Sample records for methyl ether methacrylate

  1. Dual-Responsive pH and Temperature Sensitive Nanoparticles Based on Methacrylic Acid and Di(ethylene glycol) Methyl Ether Methacrylate for the Triggered Release of Drugs.

    PubMed

    Khine, Yee Yee; Jiang, Yanyan; Dag, Aydan; Lu, Hongxu; Stenzel, Martina H

    2015-08-01

    A series of thermo-and pH-responsive poly(methyl methacrylate)-block-poly[methacrylic acid-co-di(ethylene glycol) methyl ether methacrylate] PMMA-b-P[MAA-co-DEGMA] block copolymers were synthesized by RAFT polymerization and self-assembled into micelles. The molar ratio of MAA was altered from 0-12% in order to modulate the lower critical solution temperature (LCST) of PDEGMA. The release of the drug albendazole from the micelle was strongly dependent on the temperature and the LCST value of the polymer. Systems below the LCST released the drug slowly while increasing the temperature above the LCST or decreasing the pH value to 5 resulted in the burst-like release of the drug. ABZ delivered in this pH-responsive drug carrier had a higher toxicity than the free drug or the drug delivered in a non-responsive drug carrier. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic.../methyl methacrylate polymers. The vinylidene chloride/methyl acrylate/methyl methacrylate polymers (CAS...

  3. Conformations and Barriers to Methyl Group Internal Rotation in Two Asymmetric Ethers: Propyl Methyl Ether and Butyl Methyl Ether

    NASA Astrophysics Data System (ADS)

    Long, B. E.; Dechirico, F.; Cooke, S. A.

    2012-06-01

    The conformational preferences of the O-C-C-C unit are important in many biological systems with the unit generally preferring a gauche configuration compared to an anti configuration. Butyl methyl ether and propyl methyl ether provide very simple systems for this phenomenom to manifest. Pure rotational spectra of the title molecules have been recorded using chirped pulse Fourier transform microwave spectroscopy (CP-FTMW). In the case of butyl methyl ether, only one conformer has been observed. This conformer has torsional angles of COCC = 180°, OCCC = 62° and CCCC = 180° (anti-gauche-anti) and rotational constants of A = 10259.4591(33) MHz, B = 1445.6470(13) MHz, and C = 1356.2944(14) MHz. The rotational spectrum was doubled and has been analyzed to produce an effective barrier to methyl group internal rotation of 780(35) cm-1. A prior rotational spectroscopic study on propyl methyl ether had focused only on the high energy anti-anti conformer. We have analyzed spectra from the lowest energy anti-gauche conformer and the spectroscopic constants will be presented. A summary of the differences in conformational energies and methyl group internal rotation barriers for the class of aliphatic asymmetric ethers will be presented. K. N. Houk, J. E. Eksterowicz, Y.-D. Wu, C. D. Fuglesang, D. B. Mitchell. J. Am. Chem. Soc. 115 (4170), 1993. Hiroshi Kato, Jun Nakagawa, Michiro Hayashi. J. Mol. Spectrosc. 80 (272), 1980.

  4. Methyl methacrylate

    Integrated Risk Information System (IRIS)

    Methyl methacrylate ; CASRN 80 - 62 - 6 ( 03 / 02 / 98 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments f

  5. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  6. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  7. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  8. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  9. DEGRADATION OF POLY(METHYL METHACRYLATE) IN SOLUTION

    EPA Science Inventory

    The rate of degradation of poly(methyl methacrylate) (PMMA) to methyl methacrylate (MMA) was investigated in the liquid phase with toluene as the solvent. The degradation experiments were carried out in a tubular flow reactor at 1000 psig (6.8 MPa) and at four different temperat...

  10. Ultraviolet-induced surface grafting of octafluoropentyl methacrylate on polyether ether ketone for inducing antibiofilm properties.

    PubMed

    Amdjadi, Parisa; Nojehdehian, Hanieh; Najafi, Farhood; Ghasemi, Amir; Seifi, Massoud; Dashtimoghadam, Erfan; Fahimipour, Farahnaz; Tayebi, Lobat

    2017-07-01

    Since octafluoropentyl methacrylate is an antifouling polymer, surface modification of polyether ether ketone with octafluoropentyl methacrylate is a practical approach to obtaining anti-biofilm biocompatible devices. In the current study, the surface treatment of polyether ether ketone by the use of ultraviolet irradiation, so as to graft (octafluoropentyl methacrylate) polymer chains, was initially implemented and then investigated. The Fourier-transform infrared and nuclear magnetic resonance spectra corroborated the appearance of new signals associated with the fluoroacrylate group. Thermogravimetric curves indicated enhanced asymmetry in the polymer structure due to the introduction of the said new groups. Measuring the peak area in differential scanning calorimetry experiments also showed additional bond formation. Static water contact angle measurements indicated a change in wettability to the more hydrophobic surface. The polyether ether ketone-octafluoropentyl methacrylate surface greatly reduced the protein adsorption. This efficient method can modulate and tune the surface properties of polyether ether ketone according to specific applications.

  11. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane...

  12. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane...

  13. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane...

  14. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane...

  15. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of surgery...

  16. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by... methacrylate-dye reaction product listed under this section into commerce shall submit to the Food and Drug...

  17. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by... methacrylate-dye reaction product listed under this section into commerce shall submit to the Food and Drug...

  18. Vapor intrusion risk of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME) and ethyl tert-butyl ether (ETBE): A modeling study.

    PubMed

    Ma, Jie; Xiong, Desen; Li, Haiyan; Ding, Yi; Xia, Xiangcheng; Yang, Yongqi

    2017-06-15

    Vapor intrusion of synthetic fuel additives represents a critical yet still neglected problem at sites contaminated by petroleum fuel releases. This study used an advanced numerical model to investigate the vapor intrusion potential of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME), and ethyl tert-butyl ether (ETBE). Simulated indoor air concentration of these compounds can exceed USEPA indoor air screening level for MTBE (110μg/m 3 ). Our results also reveal that MTBE has much higher chance to cause vapor intrusion problems than TAME and ETBE. This study supports the statements made by USEPA in the Petroleum Vapor Intrusion (PVI) Guidance that the vertical screening criteria for petroleum hydrocarbons may not provide sufficient protectiveness for fuel additives, and ether oxygenates in particular. In addition to adverse impacts on human health, ether oxygenate vapor intrusion may also cause aesthetic problems (i.e., odour and flavour). Overall, this study points out that ether oxygenates can cause vapor intrusion problems. We recommend that USEPA consider including the field measurement data of synthetic fuel additives in the existing PVI database and possibly revising the PVI Guidance as necessary. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Characterization by Tin-Specific Size Exclusion Chromatography of the Free Radical Copolymerization of Tributyltin Methacrylate and Methyl Methacrylate,

    DTIC Science & Technology

    1980-12-11

    Characterization by Tin-Specific Size Exclusion Chromatography of the Free Radical Copolymerization of Tributyltin Methacrylate and -~~~ ~~ ety Me aryate1...81 ~ 9 1 7 29 2 ABSTRACT Copolymers of tributyltin methacrylate (TBTM) and methyl methacrylate (MMA) comprise an important class of biocidal slow...exclusion chromatography (SEC); tin-specific graphite furnace atomic absorp- tion (GFAA); tributyltin methacrylate; ultraviolet absorbance; weight

  20. 21 CFR 882.5030 - Methyl methacrylate for aneurysmorrhaphy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Methyl methacrylate for aneurysmorrhaphy. 882.5030 Section 882.5030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5030 Methyl...

  1. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Methyl methacrylate for cranioplasty. 882.5300 Section 882.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5300 Methyl...

  2. 21 CFR 177.1830 - Styrene-methyl methacrylate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1830 Styrene-methyl methacrylate copolymers. Styrene-methyl... intended for use in contact with food, subject to the provisions of this section. (a) For the purpose of...

  3. Chloromethyl methyl ether (CMME)

    Integrated Risk Information System (IRIS)

    Chloromethyl methyl ether ( CMME ) ; CASRN 107 - 30 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  4. A study of the gamma radiation induced molecular weight changes in poly (phenyl methacrylate), poly (methyl methacrylate) and their copolymers

    NASA Astrophysics Data System (ADS)

    Hussain, R.; Mohammad, D.

    The homopolymers and copolymers of phenyl methacrylate and methyl methacrylate synthesized by free radical polymerization were characterized by infra red and nuclear magnetic resonance spectroscopy. The molecular weight changes produced as a result of gamma irradiation in an argon atmosphere were monitored as a function of dose absorbed by the sample. The radiation induced effects have been discussed in terms of G(Scission), energy absorbed per break and number of bonds broken per gram in a polymer sample. The results reveal that poly (phenyl methacrylate) is more stable than poly (methyl methacrylate) while, the radiation stability of the copolymers depends upon the concentrations of the respective monomers.

  5. Improved surface hydrophilicity and antifouling property of polysulfone ultrafiltration membrane with poly(ethylene glycol) methyl ether methacrylate grafted graphene oxide nanofillers

    NASA Astrophysics Data System (ADS)

    Wang, Haidong; Lu, Xiaofei; Lu, Xinglin; Wang, Zhenghui; Ma, Jun; Wang, Panpan

    2017-12-01

    In this study, the GO-g-P(PEGMA) nanoplates were first synthesized by grafting hydrophilic poly (poly (ethylene glycol) methyl ether methacrylate) via surface-initiated atom transfer radical polymerization (SI-ATRP) method. A novel polysulfone (PSF) nanocomposite membrane using GO-g-P(PEGMA) nanoplates as nanofillers was fabricated. FTIR, TGA, 1H NMR, GPC and TEM were applied to verify the successful synthesis of the prepared nanoplates, while SEM, AFM, XPS, contact angle goniometry and filtration experiments were used to characterize the fabricated nanocomposite membranes. It was found that the new prepared nanofillers were well dispersed in organic PSF matrix, and the PSF/GO-g-P(PEGMA) nanocomposite membrane showed significant improvements in water flux and flux recovery rate. Based on the results of resistance-in-series model, the nanocomposite membrane exhibited superior resistance to the irreversible fouling. The excellent filtration and antifouling performance are attributed to the segregation of GO-g-P(PEMGA) nanofillers toward the membrane surface and the pore walls. Notably, the blended nanofillers appeared a stable retention in/on nanocomposite membrane after 30 days of washing time. The demonstrated method of synthesis GO-g-P(PEGMA) in this study can also be extended to preparation of other nanocomposite membrane in future.

  6. Flexural properties of ethyl or methyl methacrylate-UDMA blend polymers.

    PubMed

    Kanie, Takahito; Kadokawa, Akihiko; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2010-10-01

    Light-curing polyethyl methacrylate (PEMA)-urethane dimethacrylate (UDMA) resins and polymethyl methacrylate (PMMA)-UDMA resins were prepared by two processes. For first step, PEMA or PMMA powders were fully dissolved in ethyl methacrylate (EMA) or methyl methacrylate (MMA) and then the PEMA-EMA/PMMA-MMA mixtures were mixed with UDMA. The flexural properties of cured PEMA-UDMA and PMMA-UDMA polymers were measured using two PEMA (Mw: 300,000-400,000 and 650,000-1,000,000) and three PMMA (Mw: 30,000-60,000, 350,000 and 650,000-1,000,000) powders with different molecular weight, four mixing ratios of PMMA-MMA, and three mixing ratios of PMMA-MMA mixture and UDMA oligomer. Polymers with PMMA(Mw: 350,000) MMA=25/50, and with PMMA(Mw: 350,000)-MMA/UDMA=1/2 and =1/1, showed no-fracture in a flexural test at 1 mm/min and flexural strength and flexural modulus showed no significant difference compared with those of commercially available heat- and self-curing acrylic resins (p>0.01). Within limitation of this investigation, methyl methacrylate-UDMA blend polymer of this composition is available for denture base resin.

  7. [Chest granuloma secondary to methyl methacrylate. Case report].

    PubMed

    Martínez-Bistrain, Ricardo; Robles García, Verónica; Cornejo-Morales, Ivonne

    2010-01-01

    We present the case of a patient with a history of a massive left hemithorax crushing injury in 1985; the exact management of the lesion is unknown. Twenty years later he had a thoracic fistula with a culture that was reported as positive for Enteroccocus faecalis and Staphyloccocus epidermidis. The patient was referred by the chest surgery service with the diagnosis of rib osteomyelitis once complementary imaging tests were performed (plain X-rays, CAT scan and MRI). The patient underwent surgery at our service; a granulomatous reaction secondary to a foreign body (methyl methacrylate and Ethibon) was reported. Chest reconstruction for massive lesions is possible with methyl methacrylate. Imaging studies involve the well-known difficulty to identify this material, given that it may produce signals and densities that are difficult to interpret by specialized physicians.

  8. A new route to synthesize aryl acetates from carbonylation of aryl methyl ethers

    PubMed Central

    Yang, Youdi; Li, Shaopeng; Han, Buxing

    2018-01-01

    Ether bond activation is very interesting because the synthesis of many valuable compounds involves conversion of ethers. Moreover, C–O bond cleavage is also very important for the transformation of biomass, especially lignin, which abundantly contains ether bonds. Developing efficient methods to activate aromatic ether bonds has attracted much attention. However, this is a challenge because of the inertness of aryl ether bonds. We proposed a new route to activate aryl methyl ether bonds and synthesize aryl acetates by carbonylation of aryl methyl ethers. The reaction could proceed over RhCl3 in the presence of LiI and LiBF4, and moderate to high yields of aryl acetates could be obtained from transformation of various aryl methyl ethers with different substituents. It was found that LiBF4 could assist LiI to cleave aryl methyl ether bonds effectively. The reaction mechanism was proposed by a combination of experimental and theoretical studies. PMID:29795781

  9. Organic inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica)

    NASA Astrophysics Data System (ADS)

    Rubio, E.; Almaral, J.; Ramírez-Bon, R.; Castaño, V.; Rodríguez, V.

    2005-04-01

    Polymethylmethacrylate-silica hybrid coatings were prepared from methyl methacrylate and monodisperse colloidal silica prepared by the Stöber method. The surfaces of the spheres were successfully modified by chemical reaction with 3-(trimethoxysilyl) propyl methacrylate (TMSPM) to compatibilise the organic and inorganic components of the precursor solution mixture. The coatings were deposited by dip-coating on glass substrates. They result with good properties of homogeneity, optical transparence, hardness and adhesion.

  10. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Butyl acrylate, polymer with... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6920 Butyl... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane...

  11. pH-sensitive methacrylic copolymer gels and the production thereof

    DOEpatents

    Mallapragada, Surya K [Ames, IA; Anderson, Brian C [Lake Bluff, IA

    2007-05-15

    The present invention provides novel gel forming methacrylic blocking copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol)methyl ether polymer. The polymers may be used for drug and gene delivery, protein separation, as structural supplements, and more.

  12. Methyl tert-butyl ether (MTBE)

    Integrated Risk Information System (IRIS)

    Methyl tert - butyl ether ( MTBE ) ; CASRN 1634 - 04 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments f

  13. Occupational asthma due to methyl methacrylate and cyanoacrylates.

    PubMed Central

    Lozewicz, S; Davison, A G; Hopkirk, A; Burge, P S; Boldy, D A; Riordan, J F; McGivern, D V; Platts, B W; Davies, D; Newman Taylor, A J

    1985-01-01

    Five patients had asthma provoked by cyanoacrylates and one by methyl methacrylate, possibly because of the development of a specific hypersensitivity response. Acrylates have wide domestic as well as industrial uses, and inhalation of vapour emitted during their use can cause asthma. PMID:4071461

  14. Solid coatings deposited from liquid methyl methacrylate via Plasma Polymerization

    NASA Astrophysics Data System (ADS)

    Wurlitzer, Lisa; Maus-Friedrichs, Wolfgang; Dahle, Sebastian

    2016-09-01

    The polymerization of methyl methacrylate via plasma discharges is well known today. Usually, plasma-enhanced chemical vapor deposition (PECVD) is used to deposit polymer coatings. Solid coatings are formed out of the liquid phase from methyl methacrylate via dielectric barrier discharge. The formation of the coating proceeds in the gas and the liquid phase. To learn more about the reactions in the two phases, the coatings from MMA monomer will be compared to those from MMA resin. Finally, attenuated total reflection infrared spectroscopy, confocal laser scanning microscopy and X-ray photoelectron spectroscopy are employed to characterize the solid coatings. In conclusion, the plasma enhanced chemical solution deposition is compared to the classical thermal polymerization of MMA.

  15. 21 CFR 882.5030 - Methyl methacrylate for aneurysmorrhaphy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Methyl methacrylate for aneurysmorrhaphy. 882.5030 Section 882.5030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... reinforce intracranial aneurysms that are not amenable to conservative management, removal, or obliteration...

  16. 21 CFR 177.1830 - Styrene-methyl methacrylate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... components of plastic articles intended for use in contact with food, subject to the provisions of this... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1830 Styrene-methyl methacrylate...

  17. 21 CFR 177.1830 - Styrene-methyl methacrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... components of plastic articles intended for use in contact with food, subject to the provisions of this... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1830 Styrene-methyl methacrylate...

  18. 21 CFR 177.1830 - Styrene-methyl methacrylate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... components of plastic articles intended for use in contact with food, subject to the provisions of this... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1830 Styrene-methyl methacrylate...

  19. Thermally Switchable Thin Films of an ABC Triblock Copolymer of Poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shanju; Liu, Zhan; Bucknall, David G.

    2011-01-01

    The thermo-responsive behavior of polymer films consisting of novel linear triblock copolymers of poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) (PnBuMA-PMMA-P2FEMA) are reported using differential scanning calorimetry (DSC), atomic forcing microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contacting angle (CA) measurements. The surface morphology, wettability and chemical structure of thin films of these triblock copolymers on silicon wafers as a function of temperature have been investigated. It has been shown that the wettability of the films is thermally switchable. Detailed structural analysis shows that thermo-responsive surface composition changes are produced. The underlying mechanism of the thermoresponsive behavior is discussed.

  20. 21 CFR 177.1830 - Styrene-methyl methacrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene-methyl methacrylate copolymers. 177.1830 Section 177.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as...

  1. Predicting the chromatographic retention of polymers: poly(methyl methacrylate)s and polyacryate blends.

    PubMed

    Bashir, Mubasher A; Radke, Wolfgang

    2007-09-07

    The suitability of a retention model especially designed for polymers is investigated to describe and predict the chromatographic retention behavior of poly(methyl methacrylate)s as a function of mobile phase composition and gradient steepness. It is found that three simple yet rationally chosen chromatographic experiments suffice to extract the analyte specific model parameters necessary to calculate the retention volumes. This allows predicting accurate retention volumes based on a minimum number of initial experiments. Therefore, methods for polymer separations can be developed in relatively short time. The suitability of the virtual chromatography approach to predict the separation of polymer blend is demonstrated for the first time using a blend of different polyacrylates.

  2. Tuning Surface Properties of Poly(methyl methacrylate) Film Using Poly(perfluoromethyl methacrylate)s with Short Perfluorinated Side Chains.

    PubMed

    Sohn, Eun-Ho; Ha, Jong-Wook; Lee, Soo-Bok; Park, In Jun

    2016-09-27

    To control the surface properties of a commonly used polymer, poly(methyl methacrylate) (PMMA), poly(perfluoromethyl methacrylate)s (PFMMAs) with short perfluorinated side groups (i.e., -CF3, -CF2CF3, -(CF3)2, -CF2CF2CF3) were used as blend components because of their good solubility in organic solvents, low surface energies, and high optical transmittance. The surface energies of the blend films of PFMMA with the -CF3 group and PMMA increased continuously with increasing PMMA contents from 17.6 to 26.0 mN/m, whereas those of the other polymer blend films remained at very low levels (10.2-12.6 mN/m), similar to those of pure PFMMAs, even when the blends contained 90 wt %PMMA. Surface morphology and composition measurements revealed that this result originated from the different blend structures, such as lateral and vertical phase separations. We expect that these PFMMAs will be useful in widening the applicable window of PMMA.

  3. Concentrations and stability of methyl methacrylate, glutaraldehyde, formaldehyde and nickel sulfate in commercial patch test allergen preparations.

    PubMed

    Siegel, Paul D; Fowler, Joseph F; Law, Brandon F; Warshaw, Erin M; Taylor, James S

    2014-05-01

    Epicutaneous patch tests are used to reproduce allergy and diagnose allergic contact dermatitis. Reliable allergen test preparations are required. The purpose of the present study was to measure the actual concentrations of nickel(II) sulfate hexahydrate (NiSO4 ), methyl methacrylate, formaldehyde, and glutaraldehyde, and to compare them with the labelled concentrations, in commercial patch test allergen preparations found in dermatology clinics where patch testing is routinely performed. The commercial in-date and out-of-date patch test allergen preparations concentrations of NiSO4 , methyl methacrylate, formaldehyde and glutaraldehyde from one to three participating clinics were analysed with chromatographic or wet chemical techniques. NiSO4 and formaldehyde concentrations were at or above the labelled concentrations; however, formaldehyde loss occurred with storage. NiSO4 particulate was uniformly distributed throughout the petrolatum. 'In-use' methyl methacrylate reagent syringes all contained ≤ 56% of the 2% label concentration, with no observable relationship with expiration date. Lower methyl methacrylate cocentrations were consistently measured at the syringe tip end, suggesting loss resulting from methyl methacrylate's volatility. The concentrations of glutaraldehyde patch test allergen preparations ranged from 27% to 45% of the labelled (1% in pet.) concentration, independently of expiration date. Some false-negative methyl methacrylate, formaldehyde or glutaraldehyde patch test results may be attributable to instability of the test preparations. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Hot embossing and thermal bonding of poly(methyl methacrylate) microfluidic chips using positive temperature coefficient ceramic heater.

    PubMed

    Wang, Xia; Zhang, Luyan; Chen, Gang

    2011-11-01

    As a self-regulating heating device, positive temperature coefficient ceramic heater was employed for hot embossing and thermal bonding of poly(methyl methacrylate) microfluidic chip because it supplied constant-temperature heating without electrical control circuits. To emboss a channel plate, a piece of poly(methyl methacrylate) plate was sandwiched between a template and a microscopic glass slide on a positive temperature coefficient ceramic heater. All the assembled components were pressed between two elastic press heads of a spring-driven press while a voltage was applied to the heater for 10 min. Subsequently, the embossed poly(methyl methacrylate) plate bearing negative relief of channel networks was bonded with a piece of poly(methyl methacrylate) cover sheet to obtain a complete microchip using a positive temperature coefficient ceramic heater and a spring-driven press. High quality microfluidic chips fabricated by using the novel embossing/bonding device were successfully applied in the electrophoretic separation of three cations. Positive temperature coefficient ceramic heater indicates great promise for the low-cost production of poly(methyl methacrylate) microchips and should find wide applications in the fabrication of other thermoplastic polymer microfluidic devices.

  5. A ring to rule them all: a cyclic ketene acetal comonomer controls the nitroxide-mediated polymerization of methacrylates and confers tunable degradability.

    PubMed

    Delplace, Vianney; Guégain, Elise; Harrisson, Simon; Gigmes, Didier; Guillaneuf, Yohann; Nicolas, Julien

    2015-08-18

    2-Methylene-4-phenyl-1,3-dioxolane (MPDL) was successfully used as a controlling comonomer in NMP with oligo(ethylene glycol) methyl ether methacrylate (MeOEGMA) to prepare well-defined and degradable PEG-based P(MeOEGMA-co-MPDL) copolymers. The level of ester group incorporation is controlled, leading to reductions in molecular weight of up to 95% on hydrolysis. Neither the polymer nor its degradation products displayed cytoxicity. The method was also successfully applied to methyl methacrylate.

  6. Methyl substituted polyimides containing carbonyl and ether connecting groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)

    1992-01-01

    Polyimides were prepared from the reaction of aromatic dianhydrides with novel aromatic diamines having carbonyl and ether groups connecting aromatic rings containing pendant methyl groups. The methyl substituent polyimides exhibit good solubility and form tough, strong films. Upon exposure to ultraviolet irradiation and/or heat, the methyl substituted polyimides crosslink to become insoluble.

  7. Restoration of frontal contour with methyl methacrylate.

    PubMed

    Schultz, R C

    1979-10-01

    Of the various materials currently available for reconstruction of bony frontal deformities, bone cement (methyl methacrylate) has been judged to be superior in its simplicity, reliability, and aesthetic potential. It is uniquely suited to reconstruction of irregular defects of the forehead. Its biological characteristics, advantages, and hazards are presented along with the techniques of its use. Clinical examples illustrate the results obtained with minimal preparation, surgical time, and morbidity.

  8. Preparation and Characterization of InP/Poly(methyl methacrylate) Nanocomposite Films.

    PubMed

    Kwon, Younghoon; Kim, Jongsung

    2017-04-01

    Quantum dots (QDs) are nanocrystalline semiconductors with many unusual optical properties. They exhibit very high fluorescence intensities and possess exceptional stability against photo-bleaching. In this study, we report the preparation of InP QDs-poly(methyl methacrylate) (PMMA) hybrids by fabricating QDs via a thermal decomposition reaction, followed by radical polymerization. The InP QDs were synthesized using indium(III) chloride and tris(dimethylamino)phosphine. Flexible composite films were obtained by radical polymerization using methyl methacrylate (MMA) as the monomer and 2,2′-azobis(2-methylpropionitrile) (AIBN) as a radical initiator. The PL intensity of the QDs was lowered upon composite formation with PMMA. However, the composites exhibited higher thermal stability than pure PMMA.

  9. Studies on novel radiopaque methyl methacrylate: glycidyl methacrylate based polymer for biomedical applications.

    PubMed

    Dawlee, S; Jayakrishnan, A; Jayabalan, M

    2009-12-01

    A new class of radiopaque copolymer using methyl methacrylate (MMA) and glycidyl methacrylate (GMA) monomers was synthesized and characterized. The copolymer was made radiopaque by the epoxide ring opening of GMA using the catalyst o-phenylenediamine and the subsequent covalent attachment of elemental iodine. The copolymer was characterized by Fourier transform infrared (FTIR) spectra, energy dispersive X-ray analysis using environmental scanning electron microscope (EDAX), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). X-ray visibility of the copolymer was checked by X-radiography. Blood compatibility and cytotoxicity of the newly synthesized copolymer were also evaluated. The iodinated copolymer was thermally stable, blood compatible, non-cytotoxic, and highly radiopaque. The presence of bulky iodine group created a new copolymer with modified properties for potential use in biomedical applications.

  10. Nano-imprint lithography using poly (methyl methacrylate) (PMMA) and polystyrene (PS) polymers

    NASA Astrophysics Data System (ADS)

    Ting, Yung-Chiang; Shy, Shyi-Long

    2016-04-01

    Nano-imprinting lithography (NIL) technology, as one of the most promising fabrication technologies, has been demonstrated to be a powerful tool for large-area replication up to wafer-level, with features down to nanometer scale. The cost of resists used for NIL is important for wafer-level large-area replication. This study aims to develop capabilities in patterning larger area structure using thermal NIL. The commercial available Poly (Methyl Methacrylate) (PMMA) and Polystyrene (PS) polymers possess a variety of characteristics desirable for NIL, such as low material cost, low bulkvolumetric shrinkage, high spin coating thickness uniformity, high process stability, and acceptable dry-etch resistance. PMMA materials have been utilized for positive electron beam lithography for many years, offering high resolution capability and wide process latitude. In addition, it is preferable to have a negative resist like PMMA, which is a simple polymer with low cost and practically unlimited shelf life, and can be dissolved easily using commercial available Propylene glycol methyl ether acetate (PGMEA) safer solvent to give the preferred film thickness. PS is such a resist, as it undergoes crosslinking when exposed to deep UV light or an electron beam and can be used for NIL. The result is a cost effective patterning larger area structure using thermal nano-imprint lithography (NIL) by using commercial available PMMA and PS ploymers as NIL resists.

  11. 29 CFR 1926.1106 - Methyl chloromethyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1106 Methyl chloromethyl ether. Note: The requirements applicable to construction work under this...

  12. 29 CFR 1910.1006 - Methyl chloromethyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 6 2011-07-01 2011-07-01 false Methyl chloromethyl ether. 1910.1006 Section 1910.1006 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous...

  13. Preparation of Optically Transparent Films of Poly(methyl methacrylate) (PMMA) and Montmorillonite

    DTIC Science & Technology

    2001-11-01

    methacrylate] [PMMA] and Montmorillonite DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report...Society V6.4 Preparation of Optically Transparent Films of Poly(methyl methacrylate) (PMMA) and Montmorillonite Elena Vasiliul, Chyi-Shan Wang"’ 2...exchanged with 1.40 meq/g of dimethyl dehydrogenated tallow ammonium from a sodium montmorillonite , Cloisite Na+ (CNa). Since the cation-exchange

  14. 29 CFR 1910.1006 - Methyl chloromethyl ether.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 6 2014-07-01 2013-07-01 true Methyl chloromethyl ether. 1910.1006 Section 1910.1006 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous Substances § 1910.1006...

  15. Composite poly(methyl methacrylate-methacrylic acid-2-hydroxyethyl methacrylate) latex for immunoassay. The case of plasminogen.

    PubMed

    Miksa, B; Wilczynska, M; Cierniewski, C; Basinska, T; Slomkowski, S

    1995-01-01

    Poly(methyl methacrylate-methacrylic acid-2-hydroxyethyl methacrylate) latex (ACRYLAT) was synthesized by radical precipitation polymerization. The mass median diameter (MMD) and the geometrical standard deviation (GSD) of the ACRYLAT particles were 138 nm and 1.2, respectively. The concentration of the titrable carboxylic groups in the surface layer of latex particles was equal to 8.41 x 10(-6) mol m-2. Latex was able to bind up to 2.82 x 10(-7) mol of 1-aminopyrene per 1 m2 of the surface of the latex particles due to the ionic interactions between carboxylate anions and ammonium cations of protonated 1-aminopyrene. ACRYLAT was able to immobilize covalently human serum albumin in amounts up to 0.23 mg m-2. Aggregation of ACRYLAT with immobilized HSA, induced with specific antibodies (anti-HSA), was investigated turbidimetrically. The results indicated that in the model turbidimetric immunoassay, ACRYLAT coated with HSA can be used for the detection of anti-HSA in the goat anti-HSA serum diluted from 50 to 7000-fold. Immobilization of rabbit antibodies to plasminogen (anti-Plg) to ACRYLAT via the epsilon-aminocaproic acid linkers provided particles which were used for the development of the turbidimetric immunoassay for plasminogen. In this assay plasminogen could be detected in concentration ranging from 0.75 to 75 micrograms ml-1 in the blood plasma.

  16. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  17. Aquatic Life Criteria - Methyl Tertiary-Butyl Ether (MTBE)

    EPA Pesticide Factsheets

    Information pertaining to the 1999 Acute and Chronic Ambient Aquatic Life Water Quality Criteria for Methyl Tertiary-Butyl Ether (MTBE) for freshwater and salt water. Information includes the safe levels of MTBE that should protect the majority of species.

  18. Rotational characterization of methyl methacrylate: Internal dynamics and structure determination

    NASA Astrophysics Data System (ADS)

    Herbers, Sven; Wachsmuth, Dennis; Obenchain, Daniel A.; Grabow, Jens-Uwe

    2018-01-01

    Rotational constants, Watson's S centrifugal distortion coefficients, and internal rotation parameters of the two most stable conformers of methyl methacrylate were retrieved from the microwave spectrum. Splittings of rotational energy levels were caused by two non equivalent methyl tops. Constraining the centrifugal distortion coefficients and internal rotation parameters to the values of the main isotopologues, the rotational constants of all single substituted 13C and 18O isotopologues were determined. From these rotational constants the substitution structures and semi-empirical zero point structures of both conformers were precisely determined.

  19. Effects of surfactants on the properties of mortar containing styrene/methacrylate superplasticizer.

    PubMed

    Negim, El-Sayed; Kozhamzharova, Latipa; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA.

  20. Effects of Surfactants on the Properties of Mortar Containing Styrene/Methacrylate Superplasticizer

    PubMed Central

    Negim, El-Sayed; Kozhamzharova, Latipa; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA. PMID:24955426

  1. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... coloring effect. (2) As part of the manufacturing process, the lenses containing the color additives are... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction products. 73.3127 Section 73.3127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  2. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... coloring effect. (2) As part of the manufacturing process, the lenses containing the color additives are... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction products. 73.3127 Section 73.3127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  3. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... coloring effect. (2) As part of the manufacturing process, the lenses containing the color additives are... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction products. 73.3127 Section 73.3127 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  4. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz; Adam, Nurul Ilham; Yahya, Muhd Zu Azhan; Ali, Ab Malik Marwan

    2015-08-01

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance (1HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in 1HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF3SO3 show the highest conductivity. The complexation between EMG30 and LiCF3SO3 were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR).

  5. Effect of end segment on physicochemical properties and platelet compatibility of poly(propylene glycol)-initiated poly(methyl methacrylate).

    PubMed

    Fukuda, Chihiro; Yahata, Chie; Kinoshita, Takuya; Watanabe, Takafumi; Tsukamoto, Hideo; Mochizuki, Akira

    2017-10-01

    It is well known that polyether-based copolymers have good blood compatibility, although many mechanisms have been proposed to explain their favorable performance. Our objective in carrying out the present study was to obtain a better understanding of the effect of the (poly)ether segment on blood compatibility. Therefore, we synthesized poly(propylene glycol) (PPG)-based initiators for atom transfer polymerization, where the number of propylene glycol (PG) units in the PPG (Pn(PG) was varied from 1 to 94. Methyl methacrylate (MMA) was polymerized using the initiators, resulting in the formation of polyMMAs with a PG-based ether part at the polymer terminal. We mainly investigated the effects of Pn(PG) on the surface properties and platelet compatibility of the PPG-polyMMA. X-ray photoelectron spectroscopy and surface contact angle (CA) analysis revealed the exposure of the PG units at the surface of the polymer. The platelet compatibility of the polymers was improved compared with a commercial polyMMA, even when Pn(PG) = 1. These results suggest that PG units have an important influence on favorable blood compatibility, regardless of the Pn(PG) value. We also investigated protein adsorption behavior in terms of the amount and deformation of fibrinogen adsorbed on the polymer surface.

  6. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz; Adam, Nurul Ilham

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance ({sup 1}HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in {sup 1}HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF{sub 3}SO{sub 3} show the highest conductivity. The complexation between EMG30 and LiCF{submore » 3}SO{sub 3} were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR)« less

  7. Method for determination of methyl tert-butyl ether and its degradation products in water

    USGS Publications Warehouse

    Church, C.D.; Isabelle, L.M.; Pankow, J.F.; Rose, D.L.; Tratnyek, P.G.

    1997-01-01

    An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method can also give simultaneous identification of polar compounds that might occur as degradation products of gasoline oxygenates, such as TBA, TBF, TAA, methyl acetate, and acetone. When the method was applied to effluent from a column microcosm prepared with core material from an urban site in New Jersey, conversion of MTBE to TBA was observed after a lag period of 35 days. However, to date, analyses of water samples from six field sites using the DAI-GC/MS method have not produced evidence for the expected products of in situ degradation of MTBE.An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method

  8. Interfacial Properties of Thin Films of Poly(vinyl ether)s with Architectural Design in Water

    NASA Astrophysics Data System (ADS)

    Oda, Yukari; Itagaki, Nozomi; Sugimoto, Sin; Kawaguchi, Daisuke; Matsuno, Hisao; Tanaka, Keiji

    Precise design of primary structure and architecture of polymers leads to the well-defined structure, unique physical properties, and excellent functions not only in the bulk but also at the interfaces. We here constructed functional polymer interfaces in water based on the architectural design of poly(vinyl ether)s with oxyethylene side-chains (POEVE). A branched polymer with POEVE parts was preferentially segregated at the air interface in the matrix of poly(methyl methacrylate). As an alternative way to prepare the POEVE surface, the cross-linked hydrogel thin films were prepared. The moduli of the hydrogel films near the water interfaces, which were examined by force-distance curve measurements using atomic force microscopy, were greatly sensitive to the cross-linking density of the polymers. Diffuse interfaces of POEVE chains at the water interface make it possible to prevent the platelet adhesion on the films.

  9. Controlled Degradation of Poly(Ethyl Cyanoacrylate-Co-Methyl Methacrylate)(PECA-Co-PMMA) Copolymers

    USDA-ARS?s Scientific Manuscript database

    This paper describes a method for modifying poly(ethyl cyanoacrylate) in order to control the degradation and the stability as well as the glass transition temperatures. Copolymers of poly(ethyl cyanoacrylate-co-methyl methacrylate) (PECA-co-PMMA) with various compositions were synthesized by free ...

  10. Optical Properties of Nanocellulose Dispersions in Water, Dimethylformamide and Poly(Methyl Methacrylate)

    DTIC Science & Technology

    2013-10-01

    measurements for cellulose and PMMA thin- films . ..13  v List of Tables Table 1. Recorded optical data for nanocellulose in water...applications beyond thin films . In particular, the effects of nanocellulose fibers in higher concentrations, processed in different solvents, and...Optical Properties of Nanocellulose Dispersions in Water, Dimethylformamide and Poly(Methyl Methacrylate) by James F. Snyder, Joshua Steele

  11. TREATMENT OF METHYL TERT-BUTYL ETHER CONTAMINATED WATER USING PHOTOCATALYSIS

    EPA Science Inventory

    The feasibility of photo-oxidation treatment of methyl tert-butyl ether (MTBE) in water was investigated in three ways, 1) using a slurry falling film photo-reactor, 2) a batch solar reactor system, and 3) a combination of air-stripping and gas phase photooxidation system. MTBE-c...

  12. The Tensile and Shear Bond Strengths of Poly (Methyl Methacrylate) Processed on Electrolytically Etched Ticonium.

    DTIC Science & Technology

    1986-05-01

    METHYL NETHACRYLATE) PROCESSED ON ELECTROLYTICALLY ETCHED TICONIUM A THESIS Presented to the Faculty of The University of Texas Graduate School of...were cast utilizing the manufacturer’s directions for investment, burnout , and casting. Two groups of metal specimens were prepared: 20 for...STRENGTHS OF POLY (METHYL METHACRYLATE) PROCESSED ON ELECTROLYTICALLY ETCHED TICONIUM JOHN EDWARD ZURASKY, M.S. The University of Texas Graduate School

  13. REFINED PBPK MODEL OF AGGREGATE EXPOSURE TO METHYL TERTIARY-BUTYL ETHER

    EPA Science Inventory

    Aggregate (multiple pathway) exposures to methyl tertiary-butyl ether (MTBE) in air and water occur via dermal, inhalation, and oral routes. Previously, physiologically-based pharmacokinetic (PBPK) models have been used to quantify the kinetic behavior of MTBE and its primary met...

  14. 40 CFR 721.10556 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS No. 675869-05-3...-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers. 721.10556 Section 721.10556 Protection of...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers. (a) Chemical substance...

  15. 40 CFR 721.10556 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS No. 675869-05-3...-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers. 721.10556 Section 721.10556 Protection of...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers. (a) Chemical substance...

  16. 40 CFR 721.10558 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS No. 675869-05-3...-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers. 721.10558 Section 721.10558 Protection of...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers. (a) Chemical substance...

  17. 40 CFR 721.10557 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS No. 675869-05-3...-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers. 721.10557 Section 721.10557 Protection of...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers. (a) Chemical substance...

  18. 40 CFR 721.10558 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS No. 675869-05-3...-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers. 721.10558 Section 721.10558 Protection of...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers. (a) Chemical substance...

  19. 40 CFR 721.10557 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS No. 675869-05-3...-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers. 721.10557 Section 721.10557 Protection of...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers. (a) Chemical substance...

  20. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new uses...

  1. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new uses...

  2. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new uses...

  3. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new uses...

  4. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new uses...

  5. Effect of substrate interaction on the degradation of methyl tert-butyl ether, benzene, toluene, ethylbenzene, and xylene by Rhodococcus sp.

    PubMed

    Lee, Eun-Hee; Cho, Kyung-Suk

    2009-08-15

    It was examined the substrate interactions of benzene (B), tolulene (T), ethylbenzene (E), xylene (X), and methyl tert-butyl ether (M) in binary, ternary, quaternary, and quinary mixtures by Rhodococcus sp. EH831 that could aerobically degrade all of five single components. The specific degradation rates (SDRs) of B, T, E, X, and M were 234, 913, 131, 184 and 139 micromol g-dry cell weight (DCW)(-1)h(-1), respectively. In binary, ternary, quaternary, and quinary mixtures of them, ethylbenzene was the strongest inhibitor for the other substrates, and methyl tert-butyl ether was the weakest inhibitor. Interestingly, no degradation of benzene and methyl tert-butyl ether was found in the coexistence of ethylbenzene. The degradation of benzene followed only after toluene became exhausted when both was present. Ethylbenzene was least inhibited by methyl tert-butyl ether and most inhibited by toluene.

  6. PHOTOCATALYTIC OXIDATION OF METHYL-TERT-BUTYL ETHER FOR DRINKING WATER TREATMENT

    EPA Science Inventory

    The photo-oxidation of methyl tert-butyl ether (MTBE) in water was investigated to determine the feasibility of using photocatalysis for the treatment of MTBE-contaminated drinking water. The feasibility assessment was conducted using slurries of titanium dioxide in both a photo-...

  7. Poly(methyl methacrylate) coating of soft magnetic amorphous and crystalline Fe,Co-B nanoparticles by chemical reduction.

    PubMed

    Fernández Barquín, L; Yedra Martínez, A; Rodríguez Fernández, L; Rojas, D P; Murphy, F J; Alba Venero, D; Ruiz González, L; González-Calbet, J; Fdez-Gubieda, M L; Pankhurst, Q A

    2012-03-01

    The structural and magnetic properties of a collection of nanoparticles coated by Poly(methyl methacrylate) through a wet chemical synthesis have been investigated. The particles display either an amorphous (M = Fe, Co) M-B arrangement or a mixed structure bcc-Fe and fcc-Co + amorphous M-B. Both show the presence of a metal oxi-hydroxide formed in aqueous reduction. The organic coating facilitates technological handling. The cost-effective synthesis involves a reduction in a Poly(methyl methacrylate) aqueous solution of iron(II) or cobalt(II) sulphates (< 0.5 M) by sodium borohydride (< 0.5 M). The particles present an oxidized component, as deduced from X-ray diffraction, Mössbauer and Fe- and Co K-edge X-ray absorption spectroscopy and electron microscopy. For the ferrous alloys, this Fe-oxide is alpha-goethite, favoured by the aqueous solution. The Poly(methyl methacrylate) coating is confirmed by Fourier transform infrared spectroscopy. In pure amorphous core alloys there is a drastic change of the coercivity from bulk to around 30 Oe in the nanoparticles. The mixed structured alloys also lie in the soft magnetic regime. Magnetisation values at room temperature range around 100 emu/g. The coercivity stems from multidomain particles and their agglomeration, triggering the dipolar interactions.

  8. Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips.

    PubMed

    Chen, Yun; Zhang, Luyan; Chen, Gang

    2008-05-01

    Poly(methyl methacrylate) (PMMA) is particularly useful for microfluidic chips with the features of low price, excellent optic transparency, attractive mechanical and chemical properties, ease of fabrication and modification, biocompatibility, etc. During the past decade, significant progress in the PMMA microfluidic chips has occurred. This review, which contains 120 references, summarizes the recent advances and the key strategies in the fabrication, modification, and application of PMMA microfluidic chips. It is expected that PMMA microchips should find a wide range of applications and will lead to the creation of truly disposable microfluidic devices.

  9. Methacrylate derivatives incorporating pyroglutamic acid.

    PubMed

    Smith, Tara J; Mathias, Lon J

    2002-01-01

    Methacrylates containing pyroglutamic acid were synthesized in good yields. Methyl alpha-pyroglutamyl methylacrylate (PyMM) and methyl alpha-pyroglutamidoundecanoyl methylacrylate (PyUM) give very fast photopolymerization rates both in homopolymerizations and with widely used commercial monomers N-vinyl pyrrolidinone (NVP) and hydroxyethyl methacrylate (HEMA). Soluble or cross-linked homopolymers can be obtained depending upon polymerization temperature. Pyroglutamic methacrylates polymerize without added initiator in the melt. Solution cast, photocured, and thermally cured coatings gave good to excellent adhesion to poly(ethylene terephthalate) and glass surfaces.

  10. 40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Calcium Salt Maleic Anhydride Methacrylic Acid *Methacrylic Acid Esters Methane Methyl Ethyl Ketone Methyl Methacrylate Methyl Tert-Butyl Ether Methylisobutyl Ketone *n-Alkanes n-Butyl Alcohol n-Butylacetate n... Acid Nylon Salt Oxalic Acid *Oxo Aldehydes—Alcohols Pentaerythritol Pentane *Pentenes *Petroleum...

  11. 40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Calcium Salt Maleic Anhydride Methacrylic Acid *Methacrylic Acid Esters Methane Methyl Ethyl Ketone Methyl Methacrylate Methyl Tert-Butyl Ether Methylisobutyl Ketone *n-Alkanes n-Butyl Alcohol n-Butylacetate n... Acid Nylon Salt Oxalic Acid *Oxo Aldehydes—Alcohols Pentaerythritol Pentane *Pentenes *Petroleum...

  12. 40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Calcium Salt Maleic Anhydride Methacrylic Acid *Methacrylic Acid Esters Methane Methyl Ethyl Ketone Methyl Methacrylate Methyl Tert-Butyl Ether Methylisobutyl Ketone *n-Alkanes n-Butyl Alcohol n-Butylacetate n... Acid Nylon Salt Oxalic Acid *Oxo Aldehydes—Alcohols Pentaerythritol Pentane *Pentenes *Petroleum...

  13. 40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Calcium Salt Maleic Anhydride Methacrylic Acid *Methacrylic Acid Esters Methane Methyl Ethyl Ketone Methyl Methacrylate Methyl Tert-Butyl Ether Methylisobutyl Ketone *n-Alkanes n-Butyl Alcohol n-Butylacetate n... Acid Nylon Salt Oxalic Acid *Oxo Aldehydes—Alcohols Pentaerythritol Pentane *Pentenes *Petroleum...

  14. STRUCTURES AND BINDING ENERGIES OF METHYL TERT-BUTYL ETHER-WATER COMPLEXES

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE) is a well-known environmental contaminant owing to its high solubility in water. Since the early 1990s, MTBE has been added to gasoline to improve air quality in some metropolitan areas of the United States. Improved air quality was, however, achiev...

  15. Quercetin-3-methyl ether inhibits lapatinib-sensitive and -resistant breast cancer cell growth by inducing G2/M arrest and apoptosis

    PubMed Central

    Li, Jixia; Zhu, Feng; Lubet, Ronald A.; De Luca, Antonella; Grubbs, Clinton; Ericson, Marna E.; D’Alessio, Amelia; Normano, Nicola; Dong, Zigang; Bode, Ann M.

    2012-01-01

    Lapatinib, an oral, small-molecule, reversible inhibitor of both EGFR and HER2, is highly active in HER2 positive breast cancer as a single agent and in combination with other therapeutics. However, resistance against lapatinib is an unresolved problem in clinical oncology. Recently, interest in the use of natural compounds to prevent or treat cancers has gained increasing interest because of presumed low toxicity. Quercetin-3-methyl ether, a naturally occurring compound present in various plants, has potent anticancer activity. Here, we found that quercetin-3-methyl ether caused in a significant growth inhibition of lapatinib-sensitive and -resistant breast cancer cells. Western blot data showed that quercetin-3-methyl ether had no effect on Akt or ERKs signaling in resistant cells. However, quercetin-3-methyl ether caused a pronounced G2/M block mainly through the Chk1-Cdc25c-cyclin B1/Cdk1 pathway in lapatinib-sensitive and -resistant cells. In contrast, lapatinib produced an accumulation of cells in the G1 phase mediated through cyclin D1, but only in lapatinib-sensitive cells. Moreover, quercetin-3-methyl ether induced significant apoptosis, accompanied with increased levels of cleaved caspase 3, caspase 7 and poly (ADP-ribose) polymerase (PARP) in both cell lines. Overall, these results suggested that quercetin-3-methyl ether might be a novel and promising therapeutic agent in lapatinib-sensitive or -resistant breast cancer patients. PMID:22086611

  16. PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR HUMAN EXPOSURES TO METHYL TERTIARY-BUTYL ETHER

    EPA Science Inventory

    Humans can be exposed by inhalation, ingestion, or dermal absorption to methyl tertiary-butyl ether (MTBE), an oxygenated fuel additive, from contaminated water sources. The purpose of this research was to develop a physiologically based pharmacokinetic model describing in human...

  17. Exposure to volatile methacrylates in dental personnel.

    PubMed

    Hagberg, Stig; Ljungkvist, Göran; Andreasson, Harriet; Karlsson, Stig; Barregård, Lars

    2005-06-01

    Dental personnel are exposed to acrylates due to the acrylic resin-based composites and bonding agents used in fillings. It is well known that these compounds can cause contact allergy in dental personnel. However, in the 1990s, reports emerged on asthma also caused by methacrylates. The main volatile acrylates in dentistry are 2-hydroxyethyl methacrylate and methyl methacrylate. The aim of this study was to quantify the exposure to these acrylates in Swedish dental personnel. We studied the exposure to 2-hydroxyethyl methacrylate and methyl methacrylate in five randomly selected public dental clinics and at the Faculty of Odontology at Göteborg University. In total, 21 whole-day and 46 task-specific short-term (1-18 min) measurements were performed. The median 8-hour time-weighted averages were 2.5 microg/m3 (dentists) and 2.9 microg/m3 (dental nurses) for 2-hydroxyethyl methacrylate, and 0.8 microg/m3 (dentists) and 0.3 microg/m3 (dental nurses) for methyl methacrylate. The maximum short-term exposure levels were 79 microg/m3 for 2-hydroxyethyl methacrylate and 15 microg/m3 for methyl methacrylate, similar in dentists and dental nurses. The observed levels are much lower than in complete denture fabrication. We found only one previous study in dentistry and it showed similar results (though it reported short-term measurements only). Irritant effects would not be expected in healthy people at these levels. Nevertheless, occupational respiratory diseases due to methacrylates may occur in dental personnel, and improvements in the handling of these chemicals in dentistry are warranted. This includes better vials for the bonding agents and avoiding evaporation from discarded materials.

  18. INFLUENCE OF METHYL TERT-BUTYL ETHER (MTBE) ON LAKE WATER ALGAE

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE) has been used as an octane booster in gasoline in the United States since the 1970s. MTBE use increased greatly in the 1990s with the implementation of the Clean Air Act Amendments of 1990. The MTBE enhanced a more complete combustion of fuel hydroc...

  19. Preparation of poly(methyl methacrylate) microcapsules by in situ polymerization on the surface of calcium carbonate particles.

    PubMed

    Sato, Katsuhiko; Nakajima, Tatsuya; Anzai, Jun-ichi

    2012-12-01

    Poly(methyl methacrylate) (PMMA) microcapsules were prepared by the in situ polymerization of methyl methacrylate (MMA) and N,N'-methylenebisacrylamide on the surface of calcium carbonate (CaCO(3)) particles, followed by the dissolution of the CaCO(3) core in ethylenediaminetetraacetic acid solution. The microcapsules were characterized using fluorescence microscopy, atomic force microscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. The average sizes of the CaCO(3) particles and PMMA capsules were 3.8±0.6 and 4.0±0.6 μm, respectively. A copolymer consisting of MMA and rhodamine B-bearing MMA was also used to prepare microcapsules for fluorescent microscopy observations. Fluorescein isothiocyanate-labeled bovine serum albumin was enclosed in the PMMA microcapsules and its release properties were studied. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. The Knock-Limited Performance of Fuel Blends Containing Spiropentane, Methylenecyclobutane, Di-Tert-Butyl Ether, Methyl Tert-Butyl Ether, and Triptane

    NASA Technical Reports Server (NTRS)

    Meyer, Carl L.

    1946-01-01

    Tests show that at inlet-air temperatures of 250 deg F and 100 deg F the knock-limited performance of the base fuel of blends, leaded with 4 ml TEL per gallon and containing 20 percent spiropentane, was reduced at fuel/air ratios below 0.085. The 20 percent methylenecyclobutane reduced the knock-limited power of the base fuel at fuel/air ratios below 0.112. Di-tert-butyl ether, methyl-tert-butyl ether, and triptane increased the knock-limited power of the base fuel at all fuel/air ratios and at both temperatures.

  1. Reaction mechanism of dimethyl ether carbonylation to methyl acetate over mordenite – a combined DFT/experimental study

    DOE PAGES

    Rasmussen, D. B.; Christensen, J. M.; Temel, B.; ...

    2017-01-23

    The reaction mechanism of dimethyl ether carbonylation to methyl acetate over mordenite was studied theoretically with periodic density functional theory calculations including dispersion forces and experimentally in a fixed bed flow reactor at pressures between 10 and 100 bar, dimethyl ether concentrations in CO between 0.2 and 2.0%, and at a temperature of 438 K. The theoretical study showed that the reaction of CO with surface methyl groups, the rate-limiting step, is faster in the eight-membered side pockets than in the twelve-membered main channel of the zeolite; the subsequent reaction of dimethyl ether with surface acetyl to form methyl acetatemore » was demonstrated to occur with low energy barriers in both the side pockets and in the main channel. Here, the present analysis has thus identified a path, where the entire reaction occurs favourably on a single site within the side pocket, in good agreement with previous experimental studies. The experimental study of the reaction kinetics was consistent with the theoretically derived mechanism and in addition revealed that the methyl acetate product inhibits the reaction – possibly by sterically hindering the attack of CO on the methyl groups in the side pockets.« less

  2. BIODEGRADATION OF METHYL TERT-BUTYL ETHER USING AN INNOVATIVE BIOMASS CONCENTRATOR REACTOR

    EPA Science Inventory

    The aerobic biodegradation of methyl tert-butyl ether (MTBE) was investigated using a pilot-scale Biomass Concentrator Reactor (BCR). The reactor was operated for a year at a flow rate of 2500 L/d of Cincinnati dechlorinated tap water and an influent MTBE concentration o...

  3. Acid base chemistry of luteolin and its methyl-ether derivatives: A DFT and ab initio investigation

    NASA Astrophysics Data System (ADS)

    Amat, Anna; De Angelis, Filippo; Sgamellotti, Antonio; Fantacci, Simona

    2008-09-01

    The acid-base chemistry of luteolin, a flavonoid with important pharmacological and dyeing properties, and of the related methyl ether derivatives have been investigated by DFT and MP2 methods, testing different computational setups. We calculate the pK's of all the possible deprotonation sites, for which no experimental assignment could be achieved. The calculated pK's deliver a different acidity order for the two most acidic deprotonation sites between luteolin and its methyl ether derivatives, due to intramolecular hydrogen bonding in luteolin. A lowest p Ka of 6.19 is computed for luteolin, in good agreement with available experimental data.

  4. Enhanced diisobutene production in the presence of methyl tertiary butyl ether

    DOEpatents

    Smith, Jr., Lawrence A.

    1983-01-01

    In the liquid phase reaction of isobutene in the presence of resin cation exchange resins with itself in a C.sub.4 hydrocarbon stream to form dimers, the formation of higher polymers, oligomers, and co-dimer by-products is suppressed by the presence of 0.0001 to 1 mole per mole of isobutene of methyl tertiary butyl ether.

  5. BIODEGRADATION OF METHYL TERT-BUTYL ETHER AND BTEX AT VARYING HYDRAULIC RETENTION TIMES

    EPA Science Inventory

    The feasibility of biologically degrading methyl tert-butyl ether (MTBE) contaminated groundwater is dependent on the ability to degrade MTBE and its byproducts in the presence of other gasoline contaminants. This study investigates a mixed culture degrading both MTBE and benzene...

  6. REDUCTIVE ACTIVATION OF DIOXYGEN FOR DEGRADATION OF METHYL TERT-BUTYL ETHER BY BIFUNCTION

    EPA Science Inventory

    Bifunctional aluminum is prepared by sulfating aluminum metal with sulfuric acid. The use of bifunctional aluminum to degrade methyl tert-butyl ether (MTBE) in the presence of dioxygen has been examined using batch systems. Primary degradation products were tert-butyl alcohol, ...

  7. Enhanced diisobutene production in the presence of methyl tertiary butyl ether

    DOEpatents

    Smith, L.A. Jr.

    1983-03-01

    In the liquid phase reaction of isobutene in the presence of resin cation exchange resins with itself in a C[sub 4] hydrocarbon stream to form dimers, the formation of higher polymers, oligomers, and co-dimer by-products is suppressed by the presence of 0.0001 to 1 mole per mole of isobutene of methyl tertiary butyl ether. 1 fig.

  8. A comparative study of the decomposition of pig carcasses in a methyl methacrylate box and open air conditions.

    PubMed

    Li, Liangliang; Wang, Jiangfeng; Wang, Yu

    2016-08-01

    Analysis of the process of decomposition is essential in establishing the postmortem interval. However, despite the fact that insects are important players in body decomposition, their exact function within the decay process is still unclear. There is also limited knowledge as to how the decomposition process occurs in the absence of insects. In the present study, we compared the decomposition of a pig carcass in open air with that of one placed in a methyl methacrylate box to prevent insect contact. The pig carcass in the methyl methacrylate box was in the fresh stage for 1 day, the bloated stage from 2 d to 11 d, and underwent deflated decay from 12 d. In contrast, the pig carcass in open air went through the fresh, bloated, active decay and post-decay stages; and 22.3 h (0.93 d), 62.47 h (2.60 d), 123.63 h (5.15 d) and 246.5 h (10.27 d) following the start of the experiment respectively, prior to entering the skeletonization stage. A large amount of soft tissue were remained on the pig carcass in the methyl methacrylate box on 26 d, while only scattered bones remained on the pig carcass in open air. The results indicate that insects greatly accelerate the decomposition process. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  9. Distribution of methyl tert-butyl ether (MTBE) and selected water-quality constituents in the surficial aquifer at the Dover National Test Site, Dover Air Force Base, Delaware, 2001

    USGS Publications Warehouse

    Stewart, Marie; Guertal, William R.; Barbaro, Jeffrey R.; McHale, Timothy J.

    2004-01-01

    A joint study by the Dover National Test Site, Dover Air Force Base, Delaware, and the U.S. Geological Survey was conducted from June 27 through July 18, 2001, to determine the spatial distribution of the gasoline oxygenate additive methyl tert-butyl ether and selected water-quality constituents in the surficial aquifer underlying the Dover National Test Site. This report provides a summary assessment of the distribution of methyl tert-butyl ether and a preliminary screening of selected constituents that may affect natural attenuation and remediation demonstrations at the Dover National Test Site. The information gathered during this study is designed to assist potential remedial investigators who are considering conducting a methyl tert-butyl ether remedial demonstration at the test site. In addition, the study supported a planned enhanced bioremediation demonstration and assisted the Dover National Test Site in identifying possible locations for future methyl tert-butyl ether remediation demonstrations. A direct-push drill rig was used to collect a total of 147 ground-water samples (115 VOC samples and 32 quality-assurance samples) at varying depths. Volatile organic compounds were above the method reporting limits in 59 of the 115 ground-water samples. The concentrations ranged from below detection limits to maximum values of 12.4 micrograms per liter of cis-1,2-dichloro-ethene, 1.14 micrograms per liter of trichloro-ethene, 2.65 micrograms per liter of tetrachloro-ethene, 1,070 micrograms per liter of methyl tert-butyl ether, 4.36 micrograms per liter of benzene, and 1.8 micrograms per liter of toluene. Vinyl chloride, ethylbenzene, p,m-xylene, and o-xylene were not detected in any of the samples collected during this investigation. Methyl tert-butyl ether was detected in 47 of the 115 ground-water samples. The highest concentrations of methyl tert-butyl ether were detected in the surficial aquifer from ?4.6 to 6.4 feet mean sea level; however, methyl tert

  10. Structural modification of poly(methyl methacrylate) by proton irradiation

    NASA Astrophysics Data System (ADS)

    Choi, H. W.; Woo, H. J.; Hong, W.; Kim, J. K.; Lee, S. K.; Eum, C. H.

    2001-01-01

    A general survey is presented on the structural modification of poly(methyl methacrylate) (PMMA) by proton implantation. The implanted PMMA films were characterized by FT-IR attenuated total reflection (FT-IR ATR), Raman, Rutherford backscattering spectroscopy (RBS), gel permeation chromatography (GPC) and surface profiling. The ion fluence of 350 keV protons ranged from 2×10 14 to 1×10 15 ions/cm 2. The IR and Raman spectra showed the reduction of peaks from the pendant group of PMMA. The change of absorption and composition was observed by UV-VIS and RBS, respectively. These results showed that the pendant group is readily decomposed and eliminated by proton irradiation. The change of molecular weight distribution was also measured by GPC and G-value of scission was estimated to be 0.67.

  11. Electrospun poly(methyl methacrylate) fibrous mat showing piezoelectric properties

    NASA Astrophysics Data System (ADS)

    Nobeshima, Taiki; Ishii, Yuya; Sakai, Heisuke; Uemura, Sei; Yoshida, Manabu

    2018-05-01

    A piezoelectric effect, such as actuation behavior with voltage application, could be observed from a poly(methyl methacrylate) (PMMA) fibrous mat fabricated by electrospinning. This fibrous mat increased or decreased its thickness in accordance with the polarity of the applied voltage, which appears to be an inverse piezoelectric effect. The appearance d T constant was as large as 8.5 nm/V owing to the softness of the fibrous structure, and the coupling constant K T = 0.31 indicated its efficient piezoelectric property. This piezoelectric behavior was repeatedly observed to be stable at room temperature. In addition, the polarization components of the fibrous mat, which are considered to be the origin of its piezoelectric effect, and its relaxation behavior were confirmed from the results of thermally stimulated current measurements.

  12. Fracture resistance of Kevlar-reinforced poly(methyl methacrylate) resin: a preliminary study.

    PubMed

    Berrong, J M; Weed, R M; Young, J M

    1990-01-01

    The reinforcing effect of Kevlar fibers incorporated in processed poly(methyl methacrylate) resin samples was studied using 0% (controls), 0.5%, 1%, and 2% by weight of the added fibers. The samples were subjected to impact testing to determine fracture resistance, and sample groups were statistically compared using an ANOVA. Each reinforced sample had significantly greater fracture resistance (P less than 0.05) than the control, and no difference was found either within or between control groups. The use of reinforcing Kevlar fibers appears to enhance the fracture resistance of acrylic resin denture base materials.

  13. Geissoschizine methyl ether, a corynanthean-type indole alkaloid from Uncaria rhynchophylla as a potential acetylcholinesterase inhibitor.

    PubMed

    Yang, Zhong-Duo; Duan, Dong-Zhu; Du, Juan; Yang, Ming-Jun; Li, Shuo; Yao, Xiao-Jun

    2012-01-01

    Geissoschizine methyl ether (1), a newly discovered strong acetylcholinesterase (AChE) inhibitor, along with six weakly active alkaloids, vallesiachotamine (2), hisuteine (3), hirsutine (4), isorhynchophylline (5), cisocorynoxeine (6) and corynoxeine (7) have been isolated from Uncaria rhynchophylla. Geissoschizine methyl ether (1) inhibited 50% of AChE activity at concentrations of 3.7 ± 0.3 µg mL(-1) while the IC(50) value of physostigmine as a standard was 0.013 ± 0.002 µg mL(-1). The mode of AChE inhibition by 1 was reversible and non-competitive. In addition, molecular modelling was performed to explore the binding mode of inhibitor 1 at the active site of AChE.

  14. DERMAL, ORAL, AND INHALATION PHARMACOKINETICS OF METHYL TERTIARY BUTYL ETHER (MTBE) IN HUMAN VOLUNTEERS

    EPA Science Inventory

    Methyl tertiary butyl ether (MTBE), a gasoline additive, used to increase octane and reduce carbon monoxide emissions and ozone precursors has contaminated drinking water leading to exposure by oral, inhalation, and dermal routes. To determine its dermal, oral, and inhalation ki...

  15. Synthesis and characterization of functionalized methacrylates for coatings and biomedical applications

    NASA Astrophysics Data System (ADS)

    Shemper, Bianca Sadicoff

    The research presented in this dissertation involves the design of polymers for biomaterials and for coatings applications. The development of non-wettable, hard UV-curing, or reactive coatings is discussed. The biomaterials section involves the syntheses of linear and star-like polymers of the functionalized monomer poly(propylene glycol) monomethacrylate (PPGM) via atom transfer radical polymerization (ATRP) (Chapter II). Its copolymerization with a perfluoroalkyl ethyl methacrylate monomer (1H,1H,2H,2H-heptadecafluorodecyl methacrylate) and the syntheses of linear and star-like amphiphilic copolymers containing the fluorinated monomer and poly(ethyleneglycol) methyl ether methacrylate (MPEGMA) are discussed in Chapter III. The four-arm amphiphilic block copolymer obtained showed unique associative properties leading to micellization in selective solvents. Chapter IV includes research involving the design of films with low surface energy by incorporating fluorine into the polymer. The synthesis, characterization and polymerization of a perfluoroalkylether-substituted methacrylic acid (C8F7) are discussed, and the properties of coatings obtained after its photopolymerization on different substrates are evaluated to confirm formation of low-surface energy polymeric coatings. Subsequently, hard coatings based on methyl (alpha-hydroxymethyl)acrylate (MHMA) were prepared via photopolymerization using UV-light. Firstly, mechanistic investigations into the photopolymerization behavior of (alpha-hydroxymethyl)acrylates (RHMA's) are reported (Chapter V). RHMA derivatives were photopolymerized with various multifunctional acrylates and methacrylates and the effect of crosslinker type and degree of functionality on photopolymerization rates and conversions was investigated. Then, in Chapter VI the synthesis of a series of new crosslinkers is described and their photopolymerization kinetics was investigated in bulk. The effect of these novel crosslinkers on the

  16. ATTENUATION OF METHYL TERT-BUTYL ETHER IN WATER USING SUNLIGHT AND A PHOTOCATALYST

    EPA Science Inventory

    The use of methyl tert-butyl ether (MTBE) as a gasoline additive has resulted in increasing pollution of ground water. Most of the conventional treatment technologies are inefficient or costly when the initial concentration of MTBE is low (<200 ug/L). In order to find an eco-frie...

  17. Durability of Poly(Methyl Methacrylate) Lenses Used in Concentrating Photovoltaic Technology (Revised) (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D. C.; Carloni, J. D.; Pankow, J. W.

    2012-01-01

    Concentrating photovoltaic (CPV) technology recently gained interest based on its expected low levelized cost of electricity, high efficiency, and scalability. Many CPV systems employ Fresnel lenses composed of poly(methyl methacrylate) (PMMA) to obtain a high optical flux density on the cell. The optical and mechanical durability of these lenses, however, is not well established relative to the desired surface life of 30 years. Our research aims to quantify the expected lifetime of PMMA in key market locations (FL, AZ, and CO).

  18. Methacrylic Zwitterionic, Thermoresponsive, and Hydrophilic (Co)Polymers via Cu(0)-Polymerization: The Importance of Halide Salt Additives.

    PubMed

    Simula, Alexandre; Anastasaki, Athina; Haddleton, David M

    2016-02-01

    The synthesis of hydrophilic, thermoresponsive, and zwitterionic polymethacrylates is reported by Cu(0)-mediated reversible deactivation radical polymerization in water and/or water/alcohol mixtures. The predisproportionation of [Cu(I) (PMDETA)Cl] in water prior to initiator and monomer addition is exploited to yield well-defined polymethacrylates with full monomer conversions in 30 min. The addition of supplementary halide salts (NaCl) enables the synthesis of various molecular weight poly[poly(ethylene glycol) methyl ether methacrylate] (PEGMA475) (DPn = 10-80, Mn ≈ 10,000-40 000 g mol(-1)) with full monomer conversion and narrow molecular weight distributions attained in all cases (Đ ≈ 1.20-1.30). A bifunctional PEG initiator (average Mn ≈ 1000 g mol(-1)) is utilized for the polymerization of a wide range of methacrylates including 2-dimethylaminoethyl methacrylate, 2-morpholinoethyl methacrylate, [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide, and 2-methacryloyloxyethyl phosphorylcholine. Despite the high water content, high end group fidelity is demonstrated by in situ chain extensions and block copolymerizations with PEGMA475 yielding well-defined functional telechelic pentablock copolymers within 2.5 h. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Properties of cellulase as template molecule on chitosan—methyl methacrylate membrane

    NASA Astrophysics Data System (ADS)

    Lian, Qi; Zheng, Xuefang; Wu, Haixia; Song, Shitao; Wang, Dongjun

    2015-12-01

    In this study, a novel molecular imprinting membrane made of chitosan and methyl methacrylate (MMA) was fabricated with cellulase as template molecule and the thermal response to cellulase was characterized. The film was characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and the permeation experiment. The results showed that the space structure of the film was as similar as the cellulase. Moreover, the membrane had advanced molecular imprinting capability to cellulase comparing to pepsin and pectinase at any temperature and the film had excellent ability to identify specific template molecule (cellulase) at the synthesis temperature compared to other temperatures.

  20. (1-Adamantyl)methyl glycidyl ether: a versatile building block for living polymerization.

    PubMed

    Moers, Christian; Wrazidlo, Robert; Natalello, Adrian; Netz, Isabelle; Mondeshki, Mihail; Frey, Holger

    2014-06-01

    (1-Adamantyl)methyl glycidyl ether (AdaGE) is introduced as a versatile monomer for oxyanionic polymerization, enabling controlled incorporation of adamantyl moieties in aliphatic polyethers. Via copolymerization with ethoxyethyl glycidyl ether (EEGE) and subsequent cleavage of the acetal protection groups of EEGE, hydrophilic linear polyglycerols with an adjustable amount of pendant adamantyl moieties are obtained. The adamantyl unit permits control over thermal properties and solubility profile of these polymers (LCST). Additionally, AdaGE is utilized as a termination agent in carbanionic polymerization, affording adamantyl-terminated polymers. Using these structures as macroinitiators for the polymerization of ethylene oxide affords amphiphilic, in-chain adamantyl-functionalized block copolymers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. DERMAL, ORAL AND INHALATION PHARMACOKINETICS OF METHYL TERTIARY-BUTYL ETHER (MTBE) IN HUMAN VOLUNTEERS

    EPA Science Inventory


    Methyl tertiary butyl ether (MTBE), a gasoline additive used to increase octane and reduce carbon monoxide emissions and ozone precursors, has contaminated drinking water and can lead to exposure by oral, inhalation, and dermal routes. To determine its dermal, oral, and inhal...

  2. Co-polymerization of methyl methacrylate and styrene via surfactant-free emulsion polymerization, as a potential material for photonic crystal application

    NASA Astrophysics Data System (ADS)

    Kassim, Syara; Zahari, Siti Balqis; Tahrin, Rabiatul Addawiyah Azwa; Harun, Noor Aniza

    2017-09-01

    Photonic crystals are being the great interest of researcher to studies due to a variety of potential application for the interaction of light including the solar cells, optical sensors and paints. In order to evaluate the fabrication of photonic crystals thin film, a free-emulsifier emulsion copolymerization of styrene and methyl methacrylate was carried out. By using the self -assembly approach, this method offers the opportunity to produce crystalline polymer sphere in more ease operation, low cost and environmental friendly. The influences of the mixing ratio of monomer and amount of initiators were studied. In advance, the presence of styrene as co-monomer had improved the thermal degradation of polymer methyl methacrylate. While in changing the mixing ratio of styrene and methyl methacrylate resulted in particle size of the sphere. The size of polymer particles slightly increased on increasing volume of styrene monomer ratio. This occurred because the properties of styrene in water where it sparingly soluble and lead to coagulation of particles. This simple, yet effective method for preparing functional complex 3D structures has the potential to be used generically to fabricate a variety of functional porous 3D structures that could find application not only in new or improved photonic crystal (PC) devices but also in areas such as catalysis, solar cell, separation, fuel cells technology, microelectronics and optoelectronics.

  3. Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization

    Treesearch

    Hong Dong; Kenneth E. Strawhecker; James A. Snyder; Joshua A. Orlicki; Richard S. Reiner; Alan W. Rudie

    2012-01-01

    Uniform fibers composed of poly(methyl methacrylate) (PMMA) reinforced with progressively increasing contents of cellulose nanocrystals (CNCs), up to 41 wt% CNCs, have been successfully produced by electrospinning. The morphological, thermal and nanomechanical properties of the composite sub-micron fibers were investigated. The CNCs derived from wood pulp by sulfuric...

  4. Optical reflectivity study of silicon ion implanted poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Hadjichristov, Georgi B.; Stefanov, Ivan L.; Florian, Bojana I.; Blaskova, Gergana D.; Ivanov, Victor G.; Faulques, Eric

    2009-11-01

    The optical reflectivity (both specular and off-specular) of poly(methyl methacrylate) (PMMA) implanted with silicon ions (Si +) at energy of 50 keV, is studied in the spectral range 0.25-25 μm. The effect from the Si + implantation on the reflectivity of two PMMA materials is examined in the dose range from 10 14 to 10 17 ions/cm 2 and is linked to the structure formed in this ion implanted plastic. As compared to the pristine PMMA, an enhancement of the reflectivity of Si + implanted PMMA is observed, that is attributed to the modification of the subsurface region of PMMA upon the ion implantation. The ion-produced subsurface organic interface is also probed by laser-induced thermo-lens.

  5. Analysis of residual monomers in dendritic methacrylate copolymers and composites by HPLC and headspace-GC/MS.

    PubMed

    Viljanen, Eeva K; Langer, Sarka; Skrifvars, Mikael; Vallittu, Pekka K

    2006-09-01

    The aim of this study was to analyze the residual monomer content of photopolymerized dendritic methacrylate copolymers and particulate filler composites. Headspace-gas chromatography/mass spectrometry (HS-GC/MS) was compared with high performance liquid chromatography (HPLC). The resin mixtures consisted of a dendritic methacrylate monomer, methyl methacrylate and acetoacetoxyethyl methacrylate in varied proportions. In addition, one of the composites contained 1,4-butanediol dimethacrylate. Camphorquinone and 2-(N,N-dimethylamino)ethyl methacrylate were used as the light-activated initiator system. The content of residual methyl methacrylate and acetoacetoxyethyl methacrylate after 40 s photopolymerization were analyzed with HPLC and HS-GC/MS. The content of residual methyl methacrylate decreased and residual acetoacetoxyethyl methacrylate increased with increasing concentration of acetoacetoxyethyl methacrylate in the resin mixture. The results with both methods had the same trend. The addition of acetoacetoxyethyl methacrylate enhanced the copolymerization of methyl methacrylate, but did not decrease the total residual monomer content. The HS-GC/MS method was found to be a feasible method in the analysis of low-boiling residuals in dental polymers.

  6. Radiation grafting of methyl methacrylate onto polyethylene separators for lithium secondary batteries

    NASA Astrophysics Data System (ADS)

    Gwon, Sung-Jin; Choi, Jae-Hak; Sohn, Joon-Yong; An, Sung-Jun; Ihm, Young-Eon; Nho, Young-Chang

    2008-08-01

    Micro-porous polyethylene separator was modified by radiation grafting of methyl methacrylate in order to improve its affinity with a liquid electrolyte. The degree of grafting (DOG) increased with the monomer concentration and grafting time. The morphological change of the modified separator was investigated by scanning electron microscopy. The degree of crystallinity upon grafting was reduced due to the formation of an amorphous PMMA layer. The electrolyte uptake and the ionic conductivity of the separator increased with an increase in the DOG. The ionic conductivity reached 2.0 mS/cm for the grafted polyethylene separator with 127 wt% DOG.

  7. EVALUATION OF METHYL TERT-BUTYL ETHER (MTBE) AS AN INTERFERENCE ON COMMERCIAL BREATH-ALCOHOL ANALYZERS

    EPA Science Inventory

    Anecdotal reports suggest that high environmental or occupational exposures to the fuel oxygenate methyl tert-butyl ether (MTBE) may result in breath concentrations that are sufficiently elevated to cause a false positive on commercial breath-alcohol analyzers. We evaluated th...

  8. Searching for trans ethyl methyl ether in Orion KL.

    PubMed

    Tercero, B; Cernicharo, J; López, A; Brouillet, N; Kolesniková, L; Motiyenko, R A; Margulès, L; Alonso, J L; Guillemin, J-C

    2015-10-01

    We report on the tentative detection of trans ethyl methyl ether (tEME), t-CH 3 CH 2 OCH 3 , through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauche-trans-n-propanol, Gt-n-CH 3 CH 2 CH 2 OH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30 m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are ≤(4.0 ± 0.8) × 10 15 cm -2 and ≤(1.0 ± 0.2)× 10 15 cm -2 for tEME and Gt-n-propanol, respectively. The rotational temperature is ~100 K for both molecules. We also provide maps of CH 3 OCOH, CH 3 CH 2 OCOH, CH 3 OCH 3 , CH 3 OH, and CH 3 CH 2 OH to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio N (CH 3 OCH 3 )/ N (tEME) ≥ 150 in the compact ridge of Orion.

  9. Fluorescence-based Sensing of 2,4,6-Trinitrotoluene (TNT) Using a Multi-channeled Poly(methyl methacrylate) (PMMA) Microimmunosensor

    DTIC Science & Technology

    2010-01-22

    Davidson, Y.Y.; McWhorter, C.S.; Soper , S.A.; McCarley, R.L. Surface modification of poly(methyl methacrylate) used in the fabrication of microanalytical...J.; Hupert, M.L.; Patterson, D.; Gottert, J.; McCarley, R.L.; Nikitopoulos, D.; Murphy, M.C.; Soper , S.A. Highly efficient circulating tumor cell

  10. Methyl t-Butyl Ether Mineralization in Surface-Water Sediment Microcosms under Denitrifying Conditions

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.

    2001-01-01

    Mineralization of [U-14C] methyl t-butyl ether (MTBE) to 14CO2 without accumulation of t-butyl alcohol (TBA) was observed in surface-water sediment microcosms under denitrifying conditions. Methanogenic activity and limited transformation of MTBE to TBA were observed in the absence of denitrification. Results indicate that bed sediment microorganisms can effectively degrade MTBE to nontoxic products under denitrifying conditions.

  11. Preparation and Characterization of Mesoporous Zirconia Made by Using a Poly (methyl methacrylate) Template

    NASA Astrophysics Data System (ADS)

    Duan, Guorong; Zhang, Chunxiang; Li, Aimei; Yang, Xujie; Lu, Lude; Wang, Xin

    2008-03-01

    Superfine powders of poly (methyl methacrylate) (PMMA) have been prepared by means of an emulsion polymerization method. These have been used as templates in the synthesis of tetragonal phase mesoporous zirconia by the sol gel method, using zirconium oxychloride and oxalic acid as raw materials. The products have been characterized by infrared spectroscopy, X-ray diffraction analysis, transmission electron microscopy, N2 adsorption-desorption isotherms, and pore size distribution. The results indicate that the average pore size was found to be 3.7 nm.

  12. Effect of fluorinated groups on photooxidative stability of polymeric protectives applied on marble.

    PubMed

    Chiantore, O; Poli, T; Colombo, C; Peruzzi, R; Toniolo, L

    2001-01-01

    Some new protective copolymers and a commercial one have been tested on Candoglia marble, a very low porosity stone. Two of the polymers contained a partially fluorinated methacrylic monomer, 2,2,2 trifluoro ethyl methacrylate (TFEMA), in combination with either an acrylic, methyl acrylate (MA) or a vinyl ether, n-butyl vinyl ether (n-BVE) unit. Two copolymers, ethyl methacrylate/n-butyl vinyl ether and ethyl methacrylate (EMA)/methyl acrylate (Paraloid B72), were non-fluorinated and similar in compositions and molar ratio. The aim of the work is to test the copolymers and compare the performances of fluorinated new polymers with the non fluorinated one and with the largely used commercial product. The results obtained demonstrate that the introduction, even in limited amounts, of fluorine atoms in the side ester groups of methacrylic type polymers really improves their protective effect and the durability of the stone treatments. The best results were obtained with the copolymer TFEM/MA which is the fluorinated homologous of Paraloid B72.

  13. Pyrogallol-imprinted polymers with methyl methacrylate via precipitation polymerization

    NASA Astrophysics Data System (ADS)

    Mehamod, Faizatul Shimal; Othman, Nor Amira; Bulat, Ku Halim Ku; Suah, Faiz Bukhari Mohd

    2018-06-01

    Molecular simulation techniques are important to study the understanding of chemical and physical properties of any material. Computational modeling is considered as time reducer in finding the best recipes for Molecularly-Imprinted Polymers (MIPs). In this study, Pyrogallol-imprinted polymers (PIP) and non-imprinted polymers (NIPs) were synthesized via precipitation polymerization using Pyrogallol (Py), methyl methacrylate (MMA), divinylbenzene (DVB) as template, functional monomer and cross-linker, respectively. The recipe was according to the results from computational techniques. The synthesized PIP and NIPs were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) and UV-visible spectroscopy (UV-vis). Studies on adsorption isotherm showed that PIP and NIPs follow Scatchard isotherm models. Sorption kinetic study found that PIP and NIPs follow pseudo-second order which indicates the rate-limiting step is the surface adsorption. The imprinting factor of PIP was determined by selectivity study and showed the value of k >1, which proved that PIP was selective toward Pyrogallol compared to NIP.

  14. QSPR models of n-octanol/water partition coefficients and aqueous solubility of halogenated methyl-phenyl ethers by DFT method.

    PubMed

    Zeng, Xiao-Lan; Wang, Hong-Jun; Wang, Yan

    2012-02-01

    The possible molecular geometries of 134 halogenated methyl-phenyl ethers were optimized at B3LYP/6-31G(*) level with Gaussian 98 program. The calculated structural parameters were taken as theoretical descriptors to establish two new novel QSPR models for predicting aqueous solubility (-lgS(w,l)) and n-octanol/water partition coefficient (lgK(ow)) of halogenated methyl-phenyl ethers. The two models achieved in this work both contain three variables: energy of the lowest unoccupied molecular orbital (E(LUMO)), most positive atomic partial charge in molecule (q(+)), and quadrupole moment (Q(yy) or Q(zz)), of which R values are 0.992 and 0.970 respectively, their standard errors of estimate in modeling (SD) are 0.132 and 0.178, respectively. The results of leave-one-out (LOO) cross-validation for training set and validation with external test sets both show that the models obtained exhibited optimum stability and good predictive power. We suggests that two QSPR models derived here can be used to predict S(w,l) and K(ow) accurately for non-tested halogenated methyl-phenyl ethers congeners. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Tensile strength and water absorption of alumina filled poly (methyl methacrylate) denture base material.

    PubMed

    Nizam, A; Mohamed, S H; Arifin, A; Mohd Ishak, Z A; Samsudin, A R

    2004-05-01

    The aim of this study was to evaluate the tensile properties and water absorption of denture base material prepared from high molecular weight poly methyl methacrylate (PMMA) and alumina (Al2O3) as particulate filler. Specimens for mechanical testing were prepared by adding composite powder to the monomer followed by hand mixing as in dental laboratory procedure. The tensile strength of the prepared denture base material was slightly higher than commercial denture base material, while the water absorption was almost the same for all formulation of denture base materials.

  16. INHALATION EXPOSURE TO METHYL TERT-BUTYL ETHER (MTBE) AND DIBROMOCHLOROMETHANE (DBCM) USING CONTINUOUS BREATH ANALYSIS

    EPA Science Inventory

    The oxygenate methyl tert-butyl ether (MTBE) has been added to gasoline to help meet national ambient air quality standards in those parts of the U.S. that are non-compliant for carbon monoxide. Although MTBE has provided important health benefits in terms of reduced haza...

  17. Generalized peripheral neuropathy in a dental technician exposed to methyl methacrylate monomer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donaghy, M.; Rushworth, G.; Jacobs, J.M.

    1991-07-01

    A 58-year-old dental prosthetic technician developed generalized sensorimotor peripheral neuropathy. Neurophysiologic studies showed a generalized sensorimotor neuropathy of axonal degeneration type. Examination of a sural nerve biopsy showed a moderately severe axonal neuropathy with loss of large myelinated fibers and unmyelinated axons. There was evidence of slow ongoing degeneration and considerable fiber regeneration. Electron microscopy showed increased numbers of filaments in a few fibers. These findings show resemblances to the nerve changes caused by another acrylic resin, acrylamide. They suggest that the neuropathy may have been caused by 30 years of occupational cutaneous and inhalational exposure to methyl methacrylate monomermore » since they excluded other recognized causes of neuropathy.« less

  18. Raman spectra of bilayer graphene covered with Poly(methyl methacrylate) thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia Minggang; Center on Experimental Physics, School of Science, Xi'an Jiaotong University, 710049; Su Zhidan

    The Raman spectra of bilayer graphene covered with poly(methyl methacrylate) (PMMA) were investigated. Both the G and 2D peaks of PMMA-coated graphene were stiff and broad compared with those of uncovered graphene. This could be attributed to the residual strain induced by high-temperature baking during fabrication of the nanodevice. Furthermore, the two 2D peaks stiffened and broadened with increasing laser power, which is just the reverse to uncovered graphene. The stiffness is likely caused by graphene compression induced by the circular bubble of the thin PMMA film generated by laser irradiation. Our findings may contribute to the application of PMMAmore » in the strain engineering of graphene nanodevices.« less

  19. Bioinspired Hydroxyapatite/Poly(methyl methacrylate) Composite with a Nacre-Mimetic Architecture by a Bidirectional Freezing Method.

    PubMed

    Bai, Hao; Walsh, Flynn; Gludovatz, Bernd; Delattre, Benjamin; Huang, Caili; Chen, Yuan; Tomsia, Antoni P; Ritchie, Robert O

    2016-01-06

    Using a bidirectional freezing technique, combined with uniaxial pressing and in situ polymerization, "nacre-mimetic" hydroxyapatite/poly(methyl methacrylate) (PMMA) composites are developed by processing large-scale aligned lamellar ceramic scaffolds. Structural and mechanical characterization shows "brick-and-mortar" structures, akin to nacre, with interesting combinations of strength, stiffness, and work of fracture, which provide a pathway to making strong and tough lightweight materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis of carboxylic acids, esters, alcohols and ethers containing a tetrahydropyran ring derived from 6-methyl-5-hepten-2-one.

    PubMed

    Hanzawa, Yohko; Hashimoto, Kahoko; Kasashima, Yoshio; Takahashi, Yoshiko; Mino, Takashi; Sakamoto, Masami; Fujita, Tsutomu

    2012-01-01

    3-hydroxy acids, 3-hydroxy-3,7-dimethyloct-6-enoic acid (1) and 3-hydroxy-2,2,3,7-tetramethyloct-6-enoic acid (2), were prepared from 6-methyl-5-hepten-2-one, and they were subsequently used to prepare (2,6,6-trimethyltetrahydropyran-2-yl)acetic acid (3) and 2-methyl-2-(2,6,6-trimethyltetrahydropyran-2-yl)propanoic acid (4), respectively, via cyclization with an acidic catalyst such as boron trifluoride diethyl etherate or iodine. The reaction of carboxylic acids 3 and 4 with alcohols, including methanol, ethanol, and 1-propanol, produced the corresponding methyl, ethyl, and propyl esters, which all contained a tetrahydropyran ring. Reduction of carboxylic acids 3 and 4 afforded the corresponding alcohols. Subsequent reactions of these alcohols with several acyl chlorides produced novel esters. The alcohols also reacted with methyl iodide and sodium hydride to provide novel ethers. A one-pot cyclization-esterification of 1 to produce esters containing a tetrahydropyran ring, using iodine as a catalyst, was also investigated.

  1. In vitro study comparing the ability of mono-octanoin and mono-octanoin plus methyl tert-butyl ether to dissolve biliary stones.

    PubMed

    Tritapepe, R; Cesana, B

    1996-01-01

    This in vitro study compared the gallstone dissolution rates of mono-octanoin, mono-octanoin plus 10% distilled water, and mono-octanoin plus methyl tert-butyl ether 2:1. Sixteen stones were treated with each solvent at a slow perfusion rate of 3-4 ml/h and a rapid perfusion rate of 2.5 ml/30 min with 20-sec instillation/aspiration cycles, both with and without bile. The stones were weighed before, and 3, 6, 12 and 24 hrs after the start of treatment: the solvent was changed every 30 min. After 24 hrs of instillation/aspiration without bile, the mono-octanoin/methyl tert-butyl ether mixture reduced the weight of the stones by 93%, mono-octanoin plus water by 63%, and mono-octanoin alone by 52%; with bile, the figures were, respectively, 86%, 42% and 40%. The mono-octanoin/methyl tert-butyl ether mixture thus took approximately half the time needed by the other two preparations to dissolve the stones to the same extent, a finding which may be relevant for the clinical dissolution of bile duct stones.

  2. Flexible poly(methyl methacrylate)-based neural probe: An affordable implementation

    NASA Astrophysics Data System (ADS)

    Gasemi, Pejman; Veladi, Hadi; Shahabi, Parviz; Khalilzadeh, Emad

    2018-03-01

    This research presents a novel technique used to fabricate a deep brain stimulation probe based on a commercial poly(methyl methacrylate) (PMMA) polymer. This technique is developed to overcome the high cost of available probes crucial for chronic stimulation and recording in neural disorders such as Parkinson’s disease and epilepsy. The probe is made of PMMA and its mechanical properties have been customized by controlling the reaction conditions. The polymer is adjusted to be stiff enough to be easily inserted and, on the other hand, soft enough to perform required movements. As cost is one of the issues in the use of neural probes, a simple process is proposed for the production of PMMA neural probes without using expensive equipment and operations, and without compromising performance and quality. An in vivo animal test was conducted to observe the recording capability of a PMMA probe.

  3. Affinity monolith-integrated poly(methyl methacrylate) microchips for on-line protein extraction and capillary electrophoresis.

    PubMed

    Sun, Xiuhua; Yang, Weichun; Pan, Tao; Woolley, Adam T

    2008-07-01

    Immunoaffinity monolith pretreatment columns have been coupled with capillary electrophoresis separation in poly(methyl methacrylate) (PMMA) microchips. Microdevices were designed with eight reservoirs to enable the electrically controlled transport of selected analytes and solutions to carry out integrated immunoaffinity extraction and electrophoretic separation. The PMMA microdevices were fabricated reproducibly and with high fidelity by solvent imprinting and thermal bonding methods. Monoliths with epoxy groups for antibody immobilization were prepared by direct in situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in a porogenic solvent consisting of 70% 1-dodecanol and 30% cyclohexanol. Antifluorescein isothiocyanate was utilized as a model affinity group in the monoliths, and the immobilization process was optimized. A mean elution efficiency of 92% was achieved for the monolith-based extraction of fluorescein isothiocyanate (FITC)-tagged human serum albumin. FITC-tagged proteins were purified from a contaminant protein and then separated electrophoretically using these devices. The developed immunoaffinity column/capillary electrophoresis microdevices show great promise for combining sample pretreatment and separation in biomolecular analysis.

  4. Affinity Monolith-Integrated Poly(methyl Methacrylate) Microchips for On-Line Protein Extraction and Capillary Electrophoresis

    PubMed Central

    Sun, Xiuhua; Yang, Weichun; Pan, Tao; Woolley, Adam T.

    2008-01-01

    Immunoaffinity monolith pretreatment columns have been coupled with capillary electrophoresis separation in poly(methyl methacrylate) (PMMA) microchips. Microdevices were designed with 8 reservoirs to enable the electrically controlled transport of selected analytes and solutions to carry out integrated immunoaffinity extraction and electrophoretic separation. The PMMA microdevices were fabricated reproducibly and with high fidelity by solvent imprinting and thermal bonding methods. Monoliths with epoxy groups for antibody immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene dimethacrylate in a porogenic solvent consisting of 70% dodecanol and 30% hexanol. Anti-fluorescein isothiocyanate (FITC) was utilized as a model affinity group in the monoliths, and the immobilization process was optimized. A mean elution efficiency of 92% was achieved for the monolith-based extraction of FITC-tagged human serum albumin. FITC-tagged proteins were purified from a contaminant protein and then separated electrophoretically using these devices. The developed immunoaffinity column/capillary electrophoresis microdevices show great promise for combining sample pretreatment and separation in biomolecular analysis. PMID:18479142

  5. TiO2 Nanowires/Poly(Methyl Methacrylate) Based Hybrid Photodetector: Improved Light Detection.

    PubMed

    Saha, S; Mondal, A; Choudhur, B; Goswami, T; Sarkar, M B; Chattopadhyay, K K

    2016-03-01

    Hybrid photodetector with a maximum external quantum efficiency of ~3.08% in the UV region at 370 nm, was fabricated by spin-coated poly(methyl methacrylate) (PMMA) polymer onto glancing angle deposited (GLAD) vertically aligned TiO2 nanowire (NW) arrays. The TiO2 NWs/PMMA detector shows excellent rectification and constant 1.3 times photo-responsivity in the reverse bias condition from -1 V to -10 V. The photodiode possesses a low ideality factor of 5.1 as compared to bared TiO2 NWs device of 7.1. The hybrid device produces sharp turn-on of -0.8 s and turn-off transient of -0.9 s respectively.

  6. REMOVAL OF METHYL T-BUTYL ETHER (MTBE) FROM WATER BY PERVAPORATION: BENCH-SCALE AND PILOT SCALE EVALUATIONS

    EPA Science Inventory

    The ability of pervaporation to remove methyl t-butyl ether (MTBE) from water was evaluated at bench- and pilot-scales. Process parameters studied included flow rate, temperature, MTBE concentration, membrane module type, and permeate pressure. Pervaporation performance was ass...

  7. DERMAL EXPOSURE TO METHYL TERT-BUTYL ETHER (MTBE) AND DIBROMOCHLOROMETHANE (DBCM) WHILE BATHING WITH CONTAMINATED WATER

    EPA Science Inventory

    The oxygenate methyl tert-butyl ether (MTBE) has been added to gasoline to help meet national ambient air quality standards in those parts of the U.S. that are non-compliant for carbon monoxide. Although MTBE has provided important health benefits in terms of reduced hazardous a...

  8. WATER QUALITY AT FIVE MARINAS IN LAKE TEXOMA AS RELATED TO METHYL TERT-BUTYL ETHER (MTBE)

    EPA Science Inventory

    Occurrence of methyl tert-butyl ether (MTBE) in five marinas was monitored between June 1999 and November 2000 in Lake Texoma located on the border of Oklahoma and Texas. MTBE is a commonly used gasoline additive and a suspected carcinogen. Lake water was collected at locations i...

  9. Thermodynamic and Kinetic Behavior of the Polystyrene/Poly(vinyl methyl ether) Blend as Studied by Excimer Fluorescence.

    DTIC Science & Technology

    1986-01-02

    AD-A±63 895 THERMODYNAMIC AND KINETIC BEHAVIOR OF THE / POLYSTYRENE/POLY(YINYL METHYL E..(U) STANFORD UNIY CALIFDEPT OF CHEMICAL ENGINEERING C N...Polystyrene/Poly(vinyl methyl ether) Blend 7. DEcFRMN 81 toOR 30USptE8 00~ as Studied by Excimer Fluorescence 6 EFRIGOG EOTNME *AUTHOR() a. CONTRACT OR GRANT...werea fondoare ihemoriisof * ~ Ex e sp fluodecositionsdu to deud Gen e and hoog Pinus Florsneis shownhase migrationprocSECURITY CLASIFICTIO OFd

  10. Transesterification of propylene glycol methyl ether in chromatographic reactors using anion exchange resin as a catalyst.

    PubMed

    Oh, Jungmin; Sreedhar, Balamurali; Donaldson, Megan E; Frank, Timothy C; Schultz, Alfred K; Bommarius, Andreas S; Kawajiri, Yoshiaki

    2016-09-30

    Reactive chromatography using an anion exchange resin is proposed for a transesterification reaction of propylene glycol methyl ether (DOWANOL™ PM) with ethyl acetate to produce propylene glycol methyl ether acetate (DOWANOL™ PMA). This reaction is studied in batch and chromatographic reactors catalyzed by an anion exchange resin. Several anion exchange resins are tested and compared based on the performance of resin as an adsorbent and a catalyst. A chromatographic column is packed with a selected catalyst, AMBERLITE™ IRA904, and both reaction and chromatographic elution are studied at different temperatures and feed concentrations. The resulting chromatograms are fitted to a mathematical model to obtain adsorption equilibrium and reaction kinetic parameters by the inverse method. Compared to esterification investigated in a previous study, transesterification has advantages such as a higher conversion at lower temperature and easy removal of the byproduct which may lead to higher productivity. Deactivation of anion exchange resins is observed and potential solutions are suggested. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Manufacture of poly(methyl methacrylate) microspheres using membrane emulsification

    PubMed Central

    Bux, Jaiyana; Manga, Mohamed S.; Hunter, Timothy N.

    2016-01-01

    Accurate control of particle size at relatively narrow polydispersity remains a key challenge in the production of synthetic polymer particles at scale. A cross-flow membrane emulsification (XME) technique was used here in the preparation of poly(methyl methacrylate) microspheres at a 1–10 l h−1 scale, to demonstrate its application for such a manufacturing challenge. XME technology has previously been shown to provide good control over emulsion droplet sizes with careful choice of the operating conditions. We demonstrate here that, for an appropriate formulation, equivalent control can be gained for a precursor emulsion in a batch suspension polymerization process. We report here the influence of key parameters on the emulsification process; we also demonstrate the close correlation in size between the precursor emulsion and the final polymer particles. Two types of polymer particle were produced in this work: a solid microsphere and an oil-filled matrix microcapsule. This article is part of the themed issue ‘Soft interfacial materials: from fundamentals to formulation’. PMID:27298430

  12. On the degelation of networks – Case of the radiochemical degradation of methyl methacrylate – ethylene glycol dimethacrylate copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richaud, Emmanuel; Gilormini, Pierre; Verdu, Jacques

    2016-05-18

    Methyl methacrylate networks were synthetized and submitted to radiochemical degradation. Ageing was monitored by means of sol-gel analysis and glass transition temperature measurements. Networks were shown to undergo exclusively chain scission process leading to the degelation of network. The critical conversion degree corresponding to degelation (loss of all elastically active chains) is discussed regarding a statistical theory.

  13. Review of methyl methacrylate (MMA)/tributylborane (TBB)-initiated resin adhesive to dentin.

    PubMed

    Taira, Yohsuke; Imai, Yohji

    2014-01-01

    This review, focusing mainly on research related to methyl methacrylate/tributylborane (MMA/TBB) resin, presents the early history of dentin bonding and MMA/TBB adhesive resin, followed by characteristics of resin bonding to dentin. Bond strengths of MMA/TBB adhesive resin to different adherends were discussed and compared with other bonding systems. Factors affecting bond strength (such as conditioners, primers, and medicaments used for dental treatment), bonding mechanism, and polymerization characteristics of MMA/TBB resin were also discussed. This review further reveals the unique adhesion features between MMA/TBB resin and dentin: in addition to monomer diffusion into the demineralized dentin surface, graft polymerization of MMA onto dentin collagen and interfacial initiation of polymerization at the resin-dentin interface provide the key bonding mechanisms.

  14. Anaerobic Biodegradation Of Methyl tert-Butyl Ether Under Iron-Reducing Conditions In Batch And Continuous-Flow Cultures

    EPA Science Inventory

    The feasibility of biodegradation of the fuel oxygenate methyl tert-butyl ether (MTBE) under iron-reducing conditions was explored in batch and continuous-flow systems. A porous pot completely-mixed reactor was seeded with diverse cultures and operated under iron-reducing...

  15. CO-OCCURRENCE OF METHYL- TERT-BUTYL ETHER (MTBE) AND BTEX COMPOUNDS AT MARINAS IN A LARGE RESEVOIR

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE) is released into the environment as one of some gasoline components, not as a pure compound. BTEX compounds (benzene, tolune, ethylbenzene, and xylenes) are major volatile constituents found in gasoline and are water soluble and mobile. This study...

  16. Gas Phase Conformations and Methyl Internal Rotation for 2-PHENYLETHYL Methyl Ether and its Argon Van Der Waals Complex from Fourier Transform Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gurusinghe, Ranil M.; Tubergen, Michael

    2015-06-01

    A mini-cavity microwave spectrometer was used to record the rotational spectra arising from 2-phenylethyl methyl ether and its weakly bonded argon complex in the frequency range of 10.5 - 22 GHz. Rotational spectra were found for two stable conformations of the monomer: anti-anti and gauche-anti, which are 1.4 kJ mol-1 apart in energy at wB97XD/6-311++G(d,p) level. Doubled rotational transitions, arising from internal motion of the methyl group, were observed for both conformers. The program XIAM was used to fit the rotational constants, centrifugal distortion constants, and barrier to internal rotation to the measured transition frequencies of the A and E internal rotation states. The best global fit values of the rotational constants for the anti-anti conformer are A= 3799.066(3) MHz, B= 577.95180(17) MHz, C= 544.7325(3) MHz and the A state rotational constants of the gauche-anti conformer are A= 2676.1202(7) MHz, B= 760.77250(2) MHz, C= 684.78901(2) MHz. The rotational spectrum of 2-phenylethyl methyl ether - argon complex is consistent with the geometry where argon atom lies above the plane of the benzene moiety of gauche-anti conformer. Tunneling splittings were too small to resolve within experimental accuracy, likely due to an increase in three fold potential barrier when the argon complex is formed. Fitted rotational constants are A= 1061.23373(16) MHz, B= 699.81754(7) MHz, C= 518.33553(7) MHz. The lowest energy solvated ether - water complex with strong intermolecular hydrogen bonding has been identified theoretically. Progress on the assignment of the water complex will also be presented.

  17. Microwave Spectroscopy of Trans-Ethyl Methyl Ether in the Ground State

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kaori; Sakai, Yusuke; Tsunekawa, Shozo; Miyamoto, Taihei; Fujitake, Masaharu; Ohashi, Nobukimi

    2013-06-01

    The trans-ethyl methyl ether molecule (CH_3CH_2OCH_3) has two inequivalent methyl group internal rotors which corresponds to the two vibrational motions, ν_{28} and ν_{29}. Due to these internal rotations, a rotational transition could be split into maximum five components. The skeletal torsion (ν_{30}) is another low-lying state (ν_{30}) that interacts with the ν_{28} and ν_{29} modes. The microwave spectra of the trans-ethyl methyl ether molecule in the ν_{28} = 1, ν_{29} = 1, and ν_{30} = 1, 2 and 3 have been extensively studied by using Hougen's tunneling matrix formalism. The microwave spectroscopy in the ground state was studied by several groups. The splitting due to the ν_{28} mode (C-CH_3 internal rotation) is small in the ground state and was not fully resolved in most of the previous studied rotational transitions. In this paper, we report the results of the pulsed nozzle-jet Fourier transform microwave spectroscopy so as to measure the fully resolved spectra. The submillmeter wave spectroscopy was also carried out. Our analysis including the previously reported transitions would be useful for astronomical observations. K. Kobayashi, T. Matsui, N. Mori, S. Tsunekawa, and N. Ohashi J. Mol. Spectrosc. {269}, 242 2011. K. Kobayashi, T. Matsui, S. Tsunekawa, and N. Ohashi J. Mol. Spectrosc. {255}, 164 2009. K. Kobayashi, T. Matsui, N. Mori, S. Tsunekawa, and N. Ohashi J. Mol. Spectrosc.{251}, 301 2008. K. Kobayashi, K. Murata, S. Tsunekawa, and N. Ohashi Int. Symposium on Mol. Spectrosc., 65th Meeting TH15 2010.} M. Hayashi, and K. Kuwada J. Mol. Structure {28}, 147 1975. M. Hayashi, and M. Adachi J. Mol. Structure {78}, 53 1982. S. Tsunekawa, Y. Kinai, Y. Kondo, H. Odashima, and K. Takagi Molecules {8}, 103 2003. U. Fuchs, G. Winnewisser, P. Groner, F. C. De Lucia, and E. Herbst Astrophys. J. Suppl. {144}, 277 2003.

  18. U.S. Geological Survey laboratory method for methyl tert-Butyl ether and other fuel oxygenates

    USGS Publications Warehouse

    Raese, Jon W.; Rose, Donna L.; Sandstrom, Mark W.

    1995-01-01

    Methyl tert-butyl ether (MTBE) was found in shallow ground-water samples in a study of 8 urban and 20 agricultural areas throughout the United States in 1993 and 1994 (Squillace and others, 1995, p. 1). The compound is added to gasoline either seasonally or year round in many parts of the United States to increase the octane level and to reduce carbon monoxide and ozone levels in the air. The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL), near Denver, uses state-of-the-art technology to analyze samples for MTBE as part of the USGS water-quality studies. In addition, the NWQL offers custom analyses to determine two other fuel oxygenates--ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME). The NWQL was not able to obtain a reference standard for tert-amyl ethyl ether (TAEE), another possible fuel oxygenate (Shelley and Fouhy, 1994, p. 63). The shallow ground-water samples were collected as part of the USGS National Water-Quality Assessment Program. These samples were collected from 211 urban wells or springs and 562 agricultural wells sampled by the USGS in 1993 and 1994. The wells were keyed to specific land-use areas to assess the effects of different uses on ground-water quality (Squillace and others, 1995, p. 2). Ground-water samples were preserved on site to pH less than or equal to 2 with a solution of 1:1 hydrochloric acid. All samples were analyzed at the NWQL within 2 weeks after collection. The purpose of this fact sheet is to explain briefly the analytical method implemented by the USGS for determining MTBE and other fuel oxygenates. The scope is necessarily limited to an overview of the analytical method (instrumentation, sample preparation, calibration and quantitation, identification, and preservation of samples) and method performance (reagent blanks, accuracy, and precision).

  19. Thermodynamic properties (enthalpy, bond energy, entropy, and heat capacity) and internal rotor potentials of vinyl alcohol, methyl vinyl ether, and their corresponding radicals.

    PubMed

    da Silva, Gabriel; Kim, Chol-Han; Bozzelli, Joseph W

    2006-06-29

    Vinyl alcohols (enols) have been discovered as important intermediates and products in the oxidation and combustion of hydrocarbons, while methyl vinyl ethers are also thought to occur as important combustion intermediates. Vinyl alcohol has been detected in interstellar media, while poly(vinyl alcohol) and poly(methyl vinyl ether) are common polymers. The thermochemical property data on these vinyl alcohols and methyl vinyl ethers is important for understanding their stability, reaction paths, and kinetics in atmospheric and thermal hydrocarbon-oxygen systems. Enthalpies , entropies , and heat capacities (C(p)()(T)) are determined for CH(2)=CHOH, C(*)H=CHOH, CH(2)=C(*)OH, CH(2)=CHOCH(3), C(*)H=CHOCH(3), CH(2)=C(*)OCH(3), and CH(2)=CHOC(*)H(2). Molecular structures, vibrational frequencies, , and C(p)(T) are calculated at the B3LYP/6-31G(d,p) density functional calculation level. Enthalpies are also determined using the composite CBS-Q, CBS-APNO, and G3 methods using isodesmic work reactions to minimize calculation errors. Potential barriers for internal rotors are calculated at the B3LYP/6-31G(d,p) level and used to determine the hindered internal rotational contributions to entropy and heat capacity. The recommended ideal gas phase values calculated in this study are the following (in kcal mol(-1)): -30.0, -28.9 (syn, anti) for CH(2)=CHOH; -25.6, -23.9 for CH(2)=CHOCH(3); 31.3, 33.5 for C(*)H=CHOH; 27.1 for anti-CH(2)=C(*)OH; 35.6, 39.3 for C(*)H=CHOCH(3); 33.5, 32.2 for CH(2)=C(*)OCH(3); 21.3, 22.0 for CH(2)=CHOC(*)H(2). Bond dissociation energies (BDEs) and group additivity contributions are also determined. The BDEs reveal that the O-H, O-CH(3), C-OH, and C-OCH(3) bonds in vinyl alcohol and methyl vinyl ether are similar in energy to those in the aromatic molecules phenol and methyl phenyl ether, being on average around 3 kcal mol(-1) weaker in the vinyl systems. The keto-enol tautomerization enthalpy for the interconversion of vinyl alcohol to acetaldehyde is

  20. Study of two cohorts of workers exposed to methyl methacrylate in acrylic sheet production

    PubMed Central

    Tomenson, J; Bonner, S; Edwards, J; Pemberton, M; Cummings, T; Paddle, G

    2000-01-01

    OBJECTIVES—To study mortality among 4324 workers at two United Kingdom factories, Darwen, Lancashire and Wilton, Cleveland, producing polymethyl methacrylate (PMMA) sheet. The Darwen factory is still active, but the Wilton one was closed in 1970. Also, to investigate patterns of mortality after exposure to methyl methacrylate; in particular, mortality from colon and rectal cancer.
METHODS—All male employees at the Darwen factory with a record of employment in 1949-88 and all men ever employed at the Wilton factory (1949-70) were investigated. The vital status of both cohorts was ascertained on 31 December 1995. The exposure of 1526 subjects at the Darwen plant who were engaged from 1949 onwards could be characterised. The mean duration of exposure was 7.6 years at 13.2 ppm (8 hour time weighted average), although exposures in some work groups were as high as 100 ppm. It was not possible to calculate the cumulative exposure of workers first employed at the Darwen plant before 1949 or workers at the Wilton factory.
RESULTS—In the Darwen cohort, 622 deaths were identified and a further 700 deaths in the Wilton cohort. Mortalities for the cohort were compared with national and local rates and expressed as standardised mortality ratios (SMRs). In the subcohort of Darwen workers with more than minimal exposure to MMA, reduced mortalities compared with national and local rates, were found for all causes (SMR 94), and colorectal cancer (SMR 92), but mortality from all cancers was slightly increased (SMR 104). No relations were found with cumulative exposure to MMA. In the subcohort of Wilton workers, mortality from all causes of death was significantly reduced (SMR 89), but mortality from all cancers (SMR 103) and colorectal cancer (SMR 124) were increased. The excess of colorectal cancer was confined to employees with less than 1 year of employment.
CONCLUSION—The study provided no clear evidence that employment at the factories or exposure to

  1. Radiation induced graft copolymerization of methyl methacrylate onto chrome-tanned pig skins

    NASA Astrophysics Data System (ADS)

    Pietrucha, K.; Pȩkala, W.; Kroh, J.

    Graft copolymerization of methyl methacrylate (MMA) onto chrome-tanned pig skins was carried out by the irradiation with 60Co ?-rays. The grafted polymethyl methacrylate (PMMA) chains were isolated by acid hydrolysis of the collagen backbone in order to characterize the graft copolymers. Proof of grafting was obtained through the detection of amino acid endgroups in the isolated grafts by reaction with ninhydrin. The grafting yield of MMA in aqueous emulsion was found to be higher than that for pure MMA and MMA in acetone. The degree of grafting increases with increasing monomer concentration in emulsion and reaches maximum at radiation dose ca 15 kGy. The yield of grafting is very high - ca 90% of monomer converts into copolymer and only 10% is converted into homopolymer. The present paper reports the physical properties of chrome-tanned pig skins after graft polymerization with MMA in emulsion. Modified leathers are more resistant against water absorption and abrasion in comparison with unmodified ones. They have more uniform structure over the whole surface, greater thickness and stiffness. The results reported seem to indicate that MMA may be used in the production of shoe upper and sole leathers. The mechanism of some of the processes occuring during radiation grafting of MMA in water emulsion on tanned leathers has been also suggested and discussed.

  2. Contact allergy to epoxy (meth)acrylates.

    PubMed

    Aalto-Korte, Kristiina; Jungewelter, Soile; Henriks-Eckerman, Maj-Len; Kuuliala, Outi; Jolanki, Riitta

    2009-07-01

    Contact allergy to epoxy (meth)acrylates, 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]propane (bis-GMA), 2,2-bis[4-(2-hydroxy-3-acryloxypropoxy)phenyl]-propane (bis-GA), 2,2-bis[4-(methacryl-oxyethoxy)phenyl] propane (bis-EMA), 2,2-bis[4-(methacryloxy)phenyl]-propane (bis-MA), and glycidyl methacrylate (GMA) is often manifested together with contact allergy to diglycidyl ether of bisphenol A (DGEBA) epoxy resin. To analyse patterns of concomitant allergic reactions to the five epoxy (meth)acrylates in relation to exposure. We reviewed the 1994-2008 patch test files at the Finnish Institute of Occupational Health (FIOH) for reactions to the five epoxy (meth)acrylates, and examined the patients' medical records for exposure. Twenty-four patients had an allergic reaction to at least one of the studied epoxy (meth)acrylates, but specific exposure was found only in five patients: two bis-GMA allergies from dental products, two bis-GA allergies from UV-curable printing inks, and one bis-GA allergy from an anaerobic glue. Only 25% of the patients were negative to DGEBA epoxy resin. The great majority of allergic patch test reactions to bis-GMA, bis-GA, GMA and bis-EMA were not associated with specific exposure, and cross-allergy to DGEBA epoxy resin remained a probable explanation. However, independent reactions to bis-GA indicated specific exposure. Anaerobic sealants may induce sensitization not only to aliphatic (meth)acrylates but also to aromatic bis-GA.

  3. Increased cellular uptake of lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles due to surface modification with folic acid.

    PubMed

    Feuser, Paulo Emilio; Arévalo, Juan Marcelo Carpio; Junior, Enio Lima; Rossi, Gustavo Rodrigues; da Silva Trindade, Edvaldo; Rocha, Maria Eliane Merlin; Jacques, Amanda Virtuoso; Ricci-Júnior, Eduardo; Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H Hermes

    2016-12-01

    Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid were synthesized by miniemulsion polymerization in just one step. In vitro biocompatibility and cytotoxicity assays on L929 (murine fibroblast), human red blood, and HeLa (uterine colon cancer) cells were performed. The effect of folic acid at the nanoparticles surface was evaluated through cellular uptake assays in HeLa cells. Results showed that the presence of folic acid did not affect substantially the polymer particle size (~120 nm), the superparamagnetic behavior, the encapsulation efficiency of lauryl gallate (~87 %), the Zeta potential (~38 mV) of the polymeric nanoparticles or the release profile of lauryl gallate. The release profile of lauryl gallate from superparamagnetic poly(methyl methacrylate) nanoparticles presented an initial burst effect (0-1 h) followed by a slow and sustained release, indicating a biphasic release system. Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles with folic acid did not present cytotoxicity effects on L929 and human red blood cells. However, free lauryl gallate presented significant cytotoxic effects on L929 and human red blood cells at all tested concentrations. The presence of folic acid increased the cytotoxicity of lauryl gallate loaded in nanoparticles on HeLa cells due to a higher cellular uptake when HeLa cells were incubated at 37 °C. On the other hand, when the nanoparticles were incubated at low temperature (4 °C) cellular uptake was not observed, suggesting that the uptake occurred by folate receptor mediated energy-dependent endocytosis. Based on presented results our work suggests that this carrier system can be an excellent alternative in targeted drug delivery by folate receptor.

  4. Atomic Level Cleaning of Poly Methyl Methacrylate Residues from the Graphene Surface Using Radiolized Water at High Temperatures (Postprint)

    DTIC Science & Technology

    2017-09-05

    AFRL-RX-WP-JA-2017-0321 ATOMIC LEVEL CLEANING OF POLY-METHYL- METHACRYLATE RESIDUES FROM THE GRAPHENE SURFACE USING RADIOLIZED WATER AT...N. Zakharov and Eric A. Stach Brookhaven National Laboratory Jennifer Carpena-Nunez National Research Council 9 March 2017 Interim Report...Distribution Statement A. Approved for public release: distribution unlimited. © 2017 AIP PUBLISHING (STINFO COPY) AIR FORCE RESEARCH

  5. Methyl methacrylate and respiratory sensitization: A Critical review

    PubMed Central

    Borak, Jonathan; Fields, Cheryl; Andrews, Larry S; Pemberton, Mark A

    2011-01-01

    Methyl methacrylate (MMA) is a respiratory irritant and dermal sensitizer that has been associated with occupational asthma in a small number of case reports. Those reports have raised concern that it might be a respiratory sensitizer. To better understand that possibility, we reviewed the in silico, in chemico, in vitro, and in vivo toxicology literature, and also epidemiologic and occupational medicine reports related to the respiratory effects of MMA. Numerous in silico and in chemico studies indicate that MMA is unlikely to be a respiratory sensitizer. The few in vitro studies suggest that MMA has generally weak effects. In vivo studies have documented contact skin sensitization, nonspecific cytotoxicity, and weakly positive responses on local lymph node assay; guinea pig and mouse inhalation sensitization tests have not been performed. Cohort and cross-sectional worker studies reported irritation of eyes, nose, and upper respiratory tract associated with short-term peaks exposures, but little evidence for respiratory sensitization or asthma. Nineteen case reports described asthma, laryngitis, or hypersensitivity pneumonitis in MMA-exposed workers; however, exposures were either not well described or involved mixtures containing more reactive respiratory sensitizers and irritants.The weight of evidence, both experimental and observational, argues that MMA is not a respiratory sensitizer. PMID:21401327

  6. Geissoschizine methyl ether N-oxide, a new alkaloid with antiacetylcholinesterase activity from Uncaria rhynchophylla.

    PubMed

    Jiang, Wei-Wei; Su, Jia; Wu, Xing-De; He, Juan; Peng, Li-Yan; Cheng, Xiao; Zhao, Qin-Shi

    2015-01-01

    Geissoschizine methyl ether N-oxide, a new oxindole alkaloid, along with 14 known alkaloids, was isolated from the aerial part of Uncaria rhynchophylla. Their structures were identified by comprehensive spectral methods, including 2D NMR experiments, and confirmed by comparing with the literature data. In vitro acetylcholinesterase (AChE) inhibitory activity assay showed that the new compound exhibited anti-AChE activity with IC₅₀ value of 23.4 μM.

  7. Effect of Polyhedral Oligomeric Silsesquioxane (POSS) Substituents on the Rheological Behavior in Butyl Methacrylate/POSS Copolymers

    DTIC Science & Technology

    2008-10-27

    was repeated twice, dissolving the product in chloroform and diethyl ether, respectively. The polymer was dried at 60 °C under vacuum overnight...the Tg of the i Bu remains the same. Table 1. Tg for Butyl Methacrylate-co- Propyl Methacryl POSS Polymers with Various POSS Substituents

  8. Carbon nanotube-poly(methyl methacrylate) hybrid films: preparation using diazonium salt chemistry and mechanical properties.

    PubMed

    Mammeri, Fayna; Teyssandier, Joan; Darche-Dugaret, Clément; Debacker, Sabine; Le Bourhis, Eric; Chehimi, Mohamed Mehdi

    2014-11-01

    The poor miscibility of carbon nanotubes (CNTs) in common organic solvents and organic monomers requires their modification by suitable functional (reactive or not) groups prior to their incorporation in thermoplastic polymers. Dispersion behavior of carbon nanotubes and mechanical properties of various CNT-poly(methylmethacrylate) (PMMA) nanocomposites were investigated. We studied the influence of the surface chemistry through the use of diazonium salts as an elegant and environmentally friendly platform to provide a suitable sidewall functionalization by methyl methacrylate functions. We used either a molecular size functional group through the grafting of methacryloxypropyltrimethoxysilane or a macromolecular size one, consisting in PMMA brushes grown by SI-ATRP in order to study the influence of the length of methacrylate function on the dispersion of CNT in PMMA. The hardness and the elastic indentation modulus of all hybrid films were obtained through nanoindentation measurements and found to increase, using ATRP-modified CNTs, suggesting a better dispersion of CNTs in PMMA due to optimal inorganic-organic interactions promoted by the short chains of PMMA. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Dielectric and optical study of poly (methyl methacrylate) (PMMA) / Fe2O3 films

    NASA Astrophysics Data System (ADS)

    Anita, Chimankar, O. P.; Bansod, A. R.; Sannakki, Basavaraja

    2013-06-01

    Organic/inorganic polymer composite films containing poly (methyl-methacrylate) (PMMA)/ ferric oxide Fe2O3 were prepared following solution casting technique. Dielectric Properties of films has been studied using LCR meter at room temperature 26°C. Also optical properties have been studied using digital abbey refractometer. The dielectric behavior of films have been studied as a function of concentration, and at lower frequencies over the range 100 Hz-25 KHz, The results elucidate that 70:30 and 50:50 wt% of PMMA/Fe2O3 composite films posses optimal conducting properties due to observed electronic polarisability dip at 40Wt% of Fe2O3.

  10. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A [Santa Fe, NM; Martinez, Rodolfo A [Santa Fe, NM; Unkefer, Clifford J [Los Alamos, NM

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  11. Searching for trans ethyl methyl ether in Orion KL★,★★

    PubMed Central

    Tercero, B.; Cernicharo, J.; López, A.; Brouillet, N.; Kolesniková, L.; Motiyenko, R. A.; Margulès, L.; Alonso, J. L.; Guillemin, J.-C.

    2015-01-01

    We report on the tentative detection of trans ethyl methyl ether (tEME), t-CH3CH2OCH3, through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauche-trans-n-propanol, Gt-n-CH3CH2CH2OH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30 m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are ≤(4.0 ± 0.8) × 1015 cm−2 and ≤(1.0 ± 0.2)× 1015 cm−2 for tEME and Gt-n-propanol, respectively. The rotational temperature is ~100 K for both molecules. We also provide maps of CH3OCOH, CH3CH2OCOH, CH3OCH3, CH3OH, and CH3CH2OH to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio N(CH3OCH3)/N(tEME) ≥ 150 in the compact ridge of Orion. PMID:26869726

  12. 40 CFR Table 7 to Subpart Vvvvvv... - Partially Soluble HAP

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 111444 31. Dinitrophenol 51285 32. Epichlorohydrin 106898 33. Ethyl acrylate 140885 34. Ethylbenzene.... Hexachlorobutadiene 87683 39. Hexachloroethane 67721 40. Methyl methacrylate 80626 41. Methyl-t-butyl ether 1634044 42...

  13. 40 CFR Table 7 to Subpart Vvvvvv... - Partially Soluble HAP

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 111444 31. Dinitrophenol 51285 32. Epichlorohydrin 106898 33. Ethyl acrylate 140885 34. Ethylbenzene.... Hexachlorobutadiene 87683 39. Hexachloroethane 67721 40. Methyl methacrylate 80626 41. Methyl-t-butyl ether 1634044 42...

  14. DFT study on the adsorption of diethyl, ethyl methyl, and dimethyl ethers on the surface of gallium doped graphene

    NASA Astrophysics Data System (ADS)

    Shokuhi Rad, Ali; Sani, Emad; Binaeian, Ehsan; Peyravi, Majid; Jahanshahi, Mohsen

    2017-04-01

    In this study, we used density functional theory (DFT) to search on the adsorption properties of three important compounds of ether family; diethyl ether (DEE), ethyl methyl ether (EME), and dimethyl ether (DME) on the surface of Gallium doped graphene (GaG). We used three functionals (B3LYP, wb97xd, and MPW1PW91) for optimization and calculation of adsorption energy. After fully optimization, we scrutinized on the charge allocations on the adsorbed ethers as well as GaG (at the area of interaction) based on natural bond orbitals (NBO). Besides, we have calculated the amount of charge transfer upon adsorption of each analyte. We revel that GaG is an ideal adsorbent for chemisorption of all above-mentioned ethers. There is a little difference between the values of adsorption; -123.5, -120, and -118.3 kJ/mol (based on wb97xd) for DEE, EME, and DME, respectively. We found significant changes in the electronic structure of both adsorbent and adsorbate upon adsorption. Moreover, results of charge analyses confirm GaG is a p-type semiconductor.

  15. Sub-5 nm Domains in Ordered Poly(cyclohexylethylene)-block-poly(methyl methacrylate) Block Polymers for Lithography.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennemur, Justin; Yao, Li; Bates, Frank Stephen

    2014-01-01

    A series of poly(cyclohexylethylene)-block-poly- (methyl methacrylate) (PCHE PMMA) diblock copolymers with varying molar mass (4.9 kg/mol Mn 30.6 kg/mol) and narrow molar mass distribution were synthesized through a combination of anionic and atom transfer radical polymerization (ATRP) techniques. Heterogeneous catalytic hydrogenation of -(hydroxy)polystyrene (PS-OH) yielded -(hydroxy)poly(cyclohexylethylene) (PCHEOH) with little loss of hydroxyl functionality. PCHE-OH was reacted with -bromoisobutyryl bromide (BiBB) to produce an ATRP macroinitiator used for the polymerization of methyl methacrylate. PCHE PMMA is a glassy, thermally stable material with a large effective segment segment interaction parameter, eff = (144.4 6.2)/T (0.162 0.013), determined by meanfield analysis of order-to-disordermore » transition temperatures (TODT) measured by dynamic mechanical analysis and differential scanning calorimetry. Ordered lamellar domain pitches (9 D 33 nm) were identified by small-angle X-ray scattering from neat BCPs containing 43 52 vol % PCHE ( f PCHE). Atomic force microscopy was used to show 7.5 nm lamellar features (D = 14.8 nm) which are some of the smallest observed to date. The lowest molar mass sample (Mn = 4.9 kg/mol, f PCHE = 0.46) is characterized by TODT = 173 3 C and sub-5 nm nanodomains, which together with the sacrificial properties of PMMA and the high overall thermal stability place this material at the forefront of high- systems for advanced nanopatterning applications.« less

  16. DEVELOPMENT OF PHYSIOLOGICAL-BASED PHARMACOKINETIC MODEL FOR DERMAL ABSORPTION NAD PENETRATION OF METHYL TERTIARY BUTYL ETHER IN HUMANS

    EPA Science Inventory

    Background: Methyl tertiary butyl ether (MTBE) is a volatile organic chemical that is added to gasoline as an octane booster and to reduce vehicular emissions of carbon monoxide. MTBE is introduced into the environment through fuel spills, leakage of storage tanks, and evaporat...

  17. TOXICITY OF METHYL-TERT BYTYL ETHER (MTBE) TO PLANTS (AVENA SATIVA, ZEA MAYS, TRITICUM AESTIVUM, AND LACTUCA SATIVA)

    EPA Science Inventory

    Effects of Methyl tert-butyl ether (MTBE) on the germination of seeds and growth of the plant were studied in some laboratory experiments. Test plants were wild oat (Avena sative), sweet corn (Zea mays), wheat (Triticum aestivum), and lettuce (Lactuca sativa). Seed germination,...

  18. Asbestos-Induced Epithelial Changes in Organ Cultures of Hamster Trachea: Inhibition by Retinyl Methyl Ether

    NASA Astrophysics Data System (ADS)

    Mossman, B. T.; Craighead, J. E.; MacPherson, B. V.

    1980-01-01

    The epithelium of the hamster trachea in organ culture undergoes hyperplasia and squamous metaplasia after exposure to the amphibole types of asbestos, crocidolite and amosite. These changes are inhibited when the synthetic vitamin A analog, retinyl methyl ether, is incorporated into the culture medium. These findings suggest a possible use for retinoids in the prevention and treatment of respiratory tract disease associated with environmental exposure to asbestos.

  19. Simple, green, and clean removal of a poly(methyl methacrylate) film on chemical vapor deposited graphene

    NASA Astrophysics Data System (ADS)

    Park, J.-H.; Jung, W.; Cho, D.; Seo, J.-T.; Moon, Y.; Woo, S. H.; Lee, C.; Park, C.-Y.; Ahn, J. R.

    2013-10-01

    The clean removal of a poly(methyl methacrylate) (PMMA) film on graphene has been an essential part of the process of transferring chemical vapor deposited graphene to a specific substrate, influencing the quality of the transferred graphene. Here we demonstrate that the clean removal of PMMA can be achieved by a single heat-treatment process without the chemical treatment that was adopted in other methods of PMMA removal. The cleanness of the transferred graphene was confirmed by four-point probe measurements, synchrotron radiation x-ray photoemission spectroscopy, optical images, and Raman spectroscopy.

  20. New Linear and Star-Shaped Thermogelling Poly([R]-3-hydroxybutyrate) Copolymers.

    PubMed

    Barouti, Ghislaine; Liow, Sing Shy; Dou, Qingqing; Ye, Hongye; Orione, Clément; Guillaume, Sophie M; Loh, Xian Jun

    2016-07-18

    The synthesis of multi-arm poly([R]-3-hydroxybutyrate) (PHB)-based triblock copolymers (poly([R]-3-hydroxybutyrate)-b-poly(N-isopropylacrylamide)-b-[[poly(methyl ether methacrylate)-g-poly(ethylene glycol)]-co-[poly(methacrylate)-g-poly(propylene glycol)

  1. Preparation and characterization of poly(methyl methacrylate) and poly(maleic anhydride-co-diallyl phthalate) grafted carbon black through γ-ray irradiation

    NASA Astrophysics Data System (ADS)

    Bo, Yang; Cui, Jiayang; Cai, Yangben; Xu, Shiai

    2016-02-01

    In this study, the grafting polymerization of methyl methacrylate (MMA) monomer and maleic anhydride/diallyl phthalate (MAH/DAP) co-monomer onto the surface of carbon black (CB) were carried out at room temperature and normal pressure by γ-ray irradiation. The surface chemistry of grafted CBs were characterized by infrared spectroscopy (IR), thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The results show that there are some remanent polymers on the surface of modified CBs after extract for 48 h, indicating that poly(methyl methacrylate) (PMMA) and poly(MAH-co-DAP) have been successfully grafted onto the surface of CB without using initiator due to the high energy of γ-ray irradiation. Dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) reveal that the grafted CBs have smaller average aggregate size and better dispersibility than that of CB in absolute ethanol. In addition, it was found that the amount of oxygen groups and the irradiation doses/dose rates have little effect on the grafting degree of CB.

  2. Volatile methacrylates in dental practices.

    PubMed

    Marquardt, Wolfgang; Seiss, Mario; Hickel, Reinhard; Reichl, Franz X

    2009-04-01

    In recent years, an increase of occupational respiratory diseases, such as asthma caused by methacrylates, has been observed in dental personnel. In this study, the exposure of dental personnel to various volatile methacrylates was investigated. The air levels of methacrylates were measured during filling treatment while bonding agents were used in 4 dental practices in Munich, Germany. Short-term air sampling (15 min) was performed using solid phase microextraction (SPME). The SPME fibers were coated with carbowax/divinyl benzene to enrich the analytes. For analysis, the analytes were thermically desorbed from the fiber and subsequently analyzed directly by gas chromatography/mass spectrometry. The methacrylates methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (HEMA), ethylene glycol dimethacrylate (EGDMA), and triethylene glycol dimethacrylate (TEG-DMA) were identified in the air of dental practices. The exposure levels of the four methacrylates varied during the filling treatments. The maximum concentrations found were 0.4 mg/m3 for MMA, 45 microg/m3 for HEMA, 13 microg/m3 for EGDMA, and 45 microg/m3 for TEG-DMA. The detection of TEG-DMA correlated with the application of bonding agents during performance of dental fillings. Exposure levels of different methacrylates were observed at all investigated dental practices. The maximum levels of MMA measured in this study were at least 200 times lower than the toxicologically relevant maximum allowable concentrations defined in various countries. Nevertheless, the exposure levels of methacrylates should be kept as low as possible due to the allergenic potential of some methacrylates.

  3. 40 CFR Table 7 to Subpart Hhhhh of... - Partially Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Methyl methacrylate 80626 42. Methyl-t-butyl ether 1634044 43. Methylene chloride 75092 44. N-hexane 110543 45. N,N-dimethylaniline 121697 46. Naphthalene 91203 47. Phosgene 75445 48. Propionaldehyde 123386...

  4. 40 CFR Table 7 to Subpart Hhhhh of... - Partially Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Methyl methacrylate 80626 42. Methyl-t-butyl ether 1634044 43. Methylene chloride 75092 44. N-hexane 110543 45. N,N-dimethylaniline 121697 46. Naphthalene 91203 47. Phosgene 75445 48. Propionaldehyde 123386...

  5. 40 CFR Table 8 to Subpart Ffff of... - Partially Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Methyl methacrylate 80626 41. Methyl-t-butyl ether 1634044 42. Methylene chloride 75092 43. N-hexane 110543 44. N,N-dimethylaniline 121697 45. Naphthalene 91203 46. Phosgene 75445 47. Propionaldehyde 123386...

  6. 40 CFR Table 8 to Subpart Ffff of... - Partially Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Methyl methacrylate 80626 41. Methyl-t-butyl ether 1634044 42. Methylene chloride 75092 43. N-hexane 110543 44. N,N-dimethylaniline 121697 45. Naphthalene 91203 46. Phosgene 75445 47. Propionaldehyde 123386...

  7. 40 CFR Table 7 to Subpart Hhhhh of... - Partially Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Methyl methacrylate 80626 42. Methyl-t-butyl ether 1634044 43. Methylene chloride 75092 44. N-hexane 110543 45. N,N-dimethylaniline 121697 46. Naphthalene 91203 47. Phosgene 75445 48. Propionaldehyde 123386...

  8. 40 CFR Table 7 to Subpart Hhhhh of... - Partially Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Methyl methacrylate 80626 42. Methyl-t-butyl ether 1634044 43. Methylene chloride 75092 44. N-hexane 110543 45. N,N-dimethylaniline 121697 46. Naphthalene 91203 47. Phosgene 75445 48. Propionaldehyde 123386...

  9. 40 CFR Table 7 to Subpart Hhhhh of... - Partially Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Methyl methacrylate 80626 42. Methyl-t-butyl ether 1634044 43. Methylene chloride 75092 44. N-hexane 110543 45. N,N-dimethylaniline 121697 46. Naphthalene 91203 47. Phosgene 75445 48. Propionaldehyde 123386...

  10. Gradient structure-induced temperature responsiveness in styrene/methyl methacrylate gradient copolymers micelles.

    PubMed

    Zheng, Chao; Huang, Haiying; He, Tianbai

    2014-02-01

    In this work, micelles are formed by gradient copolymer of styrene and methyl methacrylate in acetone-water mixture and their temperature responsiveness is investigated in a narrow range near room temperature. Three different kinds of structural transitions could be induced by temperature: unimers to micelle transition, shrinkage/stretching of micelles, and morphological transition from spherical micelles to vesicles. In addition, a model analysis on the interface of gradient copolymer micelle is made to better understand these phenomena. It is found that both position and composition of the interface could alter in response to the change in temperature. According to the experiments and model analysis, it is proposed that temperature responsiveness might be an intrinsic and universal property of gradient copolymer micelles, which only originates from the gradient structure. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Methyl methacrylate as a healing agent for self-healing cementitious materials

    NASA Astrophysics Data System (ADS)

    Van Tittelboom, K.; Adesanya, K.; Dubruel, P.; Van Puyvelde, P.; De Belie, N.

    2011-12-01

    Different types of healing agents have already been tested on their efficiency for use in self-healing cementitious materials. Generally, commercial healing agents are used while their properties are adjusted for manual crack repair and not for autonomous crack healing. Consequently, the amount of regain in properties due to self-healing of cracks is limited. In this research, a methyl methacrylate (MMA)-based healing agent was developed specifically for use in self-healing cementitious materials. Various parameters were optimized including the viscosity, curing time, strength, etc. After the desired properties were obtained, the healing agent was encapsulated and screened for its self-healing efficiency. The decrease in water permeability due to autonomous crack healing using MMA as a healing agent was similar to the results obtained for manually healed cracks. First results seem promising: however, further research needs to be undertaken in order to obtain an optimal healing agent ready for use in practice.

  12. Optical characterization of poly(methyl methacrylate) implanted with low energy ions

    NASA Astrophysics Data System (ADS)

    Gupta, Renu; Kumar, Vijay; Goyal, Parveen Kumar; Kumar, Shyam

    2012-12-01

    The samples of poly(methyl methacrylate) (PMMA) were subjected to 100 keV N+ and Ar+ ion implantation up to a maximum fluence of 2 × 1016 ions/cm2. The effect of ion implantation on the optical energy gap and the refractive index has been studied through UV-visible spectroscopy. The results clearly indicate a decrease in the values of optical energy gap and an increase in the values of refractive index as an effect of ion implantation corresponding to both of the ions. It has also been observed that the changes induced by the implanted ions are more pronounced for N+ ions in comparison to Ar+ ions. This variation has been correlated with the calculated ranges of these ions in PMMA polymer using Stopping and Range of Ions in Matter (SRIM) code. Finally, an attempt has been made to correlate all the observed changes with the induced structural changes as revealed through Raman spectroscopy.

  13. Superparamagnetic poly(methyl methacrylate) beads for nattokinase purification from fermentation broth.

    PubMed

    Yang, Chengli; Xing, Jianmin; Guan, Yueping; Liu, Huizhou

    2006-09-01

    An effective method for purification of nattokinase from fermentation broth using magnetic poly(methyl methacrylate) (PMMA) beads immobilized with p-aminobenzamidine was proposed in this study. Firstly, magnetic PMMA beads with a narrow size distribution were prepared by spraying suspension polymerization. Then, they were highly functionalized via transesterification reaction with polyethylene glycol. The surface hydroxyl-modified magnetic beads obtained were further modified with chloroethylamine to transfer the surface amino-modified magnetic functional beads. The morphology and surface functionality of the magnetic beads were examined by scanning electron microscopy and Fourier transform infrared. An affinity ligand, p-aminobenzamidine was covalently immobilized to the amino-modified magnetic beads by the glutaraldehyde method for nattokinase purification directly from the fermentation broth. The purification factor and the recovery of the enzyme activity were found to be 8.7 and 85%, respectively. The purification of nattokinase from fermentation broth by magnetic beads only took 40 min, which shows a very fast purification of nattokinase compared to traditional purification methods.

  14. Dynamic fracture behavior of single and contacting Poly(methyl methacrylate) particles

    DOE PAGES

    Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew C.; ...

    2017-09-19

    Fracture behaviors of single, two, and multiple contacting spherical Poly (methyl methacrylate) (PMMA) particles were recorded using high speed synchrotron X-ray phase contrast imaging. A miniaturized Kolsky bar setup was used to apply dynamic compressive loading on the PMMA particles. In both single and two particle experiments, cracking initiated near the center of the particles and propagated towards the contacts. The crack bifurcated near the contact points for single particle experiments, thus forming conical fragments. The crack bifurcation and subsequent conical fragment formation was observed only at the particle-particle contact for two particle experiments. The particles were observed to fracturemore » in hemispherical fragments normal to the contact plane in the multiparticle experiments. The observed failure mechanisms strongly suggest that the maximum tensile stress near the center of the particle is the critical parameter governing fracture of the particles. Moreover, the compressive stress under the contact areas led to the bifurcation and subsequent conical fragment formation.« less

  15. Dynamic fracture behavior of single and contacting Poly(methyl methacrylate) particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew C.

    Fracture behaviors of single, two, and multiple contacting spherical Poly (methyl methacrylate) (PMMA) particles were recorded using high speed synchrotron X-ray phase contrast imaging. A miniaturized Kolsky bar setup was used to apply dynamic compressive loading on the PMMA particles. In both single and two particle experiments, cracking initiated near the center of the particles and propagated towards the contacts. The crack bifurcated near the contact points for single particle experiments, thus forming conical fragments. The crack bifurcation and subsequent conical fragment formation was observed only at the particle-particle contact for two particle experiments. The particles were observed to fracturemore » in hemispherical fragments normal to the contact plane in the multiparticle experiments. The observed failure mechanisms strongly suggest that the maximum tensile stress near the center of the particle is the critical parameter governing fracture of the particles. Moreover, the compressive stress under the contact areas led to the bifurcation and subsequent conical fragment formation.« less

  16. Residual methyl methacrylate monomer, water sorption, and water solubility of hypoallergenic denture base materials.

    PubMed

    Pfeiffer, Peter; Rosenbauer, Ernst-Ulrich

    2004-07-01

    Denture base materials have the potential to cause irritation and allergic reaction to the oral mucosa. Water sorption and water solubility of denture base resins affect dimensional behavior and denture stability. A correlation between residual monomer and water sorption exists. This in vitro study compared the amount of residual monomer, quantity of water sorption, and solubility of 4 denture base materials purported to be hypoallergenic with those of a polymethyl methacrylate-based (PMMA) heat-polymerizing acrylic resin. The denture base resins Sinomer (heat-polymerized, modified methacrylate), Polyan (thermoplastic, modified methacrylate), Promysan (thermoplastic, enterephthalate-based), and Microbase (microwave polymerized, polyurethane-based), which are purported to be hypoallergenic, and Paladon 65 (heat-polymerized, methacrylate, control group) were examined. Specimens of each material were tested for residual methyl methacrylate (MMA) monomer (% wt, n=3), amount of water sorption (microg/mm3, n=5) and water solubility (microg/mm3, n=5), according to ISO 1567:2000. The residual MMA monomer concentrations were determined by gas chromatography (GC). The data were analyzed with 1-way ANOVA and the Bonferroni-Dunn multiple comparisons post hoc analysis for each test variable (alpha=.05). Significantly lower residual MMA monomer was shown for Sinomer and Polyan compared to the PMMA control group (0.90 +/- 0.20% wt, P<.05). Sinomer contained 0.31% +/- 0.00% wt MMA monomer, and Polyan exhibited residual MMA monomer content of 0.44% +/- 0.01% wt. Promysan and Microbase did not contain detectable residual MMA. Water sorption of Promysan (16.21 +/- 0.96 microg/mm3) was significantly lower than Paladon 65 (23.04 +/- 3.13 microg/mm3, P<.0001), whereas water solubility of the hypoallergenic denture base materials (0.34-0.84 +/- 0.05-0.09 microg/mm3) was not significantly lower than the PMMA material (0.40 +/- 0.06 microg/mm3, P>.05). Except for Sinomer, the tested

  17. INTERACTION OF METHYL-TERT BUTYL ETHER AND WATER STRESS ON SEED GERMINATION AND SEEDLING GROWTH IN SOIL MICROCOSMS

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE) is a widespread contaminant in surface and ground water in the United States. Frequently irrigation is used to water fields to germinate planted seeds and sustain plant growth. A likely possibility exists that water used may have some MTBE. Our s...

  18. Thermodynamic equilibrium calculations of dimethyl ether steam reforming and dimethyl ether hydrolysis

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Borup, Rodney L.

    The production of a hydrogen-rich fuel-cell feed by dimethyl ether (DME) steam reforming was investigated using calculations of thermodynamic equilibrium as a function of steam-to-carbon ratio (0.00-4.00), temperature (100-600 °C), pressure (1-5 atm), and product species. Species considered were acetone, acetylene, carbon dioxide, carbon monoxide, dimethyl ether, ethane, ethanol, ethylene, formaldehyde, formic acid, hydrogen, isopropanol, methane, methanol, methyl-ethyl ether, n-propanol and water. Thermodynamic equilibrium calculations of DME steam reforming indicate complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide at temperatures greater than 200 °C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure ( P = 1 atm). Increasing the operating pressure shifts the equilibrium toward the reactants; increasing the pressure from 1 to 5 atm decreases the conversion of dimethyl ether from 99.5 to 76.2%. The trend of thermodynamically stable products in decreasing mole fraction is methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol-formaldehyde, formic acid, and acetylene were not observed. Based on the equilibrium calculations, the optimal processing conditions for dimethyl ether steam reforming occur at a steam-to-carbon ratio of 1.50, a pressure of 1 atm, and a temperature of 200 °C. These thermodynamic equilibrium calculations show dimethyl ether processed with steam will produce hydrogen-rich fuel-cell feeds—with hydrogen concentrations exceeding 70%. The conversion of dimethyl ether via hydrolysis (considering methanol as the only product) is limited by thermodynamic equilibrium. Equilibrium conversion increases with temperature and steam-to-carbon ratio. A maximum dimethyl ether conversion of 62% is achieved at a steam-to-carbon ratio of 5.00 and a processing temperature of 600 °C.

  19. Searching for trans ethyl methyl ether in Orion KL⋆

    NASA Astrophysics Data System (ADS)

    Tercero, B.; Cernicharo, J.; López, A.; Brouillet, N.; Kolesniková, L.; Motiyenko, R. A.; Margulès, L.; Alonso, J. L.; Guillemin, J.-C.

    2015-10-01

    We report on the tentative detection of trans ethyl methyl ether (tEME), t-CH3CH2OCH3, through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauche-trans-n-propanol, Gt-n-CH3CH2CH2OH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30 m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are ≤(4.0 ± 0.8) × 1015 cm-2 and ≤(1.0 ± 0.2) × 1015 cm-2 for tEME and Gt-n-propanol, respectively. The rotational temperature is ~100 K for both molecules. We also provide maps of CH3OCOH, CH3CH2OCOH, CH3OCH3, CH3OH, and CH3CH2OH to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio N(CH3OCH3)/N(tEME) ≥ 150 in the compact ridge of Orion. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00009.SV. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan) with NRC (Canada), NSC, and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. This work was also based on observations carried out with the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Appendix A is available in electronic form at http://www.aanda.org

  20. Overview of technologies for removal of methyl tert-butyl ether (MTBE) from water.

    PubMed

    Levchuk, Irina; Bhatnagar, Amit; Sillanpää, Mika

    2014-04-01

    Wide use of methyl tert-butyl ether (MTBE) as fuel oxygenates leads to worldwide environment contamination with this compound basically due to fuel leaks from storage or pipelines. Presence of MTBE in drinking water is of high environmental and social concern. Existing methods for MTBE removal from water have a number of limitations which can be possibly overcome in the future with use of emerging technologies. This work aims to provide an updated overview of recent developments in technologies for MTBE removal from water. Copyright © 2014. Published by Elsevier B.V.

  1. Treatment Of Groundwater Contaminated With PAHs, Gasoline Hydrocarbons, And Methyl Tert-Butyl Ether In A Laboratory Biomass-Retaining Bioreactor

    EPA Science Inventory

    In this study, we investigated the treatability of co-mingled groundwater contaminated with polycyclic aromatic hydrocarbons (PAHs), gasoline hydrocarbons, and methyl tert-butyl ether (MtBE) using an ex-situ aerobic biotreatment system. The PAHs of interest were nap...

  2. Influence of acrylonitrile butadiene rubber on recyclability of blends prepared from poly(vinyl chloride) and poly(methyl methacrylate).

    PubMed

    Suresh, Sunil S; Mohanty, Smita; Nayak, Sanjay K

    2018-06-01

    The current investigation deals with the recycling possibilities of poly(vinyl chloride) and poly(methyl methacrylate) in the presence of acrylonitrile butadiene rubber. Recycled blends of poly(vinyl chloride)/poly(methyl methacrylate) are successfully formed from the plastic constituents, those are recovered from waste computer products. However, lower impact performance of the blend and lower stability of the poly(vinyl chloride) phase in the recycled blend restricts its further usage in industrial purposes. Therefore, effective utilisation acrylonitrile butadiene rubber in a recycled blend was considered for improving mechanical and thermal performance. Incorporation of acrylonitrile butadiene rubber resulted in the improvement in impact performance as well as elongation-at-break of the recycled blend. The optimum impact performance was found in the blend with 9 wt% acrylonitrile butadiene rubber, which shows 363% of enhancement as compared with its parent blend. Moreover, incorporated acrylonitrile butadiene rubber also stabilises the poly(vinyl chloride) phase present in the recycled blend, similarly Fourier transform infrared spectroscopy studies indicate the interactions of various functionalities present in the recycled blend and acrylonitrile butadiene rubber. In addition to this, thermogravimetric analysis indicates the improvement in the thermal stability of the recycled blend after the addition of acrylonitrile butadiene rubber into it. The existence of partial miscibility in the recycled blend was identified using differential scanning calorimetry and scanning electron microscopy.

  3. Zinc oxide nanowire-poly(methyl methacrylate) dielectric layers for polymer capacitive pressure sensors.

    PubMed

    Chen, Yan-Sheng; Hsieh, Gen-Wen; Chen, Shih-Ping; Tseng, Pin-Yen; Wang, Cheng-Wei

    2015-01-14

    Polymer capacitive pressure sensors based on a dielectric composite layer of zinc oxide nanowire and poly(methyl methacrylate) show pressure sensitivity in the range of 2.63 × 10(-3) to 9.95 × 10(-3) cm(2) gf(-1). This represents an increase of capacitance change by as much as a factor of 23 over pristine polymer devices. An ultralight load of only 10 mg (corresponding to an applied pressure of ∼0.01 gf cm(-2)) can be clearly recognized, demonstrating remarkable characteristics of these nanowire-polymer capacitive pressure sensors. In addition, optical transmittance of the dielectric composite layer is approximately 90% in the visible wavelength region. Their low processing temperature, transparency, and flexible dielectric film makes them a highly promising means for flexible touching and pressure-sensing applications.

  4. Synthesis of acrylates and methacrylates from coal-derived syngas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spivey, J.J.; Gogate, M.R.; Jang, B.W.L.

    1995-12-31

    Acrylates and methacrylates are among the most widely used chemical intermediates in the world. One of the key chemicals of this type is methyl methacrylate. Of the 4 billion pounds produced each year, roughly 85% is made using the acetone-cyanohydrin process, which requires handling of large quantities of hydrogen cyanide and produces ammonium sulfate wastes that pose an environmental disposal challenge. The U.S. Department of Energy and Eastman Chemical Company are sharing the cost of research to develop an alternative process for the synthesis of methyl methacrylate from syngas. Research Triangle Institute is focusing on the synthesis and testing ofmore » active catalysts for the condensation reactions, and Bechtel is analyzing the costs to determine the competitiveness of several process alternatives. Results thus far show that the catalysts for the condensation of formaldehyde and the propionate are key to selectively producing the desired product, methacrylic acid, with a high yield. These condensation catalysts have both acid and base functions and the strength and distribution of these acid-base sites controls the product selectivity and yield.« less

  5. Viscosity of nonelectrolyte liquid mixtures. III Binary mixtures of methyl methacrylate with hydrocarbons, haloalkanes, and alkylamines

    NASA Astrophysics Data System (ADS)

    Oswal, S. L.; Patel, B. M.; Shah, H. R.; Oswal, P.

    1994-07-01

    Measurements of the viscosity η and the density ϱ are reported for 14 binary mixtures of methyl methacrylate (MMA) with hydrocarbons, haloalkanes, and alkylamines at 303.15 K. The viscosity data have been correlated with equations of Grunberg and Nissan, of McAllister, and of Auslaender. Furthermore, excess viscosity Δ In η and excess Gibbs energy of activation ΔG* E of viscous flow have been calculated and have been used to predict molecular interactions occurring in present binary mixtures. The results show the existence of specific interactions in MMA + aromatic hydrocarbons, MMA + haloalkanes, and MMA + primary amines.

  6. Influence of the volumes of bis-acryl and poly(methyl methacrylate) resins on their exothermic behavior during polymerization.

    PubMed

    Ha, Jung-Yun; Kim, Sung-Hun; Kim, Kyo-Han; Kwon, Tae-Yub

    2011-01-01

    This study aimed to evaluate the influence of the volumes of a bis-acryl resin (Luxatemp) and a poly(methyl methacrylate) resin (Jet) on their exothermic behaviors during polymerization based on vinyl group conversion. The number of vinyl groups reacted and exotherm were determined based on weight percent of methacrylate groups using FTIR spectroscopy. Temperature changes during polymerization at 23°C were recorded for 20 minutes using a multiple cavity mold overlying a thermocouple. The number of vinyl groups reacted and exotherm of Luxatemp were consistently lower than those of Jet at each resin volume. Mean peak temperature rises of Luxatemp and Jet were in the range of 2.0-6.6°C and 4.2-11.6°C respectively, with Luxatemp and Jet taking 2 and 10 minutes respectively to reach their peak temperatures. As their resin volumes increased, their peak temperatures and total peak areas were also observed to increase significantly (p<0.01).

  7. Poly(vinyl methyl ether) hydrogels at temperatures below the freezing point of water-molecular interactions and states of water.

    PubMed

    Pastorczak, Marcin; Dominguez-Espinosa, Gustavo; Okrasa, Lidia; Pyda, Marek; Kozanecki, Marcin; Kadlubowski, Slawomir; Rosiak, Janusz M; Ulanski, Jacek

    2014-01-01

    Water interacting with a polymer reveals a number of properties very different to bulk water. These interactions lead to the redistribution of hydrogen bonds in water. It results in modification of thermodynamic properties of water and the molecular dynamics of water. That kind of water is particularly well observable at temperatures below the freezing point of water, when the bulk water crystallizes. In this work, we determine the amount of water bound to the polymer and of the so-called pre-melting water in poly(vinyl methyl ether) hydrogels with the use of Raman spectroscopy, dielectric spectroscopy, and calorimetry. This analysis allows us to compare various physical properties of the bulk and the pre-melting water. We also postulate the molecular mechanism responsible for the pre-melting of part of water in poly(vinyl methyl ether) hydrogels. We suggest that above -60 °C, the first segmental motions of the polymer chain are activated, which trigger the process of the pre-melting.

  8. Using aligned poly(3-hexylthiophene)/poly(methyl methacrylate) blend fibers to detect volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Chan, Shun-Hsiang; Lin, Tz-Feng; Wu, Ming-Chung; Chen, Shih-Hsuan; Su, Wei-Fang; Lai, Chao-Sung

    2018-04-01

    In this study, we developed a novel sensing material fabricated using a poly(3-hexylthiophene) (P3HT)/poly(methyl methacrylate) (PMMA) blend fiber on a glass substrate. The sensing materials can easily be used for sensing toluene vapor detected from extinction spectral changes. The extinction spectra variation is noted from the absorption of volatile organic compounds in a highly specific surface area of fibrous coating. An electrospinning technique is applied to generate a nonwoven structure and uniaxial orientation by fibrous coating. The response of the uniaxially orientated fibrous film is even improved at several toluene vapor concentrations. The best detection limit of this well-aligned fibrous film is up to 200 ppm for toluene vapor.

  9. [Analysis of the character of film decomposition of methyl methacrylate (MMA) coated urea by infrared spectrum].

    PubMed

    Li, Dong-po; Wu, Zhi-jie; Liang, Cheng-hua; Chen, Li-jun; Zhang, Yu-lan; Nie, Yan-xi

    2012-03-01

    The degradability characteristics of film with 4 kinds of methyl methacrylate coated urea amended with inhibitors were analyzed by FITR, which was purposed to supply theoretical basis for applying the FITR analysis method to film decomposition and methyl methacrylate coated urea fertilizers on farming. The result showed that the chemical component, molecule structure and material form of the membrane were not changed because of adding different inhibitors to urea. the main peaks of expressing film degradation process were brought by the -C-H of CH3 & CH2, -OH, C-O, C-C, C-O-C, C=O, C=C flexing vibrancy in asymmetry and symmetry in 3 479-3 195, 2 993--2 873, 1 741-1 564, 1 461-925 and 850-650 cm(-1). The peak value changed from smooth to tip, and from width to narrow caused by chemical structural transform of film The infrared spectrum of 4 kinds of fertilizers was not different remarkably before 60 days, and the film was slowly degraded. But degradation of the film was expedited after 60 days, it was most quickened at 120 day, and the decomposition rate of film was decreased at 310 day. The substantiality change of film in main molecule structure of 4 kinds of fertilizers didn't happen in 310 days. The main component of film materials was degraded most slowly in brown soil. The speed of film degradation wasn't heavily impacted by different inhibitors. The characteristic of film degradation may be monitored entirely by infrared spectrum. The degradation dynamic, chemical structure change, degradation speed difference of the film could be represented through infrared spectrum.

  10. Some actions of substituted choline phenyl ethers, particularly of choline 2:6-xylyl ether

    PubMed Central

    Edge, N. D.; Mason, D. F. J.; Wyllie, J. H.

    1957-01-01

    Marked nicotine-like stimulant properties are possessed by choline phenyl ether and choline o-tolyl ether, and to a decreasing extent by choline 2:6-xylyl ether and choline 2:4:6-mesityl ether. The compounds all show neuromuscular blocking properties, which are of short duration and pass from mainly decamethonium-like to mainly curare-like as more methyl groups are added to the phenyl nucleus. This series of compounds also possesses muscarinic, weak anti-adrenaline and vasodilator properties, as well as long-lasting local anaesthetic effects in the two compounds tested by intradermal injection. PMID:13460236

  11. Network formation of nanofibrillated cellulose in solution blended poly(methyl methacrylate) composites.

    PubMed

    Littunen, Kuisma; Hippi, Ulla; Saarinen, Tapio; Seppälä, Jukka

    2013-01-02

    Composites of poly(methyl methacrylate) (PMMA) and nanofibrillated cellulose (NFC) were prepared by solution blending and further processed by injection and compression molding. To improve adhesion at the PMMA/NFC interface, the nanofibrils were covalently grafted with PMMA. Formation of a percolating nanofibril network was observed between 1 and 5 wt.% of NFC by dynamic rotational rheometry in molten state. This observation was further supported by the behavior of glass transition temperature which decreased at low NFC concentrations but recovered above the percolation threshold, indicating a decreased mobility of the matrix polymer. This effect was more pronounced with ungrafted NFC, possibly due to a stronger network. The unmodified NFC induced a minor degradation of the molar mass of PMMA. As thin plates, the composites were transparent at low NFC concentrations but became partially aggregated at the highest NFC concentrations. Despite the continuous NFC network, tensile testing showed no improvement of the mechanical properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Formation of a periodic diffractive structure based on poly(methyl methacrylate) with ion-implanted silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Galyautdinov, M. F.; Nuzhdin, V. I.; Fattakhov, Ya. V.; Farrakhov, B. F.; Valeev, V. F.; Osin, Yu. N.; Stepanov, A. L.

    2016-02-01

    We propose to form optical diffractive elements on the surface of poly(methyl methacrylate) (PMMA) by implanting the polymer with silver ions ( E = 30 keV; D = 5.0 × 1014 to 1.5 × 1017 ion/cm2; I = 2 μA/cm2) through a nickel grid (mask). Ion implantation leads to the nucleation and growth of silver nanoparticles in unmasked regions of the polymer. The formation of periodic surface microstructures during local sputtering of the polymer by incident ions was monitored using an optical microscope. The diffraction efficiency of obtained gratings is demonstrated under conditions of their probing with semiconductor laser radiation in the visible spectral range.

  13. CONCENTRATIONS, SOURCES, AND FATE OF THE GASOLINE OXYGENATE METHYL TERT-BUTYL ETHER (MTBE) IN A MULTIPLE-USE LAKE. (R826282)

    EPA Science Inventory

    Discovery of the fuel additive methyl tert-butyl ether (MTBE) in
    drinking water supplies is of concern to public health officials, water
    suppliers, and the public. Despite recent policy decisions, few published
    studies exist on the concentrations, sources, a...

  14. Toxicokinetics of ethers used as fuel oxygenates.

    PubMed

    Dekant, W; Bernauer, U; Rosner, E; Amberg, A

    2001-10-15

    The toxicokinetics and biotransformation of methyl-tert.butyl ether (MTBE), ethyl-tert.butyl ether (ETBE) and tert.amyl-methyl ether (TAME) in rats and humans are summarized. These ethers are used as gasoline additives in large amounts, and thus, a considerable potential for human exposure exists. After inhalation exposure MTBE, ETBE and TAME are rapidly taken up by both rats and humans; after termination of exposure, clearance by exhalation and biotransformation to urinary metabolites is rapid in rats. In humans, clearance by exhalation is slower in comparison to rats. Biotransformation of MTBE and ETBE is both qualitatively and quantitatively similar in humans and rats after inhalation exposure under identical conditions. The extent of biotransformation of TAME is also quantitatively similar in rats and humans; the metabolic pathways, however, are different. The results suggest that reactive and potentially toxic metabolites are not formed during biotransformation of these ethers and that toxic effects of these compounds initiated by covalent binding to cellular macromolecules are unlikely.

  15. Trans-ethyl methyl ether, the struggle for the detection of a complex molecule in hot cores

    NASA Astrophysics Data System (ADS)

    Fuchs, G. W.; Fuchs, U.; Giesen, T. F.; Wyrowski, F.

    Many large and complex molecules of prebiotic importance have been found as constituents of interstellar clouds but their detection remains difficult and sometimes doubtful (Snyder et al. 2005). The complex spectrum of trans-ethyl methyl ether (EME) has been investigated in the laboratory (Fuchs et al. 2003) up to 350 GHz and is now known with high frequency precision, see Figure 1. In this work we present an extensive search for EME towards G34.26, NGC6334(I), Orion KL, SgrB2(N) and W51e2 in the 1 to 3 mm wavelength region. These sources have previously been shown to have a rich chemistry of complex molecules. The IRAM 30m telescope at Pico Veleta, Spain and the SEST 15m radio telescope in La Silla, Chile have been used for the observations. We looked at 5 - 11 frequency bands where EME has strong transitions. All sources were examined using long integration times up to 220 min (on+off), elevations greater 40◦ and under good weather conditions. For our analysis of the data we used the method of rotational-temperature-diagrams but also the myXCLASS (written by Peter Schilke) extension program to the GILDAS (Grenoble Image and Line Data Analysis Software) software which enabled us to simulate spectra of several molecules including their linewidth and intensities at the same time, see Figure 2. With this program a consistency check of molecular abundances and overall composition is possible even in dense spectra with many overlapping lines. The effect of the source size on the measured intensities has been considered and cross checks with other important molecules such as methanol, ethanol and di-methyl ether have been performed. Charnley et al. (2001) assigned one line in W51 e1/e2 and one line in Orion KL at 160.1 GHz, as well as a line in SgrB2(N) at 79.6 GHz to trans-ethyl methyl ether. From their isolated measurements, the column density of EME was estimated to be in the range 1014-1015 cm-2 in Sgr B2(N) corresponding to a fractional abundance of 10

  16. HIGH LEVELS OF MONOAROMATIC COMPOUNDS LIMIT THE USE OF SOLID-PHASE MICROEXTRACTION OF METHYL TERTIARY BUTYL ETHER AND TERTIARY BUTYL ALCOHOL

    EPA Science Inventory

    Recently, two papers reported the use of solid-phase microextraction (SPME) with polydimethylsiloxane(PDMS)/Carboxen fibers to determine trace levels of methyl tertiary butyl ether (MTBE) and tertiary butyl alcohol (tBA) in water. Attempts were made to apply this technique to th...

  17. The formation of hollow poly(methyl methacrylate)/multiwalled carbon nanotube nanocomposite cylinders by microwave irradiation.

    PubMed

    Wang, Huan; Feng, Jiyun; Hu, Xijun; Ming Ng, Ka

    2009-03-04

    Poly(methyl methacrylate) (PMMA)/multiwalled carbon nanotube (MWCNT) nanocomposite particles with 1, 2 and 4 wt% of MWCNTs were prepared by mechanical grinding of PMMA and MWCNT powders in a mortar at room temperature. Both scanning electron microscopy and Raman scattering characterizations revealed that these nanocomposite particles consist of a PMMA core and a MWCNT shell. The PMMA/MWCNT nanocomposite particles were used to fabricate the corresponding nanocomposites in the form of a hollow cylinder with various diameters and heights under 700 W microwave irradiation within 1 min. A mechanism for the fast microwave assisted forming process is proposed. These experimental results may lead to a new technology for forming hollow polymeric articles that is different from the conventional injection and blowing process.

  18. Anti-Helicobacter pylori activity of derivatives of the phthalide-containing antibacterial agents spirolaxine methyl ether, CJ-12,954, CJ-13,013, CJ-13,102, CJ-13,104, CJ-13,108 and CJ-13,015.

    PubMed

    Radcliff, Fiona J; Fraser, John D; Wilson, Zoe E; Heapy, Amanda M; Robinson, James E; Bryant, Christina J; Flowers, Christopher L; Brimble, Margaret A

    2008-06-01

    The naturally occurring phthalide-containing antibiotics spirolaxine methyl ether, CJ-12,954, CJ-13,013, CJ-13,015, CJ-13,102, CJ-13,103, CJ-13,104 and CJ-13,108, have been reported to exhibit anti-H. pylori activity. However, the exact stereochemistry of spirolaxine methyl ether, CJ-12,954 or CJ-13,013, contributing to this observed activity has not been confirmed. The anti-H. pylori activity of several analogues of spirolaxine methyl ether, CJ-12,954 and CJ-13,013 of defined stereochemistry together with the anti-H. pylori activity of several indole analogues of the simpler phthalide-containing antibiotics CJ-13,102, CJ-13,104, CJ-13,108 and CJ-13,015 is reported herein. A 1:1 mixture of spiroacetals 5b and 6b in which the phthalide substituent exhibited (3R)-stereochemistry was sixty times more active than the corresponding 1:1 mixture of spiroacetals with (3S)-stereochemistry. Notably, the unnatural (2''S)-diastereomer of spirolaxine methyl ether exhibited more potent anti-H. pylori activity than the natural product spirolaxine methyl ether. The 4,6-dimethoxyindoles 9, 10, 11 and 13 were all found to be less active than their parent compounds 1, 2, 3 and 4, respectively. Chain-shortened 4,6-dimethoxyindole analogue 12 of CJ-13,108 3 and 4,6-dimethoxyindole-spiroacetal 13 exhibited weak anti-H. pylori activity thus providing future opportunity for drug discovery programs.

  19. Photoimaging of the multiple filamentation of femtosecond laser pulses in poly(methyl methacrylate) doped with 2,2-difluoro-4-(9-anthracyl)-6-methyl-1,3,2-dioxaborine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulchin, Yu N; Vitrik, O B; Chekhlenok, A A

    2013-12-31

    We have studied the filamentation of femtosecond laser pulses (λ = 800 nm, ∼42 fs pulse duration) in poly(methyl methacrylate) doped with 2,2-difluoro-4-(9-anthracyl)-6-methyl-1,3,2- dioxaborine and the associated photomodification of the material. The results demonstrate that multiple filamentation occurs at pulse energies above 5 μJ. At a pulse energy of 1.5 mJ, it is accompanied by supercontinuum generation. The average filament length in PMMA is 9 mm and the filament diameter is ∼10 μm. An incident power density of ∼10{sup 12} W cm{sup -2} ensures inscription of the filament pattern owing to two-photon photochemical processes. Preliminary exposure to continuous light atmore » λ = 400 nm enables an ordered filament pattern to be written. (interaction of laser radiation with matter)« less

  20. Customer exposure to MTBE, TAME, C6 alkyl methyl ethers, and benzene during gasoline refueling.

    PubMed

    Vainiotalo, S; Peltonen, Y; Ruonakangas, A; Pfäffli, P

    1999-02-01

    We studied customer exposure during refueling by collecting air samples from customers' breathing zone. The measurements were carried out during 4 days in summer 1996 at two Finnish self-service gasoline stations with "stage I" vapor recovery systems. The 95-RON (research octane number) gasoline contained approximately 2.7% methyl tert-butyl ether (MTBE), approximately 8.5% tert-amyl methyl ether (TAME), approximately 3.2% C6 alkyl methyl ethers (C6 AMEs), and 0.75% benzene. The individual exposure concentrations showed a wide log-normal distribution, with low exposures being the most frequent. In over 90% of the samples, the concentration of MTBE was higher (range <0.02-51 mg/m3) than that of TAME. The MTBE values were well below the short-term (15 min) threshold limits set for occupational exposure (250-360 mg/m3). At station A, the geometric mean concentrations in individual samples were 3.9 mg/m3 MTBE and 2. 2 mg/m3 TAME. The corresponding values at station B were 2.4 and 1.7 mg/m3, respectively. The average refueling (sampling) time was 63 sec at station A and 74 sec at station B. No statistically significant difference was observed in customer exposures between the two service stations. The overall geometric means (n = 167) for an adjusted 1-min refueling time were 3.3 mg/m3 MTBE and 1.9 mg/m3 TAME. Each day an integrated breathing zone sample was also collected, corresponding to an arithmetic mean of 20-21 refuelings. The overall arithmetic mean concentrations in the integrated samples (n = 8) were 0.90 mg/m3 for benzene and 0.56 mg/m3 for C6 AMEs calculated as a group. Mean MTBE concentrations in ambient air (a stationary point in the middle of the pump island) were 0.16 mg/m3 for station A and 0.07 mg/m3 for station B. The mean ambient concentrations of TAME, C6 AMEs, and benzene were 0.031 mg/m3, approximately 0.005 mg/m3, and approximately 0.01 mg/m3, respectively, at both stations. The mean wind speed was 1.4 m/sec and mean air temperature was 21

  1. 76 FR 69659 - Methacrylic Acid-Methyl Methacrylate-Polyethylene Glycol Monomethyl Ether Methacrylate Graft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... in residential settings. If EPA is able to determine that a finite tolerance is not necessary to... elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed in 40 CFR 723.250(d)(2)(ii). 4. The...

  2. Preparation and properties of optically transparent, pressure-cured poly(methyl methacrylate) composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, K.D.

    The objective of this work was to develop optically transparent glass fiber reinforced poly(methyl methacrylate) composites by matching the refractive index of the glass fiber to that of the PMMA matrix. A pressure curing process [65[degrees]C under 6.9 MPa N[sub 2] for 18 hrs] is described for preparing composites 10 [times] 15 [times] 0.6 cm which typically contain [approximately]10 vol% of 13[mu]m diameter fiber and have 84% optical transmission (92% maximum for PMMA) at 600 nm and 25[degrees]C. Evidence is presented relating the interfacial bonding strength and the optical transmission of transparent, glass fiber (13 [mu]m) reinforced PMMA composites. Themore » temperature dependent (20-50[degrees]C) transmission of composites containing uncoated fiber and fiber coated with divinyltetramethyl disilazane or 3-(trimethoxysilyl)propyl methacrylate was found to decrease in the same order as the bond strength of the PMMA/fiber interface, namely, silane coated, disilazane coated, and uncoated fiber. By using annealed (1 1/3 hours/400[degrees]C) 13 [mu]m BK10 fiber, these pressure-cured composites function optically as ultra-violet Solid Matrix Christiansen Filters. The composite filters have an optical transmission of 51% at 51[degrees]C and 305 nm with a half-height bandwidth of only 28 nm, which is more wavelength selective than reported solid matrix Christiansen filters and typical band pass filters. While the density (1.18-1.19 g/ml at 23[degrees]C) and coefficient of thermal expansion (9.9[times]10[sup [minus]5] K[sup [minus]1]) show no change at these curing conditions, the minimum stress to craze (33 wt% toluene in isobutyl acetate) for pressure-cured [65[degrees]C/6.9 MPa N[sub 2]/18 hrs] PMMA was found to be improved.« less

  3. Hydrogen peroxide filled poly(methyl methacrylate) microcapsules: potential oxygen delivery materials.

    PubMed

    Mallepally, Rajendar R; Parrish, Chance C; Mc Hugh, Mark A M; Ward, Kevin R

    2014-11-20

    This paper describes the synthesis of H₂O₂-H₂O filled poly(methyl methacrylate) (PMMA) microcapsules as potential candidates for controlled O₂ delivery. The microcapsules are prepared by a water-in-oil solvent emulsion and evaporation method. The results of this study describe the effect of process parameters on the characteristics of the microcapsules and on their in vitro performance. The size of the microcapsules, as determined from scanning electron microscopy, ranges from ∼5 to 30 μm and the size distribution is narrow. The microcapsules exhibit an internal morphology with entrapped H₂O₂-H₂O droplets randomly distributed in the PMMA continuous phase. In vitro release studies of 4.5 wt% H₂O₂-loaded microcapsules show that ∼70% of the H₂O₂ releases in 24h. This corresponds to a total O₂ production of ∼12 cc/gram of dry microcapsules. Shelf-life studies show that the microcapsules retain ∼84 wt% of the initially loaded H₂O₂ after nine months storage at 2-8 °C, which is an attractive feature for clinical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A New Poly(Methyl Methacrylate) Membrane Dialyzer, NF, with Adsorptive and Antithrombotic Properties.

    PubMed

    Oshihara, Wataru; Fujieda, Hiroaki; Ueno, Yoshiyuki

    2017-01-01

    Poly(methyl methacrylate) (PMMA) membranes adsorb several kinds of proteins and can remove high-molecular-weight proteins, including uremic toxins, which are not removed efficiently by hemodialysis or hemodiafiltration. However, the antithrombogenicity of PMMA membranes is insufficient due to their adsorptive properties. Coagulation during hemodialysis occurs because proteins that are adsorbed to the PMMA membrane undergo structural changes and are recognized by platelets, which are then activated by adhesion to the membrane surface. In developing a new PMMA membrane dialyzer, NF, we intended to inhibit platelet adhesion to the membrane surface by suppressing the structural change in the proteins adsorbed on the membrane. In addition, we give examples of clinical trials of the NF in Japan and describe its advantages. Key Message: PMMA membrane dialyzers have been used for 40 years. The PMMA dialyzer NF can suppress the adhesion of platelets to the membrane while maintaining protein adsorption. © 2017 S. Karger AG, Basel.

  5. Dynamics of Surface Reorganization of Poly(methyl methacrylate) in Contact with Water

    NASA Astrophysics Data System (ADS)

    Horinouchi, Ayanobu; Atarashi, Hironori; Fujii, Yoshihisa; Tanaka, Keiji

    2013-03-01

    New tools for tailor-made diagnostics, such as DNA arrays and tips for micro-total-analysis systems, are generally made from polymers. In these applications, the polymer surface is in contact with a water phase. However, despite the importance of detailed knowledge of the fundamental interactions of polymer interfaces with liquids, such studies are very limited. As an initial benchmark for designing and constructing specialized biomedical surfaces containing polymer, aggregation states and dynamics of chains at the water interface should be systematically examined. We here apply time-resolved contact angle measurement to study the dynamics of the surface reorganization of poly(methyl methacrylate) (PMMA) in contact with water. By doing the measurements at various temperatures, it is possible to discuss the surface dynamics of PMMA based on the apparent activation energy. Also, sum-frequency generation spectroscopy revealed that the surface reorganization involves the conformational changes in the main chain part as well as the side chains. Hence, the dynamics observed here may reflect the segmental motion at the outermost region of the PMMA film, in which water plays as a plasticizer.

  6. Enrichment of Desulfitobacterium spp. from forest and grassland soil using the O-demethylation of phenyl methyl ethers as a growth-selective process.

    PubMed

    Mingo, Felix Sebastian; Diekert, Gabriele; Studenik, Sandra

    2016-02-01

    The O-demethylation of phenyl methyl ethers under anaerobic conditions is a metabolic feature of acetogens and Desulfitobacterium spp. Desulfitobacteria as well as most acetogens are Gram-positive bacteria with a low GC content and belong to the phylum Firmicutes. The consumption of the phenyl methyl ether syringate was studied in enrichment cultures originating from five different topsoils. Desulfitobacterium spp. were detected in all topsoils via quantitative PCR. Desulfitobacteria could be enriched using the O-demethylation of syringate as a growth-selective process. The enrichment was significantly favoured by an external electron acceptor such as 3-chloro-4-hydroxyphenylacetate or thiosulfate. Upon cultivation in the presence of syringate and thiosulfate, which naturally occur in soil, a maximum number of 16S rRNA gene copies of Desulfitobacterium spp. was reached within the first three subcultivation steps and accounted for 3-10% of the total microbial community depending on the soil type. Afterwards, a loss of Desulfitobacterium gene copies was observed. Community analyses revealed that Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the main phyla in the initial soil samples. Upon addition of syringate and thiosulfate as growth substrates, these phyla were rapidly outcompeted by Firmicutes, which were under-represented in soil. The main Firmicutes genera identified were Alkalibaculum, Clostridium, Sporobacterium, Sporomusa and Tissierella, which might be responsible for outcompeting the desulfitobacteria. Most of these organisms belong to the acetogens, which have previously been described to demethylate phenyl methyl ethers. The shift of the native community structure to almost exclusively Firmicutes supports the participation of members of this phylum in environmental demethylation processes.

  7. DIPPR Project 871 For 1995 - Thermodynamic Properties and Ideal-Gas Enthalpies of Formation for Methyl Benzoate, Ethyl Benzoate, (R)-(+)-Limonene, Tert-Amyl Methyl Ether, Trans-Crotonaldehyde, and

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, W.V.

    2002-07-01

    Ideal-gas enthalpies of formation of methyl benzoate, ethyl benzoate, (R)-(+)-limonene, tert-amyl methyl ether, trans-crotonaldehyde, and diethylene glycol are reported. The standard energy of combustion and hence standard enthalpy of formation of each compound in the liquid phase has been measured using an oxygen rotating-bomb calorimeter without rotation. Vapor pressures were measured to a pressure limit of 270 kPa or the lower decomposition point for each of the six compounds using a twin ebulliometric apparatus. Liquid-phase densities along the saturation line were measured for each compound over a range of temperature (ambient to a maximum of 548 K). A differential scanningmore » calorimeter was used to measure two-phase (liquid + vapor) heat capacities for each compound in the temperature region ambient to the critical temperature or lower decomposition point. For methyl benzoate and tert-amyl methyl ether, critical temperatures and critical densities were determined from the DSC results and corresponding critical pressures derived from the fitting procedures. Fitting procedures were used to derive critical temperatures, critical pressures, and critical densities for each of the remaining compounds. The results of the measurements were combined to derive a series of thermophysical properties including critical temperature, critical density, critical pressure, acentric factor, enthalpies of vaporization (restricted to within {+-}50 K of the temperature region of the experimentally determined vapor pressures), and heat capacities along the saturation line. Wagner-type vapor-pressure equations were derived for each compound. All measured and derived values were compared with those obtained in a search of the literature. Recommended critical parameters are listed for each of the compounds studied. Group-additivity parameters, useful in the application of the Benson gas-phase group-contribution correlations, were derived.« less

  8. Temperature dependent impedance spectroscopy and Thermally Stimulated Depolarization Current (TSDC) analysis of disperse red 1-co-poly(methyl methacrylate) copolymers

    NASA Astrophysics Data System (ADS)

    Ko, Yee Song; Cuervo-Reyes, Eduardo; Nüesch, Frank A.; Opris, Dorina M.

    2016-04-01

    The dielectric relaxation processes of polymethyl methacrylates that have been functionalized with Disperse Red 1 (DR1) in the side chain (DR1-co-MMA) were studied with temperature dependent impedance spectroscopy and thermally stimulated depolarization current (TSDC) techniques. Copolymers with dipole contents which varied between 10 mol% and 70 mol% were prepared. All samples showed dipole relaxations above the structural-glass transition temperature (Tg). The β-relaxation of the methyl methacrylate (MMA) repeating unit was most visible in DR1(10%)-co-MMA and rapidly vanishes with higher dipole contents. DSC data reveal an increase of the Tg by 20 °C to 125°C with the inclusion of the dipole into the polymethyl methacrylate (PMMA) as side chain. The impedance data of samples with several DR1 concentrations, taken at several temperatures above Tg, have been fitted with the Havriliak-Negami (HN) function. In all cases, the fits reveal a dielectric response that corresponds to power-law dipolar relaxations. TSDC measurements show that the copolymer can be poled, and that the induced polarization can be frozen by lowering the temperature well below the glass transition. Relaxation strengths ΔƐ estimated by integrating the depolarization current are similar to those obtained from the impedance data, confirming the efficient freezing of the dipoles in the structural glass state.

  9. Customer exposure to MTBE, TAME, C6 alkyl methyl ethers, and benzene during gasoline refueling.

    PubMed Central

    Vainiotalo, S; Peltonen, Y; Ruonakangas, A; Pfäffli, P

    1999-01-01

    We studied customer exposure during refueling by collecting air samples from customers' breathing zone. The measurements were carried out during 4 days in summer 1996 at two Finnish self-service gasoline stations with "stage I" vapor recovery systems. The 95-RON (research octane number) gasoline contained approximately 2.7% methyl tert-butyl ether (MTBE), approximately 8.5% tert-amyl methyl ether (TAME), approximately 3.2% C6 alkyl methyl ethers (C6 AMEs), and 0.75% benzene. The individual exposure concentrations showed a wide log-normal distribution, with low exposures being the most frequent. In over 90% of the samples, the concentration of MTBE was higher (range <0.02-51 mg/m3) than that of TAME. The MTBE values were well below the short-term (15 min) threshold limits set for occupational exposure (250-360 mg/m3). At station A, the geometric mean concentrations in individual samples were 3.9 mg/m3 MTBE and 2. 2 mg/m3 TAME. The corresponding values at station B were 2.4 and 1.7 mg/m3, respectively. The average refueling (sampling) time was 63 sec at station A and 74 sec at station B. No statistically significant difference was observed in customer exposures between the two service stations. The overall geometric means (n = 167) for an adjusted 1-min refueling time were 3.3 mg/m3 MTBE and 1.9 mg/m3 TAME. Each day an integrated breathing zone sample was also collected, corresponding to an arithmetic mean of 20-21 refuelings. The overall arithmetic mean concentrations in the integrated samples (n = 8) were 0.90 mg/m3 for benzene and 0.56 mg/m3 for C6 AMEs calculated as a group. Mean MTBE concentrations in ambient air (a stationary point in the middle of the pump island) were 0.16 mg/m3 for station A and 0.07 mg/m3 for station B. The mean ambient concentrations of TAME, C6 AMEs, and benzene were 0.031 mg/m3, approximately 0.005 mg/m3, and approximately 0.01 mg/m3, respectively, at both stations. The mean wind speed was 1.4 m/sec and mean air temperature was 21

  10. From the N-Heterocyclic Carbene-Catalyzed Conjugate Addition of Alcohols to the Controlled Polymerization of (Meth)acrylates.

    PubMed

    Ottou, Winnie Nzahou; Bourichon, Damien; Vignolle, Joan; Wirotius, Anne-Laure; Robert, Fredéric; Landais, Yannick; Sotiropoulos, Jean-Marc; Miqueu, Karinne; Taton, Daniel

    2015-06-22

    Among various N-heterocyclic carbenes (NHCs) tested, only 1,3-bis(tert-butyl)imidazol-2-ylidene (NHC(tBu) ) proved to selectively promote the catalytic conjugate addition of alcohols onto (meth)acrylate substrates. This rather rare example of NHC-catalyzed 1,4-addition of alcohols was investigated as a simple means to trigger the polymerization of both methyl methacrylate and methyl acrylate (MMA and MA, respectively). Well-defined α-alkoxy poly(methyl (meth)acrylate) (PM(M)A) chains, the molar masses of which could be controlled by the initial [(meth)acrylate]0/[ROH]0 molar ratio, were ultimately obtained in N,N-dimethylformamide at 25 °C. A hydroxyl-terminated poly(ethylene oxide) (PEO-OH) macro-initiator was also employed to directly access PEO-b-PMMA amphiphilic block copolymers. Investigations into the reaction mechanism by DFT calculations revealed the occurrence of two competitive concerted pathways, involving either the activation of the alcohol or that of the monomer by NHC(tBu) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Environmental behavior and fate of methyl tert-butyl ether (MTBE)

    USGS Publications Warehouse

    Squillace, Paul J.; Pankow, James F.; Korte, Nic E.; Zogorski, John S.

    1996-01-01

    When gasoline that has been oxygenated with methyl tert-butyl ether (MTBE) comes in contact with water, large amounts of MTBE can dissolve; at 25 degrees Celsius the water solubility of MTBE is about 5,000 milligrams per liter for a gasoline that is 10 percent MTBE by weight. In contrast, for a nonoxygenated gasoline, the total hydrocarbon solubility in water is typically about 120 milligrams per liter. MTBE sorbs only weakly to soil and aquifer materials; therefore, sorption will not significantly retard MTBE's transport by ground water. In addition, MTBE generally resists degradation in ground water. The half-life of MTBE in the atmosphere can be as short as 3 days in a regional airshed. MTBE in the air tends to partition into atmospheric water, including precipitation. However, washout of gas-phase MTBE by precipitation would not, by itself, greatly alter the gas-phase concentration of the compound in the air. The partitioning of MTBE to precipitation is nevertheless strong enough to allow for up to 3 micrograms per liter or more inputs of MTBE to surface and ground water.

  12. Methyl tert-butyl ether (MTBE) in finished drinking water in Germany.

    PubMed

    Kolb, Axel; Püttmann, Wilhelm

    2006-03-01

    In the present study 83 finished drinking water samples from 50 cities in Germany were analyzed for methyl tert-butyl ether (MTBE) content with a detection limit of 10 ng/L. The detection frequency was 46% and the concentrations ranged between 17 and 712 ng/L. Highest concentrations were found in the community water systems (CWSs) of Leuna and Spergau in Saxony-Anhalt. These CWSs are supplied with water possibly affected by MTBE contaminated groundwater. MTBE was detected at concentrations lower than 100 ng/L in drinking water supplied by CWSs using bank filtered water from Rhine and Main Rivers. The results from Leuna and Spergau show that large groundwater contaminations in the vicinity of CWSs pose the highest risk for MTBE contamination in drinking water. CWSs using bank filtered water from Rhine and Main Rivers are susceptible to low MTBE contaminations in finished drinking water. All measured MTBE concentrations were below proposed limit values for drinking water.

  13. Shock response of poly[methyl methacrylate] (PMMA) measured with embedded electromagnetic gauges

    NASA Astrophysics Data System (ADS)

    Lacina, David; Neel, Christopher; Dattelbaum, Dana

    2018-05-01

    The shock response of poly[methyl methacrylate] (PMMA) acquired from two providers, Spartech and Rohm & Haas, has been measured to investigate the shock response variations related to material pedigree. These measurements have also been used to examine the effects of viscoelasticity on Spartech PMMA. Measurements of the Hugoniot curves, release wave speeds, and index of refraction have been acquired up to previously unexplored stresses, ˜10.7 GPa, for Spartech PMMA. In-situ, time-resolved particle velocity wave profiles, as a function of time and depth, were obtained using twelve separate electromagnetic gauge elements embedded at different depths in the PMMA. A comparison of the new data to the shock response data for Rohm and Haas PMMA, used as a "standard" material in shock compression studies, shows that there are no significant differences in shock response for the two materials. From the index of refraction measurements, the apparent particle velocity correction for a PMMA window exhibits an interesting oscillation, increasing at up = 0.3 km/s after decreasing up to that point. The results are generalized into guidelines for sourcing PMMA for use in shock studies.

  14. Functionalization of poly(methyl methacrylate) (PMMA) as a substrate for DNA microarrays

    PubMed Central

    Fixe, F.; Dufva, M.; Telleman, P.; Christensen, C. B. V.

    2004-01-01

    A chemical procedure was developed to functionalize poly(methyl methacrylate) (PMMA) substrates. PMMA is reacted with hexamethylene diamine to yield an aminated surface for immobilizing DNA in microarrays. The density of primary NH2 groups was 0.29 nmol/cm2. The availability of these primary amines was confirmed by the immobilization of DNA probes and hybridization with a complementary DNA strand. The hybridization signal and the hybridization efficiency of the chemically aminated PMMA slides were comparable to the hybridization signal and the hybridization efficiency obtained from differently chemically modified PMMA slides, silanized glass, commercial silylated glass and commercial plastic Euray™ slides. Immobilized and hybridized densities of 10 and 0.75 pmol/cm2, respectively, were observed for microarrays on chemically aminated PMMA. The immobilized probes were heat stable since the hybridization performance of microarrays subjected to 20 PCR heat cycles was only reduced by 4%. In conclusion, this new strategy to modify PMMA provides a robust procedure to immobilize DNA, which is a very useful substrate for fabricating single use diagnostics devices with integrated functions, like sample preparation, treatment and detection using microfabrication and microelectronic techniques. PMID:14718554

  15. Facile Fabrication of Gradient Surface Based on (meth)acrylate Copolymer Films

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Yang, H.; Wen, X.-F.; Cheng, J.; Xiong, J.

    2016-08-01

    This paper describes a simple and economic approach for fabrication of surface wettability gradient on poly(butyl acrylate - methyl methacrylate) [P (BA-MMA)] and poly(butyl acrylate - methyl methacrylate - 2-hydroxyethyl methacrylate) [P (BA-MMA-HEMA)] films. The (meth)acrylate copolymer [including P (BA-MMA) and P (BA-MMA-HEMA)] films are hydrolyzed in an aqueous solution of NaOH and the transformation of surface chemical composition is achieved by hydrolysis in NaOH solution. The gradient wetting properties are generated based on different functional groups on the P (BA-MMA) and P (BA-MMA-HEMA) films. The effects of both the surface chemical and surface topography on wetting of the (meth)acrylate copolymer film are discussed. Surface chemical composition along the materials length is determined by XPS, and surface topography properties of the obtained gradient surfaces are analyzed by FESEM and AFM. Water contact angle system (WCAs) results show that the P (BA-MMA-HEMA) films provide a larger slope of the gradient wetting than P (BA-MMA). Moreover, this work demonstrates that the gradient concentration of chemical composition on the poly(meth) acrylate films is owing to the hydrolysis processes of ester group, and the hydrolysis reactions that have negligible influence on the surface morphology of the poly(meth) acrylate films coated on the glass slide. The gradient wettability surfaces may find broad applications in the field of polymer coating due to the compatibility of (meth) acrylate polymer.

  16. Physical properties of agave cellulose graft polymethyl methacrylate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim

    2013-11-27

    The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm{sup −1} which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity indexmore » upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one.« less

  17. High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chun, Young Tea; Chu, Daping, E-mail: dpc31@cam.ac.uk; Neeves, Matthew

    2014-11-10

    High performance electrochromic devices have been fabricated and demonstrated utilizing a solid polymer electrolyte and zinc oxide (ZnO) nanowire (NW) array counter electrode. The poly(methyl methacrylate) based polymer electrolyte was spin coated upon hydrothermally grown ZnO NW array counter electrodes, while electron beam evaporated NiO{sub x} thin films formed the working electrodes. Excellent optical contrast and switching speeds were observed in the fabricated devices with active areas of 2 cm{sup 2}, exhibiting an optical contrast of 73.11% at the wavelength of 470 nm, combined with a fast switching time of 0.2 s and 0.4 s for bleaching and coloration, respectively.

  18. Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy

    USGS Publications Warehouse

    Thorn, K.A.; Steelink, C.; Wershaw, R. L.

    1987-01-01

    13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

  19. Detonation Characteristics of Plastic Explosives Based on Attractive Nitramines with Polyisobutylene and Poly(methyl methacrylate) Binders

    NASA Astrophysics Data System (ADS)

    Elbeih, Ahmed; Pachman, Jiri; Zeman, Svatopluk; Vávra, Pavel; Trzciński, Waldemar A.; Akštein, zbyněk

    2012-10-01

    Four highly brisant nitramines, RDX (1,3,5-trinitro-1,3,5-triazinane), HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane), BCHMX (cis-1,3,4,6-tetranitro-octahydroimidazo-[4,5-d]imidazole), and ɛ-HNIW (ɛ-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane), were studied as extruded plastic explosives bonded by two plastic matrices based on polyisobutylene (C4 matrix) and poly-methylmethacrylate (plasticized by dioctyl-adipate) binders. The detonation velocities, D, were measured experimentally. Detonation parameters were also calculated by means of the Kamlet and Jacobs method and CHEETAH and EXPLO5 codes. These detonation parameters showed that plastic-bonded explosives (PBXs) based on BCHMX are more powerful explosives than those based on RDX. The Urizar coefficient for poly(methyl methacrylate) binder was also calculated.

  20. A silicone rubber based composites using n-octadecane/poly (styrene-methyl methacrylate) microcapsules as energy storage particle

    NASA Astrophysics Data System (ADS)

    Wu, W. L.; Chen, Z.

    A phase-change energy-storage material, silicone rubber (SR) coated n-octadecane/poly (styrene-methyl methacrylate) (SR/OD/P(St-MMA)) microcapsule composites, was prepared by mixing SR and OD/P(St-MMA) microcapsules. The microcapsule content and silicone rubber coated method were investigated. The morphology and thermal properties of the composites were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and heat storage properties. The results showed that the thermal and mechanical properties of SR/OD/P(St-MMA) composites were excellent when the microcapsules were coated with room temperature vulcanized silicone rubber (RTVSR), of which content was 2 phr (per hundred rubber). The enthalpy value of the composites was 67.6 J g-1 and the composites were found to have good energy storage function.

  1. Hydrophobic modification of cellulose isolated from Agave angustifolia fibre by graft copolymerisation using methyl methacrylate.

    PubMed

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan; Mohamed, Faizal

    2015-07-10

    Graft copolymerisation of methyl methacrylate (MMA) onto Agave angustifolia was conducted with ceric ammonium nitrate (CAN) as the redox initiator. The maximum grafting efficiency was observed at CAN and MMA concentrations of 0.91 × 10(-3) and 5.63 × 10(-2)M, respectively, at 45°C for 3h reaction time. Four characteristic peaks at 2995, 1738, 1440, and 845 cm(-1), attributed to PMMA, were found in the IR spectrum of grafted cellulose. The crystallinity index dropped from 0.74 to 0.46, while the thermal stability improved upon grafting. The water contact angle increased with grafting yield, indicating increased hydrophobicity of cellulose. SEM images showed the grafted cellulose to be enlarged and rougher. The changes in the physical nature of PMMA-grafted cellulose can be attributed to the PMMA grafting in the amorphous regions of cellulose, causing it to expand at the expense of the crystalline component. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Experimental Study and Modelling of Poly (Methyl Methacrylate) and Polycarbonate Compressive Behavior from Low to High Strain Rates

    NASA Astrophysics Data System (ADS)

    El-Qoubaa, Z.; Colard, L.; Matadi Boumbimba, R.; Rusinek, A.

    2018-06-01

    This paper concerns an experimental investigation of Polycarbonate and Poly (methyl methacrylate) compressive behavior from low to high strain rates. Experiments were conducted from 0.001/s to ≈ 5000/s for PC and from 0.001/s to ≈ 2000/s for PMMA. The true strain-stress behavior is established and analyzed at various stain rates. Both PC and PMMA mechanical behavior appears as known, to be strain rate and temperature dependent. The DSGZ model is selected for modelling the strain-stress curves while the yield stress is reproduced using the cooperative model and a modified Eyring equation based on Eyring first process theory. All the three models predictions are in agreement with experiments performed on PC and PMMA.

  3. Experimental Study and Modelling of Poly (Methyl Methacrylate) and Polycarbonate Compressive Behavior from Low to High Strain Rates

    NASA Astrophysics Data System (ADS)

    El-Qoubaa, Z.; Colard, L.; Matadi Boumbimba, R.; Rusinek, A.

    2018-03-01

    This paper concerns an experimental investigation of Polycarbonate and Poly (methyl methacrylate) compressive behavior from low to high strain rates. Experiments were conducted from 0.001/s to ≈ 5000/s for PC and from 0.001/s to ≈ 2000/s for PMMA. The true strain-stress behavior is established and analyzed at various stain rates. Both PC and PMMA mechanical behavior appears as known, to be strain rate and temperature dependent. The DSGZ model is selected for modelling the strain-stress curves while the yield stress is reproduced using the cooperative model and a modified Eyring equation based on Eyring first process theory. All the three models predictions are in agreement with experiments performed on PC and PMMA.

  4. Poly(methyl methacrylate) as a self-assembled gate dielectric for graphene field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanne, A.; Movva, H. C. P.; Kang, S.

    We investigate poly(methyl methacrylate) (PMMA) as a low thermal budget organic gate dielectric for graphene field effect-transistors (GFETs) based on a simple process flow. We show that high temperature baking steps above the glass transition temperature (∼130 °C) can leave a self-assembled, thin PMMA film on graphene, where we get a gate dielectric almost for “free” without additional atomic layer deposition type steps. Electrical characterization of GFETs with PMMA as a gate dielectric yields a dielectric constant of k = 3.0. GFETs with thinner PMMA dielectrics have a lower dielectric constant due to decreased polarization arising from neutralization of dipoles and charged carriersmore » as baking temperatures increase. The leakage through PMMA gate dielectric increases with decreasing dielectric thickness and increasing electric field. Unlike conventional high-k gate dielectrics, such low-k organic gate dielectrics are potentially attractive for devices such as the proposed Bilayer pseudoSpin Field-Effect Transistor or flexible high speed graphene electronics.« less

  5. Adsorption and electron-induced polymerization of methyl methacrylate on Ru(101xAF0)

    NASA Astrophysics Data System (ADS)

    Hedhili, M. N.; Yakshinskiy, B. V.; Wasielewski, R.; Ciszewski, A.; Madey, T. E.

    2008-05-01

    The adsorption and electron irradiation of methyl methacrylate (MMA) on a Ru(101¯0) surface have been studied using x-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD), and low energy ion scattering. TPD analysis indicates that a monolayer of MMA chemisorbs and dissociates on the Ru(101¯0) surface. The reaction products observed upon heating include H2, CO, CO2, and a small amount of MMA. Physisorbed multilayers of MMA desorb at temperatures around 170K. Electron irradiation of physisorbed MMA at 140K leads to a modification of the MMA film: The XPS spectra show an increase in thermal stability of the film with retention of the MMA structure, and indicate that electron irradiation induces polymerization. An increase in the electron bombardment fluence induces a degradation of the formed polymerized species and leads to the accumulation of carbon on the Ru surface. These results are relevant to the accumulation of carbon on surfaces of Ru films that serve as capping layers on Mo /Si multilayer mirrors used in extreme ultraviolet lithography.

  6. Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries.

    PubMed

    Ma, Yue; Ma, Jun; Chai, Jingchao; Liu, Zhihong; Ding, Guoliang; Xu, Gaojie; Liu, Haisheng; Chen, Bingbing; Zhou, Xinhong; Cui, Guanglei; Chen, Liquan

    2017-11-29

    Electrochemical performance of high-voltage lithium batteries with high energy density is limited because of the electrolyte instability and the electrode/electrolyte interfacial reactivity. Hence, a cross-linking polymer network of poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) (PAMM)-based electrolyte was introduced via in situ polymerization inspired by "shuangjian hebi", which is a statement in a traditional Chinese Kungfu story similar to the synergetic effect of 1 + 1 > 2. A poly(acrylic anhydride) and poly(methyl methacrylate)-based system is very promising as electrolyte materials for lithium-ion batteries, in which the anhydride and acrylate groups can provide high voltage resistance and fast ionic conductivity, respectively. As a result, the cross-linking PAMM-based electrolyte possesses a significant comprehensive enhancement, including electrochemical stability window exceeding 5 V vs Li + /Li, an ionic conductivity of 6.79 × 10 -4 S cm -1 at room temperature, high mechanical strength (27.5 MPa), good flame resistance, and excellent interface compatibility with Li metal. It is also demonstrated that this gel polymer electrolyte suppresses the negative effect resulting from dissolution of Mn 2+ ions at 25 and 55 °C. Thus, the LiNi 0.5 Mn 1.5 O 4 /Li and LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 cells using the optimized in situ polymerized cross-linking PAMM-based gel polymer electrolyte deliver stable charging/discharging profiles and excellent rate performance at room temperature and even at 55 °C. These findings suggest that the cross-linking PAMM is an intriguing candidate for 5 V class high-voltage gel polymer electrolyte toward high-energy lithium-on batteries.

  7. Sulfobutyl ether β-cyclodextrin (Captisol(®) ) and methyl β-cyclodextrin enhance and stabilize fluorescence of aqueous indocyanine green.

    PubMed

    DeDora, Daniel J; Suhrland, Cassandra; Goenka, Shilpi; Mullick Chowdhury, Sayan; Lalwani, Gaurav; Mujica-Parodi, Lilianne R; Sitharaman, Balaji

    2016-10-01

    As the only FDA-approved near-infrared fluorophore, indocyanine green (ICG) is commonly used to image vasculature in vivo. ICG degrades rapidly in solution, which limits its usefulness in certain applications, including time-sensitive surgical procedures. We propose formulations that address this shortcoming via complexation with β-cyclodextrin derivatives (β-CyD), which are known to create stabilizing inclusion complexes with hydrophobic molecules. Here, we complexed ICG with highly soluble methyl β-CyD and FDA-approved sulfobutyl ether β-CyD (Captisol(®) ) in aqueous solution. We measured the fluorescence of the complexes over 24 h. We found that both CyD+ICG complexes exhibit sustained fluorescence increases of >2.0× versus ICG in water and >20.0× in PBS. Using transmission electron microscopy, we found evidence of reduced aggregation in complexes versus ICG alone. We thus conclude that this reduction in aggregation helps mitigate fluorescence autoquenching of CyD+ICG complexes compared in ICG alone. We also found that while ICG complexed with methyl β-CyD severely reduced the viability of MRC-5 fibroblasts, ICG complexed with sulfobutyl ether β-CyD had no effect on viability. These results represent an important first step toward enhancing the utility of aqueous ICG by reducing aggregation-dependent fluorescence degradation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1457-1464, 2016. © 2015 Wiley Periodicals, Inc.

  8. 40 CFR 721.10526 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, telomers with C18-26-alkyl acrylate, 1...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-dodecanethiol, N-(hydroxymethyl)-2-methyl-2-propenamide, polyfluorooctyl methacrylate and vinylidene chloride, 2...-alkyl acrylate, 1-dodecanethiol, N-(hydroxymethyl)-2-methyl-2-propenamide, polyfluorooctyl methacrylate... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 2-Propenoic acid, 2-methyl-, 2...

  9. 40 CFR 721.10526 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, telomers with C18-26-alkyl acrylate, 1...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-dodecanethiol, N-(hydroxymethyl)-2-methyl-2-propenamide, polyfluorooctyl methacrylate and vinylidene chloride, 2...-alkyl acrylate, 1-dodecanethiol, N-(hydroxymethyl)-2-methyl-2-propenamide, polyfluorooctyl methacrylate... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2-Propenoic acid, 2-methyl-, 2...

  10. Periodic nanostructures formed on a poly-methyl methacrylate surface with a femtosecond laser for biocompatibility improvement

    NASA Astrophysics Data System (ADS)

    Takenaka, Keisuke; Tsukamoto, Masahiro; Sato, Yuji; Ooga, Takahiro; Asai, Satoru; Murai, Kensuke

    2018-06-01

    Poly(methyl methacrylate) (PMMA) is widely used as a biomaterial. The formation of periodic nanostructures on the surface is necessary to improve the biocompatibility. A method was proposed and developed to form periodic nanostructures on a PMMA surface. A PMMA plate was placed on titanium (Ti) plate, and then the Ti plate was irradiated with a laser through the PMMA plate. We try to effectively produce periodic nanostructures on PMMA with a femtosecond laser at a fundamental wavelength by increasing the contact pressure and using titanium (Ti) plate. The contact pressure between PMMA and Ti required to form a periodic nanostructure is 300 kPa, and for a contact pressure of 2400 kPa, periodic nanostructures are formed in 62% of the laser-irradiated area on the PMMA surface. These results suggest that the formation efficiency of the periodic nanostructure depends on the laser conditions and the contact pressure.

  11. Photosynthesis involvement in the mechanism of action of diphenyl ether herbicides.

    PubMed

    Ensminger, M P; Hess, F D

    1985-05-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1'-dimethyl-4,4'-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity.

  12. Platinum(0)-mediated C-O bond activation of ethers via an SN2 mechanism.

    PubMed

    Ortuño, Manuel A; Jasim, Nasarella A; Whitwood, Adrian C; Lledós, Agustí; Perutz, Robin N

    2016-11-29

    A computational study of the C(methyl)-O bond activation of fluorinated aryl methyl ethers by a platinum(0) complex Pt(PCyp 3 ) 2 (Cyp = cyclopentyl) (N. A. Jasim, R. N. Perutz, B. Procacci and A. C. Whitwood, Chem. Commun., 2014, 50, 3914) demonstrates that the reaction proceeds via an S N 2 mechanism. Nucleophilic attack of Pt(0) generates an ion pair consisting of a T-shaped platinum cation with an agostic interaction with a cyclopentyl group and a fluoroaryloxy anion. This ion-pair is converted to a 4-coordinate Pt(ii) product trans-[PtMe(OAr F )(PCyp 3 ) 2 ]. Structure-reactivity correlations are fully consistent with this mechanism. The Gibbs energy of activation is calculated to be substantially higher for aryl methyl ethers without fluorine substituents and higher still for alkyl methyl ethers. These conclusions are in accord with the experimental results. Further support was obtained in an experimental study of the reaction of Pt(PCy 3 ) 2 with 2,3,5,6-tetrafluoro-4-allyloxypyridine yielding the salt of the Pt(η 3 -allyl) cation and the tetrafluoropyridinolate anion [Pt(PCy 3 ) 2 (η 3 -allyl)][OC 5 NF 4 ]. The calculated activation energy for this reaction is significantly lower than that for fluorinated aryl methyl ethers.

  13. Flexible fiber-reinforced composites with improved interfacial adhesion by mussel-inspired polydopamine and poly(methyl methacrylate) coating.

    PubMed

    Yi, Mi; Sun, Hongyang; Zhang, Hongcheng; Deng, Xuliang; Cai, Qing; Yang, Xiaoping

    2016-01-01

    To obtain a kind of light-curable fiber-reinforced composite for dental restoration, an excellent interfacial adhesion between the fiber and the acrylate resin matrix is quite essential. Herein, surface modification on glass fibers were carried out by coating them with poly(methyl methacrylate) (PMMA), polydopamine (PDA), or both. The PMMA or PDA coating was performed by soaking fibers in PMMA/acetone solution or dopamine aqueous solution. PDA/PMMA co-coated glass fibers were obtained by further soaking PDA-coated fibers in PMMA/acetone solution. These modified fibers were impregnated with bisphenol A glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) (5:5, w/w) dental resin at a volume fraction of 75%, using unmodified fibers as reference. Light-cured specimens were submitted to evaluations including flexural properties, morphological observation, dynamic mechanical thermal analysis (DMTA) and pull-out test. In comparison with unmodified glass fibers, all the modified glass fibers showed enhancements in flexural strength and modulus of Bis-GMA/TEGDMA resin composites. Results of DMTA and pull-out tests confirmed that surface modification had significantly improved the interfacial adhesion between the glass fiber and the resin matrix. Particularly, the PDA/PMMA co-coated glass fibers displayed the most efficient reinforcement and the strongest interfacial adhesion due to the synergetic effects of PDA and PMMA. It indicated that co-coating method was a promising approach in modifying the interfacial compatibility between inorganic glass fiber and organic resin matrix. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate

    NASA Astrophysics Data System (ADS)

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-03-01

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances.

  15. Fluorescence-based sensing of 2,4,6-trinitrotoluene (TNT) using a multi-channeled poly(methyl methacrylate) (PMMA) microimmunosensor.

    PubMed

    Charles, Paul T; Adams, Andre A; Howell, Peter B; Trammell, Scott A; Deschamps, Jeffrey R; Kusterbeck, Anne W

    2010-01-01

    Fluorescence immunoassays employing monoclonal antibodies directed against the explosive 2,4,6-trinitrotoluene (TNT) were conducted in a multi-channel microimmunosensor. The multi-channel microimmunosensor was prepared in poly (methyl methacrylate) (PMMA) via hot embossing from a brass molding tool. The multi-channeled microfluidic device was sol-gel coated to generate a siloxane surface that provided a scaffold for antibody immobilization. AlexaFluor-cadaverine-trinitrobenzene (AlexaFluor-Cad-TNB) was used as the reporter molecule in a displacement immunoassay. The limit of detection was 1-10 ng/mL (ppb) with a linear dynamic range that covered three orders of magnitude. In addition, antibody crossreactivity was investigated using hexahydro-1,3,5-triazine (RDX), HMX, 2,4-dinitrotoluene (DNT), 4-nitrotoluene (4-NT) and 2-amino-4,6-DNT.

  16. Fluorescence-based Sensing of 2,4,6-Trinitrotoluene (TNT) Using a Multi-channeled Poly(methyl methacrylate) (PMMA) Microimmunosensor

    PubMed Central

    Charles, Paul T.; Adams, Andre A.; Howell, Peter B.; Trammell, Scott A.; Deschamps, Jeffrey R.; Kusterbeck, Anne W.

    2010-01-01

    Fluorescence immunoassays employing monoclonal antibodies directed against the explosive 2,4,6-trinitrotoluene (TNT) were conducted in a multi-channel microimmunosensor. The multi-channel microimmunosensor was prepared in poly (methyl methacrylate) (PMMA) via hot embossing from a brass molding tool. The multi-channeled microfluidic device was sol-gel coated to generate a siloxane surface that provided a scaffold for antibody immobilization. AlexaFluor-cadaverine-trinitrobenzene (AlexaFluor-Cad-TNB) was used as the reporter molecule in a displacement immunoassay. The limit of detection was 1–10 ng/mL (ppb) with a linear dynamic range that covered three orders of magnitude. In addition, antibody crossreactivity was investigated using hexahydro-1,3,5-triazine (RDX), HMX, 2,4-dinitrotoluene (DNT), 4-nitrotoluene (4-NT) and 2-amino-4,6-DNT. PMID:22315573

  17. PRODUCTS OF THE GAS-PHASE REACTIONS OF THE OH RADICAL WITH N-BUTYL METHYL ETHER AND 2-ISOPROPOXYETHANOL: REACTIONS OF ROC(O)< RADICALS. (R825252)

    EPA Science Inventory

    The products of the gas-phase reactions of the OH radical with n-butyl methyl ether and 2-isopropoxyethanol in the presence of NO have been investigated at 298 ? 2 K and 740 Torr total pressure of air by gas chromatography and in situ atmospheric pressure ionization...

  18. Ionogels Based on Poly(methyl methacrylate) and Metal-Containing Ionic Liquids: Correlation between Structure and Mechanical and Electrical Properties.

    PubMed

    Zehbe, Kerstin; Kollosche, Matthias; Lardong, Sebastian; Kelling, Alexandra; Schilde, Uwe; Taubert, Andreas

    2016-03-16

    Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs.

  19. Cranioplasty using polymethyl methacrylate implant constructed from an alginate impression and wax elimination technique.

    PubMed

    Abdulai, Ae; Iddrissu, Mi; Dakurah, Tk

    2006-03-01

    Summary This is a retrospective review of the record charts. A joint study by maxillofacial and neurosurgical units, department of surgery, Korle Bu Teaching Hospital, Accra, Ghana, a tertiary and premier health care centre. Seventeen consecutive patients with various cranial defects treated using prefabricated acrylic methyl methacrylate implants. The cranioplasty on all the patients took place at an average of about 12 months after the initial surgery. These included complications during and after surgery. X-ray views of the skull, ranging from true lateral to anterior-posterior, were taken at follow-up and examined to ascertain the stability of the graft by looking out for any adverse bony changes around it or loosening of any of the steel sutures securing it to the skull. A total of 17 patients (5 males and 12 females) with a mean age of 30.4 years were treated. Follow-up period ranged from 9 months to two years. In all cases the surgical procedure was uneventful and the cosmetic results were good. There was no significant change in the size and shape of the preformed methyl methacrylate implant after autoclaving. Cranioplasty using prefabricated acrylic methyl methacrylate implants apart from being affordable also ensure shorter operative time and good aesthetic result.

  20. Fabrication of superhydrophilic and antireflective silica coatings on poly(methyl methacrylate) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Zhi; Graduate University of Chinese Academy of Sciences; He, Junhui, E-mail: jhhe@mail.ipc.ac.cn

    2012-06-15

    Graphical abstract: Self-cleaning and antireflection properties were successfully achieved by assembling (PDDA/S-20){sub n} coatings on PMMA substrates followed by oxygen plasma treatment. Highlights: ► Porous silica coatings were created by layer-by-layer assembly on PMMA substrates. ► Silica coatings were treated by oxygen plasma. ► Porous silica coatings were highly antireflective and superhydrophilic on PMMA substrates. -- Abstract: Silica nanoparticles of ca. 20 nm in size were synthesized, from which hierarchically porous silica coatings were fabricated on poly(methyl methacrylate) (PMMA) substrates via layer-by-layer (LbL) assembly followed by oxygen plasma treatment. These porous silica coatings were highly transparent and superhydrophilic. The maximummore » transmittance reached as high as 99%, whereas that of the PMMA substrate is only 92%. After oxygen plasma treatment, the time for a water droplet to spread to a contact angle of lower than 5° decreased to as short as 0.5 s. Scanning and transmission electron microscopy were used to observe the morphology and structure of nanoparticles and coating surfaces. Transmission and reflection spectra were recorded on UV–vis spectrophotometer. Surface wettability was studied by a contact angle/interface system. The influence of mesopores on the transmittance and wetting properties of coatings was discussed on the basis of experimental observations.« less

  1. Nanoindentation and surface roughness profilometry of poly methyl methacrylate denture base materials.

    PubMed

    Zafar, Muhammad Sohail; Ahmed, Naseer

    2014-01-01

    Polymers have a wide range of applications in dentistry. Poly methyl methacrylate (PMMA) is the most popular for making orthodontic retainers, dentures as well as synthetic teeth. Prior to clinical applications, the appliances are polished in the dental laboratory to achieve smooth, polished and comfortable surfaces. The objective of this study was to analyze the surface roughness profiles of PMMA dentures polished using two different approaches. In addition, the effects of ultrasonication and sandblasting were also evaluated on the fitting surface of PMMA dentures. This was an in vitro study using non-contact mode surface roughness profilometer and nano-indenter. Samples were polished using two different techniques (Standard and modified). Both cold cure and heat cure PMMA denture surfaces were evaluated for roughness, nanohardness and elastic modulus. The absolute hardness was recorded 297.72±19.04 MPa and 229.93±18.53 MPa for heat cured PMMA and cold cured PMMA. Manufactured acrylic teeth were harder (319.20±12.58 MPa) with an elastic modulus of (4.34±1.86 GPa). Modified polishing techniques (group 3) produced smoother surface. It was concluded that elastic moduli of acrylic tooth and heat cure PMMA is not very different. Surface treatments such as ultrasonication or sandblasting do not affect the roughness profiles of denture fitting surfaces.

  2. Segmental and local dynamics of stacked thin films of poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Hayashi, Tatsuhiko; Fukao, Koji

    2014-02-01

    The glass transition temperature and the dynamics of the α and β processes have been investigated using differential scanning calorimetry and dielectric relaxation spectroscopy during successive annealing processes above the glass transition temperature for stacked thin films of poly(methyl methacrylate) (PMMA) of various thicknesses. The glass transition temperature and the dynamics of the α process (segmental motion) of as-stacked PMMA thin films exhibit thin-film-like behavior, insofar as the glass transition temperature is depressed and the dynamics of the α process are faster than those of the bulk system. Annealing at high temperature causes the glass transition temperature to increase from the reduced value and causes the dynamics of the α process to become slower approaching those of the bulk. Contrary to the segmental motion, the relaxation time of the β process (local motion) of the stacked PMMA thin films is almost equal to that of the bulk PMMA and is unaffected by the annealing process. However, the relaxation strengths of both the α process and β process show a strong correlation between each other. The sum of the relaxation strengths remains almost unchanged, while the individual relaxation strengths change during the annealing process. The fragility index of the stacked PMMA thin films increases with annealing, which suggests that the glassy state of the stacked thin films changes from strong to fragile.

  3. New biphasic solvent system based on cyclopentyl methyl ether for the purification of a non-polar synthetic peptide by pH-zone refining centrifugal partition chromatography.

    PubMed

    Amarouche, Nassima; Boudesocque, Leslie; Borie, Nicolas; Giraud, Matthieu; Forni, Luciano; Butte, Alessandro; Edwards, Florence; Renault, Jean-Hugues

    2014-06-01

    A new type 1 ternary biphasic system composed of cyclopentyl methyl ether, dimethylformamide and water was developed, characterized and successfully used for the purification of a lipophilic, protected peptide by pH-zone refining centrifugal partition chromatography. The protected peptide is an 8-mer, key intermediate in bivalirudin (Angiomax®) synthesis and shows a very low solubility in the solvents usually used in liquid chromatography. All ionic groups, except the N-terminal end of the peptide, are protected by a benzyl group. The purification of this peptide was achieved with a purity of about 99.04% and a recovery of 94% using the new ternary biphasic system cyclopentyl methyl ether/dimethylformamide/water (49:40:11, v/v) in the descending pH-zone refining mode with triethylamine (28 mM) as the retainer and methanesulfonic acid (18 mM) as the eluter. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Photosynthesis Involvement in the Mechanism of Action of Diphenyl Ether Herbicides 1

    PubMed Central

    Ensminger, Michael P.; Hess, F. Dan

    1985-01-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity. PMID:16664206

  5. IRON(III) NITRATE-CATALYZED FACILE SYNTHESIS OF DIPHENYLMETHYL (DPM) ETHERS FROM ALCOHOLS

    EPA Science Inventory

    Diphenyl methyl (DPM) ethers constitute important structural portion of some pharmaceutical entities and also as protective group for hydroxyl groups in synthetic chemistry. DPM ethers are normally prepared using concentrated acids or base as catalysts, which may result in the fo...

  6. Poly(methyl methacrylate)-graft-oligoamines as low cytotoxic and efficient nonviral gene vectors.

    PubMed

    Wang, Yong-Qiang; Sun, Yun-Xia; Hong, Xin-Lin; Zhang, Xian-Zheng; Zhang, Gao-Yong

    2010-01-01

    A series of poly(methyl methacrylate)-graft-oligoamines (PMMA-g-oligoamines), including PMMA-g-DETA, PMMA-g-TETA and PMMA-g-TEPA, were synthesized through aminolysis of the PMMA with diethylenetriamine, triethylenetetramine and tetraethylenepentamine. Agarose gel retardation assay indicated that PMMA-g-oligoamines had good binding capability with plasmid DNA, and the binding capability increased with increasing length of oligoamines and content of nitrogen (N%). The results of particle size, zeta potential and morphology observation further showed that the PMMA-g-oligoamines could condense DNA efficiently and the PMMA-g-oligoamine/DNA complexes were uniform nanospheres. The in vitro cell viability indicated that PMMA-g-oligoamines were less toxic than 25 kDa PEI, though the cytotoxicity of PMMA-g-oligoamines increased slightly with increasing length of oligoamines as well as the N% of PMMA-g-oligoamines. The transfection efficiency of PMMA-g-oligoamines/DNA complexes in 293 T and HeLa cells demonstrated that PMMA-g-oligoamines could transfect cells efficiently with increasing the length of oligoamines, especially PMMA-g-TEPA with highest N%, and showed similar transfection capability as 25 kDa PEI. The cellular uptake study showed that the distribution of YOYO-1 labeled DNA in the cytoplasm and nuclei increased gradually with increasing length of oligoamines.

  7. [Fabrications of a poly (methyl methacrylate) (PMMA) microfluidic chip-based DNA analysis device].

    PubMed

    Du, Xiao-Guang

    2009-12-01

    A DNA analysis device based on poly(methyl methacrylate) (PMMA) microfluidic chips was developed. A PMMA chip with cross microchannels was fabricated by a simple hot embossing. Microchannels were modified with a static adsorptive coating method using 2% hydroxyethyl cellulose. A high-voltage power unit, variable in the range 0-1 800 V, was used for on-chip DNA sample injection and gel electrophoretic separation. High speed, high resolution DNA analysis was obtained with the home-built PMMA chip in a sieving matrix containing 2% hydroxyethyl cellulose with a blue intercalating dye, TO-PRO-3 (TP3), by using diode laser induced fluorescence detection based on optical fibers with a 670 nm long-pass filter. The DNA analysis device was applied for the separation of phiX-174/HaeIII DNA digest sample with 11 fragments ranging from 72 to 1 353 bp. A separation efficiency of 1.14 x 10(6) plates/m was obtained for the 603 bp fragments, while the R of 271/281 bp fragments was 1.2. The device was characterized by simple design, low cost for fabrication and operation, reusable PMMA chips, and good reproducibility. A portable microfluidic device for DNA analysis can be developed for clinical diagnosis and disease screening.

  8. A novel bonding method for large scale poly(methyl methacrylate) micro- and nanofluidic chip fabrication

    NASA Astrophysics Data System (ADS)

    Qu, Xingtian; Li, Jinlai; Yin, Zhifu

    2018-04-01

    Micro- and nanofluidic chips are becoming increasing significance for biological and medical applications. Future advances in micro- and nanofluidics and its utilization in commercial applications depend on the development and fabrication of low cost and high fidelity large scale plastic micro- and nanofluidic chips. However, the majority of the present fabrication methods suffer from a low bonding rate of the chip during thermal bonding process due to air trapping between the substrate and the cover plate. In the present work, a novel bonding technique based on Ar plasma and water treatment was proposed to fully bond the large scale micro- and nanofluidic chips. The influence of Ar plasma parameters on the water contact angle and the effect of bonding conditions on the bonding rate and the bonding strength of the chip were studied. The fluorescence tests demonstrate that the 5 × 5 cm2 poly(methyl methacrylate) chip with 180 nm wide and 180 nm deep nanochannels can be fabricated without any block and leakage by our newly developed method.

  9. Metal-Free Atom Transfer Radical Polymerization of Methyl Methacrylate with ppm Level of Organic Photocatalyst.

    PubMed

    Huang, Zhicheng; Gu, Yu; Liu, Xiaodong; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2017-05-01

    It is well known that the recently developed photoinduced metal-free atom transfer radical polymerization (ATRP) has been considered as a promising methodology to completely eliminate transition metal residue in polymers. However, a serious problem needs to be improved, namely, large amount of organic photocatalysts should be used to keep the controllability over molecular weights and molecular weight distributions. In this work, a novel photocatalyst 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) with strong excited state reduction potential is successfully used to mediate a metal-free ATRP of methyl methacrylate just with parts per million (ppm) level usage under irradiation of blue light emitting diode at room temperature, using ethyl α-bromophenyl-acetate as a typical initiator with high initiator efficiency. The polymerization kinetic study, multiple controlled "on-off" light switching cycle regulation, and chain extension experiment confirm the "living"/controlled features of this promising photoinduced metal-free ATRP system with good molecular weight control in the presence of ppm level photocatalyst 4CzIPN. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Graphene and poly(methyl methacrylate) composite laminates on flexible substrates for volatile organic compound detection

    NASA Astrophysics Data System (ADS)

    Rattanabut, Chanoknan; Wongwiriyapan, Winadda; Muangrat, Worawut; Bunjongpru, Win; Phonyiem, Mayuree; Song, Young Jae

    2018-04-01

    In this paper, we present a gas sensor for volatile organic compound (VOC) detection based on graphene and poly(methyl methacrylate) (GR/PMMA) composite laminates fabricated using CVD-grown graphene. Graphene was transferred to a poly(ethylene terephthalate) (PET) substrate by PMMA-supported wet transfer process without PMMA removal in order to achieve the deposition of GR/PMMA composite laminates on PET. The GR/PMMA and graphene sensors show completely different sensitivities to VOC vapors. The GR/PMMA and graphene sensors showed the highest sensitivities to dichloromethane (DCM). The response of the GR/PMMA sensor to DCM was 3 times higher than that of the graphene sensor but the GR/PMMA sensor hardly responded to acetone, chloroform, or benzene. The sensing mechanism of the graphene sensor can be based on the dielectric constant of VOCs, the size of VOC molecule, and electron hopping effects on defect graphene, while that of the GR/PMMA sensor can be explained in terms of the polymer swelling owing to the Hansen solubility parameter.

  11. Microfluidic-Assisted Production of Size-Controlled Superparamagnetic Iron Oxide Nanoparticles-Loaded Poly(methyl methacrylate) Nanohybrids.

    PubMed

    Ding, Shukai; Attia, Mohamed F; Wallyn, Justine; Taddei, Chiara; Serra, Christophe A; Anton, Nicolas; Kassem, Mohamad; Schmutz, Marc; Er-Rafik, Meriem; Messaddeq, Nadia; Collard, Alexandre; Yu, Wei; Giordano, Michele; Vandamme, Thierry F

    2018-02-06

    In this paper, superparamagnetic iron oxide nanoparticles (SPIONs, around 6 nm) encapsulated in poly(methyl methacrylate) nanoparticles (PMMA NPs) with controlled sizes ranging from 100 to 200 nm have been successfully produced. The hybrid polymeric NPs were prepared following two different methods: (1) nanoprecipitation and (2) nanoemulsification-evaporation. These two methods were implemented in two different microprocesses based on the use of an impact jet micromixer and an elongational-flow microemulsifier. SPIONs-loaded PMMA NPs synthesized by the two methods presented completely different physicochemical properties. The polymeric NPs prepared with the micromixer-assisted nanoprecipitation method showed a heterogeneous dispersion of SPIONs inside the polymer matrix, an encapsulation efficiency close to 100 wt %, and an irregular shape. In contrast, the polymeric NPs prepared with the microfluidic-assisted nanoemulsification-evaporation method showed a homogeneous dispersion, an almost complete encapsulation, and a spherical shape. The properties of the polymeric NPs have been characterized by dynamic light scattering, thermogravimetric analysis, and transmission electron microscope. In vitro cytotoxicity assays were also performed on the nanohybrids and pure PMMA NPs.

  12. Methyl tert-butyl ether biodegradation by microbial consortia obtained from soil samples of gasoline-polluted sites in Mexico.

    PubMed

    Morales, Marcia; Velázquez, Elia; Jan, Janet; Revah, Sergio; González, Uriel; Razo-Flores, Elías

    2004-02-01

    Microbial consortia obtained from soil samples of gasoline-polluted sites were individually enriched with pentane, hexane, isooctane and toluene. Cometabolism with methyl tert-butyl ether, (MTBE), gave maximum degradation rates of 49, 12, 32 and 0 mg g(-1)protein h(-1), respectively. MTBE was fully degraded even when pentane was completely depleted with a cometabolic coefficient of 1 mgMTBE mg(-1)pentane. The analysis of 16S rDNA from isolated microorganisms in the pentane-adapted consortia showed that microorganisms could be assigned to Pseudomonas. This is the first work reporting the cometabolic mineralization of MTBE by consortium of this genus.

  13. Effect of moisture on the physical and durability properties of methyl methacrylate polymer concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontana, J.J.; Reams, W.

    1983-01-01

    The compressive strength of methyl methacrylate PC composites decays very rapidly as the moisture content of the coarse aggregate is increased from 0 to 1 wt %. The durability of the PC also shows evidence of decay. Addition of silane coupling agent, such as A-1120, to the monomer component of a PC composite increases the compressive strength of such composites made with moist coarse aggregates. The compressive strengths of such PC composites are as high as a normal PCC used in highway applications. The durability of PC composites made with a silane additive seems to increase as the composite undergoesmore » freeze-thaw cycling which reinforces the justification that such materials can be used for PCC repairs without a sacrifice in use lifespans. However, for the convenience of using moist aggregates, one must endure the additional cost of the silane coupling agent. If it costs more than $0.02/lb to dry the aggregate, and one is willing to accept the reduced strengths associated with moist aggregates, then the use of a silane coupling agent can be cost effective. 3 figures, 4 tables.« less

  14. Lithography exposure characteristics of poly(methyl methacrylate) (PMMA) for carbon, helium and hydrogen ions

    NASA Astrophysics Data System (ADS)

    Puttaraksa, Nitipon; Norarat, Rattanaporn; Laitinen, Mikko; Sajavaara, Timo; Singkarat, Somsorn; Whitlow, Harry J.

    2012-02-01

    Poly(methyl methacrylate) is a common polymer used as a lithographic resist for all forms of particle (photon, ion and electron) beam writing. Faithful lithographic reproduction requires that the exposure dose, Θ, lies in the window Θ0⩽Θ<Θ, where Θ0 and Θ represent the clearing and cross-linking onset doses, respectively. In this work we have used the programmable proximity aperture ion beam lithography systems in Chiang Mai and Jyväskylä to determine the exposure characteristics in terms of fluence for 2 MeV protons, 3 MeV 4He and 6 MeV 12C ions, respectively. After exposure the samples were developed in 7:3 by volume propan-2-ol:de-ionised water mixture. At low fluences, where the fluence is below the clearing fluence, the exposed regions were characterised by rough regions, particularly for He with holes around the ion tracks. As the fluence (dose) increases so that the dose exceeds the clearing dose, the PMMA is uniformly removed with sharp vertical walls. When Θ exceeds the cross-linking onset fluence, the bottom of the exposed regions show undissolved PMMA.

  15. [Effects of methyl tertiary butyl ether on cell cycle and cell apoptosis].

    PubMed

    Zhou, W; Huang, G; Zhang, H; Ye, S

    2000-07-01

    To explore the effects of the new gasoline additive, methyl tertiary butyl ether (MTBE) on cell cycle and cell apoptosis. Flow cytometry was used to evaluate the effect of MTBE (1, 2, 4 microl/ml, 24 h) on NIH/3T3 cell cycles; and the effect of MTBE on Hela cell apoptosis was evaluated by detecting cell survival using crystal violet staining. Flow cytometry showed that MTBE could change NIH/3T3 cell cycles, decrease the number of cells in S stage, and arrest cells at G(2) + M stage. The results suggested that MTBE could affect NIH/3T3 cell cycles and induce cell proliferation. This situation existed 48 hours after the treatment, and cell cycles came back normal 96 hours after the treatment. By detecting cell survival using crystal violet staining, we found that MTBE could inhibit the apoptosis of Hela cells which was induced by tumor necrosis factor (TNF)alpha and cycloheximide. MTBE's carcinogenicity to animals may relate to induction of cell proliferation and inhibition of cell apoptosis.

  16. Synthesis, characterization, and corrosion protection properties of poly( N-(methacryloyloxymethyl) benzotriazole- co-methyl methacrylate) on mild steel

    NASA Astrophysics Data System (ADS)

    Srikanth, A. P.; Lavanya, A.; Nanjundan, S.; Rajendran, N.

    2006-12-01

    The copolymers from different feed ratios of N-(methacryloyloxymethyl) benzotriazole (MMBT) and methyl methacrylate (MMA) has been synthesised using free radical solution polymerization technique and characterized using FT-IR and 13C NMR spectroscopy. The thermal stability of the polymers was studied using theremogravimetrtic analysis (TGA). The corrosion behaviors of mild steel specimens dip coated with different composition of copolymers have been evaluated by potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) method. These electrochemical properties were observed in 0.1 M HCl medium. The polarization and impedance measurements showed different corrosion protection efficiency with change in composition of the copolymers. It was found that the corrosion protection properties are owing to the barrier effect of the polymer layer covered on the mild steel surfaces. However, it was observed that the copolymer obtained from 1:1 mole ratio of MMBT and MMA exhibited better protection efficiency than other combinations.

  17. Development of flow systems by direct-milling on poly(methyl methacrylate) substrates using UV-photopolymerization as sealing process.

    PubMed

    Rodrigues, Eunice R G O; Lapa, Rui A S

    2009-03-01

    An alternative process for the design and construction of fluidic devices is presented. Several sealing processes were studied, as well as the hydrodynamic characteristics of the proposed fluidic devices. Manifolds were imprinted on polymeric substrates by direct-write milling, according to Computer Assisted Design (CAD) data. Poly(methyl methacrylate) (PMMA) was used as substrate due to its physical and chemical properties. Different bonding approaches for the imprinted channels were evaluated and UV-photopolymerization of acrylic acid (AA) was selected. The hydrodynamic characteristics of the proposed flow devices were assessed and compared to those obtained in similar flow systems using PTFE reactors and micro-pumps as propulsion units (multi-pumping approach). The applicability of the imprinted reactors was evaluated in the sequential determination of calcium and magnesium in water samples. Results obtained were in good agreement with those obtained by the reference procedure.

  18. Photovoltaic and thermal properties of electrolytes based on electrospun poly(vinylidene fluoride-hexafluoro propylene)/poly(methyl methacrylate) nanofibers for dye-sensitized solar cells.

    PubMed

    Jang, Young-Wook; Won, Du-Hyun; Kim, Young-Keun; Hwang, Won-Pill; Jang, Sung-Il; Jeong, Sung-Hoon; Kim, Mi-Ra; Lee, Jin-Kook

    2014-08-01

    We prepared electrospun polymer nanofibers by electrospnning method and investigated about their applications to dye-sensitized solar cells (DSSCs). Electrospun polymer nanofibers applied to the polymer matrix in electrolyte for DSSCs. To improve the stiffness of polymer nanofiber, poly(vinylidene fluoride-hexafluoro propylene)/Poly(methyl methacrylate) (PVDF-HFP/PMMA) blend nanofibers were prepared and examined. In the electrospun PVDF-HFP/PMMA (1:1) blend nanofibers, the best results of VOC, JSC, FF, and efficiency of the DSSC devices showed 0.71 V, 12.8 mA/cm2, 0.61, and 5.56% under AM 1.5 illumination.

  19. FAST TRACK COMMUNICATION: Poly(methyl methacrylate)-palladium clusters nanocomposite formation by supersonic cluster beam deposition: a method for microstructured metallization of polymer surfaces

    NASA Astrophysics Data System (ADS)

    Ravagnan, Luca; Divitini, Giorgio; Rebasti, Sara; Marelli, Mattia; Piseri, Paolo; Milani, Paolo

    2009-04-01

    Nanocomposite films were fabricated by supersonic cluster beam deposition (SCBD) of palladium clusters on poly(methyl methacrylate) (PMMA) surfaces. The evolution of the electrical conductance with cluster coverage and microscopy analysis show that Pd clusters are implanted in the polymer and form a continuous layer extending for several tens of nanometres beneath the polymer surface. This allows the deposition, using stencil masks, of cluster-assembled Pd microstructures on PMMA showing a remarkably high adhesion compared with metallic films obtained by thermal evaporation. These results suggest that SCBD is a promising tool for the fabrication of metallic microstructures on flexible polymeric substrates.

  20. Pyrrolidone - a new solvent for the methylation of humic acid

    USGS Publications Warehouse

    Wershaw, R. L.; Pinckney, D.J.; Booker, S.E.

    1975-01-01

    In the past, humic acid has been methylated by suspending it in a solution of diazomethane in diethyl ether, and degrading the partly methylated humic acid to release those parts of the molecule that were methylated. Only small fragments of the molecule have been identified by this technique. In the procedure described here the humic acid is dissolved in 2-pyrrolidone and methylated by the addition of diazomethane in diethyl ether and ethanol to the solution. Because the humic acid is completely dissolved in the reaction medium, disaggregation of the humic acid particles takes place and much more complete methylation is obtained. The methylated products may be fractionated by countercurrent distribution and analyzed by mass spectrometry.

  1. Ionogels Based on Poly(methyl methacrylate) and Metal-Containing Ionic Liquids: Correlation between Structure and Mechanical and Electrical Properties

    PubMed Central

    Zehbe, Kerstin; Kollosche, Matthias; Lardong, Sebastian; Kelling, Alexandra; Schilde, Uwe; Taubert, Andreas

    2016-01-01

    Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs. PMID:26999112

  2. The conformation of the monomethyl ethers of methyl beta-lactoside in D2O and Me2SO-d6 solutions.

    PubMed

    Fernández, P; Jiménez-Barbero, J

    1993-10-04

    The solution conformations of all the possible monomethyl ethers of methyl beta-lactoside have been analysed using molecular mechanics and dynamics calculations and nuclear magnetic resonance data (variable temperature and NOE experiments). The overall shape of all the compounds studied is fairly similar and may be described by conformers included in a low-energy region with phi = -100 +/- 40 degrees and psi = -135 +/- 35 degrees, which is ca. 5% of the total potential energy surface for the glycosidic linkages of the disaccharides.

  3. Supercritical CO2 drying of poly(methyl methacrylate) photoresist for deep x-ray lithography: a brief note

    NASA Astrophysics Data System (ADS)

    Shukla, Rahul; Abhinandan, Lala; Sharma, Shivdutt

    2017-07-01

    Poly(methyl methacrylate) (PMMA) is an extensively used positive photoresist for deep x-ray lithography. The post-development release of the microstructures of PMMA becomes very critical for high aspect ratio fragile and freestanding microstructures. Release of high aspect ratio comb-drive microstructure of PMMA made by one-step x-ray lithography (OXL) is studied. The effect of low-surface tension Isopropyl alcohol (IPA) over water is investigated for release of the high aspect ratio microstructures using conventional and supercritical (SC) CO2 drying. The results of conventional drying are also compared for the samples released or dried in both in-house developed and commercial SC CO2 dryer. It is found that in all cases the microstructures of PMMA are permanently deformed and damaged while using SC CO2 for drying. For free-standing high aspect ratio microstructures of PMMA made by OXL, it is advised to use low-surface tension IPA over DI water. However, this brings a limitation on the design of the microstructure.

  4. Wax inhibitor based on ethylene vinyl acetate with methyl methacrylate and diethanolamine for crude oil pipeline

    NASA Astrophysics Data System (ADS)

    Anisuzzaman, S. M.; Abang, S.; Bono, A.; Krishnaiah, D.; Karali, R.; Safuan, M. K.

    2017-06-01

    Wax precipitation and deposition is one of the most significant flow assurance challenges in the production system of the crude oil. Wax inhibitors are developed as a preventive strategy to avoid an absolute wax deposition. Wax inhibitors are polymers which can be known as pour point depressants as they impede the wax crystals formation, growth, and deposition. In this study three formulations of wax inhibitors were prepared, ethylene vinyl acetate, ethylene vinyl acetate co-methyl methacrylate (EVA co-MMA) and ethylene vinyl acetate co-diethanolamine (EVA co-DEA) and the comparison of their efficiencies in terms of cloud point¸ pour point, performance inhibition efficiency (%PIE) and viscosity were evaluated. The cloud point and pour point for both EVA and EVA co-MMA were similar, 15°C and 10-5°C, respectively. Whereas, the cloud point and pour point for EVA co-DEA were better, 10°C and 10-5°C respectively. In conclusion, EVA co-DEA had shown the best % PIE (28.42%) which indicates highest percentage reduction of wax deposit as compared to the other two inhibitors.

  5. Synthesis of tetraaza bromide macrocyclic and studies of its effect on poly(methyl methacrylate) grafted natural rubber (MG49) - lithium tertrafluoroborate (LiBF{sub 4}) films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariam, Siti Nor; Yamin, Bohari M.; Ahmad, Azizan

    2013-11-27

    Good Poly(Methyl Methacrylate) Grafted natural Rubber (MG49) films with homogeneous and smooth surface were obtained in the presence of Lithium Tertrafluoroborate (LiBF{sub 4}) and 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7,14-dienium bromide, (Me{sub 6}N{sub 4}H{sub 4})Br{sub 2} as dopants. The conductivity was found to be 3.63×10{sup −6} S/cm an increase by seven fold compare to the undoped MG49.

  6. Fabrication of poly(methyl methacrylate)-MoS{sub 2}/graphene heterostructure for memory device application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinde, Sachin M.; Tanemura, Masaki; Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp

    2014-12-07

    Combination of two dimensional graphene and semi-conducting molybdenum disulfide (MoS{sub 2}) is of great interest for various electronic device applications. Here, we demonstrate fabrication of a hybridized structure with the chemical vapor deposited graphene and MoS{sub 2} crystals to configure a memory device. Elongated hexagonal and rhombus shaped MoS{sub 2} crystals are synthesized by sulfurization of thermally evaporated molybdenum oxide (MoO{sub 3}) thin film. Scanning transmission electron microscope studies reveal atomic level structure of the synthesized high quality MoS{sub 2} crystals. In the prospect of a memory device fabrication, poly(methyl methacrylate) (PMMA) is used as an insulating dielectric material asmore » well as a supporting layer to transfer the MoS{sub 2} crystals. In the fabricated device, PMMA-MoS{sub 2} and graphene layers act as the functional and electrode materials, respectively. Distinctive bistable electrical switching and nonvolatile rewritable memory effect is observed in the fabricated PMMA-MoS{sub 2}/graphene heterostructure. The developed material system and demonstrated memory device fabrication can be significant for next generation data storage applications.« less

  7. [Occupational exposure to methyl tert-butyl ether (MTBE) at an oil refinery].

    PubMed

    Perbellini, L; Pasini, F; Prigioni, P; Rosina, A

    2003-01-01

    Methyl tert-butyl ether (MTBE) is widely used as an additive to gasoline, to increase oxygen content and reduce tailpipe emission of carbon monoxide. Our research dealt with 37 refinery workers in order to measure their occupational exposure to MTBE during two different seasonal periods. They provided blood and urine samples before and after a work shift during which they wore an active charcoal sampler for solvents. All samples were analysed by a gas-chromatograph equipped with a mass spectrometer detector. The concentration in air of MTBE was very low (median: 25 micrograms/m3 in spring and 5 micrograms/m3 in autumn). The blood and urine concentrations of MTBE at the end of the work shift were higher than those found before the shift. The increment in biological samples confirmed a small intake of MTBE by refinery workers: the biological monitoring of occupational exposure to this solvent yielded reliable results. Blood and urinary concentrations of MTBE obtained from workers split in relation to their smoking habit did not give a statistic significance to say that cigarette smoke is not a confusion factor in monitoring exposure to MTBE.

  8. Proton-Ionizable Crown Ethers. A Short Review

    DTIC Science & Technology

    1989-05-30

    acid methyl ester using sodium hydride as the base in tetrahydrofuran. The m3thyl ester group was hydrolyzed to the carboxylic acid as shown in Procedure...prepared via the appropriate hydroxydibenzo-crown ether and allyl bromide RýIý R2 or ethyl acrylate as shown in Procedure N. 5 2 . 5 6 Disulfonic acid ...similar to Procedure p. 7 4 Once the precursor binrephtho-crown was obtained, it was coupled with bromoacetic acid methyl ester and R, , - R

  9. Effect of powder to liquid ratio on tensile strength and glass transition temperature of alumina filled poly methyl methacrylate (PMMA) denture base material.

    PubMed

    Mohamed, S H; Arifin, A; Mohd Ishak, Z A; Nizam, A; Samsudin, A R

    2004-05-01

    The aim of this study was to evaluate the mechanical properties and glass transition temperature (Tg) of a denture base material prepared from high molecular weight poly methyl methacrylate (PMMA) and alumina (Al2O3). The glass transition temperature was studied by using differential scanning calorimetry (DSC). The effect of powder-to-liquid ratio was investigated. The result showed that the tensile properties and the Tg were slightly effected by the powder-to-liquid ratio. The ratio of 2.2:1 by weight of powder to liquid was found to be the best ratio for mixing the material to give the best result in this formulation.

  10. Detection of leachables and cytotoxicity after exposure to methacrylate- and epoxy-based root canal sealers in vitro.

    PubMed

    Lodienė, Greta; Kopperud, Hilde M; Ørstavik, Dag; Bruzell, Ellen M

    2013-10-01

    Root canal sealing materials may have toxic potential in vitro depending on the cell line, cytotoxicity assay, material chemistry, and degree of polymer curing. The aims of the present study were to detect leaching components from epoxy- or methacrylate-based root canal sealers and to investigate the degree of cytotoxicity after exposure to extracts from these materials. Qualitative determination of substances released from the materials was performed by gas- and liquid chromatography/mass spectrometry. Submandibular salivary gland acinar cell death (apoptosis/necrosis) was determined using a fluorescence staining/microscopy technique. The major leachable monomer from the epoxy-based material was bisphenol-A diglycidyl ether (BADGE), whereas leachables from the methacrylate-based materials were mainly triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), hydroxyethyl methacrylate (HEMA), and polyethyleneglycol dimethacrylate (PEGDMA). Exposure to diluted extracts of cured methacrylate-based materials caused a postexposure time-dependent increase in cell death. This effect was not demonstrated as a result of exposure to undiluted extract of cured epoxy-based material. Extracts of all fresh materials induced apoptosis significantly, but at lower dilutions of the epoxy- than the methacrylate-based materials. The degree of leaching, determined from the relative chromatogram peak heights of eluates from the methacrylate-based sealer materials, corresponded with the degree of cell death induced by extracts of these materials. © 2013 Eur J Oral Sci.

  11. Syntheses of all the possible monomethyl ethers and several deoxyhalo analogues of methyl beta-lactoside as ligands for the Ricinus communis lectins.

    PubMed

    Fernández, P; Jiménez-Barbero, J; Martín-Lomas, M

    1994-02-17

    The synthesis of all the possible monomethyl ethers of methyl beta-lactoside (1) has been performed from 1 in a straightforward way, making use of the different reactivity of the hydroxyl groups in alkylation and stannylation reactions. In addition, the deoxyfluoro derivatives of 1 at positions, 6,3',4',epi-4', and 6' have been prepared by reaction of the appropriate substrates with diethylaminosulfur trifluoride or tetrabutylammonium fluoride. Finally, the 6-deoxyiodo and 6'-bromodeoxy analogues of 1 have also been prepared.

  12. Biotic and abiotic transformations of methyl tertiary butyl ether (MTBE).

    PubMed

    Fischer, Axel; Oehm, Claudia; Selle, Michael; Werner, Peter

    2005-11-01

    Methyl tertiary butyl ether (MTBE) is a fuel additive which is used all over the world. In recent years it has often been found in groundwater, mainly in the USA, but also in Europe. Although MTBE seems to be a minor toxic, it affects the taste and odour of water at concentrations of < 30 microg/L. Although MTBE is often a recalcitrant compound, it is known that many ethers can be degraded by abiotic means. The aim of this study was to examine biotic and abiotic transformations of MTBE with respect to the particular conditions of a contaminated site (former refinery) in Leuna, Germany. Groundwater samples from wells of a contaminated site were used for aerobic and anaerobic degradation experiments. The abiotic degradation experiment (hydrolysis) was conducted employing an ion-exchange resin and MTBE solutions in distilled water. MTBE, tertiary butyl formate (TBF) and tertiary butyl alcohol (TBA) were measured by a gas chromatograph with flame ionisation detector (FID). Aldehydes and organic acids were respectively analysed by a gas chromatograph with electron capture detector (ECD) and high-performance ion chromatography (HPIC). Under aerobic conditions, MTBE was degraded in laboratory experiments. Only 4 of a total of 30 anaerobic experiments exhibited degradation, and the process was very slow. In no cases were metabolites detected, but a few degradation products (TBF, TBA and formic acid) were found on the site, possibly due to the lower temperatures in groundwater. The abiotic degradation of MTBE with an ion-exchange resin as a catalyst at pH 3.5 was much faster than hydrolysis in diluted hydrochloric acid (pH 1.0). Although the aerobic degradation of MTBE in the environment seems to be possible, the specific conditions responsible are widely unknown. Successful aerobic degradation only seems to take place if there is a lack of other utilisable compounds. However, MTBE is often accompanied by other fuel compounds on contaminated sites and anaerobic conditions

  13. MEASUREMENT OF EXHALED BREATH AND VENOUS BLOOD TO DEVELOP A PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR HUMAN EXPOSURE TO METHYL TERTIARY-BUTYL ETHER AND THE PRODUCTION OF THE BIOMARKER TERTIARY-BUTYL ALCOHOL

    EPA Science Inventory

    Methyl tertiary-butyl ether (MTBE) is a common fuel additive used to increase the availability of oxygen in gasoline to reduce winter-time carbon monoxide emissions from automobiles. Also, MTBE boosts gasoline "octane" rating and, as such, allows reduction of benzene...

  14. Mechanism of Action of the Diphenyl Ether Herbicide Acifluorfen-Methyl in Excised Cucumber (Cucumis sativus L.) Cotyledons 1

    PubMed Central

    Orr, Gregory L.; Hess, F. Dana

    1982-01-01

    Cucumber (Cucumis sativus L.) cotyledons were sensitive to the diphenyl ether herbicide acifluorfen-methyl (AFM); methyl 5-[2-chloro-4-(trifluoro-methyl)phenoxyl-2-nitrobenzoate. Injury was detected by monitoring the efflux of 86Rb+ from treated tissues after exposure to light (600 micro einsteins per meter2 per second; photosynthetically active radiation). AFM exhibited activity in green and etiolated tissues in the presence of both 1 micromolar 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 1 micromolar 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), inhibitors of photosynthetic electron transport. Protection against injury could be obtained by pretreating the seedlings with a carotenoid biosynthesis inhibitor, 10 micromolar fluridone {1-methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-4 (H)-pyridinone}. After a 4-hour dark pretreatment with 1 and 10 micromolar AFM, cotyledons were exposed to light (600 micro einsteins per meter2 per second; photosynthetically active radiation). Within 1 to 2 hours after light treatment, significant increases in the level of thiobarbituric acid-reacting materials could be detected. Electron microscopic observations of treated tissues revealed significant structural damage to the chloroplast envelope, tonoplast, and plasma membrane. Etiolated cucumber cotyledons treated with 1 micromolar AFM and exposed to light were less susceptible to injury when maintained in an O2-deficient atmosphere. Protection against injury could be obtained with 50 micromolar α-tocopherol. These results suggest AFM is activated in light by yellow plant pigments and then is involved in the initiation of a free radical chain reaction with polyunsaturated fatty acid moieties of phospholipid molecules making up cellular membranes. The perturbations that follow result in a loss of the membrane's selective permeability characteristics, thereby leading to cellular death. Images PMID:16662237

  15. Self-assembly and omniphobic property of fluorinated unit end-functionalized poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Junyan, Liang; Pingdi, Xu; Jingxian, Bao; Ling, He; Nan, Zhu

    2018-03-01

    The self-assembly behavior of fluorinated unit end-functionalized poly(methyl methacrylate) (PDFHM-ef-PMMA) in solution and its influence on the surface microstructure, elemental composition and omniphobic property of cast film was investigated in this work. Specifically, three mixed solutions of tetrahydrofuran (THF)/methanol (MeOH), THF/H2O and THF/H2O/MeOH in various compositions were employed separately as the selective solvents. In THF/MeOH solution, the aggregate morphologies of PDFHM-ef-PMMA changed gradually from core-shell spheres to worm, and then to elliptical vesicles as MeOH content increased. In THF/H2O solution, spherical and bowl-shaped aggregates with significantly larger sizes than those in THF/MeOH solution were favored despite lower H2O content. The further addition of MeOH to THF/H2O mixture could reduce the size of aggregate but hardly change original aggregate morphology. During the film formation process, those self-assembled aggregates in THF/MeOH solution fused with one another to form a smooth surface. When such surface was fully covered by fluorinated segments, the outstanding hexadecane and water slide-off properties and ink-resistant property required for antifouling application were demonstrated. Instead, the aggregates formed in THF/H2O/MeOH mixture were subjected to secondary aggregation of PDFHM-ef-PMMA chains during solvent evaporation, leading to the formation of a particulate film with poor adhesion towards glass plate and hexadecane-repellent property.

  16. Responses of Vascular Endothelial Cells to Photoembossed Topographies on Poly(Methyl Methacrylate) Films

    PubMed Central

    Qiu, Lin; Hughes-Brittain, Nanayaa F.; Bastiaansen, Cees W. M.; Peijs, Ton; Wang, Wen

    2016-01-01

    Failures of vascular grafts are normally caused by the lack of a durable and adherent endothelium covering the graft which leads to thrombus and neointima formation. A promising approach to overcome these issues is to create a functional, quiescent monolayer of endothelial cells on the surface of implants. The present study reports for the first time on the use of photoembossing as a technique to create polymer films with different topographical features for improved cell interaction in biomedical applications. For this, a photopolymer is created by mixing poly(methyl methacrylate) (PMMA) and trimethylolpropane ethoxylate triacrylate (TPETA) at a 1:1 ratio. This photopolymer demonstrated an improvement in biocompatibility over PMMA which is already known to be biocompatible and has been extensively used in the biomedical field. Additionally, photoembossed films showed significantly improved cell attachment and proliferation compared to their non-embossed counterparts. Surface texturing consisted of grooves of different pitches (6, 10, and 20 µm) and heights (1 µm and 2.5 µm). The 20 µm pitch photoembossed films significantly accelerated cell migration in a wound-healing assay, while films with a 6 µm pitch inhibited cells from detaching. Additionally, the relief structure obtained by photoembossing also changed the surface wettability of the substrates. Photoembossed PMMA-TPETA systems benefited from this change as it improved their water contact angle to around 70°, making it well suited for cell adhesion. PMID:27941669

  17. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer.

    PubMed

    Son, Dong-Ick; Park, Dong-Hee; Choi, Won Kook; Cho, Sung-Hwan; Kim, Won-Tae; Kim, Tae Whan

    2009-05-13

    The bistable effects of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) (PMMA) polymer single layer by using flexible polyethylene terephthalate (PET) substrates were investigated. Transmission electron microscopy (TEM) images revealed that ZnO nanoparticles were formed inside the PMMA polymer layer. Current-voltage (I-V) measurement on the Al/ZnO nanoparticles embedded in an insulating PMMA polymer layer/ITO/PET structures at 300 K showed a nonvolatile electrical bistability behavior with a flat-band voltage shift due to the existence of the ZnO nanoparticles, indicative of trapping, storing, and emission of charges in the electronic states of the ZnO nanoparticles. The carrier transport mechanism of the bistable behavior for the fabricated organic bistable device (OBD) structures is described on the basis of the I-V results by analyzing the effect of space charge.

  18. Evaluation of thermal gelation behavior of different cellulose ether polymers by rheology

    NASA Astrophysics Data System (ADS)

    Balaghi, S.; Edelby, Y.; Senge, B.

    2014-05-01

    Hydroxypropylmethylcellulose (HPMC) and Methylcellulose (MC) are cellulose ethers which can be dispersed in water and used as thickeners, emulsifiers, binders, film formers, and water-retention agents due to their hydrophilic and hydrophobic characteristics. In this study, various types of HPMCs, in comparison with two types of MCs were examined. The formed gels of the different cellulose ethers showed specific and various structural formation and network properties. The degree of methylation (Meth.) and hydroxypropylation (HyPr.) affected drastically the heat-induced gelation of the examined cellulose ethers.

  19. A Sol-Gel-Modified Poly(methyl methacrylate) Electrophoresis Microchip with a Hydrophilic Channel Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Gang; Xu, Xuejiao; Lin, Yuehe

    2007-07-27

    A sol-gel method was employed to fabricate a poly(methyl methacrylate) (PMMA) electrophoresis microchip that contains a hydrophilic channel wall. To fabricate such a device, tetraethoxysilane (TEOS) was injected into the PMMA channel and was allowed to diffuse into the surface layer for 24 h. After removing the excess TEOS, the channel was filled with an acidic solution for 3 h. Subsequently, the channel was flushed with water and was pretreated in an oven to obtain a sol-gel-modified PMMA microchip. The water contact angle for the sol-gel-modified PMMA was 27.4° compared with 66.3° for the pure PMMA. In addition, the electro-osmoticmore » flow increased from 2.13×10-4 cm2 V-1 s-1 for the native-PMMA channel to 4.86×10-4 cm2 V-1 s-1 for the modified one. The analytical performance of the sol-gel-modified PMMA microchip was demonstrated for the electrophoretic separation of several purines, coupled with amperometric detection. The separation efficiency of uric acid increased to 74 882.3 m-1 compared with 14 730.5 m-1 for native-PMMA microchips. The result of this simple modification is a significant improvement in the performance of PMMA for microchip electrophoresis and microfluidic applications.« less

  20. Miscible blends of biobased poly(lactide) with poly(methyl methacrylate): Effects of chopped glass fiber incorporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousins, Dylan S.; Lowe, Corinne; Swan, Dana

    Poly(lactide) (PLA) and poly(methyl methacrylate) (PMMA) are melt compounded with chopped glass fiber using laboratory scale twin-screw extrusion. Physical properties are examined using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), tensile testing, impact testing, X-ray computed tomography (CT) scanning, and field emission scanning electron microscopy (FE-SEM). Molecular weight is determined using gel permeation chromatography (GPC). Miscibility of the blends is implied by the presence of a single glass transition temperature and homogeneous morphology. PLA/PMMA blends tend to show positive deviations from a simple linear mixing rule in their mechanical properties (e.g., tensile toughness, modulus, andmore » stress at break). The addition of 40 wt % glass fiber to the system dramatically increases physical properties. Across all blend compositions, the tensile modulus increases from roughly 3 GPa to roughly 10 GPa. Estimated heat distortion temperatures (HDTs) are also greatly enhanced; the pure PLA sample HDT increases from 75 degrees C to 135 degrees C. Fiber filled polymer blends represent a sustainable class of earth abundant materials which should prove useful across a range of applications.« less

  1. Nitroxide-mediated radical ring-opening copolymerization: chain-end investigation and block copolymer synthesis.

    PubMed

    Delplace, Vianney; Harrisson, Simon; Tardy, Antoine; Gigmes, Didier; Guillaneuf, Yohann; Nicolas, Julien

    2014-02-01

    Well-defined, degradable copolymers are successfully prepared by nitroxide-mediated radical ring opening polymerization (NMrROP) of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) or methyl methacrylate (MMA), a small amount of acrylonitrile (AN) and cyclic ketene acetals (CKAs) of different structures. Phosphorous nuclear magnetic resonance allows in-depth chain-end characterization and gives crucial insights into the nature of the copoly-mer terminal sequences and the living chain fractions. By using a small library of P(OEGMA-co-AN-co-CKA) and P(MMA-co-AN-co-CKA) as macroinitiators, chain extensions with styrene are performed to furnish (amphiphilic) block copolymers comprising a degradable segment. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Carcinogenicity of methyl-tertiary butyl ether in gasoline.

    PubMed

    Mehlman, Myron A

    2002-12-01

    Methyl tertiary butyl ether (MTBE) was added to gasoline on a nationwide scale in 1992 without prior testing of adverse, toxic, or carcinogenic effects. Since that time, numerous reports have appeared describing adverse health effects of individuals exposed to MTBE, both from inhalation of fumes in the workplace and while pumping gasoline. Leakage of MTBE, a highly water-soluble compound, from underground storage tanks has led to contamination of the water supply in many areas of the United States. Legislation has been passed by many states to prohibit the addition of MTBE to gasoline. The addition of MTBE to gasoline has not accomplished its stated goal of decreasing air pollution, and it has posed serious health risks to a large portion of the population, particularly the elderly and those with respiratory problems, asthma, and skin sensitivity. Reports of animal studies of carcinogenicity of MTBE began to appear in the 1990s, prior to the widespread introduction of MTBE into gasoline. These reports were largely ignored. In ensuing years, further studies have shown that MTBE causes various types of malignant tumors in mice and rats. The National Toxicology Program (NTP) Board of Scientific Counselors' Report on Carcinogens Subcommittee met in December 1998 to consider listing MTBE as "reasonably anticipated to be a human carcinogen." In spite of recommendations from Dr. Bailer, the primary reviewer, and other scientists on the committee, the motion to list MTBE in the report was defeated by a six to five vote, with one abstention. On the basis of animal studies, it is widely accepted that if a chemical is carcinogenic in appropriate laboratory animal test systems, it must be treated as though it were carcinogenic in humans. In the face of compelling evidence, NTP Committee members who voted not to list MTBE as "reasonably anticipated to be a human carcinogen" did a disservice to the general public; this action may cause needless exposure of many to health risks

  3. [Effect of methyl tertiary butyl ether on the expression of proto-oncogenes and function genes].

    PubMed

    Zhou, W; Huang, G; Zhang, H

    1999-05-30

    Methyl tertiary butyl ether (MTBE) is a new gasoline additive, which is used to increase the combustion of gasoline and to reduce the emission of harmful exhaust from automobile. The mechanism for the carcinogenesis of MTBE in animals is not clear. Immunohistochemistry method was used to detect the effect of MTBE on the expression of c-myc and p21 proteins in NIH3T3 cells. Dot hybridization method was used to explore the expression of c-myc gene and GST-P(glutathione S-transferase-P) gene in the of MTBE treated rats. The results showed that MTBE could enhance the expression of c-myc protein, but had no effect on p21 protein. MTBE could induce high expression of c-myc gene, and had no effect on the expression of GST-P gene. These results suggest that the high expression of c-myc gene induced by MTBE might be one of the mechanisms of its carcinogenicity in animal.

  4. Static adsorptive coating of poly(methyl methacrylate) microfluidic chips for extended usage in DNA separations.

    PubMed

    Du, Xiao-Guang; Fang, Zhao-Lun

    2005-12-01

    A simple and robust static adsorptive (dynamic) coating process using 2% hydroxyethylcellulose was developed for surface modification of poly(methyl methacrylate) (PMMA) microfluidic chips for DNA separations, suitable for usage over extended periods, involving hundreds of runs. The coating medium was also used as a sieving matrix for the DNA separations following the coating process. Four consecutive static treatments, by simply filling the PMMA chip channels with sieving matrix once every day, were required for obtaining a stable coating and optimum performance. The performance of the coated chips at different phases of the coating process was studied by consecutive gel electrophoretic separations with LIF detection using a PhiX-174/HaeIII DNA digest sample. The coated chip, with daily renewal of the sieving matrix, showed high stability in performance during a 25-day period of systematic study, involving more than 100 individual runs. The performance of the coated chip also remained almost the same after 3 months of continuous usage, during which over 200 separations were performed. The average precision of migration time for the 603-bp fragment was 1.31% RSD (n = 6) during the 25-day study, with a separation efficiency of 6.5 x 10(4) plates (effective separation length 5.4 cm).

  5. Adsorption of Methyl Tertiary Butyl Ether on Granular Zeolites: Batch and Column Studies

    PubMed Central

    Abu-Lail, Laila; Bergendahl, John A.; Thompson, Robert W.

    2010-01-01

    Methyl tertiary butyl ether (MTBE) has been shown to be readily removed from water with powdered zeolites, but the passage of water through fixed beds of very small powdered zeolites produces high friction losses not encountered in flow through larger sized granular materials. In this study, equilibrium and kinetic adsorption of MTBE onto granular zeolites, a coconut shell granular activated carbon (CS-1240), and a commercial carbon adsorbent (CCA) sample was evaluated. In addition, the effect of natural organic matter (NOM) on MTBE adsorption was evaluated. Batch adsorption experiments determined that ZSM-5 was the most effective granular zeolite for MTBE adsorption. Further equilibrium and kinetic experiments verified that granular ZSM-5 is superior to CS-1240 and CCA in removing MTBE from water. No competitive-adsorption effects between NOM and MTBE were observed for adsorption to granular ZSM-5 or CS-1240, however there was competition between NOM and MTBE for adsorption onto the CCA granules. Fixed-bed adsorption experiments for longer run times were performed using granular ZSM-5. The bed depth service time model (BDST) was used to analyze the breakthrough data. PMID:20153106

  6. Preparation and characterization of pH-sensitive methyl methacrylate-g-starch/hydroxypropylated starch hydrogels: in vitro and in vivo study on release of esomeprazole magnesium.

    PubMed

    Kumar, Pankaj; Ganure, Ashok Laxmanrao; Subudhi, Bharat Bhushan; Shukla, Shubhanjali

    2015-06-01

    In the present study, novel hydrogels were prepared through graft copolymerization of methyl methacrylate onto starch and hydroxypropylated starch for intestinal drug delivery. The successful grafting has been confirmed by FTIR, NMR spectroscopy, and elemental analysis. Morphological examination of copolymeric hydrogels by scanning electron microscopy (SEM) confirms the macroporous nature of the copolymers. The high decomposition temperature was observed in thermograms indicating the thermal stability of the hydrogels. To attain a hydrogel with maximum percent graft yield, the impact of reaction variables like concentration of ceric ammonium nitrate as initiator and methyl methacrylate as monomer were consistently optimized. X-ray powder diffraction and differential scanning calorimetric analysis supported the successful entrapment of the drug moiety (esomeprazole magnesium; proton pump inhibitor) within the hydrogel network. Drug encapsulation efficiency of optimized hydrogels was found to be >78%. Furthermore, swelling capacity of copolymeric hydrogels exhibited a pH-responsive behavior which makes the synthesized hydrogels potential candidates for controlled delivery of medicinal agents. In vitro drug release was found to be sustained up to 14 h with 80-90% drug release in pH 6.8 solution; however, the cumulative release was 40-45% in pH 1.2. The gastrointestinal transit behavior of optimized hydrogel was determined by gamma scintigraphy, using (99m)Tc as marker. The amount of radioactive tracer released from the labeled hydrogel was minimal when the hydrogel was in the stomach, whereas it increased as hydrogel reached in intestine. Well-correlated results of in vitro and in vivo analysis proved their controlled release behavior with preferential delivery into alkaline pH environment.

  7. Experimental and Numerical Study on Effect of Sample Orientation on Auto-Ignition and Piloted Ignition of Poly(methyl methacrylate)

    PubMed Central

    Peng, Fei; Zhou, Xiao-Dong; Zhao, Kun; Wu, Zhi-Bo; Yang, Li-Zhong

    2015-01-01

    In this work, the effect of seven different sample orientations from 0° to 90° on pilot and non-pilot ignition of PMMA (poly(methyl methacrylate)) exposed to radiation has been studied with experimental and numerical methods. Some new and significant conclusions are drawn from the study, including a U-shape curve of ignition time and critical mass flux as sample angle increases for pilot ignition conditions. However, in auto-ignition, the ignition time and critical mass flux increases with sample angle α. Furthermore, a computational fluid dynamic model have been built based on the Fire Dynamics Simulator (FDS6) code to investigate the mechanisms controlling the dependence on sample orientation of the ignition of PMMA under external radiant heating. The results of theoretical analysis and modeling results indicate the decrease of total incident heat flux at sample surface plays the dominant role during the ignition processes of auto-ignition, but the volatiles gas flow has greater influence for piloted ignition conditions. PMID:28793421

  8. Kinetic study of Candida antarctica lipase B immobilization using poly(methyl methacrylate) nanoparticles obtained by miniemulsion polymerization as support.

    PubMed

    Valério, Alexsandra; Nicoletti, Gabrieli; Cipolatti, Eliane P; Ninow, Jorge L; Araújo, Pedro H H; Sayer, Cláudia; de Oliveira, Débora

    2015-03-01

    With the objective to obtain immobilized Candida antarctica lipase B (CalB) with good activity and improved utilization rate, this study evaluated the influence of enzyme and crodamol concentrations and initiator type on the CalB enzyme immobilization in nanoparticles consisting of poly(methyl methacrylate) (PMMA) obtained by miniemulsion polymerization. The kinetic study of immobilized CalB enzyme in PMMA nanoparticles was evaluated in terms of monomer conversion, particle size, zeta potential, and relative activity. The optimum immobilization condition for CalB was compared with free enzyme in the p-NPL hydrolysis activity measurement. Results showed a higher CalB enzyme stability after 20 hydrolysis cycles compared with free CalB enzyme; in particular, the relative immobilized enzyme activity was maintained up to 40%. In conclusion, PMMA nanoparticles proved to be a good support for the CalB enzyme immobilization and may be used as a feasible alternative catalyst in industrial processes.

  9. Development of a category approach to predict the testicular toxicity of chemical substances structurally related to ethylene glycol methyl ether.

    PubMed

    Yamada, Takashi; Tanaka, Yushiro; Hasegawa, Ryuichi; Sakuratani, Yuki; Yamazoe, Yasushi; Ono, Atsushi; Hirose, Akihiko; Hayashi, Makoto

    2014-12-01

    We propose a category approach to assessing the testicular toxicity of chemicals with a similar structure to ethylene glycol methyl ether (EGME). Based on toxicity information for EGME and related chemicals and accompanied by adverse outcome pathway information on the testicular toxicity of EGME, this category was defined as chemicals that are metabolized to methoxy- or ethoxyacetic acid, a substance responsible for testicular toxicity. A Japanese chemical inventory was screened using the Hazard Evaluation Support System, which we have developed to support a category approach for predicting the repeated-dose toxicity of chemical substances. Quantitative metabolic information on the related chemicals was then considered, and seventeen chemicals were finally obtained from the inventory as a shortlist for the category. Available data in the literature shows that chemicals for which information is available on the metabolic formation of EGME, ethylene glycol ethyl ether, methoxy- or ethoxyacetic acid do in fact possess testicular toxicity, suggesting that testicular toxicity is a concern, due to metabolic activation, for the remaining chemicals. Our results clearly demonstrate practical utility of AOP-based category approach for predicting repeated-dose toxicity of chemicals. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Two-year drinking water carcinogenicity study of methyl tertiary-butyl ether (MTBE) in Wistar rats.

    PubMed

    Dodd, Darol; Willson, Gabrielle; Parkinson, Horace; Bermudez, Edilberto

    2013-07-01

    Methyl tertiary-butyl ether (MTBE) has been used as a gasoline additive to reduce tailpipe emissions and its use has been discontinued. There remains a concern that drinking water sources have been contaminated with MTBE. A two-year drinking water carcinogenicity study of MTBE was conducted in Wistar rats (males, 0, 0.5, 3, 7.5 mg ml(-1); and females, 0, 0.5, 3, and 15 mg ml(-1)). Body weights were unaffected and water consumption was reduced in MTBE-exposed males and females. Wet weights of male kidneys were increased at the end of two years of exposure to 7.5 mg ml(-1) MTBE. Chronic progressive nephropathy was observed in males and females, was more severe in males, and was exacerbated in the high MTBE exposure groups. Brain was the only tissue with a statistically significant finding of neoplasms. One astrocytoma (1/50) was found in a female rat (15 mg ml(-1)). The incidence of brain astrocytomas in male rats was 1/50, 1/50, 1/50 and 4/50 for the 0, 0.5, 3 and 7.5 mg ml(-1) exposure groups, respectively. This was a marginally significant statistical trend, but not statistically significant when pairwise comparisons were made or when multiple comparisons were taken into account. The incidence of astrocytoma fell within historical control ranges for Wistar rats, and the brain has not been identified as a target organ following chronic administration of MTBE, ethyl tert-butyl ether, or tertiary butyl alcohol (in drinking water) to mice and rats. We conclude that the astrocytomas observed in this study are not associated with exposure to MTBE. Copyright © 2011 John Wiley & Sons, Ltd.

  11. A new initiating system based on [(SiMes)Ru(PPh3)(Ind)Cl2] combined with azo-bis-isobutyronitrile in the polymerization and copolymerization of styrene and methyl methacrylate.

    PubMed

    Al-Majid, Abdullah M; Shamsan, Waseem Sharaf; Al-Odayn, Abdel-Basit Mohammed; Nahra, Fady; Aouak, Taieb; Nolan, Steven P

    2017-01-01

    The homopolymerization and copolymerization of styrene and methyl methacrylate, initiated for the first time by the combination of azo-bis-isobutyronitrile (AIBN) with [(SiMes)Ru(PPh 3 )(Ind)Cl 2 ] complex. The reactions were successfully carried out, on a large scale, in presence this complex at 80 °C. It was concluded from the data obtained that the association of AIBN with the ruthenium complex reduces considerably the transfer reactions and leads to the controlled radical polymerization and the well-defined polymers.

  12. Effect of Al2O3 in poly(methyl methacrylate) composite polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Sun, C. C.; You, A. H.; Teo, L. L.; Thong, L. W.

    2018-05-01

    In this work, the effect of inert fillers on poly(methyl methacrylate) (PMMA) composite polymer electrolytes (CPEs) are investigated. The PMMA-LiCF3SO3-EC-Al2O3 composite polymer electrolytes were prepared using solution casting method at room temperature. Lithium trifluoromethanesulfonate (LiCF3SO3) is used as the electrolyte salt which plays an important role in Li ion transfer. In order to soften the polymer matrix, ethylene carbonate (EC) is introduced into the CPEs to help in the disassociation of lithium salt ion pairs. Nano sized aluminium oxide (Al2O3) is then incorporated to enhance mechanical strength and ionic conductivity of the polymer electrolyte. The optimum of 2 wt.% 50 nm Al2O3 was added into the PMMA polymer electrolyte sample. Through Electrochemical Impedance Spectroscopy (EIS) measurements, the highest ionic conductivity at room temperature is determined as 1.52×10-4 S/cm. FTIR spectra analysis showed CH2 twisting mode at 1383.43 cm-1, C=O stretching mode at 1721.56 cm-1 which proven the interaction between host polymer and lithium salt and CH3 stretching mode at 2981.34 cm-1. XRD analysis had also been performed to study the structural behaviour of the PMMA polymer electrolyte. The intense peak at position 2θ angle of 15.04°, 30.92° and 45.58° occur upon interaction with Al2O3. Lastly, the surface morphology is studied through SEM+EDX analysis.

  13. Poly(vinyl methyl ether/maleic anhydride)-Doped PEG-PLA Nanoparticles for Oral Paclitaxel Delivery To Improve Bioadhesive Efficiency.

    PubMed

    Wang, Qian; Li, Chan; Ren, Tianyang; Chen, Shizhu; Ye, Xiaoxia; Guo, Hongbo; He, Haibing; Zhang, Yu; Yin, Tian; Liang, Xing-Jie; Tang, Xing

    2017-10-02

    Bioadhesive nanoparticles based on poly(vinyl methyl ether/maleic anhydride) (PVMMA) and poly(ethylene glycol) methyl ether-b-poly(d,l-lactic acid) (mPEG-b-PLA) were produced by the emulsification solvent evaporation method. Paclitaxel was utilized as the model drug, with an encapsulation efficiency of up to 90.2 ± 4.0%. The nanoparticles were uniform and spherical in shape and exhibited a sustained drug release compared with Taxol. m-NPs also exhibited favorable bioadhesive efficiency at the same time. Coumarin 6 or DiR-loaded nanoparticles with/without PVMMA (C6-m-NPs/DiR-m-NPs or C6-p-NPs/DiR-p-NPs) were used for cellular uptake and intestinal adhesion experiments, respectively. C6-m-NPs were shown to enhance cellular uptake, and caveolae/lipid raft mediated endocytosis was the primary route for the uptake of the nanoparticles. Favorable bioadhesive efficiency led to prolonged retention in the intestine reflected by the fluorescence in isolated intestines ex vivo. In a ligated intestinal loops model, C6-m-NPs showed a clear advantage for transporting NPs across the mucus layer over C6-p-NPs and free C6. The apparent permeability coefficient (Papp) of PTX-m-NPs through Caco-2/HT29 monolayers was 1.3- and 1.6-fold higher than PTX-p-NPs and Taxol, respectively, which was consistent with the AUC 0-t of different PTX formulations after oral administration in rats. PTX-m-NPs also exhibited a more effective anticancer efficacy, with an IC 50 of 0.2 ± 1.4 μg/mL for A549 cell lines, further demonstrating the advantage of bioadhesive nanoparticles. The bioadhesive nanoparticles m-NPs demonstrated both mucus permeation and epithelial absorption, and thus, this bioadhesive drug delivery system has the potential to improve the bioavailability of drugs that are insoluble in the gastrointestinal environment.

  14. Synthesis, characterization, and morphology study of poly(acrylamide-co-acrylic acid)-grafted-poly(styrene-co-methyl methacrylate) "raspberry"-shape like structure microgels by pre-emulsified semi-batch emulsion polymerization.

    PubMed

    Ramli, Ros Azlinawati; Hashim, Shahrir; Laftah, Waham Ashaier

    2013-02-01

    A novel microgels were polymerized using styrene (St), methyl methacrylate (MMA), acrylamide (AAm), and acrylic acid (AAc) monomers in the presence of N,N'-methylenebisacrylamide (MBA) cross-linker. Pre-emulsified monomer was first prepared followed by polymerizing monomers using semi-batch emulsion polymerization. Fourier Transform Infrared Spectroscopy (FTIR) and (1)H Nuclear Magnetic Resonance (NMR) were used to determine the chemical structure and to indentify the related functional group. Grafting and cross-linking of poly(acrylamide-co-acrilic acid)-grafted-poly(styrene-co-methyl methacrylate) [poly(AAm-co-AAc)-g-poly(St-co-MMA)] microgels are approved by the disappearance of band at 1300 cm(-1), 1200 cm(-1) and 1163 cm(-1) of FTIR spectrum and the appearance of CH peaks at 5.5-5.7 ppm in (1)H NMR spectrum. Scanning Electron Microscope (SEM) images indicated that poly(St-co-MMA) particle was lobed morphology coated by cross-linked poly(AAm-co-AAc) shell. Furthermore, SEM results revealed that poly(AAm-co-AAc)-g-poly(St-co-MMA) is composite particle that consist of "raspberry"-shape like structure core. Internal structures of the microgels showed homogeneous network of pores, an extensive interconnection among pores, thicker pore walls, and open network structures. Water absorbency test indicated that the sample with particle size 0.43 μm had lower equilibrium water content, % than the sample with particle size 7.39 μm. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Sequential interpenetrating polymer networks produced from vegetable oil based polyurethane and poly(methyl methacrylate).

    PubMed

    Kong, Xiaohua; Narine, Suresh S

    2008-08-01

    Sequential interpenetrating polymer networks (IPNs) were prepared using polyurethane produced from a canola oil based polyol with primary terminal functional groups and poly(methyl methacrylate) (PMMA). The properties of the material were studied and compared to the IPNs made from commercial castor oil using dynamic mechanical analysis, differential scanning calorimetry, as well as tensile measurements. The morphology of the IPNs was investigated using scanning electron microscopy and transmission electron microscopy. The chemical diversity of the starting materials allowed the evaluation of the effects of dangling chains and graftings on the properties of the IPNs. The polymerization process of canola oil based IPNs was accelerated because of the utilization of polyol with primary functional groups, which efficiently lessened the effect of dangling chains and yielded a higher degree of phase mixing. The mechanical properties of canola oil based IPNs containing more than 75 wt % PMMA were comparable to the corresponding castor oil based IPNs; both were superior to those of the constituent polymers due to the finely divided rubber and plastic combination structures in these IPNs. However, when PMMA content was less than 65 wt %, canola oil based IPNs exhibited a typical mechanical behavior of rigid plastics, whereas castor oil based IPNs showed a typical mechanical behavior of soft rubber. It is proposed that these new IPN materials with high performance prepared from alternative renewable resources can prove to be valuable substitutes for existing materials in various applications.

  16. Iodinated glycidyl methacrylate copolymer as a radiopaque material for biomedical applications.

    PubMed

    Dawlee, S; Jayabalan, M

    2013-07-01

    Polymeric biomaterial was synthesized by copolymerizing 50:50 mol% of monomers, glycidyl methacrylate and methyl methacrylate. Iodine atoms were then grafted to the epoxide groups of glycidyl methacrylate units, rendering the copolymer radiopaque. The percentage weight of iodine in the present copolymer was found to be as high as 23%. The iodinated copolymer showed higher glass transition temperature and thermal stability in comparison with unmodified polymer. Radiographic analysis showed that the copolymer possessed excellent radiopacity. The iodinated copolymer was cytocompatible to L929 mouse fibroblast cells. The in vivo toxicological evaluation by intracutaneous reactivity test of the copolymer extracts has revealed that the material was nontoxic. Subcutaneous implantation of iodinated copolymer in rats has shown that the material was well tolerated. Upon explantation and histological examination, no hemorrhage, infection or necrosis was observed. The samples were found to be surrounded by a vascularized capsule consisting of connective tissue cells. The results indicate that the iodinated copolymer is biocompatible and may have suitable applications as implantable materials.

  17. Facile synthesis of graphene by pyrolysis of poly(methyl methacrylate) on nickel particles in the confined microzones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Ningning; Yang, Wei; Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute of University of Science and Technology of China, Suzhou, Jiangsu, 215123

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► The GNWs with few defects were synthesized by pyrolyzing PMMA on nickel particles. ► PMMA as carbon source was easily prepared and safe to handle. ► Nickel microparticles were directly used as catalysts without any pre-treatment. ► The method can be used for the low cost and bulk production of graphene. -- Abstract: In this work, multi-layer graphene has been prepared by pyrolyzing poly(methyl methacrylate) (PMMA) on nickel microparticles in the confined microzones formed by organophilic montmorillonite (OMT). Gram-scale of product can be obtained per day by using this method. The obtained graphene wasmore » evaluated by scanning and transmission electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. Pyrolytic conditions such as the system composition of the composites, reaction temperature and the size of catalyst are important parameters affecting the morphology and yield of the final product. Based on the experimental observations and reported literatures, a possible formation process is discussed. The synthesis method of graphene is simple, low-cost, and scalable, which is promising for the application in many fields.« less

  18. Aging phenomena in poly(methyl methacrylate) thin films: Memory and rejuvenation effects

    NASA Astrophysics Data System (ADS)

    Fukao, K.; Sakamoto, A.

    2005-04-01

    The aging dynamics in thin films of poly(methyl methacrylate) (PMMA) have been investigated through dielectric measurements for different types of aging processes. The dielectric constant was found to decrease with increasing aging time at an aging temperature in many cases. An increase in the dielectric constant was also observed in the long-time region (⩾11h) near the glass transition temperature for thin films with thickness less than 26nm . In the constant-rate mode including a temporary stop at a temperature Ta , the memory of the aging at Ta was found to be kept and then to be recalled during the subsequent heating process. In the negative-temperature cycling process, a strong rejuvenation effect has been observed after a temperature shift from the initial temperature T1 to the second temperature T2 (=T1+ΔT) when ΔT≈-20K . Furthermore, a full memory effect has also been observed for the temperature shift from T2 to T1 . This suggests that the aging at T1 is totally independent of that at T2 for ΔT≈-20K . As ∣ΔT∣ decreases, the independence of the aging between the two temperatures was found to be weakened—i.e., the effective time, which is a measure of the contribution of the aging at T1 to that at T2 , is a decreasing function of ∣ΔT∣ in the negative region of ΔT . As the film thickness decreases from 514nmto26nm , the ∣ΔT∣ dependence of the effective time was found to become much stronger. The contribution of the aging at T2 to that at T1 disappears more rapidly with increasing ∣ΔT∣ in thin-film geometry than in the bulk state.

  19. Preparation and Characterization of Injectable Brushite Filled-Poly (Methyl Methacrylate) Bone Cement

    PubMed Central

    Rodriguez, Lucas C.; Chari, Jonathan; Aghyarian, Shant; Gindri, Izabelle M.; Kosmopoulos, Victor; Rodrigues, Danieli C.

    2014-01-01

    Powder-liquid poly (methyl methacrylate) (PMMA) bone cements are widely utilized for augmentation of bone fractures and fixation of orthopedic implants. These cements typically have an abundance of beneficial qualities, however their lack of bioactivity allows for continued development. To enhance osseointegration and bioactivity, calcium phosphate cements prepared with hydroxyapatite, brushite or tricalcium phosphates have been introduced with rather unsuccessful results due to increased cement viscosity, poor handling and reduced mechanical performance. This has limited the use of such cements in applications requiring delivery through small cannulas and in load bearing. The goal of this study is to design an alternative cement system that can better accommodate calcium-phosphate additives while preserving cement rheological properties and performance. In the present work, a number of brushite-filled two-solution bone cements were prepared and characterized by studying their complex viscosity-versus-test frequency, extrusion stress, clumping tendency during injection through a syringe, extent of fill of a machined void in cortical bone analog specimens, and compressive strength. The addition of brushite into the two-solution cement formulations investigated did not affect the pseudoplastic behavior and handling properties of the materials as demonstrated by rheological experiments. Extrusion stress was observed to vary with brushite concentration with values lower or in the range of control PMMA-based cements. The materials were observed to completely fill pre-formed voids in bone analog specimens. Cement compressive strength was observed to decrease with increasing concentration of fillers; however, the materials exhibited high enough strength for consideration in load bearing applications. The results indicated that partially substituting the PMMA phase of the two-solution cement with brushite at a 40% by mass concentration provided the best combination of the

  20. Surface Molecularly Imprinted Polymer of Chitosan Grafted Poly(methyl methacrylate) for 5-Fluorouracil and Controlled Release

    PubMed Central

    Zheng, Xue-Fang; Lian, Qi; Yang, Hua; Wang, Xiuping

    2016-01-01

    The molecular surface imprinted graft copolymer of chitosan with methyl methacrylate (MIP-CS-g-PMMA) were prepared by free radical polymerization with 5-fluorouracil (5-FU) as the template molecule using initiator of ammonium persulfate as adsorption system. MIPs were characterized by FTIR, X-ray diffraction, thermo-gravimetric analysis, 1H NMR and SEM. The mechanism of graft copolymerization and factors affected graft reaction were studied in details, and the optimum reaction conditions (to the highest %G and %E as the standard) were obtained at [MMA] 1.2 mol/L, [Chitosan] 16.67 mol/L, [initiator] 0.0062 mol/L, temperature 60 °C and reaction time 7 h. MIPs exhibited high recognition selectivity and excellent combining affinity to template molecular. The in vitro release of the 5-FU was highly pH-dependent and time delayed. The release behavior showed that the drugs did not release in simulated gastric fluid (pH = 1.0), and the drug release was small in the simulated small intestinal fluid (pH = 6.8), and drug abrupt release will be produced in the simulated colon fluid (pH = 7.4), indicating excellent colon-specific drug delivery behavior. PMID:26892676

  1. Enhanced electrical conductivity of poly(methyl methacrylate) filled with graphene and in situ synthesized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Athanassiou, Athanassia; Bonaccorso, Francesco; Fragouli, Despina

    2018-06-01

    The improvement of the electrical conductivity of polymers by incorporating graphene has been intensively studied in recent years. To further boost the electrical conductivity, blending third-party additives into the polymer/graphene systems has been demonstrated as a viable strategy. Herein, we propose a simple route to increase the electrical conductivity of poly(methyl methacrylate) (PMMA)/graphene nanoplatelet (GnP) composites, by the in situ synthesis of gold nanoparticles directly into the solid film. In particular, PMMA, GnPs and a gold precursor are solution blended to form the composite films. The subsequent heat-induced formation of gold nanoparticles directly in the solid state film, cause the significant decrease of the percolation threshold of GnPs loading, from 3% to 1% by weight in the composite. This is attributed to the preferential formation of the gold nanoparticles onto the GnPs, with synergistic effects beneficial for the improvement of the electrical conductivity. The formation procedure of the gold nanoparticles, and their arrangement into the composite matrix are studied. We demonstrate that following this straightforward process it is possible to form nanocomposites able to conduct efficiently electric current even at low graphene loadings preserving at the same time the mechanical properties of the polymer matrix.

  2. Biodegradation of methyl t-butyl ether by aerobic granules under a cosubstrate condition.

    PubMed

    Zhang, L L; Chen, J M; Fang, F

    2008-03-01

    Aerobic granules efficient at degrading methyl tert-butyl ether (MTBE) with ethanol as a cosubstrate were successfully developed in a well-mixed sequencing batch reactor (SBR). Aerobic granules were first observed about 100 days after reactor startup. Treatment efficiency of MTBE in the reactor during stable operation exceeded 99.9%, and effluent MTBE was in the range of 15-50 microg/L. The specific MTBE degradation rate was observed to increase with increasing MTBE initial concentration from 25 to 500 mg/L, which peaked at 22.7 mg MTBE/g (volatile suspended solids).h and declined with further increases in MTBE concentration as substrate inhibition effects became significant. Microbial-community deoxyribonucleic acid profiling was carried out using denaturing gradient gel electrophoresis of polymerase chain reaction-amplified 16S ribosomal ribonucleic acid. The reactor was found to be inhabited by several diverse bacterial species, most notably microorganisms related to the genera Sphingomonas, Methylobacterium, and Hyphomicrobium vulgare. These organisms were previously reported to be associated with MTBE biodegradation. A majority of the bands in the reactor represented a group of organisms belonging to the Flavobacteria-Proteobacteria-Actinobacteridae class of bacteria. This study demonstrates that MTBE can be effectively degraded by aerobic granules under a cosubstrate condition and gives insight into the microorganisms potentially involved in the process.

  3. The effect of materials selection on metals reduction in propylene glycol methyl ether acetate, PGMEA

    NASA Astrophysics Data System (ADS)

    Entezarian, Majid; Geiger, Bob

    2016-03-01

    The trend in microelectronics fabrication is to produce nano-features measuring down to 10 nm and finer. The PPT levels of organic and inorganic contaminants in the photoresist, solvent and cleaning solutions are becoming a major processing variable affecting the process capability and defectivity. The photoresist usually contains gels, metals, and particulates that could interfere with the lithography process and cause microbridging defects. Nano filters of 5 nm polypropylene, 5 nm polyethylene, and 10 nm natural nylon were used to filter propylene glycol methyl ether acetate PGMEA containing 50 ppb of Na, Mg, Al, Ca, Cr, Mn, Fe, Cu, Zn, and Pb. All filters were effective in removing trivalent Al, Cr, and Fe metals indicating the mechanism for their removal as mechanical sieving. However, the nylon was also very effective in removing the divalent metals showing adsorptive properties. Furthermore, the metal removal of the nylon membrane was studied as a function of surface chemistry. Natural and charged 40 nm nylon membranes were tested and found that charged nylon is more effective for metal removal.

  4. Anion exchange membranes based on terminally crosslinked methyl morpholinium-functionalized poly(arylene ether sulfone)s

    NASA Astrophysics Data System (ADS)

    Kwon, Sohyun; Rao, Anil H. N.; Kim, Tae-Hyun

    2018-01-01

    Azide-assisted terminal crosslinking of methyl morpholinium-functionalized poly(arylene ether sulfone) block copolymers yields products (xMM-PESs) suitable for use as anion exchange membranes. By combining the advantages of bulky morpholinium conductors and our unique polymer network crosslinked only at the termini of the polymer chains, we can produce AEMs that after the crosslinking show minimal loss in conductivity, yet with dramatically reduced water uptake. Terminal crosslinking also significantly increases the thermal, mechanical and chemical stability levels of the membranes. A high ion conductivity of 73.4 mS cm-1 and low water uptake of 26.1% at 80 °C are obtained for the crosslinked membrane with higher amount of hydrophilic composition, denoted as xMM-PES-1.5-1. In addition, the conductivity of the crosslinked xMM-PES-1.5-1 membrane exceeds that of its non-crosslinked counterpart (denoted as MM-PES-1.5-1) above 60 °C at 95% relative humidity because of its enhanced water retention capacity caused by the terminally-crosslinked structure.

  5. Organic monolith frits encased in polyether ether ketone tubing with improved durability for liquid chromatography.

    PubMed

    Park, Sin Young; Cheong, Won Jo

    2015-09-01

    This study introduces a preparation method for polymer-encased monolith frits with improved durability for liquid chromatography columns. The inner surface of the polyether ether ketone tubing is pretreated with sulfuric acid in the presence of catalysts (vanadium oxide and sodium sulfate). The tubing was rinsed with water and acetone, flushed with nitrogen, and treated with glycidyl methacrylate. After washing, the monolith reaction mixture composed of lauryl methacrylate, ethylene glycol dimethacrylate, initiator, and porogenic solvent was filled in the tubing and subjected to in situ polymerization. The tubing was cut into thin slices and used as frits for microcolumns. To check their durability, the frit slices were placed in a vial and a heavy impact was applied on the vial by a vortex mixer for various periods. The frits made in the presence of catalysts were found to be more durable than those made without catalysts. Furthermore, when the monolith-incorporated tubing was used as a chromatography column, the column prepared in the presence of catalysts resulted in a better separation efficiency. The separation performance of the columns installed with the polyether ether ketone encased monolith frits was comparable to that of the columns installed with the commercial stainless-steel screen frits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Evaluation of fracture toughness and mechanical properties of ternary thiol-ene-methacrylate systems as resin matrix for dental restorative composites.

    PubMed

    Beigi, Saeed; Yeganeh, Hamid; Atai, Mohammad

    2013-07-01

    Study and evaluation of fracture toughness, flexural and dynamic mechanical properties, and crosslink density of ternary thiol-ene-methacrylate systems and comparison with corresponding conventional methacrylate system were considered in the present study. Urethane tetra allyl ether monomer (UTAE) was synthesized as ene monomer. Different formulations were prepared based on combination of UTAE, BisGMA/TEGDMA and a tetrathiol monomer (PETMP). The photocuring reaction was conducted under visible light using BD/CQ combination as photoinitiator system. Mechanical properties were evaluated via measuring flexural strength, flexural modulus and fracture toughness. Scanning electron microscopy (SEM) was utilized to study the morphology of the fractured specimen's cross section. Viscoelastic properties of the samples were also determined by dynamic mechanical thermal analysis (DMTA). The same study was performed on a conventional methacrylate system. The data were analyzed and compared by ANOVA and Tukey HSD tests (significance level=0.05). The results showed improvement in fracture toughness of the specimens containing thiol-ene moieties. DMTA revealed a lower glass transition temperature and more homogenous structure for thiol-ene containing specimens in comparison to the system containing merely methacrylate monomer. The flexural modulus and flexural strength of the specimens with higher thiol-ene content were lower than the neat methacrylate system. The SEM micrographs of the fractured surface of specimens with higher methacrylate content were smooth and mirror-like (shiny) which represent brittle fracture. The thiol-ene-methacrylate system can be used as resin matrix of dental composites with enhanced fracture toughness in comparison to the methacrylate analogous. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Modeling of the oxidation of methyl esters—Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor

    PubMed Central

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique

    2013-01-01

    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes. PMID:23710076

  8. A comparative study of biodiesel production using methanol, ethanol, and tert-butyl methyl ether (MTBE) under supercritical conditions.

    PubMed

    Farobie, Obie; Matsumura, Yukihiko

    2015-09-01

    In this study, biodiesel production under supercritical conditions among methanol, ethanol, and tert-butyl methyl ether (MTBE) was compared in order to elucidate the differences in their reaction behavior. A continuous reactor was employed, and experiments were conducted at various reaction temperatures (270-400 °C) and reaction times (3-30 min) and at a fixed pressure of 20 MPa and an oil-to-reactant molar ratio of 1:40. The results showed that under the same reaction conditions, the supercritical methanol method provided the highest yield of biodiesel. At 350 °C and 20 MPa, canola oil was completely converted to biodiesel after 10, 30, and 30 min in the case of - supercritical methanol, ethanol, and MTBE, respectively. The reaction kinetics of biodiesel production was also compared for supercritical methanol, ethanol, and MTBE. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Mesoscale simulation of the formation and dynamics of lipid-structured poly(ethylene oxide)-block-poly(methyl methacrylate) diblock copolymers.

    PubMed

    Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu

    2015-05-21

    Twelve poly(ethylene oxide)-block-poly(methyl methacrylate) (PEO-b-PMMA) copolymers with lipid-like structures were designed and investigated by MesoDyn simulation. Spherical and worm-like micelles as well as bicontinuous, lamellar and defected lamellar phases were obtained. A special structure, designated B2412, with two lipid structures connected by their heads, was found to undergo four stages prior to forming a spherical micelle phase. Two possible assembly mechanisms were found via thermodynamic and dynamic process analyses; namely, the fusion and fission of micelles in dynamic equilibrium during the adjustment stage. Water can be encapsulated into these micelles, which can affect their size, particularly in low concentration aqueous solutions. The assignment of weak negative charges to the hydrophilic EO blocks resulted in a clear effect on micelle size. Surprisingly, the largest effect was observed with EO blocks with -0.5 e, wherein an ordered perfect hexagonal phase was formed. The obtained results can be applied in numerous fields of study, including adsorption, catalysis, controlled release and drug delivery.

  10. Structural coloration of chitosan coated cellulose fabrics by electrostatic self-assembled poly (styrene-methyl methacrylate-acrylic acid) photonic crystals.

    PubMed

    Yavuz, Gönül; Zille, Andrea; Seventekin, Necdet; Souto, Antonio P

    2018-08-01

    The structural coloration of a chitosan-coated woven cotton fabric obtained by glutaraldehyde-stabilized deposition of electrostatic self-assembled monodisperse and spherically uniform (250 nm) poly (styrene-methyl methacrylate-acrylic acid) photonic crystal nanospheres (P(St-MMA-AA)) was investigated. Bright iridescent coatings displaying different colors in function of the viewing angle were obtained. The SEM, diffuse reflectance spectroscopy, TGA, DSC and FTIR analyses confirm the presence of structural color and the glutaraldehyde and chitosan ability to provide durable chemical bonding between cotton fabric and photonic crystal (PCs) coating with the highest degradation temperature and the lowest enthalpy. The coatings are characterized by a mixture of face-centered cubic and hexagonal close-packed arrays alternating random packing regions. For the first time a cost-efficient structural coloration with high washing and light fastness using self-assembled P(St-MMA-AA) photonic crystals was successfully developed onto woven cotton fabric using chitosan and/or glutaraldehyde as stabilizing agent opening new strategies for the development of dye-free coloration of textiles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. [Monitoring of methyl methacrylate monomer released from autopolymerized denture base polymers during processing using time-of-flight mass spectrometer].

    PubMed

    Ma, Yu-juan; Cui, Hua-peng; Li, Hai-yang

    2011-04-01

    To analyze the amount and tendency of methyl methacrylate (MMA) released from autopolymerized denture base polymer (self-curing resin) during processing using time-of-flight mass spectrometer (TOF-MS). Self-curing resin was mixed in the container using a ratio of 2 g of powder to 1 g of liquid in accordance with the manufacturer's instructions for 40 s as a specimen. The amount of MMA released from the specimen was continuously monitored and simultaneously recorded every minute by TOF-MS since immediately after mixing. A total of five specimens were monitored. The amount of MMA increased dramatically at 11 min [(45.2 ± 3.5) mg/L] after mixing, and reached the highest level at 13 min [(228.9 ± 22.6) mg/L], then become stable at 23 min [(8.8 ± 2.3) mg/L] after mixing. The releasing tendency of MMA could be analyzed accurately with continuously monitoring during processing. The amount of MMA released from self-curing resin changed rapidly and the processing was complicated and changeful.

  12. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate... generically as polymers of styrene, cyclohexyl methacrylate and substituted methacrylate (PMNs P-97-143/144...

  13. Molecular structure impacts on secondary organic aerosol formation from glycol ethers

    NASA Astrophysics Data System (ADS)

    Li, Lijie; Cocker, David R.

    2018-05-01

    Glycol ethers, a class of widely used solvents in consumer products, are often considered exempt as volatile organic compounds based on their vapor pressure or boiling points by regulatory agencies. However, recent studies found that glycol ethers volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents indicating the potential of glycol ethers to form secondary organic aerosol (SOA). This is the first work on SOA formation from glycol ethers. The impact of molecular structure, specifically -OH, on SOA formation from glycol ethers and related ethers are investigated in the work. Ethers with and without -OH, with methyl group hindrance on -OH and with -OH at different location are studied in the presence of NOX and under "NOX free" conditions. Photooxidation experiments under different oxidation conditions confirm that the processing of ethers is a combination of carbonyl formation, cyclization and fragmentation. Bulk SOA chemical composition analysis and oxidation products identified in both gas and particle phase suggests that the presence and location of -OH in the carbon bond of ethers determine the occurrence of cyclization mechanism during ether oxidation. The cyclization is proposed as a critical SOA formation mechanism to prevent the formation of volatile compounds from fragmentation during the oxidation of ethers. Glycol ethers with -CH2-O-CH2CH2OH structure is found to readily form cyclization products, especially with the presence of NOx, which is more relevant to urban atmospheric conditions than without NOx. Glycol ethers are evaluated as dominating SOA precursors among all ethers studied. It is estimated that the contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources. The contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources and will play a more important role in future anthropogenic SOA

  14. Stable carbon and hydrogen isotope analysis of methyl tert-butyl ether and tert-amyl methyl ether by purge and trap-gas chromatography-isotope ratio mass spectrometry: method evaluation and application.

    PubMed

    Kujawinski, Dorothea M; Stephan, Manuel; Jochmann, Maik A; Krajenke, Karen; Haas, Joe; Schmidt, Torsten C

    2010-01-01

    In order to monitor the behaviour of contaminants in the aqueous environment effective enrichment techniques often have to be employed due to their low concentrations. In this work a robust and sensitive purge and trap-gas chromatography-isotope ratio mass spectrometry method for carbon and hydrogen isotope analysis of fuel oxygenates in water is presented. The method evaluation included the determination of method detection limits, accuracy and reproducibility of deltaD and delta(13)C values. Lowest concentrations at which reliable delta(13)C values could be determined were 5 microg L(-1) and 28 microg L(-1) for TAME and MTBE, respectively. Stable deltaD values for MTBE and TAME could be achieved for concentrations as low as 25 and 50 microg L(-1). Good long-term reproducibility of delta(13)C and deltaD values was obtained for all target compounds. But deltaD values varying more than 5 per thousand were observed using different thermal conversion tubes. Thus, a correction of deltaD values in the analysis of groundwater samples was necessary to guarantee comparability of the results. The applicability of this method was shown by the analysis of groundwater samples from a gasoline contaminated site. By two dimensional isotope analysis two locations within this site were identified at which anaerobic and aerobic degradation of methyl tert-butyl ether occurred.

  15. AVOIDING HYDROLYSIS OF FUEL ETHER OXYGENATES DURING STATIC HEADSPACE ANALYSIS

    EPA Science Inventory

    A headspace autosampler, gas chromatograph and ion trap mass spectrometer (headspace GC/MS) were used for trace analysis of fuel oxygenates and related compounds and aromatics in water. A method has been developed for determination of methyl tert-butyl ether (MTBE), ethyl tert-b...

  16. Proton-transfer lasers based on solid copolymers of modified 2-(2'-hydroxyphenyl)benzimidazoles with methacrylate monomers

    NASA Astrophysics Data System (ADS)

    Costela, A.; García-Moreno, I.; Mallavia, Ricardo; Amat-Guerri, F.; Barroso, J.; Sastre, R.

    1998-06-01

    We report on the lasing action of two newly synthesized 2-(2'-hydroxyphenyl) benzimidazole derivatives copolymerized with methyl methacrylate. The laser samples were transversely pumped with a N 2 laser at 337 nm. The influence on the proton-transfer laser performance of the distance between the chromophore group and the polymeric main chain and of the rigidity of the polymeric host matrix, were studied. Significant increases in lasing efficiency and photostability are demonstrated for some of the new materials, as compared to those previously obtained with related proton-transfer dyes also covalently bound to methacrylic monomers.

  17. Long-term clinical outcome analysis of poly-methyl-methacrylate cranioplasty for large skull defects.

    PubMed

    Jaberi, Joby; Gambrell, Kenneth; Tiwana, Paul; Madden, Chris; Finn, Rick

    2013-02-01

    The goal of secondary cranioplasty is permanent cerebral protection in an esthetically acceptable fashion. Reconstruction of cranial defects can be performed with several different materials. Alloplastic materials, such as preformed methyl-methacrylate (PMMA) cranioplasties, are an alternative frequently used at our institution. This retrospective analysis was designed to review the outcomes of PMMA cranioplasty for skull defect reconstruction. Seventy consecutive patients who had 78 PMMA cranioplasties placed from 2003 through 2010 were identified. Mechanism of injury, location of cranioplasty, type of original repair, postoperative complications, and follow-up time were reviewed. Of the 70 patients, 6 patients had failure and removal of their original PMMA cranioplasty and reinsertion of another, and 2 patients had failure and removal of 2 cranioplasties with replacement of a third, creating a total of 78 PMMA cranioplasties placed. The predominant mechanism of injury was trauma (64%). The most frequent postoperative complication was infection (13%). With the exception of the 2 patients with implant exposure, no patients reported an unacceptable cosmetic result. An overall complication rate of 24% was seen. The results of previous studies have shown that infection and complication rates of cranioplasties accomplished with bone cement are substantially higher, that titanium-based implants may obscure follow-up imaging for tumor patients, and that the outcomes regarding hydroxyapatite-based ceramics, although similar to PMMA, are associated with a much higher cost. PMMA remains a cost-effective and proven method to repair cranial defects that fulfills the goals of cranial reconstruction for skull defects. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. All rights reserved.

  18. Characterization of γ-radiation induced polymerization in ethyl methacrylate and methyl acrylate monomers solutions

    NASA Astrophysics Data System (ADS)

    Baccaro, Stefania; Casieri, Cinzia; Cemmi, Alessia; Chiarini, Marco; D'Aiuto, Virginia; Tortora, Mariagrazia

    2017-12-01

    The present work is focused on the γ-radiation induced polymerization of ethyl methacrylate (EMA) and methyl acrylate (MA) monomers mixture to obtain a co-polymer with specific features. The effect of the irradiation parameters (radiation absorbed dose, dose rate) and of the environmental atmosphere on the features of the final products was investigated. Attenuated Total Reflectance - Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Nuclear Magnetic Resonance high-resolution analyses of hydrogen and carbon nuclei (1H and 13C NMR) were applied to follow the γ-induced modifications by monitoring the co-polymerization process and allowed the irradiation parameters optimization. Diffusion-Ordered NMR (DOSY-NMR) data were used to evaluate the co-polymers polydispersity and polymerization degree. Since the last parameter is strongly influenced by the γ radiation and environmental conditions, a comparison among samples prepared and irradiated in air and under nitrogen atmosphere was carried out. In presence of oxygen, higher radiation was required to obtain a full solid co-polymer since a partial amount of energy released to the samples was involved in competitive processes, i.e. oxygen-containing free radicals formation and primary radicals recombination. Irrespectively to the environmental atmosphere, more homogeneous samples in term of polymerization degree dispersion was achieved at lower dose rates. At radiation absorbed doses higher than those needed for the formation of the co-polymer, while in case of samples irradiated in air heavy depolymerization was verified, a sensible increase of the samples stability was attained if the irradiation was performed under nitrogen atmosphere.

  19. Methyl 3-[3',4'-(methylenedioxy)phenyl]-2-methyl glycidate: an ecstasy precursor seized in Sydney, Australia.

    PubMed

    Collins, Michael; Heagney, Aaron; Cordaro, Frank; Odgers, David; Tarrant, Gregory; Stewart, Samantha

    2007-07-01

    Five 44 gallon drums labeled as glycidyl methacrylate were seized by the Australian Customs Service and the Australian Federal Police at Port Botany, Sydney, Australia, in December 2004. Each drum contained a white, semisolid substance that was initially suspected to be 3,4-methylenedioxymethylamphetamine (MDMA). Gas chromatography-mass spectroscopy (GC/MS) analysis demonstrated that the material was neither glycidyl methacrylate nor MDMA. Because intelligence sources employed by federal agents indicated that this material was in some way connected to MDMA production, suspicion fell on the various MDMA precursor chemicals. Using a number of techniques including proton nuclear magnetic resonance spectroscopy ((1)H NMR), carbon nuclear magnetic resonance spectroscopy ((13)C NMR), GC/MS, infrared spectroscopy, and total synthesis, the unknown substance was eventually identified as methyl 3-[3',4'(methylenedioxy)phenyl]-2-methyl glycidate. The substance was also subjected to a published hydrolysis and decarboxylation procedure and gave a high yield of the MDMA precursor chemical, 3,4-methylenedioxyphenyl-2-propanone, thereby establishing this material as a "precursor to a precursor."

  20. Poly(methyl vinyl ether-alt-maleic acid)-functionalized porous silicon nanoparticles for enhanced stability and cellular internalization.

    PubMed

    Shahbazi, Mohammad-Ali; Almeida, Patrick V; Mäkilä, Ermei; Correia, Alexandra; Ferreira, Mónica P A; Kaasalainen, Martti; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-03-01

    Currently, developing a stable nanocarrier with high cellular internalization and low toxicity is a key bottleneck in nanomedicine. Here, we have developed a successful method to covalently conjugate poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) copolymer on the surface of (3-aminopropyl)triethoxysilane-functionalized thermally carbonized porous silicon nanoparticles (APSTCPSi NPs), forming a surface negatively charged nanovehicle with unique properties. This polymer conjugated NPs could modify surface smoothness, charge, and hydrophilicity of the developed NPs, leading to considerable improvement in the colloidal and plasma stabilities via enhanced suspensibility and charge repulsion. Furthermore, despite the surface negative charge of the polymer-conjugated NPs, the cellular internalization was increased in both MDA-MB-231 and MCF-7 breast cancer cells. These results provide a proof-of-concept evidence that such polymer-based PSi nanocomposite can be extensively used as a promising candidate for intracellular drug delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Prediction of Three-Dimensional Downward Flame Spread Characteristics over Poly(methyl methacrylate) Slabs in Different Pressure Environments.

    PubMed

    Zhao, Kun; Zhou, Xiao-Dong; Liu, Xue-Qiang; Lu, Lei; Wu, Zhi-Bo; Peng, Fei; Ju, Xiao-Yu; Yang, Li-Zhong

    2016-11-22

    The present study is aimed at predicting downward flame spread characteristics over poly(methyl methacrylate) (PMMA) with different sample dimensions in different pressure environments. Three-dimensional (3-D) downward flame spread experiments on free PMMA slabs were conducted at five locations with different altitudes, which provide different pressures. Pressure effects on the flame spread rate, profile of pyrolysis front and flame height were analyzed at all altitudes. The flame spread rate in the steady-state stage was calculated based on the balance on the fuel surface and fuel properties. Results show that flame spread rate increases exponentially with pressure, and the exponent of pressure further shows an increasing trend with the thickness of the sample. The angle of the pyrolysis front emerged on sample residue in the width direction, which indicates a steady-burning stage, varies clearly with sample thicknesses and ambient pressures. A global non-dimensional equation was proposed to predict the variation tendency of the angle of the pyrolysis front with pressure and was found to fit well with the measured results. In addition, the dependence of average flame height on mass burning rate, sample dimension and pressure was proposed based on laminar diffusion flame theory. The fitted exponent of experimental data is 1.11, which is close to the theoretical value.

  2. Effect of silver ion-induced disorder on morphological, chemical and optical properties of poly (methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Arif, Shafaq; Saleemi, Farhat; Rafique, M. Shahid; Naab, Fabian; Toader, Ovidiu; Mahmood, Arshad; Aziz, Uzma

    2016-11-01

    Ion implantation is a versatile technique to tailor the surface properties of polymers in a controlled manner. In the present study, samples of poly (methyl methacrylate) (PMMA) have been implanted with 400 keV silver (Ag+) ion beam to various ion fluences ranging from 5 × 1013 to 5 × 1015 ions/cm2. The effect of Ag+ ion-induced disorder on morphological, chemical and optical properties of PMMA is analyzed using Atomic Force Microscope (AFM), Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy. Furthermore, the electrical conductivity of pristine and implanted PMMA is measured using four probe apparatus. The AFM images revealed the growth of nano-sized grainy structures and hillocks above the surface of implanted PMMA. The FTIR spectra confirmed the modifications in chemical structure of PMMA along with the formation of sbnd Cdbnd Csbnd carbon contents. The refractive index, extinction coefficient and photoconductivity of implanted PMMA have been found to increase as a function of ion fluence. Simultaneously, indirect optical band gap is reduced from 3.13 to 0.81 eV at a relatively high fluence (5 × 1015 ions/cm2). A linear correlation has been established between the band gap and Urbach energies. Moreover, the electrical conductivity of Ag+ implanted PMMA has increased from 2.14 × 10-10 (pristine) to 9.6 × 10-6 S/cm.

  3. The rapid detection of methyl tert-butyl ether (MtBE) in water using a prototype gas sensor system.

    PubMed

    de Lacy Costello, B P J; Sivanand, P S; Ratcliffe, N M; Reynolds, D M

    2005-01-01

    The gasoline additive Methyl-tertiary-Butyl Ether (MtBE) is the second most common contaminant of groundwater in the USA and represents an important soil contaminant. This compound has been detected in the groundwater in at least 27 states as a result of leaking underground storage facilities (gasoline storage tanks and pipelines). Since the health effects of MtBE are unclear the potential threat to drinking water supplies is serious. Therefore, the ability to detect MtBE at low levels (ppb) and on-line at high-risk groundwater sites would be highly desirable. This paper reports the use of 'commercial' and metal oxide sensor arrays for the detection of MtBE in drinking and surface waters at low ppb level (microg.L(-1) range). The output responses from some of the sensors were found to correlate well with MtBE concentrations under laboratory conditions.

  4. Microwave absorption properties of reduced graphene oxide strontium hexaferrite/poly(methyl methacrylate) composites

    NASA Astrophysics Data System (ADS)

    Acharya, Sanghamitra; Ray, J.; Patro, T. U.; Alegaonkar, Prashant; Datar, Suwarna

    2018-03-01

    The key factors to consider when designing microwave absorber materials for eradication of electromagnetic (EM) pollution are absorption of incident EM waves and good impedance matching. By keeping these things in mind, flexible microwave absorber composite films can be fabricated by simple gel casting techniques using reduced graphene oxide (RGO) and strontium ferrite (SF) in a poly(methyl methacrylate) (PMMA) matrix. SF nanoparticles are synthesized by the well known sol-gel method. Subsequently, reduced graphene oxide (RGO) and SF nanocomposite (RGOSF) are prepared through a chemical reduction method using hydrazine. The structure, morphology, chemical composition, thermal stability and magnetic properties of the nanocomposite are characterized in detail by various techniques. The SF particles are found to be nearly 500 nm and decorated on RGO sheets as revealed by field emission scanning electron microscopy and transmission electron microscopy analysis. Fourier transform infrared and and Raman spectroscopy clearly show the presence of SF in the graphene sheet by the lower peak positions. Finally, ternary polymer composites of RGO/SF/PMMA are prepared by an in situ polymerization method. Magnetic and dielectric studies of the composite reveal that the presence of RGO/SF/PMMA lead to polarization effects contributing to dielectric loss. Also, RGO surrounding SF provides a conductive network in the polymer matrix which is in turn responsible for the magnetic loss in the composite. Thus, the permittivity as well as the permeability of the composite can be controlled by an appropriate combination of RGO and SF in PMMA. More than 99% absorption efficiency is achieved by a suitable combination of magneto-dielectric coupling in the X-band frequency range by incorporating 9 wt% of RGO and 1 wt% of SF in the polymer matrix.

  5. Assessment of the skin sensitising potency of the lower alkyl methacrylate esters.

    PubMed

    Kimber, Ian; Pemberton, Mark A

    2014-10-01

    There is continued interest in, and imperatives for, the classification of contact allergens according to their relative skin sensitising potency. However, achieving that end can prove problematic, not least when there is an apparent lack of concordance between experimental assessments of potency and the prevalence allergic contact dermatitis as judged by clinical experience. For the purpose of exploring this issue, and illustrating the important considerations that are required to reach sound judgements about potency categorisation, the lower alkyl methacrylate esters (LAM) have been employed here as a case study. Although the sensitising potential of methyl methacrylate (MMA) has been reviewed previously, there is available new information that is relevant for assessment of skin sensitising potency. Moreover, for the purposes of this article, analyses have been extended to include also other LAM for which relevant data are available: ethyl methacrylate (EMA), n-butyl methacrylate (nBMA), isobutyl methacrylate (iBMA), and 2-ethylhexyl methacrylate (EHMA). In addressing the skin sensitising activity of these chemicals and in drawing conclusions regarding relative potency, a number of sources of information has been considered, including estimates of potency derived from local lymph node assay (LLNA) data, the results of guinea pig assays, and data derived from in silico methods and from recently developed in vitro approaches. Moreover, clinical experience of skin sensitisation of humans by LAM has also been evaluated. The conclusion drawn is that MMA and other LAM are contact allergens, but that none of these chemicals has any more than weak skin sensitising potency. We have also explored here the possible bases for this modest sensitising activity. Finally, the nature of exposure to LAM has been reviewed briefly and on the basis of that information, together with an understanding of skin sensitising potency, a risk assessment has been prepared. Copyright © 2014

  6. Separator Membrane from Crosslinked Poly(Vinyl Alcohol) and Poly(Methyl Vinyl Ether-alt-Maleic Anhydride)

    PubMed Central

    Rohatgi, Charu Vashisth; Dutta, Naba K.; Choudhury, Namita Roy

    2015-01-01

    In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA) with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride) (PMVE-MA). Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity), thermal and electrochemical properties using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermo-gravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS). The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications. PMID:28347019

  7. Biodegradation of potential diesel oxygenate additives: dibutyl maleate (DBM), and tripropylene glycol methyl ether (TGME).

    PubMed

    Marchetti, Alfredo A; Knize, Mark G; Chiarappa-Zucca, Marina L; Pletcher, Ronald J; Layton, David W

    2003-08-01

    The addition of oxygen-bearing compounds to diesel fuel considerably reduces particulate emissions. TGME and DBM have been identified as possible diesel additives based on their physicochemical characteristics and performance in engine tests. Although these compounds will reduce particulate emissions, their potential environmental impacts are unknown. As a means of characterizing their persistence in environmental media such as soil and groundwater, we conducted a series of biodegradation tests of DBM and TGME. Benzene and methyl tertiary butyl ether (MTBE) were also tested as reference compounds. Primary degradation of DBM fully occurred within 3 days, while TGME presented a lag phase of approximately 8 days and was not completely degraded by day 28. Benzene primary degradation occurred completely by day 3 and MTBE did not degrade at all. The total mineralized fractions of DBM and TGME achieved constant values as a function of time of approximately 65% and approximately 40%, respectively. Transport predictions show that, released to the environment, DBM and TGME would concentrate mostly in soils and waters with minimal impact to air. From an environmental standpoint, these results combined with the transport predictions indicate that DBM is a better choice than TGME as a diesel additive.

  8. 40 CFR 721.6620 - Alkanaminium, polyalkyl-[(2-methyl-1-oxo-2-propenyl)oxy] salt, polymer with acrylamide and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-oxo-2-propenyl)oxy] salt, polymer with acrylamide and substituted alkyl methacrylate. 721.6620 Section... Substances § 721.6620 Alkanaminium, polyalkyl-[(2-methyl-1-oxo-2-propenyl)oxy] salt, polymer with acrylamide...-propenyl)oxy] salt, polymer with acrylamide and substituted alkyl methacrylate (PMN P-87-252) is subject to...

  9. 40 CFR 721.6620 - Alkanaminium, polyalkyl-[(2-methyl-1-oxo-2-propenyl)oxy] salt, polymer with acrylamide and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-oxo-2-propenyl)oxy] salt, polymer with acrylamide and substituted alkyl methacrylate. 721.6620 Section... Substances § 721.6620 Alkanaminium, polyalkyl-[(2-methyl-1-oxo-2-propenyl)oxy] salt, polymer with acrylamide...-propenyl)oxy] salt, polymer with acrylamide and substituted alkyl methacrylate (PMN P-87-252) is subject to...

  10. Skin sensitization potency of methyl methacrylate in the local lymph node assay: comparisons with guinea-pig data and human experience.

    PubMed

    Betts, Catherine J; Dearman, Rebecca J; Heylings, Jon R; Kimber, Ian; Basketter, David A

    2006-09-01

    There is compelling evidence that contact allergens differ substantially (by 4 or 5 orders of magnitude) with respect to their inherent skin-sensitizing potency. Relative potency can now be measured effectively using the mouse local lymph node assay (LLNA) and such data form the basis of risk assessment and risk management strategies. Such determinations also facilitate distinctions being drawn between the prevalence of skin sensitization to a particular contact allergen and inherent potency. The distinction is important because chemicals that are implicated as common causes of contact allergy are not necessarily potent sensitizers. One example is provided by nickel that is undoubtedly a common cause of allergic contact dermatitis, but is a comparatively weak sensitizer in predictive tests. In an attempt to explore other examples of contact allergens where there may exist a discrepancy between prevalence and potency, we describe here analyses conducted with methyl methacrylate (MMA). Results of LLNA studies have been interpreted in the context of historical clinical data on occupational allergic contact dermatitis associated with exposure to MMA.

  11. Toward the design of alkynylimidazole fluorophores: computational and experimental characterization of spectroscopic features in solution and in poly(methyl methacrylate).

    PubMed

    Barone, Vincenzo; Bellina, Fabio; Biczysko, Malgorzata; Bloino, Julien; Fornaro, Teresa; Latouche, Camille; Lessi, Marco; Marianetti, Giulia; Minei, Pierpaolo; Panattoni, Alessandro; Pucci, Andrea

    2015-10-28

    The possibilities offered by organic fluorophores in the preparation of advanced plastic materials have been increased by designing novel alkynylimidazole dyes, featuring different push and pull groups. This new family of fluorescent dyes was synthesized by means of a one-pot sequential bromination-alkynylation of the heteroaromatic core, and their optical properties were investigated in tetrahydrofuran and in poly(methyl methacrylate). An efficient in silico pre-screening scheme was devised as consisting of a step-by-step procedure employing computational methodologies by simulation of electronic spectra within simple vertical energy and more sophisticated vibronic approaches. Such an approach was also extended to efficiently simulate one-photon absorption and emission spectra of the dyes in the polymer environment for their potential application in luminescent solar concentrators. Besides the specific applications of this novel material, the integration of computational and experimental techniques reported here provides an efficient protocol that can be applied to make a selection among similar dye candidates, which constitute the essential responsive part of those fluorescent plastic materials.

  12. Carbon Conversion Efficiency and Limits of Productive Bacterial Degradation of Methyl tert-Butyl Ether and Related Compounds▿

    PubMed Central

    Müller, Roland H.; Rohwerder, Thore; Harms, Hauke

    2007-01-01

    The utilization of the fuel oxygenate methyl tert-butyl ether (MTBE) and related compounds by microorganisms was investigated in a mainly theoretical study based on the YATP concept. Experiments were conducted to derive realistic maintenance coefficients and Ks values needed to calculate substrate fluxes available for biomass production. Aerobic substrate conversion and biomass synthesis were calculated for different putative pathways. The results suggest that MTBE is an effective heterotrophic substrate that can sustain growth yields of up to 0.87 g g−1, which contradicts previous calculation results (N. Fortin et al., Environ. Microbiol. 3:407-416, 2001). Sufficient energy equivalents were generated in several of the potential assimilatory routes to incorporate carbon into biomass without the necessity to dissimilate additional substrate, efficient energy transduction provided. However, when a growth-related kinetic model was included, the limits of productive degradation became obvious. Depending on the maintenance coefficient ms and its associated biomass decay term b, growth-associated carbon conversion became strongly dependent on substrate fluxes. Due to slow degradation kinetics, the calculations predicted relatively high threshold concentrations, Smin, below which growth would not further be supported. Smin strongly depended on the maximum growth rate μmax, and b and was directly correlated with the half maximum rate-associated substrate concentration Ks, meaning that any effect impacting this parameter would also change Smin. The primary metabolic step, catalyzing the cleavage of the ether bond in MTBE, is likely to control the substrate flux in various strains. In addition, deficits in oxygen as an external factor and in reduction equivalents as a cellular variable in this reaction should further increase Ks and Smin for MTBE. PMID:17220260

  13. METHYL TERT-BUTYLETHER-WATER INTERACTION

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE) is a well-known environmental contaminant owing to its high solubility in water. Since the early 1990s, MTBE has been added to gasoline to improve air quality in some metropolitan areas of the United States. Improved air quality was, however, achiev...

  14. N-acetyl cysteine (NAC)-mediated detoxification and functionalization of poly(methyl methacrylate) bone cement.

    PubMed

    Tsukimura, Naoki; Yamada, Masahiro; Aita, Hideki; Hori, Norio; Yoshino, Fumihiko; Chang-Il Lee, Masaichi; Kimoto, Katsuhiko; Jewett, Anahid; Ogawa, Takahiro

    2009-07-01

    Currently used poly(methyl methacrylate) (PMMA)-based bone cement lacks osteoconductivity and induces osteolysis and implant loosening due to its cellular and tissue-toxicity. A high percentage of revision surgery following the use of bone cement has become a significant universal problem. This study determined whether incorporation of the amino acid derivative N-acetyl cysteine (NAC) in bone cement reduces its cytotoxicity and adds osteoconductivity to the material. Biocompatibility and bioactivity of PMMA-based bone cement with or without 25mm NAC incorporation was examined using rat bone marrow-derived osteoblastic cells. Osteoconductive potential of NAC-incorporated bone cement was determined by microCT bone morphometry and implant biomechanical test in the rat model. Generation of free radicals within the polymerizing bone cement was examined using electron spin resonance spectroscopy. Severely compromised viability and completely suppressed phenotypes of osteoblasts on untreated bone cement were restored to the normal level by NAC incorporation. Bone volume formed around 25mm NAC-incorporated bone cement was threefold greater than that around control bone cement. The strength of bone-bone cement integration was 2.2 times greater for NAC-incorporated bone cement. For NAC-incorporated bone cement, the spike of free radical generation ended within 12h, whereas for control bone cement, a peak level lasted for 6 days and a level greater than half the level of the peak was sustained for 20 days. NAC also increased the level of antioxidant glutathione in osteoblasts. These results suggest that incorporation of NAC in PMMA bone cement detoxifies the material by immediate and effective in situ scavenging of free radicals and increasing intracellular antioxidant reserves, and consequently adds osteoconductivity to the material.

  15. Unbiased phosphoproteomic method identifies the initial effects of a methacrylic acid copolymer on macrophages

    PubMed Central

    Chamberlain, Michael Dean; Wells, Laura A.; Lisovsky, Alexandra; Guo, Hongbo; Isserlin, Ruth; Talior-Volodarsky, Ilana; Mahou, Redouan; Emili, Andrew; Sefton, Michael V.

    2015-01-01

    An unbiased phosphoproteomic method was used to identify biomaterial-associated changes in the phosphorylation patterns of macrophage-like cells. The phosphorylation differences between differentiated THP1 (dTHP1) cells treated for 10, 20, or 30 min with a vascular regenerative methacrylic acid (MAA) copolymer or a control methyl methacrylate (MM) copolymer were determined by MS. There were 1,470 peptides (corresponding to 729 proteins) that were differentially phosphorylated in dTHP1 cells treated with the two materials with a greater cellular response to MAA treatment. In addition to identifying pathways (such as integrin signaling and cytoskeletal arrangement) that are well known to change with cell–material interaction, previously unidentified pathways, such as apoptosis and mRNA splicing, were also discovered. PMID:26261332

  16. 2-diethylaminoethyl-dextran methyl methacrylate copolymer nonviral vector: still a long way toward the safety of aerosol gene therapy.

    PubMed

    Zarogoulidis, P; Hohenforst-Schmidt, W; Darwiche, K; Krauss, L; Sparopoulou, D; Sakkas, L; Gschwendtner, A; Huang, H; Turner, F J; Freitag, L; Zarogoulidis, K

    2013-10-01

    Revealing the lung tumor genome has directed the current treatment strategies toward targeted therapy. First line treatments targeting the genome of lung tumor cells have been approved and are on the market. However, they are limited by the small number of patients with the current investigated genetic mutations. Novel treatment administration modalities have been also investigated in an effort to increase the local drug deposition and disease control. In the current study, we investigated the safety of the new nonviral vector 2-diethylaminoethyl-dextran methyl methacrylate copolymer (DDMC; Ryujyu Science), which belongs to the 2-diethylaminoethyl-dextran family by aerosol administration. Thirty male BALBC mice, 2 month old, were included and divided into three groups. However, pathological findings indicated severe emphysema within three aerosol sessions. In addition, the CytoViva technique was applied for the first time to display the nonviral particles within the pulmonary tissue and emphysema lesions, and a spectral library of the nonviral vector was also established. Although our results in BALBC mice prevented us from further investigation of the DDMC nonviral vector as a vehicle for gene therapy, further investigation in animals with larger airways is warranted to properly evaluate the safety of the vector.

  17. Arbuscular mycorrhizal fungi in a wetland constructed for benzene-, methyl tert-butyl ether- and ammonia-contaminated groundwater bioremediation

    PubMed Central

    Fester, Thomas

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF), which are present in most natural environments, have demonstrated capacity to promote biodegradation of organic pollutants in the greenhouse. However, it is not certain whether AMF can spontaneously establish in phytoremediation systems constructed to decontaminate groundwater, because of the unusual conditions during the construction and operation of such systems. To assess this possibility, root samples from a wetland constructed for the phytoremediation of groundwater contaminated with benzene, methyl tert-butyl ether and ammonia were analysed. Substantial AMF colonization was observed in plant roots sampled close to the inlet of a basin filled with fine gravel and planted with Phragmites australis. In addition, analysis of a fragment of the nuclear large ribosomal subunit, amplified by nested PCR, revealed the presence of AMF molecular operational taxonomic units closely related to Funneliformis mosseae and Rhizophagus irregularis in the samples. These findings demonstrate the capacity of generalist AMF strains to establish spontaneously, rapidly and extensively in groundwater bioremediation technical installations. PMID:22846140

  18. A new cytotoxic sterol methoxymethyl ether from a deep water marine sponge Scleritoderma sp. cf. paccardi.

    PubMed

    Gunasekera, S P; Kelly-Borges, M; Longley, R E

    1996-02-01

    24(R)-Methyl-5 alpha-cholest-7-enyl 3 beta-methoxymethyl ether (1), a new sterol ether, has been isolated from a deep-water marine sponge Scleritoderma sp. cf. paccardi. Compound 1 exhibited in vitro cytotoxicity against the cultured murine P-388 tumor cell line with an IC50 of 2.3 micrograms/mL. The isolation and structure elucidation of 1 by NMR spectroscopy is described.

  19. Design and characterization of an adhesive matrix based on a poly(ethyl acrylate, methyl methacrylate).

    PubMed

    Cilurzo, Francesco; Minghetti, Paola; Pagani, Stefania; Casiraghi, Antonella; Montanari, Luisa

    2008-01-01

    The main issue in the development of transdermal patches made of poly(ethyl acrylate, methyl methacrylate) (Eudragit NE 40D, PMM) is the shrinkage phenomenon during the spreading of the latex onto the release liner. To solve this problem, the latex is usually freeze-dried and then re-dissolved in an organic solvent (method 1). To simplify the production process, we prepared an adhesive matrix by adding to the commercial PMM latex a plasticizer and an additive (anti-shrinkage agent) that avoids the shrinkage of the water dispersion spread onto the release liner (method 2). In some cases the active ingredient itself, such as potassium diclofenac (DK) and nicotine (NT), works as anti-shrinkage agent. In this work, the effects of the preparation method, types and concentrations of the plasticizer (triacetin and tributyl citrate) on the adhesive properties of the transdermal patches were investigated. The adhesive properties of the prepared patch were determined by texture analysis, peel adhesion test and shear adhesion. The PMM/plasticizer interactions were evaluated by ATR-FTIR spectroscopy. Furthermore, the in vitro skin permeation profiles of DK and NT released from the patch were determined by Franz cell method. Generally speaking, the variables that mainly modify the adhesive properties are the concentration and type of the plasticizer. The skin permeation profiles of DK and NT from the patch prepared by method 2 overlapped with those obtained with the commercial products. The results underline that the PMM latex can be used conveniently in the development of transdermal patches.

  20. Synthesis of poly(methyl methacrylate) core/chitosan-mixed-polyethyleneimine shell nanoparticles and their antibacterial property.

    PubMed

    Inphonlek, Supharat; Pimpha, Nuttaporn; Sunintaboon, Panya

    2010-06-01

    The core-shell nanoparticles possessing poly(methyl methacrylate) (PMMA) core coated with chitosan (CS), polyethyleneimine (PEI), and chitosan-mixed-polyethyleneimine (CS/PEI) shells were synthesized in this work. The emulsifier-free emulsion polymerization triggered by a redox initiating system from t-butylhydroperoxide (TBHP) and amine groups on CS and/or PEI was used as a synthetic method. In the CS/PEI systems, the amount of CS was kept constant (0.5g), while the amount of PEI was varied from 0.1 to 0.5g. The surface and physico-chemical properties of prepared nanoparticles were then examined. FTIR spectra indicated the presence of grafted PMMA on CS and/or PEI, and the weight fraction of incorporated PEI in the CS/PEI nanoparticles. All nanoparticles were spherical in shape with uniform size distribution illustrated by scanning electron microscopy (SEM). The introduction of PEI to CS nanoparticles yielded the higher monomer conversion, grafting efficiency, and grafting percentage compared with the CS nanoparticles. The size of CS/PEI nanoparticles was smaller than the original CS and PEI nanoparticles, and tended to decrease with increasing amount of PEI introduced. The introduction of PEI also brought the higher colloidal stability to the nanoparticles as indicated by zeta-potential measurement and isoelectric point analysis. The nanoparticles exhibited a promising antibacterial activity against Staphylococcus aureus and Escherichia coli. The nanoparticle-bacteria interaction was studied via SEM. The results suggested that they would be useful as effective antibacterial agents. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Adsorption of Poly(methyl methacrylate) on Concave Al2O3 Surfaces in Nanoporous Membranes

    PubMed Central

    Nunnery, Grady; Hershkovits, Eli; Tannenbaum, Allen; Tannenbaum, Rina

    2009-01-01

    The objective of this study was to determine the influence of polymer molecular weight and surface curvature on the adsorption of polymers onto concave surfaces. Poly(methyl methacrylate) (PMMA) of various molecular weights was adsorbed onto porous aluminum oxide membranes having various pore sizes, ranging from 32 to 220 nm. The surface coverage, expressed as repeat units per unit surface area, was observed to vary linearly with molecular weight for molecular weights below ~120 000 g/mol. The coverage was independent of molecular weight above this critical molar mass, as was previously reported for the adsorption of PMMA on convex surfaces. Furthermore, the coverage varied linearly with pore size. A theoretical model was developed to describe curvature-dependent adsorption by considering the density gradient that exists between the surface and the edge of the adsorption layer. According to this model, the density gradient of the adsorbed polymer segments scales inversely with particle size, while the total coverage scales linearly with particle size, in good agreement with experiment. These results show that the details of the adsorption of polymers onto concave surfaces with cylindrical geometries can be used to calculate molecular weight (below a critical molecular weight) if pore size is known. Conversely, pore size can also be determined with similar adsorption experiments. Most significantly, for polymers above a critical molecular weight, the precise molecular weight need not be known in order to determine pore size. Moreover, the adsorption developed and validated in this work can be used to predict coverage also onto surfaces with different geometries. PMID:19415910

  2. Separation and determination of methyl tert-butyl ether and its degradation products by a laboratory-constructed micro-cryogenic chromatographic oven.

    PubMed

    Liu, Jiemin; Jiang, Guibin; Zhou, Qunfang; Liu, Jingfu; Wen, Meijuan

    2003-10-01

    A laboratory-made micro-cryogenic chromatographic oven was mainly improved in size, which was controlled at 6 x 6 x 2.5 cm. A thermoelectric system was used to cool the capillary column instead of the traditional liquid cryogen. A cold block connected to the cryogenic module was directly solidified at room temperature with thermally conductive adhesive so that the uniformity of transferring heat was greatly improved, and the size of the system was reduced. Moreover, this system was inexpensive and convenient for both operation and control. The newly developed device coupled with headspace solid-phase microextraction (SPME) was successfully applied to the determination of methyl tert-butyl ether (MTBE) and its degradation products. During the analysis procedure, a 65 microm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used to extract MTBE and its degradation products. The extraction was controlled at 50 degrees C for 30 min and the NaCl content in the sample was maintained at 35%. The limits of detection (LODs) ranged from 0.006 microg mL(-1) (for MTBE) to 0.206 microg mL(-1) (for methyl acetate) and the relative standard deviations (RSD%) were below 4%. The spiked recoveries for the developed method were evaluated using various water samples as a matrix.

  3. Ether bond effects in quaternary ammonium and phosphonium ionic liquid-propanol solutions

    NASA Astrophysics Data System (ADS)

    Kishimura, Hiroaki; Kohki, Erica; Nakada, Ayumu; Tamatani, Kentaro; Abe, Hiroshi

    2018-03-01

    The liquid-liquid equilibria (LLE) of quaternary ammonium and phosphonium ionic liquid (IL)-propanol solutions were examined. The ILs contained cations with or without ether bonds; the anion in all the ILs was bis(trifluoromethanesulfonyl)imide (TFSI-). The cations without ether groups are tributylmethyl ammonium (N4441+), triethylpentyl phosphonium (P2225+), triethyloctyl phosphonium (P2228+), and tributylmethyl phosphonium (P4441+). The cations containing ether groups are N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium, (N122(2O1)+), triethyl(methoxymethyl) phosphonium (P222(1O1)+), and triethyl(2-methoxyethyl) phosphonium, (P222(2O1)+). Propanol isomer effect was observed to affect the LLEs, reflecting the geometrical factors and hydrophobicities of 1-propanol and 2-propanol. According to Raman spectroscopy, the TFSI- anion conformers in the mixtures were altered in the presence of ether bonds in the cations. The universal quasichemical (UNIQUAC) interaction parameters are consistent with significant factors affecting IL-propanol solutions, such as the type of cation (ammonium or phosphonium), ether bonds, TFSI- conformers, and propanol isomer effects.

  4. Poly(arylene ether)s containing pendent ethynyl groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Jensen, Brian J. (Inventor)

    1996-01-01

    Poly(arylene ether)s containing pendent ethynyl and substituted ethynyl groups and poly(arylene ether) copolymers containing pendent ethynyl and substituted ethynyl groups are readily prepared from bisphenols containing ethynyl and substituted ethynyl groups. The resulting polymers are cured up to 350.degree. C. to provide crosslinked poly(arylene ether)s with good solvent resistance, high strength and modulus.

  5. Poly(arylene ether)s containing pendent ethynyl groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Jensen, Brian J. (Inventor)

    1994-01-01

    Poly(arylene ether)s containing pendent ethynyl and substituted ethynyl groups and poly(arylene ether) copolymers containing pendent ethynyl and substituted ethynyl groups are readily prepared from bisphenols containing ethynyl and substituted ethynyl groups. The resulting polymers are cured up to 350 C to provide crosslinked poly(arylene ether)s with good solvent resistance, high strength and modulus.

  6. Human Fetal Osteoblast Response on Poly(Methyl Methacrylate)/Polystyrene Demixed Thin Film Blends: Surface Chemistry Vs Topography Effects.

    PubMed

    D'Sa, Raechelle A; Raj, Jog; Dickinson, Peter J; McCabe, Fiona; Meenan, Brian J

    2016-06-22

    Recent advances in materials sciences have allowed for the development and fabrication of biomaterials that are capable of providing requisite cues to instigate cells to respond in a predictable fashion. We have developed a series of poly(methyl methacrylate)/polystyrene (PMMA/PS) polymer demixed thin films with nanotopographies ranging from nanoislands to nanopits to study the response of human fetal osteoblast cells (hFOBs). When PMMA was in excess in the blend composition, a nanoisland topography dominated, whereas a nanopit topography dominated when PS was in excess. PMMA was found to segregate to the top of the nanoisland morphology with PS preferring the substrate interface. To further ascertain the effects of surface chemistry vs topography, we plasma treated the polymer demixed films using an atmospheric pressure dielectric barrier discharge reactor to alter the surface chemistry. Our results have shown that hFOBs did not have an increased short-term cellular response on pristine polymer demixed surfaces. However, increasing the hydrophilicty/wettability of the surfaces by oxygen functionalization causes an increase in the cellular response. These results indicate that topography alone is not sufficient to induce a positive cellular response, but the underlying surface chemistry is also important in regulating cell function.

  7. Facile Synthesis of Thick Films of Poly(methyl methacrylate), Poly(styrene), and Poly(vinyl pyridine) from Au Surfaces

    PubMed Central

    Saha, Sampa

    2011-01-01

    Atom transfer radical polymerization (ATRP) is commonly used to grow polymer brushes from Au surfaces, but the resulting film thicknesses are usually significantly less than with ATRP from SiO2 substrates. On Au, growth of poly(methyl methacrylate) (PMMA) blocks from poly(tert-butyl acrylate) brushes occurs more rapidly than growth of PMMA from initiator monolayers, suggesting that the disparity between growth rates from Au and SiO2 stems from the Au surface. Radical quenching by electron transfer from Au is probably not the termination mechanism because polymerization from thin, cross-linked initiators gives film thicknesses that are essentially the same as the thicknesses of films grown from SiO2 under the same polymerization conditions. However, this result is consistent with termination through desorption of thiols from non-cross-linked films, and reaction of these thiols with growing polymer chains. The enhanced stability of cross-linked initiators allows ATRP at temperatures up to ~100 °C and enables the growth of thick films of PMMA (350 nm), polystyrene (120 nm) and poly(vinyl pyridine) (200 nm) from Au surfaces in 1 hour. At temperatures >100 °C, the polymer brush layers delaminate as large area films. PMID:21728374

  8. Mode of Action Studies on Nitrodiphenyl Ether Herbicides

    PubMed Central

    Bowyer, John R.; Smith, Beverly J.; Camilleri, Patrick; Lee, Susan A.

    1987-01-01

    5-[2-Chloro-4-(trifluoromethyl)phenoxy]-2-nitroacetophenone oxime-o-(acetic acid, methyl ester) (DPEI), is a potent nitrodiphenyl ether herbicide which causes rapid leaf wilting, membrane lipid peroxidation, and chlorophyll destruction in a process which is both light- and O2-dependent. These effects resemble those of other nitrodiphenyl ether herbicides. Unlike paraquat, the herbicidal effects of DPEI are only slightly reduced by pretreatment with the photosynthetic electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea. DPEI is a weak inhibitor of photosynthetic electron transport (I50 15 micromolar for water to paraquat) in vitro, with at least one site of action at the cytochrome b6f complex. Ultrastructural studies and measurements of ethane formation resulting from lipid peroxidation indicate that mutants of barley lacking photosystem I (PSI) (viridis-zb63) or photosystem II (viridis-zd69) are resistant to paraquat but susceptible to DPEI. The results indicate that electron transfer through both photosystems is not essential for the toxic effects of nitrodiphenyl ether herbicides. Furthermore, the results show that neither cyclic electron transport around PSI, nor the diversion of electrons from PSI to O2 when NADPH consumption is blocked are essential for the phytotoxicity of nitrodiphenyl ether herbicides. Images Fig. 2 Fig. 3 Fig. 4 PMID:16665297

  9. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    NASA Astrophysics Data System (ADS)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; dos Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H. Hermes

    2016-04-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  10. Application of methyl methacrylate copolymers to the development of transdermal or loco-regional drug delivery systems.

    PubMed

    Cilurzo, Francesco; Selmin, Francesca; Gennari, Chiara G M; Montanari, Luisa; Minghetti, Paola

    2014-07-01

    Methyl methacrylate copolymers (Eudragit®) have been exploited to develop transdermal patches, medicated plasters (hereinafter patches) and, more recently, film-forming sprays, microsponges and nanoparticles intended to be applied on the skin. The article reviews the information regarding the application of Eudragits in the design and development of these dosage forms focusing on the impact of formulative variables on the skin drug penetration and the patch adhesive properties. Eudragits combined with a large amount of plasticizers are used to design the pressure-sensitive adhesives, specialized materials used in the patch development. They have to assure the drug skin penetration and the contact with the skin. Most of the studies mainly deal with the former aspect. The authors used a Eudragit type opportunely plasticized to merely investigate the in vitro or in vivo skin permeability of a loaded drug. However, the summa of these data evidenced that a strict connection between the matrix hydrophilicity and drug penetration probably exists. The criticisms of adhesion are addressed in a limited number of papers reporting data on technological properties, namely tack, shear adhesion and peel adhesion, while the structural data of the Eudragit adhesives, rheology and surface free energy are not described, excepting the case of Eudragit E. Among other applications, micro- and nanosystems exploiting the ionizable nature of some Eudragits can offer novel opportunities to develop pH-sensitive drug delivery systems suitable for triggering its release onto the skin.

  11. Comparative transcriptome analysis of Methylibium petroleiphilum PM1 exposed to the fuel oxygenates methyl tert-butyl ether and ethanol.

    PubMed

    Hristova, Krassimira R; Schmidt, Radomir; Chakicherla, Anu Y; Legler, Tina C; Wu, Janice; Chain, Patrick S; Scow, Kate M; Kane, Staci R

    2007-11-01

    High-density whole-genome cDNA microarrays were used to investigate substrate-dependent gene expression of Methylibium petroleiphilum PM1, one of the best-characterized aerobic methyl tert-butyl ether (MTBE)-degrading bacteria. Differential gene expression profiling was conducted with PM1 grown on MTBE and ethanol as sole carbon sources. Based on microarray high scores and protein similarity analysis, an MTBE regulon located on the megaplasmid was identified for further investigation. Putative functions for enzymes encoded in this regulon are described with relevance to the predicted MTBE degradation pathway. A new unique dioxygenase enzyme system that carries out the hydroxylation of tert-butyl alcohol to 2-methyl-2-hydroxy-1-propanol in M. petroleiphilum PM1 was discovered. Hypotheses regarding the acquisition and evolution of MTBE genes as well as the involvement of IS elements in these complex processes were formulated. The pathways for toluene, phenol, and alkane oxidation via toluene monooxygenase, phenol hydroxylase, and propane monooxygenase, respectively, were upregulated in MTBE-grown cells compared to ethanol-grown cells. Four out of nine putative cyclohexanone monooxygenases were also upregulated in MTBE-grown cells. The expression data allowed prediction of several hitherto-unknown enzymes of the upper MTBE degradation pathway in M. petroleiphilum PM1 and aided our understanding of the regulation of metabolic processes that may occur in response to pollutant mixtures and perturbations in the environment.

  12. Physical properties of sequential interpenetrating polymer networks produced from canola oil-based polyurethane and poly(methyl methacrylate).

    PubMed

    Kong, Xiaohua; Narine, Suresh S

    2008-05-01

    Sequential interpenetrating polymer networks (IPNs) were prepared using polyurethane (PUR) synthesized from canola oil-based polyol with terminal primary functional groups and poly(methyl methacrylate) (PMMA). The properties of the material were evaluated by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and modulated differential scanning calorimetry (MDSC), as well as tensile properties measurements. The morphology of the IPNs was investigated using scanning electron microscopy (SEM) and MDSC. A five-phase morphology, that is, sol phase, PUR-rich phase, PUR-rich interphase, PMMA-rich interphase, and PMMA-rich phase, was observed for all the IPNs by applying a new quantitative method based on the measurement of the differential of reversing heat capacity versus temperature from MDSC, although not confirmed by SEM, most likely due to resolution restrictions. NCO/OH molar ratios (cross-linking density) and compositional variations of PUR/PMMA both affected the thermal properties and phase behaviors of the IPNs. Higher degrees of mixing occurred for the IPN with higher NCO/OH molar ratio (2.0/1.0) at PUR concentration of 25 wt %, whereas for the IPN with lower NCO/OH molar ratio (1.6/1.0), higher degrees of mixing occurred at PUR concentration of 35 wt %. The mechanical properties of the IPNs were superior to those of the constituent polymers due to the finely divided rubber and plastic combination structures in these IPNs.

  13. Seasonal and daily variations in concentrations of methyl-tertiary-butyl ether (MTBE) at Cranberry Lake, New Jersey

    USGS Publications Warehouse

    Toran, L.; Lipka, C.; Baehr, A.; Reilly, T.; Baker, R.

    2003-01-01

    Methyl-tertiary-butyl ether (MTBE), an additive used to oxygenate gasoline, has been detected in lakes in northwestern New Jersey. This occurrence has been attributed to the use of gasoline-powered watercraft. This paper documents and explains both seasonal and daily variations in MTBE concentrations at Cranberry Lake. During a recent boating season (late April to September 1999), concentrations of MTBE typically exceeded 20??g/L. MTBE concentrations varied daily from 12 to 24??g/L over a 2-week period that included the Labor Day holiday. Concentrations were highest on weekends when there is more boat traffic, which had an immediate effect on MTBE mass throughout the lake. MTBE concentrations decreased to about 2??g/L shortly after the end of the summer recreational season. The loss of MTBE can be accounted for by volatilization, with a half-life on the order of 10 days. The volatilization rate was modeled with the daily decrease in MTBE then the modeled rate was validated using the data from the seasonal decline. ?? 2003 Elsevier Science Ltd. All rights reserved.

  14. Methacrylated monosaccharides as the modifiers for carbochain polymers: Synthesis, mechanical/thermal properties and biodegradability of hybrids

    NASA Astrophysics Data System (ADS)

    Yakushev, P.; Bershtein, V.; Bukowska-Śluz, I.; Sobiesiak, M.; Gawdzik, B.

    2016-05-01

    Methacrylated derivatives of glucose (MGLU) and galactose (MGAL) were synthesized by the procedure described by Vogel, and their copolymers with methyl methacrylate (MMA) and MMA/N-vinyl pyrrolidone (MMA/NVP) (1:1) mixture were obtained with the aim to modify some properties of carbochain polymers, in particular to generate their biodegradability. These hybrids of synthetic and natural products, with 10, 20 or 30 wt. % modifiers, were characterized by DMA and TGA methods and in the biodegradation tests. Increasing Tg values by 20-30°C was registered in all cases whereas thermal stability was improved only for PMMA due to modification. On the contrary, only for hybrids based on hygroscopic MMA/NVP copolymer the essential biodegradability could be generated.

  15. Synthesis of polymer hybrid latex poly(methyl methacrylate-co-butyl acrylate) with organo montmorillonite via miniemulsion polymerization method for barrier paper

    NASA Astrophysics Data System (ADS)

    Chanra, J.; Budianto, E.; Soegijono, B.

    2018-03-01

    Hybrid polymer latex based on combination of organic-inorganic materials, poly(methyl methacrylate-co-butyl acrylate) (PMMBA) and organo-montmorillonite (OMMT) were synthesized via miniemulsion polymerization technique. Modification of montmorillonite (MMT) through the incorporation of myristyltrimethylammonium bromide (MTAB) into the clay’s interlayer spaces were investigated by Small-Angle X-ray Scattering (SAXS), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and Transmission Electron Microscopy (TEM). Barrier property and thermal stability of polymer latex film sample were investigated through its Water Vapor Transmission Rate (WVTR) and Thermogravimetric Analysis (TGA). The results indicated that addition of OMMT as filler in PMMBA increased the barrier property and thermal stability of the latex film. Addition of 8.0% (wt) OMMT increased the barrier property and thermal stability. Miniemusion polymerization process with higher addition (>8.0 wt%) of OMMT resulting in high latex viscosity, particle size, and high amount of coagulum. The utilization of this hybrid polymer could benefits paper and board industries to produce high quality barrier paper for food packaging.

  16. Using mid-Infrared External Reflectance Spectroscopy to Distinguish Between Different Commercially Produced Poly[Methyl MethAcrylate] (PMMA) Samples - A Null Result

    NASA Astrophysics Data System (ADS)

    Fajardo, Mario; Neel, Christopher; Lacina, David

    2017-06-01

    We report (null) results of experiments testing the hypothesis that mid-infrared (mid-IR) spectroscopy can be used to distinguish samples of poly[methyl methacrylate] (PMMA) obtained from different commercial suppliers. This work was motivated by the desire for a simple non-destructive and non-invasive test for pre-sorting PMMA samples prior to use in shock and high-strain-rate experiments, where PMMA is commonly used as a standard material. We discuss: our choice of mid-IR external reflectance spectroscopy, our approach to recording reflectance spectra at near-normal (θ = 0 + / - 5 degree) incidence and for extracting the wavelength-weighted absorption spectrum from the raw reflectance data via a Kramers-Krönig analysis. We employ extensive signal, which necessitates adopting a special experimental protocol to mitigate the effects of instrumental drift. Finally, we report spectra of three PMMA samples with different commercial pedigrees, and show that they are virtually identical (+ / - 1 % error, 95% confidence); obviating the use of mid-IR reflectance spectroscopy to tell the samples apart.

  17. Photophysical and lasing properties of new analogs of the boron-dipyrromethene laser dye pyrromethene 567 incorporated into or covalently bounded to solid matrices of poly(methyl methacrylate).

    PubMed

    López Arbeloa, F; Bañuelos Prieto, J; López Arbeloa, I; Costela, A; García-Moreno, I; Gómez, C; Amat-Guerri, F; Liras, M; Sastre, R

    2003-07-01

    The photophysical, lasing and thermostability properties of newly synthesized analogs of the commercial dye pyrromethene 567 (PM567) have been measured in polymeric matrices of poly(methyl methacrylate) both when used as a dopant and when covalently bounded to the polymeric chain. These analogs have an acetoxy or a polymerizable methacryloyloxy group at the end of a polymethylene chain at Position 8 of the PM567 chromophore core. Clear correlations between photophysical and lasing characteristics are observed. Linking chain lengths with three or more methylene units give the highest fluorescence quantum yields (as high as 0.89) and lasing efficiencies (as high as 41%). The covalent linkage of the chromophore to the polymeric chain via the methacryloyloxy group improves the photostability of the PM567 chromophore.

  18. Rehabilitation of orbital cavity after orbital exenteration using polymethyl methacrylate orbital prosthesis.

    PubMed

    Jain, Sumeet; Jain, Parul

    2016-01-01

    Squamous cell carcinoma of the eyelid is the second most common malignant neoplasm of the eye with the incidence of 0.09 and 2.42 cases/100 000 people. Orbital invasion is a rare complication but, if recognized early, can be treated effectively with exenteration. Although with advancements in technology such as computer-aided design and computer-aided manufacturing, material science, and retentive methods like implants, orbital prosthesis with stock ocular prosthesis made of methyl methacrylate retained by anatomic undercuts is quiet effective and should not be overlooked and forgotten. This clinical report describes prosthetic rehabilitation of two male patients with polymethyl methacrylate resin orbital prosthesis after orbital exenteration, for squamous cell carcinoma of the upper eyelid. The orbital prosthesis was sufficiently retained by hard and soft tissue undercuts without any complications. The patients using the prosthesis are quite satisfied with the cosmetic results and felt comfortable attending the social events.

  19. A nonaqueous potentiometric titration study of the dissociation of t-butyl methacrylate-methacrylic acid copolymers.

    PubMed

    Nakatani, Kiyoharu; Yamashita, Jun; Sekine, Tomomi; Toriumi, Minoru; Itani, Toshiro

    2003-05-01

    The dissociation of t-butyl methacrylate-methacrylic acid copolymers in dimethyl sulfoxide was analyzed by a nonaqueous potentiometric titration technique. The negative logarithm of the dissociation constant of the monomer unit of a methacrylic acid (MAA) monotonously increased with the increasing degree of dissociation corresponding to the titrant/MAA amount ratio, and was highly influenced by the copolymerization ratio. The results are discussed in terms of the suppression of the dissociation of MAA by a neighboring charged methacrylate anion unit.

  20. Vertical phase separation of 6,13-bis(triisopropylsilylethynyl) pentacene/poly(methyl methacrylate) blends prepared by electrostatic spray deposition for organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Onojima, Norio; Hara, Kazuhiro; Nakamura, Ayato

    2017-05-01

    Blend films composed of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) and poly(methyl methacrylate) (PMMA) were prepared by electrostatic spray deposition (ESD). ESD is considered as an intermediate process between dry and wet processes since the solvent present in small droplets can almost be evaporated before arriving at the substrate. Post-drying treatments with the time-consuming evaporation of residual solvents can be omitted. However, it is still not clear that a vertically phase-separated structure can be formed in the ESD process since the vertical phase separation of the blend films is associated with the solvent evaporation. In this study, we fabricated bottom-gate, top-contact organic field-effect transistors based on the blend films prepared by ESD and the devices exhibited transistor behavior with small hysteresis. This result demonstrates that the vertical phase separation of a blend film (upper TIPS pentacene active layer/bottom PMMA gate insulator) can occur in the facile one-step ESD process.

  1. Activity, conformation and dynamics of cutinase adsorbed on poly(methyl methacrylate) latex particles.

    PubMed

    Baptista, R P; Santos, A M; Fedorov, A; Martinho, J M G; Pichot, C; Elaïssari, A; Cabral, J M S; Taipa, M A

    2003-05-08

    The adsorption of a recombinant cutinase from Fusarium solani pisi onto the surface of 100 nm diameter poly(methyl methacrylate) (PMMA) latex particles was evaluated. Adsorption of cutinase is a fast process since more than 70% of protein molecules are adsorbed onto PMMA at time zero of experiment, irrespective of the tested conditions. A Langmuir-type model fitted both protein and enzyme activity isotherms at 25 degrees C. Gamma(max) increased from 1.1 to 1.7 mg m(-2) and U(max) increased from 365 to 982 U m(-2) as the pH was raised from 4.5 to 9.2, respectively. A decrease (up to 50%) in specific activity retention was observed at acidic pH values (pH 4.5 and 5.2) while almost no inactivation (eta(act) congruent with 87-94%) was detected upon adsorption at pH 7.0 and 9.2. Concomitantly, far-UV circular dichroism (CD) spectra evidenced a reduction in the alpha-helical content of adsorbed protein at acidic pH values while at neutral and alkaline pH the secondary structure of adsorbed cutinase was similar to that of native protein. Fluorescence anisotropy decays showed the release of some constraints to the local motion of the Trp69 upon protein adsorption at pH 8.0, probably due to the disruption of the tryptophan-alanine hydrogen bond when the tryptophan interacts with the PMMA surface. Structural data associated with activity measurements at pH 7.0 and 9.2 showed that cutinase adsorbs onto PMMA particles in an end-on orientation with active site exposed to solvent and full integrity of cutinase secondary structure. Hydrophobic interactions are likely the major contribution to the adsorption mechanism at neutral and alkaline pH values, and a higher amount of protein is adsorbed to PMMA particles with increasing temperature at pH 9.2. The maximum adsorption increased from 88 to 140 mg cutinase per g PMMA with temperature raising from 25 to 50 degrees C, at pH 9.2.

  2. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate and...

  3. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate and...

  4. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate and...

  5. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate and...

  6. Developmental toxicity evaluation of inhaled tertiary amyl methyl ether in mice and rats.

    PubMed

    Welsch, Frank; Elswick, Barbara; James, R Arden; Marr, Melissa C; Myers, Christina B; Tyl, Rochelle W

    2003-01-01

    This evaluation was part of a much more comprehensive testing program to characterize the mammalian toxicity potential of the gasoline oxygenator additive tertiary amyl methyl ether (TAME), and was initiated upon a regulatory agency mandate. A developmental toxicity hazard identification study was conducted by TAME vapor inhalation exposure in two pregnant rodent species. Timed-pregnant CD(Sprague-Dawley) rats and CD-1 mice, 25 animals per group, inhaled TAME vapors containing 0, 250, 1500 or 3500 ppm for 6 h a day on gestational days 6-16 (mice) or 6-19 (rats). The developmental toxicity hazard potential was evaluated following the study design draft guidelines and end points proposed by the United States Environmental Protection Agency. Based on maternal body weight changes during pregnancy, the no-observable-adverse-effect level (NOAEL) was 250 ppm for maternal toxicity in rats and 1500 ppm for developmental toxicity in rats using the criterion of near-term fetal body weights. In mice, more profound developmental toxicity was present than in rats, at both 1500 and 3500 ppm. At the highest concentration, mouse litters revealed more late fetal deaths, significantly reduced fetal body weights per litter and increased incidences of cleft palate (classified as an external malformation), as well as enlarged lateral ventricles of the cerebrum (a visceral variation). At 1500 ppm, mouse fetuses also exhibited an increased incidence of cleft palate and the dam body weights were reduced. Therefore, the NOAEL for the mouse maternal and developmental toxicity was 250 ppm under the conditions of this study. Copyright 2003 John Wiley & Sons, Ltd.

  7. Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA).

    PubMed

    Finneran, K T; Lovley, D R

    2001-05-01

    The potential for anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) was investigated in laboratory incubations of sediments from a petroleum-contaminated aquifer and in aquatic sediments. The addition of humic substances (HS) stimulated the anaerobic degradation of MTBE in aquifer sediments in which Fe(III) was available as an electron acceptor. This is attributed to the fact that HS and other extracellular quinones can stimulate the activity of Fe(III)-reducing microorganisms by acting as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides. MTBE was not degraded in aquifer sediments without Fe(III) and HS. [14C]-MTBE added to aquatic sediments adapted for anaerobic MTBE degradation was converted to 14CO2 in the presence or absence of HS or the HS analog, anthraquione-2,6-disulfonate. Unamended aquatic sediments produced 14CH4 as well as 14CO2 from [14C]-MTBE. The aquatic sediments also rapidly consumed TBA under anaerobic conditions and converted [14C]-TBA to 14CH4 and 14CO2. An adaptation period of ca. 250-300 days was required prior to the most rapid anaerobic MTBE degradation in both sediment types, whereas TBA was metabolized in the aquatic sediments without a lag. These results demonstrate that, under the appropriate conditions, MTBE and TBA can be degraded in the absence of oxygen. This suggests that it may be possible to design strategies for the anaerobic remediation of MTBE in petroleum-contaminated subsurface environments.

  8. Curcumin delivery from poly(acrylic acid-co-methyl methacrylate) hollow microparticles prevents dopamine-induced toxicity in rat brain synaptosomes.

    PubMed

    Yoncheva, Krassimira; Kondeva-Burdina, Magdalena; Tzankova, Virginia; Petrov, Petar; Laouani, Mohamed; Halacheva, Silvia S

    2015-01-01

    The potential of poly(methyl methacrylate-co-acrylic acid) (PMMA-AA) copolymers to form hollow particles and their further formulation as curcumin delivery system have been explored. The particles were functionalized by crosslinking the acrylic acid groups via bis-amide formation with either cystamine (CYS) or 3,3'-dithiodipropionic acid dihydrazide (DTP) which simultaneously incorporated reversibility due to the presence of disulfide bonds within the crosslinker. Optical micrographs showed the formation of spherical hollow microparticles with a size ranging from 1 to 7 μm. Curcumin was loaded by incubation of its ethanol solution with aqueous dispersions of the cross-linked particles and subsequent evaporation of the ethanol. Higher loading was observed in the microparticles with higher content of hydrophobic PMMA units indicating its influence upon the loading of hydrophobic molecules such as curcumin. The in vitro release studies in a phosphate buffer showed no initial burst effect and sustained release of curcumin that correlated with the swelling of the particles under these conditions. The capacity of encapsulated and free curcumin to protect rat brain synaptosomes against dopamine-induced neurotoxicity was examined. The encapsulated curcumin showed greater protective effects in rat brain synaptosomes as measured by synaptosomal viability and increased intracellular levels of glutathione. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effect of barium-coated halloysite nanotube addition on the cytocompatibility, mechanical and contrast properties of poly(methyl methacrylate) cement.

    PubMed

    Jammalamadaka, Uday; Tappa, Karthik; Weisman, Jeffery A; Nicholson, James Connor; Mills, David K

    2017-01-01

    Halloysite nanotubes (HNTs) were investigated as a platform for tunable nanoparticle composition and enhanced opacity in poly(methyl methacrylate) (PMMA) bone cement. Halloysite has been widely used to increase the mechanical properties of various polymer matrices, in stark contrast to other fillers such as barium sulfate that provide opacity but also decrease mechanical strength. The present work describes a dry deposition method for successively fabricating barium sulfate nanoparticles onto the exterior surface of HNTs. A sintering process was used to coat the HNTs in barium sulfate. Barium sulfate-coated HNTs were then added to PMMA bone cement and the samples were tested for mechanical strength and tailored opacity correlated with the fabrication ratio and the amount of barium sulfate-coated HNTs added. The potential cytotoxic effect of barium-coated HNTs in PMMA cement was also tested on osteosarcoma cells. Barium-coated HNTs were found to be completely cytocompatible, and cell proliferation was not inhibited after exposure to the barium-coated HNTs embedded in PMMA cement. We demonstrate a simple method for the creation of barium-coated nanoparticles that imparted improved contrast and material properties to native PMMA. An easy and efficient method for coating clay nanotubes offers the potential for enhanced imaging by radiologists or orthopedic surgeons.

  10. The application of silicalite-1/fly ash cenosphere (S/FAC) zeolite composite for the adsorption of methyl tert-butyl ether (MTBE).

    PubMed

    Lu, Jia; Xu, Fang; Wang, Deju; Huang, Jue; Cai, Weimin

    2009-06-15

    Silicalite-1/fly ash cenosphere (S/FAC) zeolite composite has been applied for batch adsorption of methyl tert-butyl ether (MTBE) from water systems. Here the key experimental conditions, including the ratio of initial MTBE concentration to the amount weight of S/FAC, adsorption time and temperature, have been discussed in detail. The results show that approximately 93-95% MTBE could be adsorbed with initial concentration of MTBE solution 1000 microg l(-1). The column flow-through experiments also prove the high capacity of S/FAC composite for MTBE removal. The distinct advantages of S/FAC zeolite composite as adsorbent lie in (1) enhanced adsorption rate and capacity based on hierarchical micro and meso/macroporosity of S/FAC; (2) more easily operation and recycling process by assembly of nano-sized silicalite-1 zeolite on FAC support.

  11. Effects of propylene, methyl methacrylate and isopropanol poisoning on spatial performance of a proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana V.; St-Pierre, Jean

    2018-02-01

    This paper studies the effects of propylene, methyl methacrylate (MMA) and isopropanol (IPA) in air on the spatial performance of proton exchange membrane fuel cells (PEMFCs). The introduction of 100 ppm C3H6 into the oxidant stream resulted in a performance decrease of 130 mV at 1.0 A cm-2, whereas 20 ppm MMA caused a voltage loss of 80 mV. A moderate performance decline of 60 mV was detected in the presence of 5.3ṡ103 ppm IPA in air. Spatial electrochemical impedance spectroscopy (EIS) data showed an increase in charge and mass transfer resistances under exposure to C3H6 and MMA, although IPA did not affect the impedance. The observed PEMFC performances, local current redistributions and EIS data can be explained by the adsorption of contaminants on the Pt surface, their subsequent transformations, and their impacts on the electrochemical surface area and oxygen reduction mechanism. It was assumed that the studied contaminants were oxidized mainly to CO2 via electrochemical and chemical pathways under the operating conditions and at the cathode potential. Self-recovery of PEMFC performance was observed for each contaminant after halting its introduction into the air. Possible contaminant oxidation/reduction mechanisms and their correlations with spatial performance and EIS are presented and discussed.

  12. Methyl tertiary-butyl ether: studies for potential human health hazards.

    PubMed

    McGregor, Douglas

    2006-04-01

    When methyl tertiary-butyl ether (MTBE) in gasoline was first introduced to reduce vehicle exhaust emissions and comply with the Clean Air Act, in the United States, a pattern of complaints emerged characterised by seven "key symptoms." Later, carefully controlled volunteer studies did not confirm the existence of the specific key symptoms, although one study of self-reported sensitive (SRS) people did suggest that a threshold at about 11-15% MTBE in gasoline may exist for SRSs in total symptom scores. Neurobehavioral and psychophysiological studies on volunteers, including SRSs, found no adverse responses associated with MTBE at likely exposure levels. MTBE is well and rapidly absorbed following oral and inhalation exposures. Cmax values for MTBE are achieved almost immediately after oral dosing and within 2 h of continuous inhalation. It is rapidly eliminated, either by exhalation as unchanged MTBE or by urinary excretion of its less volatile metabolites. Metabolism is more rapid humans than in rats, for both MTBE and tert-butyl alcohol (TBA), its more persistent primary metabolite. The other primary metabolite, formaldehyde, is detoxified at a rate very much greater than its formation from MTBE. MTBE has no specific effects on reproduction or development, or on genetic material. Neurological effects were observed only at very high concentrations. In carcinogenicity studies of MTBE, TBA, and methanol (included as an endogenous precursor of formaldehyde, without the presence of TBA), some increases in tumor incidence have been observed, but consistency of outcome was lacking and even some degree of replication was observed in only three cases, none of which had human relevance: alpha(2u)-globulin nephropathy-related renal tubule cell adenoma in male rats; Leydig-cell adenoma in male rats, but not in mice, which provide the better model of the human disease; and B-cell-derived lymphoma/leukemia of doubtful pathogenesis that arose mainly in lungs of orally dosed

  13. Ionic-liquid-mediated poly(dimethylsiloxane)- grafted carbon nanotube fiber prepared by the sol-gel technique for the head space solid-phase microextraction of methyl tert-butyl ether using GC.

    PubMed

    Vatani, Hossein; Yazdi, Ali Sarafraz

    2014-01-01

    A headspace solid-phase microextraction method was developed for the preconcentration and extraction of methyl tert-butyl ether. An ionic-liquid-mediated multiwalled carbon nanotube-poly(dimethylsiloxane) hybrid coating, which was prepared by covalent functionalization of multiwalled carbon nanotubes with hydroxyl-terminated poly(dimethylsiloxane) using the sol-gel technique, was used as solid-phase microextraction adsorbent. This innovative fiber exhibited a highly porous surface structure, high thermal stability (at least 320°C) and long lifespan (over 210 uses). Potential factors affecting the extraction efficiency were optimized. Under the optimum conditions, the method LOD (S/N = 3) was 0.007 ng/mL and the LOQ (S/N = 10) was 0.03 ng/mL. The calibration curve was linear in the range of 0.03-200 ng/mL. The RSDs for one fiber (repeatability, n = 5) at three different concentrations (0.05, 1, and 150 ng/mL) were 5.1, 4.2, and 4.6% and for the fibers obtained from different batches (reproducibility, n = 3) were 6.5, 5.9, and 6.3%, respectively. The developed method was successfully applied to the determination of methyl tert-butyl ether in different real water samples on three consecutive days. The relative recoveries for the spiked samples with 0.05, 1, and 150 ng/mL were between 94-104%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Antichaperone activity and heme degradation effect of methyl tert-butyl ether (MTBE) on normal and diabetic hemoglobins.

    PubMed

    Najdegerami, Ismaeil Hossein; Maghami, Parvaneh; Sheikh-Hasani, Vahid; Hosseinzadeh, Ghader; Sheibani, Nader; Moosavi-Movahedi, Ali A

    2017-05-01

    Because of the extensive use of methyl tert-butyl ether (MTBE) as an additive to increase the octane quality of gasoline, the environmental pollution by this compound has increased in recent decades. Environmental release of MTBE may lead to its entry to the blood stream through inhalation or drinking of contaminated water, and its interactions with biological molecules such as proteins. The present study was proposed to comparatively investigate the interactions of MTBE with hemoglobin (Hb) from diabetic and nondiabetic individuals using various spectroscopic methods including UV-visible, fluorescence, chemiluminescence, and circular dichroism. These results demonstrated the effects of MTBE on heme degradation of Hb and the reaction of these degradation products with water generating reactive oxygen species. Interaction of Hb with MTBE enhanced its aggregation rate and decreased lag time, indicating the antichaperone activity of MTBE upon interaction with Hb. Furthermore, the diabetic Hb showed more severe effects of MTBE, including heme degradation, reactive oxygen species production, unfolding, and antichaperone behavior than the nondiabetic Hb. The results from molecular docking suggested that the special interaction site of MTBE in the vicinity of Hb heme group is responsible for heme degradation. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Oxime Ethers of (E)-11-Isonitrosostrychnine as Highly Potent Glycine Receptor Antagonists.

    PubMed

    Mohsen, Amal M Y; Mandour, Yasmine M; Sarukhanyan, Edita; Breitinger, Ulrike; Villmann, Carmen; Banoub, Maha M; Breitinger, Hans-Georg; Dandekar, Thomas; Holzgrabe, Ulrike; Sotriffer, Christoph; Jensen, Anders A; Zlotos, Darius P

    2016-12-23

    A series of (E)-11-isonitrosostrychnine oxime ethers, 2-aminostrychnine, (strychnine-2-yl)propionamide, 18-oxostrychnine, and N-propylstrychnine bromide were synthesized and evaluated pharmacologically at human α1 and α1β glycine receptors in a functional fluorescence-based and a whole-cell patch-clamp assay and in [ 3 H]strychnine binding studies. 2-Aminostrychnine and the methyl, allyl, and propargyl oxime ethers were the most potent α1 and α1β antagonists in the series, displaying IC 50 values similar to those of strychnine at the two receptors. Docking experiments to the strychnine binding site of the crystal structure of the α3 glycine receptor indicated the same orientation of the strychnine core for all analogues. For the most potent oxime ethers, the ether substituent was accommodated in a lipophilic receptor binding pocket. The findings identify the oxime hydroxy group as a suitable attachment point for linking two strychnine pharmacophores by a polymethylene spacer and are, therefore, important for the design of bivalent ligands targeting glycine receptors.

  16. Unimolecular Micelles of Amphiphilic Cyclodextrin-Core Star-Like Copolymers with Covalent pH-Responsive Linkage of Anticancer Prodrugs.

    PubMed

    Jia, Tao; Huang, Shuo; Yang, Cangjie; Wang, Mingfeng

    2017-08-07

    Multifunctional stable and stimuli-responsive drug delivery systems are important for efficient cancer treatment due to their advantages such as enhanced cancer-targeting efficiency, improved pharmacokinetics, minimized drug leaching, and reduced undesirable side effects. Here we report a robust and pH-responsive anticancer drug delivery system based on unimolecular micelles of star-like amphiphilic copolymers. The polymers (denoted as CPOFs) were facilely synthesized via one-step atom transfer radical polymerization of functionalizable benzoaldehyde and hydrophilic poly[(oligo ethylene glycol) methyl ether methacrylate] as comonomers from the core of heptakis [2,3,6-tri-o-(2-bromo-2-methyl propionyl]-β-cyclodextrin as the initiator. Doxorubicin (DOX) as an anticancer drug was covalently linked to the benzoaldehyde groups of CPOFs through pH-sensitive Schiff-base bonds. The DOX-conjugated polymers, denoted as CPOF-DOX, formed robust unimolecular micelles with an average diameter of 18 nm in aqueous media. More importantly, these unimolecular micelles showed higher drug loading capacity and more controllable drug release characteristics, compared to our previous unimolecular micelles of β-cyclodextrin-poly(lactic acid)-b-poly[(oligo ethylene glycol) methyl ether methacrylates] that physically encapsulated DOX via hydrophobic interaction. Moreover, the CPOF-DOX unimolecular micelles could be internalized by human cervical cancer HeLa cells in a stepwise way and showed less cytotoxicity compared to carrier-free DOX. We foresee that CPOF-DOX would provide a promising robust and controllable anticancer drug delivery system for future animal study and clinical trials for cancer treatment.

  17. Risk characterization of methyl tertiary butyl ether (MTBE) in tap water.

    PubMed

    Stern, B R; Tardiff, R G

    1997-12-01

    Methyl tertiary butyl ether (MTBE) can enter surface water and groundwater through wet atmospheric deposition or as a result of fuel leaks and spills. About 30% of the U.S. population lives in areas where MTBE is in regular use. Ninety-five percent of this population is unlikely to be exposed to MTBE in tap water at concentrations exceeding 2 ppb, and most will be exposed to concentrations that are much lower and may be zero. About 5% of this population may be exposed to higher levels of MTBE in tap water, resulting from fuel tank leaks and spills into surface or groundwater used for potable water supplies. This paper describes the concentration ranges found and anticipated in surface and groundwater, and estimates the distribution of doses experienced by humans using water containing MTBE to drink, prepare food, and shower/bathe. The toxic properties (including potency) of MTBE when ingested, inhaled, and in contact with the skin are summarized. Using a range of human toxic potency values derived from animal studies, margins of exposure (MOE) associated with alternative chronic exposure scenarios are estimated to range from 1700 to 140,000. Maximum concentrations of MTBE in tap water anticipated not to cause adverse health effects are determined to range from 700 to 14,000 ppb. The results of this analysis demonstrate that no health risks are likely to be associated with chronic and subchronic human exposures to MTBE in tap water. Although some individuals may be exposed to very high concentrations of MTBE in tap water immediately following a localized spill, these exposures are likely to be brief in duration due to large-scale dilution and rapid volatilization of MTBE, the institution of emergency response and remediation measures to minimize human exposures, and the low taste and odor thresholds of MTBE which ensure that its presence in tap water is readily detected at concentrations well below the threshold for human injury.

  18. Dynamics of poly(ethylene oxide) in a blend with poly(methyl methacrylate): a quasielastic neutron scattering and molecular dynamics simulations study.

    PubMed

    Genix, A-C; Arbe, A; Alvarez, F; Colmenero, J; Willner, L; Richter, D

    2005-09-01

    In this paper, we have addressed the question of the dynamic miscibility in a blend characterized by very different glass-transition temperatures, Tg, for the components: poly(ethylene oxide) and poly(methyl methacrylate) (PEO/PMMA). The combination of quasielastic neutron scattering with isotopic labeling and fully atomistic molecular dynamics simulations has allowed us to selectively investigate the dynamics of the two components in the picosecond-10 nanoseconds scale at temperatures close and above the Tg of the blend. The main focus was on the PEO component, i.e., that of the lowest Tg, but first we have characterized the dynamics of the other component in the blend and of the pure PEO homopolymer as reference. In the region investigated, the dynamics of PMMA in the blend is strongly affected by the alpha-methyl rotation; an additional process detected in the experimental window 65 K above the blend-Tg can be identified as the merged alphabeta process of this component that shows strong deviations from Gaussian behavior. On the other hand, pure PEO displays entropy driven dynamics up to very large momentum transfers. Such kind of motion seems to freeze when the PEO chains are in the blend. There, we have directly observed a very heterogeneous and moreover confined dynamics for the PEO component. The presence of the hardly moving PMMA matrix leads to the creation of little pockets of mobility where PEO can move. The characteristic size of such confined islands of mobility might be estimated to be of approximately 1 nm. These findings are corroborated by the simulation study, which has been an essential support and guide in our data analysis procedure.

  19. Anti-knock quality of sugar derived levulinic esters and cyclic ethers

    DOE PAGES

    Tian, Miao; McCormick, Robert L.; Luecke, Jon; ...

    2017-04-22

    Here, the objective of this paper is to investigate the anti-knock quality of sugar-derived levulinic esters (methyl levulinate (ML) and ethyl levulinate (EL)) and cyclic ethers (furfuryl ethyl ether (FEE) and ethyl tetrahydrofurfuryl ether (ETE)). To this end, combustion experiments were carried out in both an engine and a constant volume autoignition device. The results from both apparati demonstrate that ML, EL and FEE have superior anti-knock quality than the reference Euro95 gasoline. ETE, conversely, performed markedly worse than the reference fuel on both setups and might therefore be a more appropriate fuel for compression ignition engines. The main reasonmore » of the distinctions in anti-knock quality can be found in the molecular structure of the neat biofuels. ML and EL are levulinic esters, with a ketone (C=O) functionality and an ester (C(=O)-O) group on the carbon chain. They can readily produce stable intermediates during the auto-ignition process, thereby slowing down the overall reaction rate. The unsaturated cyclic ether (FEE) has very strong ring C-H bonds. However, the saturated cyclic ether (ETE) has weak ring C-H bonds, which facilitate more readily ring opening reactions. Long side chains on the cyclic ethers further accelerate the reaction rate. Importantly for future research, our results suggest that IQT and engine experiments are interchangeable setups with respect to qualitative anti-knock quality evaluation of novel compounds.« less

  20. Anti-knock quality of sugar derived levulinic esters and cyclic ethers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Miao; McCormick, Robert L.; Luecke, Jon

    Here, the objective of this paper is to investigate the anti-knock quality of sugar-derived levulinic esters (methyl levulinate (ML) and ethyl levulinate (EL)) and cyclic ethers (furfuryl ethyl ether (FEE) and ethyl tetrahydrofurfuryl ether (ETE)). To this end, combustion experiments were carried out in both an engine and a constant volume autoignition device. The results from both apparati demonstrate that ML, EL and FEE have superior anti-knock quality than the reference Euro95 gasoline. ETE, conversely, performed markedly worse than the reference fuel on both setups and might therefore be a more appropriate fuel for compression ignition engines. The main reasonmore » of the distinctions in anti-knock quality can be found in the molecular structure of the neat biofuels. ML and EL are levulinic esters, with a ketone (C=O) functionality and an ester (C(=O)-O) group on the carbon chain. They can readily produce stable intermediates during the auto-ignition process, thereby slowing down the overall reaction rate. The unsaturated cyclic ether (FEE) has very strong ring C-H bonds. However, the saturated cyclic ether (ETE) has weak ring C-H bonds, which facilitate more readily ring opening reactions. Long side chains on the cyclic ethers further accelerate the reaction rate. Importantly for future research, our results suggest that IQT and engine experiments are interchangeable setups with respect to qualitative anti-knock quality evaluation of novel compounds.« less

  1. OCCURRENCE OF METYL TERT-BUTYL ETHER (MTBE) AT FIVE MARINAS IN LAKE TEXOMA

    EPA Science Inventory



    Occurrence of methyl tert-butyl ether (MTBE) in five marinas was monitored between June 1999 and November 2000 in Lake Texoma located on the border of Oklahoma and Texas. MTBE is a commonly used gasoline additive and a suspected carcinogen. Lake water was collected at loc...

  2. Methyl tert‐butyl ether degradation in the unsaturated zone and the relation between MTBE in the atmosphere and shallow groundwater

    USGS Publications Warehouse

    Baehr, Arthur L.; Charles, Emmanuel G.; Baker, Ronald J.

    2001-01-01

    Atmospheric methyl tert‐butyl ether (MTBE) concentrations in southern New Jersey generally exceeded concentrations in samples taken from the unsaturated zone. A simple unsaturated zone transport model indicates that MTBE degradation can explain the attenuation with half‐lives from a few months to a couple of years. Tert‐butyl alcohol (TBA), a possible degradation product of MTBE, was detected in unsaturated‐zone samples at concentrations exceeding atmospheric levels at some sites, suggesting the possible conversion of MTBE to TBA. At sites where MTBE was detected in shallow groundwater, the concentration was typically higher than the overlying unsaturated‐zone concentration. This observation is consistent with outgassing from the aquifer and combined with the unsaturated‐zone attenuation suggests some of the MTBE detections in shallow groundwater are nonatmospheric in origin, coming from leaking tanks, road runoff, or other sources. The identification of sources of MTBE in groundwater and attenuation mechanisms through the hydrologic cycle is critical in developing an understanding of the long‐term effect of MTBE releases.

  3. Acrylates and Methacrylates,

    DTIC Science & Technology

    1987-09-15

    and methacrylic acids and especially their esters. Acrylic and methacrylic monomers can be polymerized and copolymerized with other vinyl monomers by...contributed to reduction in the cost/value of these monomers and to expansion of the market for sale. For the first time acrylic acid was obtained in...a-dibromopropionic acid . In the Soviet Union for the development of the method of * production of acrylates the synthesis of methylacrylate began in

  4. Photophysical properties and photoisomerization processes of Methyl Red embedded in rigid polymer

    NASA Astrophysics Data System (ADS)

    Lee, Geon Joon; Kim, Dongho; Lee, Minyung

    1995-01-01

    The photophysical properties of Methyl Red molecules embedded in a poly(methyl methacrylate) (PMMA) matrix were investigated with photoinduced absorption, absorption kinetics, steady-state, and time-resolved luminescence spectroscopy. The excited singlet (S1) state lifetimes for trans and cis isomers of Methyl Red in PMMA at room temperature have been measured as 35 and 420 ps, respectively. The excited triplet (T1) state energy level and its lifetime at 77 K were also obtained. A slow trans-cis isomerization process having a time constant of a few hundred seconds was observed for the illuminated Methyl Red in rigid polymer. Based on measured photophysical properties and dynamic processes, an energy-level diagram for Methyl Red molecules in rigid polymer is introduced to explain these observations.

  5. Blood pharmacokinetics of tertiary amyl methyl ether in male and female F344 rats and CD-1 mice after nose-only inhalation exposure.

    PubMed

    Sumner, Susan C J; Janszen, Derek B; Asgharian, Bahman; Moore, Timothy A; Bobbitt, Carol M; Fennell, Timothy R

    2003-01-01

    Interest in understanding the biological behavior of aliphatic ethers has increased owing to their use as gasoline additives. The purpose of this study was to investigate the blood pharmacokinetics of the oxygenate tertiary amyl methyl ether (TAME), its major metabolite tertiary amyl alcohol (TAA) and acetone in rats and mice following inhalation exposure to TAME. Species differences in the area under the curve (AUC) for TAME were significant at each exposure concentration. For rats, the blood TAME AUC increased in proportion with an increase in exposure concentration. For mice, an increase in exposure concentration (100-500 ppm) resulted in a disproportional increase in the TAME AUC. Mice had greater (two- to threefold) blood concentrations of TAA compared with rats following exposure to 2500 or 500 ppm TAME. Mice had a disproportional increase in the TAA AUC with an increase in exposure concentration (100-500 ppm). This difference could result from saturation of a process (e.g. oxidation, glucuronide conjugation) that is involved in the further metabolism of TAA. For each species, gender and exposure concentration, acetone increased during exposure and returned to control values by 16 h following exposure. The source of acetone could be both as a metabolite of TAA or an effect on endogenous metabolism produced by exposure to TAME. Copyright 2003 John Wiley & Sons, Ltd.

  6. Sulfonimide-containing poly(arylene ether)s and poly(arylene ether sulfone)s, methods for producing the same, and uses thereof

    DOEpatents

    Hofmann, Michael A.

    2006-11-14

    The present invention is directed to sulfonimide-containing polymers, specifically sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, and processes for making the sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, for use conductive membranes and fuel cells.

  7. Carbon black reinforced polymethyl methacrylate (PMMA)-based composite particles: preparation, characterization, and application

    NASA Astrophysics Data System (ADS)

    Liang, Tian; Yan, Chunjie; Zhou, Sen; Zhang, Yonghan; Yang, Bipeng

    2017-10-01

    Carbon black (CB) is an excellent filler to reinforce polymers because of its unique thermal and mechanical properties. Thus, a type of modified carbon black (MCB) was developed, which led to reduced filler aggregation in methyl methacrylate (MMA) monomers and resulted in homogeneous dispersion in the polymethyl methacrylate (PMMA) substrate. The PMMA-MCB composite particles that were prepared in this work possessed remarkable and stable properties. Therefore, they can be used as an ultra-lightweight proppant (ULWP). Fourier transform infrared spectroscopy showed that CB was successfully modified and the MCB was well dispersed in the PMMA matrix. Results of crushing rate and differential scanning calorimetry demonstrated that MCB could significantly enhance the thermal and mechanical performance of the ULWP. Heat treatment of the ULWP under a nitrogen atmosphere could also clearly enhance its performance in various aspects. The process of modifying CB, the approach of synthesizing PMMA-MCB composite particles, and their mechanism were systematically investigated in this work.

  8. Bond strength of poly(methyl methacrylate) denture base material to cast titanium and cobalt-chromium alloy.

    PubMed

    Matsuda, Yasuhiro; Yanagida, Hiroaki; Ide, Takako; Matsumura, Hideo; Tanoue, Naomi

    2010-06-01

    The shear bond strength of an auto-polymerizing poly(methyl methacrylate) denture base resin material to cast titanium and cobalt-chromium alloy treated with six conditioning methods was investigated. Disk specimens (10 mm in diameter and 2.5 mm in thickness) were cast from pure titanium and cobalt-chromium alloy. The specimens were wet ground to a final surface finish of 600 grit, air dried, and treated with the following bonding systems: 1) air abraded with 50-70-microm-grain alumina (SAN); 2) air abraded with 50-70-microm-grain alumina + conditioned with Alloy Primer (ALP); 3) air abraded with 50-70-microm-grain alumina + conditioned with AZ Primer (AZP); 4) air abraded with 50-70-microm-grain alumina + conditioned with Estenia Opaque Primer (EOP); 5) air abraded with 50-70-microm-grain alumina + conditioned with Metal Link Primer (MLP), and 6) treated with ROCATEC system (ROC). A denture base material (Palapress Vario) was then applied to each metal specimen. Shear bond strengths were determined before and after 10,000 thermocycles. The strengths decreased after thermocycling in all combinations. Among the treatment methods assessed, groups 2 and 4 showed significantly (p < 0.05) enhanced shear bond strengths for both metals. In group 4, the strength in MPa (n = 7) after thermocycling for cobalt-chromium alloy was 38.3, which was statistically (p < 0.05) higher than that for cast titanium (34.7). Air abrasion followed by the application of two primers containing a hydrophobic phosphate monomer (MDP) effectively improved the strength of the bond of denture base material to cast titanium and cobalt-chromium alloy.

  9. Kinetics for the Sequential Infiltration Synthesis of Alumina in Poly(methyl methacrylate): An Infrared Spectroscopic Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Mahua; Libera, Joseph A.; Darling, Seth B.

    Sequential infiltration synthesis (SIS) is a method for growing inorganic materials within polymers in an atomically controlled fashion. This technique can increase the etch resistance of optical, electron-beam, and block copolymer (BCP) lithography resists and is also a flexible strategy for nanomaterials synthesis. Despite this broad utility, the kinetics of SIS remain poorly understood, and this knowledge gap must be bridged in order to gain firm control over the growth of inorganic materials inside polymer films at a large scale. In this paper, we explore the reaction kinetics for Al 2O 3 SIS in PMMA using in situ Fourier transformmore » infrared spectroscopy. First, we establish the kinetics for saturation adsorption and desorption of trimethyl aluminum (TMA) in PMMA over a range of PMMA film thicknesses deposited on silicon substrates. These observations guide the selection of TMA dose and purge times during SIS lithography to achieve robust organic/inorganic structures. Next, we examine the effects of TMA desorption on BCP lithography by performing SIS on silicon surfaces coated with polystyrene-block-poly(methyl methacrylate) films. After etching the organic components, the substrates are examined using scanning electron microcopy to evaluate the resulting Al 2O 3 patterns. Finally, we examine the effects of temperature on Al 2O 3 SIS in PMMA to elucidate the infiltration kinetics. The insights provided by these measurements will help extend SIS lithography to larger substrate sizes for eventual commercialization and expand our knowledge of precursor-polymer interactions that will benefit the SIS of a wide range of inorganic materials in the future.« less

  10. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement

    PubMed Central

    Khandaker, Morshed; Vaughan, Melville B; Morris, Tracy L; White, Jeremiah J; Meng, Zhaotong

    2014-01-01

    The most common bone cement material used clinically today for orthopedic surgery is poly(methyl methacrylate) (PMMA). Conventional PMMA bone cement has several mechanical, thermal, and biological disadvantages. To overcome these problems, researchers have investigated combinations of PMMA bone cement and several bioactive particles (micrometers to nanometers in size), such as magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica. A study comparing the effect of these individual additives on the mechanical, thermal, and cell functional properties of PMMA would be important to enable selection of suitable additives and design improved PMMA cement for orthopedic applications. Therefore, the goal of this study was to determine the effect of inclusion of magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica additives in PMMA on the mechanical, thermal, and cell functional performance of PMMA. American Society for Testing and Materials standard three-point bend flexural and fracture tests were conducted to determine the flexural strength, flexural modulus, and fracture toughness of the different PMMA samples. A custom-made temperature measurement system was used to determine maximum curing temperature and the time needed for each PMMA sample to reach its maximum curing temperature. Osteoblast adhesion and proliferation experiments were performed to determine cell viability using the different PMMA cements. We found that flexural strength and fracture toughness were significantly greater for PMMA specimens that incorporated silica than for the other specimens. All additives prolonged the time taken to reach maximum curing temperature and significantly improved cell adhesion of the PMMA samples. The results of this study could be useful for improving the union of implant-PMMA or bone-PMMA interfaces by incorporating nanoparticles into PMMA cement for orthopedic and orthodontic applications. PMID:24920906

  11. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement.

    PubMed

    Khandaker, Morshed; Vaughan, Melville B; Morris, Tracy L; White, Jeremiah J; Meng, Zhaotong

    2014-01-01

    The most common bone cement material used clinically today for orthopedic surgery is poly(methyl methacrylate) (PMMA). Conventional PMMA bone cement has several mechanical, thermal, and biological disadvantages. To overcome these problems, researchers have investigated combinations of PMMA bone cement and several bioactive particles (micrometers to nanometers in size), such as magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica. A study comparing the effect of these individual additives on the mechanical, thermal, and cell functional properties of PMMA would be important to enable selection of suitable additives and design improved PMMA cement for orthopedic applications. Therefore, the goal of this study was to determine the effect of inclusion of magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica additives in PMMA on the mechanical, thermal, and cell functional performance of PMMA. American Society for Testing and Materials standard three-point bend flexural and fracture tests were conducted to determine the flexural strength, flexural modulus, and fracture toughness of the different PMMA samples. A custom-made temperature measurement system was used to determine maximum curing temperature and the time needed for each PMMA sample to reach its maximum curing temperature. Osteoblast adhesion and proliferation experiments were performed to determine cell viability using the different PMMA cements. We found that flexural strength and fracture toughness were significantly greater for PMMA specimens that incorporated silica than for the other specimens. All additives prolonged the time taken to reach maximum curing temperature and significantly improved cell adhesion of the PMMA samples. The results of this study could be useful for improving the union of implant-PMMA or bone-PMMA interfaces by incorporating nanoparticles into PMMA cement for orthopedic and orthodontic applications.

  12. Expression of an alkane monooxygenase (alkB) gene and methyl tert-butyl ether co-metabolic oxidation in Pseudomonas citronellolis.

    PubMed

    Bravo, Ana Luisa; Sigala, Juan Carlos; Le Borgne, Sylvie; Morales, Marcia

    2015-04-01

    Pseudomonas citronellolis UAM-Ps1 co-metabolically transforms methyl tert-butyl ether (MTBE) to tert-butyl alcohol with n-pentane (2.6 mM), n-octane (1.5 mM) or dicyclopropylketone (DCPK) (4.4 mM), a gratuitous inducer of alkane hydroxylase (AlkB) activity. The reverse transcription quantitative real-time PCR was used to quantify the alkane monooxygenase (alkB) gene expression. The alkB gene was expressed in the presence of n-alkanes and DCPK and MTBE oxidation occurred only in cultures when alkB was transcribed. A correlation between the number of alkB transcripts and MTBE consumption was found (ΜΤΒΕ consumption in μmol = 1.44e(-13) x DNA copies, R(2) = 0.99) when MTBE (0.84 mM) was added. Furthermore, alkB was cloned and expressed into Escherichia coli and the recombinant AlkB had a molecular weight of 42 kDa. This is the first report where the expression of alkB is related to the co-metabolic oxidation of MTBE.

  13. Anionic polymer, poly(methyl vinyl ether-maleic anhydride)-coated beads-based capture of human influenza A and B virus.

    PubMed

    Sakudo, Akikazu; Baba, Koichi; Tsukamoto, Megumi; Sugimoto, Atsuko; Okada, Takashi; Kobayashi, Takanori; Kawashita, Norihito; Takagi, Tatsuya; Ikuta, Kazuyoshi

    2009-01-15

    An anionic magnetic beads-based method was developed for the capture of human influenza A and B viruses from nasal aspirates, allantoic fluid and culture medium. A polymer, poly(methyl vinyl ether-maleic anhydride) [poly(MVE-MA)], was used to endow magnetic beads with a negative charge and bioadhesive properties. After incubation with samples containing human influenza virus, the beads were separated from supernatants by applying a magnetic field. The adsorption [corrected] of the virus by the beads was confirmed by hemagglutinin assay, immunochromatography, Western blotting, egg infection, and cell infection. Successful capture was proved using 5 H1N1 influenza A viruses, 10 H3N2 influenza A viruses, and 6 influenza B viruses. Furthermore, the infectivity in chicken embryonated eggs and Madin-Darby canine kidney (MDCK) cells of the captured human influenza virus was similar to that of the total viral quantity of starting materials. Therefore, this method of capture using magnetic beads coated with poly(MVE-MA) can be broadly used for the recovery of infectious human influenza viruses.

  14. Interchain coupled chain dynamics of poly(ethylene oxide) in blends with poly(methyl methacrylate): coupling model analysis.

    PubMed

    Ngai, K L; Wang, Li-Min

    2011-11-21

    Quasielastic neutron scattering and molecular dynamics simulation data from poly(ethylene oxide) (PEO)/poly(methyl methacrylate) (PMMA) blends found that for short times the self-dynamics of PEO chain follows the Rouse model, but at longer times past t(c) = 1-2 ns it becomes slower and departs from the Rouse model in dependences on time, momentum transfer, and temperature. To explain the anomalies, others had proposed the random Rouse model (RRM) in which each monomer has different mobility taken from a broad log-normal distribution. Despite the success of the RRM, Diddens et al. [Eur. Phys. Lett. 95, 56003 (2011)] extracted the distribution of friction coefficients from the MD simulations of a PEO/PMMA blend and found that the distribution is much narrower than expected from the RRM. We propose a simpler alternative explanation of the data by utilizing alone the observed crossover of PEO chain dynamics at t(c). The present problem is just a special case of a general property of relaxation in interacting systems, which is the crossover from independent relaxation to coupled many-body relaxation at some t(c) determined by the interaction potential and intermolecular coupling/constraints. The generality is brought out vividly by pointing out that the crossover also had been observed by neutron scattering from entangled chains relaxation in monodisperse homopolymers, and from the segmental α-relaxation of PEO in blends with PMMA. The properties of all the relaxation processes in connection with the crossover are similar, despite the length scales of the relaxation in these systems are widely different.

  15. Interchain coupled chain dynamics of poly(ethylene oxide) in blends with poly(methyl methacrylate): Coupling model analysis

    NASA Astrophysics Data System (ADS)

    Ngai, K. L.; Wang, Li-Min

    2011-11-01

    Quasielastic neutron scattering and molecular dynamics simulation data from poly(ethylene oxide) (PEO)/poly(methyl methacrylate) (PMMA) blends found that for short times the self-dynamics of PEO chain follows the Rouse model, but at longer times past tc = 1-2 ns it becomes slower and departs from the Rouse model in dependences on time, momentum transfer, and temperature. To explain the anomalies, others had proposed the random Rouse model (RRM) in which each monomer has different mobility taken from a broad log-normal distribution. Despite the success of the RRM, Diddens et al. [Eur. Phys. Lett. 95, 56003 (2011)] extracted the distribution of friction coefficients from the MD simulations of a PEO/PMMA blend and found that the distribution is much narrower than expected from the RRM. We propose a simpler alternative explanation of the data by utilizing alone the observed crossover of PEO chain dynamics at tc. The present problem is just a special case of a general property of relaxation in interacting systems, which is the crossover from independent relaxation to coupled many-body relaxation at some tc determined by the interaction potential and intermolecular coupling/constraints. The generality is brought out vividly by pointing out that the crossover also had been observed by neutron scattering from entangled chains relaxation in monodisperse homopolymers, and from the segmental α-relaxation of PEO in blends with PMMA. The properties of all the relaxation processes in connection with the crossover are similar, despite the length scales of the relaxation in these systems are widely different.

  16. Multidetector thermal field-flow fractionation as a unique tool for the tacticity-based separation of poly(methyl methacrylate)-polystyrene block copolymer micelles.

    PubMed

    Greyling, Guilaume; Pasch, Harald

    2015-10-02

    Poly(methyl methacrylate)-polystyrene (PMMA-PS) micelles with isotactic and syndiotactic coronas are prepared in acetonitrile and subjected to thermal field-flow fractionation (ThFFF) analysis at various conditions of increasing temperature gradients. It is shown for the first time that multidetector ThFFF provides comprehensive information on important micelle characteristics such as size (Dh), shape (Rg/Rh), aggregation number (Z), thermal diffusion (DT) and Soret coefficients (ST) as a function of temperature from a single injection. Moreover, it is found that micelles exhibit a unique decreasing trend in DT as a function of temperature which is independent of the tacticity of the corona and the micelle preparation method used. It is also demonstrated that ThFFF can monitor micelle to vesicle transitions as a function of temperature. In addition to ThFFF, it is found from DLS analysis that the tacticity of the corona influences the critical micelle concentration and the magnitude to which micelles expand/contract with temperature. The tacticity does not, however, influence the critical micelle temperature. Furthermore, the separation of micelles based on the tacticity of the corona highlight the unique capabilities of ThFFF. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Development of sample clean up methods for the analysis of Mycobacterium tuberculosis methyl mycocerosate biomarkers in sputum extracts by gas chromatography–mass spectrometry

    PubMed Central

    Nicoara, Simona C.; Turner, Nicholas W.; Minnikin, David E.; Lee, Oona Y.-C.; O'Sullivan, Denise M.; McNerney, Ruth; Mutetwa, Reggie; Corbett, Liz E.; Morgan, Geraint H.

    2015-01-01

    A proof of principle gas chromatography–mass spectrometry method is presented, in combination with clean up assays, aiming to improve the analysis of methyl mycocerosate tuberculosis biomarkers from sputum. Methyl mycocerosates are generated from the transesterification of phthiocerol dimycocerosates (PDIMs), extracted in petroleum ether from sputum of tuberculosis suspect patients. When a high matrix background is present in the sputum extracts, the identification of the chromatographic peaks corresponding to the methyl derivatives of PDIMs analytes may be hindered by the closely eluting methyl ether of cholesterol, usually an abundant matrix constituent frequently present in sputum samples. The purification procedures involving solid phase extraction (SPE) based methods with both commercial Isolute-Florisil cartridges, and purpose designed molecularly imprinted polymeric materials (MIPs), resulted in cleaner chromatograms, while the mycocerosates are still present. The clean-up performed on solutions of PDIMs and cholesterol standards in petroleum ether show that, depending on the solvent mix and on the type of SPE used, the recovery of PDIMs is between 64 and 70%, whilst most of the cholesterol is removed from the system. When applied to petroleum ether extracts from representative sputum samples, the clean-up procedures resulted in recoveries of 36–68% for PDIMs, allowing some superior detection of the target analytes. PMID:25728371

  18. The profile of adsorbed plasma and serum proteins on methacrylic acid copolymer beads: Effect on complement activation.

    PubMed

    Wells, Laura A; Guo, Hongbo; Emili, Andrew; Sefton, Michael V

    2017-02-01

    Polymer beads made of 45% methacrylic acid co methyl methacrylate (MAA beads) promote vascular regenerative responses in contrast to control materials without methacrylic acid (here polymethyl methacrylate beads, PMMA). In vitro and in vivo studies suggest that MAA copolymers induce differences in macrophage phenotype and polarization and inflammatory responses, presumably due to protein adsorption differences between the beads. To explore differences in protein adsorption in an unbiased manner, we used high resolution shotgun mass spectrometry to identify and compare proteins that adsorb from human plasma or serum onto MAA and PMMA beads. From plasma, MAA beads adsorbed many complement proteins, such as C1q, C4-related proteins and the complement inhibitor factor H, while PMMA adsorbed proteins, such as albumin, C3 and apolipoproteins. Because of the differences in complement protein adsorption, follow-up studies focused on using ELISA to assess complement activation. When incubated in serum, MAA beads generated significantly lower levels of soluble C5b9 and C3a/C3a desarg in comparison to PMMA beads, indicating a decrease in complement activation with MAA beads. The differences in adsorbed protein on the two materials likely alter subsequent cell-material interactions that ultimately result in different host responses and local vascularization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Second-order nonlinear optical properties of composite material of an azo-chromophore with a tricyanodiphenyl acceptor in a poly(styrene-co-methyl methacrylate) matrix

    NASA Astrophysics Data System (ADS)

    Shelkovnikov, Vladimir; Selivanova, Galina; Lyubas, Gleb; Korotaev, Sergey; Shundrina, Inna; Tretyakov, Evgeny; Zueva, Ekaterina; Plekhanov, Alexander; Mikerin, Sergey; Simanchuk, Andrey

    2017-07-01

    The composite material of new synthesized 4-((4-(N,N-n-dibutylamino) phenyl)diazenyl)-biphenyl-2,3,4-tricarbonitrile (GAS dye) in commercial poly(styrene-co-methyl methacrylate) (PSMMA) was prepared, poled and its nonlinear optical properties compared with DR1 dye were studied. High thermal stability of the composite material was revealed, and the maximal concentration of the chromophore was found to reach ∼20 wt%. The dipole moment, polarizability tensor, and first hyperpolarizability tensor of the investigated dyes were calculated by within the framework of the coupled perturbed density functional theory. A nanosecond second-harmonic generation Maker fringes technique was used which is capable of providing the magnitude of the second-order nonlinearity of optical materials at a wavelength of 1064 nm. For the tested GAS-PSMMA composite material, maximal coefficient d33 was found to be 50 pm/V. The nonlinear optical response, which was achieved here, shows possible usefulness of the GAS dye as a component for molecular design of nonlinear-optical materials with advanced characteristics.

  20. Insertion of a pentacene layer into the gold/poly(methyl methacrylate)/heavily doped p-type Si/indium device leading to the modulation of resistive switching characteristics

    NASA Astrophysics Data System (ADS)

    Hung, Cheng-Chun; Lin, Yow-Jon

    2018-01-01

    In order to get a physical insight into the pentacene interlayer-modulated resistive switching (RS) characteristics, the Au/pentacene/poly(methyl methacrylate) (PMMA)/heavily doped p-type Si (p+-Si)/In and Au/PMMA/p+-Si/In devices are fabricated and the device performance is provided. The Au/pentacene/PMMA/p+-Si/In device shows RS behavior, whereas the Au/PMMA/p+-Si/In device exhibits the set/reset-free hysteresis current-voltage characteristics. The insertion of a pentacene layer is a noticeable contribution to the RS characteristic. This is because of the occurrence of carrier accumulation/depletion in the pentacene interlayer. The transition from carrier depletion to carrier accumulation (carrier accumulation to carrier depletion) in pentacene occurring under negative (positive) voltage induces the process of set (reset). The switching conduction mechanism is primarily described as space charge limited conduction according to the electrical transport properties measurement. The concept of a pentacene/PMMA heterostructure opens a promising direction for organic memory devices.

  1. Investigation of triacetin effect on indomethacin release from poly(methyl methacrylate) microspheres: evaluation of interactions using FT-IR and NMR spectroscopies.

    PubMed

    Yuksel, Nilufer; Baykara, Meltem; Shirinzade, Hanif; Suzen, Sibel

    2011-02-14

    The purpose of this study was to form indomethacin (IND)-loaded poly(methyl methacrylate) (PMMA) microspheres having an extended drug release profile over a period of 24h. Microspheres were prepared by solvent evaporation method using sucrose stearate as a droplet stabilizer. When PMMA was used alone for the preparation of microspheres, only 44% of IND could be released at the end of 8h. Triacetin was added to PMMA, as a minor phase, and the obtained microspheres showed a high yield process with recovery of 89.82% and incorporation efficiency of 102.3%. A desired release profile lasting 24h was achieved. Differential scanning calorimetry (DSC) analysis showed that IND was found to be in an amorphous state in the microspheres. Fourier transform infrared (FT-IR) and nuclear magnetic resonance ((1)H NMR) spectra suggested that there might be a hydrogen bond present between the IND hydroxyl group and PMMA. No interaction between triacetin and IND or PMMA as the formation of secondary bonds was observed. The release enhancement of IND from microspheres was attributed to the physical plasticization effect of triacetin on PMMA and, to some extent, the amorphous state of the drug. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Custom CAD-CAM healing abutment and impression coping milled from a poly(methyl methacrylate) block and bonded to a titanium insert.

    PubMed

    Proussaefs, Periklis

    2016-11-01

    This article describes a technique in which a custom-made computer-aided design and computer-aided manufacturing (CAD-CAM) healing abutment milled from a poly(methyl methacrylate) (PMMA) block is fabricated and bonded to a titanium metal insert. An impression is made during dental implant surgery, and the CAD-CAM custom-made healing abutment is fabricated before second-stage surgery while appropriate healing time is allowed for the dental implant to osseointegrate. The contours of the healing abutment are based on the contours of a tentatively designed definitive prosthesis. The healing tissue obtains contours that will be compatible with the contours of the definitive prosthesis. After the milling process is complete, a titanium metal insert is bonded to the healing abutment. Placement of the custom-made CAD-CAM healing abutment at second-stage surgery allows the tissue to obtain contours similar to those of the definitive prosthesis. A custom-made CAD-CAM impression coping milled from a PMMA block and with a titanium insert is used for the definitive impression after the soft tissue has healed. This technique allows guided soft tissue healing by using a custom-made CAD-CAM healing abutment and impression coping. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Determination of thermodynamic properties of poly (cyclohexyl methacrylate) by inverse gas chromatography.

    PubMed

    Kaya, Ismet; Pala, Cigdem Yigit

    2014-07-01

    In this work, some thermodynamic properties of poly (cyclohexyl methacrylate) were studied by inverse gas chromatography (IGC). For this purpose, the polymeric substance was coated on Chromosorb W and which was filled into a glass column. The retention times (t(r)) of the probes were determined from the interactions of poly (cyclohexyl methacrylate) with n-pentane, n-hexane, n-heptane, n-octane, n-decane, methanol, ethanol, 2-propanol, butanol, acetone, ethyl methyl ketone, benzene, toluene and o-xylene by IGC technique. Then, the specific volume (Vg(0)) was determined for each probe molecule. By using (1/T; lnVg(0)) graphics, the glass transition temperature of poly (cyclohexyl methacrylate) was found to be 373 K. The adsorption heat under the glass transition temperature (deltaH(a)), and partial molar heat of sorption above the glass transition (deltaH1(S)), partial molar free energy of sorption (deltaG1(S)) and partial molar entropy of sorption (deltaS1(S)) belonging to sorption for every probe were calculated. The partial molar heat of mixing at infinite dilution (deltaH1(infinity)), partial molar free energy of mixing at infinite dilution (deltaG1(infinity)), Flory-Huggins interaction parameter (chi12(infinity)) and weight fraction activity coefficient (a1/w1)(infinity) values of polymer-solute systems were calculated at different column temperatures. The solubility parameters (delta2) of the polymer were obtained by IGC technique.

  4. Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy.

    PubMed

    Jaffrès, Paul-Alain; Gajate, Consuelo; Bouchet, Ana Maria; Couthon-Gourvès, Hélène; Chantôme, Aurélie; Potier-Cartereau, Marie; Besson, Pierre; Bougnoux, Philippe; Mollinedo, Faustino; Vandier, Christophe

    2016-09-01

    Synthetic alkyl lipids, such as the ether lipids edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) and ohmline (1-O-hexadecyl-2-O-methyl-rac-glycero-3-β-lactose), are forming a class of antitumor agents that target cell membranes to induce apoptosis and to decrease cell migration/invasion, leading to the inhibition of tumor and metastasis development. In this review, we present the structure-activity relationship of edelfosine and ohmline, and we point out differences and similarities between these two amphiphilic compounds. We also discuss the mechanisms of action of these synthetic alkyl ether lipids (involving, among other structures and molecules, membrane domains, Fas/CD95 death receptor signaling, and ion channels), and highlight a key role for lipid rafts in the underlying process. The reorganization of lipid raft membrane domains induced by these alkyl lipids affects the function of death receptors and ion channels, thus leading to apoptosis and/or inhibition of cancer cell migration. The possible therapeutic use of these alkyl lipids and the clinical perspectives for these lipids in prevention or/and treatment of tumor development and metastasis are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Original research paper. Characterization and taste masking evaluation of microparticles with cetirizine dihydrochloride and methacrylate-based copolymer obtained by spray drying.

    PubMed

    Amelian, Aleksandra; Szekalska, Marta; Ciosek, Patrycja; Basa, Anna; Winnicka, Katarzyna

    2017-03-01

    Taste of a pharmaceutical formulation is an important parameter for the effectiveness of pharmacotherapy. Cetirizine dihydrochloride (CET) is a second-generation antihistamine that is commonly administered in allergy treatment. CET is characterized by extremely bitter taste and it is a great challenge to successfully mask its taste; therefore the goal of this work was to formulate and characterize the microparticles obtained by the spray drying method with CET and poly(butyl methacrylate-co-(2-dimethylaminoethyl) methacrylate-co-methyl methacrylate 1:2:1 copolymer (Eudragit E PO) as a barrier coating. Assessment of taste masking by the electronic tongue has revealed that designed formulations created an effective taste masking barrier. Taste masking effect was also confirmed by the in vivo model and the in vitro release profile of CET. Obtained data have shown that microparticles with a drug/polymer ratio (0.5:1) are promising CET carriers with efficient taste masking potential and might be further used in designing orodispersible dosage forms with CET.

  6. Exposure to methyl tert-butyl ether and benzene among service station attendants and operators.

    PubMed Central

    Hartle, R

    1993-01-01

    Concerns for atmospheric pollution from auto exhaust have led to the blending of "oxygenates" with motor fuels. The most common oxygenate, methyl tert-butyl ether (MTBE) is currently required within several metropolitan areas (Denver and Phoenix) in the range of 12% of the motor fuel. Amendments to the Clean Air Act may expand this requirement to as many as 44 other areas of the United States in the near future. In consideration of the magnitude of potential uncontrolled exposures from its extensive use and a related concern involving the potential influence of MTBE blending on exposures to other constituents of gasoline (particularly benzene), an evaluation of exposures among service station attendants and operators was undertaken at the request, and in cooperation with, the American Petroleum Institute during the latter part of 1990. For application of the survey results to a broad audience, three categories or types of service stations were identified with regard to MTBE use and exposure potential: a) service stations that do not use MTBE or use it only as an octane enhancer, b) service stations with seasonal requirements to use 12-15% MTBE (the Denver, Colorado, and Phoenix, Arizona, metropolitan areas), and c) service stations equipped with stage II (active) vapor recovery systems (several coastal areas, most notably Southern California). At the two sampled service stations that use only minimal amounts of MTBE (less than 1%), only 1 of 32 personal breathing zone (PBZ) samples from attendants was above the analytical limit of detection, reported at 0.16 ppm. The geometric mean concentration of benzene among this same population (n = 32) was 0.04 ppm.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8020445

  7. Exposure to methyl tert-butyl ether and benzene among service station attendants and operators.

    PubMed

    Hartle, R

    1993-12-01

    Concerns for atmospheric pollution from auto exhaust have led to the blending of "oxygenates" with motor fuels. The most common oxygenate, methyl tert-butyl ether (MTBE) is currently required within several metropolitan areas (Denver and Phoenix) in the range of 12% of the motor fuel. Amendments to the Clean Air Act may expand this requirement to as many as 44 other areas of the United States in the near future. In consideration of the magnitude of potential uncontrolled exposures from its extensive use and a related concern involving the potential influence of MTBE blending on exposures to other constituents of gasoline (particularly benzene), an evaluation of exposures among service station attendants and operators was undertaken at the request, and in cooperation with, the American Petroleum Institute during the latter part of 1990. For application of the survey results to a broad audience, three categories or types of service stations were identified with regard to MTBE use and exposure potential: a) service stations that do not use MTBE or use it only as an octane enhancer, b) service stations with seasonal requirements to use 12-15% MTBE (the Denver, Colorado, and Phoenix, Arizona, metropolitan areas), and c) service stations equipped with stage II (active) vapor recovery systems (several coastal areas, most notably Southern California). At the two sampled service stations that use only minimal amounts of MTBE (less than 1%), only 1 of 32 personal breathing zone (PBZ) samples from attendants was above the analytical limit of detection, reported at 0.16 ppm. The geometric mean concentration of benzene among this same population (n = 32) was 0.04 ppm.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Development of form stable Poly(methyl methacrylate) (PMMA) coated thermal phase change material for solar water heater applications

    NASA Astrophysics Data System (ADS)

    Munusamy, Y.; Shanmugam, S.; Shi-Ying, Kee

    2018-04-01

    Phase change material (PCM) is one of the most popular and widely used thermal energy storage material in solar water heater because it able to absorb and release a large amount of latent heat during a phase change process over a narrow temperature range. However the practical application of PCM is limited by two major issues; 1) leakage which leads to material loss and corrosion of tank and 2) large volume change during phase change process which cause pressure build up in the tank. In this work, form-stable PCM was prepared by coating myristic acid with Poly(methyl methacrylate) (PMMA) to prevent leakage of PCM. PMMA was mixed with different weight percentage (0.1, 0.2, 0.3, 0.4 and 0.5 wt%) of dicumyl peroxide (DCP). The purpose of adding DCP to PMMA is to crosslink the polymer and to increase the mechanical strength of PMMA to hold the myristic acid content inside the coating during the phase change process. Leakage test results showed that PMMA mixed with 0.1% DCP exhibit 0% leakage. This result is further supported by Field Emission Scanning Electron Microscopy (FESEM) images and Fourier transform infrared spectroscopy (FTIR) analysis results, where a compact and uniform coating without cracks were formed for PCM coated with PMMA with 0.1% DCP. Differential scanning calorimetry (DSC) results shows that the melting point of form-stable PCM is 55°C, freezing point is 50°C, the latent heat of melting and freezing is 67.59 J/g.

  9. Nanotopographic Substrates of Poly (Methyl Methacrylate) Do Not Strongly Influence the Osteogenic Phenotype of Mesenchymal Stem Cells In Vitro

    PubMed Central

    Janson, Isaac A.; Kong, Yen P.; Putnam, Andrew J.

    2014-01-01

    The chemical, mechanical, and topographical features of the extracellular matrix (ECM) have all been documented to influence cell adhesion, gene expression, migration, proliferation, and differentiation. Topography plays a key role in the architecture and functionality of various tissues in vivo, thus raising the possibility that topographic cues can be instructive when incorporated into biomaterials for regenerative applications. In the literature, there are discrepancies regarding the potential roles of nanotopography to enhance the osteogenic phenotype of mesenchymal stem cells (MSC). In this study, we used thin film substrates of poly(methyl methacrylate) (PMMA) with nanoscale gratings to investigate the influence of nanotopography on the osteogenic phenotype of MSCs, focusing in particular on their ability to produce mineral similar to native bone. Topography influenced focal adhesion size and MSC alignment, and enhanced MSC proliferation after 14 days of culture. However, the osteogenic phenotype was minimally influenced by surface topography. Specifically, alkaline phosphatase (ALP) expression was not increased on nanotopographic films, nor was calcium deposition improved after 21 days in culture. Ca: P ratios were similar to native mouse bone on films with gratings of 415 nm width and 200 nm depth (G415) and 303 nm width and 190 nm depth (G303). Notably, all surfaces had Ca∶P ratios significantly lower than G415 films. Collectively, these data suggest that, PMMA films with nanogratings are poor drivers of an osteogenic phenotype. PMID:24594848

  10. Diffusion-regulated phase-transfer catalysis for atom transfer radical polymerization of methyl methacrylate in an aqueous/organic biphasic system.

    PubMed

    Ding, Mingqiang; Jiang, Xiaowu; Peng, Jinying; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2015-03-01

    A concept based on diffusion-regulated phase-transfer catalysis (DRPTC) in an aqueous-organic biphasic system with copper-mediated initiators for continuous activator regeneration is successfully developed for atom transfer radical polymerization (ICAR ATRP) (termed DRPTC-based ICAR ATRP here), using methyl methacrylate (MMA) as a model monomer, ethyl α-bromophenylacetate (EBrPA) as an initiator, and tris(2-pyridylmethyl)amine (TPMA) as a ligand. In this system, the monomer and initiating species in toluene (organic phase) and the catalyst complexes in water (aqueous phase) are simply mixed under stirring at room temperature. The trace catalyst complexes transfer into the organic phase via diffusion to trigger ICAR ATRP of MMA with ppm level catalyst content once the system is heated to the polymerization temperature (75 °C). It is found that well-defined PMMA with controlled molecular weights and narrow molecular weight distributions can be obtained easily. Furthermore, the polymerization can be conducted in the presence of limited amounts of air without using tedious degassed procedures. After cooling to room temperature, the upper organic phase is decanted and the lower aqueous phase is reused for another 10 recycling turnovers with ultra low loss of catalyst and ligand loading. At the same time, all the recycled catalyst complexes retain nearly perfect catalytic activity and controllability, indicating a facile and economical strategy for catalyst removal and recycling. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Intratumoral gene therapy versus intravenous gene therapy for distant metastasis control with 2-diethylaminoethyl-dextran methyl methacrylate copolymer non-viral vector-p53.

    PubMed

    Baliaka, A; Zarogoulidis, P; Domvri, K; Hohenforst-Schmidt, W; Sakkas, A; Huang, H; Le Pivert, P; Koliakos, G; Koliakou, E; Kouzi-Koliakos, K; Tsakiridis, K; Chioti, A; Siotou, E; Cheva, A; Zarogoulidis, K; Sakkas, L

    2014-02-01

    Lung cancer still remains to be challenged by novel treatment modalities. Novel locally targeted routes of administration are a methodology to enhance treatment and reduce side effects. Intratumoral gene therapy is a method for local treatment and could be used either in early-stage lung cancer before surgery or at advanced stages as palliative care. Novel non-viral vectors are also in demand for efficient gene transfection to target local cancer tissue and at the same time protect the normal tissue. In the current study, C57BL/6 mice were divided into three groups: (a) control, (b) intravenous and (c) intatumoral gene therapy. The novel 2-Diethylaminoethyl-Dextran Methyl Methacrylate Copolymer Non-Viral Vector (Ryujyu Science Corporation) was conjugated with plasmid pSicop53 from the company Addgene for the first time. The aim of the study was to evaluate the safety and efficacy of targeted gene therapy in a Lewis lung cancer model. Indeed, although the pharmacokinetics of the different administration modalities differs, the intratumoral administration presented increased survival and decreased distant metastasis. Intratumoral gene therapy could be considered as an efficient local therapy for lung cancer.

  12. Effect of Methyl Substitution on the N-H···O Interaction in Complexes of Pyrrole with Water, Methanol, and Dimethyl Ether: Matrix Isolation Infrared Spectroscopy and ab Initio Computational Studies.

    PubMed

    Sarkar, Shubhra; Ramanathan, N; Sundararajan, K

    2018-03-08

    Hydrogen-bonded interactions of pyrrole with water and methanol have been studied using matrix isolation infrared spectroscopy and compared with the calculation performed on dimethyl ether. Computations carried out at MP2/aug-cc-pVDZ level of theory yielded two minima for the pyrrole-water and pyrrole-methanol complexes. The global and local minima correspond to the N-H···O and O-H···π complexes, respectively, where the N-H group of pyrrole interacts with oxygen of water/methanol and O-H of water and methanol interacts with the π cloud of pyrrole. Computations performed on the pyrrole-dimethyl ether gave only N-H···O type complex. From the experimental vibrational wavenumber shifts in the N-H stretching and N-H bending modes of pyrrole, as well as in the O-H stretching modes of water and methanol, the 1:1 N-H···O complexes were discerned. The strength of the N-H···O hydrogen bond and the corresponding shift in the N-H stretching vibrational wavenumbers increases in the order pyrrole-water < pyrrole-methanol < pyrrole-dimethyl ether, where a proton is successively replaced by a methyl group. Apart from the 1:1 complexes, higher clusters of 2:1 and 1:2 pyrrole-water and pyrrole-methanol complexes were also generated in N 2 matrix. Atoms in molecules and natural bond orbital analyses were carried out at the MP2/aug-cc-pVDZ level to understand the nature of interaction in the 1:1 pyrrole-water, pyrrole-methanol and pyrrole-dimethyl ether complexes.

  13. Synthesis of Eugenol–Lauryl Methacrylate Copolymers via Cationic Polymerization

    NASA Astrophysics Data System (ADS)

    Fajrin, A.; Marliana, SD; Handayani, D. S.

    2018-04-01

    Eugenol is one of the most abundant natural resources in Indonesia. The recently bio-based polymer resin is created based on eugenol because eugenol is functionalized with the polymerizable group. In order to improve the functional properties of eugenol, in this research Eugenol–Lauryl Methacrylate copolymers (co-poly(Eg-LMA)) were synthesized by cationic polymerization using H2SO4 as an initiator under the nitrogen atmosphere. Structure identification of the copolymer showed the absorption of the vinyl group from the monomers disappear at the analysis through FTIR at the wave number 1637-1639 and 985-995 cm-1 and also 1H-NMR on the chemical shift 5,97 and 5,08 ppm. The resulting copolymers obtained brown powder in 32.03 % yieldsand melting point at 96 – 97 °C. Solubility test of the co-poly(Eg-LMA) showed that the polymer couldnot soluble in water but soluble in chloroform, diethyl ether, and benzene. Average molecular weight of co-poly(Eg-LMA) Led Ostwald viscometry was obtained 42020 with the degree of polymerization by 200.

  14. Identification of methyl triclosan and halogenated analogues in male common carp (Cyprinus carpio) from Las Vegas Bay and semipermeable membrane devices from Las Vegas Wash, Nevada

    USGS Publications Warehouse

    Leiker, T.J.; Abney, S.R.; Goodbred, S.L.; Rosen, Michael R.

    2009-01-01

    Methyl triclosan and four halogenated analogues have been identified in extracts of individual whole-body male carp (Cyprinus carpio) tissue that were collected from Las Vegas Bay, Nevada, and Semipermeable Membrane Devices (SPMD) that were deployed in Las Vegas Wash, Nevada. Methyl triclosan is believed to be the microbially methylated product of the antibacterial agent triclosan (2, 4, 4'-trichloro-4-hydroxydiphenyl ether, Chemical Abstract Service Registry Number 3380-34-5, Irgasan DP300). The presence of methyl triclosan and four halogenated analogues was confirmed in SPMD extracts by comparing low- and high-resolution mass spectral data and Kovats retention indices of methyl triclosan with commercially obtained triclosan that was derivatized to the methyl ether with ethereal diazomethane. The four halogenated analogues of methyl triclosan detected in both whole-body tissue and SPMD extracts were tentatively identified by high resolution mass spectrometry. Methyl triclosan was detected in all 29 male common carp from Las Vegas Bay with a mean concentration of 596????g kg- 1 wet weight (ww) which is more than an order of magnitude higher than previously reported concentrations in the literature. The halogenated analogs were detected less frequently (21%-76%) and at much lower concentrations (< 51????g kg- 1 ww). None of these compounds were detected in common carp from a Lake Mead reference site in Overton Arm, Nevada.

  15. The fungal phytotoxin alternariol 9-methyl ether and some of its synthetic analogues inhibit the photosynthetic electron transport chain.

    PubMed

    Demuner, Antonio Jacinto; Barbosa, Luiz Cláudio Almeida; Miranda, Ana Cristina Mendes; Geraldo, Guilherme Carvalho; da Silva, Cleiton Moreira; Giberti, Samuele; Bertazzini, Michele; Forlani, Giuseppe

    2013-12-27

    Alternariol and monomethylalternariol are natural phytotoxins produced by some fungal strains, such as Nimbya and Alternaria. These substances confer virulence to phytopathogens, yet no information is available concerning their mode of action. Here we show that in the micromolar range alternariol 9-methyl ether is able to inhibit the electron transport chain (IC50 = 29.1 ± 6.5 μM) in isolated spinach chloroplasts. Since its effectiveness is limited by poor solubility in water, several alternariol analogues were synthesized using different aromatic aldehydes. The synthesized 6H-benzo[c]cromen-6-ones, 5H-chromene[4,3-b]pyridin-5-one, and 5H-chromene[4,3-c]pyridin-5-one also showed inhibitory properties, and three 6H-benzo[c]cromen-6-ones were more effective (IC50 = 12.8-22.8 μM) than the lead compound. Their addition to the culture medium of a cyanobacterial model strain was found to inhibit algal growth, with a relative effectiveness that was consistent with their activity in vitro. In contrast, the growth of a nonphotosynthetic plant cell culture was poorly affected. These compounds may represent a novel lead for the development of new active principles targeting photosynthesis.

  16. Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Xi, Jingyu; Li, Zhaohua; Yu, Lihong; Yin, Bibo; Wang, Lei; Liu, Le; Qiu, Xinping; Chen, Liquan

    2015-07-01

    The properties of sulfonated poly(ether ether ketone) (SPEEK) membranes with various degree of sulfonation (DS) and casting solvent are investigated for vanadium redox flow battery (VRFB). The optimum DS of SPEEK membrane is firstly confirmed by various characterizations such as physicochemical properties, ion selectivity, and VRFB single-cell performance. Subsequently the optimum casting solvent is selected for the optimum DS SPEEK membrane within N,N‧-dimethylformamide (DMF), N,N‧-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and dimethylsulfoxide (DMSO). The different performance of SPEEK membranes prepared with various casting solvents can be attributed to the different interaction between solvent and -SO3H group of SPEEK. In the VRFB single-cell test, the optimum SPEEK membrane with DS of 67% and casting solvent of DMF (S67-DMF membrane) exhibits higher VRFB efficiencies and better cycle-life performance at 80 mA cm-2. The investigation of various DS and casting solvent will be effective guidance on the selection and modification of SPEEK membrane towards VRFB application.

  17. Mitigated reactive oxygen species generation leads to an improvement of cell proliferation on poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] functionalized polydimethylsiloxane surfaces.

    PubMed

    Yu, Ling; Shi, ZhuanZhuan; Gao, LiXia; Li, ChangMing

    2015-09-01

    In vitro cell-based analysis is strongly affected by material's surface chemical properties. The cell spreading, migration, and proliferation on a substrate surface are initiated and controlled by successful adhesion, particularly for anchor-dependent cells. Unfortunately, polydimethylsiloxane (PDMS), one of the most used polymeric materials for construction of microfluidic and miniaturized biomedical analytic devices, is not a cell-friendly surface because of its inherent hydrophobic property. Herein, a poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] (poly(GMA-co-pEGMA)) polymer brush was synthesized on a PDMS surface through a surface-initiated atom-transfer radical polymerization method. Contact angle and Fourier transform infrared characterization show that the poly (GMA-co-pEGMA) polymer brush functionalization can increase wettability of PDMS and introduce epoxy, hydroxyl, and ether groups into PDMS surface. In vitro cell growth assay demonstrates that cell adhesion and proliferation on poly(GMA-co-pEGMA) polymer brush-functionalized PDMS (poly(GMA-co-pEGMA)@PDMS) are better than on pristine PDMS. Additionally, immobilization of collagen type I (CI) and fibronectin (FN) on poly(GMA-co-pEGMA)@PDMS is better than direct coating of CI and FN on pristine PDMS to promote cell adhesion. Furthermore, increased intracellular reactive oxygen species and cell mitochondrial membrane depolarization, two indicators of cell oxidative stress, are observed from cells growing on pristine PDMS, but not from those on poly(GMA-co-pEGMA)@PDMS. Collectively, we demonstrate that poly(GMA-co-pEGMA) functionalization can enhance cell adhesion and proliferation on PDMS, and thus can be potentially used for microfluidic cell assay devices for cellular physiology study or drug screening. © 2015 Wiley Periodicals, Inc.

  18. Prolonged Hypocalcemic Effect by Pulmonary Delivery of Calcitonin Loaded Poly(Methyl Vinyl Ether Maleic Acid) Bioadhesive Nanoparticles

    PubMed Central

    Varshosaz, J.; Minaiyan, M.; Forghanian, M.

    2014-01-01

    The purpose of the present study was to design a pulmonary controlled release system of salmon calcitonin (sCT). Therefore, poly(methyl vinyl ether maleic acid) [P(MVEMA)] nanoparticles were prepared by ionic cross-linking method using Fe2+ and Zn2+ ions. Physicochemical properties of nanoparticles were studied in vitro. The stability of sCT in the optimized nanoparticles was studied by electrophoretic gel method. Plasma calcium levels until 48 h were determined in rats as pulmonary-free sCT solution or nanoparticles (25 μg·kg−1), iv solution of sCT (5 μg·kg−1), and pulmonary blank nanoparticles. The drug remained stable during fabrication and tests on nanoparticles. The optimized nanoparticles showed proper physicochemical properties. Normalized reduction of plasma calcium levels was at least 2.76 times higher in pulmonary sCT nanoparticles compared to free solution. The duration of hypocalcemic effect of pulmonary sCT nanoparticles was 24 h, while it was just 1 h for the iv solution. There was not any significant difference between normalized blood calcium levels reduction in pulmonary drug solution and iv injection. Pharmacological activity of nanoparticles after pulmonary delivery was 65% of the iv route. Pulmonary delivery of P(MVEMA) nanoparticles of sCT enhanced and prolonged the hypocalcemic effect of the drug significantly. PMID:24701588

  19. Enhanced cometabolic degradation of methyl tert-butyl ether by a Pseudomonas sp. strain grown on n-pentane

    NASA Astrophysics Data System (ADS)

    Li, S. S.; Wang, S.; Yan, W.

    2016-08-01

    When methyl tert-butyl ether (MTBE) is added as oxygenates it increases the octane number and decreases the release of nitric oxide from the incomplete combustion of reformulated gasoline. The extensive use of MTBE allowed it to be detectable as a pollutant in both ground-level and underground water worldwide. The present study focuses on the isolation and characterization of MTB-degrading microorganisms by cometabolism based on the results of growth on different carbon sources. It also focuses on the kinetic analysis and the continuous degradation of MTBE. A bacterial strain WL1 that can grow on both n-alkanes (C5-C8) and aromatics was isolated and named Pseudomonas sp. WL1 according to the 16S rDNA sequencing analysis. Strain WL1 could cometabolically degrade MTBE in the presence of n-alkanes with a desirable degradation rate. Diverse n-alkanes with different lengths of carbon chains showed significant influence on the degradation rate of MTBE and accumulation of tert-butyl alcohol (TBA). When strain WL1 cometabolically degraded MTBE in the presence of n-pentane, higher MTBE-degrading rate and lower TBA-accumulation were observed (Vmax = 38.1 nmol/min/mgprotei, Ks = 6.8 mmol/L). In the continuous degrading experiment, the removal efficiency of MTBE by Pseudomonas sp. WL1 did not show any obvious decrease after five subsequent additions.

  20. 40 CFR 721.10527 - Perfluoroalkylethyl methacrylate copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as perfluoroalkylethyl methacrylate copolymer (PMN P-11-646) is subject to reporting under this... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Perfluoroalkylethyl methacrylate... Specific Chemical Substances § 721.10527 Perfluoroalkylethyl methacrylate copolymer (generic). (a) Chemical...

  1. 40 CFR 721.10527 - Perfluoroalkylethyl methacrylate copolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as perfluoroalkylethyl methacrylate copolymer (PMN P-11-646) is subject to reporting under this... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Perfluoroalkylethyl methacrylate... Specific Chemical Substances § 721.10527 Perfluoroalkylethyl methacrylate copolymer (generic). (a) Chemical...

  2. 40 CFR 721.10619 - Perfluoroalkylethyl methacrylate copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as perfluoroalkylethyl methacrylate copolymer (PMN P-11-653) is subject to reporting under this... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Perfluoroalkylethyl methacrylate... Specific Chemical Substances § 721.10619 Perfluoroalkylethyl methacrylate copolymer (generic). (a) Chemical...

  3. 40 CFR 721.10619 - Perfluoroalkylethyl methacrylate copolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as perfluoroalkylethyl methacrylate copolymer (PMN P-11-653) is subject to reporting under this... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Perfluoroalkylethyl methacrylate... Specific Chemical Substances § 721.10619 Perfluoroalkylethyl methacrylate copolymer (generic). (a) Chemical...

  4. Thermal and Optical Properties of New Poly(amide-imide)/Nanocomposite Reinforced by Layer Silicate Containing Diphenyl Ether Moieties

    NASA Astrophysics Data System (ADS)

    Faghihi, Khalil; Faramarzi, Ellahe; Shabanian, Meisam

    2011-04-01

    New poly(amide-imide)-montmorillonite reinforced nanocomposites containing Bis(4-N-trimellitylimido) diphenyl ether moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 4 was synthesized by the direct polycondensation reaction of Bis(4-N-trimellitylimido) diphenyl ether 3 with 4,4'-diamino diphenyl ether 2 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). Morphology and structure of the resulting PAI-nanocomposite films 4a and 4b with 10 and 20 mass% silicate particles respectively, were characterized by FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The properties of nanocomposites films were investigated by using Uv-vis spectroscopy, thermogravimetric analysis (TGA) and water uptake measurements.

  5. Osteo-odonto-keratoprosthesis (OOKP) and the testing of three different adhesives for bonding bovine teeth with optical poly-(methyl methacrylate) (PMMA) cylinder.

    PubMed

    Weisshuhn, K; Berg, I; Tinner, D; Kunz, C; Bornstein, M M; Steineck, M; Hille, K; Goldblum, D

    2014-07-01

    Preparation of the lamina during osteo-odonto-keratoprosthesis (OOKP) design is complex, and its longevity and watertightness important. To date, only acrylic bone cements have been used for bonding the optical cylinder to the tooth dentine. Our aim was to evaluate different dental adhesives for OOKP preparation. Specimens of bovine teeth were produced by preparing 1.5-mm thick dentine slices with holes having a diameter of 3.5 mm. Each group (n=10 per group) was luted with either classic poly-(methyl methacrylate) (PMMA) bone cement, universal resin cement or glass ionomer cement. All specimens underwent force measurement using a uniaxial traction machine. The highest mean force required to break the bond was measured for PMMA bone cement (128.2 N) followed by universal resin cement (127.9 N), with no statistically significant difference. Glass ionomer cement showed significantly lower force resistance (78.1 N). Excellent bonding strength combined with easy application was found for universal resin cement, and thus, it is a potential alternative to acrylic bone cement in OOKP preparation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Chest wall reconstruction with methacrylate prosthesis in Poland syndrome.

    PubMed

    Arango Tomás, Elisabet; Baamonde Laborda, Carlos; Algar Algar, Javier; Salvatierra Velázquez, Angel

    2013-10-01

    Poland syndrome is a rare congenital malformation. This syndrome was described in 1841 by Alfred Poland at Guy's Hospital in London. It is characterized by hypoplasia of the breast and nipple, subcutaneous tissue shortages, lack of the costosternal portion of the pectoralis major muscle and associated alterations of the fingers on the same side. Corrective treatment of the chest and soft tissue abnormalities in Poland syndrome varies according to different authors. We report the case of a 17-year-old adolescent who underwent chest wall reconstruction with a methyl methacrylate prosthesis. This surgical procedure is recommended for large anterior chest wall defects, and it prevents paradoxical movement. Moreover it provides for individual remodeling of the defect depending on the shape of the patient's chest. Copyright © 2012 SEPAR. Published by Elsevier Espana. All rights reserved.

  7. The Ether-Cleaving Methyltransferase System of the Strict Anaerobe Acetobacterium dehalogenans: Analysis and Expression of the Encoding Genes▿

    PubMed Central

    Schilhabel, Anke; Studenik, Sandra; Vödisch, Martin; Kreher, Sandra; Schlott, Bernhard; Pierik, Antonio Y.; Diekert, Gabriele

    2009-01-01

    Anaerobic O-demethylases are inducible multicomponent enzymes which mediate the cleavage of the ether bond of phenyl methyl ethers and the transfer of the methyl group to tetrahydrofolate. The genes of all components (methyltransferases I and II, CP, and activating enzyme [AE]) of the vanillate- and veratrol-O-demethylases of Acetobacterium dehalogenans were sequenced and analyzed. In A. dehalogenans, the genes for methyltransferase I, CP, and methyltransferase II of both O-demethylases are clustered. The single-copy gene for AE is not included in the O-demethylase gene clusters. It was found that AE grouped with COG3894 proteins, the function of which was unknown so far. Genes encoding COG3894 proteins with 20 to 41% amino acid sequence identity with AE are present in numerous genomes of anaerobic microorganisms. Inspection of the domain structure and genetic context of these orthologs predicts that these are also reductive activases for corrinoid enzymes (RACEs), such as carbon monoxide dehydrogenase/acetyl coenzyme A synthases or anaerobic methyltransferases. The genes encoding the O-demethylase components were heterologously expressed with a C-terminal Strep-tag in Escherichia coli, and the recombinant proteins methyltransferase I, CP, and AE were characterized. Gel shift experiments showed that the AE comigrated with the CP. The formation of other protein complexes with the O-demethylase components was not observed under the conditions used. The results point to a strong interaction of the AE with the CP. This is the first report on the functional heterologous expression of acetogenic phenyl methyl ether-cleaving O-demethylases. PMID:19011025

  8. Structure/property relationships in methacrylate/dimethacrylate polymers for dental applications

    NASA Astrophysics Data System (ADS)

    Mehlem, Jeremy John

    as in their final state. Using these methods the size of the high and low cross-link density phase was examined and determined to be on the order of 50--150 nanometers. Model compounds based on phenylethyl methacrylate were formulated to determine how of nadic methyl anhydride and maleic anhydride incorporate into dimethacrylate resin systems.

  9. Microbial toxicity of methyl tert-butyl ether (MTBE) determined with fluorescent and luminescent bioassays.

    PubMed

    Roslev, Peter; Lentz, Trine; Hesselsoe, Martin

    2015-02-01

    The inhibitory effects of the fuel additive methyl tert-butyl ether (MTBE) and potential degradation products tert-butanol (TBA) and formaldehyde was examined using mixed microbial biomass, and six strains of bioluminescent bacteria and yeast. The purpose was to assess microbial toxicity with quantitative bioluminescent and fluorescent endpoints, and to identify sensitive proxies suitable for monitoring MTBE contamination. Bioluminescent Aliivibrio fischeri DSM 7151 (formerly Vibrio fischeri) appeared highly sensitive to MTBE exposure, and was a superior test organisms compared to lux-tagged Escherichia coli DH5α, Pseudomonas fluorescens DF57-40E7 and Saccharomyces cerevisiae BLYR. EC10 and EC50 for acute MTBE toxicity in A. fischeri were 1.1 and 10.9 mg L(-1), respectively. Long term (24h) MTBE exposure resulted in EC10 values of 0.01 mg L(-1). TBA was significantly less toxic with EC10 and EC50 for acute and chronic toxicity >1000 mg L(-1). Inhibition of bioluminescence was generally a more sensitive endpoint for MTBE toxicity than measuring intracellular ATP levels and heterotrophic CO2 assimilation. A weak estrogenic response was detected for MTBE at concentrations ⩾ 3.7 g L(-1) using an estrogen inducible bioluminescent yeast strain (S. cerevisiae BLYES). Microbial hydrolytic enzyme activity in groundwater was affected by MTBE with EC10 values of 0.5-787 mg L(-1), and EC50 values of 59-3073 for alkaline phosphatase, arylsulfatase, beta-1,4-glucanase, N-acetyl-beta-d-glucosaminidase, and leucine-aminopeptidase. Microbial alkaline phosphatase and beta-1,4-glucanase activity were most sensitive to MTBE exposure with EC50 ⩽ 64.8 mg L(-1). The study suggests that bioassays with luminescent A. fischeri, and fluorescent assays targeting hydrolytic enzyme activity are good candidates for monitoring microbial MTBE toxicity in contaminated water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Novel Cobalt(II) complexes containing N,N-di(2-picolyl)amine based ligands; Synthesis, characterization and application towards methyl methacrylate polymerisation

    NASA Astrophysics Data System (ADS)

    Ahn, Seoung Hyun; Choi, Sang-Il; Jung, Maeng Joon; Nayab, Saira; Lee, Hyosun

    2016-06-01

    The reaction of [CoCl2·6H2O] with N‧-substituted N,N-di(2-picolyl)amine ligands such as 1-cyclohexyl-N,N-bis(pyridin-2-ylmethyl)methanamine (LA), 2-methoxy-N,N-bis(pyridin-2-ylmethyl)ethan-1-amine (LB), and 3-methoxy-N,N-bis(pyridin-2-ylmethyl)propan-1-amine (LC), yielded [LnCoCl2] (Ln = LA, LB and LC), respectively. The Co(II) centre in [LnCoCl2] (Ln = LA, and LC) adopted distorted bipyramidal geometries through coordination of nitrogen atoms of di(2-picolyl)amine moiety to the Co(II) centre along with two chloro ligands. The 6-coordinated [LBCoCl2] showed a distorted octahedral geometry, achieved through coordination of the two pyridyl units, two chloro units, and bidentate coordination of nitrogen and oxygen in the N‧-methoxyethylamine to the Co(II) centre. [LCCoCl2] (6.70 × 104 gPMMA/molCo h) exhibited higher catalytic activity for the polymerisation of methyl methacrylate (MMA) in the presence of modified methylaluminoxane (MMAO) compared to rest of Co(II) complexes. The catalytic activity was considered as a function of steric properties of ligand architecture and increased steric bulk around the metal centre resulted in the decrease catalytic activity. All Co(II) initiators yielded syndiotactic poly(methylmethacrylate) (PMMA).

  11. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the following...

  12. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the following...

  13. Mechanical characterization and validation of poly (methyl methacrylate)/multi walled carbon nanotube composite for the polycentric knee joint.

    PubMed

    Arun, S; Kanagaraj, S

    2015-10-01

    Trans femoral amputation is one of the most uncomfortable surgeries in patient׳s life, where the prosthesis consisting of a socket, knee joint, pylon and foot is used to do the walking activities. The artificial prosthetic knee joint imitates the functions of human knee to achieve the flexion-extension for the above knee amputee. The objective of present work is to develop a light weight composite material for the knee joint to reduce the metabolic cost of an amputee. Hence, an attempt was made to study the mechanical properties of multi walled carbon nanotubes (MWCNT) reinforced Poly (methyl methacrylate) (PMMA) prepared through melt mixing technique and optimize the concentration of reinforcement. The PMMA nanocomposites were prepared by reinforcing 0, 0.1, 0.2, 0.25, 0.3 and 0.4 wt% of MWCNT using injection moulding machine via twin screw extruder. It is observed that the tensile and flexural strength of PMMA, which were studied as per ASTM D638 and D790, respectively, were increased by 32.9% and 26.3% till 0.25 wt% reinforcement of MWCNT. The experimental results of strength and modulus were compared with theoretical prediction, where a good correlation was noted. It is concluded that the mechanical properties of PMMA were found to be increased to maximum at 0.25 wt% reinforcement of MWCNT, where the Pukanszky model and modified Halpin-Tsai model are suggested to predict the strength and modulus, respectively, of the PMMA/MWCNT composite, which can be opted as a suitable materiel for the development of polycentric knee joint. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Equilibrium Polymerization of Butyl Methacrylate in Bulk and in Nanopore Confinement

    NASA Astrophysics Data System (ADS)

    Tian, Qian; Simon, Sindee

    The equilibrium between monomer and polymer in free radical polymerization can be shifted towards monomer under nanoconfinement. This decrease in ceiling temperature is due to a decrease in the entropy associated with the constrained polymer chains, resulting in a larger negative change in entropy of reaction. Here, we investigate the equilibrium polymerization of butyl methacrylate (BMA) in bulk and in nanopore confinement with differential scanning calorimetry (DSC) using di-tert-butyl peroxide (DTBP) as initiator. This system has several advantages compare to the previously studied system of methyl methacrylate (MMA) initiated with 2,2'-azo-bis-isobutyronitrile (AIBN), namely, a reduced rate of reaction, higher boiling point of monomer, and higher initiator utilization temperature range, all of which facilitate the study of the reaction at high temperatures near the ceiling temperature. Interestingly, for BMA, there is no change in limiting conversion between material reacted in bulk and that in controlled pore glass having pore diameters of 7.5 and 50 nm. This unexpected result may be due to the greater flexibility of the PBMA chains compared to PMMA, suggesting that in the BMA/PBMA system, the degree of confinement is relatively low. Future studies will continue to investigate how the entropy change on reaction is affected by confinement.

  15. Self-healing pH-sensitive poly[(methyl vinyl ether)-alt-(maleic acid)]-based supramolecular hydrogels formed by inclusion complexation between cyclodextrin and adamantane.

    PubMed

    Ma, Xiaoe; Zhou, Naizhen; Zhang, Tianzhu; Hu, Wanjun; Gu, Ning

    2017-04-01

    Self-healing materials are of interest for drug delivery, cell and gene therapy, tissue engineering, and other biomedical applications. In this work, on the base of biocompatible polymer poly(methyl vinyl ether-alt-maleic acid) (P(MVE-alt-MA)), host polymer β-cyclodextrin-grafted P(MVE-alt-MA) (P(MVE-alt-MA)-g-β-CD) and guest polymer adamantane-grafted P(MVE-alt-MA) (P(MVE-alt-MA)-g-Ad) were first prepared. Then through taking advantage of the traditional host-guest interaction of β-cyclodextrin and adamantane, a novel self-healing pH-sensitive physical P(MVE-alt-MA)-g-β-CD/P(MVE-alt-MA)-g-Ad supramolecular hydrogels were obtained after simply mixing the aqueous solution of host polymer and guest polymer. This kind of supramolecular hydrogels not only possess pH-sensitivity, but also possess the ability to repair themselves after being damaged. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Water-stable diblock polystyrene-block-poly(2-vinyl pyridine) and diblock polystyrene-block-poly(methyl methacrylate) cylindrical patterned surfaces inhibit settlement of zoospores of the green alga Ulva.

    PubMed

    Grozea, Claudia M; Gunari, Nikhil; Finlay, John A; Grozea, Daniel; Callow, Maureen E; Callow, James A; Lu, Zheng-Hong; Walker, Gilbert C

    2009-04-13

    Nanopatterned surfaces with hydrophobic and hydrophilic domains were produced using the diblock copolymer polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) and polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA). The PS-b-P2VP diblock copolymer, mixed with the cross-linker benzophenone and spin-coated onto silicon wafers, showed self-assembled cylindrical structures, which were retained after UV treatment for cross-linking. The thin films displayed cylindrical domains after immersion in water. This study shows that pattern retention in water is possible for a long period of time, at least for two weeks in pure water and three weeks in artificial seawater. The PS-b-PMMA diblock showed self-assembled cylindrical structures. PS-b-P2VP and PS-b-PMMA cylindrical patterned surfaces showed reduced settlement of zoospores of the green alga Ulva compared to unpatterned surfaces. The copolymers were investigated using atomic force microscopy and X-ray photoelectron spectroscopy.

  17. A poly(alkyl methacrylate-divinylbenzene-vinylbenzyl trimethylammonium chloride) monolithic column for solid-phase microextraction.

    PubMed

    Liu, Wan-Ling; Lirio, Stephen; Yang, Yicong; Wu, Lin-Tai; Hsiao, Shu-Ying; Huang, Hsi-Ya

    2015-05-22

    In this study, an organic polymer monolithic columns, which were prepared via in situ polymerization of alkyl methacrylate-ester (AMA), divinylbenzene (DVB) and vinylbenzyl trimethylammonium chloride (VBTA, charged monomer), were developed as adsorbent for solid-phase microextraction (SPME). Different parameters affecting the extraction efficiency for nine (9) non-steroidal anti-inflammatory drugs (NSAIDs) such as the ratio of the stearyl methacrylate (SMA) to DVB monomer, column length, sample pH, extraction flow rate and desorption solvent were investigated to obtain the optimal SPME condition. Also, the permeability for each poly(AMA-DVB-VBTA) monolithic column was investigated by adding porogenic solvent (poly(ethylene glycol), PEG). Using the optimized condition, a series of AMA-based poly(AMA-DVB-VBTA) monolith columns were developed to determine the effect the extraction efficiency of NSAIDs by varying the alkyl chain length of the methacrylate ester (methyl-, butyl-, octyl-, or lauryl-methacrylate; (MMA, BMA, OMA, LMA)). Results showed that decreasing the AMA chain length increases the extraction efficiency of some NSAIDs (i.e. sulindac (sul), naproxen (nap), ketoprofen (ket) and indomethacin (idm)). Among the poly(AMA-DVB-VBTA) monolithic columns, poly(BMA-DVB-VBTA) showed a highly repeatable extraction efficiency for NSAIDs with recoveries ranging from 85.0 to 100.2% with relative standard deviation (RSD) less than 6.8% (n=3). The poly(BMA-DVB-VBTA) can also be reused for at least 50 times without any significant effect in extraction efficiency for NSAIDs. Finally, using the established conditions, the poly(BMA-DVB-VBTA) was used to extract trace-level NSAIDs (100μgL(-1)) in river water with good recoveries ranging from 75.8 to 90.8% (RSD<14.9%). Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Polypyrrole-Grafted Coconut Shell Biological Carbon as a Potential Adsorbent for Methyl Tert-Butyl Ether Removal: Characterization and Adsorption Capability

    PubMed Central

    Li, Shanshan; Qian, Keke; Wang, Shan; Liang, Kaiqiang; Yan, Wei

    2017-01-01

    Methyl tert-butyl ether (MTBE) has been used as a common gasoline additive worldwide since the late twentieth century, and it has become the most frequently detected groundwater pollutant in many countries. This study aimed to synthesize a novel microbial carrier to improve its adsorptive capacity for MTBE and biofilm formation, compared to the traditional granular activated carbon (GAC). A polypyrrole (PPy)-modified GAC composite (PPy/GAC) was synthesized, and characterized by Fourier transform infrared spectroscopy (FT-IR) and Brunauer-Emmett-Teller (BET) surface area analysis. The adsorption behaviors of MTBE were well described by the pseudo-second-order and Langmuir isotherm models. Furthermore, three biofilm reactors were established with PPy/GAC, PPy, and GAC as the carriers, respectively, and the degradation of MTBE under continuous flow was investigated. Compared to the biofilm reactors with PPy or GAC (which both broke after a period of operation), the PPy/GAC biofilm column produced stable effluents under variable treatment conditions with a long-term effluent MTBE concentration <20 μg/L. Pseudomonas aeruginosa and Acinetobacter pittii may be the predominant bacteria responsible for MTBE degradation in these biofilm reactors. PMID:28125030

  19. Methyl tert-butyl ether biodegradation by indigenous aquifer microorganisms under natural and artificial oxic conditions

    USGS Publications Warehouse

    Landmeyer, J.E.; Chapelle, F.H.; Herlong, H.H.; Bradley, P.M.

    2001-01-01

    Microbial communities indigenous to a shallow groundwater system near Beaufort, SC, degraded milligram per liter concentrations of methyl tert-butyl ether (MTBE) under natural and artificial oxic conditions. Significant MTBE biodegradation was observed where anoxic, MTBE-contaminated groundwater discharged to a concrete-lined ditch. In the anoxic groundwater adjacent to the ditch, concentrations of MTBE were > 1 mg/L. Where groundwater discharge occurs, dissolved oxygen (DO) concentrations beneath the ditch exceeded 1.0 mg/L to a depth of 1.5 m, and MTBE concentrations decreased to <1 ??g/L prior to discharge. MTBE mass flux calculations indicate that 96% of MTBE mass loss occurs in the relatively small oxic zone prior to discharge. Samples of a natural microbial biofilm present in the oxic zone beneath the ditch completely degraded [U-14C]MTBE to [14C]CO2 in laboratory liquid culture studies, with no accumulation of intermediate compounds. Upgradient of the ditch in the anoxic, MTBE and BTEX-contaminated aquifer, addition of a soluble oxygen release compound resulted in oxic conditions and rapid MTBE biodegradation by indigenous microorganisms. In an observation well located closest to the oxygen addition area, DO concentrations increased from 0.4 to 12 mg/L in <60 days and MTBE concentrations decreased from 20 to 3 mg/L. In the same time period at a downgradient observation well, DO increased from <0.2 to 2 mg/L and MTBE concentrations decreased from 30 to <5 mg/L. These results indicate that microorganisms indigenous to the groundwater system at this site can degrade milligram per liter concentrations of MTBE under natural and artificial oxic conditions.

  20. Sorption of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) to synthetic resins.

    PubMed

    Bi, Erping; Haderlein, Stefan B; Schmidt, Torsten C

    2005-10-01

    Methyl tert-butyl ether (MTBE) is a widely used gasoline oxygenate. Contamination of MTBE and its major degradation product tert-butyl alcohol (TBA) in groundwater and surface water has received great attention. However, sorption affinity and sorption mechanisms of MTBE and TBA to synthetic resins, which can be potentially used in removal of these contaminants from water, in passive sampling, or in enrichment of bacteria, have not been studied systemically. In this study, kinetic and equilibrium sorption experiments (single solute and binary mixtures) on four synthetic resins were conducted. The sorption affinity of the investigated sorbents for MTBE and TBA decreases in the order Ambersorb 563>Optipore L493>Amberlite XAD4>Amberlite XAD7, and all show higher sorption affinity for MTBE than for TBA. Binary experiments with o-xylene, a major compound of gasoline as co-contaminant, imply that all resins preferentially sorb o-xylene over MTBE or TBA, i.e., there is sorption competition. In the equilibrium aqueous concentration (Ceq) range (0.1-139.0 mg/L for MTBE, and 0.01-48.4 mg/L for TBA), experimental and modeling results as well as sorbent characteristics indicate that micropore filling and/or some other type of adsorption process (e.g., adsorption to specific sites of high sorption potential at low concentrations) rather than partitioning were the dominant sorption mechanisms. Optipore L493 has favourable sorption and desorption characteristics, and is a suitable sorbent, e.g., in bacteria enrichment or passive sampling for moderately polar compounds. However, for highly polar compounds such as TBA, Ambersorb 563 might be a better choice, especially in water treatment.

  1. RAFT polymerization of temperature- and salt-responsive block copolymers as reversible hydrogels.

    PubMed

    Hemp, Sean T; Smith, Adam E; Bunyard, W Clayton; Rubinstein, Michael H; Long, Timothy E

    2014-05-13

    Reversible-addition fragmentation chain transfer (RAFT) polymerization enabled the synthesis of novel, stimuli-responsive, AB and ABA block copolymers. The B block contained oligo(ethylene glycol) methyl ether methacrylate (OEG) and was permanently hydrophilic in the conditions examined. The A block consisted of diethylene glycol methyl ether methacrylate (DEG) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMA). The A block displayed both salt- and temperature-response with lower critical solution temperatures (LCSTs) dependent on the molar content of TMA and the presence of salt. Higher TMA content in the AB diblock copolymers increased the critical micelle temperatures (CMT) in HPLC-grade water due to an increased hydrophilicity of the A block. Upon addition of 0.9 wt% NaCl, the CMTs of poly(OEG- b -DEG 95 TMA 5 ) decreased from 50 °C to 36 °C due to screening of electrostatic repulsion between the TMA units. ABA triblock copolymers displayed excellent hydrogel properties with salt- and temperature-dependent gel points. TMA incorporation in the A block increased the gel points for all triblock copolymers, and salt-response increased with higher TMA composition in the A block. For example, poly(DEG 98 TMA 2 - b -OEG- b -DEG 98 TMA 2 ) formed a hydrogel at 40 °C in HPLC-grade water and 26 °C in 0.9 wt% NaCl aqueous solution. These salt- and temperature-responsive AB diblock and ABA triblock copolymers find applications as drug delivery vehicles, adhesives, and hydrogels.

  2. Ammonium methacrylate

    Integrated Risk Information System (IRIS)

    Ammonium methacrylate ; CASRN 16325 - 47 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  3. Understanding How the Presence of Uniform Electric Fields Can Shift the Miscibility of Polystyrene/Poly(vinyl methyl ether) Blends

    NASA Astrophysics Data System (ADS)

    Kriisa, Annika; Roth, Connie B.

    2015-03-01

    Techniques which can externally control and manipulate the phase behavior of polymeric systems, without altering chemistry on a molecular level, have great practical benefits. One such possible mechanism is the use of electric fields, shown to cause interfacial instabilities, orientation of morphologies, and phase transitions in polymer blends and block copolymers. We have recently demonstrated that the presence of uniform electric fields can also strongly enhance the miscibility of polystyrene (PS) / poly(vinyl methyl ether) (PVME) blends [J. Chem. Phys. 2014, 141, 134908]. Using fluorescence to measure the phase separation temperature Ts of PS/PVME blends with and without electric fields, we show that Ts can be reproducibly and reversibly increased by 13.5 +/- 1.4 K for electric fields of 17 kV/mm for this lower critical solution temperature (LCST) blend. This increase in blend miscibility with electric fields represents some of the largest absolute shifts in Ts ever recorded, well outside of experimental error. The best theoretical prediction for the expected shift in Ts with electric field for this system is still two orders of magnitude smaller than that observed experimentally. We discuss the limitations of this theoretical prediction and consider possible factors affecting miscibility that may need to be also included.

  4. Human cytochrome P450 isozymes in metabolism and health effects of gasoline ethers.

    PubMed

    Hong, J Y; Wang, Y Y; Mohr, S N; Bondoc, F Y; Deng, C

    2001-05-01

    To reduce the production of carbon monoxide and other pollutants in motor vehicle exhaust, methyl tert-butyl ether (MTBE*), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME) are added to gasoline as oxygenates for more complete combustion. Among them, MTBE is the most widely used. The possible adverse effect of MTBE in humans is a public concern, but the human enzymes responsible for metabolism of these gasoline ethers and the causes or factors for increased sensitivity to MTBE in certain individuals are totally unknown. This information is important to understanding the health effects of MTBE in humans and to assessing the human relevance of pharmacokinetics and toxicity data obtained from animals. In the present study, we demonstrated that human liver is active in metabolizing MTBE to tert-butyl alcohol (TBA), a major circulating metabolite and an exposure marker of MTBE. The activity is localized in the microsomal fraction but not in the cytosol. Formation of TBA in human liver microsomes is NADPH-dependent and is significantly inhibited by carbon monoxide, which inhibits cytochrome P450 (CYP) enzymes. These results provide strong evidence that CYP enzymes play a critical role in the metabolism of MTBE in human livers. Human liver is also active in the oxidative metabolism of 2 other gasoline ethers, ETBE and TAME. We observed a large interindividual variation in metabolizing these gasoline ethers in 15 microsomal samples prepared from normal human livers. The activity level (pmol metabolite/min/mg) ranged from 204 to 2,890 for MTBE; 179 to 3,134 for ETBE; and 271 to 8,532 for TAME. The microsomal activities in metabolizing MTBE, ETBE, and TAME correlated highly with each other (r = 0.91 to 0.96), suggesting that these ethers are metabolized by the same enzyme(s). Correlation analysis of the ether-metabolizing activities with individual CYP enzyme activities in the human liver microsomes showed that the highest degree of correlation was with CYP

  5. Rotational Investigation of the Adducts of Formic Acid with Alcohols, Ethers and Esters

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Spada, Lorenzo; Li, Weixing; Caminati, Walther

    2016-06-01

    Mixtures of formic acid with methyl alcohol, with isopropyl alcohol, with tert-butyl alcohol, with dimethylether and with isopropylformiate have been supersonically expanded as pulsed jets. The obtained cool plumes have been analyzed by Fourier transform microwave spectroscopy. It has been possible to assign the rotational spectra of the 1:1 adducts of formic acid with tert-butyl alcohol, with dimethyl ether and with isopropylformiate. The conformational shapes and geometries of these adducts, as well as the topologies of their itermolecular hydrogen bonds will be presented. An explanation is given of the failure of the assignments of the rotational spectra of the adducts of formic acid with methyl alcohol and isopropyl alcohol.

  6. Methyl tert-butyl ether (MTBE) in public and private wells in New Hampshire: Occurrence, factors, and possible implications

    USGS Publications Warehouse

    Ayotte, J.D.; Argue, D.M.; McGarry, F.J.; Degnan, J.R.; Hayes, L.; Flanagan, S.M.; Helsel, D.R.

    2008-01-01

    Methyl tert-butyl ether (MTBE) concentrations ???0.2 ??g/L were found in samples of untreated water in 18% of public-supply wells (n = 284) and 9.1% of private domestic wells (n = 264) sampled in 2005 and 2006 in New Hampshire. In counties that used reformulated gasoline (RFG), MTBE occurred at or above 0.2 ??g/L in 30% of public- and 17% of private-supply wells. Additionally, 52% of public-supply wells collocated with fuel storage and 71% of mobile home park wells had MTBE. MTBE occurrence in public-supply wells was predicted by factors such as proximity to sources of fuel, land use, and population density, as well as low pH and distance from mapped lineaments. RFG use, land-use variables, and pH were important predictors of private-well MTBE occurrence. Variables representing sources of MTBE, such as the distance to known fuel sources, were not significant predictors of MTBE occurrence in private-supply wells. It is hypothesized that private wells may become contaminated from the collective effects of sources in high population areas and from undocumented incidental releases from onsite or proximal gasoline use. From 2003 to 2005, MTBE occurrence decreased in 63 public-supply wells and increased in 60 private-supply wells, but neither trend was statistically significant. ?? 2008 American Chemical Society.

  7. Selective inhibition of ammonium oxidation and nitrification-linked N2O formation by methyl fluoride and dimethyl ether

    USGS Publications Warehouse

    Miller, L.G.; Coutlakis, M.D.; Oremland, R.S.; Ward, B.B.

    1993-01-01

    Methyl fluoride (CH3F) and dimethyl ether (DME) inhibited nitrification in washed-cell suspensions of Nitrosomonas europaea and in a variety of oxygenated soils and sediments. Headspace additions of CH3F (10% [vol/vol]) and DME (25% [vol/vol]) fully inhibited NO2- and N2O production from NH4+ in incubations of N. europaea, while lower concentrations of these gases resulted in partial inhibition. Oxidation of hydroxylamine (NH2OH) by N. europaea and oxidation of NO2- by a Nitrobacter sp. were unaffected by CH3F or DME. In nitrifying soils, CH3F and DME inhibited N2O production. In field experiments with surface flux chambers and intact cores, CH3F reduced the release of N2O from soils to the atmosphere by 20- to 30-fold. Inhibition by CH3F also resulted in decreased NO3- + NO2- levels and increased NH4+ levels in soils. CH3F did not affect patterns of dissimilatory nitrate reduction to ammonia in cell suspensions of a nitrate- respiring bacterium, nor did it affect N2O metabolism in denitrifying soils. CH3F and DME will be useful in discriminating N2O production via nitrification and denitrification when both processes occur and in decoupling these processes by blocking NO2- and NO3- production.

  8. Health Risk Assessment for Inhalation Exposure to Methyl Tertiary Butyl Ether at Petrol Stations in Southern China

    PubMed Central

    Hu, Dalin; Yang, Jianping; Liu, Yungang; Zhang, Wenjuan; Peng, Xiaowu; Wei, Qinzhi; Yuan, Jianhui; Zhu, Zhiliang

    2016-01-01

    Methyl tertiary butyl ether (MTBE), a well known gasoline additive, is used in China nationwide to enhance the octane number of gasoline and reduce harmful exhaust emissions, yet  little is known regarding the potential health risk associated with occupational exposure to MTBE in petrol stations. In this study, 97 petrol station attendants (PSAs) in southern China were recruited for an assessment of the health risk associated with inhalation exposure to MTBE. The personal exposure levels of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS, and the demographic characteristics of the PSAs were investigated. Cancer and non-cancer risks were calculated with the methods recommended by the United States Environmental Protection Agency. The results showed that the exposure levels of MTBE in operating workers were much higher than among support staff (p < 0.01) and both were lower than 50 ppm (an occupational threshold limit value). The calculated cancer risks (CRs) at the investigated petrol stations was 0.170 to 0.240 per 106 for operating workers, and 0.026 to 0.049 per 106 for support staff, which are below the typical target range for risk management of 1 × 10−6 to 1 × 10−4; The hazard quotients (HQs) for all subjects were <1. In conclusion, our study indicates that the MTBE exposure of PSAs in southern China is in a low range which does not seem to be a significant health risk. PMID:26861375

  9. Methyl tert butyl ether is anti-angiogenic in both in vitro and in vivo mammalian model systems.

    PubMed

    Kozlosky, John; Bonventre, Josephine; Cooper, Keith

    2013-08-01

    Methyl-tertiary butyl ether (MTBE), a well known gasoline oxygenate, and US Food and Drug Administration approved gallstone treatment, has been previously shown to specifically target teleost embryonic angiogenesis. The studies reported here were to determine whether similar vascular disrupting effects occur in higher vertebrate models. Rat brain endothelial cells were isolated and allowed to form microcapillary-like tubes on Matrigel. MTBE (0.34-34.0 mm) exposure resulted in a dose-dependent reduction of tube formation, with the LOAEL at 0.34 mm, while MTBE's primary metabolite, tertiary butyl alcohol had no effect on tube formation. HUVECs, a primary cell line representing macrovascular cells, were able to form tubes on Matrigel in the presence of MTBE (1.25-80 mm), but the tubes were narrower than those formed in the absence of MTBE. In a mouse Matrigel plug implantation assay, 34.0 mm MTBE completely inhibited vessel invasion into plugs containing endothelial cell growth supplement (ECGS) compared with control plugs with ECGS alone. When timed-pregnant Fisher 344 rats were gavaged with MTBE (500-1500 mg kg(-1) ) from day 6 of organogenesis through 10 days post-parturition, no organ toxicity or histological changes in pup vasculature were observed. Results of the in vitro cell culture studies show that MTBE is anti-angiogenic at mm concentrations and has potential use as an anti-angiogenic treatment for solid tumors with minimal toxicity. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Methyl tert-butyl ether occurrence and related factors in public and private wells in southeast New Hampshire.

    PubMed

    Ayotte, Joseph D; Argue, Denise M; McGarry, Frederick J

    2005-01-01

    The occurrence of methyl tert-butyl ether (MTBE) in water from public wells in New Hampshire has increased steadily over the past several years. Using a laboratory reporting level of 0.2 microg/L, 40% of samples from public wells and 21% from private wells in southeast New Hampshire have measurable concentrations of MTBE. The rate of occurrence of MTBE varied significantly for public wells by establishmenttype; for example, 63% of public wells serving residential properties have MTBE concentrations above 0.2 microg/L, whereas lower rates were found for schools (21%). MTBE concentrations correlate strongly with urban factors, such as population density. Surprisingly, MTBE was correlated positively with well depth for public supply wells. Well depth is inversely related to yield in New Hampshire bedrock wells, which may mean that there is less opportunity for dilution of MTBE captured by deep wells. Another possibility is that the source(s) of water to low-yield wells may be dominated by leakage from potentially contaminated shallow groundwater through near-surface fractures or along the well casing. These wells may also have relatively large contributing areas (due to low recharge at the bedrock surface) and therefore have a greater chance of intersecting MTBE sources. This finding is significant because deep bedrock wells are often considered to be less vulnerable to contamination than shallow wells, and in southeast New Hampshire, wells are being drilled deeper in search of increased supply.

  11. Health Risk Assessment for Inhalation Exposure to Methyl Tertiary Butyl Ether at Petrol Stations in Southern China.

    PubMed

    Hu, Dalin; Yang, Jianping; Liu, Yungang; Zhang, Wenjuan; Peng, Xiaowu; Wei, Qinzhi; Yuan, Jianhui; Zhu, Zhiliang

    2016-02-06

    Methyl tertiary butyl ether (MTBE), a well known gasoline additive, is used in China nationwide to enhance the octane number of gasoline and reduce harmful exhaust emissions, yet little is known regarding the potential health risk associated with occupational exposure to MTBE in petrol stations. In this study, 97 petrol station attendants (PSAs) in southern China were recruited for an assessment of the health risk associated with inhalation exposure to MTBE. The personal exposure levels of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS, and the demographic characteristics of the PSAs were investigated. Cancer and non-cancer risks were calculated with the methods recommended by the United States Environmental Protection Agency. The results showed that the exposure levels of MTBE in operating workers were much higher than among support staff (p < 0.01) and both were lower than 50 ppm (an occupational threshold limit value). The calculated cancer risks (CRs) at the investigated petrol stations was 0.170 to 0.240 per 10⁶ for operating workers, and 0.026 to 0.049 per 10⁶ for support staff, which are below the typical target range for risk management of 1 × 10(-6) to 1 × 10(-4); The hazard quotients (HQs) for all subjects were <1. In conclusion, our study indicates that the MTBE exposure of PSAs in southern China is in a low range which does not seem to be a significant health risk.

  12. Nonvolatile memory characteristics of organic thin film transistors using poly(2-hydroxyethyl methacrylate)-based polymer multilayer dielectric

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Chih; Su, Yan-Kuin; Yu, Hsin-Chieh; Huang, Chun-Yuan; Huang, Tsung-Syun

    2011-10-01

    A wide hysteresis width characteristic (memory window) was observed in the organic thin film transistors (OTFTs) using poly(2-hydroxyethyl methacrylate) (PHEMA)-based polymer multilayers. In this study, a strong memory effect was also found in the pentacene-based OTFTs and the electric characteristics were improved by introducing PHEMA/poly(methyl methacrylate) (PMMA)/PHEMA trilayer to replace the conventional PHEMA monolayer or PMMA/PHEMA and PHEMA/PMMA bilayer as the dielectric layers of OTFTs. The memory effect was originated from the electron trapping and slow polarization of the dielectrics. The hydroxyl (-OH) groups inside the polymer dielectric were the main charge storage sites of the electrons. This charge-storage phenomenon could lead to a wide flat-band voltage shift (memory window, △VFB = 22 V) which is essential for the OTFTs' memory-related applications. Moreover, the fabricated transistors also exhibited significant switchable channel current due to the charge-storage and slow charge relaxation.

  13. Surface-initiated polymerization within mesoporous silica spheres for the modular design of charge-neutral polymer particles.

    PubMed

    Müllner, Markus; Cui, Jiwei; Noi, Ka Fung; Gunawan, Sylvia T; Caruso, Frank

    2014-06-03

    We report a templating approach for the preparation of functional polymer replica particles via surface-initiated polymerization in mesoporous silica templates. Subsequent removal of the template resulted in discrete polymer particles. Furthermore, redox-responsive replica particles could be engineered to disassemble in a reducing environment. Particles, made of poly(methacryloyloxyethyl phosphorylcholine) (PMPC) or poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA), exhibited very low association to human cancer cells (below 5%), which renders the reported charge-neutral polymer particles a modular and versatile class of highly functional carriers with potential applications in drug delivery.

  14. Persubstituted p-benzoquinone monoxime alkyl ethers and their molecular structure

    NASA Astrophysics Data System (ADS)

    Slaschinin, D. G.; Alemasov, Y. A.; Ilushkin, D. I.; Sokolenko, W. A.; Tovbis, M. S.; Kirik, S. D.

    2012-05-01

    Theoretical and experimental approaches were applied for the investigation of the reactivity of persubstituted 4-nitrosophenols in the reaction with alkyl iodides, in particular the potassium salt of 2,6-di(alkoxycarbonyl)-3,5-dimethyl-4-nitrosophenol. Hartre-Fock calculations showed that the anion negative charge was located mostly on the oxygen of hydroxyl group, while estimation of the total energy of the alkylated products pointed out the benefit of alkylation on the oxygen atom of the nitroso group yielding p-benzoquinone monoxime alkyl ethers. Methylation and ethylation of persubstituted nitrosophenols were carried out. The products obtained were investigated using X-ray diffraction, 1Н NMR spectroscopy and mass spectrometry. The crystal structure of the methyl ether of 2,6-di(alkoxycarbonyl)-3,5-dimethyl-1,4-benzoquinone-1-oxime (С15H19NO6) (I) was determined by the X-ray powder diffraction technique. The unit cell parameters were: a = 7.3322(6) Å, b = 10.5039(12) Å, c = 21.1520(20) Å, β = 93.742(6)°, V = 1625.58(2) Å3Z = 4, Sp.Gr. P21/c. The structure modeling was made in direct space by the Monte-Carlo approach using rigid and soft restrictions. The structure refinement was completed by the Rietveld method. It was established that the alkylation occurred on the oxygen atom of the nitroso group. The molecules (I) in the crystal structure were packed in columns along the axis a with pairwise convergence in a column up to the distance of 3.63 Å due to a 180° turn of every second molecule around the column axis. In the molecular structure the methyloxime group was oriented in the benzene plane and had π-conjugation with the ring. The ethoxycarbonyl groups were turned nearly perpendicular to the ring. Other compounds obtained had the structure of the alkyl ethers of 1.4-benzoquinone-1-oxime, which was proved by 1Н NMR spectroscopy and mass-spectrometry.

  15. 40 CFR 721.522 - Oxirane, methyl-, polymer with oxirane, mono(3,5,5,-trimethylhexyl) ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Oxirane, methyl-, polymer with oxirane... Significant New Uses for Specific Chemical Substances § 721.522 Oxirane, methyl-, polymer with oxirane, mono(3...) The chemical substance identified as oxirane, methyl-, polymer with oxirane, mono(3,5,5...

  16. 40 CFR 721.522 - Oxirane, methyl-, polymer with oxirane, mono(3,5,5,-trimethylhexyl) ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Oxirane, methyl-, polymer with oxirane... Significant New Uses for Specific Chemical Substances § 721.522 Oxirane, methyl-, polymer with oxirane, mono(3...) The chemical substance identified as oxirane, methyl-, polymer with oxirane, mono(3,5,5...

  17. 40 CFR 721.522 - Oxirane, methyl-, polymer with oxirane, mono(3,5,5,-trimethylhexyl) ether.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Oxirane, methyl-, polymer with oxirane... Significant New Uses for Specific Chemical Substances § 721.522 Oxirane, methyl-, polymer with oxirane, mono(3...) The chemical substance identified as oxirane, methyl-, polymer with oxirane, mono(3,5,5...

  18. 40 CFR 721.522 - Oxirane, methyl-, polymer with oxirane, mono(3,5,5,-trimethylhexyl) ether.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Oxirane, methyl-, polymer with oxirane... Significant New Uses for Specific Chemical Substances § 721.522 Oxirane, methyl-, polymer with oxirane, mono(3...) The chemical substance identified as oxirane, methyl-, polymer with oxirane, mono(3,5,5...

  19. 40 CFR 721.522 - Oxirane, methyl-, polymer with oxirane, mono(3,5,5,-trimethylhexyl) ether.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Oxirane, methyl-, polymer with oxirane... Significant New Uses for Specific Chemical Substances § 721.522 Oxirane, methyl-, polymer with oxirane, mono(3...) The chemical substance identified as oxirane, methyl-, polymer with oxirane, mono(3,5,5...

  20. Encapsulation of Piper cabralanum (Piperaceae) nonpolar extract in poly(methyl methacrylate) by miniemulsion and evaluation of increase in the effectiveness of antileukemic activity in K562 cells.

    PubMed

    Mendes, Anderson Nogueira; Filgueiras, Lívia Alves; Siqueira, Monica Regina Pimentel; Barbosa, Gleyce Moreno; Holandino, Carla; de Lima Moreira, Davyson; Pinto, José Carlos; Nele, Marcio

    2017-01-01

    This study aimed to synthesize and characterize nanoparticles (NPs) of poly(methyl methacrylate) (PMMA) and evaluate their ability to incorporate plant extracts with antitumor activity and low dissolution in aqueous media. The extract used was n -hexane partition of the methanol extract of Piper cabralanum (PCA-HEX). PMMA NPs were obtained using the mini-emulsion method, which was able to encapsulate almost 100% of PCA-HEX. The synthesized polymeric particles presented with a size of 200 nm and a negative charge. Cytotoxicity tests by MTT and trypan blue assays showed that NPs without PCA-HEX did not kill leukemic cells (K562 cells). NPs containing PCA-HEX were able to enhance cell death when compared to pure extract. The results showed that PMMA NPs could be useful as a drug delivery system as they can enhance the antitumor activity of the PCA-HEX extract by more than 20-fold. PMMA NPs containing plant extracts with antitumor activities may be an alternative to control the evolution of diseases such as leukemia.

  1. Encapsulation of Piper cabralanum (Piperaceae) nonpolar extract in poly(methyl methacrylate) by miniemulsion and evaluation of increase in the effectiveness of antileukemic activity in K562 cells

    PubMed Central

    Mendes, Anderson Nogueira; Filgueiras, Lívia Alves; Siqueira, Monica Regina Pimentel; Barbosa, Gleyce Moreno; Holandino, Carla; de Lima Moreira, Davyson; Pinto, José Carlos; Nele, Marcio

    2017-01-01

    This study aimed to synthesize and characterize nanoparticles (NPs) of poly(methyl methacrylate) (PMMA) and evaluate their ability to incorporate plant extracts with antitumor activity and low dissolution in aqueous media. The extract used was n-hexane partition of the methanol extract of Piper cabralanum (PCA-HEX). PMMA NPs were obtained using the mini-emulsion method, which was able to encapsulate almost 100% of PCA-HEX. The synthesized polymeric particles presented with a size of 200 nm and a negative charge. Cytotoxicity tests by MTT and trypan blue assays showed that NPs without PCA-HEX did not kill leukemic cells (K562 cells). NPs containing PCA-HEX were able to enhance cell death when compared to pure extract. The results showed that PMMA NPs could be useful as a drug delivery system as they can enhance the antitumor activity of the PCA-HEX extract by more than 20-fold. PMMA NPs containing plant extracts with antitumor activities may be an alternative to control the evolution of diseases such as leukemia. PMID:29200848

  2. 40 CFR 721.10283 - Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega.-hydroxy-, C12-13-branched and linear...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)], .alpha.-sulfo-.omega.-hydroxy-, C12-13-branched and linear alkyl ethers, sodium salts. 721.10283 Section... Substances § 721.10283 Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega.-hydroxy-, C12-13-branched and.... (1) The chemical substance identified as poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega...

  3. 40 CFR 721.10284 - Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega.-hydroxy-, C14-15-branched and linear...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)], .alpha.-sulfo-.omega.-hydroxy-, C14-15-branched and linear alkyl ethers, sodium salts. 721.10284 Section... Substances § 721.10284 Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega.-hydroxy-, C14-15-branched and.... (1) The chemical substance identified as poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega...

  4. 40 CFR 721.10284 - Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega.-hydroxy-, C14-15-branched and linear...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)], .alpha.-sulfo-.omega.-hydroxy-, C14-15-branched and linear alkyl ethers, sodium salts. 721.10284 Section... Substances § 721.10284 Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega.-hydroxy-, C14-15-branched and.... (1) The chemical substance identified as poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega...

  5. 40 CFR 721.10283 - Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega.-hydroxy-, C12-13-branched and linear...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)], .alpha.-sulfo-.omega.-hydroxy-, C12-13-branched and linear alkyl ethers, sodium salts. 721.10283 Section... Substances § 721.10283 Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega.-hydroxy-, C12-13-branched and.... (1) The chemical substance identified as poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega...

  6. 40 CFR 721.10284 - Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega.-hydroxy-, C14-15-branched and linear...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)], .alpha.-sulfo-.omega.-hydroxy-, C14-15-branched and linear alkyl ethers, sodium salts. 721.10284 Section... Substances § 721.10284 Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega.-hydroxy-, C14-15-branched and.... (1) The chemical substance identified as poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega...

  7. 40 CFR 721.10283 - Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega.-hydroxy-, C12-13-branched and linear...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)], .alpha.-sulfo-.omega.-hydroxy-, C12-13-branched and linear alkyl ethers, sodium salts. 721.10283 Section... Substances § 721.10283 Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega.-hydroxy-, C12-13-branched and.... (1) The chemical substance identified as poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega...

  8. Emission Studies in CI Engine using LPG and Palm Kernel Methyl Ester as Fuels and Di-ethyl Ether as an Additive

    NASA Astrophysics Data System (ADS)

    Dora, Nagaraju; Jothi, T. J. Sarvoththama

    2018-05-01

    The present study investigates the effectiveness of using di-ethyl ether (DEE) as the fuel additive in engine performance and emissions. Experiments are carried out in a single cylinder four stroke diesel engine at constant speed. Two different fuels namely liquefied petroleum gas (LPG) and palm kernel methyl ester (PKME) are used as primary fuels with DEE as the fuel additive. LPG flow rates of 0.6 and 0.8 kg/h are considered, and flow rate of DEE is varied to maintain the constant engine speed. In case of PKME fuel, it is blended with diesel in the latter to the former ratio of 80:20, and DEE is varied in the volumetric proportion of 1 and 2%. Results indicate that for the engine operating in LPG-DEE mode at 0.6 kg/h of LPG, the brake thermal efficiency is lowered by 26%; however, NOx is subsequently reduced by around 30% compared to the engine running with only diesel fuel at 70% load. Similarly, results of PKME blended fuel showed a drastic reduction in the NOx and CO emissions. In these two modes of operation, DEE is observed to be significant fuel additive regarding emissions reduction.

  9. The effect of processing temperature and time on the structure and fracture characteristics of self-reinforced composite poly(methyl methacrylate).

    PubMed

    Wright, D D; Gilbert, J L; Lautenschlager, E P

    1999-08-01

    A novel material, self-reinforced composite poly(methyl methacrylate) (SRC-PMMA) has been previously developed in this laboratory. It consists of high-strength PMMA fibers embedded in a matrix of PMMA derived from the fibers. As a composite material, uniaxial SRC-PMMA has been shown to have greatly improved flexural, tensile, fracture toughness and fatigue properties when compared to unreinforced PMMA. Previous work examined one empirically defined processing condition. This work systematically examines the effect of processing time and temperature on the thermal properties, fracture toughness and fracture morphology of SRC-PMMA produced by a hot compaction method. Differential scanning calorimetry (DSC) shows that composites containing high amounts of retained molecular orientation exhibit both endothermic and exothermic peaks which depend on processing times and temperatures. An exothermic release of energy just above Tg is related to the release of retained molecular orientation in the composites. This release of energy decreases linearly with increasing processing temperature or time for the range investigated. Fracture toughness results show a maximum fracture toughness of 3.18 MPa m1/2 for samples processed for 65 min at 128 degrees C. Optimal structure and fracture toughness are obtained in composites which have maximum interfiber bonding and minimal loss of molecular orientation. Composite fracture mechanisms are highly dependent on processing. Low processing times and temperatures result in more interfiber/matrix fracture, while higher processing times and temperatures result in higher ductility and more transfiber fracture. Excessive processing times result in brittle failure. Copyright 1999 Kluwer Academic Publishers

  10. Dynamics of a poly(ethylene oxide) tracer in a poly(methyl methacrylate) matrix: remarkable decoupling of local and global motions.

    PubMed

    Haley, Jeffrey C; Lodge, Timothy P

    2005-06-15

    The tracer diffusion coefficient of unentangled poly(ethylene oxide) (PEO, M=1000 gmol) in a matrix of poly(methyl methacrylate) (PMMA, M=10 000 gmol) has been measured over a temperature range from 125 to 220 degrees C with forced Rayleigh scattering. The dynamic viscosities of blends of two different high molecular weight PEO tracers (M=440 000 and 900 000 gmol) in the same PMMA matrix were also measured at temperatures ranging from 160 to 220 degrees C; failure of time-temperature superposition was observed for these systems. The monomeric friction factors for the PEO tracers were extracted from the diffusion coefficients and the rheological relaxation times using the Rouse model. The friction factors determined by diffusion and rheology were in good agreement, even though the molecular weights of the tracers differed by about three orders of magnitude. The PEO monomeric friction factors were compared with literature data for PEO segmental relaxation times measured directly with NMR. The monomeric friction factors of the PEO tracer in the PMMA matrix were found to be from two to six orders of magnitude greater than anticipated based on direct measurements of segmental dynamics. Additionally, the PEO tracer terminal dynamics are a much stronger function of temperature than the corresponding PEO segmental dynamics. These results indicate that the fastest PEO Rouse mode, inferred from diffusion and rheology, is completely separated from the bond reorientation of PEO detected by NMR. This result is unlike other blend systems in which global and local motions have been compared.

  11. Poly(arylene ether)s That Resist Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul; Smith, Joseph G., Jr.

    1994-01-01

    Novel poly(arylene ether)s containing phosphine oxide (PAEPO's) made via aromatic nucleophilic displacement reactions of activated aromatic dihalides (or, in some cases, activated aromatic dinitro compounds) with new bisphenol monomers containing phosphine oxide. Exhibited favorable combination of physical and mechanical properties and resistance to monatomic oxygen in oxygen plasma environment. Useful as adhesives, coatings, films, membranes, moldings, and composite matrices.

  12. Mode of Action Studies on Nitrodiphenyl Ether Herbicides 1

    PubMed Central

    Bowyer, John R.; Hallahan, Beverly J.; Camilleri, Patrick; Howard, Joy

    1989-01-01

    The nitrodiphenyl ether herbicide 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitroacetophenone oxime-o-(acetic acid, methyl ester) (DPEI) induces light- and O2-dependent lipid peroxidation and chlorophyll (Chl) bleaching in the green alga Scenedesmus obliquus. Under conditions of O2-limitation, these effects are diminished by prometyne and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), both inhibitors of photosynthetic electron transport. Mutants in which photosynthetic electron transport is blocked are also resistant to DPEI under conditions of O2-limitation. Light- and O2-dependent lipid peroxidation and Chl bleaching are also induced by 5-[2-chloro-4-(trifluoromethyl)phenoxy]-3-methoxyphthalide (DPEII), a diphenyl ether whose redox properties preclude reduction by photosystem I. However, these effects of DPEII are also inhibited by DCMU. Under conditions of high aeration, DCMU does not protect Scenedesmus cells from Chl bleaching induced by DPEI, but does protect against paraquat. DPEI, but not paraquat, induces tetrapyrrole formation in treated cells in the dark. This is also observed in a mutant lacking photosystem I but is suppressed under conditions likely to lead to O2 limitation. Our results indicate that, in contrast to paraquat, the role of photosynthetic electron transport in diphenyl ether toxicity in Scenedesmus is not to reduce the herbicide to a radical species which initiates lipid peroxidation. Its role is probably to maintain a sufficiently high O2 concentration, through water-splitting, in the algal suspension. PMID:16666600

  13. Crown ethers in graphene

    DOE PAGES

    Guo, Junjie; Lee, Jaekwang; Contescu, Cristian I.; ...

    2014-11-13

    Crown ethers, introduced by Pedersen1, are at their most basic level neutral rings constructed of oxygen atoms linked by two- or three-carbon chains. They have attracted special attention for their ability to selectively incorporate various atoms2 or molecules within the cavity formed by the ring3-6. This property has led to the use of crown ethers and their compounds in a wide range of chemical and biological applications7,8. However, crown ethers are typically highly flexible, frustrating efforts to rigidify them for many uses that demand higher binding affinity and selectivity9,10. In this Letter, we report atomic-resolution images of the same basicmore » structures of the original crown ethers embedded in graphene. This arrangement constrains the crown ethers to be rigid and planar and thus uniquely suited for the many applications that crown ethers are known for. First-principles calculations show that the close similarity of the structures seen in graphene with those of crown ether molecules also extends to their selectivity towards specific metal cations depending on the ring size. Atoms (or molecules) incorporated within the crown ethers in graphene offer a simple environment that can be easily and systematically probed and modeled. Thus, we expect that this discovery will introduce a new wave of investigations and applications of chemically functionalized graphene.« less

  14. Fabrication and physical properties of transparent poly (methyl-methacrylate)-layered silicate nanocomposites

    NASA Astrophysics Data System (ADS)

    Vasiliu, Elena

    Transparent polymer nanocomposites have promising potential for protective coating applications with improved surface resistance, higher temperature performance and low gas permeability for containers and films. Extremely thin protective layers are required for improved performance of various electronic devices in aviation, aerospace and medical equipment as well as for lenses and fiber optics in optical communications. This research study developed a method for fabricating optically transparent nanocomposites of poly(methyl-methacrylate)(PMMA) and a commercial organically-modified layered silicate CloisiteRTM 6A (C6A). The nanocomposites were produced by dispersing C6A and PMMA separately in a common solvent xylene followed by mixing the two solutions by mechanical stirring and/or ultrasonic agitation and then removing the solvent by evaporation. Processing conditions such as the mixing methods and times and the rates of solvent removal were investigated in order to achieve a high degree of dispersion and exfoliation of C6A in the polymer matrix and produce a nanocomposite material with high optical transparency. Small-angle x-ray scattering (SAXS) was used to monitor the morphology of the C6A after each processing step. Thin films of PMMA/C6A nanocomposites were produced by casting and spraying. SAXS results suggest that C6A was partially exfoliated in the composite material with an average of 2 to 3 platelets per crystallite. Transmission electron microscopy (TEM) confirmed the existence of both exfoliated and intercalated C6A in PMMA. One mm thick discs were obtained by molding the sprayed films. The optical transmission of the nanocomposite films and discs was measured with an UV/VIS spectrometer. The spectroscopic results served to identify the best process for producing PMMA-C6A films of high optical transparency. Even the nanocomposite films containing up to 20 wt.% C6A prepared by this process exhibited optical transmittance in the range of 80 to 90

  15. Effect of Storage in Distilled Water for Three Months on the Antimicrobial Properties of Poly(methyl methacrylate) Denture Base Material Doped with Inorganic Filler

    PubMed Central

    Chladek, Grzegorz; Basa, Katarzyna; Mertas, Anna; Pakieła, Wojciech; Żmudzki, Jarosław; Bobela, Elżbieta; Król, Wojciech

    2016-01-01

    The colonization of poly(methyl methacrylate) (PMMA) denture base materials by pathogenic microorganisms is a major problem associated with the use of prostheses, and the incorporation of antimicrobial fillers is a method of improving the antimicrobial properties of these materials. Numerous studies have demonstrated the initial in vitro antimicrobial effectiveness of this type of material; however, reports demonstrating the stability of these fillers over longer periods are not available. In this study, silver sodium hydrogen zirconium phosphate was introduced into the powder component of a PMMA denture base material at concentrations of 0.25%, 0.5%, 1%, 2%, 4%, and 8% (w/w). The survival rates of the gram-positive bacterium Staphylococcus aureus, gram-negative bacterium Escherichia coli and yeast-type fungus Candida albicans were established after fungal or bacterial suspensions were incubated with samples that had been previously stored in distilled water. Storage over a three-month period led to the progressive reduction of the initial antimicrobial properties. The results of this study suggest that additional microbiological tests should be conducted for materials that are treated with antimicrobial fillers and intended for long-term use. Future long-term studies of the migration of silver ions from the polymer matrix and the influence of different media on this ion emission are required. PMID:28773451

  16. Routes to ultra-pure alkyls of indium and gallium and their adducts with ethers, phosphines and amines

    NASA Astrophysics Data System (ADS)

    Jones, Anthony C.; Holliday, A. Kenneth; Cole-Hamilton, David J.; Ahmad, M. Munir; Gerrard, Neil D.

    1984-09-01

    Electrolysis of tetrahydrofuran (thf) solutions of dimethylmagnesium containing tetraethylammonium percholrate using a gallium anode gives [Me 3Ga·thf], but higher yields of both [Me 3Ga·thf] and [Me 3In·thf] are obtained on electrolysis of thf solutions of Grignard reagents with sacrificial metal anodes in the absence of a carrying electrolyte. The thf adducts can be converted into adducts with other Lewis bases, [ Me3M· L], M = Ga or In, L = PMe 3, PEt 3, NEt 3, by simple base exchange reactions. Base-free trimethylgallium can be prepared from: (i) reaction of methyl iodide with the intermetallic compound [Mg 5Ga 2] in a high boiling ether; (ii) electrolysis of Grignard reagents in high boiling ethers using sacrificial gallium anodes; (iii) reactions of GaCl 3 with Grignard reagents in high boiling ethers or (iv) ether exchange reaction between [Me 3Ga·OEt 2] and high boiling ethers. All of these reactions lead to adducts between trimethylgallium and the high boiling ether which, on heating, decompose to give base-free trimethylgallium. [Me 3Ga·OEt 2] can be prepared from reaction of Grignard reagents with gallium trichloride in diethylether or from electrolysis of Grignard reagents in diethyl ether using a sacrificial gallium anode. Similar reactions using an indium anode lead to [Me 3In·OEt 2] from which base-free trimethylindium can be liberated using known chemistry. The use of alkyls prepared in this way for vapour phase epitaxy as well as the purity of the alkyls are discussed.

  17. Activation of C-O and C-C bonds and formation of novel HAlOH-ether complexes: an EPR study of the reaction of ground-state Al atoms with methylethyl ether and diethyl ether.

    PubMed

    Brunet, François D; Feola, Julie C; Joly, Helen A

    2012-03-15

    Reaction mixtures, containing Al atoms and methylethyl ether (MEE) or diethyl ether (DEE) in an adamantane matrix, were prepared with the aid of a metal-atom reactor known as a rotating cryostat. The EPR spectra of the resulting products were recorded from 77-260 K, at 10 K intervals. Al atoms were found to insert into methyl-O, ethyl-O, and C-C bonds to form CH(3)AlOCH(2)CH(3), CH(3)OAlCH(2)CH(3), and CH(3)OCH(2)AlCH(3), respectively, in the case of MEE while DEE produced CH(3)CH(2)AlOCH(2)CH(3) and CH(3)AlCH(2)OCH(2)CH(3), respectively. From the intensity of the transition lines attributed to the Al atom C-O insertion products of MEE, insertion into the methyl-O bond is preferred. The Al hyperfine interaction (hfi) extracted from the EPR spectra of the C-O insertion products was greater than that of the C-C insertion products, that is, 5.4% greater for the DEE system and 7% greater for the MEE system. The increase in Al hfi is thought to arise from the increased electron-withdrawing ability of the substituents bonded to Al. Besides HAlOH, resulting from the reaction of Al atoms with adventitious water, novel mixed HAlOH:MEE and HAlOH:DEE complexes were identified with the aid of isotopic studies involving H(2)(17)O and D(2)O. The Al and H hfi of HAlOH were found to decrease upon complex formation. These findings are consistent with the nuclear hfi calculated using a density functional theory (DFT) method with close agreement between theory and experiment occurring at the B3LYP level using a 6-311+G(2df,p) basis set.

  18. Binding of leachable components of polymethyl methacrylate (PMMA) and peptide on modified SPR chip

    NASA Astrophysics Data System (ADS)

    Szaloki, M.; Vitalyos, G.; Harfalvi, J.; Hegedus, Cs

    2013-12-01

    Many types of polymers are often used in dentistry, which may cause allergic reaction, mainly methyl methacrylate allergy due to the leachable, degradable components of polymerized dental products. The aim of this study was to investigate the interaction between the leachable components of PMMA and peptides by Fourier-transform Surface Plasmon Resonance (FT SPR). In our previous work binding of oligopeptides (Ph.D.-7 and Ph.D.-12 Peptide Library Kit) was investigated to PMMA surface by phage display technique. It was found that oligopeptides bounded specifically to PMMA surface. The most common amino acids were leucine and proline inside the amino acids sequences of DNA of phages. The binding of haptens, as formaldehyde and methacrylic acid, to frequent amino acids was to investigate on the modified gold SPR chip. Self assembled monolayer (SAM) modified the surface of gold chip and ensured the specific binding between the haptens and amino acids. It was found that amino acids bounded to modified SPR gold and the haptens bounded to amino acids by creating multilayer on the chip surface. By the application of phage display and SPR modern bioanalytical methods the interaction between allergens and peptides can be investigated.

  19. pH-sensitive methacrylic copolymers and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2006-02-14

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  20. pH-sensitive methacrylic copolymers and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2007-01-09

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.