also bind heme and respond to oxygen in vitro, despite their low sequence identity with AppA.
Ferry, Laure; Fournier, Alexandra; Tsusaka, Takeshi; Adelmant, Guillaume; Shimazu, Tadahiro; Matano, Shohei; Kirsh, Olivier; Amouroux, Rachel; Dohmae, Naoshi; Suzuki, Takehiro; Filion, Guillaume J; Deng, Wen; de Dieuleveult, Maud; Fritsch, Lauriane; Kudithipudi, Srikanth; Jeltsch, Albert; Leonhardt, Heinrich; Hajkova, Petra; Marto, Jarrod A; Arita, Kyohei; Shinkai, Yoichi; Defossez, Pierre-Antoine
2017-08-17
DNA methylation is an essential epigenetic mark in mammals that has to be re-established after each round of DNA replication. The protein UHRF1 is essential for this process; it has been proposed that the protein targets newly replicated DNA by cooperatively binding hemi-methylated DNA and H3K9me2/3, but this model leaves a number of questions unanswered. Here, we present evidence for a direct recruitment of UHRF1 by the replication machinery via DNA ligase 1 (LIG1). A histone H3K9-like mimic within LIG1 is methylated by G9a and GLP and, compared with H3K9me2/3, more avidly binds UHRF1. Interaction with methylated LIG1 promotes the recruitment of UHRF1 to DNA replication sites and is required for DNA methylation maintenance. These results further elucidate the function of UHRF1, identify a non-histone target of G9a and GLP, and provide an example of a histone mimic that coordinates DNA replication and DNA methylation maintenance. Copyright © 2017 Elsevier Inc. All rights reserved.
Binding selectivity of vitamin K3 based chemosensors towards nickel(II) and copper(II) metal ions
NASA Astrophysics Data System (ADS)
Patil, Amit; Lande, Dipali N.; Nalkar, Archana; Gejji, Shridhar P.; Chakrovorty, Debamitra; Gonnade, Rajesh; Moniz, Tânia; Rangel, Maria; Pereira, Eulália; Salunke-Gawali, Sunita
2017-09-01
The vitamin K3 derivatives 2-methyl-3-[(pyridin-2-ylmethyl)-amino]-1,4-naphthoquinone (M-1), 2-methyl-3-[(pyridin-2-ylethyl)-amino]-1,4-naphthoquinone (M-2), 2-methyl-3-((2-(thiophen-2-yl)methyl)amino)naphthalene-1,4-dione (M-3) and 2-methyl-3-((2-(thiophen-2-yl)ethyl)amino)naphthalene-1,4-dione (M-4) have been synthesized, characterized and studied for their chemosensor abilities towards transition metal ions. Crystal structures of M-1 to M-4 revealed a variety of Nsbnd H⋯O, Csbnd H⋯O, Csbnd H⋯π and π⋯π interactions. Minor variations in such interactions by chemical stimuli such as metal ions, results in change in color that can be visualized by naked eyes. It has been shown that electronic structure and 1H NMR, vibrational as well as electronic spectra from the density functional theory agree well with the experiments. The metal ion binding in ethanol, ethanol-water and in mild base triethylamine brings forth recognizing ability of M-1 toward Ni2+ whereas M-2 exhibits large sensing ability for Cu2+ ion. Interestingly M-1 display varying metal ion binding specificity in different solvents with the association constant in ethanol being 11,786 M-1 for Ni2+ compared to 9462 M-1 for the Cu2+. A reversal in preferential binding of M-2 with the respective association constants being 4190 M-1 and 6370 M-1 is discernible.
Jun, S; Wallen, R V; Goriely, A; Kalionis, B; Desplan, C
1998-11-10
Pax proteins, characterized by the presence of a paired domain, play key regulatory roles during development. The paired domain is a bipartite DNA-binding domain that contains two helix-turn-helix domains joined by a linker region. Each of the subdomains, the PAI and RED domains, has been shown to be a distinct DNA-binding domain. The PAI domain is the most critical, but in specific circumstances, the RED domain is involved in DNA recognition. We describe a Pax protein, originally called Lune, that is the product of the Drosophila eye gone gene (eyg). It is unique among Pax proteins, because it contains only the RED domain. eyg seems to play a role both in the organogenesis of the salivary gland during embryogenesis and in the development of the eye. A high-affinity binding site for the Eyg RED domain was identified by using systematic evolution of ligands by exponential enrichment techniques. This binding site is related to a binding site previously identified for the RED domain of the Pax-6 5a isoform. Eyg also contains another DNA-binding domain, a Prd-class homeodomain (HD), whose palindromic binding site is similar to other Prd-class HDs. The ability of Pax proteins to use the PAI, RED, and HD, or combinations thereof, may be one mechanism that allows them to be used at different stages of development to regulate various developmental processes through the activation of specific target genes.
Jun, Susie; Wallen, Robert V.; Goriely, Anne; Kalionis, Bill; Desplan, Claude
1998-01-01
Pax proteins, characterized by the presence of a paired domain, play key regulatory roles during development. The paired domain is a bipartite DNA-binding domain that contains two helix–turn–helix domains joined by a linker region. Each of the subdomains, the PAI and RED domains, has been shown to be a distinct DNA-binding domain. The PAI domain is the most critical, but in specific circumstances, the RED domain is involved in DNA recognition. We describe a Pax protein, originally called Lune, that is the product of the Drosophila eye gone gene (eyg). It is unique among Pax proteins, because it contains only the RED domain. eyg seems to play a role both in the organogenesis of the salivary gland during embryogenesis and in the development of the eye. A high-affinity binding site for the Eyg RED domain was identified by using systematic evolution of ligands by exponential enrichment techniques. This binding site is related to a binding site previously identified for the RED domain of the Pax-6 5a isoform. Eyg also contains another DNA-binding domain, a Prd-class homeodomain (HD), whose palindromic binding site is similar to other Prd-class HDs. The ability of Pax proteins to use the PAI, RED, and HD, or combinations thereof, may be one mechanism that allows them to be used at different stages of development to regulate various developmental processes through the activation of specific target genes. PMID:9811867
Uptake of clostridium botulinum C3 exoenzyme into intact HT22 and J774A.1 cells.
Rohrbeck, Astrid; von Elsner, Leonie; Hagemann, Sandra; Just, Ingo
2015-02-02
The Clostridium botulinum C3 exoenzyme selectively ADP-ribosylates low molecular weight GTP-binding proteins RhoA, B and C. This covalent modification inhibits Rho signaling activity, resulting in distinct actin cytoskeleton changes. Although C3 exoenzyme has no binding, the translocation domain assures that C3 enters cells and acts intracellularly. C3 uptake is thought to occur due to the high concentration of the C3 enzyme. However, recent work indicates that C3 is selectively endocytosed, suggesting a specific endocytotic pathway, which is not yet understood. In this study, we show that the C3 exoenzyme binds to cell surfaces and is internalized in a time-dependent manner. We show that the intermediate filament, vimentin, is involved in C3 uptake, as indicated by the inhibition of C3 internalization by acrylamide, a known vimentin disruption agent. Inhibition of C3 internalization was not observed by chemical inhibitors, like bafilomycin A, methyl-β-cyclodextrin, nocodazole or latrunculin B. Furthermore, the internalization of C3 exoenzyme was markedly inhibited in dynasore-treated HT22 cells. Our results indicate that C3 internalization depends on vimentin and does not depend strictly on both clathrin and caveolae.
Expanding RNA binding specificity and affinity of engineered PUF domains.
Zhao, Yang-Yang; Mao, Miao-Wei; Zhang, Wen-Jing; Wang, Jue; Li, Hai-Tao; Yang, Yi; Wang, Zefeng; Wu, Jia-Wei
2018-05-18
Specific manipulation of RNA is necessary for the research in biotechnology and medicine. The RNA-binding domains of Pumilio/fem-3 mRNA binding factors (PUF domains) are programmable RNA binding scaffolds used to engineer artificial proteins that specifically modulate RNAs. However, the native PUF domains generally recognize 8-nt RNAs, limiting their applications. Here, we modify the PUF domain of human Pumilio1 to engineer PUFs that recognize RNA targets of different length. The engineered PUFs bind to their RNA targets specifically and PUFs with more repeats have higher binding affinity than the canonical eight-repeat domains; however, the binding affinity reaches the peak at those with 9 and 10 repeats. Structural analysis on PUF with nine repeats reveals a higher degree of curvature, and the RNA binding unexpectedly and dramatically opens the curved structure. Investigation of the residues positioned in between two RNA bases demonstrates that tyrosine and arginine have favored stacking interactions. Further tests on the availability of the engineered PUFs in vitro and in splicing function assays indicate that our engineered PUFs bind RNA targets with high affinity in a programmable way.
Expanding RNA binding specificity and affinity of engineered PUF domains
Zhao, Yang-Yang; Zhang, Wen-Jing; Wang, Jue; Li, Hai-Tao; Yang, Yi; Wang, Zefeng; Wu, Jia-Wei
2018-01-01
Abstract Specific manipulation of RNA is necessary for the research in biotechnology and medicine. The RNA-binding domains of Pumilio/fem-3 mRNA binding factors (PUF domains) are programmable RNA binding scaffolds used to engineer artificial proteins that specifically modulate RNAs. However, the native PUF domains generally recognize 8-nt RNAs, limiting their applications. Here, we modify the PUF domain of human Pumilio1 to engineer PUFs that recognize RNA targets of different length. The engineered PUFs bind to their RNA targets specifically and PUFs with more repeats have higher binding affinity than the canonical eight-repeat domains; however, the binding affinity reaches the peak at those with 9 and 10 repeats. Structural analysis on PUF with nine repeats reveals a higher degree of curvature, and the RNA binding unexpectedly and dramatically opens the curved structure. Investigation of the residues positioned in between two RNA bases demonstrates that tyrosine and arginine have favored stacking interactions. Further tests on the availability of the engineered PUFs in vitro and in splicing function assays indicate that our engineered PUFs bind RNA targets with high affinity in a programmable way. PMID:29490074
Pan, Di; Song, Yuhua
2010-01-01
Abstract N-glycosylation of the I-like domain of β1 integrin plays an essential role in integrin structure and function, and the altered sialylation of β1 integrin regulates β1 integrin binding to fibronectin. However, the structural basis underlying the effect of altered sialylation of the β1 I-like domain on β1 integrin binding to fibronectin remains largely unknown. In this study, we used a combination of molecular dynamics simulations and binding free energy analyses to investigate changes in binding thermodynamics and in conformation of the glycosylated β1 I-like domain-FN-III9-10 complex caused by altered sialylation of the β1 I-like domain. Binding free energy analyses showed that desialylation of β1 I-like domain increased β1 integrin binding to fibronectin, consistent with experimental results. Interaction analyses showed that altered sialylation of the β1 I-like domain resulted in significant changes in the interaction of the N-glycans of the I-like domain with both the I-like domain and fibronectin, and these changes could directly affect the allosteric regulation of the interaction between the I-like domain and fibronectin. Altered sialylation of the β1 I-like domain caused significant conformational changes in key functional sites of both the β1 I-like domain and fibronectin. In addition, altered sialylation of the β1 I-like domain resulted in changes in the degree of correlated motions between residues in the I-like domain and residues in fibronectin, and in the degree of motion changes in fibronectin, which could affect β1 integrin binding to fibronectin. We believe results from this study provide thermodynamic and structural evidence for a role of altered sialylation of β1 integrin in regulating β1 integrin binding to fibronectin and it's induced cellular activities. PMID:20655849
Slaughter, Brian D.; Bieber Urbauer, Ramona J.; Urbauer, Jeffrey L.; Johnson, Carey K.
2008-01-01
Calmodulin (CaM) binds to a domain near the C-terminus of the plasma-membrane Ca2+-ATPase (PMCA), causing the release of this domain and relief of its autoinhibitory function. We investigated the kinetics of dissociation and binding of Ca2+-CaM with a 28-residue peptide (C28W(1b)) corresponding to the CaM binding domain of isoform 1b of PMCA. CaM was labeled with a fluorescent probe on either the N-terminal domain at residue 34 or on the C-terminal domain at residue 110. Formation of complexes of CaM with C28W(1b) results in a decrease in the fluorescence yield of the fluorophore, allowing the kinetics of dissociation or binding to be detected. Using a maximum entropy method, we determined the minimum number and magnitudes of rate constants required to fit the data. Comparison of the fluorescence changes for CaM labeled on the C-terminal or N-terminal domain suggests sequential and ordered binding of the C-terminal and N-terminal domains of CaM with C28W(1b). For dissociation of C28W(1b) from CaM labeled on the N-terminal domain, we observed three time constants, indicating the presence of two intermediate states in the dissociation pathway. However, for CaM labeled on the C-terminal domain, we observed only two time constants, suggesting that the fluorescence label on the C-terminal domain was not sensitive to one of the kinetic steps. The results were modeled by a kinetic mechanism where an initial complex forms upon binding of the C-terminal domain of CaM to C28W(1b), followed by binding of the N-terminal domain, and then formation of a tight binding complex. Oxidation of methionine residues in CaM resulted in significant perturbations to the binding kinetics. The rate of formation of a tight binding complex was reduced, consistent with the lower effectiveness of oxidized CaM in activating the Ca2+ pump. PMID:17343368
Electronic transport in methylated fragments of DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.
2015-11-16
We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.
Electronic transport in methylated fragments of DNA
NASA Astrophysics Data System (ADS)
de Almeida, M. L.; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L.; Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; de Moura, F. A. B. F.; Lyra, M. L.
2015-11-01
We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.
Chen, Hsing-Yu; Hsieh, En-Jung; Cheng, Mei-Chun; Chen, Chien-Yu; Hwang, Shih-Ying; Lin, Tsan-Piao
2016-07-01
ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) of Arabidopsis thaliana is an AP2/ERF domain transcription factor that regulates jasmonate (JA) biosynthesis and is induced by methyl JA treatment. The regulatory mechanism of ORA47 remains unclear. ORA47 is shown to bind to the cis-element (NC/GT)CGNCCA, which is referred to as the O-box, in the promoter of ABI2. We proposed that ORA47 acts as a connection between ABA INSENSITIVE1 (ABI1) and ABI2 and mediates an ABI1-ORA47-ABI2 positive feedback loop. PORA47:ORA47-GFP transgenic plants were used in a chromatin immunoprecipitation (ChIP) assay to show that ORA47 participates in the biosynthesis and/or signaling pathways of nine phytohormones. Specifically, many abscisic acid (ABA) and JA biosynthesis and signaling genes were direct targets of ORA47 under stress conditions. The JA content of the P35S:ORA47-GR lines was highly induced under wounding and moderately induced under water stress relative to that of the wild-type plants. The wounding treatment moderately increased ABA accumulation in the transgenic lines, whereas the water stress treatment repressed the ABA content. ORA47 is proposed to play a role in the biosynthesis of JA and ABA and in regulating the biosynthesis and/or signaling of a suite of phytohormone genes when plants are subjected to wounding and water stress. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Kadamur, Ganesh; Ross, Elliott M
2016-05-20
Mammalian phospholipase C-β (PLC-β) isoforms are stimulated by heterotrimeric G protein subunits and members of the Rho GTPase family of small G proteins. Although recent structural studies showed how Gαq and Rac1 bind PLC-β, there is a lack of consensus regarding the Gβγ binding site in PLC-β. Using FRET between cerulean fluorescent protein-labeled Gβγ and the Alexa Fluor 594-labeled PLC-β pleckstrin homology (PH) domain, we demonstrate that the PH domain is the minimal Gβγ binding region in PLC-β3. We show that the isolated PH domain can compete with full-length PLC-β3 for binding Gβγ but not Gαq, Using sequence conservation, structural analyses, and mutagenesis, we identify a hydrophobic face of the PLC-β PH domain as the Gβγ binding interface. This PH domain surface is not solvent-exposed in crystal structures of PLC-β, necessitating conformational rearrangement to allow Gβγ binding. Blocking PH domain motion in PLC-β by cross-linking it to the EF hand domain inhibits stimulation by Gβγ without altering basal activity or Gαq response. The fraction of PLC-β cross-linked is proportional to the fractional loss of Gβγ response. Cross-linked PLC-β does not bind Gβγ in a FRET-based Gβγ-PLC-β binding assay. We propose that unliganded PLC-β exists in equilibrium between a closed conformation observed in crystal structures and an open conformation where the PH domain moves away from the EF hands. Therefore, intrinsic movement of the PH domain in PLC-β modulates Gβγ access to its binding site. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Kadamur, Ganesh
2016-01-01
Mammalian phospholipase C-β (PLC-β) isoforms are stimulated by heterotrimeric G protein subunits and members of the Rho GTPase family of small G proteins. Although recent structural studies showed how Gαq and Rac1 bind PLC-β, there is a lack of consensus regarding the Gβγ binding site in PLC-β. Using FRET between cerulean fluorescent protein-labeled Gβγ and the Alexa Fluor 594-labeled PLC-β pleckstrin homology (PH) domain, we demonstrate that the PH domain is the minimal Gβγ binding region in PLC-β3. We show that the isolated PH domain can compete with full-length PLC-β3 for binding Gβγ but not Gαq, Using sequence conservation, structural analyses, and mutagenesis, we identify a hydrophobic face of the PLC-β PH domain as the Gβγ binding interface. This PH domain surface is not solvent-exposed in crystal structures of PLC-β, necessitating conformational rearrangement to allow Gβγ binding. Blocking PH domain motion in PLC-β by cross-linking it to the EF hand domain inhibits stimulation by Gβγ without altering basal activity or Gαq response. The fraction of PLC-β cross-linked is proportional to the fractional loss of Gβγ response. Cross-linked PLC-β does not bind Gβγ in a FRET-based Gβγ-PLC-β binding assay. We propose that unliganded PLC-β exists in equilibrium between a closed conformation observed in crystal structures and an open conformation where the PH domain moves away from the EF hands. Therefore, intrinsic movement of the PH domain in PLC-β modulates Gβγ access to its binding site. PMID:27002154
Jiang, Yuanyuan; Liu, Lanxin; Shan, Wenqi; Yang, Zeng-Quan
2016-02-01
Tudor domain-containing proteins (TDRDs), which recognize and bind to methyl-lysine/arginine residues on histones and non-histone proteins, play critical roles in regulating chromatin architecture, transcription, genomic stability, and RNA metabolism. Dysregulation of several TDRDs have been observed in various types of cancer. However, neither the genomic landscape nor clinical significance of TDRDs in breast cancer has been explored comprehensively. Here, we performed an integrated genomic and transcriptomic analysis of 41 TDRD genes in breast cancer (TCGA and METABRIC datasets) and identified associations among recurrent copy number alterations, gene expressions, clinicopathological features, and survival of patients. Among seven TDRDs that had the highest frequency (>10%) of gene amplification, the plant homeodomain finger protein 20-like 1 (PHF20L1) was the most commonly amplified (17.62%) TDRD gene in TCGA breast cancers. Different subtypes of breast cancer had different patterns of copy number and expression for each TDRD. Notably, amplification and overexpression of PHF20L1 were more prevalent in aggressive basal-like and Luminal B subtypes and were significantly associated with shorter survival of breast cancer patients. Furthermore, knockdown of PHF20L1 inhibited cell proliferation in PHF20L1-amplified breast cancer cell lines. PHF20L1 protein contains N-terminal Tudor and C-terminal plant homeodomain domains. Detailed characterization of PHF20L1 in breast cancer revealed that the Tudor domain likely plays a critical role in promoting cancer. Mechanistically, PHF20L1 might participate in regulating DNA methylation by stabilizing DNA methyltransferase 1 (DNMT1) protein in breast cancer. Thus, our results demonstrated the oncogenic potential of PHF20L1 and its association with poor prognostic parameters in breast cancer. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Stage 4S neuroblastoma tumors show a characteristic DNA methylation portrait
Decock, Anneleen; Ongenaert, Maté; De Wilde, Bram; Brichard, Bénédicte; Noguera, Rosa; Speleman, Frank; Vandesompele, Jo
2016-01-01
ABSTRACT Stage 4S neuroblastoma (NB) is a special type of NB found in infants with metastases at diagnosis and is associated with an excellent outcome due to its remarkable capacity to undergo spontaneous regression. As genomics have not been able to explain this intriguing clinical presentation, we here aimed at profiling the DNA methylome of stage 4S NB to better understand this phenomenon. To this purpose, differential methylation analyses between International Neuroblastoma Staging System (INSS) stage 4S, stage 4 and stage 1/2 were performed, using methyl-CpG-binding domain (MBD) sequencing data of 14 stage 4S, 14 stage 4, and 13 stage 1/2 primary NB tumors (all MYCN non-amplified in order not to confound results). Stage 4S-specific hyper- and hypomethylated promoters were determined and further characterized for genomic localization and function by cytogenetic band enrichment, gene set enrichment, transcription factor target enrichment and differential RNA expression analyses. We show that specific chromosomal locations are enriched for stage 4S differentially methylated promoters and that stage 4S tumors show characteristic hypermethylation of specific subtelomeric promoters. Furthermore, genes involved in important oncogenic pathways, in neural crest development and differentiation, and in epigenetic processes are differentially methylated and expressed in stage 4S tumors. Based on these findings, we describe new biological mechanisms possibly contributing to the stage 4S-specific tumor biology and spontaneous regression. In conclusion, this study is the first to describe the highly characteristic stage 4S DNA methylome. These findings will open new avenues to further unravel the NB pathology in general and stage 4S disease specifically. PMID:27599161
Quantitation of the calcium and membrane binding properties of the C2 domains of dysferlin.
Abdullah, Nazish; Padmanarayana, Murugesh; Marty, Naomi J; Johnson, Colin P
2014-01-21
Dysferlin is a large membrane protein involved in calcium-triggered resealing of the sarcolemma after injury. Although it is generally accepted that dysferlin is Ca(2+) sensitive, the Ca(2+) binding properties of dysferlin have not been characterized. In this study, we report an analysis of the Ca(2+) and membrane binding properties of all seven C2 domains of dysferlin as well as a multi-C2 domain construct. Isothermal titration calorimetry measurements indicate that all seven dysferlin C2 domains interact with Ca(2+) with a wide range of binding affinities. The C2A and C2C domains were determined to be the most sensitive, with Kd values in the tens of micromolar, whereas the C2D domain was least sensitive, with a near millimolar Kd value. Mutagenesis of C2A demonstrates the requirement for negatively charged residues in the loop regions for divalent ion binding. Furthermore, dysferlin displayed significantly lower binding affinity for the divalent cations magnesium and strontium. Measurement of a multidomain construct indicates that the solution binding affinity does not change when C2 domains are linked. Finally, sedimentation assays suggest all seven C2 domains bind lipid membranes, and that Ca(2+) enhances but is not required for interaction. This report reveals for the first time, to our knowledge, that all dysferlin domains bind Ca(2+) albeit with varying affinity and stoichiometry. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S Menon; S Wang
The PhoP protein from Mycobacterium tuberculosis is a response regulator of the OmpR/PhoB subfamily, whose structure consists of an N-terminal receiver domain and a C-terminal DNA-binding domain. How the DNA-binding activities are regulated by phosphorylation of the receiver domain remains unclear due to a lack of structural information on the full-length proteins. Here we report the crystal structure of the full-length PhoP of M. tuberculosis. Unlike other known structures of full-length proteins of the same subfamily, PhoP forms a dimer through its receiver domain with the dimer interface involving {alpha}4-{beta}5-{alpha}5, a common interface for activated receiver domain dimers. However, themore » switch residues, Thr99 and Tyr118, are in a conformation resembling those of nonactivated receiver domains. The Tyr118 side chain is involved in the dimer interface interactions. The receiver domain is tethered to the DNA-binding domain through a flexible linker and does not impose structural constraints on the DNA-binding domain. This structure suggests that phosphorylation likely facilitates/stabilizes receiver domain dimerization, bringing the DNA-binding domains to close proximity, thereby increasing their binding affinity for direct repeat DNA sequences.« less
Nieuwenhuizen, Niels J.; Chen, Xiuyin; Wang, Mindy Y.; Matich, Adam J.; Perez, Ramon Lopez; Allan, Andrew C.; Green, Sol A.; Atkinson, Ross G.
2015-01-01
Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-d-erythritol 4-phosphate pathway enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-d-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits. PMID:25649633
Nieuwenhuizen, Niels J; Chen, Xiuyin; Wang, Mindy Y; Matich, Adam J; Perez, Ramon Lopez; Allan, Andrew C; Green, Sol A; Atkinson, Ross G
2015-04-01
Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-D-erythritol 4-phosphate pathway enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-D-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits. © 2015 American Society of Plant Biologists. All Rights Reserved.
Tissue Specific and Hormonal Regulation of Gene Expression
1997-08-01
interference assays were performed. These assays identify DNA bases that, when modified, interfere with the binding of the nuclear factor to the hCRH promoter...thymidine residues. The DNA bases that when modified affected the binding of the protein are noted with arrows, and their location in the hCRH...indicated. B. Methylation interference. The fragments were partially methylated using dimethyl sulfate. The DNA bases that when modified affected the
Siaud, Nicolas; Lam, Isabel; Christ, Nicole; Schlacher, Katharina; Xia, Bing; Jasin, Maria
2011-01-01
The breast cancer suppressor BRCA2 is essential for the maintenance of genomic integrity in mammalian cells through its role in DNA repair by homologous recombination (HR). Human BRCA2 is 3,418 amino acids and is comprised of multiple domains that interact with the RAD51 recombinase and other proteins as well as with DNA. To gain insight into the cellular function of BRCA2 in HR, we created fusions consisting of various BRCA2 domains and also introduced mutations into these domains to disrupt specific protein and DNA interactions. We find that a BRCA2 fusion peptide deleted for the DNA binding domain and active in HR is completely dependent on interaction with the PALB2 tumor suppressor for activity. Conversely, a BRCA2 fusion peptide deleted for the PALB2 binding domain is dependent on an intact DNA binding domain, providing a role for this conserved domain in vivo; mutagenesis suggests that both single-stranded and double-stranded DNA binding activities in the DNA binding domain are required for its activity. Given that PALB2 itself binds DNA, these results suggest alternative mechanisms to deliver RAD51 to DNA. In addition, the BRCA2 C terminus contains both RAD51-dependent and -independent activities which are essential to HR in some contexts. Finally, binding the small peptide DSS1 is essential for activity when its binding domain is present, but not when it is absent. Our results reveal functional redundancy within the BRCA2 protein and emphasize the plasticity of this large protein built for optimal HR function in mammalian cells. The occurrence of disease-causing mutations throughout BRCA2 suggests sub-optimal HR from a variety of domain modulations. PMID:22194698
Hatt, Lotte; Aagaard, Mads M; Bach, Cathrine; Graakjaer, Jesper; Sommer, Steffen; Agerholm, Inge E; Kølvraa, Steen; Bojesen, Anders
2016-01-01
Methylation-based non-invasive prenatal testing of fetal aneuploidies is an alternative method that could possibly improve fetal aneuploidy diagnosis, especially for trisomy 13(T13) and trisomy 18(T18). Our aim was to study the methylation landscape in placenta DNA from trisomy 13, 18 and 21 pregnancies in an attempt to find trisomy-specific methylation differences better suited for non-invasive prenatal diagnosis. We have conducted high-resolution methylation specific bead chip microarray analyses assessing more than 450,000 CpGs analyzing placentas from 12 T21 pregnancies, 12 T18 pregnancies and 6 T13 pregnancies. We have compared the methylation landscape of the trisomic placentas to the methylation landscape from normal placental DNA and to maternal blood cell DNA. Comparing trisomic placentas to normal placentas we identified 217 and 219 differentially methylated CpGs for CVS T18 and CVS T13, respectively (delta β>0.2, FDR<0.05), but only three differentially methylated CpGs for T21. However, the methylation differences was only modest (delta β<0.4), making them less suitable as diagnostic markers. Gene ontology enrichment analysis revealed that the gene set connected to theT18 differentially methylated CpGs was highly enriched for GO terms related to"DNA binding" and "transcription factor binding" coupled to the RNA polymerase II transcription. In the gene set connected to the T13 differentially methylated CpGs we found no significant enrichments.
Suginta, Wipa; Sirimontree, Paknisa; Sritho, Natchanok; Ohnuma, Takayuki; Fukamizo, Tamo
2016-12-01
Vibrio harveyi chitinase A (VhChiA) is a GH-18 glycosyl hydrolase with a structure containing three distinct domains: i) the N-terminal chitin-binding domain; ii) the (α/β) 8 TIM barrel catalytic domain; and iii) the α+β insertion domain. In this study, we cloned the gene fragment encoding the chitin-binding domain of VhChiA, termed ChBD Vh ChiA . The recombinant ChBD Vh ChiA was heterologously expressed in E. coli BL21 strain Tuner(DE3)pLacI host cells, and purified to homogeneity. CD measurements suggested that ChBD Vh ChiA contained β-sheets as major structural components and fluorescence spectroscopy showed that the protein domain was folded correctly, and suitable for functional characterization. Chitin binding assays showed that ChBD Vh ChiA bound to both α- and β-chitins, with the greatest affinity for β-colloidal chitin, but barely bound to polymeric chitosan. These results identified the tandem N-acetamido functionality on chitin chains as the specific sites of enzyme-substrate interactions. The binding affinity of the isolated domain was significantly lower than that of intact VhChiA, suggesting that the catalytic domain works synergistically with the chitin-binding domain to guide the polymeric substrate into the substrate binding cleft. These data confirm the physiological role of the chitin-binding domain of the marine bacterial GH-18 chitinase A in chitin-chitinase interactions. Copyright © 2016 Elsevier B.V. All rights reserved.
Aggarwal, Pooja; Das Gupta, Mainak; Joseph, Agnel Praveen; Chatterjee, Nirmalya; Srinivasan, N.; Nath, Utpal
2010-01-01
The TCP transcription factors control multiple developmental traits in diverse plant species. Members of this family share an ∼60-residue-long TCP domain that binds to DNA. The TCP domain is predicted to form a basic helix-loop-helix (bHLH) structure but shares little sequence similarity with canonical bHLH domain. This classifies the TCP domain as a novel class of DNA binding domain specific to the plant kingdom. Little is known about how the TCP domain interacts with its target DNA. We report biochemical characterization and DNA binding properties of a TCP member in Arabidopsis thaliana, TCP4. We have shown that the 58-residue domain of TCP4 is essential and sufficient for binding to DNA and possesses DNA binding parameters comparable to canonical bHLH proteins. Using a yeast-based random mutagenesis screen and site-directed mutants, we identified the residues important for DNA binding and dimer formation. Mutants defective in binding and dimerization failed to rescue the phenotype of an Arabidopsis line lacking the endogenous TCP4 activity. By combining structure prediction, functional characterization of the mutants, and molecular modeling, we suggest a possible DNA binding mechanism for this class of transcription factors. PMID:20363772
Structural basis of redox-dependent substrate binding of protein disulfide isomerase
Yagi-Utsumi, Maho; Satoh, Tadashi; Kato, Koichi
2015-01-01
Protein disulfide isomerase (PDI) is a multidomain enzyme, operating as an essential folding catalyst, in which the b′ and a′ domains provide substrate binding sites and undergo an open–closed domain rearrangement depending on the redox states of the a′ domain. Despite the long research history of this enzyme, three-dimensional structural data remain unavailable for its ligand-binding mode. Here we characterize PDI substrate recognition using α-synuclein (αSN) as the model ligand. Our nuclear magnetic resonance (NMR) data revealed that the substrate-binding domains of PDI captured the αSN segment Val37–Val40 only in the oxidized form. Furthermore, we determined the crystal structure of an oxidized form of the b′–a′ domains in complex with an undecapeptide corresponding to this segment. The peptide-binding mode observed in the crystal structure with NMR validation, was characterized by hydrophobic interactions on the b′ domain in an open conformation. Comparison with the previously reported crystal structure indicates that the a′ domain partially masks the binding surface of the b′ domain, causing steric hindrance against the peptide in the reduced form of the b′–a′ domains that exhibits a closed conformation. These findings provide a structural basis for the mechanism underlying the redox-dependent substrate binding of PDI. PMID:26350503
McDowell-Sargent, Maria; Uppal, Timsy; Purushothaman, Pravinkumar
2017-01-01
Kaposi’s sarcoma associated herpesvirus (KSHV) persists in a highly-ordered chromatin structure inside latently infected cells with the majority of the viral genome having repressive marks. However, upon reactivation the viral chromatin landscape changes into ‘open’ chromatin through the involvement of lysine demethylases and methyltransferases. Besides methylation of lysine residues of histone H3, arginine methylation of histone H4 plays an important role in controlling the compactness of the chromatin. Symmetric methylation of histone H4 at arginine 3 (H4R3me2s) negatively affects the methylation of histone H3 at lysine 4 (H3K4me3), an active epigenetic mark deposited on the viral chromatin during reactivation. We identified a novel binding partner to KSHV viral DNA processivity factor, ORF59-a protein arginine methyl transferase 5 (PRMT5). PRMT5 is an arginine methyltransferase that dimethylates arginine 3 (R3) of histone H4 in a symmetric manner, one hallmark of condensed chromatin. Our ChIP-seq data of symmetrically methylated H4 arginine 3 showed a significant decrease in H4R3me2s on the viral genome of reactivated cells as compared to the latent cells. Reduction in arginine methylation correlated with the binding of ORF59 on the viral chromatin and disruption of PRMT5 from its adapter protein, COPR5 (cooperator of PRMT5). Binding of PRMT5 through COPR5 is important for symmetric methylation of H4R3 and the expression of ORF59 competitively reduces the association of PRMT5 with COPR5, leading to a reduction in PRMT5 mediated arginine methylation. This ultimately resulted in a reduced level of symmetrically methylated H4R3 and increased levels of H3K4me3 marks, contributing to the formation of an open chromatin for transcription and DNA replication. Depletion of PRMT5 levels led to a decrease in symmetric methylation and increase in viral gene transcription confirming the role of PRMT5 in viral reactivation. In conclusion, ORF59 modulates histone-modifying enzymes to alter the chromatin structure during lytic reactivation. PMID:28678843
Strahan, Roxanne C; McDowell-Sargent, Maria; Uppal, Timsy; Purushothaman, Pravinkumar; Verma, Subhash C
2017-07-01
Kaposi's sarcoma associated herpesvirus (KSHV) persists in a highly-ordered chromatin structure inside latently infected cells with the majority of the viral genome having repressive marks. However, upon reactivation the viral chromatin landscape changes into 'open' chromatin through the involvement of lysine demethylases and methyltransferases. Besides methylation of lysine residues of histone H3, arginine methylation of histone H4 plays an important role in controlling the compactness of the chromatin. Symmetric methylation of histone H4 at arginine 3 (H4R3me2s) negatively affects the methylation of histone H3 at lysine 4 (H3K4me3), an active epigenetic mark deposited on the viral chromatin during reactivation. We identified a novel binding partner to KSHV viral DNA processivity factor, ORF59-a protein arginine methyl transferase 5 (PRMT5). PRMT5 is an arginine methyltransferase that dimethylates arginine 3 (R3) of histone H4 in a symmetric manner, one hallmark of condensed chromatin. Our ChIP-seq data of symmetrically methylated H4 arginine 3 showed a significant decrease in H4R3me2s on the viral genome of reactivated cells as compared to the latent cells. Reduction in arginine methylation correlated with the binding of ORF59 on the viral chromatin and disruption of PRMT5 from its adapter protein, COPR5 (cooperator of PRMT5). Binding of PRMT5 through COPR5 is important for symmetric methylation of H4R3 and the expression of ORF59 competitively reduces the association of PRMT5 with COPR5, leading to a reduction in PRMT5 mediated arginine methylation. This ultimately resulted in a reduced level of symmetrically methylated H4R3 and increased levels of H3K4me3 marks, contributing to the formation of an open chromatin for transcription and DNA replication. Depletion of PRMT5 levels led to a decrease in symmetric methylation and increase in viral gene transcription confirming the role of PRMT5 in viral reactivation. In conclusion, ORF59 modulates histone-modifying enzymes to alter the chromatin structure during lytic reactivation.
Gunawardana, Dilantha
2016-01-01
Diverse cellular activities are mediated through the interaction of protein domains and their binding partners. One such protein domain widely distributed in the higher metazoan world is the PDZ domain, which facilitates abundant protein-protein interactions. The PDZ domain-PDZ binding domain interaction has been implicated in several pathologies including Alzheimer's disease, Parkinson's disease and Down syndrome. PDZ domains bind to C-terminal peptides/proteins which have either of the following combinations: S/T-X-hydrophobic-COOH for type I, hydrophobic-Xhydrophobic- COOH for type II, and D/E-X-hydrophobic-COOH for type III, although hydrophobicity in the termini form the key characteristic of the PDZ-binding domains. We identified and characterized a Dcp2 type mRNA decapping enzyme from Arabidopsis thaliana, a protein containing a putative PDZ-binding domain using mutagenesis and protein biochemistry. Now we are using bioinformatics to study the Cterminal end of mRNA decapping enzymes from complex metazoans with the aim of (1) identifying putative PDZ-binding domains (2) Correlating structural disorder with PDZ binding domains and (3) Demonstrating the presence of phosphorylation sites in C-terminal extremities of Dcp2 type mRNA decapping enzymes. It is proposed here that the trinity of PDZbinding domains, structural disorder and phosphorylation-susceptible sites are a feature of the Dcp2 family of decapping enzymes and perhaps is a wider trick in protein evolution where scaffolding/tethering is a requirement for localization and function. It is critical though laboratory-based supporting evidence is sought to back-up this bioinformatics exploration into tail regions of mRNA decapping enzymes.
Zhou, Jia; Sears, Renee L; Xing, Xiaoyun; Zhang, Bo; Li, Daofeng; Rockweiler, Nicole B; Jang, Hyo Sik; Choudhary, Mayank N K; Lee, Hyung Joo; Lowdon, Rebecca F; Arand, Jason; Tabers, Brianne; Gu, C Charles; Cicero, Theodore J; Wang, Ting
2017-09-12
Uncovering mechanisms of epigenome evolution is an essential step towards understanding the evolution of different cellular phenotypes. While studies have confirmed DNA methylation as a conserved epigenetic mechanism in mammalian development, little is known about the conservation of tissue-specific genome-wide DNA methylation patterns. Using a comparative epigenomics approach, we identified and compared the tissue-specific DNA methylation patterns of rat against those of mouse and human across three shared tissue types. We confirmed that tissue-specific differentially methylated regions are strongly associated with tissue-specific regulatory elements. Comparisons between species revealed that at a minimum 11-37% of tissue-specific DNA methylation patterns are conserved, a phenomenon that we define as epigenetic conservation. Conserved DNA methylation is accompanied by conservation of other epigenetic marks including histone modifications. Although a significant amount of locus-specific methylation is epigenetically conserved, the majority of tissue-specific DNA methylation is not conserved across the species and tissue types that we investigated. Examination of the genetic underpinning of epigenetic conservation suggests that primary sequence conservation is a driving force behind epigenetic conservation. In contrast, evolutionary dynamics of tissue-specific DNA methylation are best explained by the maintenance or turnover of binding sites for important transcription factors. Our study extends the limited literature of comparative epigenomics and suggests a new paradigm for epigenetic conservation without genetic conservation through analysis of transcription factor binding sites.
Pousada, Guillermo; Baloira, Adolfo; Valverde, Diana
2016-06-01
Pulmonary arterial hypertension is characterizated by obstruction of the pulmonary arteries. The gene mainly related to pathology is the bone morphogenetic protein receptor type II (BMPR2). The aim of this study was to analyze the methylation pattern of the BMPR2 promoter region in patients and controls. We used Methyl Primer Express(®) v.1.0 and MatInspector softwares to analyze this region. Genomic DNA obtained from the peripheral blood of patients and controls was modified with sodium bisulphite. Methylation was analyzed using methylation-specific PCR. DNA treated with CpG methyltransferase was used as a positive control for methylation and H1299 cell culture DNA was used as positive control for gene expression. We identified a CpG island, which may have been methylated, in the BMPR2 promoter region, in addition to NIT-2 (global-acting regulatory protein), sex-determining region Y) and heat shock factor transcription factor binding sites. We found no evidence of methylation in patients and controls. No methylated CpG sites were identified in H1299 cells expressing the BMPR2 gene. The BMPR2 promoter region is the most suitable for study because of the high number of transcription factor binding sites that could alter gene function. No evidence of methylation was detected in this region in patients and controls. Copyright © 2015 SEPAR. Published by Elsevier Espana. All rights reserved.
Zheng, Zhaoqing; Ambigapathy, Ganesh; Keifer, Joyce
2017-01-01
MECP2 mutations underlying Rett syndrome cause widespread misregulation of gene expression. Functions for MeCP2 other than transcriptional are not well understood. In an ex vivo brain preparation from the pond turtle Trachemys scripta elegans, an intraexonic splicing event in the brain-derived neurotrophic factor (BDNF) gene generates a truncated mRNA transcript in naïve brain that is suppressed upon classical conditioning. MeCP2 and its partners, splicing factor Y-box binding protein 1 (YB-1) and methylcytosine dioxygenase 1 (Tet1), bind to BDNF chromatin in naïve but dissociate during conditioning; the dissociation correlating with decreased DNA methylation. Surprisingly, conditioning results in new occupancy of BDNF chromatin by DNA insulator protein CCCTC-binding factor (CTCF), which is associated with suppression of splicing in conditioning. Knockdown of MeCP2 shows it is instrumental for splicing and inhibits Tet1 and CTCF binding thereby negatively impacting DNA methylation and conditioning-dependent splicing regulation. Thus, mutations in MECP2 can have secondary effects on DNA methylation and alternative splicing. DOI: http://dx.doi.org/10.7554/eLife.25384.001 PMID:28594324
Solution structure of telomere binding domain of AtTRB2 derived from Arabidopsis thaliana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Ji-Hye; Lee, Won Kyung; Kim, Heeyoun
Highlights: • We have determined solution structure of Myb domain of AtTRB2. • The Myb domain of AtTRB2 is located in the N-terminal region. • The Myb domain of AtTRB2 binds to plant telomeric DNA without fourth helix. • Helix 2 and 3 of the Myb domain of AtTRB2 are involved in DNA recognition. • AtTRB2 is a novel protein distinguished from other known plant TBP. - Abstract: Telomere homeostasis is regulated by telomere-associated proteins, and the Myb domain is well conserved for telomere binding. AtTRB2 is a member of the SMH (Single-Myb-Histone)-like family in Arabidopsis thaliana, having an N-terminalmore » Myb domain, which is responsible for DNA binding. The Myb domain of AtTRB2 contains three α-helices and loops for DNA binding, which is unusual given that other plant telomere-binding proteins have an additional fourth helix that is essential for DNA binding. To understand the structural role for telomeric DNA binding of AtTRB2, we determined the solution structure of the Myb domain of AtTRB2 (AtTRB2{sub 1–64}) using nuclear magnetic resonance (NMR) spectroscopy. In addition, the inter-molecular interaction between AtTRB2{sub 1–64} and telomeric DNA has been characterized by the electrophoretic mobility shift assay (EMSA) and NMR titration analyses for both plant (TTTAGGG)n and human (TTAGGG)n telomere sequences. Data revealed that Trp28, Arg29, and Val47 residues located in Helix 2 and Helix 3 are crucial for DNA binding, which are well conserved among other plant telomere binding proteins. We concluded that although AtTRB2 is devoid of the additional fourth helix in the Myb-extension domain, it is able to bind to plant telomeric repeat sequences as well as human telomeric repeat sequences.« less
Structure of the ACF7 EF-Hand-GAR Module and Delineation of Microtubule Binding Determinants.
Lane, Thomas R; Fuchs, Elaine; Slep, Kevin C
2017-07-05
Spectraplakins are large molecules that cross-link F-actin and microtubules (MTs). Mutations in spectraplakins yield defective cell polarization, aberrant focal adhesion dynamics, and dystonia. We present the 2.8 Å crystal structure of the hACF7 EF1-EF2-GAR MT-binding module and delineate the GAR residues critical for MT binding. The EF1-EF2 and GAR domains are autonomous domains connected by a flexible linker. The EF1-EF2 domain is an EFβ-scaffold with two bound Ca 2+ ions that straddle an N-terminal α helix. The GAR domain has a unique α/β sandwich fold that coordinates Zn 2+ . While the EF1-EF2 domain is not sufficient for MT binding, the GAR domain is and likely enhances EF1-EF2-MT engagement. Residues in a conserved basic patch, distal to the GAR domain's Zn 2+ -binding site, mediate MT binding. Copyright © 2017 Elsevier Ltd. All rights reserved.
Childhood maltreatment and methylation of FK506 binding protein 5 gene (FKBP5).
Tyrka, Audrey R; Ridout, Kathryn K; Parade, Stephanie H; Paquette, Alison; Marsit, Carmen J; Seifer, Ronald
2015-11-01
A growing body of evidence suggests that alterations of the stress response system may be a mechanism by which childhood maltreatment alters risk for psychopathology. FK506 binding protein 51 (FKBP5) binds to the glucocorticoid receptor and alters its ability to respond to stress signaling. The aim of the present study was to examine methylation of the FKBP5 gene (FKBP5), and the role of an FKBP5 genetic variant, in relation to childhood maltreatment in a sample of impoverished preschool-aged children. One hundred seventy-four families participated in this study, including 69 with child welfare documentation of moderate to severe maltreatment in the past 6 months. The children, who ranged in age from 3 to 5 years, were racially and ethnically diverse. Structured record review and interviews in the home were used to assess a history of maltreatment, other traumas, and contextual life stressors; and a composite variable assessed the number exposures to these adversities. Methylation of two sites in intron 7 of FKBP5 was measured via sodium bisulfite pyrosequencing. Maltreated children had significantly lower levels of methylation at both CpG sites (p < .05). Lifetime contextual stress exposure showed a trend for lower levels of methylation at one of the sites, and a trend for an interaction with the FKBP5 polymorphism. A composite adversity variable was associated with lower levels of methylation at one of the sites as well (p < .05). FKBP5 alters glucocorticoid receptor responsiveness, and FKBP5 gene methylation may be a mechanism of the biobehavioral effects of adverse exposures in young children.
Buck, D P; Howitt, S M; Clements, J D
2000-01-01
N-Methyl-D-aspartate (NMDA) receptors are susceptible to open-channel block by dizolcipine (MK-801), ketamine and Mg(2+) and are permeable to Ca(2+). It is thought that a tryptophan residue in the second membrane-associated domain (M2) may form part of the binding site for open-channel blockers and contribute to Ca(2+) permeability. We tested this hypothesis using recombinant wild-type and mutant NMDA receptors expressed in HEK-293 cells. The tryptophan was mutated to a leucine (W-5L) in both the NMDAR1 and NMDAR2A subunits. MK-801 and ketamine progressively inhibited currents evoked by glutamate, and the rate of inhibition was increased by the W-5L mutation. An increase in open channel probability accounted for the acceleration. Fluctuation analysis of the glutamate-evoked current revealed that the NMDAR1 W-5L mutation increased channel mean open time, providing further evidence for an alteration in gating. However, the equilibrium affinities of Mg(2+) and ketamine were largely unaffected by the W-5L mutation, and Ca(2+) permeability was not decreased. Therefore, the M2 tryptophan residue of the NMDA channel is not involved in Ca(2+) permeation or the binding of open-channel blockers, but plays an important role in channel gating. PMID:11053122
The consequences of sequence erosion in the evolution of recombination hotspots.
Tiemann-Boege, Irene; Schwarz, Theresa; Striedner, Yasmin; Heissl, Angelika
2017-12-19
Meiosis is initiated by a double-strand break (DSB) introduced in the DNA by a highly controlled process that is repaired by recombination. In many organisms, recombination occurs at specific and narrow regions of the genome, known as recombination hotspots, which overlap with regions enriched for DSBs. In recent years, it has been demonstrated that conversions and mutations resulting from the repair of DSBs lead to a rapid sequence evolution at recombination hotspots eroding target sites for DSBs. We still do not fully understand the effect of this erosion in the recombination activity, but evidence has shown that the binding of trans -acting factors like PRDM9 is affected. PRDM9 is a meiosis-specific, multi-domain protein that recognizes DNA target motifs by its zinc finger domain and directs DSBs to these target sites. Here we discuss the changes in affinity of PRDM9 to eroded recognition sequences, and explain how these changes in affinity of PRDM9 can affect recombination, leading sometimes to sterility in the context of hybrid crosses. We also present experimental data showing that DNA methylation reduces PRDM9 binding in vitro Finally, we discuss PRDM9-independent hotspots, posing the question how these hotspots evolve and change with sequence erosion.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'. © 2017 The Authors.
The consequences of sequence erosion in the evolution of recombination hotspots
Schwarz, Theresa; Heissl, Angelika
2017-01-01
Meiosis is initiated by a double-strand break (DSB) introduced in the DNA by a highly controlled process that is repaired by recombination. In many organisms, recombination occurs at specific and narrow regions of the genome, known as recombination hotspots, which overlap with regions enriched for DSBs. In recent years, it has been demonstrated that conversions and mutations resulting from the repair of DSBs lead to a rapid sequence evolution at recombination hotspots eroding target sites for DSBs. We still do not fully understand the effect of this erosion in the recombination activity, but evidence has shown that the binding of trans-acting factors like PRDM9 is affected. PRDM9 is a meiosis-specific, multi-domain protein that recognizes DNA target motifs by its zinc finger domain and directs DSBs to these target sites. Here we discuss the changes in affinity of PRDM9 to eroded recognition sequences, and explain how these changes in affinity of PRDM9 can affect recombination, leading sometimes to sterility in the context of hybrid crosses. We also present experimental data showing that DNA methylation reduces PRDM9 binding in vitro. Finally, we discuss PRDM9-independent hotspots, posing the question how these hotspots evolve and change with sequence erosion. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109225
Biophysical basis of the binding of WWOX tumor suppressor to WBP1 and WBP2 adaptors.
McDonald, Caleb B; Buffa, Laura; Bar-Mag, Tomer; Salah, Zaidoun; Bhat, Vikas; Mikles, David C; Deegan, Brian J; Seldeen, Kenneth L; Malhotra, Arun; Sudol, Marius; Aqeilan, Rami I; Nawaz, Zafar; Farooq, Amjad
2012-09-07
The WW-containing oxidoreductase (WWOX) tumor suppressor participates in a diverse array of cellular activities by virtue of its ability to recognize WW-binding protein 1 (WBP1) and WW-binding protein 2 (WBP2) signaling adaptors among a wide variety of other ligands. Herein, using a multitude of biophysical techniques, we provide evidence that while the WW1 domain of WWOX binds to PPXY motifs within WBP1 and WBP2 in a physiologically relevant manner, the WW2 domain exhibits no affinity toward any of these PPXY motifs. Importantly, our data suggest that while R25/W44 residues located within the binding pocket of a triple-stranded β-fold of WW1 domain are critical for the recognition of PPXY ligands, they are replaced by the chemically distinct E66/Y85 duo at structurally equivalent positions within the WW2 domain, thereby accounting for its failure to bind PPXY ligands. Predictably, not only does the introduction of E66R/Y85W double substitution within the WW2 domain result in gain of function but the resulting engineered domain, hereinafter referred to as WW2_RW, also appears to be a much stronger binding partner of WBP1 and WBP2 than the wild-type WW1 domain. We also show that while the WW1 domain is structurally disordered and folds upon ligand binding, the WW2 domain not only adopts a fully structured conformation but also aids stabilization and ligand binding to WW1 domain. This salient observation implies that the WW2 domain likely serves as a chaperone to augment the physiological function of WW1 domain within WWOX. Collectively, our study lays the groundwork for understanding the molecular basis of a key protein-protein interaction pertinent to human health and disease. Copyright © 2012 Elsevier Ltd. All rights reserved.
Shui, Irene M; Wong, Chao-Jen; Zhao, Shanshan; Kolb, Suzanne; Ebot, Ericka M; Geybels, Milan S; Rubicz, Rohina; Wright, Jonathan L; Lin, Daniel W; Klotzle, Brandy; Bibikova, Marina; Fan, Jian-Bing; Ostrander, Elaine A; Feng, Ziding; Stanford, Janet L
2016-07-15
DNA methylation has been hypothesized as a mechanism for explaining the association between smoking and adverse prostate cancer (PCa) outcomes. This study was aimed at assessing whether smoking is associated with prostate tumor DNA methylation and whether these alterations may explain in part the association of smoking with PCa recurrence and mortality. A total of 523 men had radical prostatectomy as their primary treatment, detailed smoking history data, long-term follow-up for PCa outcomes, and tumor tissue profiled for DNA methylation. Ninety percent of the men also had matched tumor gene expression data. A methylome-wide analysis was conducted to identify differentially methylated regions (DMRs) by smoking status. To select potential functionally relevant DMRs, their correlation with the messenger RNA (mRNA) expression of corresponding genes was evaluated. Finally, a smoking-related methylation score based on the top-ranked DMRs was created to assess its association with PCa outcomes. Forty DMRs were associated with smoking status, and 10 of these were strongly correlated with mRNA expression (aldehyde oxidase 1 [AOX1], claudin 5 [CLDN5], early B-cell factor 1 [EBF1], homeobox A7 [HOXA7], lectin galactoside-binding soluble 3 [LGALS3], microtubule-associated protein τ [MAPT], protocadherin γ A [PCDHGA]/protocadherin γ B [PCDHGB], paraoxonase 3 [PON3], synaptonemal complex protein 2 like [SYCP2L], and zinc finger and SCAN domain containing 12 [ZSCAN12]). Men who were in the highest tertile for the smoking-methylation score derived from these DMRs had a higher risk of recurrence (odds ratio [OR], 2.29; 95% confidence interval [CI], 1.42-3.72) and lethal disease (OR, 4.21; 95% CI, 1.65-11.78) in comparison with men in the lower 2 tertiles. This integrative molecular epidemiology study supports the hypothesis that smoking-associated tumor DNA methylation changes may explain at least part of the association between smoking and adverse PCa outcomes. Future studies are warranted to confirm these findings and understand the implications for improving patient outcomes. Cancer 2016;122:2168-77. © 2016 American Cancer Society. © 2016 American Cancer Society.
Devkota, Sujan; Joseph, Raji E; Boyken, Scott E; Fulton, D Bruce; Andreotti, Amy H
2017-06-13
Pleckstrin homology (PH) domains are well-known as phospholipid binding modules, yet evidence that PH domain function extends beyond lipid recognition is mounting. In this work, we characterize a protein binding function for the PH domain of interleukin-2-inducible tyrosine kinase (ITK), an immune cell specific signaling protein that belongs to the TEC family of nonreceptor tyrosine kinases. Its N-terminal PH domain is a well-characterized lipid binding module that localizes ITK to the membrane via phosphatidylinositol 3,4,5-trisphosphate (PIP 3 ) binding. Using a combination of nuclear magnetic resonance spectroscopy and mutagenesis, we have mapped an autoregulatory protein interaction site on the ITK PH domain that makes direct contact with the catalytic kinase domain of ITK, inhibiting the phospho-transfer reaction. Moreover, we have elucidated an important interplay between lipid binding by the ITK PH domain and the stability of the autoinhibitory complex formed by full length ITK. The ITK activation loop in the kinase domain becomes accessible to phosphorylation to the exogenous kinase LCK upon binding of the ITK PH domain to PIP 3 . By clarifying the allosteric role of the ITK PH domain in controlling ITK function, we have expanded the functional repertoire of the PH domain generally and opened the door to alternative strategies to target this specific kinase in the context of immune cell signaling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silverstein, F.S.; McDonald, J.W. III; Bommarito, M.
1990-02-01
The phencyclidine analogue ({sup 3}H)(1-(2-thienyl)cyclohexyl)piperidine ({sup 3}H-TCP) binds to the ion channel associated with the N-methyl-D-aspartate receptor channel complex. In vitro autoradiography indicates that the distribution of {sup 3}H-TCP binding in brain closely parallels that of ({sup 3}H)glutamate binding to the N-methyl-D-aspartate receptor. In nine 7-day-old rats, an acute focal hypoxic-ischemic insult produced by unilateral carotid artery ligation and subsequent exposure to 8% oxygen acutely reduced {sup 3}H-TCP binding ipsilateral to the ligation by 30% in the CA1, by 27% in the CA3, by 26% in the dentate gyrus, and by 17% in the striatum compared with values from themore » contralateral hemisphere. In 10 littermates that received 1 mg/kg of the neuroprotective noncompetitive N-methyl-D-aspartate antagonist MK-801 immediately before hypoxic exposure, the regional distribution of {sup 3}H-TCP binding in hypoxic-ischemic brain was relatively preserved and there were no interhemispheric asymmetries in {sup 3}H-TCP binding densities. In addition, in three unoperated rats decapitated 24 hours after MK-801 treatment, {sup 3}H-TCP binding was reduced by 15-35%; similar bilateral suppression of {sup 3}H-TCP binding was detected in MK-801-treated ligates. Our data indicate that {sup 3}H-TCP autoradiography can be used to assay the efficacy of neuroprotective agents in this experimental model of perinatal stroke.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Seong K., E-mail: skim1@lsuhsc.edu; Kim, Seongman; Dai Gan
2011-09-01
The equine herpesvirus 1 (EHV-1) negative regulatory IR2 protein (IR2P), an early 1,165-amino acid (aa) truncated form of the 1487-aa immediate-early protein (IEP), lacks the trans-activation domain essential for IEP activation functions but retains domains for binding DNA, TFIIB, and TBP and the nuclear localization signal. IR2P mutants of the N-terminal region which lack either DNA-binding activity or TFIIB-binding activity were unable to down-regulate EHV-1 promoters. In EHV-1-infected cells expressing full-length IR2P, transcription and protein expression of viral regulatory IE, early EICP0, IR4, and UL5, and late ETIF genes were dramatically inhibited. Viral DNA levels were reduced to 2.1% ofmore » control infected cells, but were vey weakly affected in cells that express the N-terminal 706 residues of IR2P. These results suggest that IR2P function requires the two N-terminal domains for binding DNA and TFIIB as well as the C-terminal residues 707 to 1116 containing the TBP-binding domain. - Highlights: > We examine the functional domains of IR2P that mediates negative regulation. > IR2P inhibits at the transcriptional level. > DNA-binding mutant or TFIIB-binding mutant fails to inhibit. > C-terminal aa 707 to 1116 are required for full inhibition. > Inhibition requires the DNA-binding domain, TFIIB-binding domain, and C-terminus.« less
Wang, Tao; Zhang, Jiahai; Zhang, Xuecheng; Xu, Chao; Tu, Xiaoming
2013-01-01
Streptococcus pneumoniae is a pathogen causing acute respiratory infection, otitis media and some other severe diseases in human. In this study, the solution structure of a bacterial immunoglobulin-like (Big) domain from a putative S. pneumoniae surface protein SP0498 was determined by NMR spectroscopy. SP0498 Big domain adopts an eight-β-strand barrel-like fold, which is different in some aspects from the two-sheet sandwich-like fold of the canonical Ig-like domains. Intriguingly, we identified that the SP0498 Big domain was a Ca2+ binding domain. The structure of the Big domain is different from those of the well known Ca2+ binding domains, therefore revealing a novel Ca2+-binding module. Furthermore, we identified the critical residues responsible for the binding to Ca2+. We are the first to report the interactions between the Big domain and Ca2+ in terms of structure, suggesting an important role of the Big domain in many essential calcium-dependent cellular processes such as pathogenesis. PMID:23326635
Tomoo, Koji; Miki, Yasuhiro; Morioka, Hideaki; Seike, Kiho; Ishida, Toshimasa; Ikenishi, Sadao; Miyamoto, Katsushiro; Hasegawa, Tomokazu; Yamano, Akihito; Hamada, Kensaku; Tsujibo, Hiroshi
2017-06-01
BxlE from Streptomyces thermoviolaceus OPC-520 is a xylo-oligosaccharide (mainly xylobiose)-binding protein that serves as the initial receptor for the bacterial ABC-type xylo-oligosaccharide transport system. To determine the ligand-binding mechanism of BxlE, X-ray structures of ligand-free (open form) and ligand (xylobiose)-bound (closed form) BxlE were determined at 1.85 Å resolution. BxlE consists of two globular domains that are linked by two β-strands, with the cleft at the interface of the two domains creating the ligand-binding pocket. In the ligand-free open form, this pocket consists of a U-shaped and negatively charged groove located between the two domains. In the xylobiose-bound closed form of BxlE, both the N and C domains move to fold the ligand without conformational changes in either domain. Xylobiose is buried in the groove and wrapped by the N-domain mainly via hydrogen bond interactions and by the C-domain primarily via non-polar interactions with Trp side chains. In addition to the concave shape matching the binding of xylobiose, an inter-domain salt bridge between Asp-47 and Lys-294 limits the space in the ligand-binding site. This domain-stabilized mechanism of ligand binding to BxlE is a unique feature that is not observed with other solute-binding proteins. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Chang, Shan; Zhang, Da-Wei; Xu, Lei; Wan, Hua; Hou, Ting-Jun; Kong, Ren
2016-11-01
RNA-binding protein with multiple splicing (RBPMS) is critical for axon guidance, smooth muscle plasticity, and regulation of cancer cell proliferation and migration. Recently, different states of the RNA-recognition motif (RRM) of RBPMS, one in its free form and another in complex with CAC-containing RNA, were determined by X-ray crystallography. In this article, the free RRM domain, its wild type complex and 2 mutant complex systems are studied by molecular dynamics (MD) simulations. Through comparison of free RRM domain and complex systems, it's found that the RNA binding facilitates stabilizing the RNA-binding interface of RRM domain, especially the C-terminal loop. Although both R38Q and T103A/K104A mutations reduce the binding affinity of RRM domain and RNA, the underlining mechanisms are different. Principal component analysis (PCA) and Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) methods were used to explore the dynamical and recognition mechanisms of RRM domain and RNA. R38Q mutation is positioned on the homodimerization interface and mainly induces the large fluctuations of RRM domains. This mutation does not directly act on the RNA-binding interface, but some interfacial hydrogen bonds are weakened. In contrast, T103A/K104A mutations are located on the RNA-binding interface of RRM domain. These mutations obviously break most of high occupancy hydrogen bonds in the RNA-binding interface. Meanwhile, the key interfacial residues lose their favorable energy contributions upon RNA binding. The ranking of calculated binding energies in 3 complex systems is well consistent with that of experimental binding affinities. These results will be helpful in understanding the RNA recognition mechanisms of RRM domain.
Chang, Shan; Zhang, Da-Wei; Xu, Lei; Wan, Hua; Hou, Ting-Jun; Kong, Ren
2016-01-01
ABSTRACT RNA-binding protein with multiple splicing (RBPMS) is critical for axon guidance, smooth muscle plasticity, and regulation of cancer cell proliferation and migration. Recently, different states of the RNA-recognition motif (RRM) of RBPMS, one in its free form and another in complex with CAC-containing RNA, were determined by X-ray crystallography. In this article, the free RRM domain, its wild type complex and 2 mutant complex systems are studied by molecular dynamics (MD) simulations. Through comparison of free RRM domain and complex systems, it's found that the RNA binding facilitates stabilizing the RNA-binding interface of RRM domain, especially the C-terminal loop. Although both R38Q and T103A/K104A mutations reduce the binding affinity of RRM domain and RNA, the underlining mechanisms are different. Principal component analysis (PCA) and Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) methods were used to explore the dynamical and recognition mechanisms of RRM domain and RNA. R38Q mutation is positioned on the homodimerization interface and mainly induces the large fluctuations of RRM domains. This mutation does not directly act on the RNA-binding interface, but some interfacial hydrogen bonds are weakened. In contrast, T103A/K104A mutations are located on the RNA-binding interface of RRM domain. These mutations obviously break most of high occupancy hydrogen bonds in the RNA-binding interface. Meanwhile, the key interfacial residues lose their favorable energy contributions upon RNA binding. The ranking of calculated binding energies in 3 complex systems is well consistent with that of experimental binding affinities. These results will be helpful in understanding the RNA recognition mechanisms of RRM domain. PMID:27592836
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prashek, Jennifer; Bouyain, Samuel; Fu, Mingui
De novo synthesis of the sphingolipid sphingomyelin requires non-vesicular transport of ceramide from the endoplasmic reticulum to the Golgi by the multidomain protein ceramide transfer protein (CERT). CERT's N-terminal pleckstrin homology (PH) domain targets it to the Golgi by binding to phosphatidylinositol 4-phosphate (PtdIns(4)P) in the Golgi membrane, whereas its C-terminal StAR-related lipid transfer domain (START) carries out ceramide transfer. Hyperphosphorylation of a serine-rich motif immediately after the PH domain decreases both PtdIns(4)P binding and ceramide transfer by CERT. This down-regulation requires both the PH and START domains, suggesting a possible inhibitory interaction between the two domains. In this studymore » we show that isolated PH and START domains interact with each other. The crystal structure of a PH–START complex revealed that the START domain binds to the PH domain at the same site for PtdIns(4)P-binding, suggesting that the START domain competes with PtdIns(4)P for association with the PH domain. We further report that mutations disrupting the PH–START interaction increase both PtdIns(4)P-binding affinity and ceramide transfer activity of a CERT-serine–rich phosphorylation mimic. We also found that these mutations increase the Golgi localization of CERT inside the cell, consistent with enhanced PtdIns(4)P binding of the mutant. Collectively, our structural, biochemical, and cellular investigations provide important structural insight into the regulation of CERT function and localization.« less
Murciano-Calles, Javier; McLaughlin, Megan E; Erijman, Ariel; Hooda, Yogesh; Chakravorty, Nishant; Martinez, Jose C; Shifman, Julia M; Sidhu, Sachdev S
2014-10-23
Modulation of protein binding specificity is important for basic biology and for applied science. Here we explore how binding specificity is conveyed in PDZ (postsynaptic density protein-95/discs large/zonula occludens-1) domains, small interaction modules that recognize various proteins by binding to an extended C terminus. Our goal was to engineer variants of the Erbin PDZ domain with altered specificity for the most C-terminal position (position 0) where a Val is strongly preferred by the wild-type domain. We constructed a library of PDZ domains by randomizing residues in direct contact with position 0 and in a loop that is close to but does not contact position 0. We used phage display to select for PDZ variants that bind to 19 peptide ligands differing only at position 0. To verify that each obtained PDZ domain exhibited the correct binding specificity, we selected peptide ligands for each domain. Despite intensive efforts, we were only able to evolve Erbin PDZ domain variants with selectivity for the aliphatic C-terminal side chains Val, Ile and Leu. Interestingly, many PDZ domains with these three distinct specificities contained identical amino acids at positions that directly contact position 0 but differed in the loop that does not contact position 0. Computational modeling of the selected PDZ domains shows how slight conformational changes in the loop region propagate to the binding site and result in different binding specificities. Our results demonstrate that second-sphere residues could be crucial in determining protein binding specificity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Xu, Emma-Ruoqi; Blythe, Emily E; Fischer, Gerhard; Hyvönen, Marko
2017-07-28
Bone morphogenetic proteins (BMPs) are secreted growth factors that promote differentiation processes in embryogenesis and tissue development. Regulation of BMP signaling involves binding to a variety of extracellular proteins, among which are many von Willebrand factor C (vWC) domain-containing proteins. Although the crystal structure of the complex of crossveinless-2 (CV-2) vWC1 and BMP-2 previously revealed one mode of the vWC/BMP-binding mechanism, other vWC domains may bind to BMP differently. Here, using X-ray crystallography, we present for the first time structures of the vWC domains of two proteins thought to interact with BMP-2: collagen IIA and matricellular protein CCN3. We found that these two vWC domains share a similar N-terminal fold that differs greatly from that in CV-2 vWC, which comprises its BMP-2-binding site. We analyzed the ability of these vWC domains to directly bind to BMP-2 and detected an interaction only between the collagen IIa vWC and BMP-2. Guided by the collagen IIa vWC domain crystal structure and conservation of surface residues among orthologous domains, we mapped the BMP-binding epitope on the subdomain 1 of the vWC domain. This binding site is different from that previously observed in the complex between CV-2 vWC and BMP-2, revealing an alternative mode of interaction between vWC domains and BMPs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Technical Reports Server (NTRS)
Winchester, S. K.; Selvamurugan, N.; D'Alonzo, R. C.; Partridge, N. C.
2000-01-01
Collagenase-3 mRNA is initially detectable when osteoblasts cease proliferation, increasing during differentiation and mineralization. We showed that this developmental expression is due to an increase in collagenase-3 gene transcription. Mutation of either the activator protein-1 or the runt domain binding site decreased collagenase-3 promoter activity, demonstrating that these sites are responsible for collagenase-3 gene transcription. The activator protein-1 and runt domain binding sites bind members of the activator protein-1 and core-binding factor family of transcription factors, respectively. We identified core-binding factor a1 binding to the runt domain binding site and JunD in addition to a Fos-related antigen binding to the activator protein-1 site. Overexpression of both c-Fos and c-Jun in osteoblasts or core-binding factor a1 increased collagenase-3 promoter activity. Furthermore, overexpression of c-Fos, c-Jun, and core-binding factor a1 synergistically increased collagenase-3 promoter activity. Mutation of either the activator protein-1 or the runt domain binding site resulted in the inability of c-Fos and c-Jun or core-binding factor a1 to increase collagenase-3 promoter activity, suggesting that there is cooperative interaction between the sites and the proteins. Overexpression of Fra-2 and JunD repressed core-binding factor a1-induced collagenase-3 promoter activity. Our results suggest that members of the activator protein-1 and core-binding factor families, binding to the activator protein-1 and runt domain binding sites are responsible for the developmental regulation of collagenase-3 gene expression in osteoblasts.
Prediction of striatal D2 receptor binding by DRD2/ANKK1 TaqIA allele status
Eisenstein, Sarah A.; Bogdan, Ryan; Love-Gregory, Latisha; Corral-Frías, Nadia S.; Koller, Jonathan M.; Black, Kevin J.; Moerlein, Stephen M.; Perlmutter, Joel S.; Barch, Deanna M.; Hershey, Tamara
2016-01-01
In humans, the A1 (T) allele of the dopamine (DA) D2 receptor/ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1) TaqIA (rs1800497) single nucleotide polymorphism has been associated with reduced striatal DA D2/D3 receptor (D2/D3R) availability. However, radioligands used to estimate D2/D3R are displaceable by endogenous DA and are non-selective for D2R, leaving the relationship between TaqIA genotype and D2R specific binding uncertain. Using the positron emission tomography (PET) radioligand, (N‐[11C]methyl)benperidol ([11C]NMB), which is highly selective for D2R over D3R and is not displaceable by endogenous DA, the current study examined whether DRD2/ANKK1 TaqIA genotype predicts D2R specific binding in 2 independent samples. Sample 1 (n = 39) was composed of obese and non-obese adults; sample 2 (n = 18) was composed of healthy controls, unmedicated individuals with schizophrenia, and siblings of individuals with schizophrenia. Across both samples, A1 allele carriers (A1+) had 5-12% less striatal D2R specific binding relative to individuals homozygous for the A2 allele (A1−), regardless of body mass index or diagnostic group. This reduction is comparable to previous PET studies of D2/D3R availability (10-14%). The pooled effect size for the difference in total striatal D2R binding between A1+ and A1− was large (0.84). In summary, in line with studies using displaceable D2/D3R radioligands, our results indicate that DRD2/ANKK1 TaqIA allele status predicts striatal D2R specific binding as measured by D2R-selective [11C]NMB. These findings support the hypothesis that DRD2/ANKK1 TaqIA allele status may modify D2R, perhaps conferring risk for certain disease states. GRAPHICAL ABSTRACT We investigated the difference in striatal dopamine D2 receptor binding, as measured by PET with (N-[11C]methyl)benperidol ([11C]NMB), between A1 allele carriers (A1+) and individuals homozygous for the A2 allele (A1−) of the DRD2/ANKK1 TaqIA single nucleotide polymorphism. In Study 1, A1+ had 5-12% less striatal [11C]NMB binding than A1−. PMID:27241797
Methylation effect on the ohmic resistance of a poly-GC DNA-like chain
NASA Astrophysics Data System (ADS)
de Moura, F. A. B. F.; Lyra, M. L.; de Almeida, M. L.; Ourique, G. S.; Fulco, U. L.; Albuquerque, E. L.
2016-10-01
We determine, by using a tight-binding model Hamiltonian, the characteristic current-voltage (IxV) curves of a 5-methylated cytosine single strand poly-GC DNA-like finite segment, considering the methyl groups attached laterally to a random fraction of the cytosine basis. Striking, we found that the methylation significantly impacts the ohmic resistance (R) of the DNA-like segments, indicating that measurements of R can be used as a biosensor tool to probe the presence of anomalous methylation.
Matsumoto, Yuiko; Buemio, Alvin; Chu, Randy; Vafaee, Mozhgon; Crews, David
2013-01-01
In the red-eared slider turtle (Trachemys scripta), a species with temperature-dependent sex determination (TSD), the expression of the aromatase gene during gonad development is strictly limited to the female-producing temperature. The underlying mechanism remains unknown. In this study, we identified the upstream 5′-flanking region of the aromatase gene, gonad-specific promoter, and the temperature-dependent DNA methylation signatures during gonad development in the red-eared slider turtle. The 5′-flanking region of the slider aromatase exhibited sequence similarities to the aromatase genes of the American alligator, chicken, quail, and zebra finch. A putative TATA box was located 31 bp upstream of the gonad-specific transcription start site. DNA methylation at the CpG sites between the putative binding sites of the fork head domain factor (FOX) and vertebrate steroidogenic factor 1 (SF1) and adjacent TATA box in the promoter region were significantly lower in embryonic gonads at the female-producing temperature compared the male-producing temperature. A shift from male- to female-, but not from female- to male-, producing temperature changed the level of DNA methylation in gonads. Taken together these results indicate that the temperature, particularly female-producing temperature, allows demethylation at the specific CpG sites of the promoter region which leads the temperature-specific expression of aromatase during gonad development. PMID:23762231
Jorgensen, Elisa M.; Alderman, Myles H.; Taylor, Hugh S.
2016-01-01
Bisphenol-A (BPA) is an environmentally ubiquitous estrogen-like endocrine-disrupting compound. Exposure to BPA in utero has been linked to female reproductive disorders, including endometrial hyperplasia and breast cancer. Estrogens are an etiological factor in many of these conditions. We sought to determine whether in utero exposure to BPA altered the global CpG methylation pattern of the uterine genome, subsequent gene expression, and estrogen response. Pregnant mice were exposed to an environmentally relevant dose of BPA or DMSO control. Uterine DNA and RNA were examined by using methylated DNA immunoprecipitation methylation microarray, expression microarray, and quantitative PCR. In utero BPA exposure altered the global CpG methylation profile of the uterine genome and subsequent gene expression. The effect on gene expression was not apparent until sexual maturation, which suggested that estrogen response was the primary alteration. Indeed, prenatal BPA exposure preferentially altered adult estrogen-responsive gene expression. Changes in estrogen response were accompanied by altered methylation that preferentially affected estrogen receptor-α (ERα)–binding genes. The majority of genes that demonstrated both altered expression and ERα binding had decreased methylation. BPA selectively altered the normal developmental programming of estrogen-responsive genes via modification of the genes that bind ERα. Gene–environment interactions driven by early life xenoestrogen exposure likely contributes to increased risk of estrogen-related disease in adults.—Jorgensen, E. M., Alderman, M. H., III, Taylor, H. S. Preferential epigenetic programming of estrogen response after in utero xenoestrogen (bisphenol-A) exposure. PMID:27312807
Kantor, Boris; Makedonski, Kirill; Shemer, Ruth; Razin, Aharon
2003-12-01
DNA methylation had been implicated in the assembly of multiprotein repressory complexes that affect chromatin architecture thereby rendering genes inactive. Proteins containing methyl binding domains (MBDs) are major components of these complexes. MBD3 is a component of the HDAC associated chromatin remodeling complex Mi2/NuRD. The addition of MBD2 to the Mi2/NuRD complex creates MeCP1, a complex that is known to inactivate methylated promoters. The undermethylated state of the mouse preimplantation embryo prompted us to investigate the known repressory complexes at this developmental stage. We found individual components of Mi2/NuRD: MBD3, Mi2, HDAC1 and HDAC2 to be expressed from a very early stage of embryo development and to localize in close proximity with each other and with constitutive heterochromatin by the blastula stage. Expression of MBD2, a component of MeCP1, starts in the blastula stage. Then it is also found to be in proximity with heterochromatin (based on DAPI staining) and with MBD3, Mi2 and HDAC1. In contrast, expression of MeCP2, an MBD containing component of a third repressory complex (MeCP2/Sin3A), is not seen in the preimplantation embryo. Our results suggest that both Mi2/NuRD and MeCP1 complexes are already present at the very early stages of embryo development, while a MeCP2 complex is added to the arsenal of repressory complexes post-implantation at a stage when DNA methylation takes place.
A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties
Murphy, James M.; Zhang, Qingwei; Young, Samuel N.; Reese, Michael L.; Bailey, Fiona P.; Eyers, Patrick A.; Ungureanu, Daniela; Hammaren, Henrik; Silvennoinen, Olli; Varghese, Leila N.; Chen, Kelan; Tripaydonis, Anne; Jura, Natalia; Fukuda, Koichi; Qin, Jun; Nimchuk, Zachary; Mudgett, Mary Beth; Elowe, Sabine; Gee, Christine L.; Liu, Ling; Daly, Roger J.; Manning, Gerard; Babon, Jeffrey J.; Lucet, Isabelle S.
2017-01-01
Protein kinase-like domains that lack conserved residues known to catalyse phosphoryl transfer, termed pseudokinases, have emerged as important signalling domains across all kingdoms of life. Although predicted to function principally as catalysis-independent protein-interaction modules, several pseudokinase domains have been attributed unexpected catalytic functions, often amid controversy. We established a thermal-shift assay as a benchmark technique to define the nucleotide-binding properties of kinase-like domains. Unlike in vitro kinase assays, this assay is insensitive to the presence of minor quantities of contaminating kinases that may otherwise lead to incorrect attribution of catalytic functions to pseudokinases. We demonstrated the utility of this method by classifying 31 diverse pseudokinase domains into four groups: devoid of detectable nucleotide or cation binding; cation-independent nucleotide binding; cation binding; and nucleotide binding enhanced by cations. Whereas nine pseudokinases bound ATP in a divalent cation-dependent manner, over half of those examined did not detectably bind nucleotides, illustrating that pseudokinase domains predominantly function as non-catalytic protein-interaction modules within signalling networks and that only a small subset is potentially catalytically active. We propose that henceforth the thermal-shift assay be adopted as the standard technique for establishing the nucleotide-binding and catalytic potential of kinase-like domains. PMID:24107129
Structural and functional analysis of the YAP-binding domain of human TEAD2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Wei; Yu, Jianzhong; Tomchick, Diana R.
2010-06-15
The Hippo pathway controls organ size and suppresses tumorigenesis in metazoans by blocking cell proliferation and promoting apoptosis. The TEAD1-4 proteins (which contain a DNA-binding domain but lack an activation domain) interact with YAP (which lacks a DNA-binding domain but contains an activation domain) to form functional heterodimeric transcription factors that activate proliferative and prosurvival gene expression programs. The Hippo pathway inhibits the YAP-TEAD hybrid transcription factors by phosphorylating and promoting cytoplasmic retention of YAP. Here we report the crystal structure of the YAP-binding domain (YBD) of human TEAD2. TEAD2 YBD adopts an immunoglobulin-like {beta}-sandwich fold with two extra helix-turn-helixmore » inserts. NMR studies reveal that the TEAD-binding domain of YAP is natively unfolded and that TEAD binding causes localized conformational changes in YAP. In vitro binding and in vivo functional assays define an extensive conserved surface of TEAD2 YBD as the YAP-binding site. Therefore, our studies suggest that a short segment of YAP adopts an extended conformation and forms extensive contacts with a rigid surface of TEAD. Targeting a surface-exposed pocket of TEAD might be an effective strategy to disrupt the YAP-TEAD interaction and to reduce the oncogenic potential of YAP.« less
NASA Technical Reports Server (NTRS)
Sathyanarayanan, P. V.; Cremo, C. R.; Poovaiah, B. W.
2000-01-01
Chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) is characterized by a serine-threonine kinase domain, an autoinhibitory domain, a calmodulin-binding domain and a neural visinin-like domain with three EF-hands. The neural visinin-like Ca(2+)-binding domain at the C-terminal end of the CaM-binding domain makes CCaMK unique among all the known calmodulin-dependent kinases. Biological functions of the plant visinin-like proteins or visinin-like domains in plant proteins are not well known. Using EF-hand deletions in the visinin-like domain, we found that the visinin-like domain regulated Ca(2+)-stimulated autophosphorylation of CCaMK. To investigate the effects of Ca(2+)-stimulated autophosphorylation on the interaction with calmodulin, the equilibrium binding constants of CCaMK were measured by fluorescence emission anisotropy using dansylated calmodulin. Binding was 8-fold tighter after Ca(2+)-stimulated autophosphorylation. This shift in affinity did not occur in CCaMK deletion mutants lacking Ca(2+)-stimulated autophosphorylation. A variable calmodulin affinity regulated by Ca(2+)-stimulated autophosphorylation mediated through the visinin-like domain is a new regulatory mechanism for CCaMK activation and calmodulin-dependent protein kinases. Our experiments demonstrate the existence of two functional molecular switches in a protein kinase regulating the kinase activity, namely a visinin-like domain acting as a Ca(2+)-triggered switch and a CaM-binding domain acting as an autophosphorylation-triggered molecular switch.
Ligtenberg, Antoon J M; Karlsson, Niclas G; Veerman, Enno C I
2010-01-01
Deleted in Malignant Brain Tumors-1 protein (DMBT1), salivary agglutinin (DMBT1(SAG)), and lung glycoprotein-340 (DMBT1(GP340)) are three names for glycoproteins encoded by the same DMBT1 gene. All these proteins belong to the scavenger receptor cysteine-rich (SRCR) superfamily of proteins: a superfamily of secreted or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. In addition to SRCR domains, all DMBT1s contain two CUB domains and one zona pellucida domain. The SRCR domains play a role in the function of DMBT1s, which is the binding of a broad range of pathogens including cariogenic streptococci, Helicobacter pylori and HIV. Mucosal defense proteins like IgA, surfactant proteins and lactoferrin also bind to DMBT1s through their SRCR domains. The binding motif on the SRCR domains comprises an 11-mer peptide in which a few amino acids are essential for binding (GRVEVLYRGSW). Adjacent to each individual SRCR domain are glycosylation domains, where the attached carbohydrate chains play a role in the binding of influenza A virus and Helicobacter pylori. The composition of the carbohydrate chains is not only donor specific, but also varies between different organs. These data demonstrate a role for DMBT1s as pattern recognition molecules containing various peptide and carbohydrate binding motifs.
Wong, Edmond; Vaaje-Kolstad, Gustav; Ghosh, Avishek; Hurtado-Guerrero, Ramon; Konarev, Peter V.; Ibrahim, Adel F. M.; Svergun, Dmitri I.; Eijsink, Vincent G. H.; Chatterjee, Nabendu S.; van Aalten, Daan M. F.
2012-01-01
Vibrio cholerae is a bacterial pathogen that colonizes the chitinous exoskeleton of zooplankton as well as the human gastrointestinal tract. Colonization of these different niches involves an N-acetylglucosamine binding protein (GbpA) that has been reported to mediate bacterial attachment to both marine chitin and mammalian intestinal mucin through an unknown molecular mechanism. We report structural studies that reveal that GbpA possesses an unusual, elongated, four-domain structure, with domains 1 and 4 showing structural homology to chitin binding domains. A glycan screen revealed that GbpA binds to GlcNAc oligosaccharides. Structure-guided GbpA truncation mutants show that domains 1 and 4 of GbpA interact with chitin in vitro, whereas in vivo complementation studies reveal that domain 1 is also crucial for mucin binding and intestinal colonization. Bacterial binding studies show that domains 2 and 3 bind to the V. cholerae surface. Finally, mouse virulence assays show that only the first three domains of GbpA are required for colonization. These results explain how GbpA provides structural/functional modular interactions between V. cholerae, intestinal epithelium and chitinous exoskeletons. PMID:22253590
Recombinant spider silk genetically functionalized with affinity domains.
Jansson, Ronnie; Thatikonda, Naresh; Lindberg, Diana; Rising, Anna; Johansson, Jan; Nygren, Per-Åke; Hedhammar, My
2014-05-12
Functionalization of biocompatible materials for presentation of active protein domains is an area of growing interest. Herein, we describe a strategy for functionalization of recombinant spider silk via gene fusion to affinity domains of broad biotechnological use. Four affinity domains of different origin and structure; the IgG-binding domains Z and C2, the albumin-binding domain ABD, and the biotin-binding domain M4, were all successfully produced as soluble silk fusion proteins under nondenaturing purification conditions. Silk films and fibers produced from the fusion proteins were demonstrated to be chemically and thermally stable. Still, the bioactive domains are concluded to be folded and accessible, since their respective targets could be selectively captured from complex samples, including rabbit serum and human plasma. Interestingly, materials produced from mixtures of two different silk fusion proteins displayed combined binding properties, suggesting that tailor-made materials with desired stoichiometry and surface distributions of several binding domains can be produced. Further, use of the IgG binding ability as a general mean for presentation of desired biomolecules could be demonstrated for a human vascular endothelial growth factor (hVEGF) model system, via a first capture of anti-VEGF IgG to silk containing the Z-domain, followed by incubation with hVEGF. Taken together, this study demonstrates the potential of recombinant silk, genetically functionalized with affinity domains, for construction of biomaterials capable of presentation of almost any desired biomolecule.
NASA Technical Reports Server (NTRS)
Patil, Shameekumar; Takezawa, D.; Poovaiah, B. W.
1995-01-01
Calcium, a universal second messenger, regulates diverse cellular processes in eukaryotes. Ca-2(+) and Ca-2(+)/calmodulin-regulated protein phosphorylation play a pivotal role in amplifying and diversifying the action of Ca-2(+)- mediated signals. A chimeric Ca-2(+)/calmodulin-dependent protein kinase (CCaMK) gene with a visinin-like Ca-2(+)- binding domain was cloned and characterized from lily. The cDNA clone contains an open reading frame coding for a protein of 520 amino acids. The predicted structure of CCaMK contains a catalytic domain followed by two regulatory domains, a calmodulin-binding domain and a visinin-like Ca-2(+)-binding domain. The amino-terminal region of CCaMK contains all 11 conserved subdomains characteristic of serine/threonine protein kinases. The calmodulin-binding region of CCaMK has high homology (79%) to alpha subunit of mammalian Ca-2(+)/calmodulin-dependent protein kinase. The calmodulin-binding region is fused to a neural visinin-like domain that contains three Ca-2(+)-binding EF-hand motifs and a biotin-binding site. The Escherichia coli-expressed protein (approx. 56 kDa) binds calmodulin in a Ca-2(+)-dependent manner. Furthermore, Ca-45-binding assays revealed that CCaMK directly binds Ca-2(+). The CCaMK gene is preferentially expressed in developing anthers. Southern blot analysis revealed that CCaMK is encoded by a single gene. The structural features of the gene suggest that it has multiple regulatory controls and could play a unique role in Ca-2(+) signaling in plants.
A Combinatorial H4 Tail Library to Explore the Histone Code
Garske, Adam L.; Craciun, Gheorghe; Denu, John M.
2008-01-01
Histone modifications modulate chromatin structure and function. A posttranslational modification-randomized, combinatorial library based on the first twenty-one residues of histone H4 was designed for systematic examination of proteins that interpret a histone code. The 800-member library represented all permutations of most known modifications within the N-terminal tail of histone H4. To determine its utility in a protein-binding assay, the on-bead library was screened with an antibody directed against phosphoserine 1 of H4. Among the hits, 59/60 sequences were phosphorylated at S1, while 30/30 of those selected from the non-hits were unphosphorylated. A 512-member version of the library was then used to determine the binding specificity of the double tudor domain of hJMJD2A, a histone demethylase involved in transcriptional repression. Global linear least squares fitting of modifications from the identified peptides (40 hits and 34 non-hits) indicated that methylation of K20 was the primary determinant for binding, but that phosphorylation/acetylation on neighboring sites attenuated the interaction. To validate the on-bead screen, isothermal titration calorimetry was performed with thirteen H4 peptides. Dissociation constants ranged from 1 mM - 1μM and corroborated the screening results. The general approach should be useful for probing the specificity of any histone-binding protein. PMID:18616348
Mechanistic Insights into Xenon Inhibition of NMDA Receptors from MD Simulations
Liu, Lu Tian; Xu, Yan; Tang, Pei
2010-01-01
Inhibition of N-methyl-D-aspartate (NMDA) receptors has been viewed as a primary cause of xenon anesthesia, yet the mechanism is unclear. Here, we investigated interactions between xenon and the ligand-binding domain (LBD) of a NMDA receptor and examined xenon-induced structural and dynamical changes that are relevant to functional changes of the NMDA receptor. Several comparative molecular dynamics simulations were performed on two X-ray structures representing the open- and closed-cleft LBD of the NMDA receptor. We identified plausible xenon action sites in the LBD, including those nearby agonist sites, in the hinge region, and at the interface between two subunits. The xenon binding energy varies from −5.3 to −0.7 kcal/mol. Xenon's effect on the NMDA receptor is conformation-dependent and is produced through both competitive and non-competitive mechanisms. Xenon can promote cleft opening in the absence of agonists and consequently stabilizes the closed channel. Xenon can also bind at the interface of two subunits, alter the inter-subunit interaction, and lead to a reduction of the distance between GT-links. This reduction corresponds to a rearrangement of the channel toward a direction of pore size decreasing, implying a closed or desensitized channel. In addition to these non-competitive actions, xenon was found to weaken the glutamate binding, which could lead to low agonist efficacy and appear as competitive inhibition. PMID:20560662
Lerner, D R; Raikhel, N V
1992-06-05
Chitin-binding proteins are present in a wide range of plant species, including both monocots and dicots, even though these plants contain no chitin. To investigate the relationship between in vitro antifungal and insecticidal activities of chitin-binding proteins and their unknown endogenous functions, the stinging nettle lectin (Urtica dioica agglutinin, UDA) cDNA was cloned using a synthetic gene as the probe. The nettle lectin cDNA clone contained an open reading frame encoding 374 amino acids. Analysis of the deduced amino acid sequence revealed a 21-amino acid putative signal sequence and the 86 amino acids encoding the two chitin-binding domains of nettle lectin. These domains were fused to a 19-amino acid "spacer" domain and a 244-amino acid carboxyl extension with partial identity to a chitinase catalytic domain. The authenticity of the cDNA clone was confirmed by deduced amino acid sequence identity with sequence data obtained from tryptic digests, RNA gel blot, and polymerase chain reaction analyses. RNA gel blot analysis also showed the nettle lectin message was present primarily in rhizomes and inflorescence (with immature seeds) but not in leaves or stems. Chitinase enzymatic activity was found when the chitinase-like domain alone or the chitinase-like domain with the chitin-binding domains were expressed in Escherichia coli. This is the first example of a chitin-binding protein with both a duplication of the 43-amino acid chitin-binding domain and a fusion of the chitin-binding domains to a structurally unrelated domain, the chitinase domain.
Binding and inhibition of Cdc25 phosphatases by vitamin K analogues.
Kar, Siddhartha; Lefterov, Iliya M; Wang, Meifang; Lazo, John S; Scott, Colleen N; Wilcox, Craig S; Carr, Brian I
2003-09-09
A synthetic K vitamin analogue, 2-(2-mercaptothenol)-3-methyl-1,4-naphthoquinone or Cpd 5, was previously found to be a potent inhibitor of cell growth [Nishikawa et al., (1995) J. Biol. Chem. 270, 28304-28310]. The mechanisms of cell growth were hypothesized to include the inactivation of cellular protein tyrosine phosphatases, especially the Cdc25 family [Tamura et al. (2000) Cancer Res. 60, 1317-1325]. In this study, we synthesized PD 49, a new biotin containing Cpd 5 derivative, to search for evidence of direct interaction of these arylating analogues with Cdc25A, Cdc25B, and Cdc25C phosphatases. PD 49 was shown to directly bind to GST-Cdc25A, GST-Cdc25B, their catalytic fragments, and GST-Cdc25C. The binding could be competed with excess glutathione or Cpd 5, and a cysteine-to-serine mutation of the catalytic cysteine abolished binding. This was consistent with an involvement in binding of cysteine in the catalytic domain. This interaction between PD 49 and Cdc25 also occurred in lysates of treated cells. PD 49 also bound to protein phosphatases other than Cdc25. We found that the new analogue also inhibited Hep3B human hepatoma cell growth. This growth inhibition involved ERK1/2 phosphorylation and was inhibited by a MEK antagonist. The results demonstrate a direct interaction and binding between this growth-inhibiting K vitamin derivative with both purified as well as with cellular Cdc25A, Cdc25B, and Cdc25C.
Intramolecular interactions regulate SAP97 binding to GKAP
Wu, Hongju; Reissner, Carsten; Kuhlendahl, Sven; Coblentz, Blake; Reuver, Susanne; Kindler, Stefan; Gundelfinger, Eckart D.; Garner, Craig C.
2000-01-01
Membrane-associated guanylate kinase homologs (MAGUKs) are multidomain proteins found to be central organizers of cellular junctions. In this study, we examined the molecular mechanisms that regulate the interaction of the MAGUK SAP97 with its GUK domain binding partner GKAP (GUK-associated protein). The GKAP–GUK interaction is regulated by a series of intramolecular interactions. Specifically, the association of the Src homology 3 (SH3) domain and sequences situated between the SH3 and GUK domains with the GUK domain was found to interfere with GKAP binding. In contrast, N-terminal sequences that precede the first PDZ domain in SAP97, facilitated GKAP binding via its association with the SH3 domain. Utilizing crystal structure data available for PDZ, SH3 and GUK domains, molecular models of SAP97 were generated. These models revealed that SAP97 can exist in a compact U-shaped conformation in which the N-terminal domain folds back and interacts with the SH3 and GUK domains. These models support the biochemical data and provide new insights into how intramolecular interactions may regulate the association of SAP97 with its binding partners. PMID:11060025
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moravcevic, Katarina; Mendrola, Jeannine M.; Schmitz, Karl R.
Phospholipid-binding modules such as PH, C1, and C2 domains play crucial roles in location-dependent regulation of many protein kinases. Here, we identify the KA1 domain (kinase associated-1 domain), found at the C terminus of yeast septin-associated kinases (Kcc4p, Gin4p, and Hsl1p) and human MARK/PAR1 kinases, as a membrane association domain that binds acidic phospholipids. Membrane localization of isolated KA1 domains depends on phosphatidylserine. Using X-ray crystallography, we identified a structurally conserved binding site for anionic phospholipids in KA1 domains from Kcc4p and MARK1. Mutating this site impairs membrane association of both KA1 domains and intact proteins and reveals the importancemore » of phosphatidylserine for bud neck localization of yeast Kcc4p. Our data suggest that KA1 domains contribute to coincidence detection, allowing kinases to bind other regulators (such as septins) only at the membrane surface. These findings have important implications for understanding MARK/PAR1 kinases, which are implicated in Alzheimer's disease, cancer, and autism.« less
Munde, Manoj; Poon, Gregory M. K.; Wilson, W. David
2013-01-01
Members of the ETS family of transcription factors regulate a functionally diverse array of genes. All ETS proteins share a structurally-conserved but sequence-divergent DNA-binding domain, known as the ETS domain. Although the structure and thermodynamics of the ETS-DNA complexes are well known, little is known about the kinetics of sequence recognition, a facet that offers potential insight into its molecular mechanism. We have characterized DNA binding by the ETS domain of PU.1 by biosensor-surface plasmon resonance (SPR). SPR analysis revealed a striking kinetic profile for DNA binding by the PU.1 ETS domain. At low salt concentrations, it binds high-affinity cognate DNA with a very slow association rate constant (≤105 M−1 s−1), compensated by a correspondingly small dissociation rate constant. The kinetics are strongly salt-dependent but mutually balance to produce a relatively weak dependence in the equilibrium constant. This profile contrasts sharply with reported data for other ETS domains (e.g., Ets-1, TEL) for which high-affinity binding is driven by rapid association (>107 M−1 s−1). We interpret this difference in terms of the hydration properties of ETS-DNA binding and propose that at least two mechanisms of sequence recognition are employed by this family of DNA-binding domain. Additionally, we use SPR to demonstrate the potential for pharmacological inhibition of sequence-specific ETS-DNA binding, using the minor groove-binding distamycin as a model compound. Our work establishes SPR as a valuable technique for extending our understanding of the molecular mechanisms of ETS-DNA interactions as well as developing potential small-molecule agents for biotechnological and therapeutic purposes. PMID:23416556
Valdramidou, Dimitra; Humphries, Martin J; Mould, A Paul
2008-11-21
Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS.
Tatematsu, Kenji; Iijima, Masumi; Yoshimoto, Nobuo; Nakai, Tadashi; Okajima, Toshihide; Kuroda, Shun'ichi
2016-04-15
The bio-nanocapsule (BNC) is an approximately 30-nm particle comprising the hepatitis B virus (HBV) envelope L protein and a lipid bilayer. The L protein harbors the HBV-derived infection machinery; therefore, BNC can encapsulate payloads such as drugs, nucleic acids, and proteins and deliver them into human hepatocytes specifically in vitro and in vivo. To diversify the possible functions of BNC, we generated ZZ-BNC by replacing the domain indispensable for the human hepatotrophic property of BNC (N-terminal region of L protein) with the tandem form of the IgG Fc-binding Z domain of Staphylococcus aureus protein A. Thus, the ZZ-BNC is an active targeting-based drug delivery system (DDS) nanocarrier that depends on the specificity of the IgGs displayed. However, the Z domain limits the animal species and subtypes of IgGs that can be displayed on ZZ-BNC. In this study, we introduced into BNC an Ig κ light chain-binding B1 domain of Finegoldia magna protein L (protein-L B1 domain) and an Ig Fc-binding C2 domain of Streptococcus species protein G (protein-G C2 domain) to produce LG-BNC. The LL-BNC was constructed in a similar way using a tandem form of the protein-L B1 domain. Both LG-BNC and LL-BNC could display rat IgGs, mouse IgG1, human IgG3, and human IgM, all of which not binding to ZZ-BNC, and accumulate in target cells in an antibody specificity-dependent manner. Thus, these BNCs could display a broad spectrum of Igs, significantly improving the prospects for BNCs as active targeting-based DDS nanocarriers. We previously reported that ZZ-BNC, bio-nanocapsule deploying the IgG-binding Z domain of protein A, could display cell-specific antibody in an oriented immobilization manner, and act as an active targeting-based DDS nanocarrier. Since the Z domain can only bind to limited types of Igs, we generated BNCs deploying other Ig-binding domains: LL-BNC harboring the tandem form of Ig-binding domain of protein L, and LG-BNC harboring the Ig binding domains of protein L and protein G sequentially. Both BNCs could display a broader spectrum of Igs than does the ZZ-BNC. When these BNCs displayed anti-CD11c IgG or anti-EGFR IgG, both of which cannot bind to Z domain, they could bind to and then enter their respective target cells. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Mitra, Sharmistha; Traughber, C. Alicia; Brannon, Mary K.; Gomez, Stephanie; Capelluto, Daniel G. S.
2013-01-01
A large number of cellular signaling processes are directed through internalization, via endocytosis, of polyubiquitinated cargo proteins. Tollip is an adaptor protein that facilitates endosomal cargo sorting for lysosomal degradation. Tollip preferentially binds phosphatidylinositol 3-phosphate (PtdIns(3)P) via its C2 domain, an association that may be required for endosomal membrane targeting. Here, we show that Tollip binds ubiquitin through its C2 and CUE domains and that its association with the C2 domain inhibits PtdIns(3)P binding. NMR analysis demonstrates that the C2 and CUE domains bind to overlapping sites on ubiquitin, suggesting that two ubiquitin molecules associate with Tollip simultaneously. Hydrodynamic studies reveal that ubiquitin forms heterodimers with the CUE domain, indicating that the association disrupts the dimeric state of the CUE domain. We propose that, in the absence of polyubiquitinated cargo, the dual binding of ubiquitin partitions Tollip into membrane-bound and membrane-free states, a function that contributes to the engagement of Tollip in both membrane trafficking and cytosolic pathways. PMID:23880770
The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein.
Barkan, Alice; Klipcan, Larik; Ostersetzer, Oren; Kawamura, Tetsuya; Asakura, Yukari; Watkins, Kenneth P
2007-01-01
The CRS1-YhbY domain (also called the CRM domain) is represented as a stand-alone protein in Archaea and Bacteria, and in a family of single- and multidomain proteins in plants. The function of this domain is unknown, but structural data and the presence of the domain in several proteins known to interact with RNA have led to the proposal that it binds RNA. Here we describe a phylogenetic analysis of the domain, its incorporation into diverse proteins in plants, and biochemical properties of a prokaryotic and eukaryotic representative of the domain family. We show that a bacterial member of the family, Escherichia coli YhbY, is associated with pre-50S ribosomal subunits, suggesting that YhbY functions in ribosome assembly. GFP fused to a single-domain CRM protein from maize localizes to the nucleolus, suggesting that an analogous activity may have been retained in plants. We show further that an isolated maize CRM domain has RNA binding activity in vitro, and that a small motif shared with KH RNA binding domains, a conserved "GxxG" loop, contributes to its RNA binding activity. These and other results suggest that the CRM domain evolved in the context of ribosome function prior to the divergence of Archaea and Bacteria, that this function has been maintained in extant prokaryotes, and that the domain was recruited to serve as an RNA binding module during the evolution of plant genomes.
Qiao, Huan; May, James M.
2013-01-01
SVCT2 is the major transporter mediating vitamin C uptake in most organs. Its expression is driven by two promoters (CpG-poor exon 1a promoter and CpG-rich exon 1b promoter). In this work we mapped discrete elements within the proximal CpG-poor promoter responsible for the exon 1a transcription. We identified two E boxes for USF binding and one Y box for NF-Y binding. We further show that the formation of an NFY/USF complex on the exon 1a promoter amplifies each other's ability to bind to the promoter in a cooperativity-dependent manner and is absolutely required for the full activity of the exon 1a promoter. The analysis of the CpG site located at the upstream USF binding site in the promoter showed a strong correlation between expression and demethylation. It was also shown that the exon 1a transcription was induced in cell culture treated with demethylating agent decitabine. The specific methylation of this CpG site impaired both the binding of USF and the formation of the functional NF-Y/USF complex as well as promoter activity, suggesting its importance for the cell-specific transcription. Thus CpG methylation at the upstream USF binding site functions in establishing and maintaining cell-specific transcription from the CpG-poor SVCT2 exon 1a promoter. PMID:21770893
Miljkovic, Marija; Bertani, Iris; Fira, Djordje; Jovcic, Branko; Novovic, Katarina; Venturi, Vittorio; Kojic, Milan
2016-01-01
AggLb is the largest (318.6 kDa) aggregation-promoting protein of Lactobacillus paracasei subsp. paracasei BGNJ1-64 responsible for forming large cell aggregates, which causes auto-aggregation, collagen binding and pathogen exclusion in vitro. It contains an N-terminus leader peptide, followed by six successive collagen binding domains, 20 successive repeats (CnaB-like domains) and an LPXTG sorting signal at the C-terminus for cell wall anchoring. Experimental information about the roles of the domains of AggLb is currently unknown. To define the domain that confers cell aggregation and the key domains for interactions of specific affinity between AggLb and components of the extracellular matrix, we constructed a series of variants of the aggLb gene and expressed them in Lactococcus lactis subsp. lactis BGKP1-20 using a lactococcal promoter. All of the variants contained a leader peptide, an inter collagen binding-CnaB domain region (used to raise an anti-AggLb antibody), an anchor domain and a different number of collagen binding and CnaB-like domains. The role of the collagen binding repeats of the N-terminus in auto-aggregation and binding to collagen and fibronectin was confirmed. Deletion of the collagen binding repeats II, III, and IV resulted in a loss of the strong auto-aggregation, collagen and fibronectin binding abilities whereas the biofilm formation capability was increased. The strong auto-aggregation, collagen and fibronectin binding abilities of AggLb were negatively correlated to biofilm formation.
Structural Determinants of DNA Binding by a P. falciparum ApiAP2 Transcriptional Regulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindner, Scott E.; De Silva, Erandi K.; Keck, James L.
2010-11-05
Putative transcription factors have only recently been identified in the Plasmodium spp., with the major family of regulators comprising the Apicomplexan Apetala2 (AP2) proteins. To better understand the DNA-binding mechanisms of these transcriptional regulators, we characterized the structure and in vitro function of an AP2 DNA-binding domain from a prototypical Apicomplexan AP2 protein, PF14{_}0633 from Plasmodium falciparum. The X-ray crystal structure of the PF14{_}0633 AP2 domain bound to DNA reveals a {beta}-sheet fold that binds the DNA major groove through base-specific and backbone contacts; a prominent {alpha}-helix supports the {beta}-sheet structure. Substitution of predicted DNA-binding residues with alanine weakened ormore » eliminated DNA binding in solution. In contrast to plant AP2 domains, the PF14{_}0633 AP2 domain dimerizes upon binding to DNA through a domain-swapping mechanism in which the {alpha}-helices of the AP2 domains pack against the {beta}-sheets of the dimer mates. DNA-induced dimerization of PF14{_}0633 may be important for tethering two distal DNA loci together in the nucleus and/or for inducing functional rearrangements of its domains to facilitate transcriptional regulation. Consistent with a multisite binding mode, at least two copies of the consensus sequence recognized by PF14{_}0633 are present upstream of a previously identified group of sporozoite-stage genes. Taken together, these findings illustrate how Plasmodium has adapted the AP2 DNA-binding domain for genome-wide transcriptional regulation.« less
Leonard, Paul G.; Bezar, Ian F.; Sidote, David J.; Stock, Ann M.
2012-01-01
The AgrA transcription factor regulates the quorum-sensing response in Staphylococcus aureus, controlling the production of hemolysins and other virulence factors. AgrA binds to DNA via its C-terminal LytTR domain, a domain not found in humans but common in many pathogenic bacteria, making it a potential target for antimicrobial development. We have determined the crystal structure of the apo AgrA LytTR domain and screened a library of 500 fragment compounds to find inhibitors of AgrA DNA-binding activity. Using NMR, the binding site for five compounds has been mapped to a common locus at the C-terminal end of the LytTR domain, a site known to be important for DNA-binding activity. Three of these compounds inhibit AgrA DNA binding. These results provide the first evidence that LytTR domains can be targeted by small organic compounds. PMID:23181972
Biophysical Basis of the Binding of WWOX Tumor Suppressor to WBP1 and WBP2 Adaptors
McDonald, Caleb B.; Buffa, Laura; Bar-Mag, Tomer; Salah, Zaidoun; Bhat, Vikas; Mikles, David C.; Deegan, Brian J.; Seldeen, Kenneth L.; Malhotra, Arun; Sudol, Marius; Aqeilan, Rami I.; Nawaz, Zafar; Farooq, Amjad
2012-01-01
The WWOX tumor suppressor participates in a diverse array of cellular activities by virtue of its ability to recognize WBP1 and WBP2 signaling adaptors among a wide variety of other ligands. Herein, using a multitude of biophysical techniques, we provide evidence that while the WW1 domain of WWOX binds to PPXY motifs within WBP1 and WBP2 in a physiologically-relevant manner, the WW2 domain exhibits no affinity toward any of these PPXY motifs. Importantly, our data suggest that while R25/W44 residues located within the binding pocket of triple-stranded β-fold of WW1 domain are critical for the recognition of PPXY ligands, they are replaced by the chemically-distinct E66/Y85 duo at structurally-equivalent positions within the WW2 domain, thereby accounting for its failure to bind PPXY ligands. Predictably, introduction of E66R/Y85W double-substitution within the WW2 domain not only results in gain-of-function but the resulting engineered domain, hereinafter referred to as WW2_RW, also appears to be a much stronger binding partner of WBP1 and WBP2 than the wild type WW1 domain. We also show that while the WW1 domain is structurally disordered and folds upon ligand binding, the WW2 domain not only adopts a fully structured conformation but also aids stabilization and ligand binding to WW1 domain. This salient observation implies that the WW2 domain likely serves as a chaperone to augment the physiological function of WW1 domain within WWOX. Collectively, our study lays the groundwork for understanding the molecular basis of a key protein-protein interaction pertinent to human health and disease. PMID:22634283
Molecular origin of the binding of WWOX tumor suppressor to ErbB4 receptor tyrosine kinase.
Schuchardt, Brett J; Bhat, Vikas; Mikles, David C; McDonald, Caleb B; Sudol, Marius; Farooq, Amjad
2013-12-23
The ability of WWOX tumor suppressor to physically associate with the intracellular domain (ICD) of ErbB4 receptor tyrosine kinase is believed to play a central role in downregulating the transcriptional function of the latter. Herein, using various biophysical methods, we show that while the WW1 domain of WWOX binds to PPXY motifs located within the ICD of ErbB4 in a physiologically relevant manner, the WW2 domain does not. Importantly, while the WW1 domain absolutely requires the integrity of the PPXY consensus sequence, nonconsensus residues within and flanking this motif do not appear to be critical for binding. This strongly suggests that the WW1 domain of WWOX is rather promiscuous toward its cellular partners. We also provide evidence that the lack of binding of the WW2 domain of WWOX to PPXY motifs is due to the replacement of a signature tryptophan, lining the hydrophobic ligand binding groove, with tyrosine (Y85). Consistent with this notion, the Y85W substitution within the WW2 domain exquisitely restores its binding to PPXY motifs in a manner akin to the binding of the WW1 domain of WWOX. Of particular significance is the observation that the WW2 domain augments the binding of the WW1 domain to ErbB4, implying that the former serves as a chaperone within the context of the WW1-WW2 tandem module of WWOX in agreement with our findings reported previously. Altogether, our study sheds new light on the molecular basis of an important WW-ligand interaction involved in mediating a plethora of cellular processes.
Molecular Origin of the Binding of WWOX Tumor Suppressor to ErbB4 Receptor Tyrosine Kinase
Schuchardt, Brett J.; Bhat, Vikas; Mikles, David C.; McDonald, Caleb B.; Sudol, Marius; Farooq, Amjad
2014-01-01
The ability of WWOX tumor suppressor to physically associate with the intracellular domain (ICD) of ErbB4 receptor tyrosine kinase is believed to play a central role in down-regulating the transcriptional function of the latter. Herein, using various biophysical methods, we show that while the WW1 domain of WWOX binds to PPXY motifs located within the ICD of ErbB4 in a physiologically-relevant manner, the WW2 domain does not. Importantly, while the WW1 domain absolutely requires the integrity of the PPXY consensus sequence, non-consensus residues within and flanking this motif do not appear to be critical for binding. This strongly suggests that the WW1 domain of WWOX is rather promiscuous toward its cellular partners. We also provide evidence that the lack of binding of WW2 domain of WWOX to PPXY motifs is due to the replacement of a signature tryptophan, lining the hydrophobic ligand binding groove, with tyrosine (Y85). Consistent with this notion, the Y85W substitution within the WW2 domain exquisitely restores its binding to PPXY motifs in a manner akin to the binding of WW1 domain of WWOX. Of particular significance is the observation that WW2 domain augments the binding of WW1 domain to ErbB4, implying that the former serves as a chaperone within the context of the WW1–WW2 tandem module of WWOX in agreement with our findings reported previously. Taken together, our study sheds new light on the molecular basis of an important WW-ligand interaction involved in mediating a plethora of cellular processes. PMID:24308844
Ahmad, Basir; Ahmed, Md Zulfazal; Haq, Soghra Khatun; Khan, Rizwan Hasan
2005-06-15
The effect of guanidine hydrochloride (GnHCl) on the global stability of human serum albumin (HSA) has been studied by fluorescence and circular dichroism spectroscopic measurements. The differential stability of native conformation of three HSA domains were explored by using domain-specific ligands, hemin (domain I), chloroform (domain II), bilirubin (at domain I/domain II interface) and diazepam (domain III). GnHCl induced unfolding transition curves as monitored by probes for secondary and tertiary structures were cooperative but noncoincidental. A strong ANS binding to the protein was observed around 1.8 M GnHCl, suggesting existence of intermediate states in the unfolding pathway of HSA. A gradual decrease (in the GnHCl concentration range 0.0-1.8 M) in the binding of diazepam indicates that domain III is the most labile to GnHCl denaturation. A significant increase in the binding of bilirubin up to 1.4 M GnHCl and decrease thereafter leading to complete abolishment of bilirubin binding at around 2.0 M GnHCl suggest favorable rearrangement and separation of domains I and II at 1.4 and 2.0 M GnHCl concentration, respectively. Above 1.6 M GnHCl, decrease of the binding of hemin, a ligand for domain I, chloroform, which binds in domain II and lone tryptophanyl fluorescence (Trp-214 located in domain II) indicate that at higher concentration of GnHCl domains I and II start unfolding simultaneously but the stability of domain I (7.4 Kcal/mol) is much more than domain II (4.3 Kcal/mol). A pictorial model for the unfolding of HSA domains, consistent with all these results, has been formulated, suggesting that domain III is the most labile followed by domain II while domain I is the most stable. A molten globule like state of domain III around 1.8 M GnHCl has also been identified and characterized.
Molecular Basis for Failure of “Atypical” C1 Domain of Vav1 to Bind Diacylglycerol/Phorbol Ester*
Geczy, Tamas; Peach, Megan L.; El Kazzouli, Saïd; Sigano, Dina M.; Kang, Ji-Hye; Valle, Christopher J.; Selezneva, Julia; Woo, Wonhee; Kedei, Noemi; Lewin, Nancy E.; Garfield, Susan H.; Lim, Langston; Mannan, Poonam; Marquez, Victor E.; Blumberg, Peter M.
2012-01-01
C1 domains, the recognition motif of the second messenger diacylglycerol and of the phorbol esters, are classified as typical (ligand-responsive) or atypical (not ligand-responsive). The C1 domain of Vav1, a guanine nucleotide exchange factor, plays a critical role in regulation of Vav activity through stabilization of the Dbl homology domain, which is responsible for exchange activity of Vav. Although the C1 domain of Vav1 is classified as atypical, it retains a binding pocket geometry homologous to that of the typical C1 domains of PKCs. This study clarifies the basis for its failure to bind ligands. Substituting Vav1-specific residues into the C1b domain of PKCδ, we identified five crucial residues (Glu9, Glu10, Thr11, Thr24, and Tyr26) along the rim of the binding cleft that weaken binding potency in a cumulative fashion. Reciprocally, replacing these incompatible residues in the Vav1 C1 domain with the corresponding residues from PKCδ C1b (δC1b) conferred high potency for phorbol ester binding. Computer modeling predicts that these unique residues in Vav1 increase the hydrophilicity of the rim of the binding pocket, impairing membrane association and thereby preventing formation of the ternary C1-ligand-membrane binding complex. The initial design of diacylglycerol-lactones to exploit these Vav1 unique residues showed enhanced selectivity for C1 domains incorporating these residues, suggesting a strategy for the development of ligands targeting Vav1. PMID:22351766
Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved
Long, Hannah K.; King, Hamish W.; Patient, Roger K.; Odom, Duncan T.; Klose, Robert J.
2016-01-01
DNA methylation is a repressive epigenetic modification that covers vertebrate genomes. Regions known as CpG islands (CGIs), which are refractory to DNA methylation, are often associated with gene promoters and play central roles in gene regulation. Yet how CGIs in their normal genomic context evade the DNA methylation machinery and whether these mechanisms are evolutionarily conserved remains enigmatic. To address these fundamental questions we exploited a transchromosomic animal model and genomic approaches to understand how the hypomethylated state is formed in vivo and to discover whether mechanisms governing CGI formation are evolutionarily conserved. Strikingly, insertion of a human chromosome into mouse revealed that promoter-associated CGIs are refractory to DNA methylation regardless of host species, demonstrating that DNA sequence plays a central role in specifying the hypomethylated state through evolutionarily conserved mechanisms. In contrast, elements distal to gene promoters exhibited more variable methylation between host species, uncovering a widespread dependence on nucleotide frequency and occupancy of DNA-binding transcription factors in shaping the DNA methylation landscape away from gene promoters. This was exemplified by young CpG rich lineage-restricted repeat sequences that evaded DNA methylation in the absence of co-evolved mechanisms targeting methylation to these sequences, and species specific DNA binding events that protected against DNA methylation in CpG poor regions. Finally, transplantation of mouse chromosomal fragments into the evolutionarily distant zebrafish uncovered the existence of a mechanistically conserved and DNA-encoded logic which shapes CGI formation across vertebrate species. PMID:27084945
Wang, Ming; Roberts, David L.; Paschke, Rosemary; Shea, Thomas M.; Masters, Bettie Sue Siler; Kim, Jung-Ja P.
1997-01-01
Microsomal NADPH–cytochrome P450 reductase (CPR) is one of only two mammalian enzymes known to contain both FAD and FMN, the other being nitric-oxide synthase. CPR is a membrane-bound protein and catalyzes electron transfer from NADPH to all known microsomal cytochromes P450. The structure of rat liver CPR, expressed in Escherichia coli and solubilized by limited trypsinolysis, has been determined by x-ray crystallography at 2.6 Å resolution. The molecule is composed of four structural domains: (from the N- to C- termini) the FMN-binding domain, the connecting domain, and the FAD- and NADPH-binding domains. The FMN-binding domain is similar to the structure of flavodoxin, whereas the two C-terminal dinucleotide-binding domains are similar to those of ferredoxin–NADP+ reductase (FNR). The connecting domain, situated between the FMN-binding and FNR-like domains, is responsible for the relative orientation of the other domains, ensuring the proper alignment of the two flavins necessary for efficient electron transfer. The two flavin isoalloxazine rings are juxtaposed, with the closest distance between them being about 4 Å. The bowl-shaped surface near the FMN-binding site is likely the docking site of cytochrome c and the physiological redox partners, including cytochromes P450 and b5 and heme oxygenase. PMID:9237990
Yahashiri, Atsushi; Jorgenson, Matthew A.; Weiss, David S.
2015-01-01
Bacterial SPOR domains bind peptidoglycan (PG) and are thought to target proteins to the cell division site by binding to “denuded” glycan strands that lack stem peptides, but uncertainties remain, in part because septal-specific binding has yet to be studied in a purified system. Here we show that fusions of GFP to SPOR domains from the Escherichia coli cell-division proteins DamX, DedD, FtsN, and RlpA all localize to septal regions of purified PG sacculi obtained from E. coli and Bacillus subtilis. Treatment of sacculi with an amidase that removes stem peptides enhanced SPOR domain binding, whereas treatment with a lytic transglycosylase that removes denuded glycans reduced SPOR domain binding. These findings demonstrate unequivocally that SPOR domains localize by binding to septal PG, that the physiologically relevant binding site is indeed a denuded glycan, and that denuded glycans are enriched in septal PG rather than distributed uniformly around the sacculus. Accumulation of denuded glycans in the septal PG of both E. coli and B. subtilis, organisms separated by 1 billion years of evolution, suggests that sequential removal of stem peptides followed by degradation of the glycan backbone is an ancient feature of PG turnover during bacterial cell division. Linking SPOR domain localization to the abundance of a structure (denuded glycans) present only transiently during biogenesis of septal PG provides a mechanism for coordinating the function of SPOR domain proteins with the progress of cell division. PMID:26305949
THE ROLE OF PROTEIN BINDING OF TRIVALENT ARSENICALS IN ARSENIC CARCINOGENESIS AND TOXICITY
Three of the most plausible biological theories of arsenic carcinogenesis are protein binding, oxidative stress and altered DNA methylation. This review presents the role of trivalent arsenicals binding to proteins in arsenic carcinogenesis. Using vacuum filtration based receptor...
Roy, A; Mondal, S; Kordower, J H; Pahan, K
2015-08-27
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Despite intense investigations, little is known about its pathological mediators. Here, we report the marked upregulation of RANTES (regulated on activation, normal T cell expressed and secreted) and eotaxin, chemokines that are involved in T cell trafficking, in the serum of hemiparkinsonian monkeys. Interestingly, 1-methyl-4-phenylpyridinium (MPP(+)), a Parkinsonian toxin, increased the expression of RANTES and eotaxin in mouse microglial cells. The presence of NF-κB binding sites in promoters of RANTES and eotaxin and down-regulation of these genes by NEMO-binding domain (NBD) peptide, selective inhibitor of induced NF-κB activation, in MPP(+)-stimulated microglial cells suggest that the activation of NF-κB plays an important role in the upregulation of these two chemokines. Consistently, serum enzyme-linked immuno assay (ELISA) and nigral immunohistochemistry further confirmed that these chemokines were strongly upregulated in MPTP-induced hemiparkinsonian monkeys and that treatment with NBD peptides effectively inhibited the level of these chemokines. Furthermore, the microglial upregulation of RANTES in the nigra of hemiparkinsonian monkeys could be involved in the altered adaptive immune response in the brain as we observed greater infiltration of CD8(+) T cells around the perivascular niche and deep brain parenchyma of hemiparkinsonian monkeys as compared to control. The treatment of hemiparkinsonian monkeys with NBD peptides decreased the microglial expression of RANTES and attenuated the infiltration of CD8(+) T cells in nigra. These results indicate the possible involvement of chemokine-dependent adaptive immune response in Parkinsonism. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Patra, Niladri; Ioannidis, Efthymios I.
2016-01-01
Catechol O-methyltransferase (COMT) is a SAM- and Mg2+-dependent methyltransferase that regulates neurotransmitters through methylation. Simulations and experiments have identified divergent catecholamine substrate orientations in the COMT active site: molecular dynamics simulations have favored a monodentate coordination of catecholate substrates to the active site Mg2+, and crystal structures instead preserve bidentate coordination along with short (2.65 Å) methyl donor-acceptor distances. We carry out longer dynamics (up to 350 ns) to quantify interconversion between bidentate and monodentate binding poses. We provide a systematic determination of the relative free energy of the monodentate and bidentate structures in order to identify whether structural differences alter the nature of the methyl transfer mechanism and source of enzymatic rate enhancement. We demonstrate that the bidentate and monodentate binding modes are close in energy but separated by a 7 kcal/mol free energy barrier. Analysis of interactions in the two binding modes reveals that the driving force for monodentate catecholate orientations in classical molecular dynamics simulations is derived from stronger electrostatic stabilization afforded by alternate Mg2+ coordination with strongly charged active site carboxylates. Mixed semi-empirical-classical (SQM/MM) substrate C-O distances (2.7 Å) for the bidentate case are in excellent agreement with COMT X-ray crystal structures, as long as charge transfer between the substrates, Mg2+, and surrounding ligands is permitted. SQM/MM free energy barriers for methyl transfer from bidentate and monodentate catecholate configurations are comparable at around 21–22 kcal/mol, in good agreement with experiment (18–19 kcal/mol). Overall, the work suggests that both binding poses are viable for methyl transfer, and accurate descriptions of charge transfer and electrostatics are needed to provide balanced relative barriers when multiple binding poses are accessible, for example in other transferases. PMID:27564542
Jayanthi, Srinivas; Kathir, Karuppanan Muthusamy; Rajalingam, Dakshinamurthy; Furr, Mercede; Daily, Anna; Thurman, Ryan; Rutherford, Lindsay; Chandrashekar, Reena; Adams, Paul; Prudovsky, Igor; Suresh Kumar, Thallapuranam Krishnaswamy
2014-01-01
Fibroblast growth factor 1 (FGF1) is a heparin-binding proangiogenic protein. FGF1 lacks the conventional N-terminal signal peptide required for secretion through the endoplasmic reticulum (ER) -Golgi secretory pathway. FGF1 is released through a Cu2+ - mediated nonclassical secretion pathway. The secretion of FGF1 involves the formation of a Cu2+- mediated multiprotein release complex (MRC) including FGF1, S100A13 (a calcium-binding protein) and p40 synaptotagmin (Syt1). It is believed that binding of Cu2+ to the C2B domain is important for the release of FGF1 in to the extracellular medium. In this study, using a variety of biophysical studies, Cu2+ and lipid interactions of the C2B domain of Syt1were characterized. Isothermal titration calorimetry (ITC) experiments reveal that C2B domain binds to Cu2+ in a biphasic manner involving an initial endothermic and a subsequent exothermic phase. Fluorescence energy transfer experiments using Tb3+ show that there are two Cu2+- binding pockets on the C2B domain, and one of these is also a Ca2+- binding site. Lipid-binding studies using ITC demonstrate that the C2B domain preferentially binds to small unilamellar vesicles of phosphatidyl serine (PS). Results of the differential scanning calorimetry and limited trypsin digestion experiments suggest that C2B domain is marginally destabilized upon binding to PS vesicles. These results, for the first time, suggest that the main role of the C2B domain of Syt1 is to serve as an anchor for the FGF1 MRC on the membrane bilayer. In addition, binding of the C2B domain to the lipid bilayer is shown to significantly decrease the binding affinity of the protein to Cu2+. The study provides valuable insights on the sequence of structural events that occur in the nonclassical secretion of FGF1. PMID:25224745
Knezovich, Jaysen Gregory; Ramsay, Michèle
2012-01-01
Imprinted loci play a critical role in fetal development. Their expression is often regulated by CCCTC-binding factor (CTCF) protein binding at imprinting control regions (ICRs). Prenatal alcohol exposure has been shown to reduce global DNA methylation in the developing mouse fetus. This study explored the effect of preconception paternal alcohol exposure on DNA methylation at two paternally methylated ICRs (H19 and Rasgrf1) in the sperm of exposed males and somatic DNA of sired offspring. Significant reductions at the H19 CTCF 1 (p = 0.0027) and CTCF 2 (p = 0.0009) binding sites were observed in the offspring of ethanol-treated sires, which was significantly correlated with reduced weight at postnatal days 35-42 (p < 0.05). As birth weight was unaffected and growth was only delayed during the postnatal weaning period, with subsequent re-convergence, we hypothesize that this may be the result of a mental deficit causing delayed establishment of independent feeding following weaning and would explain why this effect is transient. No difference in DNA methylation was observed in the sperm of alcohol-exposed males, indicating that the transmission of the epigenetic signal at conception is not due to altered methylation, but may be the result of an RNA-mediated mechanism or altered chromatin remodeling.
Deekonda, Srinivas; Rankin, David; Davis, Peg; Lai, Josephine; Vanderah, Todd W; Porecca, Frank; Hruby, Victor J
2016-01-15
Here, we report the design, synthesis and structure activity relationship of novel small molecule opioid ligands based on 5-amino substituted (tetrahydronaphthalen-2-yl)methyl moiety with N-phenyl-N-(piperidin-2-yl)propionamide derivatives. We synthesized various molecules including amino, amide and hydroxy substitution on the 5th position of the (tetrahydronaphthalen-2-yl)methyl moiety. In our further designs we replaced the (tetrahydronaphthalen-2-yl)methyl moiety with benzyl and phenethyl moiety. These N-phenyl-N-(piperidin-2-yl)propionamide analogues showed moderate to good binding affinities (850-4 nM) and were selective towards the μ opioid receptor over the δ opioid receptors. From the structure activity relationship studies, we found that a hydroxyl substitution at the 5th position of (tetrahydronapthalen-2yl)methyl group, ligands 19 and 20, showed excellent binding affinities 4 and 5 nM, respectively, and 1000 fold selectivity towards the μ opioid relative to the delta opioid receptor. The ligand 19 showed potent agonist activities 75±21 nM, and 190±42 nM in the GPI and MVD assays. Surprisingly the fluoro analogue 20 showed good agonist activities in MVD assays 170±42 nM, in contrast to its binding affinity results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Garten, Matthias; Prévost, Coline; Cadart, Clotilde; Gautier, Romain; Bousset, Luc; Melki, Ronald; Bassereau, Patricia; Vanni, Stefano
2015-06-28
Alpha-synuclein (AS) is a synaptic protein that is directly involved in Parkinson's disease due to its tendency to form protein aggregates. Since AS aggregation can be dependent on the interactions between the protein and the cell plasma membrane, elucidating the membrane binding properties of AS is of crucial importance to establish the molecular basis of AS aggregation into toxic fibrils. Using a combination of in vitro reconstitution experiments based on Giant Unilamellar Vesicles (GUVs), confocal microscopy and all-atom molecular dynamics simulations, we have investigated the membrane binding properties of AS, with a focus on the relative contribution of hydrophobic versus electrostatic interactions. In contrast with previous observations, we did not observe any binding of AS to membranes containing the ganglioside GM1, even at relatively high GM1 content. AS, on the other hand, showed a stronger affinity for neutral flat membranes consisting of methyl-branched lipids. To rationalize these results, we used all-atom molecular dynamics simulations to investigate the influence of methyl-branched lipids on interfacial membrane properties. We found that methyl-branched lipids promote the membrane adsorption of AS by creating shallow lipid-packing defects to a larger extent than polyunsaturated and monounsaturated lipids. Our findings suggest that methyl-branched lipids may constitute a remarkably adhesive substrate for peripheral proteins that adsorb on membranes via hydrophobic insertions.
NASA Astrophysics Data System (ADS)
Al-Omari, S.
2013-07-01
The interaction between pyropheophorbide methyl ester (PPME) and Cu2+ was investigated using UV-vis and fluorescence spectrscopy. Study of the binding interaction between PPME and Cu2+ could contribute to understanding of its pharmacokinetics and pharmacodynamics. Parameters of the static and dynamic fluorescence quenching of PPME-Cu2+ association were calculated at different temperatures. For binding site of 1:1 at 299 K, the static binding constant (kS), the static isosbestic concentration (CS{ iso}), the dynamic binding constant (kD), and the dynamic isosbestic concentration (CD{ iso }) are, respectively, 61 M-1, 0.0164 M, 75 M-1, and 0.0133 M. The concentrations and efficiencies of the intermediates species were modeled. Satisfactory correspondence between the experimental and calculated results was found.
Structure of the E2 DNA-binding domain from human papillomavirus serotype 31 at 2.4 A.
Bussiere, D E; Kong, X; Egan, D A; Walter, K; Holzman, T F; Lindh, F; Robins, T; Giranda, V L
1998-11-01
The papillomaviruses are a family of small double-stranded DNA viruses which exclusively infect epithelial cells and stimulate the proliferation of those cells. A key protein within the papillomavirus life-cycle is known as the E2 (Early 2) protein and is responsible for regulating viral transcription from all viral promoters as well as for replication of the papillomavirus genome in tandem with another protein known as E1. The E2 protein itself consists of three functional domains: an N-terminal trans-activation domain, a proline-rich linker, and a C-terminal DNA-binding domain. The first crystal structure of the human papillomavirus, serotype 31 (HPV-31), E2 DNA-binding domain has been determined at 2.4 A resolution. The HPV DNA-binding domain monomer consists of two beta-alpha-beta repeats of approximately equal length and is arranged as to have an anti-parallel beta-sheet flanked by the two alpha-helices. The monomers form the functional in vivo dimer by association of the beta-sheets of each monomer so as to form an eight-stranded anti-parallel beta-barrel at the center of the dimer, with the alpha-helices lining the outside of the barrel. The overall structure of HVP-31 E2 DNA-binding domain is similar to both the bovine papillomavirus E2-binding domain and the Epstein-Barr nuclear antigen-1 DNA-binding domain.
Andersen, O M; Petersen, H H; Jacobsen, C; Moestrup, S K; Etzerodt, M; Andreasen, P A; Thøgersen, H C
2001-07-01
The low-density-lipoprotein-receptor (LDLR)-related protein (LRP) is composed of several classes of domains, including complement-type repeats (CR), which occur in clusters that contain binding sites for a multitude of different ligands. Each approximately 40-residue CR domain contains three conserved disulphide linkages and an octahedral Ca(2+) cage. LRP is a scavenging receptor for ligands from extracellular fluids, e.g. alpha(2)-macroglobulin (alpha(2)M)-proteinase complexes, lipoprotein-containing particles and serine proteinase-inhibitor complexes, like the complex between urokinase-type plasminogen activator (uPA) and the plasminogen activator inhibitor-1 (PAI-1). In the present study we analysed the interaction of the uPA-PAI-1 complex with an ensemble of fragments representing a complete overlapping set of two-domain fragments accounting for the ligand-binding cluster II (CR3-CR10) of LRP. By ligand blotting, solid-state competition analysis and surface-plasmon-resonance analysis, we demonstrate binding to multiple CR domains, but show a preferential interaction between the uPA-PAI-1 complex and a two-domain fragment comprising CR domains 5 and 6 of LRP. We demonstrate that surface-exposed aspartic acid and tryptophan residues at identical positions in the two homologous domains, CR5 and CR6 (Asp(958,CR5), Asp(999,CR6), Trp(953,CR5) and Trp(994,CR6)), are critical for the binding of the complex as well as for the binding of the receptor-associated protein (RAP) - the folding chaperone/escort protein required for transport of LRP to the cell surface. Accordingly, the present work provides (1) an identification of a preferred binding site within LRP CR cluster II; (2) evidence that the uPA-PAI-1 binding site involves residues from two adjacent protein domains; and (3) direct evidence identifying specific residues as important for the binding of uPA-PAI-1 as well as for the binding of RAP.
Cooper, J A; Kashishian, A
1993-01-01
We have used a transient expression system and mutant platelet-derived growth factor (PDGF) receptors to study the binding specificities of the Src homology 2 (SH2) regions of the Ras GTPase-activator protein (GAP) and the p85 alpha subunit of phosphatidylinositol 3-kinase (PI3 kinase). A number of fusion proteins, each tagged with an epitope allowing recognition by a monoclonal antibody, were expressed at levels comparable to those of endogenous GAP. Fusion proteins containing the central SH2-SH3-SH2 region of GAP or the C-terminal region of p85 alpha, which includes two SH2 domains, bound to PDGF receptors in response to PDGF stimulation. Both fusion proteins showed the same requirements for tyrosine phosphorylation sites in the PDGF receptor as the full-length proteins from which they were derived, i.e., binding of the GAP fusion protein was reduced by mutation of Tyr-771, and binding of the p85 fusion protein was reduced by mutation of Tyr-740, Tyr-751, or both residues. Fusion proteins containing single SH2 domains from either GAP or p85 alpha did not bind detectably to PDGF receptors in this system, suggesting that two SH2 domains in a single polypeptide cooperate to raise the affinity of binding. The sequence specificities of individual SH2 domains were deduced from the binding properties of fusion proteins containing one SH2 domain from GAP and another from p85. The results suggest that the C-terminal GAP SH2 domain specifies binding to Tyr-771, the C-terminal p85 alpha SH2 domain binds to either Tyr-740 or Tyr-751, and each protein's N-terminal SH2 domain binds to unidentified phosphorylation sites.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8382774
Raman, Rajeev; Rajanikanth, V; Palaniappan, Raghavan U M; Lin, Yi-Pin; He, Hongxuan; McDonough, Sean P; Sharma, Yogendra; Chang, Yung-Fu
2010-12-29
Many bacterial surface exposed proteins mediate the host-pathogen interaction more effectively in the presence of Ca²+. Leptospiral immunoglobulin-like (Lig) proteins, LigA and LigB, are surface exposed proteins containing Bacterial immunoglobulin like (Big) domains. The function of proteins which contain Big fold is not known. Based on the possible similarities of immunoglobulin and βγ-crystallin folds, we here explore the important question whether Ca²+ binds to a Big domains, which would provide a novel functional role of the proteins containing Big fold. We selected six individual Big domains for this study (three from the conserved part of LigA and LigB, denoted as Lig A3, Lig A4, and LigBCon5; two from the variable region of LigA, i.e., 9(th) (Lig A9) and 10(th) repeats (Lig A10); and one from the variable region of LigB, i.e., LigBCen2. We have also studied the conserved region covering the three and six repeats (LigBCon1-3 and LigCon). All these proteins bind the calcium-mimic dye Stains-all. All the selected four domains bind Ca²+ with dissociation constants of 2-4 µM. Lig A9 and Lig A10 domains fold well with moderate thermal stability, have β-sheet conformation and form homodimers. Fluorescence spectra of Big domains show a specific doublet (at 317 and 330 nm), probably due to Trp interaction with a Phe residue. Equilibrium unfolding of selected Big domains is similar and follows a two-state model, suggesting the similarity in their fold. We demonstrate that the Lig are Ca²+-binding proteins, with Big domains harbouring the binding motif. We conclude that despite differences in sequence, a Big motif binds Ca²+. This work thus sets up a strong possibility for classifying the proteins containing Big domains as a novel family of Ca²+-binding proteins. Since Big domain is a part of many proteins in bacterial kingdom, we suggest a possible function these proteins via Ca²+ binding.
Palaniappan, Raghavan U. M.; Lin, Yi-Pin; He, Hongxuan; McDonough, Sean P.; Sharma, Yogendra; Chang, Yung-Fu
2010-01-01
Background Many bacterial surface exposed proteins mediate the host-pathogen interaction more effectively in the presence of Ca2+. Leptospiral immunoglobulin-like (Lig) proteins, LigA and LigB, are surface exposed proteins containing Bacterial immunoglobulin like (Big) domains. The function of proteins which contain Big fold is not known. Based on the possible similarities of immunoglobulin and βγ-crystallin folds, we here explore the important question whether Ca2+ binds to a Big domains, which would provide a novel functional role of the proteins containing Big fold. Principal Findings We selected six individual Big domains for this study (three from the conserved part of LigA and LigB, denoted as Lig A3, Lig A4, and LigBCon5; two from the variable region of LigA, i.e., 9th (Lig A9) and 10th repeats (Lig A10); and one from the variable region of LigB, i.e., LigBCen2. We have also studied the conserved region covering the three and six repeats (LigBCon1-3 and LigCon). All these proteins bind the calcium-mimic dye Stains-all. All the selected four domains bind Ca2+ with dissociation constants of 2–4 µM. Lig A9 and Lig A10 domains fold well with moderate thermal stability, have β-sheet conformation and form homodimers. Fluorescence spectra of Big domains show a specific doublet (at 317 and 330 nm), probably due to Trp interaction with a Phe residue. Equilibrium unfolding of selected Big domains is similar and follows a two-state model, suggesting the similarity in their fold. Conclusions We demonstrate that the Lig are Ca2+-binding proteins, with Big domains harbouring the binding motif. We conclude that despite differences in sequence, a Big motif binds Ca2+. This work thus sets up a strong possibility for classifying the proteins containing Big domains as a novel family of Ca2+-binding proteins. Since Big domain is a part of many proteins in bacterial kingdom, we suggest a possible function these proteins via Ca2+ binding. PMID:21206924
Quantifying domain-ligand affinities and specificities by high-throughput holdup assay
Vincentelli, Renaud; Luck, Katja; Poirson, Juline; Polanowska, Jolanta; Abdat, Julie; Blémont, Marilyne; Turchetto, Jeremy; Iv, François; Ricquier, Kevin; Straub, Marie-Laure; Forster, Anne; Cassonnet, Patricia; Borg, Jean-Paul; Jacob, Yves; Masson, Murielle; Nominé, Yves; Reboul, Jérôme; Wolff, Nicolas; Charbonnier, Sebastian; Travé, Gilles
2015-01-01
Many protein interactions are mediated by small linear motifs interacting specifically with defined families of globular domains. Quantifying the specificity of a motif requires measuring and comparing its binding affinities to all its putative target domains. To this aim, we developed the high-throughput holdup assay, a chromatographic approach that can measure up to a thousand domain-motif equilibrium binding affinities per day. Extracts of overexpressed domains are incubated with peptide-coated resins and subjected to filtration. Binding affinities are deduced from microfluidic capillary electrophoresis of flow-throughs. After benchmarking the approach on 210 PDZ-peptide pairs with known affinities, we determined the affinities of two viral PDZ-binding motifs derived from Human Papillomavirus E6 oncoproteins for 209 PDZ domains covering 79% of the human PDZome. We obtained exquisite sequence-dependent binding profiles, describing quantitatively the PDZome recognition specificity of each motif. This approach, applicable to many categories of domain-ligand interactions, has a wide potential for quantifying the specificities of interactomes. PMID:26053890
Cuya, Teobaldo; Gonçalves, Arlan da Silva; da Silva, Jorge Alberto Valle; Ramalho, Teodorico C; Kuca, Kamil; C C França, Tanos
2017-10-27
The oximes 4-carbamoyl-1-[({2-[(E)-(hydroxyimino) methyl] pyridinium-1-yl} methoxy) methyl] pyridinium (known as HI-6) and 3-carbamoyl-1-[({2-[(E)-(hydroxyimino) methyl] pyridinium-1-yl} methoxy) methyl] pyridinium (known as HS-6) are isomers differing from each other only by the position of the carbamoyl group on the pyridine ring. However, this slight difference was verified to be responsible for big differences in the percentual of reactivation of acetylcholinesterase (AChE) inhibited by the nerve agents tabun, sarin, cyclosarin, and VX. In order to try to find out the reason for this, a computational study involving molecular docking, molecular dynamics, and binding energies calculations, was performed on the binding modes of HI-6 and HS-6 on human AChE (HssAChE) inhibited by those nerve agents.
Alam, Tanfis I; Rao, Venigalla B
2008-03-07
Translocation of double-stranded DNA into a preformed capsid by tailed bacteriophages is driven by powerful motors assembled at the special portal vertex. The motor is thought to drive processive cycles of DNA binding, movement, and release to package the viral genome. In phage T4, there is evidence that the large terminase protein, gene product 17 (gp17), assembles into a multisubunit motor and translocates DNA by an inchworm mechanism. gp17 consists of two domains; an N-terminal ATPase domain (amino acids 1-360) that powers translocation of DNA, and a C-terminal nuclease domain (amino acids 361-610) that cuts concatemeric DNA to generate a headful-size viral genome. While the functional motifs of ATPase and nuclease have been well defined and the ATPase atomic structure has been solved, the DNA binding motif(s) responsible for viral DNA recognition, cutting, and translocation are unknown. Here we report the first evidence for the presence of a double-stranded DNA binding activity in the gp17 ATPase domain. Binding to DNA is sensitive to Mg(2+) and salt, but not the type of DNA used. DNA fragments as short as 20 bp can bind to the ATPase but preferential binding was observed to DNA greater than 1 kb. A high molecular weight ATPase-DNA complex was isolated by gel filtration, suggesting oligomerization of ATPase following DNA interaction. DNA binding was not observed with the full-length gp17, or the C-terminal nuclease domain. The small terminase protein, gp16, inhibited DNA binding, which was further accentuated by ATP. The presence of a DNA binding site in the ATPase domain and its binding properties implicate a role in the DNA packaging mechanism.
Kostrhon, Sebastian; Kontaxis, Georg; Kaufmann, Tanja; Schirghuber, Erika; Kubicek, Stefan; Konrat, Robert
2017-01-01
N-terminal histone tails are subject to many posttranslational modifications that are recognized by and interact with designated reader domains in histone-binding proteins. BROMO domain adjacent to zinc finger 2B (BAZ2B) is a multidomain histone-binding protein that contains two histone reader modules, a plant homeodomain (PHD) and a bromodomain (BRD), linked by a largely disordered linker. Although previous studies have reported specificity of the PHD domain for the unmodified N terminus of histone H3 and of the BRD domain for H3 acetylated at Lys14 (H3K14ac), the exact mode of H3 binding by BAZ2B and its regulation are underexplored. Here, using isothermal titration calorimetry and NMR spectroscopy, we report that acidic residues in the BAZ2B PHD domain are essential for H3 binding and that BAZ2B PHD–BRD establishes a polyvalent interaction with H3K14ac. Furthermore, we provide evidence that the disordered interdomain linker modulates the histone-binding affinity by interacting with the PHD domain. In particular, lysine-rich stretches in the linker, which resemble the positively charged N terminus of histone H3, reduce the binding affinity of the PHD finger toward the histone substrate. Phosphorylation, acetylation, or poly(ADP-ribosyl)ation of the linker residues may therefore act as a cellular mechanism to transiently tune BAZ2B histone-binding affinity. Our findings further support the concept of interdomain linkers serving a dual role in substrate binding by appropriately positioning the adjacent domains and by electrostatically modulating substrate binding. Moreover, inhibition of histone binding by a histone-mimicking interdomain linker represents another example of regulation of protein–protein interactions by intramolecular mimicry. PMID:28864776
Valdramidou, Dimitra; Humphries, Martin J.; Mould, A. Paul
2012-01-01
Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as α2β1, ligand recognition takes place exclusively at the α subunit I domain. However, activation of the αI domain depends on its interaction with a structurally similar domain in the β subunit known as the I-like or βI domain. The top face of the βI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS) and LIMBS (ligand-associated metal binding site). The role of these sites in controlling ligand binding to the αI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to α2β1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating mAb TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between αI and βI whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of βI. An activating mutation in the α2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca2+, Mg2+ and Mn2+ on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn2+ stimulates ligand binding, whereas the LIMBS is a stimulatory Ca2+-binding site, occupancy of which increases the affinity of Mg2+ for the MIDAS. PMID:18820259
Yahashiri, Atsushi; Jorgenson, Matthew A; Weiss, David S
2017-07-15
Sporulation-related repeat (SPOR) domains are small peptidoglycan (PG) binding domains found in thousands of bacterial proteins. The name "SPOR domain" stems from the fact that several early examples came from proteins involved in sporulation, but SPOR domain proteins are quite diverse and contribute to a variety of processes that involve remodeling of the PG sacculus, especially with respect to cell division. SPOR domains target proteins to the division site by binding to regions of PG devoid of stem peptides ("denuded" glycans), which in turn are enriched in septal PG by the intense, localized activity of cell wall amidases involved in daughter cell separation. This targeting mechanism sets SPOR domain proteins apart from most other septal ring proteins, which localize via protein-protein interactions. In addition to SPOR domains, bacteria contain several other PG-binding domains that can exploit features of the cell wall to target proteins to specific subcellular sites. Copyright © 2017 American Society for Microbiology.
Characterization of the molecular basis of group II intron RNA recognition by CRS1-CRM domains.
Keren, Ido; Klipcan, Liron; Bezawork-Geleta, Ayenachew; Kolton, Max; Shaya, Felix; Ostersetzer-Biran, Oren
2008-08-22
CRM (chloroplast RNA splicing and ribosome maturation) is a recently recognized RNA-binding domain of ancient origin that has been retained in eukaryotic genomes only within the plant lineage. Whereas in bacteria CRM domains exist as single domain proteins involved in ribosome maturation, in plants they are found in a family of proteins that contain between one and four repeats. Several members of this family with multiple CRM domains have been shown to be required for the splicing of specific plastidic group II introns. Detailed biochemical analysis of one of these factors in maize, CRS1, demonstrated its high affinity and specific binding to the single group II intron whose splicing it facilitates, the plastid-encoded atpF intron RNA. Through its association with two intronic regions, CRS1 guides the folding of atpF intron RNA into its predicted "catalytically active" form. To understand how multiple CRM domains cooperate to achieve high affinity sequence-specific binding to RNA, we analyzed the RNA binding affinity and specificity associated with each individual CRM domain in CRS1; whereas CRM3 bound tightly to the RNA, CRM1 associated specifically with a unique region found within atpF intron domain I. CRM2, which demonstrated only low binding affinity, also seems to form specific interactions with regions localized to domains I, III, and IV. We further show that CRM domains share structural similarities and RNA binding characteristics with the well known RNA recognition motif domain.
Evaluation of Selected Binding Domains for the Analysis of Ubiquitinated Proteomes
NASA Astrophysics Data System (ADS)
Nakayasu, Ernesto S.; Ansong, Charles; Brown, Joseph N.; Yang, Feng; Lopez-Ferrer, Daniel; Qian, Wei-Jun; Smith, Richard D.; Adkins, Joshua N.
2013-08-01
Ubiquitination is an abundant post-translational modification that consists of covalent attachment of ubiquitin to lysine residues or the N-terminus of proteins. Mono- and polyubiquitination have been shown to be involved in many critical eukaryotic cellular functions and are often disrupted by intracellular bacterial pathogens. Affinity enrichment of ubiquitinated proteins enables global analysis of this key modification. In this context, the use of ubiquitin-binding domains is a promising but relatively unexplored alternative to more broadly used immunoaffinity or tagged affinity enrichment methods. In this study, we evaluated the application of eight ubiquitin-binding domains that have differing affinities for ubiquitination states. Small-scale proteomics analysis identified ~200 ubiquitinated protein candidates per ubiquitin-binding domain pull-down experiment. Results from subsequent Western blot analyses that employed anti-ubiquitin or monoclonal antibodies against polyubiquitination at lysine 48 and 63 suggest that ubiquitin-binding domains from Dsk2 and ubiquilin-1 have the broadest specificity in that they captured most types of ubiquitination, whereas the binding domain from NBR1 was more selective to polyubiquitination. These data demonstrate that with optimized purification conditions, ubiquitin-binding domains can be an alternative tool for proteomic applications. This approach is especially promising for the analysis of tissues or cells resistant to transfection, of which the overexpression of tagged ubiquitin is a major hurdle.
Budhidarmo, Rhesa; Day, Catherine L.
2014-01-01
The cellular inhibitor of apoptosis (cIAP) proteins are essential RING E3 ubiquitin ligases that regulate apoptosis and inflammatory responses. cIAPs contain a ubiquitin-associated (UBA) domain that binds ubiquitin and is implicated in the regulation of cell survival and proteasomal degradation. Here we show that mutation of the MGF and LL motifs in the UBA domain of cIAP1 caused unfolding and increased cIAP1 multimonoubiquitylation. By developing a UBA mutant that disrupted ubiquitin binding but not the structure of the UBA domain, we found that the UBA domain enhances cIAP1 and cIAP2 ubiquitylation. We demonstrate that the UBA domain binds to the UbcH5b∼Ub conjugate, and this promotes RING domain-dependent monoubiquitylation. This study establishes ubiquitin-binding modules, such as the UBA domain, as important regulatory modules that can fine tune the activity of E3 ligases. PMID:25065467
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voleti, Rashmi; Tomchick, Diana R.; Südhof, Thomas C.
Synaptotagmins (Syts) act as Ca2+ sensors in neurotransmitter release by virtue of Ca2+-binding to their two C2 domains, but their mechanisms of action remain unclear. Puzzlingly, Ca2+-binding to the C2B domain appears to dominate Syt1 function in synchronous release, whereas Ca2+-binding to the C2A domain mediates Syt7 function in asynchronous release. Here we show that crystal structures of the Syt7 C2A domain and C2AB region, and analyses of intrinsic Ca2+-binding to the Syt7 C2 domains using isothermal titration calorimetry, did not reveal major differences that could explain functional differentiation between Syt7 and Syt1. However, using liposome titrations under Ca2+ saturatingmore » conditions, we show that the Syt7 C2A domain has a very high membrane affinity and dominates phospholipid binding to Syt7 in the presence or absence of L-α-phosphatidylinositol 4,5-diphosphate (PIP2). For Syt1, the two Ca2+-saturated C2 domains have similar affinities for membranes lacking PIP2, but the C2B domain dominates binding to PIP2-containing membranes. Mutagenesis revealed that the dramatic differences in membrane affinity between the Syt1 and Syt7 C2A domains arise in part from apparently conservative residue substitutions, showing how striking biochemical and functional differences can result from the cumulative effects of subtle residue substitutions. Viewed together, our results suggest that membrane affinity may be a key determinant of the functions of Syt C2 domains in neurotransmitter release.« less
The insulation of genes from external enhancers and silencing chromatin
Burgess-Beusse, Bonnie; Farrell, Catherine; Gaszner, Miklos; Litt, Michael; Mutskov, Vesco; Recillas-Targa, Felix; Simpson, Melanie; West, Adam; Felsenfeld, Gary
2002-01-01
Insulators are DNA sequence elements that can serve in some cases as barriers to protect a gene against the encroachment of adjacent inactive condensed chromatin. Some insulators also can act as blocking elements to protect against the activating influence of distal enhancers associated with other genes. Although most of the insulators identified so far derive from Drosophila, they also are found in vertebrates. An insulator at the 5′ end of the chicken β-globin locus marks a boundary between an open chromatin domain and a region of constitutively condensed chromatin. Detailed analysis of this element shows that it possesses both enhancer blocking activity and the ability to screen reporter genes against position effects. Enhancer blocking is associated with binding of the protein CTCF; sites that bind CTCF are found at other critical points in the genome. Protection against position effects involves other properties that appear to be associated with control of histone acetylation and methylation. Insulators thus are complex elements that can help to preserve the independent function of genes embedded in a genome in which they are surrounded by regulatory signals they must ignore. PMID:12154228
Choudhury, Nila Roy; Heikel, Gregory; Trubitsyna, Maryia; Kubik, Peter; Nowak, Jakub Stanislaw; Webb, Shaun; Granneman, Sander; Spanos, Christos; Rappsilber, Juri; Castello, Alfredo; Michlewski, Gracjan
2017-11-08
TRIM25 is a novel RNA-binding protein and a member of the Tripartite Motif (TRIM) family of E3 ubiquitin ligases, which plays a pivotal role in the innate immune response. However, there is scarce knowledge about its RNA-related roles in cell biology. Furthermore, its RNA-binding domain has not been characterized. Here, we reveal that the RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain, which we postulate to be a novel RNA-binding domain. Using CLIP-seq and SILAC-based co-immunoprecipitation assays, we uncover TRIM25's endogenous RNA targets and protein binding partners. We demonstrate that TRIM25 controls the levels of Zinc Finger Antiviral Protein (ZAP). Finally, we show that the RNA-binding activity of TRIM25 is important for its ubiquitin ligase activity towards itself (autoubiquitination) and its physiologically relevant target ZAP. Our results suggest that many other proteins with the PRY/SPRY domain could have yet uncharacterized RNA-binding potential. Together, our data reveal new insights into the molecular roles and characteristics of RNA-binding E3 ubiquitin ligases and demonstrate that RNA could be an essential factor in their enzymatic activity.
Measles virus fusion machinery activated by sialic acid binding globular domain.
Talekar, Aparna; Moscona, Anne; Porotto, Matteo
2013-12-01
Paramyxoviruses, including the human pathogen measles virus (MV) and the avian Newcastle disease virus (NDV), enter host cells through fusion of the viral envelope with the target cell membrane. This fusion is driven by the concerted action of two viral envelope glycoproteins: the receptor binding protein and the fusion protein (F). The MV receptor binding protein (hemagglutinin [H]) attaches to proteinaceous receptors on host cells, while the receptor binding protein of NDV (hemagglutinin-neuraminidase [HN]) interacts with sialic acid-containing receptors. The receptor-bound HN/H triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. The mechanism of fusion activation has been proposed to be different for sialic acid-binding viruses and proteinaceous receptor-binding viruses. We report that a chimeric protein containing the NDV HN receptor binding region and the MV H stalk domain can activate MV F to fuse, suggesting that the signal to the stalk of a protein-binding receptor binding molecule can be transmitted from a sialic acid binding domain. By engineering the NDV HN globular domain to interact with a proteinaceous receptor, the fusion activation signal was preserved. Our findings are consistent with a unified mechanism of fusion activation, at least for the Paramyxovirinae subfamily, in which the receptor binding domains of the receptor binding proteins are interchangeable and the stalk determines the specificity of F activation.
Molecular Evolution of the Oxygen-Binding Hemerythrin Domain
Alvarez-Carreño, Claudia; Becerra, Arturo; Lazcano, Antonio
2016-01-01
Background The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins) are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes. Results Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid) cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role. Conclusions Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later evolution of the oxygen-binding hemerythrin domain in both prokaryotes and eukaryotes led to a wide variety of functions, ranging from protection against oxidative damage in anaerobic and microaerophilic organisms, to oxygen supplying to particular enzymes and pathways in aerobic and facultative species. PMID:27336621
Characterizing protein domain associations by Small-molecule ligand binding
Li, Qingliang; Cheng, Tiejun; Wang, Yanli; Bryant, Stephen H.
2012-01-01
Background Protein domains are evolutionarily conserved building blocks for protein structure and function, which are conventionally identified based on protein sequence or structure similarity. Small molecule binding domains are of great importance for the recognition of small molecules in biological systems and drug development. Many small molecules, including drugs, have been increasingly identified to bind to multiple targets, leading to promiscuous interactions with protein domains. Thus, a large scale characterization of the protein domains and their associations with respect to small-molecule binding is of particular interest to system biology research, drug target identification, as well as drug repurposing. Methods We compiled a collection of 13,822 physical interactions of small molecules and protein domains derived from the Protein Data Bank (PDB) structures. Based on the chemical similarity of these small molecules, we characterized pairwise associations of the protein domains and further investigated their global associations from a network point of view. Results We found that protein domains, despite lack of similarity in sequence and structure, were comprehensively associated through binding the same or similar small-molecule ligands. Moreover, we identified modules in the domain network that consisted of closely related protein domains by sharing similar biochemical mechanisms, being involved in relevant biological pathways, or being regulated by the same cognate cofactors. Conclusions A novel protein domain relationship was identified in the context of small-molecule binding, which is complementary to those identified by traditional sequence-based or structure-based approaches. The protein domain network constructed in the present study provides a novel perspective for chemogenomic study and network pharmacology, as well as target identification for drug repurposing. PMID:23745168
Allostery Mediates Ligand Binding to WWOX Tumor Suppressor via a Conformational Switch
Schuchardt, Brett J.; Mikles, David C.; Bhat, Vikas; McDonald, Caleb B.; Sudol, Marius; Farooq, Amjad
2014-01-01
While being devoid of the ability to recognize ligands itself, the WW2 domain is believed to aid ligand binding to WW1 domain in the context of WW1-WW2 tandem module of WWOX tumor suppressor. In an effort to test the generality of this hypothesis, we have undertaken here a detailed biophysical analysis of the binding of WW domains of WWOX alone and in the context of WW1-WW2 tandem module to an array of putative PPXY ligands. Our data show that while the WW1 domain of WWOX binds to all ligands in a physiologically-relevant manner, the WW2 domain does not. Moreover, ligand binding to WW1 domain in the context of WW1-WW2 tandem module is two-to-three-fold stronger than when treated alone. We also provide evidence that the WW domains within the WW1-WW2 tandem module physically associate so as to adopt a fixed spatial orientation relative to each other. Of particular note is the observation that the physical association of WW2 domain with WW1 blocks access to ligand. Consequently, ligand binding to WW1 domain not only results in the displacement of WW2 lid but also disrupts the physical association of WW domains in the liganded conformation. Taken together, our study underscores a key role of allosteric communication in the ability of WW2 orphan domain to chaperone physiological action of WW1 domain within the context of the WW1-WW2 tandem module of WWOX. PMID:25703206
Kanzleiter, Timo; Jähnert, Markus; Schulze, Gunnar; Selbig, Joachim; Hallahan, Nicole; Schwenk, Robert Wolfgang; Schürmann, Annette
2015-05-15
The adaptive response of skeletal muscle to exercise training is tightly controlled and therefore requires transcriptional regulation. DNA methylation is an epigenetic mechanism known to modulate gene expression, but its contribution to exercise-induced adaptations in skeletal muscle is not well studied. Here, we describe a genome-wide analysis of DNA methylation in muscle of trained mice (n = 3). Compared with sedentary controls, 2,762 genes exhibited differentially methylated CpGs (P < 0.05, meth diff >5%, coverage >10) in their putative promoter regions. Alignment with gene expression data (n = 6) revealed 200 genes with a negative correlation between methylation and expression changes in response to exercise training. The majority of these genes were related to muscle growth and differentiation, and a minor fraction involved in metabolic regulation. Among the candidates were genes that regulate the expression of myogenic regulatory factors (Plexin A2) as well as genes that participate in muscle hypertrophy (Igfbp4) and motor neuron innervation (Dok7). Interestingly, a transcription factor binding site enrichment study discovered significantly enriched occurrence of CpG methylation in the binding sites of the myogenic regulatory factors MyoD and myogenin. These findings suggest that DNA methylation is involved in the regulation of muscle adaptation to regular exercise training. Copyright © 2015 the American Physiological Society.
Wuest, Frank; Kniess, Torsten; Henry, Brian; Peeters, Bernardus W M M; Wiegerinck, Peter H G; Pietzsch, Jens; Bergmann, Ralf
2009-02-01
The radiosynthesis of [N-methyl-(11)C]Org 34850 as a potential brain glucocorticoid receptor (GR)-binding radiotracer is described. The radiosynthesis was accomplished via N-methylation of the corresponding desmethyl precursor with [(11)C]methyl triflate in a remotely controlled synthesis module to give the desired compound in a radiochemical yield of 23+/-5% (decay-corrected, based upon [(11)C]CO(2)) at a specific activity of 47+/-12 GBq/micromol (n=15) at the end-of-synthesis (EOS). The radiochemical purity after semi-preparative HPLC purification exceeded 95%. The total synthesis time was 35-40 min after end-of-bombardment (EOB). The radiotracer is rapidly metabolized in rat plasma leading to the formation of two more hydrophilic metabolites as the major metabolites. Radiopharmacological evaluation involving biodistribution and small animal PET imaging in normal Wistar rats showed that the compound [N-methyl-(11)C]Org 34850 is not able to sufficiently penetrate the blood-brain barrier. Therefore, compound [N-methyl-(11)C]Org 34850 seems not to be a suitable PET radiotracer for imaging rat brain GRs. However, involvement of Pgp or species differences requires further clarification to establish whether the radiotracer [N-methyl-(11)C]Org 34850 may still represent a suitable candidate for imaging GRs in humans.
Bosselut, R; Levin, J; Adjadj, E; Ghysdael, J
1993-11-11
Ets proteins form a family of sequence specific DNA binding proteins which bind DNA through a 85 aminoacids conserved domain, the Ets domain, whose sequence is unrelated to any other characterized DNA binding domain. Unlike all other known Ets proteins, which bind specific DNA sequences centered over either GGAA or GGAT core motifs, E74 and Elf1 selectively bind to GGAA corecontaining sites. Elf1 and E74 differ from other Ets proteins in three residues located in an otherwise highly conserved region of the Ets domain, referred to as conserved region III (CRIII). We show that a restricted selectivity for GGAA core-containing sites could be conferred to Ets1 upon changing a single lysine residue within CRIII to the threonine found in Elf1 and E74 at this position. Conversely, the reciprocal mutation in Elf1 confers to this protein the ability to bind to GGAT core containing EBS. This, together with the fact that mutation of two invariant arginine residues in CRIII abolishes DNA binding, indicates that CRIII plays a key role in Ets domain recognition of the GGAA/T core motif and lead us to discuss a model of Ets proteins--core motif interaction.
Scheele, Urte; Alves, Jurgen; Frank, Ronald; Duwel, Michael; Kalthoff, Christoph; Ungewickell, Ernst
2003-07-11
Uncoating of clathrin-coated vesicles requires the J-domain protein auxilin for targeting hsc70 to the clathrin coats and for stimulating the hsc70 ATPase activity. This results in the release of hsc70-complexed clathrin triskelia and concomitant dissociation of the coat. To understand the complex role of auxilin in uncoating and clathrin assembly in more detail, we analyzed the molecular organization of its clathrin-binding domain (amino acids 547-813). CD spectroscopy of auxilin fragments revealed that the clathrin-binding domain is almost completely disordered in solution. By systematic mapping using synthetic peptides and by site-directed mutagenesis, we identified short peptide sequences involved in clathrin heavy chain and AP-2 binding and evaluated their significance for the function of auxilin. Some of the binding determinants, including those containing sequences 674DPF and 636WDW, showed dual specificity for both clathrin and AP-2. In contrast, the two DLL motifs within the clathrin-binding domain were exclusively involved in clathrin binding. Surprisingly, they interacted not only with the N-terminal domain of the heavy chain, but also with the distal domain. Moreover, both DLL peptides proved to be essential for clathrin assembly and uncoating. In addition, we found that the motif 726NWQ is required for efficient clathrin assembly activity. Auxilin shares a number of protein-protein interaction motifs with other endocytic proteins, including AP180. We demonstrate that AP180 and auxilin compete for binding to the alpha-ear domain of AP-2. Like AP180, auxilin also directly interacts with the ear domain of beta-adaptin. On the basis of our data, we propose a refined model for the uncoating mechanism of clathrin-coated vesicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, R.; Wilton, R.; Cuff, M. E.
We report the structural and biochemical characterization of a novel periplasmic ligand-binding protein, Dret_0059, from Desulfohalobium retbaense DSM 5692, an organism isolated from the Salt Lake Retba in Senegal. The structure of the protein consists of a unique combination of a periplasmic solute binding protein (SBP) domain at the N-terminal and a tandem PAS-like sensor domain at the C-terminal region. SBP domains are found ubiquitously and their best known function is in solute transport across membranes. PAS-like sensor domains are commonly found in signal transduction proteins. These domains are widely observed as parts of many protein architectures and complexes butmore » have not been observed previously within the same polypeptide chain. In the structure of Dret_0059, a ketoleucine moiety is bound to the SBP, whereas a cytosine molecule is bound in the distal PAS-like domain of the tandem PAS-like domain. Differential scanning flourimetry support the binding of ligands observed in the crystal structure. There is significant interaction between the SBP and tandem PAS-like domains, and it is possible that the binding of one ligand could have an effect on the binding of the other. We uncovered three other proteins with this structural architecture in the non-redundant sequence data base, and predict that they too bind the same substrates. The genomic context of this protein did not offer any clues for its function. We did not find any biological process in which the two observed ligands are coupled. The protein Dret_0059 could be involved in either signal transduction or solute transport.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lei; Zhang, Qing; Yang, Yu
Highlights: • RNA recognition motif domains of RBM5 are essential for cell proliferation inhibition. • RNA recognition motif domains of RBM5 are essential for apoptosis induction. • RNA recognition motif domains of RBM5 are essential for RNA binding. • RNA recognition motif domains of RBM5 are essential for caspase-2 alternative splicing. - Abstract: RBM5 is a known putative tumor suppressor gene that has been shown to function in cell growth inhibition by modulating apoptosis. RBM5 also plays a critical role in alternative splicing as an RNA binding protein. However, it is still unclear which domains of RBM5 are required formore » RNA binding and related functional activities. We hypothesized the two putative RNA recognition motif (RRM) domains of RBM5 spanning from amino acids 98–178 and 231–315 are essential for RBM5-mediated cell growth inhibition, apoptosis regulation, and RNA binding. To investigate this hypothesis, we evaluated the activities of the wide-type and mutant RBM5 gene transfer in low-RBM5 expressing A549 cells. We found that, unlike wild-type RBM5 (RBM5-wt), a RBM5 mutant lacking the two RRM domains (RBM5-ΔRRM), is unable to bind RNA, has compromised caspase-2 alternative splicing activity, lacks cell proliferation inhibition and apoptosis induction function in A549 cells. These data provide direct evidence that the two RRM domains of RBM5 are required for RNA binding and the RNA binding activity of RBM5 contributes to its function on apoptosis induction and cell growth inhibition.« less
Das, Devashish; Faridounnia, Maryam; Kovacic, Lidija; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E.
2017-01-01
The nucleotide excision repair protein complex ERCC1-XPF is required for incision of DNA upstream of DNA damage. Functional studies have provided insights into the binding of ERCC1-XPF to various DNA substrates. However, because no structure for the ERCC1-XPF-DNA complex has been determined, the mechanism of substrate recognition remains elusive. Here we biochemically characterize the substrate preferences of the helix-hairpin-helix (HhH) domains of XPF and ERCC-XPF and show that the binding to single-stranded DNA (ssDNA)/dsDNA junctions is dependent on joint binding to the DNA binding domain of ERCC1 and XPF. We reveal that the homodimeric XPF is able to bind various ssDNA sequences but with a clear preference for guanine-containing substrates. NMR titration experiments and in vitro DNA binding assays also show that, within the heterodimeric ERCC1-XPF complex, XPF specifically recognizes ssDNA. On the other hand, the HhH domain of ERCC1 preferentially binds dsDNA through the hairpin region. The two separate non-overlapping DNA binding domains in the ERCC1-XPF heterodimer jointly bind to an ssDNA/dsDNA substrate and, thereby, at least partially dictate the incision position during damage removal. Based on structural models, NMR titrations, DNA-binding studies, site-directed mutagenesis, charge distribution, and sequence conservation, we propose that the HhH domain of ERCC1 binds to dsDNA upstream of the damage, and XPF binds to the non-damaged strand within a repair bubble. PMID:28028171
Comparison between TRF2 and TRF1 of their telomeric DNA-bound structures and DNA-binding activities
Hanaoka, Shingo; Nagadoi, Aritaka; Nishimura, Yoshifumi
2005-01-01
Mammalian telomeres consist of long tandem arrays of double-stranded telomeric TTAGGG repeats packaged by the telomeric DNA-binding proteins TRF1 and TRF2. Both contain a similar C-terminal Myb domain that mediates sequence-specific binding to telomeric DNA. In a DNA complex of TRF1, only the single Myb-like domain consisting of three helices can bind specifically to double-stranded telomeric DNA. TRF2 also binds to double-stranded telomeric DNA. Although the DNA binding mode of TRF2 is likely identical to that of TRF1, TRF2 plays an important role in the t-loop formation that protects the ends of telomeres. Here, to clarify the details of the double-stranded telomeric DNA-binding modes of TRF1 and TRF2, we determined the solution structure of the DNA-binding domain of human TRF2 bound to telomeric DNA; it consists of three helices, and like TRF1, the third helix recognizes TAGGG sequence in the major groove of DNA with the N-terminal arm locating in the minor groove. However, small but significant differences are observed; in contrast to the minor groove recognition of TRF1, in which an arginine residue recognizes the TT sequence, a lysine residue of TRF2 interacts with the TT part. We examined the telomeric DNA-binding activities of both DNA-binding domains of TRF1 and TRF2 and found that TRF1 binds more strongly than TRF2. Based on the structural differences of both domains, we created several mutants of the DNA-binding domain of TRF2 with stronger binding activities compared to the wild-type TRF2. PMID:15608118
Amacher, Jeanine F; Cushing, Patrick R; Bahl, Christopher D; Beck, Tobias; Madden, Dean R
2013-02-15
PDZ (PSD-95/Dlg/ZO-1) binding domains often serve as cellular traffic engineers, controlling the localization and activity of a wide variety of binding partners. As a result, they play important roles in both physiological and pathological processes. However, PDZ binding specificities overlap, allowing multiple PDZ proteins to mediate distinct effects on shared binding partners. For example, several PDZ domains bind the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), an epithelial ion channel mutated in CF. Among these binding partners, the CFTR-associated ligand (CAL) facilitates post-maturational degradation of the channel and is thus a potential therapeutic target. Using iterative optimization, we previously developed a selective CAL inhibitor peptide (iCAL36). Here, we investigate the stereochemical basis of iCAL36 specificity. The crystal structure of iCAL36 in complex with the CAL PDZ domain reveals stereochemical interactions distributed along the peptide-binding cleft, despite the apparent degeneracy of the CAL binding motif. A critical selectivity determinant that distinguishes CAL from other CFTR-binding PDZ domains is the accommodation of an isoleucine residue at the C-terminal position (P(0)), a characteristic shared with the Tax-interacting protein-1. Comparison of the structures of these two PDZ domains in complex with ligands containing P(0) Leu or Ile residues reveals two distinct modes of accommodation for β-branched C-terminal side chains. Access to each mode is controlled by distinct residues in the carboxylate-binding loop. These studies provide new insights into the primary sequence determinants of binding motifs, which in turn control the scope and evolution of PDZ interactomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrencik, Jill E.; Orans, Jillian; Moore, Linda B.
The human nuclear xenobiotic receptor, pregnane X receptor (PXR), detects a variety of structurally distinct endogenous and xenobiotic compounds and controls expression of genes central to drug and cholesterol metabolism. The macrolide antibiotic rifampicin, a front-line treatment for tuberculosis, is an established PXR agonist and, at 823 Da, is one of the largest known ligands for the receptor. We present the 2.8 {angstrom} crystal structure of the ligand-binding domain of human PXR in complex with rifampicin. We also use structural and mutagenesis data to examine the origins of the directed promiscuity exhibited by the PXRs across species. Three structurally flexiblemore » loops adjacent to the ligand-binding pocket of PXR are disordered in this crystal structure, including the 200-210 region that is part of a sequence insert novel to the promiscuous PXRs relative to other members of the nuclear receptor superfamily. The 4-methyl-1-piperazinyl ring of rifampicin, which would lie adjacent to the disordered protein regions, is also disordered and not observed in the structure. Taken together, our results indicate that one wall of the PXR ligand-binding cavity can remain flexible even when the receptor is in complex with an activating ligand. These observations highlight the key role that structural flexibility plays in PXR's promiscuous response to xenobiotics.« less