Sample records for methyl eugenol exposure

  1. Biosynthesis of estragole and methyl-eugenol in sweet basil (Ocimum basilicum L). Developmental and chemotypic association of allylphenol O-methyltransferase activities.

    PubMed

    Lewinsohn, E; Ziv-Raz, I; Dudai, N; Tadmor, Y; Lastochkin, E; Larkov, O; Chaimovitsh, D; Ravid, U; Putievsky, E; Pichersky, E; Shoham, Y

    2000-12-07

    Sweet basil (Ocimum basilicum L., Lamiaceae) is a common herb, used for culinary and medicinal purposes. The essential oils of different sweet basil chemotypes contain various proportions of the allyl phenol derivatives estragole (methyl chavicol), eugenol, and methyl eugenol, as well as the monoterpene alcohol linalool. To monitor the developmental regulation of estragole biosynthesis in sweet basil, an enzymatic assay for S-adenosyl-L-methionine (SAM):chavicol O-methyltransferase activity was developed. Young leaves display high levels of chavicol O-methyltransferase activity, but the activity was negligible in older leaves, indicating that the O-methylation of chavicol primarily occurs early during leaf development. The O-methyltransferase activities detected in different sweet basil genotypes differed in their substrate specificities towards the methyl acceptor substrate. In the high-estragole-containing chemotype R3, the O-methyltransferase activity was highly specific for chavicol, while eugenol was virtually not O-methylated. In contrast, chemotype 147/97, that contains equal levels of estragole and methyl eugenol, displayed O-methyltransferase activities that accepted both chavicol and eugenol as substrates, generating estragole and methyl eugenol, respectively. Chemotype SW that contains high levels of eugenol, but lacks both estragole and methyl eugenol, had apparently no allylphenol dependent O-methyltransferase activities. These results indicate the presence of at least two types of allylphenol-specific O-methyltransferase activities in sweet basil chemotypes, one highly specific for chavicol; and a different one that can accept eugenol as a substrate. The relative availability and substrate specificities of these O-methyltransferase activities biochemically rationalizes the variation in the composition of the essential oils of these chemotypes.

  2. Yield and oil composition of 38 basil (Ocimum basilicum L.) accessions grown in Mississippi.

    PubMed

    Zheljazkov, Valtcho D; Callahan, Amber; Cantrell, Charles L

    2008-01-09

    A field experiment was conducted to assess yield, oil content, and composition of 38 genotypes of sweet basil ( Ocimum basilicum L.). Overall, biomass yields were high and comparable to those reported in the literature. However, basil genotypes differed significantly with respect to oil content and composition. Oil content of the tested accessions varied from 0.07% to 1.92% in dry herbage. On the basis of the oil composition, basil accessions were divided into seven groups: (1) high-linalool chemotype [19-73% (-)-linalool], (2) linalool-eugenol chemotype [six chemotypes with 28-66% (-)-linalool and 5-29% eugenol], (3) methyl chavicol chemotype [six accessions with 20-72% methyl chavicol and no (-)-linalool], (4) methyl chavicol-linalool chemotype [six accessions with 8-29% methyl chavicol and 8-53% (-)-linalool], (5) methyl eugenol-linalool chemotype [two accessions with 37% and 91% methyl eugenol and 60% and 15% (-)-linalool], (6) methyl cinnamate-linalool chemotype [one accession with 9.7% methyl cinnamate and 31% (-)-linalool], and (7) bergamotene chemotype [one accession with bergamotene as major constituent, 5% eucalyptol, and <1% (-)-linalool]. Our results demonstrated that basil could be a viable essential oil crop in Mississippi. The availability of various chemotypes offers the opportunity for production of basil to meet the market requirements of specific basil oils or individual compounds such as (-)-linalool, eugenol, methyl chavicol, methyl cinnamate, or methyl eugenol.

  3. Pre-Release Consumption of Methyl Eugenol Increases the Mating Competitiveness of Sterile Males of the Oriental Fruit Fly, Bactrocera dorsalis, in Large Field Enclosures

    PubMed Central

    Shelly, Todd E.; Edu, James; McInnis, Donald

    2010-01-01

    The sterile insect technique may be implemented to control populations of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), when environmental concerns preclude widespread use of chemical attractants or toxicants. The goal of the present study was to evaluate whether the mating competitiveness of sterile B. dorsalis males could be increased via pre-release feeding on methyl eugenol. Males of the oriental fruit fly are strongly attracted to this plant-borne compound, which they ingest and use in the synthesis of the sex pheromone. Previous studies conducted in the laboratory and small field-cages have shown that males given methyl eugenol produce a more attractive pheromone for females and have a higher mating success rate than males denied methyl eugenol. Here, levels of egg sterility were compared following the release of wild-like flies and either methyl eugenol-fed (treated) or methyl eugenol-deprived (control) sterile males in large field enclosures at four over flooding ratios ranging from 5:1 to 60:1 (sterile: wild-like males). Treated sterile males were fed methyl eugenol for 1–4 h (depending on the over flooding ratio tested) 3 d prior to release. Eggs were dissected from introduced fruits (apples), incubated in the laboratory, and scored for hatch rate. The effect of methyl eugenol was most pronounced at lower over flooding ratios. At the 5:1 and 10:1 over flooding ratios, the level of egg sterility observed for treated, sterile males was significantly greater than that observed for control, sterile males. In addition, the incidence of egg sterility reported for treated sterile males at these lower over flooding ratios was similar to that noted for treated or control sterile males at the 30:1 or 60:1 over flooding ratios. This latter result, in particular, suggests that pre-release feeding on methyl eugenol allows for a reduction in the number of sterile flies that are produced and released, thus increasing the cost-effectiveness of the sterile insect technique. PMID:20569140

  4. GC-MS method validation and levels of methyl eugenol in a diverse range of tea tree (Melaleuca alternifolia) oils.

    PubMed

    Raymond, Carolyn A; Davies, Noel W; Larkman, Tony

    2017-03-01

    Tea tree oil distilled from Melaleuca alternifolia has widespread use in the cosmetic industry as an antimicrobial as well as for other functions in topical products. Concerns were first raised by the European Commission's Scientific Committee on Consumer Products in 2004 about the level of the potentially carcinogenic phenylpropanoid compound methyl eugenol in tea tree oil. Limits on oil content in different types of cosmetic products were set based on a reported upper level of 0.9% methyl eugenol in the oil. A previous publication indicated that these levels were based on oil from a Melaleuca species not used in the commercial production of oil. Even the highest recorded levels in Melaleuca alternifolia, the overwhelmingly most common species used, were ∼15 times less than this, meaning that more oil could be safely used in the products. The current study, including details on methodology and reproducibility, extends that work across a suite of 57 plantation-sourced oils from a range of geographical locations and production years, as well as many Australian and international commercial oils. Lower levels of methyl eugenol in oils of known provenance were confirmed, with a recorded range of 160-552 ppm and a mean of 337 ppm. Analysis of variance showed methyl eugenol levels in Australian plantation oils to be correlated to the geographical region but not to the year of production. Average methyl eugenol levels in commercial oils were significantly lower, and these samples were divided into an authentic group and a group that were suspected of being adulterated based on an independent test. Authentic commercial oils had similar levels of methyl eugenol to Australian provenance material, whilst the oils classed as suspect had significantly lower levels.

  5. Performance of methyl eugenol + matrix + toxicant combinations under field conditions in Hawaii and California for trapping Bactrocera dorsalis (Diptera: Tephritidae).

    PubMed

    Jang, Eric B; Ramsey, Amanda; Carvalho, Lori A

    2013-04-01

    The oriental fruit fly, Bactrocera dorsalis (Hendel) is a major pest of many fruit crops worldwide. Current detection programs by federal and state agencies in the United States use a grid of traps consisting of liquid methyl eugenol (lure) and naled (toxicant) applied to cotton wicks and hung inside the trap. In recent years efforts have been made to incorporate these chemicals into various solid-type matrices that could be individually packaged to reduce human exposure to the chemicals and improve handling. New solid formulations containing methyl eugenol and either naled or dichlorovinyl dimethyl phosphate toxicants were compared with the standard formulations on cotton wicks in large scale field evaluation in Hawaii. Two reduced risk toxicants (spinosad and Rynaxypyr) were also evaluated. In one test the solid lure-toxicant-matrix combinations were sent to California to be weathered under California climate conditions and then sent back to Hawaii for evaluation. The polymer matrices with lure and toxicant were found to be as attractive as baited wicks and have the same longevity of attraction regardless of being weathered in Hawaii or in California. The new ingestible toxicants were also effective, although further testing of these ingestible lure + toxicant + matrix products is necessary.

  6. Eugenol and methyl eugenol chemotypes of essential oil of species Ocimum gratissimum L. and Ocimum campechianum Mill. from Colombia.

    PubMed

    Pino Benitez, Nayive; Meléndez León, Erika M; Stashenko, Elena E

    2009-10-01

    Essential oils chemical constituents of leaves of O. gratissimum and O. campechianum of the Lamiaceae family, collected in Chocó of northwest Colombian, were obtained by microwave-assisted hydrodistillation and analyzed by gas chromatography coupled with mass spectrometry. A total of 33 and 37 compounds were identified in the essential oil of O. gratissimum and O. campechianum, respectively. O. gratissimum's main essential oils were eugenol (43.2%), 1,8-cineole (12.8%) and beta-selinene (9.0%); in the O. campechianum essential oil, the main components were methyl eugenol (12.0%), germacrene D (10.1%), and eugenol (9.0%). Main distribution of compounds in these essential oils are 25.0% monoterpenes hydrocarbons, 15.0% monoterpenes oxygenated, 35.0% sesquiterpenes hydrocarbons, 7.5% other oxygenated components for O. gratissimum, 33.9% sesquiterpenes hydrocarbons, and 10.7% their respective oxygenated derivates; for O. campechianum, the distribution was 10.7% monoterpenes hydrocarbons and 7.1% their respective oxygenated derivates and 3.6% phenylpropanes. According to the essential oils chemical composition of Ocimum gratissimum and O. campechianum, they are classified as eugenol and methyl eugenol chemotype, respectively.

  7. Field Trapping Bactrocera latifrons (Diptera: Tephritidae) with Select Eugenol Analogs That Have Been Found to Attract Other 'Non-Responsive' Fruit Fly Species.

    PubMed

    McQuate, Grant T; Royer, Jane E; Sylva, Charmaine D

    2018-05-01

    Bactrocera latifrons (Hendel) (Diptera: Tephritidae) is a pest fruit fly species native to Oriental Asia which has invaded and established in Hawaii and Tanzania and has been recovered in detection trapping in California. It is largely non-responsive to the male lures cuelure and methyl eugenol. Alpha-ionol + cade oil is a moderately effective male B. latifrons attractant, but is not as attractive as cuelure or methyl eugenol are to other fruit fly species. An improved attractant is therefore desired. With the recent success in finding other non-responsive fruit fly species attracted to isoeugenol, methyl-isoeugenol, or dihydroeugenol in Australia and other countries, we wanted to assess whether B. latifrons might also respond to these “eugenol analogs.” Working with wild B. latifrons populations in Hawaii, we assessed the relative catch of B. latifrons in traps baited with the eugenol analogs with catch in traps baited with alpha-ionol, alpha-ionol + cade oil, or alpha-ionol + eugenol. Catch was significantly higher in traps baited with alpha-ionol + cade oil relative to traps with any of the other baits. There was, though, some male B. latifrons catch in traps baited with dihydroeugenol or isoeugenol but none in traps baited with methyl-isoeugenol.

  8. 40 CFR 180.1067 - Methyl eugenol and malathion combination; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Methyl eugenol and malathion... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR.... Department of Agriculture, in accordance with the following directions and specifications: (a) The...

  9. 40 CFR 180.1067 - Methyl eugenol and malathion combination; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Methyl eugenol and malathion... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR.... Department of Agriculture, in accordance with the following directions and specifications: (a) The...

  10. Specialized (iso)eugenol-4-O-methyltransferases (s-IEMTs) and methods of making and using the same

    DOEpatents

    Liu, Chang-Jun; Cai, Yuanheng

    2017-01-31

    Specialized (iso)eugenol 4-O-methyltransferase (s-IEMT) enzymes having increased capacity for methylation of monolignols are disclosed. The s-IEMTs have unique activity favoring methylation of coniferyl alcohol versus sinapyl alcohol. Various s-IEMTs methylate ferulic acid. Means for producing the various s-IEMTs are provided. The s-IEMTs are useful for modification of lignin content and production of aromatic compounds.

  11. Terminalia larval host fruit reduces the response of Bactrocera dorsalis adults to the male lure methyl eugenol

    USDA-ARS?s Scientific Manuscript database

    Methyl eugenol(ME) is a powerful semiochemical attractant to males of the oriental fruit fly, Bactrocera dorsalis, and is the keystone of detection, control, and eradication programs against this polyphagous and highly invasive tephritid pest. Despite its status as a model lure against B.dorsalis, v...

  12. Methyl Eugenol: Its Occurrence, Distribution, and Role in Nature, Especially in Relation to Insect Behavior and Pollination

    PubMed Central

    Tan, Keng Hong; Nishida, Ritsuo

    2012-01-01

    This review discusses the occurrence and distribution (within a plant) of methyl eugenol in different plant species (> 450) from 80 families spanning many plant orders, as well as various roles this chemical plays in nature, especially in the interactions between tephritid fruit flies and plants. PMID:22963669

  13. Evolution of olfactory receptor in oriental fruit fly Dacus dorsalis

    PubMed Central

    Metcalf, Robert L.; Metcalf, Esther R.; Mitchell, W. C.; Lee, Lena W. Y.

    1979-01-01

    Male oriental fruit flies (Dacus dorsalis) from colonies in Taiwan and Hawaii were evaluated for limit of response to various analogues of methyl eugenol. The results are interpreted in terms of the geometry and allosteric requirements of the antennal receptor that triggers the characteristic methyl eugenol reflex. This receptor has evolved for complementarity to all portions of the methyl eugenol molecule and responds only to ortho-substituted benzenes with adjacent oxygen atoms or isoelectronic equivalents. Substantial differences in responses of Taiwan and Hawaiian D. dorsalis suggest that perceptible evolution of the receptor protein has occurred during the past 50 years. A plausible scheme for the coevolution of dacini flies with plants containing phenylpropionoid essential oils is outlined. Images PMID:16592640

  14. Comparative inhibitory effects of magnolol, honokiol, eugenol and bis-eugenol on cyclooxygenase-2 expression and nuclear factor-kappa B activation in RAW264.7 macrophage-like cells stimulated with fimbriae of Porphyromonas gingivalis.

    PubMed

    Murakami, Yukio; Kawata, Akifumi; Seki, Yuya; Koh, Teho; Yuhara, Kenji; Maruyama, Takehisa; Machino, Mamoru; Ito, Shigeru; Kadoma, Yoshinori; Fujisawa, Seiichiro

    2012-01-01

    The anti-inflammatory activity of magnolol and related compounds is currently a focus of interest. In the present study, the inhibitory effects of these compounds on cyclooxygenase (COX-2) expression and nuclear factor-kappa B (NF-κB) activation were investigated in RAW264.7 macrophage-like cells stimulated with the fimbriae of Porphyromonas gingivalis, an oral anaerobe. The cytotoxicity of magnolol, honokiol, eugenol and bis-eugenol against RAW264.7 cells was determined using a cell counting kit (CCK-8). The regulatory effect of these compounds on the expression of COX-2 mRNA, stimulated by exposure to the fimbriae was investigated by real-time polymerase chain reaction (PCR). NF-κB activation was evaluated by enzyme-linked immunosorbent assay (ELISA)-like microwell colorimetric transcription factor activity assay (Trans-AM) and western blot analysis. The radical-scavenging activity was determined using the induction period method in the methyl methacrylate-azobisisobutyronitrile (AIBN) polymerization system under nearly anaerobic conditions. The phenolic bond dissociation enthalpy (BDE) and orbital energy were calculated at the density functional theory (DFT) B3LYP/6-31G* level. The cytotoxicity against RAW264.7 cells declined in the order bis-eugenol>eugenol> honokiol>magnolol, whereas the radical-scavenging activity declined in the order honokiol, bis-eugenol>magnolol> eugenol. Magnolol and honokiol significantly inhibited the fimbria-induced expression of COX-2 at non-cytotoxic concentrations. Both the fimbria-stimulated binding of NF-κB to its consensus sequence and phosphorylation-dependent proteolysis of inhibitor κB-α were markedly inhibited by magnilol and honokiol, whereas eugenol and bis-eugenol did not inhibit COX-2 expression and NF-κB activation. Magnolol and honokiol possessed a high electronegativity (χ) value. Magnolol and honokiol exhibit antioxidative activity, low cytotoxicity, and anti-inflammatory activity. These compounds may be capable of preventing chronic inflammatory diseases induced by oral bacteria.

  15. Free Radical Metabolism of Methyleugenol and Related Compounds

    PubMed Central

    2015-01-01

    Methyleugenol, the methyl ether of eugenol, both of which are flavorant constituents of spices, has been listed by the National Toxicology Program’s Report on Carcinogens as reasonably anticipated to be a human carcinogen. This finding is based on the observation of increased incidence of malignant tumors at multiple tissue sites in experimental animals of different species. By contrast, eugenol is not listed. In this study, we show that both methyleugenol and eugenol readily undergo peroxidative metabolism in vitro to form free radicals with large hyperfine interactions of the methylene allylic hydrogen atoms. These large hyperfine splittings indicate large electron densities adjacent to those hydrogen atoms. Methyleugenol undergoes autoxidation such that the commercial product contains 10–30 mg/L hydroperoxide and is capable of activating peroxidases without the presence of added hydrogen peroxide. Additionally, the hydroperoxide is not a good substrate for catalase, which demonstrates that these antioxidant defenses will not be effective in protecting against methyleugenol exposure. PMID:24564854

  16. Field trials of solid triple lure (trimedlure, methyl eugenol, raspberry ketone, and DDVP) dispensers for detection and male annihilation of Ceratitis capitata (Wiedemann), Bactrocera dorsalis (Hendel) and Bactrocera cucurbit

    USDA-ARS?s Scientific Manuscript database

    Solid Mallet TMR (trimedlure [TML], methyl eugenol [ME], raspberry ketone [RK]) wafers and Mallet CMR (ceralure, ME, RK, benzyl acetate) wafers impregnated with DDVP insecticide were evaluated in traps as potential detection and male annihilation devices. Comparisons were made with 1) liquid lure a...

  17. Weathering and chemical degradation of methyl eugenol and raspberry ketone solid dispensers for detection, monitoring and male annihilation of Bactrocera dorsalis and Bactrocera cucurbitae (Diptera: Tephritidae) in Hawaii

    USDA-ARS?s Scientific Manuscript database

    Solid male lure dispensers containing methyl eugenol (ME) and raspberry ketone (RK), or mixtures of the lures (ME + RK), and dimethyl dichloro-vinyl phosphate (DDVP) were evaluated in AWPM bucket or Jackson traps in commercial papaya (Carica papaya L.) orchards where both oriental fruit fly, Bactroc...

  18. Methyl-isoeugenol, a Highly Attractive Male Lure for the Cucurbit Flower Pest Zeugodacus diversus (Coquillett) (syn. Bactrocera diversa) (Diptera: Tephritidae: Dacinae).

    PubMed

    Royer, Jane E; Khan, Mahfuza; Mayer, David G

    2018-05-28

    Effective male fruit fly attractants, such as cue lure (CL) and methyl eugenol (ME), are important in the monitoring and management of pest species through lure and kill techniques of trapping and male annihilation. However, some species are only weakly responsive to these lures, making their detection and control difficult. Zeugodacus diversus (Coquillett), a pest of cucurbit flowers in Asia, is weakly attracted to ME. Recently in Australia and Papua New Guinea, the eugenol analogues isoeugenol, methyl-isoeugenol, and dihydroeugenol were found to be effective attractants for species with a weak response to ME and CL, as well as several nonresponsive species. Additionally, studies from the early 1900s indicated that Z. diversus was attracted to isoeugenol. To determine if these eugenol analogues may be more effective attractants for Z. diversus, we field tested them in Bangladesh in comparison to ME, as well as CL and zingerone. Z. diversus was significantly more attracted to all three eugenol analogues than ME, with it most attracted to methyl-isoeugenol. Its attraction to methyl-isoeugenol was 49 times greater than its attraction to ME (respective means 23.58 flies/trap/day (FTD) and 0.48 FTD). Z. diversus was also consistently trapped at methyl-isoeugenol at all trap clearances including when populations were low, whereas it was only trapped at ME at 6 out of the 13 clearances. This study demonstrates that methyl-isoeugenol is a highly attractive lure for Z. diversus and would be a valuable inclusion as an attractant in monitoring and male annihilation programs.

  19. Insecticidal activity of basil oil, trans-anethole, estragole, and linalool to adult fruit flies of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae.

    PubMed

    Chang, Chiou Ling; Cho, Il Kyu; Li, Qing X

    2009-02-01

    Basil oil and its three major active constituents (trans-anethole, estragole, and linalool) obtained from basil (Oscimum basilicum L.) were tested on three tephritid fruit fly species [Ceratitis capitata (Wiedemann), Bactrocera dorsalis (Hendel), and Bactrocera cucurbitae (Coquillett)] for insecticidal activity. All test chemicals acted fast and showed a steep dose-response relationship. The lethal times for 90% mortality/knockdown (LT90) of the three fly species to 10% of the test chemicals were between 8 and 38 min. The toxic action of basil oil in C. capitata occurred significantly faster than in B. cucurbitae but slightly faster than in B. dorsalis. Estragole acted faster in B. dorsalis than in C. capitata and B. cucurbitae. Linalool action was faster in B. dorsalis and C. capitata than in B. cucurbitae. trans-Anethole action was similar to all three species. Methyl eugenol acted faster in C. capitata and B. cucurbitae than in B. dorsalis. When linalool was mixed with cuelure (attractant to B. cucurbitae male), its potency to the three fly species decreased as the concentration of cuelure increased. This was due to linalool hydrolysis catalyzed by acetic acid from cuelure degradation, which was confirmed by chemical analysis. When methyl eugenol (B. dorsalis male attractant) was mixed with basil oil, trans-anethole, estragole, or linalool, it did not affect the toxicity of basil oil and linalool to B. dorsalis, but it did significantly decrease the toxicity of trans-anethole and estragole. Structural similarity between methyl eugenol and trans-anethole and estragole suggests that methyl eugenol might act at a site similar to that of trans-anethole and estragole and serve as an antagonist if an action site exists. Methyl eugenol also may play a physiological role on the toxicity reduction.

  20. The role of biomaterials as occupational hazards in dentistry.

    PubMed

    Hensten-Pettersen, A; Jacobsen, N

    1990-06-01

    Many of the biomaterials and auxilliary products used in dentistry are chemically and biologically reactive and may be of concern in occupational safety programmes. Observations from 1936 to 1975 indicated that most occupational problems were related to skin contact with procaine, soaps, eugenol, iodine, formalin, phenol, and other disinfectants. Methyl methacrylate monomer was identified as an irritant and allergen in the later part of this period. Investigations from 1975 to 1985 indicated that disinfectants and detergents were still important causes of dermatoses, whereas reactions to procaine had been replaced by reactions to pantocaine. Furthermore, adverse reactions to methyl methacrylate monomer and to elastomeric impression materials had replaced the former iodine, tricresol and eugenol reactions. In recent studies the frequency of occupation-related dermatoses varied from 21 per cent to 43 per cent, depending on the prevailing material usage in the various specialties. Reactions to local anaesthetics seemed to have disappeared. Transient, irritative reactions of the eyes and airways have been observed, mostly associated with exposure to volatiles from resin-based materials, X-ray chemicals and cleansers. The occupational problems related to biomaterials in dentistry seem to have been fairly constant over the years, reflecting the type of materials in common use, and with dermatological disorders being a tenacious companion. Neuropathological conditions in dental technicians have been associated with prolonged exposure to vapours of methyl methacrylate monomer. The more recent extensive use of volatile resin-based materials, and the use of protective gloves seems to have created new problems that need to be investigated.

  1. O-methylation of natural phenolic compounds based on green chemistry using dimethyl carbonate

    NASA Astrophysics Data System (ADS)

    Prakoso, N. I.; Pangestu, P. H.; Wahyuningsih, T. D.

    2016-02-01

    The alkyl aryl ether compounds, of which methyl eugenol and veratraldehyde are the simplest intermediates can be synthesized by reacting eugenol and vanillin with the green reagent dimethyl carbonate (DMC). The reaction was carried out under mild of temperature and pressure. Excellent yields and selective products were obtained (95-96%) after a few hours. In the end of the reaction, the catalysts (base and Phase Transfer Catalyst) can be recovered and regenerated.

  2. Alkylphenol Activity against Candida spp. and Microsporum canis: A Focus on the Antifungal Activity of Thymol, Eugenol and O-Methyl Derivatives.

    PubMed

    Fontenelle, Raquel O S; Morais, Selene M; Brito, Erika H S; Brilhante, Raimunda S N; Cordeiro, Rossana A; Lima, Ynayara C; Brasil, Nilce V G P S; Monteiro, André J; Sidrim, José J C; Rocha, Marcos F G

    2011-07-29

    In recent years there has been an increasing search for new antifungal compounds due to the side effects of conventional antifungal drugs and fungal resistance. The aims of this study were to test in vitro the activity of thymol, eugenol, estragole and anethole and some O-methyl-derivatives (methylthymol and methyleugenol) against Candida spp. and Microsporum canis. The broth microdilution method was used to determine the minimum inhibitory concentration (MIC). The minimum fungicidal concentrations (MFC) for both Candida spp. and M. canis were found by subculturing each fungal suspension on potato dextrose agar. Thymol, methylthymol, eugenol, methyl-eugenol, anethole, estragole and griseofulvin respectively, presented the following MIC values against M. canis: 4.8-9.7; 78-150; 39; 78-150; 78-150; 19-39 µg/mL and 0.006-2.5 mg/mL. The MFC values for all compounds ranged from 9.7 to 31 µg/mL. Concerning Candida spp, thymol, methylthymol, eugenol, methyleugenol, anethole, estragole and amphotericin, respectively, showed the following MIC values: 39; 620-1250; 150-620; 310-620; 620; 620-1250 and 0.25-2.0 mg/mL. The MFC values varied from 78 to 2500 µg/mL. All tested compounds thus showed in vitro antifungal activity against Candida spp. and M. canis. Therefore, further studies should be carried out to confirm the usefulness of these alkylphenols in vivo.

  3. Anti-genotoxicity of trans-anethole and eugenol in mice.

    PubMed

    Abraham, S K

    2001-05-01

    The naturally occurring flavouring agents trans-anethole and eugenol were evaluated for antigenotoxic effects in mice. The test doses of trans-anethole (40-400 mg/kg body weight) and eugenol (50-500 mg/kg weight) were administered by gavage 2 and 20 h before the genotoxins were injected intraperitoneally. Anti-genotoxic effects were assessed in the mouse bone marrow micronucleus test. Pretreatment with trans-anethole and eugenol led to significant antigenotoxic effects against cyclophosphamide (CPH), procarbazine (PCB), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and urethane (URE). In addition, trans-anethole inhibited the genotoxicity of ethyl methane sulfonate (EMS). Both trans-anethole and eugenol exerted dose-related antigenotoxic effects against PCB and URE. There was no significant increase in genotoxicity when trans-anethole (40-400 mg/kg body weight) and eugenol (50-500 mg/kg body weight) were administered alone.

  4. Chemical Diversity in Basil (Ocimum sp.) Germplasm

    PubMed Central

    da Costa, Andréa Santos; Arrigoni-Blank, Maria de Fátima; de Carvalho Filho, José Luiz Sandes; de Santana, Aléa Dayane Dantas; Santos, Darlisson de Alexandria; Alves, Péricles Barreto; Blank, Arie Fitzgerald

    2015-01-01

    The present study aimed to chemically characterize 31 accessions and seven cultivars of basil. The percentage composition of the essential oils of the accessions and cultivars was based on the 14 most abundant constituents: 1,8-cineole, linalool, methyl chavicol, neral, nerol, geraniol, geranial, methyl cinnamate, β-bourbonene, methyl eugenol, α-trans-bergamotene, germacrene-D, epi-α-cadinol, and δ-cadinene. The genetic materials were classified into eight clusters according to the chemical composition of the essential oils: Cluster 1—mostly linalool and 1,8-cineole; Cluster 2—mostly linalool, geraniol, and α-trans-bergamotene; Cluster 3—mostly linalool, methyl chavicol, methyl cinnamate, and β-bourbonene; Cluster 4—mostly linalool, methyl chavicol, epi-α-cadinol, and α-trans-bergamotene; Cluster 5—mainly linalool, methyl eugenol, α-trans-bergamotene, and epi-α-cadinol; Cluster 6—mainly linalool, geraniol, and epi-α-cadinol; Cluster 7—mostly linalool and methyl chavicol; Cluster 8—mainly geranial and neral. PMID:25629084

  5. Evaluation of bioactivity of linalool-rich essential oils from Ocimum basilucum and Coriandrum sativum varieties.

    PubMed

    Duman, Ahmet D; Telci, Isa; Dayisoylu, Kenan S; Digrak, Metin; Demirtas, Ibrahim; Alma, Mehmet H

    2010-06-01

    Essential oils from Ocimum basilicum L. and Coriandrum sativum L. varieties originating from Turkey were investigated for their antimicrobial properties. The antimicrobial effects of the oil varieties were evaluated by the disc diffusion and minimum inhibitory concentration (MIC) methods against eight bacteria and three fungi. The compositions of the essential oils were analyzed and identified by GC and GC-MS. O. basilicum, C. sativum var. macrocarpum and var. microcarpum oils revealed the presence of linalool (54.4%), eugenol (9.6%), methyl eugenol (7.6%); linalool (78.8%), gamma-terpinene (6.0%), nerol acetate (3.5%); and linalool (90.6%), and nerol acetate (3.3%) as the major components, respectively. The oils exhibited antibacterial activity ranging from 1.25 to 10 microL disc(-1) against the test organisms with inhibition zones of 9.5-39.0 mm and minimal inhibitory concentrations values in the range 0.5- > or =1 microL/L. Linalool, eugenol, and methyl eugenol at 1.25 microL disc(-1) had antimicrobial effects on all microorganisms, giving inhibition zones ranging from 7 to 19 mm.

  6. Depletion of eugenol residues from the skin-on fillet tissue of rainbow trout exposed to 14C-labeled eugenol

    USGS Publications Warehouse

    Meinertz, Jeffery R.; Schreier, Theresa M.; Porcher, Scott T.; Smerud, Justin R.; Gaikowski, Mark P.

    2014-01-01

    The U.S. is lagging in access to an approved immediate-release sedative, i.e. a compound that can be safely and effectively used to sedate fish and has no withdrawal period. AQUI-S® 20E (10% active ingredient, eugenol) is under investigation as an immediate-release sedative for freshwater finfish. Because of its investigational status, data are needed to characterize the depletion, distribution, and identity of AQUI-S® 20E residues in fillet tissue. Rainbow trout (Oncorhynchus mykiss) were exposed to uniformly ring labeled 14C-eugenol at a nominal concentration of 10 mg/L for 60 min in 18 °C water. Fish (n = 6) were sampled immediately after the exposure (0 min) then at 30, 60, 120, and 240 min. Eugenol concentrations and characterization of 14C residues in the fillet tissue were determined by high pressure liquid chromatography and flow-through liquid scintillation counting techniques. Total 14C-residue burdens in fillet tissue were determined by tissue oxidation and static liquid scintillation counting techniques. Maximum eugenol and 14C-eugenol equivalent residue concentrations in the fillet tissue were measured immediately after the exposure (44.5 and 38.8 μg/g, respectively). Eugenol was the primary 14C-residue (> 90% of all 14C-residues) in extracts from fillet tissue taken from fish sampled immediately after the exposure (0 min) and from fish sampled at 30 and 60 min after the exposure. The depletion of 14C-eugenol residues from the fillet tissue was rapid (t1/2 = 26.25 min) after transferring the exposed fish to fresh flowing water.

  7. Field trappping Bactrocera latifrons (Diptera: Tephritidae) with select eugenol analogs that have been found to attract other "nonresponsive" fruit fly species

    USDA-ARS?s Scientific Manuscript database

    Bactrocera latifrons (Hendel) (Diptera: Tephritidae) is a pest fruit fly species native to Oriental Asia which has invaded and established in Hawaii and Tanzania and has been recovered in detection trapping in California. It is largely non-responsive to the male lures cuelure and methyl eugenol. Alp...

  8. No induction of antimicrobial resistance in Staphylococcus aureus and Listeria monocytogenes during continuous exposure to eugenol and citral.

    PubMed

    Apolónio, Joana; Faleiro, Maria L; Miguel, Maria G; Neto, Luís

    2014-05-01

    The aim of this study was to evaluate the adaptation response of Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and Listeria monocytogenes to the essential oil (EO), eugenol, and citral. The minimum inhibitory concentration of eugenol and citral was determined by agar dilution and microdilution. Adaptation to eugenol and citral was done by sequential exposure of the pathogens to increasing concentrations of the essential oils. The M2-A9 standard was used to determine the antibiotic susceptibility. The effect of eugenol and citral on the adherence ability was evaluated by the crystal violet assay. The impact of adaptation to eugenol on virulence was estimated using the Galleria mellonella model. No development of resistance to the components and antibiotics was observed in the adapted cells of S. aureus, MRSA, and L. monocytogenes. Eugenol and citral at subinhibitory concentration reduced the bacterial adherence. Adaptation to subinhibitory concentration of eugenol affected the virulence potential of S. aureus, MRSA, and L. monocytogenes. Eugenol and citral do not pose a risk of resistance development in a continuous mode of use. These EO components showed a high efficacy as antistaphylococcal and antilisterial biofilm agents. Adaptation at subinhibitory concentration of eugenol protected the larvae against listerial and staphylococcal infection. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Terminalia Larval Host Fruit Reduces the Response of Bactrocera dorsalis (Diptera: Tephritidae) Adults to the Male Lure Methyl Eugenol.

    PubMed

    Manoukis, N C; Cha, D H; Collignon, R M; Shelly, T E

    2018-04-12

    Methyl eugenol (ME) is a powerful semiochemical attractant to males of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), and is the keystone of detection, control, and eradication programs against this polyphagous and highly invasive tephritid pest. Despite its status as a model lure against B. dorsalis, variation among individuals in their attraction is known, independent of the generally increasing attraction with age and decreases with previous exposure. Here we report that adult male B. dorsalis that fed on Terminalia catappa L. (Myrtales: Combretaceae) (tropical almond) fruit as larvae have a significantly lower behavioral response to ME compared with wild males from Psidium guajava L. (Myrtales: Myrtaceae) or colony-reared males raised on artificial larval diet. F1 males from the tropical almond stock reared on artificial larval diet did not show reduced attraction to ME, suggesting that the lowered response of parental males (sires) results from the host fruit itself, perhaps its relatively high amount of ME. Experiments with ME added to artificial diet lend some support to this interpretation. In addition to the results above, we report on quantities of ME in three different host fruits (T. catappa, P. guajava, and Carica papaya L. (Brassicales: Caricaceae)) of B. dorsalis. This study indicates the need for further research on the effect of host fruit on adult response to lures in economically important tephritids.

  10. Characterization of Essential Oil Composition in Different Basil Species and Pot Cultures by a GC-MS Method.

    PubMed

    Muráriková, Andrea; Ťažký, Anton; Neugebauerová, Jarmila; Planková, Alexandra; Jampílek, Josef; Mučaji, Pavel; Mikuš, Peter

    2017-07-20

    Basil ( Ocimum L.) species are used as medicinal plants due to their essential oils exhibiting specific biological activity. The present work demonstrated that both the variety and season/conditions of cultivation had a significant effect on (i) the produced amount (extraction yield), (ii) qualitative, as well as (iii) quantitative profile of basil essential oil. Among studied basil varieties, a new variety, 'Mánes', was characterized for the first time. Based on our quantitative evaluation of GC-MS profiles, the following chemotypes and average concentrations of a main component were detected in the studied basil varieties: 'Ohře', 'Lettuce Leaf', 'Purple Opaal', 'Dark Green' (linalool, 5.99, 2.49, 2.34, 2.01 mg/mL, respectively), and 'Mammolo Genovese', 'Mánes', 'Red Rubin' (eucalyptol, 1.34, 0.96, 0.76 mg/mL, respectively). At the same time, when considering other compounds identified in GC-MS profiles, all the studied varieties, except from 'Lettuce Leaf', were methyl eugenol-rich with a strong dependence of the eugenol:methyl eugenol ratio on the seasonal changes (mainly solar irradiation, but also temperature and relative humidity). More complex and/or variable (depending on the season and cultivation) chemotypes were observed with 'Lettuce Leaf' (plus estragole, 2.27 mg/mL), 'Dark Green' (plus eucalyptol, 1.36 mg/mL), 'Mammolo Genovese' (plus eugenol, 1.19 mg/mL), 'Red Rubin' (plus linalool and eugenol, 0.46 and 0.56 mg/mL, respectively), and 'Mánes' (plus linalool and eugenol, 0.58 and 0.40 mg/mL, respectively). When considering superior extraction yield (ca. 17 mL·kg -1 , i.e., two to five times higher than other examined varieties) and consistent amounts (yields) of essential oil when comparing inter-seasonal or inter-year data (RSD and inter-year difference in mean yield values ˂2.5%), this new basil variety is very promising for use in the pharmaceutical, food, and cosmetic industries.

  11. Biological monitoring of environment exposure to safrole and the Taiwanese betel quid chewing.

    PubMed

    Chang, M J W; Ko, C Y; Lin, R F; Hsieh, L L

    2002-11-01

    A rapid and sensitive biological monitoring (BM) method for assessing exposure to the environmental carcinogen safrole has been developed. The method is an isocratic high-performance liquid chromatographic (HPLC) analysis of urinary dihydroxychavicol (DHAB) and eugenol, the urinary metabolites of safrole. Good linearity, precision, and accuracy were demonstrated. A recovery of 98.8 +/- 5.4% (SD, n = 3) was found for DHAB and 84.1 +/- 3.4% (n = 3) for eugenol. The quantitation limits of the method were 8 ng for DHAB and 10 ng for eugenol. The validity of the method was demonstrated by a linear dose-response relationship observed in rats given oral doses of safrole at 30, 75, and 150 mg/kg body weight. The method was also used to monitor the environmental exposure to the Taiwanese betel quid (TBQ) chewing, because TBQ used in Taiwan not only contains areca (betel) nut, slaked lime, and catechu but also Piper betle inflorescence or its leaves. Both of the latter have a high content of safrole. The feasibility of the method to monitor TBQ chewing was demonstrated by an analysis of 153 spot human urine samples. The results showed that the p value of the nonparametric group comparison was < 0.001 for DHAB and 0.832 for eugenol. The TBQ chewers also exhibited a significantly higher rate of urinary DHAB (but not eugenol) than the nonchewers with an odd ratio of 3.47 (95% CI, 1.61-7.51). However, when only the eugenol-positive subjects were taken into analysis, the ratio rose to 24.38 (95% CI, 3.00-197.90).

  12. Monolignol 4-O-methyltransferases and uses thereof

    DOEpatents

    Liu, Chang-Jun; Bhuiya, Mohammad-Wadud; Zhang, Kewei

    2014-11-18

    Modified (iso)eugenol 4-O-methyltransferase enzymes having novel capacity for methylation of monolignols and reduction of lignin polymerization in plant cell wall are disclosed. Sequences encoding the modified enzymes are disclosed.

  13. Ovicidal and larvicidal activity and possible mode of action of phenylpropanoids and ketone identified in Syzygium aromaticum bud against Bradysia procera.

    PubMed

    Hong, Tae-Kyun; Perumalsamy, Haribalan; Jang, Kyoung-Hwa; Na, Eun-Shik; Ahn, Young-Joon

    2018-02-01

    Bradysia procera is a serious insect pest of Panax ginseng plants. This study was conducted to determine the toxicity and mechanism of action of three phenylpropanoids, three terpenoids, and a ketone from Syzygium aromaticum bud methanol extract and hydrodistillate against third-instar larvae and eggs of B. procera. In a filter-paper mortality bioassay, methyl salicylate (LC 50 , 5.26μg/cm 2 ) was the most toxic compound, followed by 2-nonanone, eugenol, and eugenyl acetate (8.77-15.40μg/cm 2 ). These compounds were significantly less toxic than either thiamethoxam, clothianidin, or cypermethrin. Egg hatching was inhibited by 97, 85, and 40% at 11.7μg/cm 2 of methyl salicylate, 2-nonanone, and eugenol, respectively. The egg-hatching inhibition of these insecticides was between 90 and 94% at 0.09μg/cm 2 . These constituents were consistently more toxic in closed versus open containers, indicating that toxicity was achieved mainly through the action of vapor. The mechanism of larvicidal action of methyl salicylate, eugenol, and eugenyl acetate might be primarily due to interference with the octopaminergic system. 2-Heptyl acetate and 2-nonanone might act on both acetylcholinesterase and the octopaminergic receptor. 2-Heptanone might act primarily on acetylcholinesterase. Further studies will warrant possible applications of S. aromaticum bud-derived products as potential larvicides and ovicides for the control of B. procera. Copyright © 2018. Published by Elsevier Inc.

  14. Chemical composition of the essential oil of Feronia elephantum Correa.

    PubMed

    Pande, Chitra; Tewari, Geeta; Singh, Charu; Singh, Shalini; Padalia, R C

    2010-11-01

    The essential oil composition of Feronia elephantum Correa (family: Rutaceae) was examined by capillary gas chromatography (GC) and gas chromatography-mass spectroscopy (GC-MS). The analysis revealed the presence of 24 constituents, of which 18 constituents were identified. Trans-anethole (57.73%) and methyl chavicol (37.48%) were the major compounds, while cis-anethole, p-anisaldehyde, (E)-jasmone, methyl eugenol, β-caryophyllene, linalool and (E)-methyl isoeugenol were also present as the minor constituents.

  15. Determination of the exposure parameters that maximise the concentrations of the anaesthetic/sedative eugenol in rainbow trout (Oncorhynchus mykiss) skin-on fillet tissue.

    PubMed

    Meinertz, J R; Porcher, S T; Smerud, J R; Gaikowski, M P

    2014-01-01

    Studies were conducted to determine the anaesthetic/sedative concentrations and durations that would maximise anaesthetic/sedative residue concentrations in rainbow trout (Oncorhynchus mykiss) skin-on fillet tissue. Rainbow trout (167-404 g) were exposed to 50 mg l(-1) AQUI-S(®) 20E (10% active ingredient, eugenol) in 17°C freshwater for durations up to 1440 min, 100 and 250 mg l(-1) AQUI-S(®) 20E for durations up to 240 min, and 500 and 1000 mg l(-1) AQUI-S(®) 20E for durations up to 90 min. Fish exposed to 100 mg l(-1) AQUI-S(®) 20E for durations of 30, 60, 120 and 240 min had the greatest eugenol concentrations in the fillet tissue, 50, 58, 54 and 62 µg g(-1), respectively. All other exposure concentrations and durations resulted in significantly lower eugenol concentrations, i.e. all < 39 µg g(-1).

  16. Determination of the exposure parameters that maximise the concentrations of the anaesthetic/sedative eugenol in rainbow trout (Oncorhynchus mykiss) skin-on fillet tissue

    USGS Publications Warehouse

    Meinertz, Jeffery R.; Porcher, Scott T.; Smerud, Justin R.

    2014-01-01

    Studies were conducted to determine the anaesthetic/sedative concentrations and durations that would maximize anaesthetic/sedative residue concentrations in rainbow trout (Oncorhynchus mykiss) skin-on fillet tissue. Rainbow trout (167–404 g) were exposed to 50 mg l−1 AQUI-S® 20E (10% active ingredient, eugenol) in 17°C freshwater for durations up to 1440 min, 100 and 250 mg l−1 AQUI-S® 20E for durations up to 240 min, and 500 and 1000 mg l−1 AQUI-S® 20E for durations up to 90 min. Fish exposed to 100 mg l−1 AQUI-S® 20E for durations of 30, 60, 120 and 240 min had the greatest eugenol concentrations in the fillet tissue, 50, 58, 54 and 62 µg g−1, respectively. All other exposure concentrations and durations resulted in significantly lower eugenol concentrations, i.e. all −1.

  17. Elucidation of key aroma compounds in traditional dry fermented sausages using different extraction techniques.

    PubMed

    Corral, Sara; Salvador, Ana; Flores, Mónica

    2015-04-01

    The use of different extraction techniques - solid phase microextraction (SPME) and solvent assisted flavour evaporation (SAFE) - can deliver different aroma profiles and it is essential to determine which is most suitable to extract the aroma compounds from dry fermented sausages. Forty-five aroma-active compounds were detected by SPME and SAFE, with 11 of them reported for the first time as aroma compounds in dry fermented sausages: ethyl 3-hydroxy butanoate, trimethyl pyrazine, D-pantolactone, isobutyl hexanoate, ethyl benzoate, α-terpineol, ethyl 3-pyridinecarboxylate, benzothiazole, 2,3-dihydrothiophene, methyl eugenol, γ-nonalactone. The aroma concentration and odour activity values (OAVs) were calculated. Flavour reconstitution analyses were performed using 20 odorants with OAVs above 1 obtained from the SAFE and SPME extracts to prepare the aroma model. SPME and SAFE techniques were complementary and necessary to reproduce the overall dry fermented sausage aroma. The final aroma model included the odorants from both extraction techniques (SPME and SAFE) but it was necessary to incorporate the compounds 2,4-decadienal (E,E), benzothiazole, methyl eugenol, α-terpineol, and eugenol to the final aroma model to evoked the fresh sausage aroma although a lowest cured meat aroma note was perceived. © 2014 Society of Chemical Industry.

  18. A time course study of glucose levels and innate immune response in gilthead seabream (Sparus aurata L.) after exposure to clove oil-eugenol derived anaesthetic.

    PubMed

    Bahi, A; Guardiola, F A; Esteban, M A

    2018-06-01

    Clove oil is used as an anaesthetic for many species of fish worldwide; however, relatively few studies have assessed its effects on the innate immune response on these species. The present work aimed to investigate the effects of clove oil-eugenol derived anaesthetic on some humoral and cellular immune response in gilthead seabream (Sparus aurata L.). To compare with an unexposed control group, fish were exposed to 55 ppm clove oil for 5 min, before being sampled at 1, 24 and 48 h post-exposure. Serum glucose level was also measured to obtain information on the fish physiological response after clove oil anaesthesia. One hour after exposure the haemolytic complement activity of fish was lower than in the unexposed group. By contrast, the leucocyte peroxidase activity in head-kidney was significantly stimulated 24 h after exposure to clove oil-eugenol. The rest of innate immune parameters evaluated and the glucose levels not were affected by clove oil exposure at any sampling point. Overall, the use of clove oil at 55 ppm as anaesthetic did not seem to alter the innate immune response and neither did it trigger a stress response. The use of clove oil-eugenol derived had become common practice in aquaculture, and its use with gilthead seabream can be considered safe as it does not cause immunodepression in anesthetized fish. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Insecticidal Properties of Essential Oils and Some of Their Constituents on the Turkestan Cockroach (Blattodea: Blattidae).

    PubMed

    Gaire, Sudip; O'Connell, Mary; Holguin, Francisco O; Amatya, Anup; Bundy, Scott; Romero, Alvaro

    2017-04-01

    The Turkestan cockroach, Blatta lateralis (Walker), has become the most important peridomestic species in urban areas of the Southwestern United States. The aim of this study was to evaluate the use of botanical compounds to control this urban pest. We tested the acute toxicity and repellency of six botanical constituents and three essential oils on Turkestan cockroach nymphs. Chemical composition of the essential oils was also determined. Topical and fumigant assays with nymphs showed that thymol was the most toxic essential oil constituent, with a LD50 of 0.34 mg/nymph and a LC50 of 27.6 mg/liter air, respectively. Contact toxicity was also observed in assays with trans-Cinnamaldehyde, eugenol, geraniol, methyl eugenol, and p-Cymene. Methyl eugenol and geraniol had limited fumigant toxicity. The essential oils from red thyme, clove bud, and Java citronella exhibited toxicity against nymphs. Cockroaches avoided fresh dry residues of thymol and essential oils. Chemical analysis of the essential oils confirmed high contents of effective essential oil constituents. Our results demonstrated that essential oils and some of their constituents have potential as eco-friendly insecticides for the management of Turkestan cockroaches. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Effect of methyl jasmonate on secondary metabolites of sweet basil (Ocimum basilicum L.).

    PubMed

    Kim, Hyun-Jin; Chen, Feng; Wang, Xi; Rajapakse, Nihal C

    2006-03-22

    The effect of methyl jasmonate (MeJA) in terms of its induction of inherent bioactive chemicals in sweet basil (Ocimum basilicum L.) was evaluated after MeJA was sprayed on healthy basil plants. The total phenolic content of the sweet basil significantly increased after 0.1 and 0.5 mM MeJA treatments compared with the control not subjected to MeJA. Two phenolic compounds, rosmarinic acid (RA) and caffeic acid (CA), were identified as strong antioxidant constituents of the sweet basil. Their amounts also significantly increased after the MeJA treatment. In addition, eugenol and linalool increased 56 and 43%, respectively, by the 0.5 mM MeJA treatment. Due to the accumulation of RA, CA, and eugenol, which possess strong 2,2-diphenyl-1-picrylhydrazyl (DPPH*) free radical scavenging activities, the antioxidant activity of the sweet basil extract was 2.3-fold greater than that of the control after the 0.5 mM MeJA treatment. In the DPPH* assay, the EC50 values of RA, CA, and eugenol were determined as 23, 46, and 59 microM, respectively, which indicated they were 6-, 3-, and 2.4-fold more efficient than BHT (140 microM). Besides, an unidentified HPLC peak in the methanolic extract of the sweet basil was 4.3-fold higher than that of the control after the 0.5 mM MeJA treatment.

  1. Synergistic Interactions of Eugenol-tosylate and Its Congeners with Fluconazole against Candida albicans.

    PubMed

    Ahmad, Aijaz; Wani, Mohmmad Younus; Khan, Amber; Manzoor, Nikhat; Molepo, Julitha

    2015-01-01

    We previously reported the antifungal properties of a monoterpene phenol "Eugenol" against different Candida strains and have observed that the addition of methyl group to eugenol drastically increased its antimicrobial potency. Based on the results and the importance of medicinal synthetic chemistry, we synthesized eugenol-tosylate and its congeners (E1-E6) and tested their antifungal activity against different clinical fluconazole (FLC)- susceptible and FLC- resistant C. albicans isolates alone and in combination with FLC by determining fractional inhibitory concentration indices (FICIs) and isobolograms calculated from microdilution assays. Minimum inhibitory concentration (MIC) results confirmed that all the tested C. albicans strains were variably susceptible to the semi-synthetic derivatives E1-E6, with MIC values ranging from 1-62 μg/ml. The test compounds in combination with FLC exhibited either synergy (36%), additive (41%) or indifferent (23%) interactions, however, no antagonistic interactions were observed. The MICs of FLC decreased 2-9 fold when used in combination with the test compounds. Like their precursor eugenol, all the derivatives showed significant impairment of ergosterol biosynthesis in all C. albicans strains coupled with down regulation of the important ergosterol biosynthesis pathway gene-ERG11. The results were further validated by docking studies, which revealed that the inhibitors snugly fitting the active site of the target enzyme, mimicking fluconazole, may well explain their excellent inhibitory activity. Our results suggest that these compounds have a great potential as antifungals, which can be used as chemosensitizing agents with the known antifungal drugs.

  2. Improving trapping systems for early detection and eradication of fruit flies (Diptera: Tephritidae) in California

    USDA-ARS?s Scientific Manuscript database

    Solid Mallet TMR (trimedlure [TML], methyl eugenol [ME], raspberry ketone [RK]) wafers and Mallet CMR (ceralure, ME, RK, benzyl acetate) wafers impregnated with DDVP insecticide were evaluated in traps as potential detection and male annihilation devices. Comparisons were made with 1) liquid lure an...

  3. Optimization of Extraction Conditions for Maximal Phenolic, Flavonoid and Antioxidant Activity from Melaleuca bracteata Leaves Using the Response Surface Methodology

    PubMed Central

    Hou, Wencheng; Zhang, Wei; Chen, Guode; Luo, Yanping

    2016-01-01

    Melaleuca bracteata is a yellow-leaved tree belonging to the Melaleuca genus. Species from this genus are known to be good sources of natural antioxidants, for example, the “tea tree oil” derived from M. alternifolia is used in food processing to extend the shelf life of products. In order to determine whether M. bracteata contains novel natural antioxidants, the components of M. bracteata ethanol extracts were analyzed by gas chromatography–mass spectrometry. Total phenolic and flavonoid contents were extracted and the antioxidant activities of the extracts evaluated. Single-factor experiments, central composite rotatable design (CCRD) and response surface methodology (RSM) were used to optimize the extraction conditions for total phenolic content (TPC) and total flavonoid content (TFC). Ferric reducing power (FRP) and 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH·) scavenging capacity were used as the evaluation indices of antioxidant activity. The results showed that the main components of M. bracteata ethanol extracts are methyl eugenol (86.86%) and trans-cinnamic acid methyl ester (6.41%). The single-factor experiments revealed that the ethanol concentration is the key factor determining the TPC, TFC, FRP and DPPH·scavenging capacity. RSM results indicated that the optimal condition of all four evaluation indices was achieved by extracting for 3.65 days at 53.26°C in 34.81% ethanol. Under these conditions, the TPC, TFC, FRP and DPPH·scavenging capacity reached values of 88.6 ± 1.3 mg GAE/g DW, 19.4 ± 0.2 mg RE/g DW, 2.37 ± 0.01 mM Fe2+/g DW and 86.0 ± 0.3%, respectively, which were higher than those of the positive control, methyl eugenol (FRP 0.97 ± 0.02 mM, DPPH·scavenging capacity 58.6 ± 0.7%) at comparable concentrations. Therefore, the extracts of M. bracteata leaves have higher antioxidant activity, which did not only attributed to the methyl eugenol. Further research could lead to the development of a potent new natural antioxidant. PMID:27611576

  4. Optimization of Extraction Conditions for Maximal Phenolic, Flavonoid and Antioxidant Activity from Melaleuca bracteata Leaves Using the Response Surface Methodology.

    PubMed

    Hou, Wencheng; Zhang, Wei; Chen, Guode; Luo, Yanping

    2016-01-01

    Melaleuca bracteata is a yellow-leaved tree belonging to the Melaleuca genus. Species from this genus are known to be good sources of natural antioxidants, for example, the "tea tree oil" derived from M. alternifolia is used in food processing to extend the shelf life of products. In order to determine whether M. bracteata contains novel natural antioxidants, the components of M. bracteata ethanol extracts were analyzed by gas chromatography-mass spectrometry. Total phenolic and flavonoid contents were extracted and the antioxidant activities of the extracts evaluated. Single-factor experiments, central composite rotatable design (CCRD) and response surface methodology (RSM) were used to optimize the extraction conditions for total phenolic content (TPC) and total flavonoid content (TFC). Ferric reducing power (FRP) and 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH·) scavenging capacity were used as the evaluation indices of antioxidant activity. The results showed that the main components of M. bracteata ethanol extracts are methyl eugenol (86.86%) and trans-cinnamic acid methyl ester (6.41%). The single-factor experiments revealed that the ethanol concentration is the key factor determining the TPC, TFC, FRP and DPPH·scavenging capacity. RSM results indicated that the optimal condition of all four evaluation indices was achieved by extracting for 3.65 days at 53.26°C in 34.81% ethanol. Under these conditions, the TPC, TFC, FRP and DPPH·scavenging capacity reached values of 88.6 ± 1.3 mg GAE/g DW, 19.4 ± 0.2 mg RE/g DW, 2.37 ± 0.01 mM Fe2+/g DW and 86.0 ± 0.3%, respectively, which were higher than those of the positive control, methyl eugenol (FRP 0.97 ± 0.02 mM, DPPH·scavenging capacity 58.6 ± 0.7%) at comparable concentrations. Therefore, the extracts of M. bracteata leaves have higher antioxidant activity, which did not only attributed to the methyl eugenol. Further research could lead to the development of a potent new natural antioxidant.

  5. Stimulus Selection for Intranasal Sensory Isolation: Eugenol Is an Irritant

    PubMed Central

    Wise, Paul M.; Lundström, Johan N.

    2012-01-01

    Both the olfactory and the trigeminal systems are able to respond to intranasal presentations of chemical vapor. Accordingly, when the nose detects a volatile chemical, it is often unclear whether we smell it, feel it, or both. The distinction may often be unimportant in our everyday perception of fragrances or aromas, but it can matter in experiments that purport to isolate olfactory processes or study the interaction between olfaction and chemesthesis. Researchers turn to a small pool of compounds that are believed to be “pure olfactory” stimuli with little or no trigeminal impact. The current report reexamines one such commonly used compound, namely eugenol, a flavor and fragrance ingredient that has anesthetic properties under some conditions. Using a standard method involving many trials during an experimental session (Experiment 1), subjects were unable to reliably lateralize eugenol, consistent with claims that this compound is detected primarily through olfaction. However, with more limited exposure (Experiments 2 and 3), subjects were able to lateralize eugenol. We speculate that anesthetic properties of eugenol could blunt its trigeminal impact in some paradigms. Regardless, the current experiments suggest that eugenol can in fact stimulate the trigeminal nerve but in a complex concentration–dependent manner. Implications and strategies for selection of model odorants are discussed. PMID:22293937

  6. Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India.

    PubMed

    Joshi, Rajesh K

    2014-01-01

    Ocimum basilicum L. (Lamiaceae) commonly known as sweet basil, has been used as a traditional medicinal plant for the treatment of headaches, coughs, diarrhea, constipation, warts, worms, and kidney malfunctions. The essential oil of the flowering aerial parts of O. basilicum growing in the Western Ghats region of North West Karnataka, India, was obtained by hydro-distillation and analyzed by gas chromatography equipped with flame ionization detector and gas chromatography coupled to mass spectrometry (GC-MS). The oil was tested against six Gram-positive, eight Gram-negative bacteria, and three fungi by the tube-dilution method at a concentration range of 5.00-0.009 mg/mL. Twenty-five constituents were identified in the essential oil of O. basilicum. The major constituents were identified as methyl eugenol (39.3%) and methyl chavicol (38.3%), accounting for 98.6% of the total oil. The oil was found to be active against Gram-positive, Gram-negative bacteria, and fungi with minimal bactericidal concentration values in the range of 0.143 ± 0.031 to 0.572 ± 0.127 mg/mL, 0.781 ± 0.382 to 1.875 ± 0.684 mg/mL, and 0.312 ± 0.171 to 0.442 ± 0.207 mg/mL, respectively. The essential oil of O. basilicum of this region contains methyl eugenol/methyl chavicol chemotype and has bactericidal properties.

  7. Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India

    PubMed Central

    Joshi, Rajesh K.

    2014-01-01

    Context: Ocimum basilicum L. (Lamiaceae) commonly known as sweet basil, has been used as a traditional medicinal plant for the treatment of headaches, coughs, diarrhea, constipation, warts, worms, and kidney malfunctions. Materials and Methods: The essential oil of the flowering aerial parts of O. basilicum growing in the Western Ghats region of North West Karnataka, India, was obtained by hydro-distillation and analyzed by gas chromatography equipped with flame ionization detector and gas chromatography coupled to mass spectrometry (GC–MS). The oil was tested against six Gram-positive, eight Gram-negative bacteria, and three fungi by the tube-dilution method at a concentration range of 5.00-0.009 mg/mL. Results: Twenty-five constituents were identified in the essential oil of O. basilicum. The major constituents were identified as methyl eugenol (39.3%) and methyl chavicol (38.3%), accounting for 98.6% of the total oil. The oil was found to be active against Gram-positive, Gram-negative bacteria, and fungi with minimal bactericidal concentration values in the range of 0.143 ± 0.031 to 0.572 ± 0.127 mg/mL, 0.781 ± 0.382 to 1.875 ± 0.684 mg/mL, and 0.312 ± 0.171 to 0.442 ± 0.207 mg/mL, respectively. Conclusion: The essential oil of O. basilicum of this region contains methyl eugenol/methyl chavicol chemotype and has bactericidal properties. PMID:25538349

  8. Anethol, cinnamaldehyde, and eugenol inclusion in feed affects postweaning performance and feeding behavior of piglets.

    PubMed

    Blavi, L; Solà-Oriol, D; Mallo, J J; Pérez, J F

    2016-12-01

    The early exposure of the fetus to certain volatiles may result in a further preference for these compounds later in life and could positively affect the acceptance of feed containing a similar flavor and the zootechnical responses. The study consisted of 2 trials to determine if including Fluidarom 1003 (a commercially flavored feed additive containing >25% anethol and cinnamaldehyde and >10% eugenol; Norel S.A., Madrid, Spain, Spain) in sow and postweaning piglet diets 1) provokes the presence or absence of 3 major volatile compounds (anethol, cinnamaldehyde, and eugenol) in amniotic fluid and milk, affecting piglet performance (BW, ADG, ADFI, and feed conversion ratio) after weaning, and 2) modifies creep feed consumption and feed preference in a 2-choice test. The major compounds, anethol, cinnamaldehyde, and eugenol, were detected in amniotic fluid; however, only traces were observed in milk. The inclusion of flavor in the sow diets improved piglet consumption and growth after weaning ( = 0.001). Furthermore, the positive reward associated with the flavor included in the sow diet was stronger when piglets were offered a nonflavored creep feed ( < 0.05). Therefore, early exposure of pigs' fetuses to maternal dietary clues at the end of gestation might allow for conditioning pigs after weaning.

  9. Field estimates of attraction of Ceratitis capitata to Trimedlure and Bactrocera dorsalis (Diptera: Tephritidae) to methyl eugenol in varying environments

    USDA-ARS?s Scientific Manuscript database

    Measuring and modeling the attractiveness of semiochemical-baited traps is of significant importance to detection, delimitation and control of invasive pests. Here we describe the results of field mark-release-recapture experiments with Ceratitis capitata (Wiedemann) and Bactrocera dorsalis (Hendel)...

  10. Survivorship of male and female Bactrocera dorsalis in the field and the effect of male annihilation technique

    USDA-ARS?s Scientific Manuscript database

    Male Annihilation Technique (MAT) is a key component of the Oriental fruit fly Bactrocera dorsalis Hendel (Diptera: Tephritidae) management because of the “strong” attraction of males to the lure methyl eugenol. The optimal application density for MAT has not been investigated for this economically ...

  11. Citral and eugenol modulate DNA damage and pro-inflammatory mediator genes in murine peritoneal macrophages.

    PubMed

    Porto, Marilia de Paula; da Silva, Glenda Nicioli; Luperini, Bruno Cesar Ottoboni; Bachiega, Tatiana Fernanda; de Castro Marcondes, João Paulo; Sforcin, José Maurício; Salvadori, Daisy Maria Fávero

    2014-11-01

    Citral and eugenol have been broadly studied because of their anti-inflammatory, antioxidant and antiparasitic potentials. In this study, the effects of citral (25, 50 and 100 µg/mL) and eugenol (0.31, 0.62, 1.24 and 2.48 µg/mL) on the expression (RT-PCR) of the pro-inflammatory mediator genes NF-κB1, COX-2 and TNF-α were evaluated in mouse peritoneal macrophages with or without activation by a bacterial lipopolysaccharide (LPS). Additionally, the genotoxic potentials of two compounds and their capacities to modulate the DNA damage induced by doxorubicin (DXR) were investigated using the comet assay. The data revealed that neither citral nor eugenol changed COX-2, NF-κB1 or TNF-α expression in resting macrophages. However, in LPS-activated cells, citral induced the hypoexpression of COX-2 (100 µg/mL) and TNF-α (50 and 100 µg/mL). Hypoexpression of TNF-α was also detected after cellular exposure to eugenol at the highest concentration (2.48 µg/mL). Both compounds exhibited genotoxic potential (citral at 50 and 100 µg/mL and eugenol at all concentrations) but also showed chemopreventive effects, in various treatment protocols. Both citral and eugenol might modulate inflammatory processes and DXR-induced DNA damage, but the use of these compounds must be viewed with caution because they are also able to induce primary DNA lesions.

  12. [Inhibition of oxidation of unsaturated fatty acid methyl esters by essential oils].

    PubMed

    Misharina, T A; Alinkina, E S; Vorobjeva, A K; Terenina, M B; Krikunova, N I

    2016-01-01

    The essential oils from 16 various spice plants were studied as natural antioxidants for the inhibition of autooxidation of polyunsaturated fatty acids methyl esters isolated from linseed oil. The content of methyl oleate, methyl linoleate, and methyl linolenoate after 1, 2, and 4 months of autooxidation were used as criteria to estimate the antioxidant efficiencies of essential oils. In 4 months, 92% of the methyl linolenoate and 79% of the methyl linoleate were oxidized in a control sample of a model system. It was found that the most effective antioxidants were essential oils from clove bud, cinnamon leaves, and oregano. They inhibited autooxidation of methyl linolenoate by 76–85%. The antioxidant properties of these essential oils were due to phenols— eugenol, carvacrol, and thymol. Essential oil from coriander did not contain phenols, but it inhibited methyl linolenoate oxidation by 38%. Essential oils from thyme, savory, mace, lemon, and tea tree inhibited methyl linolenoate oxidation by 17–24%. The other essential oils had no antioxidant properties.

  13. Captures of wild Ceratitis capitata Bactrocera dorsalis and Bactrocera cucurbitae (Diptera: Tephritidae) in traps with improved multi-lure TMR-Dispensers weathered in California

    USDA-ARS?s Scientific Manuscript database

    During 2012-2013 two “attract and kill” systems were weathered in California as potential detection and male annihilation treatments (MAT). Solid Mallet TMR (trimedlure [TML], methyl eugenol [ME], raspberry ketone [RK]) wafers impregnated with DDVP (2, 2-dichlorovinyl dimethyl phosphate) insecticide...

  14. Evaluation of analytical techniques to determine AQUI-S® 20E (eugenol) concentrations in water

    USGS Publications Warehouse

    Meinertz, Jeffery R.; Hess, Karina R.

    2014-01-01

    There is a critical need in U.S. public aquaculture and fishery management programs for an immediate-release sedative, i.e. a compound that can be safely and effectively used to sedate fish and subsequently, allow for their immediate release. AQUI-S® 20E (10% active ingredient, eugenol; any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government) is being pursued for U.S. approval as an immediate-release sedative. As part of the approval process, data describing animal safety and efficacy are needed. Essential to conducting studies that generate those data, is a method to accurately and precisely determine AQUI-S® 20E concentrations in exposure baths. Spectrophotometric and solid phase extraction (SPE)–high pressure liquid chromatography (LC) methods were developed and evaluated as methods to determine AQUI-S® 20E (eugenol) concentrations in water, methods that could be applied to any situation where eugenol was being evaluated as a fish sedative. The spectrophotometric method was accurate and precise (accuracy, > 87%; precision, 86%; precision < 8.9 %CV) when determining eugenol concentrations in solutions of 50 to 1000 mg/L AQUI-S® 20E made with LC grade water and water with varying pH and hardness. The SPE–LC method was influenced to a lesser degree by the presence of fish feed indicating greater specificity for eugenol.

  15. Compositional variability and antifungal potentials of ocimum basilicum, O. tenuiflorum, O. gratissimum and O. kilimandscharicum essential oils against Rhizoctonia solani and Choanephora cucurbitarum.

    PubMed

    Padalia, Rajendra C; Verma, Ram S; Chauhan, Amit; Goswami, Prakash; Chanotiya, Chandan S; Saroj, Arvind; Samad, Abdul; Khaliq, Abdul

    2014-10-01

    The composition of hydrodistilled essential oils of Ocimum basilicum L. (four chemovariants), O. tenuiflorum L., O. gratissimum L., and O. kilimandscharicum Guerke were analyzed and compared by using capillary gas chromatography (GC/FID) and GC-mass spectrometry (GC/MS). Phenyl propanoids (upto 87.0%) and monoterpenoids (upto 83.3%) were prevalent constituents distributed in the studied Ocimum taxa. The major constituents of the four distinct chemovariants of O. basilicum were methyl chavicol (86.3%), methyl chavicol (61.5%)/linalool (28.6%), citral (65.9%); and linalool (36.1%)/citral (28.8%). Eugenol (66.5% and 78.0%) was the major constituent of O. tenuiflorum and O. gratissimum. Eugenol (34.0%), β-bisabolene (15.4%), (E)-α-bisabolene (10.9%), methyl chavicol (10.2%) and 1,8-cineole (8.2%) were the major constituents of O. kilimandscharicum. In order to explore the potential for industrial use, the extracted essential oils were assessed for their antifungal potential through poison food technique against two phytopathogens, Rhizoctonia solani and Choanephora cucurbitarum, which cause root and wet rot diseases in various crops. O. tenuiflorum, O. gratissimum, and O. kilimandscharicum exhibited complete growth inhibition against R. solani and C. cucurbitarum after 24 and 48 h of treatment. O. basilicum chemotypes showed variable levels of growth inhibition (63.0%-100%) against these two phytopathogens.

  16. Preparation and characterization of clove essential oil-loaded liposomes.

    PubMed

    Sebaaly, Carine; Jraij, Alia; Fessi, Hatem; Charcosset, Catherine; Greige-Gerges, Hélène

    2015-07-01

    In this study, suitable formulations of natural soybean phospholipid vesicles were developed to improve the stability of clove essential oil and its main component, eugenol. Using an ethanol injection method, saturated (Phospholipon 80H, Phospholipon 90H) and unsaturated soybean (Lipoid S100) phospholipids, in combination with cholesterol, were used to prepare liposomes at various eugenol and clove essential oil concentrations. Liposomal batches were characterized and compared for their size, polydispersity index, Zeta potential, loading rate, encapsulation efficiency and morphology. The liposomes were tested for their stability after storing them for 2 months at 4°C by monitoring changes in their mean size, polydispersity index and encapsulation efficiency (EE) values. It was found that liposomes exhibited nanometric oligolamellar and spherical shaped vesicles and protected eugenol from degradation induced by UV exposure; they also maintained the DPPH-scavenging activity of free eugenol. Liposomes constitute a suitable system for encapsulation of volatile unstable essential oil constituents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. An experimental evaluation of the anti-atherogenic potential of the plant, Piper betle, and its active constitutent, eugenol, in rats fed an atherogenic diet.

    PubMed

    Venkadeswaran, Karuppasamy; Thomas, Philip A; Geraldine, Pitchairaj

    2016-05-01

    Hypercholesterolemia is a major risk factor for systemic atherosclerosis and subsequent cardiovascular disease. Lipoperoxidation-mediated oxidative damage is believed to contribute strongly to the progression of atherogenesis. In the current investigation, putative anti-atherogenic and antioxidative properties of an ethanolic extract of Piper betle and of its active constituent, eugenol, were sought in an experimental animal model of chronic hypercholesterolemia. Atherogenic diet-fed rats that received either Piper betle extract orally (500mg/kg b.wt) or eugenol orally (5mg/kg b.wt) for 15days (commencing 30days after the atherogenic diet had been started) exhibited the following variations in different parameters, when compared to atherogenic diet-fed rats that received only saline: (1) significantly lower mean levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol and very low density lipoprotein cholesterol in both serum and hepatic tissue samples; (2) lower mean serum levels of aspartate amino-transferase, alanine amino-transferase, alkaline phosphatase, lactate dehydrogenase and lipid-metabolizing enzymes (lipoprotein lipase, 3-hydroxy-3-methyl-glutaryl-CoA reductase; (3) significantly lower mean levels of enzymatic antioxidants (catalase, superoxide dismutase, glutathione peroxidase, glutathione-S-transferase) and non-enzymatic antioxidants (reduced glutathione, vitamin C and vitamin E) and significantly higher mean levels of malondialdehyde in haemolysate and hepatic tissue samples. Histopathological findings suggested a protective effect of the Piper betle extract and a more pronounced protective effect of eugenol on the hepatic and aortic tissues of atherogenic diet-fed (presumed atherosclerotic) rats. These results strongly suggest that the Piper betle extract and its active constituent, eugenol, exhibit anti-atherogenic effects which may be due to their anti-oxidative properties. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Different methods of methyl eugenol application enhance the mating success of male Oriental fruit fly (Dipera: Tephritidae).

    PubMed

    Haq, Ihsan Ul; Cáceres, Carlos; Meza, José S; Hendrichs, Jorge; Vreysen, Marc J B

    2018-04-16

    Males of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) are strongly attracted to methyl eugenol (ME) (1,2-dimethoxy-4-(2-propenyl)benzene), a phenylpropanoid compound occurring in many plant species. Feeding on ME is known to enhance male B. dorsalis mating competitiveness, which can increase the effectiveness of the sterile insect technique (SIT) manifold. However, currently used systems for holding the mass-reared males in fly emergence and release facilities before release, do not allow for application of ME through feeding. Therefore, the current study was designed to evaluate different delivery systems of ME that would be applicable for large-scale application to sterile males held in such facilities. Males of a genetic sexing strain (GSS) of B. dorsalis treated by ME-aromatherapy or ME-airblown-aromatherapy that were competing with ME-fed males achieved a similar level of mating success in walk-in field cages, but the mating success was significantly higher when compared to untreated males. The results confirm the feasibility of developing ME-airblown-aromatherapy as a practical way of large scale ME delivery to enhance the mating competitiveness of sterile B. dorsalis males.

  19. Fourier transform mid-infrared (MIR) and near-infrared (NIR) spectroscopy for rapid quality assessment of Chinese medicine preparation Honghua Oil.

    PubMed

    Wu, Yan-Wen; Sun, Su-Qin; Zhou, Qun; Leung, Hei-Wun

    2008-02-13

    Honghua Oil (HHO), a traditional Chinese medicine (TCM) oil preparation, is a mixture of several plant essential oils. In this text, the extended ranges of Fourier transform mid-infrared (FT-MIR) and near infrared (FT-NIR) were recorded for 48 commercially available HHOs of different batches from nine manufacturers. The qualitative and quantitative analysis of three marker components, alpha-pinene, methyl salicylate and eugenol, in different HHO products were performed rapidly by the two vibrational spectroscopic methods, i.e. MIR with horizontal attenuated total reflection (HATR) accessory and NIR with direct sampling technique, followed by partial least squares (PLS) regression treatment of the set of spectra obtained. The results indicated that it was successful to identify alpha-pinene, methyl salicylate and eugenol in all of the samples by simple inspection of the MIR-HATR spectra. Both PLS models established with MIR-HATR and NIR spectral data using gas chromatography (GC) peak areas as calibration reference showed a good linear correlation for each of all three target substances in HHO samples. The above spectroscopic techniques may be the promising methods for the rapid quality assessment/quality control (QA/QC) of TCM oil preparations.

  20. Evaluation of analytical techniques to determine AQUI-S(R) 20E (eugenol) concentrations in water

    USGS Publications Warehouse

    Meinertz, Jeffery R.; Hess, Karina R.

    2013-01-01

    There is a critical need in U.S. public aquaculture and fishery management programs for an immediate-release sedative, i.e. a compound that can be safely and effectively used to sedate fish and subsequently, allow for their immediate release. AQUI-S® 20E (10% active ingredient, eugenol; any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government) is being pursued for U.S. approval as an immediate-release sedative. As part of the approval process, data describing animal safety and efficacy are needed. Essential to conducting studies that generate those data, is a method to accurately and precisely determine AQUI-S® 20E concentrations in exposure baths. Spectrophotometric and solid phase extraction (SPE)–high pressure liquid chromatography (LC) methods were developed and evaluated as methods to determine AQUI-S® 20E (eugenol) concentrations in water, methods that could be applied to any situation where eugenol was being evaluated as a fish sedative. The spectrophotometric method was accurate and precise (accuracy, > 87%; precision, < 0.70 %CV) when determining eugenol concentrations in solutions of 50 to 1000 mg/L AQUI-S® 20E made with LC grade water and water with varying pH and hardness. The spectrophotometric method's accuracy was negatively affected when analyzing water containing fish feed. The SPE–LC method was also accurate and precise (accuracy > 86%; precision < 8.9 %CV) when determining eugenol concentrations in solutions of 50 to 1000 mg/L AQUI-S® 20E made with LC grade water and water with varying pH and hardness. The SPE–LC method was influenced to a lesser degree by the presence of fish feed indicating greater specificity for eugenol.

  1. CCoAOMT Down-Regulation Activates Anthocyanin Biosynthesis in Petunia1

    PubMed Central

    Shaipulah, Nur Fariza M.; Muhlemann, Joëlle K.; Woodworth, Benjamin D.; Van Moerkercke, Alex; Ramirez, Aldana A.; Haring, Michel A.; Schuurink, Robert C.

    2016-01-01

    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacuoles during the lifespan of the flowers. The production of isoeugenol and eugenol starts when flowers open and peaks after anthesis. To elucidate additional biochemical steps toward (iso)eugenol production, we cloned and characterized a caffeoyl-coenzyme A O-methyltransferase (PhCCoAOMT1) from the petals of the fragrant petunia ‘Mitchell’. Recombinant PhCCoAOMT1 indeed catalyzed the methylation of caffeoyl-CoA to produce feruloyl CoA. Silencing of PhCCoAOMT1 resulted in a reduction of eugenol production but not of isoeugenol. Unexpectedly, the transgenic plants had purple-colored leaves and pink flowers, despite the fact that cv Mitchell lacks the functional R2R3-MYB master regulator ANTHOCYANIN2 and has normally white flowers. Our results indicate that down-regulation of PhCCoAOMT1 activated the anthocyanin pathway through the R2R3-MYBs PURPLE HAZE (PHZ) and DEEP PURPLE, with predominantly petunidin accumulating. Feeding cv Mitchell flowers with caffeic acid induced PHZ expression, suggesting that the metabolic perturbation of the phenylpropanoid pathway underlies the activation of the anthocyanin pathway. Our results demonstrate a role for PhCCoAOMT1 in phenylpropene production and reveal a link between PhCCoAOMT1 and anthocyanin production. PMID:26620524

  2. CCoAOMT Down-Regulation Activates Anthocyanin Biosynthesis in Petunia.

    PubMed

    Shaipulah, Nur Fariza M; Muhlemann, Joëlle K; Woodworth, Benjamin D; Van Moerkercke, Alex; Verdonk, Julian C; Ramirez, Aldana A; Haring, Michel A; Dudareva, Natalia; Schuurink, Robert C

    2016-02-01

    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacuoles during the lifespan of the flowers. The production of isoeugenol and eugenol starts when flowers open and peaks after anthesis. To elucidate additional biochemical steps toward (iso)eugenol production, we cloned and characterized a caffeoyl-coenzyme A O-methyltransferase (PhCCoAOMT1) from the petals of the fragrant petunia 'Mitchell'. Recombinant PhCCoAOMT1 indeed catalyzed the methylation of caffeoyl-CoA to produce feruloyl CoA. Silencing of PhCCoAOMT1 resulted in a reduction of eugenol production but not of isoeugenol. Unexpectedly, the transgenic plants had purple-colored leaves and pink flowers, despite the fact that cv Mitchell lacks the functional R2R3-MYB master regulator ANTHOCYANIN2 and has normally white flowers. Our results indicate that down-regulation of PhCCoAOMT1 activated the anthocyanin pathway through the R2R3-MYBs PURPLE HAZE (PHZ) and DEEP PURPLE, with predominantly petunidin accumulating. Feeding cv Mitchell flowers with caffeic acid induced PHZ expression, suggesting that the metabolic perturbation of the phenylpropanoid pathway underlies the activation of the anthocyanin pathway. Our results demonstrate a role for PhCCoAOMT1 in phenylpropene production and reveal a link between PhCCoAOMT1 and anthocyanin production. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. Toxic effect of Atalantia monophylla essential oil on Callosobruchus maculatus and Sitophilus oryzae.

    PubMed

    Nattudurai, Gopal; Baskar, Kathirvelu; Paulraj, Micheal Gabrial; Islam, Villianur Ibrahim Hairul; Ignacimuthu, Savarimuthu; Duraipandiyan, Veeramuthu

    2017-01-01

    The hydrodistillated essential oil of Atalantia monophylla was subjected to GC-MS. Forty compounds were presented in the essential oil. Eugenol (19.76 %), sabinene (19.57 %), 1,2-dimethoxy-4-(2-methoxyethenyl) benzene (9.84 %), beta-asarone (7.02 %) and methyl eugenol (5.52 %) were found the predominant compounds. The oil was tested for fumigant toxicity and repellent activity against Callosobruchus maculatus and Sitophilus oryzae. The development stage of C. maculatus fecundity, adult emergence and also ovicidal activities were studied by the treatment of A. monophylla oil. The oil exhibited considerable fumigation toxicity (70.22 %), repellent activity (85.24 %) and ovicidal activity (100 %) against C. maculatus. The oil significantly reduced the protein, esterase, acetylcholinesterase and glutathione S-transferase on C. maculatus and S. oryzae. It can be considered that A. monophylla has a potential insecticide against stored product pests.

  4. The Essential Oil Compositions of Ocimum basilicum from Three Different Regions: Nepal, Tajikistan, and Yemen.

    PubMed

    Sharopov, Farukh S; Satyal, Prabodh; Ali, Nasser A Awadh; Pokharel, Suraj; Zhang, Hanjing; Wink, Michael; Kukaniev, Muhammadsho A; Setzer, William N

    2016-02-01

    The aerial parts of Ocimum basilicum L. were collected from four different geographical locations, Sindhuli and Biratnagar (Nepal), Chormaghzak village (Tajikistan), and Sana'a (Yemen). The essential oils were obtained by hydrodistillation and analyzed by gas chromatography/mass spectrometry. A cluster analysis of 179 essential oil compositions revealed six major chemotypes: Linalool, eugenol, estragole, methyl eugenol, 1,8-cineole, and geraniol. All four of the basil oils in this study were of the linalool-rich variety. Some of the basil oils were screened for bioactivity including antimicrobial, cytotoxicity in human cancer cells, brine shrimp lethality, nematicidal, larvicidal, insecticidal, and antioxidant. The basil oils in this study were not notably antibacterial, cytotoxic, antioxidant, nor nematicidal, but were active in the brine shrimp lethality test, and did show larvicidal and insecticidal activities. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  5. Verification of key odorants in rose oil by gas chromatography-olfactometry/aroma extract dilution analysis, odour activity value and aroma recombination.

    PubMed

    Xiao, Zuobing; Li, Jing; Niu, Yunwei; Liu, Qiang; Liu, Junhua

    2017-10-01

    Rose oil is much too expensive but very popular. It's well known that the flower oil's aroma profile hasn't been intensively investigated. In order to verify the aroma profile of rose oil, the synthetic blend of odorants was prepared and then compared with the original rose oil using electronic nose analysis (ENA) combined with quantitative descriptive analysis (QDA). The odorants from rose oils were screened out by Gas Chromatography-Olfactometry/aroma extract dilution analysis (GC-O/AEDA) combined with odour activity value (OAV). Both ENA and QDA indicated the recombination model derived from OAV and GC-O/AEDA closely resembled the original rose oil. The experiment results show that rose oxide, linalool, α-pinene, β-pinene, nonanal, heptanal citronellal, phenyl ethyl alcohol, benzyl alcohol, eugenol, methyl eugenol, β-citronellol, hexyl acetate, β-ionone, nerol, etc. are very important constituent to rose oil aroma profile.

  6. Effects of Methyl Eugenol Feeding on Mating Compatibility of Asian Population of Bactrocera dorsalis (Diptera: Tephritidae) with African Population and with B. carambolae

    PubMed Central

    Haq, Ihsan ul; Vreysen, Marc J. B.; Schutze, Mark; Hendrichs, Jorge; Shelly, Todd

    2016-01-01

    Males of some species included in the Bactrocera dorsalis complex are strongly attracted to methyl eugenol (ME) (1,2-dimethoxy-4-(2-propenyl) benzene), a natural compound occurring in a variety of plant species. ME feeding of males of the B. dorsalis complex is known to enhance their mating competitiveness. Within B. dorsalis, recent studies show that Asian and African populations of B. dorsalis are sexually compatible, while populations of B. dorsalis and Bactrocera carambolae are relatively incompatible. The objectives of this study were to examine whether ME feeding by males affects mating compatibility between Asian and African populations of B. dorsalis and ME feeding reduces male mating incompatibility between B. dorsalis (Asian population) and B. carambolae. The data confirmed that Asian and African populations of B. dorsalis are sexually compatible for mating and showed that ME feeding only increased the number of matings. Though ME feeding also increased the number of matings of B. dorsalis (Asian population) and B. carambolae males but the sexual incompatibility between both species was not reduced by treatment with ME. These results conform to the efforts resolving the biological species limits among B. dorsalis complex and have implications for fruit fly control programs in fields and horticultural trade. PMID:26362991

  7. Identification of Aroma-active Compounds in Essential Oil from Uncaria Hook by Gas Chromatography- Mass Spectrometry and Gas Chromatography-Olfactometry.

    PubMed

    Iwasa, Megumi; Nakaya, Satoshi; Maki, Yusuke; Marumoto, Shinsuke; Usami, Atsushi; Miyazawa, Mitsuo

    2015-01-01

    The chemical composition of essential oil extracted from Uncaria Hook ("Chotoko" in Japanese), the branch with curved hook of the herbal medicine Uncaria rhynchophylla has been investigated by GC and GC-MS analyses. Eighty-four compounds, representing 90.8% of the total content was identified in oil obtained from Uncaria Hook. The main components i were (E)-cinnamaldehyde (13.4%), α-copaene (8.0%), methyl eugenol (6.8%), δ-cadinene (5.3%), and curcumene (3.6%). The important key aroma-active compounds in the oil were detected by gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA), using the flavor dilution (FD) factor to express the odor potency of each compounds. Furthermore, the odor activity value (OAV) has been used as a measure of the relative contribution of each compound to the aroma of the Uncaria Hook oil. The GC-O and AEDA results showed that α-copaene (FD = 4, OAV = 4376), (E)-linalool oxide (FD = 64, OAV = 9.1), and methyl eugenol (FD = 64, OAV = 29) contributed to the woody and spicy odor of Uncaria Hook oil, whereas furfural (FD = 8, OAV = 4808) contributed to its sweet odor. These results warrant further investigations of the application of essential oil from Uncaria Hook in the phytochemical and medicinal fields.

  8. Behavioral and toxicological responses of Rhodnius prolixus and Triatoma infestans (Hemiptera: Reduviidae) to 10 monoterpene alcohols.

    PubMed

    Moretti, A N; Zerba, E N; Alzogaray, Raúl A

    2013-09-01

    The effect on locomotor activity, the repellency, and the knock-down produced by 10 monoterpene alcohols were evaluated on first-instar nymphs of Rhodnius prolixus and Triatoma infestans, vectors of Chagas disease. A video tracking technique was used to evaluate locomotor activity and repellency by exposure to papers impregnated with monoterpenes. Eugenol on R. prolixus and (S)-cis-verbenol on T. infestans did not modify the locomotor activity. The remaining monoterpenes produced hyperactivity on both species, although the concentration required was at least a 1,000 times higher than that of deltamethrin (positive control). Carvacrol, eugenol, and geraniol resulted as repellent as N,N-diethyl-m-toluamide (positive control) for both species. A similar result was observed for almost every monoterpene on T. infestans. Knock-down effect was evaluated by exposing the nymphs in closed recipients. The order of increasing toxicity on R. prolixus was (KT50 values in min): geraniol (213.7) < alpha-terpineol (164.5) < linalool (124.2) < carvacrol (111.6) < eugenol (89.8) < thymol (78.9), and on T. infestans: alpha-terpineol (289.8) < eugenol (221.3) < carvacrol (164.2) < linalool (154.9) < thymol (96.7). All monoterpenes were less toxic than the positive control, dichlorvos (3.6 min for R. prolixus and 3.9 min for T. infestans). After 7 h of exposure, (-)-carveol, citronellol, and menthol (on both species) and geraniol (on T. infestans) produced < 50% of knock-down. After these results, it is worthwhile to explore more deeply the potential of these compounds as tools for controlling Chagas disease vectors.

  9. Critical Synergistic Concentration of Lecithin Phospholipids Improves the Antimicrobial Activity of Eugenol against Escherichia coli

    PubMed Central

    Zhang, Haoshu; Dudley, Edward G.

    2017-01-01

    ABSTRACT In this study, the effect of individual lecithin phospholipids on the antimicrobial properties of eugenol against Escherichia coli C600 was investigated. We tested five major phospholipids common in soy or egg lecithin (1,2-dihexadecanoyl-sn-glycero-3-phosphocholine [DPPC], 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine [DSPC], 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine [DPPE], 1,2-dihexadecanoyl-sn-glycero-3-phosphate [sodium salt] [DPPA], and 1,2-dihexadecanoyl-sn-glycero-3-phospho-l-serine [DPPS]) and one synthetic cationic phospholipid (1,2-dioctadecanoyl-sn-glycero-3-ethylphosphocholine [18:0 EPC]). Among the six phospholipids, DPPC, DSPC, DPPE, DPPA, and the cationic 18:0 EPC showed critical synergistic concentrations that significantly improved the inactivation effect of eugenol against E. coli after 30 min of exposure. At the critical synergistic concentration, an additional ca. 0.4 to 1.9 log reduction (ca. 0.66 to 2.17 log CFU/ml reduction) in the microbial population was observed compared to eugenol-only (control) treatments (ca. 0.25 log reduction). In all cases, increasing the phospholipid amount above the critical synergistic concentration (which was different for each phospholipid) resulted in antimicrobial properties similar to those seen with the eugenol-only (control) treatments. DPPS did not affect the antimicrobial properties of eugenol at the tested concentrations. The critical synergistic concentration of phospholipids was correlated with their critical micelle concentrations (CMC). IMPORTANCE Essential oils (EOs) are naturally occurring antimicrobials, with limited use in food due to their hydrophobicity and strong aroma. Lecithin is used as a natural emulsifier to stabilize EOs in aqueous systems. We previously demonstrated that, within a narrow critical-concentration window, lecithin can synergistically enhance the antimicrobial properties of eugenol. Since lecithin is a mixture of different phospholipids, we aimed to identify which phospholipids are crucial for the observed synergistic effect. This research studied the bioactivity of lecithin phospholipids, contributing to a rational design in using lecithin to effectively control foodborne pathogens in foods. PMID:28842540

  10. Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additives.

    PubMed

    Pérez, Miriam; García, Mónica; Blustein, Guillermo

    2015-08-01

    Cuprous oxide is the most commonly used biocide in antifouling paints. However, copper has harmful effects not only on the fouling community but also on non-target species. In the current study, we investigated the use of thymol, eugenol and guaiacol in this role combined with small quantities of copper. Phenolic compounds were tested for anti-settlement activity against cyprid larvae of the barnacle Balanus amphitrite and for their toxicity to nauplius larvae. Thymol, eugenol and guaiacol were active for anti-settlement but guaiacol had the disadvantage of being toxic to nauplius larvae. However, all of them showed therapeutic ratio>1. Antifouling paints with thymol (low copper content/thymol, LCP/T), eugenol (low copper content/eugenol, LCP/E) and guaiacol (low copper content/guaiacol, LCP/G) combined with small copper content were formulated for field trials. After 12 months exposure in the sea, statistical analysis revealed that LCP/T and LCP/E paints were the most effective combinations and had similar performances to control paints with high copper content (traditional cuprous oxide based paints). In contrast, LCP/G paint was only partially effective in preventing and inhibiting biofouling and was colonized by some hard and soft foulers. However, this antifouling paint was effective against calcareous tubeworm Hydroides elegans. In the light of various potential applications, thymol, eugenol and guaiacol have thus to be considered in future antifouling formulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Variation in essential oil composition within individual leaves of sweet basil (Ocimum basilicum L.) is more affected by leaf position than by leaf age.

    PubMed

    Fischer, Ravit; Nitzan, Nadav; Chaimovitsh, David; Rubin, Baruch; Dudai, Nativ

    2011-05-11

    The aroma in sweet basil is a factor affecting the commercial value of the crop. In previous studies leaf age was considered to be a factor that influences the composition of essential oil (EO). In this study it was hypothesized that a single observation of the EO content in leaves from different positions on the main stem (young vs old) could predict the developmental changes in the plant during its life cycle. Plants harvested at week 16 demonstrated an exponential increase (R(2) = 0.92) in EO concentration in leaves on the main stem and lateral shoots, indicating higher EO concentrations in younger than in older leaves. Eugenol and methyleugenol predominated (28-77%) in the extract. Eugenol levels were higher in younger leaves (∼53%), and methyl-eugenol levels predominated in older leaves (∼68%). Linalool was lower in mature leaves than in younger leaves. This suggested that eugenol converted into methyleugenol and linalool decreased as leaf mature. However, in weekly monitored plants, the levels of these compounds in the EO had limited variation in the maturing leaf regardless of its position on the stem. This proposed that the EO composition in an individual leaf is mostly affected by the leaf position on the stem and not by its maturation process. Because leaf position is related to plant development, it is probable that the plant's physiological age at the time of leaf formation from the primordial tissue is the factor affecting the EO composition. It was concluded that interpretation of scientific observations should be carried out with caution and that hypotheses should be tested utilizing multifaceted approaches.

  12. The Use of Biomonitoring Data in Exposure and Human Health Risk Assessments

    PubMed Central

    Albertini, Richard; Bird, Michael; Doerrer, Nancy; Needham, Larry; Robison, Steven; Sheldon, Linda; Zenick, Harold

    2006-01-01

    Biomonitoring uses analytic methods that permit the accurate measurement of low levels of environmental chemicals in human tissues. However, depending on the intended use, biomonitoring, like all exposure tools, may not be a stand-alone exposure assessment tool for some of its environmental public health uses. Although biomonitoring data demonstrate that many environmental chemicals are absorbed in human tissues, uncertainty exists regarding if and at what concentrations many of these chemicals cause adverse health outcomes. Moreover, without exposure pathway information, it is difficult to relate biomonitoring results to sources and routes of exposure and develop effective health risk management strategies. In September 2004, the Health and Environmental Sciences Institute, U.S. Environmental Protection Agency, Centers for Disease Control and Prevention, Agency for Toxic Substances and Disease Registry, and International Council of Chemical Associations co-sponsored the International Biomonitoring Workshop, which explored the processes and information needed for placing biomonitoring data into perspective for risk assessment purposes, with special emphasis on integrating biomarker measurements of exposure, internal dose, and potential health outcome. Scientists from international governments, academia, and industry recommended criteria for applying biomonitoring data for various uses. Six case studies, which are part of this mini-monograph, were examined: inorganic arsenic, methyl eugenol, organophosphorus pesticides, perfluorooctanesulfonate, phthalates, and polybrominated diphenyl ethers. Based on the workshop and follow-up discussions, this overview article summarizes lessons learned, identifies data gaps, outlines research needs, and offers guidance for designing and conducting biomonitoring studies, as well as interpreting biomonitoring data in the context of risk assessment and risk management. PMID:17107864

  13. Methyl eugenol aromatherapy enhances the mating competitiveness of male Bactrocera carambolae Drew & Hancock (Diptera: Tephritidae).

    PubMed

    Haq, Ihsan; Vreysen, Marc J B; Cacéres, Carlos; Shelly, Todd E; Hendrichs, Jorge

    2014-09-01

    Males of Bactrocera carambolae Drew & Hancock (Diptera: Tephritidae) are strongly attracted to methyl eugenol (ME) (1,2-dimethoxy-4-(2-propenyl)benzene), a natural compound occurring in variety of plant species. ME-feeding is known to enhance male B. carambolae mating competitiveness 3 days after feeding. Enhanced male mating competitiveness due to ME-feeding can increase the effectiveness of sterile insect technique (SIT) manifolds. However, the common methods for emergence and holding fruit flies prior to field releases do not allow the inclusion of any ME feeding treatment after fly emergence. Therefore this study was planned to assess the effects of ME-aromatherapy in comparison with ME feeding on male B. carambolae mating competitiveness as aromatherapy is pragmatic for fruit flies emergence and holding facilities. Effects of ME application by feeding or by aromatherapy for enhanced mating competitiveness were evaluated 3d after treatments in field cages. ME feeding and ME aromatherapy enhanced male mating competitiveness as compared to untreated males. Males treated with ME either by feeding or by aromatherapy showed similar mating success but mating success was significantly higher than that of untreated males. The results are discussed in the context of application of ME by aromatherapy as a pragmatic approach in a mass-rearing facility and its implications for effectiveness of SIT. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Optimizing methyl-eugenol aromatherapy to maximize posttreatment effects to enhance mating competitiveness of male Bactrocera carambolae (Diptera: Tephritidae).

    PubMed

    Haq, Ihsan ul; Vreysen, Marc J B; Cacéres, Carlos; Shelly, Todd E; Hendrichs, Jorge

    2015-10-01

    Methyl-eugenol (ME) (1,2-dimethoxy-4-(2-propenyl)benzene), a natural phytochemical, did enhance male Bactrocera carambolae Drew & Hancock (Diptera: Tephritidae) mating competitiveness 3 d after ingestion. Enhanced male mating competitiveness can significantly increase the effectiveness of the sterile insect technique (SIT). ME application to mass reared sterile flies by feeding is infeasible. ME application by aromatherapy however, would be a very practical way of ME application in fly emergence and release facilities. This approach was shown to enhance mating competitiveness of B. carambolae 3 d posttreatment (DPT). Despite this added benefit, every additional day of delaying release will reduce sterile fly quality and will add cost to SIT application. The present study was planned to assess the effects of ME-aromatherapy on male B. carambolae mating competitiveness 1DPT and 2DPT. ME aromatherapy 1DPT or 2DPT did enhance mating competitiveness of B. carambolae males whereas ME feeding 1DPT and 2DPT did not. Male mating competitiveness was enhanced by the ME aromatherapy irrespective if they received 1DPT, 2DPT or 3DPT. ME aromatherapy, being a viable approach for its application, did enhance mating competitiveness of male B. carambolae 1 d posttreatment as ME feeding did 3 d after ingestion. ©2014 The Authors Journal compliation © Insititute of Zoology, Chinese Academy of Science.

  15. Critical Synergistic Concentration of Lecithin Phospholipids Improves the Antimicrobial Activity of Eugenol against Escherichia coli.

    PubMed

    Zhang, Haoshu; Dudley, Edward G; Harte, Federico

    2017-11-01

    In this study, the effect of individual lecithin phospholipids on the antimicrobial properties of eugenol against Escherichia coli C600 was investigated. We tested five major phospholipids common in soy or egg lecithin (1,2-dihexadecanoyl-sn-glycero-3-phosphocholine [DPPC], 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine [DSPC], 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine [DPPE], 1,2-dihexadecanoyl-sn-glycero-3-phosphate [sodium salt] [DPPA], and 1,2-dihexadecanoyl-sn-glycero-3-phospho-l-serine [DPPS]) and one synthetic cationic phospholipid (1,2-dioctadecanoyl-sn-glycero-3-ethylphosphocholine [18:0 EPC]). Among the six phospholipids, DPPC, DSPC, DPPE, DPPA, and the cationic 18:0 EPC showed critical synergistic concentrations that significantly improved the inactivation effect of eugenol against E. coli after 30 min of exposure. At the critical synergistic concentration, an additional ca. 0.4 to 1.9 log reduction (ca. 0.66 to 2.17 log CFU/ml reduction) in the microbial population was observed compared to eugenol-only (control) treatments (ca. 0.25 log reduction). In all cases, increasing the phospholipid amount above the critical synergistic concentration (which was different for each phospholipid) resulted in antimicrobial properties similar to those seen with the eugenol-only (control) treatments. DPPS did not affect the antimicrobial properties of eugenol at the tested concentrations. The critical synergistic concentration of phospholipids was correlated with their critical micelle concentrations (CMC). IMPORTANCE Essential oils (EOs) are naturally occurring antimicrobials, with limited use in food due to their hydrophobicity and strong aroma. Lecithin is used as a natural emulsifier to stabilize EOs in aqueous systems. We previously demonstrated that, within a narrow critical-concentration window, lecithin can synergistically enhance the antimicrobial properties of eugenol. Since lecithin is a mixture of different phospholipids, we aimed to identify which phospholipids are crucial for the observed synergistic effect. This research studied the bioactivity of lecithin phospholipids, contributing to a rational design in using lecithin to effectively control foodborne pathogens in foods. Copyright © 2017 American Society for Microbiology.

  16. Determination of alkenylbenzenes and related flavour compounds in food samples by on-column preconcentration-capillary liquid chromatography.

    PubMed

    Avila, Mónica; Zougagh, Mohammed; Escarpa, Alberto; Ríos, Angel

    2009-10-23

    A new, simple and versatile method is presented for the determination of different concentration levels of alkenylbenzenes (eugenol, isoeugenol, eugenol methyl ether, myristicin, anethole and estragole) and the related flavour compounds (coumarin and pulegone) in food samples. The method involves the use of a stationary phase (capillary column) for the enrichment with appropriate elution. After the sample had completely passed through the capillary column the eluent was changed and the separation/detection was achieved. Excellent linearity was obtained under the proposed conditions for a direct determination method and a method including on-line preconcentration. The limits of detection were in the ranges 97-148 and 9.5-14.2 ng/mL, respectively. Evidence for a matrix effect was not found and recoveries between 92 and 110% were obtained. The precision of the method, expressed as relative standard deviation values, was below 5% in all cases. The applicability of this methodology was tested by analyzing synthetic and real food samples.

  17. Effect of jasmonic acid elicitation on the yield, chemical composition, and antioxidant and anti-inflammatory properties of essential oil of lettuce leaf basil (Ocimum basilicum L.).

    PubMed

    Złotek, Urszula; Michalak-Majewska, Monika; Szymanowska, Urszula

    2016-12-15

    The effect of elicitation with jasmonic acid (JA) on the plant yield, the production and composition of essential oils of lettuce leaf basil was evaluated. JA-elicitation slightly affected the yield of plants and significantly increased the amount of essential oils produced by basil - the highest oil yield (0.78±0.005mL/100gdw) was achieved in plants elicited with 100μM JA. The application of the tested elicitor also influenced the chemical composition of basil essential oils - 100μM JA increased the linalool, eugenol, and limonene levels, while 1μM JA caused the highest increase in the methyl eugenol content. Essential oils from JA-elicited basil (especially 1μM and 100μM) exhibited more effective antioxidant and anti-inflammatory potential; therefore, this inducer may be a very useful biochemical tool for improving production and composition of herbal essential oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Antibacterial Activity of Cinnamaldehyde and Estragole Extracted from Plant Essential Oils against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit

    PubMed Central

    Song, Yu-Rim; Choi, Min-Seon; Choi, Geun-Won; Park, Il-Kwon; Oh, Chang-Sik

    2016-01-01

    Pseudomonas syringae pv. actinidiae (Psa) causes bacterial canker disease in kiwifruit. Antibacterial activity of plant essential oils (PEOs) originating from 49 plant species were tested against Psa by a vapor diffusion and a liquid culture assays. The five PEOs from Pimenta racemosa, P. dioica, Melaleuca linariifolia, M. cajuputii, and Cinnamomum cassia efficiently inhibited Psa growth by either assays. Among their major components, estragole, eugenol, and methyl eugenol showed significant antibacterial activity by only the liquid culture assay, while cinnamaldehyde exhibited antibacterial activity by both assays. The minimum inhibitory concentrations (MICs) of estragole and cinnamaldehyde by the liquid culture assay were 1,250 and 2,500 ppm, respectively. The MIC of cinnamaldehyde by the vapor diffusion assay was 5,000 ppm. Based on the formation of clear zones or the decrease of optical density caused by these compounds, they might kill the bacterial cells and this feature might be useful for managing the bacterial canker disease in kiwifruit. PMID:27493612

  19. Synthesis and Proapoptotic Activity on Cervical Cancer Cell of Ester Eugenol 1-(3-Methoxy-4-hydroxy)phenyl-2-propylmethanoate

    NASA Astrophysics Data System (ADS)

    Farid Rahman, Moh.; Nazhif Haykal, Muhammad; Andriani Siagian, Novi; Maiselina Sriepindonnta, Priscilla; Tampubolon, Norman Alexander

    2018-01-01

    Proapoptotic activity of ester eugenol,1-(3-methoxy-4-hydroxy)phenyl-2-propylmethanoat, which synthesized from eugenol is reported. Eugenol as starting material in the synthesis of ester eugenol was obtained from fractional distillation of clove oil with the yield of 70.66%. Synthesis of ester eugenol was camed out by addition-esterification reaction through reaction between eugenol and formic acid with mol ratio of 1:27 and reaction time for11 h. GC-MS analysis showed ester eugenol was afforded purity of 92.42% and the yield in of 93.34%. UV spectra of ester eugenol was observed the formation of carbonyl group at λmax 290 nm and supported by FT-IR analysis at 1714.60 cm-1 (carbonyl group), 1193.65 cm-1 (C-O-C ester group) and the absence of vynil group in eugenol structure at region 914.20 and 995.20 cm-1. Mass spectra showed ion molecule at m/z 210 was accordance with molecular weight of ester eugenol. Afterward, HeLa cell culture media was prepared for cervical cancer antiproliferative test. The result which showed in histogram indicated that LC50 of ester eugenol was reached at concentration below 0.01% while eugenol was up to 0.01% that observed cervical cancer cell apoptotic activity. LC50 value of ester eugenol was obtained at concentration 48.73 ppm. This research reported that natural product modified its structure has potency to cure cervical cancer.

  20. A straightforward method to determine flavouring substances in food by GC-MS.

    PubMed

    Lopez, Patricia; van Sisseren, Maarten; De Marco, Stefania; Jekel, Ad; de Nijs, Monique; Mol, Hans G J

    2015-05-01

    A straightforward GC-MS method was developed to determine the occurrence of fourteen flavouring compounds in food. It was successfully validated for four generic types of food (liquids, semi-solids, dry solids and fatty solids) in terms of limit of quantification, linearity, selectivity, matrix effects, recovery (53-120%) and repeatability (3-22%). The method was applied to a survey of 61 Dutch food products. The survey was designed to cover all the food commodities for which the EU Regulation 1334/2008 set maximum permitted levels. All samples were compliant with EU legislation. However, the levels of coumarin (0.6-63 mg/kg) may result in an exposure that, in case of children, would exceed the tolerable daily intake (TDI) of 0.1mg/kg bw/day. In addition to coumarin, estragole, methyl-eugenol, (R)-(+)-pulegone and thujone were EU-regulated substances detected in thirty-one of the products. The non-EU regulated alkenylbenzenes, trans-anethole and myristicin, were commonly present in beverages and in herbs-containing products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The effect of eugenol on the cariogenic properties of Streptococcus mutans and dental caries development in rats

    PubMed Central

    XU, JING-SHU; LI, YAO; CAO, XUE; CUI, YUN

    2013-01-01

    Eugenol has been widely used in medicine due to its antibacterial, anti-inflammatory, antioxidant, anticancer and analgesic properties. The present study was designed to investigate the effects of eugenol on the cariogenic properties of Streptococcus mutans and dental caries development in rats. Eugenol demonstrated significant inhibitory effects against acid production by S. mutans. The synthesis of water-insoluble glucans by glucosyltransferases was reduced by eugenol. Eugenol also markedly suppressed the adherence of S. mutans to saliva-coated hydroxyapatite beads. Furthermore, topical application of eugenol reduced the incidence and severity of carious lesions in rats. These results suggest that the natural compound eugenol may be a useful therapeutic agent for dental caries. PMID:23837051

  2. Antifungal activity of synthetic antiseptics and natural compounds against Candida dubliniensis before and after in vitro fluconazole exposure.

    PubMed

    Reginato, Cássia Franco; Bandeira, Laíssa Arévalo; Zanette, Régis Adriel; Santurio, Janio Morais; Alves, Sydney Hartz; Danesi, Cristiane Cademartori

    2017-01-01

    This study evaluated the susceptibilities of oral candidiasis-derived Candida albicans, fluconazole-resistant (FR) Candida dubliniensis, and fluconazole-susceptible (FS) C. dubliniensis to synthetic antiseptics [chlorhexidine gluconate (CHX), cetylpyridinium chloride (CPC), and triclosan (TRC)] and natural compounds (carvacrol, eugenol and thymol). Susceptibility tests were performed based on the M27-A3 reference method. The fluconazole-resistant C. dubliniensis strains were obtained after prolonged in vitro exposure to increasing fluconazole concentrations. The geometric mean values for minimum inhibitory concentrations and minimum fungicidal concentrations were compared among the groups. Fluconazole-susceptible C. dubliniensis was more sensitive to CPC and TRC than FR C. dubliniensis and C. albicans were. However, eugenol and thymol were more active against FR C. dubliniensis. The fungicidal activities of CHX and TRC were similar for the three groups, and FR C. dubliniensis and C. albicans had similar sensitivities to CPC. The resistance of C. dubliniensis to fluconazole affects its sensitivity the synthetic antiseptics and natural compounds that were tested.

  3. Characteristics of eugenol loaded chitosan-tripolyphosphate particles as affected by initial content of eugenol and their in-vitro release characteristic

    NASA Astrophysics Data System (ADS)

    Cahyono, B.; A’yun, Qurrotu; Suzery, M.; Hadiyanto

    2018-04-01

    The aim of this research was to determine encapsulation efficiency, loading capacity and controlled release of eugenol loaded chitosan-tpp products which prepared by coaservation method. The characteristic of eugenol-loaded chitosan showed that %EE and % LC increased by increasing the initial eugenol content. The optimum of %EE (72.63%) and %LC (43.96%) were obtained at the ratio of chitosan to eugenol of 1:1.5. The FTIR spectrum showed the characteristic peaks of eugenol appearing on spectrum of eugenol encapsulated and blue-shift in the hydroxyl band from 3425.58 cm-1 in chitosan-tpp to 3417.86 cm-1 and 3394.72 cm-1 in eugenol loaded chitosan-tpp indicating that eugenol was successfully encapsulated. The surface morphologies of freeze-dried particles with the optimum %EE showed that more surface roughness and porosity than plain particles. Furthermore, the in vitro release of particles with minimum and optimum %EE were also investigated in acid (Simulated Gastric Fluid) and base (Simulated Intestinal Fluid) medium at ambient temperature.

  4. Eugenol prevents amyloid formation of proteins and inhibits amyloid-induced hemolysis

    NASA Astrophysics Data System (ADS)

    Dubey, Kriti; Anand, Bibin G.; Shekhawat, Dolat Singh; Kar, Karunakar

    2017-02-01

    Eugenol has attracted considerable attention because of its potential for many pharmaceutical applications including anti-inflammatory, anti-tumorigenic and anti-oxidant properties. Here, we have investigated the effect of eugenol on amyloid formation of selected globular proteins. We find that both spontaneous and seed-induced aggregation processes of insulin and serum albumin (BSA) are significantly suppressed in the presence of eugenol. Isothermal titration calorimetric data predict a single binding site for eugenol-insulin complex confirming the affinity of eugenol for native soluble insulin species. We also find that eugenol suppresses amyloid-induced hemolysis. Our findings reveal the inherent ability of eugenol to stabilize native proteins and to delay the conversion of protein species of native conformation into β-sheet assembled mature fibrils, which seems to be crucial for its inhibitory effect.

  5. Enzymatic synthesis of eugenol benzoate by immobilized Staphylococcus aureus lipase: optimization using response surface methodology and determination of antioxidant activity.

    PubMed

    Horchani, Habib; Ben Salem, Nadia; Zarai, Zied; Sayari, Adel; Gargouri, Youssef; Chaâbouni, Moncef

    2010-04-01

    The ability of a non-commercial immobilized Staphylococcus aureus lipase to catalyze the esterification of eugenol with benzoic acid was checked and the antioxidant power of the ester formed was evaluated. Response surface methodology based on four variables (the reaction temperature, the amount of lipase, the benzoic acid/eugenol molar ratio and the volume of solvent) was used to optimize the experimental conditions of eugenol benzoate synthesis. The maximum conversion yield (75%) was obtained using 240 IU of immobilized lipase, a benzoic acid/eugenol molar ratio of 1.22 dissolved in 4.6 ml chloroform at 41 degrees Celsius. The antioxidant activities of eugenol and its ester were evaluated. Compared to BHT, used as a model synthetic antioxidant, the eugenol benzoate showed a higher antioxidative activity. The IC(50) value for 1,1-diphenyl-2-picrylhydrazyl was found to be 18.2 microg/ml versus 20.2 microg/ml for eugenol and eugenol benzoate. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Calcium dependence of eugenol tolerance and toxicity in Saccharomyces cerevisiae.

    PubMed

    Roberts, Stephen K; McAinsh, Martin; Cantopher, Hanna; Sandison, Sean

    2014-01-01

    Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation. Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful control of extracellular Ca2+ (using EGTA or BAPTA) revealed that tolerance of yeast to eugenol depended on Ca2+ influx via Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles, amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents that exhibit differing modes of action as antifungal agents to combat drug resistant infections.

  7. Essential-Oil Variability in a Collection of Ocimum basilicum L. (Basil) Cultivars.

    PubMed

    Maggio, Antonella; Roscigno, Graziana; Bruno, Maurizio; De Falco, Enrica; Senatore, Felice

    2016-10-01

    Ocimum basilicum L. (Lamiaceae) is an aromatic plant of great tradition in the Mediterranean area. Its economic importance is growing up determining an expansion of cultivation. This paper evaluated the morphological traits, the chemical profiles, and antibacterial activity of 21 cultivars of basil belonging to 'Genovese', 'Napoletano', and 'Purple basil' types. The cultivars were characterized by different growth rate and morphological traits. The chemical composition of the oils analyzed by GC and GC/MS analysis, supported by the PCA analysis, underlined the strong influence of chemotype. It is noteworthy that estragole, never present in Genovese and purple basil types, occurred in Napoletano type. The high presence of eugenol, methyl eugenol, and linalool in the majority of cultivars, belonging both to Genovese and to Napoletano types was registered. Of great interest resulted the composition of the purple basil 'Opal'. All the samples tested exhibited similar antibiotic profiles with moderate antibacterial activity. The results enhanced the importance of determination of essential-oil profile in the selection of cultivars characterized by diverse morphological traits and are useful for different purposes. © 2016 Wiley-VHCA AG, Zürich.

  8. Carbonic anhydrase inhibitors: guaiacol and catechol derivatives effectively inhibit certain human carbonic anhydrase isoenzymes (hCA I, II, IX and XII).

    PubMed

    Scozzafava, Andrea; Passaponti, Maurizio; Supuran, Claudiu T; Gülçin, İlhami

    2015-01-01

    Carbonic anhydrases (CAs) are widespread metalloenzymes in higher vertebrates including humans. A series of phenolic compounds, including guaiacol, 4-methylguaiacol, 4-propylguaiacol, eugenol, isoeugenol, vanillin, syringaldehyde, catechol, 3-methyl catechol, 4-methyl catechol and 3-methoxy catechol were investigated for their inhibition of all the catalytically active mammalian isozymes of the Zn(2+)-containing CA (EC 4.2.1.1). All the phenolic compounds effectively inhibited human carbonic anhydrase isoenzymes (hCA I, II, IX and XII), with Kis in the range of 2.20-515.98 μM. The various isozymes showed diverse inhibition profiles. Among the tested phenolic derivatives, compounds 4-methyl catechol and 3-methoxy catechol showed potent activity as inhibitors of the tumour-associated transmembrane isoforms (hCA IX and XII) in the submicromolar range, with high selectivity. The results obtained from this research may lead to the design of more effective carbonic anhydrase isoenzyme inhibitors (CAIs) based on such phenolic compound scaffolds.

  9. Composition of Asarum heterotropoides var. mandshuricum radix oil from different extraction methods and activities against human body odor-producing bacteria.

    PubMed

    Haque, A S M Tanbirul; Moon, Jin Nam; Saravana, P S; Tilahun, Adane; Chun, Byung-Soo

    2016-10-01

    In this study, oils from Asarum heterotropoides were extracted by traditional solvent extraction and supercritical CO 2 (SC-CO 2 ) extraction methods and their antioxidant activities along with antimicrobial and inhibitory activities against five human body odor-producing bacteria (Staphylococcus epidermidis, Propionibacterium freudenreichii, Micrococcus luteus, Corynebacterium jeikeium, and Corynebacterium xerosis) were evaluated. The oil was found to contain 15 components, among which the most abundant component was methyl eugenol (37.6%), which was identified at every condition studied in different extraction methods. The oil extracted with n-hexane and ethanol mixture exhibited a strong antioxidant activity (92% ± 2%) and the highest ABTS and 2,2-diphenyl-1-picrylhydrazyl scavenging activities (89% ± 0.2%). The highest amounts of total phenolic content and total flavonoid content were 23.1±0.4 mg/g and 4.9±0.1 mg/g, respectively, in the traditional method. In the SC-CO 2 method performed at 200 bar/50°C using ethanol as an entrainer, the highest inhibition zone was recorded against all the aforementioned bacteria. In particular, strong antibacterial activity (38±2 mm) was found against M. luteus. The minimum inhibitory concentration (MIC) for the oil against bacteria ranged from 10.1±0.1 μg/mL to 46±2 μg/mL. The lowest MIC was found against M. luteus. Methyl eugenol was found to be one of the major compounds working against human body odor-producing bacteria. Copyright © 2016. Published by Elsevier B.V.

  10. Myricetin and methyl eugenol combination enhances the anticancer activity, cell cycle arrest and apoptosis induction of cis-platin against HeLa cervical cancer cell lines

    PubMed Central

    Yi, Jin-Ling; Shi, Song; Shen, Yan-Li; Wang, Ling; Chen, Hai-Yan; Zhu, Jun; Ding, Yan

    2015-01-01

    Drug combination therapies are common practice in the treatment of cancer. In this study, we evaluated the anticancer effects of myricetin (MYR), methyl eugenol (MEG) and cisplatin (CP) both separately as well as in combination against cervical cancer (HeLa) cells. To demonstrate whether MYR and MEG enhance the anticancer activity of CP against cervical cancer cells, we treated HeLa cells with MYR and MEG alone or in combination with cisplatin and evaluated cell growth and apoptosis using MTT (3 (4, 5 dimethyl thiazol 2yl) 2, 5 diphenyltetrazolium bromide) assay, LDH release assay, flow cytometry and fluorescence microscopy. The results revealed that, as compared to single drug treatment, the combination of MYR or MEG with CP resulted in greater effect in inhibiting cancer cell growth and inducing apoptosis. Cell apoptosis induction, Caspase-3 activity, cell cycle arrest and mitochondrial membrane potential loss were systematically studied to reveal the mechanisms of synergy between MYR, MEG and CP. Combination of MYR or MEG with CP resulted in more potent apoptosis induction as revealed by fluorescence microscopy using Hoechst 33258 and AO-ETBR staining. The combination treatment also increased the number of cells in G0/G1 phase dramatically as compared to single drug treatment. Mitochondrial membrane potential loss (ΛΨm) as well as Caspase-3 activity was much higher in combination treatment as compared to single drug treatment. Findings of this investigation suggest that MYR and MEG combined with cisplatin is a potential clinical chemotherapeutic approach in human cervical cancer. PMID:25972998

  11. Antimicrobial Cream Formulated with Supercritical Carbon Dioxide Extract of Tuberose Flowers Arrests Growth of Staphylococcus aureus.

    PubMed

    Ghosh, Probir Kumar; Bhattacharjee, Paramita; Das, Satadal

    2016-01-01

    Antimicrobial potency of herbal extracts is well known. The review of patents and research articles revealed that several herbal extracts have been employed in the formulation of topical products such as creams, exclusive of the cream reported in the present study. 0ur previous study has established antimicrobial potency of supercritical carbon dioxide extracts of tuberose flowers, better known for its sweet fragrance. The present work focuses on formulating a topical antimicrobial herbal cream with methyl eugenol (principal antimicrobial compound) rich - supercritical carbon dioxide extract of tuberose flowers, having good combination of phytochemical and antimicrobial potencies. Supercritical carbon dioxide parameters such as temperature, pressure and time were optimized using full factorial experimental design to obtain methyl eugenol-rich extracts. A cream was formulated using the extract having the best combination of phytochemical and antimicrobial potencies and was assayed further for in vitro antimicrobial potency; physiochemical and sensory properties. Two commercial antimicrobial cream samples were used as reference samples in the study. The extract obtained at 40°C, 10 MPa, 135 min at 1 L min-1 flow rate of gaseous C02 showed the best combination of phytochemical and antimicrobial potencies and was used for formulation of herbal creams. The cream formulated with 5% w/w of extract arrested growth of the common human skin pathogen Staphylococcus aureus and showed stable physiochemical properties and high sensory appeal for a year. The cream could be considered as a 'finished herbal product&' in compliance with the World Health 0rganization guidelines.

  12. Eugenol-loaded chitosan nanoparticles: II. Application in bio-based plastics for active packaging.

    PubMed

    Woranuch, Sarekha; Yoksan, Rangrong

    2013-07-25

    The aim of the present research was to study the possibility of using eugenol-loaded chitosan nanoparticles as antioxidants for active bio-based packaging material. Eugenol-loaded chitosan nanoparticles were incorporated into thermoplastic flour (TPF) - a model bio-based plastic - through an extrusion process at temperatures above 150°C. The influences of eugenol-loaded chitosan nanoparticles on crystallinity, morphology, thermal properties, radical scavenging activity, reducing power, tensile properties and barrier properties of TPF were investigated. Although the incorporation of 3% (w/w) of eugenol-loaded chitosan nanoparticles significantly reduced the extensibility and the oxygen barrier property of TPF, it provided antioxidant activity and improved the water vapor barrier property. In addition, TPF containing eugenol-loaded chitosan nanoparticles exhibited superior radical scavenging activity and stronger reducing power compared with TPF containing naked eugenol. The results suggest the applicability of TPF containing eugenol-loaded chitosan nanoparticles as an antioxidant active packaging material. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Encapsulation of eugenol from clove oil using casein micelle for solid preparation

    NASA Astrophysics Data System (ADS)

    Wijayanto, Andri; Putri, Yeshinta Risky Priasmara; Hermansyah, Heri; Sahlan, Muhamad

    2017-02-01

    Liquid preparation of eugenol in clove oil form is one of eugenol preparation form that is easiest to get it nowadays in many level of purity. The problem is the liquid preparation of chemical is often not easy to handle than the solid one. In this study, we observe the effectivity of cow milk casein in case of encapsulating eugenol from clove oil for creating the solid preparation of eugenol in nanoscale size. The result is 63.86% eugenol from clove oil can be encapsulated by the casein. The average particle diameter is about 377.5 nm, with loading capacity until 67.2%.

  14. Effectiveness of eugenol sedation to reduce the metabolic rates of cool and warm water fish at high loading densities

    USGS Publications Warehouse

    Cupp, Aaron R.; Hartleb, Christopher F.; Fredricks, Kim T.; Gaikowski, Mark P.

    2016-01-01

    Effects of eugenol (AQUI-S®20E, 10% active eugenol) sedation on cool water, yellow perch Perca flavescens (Mitchill), and warm water, Nile tilapia Oreochromis niloticus L. fish metabolic rates were assessed. Both species were exposed to 0, 10, 20 and 30 mg L−1 eugenol using static respirometry. In 17°C water and loading densities of 60, 120 and 240 g L−1, yellow perch controls (0 mg L−1 eugenol) had metabolic rates of 329.6–400.0 mg O2 kg−1 h−1, while yellow perch exposed to 20 and 30 mg L−1 eugenol had significantly reduced metabolic rates of 258.4–325.6 and 189.1–271.0 mg O2 kg−1 h−1 respectively. Nile tilapia exposed to 30 mg L−1 eugenol had a significantly reduced metabolic rate (424.5 ± 42.3 mg O2 kg−1 h−1) relative to the 0 mg L−1 eugenol control (546.6 ± 53.5 mg O2 kg−1 h−1) at a loading density of 120 g L−1 in 22°C water. No significant differences in metabolic rates for Nile tilapia were found at 240 or 360 g L−1 loading densities when exposed to eugenol. Results suggest that eugenol sedation may benefit yellow perch welfare at high densities (e.g. live transport) due to a reduction in metabolic rates, while further research is needed to assess the benefits of eugenol sedation on Nile tilapia at high loading densities.

  15. Potential Dual Role of Eugenol in Inhibiting Advanced Glycation End Products in Diabetes: Proteomic and Mechanistic Insights

    PubMed Central

    Singh, Priyanka; Jayaramaiah, Ramesha H.; Agawane, Sachin B.; Vannuruswamy, Garikapati; Korwar, Arvind M.; Anand, Atul; Dhaygude, Vitthal S.; Shaikh, Mahemud L.; Joshi, Rakesh S.; Boppana, Ramanamurthy; Kulkarni, Mahesh J.; Thulasiram, Hirekodathakallu V.; Giri, Ashok P.

    2016-01-01

    Medicinally important genus Ocimum harbors a vast pool of chemically diverse metabolites. Current study aims at identifying anti-diabetic candidate compounds from Ocimum species. Major metabolites in O. kilimandscharicum, O. tenuiflorum, O. gratissimum were purified, characterized and evaluated for anti-glycation activity. In vitro inhibition of advanced glycation end products (AGEs) by eugenol was found to be highest. Preliminary biophysical analysis and blind docking studies to understand eugenol-albumin interaction indicated eugenol to possess strong binding affinity for surface exposed lysines. However, binding of eugenol to bovine serum albumin (BSA) did not result in significant change in secondary structure of protein. In vivo diabetic mice model studies with eugenol showed reduction in blood glucose levels by 38% likely due to inhibition of α-glucosidase while insulin and glycated hemoglobin levels remain unchanged. Western blotting using anti-AGE antibody and mass spectrometry detected notably fewer AGE modified peptides upon eugenol treatment both in vivo and in vitro. Histopathological examination revealed comparatively lesser lesions in eugenol-treated mice. Thus, we propose eugenol has dual mode of action in combating diabetes; it lowers blood glucose by inhibiting α-glucosidase and prevents AGE formation by binding to ε-amine group on lysine, protecting it from glycation, offering potential use in diabetic management. PMID:26739611

  16. Potential Dual Role of Eugenol in Inhibiting Advanced Glycation End Products in Diabetes: Proteomic and Mechanistic Insights.

    PubMed

    Singh, Priyanka; Jayaramaiah, Ramesha H; Agawane, Sachin B; Vannuruswamy, Garikapati; Korwar, Arvind M; Anand, Atul; Dhaygude, Vitthal S; Shaikh, Mahemud L; Joshi, Rakesh S; Boppana, Ramanamurthy; Kulkarni, Mahesh J; Thulasiram, Hirekodathakallu V; Giri, Ashok P

    2016-01-07

    Medicinally important genus Ocimum harbors a vast pool of chemically diverse metabolites. Current study aims at identifying anti-diabetic candidate compounds from Ocimum species. Major metabolites in O. kilimandscharicum, O. tenuiflorum, O. gratissimum were purified, characterized and evaluated for anti-glycation activity. In vitro inhibition of advanced glycation end products (AGEs) by eugenol was found to be highest. Preliminary biophysical analysis and blind docking studies to understand eugenol-albumin interaction indicated eugenol to possess strong binding affinity for surface exposed lysines. However, binding of eugenol to bovine serum albumin (BSA) did not result in significant change in secondary structure of protein. In vivo diabetic mice model studies with eugenol showed reduction in blood glucose levels by 38% likely due to inhibition of α-glucosidase while insulin and glycated hemoglobin levels remain unchanged. Western blotting using anti-AGE antibody and mass spectrometry detected notably fewer AGE modified peptides upon eugenol treatment both in vivo and in vitro. Histopathological examination revealed comparatively lesser lesions in eugenol-treated mice. Thus, we propose eugenol has dual mode of action in combating diabetes; it lowers blood glucose by inhibiting α-glucosidase and prevents AGE formation by binding to ε-amine group on lysine, protecting it from glycation, offering potential use in diabetic management.

  17. Eugenol and carvacrol excite first- and second-order trigeminal neurons and enhance their heat-evoked responses

    PubMed Central

    Klein, Amanda H.; Joe, Christopher L.; Davoodi, Auva; Takechi, Kenichi; Carstens, Mirela Iodi; Carstens, E

    2014-01-01

    Eugenol and carvacrol from clove and oregano, respectively, are agonists of the warmth-sensitive transient receptor potential channel TRPV3 and the irritant-sensitive TRPA1. Eugenol and carvacrol induce oral irritation that rapidly desensitizes, accompanied by brief enhancement of innocuous warmth and heat pain in humans. We presently investigated if eugenol and carvacrol activate nociceptive primary afferent and higher-order trigeminal neurons and enhance their heat-evoked responses, using calcium imaging of cultured trigeminal ganglion (TG) and dorsal root ganglion (DRG) neurons, and in vivo single-unit recordings in trigeminal subnucleus caudalis (Vc) of rats. Eugenol and carvacrol activated 20-30% of TG and 7-20% of DRG cells, the majority of which additionally responded to menthol, mustard oil and/or capsaicin. TG cell responses to innocuous (39°) and noxious (42°C) heating were enhanced by eugenol and carvacrol. We identified dorsomedial Vc neurons responsive to noxious heating of the tongue in pentobarbital-anesthetized rats. Eugenol and carvacrol dose-dependently elicited desensitizing responses in 55% and 73% of heat-sensitive units, respectively. Responses to noxious heat were briefly enhanced by eugenol and carvacrol. Many eugenol- and carvacrol-responsive units also responded to menthol, cinnamaldehyde and capsaicin. These data support a peripheral site for eugenol and carvacrol to enhance warmth- and noxious heat-evoked responses of trigeminal neurons, and are consistent with the observation that these agonists briefly enhance warmth and heat pain on the human tongue. PMID:24759772

  18. An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles1

    PubMed Central

    Medina-Puche, Laura; Molina-Hidalgo, Francisco Javier; Boersma, Maaike; Schuurink, Robert C.; López-Vidriero, Irene; Solano, Roberto; Franco-Zorrilla, José-Manuel; Caballero, José Luis; Blanco-Portales, Rosario; Muñoz-Blanco, Juan

    2015-01-01

    Eugenol is a volatile phenylpropanoid that contributes to flower and ripe fruit scent. In ripe strawberry (Fragaria × ananassa) fruit receptacles, eugenol is biosynthesized by eugenol synthase (FaEGS2). However, the transcriptional regulation of this process is still unknown. We have identified and functionally characterized an R2R3 MYB transcription factor (EMISSION OF BENZENOID II [FaEOBII]) that seems to be the orthologous gene of PhEOBII from Petunia hybrida, which contributes to the regulation of eugenol biosynthesis in petals. The expression of FaEOBII was ripening related and fruit receptacle specific, although high expression values were also found in petals. This expression pattern of FaEOBII correlated with eugenol content in both fruit receptacle and petals. The expression of FaEOBII was repressed by auxins and activated by abscisic acid, in parallel to the ripening process. In ripe strawberry receptacles, where the expression of FaEOBII was silenced, the expression of CINNAMYL ALCOHOL DEHYDROGENASE1 and FaEGS2, two structural genes involved in eugenol production, was down-regulated. A subsequent decrease in eugenol content in ripe receptacles was also observed, confirming the involvement of FaEOBII in eugenol metabolism. Additionally, the expression of FaEOBII was under the control of FaMYB10, another R2R3 MYB transcription factor that regulates the early and late biosynthetic genes from the flavonoid/phenylpropanoid pathway. In parallel, the amount of eugenol in FaMYB10-silenced receptacles was also diminished. Taken together, these data indicate that FaEOBII plays a regulating role in the volatile phenylpropanoid pathway gene expression that gives rise to eugenol production in ripe strawberry receptacles. PMID:25931522

  19. Effectiveness of Liquid-Liquid Extraction, Solid Phase Extraction, and Headspace Technique for Determination of Some Volatile Water-Soluble Compounds of Rose Aromatic Water

    PubMed Central

    2017-01-01

    Steam distillation is used to isolate scent of rose flowers. Rose aromatic water is commonly used in European cuisine and aromatherapy besides its use in cosmetic industry for its lovely scent. In this study, three different sampling techniques, liquid-liquid extraction (LLE), headspace technique (HS), and solid phase extraction (SPE), were compared for the analysis of volatile water-soluble compounds in commercial rose aromatic water. Some volatile water-soluble compounds of rose aromatic water were also analyzed by gas chromatography mass spectrometry (GCMS). In any case, it was concluded that one of the solid phase extraction methods led to higher recoveries for 2-phenylethyl alcohol (PEA) in the rose aromatic water than the liquid-liquid extraction and headspace technique. Liquid-liquid extraction method provided higher recovery ratios for citronellol, nerol, and geraniol than others. Ideal linear correlation coefficient values were observed by GCMS for quantitative analysis of volatile compounds (r2 ≥ 0.999). Optimized methods showed acceptable repeatability (RSDs < 5%) and excellent recovery (>95%). For compounds such as α-pinene, linalool, β-caryophyllene, α-humulene, methyl eugenol, and eugenol, the best recovery values were obtained with LLE and SPE. PMID:28791049

  20. Dual dispersive liquid-liquid microextraction for determination of phenylpropenes in oils by gas chromatography-mass spectrometry.

    PubMed

    Tsai, Chia-Ju; Li, Jih-Heng; Feng, Chia-Hsien

    2015-09-04

    A novel, simple and quick sample preparation method was developed and used for pre-concentration and extraction of six phenylpropenes, including anethole, estragole, eugenol, methyl eugenol, safrole and myristicin, from oil samples by dual dispersive liquid-liquid microextraction. Gas chromatography-mass spectrometry was used for determination and separation of compounds. Several experimental parameters affecting extraction efficiency were evaluated and optimized, including forward-extractant type and volume, surfactant type and concentration, water volume, and back-extractant type and volume. For all analytes (10-1000ng/mL), the limits of detection (S/N≧3) ranged from 1.0 to 3.0ng/mL; the limits of quantification (S/N≧10) ranged from 2.5 to 10.0ng/mL; and enrichment factors ranged from 3.2 to 37.1 times. Within-run and between-run relative standard deviations (n=6) were less than 2.61% and less than 4.33%, respectively. Linearity was excellent with determination coefficients (r(2)) above 0.9977. The experiments showed that the proposed method is a simple, effective, and environmentally friendly method of analyzing phenylpropenes in oil samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint.

    PubMed

    Marchese, Anna; Barbieri, Ramona; Coppo, Erika; Orhan, Ilkay Erdogan; Daglia, Maria; Nabavi, Seyed Fazel; Izadi, Morteza; Abdollahi, Mohammad; Nabavi, Seyed Mohammad; Ajami, Marjan

    2017-11-01

    Eugenol is a hydroxyphenyl propene, naturally occurring in the essential oils of several plants belonging to the Lamiaceae, Lauraceae, Myrtaceae, and Myristicaceae families. It is one of the major constituents of clove (Syzygium aromaticum (L.) Merr. & L.M. Perry, Myrtaceae) oil and is largely used in both foods and cosmetics as a flavoring agent. A large body of recent scientific evidence supports claims from traditional medicine that eugenol exerts beneficial effects on human health. These effects are mainly associated with antioxidant and anti-inflammatory activities. Eugenol has also shown excellent antimicrobial activity in studies, being active against fungi and a wide range of gram-negative and gram-positive bacteria. The aim of this review is to analyze scientific data from the main published studies describing the antibacterial and antifungal activities of eugenol targeting different kind of microorganisms, such as those responsible for human infectious diseases, diseases of the oral cavity, and food-borne pathogens. This article also reports the effects of eugenol on multi-drug resistant microorganisms. On the basis of this collected data, eugenol represents a very interesting bioactive compound with broad spectrum antimicrobial activity against both planktonic and sessile cells belonging to food-decaying microorganisms and human pathogens.

  2. Can ménage-a-trois be used for controlling insects?

    PubMed

    Suckling, D M; Jang, E B; Carvalho, L A; Nagata, J T; Schneider, E L; El-Sayed, A M

    2007-08-01

    We propose a new cross-species disruption approach that might be capable of interrupting mating of one species that uses another insect species as the mercenary agent. We argue that insects treated with a sufficiently powerful attractant for a second species might interfere with mating of one or both species, for example, by leading males astray in pursuit of the false trails created by suitably dosing individuals of the first species. Our reciprocal test systems used (1) methyl eugenol, an attractant for male oriental fruit flies (Bactrocera dorsalis), applied to melon flies (B. cucurbitae) and (2) cuelure, a lure for male melon flies, applied to B. dorsalis. There was no mortality 1 week after either attractant was applied to individual flies at doses up to 100 ng, which was effective in attracting insects in a field cage and in the field. In wind tunnel choice tests, 100 ng of either lure topically applied to tethered flies attracted fruit fly males of the second species, which exhibited prolonged bouts of physically disruptive behaviors including chasing and bumping. In small cages, treatment of males did not reduce mating of either species, with one group of three (ménage) per cage. However, in large field cages with multiple pairs of both species present, there was a significant reduction in the mating of melon flies resulting from methyl eugenol applied to males compared to untreated controls. The treatment of oriental fruit flies with cuelure also reduced their mating to a lesser extent. These results do not yet provide the practical proof of this new concept for pest management, but other model systems may be more appropriate. This work is novel in presenting attractants on a moving target, in this case, another insect species.

  3. Evaluation of the chemical composition, antioxidant and anti-inflammatory activities of distillate and residue fractions of sweet basil essential oil.

    PubMed

    Li, Hailong; Ge, Yanhui; Luo, Zhimin; Zhou, Yulan; Zhang, Xuguang; Zhang, Junqing; Fu, Qiang

    2017-06-01

    In this study, the chemical composition and antioxidant and anti-inflammatory activities of sweet basil ( Ocimum basilicum L. Lamiaceae family) were evaluated. Sweet basil is a food-related plant that is widely used in traditional Chinese medicine. Sweet basil crude oil was processed via molecular distillation and further characterized using gas chromatography-mass spectrometry (GC-MS) to screen for new compounds. The GC-MS analysis identified thirty-eight compounds. The major constituents of the residue fraction were estragole (17.06%), methyl eugenol (11.35%) and linoleic acid (11.40%), while the distillate fraction primarily contained methyl eugenol (16.96%), α-cadinol (16.24%) and α-bergamotene (11.92%). The antioxidant (DPPH and ABTS assays) and anti-inflammatory (in Raw264.7 cells) activities were evaluated. The residue fraction markedly scavenged the DPPH (IC 50  = 1.092 ± 0.066 mg/mL) and ABTS (IC 50  = 0.707 ± 0.042 mg/mL) radicals. Meanwhile, the distillate fraction distinctly suppressed the production of cytokines (TNF-α, IL-β, IL-6) and their gene expression in LPS-induced Raw264.7 cells and suppressed NO and iNOS in an in vitro model when compared with the crude oil. In conclusion, the fractions obtained from sweet basil crude oil showed different antioxidant and anti-inflammatory properties, and they could be used as an effective source of natural antioxidant and anti-inflammatory agents after molecular distillation. Thus, the properties of essential oils in natural herbal medicines may be maximized to provide a valuable therapeutic strategy for treating various disorders caused by extreme oxidative stress.

  4. Attraction and consumption of methyl eugenol by male Bactrocera umbrosa Fabricius (Diptera: Tephritidae) promotes conspecific sexual communication and mating performance.

    PubMed

    Wee, S L; Abdul Munir, M Z; Hee, A K W

    2018-02-01

    The Artocarpus fruit fly, Bactrocera umbrosa (Fabricius) (Diptera: Tephritidae), is an oligophagous fruit pest infesting Moraceae fruits, including jackfruit (Artocarpus heterophyllus Lamarck), a fruit commodity of high value in Malaysia. The scarcity of fundamental biological, physiological and ecological information on this pest, particularly in relation to behavioural response to phytochemical lures, which are instrumental to the success of many area-wide fruit fly control and management programmes, underpins the need for studies on this much-underrated pest. The positive response of B. umbrosa males to methyl eugenol (ME), a highly potent phytochemical lure, which attracts mainly males of many Bactrocera species, was shown to increase with increasing age. As early as 7 days after emergence (DAE), ca. 22% of males had responded to ME and over 50% by 10 DAE, despite no occurrence of matings (i.e. the males were still sexually immature). Male attraction to ME peaked from 10 to 27 DAE, which corresponded with the flies' attainment of sexual maturity. In wind-tunnel assays during the dusk courtship period, ME-fed males exhibited earlier calling activity and attracted a significantly higher percentage of virgin females compared with ME-deprived males. ME-fed males enjoyed a higher mating success than ME-deprived males at 1-day post ME feeding in semi-field assays. ME consumption also promotes aggregation behaviour in B. umbrosa males, as demonstrated in wind-tunnel and semi-field assays. We suggest that ME plays a prominent role in promoting sexual communication and enhancing mating performance of the Artocarpus fruit fly, a finding that is congruent with previous reports on the consequences of ME acquisition by other economically important Bactrocera species.

  5. Evaluation of methyl eugenol and cue-lure traps with solid lure and insecticide dispensers for fruit fly monitoring and male annihilation in the Hawaii Areawide Pest Management Program.

    PubMed

    Vargas, Roger I; Mau, Ronald F L; Stark, John D; Piñero, Jaime C; Leblanc, Luc; Souder, Steven K

    2010-04-01

    Methyl eugenol (ME) and cue-lure (C-L) traps with solid lure dispensers were deployed in areas with low and high populations of oriental fruit fly, Bactrocera dorsalis (Hendel), and melon fly, Bactrocera cucurbitae (Coquillett), respectively. In low-density areas, standard Jackson traps or Hawaii Fruit Fly Areawide Pest Management (AWPM) traps with FT Mallet ME wafers impregnated with dimethyl dichloro-vinyl phosphate (DDVP) or AWPM traps with Scentry ME cones and vapor tape performed equally as well as standard Jackson traps with liquid ME/C-L and naled. Standard Jackson traps or AWPM traps with FT Mallet C-L wafers impregnated with DDVP or AWPM traps with Scentry C-L plugs with vapor tape performed equally as well as standard Jackson traps with a lure-naled solution. In high density areas, captures with traps containing FT Mallet wafers (ME and C-L) outperformed AWPM traps with Scentry cones and plugs (ME and C-L) with DDVP insecticidal strips over a 6-mo period. Captures of B. dorsalis and B. cucurbitae with wafers containing both ME and raspberry ketone (FT Mallet MC) were equivalent to those containing separate lures. From a worker safety and convenience standpoint, FT Mallet ME and C-L wafers with DDVP or Scentry plugs, with or without DDVP vapor tape, are more convenient and safer to handle than standard liquid insecticide formulations used for monitoring and male annihilation programs in Hawaii, and for detections traps used on the U.S. mainland. Furthermore, the FT Mallet MC wafer might be used in a single trap in place of two separate traps for detection of both ME and C-L responding fruit flies.

  6. Evaluation of SPLAT with spinosad and methyl eugenol or cue-lure for "attract-and-kill" of oriental and melon fruit flies (Diptera: Tephritidae) in Hawaii.

    PubMed

    Vargas, Roger I; Stark, John D; Hertlein, Mark; Neto, Agenor Mafra; Coler, Reginald; Piñero, Jaime C

    2008-06-01

    Specialized Pheromone and Lure Application Technology (SPLAT) methyl eugenol (ME) and cue-lure (C-L) "attract-and-kill" sprayable formulations containing spinosad were compared with other formulations under Hawaiian weather conditions against oriental fruit fly, Bactrocera dorsalis (Hendel), and melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), respectively. Field tests were conducted with three different dispensers (Min-U-Gel, Acti-Gel, and SPLAT) and two different insecticides (naled and spinosad). SPLAT ME with spinosad was equal in performance to the standard Min-U-Gel ME with naled formulation up to 12 wk. SPLAT C-L with spinosad was equal in performance to the standard Min-U-Gel C-L with naled formulation during weeks 7 to12, but not during weeks 1-6. In subsequent comparative trials, SPLAT ME + spinosad compared favorably with the current standard of Min-U-Gel ME + naled for up to 6 wk, and it was superior from weeks 7 to 12 in two separate tests conducted in a papaya (Carica papaya L.) orchard and a guava (Psidium guajava L.) orchard, respectively. In outdoor paired weathering tests (fresh versus weathered), C-L dispensers (SPLAT + spinosad, SPLAT + naled, and Min-U-Gel + naled) were effective up to 70 d. Weathered ME dispensers with SPLAT + spinosad compared favorably with SPLAT + naled and Min-U-Gel + naled, and they were equal to fresh dispensers for 21-28 d, depending on location. Our current studies indicate that SPLAT ME and SPLAT C-L sprayable attract-and-kill dispensers containing spinosad are a promising substitute for current liquid organophosphate insecticide formulations used for areawide suppression of B. dorsalis and B. cucurbitae in Hawaii.

  7. Field trials of solid triple lure (trimedlure, methyl eugenol, raspberry ketone, and DDVP) dispensers for detection and male annihilation of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae (Diptera: Tephritidae) in Hawaii.

    PubMed

    Vargas, Roger I; Souder, Steven K; Mackey, Bruce; Cook, Peter; Morse, Joseph G; Stark, John D

    2012-10-01

    Solid Mallet TMR (trimedlure [TML], methyl eugenol [ME], raspberry ketone [RK]) wafers and Mallet CMR (ceralure, ME, RK, benzyl acetate) wafers impregnated with DDVP (2,2-dichlorovinyl dimethyl phosphate) insecticide were measured in traps as potential detection and male annihilation technique (MAT) devices. Comparisons were made with 1) liquid lure and insecticide formulations, 2) solid cones and plugs with an insecticidal strip, and 3) solid single and double lure wafers with DDVP for captures of Mediterranean fruit fly, Ceratitis capitata (Wiedemann); oriental fruit fly, Bactrocera dorsalis Hendel; and melon fly, B. cucurbitae Coquillett. Bucket and Jackson traps were tested in a coffee plantation near Eleele, Kauai Island, HI (trials at high populations) and avocado orchards near Kona, HI Island, HI (trials at low populations). Captures of all three species with Mallet TMR were not different from Mallet CMR; therefore, subsequent experiments did not include Mallet CMR because of higher production costs. In MAT trials near Eleele, HI captures in AWPM traps with Mallet TMR wafers were equal to any other solid lure (single or double) except the Mallet ME wafer. In survey trials near Kona, captures of C. capitata, B. cucurbitae, and B. dorsalis with Mallet TMR wafers were equal to those for the standard TML, ME, and C-L traps used in FL and CA. A solid Mallet TMR wafer is safer, more convenient to handle, and may be used in place of several individual lure and trap systems, potentially reducing costs of large survey and detection programs in Florida and California, and MAT programs in Hawaii.

  8. Recent advances in methyl eugenol and cue-lure technologies for fruit fly detection, monitoring, and control in Hawaii.

    PubMed

    Vargas, Roger I; Shelly, Todd E; Leblanc, Luc; Piñero, Jaime C

    2010-01-01

    Worldwide, an important aspect of invasive insect pest management is more effective, safer detection and control systems. Phenyl propanoids are attractive to numerous species of Dacinae fruit flies. Methyl eugenol (ME) (4-allyl-1, 2-dimethoxybenzene-carboxylate), cue-lure (C-L) (4-(p-acetoxyphenyl)-2-butanone), and raspberry ketone (RK) (4-(p-hydroxyphenyl)-2-butanone) are powerful male-specific lures. Most evidence suggests a role of ME and C-L/RK in pheromone synthesis and mate attraction. ME and C-L/RK are used in current fruit fly programs for detection, monitoring, and control. During the Hawaii Area-Wide Pest Management Program in the interest of worker safety and convenience, liquid C-L/ME and insecticide (i.e., naled and malathion) mixtures were replaced with solid lures and insecticides. Similarly, Male Annihilation Technique (MAT) with a sprayable Specialized Pheromone and Lure Application Technology (SPLAT), in combination with ME (against Bactrocera dorsalis, oriental fruit fly) or C-L/RK (against B. cucurbitae, melon fly), and the reduced-risk insecticide, spinosad, was developed for area-wide suppression of fruit flies. The nontarget effects of ME and C-L/RK to native invertebrates were examined. Although weak attractiveness was recorded to flower-visiting insects, including bees and syrphid flies, by ME, effects to native Drosophila and other Hawaiian endemics were found to be minimal. These results suggested that the majority of previously published records, including those of endemic Drosophilidae, were actually for attraction to dead flies inside fruit fly traps. Endemic insect attraction was not an issue with C-L/RK, because B. cucurbitae were rarely found in endemic environments. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Weathering trials of Amulet cue-lure and Amulet methyl eugenol "attract-and-kill" stations with male melon flies and oriental fruit flies (Diptera: Tephritidae) in Hawaii.

    PubMed

    Vargas, Roger I; Stark, John D; Mackey, Bruce; Bull, Richard

    2005-10-01

    Amulet C-L (cue-lure) and Amulet ME (methyl eugenol) molded paper fiber "attract-and-kill" dispensers containing fipronil were tested under Hawaiian weather conditions against Bactrocera cucurbitae (Coquillett) (melon fly) and Bactrocera dorsalis (Hendel) (oriental fruit fly), respectively. In paired tests (fresh versus weathered), C-L dispensers were effective for at least 77 d, whereas ME dispensers were effective for at least 21 d. Thus, C-L dispensers exceeded, whereas ME dispensers did not meet the label interval replacement recommendation of 60 d. Addition of 4 ml of ME to 56-d-old ME dispensers restored attraction and kill for an additional 21 d. This result suggested the fipronil added at manufacture was still effective. By enclosing and weathering ME dispensers inside small plastic bucket traps, longevity of ME dispensers was extended up to 56 d. Fipronil ME and C-L dispensers also were compared, inside bucket traps, to other toxicants: spinosad, naled, DDVP, malathion, and permethrin. Against B. dorsalis, fipronil ME dispensers compared favorably only up to 3 wk. Against B. cucurbitae, fipronil C-L dispensers compared favorably for at least 15 wk. Our results suggest that fipronil C-L dispensers can potentially be used in Hawaii; however, fipronil ME dispensers need to be modified or protected from the effects of weathering to extend longevity and meet label specifications. Nonetheless, Amulet C-L and ME dispensers are novel prepackaged formulations containing C-L or ME and fipronil that are more convenient and safer to handle than current liquid insecticide formulations used for areawide suppression of B. dorsalis and B. cucurbitae in Hawaii.

  10. Essential oils have different effects on human pathogenic and commensal bacteria in mixed faecal fermentations compared with pure cultures.

    PubMed

    Thapa, Dinesh; Louis, Petra; Losa, Riccardo; Zweifel, Béatrice; Wallace, R John

    2015-02-01

    A static batch culture system inoculated with human faeces was used to determine the influence of essential oil compounds (EOCs) on mixed faecal microbiota. Bacteria were quantified using quantitative PCR of 16S rRNA genes. Incubation for 24 h of diluted faeces from six individuals caused enrichment of Bifidobacterium spp., but proportions of other major groups were unaffected. Thymol and geraniol at 500 p.p.m. suppressed total bacteria, resulting in minimal fermentation. Thymol at 100 p.p.m. had no effect, nor did eugenol or nerolidol at 100 or 500 p.p.m. except for a slight suppression of Eubacterium hallii. Methyl isoeugenol at 100 or 500 p.p.m. suppressed the growth of total bacteria, accompanied by a large fall in the molar proportion of propionate formed. The relative abundance of Faecalibacterium prausnitzii was unaffected except with thymol at 500 p.p.m. The ability of EOCs to control numbers of the pathogen Clostridium difficile was investigated in a separate experiment, in which the faecal suspensions were amended by the addition of pure culture of C. difficile. Numbers of C. difficile were suppressed by thymol and methyl isoeugenol at 500 p.p.m. and to a lesser extent at 100 p.p.m. Eugenol and geraniol gave rather similar suppression of C. difficile numbers at both 100 and 500 p.p.m. Nerolidol had no significant effect. It was concluded from these and previous pure-culture experiments that thymol and geraniol at around 100 p.p.m. could be effective in suppressing pathogens in the small intestine, with no concern for beneficial commensal colonic bacteria in the distal gut. © 2015 The Authors.

  11. Toxic effects of two essential oils and their constituents on the mealworm beetle, Tenebrio molitor.

    PubMed

    Martínez, L C; Plata-Rueda, A; Colares, H C; Campos, J M; Dos Santos, M H; Fernandes, F L; Serrão, J E; Zanuncio, J C

    2017-12-14

    The study identified insecticidal effects from the cinnamon and clove essential oils in Tenebrio molitor L. (Coleoptera: Tenebrionidae). The lethal concentrations (LC50 and LC90), lethal time, and repellent effect on larvae, pupae, and adults of T. molitor after exposure to six concentrations of each essential oil and toxic compounds were evaluated. The chemical composition of the cinnamon oil was also determined and primary compounds were eugenol (10.19%), trans-3-caren-2-ol (9.92%), benzyl benzoate (9.68%), caryophyllene (9.05%), eugenyl acetate (7.47%), α-phellandrene (7.18%), and α-pinene (6.92%). In clove essential oil, the primary compounds were eugenol (26.64%), caryophyllene (23.73%), caryophyllene oxide (17.74%), 2-propenoic acid (11.84%), α-humulene (10.48%), γ-cadinene (4.85%), and humulene oxide (4.69%). Cinnamon and clove essential oils were toxic to T. molitor. In toxic chemical compounds, eugenol have stronger contact toxicity in larvae, pupae, and adult than caryophyllene oxide, followed by α-pinene, α-phellandrene, and α-humulene. In general, the two essential oils were toxic and repellent to adult T. molitor. Cinnamon and clove essential oils and their compounds caused higher mortality and repellency on T. molitor and, therefore, have the potential for integrated management programs of this insect.

  12. Inhibitory effects of eugenol on putative nociceptive response in spinal cord preparation isolated from neonatal rats.

    PubMed

    Yagura, Saki; Onimaru, Hiroshi; Kanzaki, Koji; Izumizaki, Masahiko

    2018-06-01

    Eugenol is contained in several plants including clove and is thought to exert an analgesic effect. It has been suggested that the slow ventral root potential induced by ipsilateral dorsal root stimulation in the isolated (typically lumbar) spinal cord of newborn rats reflects the nociceptive response, and this in vitro experimental model is useful to assess the actions of analgesics. To further elucidate neuronal mechanisms of eugenol-induced analgesia, we examined the effects of extracellularly applied eugenol on the nociceptive spinal reflex response. To evaluate the effects of eugenol on putative nociceptive responses, the ipsilateral fifth lumbar (L5) dorsal root was stimulated using a glass suction electrode, and the induced reflex responses were recorded from the L5 and twelfth thoracic (Th12) ventral roots in spinal cord preparations (Th10-L5) from newborn rats (postnatal day 0-3). We found that eugenol (0.25-1.0 mM) caused dose-dependent attenuation of the reflex response and also depressed spontaneous ventral root activity. We also found that the slow ventral root potential was further divided into two components: initial and late components. A lower concentration of eugenol selectively depressed the late component. The inhibitory effects by 1.0 mM eugenol were not reversed by 10 µM capsazepine (TRPV1 antagonist) or 40 µM HC-030031 (TRPA1 antagonist). The depressive effect of eugenol on the reflex response was also confirmed by optical recordings using voltage-sensitive dye. Our report provides additional evidence on the basic neuronal mechanisms of eugenol to support its clinical use as a potential analgesic treatment.

  13. Antioxidant and antimicrobial activities of clove bud essential oil and eugenol nanoparticles in alcohol-free microemulsion.

    PubMed

    Hamed, Said Fatouh; Sadek, Zainab; Edris, Amr

    2012-01-01

    Clove bud essential oil (CEO) and its major individual phenolic constituent eugenol were formulated as nanoparticles in water-based microemulsion systems. The oil titration method was used to incorporate different amounts of the oil and eugenol in the micellar solution of Tween-20. The Antioxidant and antimicrobial activities were evaluated using the DPPH* free radical scavenging assay and the agar disc dilution method, respectively. Results showed that microemulsion improved the evaluated activities of CEO and eugenol compared with the crude counterparts. Individual eugenol microemulsion was more effective than CEO microemulsion which contained only 61.7% eugenol among its constituents. The results of this study could have potential applications in water-based disinfectants, preservation and flavoring of food and in personal hygiene products. It may also have promising applications in the nutraceutical and functional beverage field.

  14. Essential Oils and Eugenols Inhibit Biofilm Formation and the Virulence of Escherichia coli O157:H7

    PubMed Central

    Kim, Yong-Guy; Lee, Jin-Hyung; Gwon, Giyeon; Kim, Soon-Il; Park, Jae Gyu; Lee, Jintae

    2016-01-01

    Enterohemorrhagic Escherichia coli O157:H7 (EHEC) has caused foodborne outbreaks worldwide and the bacterium forms antimicrobial-tolerant biofilms. We investigated the abilities of various plant essential oils and their components to inhibit biofilm formation by EHEC. Bay, clove, pimento berry oils and their major common constituent eugenol at 0.005% (v/v) were found to markedly inhibit EHEC biofilm formation without affecting planktonic cell growth. In addition, three other eugenol derivatives isoeugenol, 2-methoxy-4-propylphenol, and 4-ethylguaiacol had antibiofilm activity, indicating that the C-1 hydroxyl unit, the C-2 methoxy unit, and C-4 alkyl or alkane chain on the benzene ring of eugenol play important roles in antibiofilm activity. Interestingly, these essential oils and eugenol did not inhibit biofilm formation by three laboratory E. coli K-12 strains that reduced curli fimbriae production. Transcriptional analysis showed that eugenol down-regulated 17 of 28 genes analysed, including curli genes (csgABDFG), type I fimbriae genes (fimCDH) and ler-controlled toxin genes (espD, escJ, escR, and tir), which are required for biofilm formation and the attachment and effacement phenotype. In addition, biocompatible poly(lactic-co-glycolic acid) coatings containing clove oil or eugenol exhibited efficient biofilm inhibition on solid surfaces. In a Caenorhabditis elegans nematode model, clove oil and eugenol attenuated the virulence of EHEC. PMID:27808174

  15. Carvacrol and eugenol effectively inhibit Rhizopus stolonifer and control postharvest soft rot decay in peaches.

    PubMed

    Zhou, D; Wang, Z; Li, M; Xing, M; Xian, T; Tu, K

    2018-01-01

    This study aimed to investigate the antifungal mechanism of carvacrol and eugenol to inhibit Rhizopus stolonifer and the control of postharvest soft rot decay in peaches. To investigate the antifungal mechanism, the effects of carvacrol and eugenol on the mycelium growth, leakages of cytoplasmic contents, mycelium morphology, cell membrane and membrane composition of R. stolonifer were studied. Carvacrol and eugenol both exhibited dose-dependent antifungal activity against R. stolonifer, carvacrol at a concentration of 2 μl per plant and eugenol at a concentration of 4 μl per plant inhibited fungal growth completely. The two essential oils (EOs) increased cell membrane penetrability and caused the leakage of cytoplasm, nucleic acid and protein content. The observation using scanning electron microscopy and fluorescent microscopy showed modification of the hyphal morphology and breakage of the cell plasma membrane. Decreased ergosterol contents confirmed that the two EOs could destroy the membrane of R. stolonifer. For the in vivo test, the inhibition of soft rot disease and the induction of defence-related enzymes were investigated. Carvacrol and eugenol significantly reduced the incidence and severity of soft rot decay in inoculated peaches. The best treatments for controlling soft rot decay were obtained at 0·5 μl l -1 for carvacrol and 1 μl l -1 for eugenol. The activities of defence-related enzymes in peaches were also enhanced by fumigation with two EOs. This study showed that carvacrol and eugenol could effectively inhibit the growth of R. stolonifer in vitro and successfully control the incidence of soft rot decay in honey peaches. The above findings may be the main antifungal mechanism of carvacrol and eugenol on R. stolonifer. Furthermore, carvacrol and eugenol are helpful for their commercial application on the preservation of fresh fruit. © 2017 The Society for Applied Microbiology.

  16. Influence of Temporary Cements on the Bond Strength of Self-Adhesive Cement to the Metal Coronal Substrate.

    PubMed

    Peixoto, Raniel Fernandes; De Aguiar, Caio Rocha; Jacob, Eduardo Santana; Macedo, Ana Paula; De Mattos, Maria da Gloria Chiarello; Antunes, Rossana Pereira de Almeida

    2015-01-01

    This research evaluated the influence of temporary cements (eugenol-containing [EC] or eugenol-free [EF]) on the tensile strength of Ni-Cr copings fixed with self-adhesive resin cement to the metal coronal substrate. Thirty-six temporary crowns were divided into 4 groups (n=9) according to the temporary cements: Provy, Dentsply (eugenol-containing), Temp Cem, Vigodent (eugenol-containing), RelyX Temp NE, 3M ESPE (eugenol-free) and Temp Bond NE, Kerr Corp (eugenol-free). After 24 h of temporary cementation, tensile strength tests were performed in a universal testing machine at a crosshead speed of 0.5 mm/min and 1 kN (100 kgf) load cell. Afterwards, the cast metal cores were cleaned by scraping with curettes and air jet. Thirty-six Ni-Cr copings were cemented to the cast metal cores with self-adhesive resin cement (RelyX U200, 3M ESPE). Tensile strength tests were performed again. In the temporary cementation, Temp Bond NE (12.91 ± 2.54) and Temp Cem (12.22 ± 2.96) presented the highest values of tensile strength and were statistically similar to each other (p>0.05). Statistically significant difference (p<0.05) was observed only between Provy (164.44 ± 31.23) and Temp Bond NE (88.48 ± 21.83) after cementation of Ni-Cr copings with self-adhesive resin cement. In addition, Temp Cem (120.68 ± 48.27) and RelyX Temp NE (103.04 ± 26.09) showed intermediate tensile strength values. In conclusion, the Provy eugenol-containing temporary cement was associated with the highest bond strength among the resin cements when Ni-Cr copings were cemented to cast metal cores. However, the eugenol cannot be considered a determining factor in increased bond strength, since the other tested cements (1 eugenol-containing and 2 eugenol-free) were similar.

  17. Organic Heat Stabilizers for Polyvinyl Chloride (PVC): A Synergistic Behavior of Eugenol and Uracil Derivative

    NASA Astrophysics Data System (ADS)

    Asawakosinchai, Aran; Jubsilp, Chanchira; Mora, Phattarin; Rimdusit, Sarawut

    2017-10-01

    Recycling ability, mechanical, and thermal properties of PVC stabilized with organic heat stabilizers, i.e., uracil (DAU) and eugenol were investigated to substitute PVCs stabilized with commercial lead, Ca/Zn, and organic-based stabilizer for PVC pipe production. PVC stabilized with the DAU and the eugenol can be processable at 30 °C lower than that of the PVC stabilized with commercial heat stabilizers. The most remarkable short-term thermal stability belonged to the PVC stabilized with the DAU, and its original color can be maintained at least up to 3 processing cycles. Synergistic behavior in thermal stability of the PVC mixed with DAU and eugenol at mass ratios of 1.5:1.5 was observed. Mechanical properties of DAU- and eugenol-stabilized PVC were higher than the samples with other heat stabilizers. Glass transition temperature of the PVC stabilized with all heat stabilizers was determined to be 99 °C with the exception of the value of 89 °C for eugenol-stabilized PVC. Therefore, the DAU and the eugenol showed high potential to be used as an organic heat stabilizer for PVC because of their non-toxic and good heat resistance properties.

  18. Effect of Eugenol against Streptococcus agalactiae and Synergistic Interaction with Biologically Produced Silver Nanoparticles

    PubMed Central

    Perugini Biasi-Garbin, Renata; Saori Otaguiri, Eliane; Fernandes da Silva, Mayara; Belotto Morguette, Ana Elisa; Armando Contreras Lancheros, César; Kian, Danielle; Perugini, Márcia Regina Eches; Durán, Nelson; Nakamura, Celso Vataru; Yamauchi, Lucy Megumi; Yamada-Ogatta, Sueli Fumie

    2015-01-01

    Streptococcus agalactiae (group B streptococci (GBS)) is an important infections agent in newborns associated with maternal vaginal colonization. Intrapartum antibiotic prophylaxis in GBS-colonized pregnant women has led to a significant reduction in the incidence of early neonatal infection in various geographic regions. However, this strategy may lead to resistance selecting among GBS, indicating the need for new alternatives to prevent bacterial transmission and even to treat GBS infections. This study reported for the first time the effect of eugenol on GBS isolated from colonized women, alone and in combination with silver nanoparticles produced by Fusarium oxysporum (AgNPbio). Eugenol showed a bactericidal effect against planktonic cells of all GBS strains, and this effect appeared to be time-dependent as judged by the time-kill curves and viability analysis. Combination of eugenol with AgNPbio resulted in a strong synergistic activity, significantly reducing the minimum inhibitory concentration values of both compounds. Scanning and transmission electron microscopy revealed fragmented cells and changes in bacterial morphology after incubation with eugenol. In addition, eugenol inhibited the viability of sessile cells during biofilm formation and in mature biofilms. These results indicate the potential of eugenol as an alternative for controlling GBS infections. PMID:25945115

  19. Effects of the naturally occurring alkenylbenzenes eugenol and trans-anethole on drug-metabolizing enzymes in the rat liver.

    PubMed

    Rompelberg, C J; Verhagen, H; van Bladeren, P J

    1993-09-01

    In order to study the effects of trans-anethole and eugenol on drug-metabolizing enzyme activities in vivo, male Wistar rats were treated by gavage with trans-anethole (125 or 250 mg/kg body weight) or eugenol (250, 500 or 1000 mg/kg body weight) daily for 10 days. In liver microsomes and cytosol various phase-I and phase-II biotransformation enzyme activities were determined. No effect on total cytochrome P-450 content in liver microsomes from rats treated with eugenol or trans-anethole was observed. Administration of 1000 mg eugenol/kg body weight, but not the lower doses, significantly increased cytochrome P-450-dependent 7-ethoxy-resorufin O-deethylation (EROD) and 7-pentoxyresorufin O-depentylation (PROD); administration of trans-anethole (125 or 250 mg/kg body weight) did not alter EROD and PROD activities. In rat liver cytosol, UDP-glucuronyl transferase (GT) activity towards the substrate 4-chlorophenol was significantly increased in all treated rats, and activity towards 4-hydroxybiphenyl as substrate was significantly increased in rats treated with 250 mg trans-anethole/kg or with 500 or 1000 mg eugenol/kg. DT-diaphorase (DTD) activity was only significantly enhanced in the liver cytosol of rats treated with trans-anethole at 250 mg/kg body weight. Enhancement of cytosolic glutathione S-transferase (GST) activity towards 1-chloro-2,4-dinitrobenzene was found for all eugenol- and trans-anethole-treated rats. In addition, significantly increased levels of GST subunit 2 were measured by HPLC in the liver cytosol of rats treated with eugenol (500 or 1000 mg/kg body eight) or trans-anethole (250 mg/kg body weight). It is concluded that both eugenol and trans-anethole preferentially induced phase II biotransformation enzymes in rat liver in vivo.

  20. Can Ocimum basilicum L. and Ocimum tenuiflorum L. in vitro culture be a potential source of secondary metabolites?

    PubMed

    Bhuvaneshwari, Karuppiah; Gokulanathan, Ananda; Jayanthi, Malayandi; Govindasamy, Vaithiyanathan; Milella, Luigi; Lee, Sungyoung; Yang, Deok Chun; Girija, Shanmugam

    2016-03-01

    In this study Ocimum basilicum L. (OB) and Ocimum tenuiflorum L. (OT) in vitro culture standardisation for increasing eugenol distribution, in comparison to their respective field grown parts was carried out. Eugenol was quantified using an optimised HPLC method and its relation with the total phenolic content (TPC) was measured. In vitro grown leaves and somatic embryos, of both OB and OT were found to contain similar quantities of eugenol (85μg/g approximately), higher than OB and OT field-grown leaves (30.2μg/g and 25.1μg/g respectively). It was also determined that in vitro grown leaves were richer in TPC than the field-grown intact organs. Results demonstrated the prominence of in vitro cultures for eugenol extraction. This study underlines that important food flavouring metabolites (e.g. vanillin, vanillic acids) might be produced, via the eugenol pathway, in Ocimum species that may be a good potential source of eugenol. Copyright © 2015. Published by Elsevier Ltd.

  1. Effect of periodontal dressings on human gingiva fibroblasts in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eber, R.M.; Shuler, C.F.; Buchanan, W.

    1989-08-01

    In vitro cytotoxicity studies of periodontal dressings have not generally produced a result consistent with in vivo observations. These prior in vitro studies have not used human intraoral cell lines. We tested the effects of two eugenol containing and two non-eugenol periodontal dressings on cultured human gingival fibroblasts (HGF) (ATCC No. 1292). Replicate HGF cultures grown in microtiter plates were exposed to stock, 1:4 and 1:16 dilutions of extracts made from each of the four periodontal dressings. The HGF cultures were pulse labelled with tritiated thymidine (3HTdR) after 24, 48, and 72 hours. Incorporations of the labelled thymidine were measuredmore » using liquid scintillation counting and expressed as counts per minute. The results showed that undiluted extracts from all four periodontal dressings totally inhibited 3HTdR uptake (P less than 0.05). The 1:4 dilution of eugenol dressings inhibited 3HTdR uptake significantly more than non-eugenol dressings (P less than 0.05). Interestingly, at 72 hours the 1:16 dilution of the non-eugenol dressings caused significantly increased 3HTdR uptake which was not observed with the eugenol dressings. The present results suggest that the use of a human fibroblastic cell line for testing the effects of periodontal dressings may provide information about the relative biological effects of these dressings. Using this cell line, we have found that eugenol dressings inhibit fibroblast proliferation to a greater extent than non-eugenol dressings.« less

  2. Stability of selected volatile contact allergens in different patch test chambers under different storage conditions.

    PubMed

    Mose, Kristian F; Andersen, Klaus E; Christensen, Lars Porskjaer

    2012-04-01

    Patch test preparations of volatile substances may evaporate during storage, thereby giving rise to reduced patch test concentrations. To investigate the stability of selected acrylates/methacrylates and fragrance allergens in three different test chambers under different storage conditions. Petrolatum samples of methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (2-HEMA), 2-hydroxypropyl acrylate (2-HPA), cinnamal and eugenol in patch test concentrations were stored in three different test chambers (IQ chamber™, IQ Ultimate™, and Van der Bend® transport container) at room temperature and in a refrigerator. The samples were analysed in triplicate with high-performance liquid chromatography. The decrease in concentration was substantial for all five allergens under both storage conditions in IQ chamber™ and IQ Ultimate™, with the exception of 2-HEMA during storage in the refrigerator. For these two chamber systems, the contact allergen concentration dropped below the stability limit in the following order: MMA, cinnamal, 2-HPA, eugenol, and 2-HEMA. In the Van der Bend® transport container, the contact allergens exhibited acceptable stability under both storage conditions, whereas MMA and 2-HPA required cool storage for maintenance of the limit. The Van der Bend® transport container was the best device for storage of samples of volatile contact allergens. © 2012 John Wiley & Sons A/S.

  3. Inhibitory effects of anethole and eugenol on the growth and toxin production of Aspergillus parasiticus.

    PubMed

    Karapinar, M

    1990-05-01

    The antifungal and antiaflatoxigenic activity of anethole and eugenol which are active components of commonly used spices was studied against two strains of Aspergillus parasiticus. Anethole, up to concentration of 400 micrograms/ml where complete inhibition was observed, delayed growth and reduced mycelial weight but it showed a stimulative effect on the toxin production of both strains. At a concentration of 300 micrograms/ml, eugenol inhibited the growth of both strains; levels of eugenol below 200 micrograms/ml enhanced production of aflatoxin particularly by A. parasiticus NRRL 299.

  4. Eugenol reduces the expression of virulence-related exoproteins in Staphylococcus aureus.

    PubMed

    Qiu, Jiazhang; Feng, Haihua; Lu, Jing; Xiang, Hua; Wang, Dacheng; Dong, Jing; Wang, Jianfeng; Wang, Xiaoliang; Liu, Juxiong; Deng, Xuming

    2010-09-01

    Eugenol, an essential oil component in plants, has been demonstrated to possess activity against both gram-positive and gram-negative bacteria. This study examined the influence that subinhibitory concentrations of eugenol may have on the expression of the major exotoxins produced by Staphylococcus aureus. The results from a tumor necrosis factor (TNF) release assay and a hemolysin assay indicated that S. aureus cultured with graded subinhibitory concentrations of eugenol (16 to 128 microg/ml) dose dependently decreased the TNF-inducing and hemolytic activities of culture supernatants. Western blot analysis showed that eugenol significantly reduced the production of staphylococcal enterotoxin A (SEA), SEB, and toxic shock syndrome toxin 1 (the key exotoxins to induce TNF release), as well as the expression of alpha-hemolysin (the major hemolysin to cause hemolysis). In addition, this suppression was also evaluated at the transcriptional level via real-time reverse transcription (RT)-PCR analysis. The transcriptional analysis indicated that 128 microg/ml of eugenol remarkably repressed the transcription of the S. aureus sea, seb, tst, and hla genes. According to these results, eugenol has the potential to be rationally applied on food products as a novel food antimicrobial agent both to inhibit the growth of bacteria and to suppress the production of exotoxins by S. aureus.

  5. Pimenta pseudocaryophyllus Derivatives: Extraction Methods and Bioactivity Against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae).

    PubMed

    Ribeiro, L P; Ansante, T F; Niculau, E S; Pavarini, R; Silva, M F G F; Seffrin, R C; Vendramim, J D

    2015-12-01

    Plant-based insecticides can play an important role in integrated insect pest management (IPM), especially in protecting stored grains. The aim of this study was to evaluate the bioactivity of derivatives (powder, ethanolic extract, and essential oil (EO)) from the leaves of Pimenta pseudocaryophyllus (Myrtaceae), a Brazilian native species, against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), the main insect pest of stored corn. The powder and essential oil prepared from leaves showed a repellent effect. Moreover, the EO exhibited promising insecticidal activity through residual contact (LC50 = 1522 mg kg(-1)) and significantly decreased the F 1 progeny and the percentage of damaged grains. However, the essential oil obtained from P. pseudocaryophyllus leaves did not result in significant mortality of S. zeamais adults after 72 h of exposure by fumigation in concentrations up to 400 μL L(-1) of air. Based on GC-MS analysis, 20 compounds were identified in the essential oil of P. pseudocaryophyllus leaves, being chavibetol (38.14%), methyl eugenol (11.35%), and terpinolene (9.17%) as the major constituents. Essential oil from P. pseudocaryophyllus leaves is an interesting source of compounds with grain-protectant properties and should be analyzed in future studies aiming to develop new bioinsecticides to use in the IPM of stored grains.

  6. Anti-cholinesterase activity of the standardized extract of Syzygium aromaticum L.

    PubMed

    Dalai, Manoj K; Bhadra, Santanu; Chaudhary, Sushil K; Bandyopadhyay, Arun; Mukherjee, Pulok K

    2014-04-01

    Clove (Syzygium aromaticum) is a well-known culinary spice with strong aroma; contains a high amount of oil known as clove oil. The major phyto-constituent of the clove oil is eugenol. Clove and its oil possess various medicinal uses in indigenous medicine as an antiseptic, anti-oxidant, analgesic and neuroprotective properties. Thus, it draws much attention among researchers from pharmaceutical, food and cosmetic industries. The aim of the present study was to determine the anti-cholinesterase activity of the methanol extract of clove, its oil and eugenol. In vitro anti-cholinesterase activity of S. aromaticum was performed by a thin layer chromatography bio autography, 96 well micro titer plate and kinetic methods. Reverse phase high performance liquid chromatography (RP-HPLC) analysis was carried out to identify the biomarker compound eugenol in clove oil. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition study revealed that eugenol possess better inhibition of the enzymes than extract and oil. Clove extract, its oil and eugenol showed better inhibition of AChE than BChE. Polyphenolic compound eugenol was detected through RP-HPLC analysis. The content of eugenol in essential oil was found to be 0.5 μg/ml. Kinetic analysis of the cholinesterase inhibition study of the extract; clove oil and eugenol have shown that they possess mixed type of inhibition for AChE and non-competitive type of inhibition for BChE. These results might be useful in explaining the effect of clove as anti-cholinesterase agent for the management of cognitive ailments like Alzheimer's disease.

  7. Scavenger Activity Evaluation of the Clove Bud Essential Oil (Eugenia caryophyllus) and Eugenol Derivatives Employing ABTS+• Decolorization

    PubMed Central

    Merchán Arenas, Diego R.; Acevedo, Amner Muñoz; Vargas Méndez, Leonor Y.; Kouznetsov, Vladimir V.

    2011-01-01

    The essential oil (EO) of clove bud dried fruits from Eugenia caryophyllus was obtained by a conventional hydrodistillation process in an excellent yield (11.7 %). Its chemical composition was analyzed by GC-MS, identifying eugenol as a main constituent (60.5%). Four eugenol-like molecules, γ-diisoeugenol, hydroxymethyleugenol, dihydroeugenol and 1,3-dioxanylphenol, were synthesized using eugenol or isoeugenol as initial precursors under green chemistry protocols. To evaluate the possible antioxidant capacity of eugenol compounds including the clove bud EO, the Trolox® Equivalent Antioxidant Capacity value, obtained by the ABTS+• radical-cation discoloration method, was employed. The methodology was performed in a UV-Vis reader of 96-well microplates (dilution methodology), using well-known antioxidant agents (BHA, BHT and vitamin E) as reference compounds. It was found that the prepared eugenol derivatives had a more potent free radical scavenger activity than the reference compounds. In particular, the most active molecules, γ-diisoeugenol and 1,3-dioxanylphenol, were ca. 3-fold more potent than vitamin E. PMID:22145105

  8. Scavenger Activity Evaluation of the Clove Bud Essential Oil (Eugenia caryophyllus) and Eugenol Derivatives Employing ABTS Decolorization.

    PubMed

    Merchán Arenas, Diego R; Acevedo, Amner Muñoz; Vargas Méndez, Leonor Y; Kouznetsov, Vladimir V

    2011-01-01

    The essential oil (EO) of clove bud dried fruits from Eugenia caryophyllus was obtained by a conventional hydrodistillation process in an excellent yield (11.7 %). Its chemical composition was analyzed by GC-MS, identifying eugenol as a main constituent (60.5%). Four eugenol-like molecules, γ-diisoeugenol, hydroxymethyleugenol, dihydroeugenol and 1,3-dioxanylphenol, were synthesized using eugenol or isoeugenol as initial precursors under green chemistry protocols. To evaluate the possible antioxidant capacity of eugenol compounds including the clove bud EO, the Trolox® Equivalent Antioxidant Capacity value, obtained by the ABTS(+•) radical-cation discoloration method, was employed. The methodology was performed in a UV-Vis reader of 96-well microplates (dilution methodology), using well-known antioxidant agents (BHA, BHT and vitamin E) as reference compounds. It was found that the prepared eugenol derivatives had a more potent free radical scavenger activity than the reference compounds. In particular, the most active molecules, γ-diisoeugenol and 1,3-dioxanylphenol, were ca. 3-fold more potent than vitamin E.

  9. Allergenicity evaluation of fragrance mix and its ingredients by using ex vivo local lymph node assay-BrdU endpoints.

    PubMed

    Ulker, Ozge Cemiloglu; Kaymak, Yesim; Karakaya, Asuman

    2014-03-01

    The present studies were performed to compare the differences between sensitization potency of fragrance mix and its ingredients (oak moss absolute, isoeugenol, eugenol, cinnamal, hydroxycitronellal, geraniol, cinnamic alcohol, alpha amyl cinnamal), by using ex vivo LLNA-BrdU ELISA. The SI and EC3 values were calculated and potency classification was found for the mixture and for each ingredients. TH1 cytokines (IL-2, IFN-γ) and TH2 cytokines (IL-4, IL-5) releases from lymph node cell culture were also investigated as contact sensitization endpoints. The EC3 values were calculated and the potency of contact sensitization were classified for fragrance mix, oak moss absolute, isoeugenol, eugenol, cinnamal, hydroxycitronellal, geraniol, cinnamic alcohol, alpha amyl cinnamal respectively: 4.4% (moderate), 3.4% (moderate), 0.88% (strong), 16.6% (weak), 1.91% (moderate), 9.77% (moderate), 13.1% (weak), 17.93% (weak), 7.74% (moderate). According to our results it should be concluded that exposure to fragrance mix does not constitute an evidently increased hazard compared to exposure to each of the eight fragrance ingredients separately. Cytokine analyses results indicate that both TH1 and TH2 cytokines are involved in the regulation of murine contact allergy and can be considered as useful endpoints. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Expression of surface markers on the human monocytic leukaemia cell line, THP-1, as indicators for the sensitizing potential of chemicals.

    PubMed

    An, Susun; Kim, Seoyoung; Huh, Yong; Lee, Tae Ryong; Kim, Han-Kon; Park, Kui-Lea; Eun, Hee Chul

    2009-04-01

    Evaluation of skin sensitization potential is an important part of the safety assessment of cosmetic ingredients and topical drugs. Recently, evaluation of changes in surface marker expression induced in dendritic cells (DC) or DC surrogate cell lines following exposure to chemicals represents one approach for in vitro test methods. The study aimed to test the change of expression patterns of surface markers on THP-1 cells by chemicals as a predictive in vitro method for contact sensitization. We investigated the expression of CD54, CD86, CD83, CD80, and CD40 after a 1-day exposure to sensitizers (1-chloro-2,4-dinitrobenzene; 2,4-dinitrofluorobenzene; benzocaine; 5-chloro-2-methyl-4-isothiazolin-3-one; hexyl cinnamic aldehyde; eugenol; nickel sulfate hexahydrate; potassium dichromate; cobalt sulfate; 2-mercaptobenzothiazole; and ammonium tetrachloroplatinate) and non-sensitizers (sodium lauryl sulfate, benzalkonium chloride, lactic acid, salicylic acid, isopropanol, and dimethyl sulphoxide). The test concentrations were 0.1x, 0.5x, and 1x of the 50% inhibitory concentration, and the relative fluorescence intensity was used as an expression indicator. By evaluating the expression patterns of CD54, CD86, and CD40, we could classify the chemicals as sensitizers or non-sensitizers, but CD80 and CD83 showed non-specific patterns of expression. These data suggest that the THP-1 cells are good model for screening contact sensitizers and CD40 could be a useful marker complementary to CD54 and CD86.

  11. Terpenoid constituents of cinnamon and clove essential oils cause toxic effects and behavior repellency response on granary weevil, Sitophilus granarius.

    PubMed

    Plata-Rueda, Angelica; Campos, Juliana Mendonça; da Silva Rolim, Gabriela; Martínez, Luis Carlos; Dos Santos, Marcelo Henrique; Fernandes, Flávio Lemes; Serrão, José Eduardo; Zanuncio, José Cola

    2018-07-30

    This study evaluated toxic effects, repellency and respiration rate caused by terpenoid constituents of cinnamon and clove essential oils and against Sitophilus granarius L. (Coleoptera: Curculionidae). The lethal concentrations (LC 50 and LC 90 ), repellent effect, and behavior repellency response on adults of S. granarius after exposure to six concentrations of each essential oil and terpenoids were evaluated. The chemical composition of the cinnamon oil was also determined and primary compounds were eugenol (10.5%), trans-3-caren-2-ol (10.2%), benzyl benzoate (9.99%), caryophyllene (9.34%), eugenyl acetate (7.71%), α-phellandrene (7.41%), and α-pinene (7.14%). In clove essential oil, the primary compounds were eugenol (27.1%), caryophyllene (24.5%), caryophyllene oxide (18.3%), 2-propenoic acid (12.2%), α-humulene (10.8%), γ-cadinene (5.01%), and humulene oxide (4.84%). Cinnamon and clove essential oil was toxic to S. granarius. In toxic terpenoids compounds, eugenol has stronger contact toxicity in S. granarius than caryophyllene oxide, followed by α-pinene, α-humulene, and α-phellandrene. Insects reduced their respiratory rates after being exposed to essential oil terpenoids and avoided or reduced their mobility on terpenoid-treated surfaces. Cinnamon and clove essential oil, and their terpenoid constituents were toxic and repellent to adult S. granarius and, therefore, have the potential to prevent or retard the development of insecticide resistance. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Weathering and Chemical Degradation of Methyl Eugenol and Raspberry Ketone Solid Dispensers for Detection, Monitoring, and Male Annihilation of Bactrocera dorsalis and Bactrocera cucurbitae (Diptera: Tephritidae) in Hawaii.

    PubMed

    Vargas, Roger I; Souder, Steven K; Nkomo, Eddie; Cook, Peter J; Mackey, Bruce; Stark, John D

    2015-08-01

    Solid male lure dispensers containing methyl eugenol (ME) and raspberry ketone (RK), or mixtures of the lures (ME + RK), and dimethyl dichloro-vinyl phosphate (DDVP) were evaluated in area-wide pest management bucket or Jackson traps in commercial papaya (Carica papaya L.) orchards where both oriental fruit fly, Bactrocera dorsalis (Hendel), and melon fly, Bactrocera cucurbitae (Coquillett), are pests. Captures of B. dorsalis with fresh wafers in Jackson and bucket traps were significantly higher on the basis of ME concentration (Mallet ME [56%] > Mallet MR [31.2%] > Mallet MC [23.1%]). Captures of B. cucurbitae with fresh wafers in Jackson and bucket traps were not different regardless of concentration of RK (Mallet BR [20.1%] = Mallet MR [18.3%] = Mallet MC [15.9%]). Captures of B. dorsalis with fresh wafers, compared with weathered wafers, were significantly different after week 12; captures of B. cucurbitae were not significantly different after 16 wk. Chemical analyses revealed presence of RK in dispensers in constant amounts throughout the 16-wk trial. Degradation of both ME and DDVP over time was predicted with a high level of confidence by nonlinear asymptotic exponential decay curves. Results provide supportive data to deploy solid ME and RK wafers (with DDVP) in fruit fly traps for detection programs, as is the current practice with solid TML dispensers placed in Jackson traps. Wafers with ME and RK might be used in place of two separate traps for detection of both ME and RK responding fruit flies and could potentially reduce cost of materials and labor by 50%. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  13. Clove and eugenol in noncytotoxic concentrations exert immunomodulatory/anti-inflammatory action on cytokine production by murine macrophages.

    PubMed

    Bachiega, Tatiana Fernanda; de Sousa, João Paulo Barreto; Bastos, Jairo Kenupp; Sforcin, José Maurício

    2012-04-01

    The extract and essential oil of clove (Syzygium aromaticum) are widely used because of their medicinal properties. Eugenol is the most important component of clove, showing several biological properties. Herein we have analysed the immunomodulatory/anti-inflammatory effect of clove and eugenol on cytokine production (interleukin (IL)-1β, IL-6 and IL-10) in vitro. Macrophages were incubated with clove or eugenol (5, 10, 25, 50 or 100µg/well) for 24h. Concentrations that inhibited the production of cytokines were used before or after incubation with lipopolysaccharide (LPS), to verify a preventive or therapeutic effect. Culture supernatants were harvested for measurement of cytokines by enzyme-linked immunosorbent assay. Clove (100µg/well) inhibited IL-1β, IL-6 and IL-10 production and exerted an efficient action either before or after LPS challenge for all cytokines. Eugenol did not affect IL-1β production but inhibited IL-6 and IL-10 production. The action of eugenol (50 or 100µg/well) on IL-6 production prevented efficiently effects of LPS either before or after its addition, whereas on IL-10 production it counteracted significantly LPS action when added after LPS incubation. Clove exerted immunomodulatory/anti-inflammatory effects by inhibiting LPS action. A possible mechanism of action probably involved the suppression of the nuclear factor-κB pathway by eugenol, since it was the major compound found in clove extract. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  14. Acaricidal effect and chemical composition of essential oils extracted from Cuminum cyminum, Pimenta dioica and Ocimum basilicum against the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae).

    PubMed

    Martinez-Velazquez, Moises; Castillo-Herrera, Gustavo Adolfo; Rosario-Cruz, Rodrigo; Flores-Fernandez, Jose Miguel; Lopez-Ramirez, Julisa; Hernandez-Gutierrez, Rodolfo; Lugo-Cervantes, Eugenia del Carmen

    2011-02-01

    Acaricidal activity of essential oils extracted from cumin seeds (Cuminum cyminum), allspice berries (Pimenta dioica) and basil leaves (Ocimum basilicum) were tested on 10-day-old Rhipicephalus (Boophilus) microplus tick larvae using the LPT. Two-fold dilutions of the three essential oils were tested from a starting dilution of 20% down to 1.25%. Results showed a high toxicological effect for cumin, producing 100% mortality in all tested concentrations on R. microplus larvae. Similarly, allspice essential oil produced 100% mortality at all concentrations with the exception of a dramatic decrease at 1.25% concentration. Conversely, basil essential oil was not shown to be toxic against R. microplus larvae. The most common compounds detected by gas chromatography-mass spectrometry were as follows: cumin: cuminaldehyde (22.03%), γ-terpinene (15.69%) and 2-caren-10-al (12.89%); allspice: methyl eugenol (62.7%) and eugenol (8.3%); basil: linalool (30.61%) and estragole (20.04%). Results clearly indicate that C. cyminum and P. dioica essential oils can be used as an effective alternative for R. microplus tick control, and there is a high probability they can be used for other ticks affecting cattle in Mexico and throughout the world, thereby reducing the necessity for traditional and unfriendly synthetic acaricides.

  15. Effect of initial temperature and concentration of catalyst in polyeugenol production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widayat, E-mail: yayat-99@yahoo.com; Center of Biomass and Renewable Energy Center of Research and Service Diponegoro University Jln Prof. Soedarto, SH. Semarang 50 239, Tel / Fax:; Fatuchrohman, Alviano

    2015-12-29

    Objective of this research to study influencing of sulfuric acid concentration and initials temperature on polymerization of eugenol. Eugenol is the largest compound in the clove oil that used as raw material. Eugenol was polymerized laboratory scale. Polymerization processing conducted in reactor at 30 minutes. Polyeugenol was obtained in polymerization was conducted at temperature 40°C and ratio eugenol to sulfuric acid 1:15 mole. This research was pbtained the highest yield 81.49%. However, the weight would be increase in according with increasing of initial temperature. The polymerization in temperature 50°C with 1:1.5 mole ratio has the heaviest molecule weight; 47,530.76 gr/mole.

  16. [Determination of capsaicinoids and eugenol in waste-edible-oil by liquid-liquid extraction and liquid chromatography-tandem mass spectrometry].

    PubMed

    Zhang, Zhong; Ren, Fei; Zhang, Pan

    2012-11-01

    A method was developed for the determination of capsaicinoids (capsaicin, dihydrocapsaicin and synthetic capsaicin) and eugenol in waste-edible-oil extracted by liquid-liquid extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The capsaicinoids and eugenol in waste-edible-oil were extracted by methanol, and then separated by a SUPEL COSIL ABZ + Plus dC18 column (150 mm x4.6 mm, 5 microm). The analysis was performed by MS/MS with electrospray ionization in positive and negative ion modes with multiple reaction monitoring (MRM). The limits of detection for capsaicin, dihydrocapsaicin, synthetic capsaicin and eugenol were 0.02, 0.03, 0.03 and 0.6 microg/L, respectively. The good linear relationships were obtained in certain concentration ranges of capsaicinoids and eugenol. The relative standard deviations (RSDs, n=5) of same-worker and different-worker were less than 5%. The method is exclusive, sensitive and accurate, and can be used in waste-edible-oil determination.

  17. Piperine, a component of black pepper, decreases eugenol-induced cAMP and calcium levels in non-chemosensory 3T3-L1 cells.

    PubMed

    Yoon, Yeo Cho; Kim, Sung-Hee; Kim, Min Jung; Yang, Hye Jeong; Rhyu, Mee-Ra; Park, Jae-Ho

    2015-01-01

    This study investigated the effects of an ethanol extract of black pepper and its constituent, piperine, on odorant-induced signal transduction in non-chemosensory cells. An ethanol extract of black pepper decreased eugenol-induced cAMP and calcium levels in preadipocyte 3T3-L1 cells with no toxicity. Phosphorylation of CREB (cAMP response element-binding protein) was down-regulated by the black pepper extract. The concentration (133.8 mg/g) and retention time (5.5 min) of piperine in the ethanol extract were quantified using UPLC-MS/MS. Pretreatment with piperine decreased eugenol-induced cAMP and calcium levels in 3T3-L1 cells. Piperine also decreased the phosphorylation of CREB, which is up-regulated by eugenol. These results suggest that piperine inhibits the eugenol-induced signal transduction pathway through modulation of cAMP and calcium levels and phosphorylation of CREB in non-chemosensory cells.

  18. Amidation reaction of eugenyl oxyacetate ethyl ester with 1,3 diaminopropane

    NASA Astrophysics Data System (ADS)

    Suryanti, V.; Wibowo, F. R.; Kusumaningsih, T.; Wibowo, A. H.; Khumaidah, S. A.; Wijayanti, L. A.

    2016-04-01

    Eugenol having various substituents on the aromatic ring (hydroxy, methoxy and allyl) are useful for starting material in synthesizing of its derivatives. Eugenol derivatives have shown wide future potential applications in many areas, especially as future drugs against many diseases. The aim of this work was to synthesize an amide of eugenol derivative. The starting material used was eugenol from clove oil and the reaction was conducted in 3 step reactions to give the final product. Firstly, eugenol was converted into eugenyl oxyacetate [2-(4-allyl-2-methoxyphenoxy) acetic acid] as a white crystal with 70.5% yield, which was then esterified with ethanol to have eugenyl oxyacetate ethyl ester [ethyl 2-(4-allyl-2-methoxyphenoxy) acetate] as brown liquid in 75.7%. The last step was the reaction between eugenyl oxyacetate ethyl ester and 1,3 diaminopropane to give 2-(4-allyl-2-methoxyphenoxy)-N-(3-aminopropyl) acetamide as a brown powder with 71.6% yield, where the amidation reaction was occurred.

  19. Genes encoding chavicol/eugenol synthase from the creosote bush Larrea tridentata

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Kim, Sung -Jin; Vassao, Daniel Giddings; Patten, Ann M.; Eichinger, Dietmar

    2015-09-15

    Particular aspects provide novel methods for redirecting carbon allocation in plants or cell culture from lignification to inherently more useful and tractable materials, and to facilitate the generation of, e.g., biofuels from the remaining plant ro culture biomass. Particular aspects provided novel methods for converting monolignols into allyl/propenyl phenols, and for chavicol/eugenol formation or production. Additional aspects relate to the discovery of novel chavicol/eugenol synthases that convert p-coumaryl/coniferyl alcohol esters into chavicol/eugenol, and to novel compositions (e.g., novel proteins and nucleic acids encoding same), and novel methods using same for producing or forming chavicol/eugenol and other derivatives in cell culture and/or genetically modified plants, and for re-engineering the composition of plant biomass. Particular aspects provide novel methods for generation in culture or in planta of liquid/combustible allyl/propenyl phenols, and these phenolic products are utilized for (non-ethanol) biofuel/bioenergy purposes, while the remaining plant biomass facilitates the generation of other biofuels.

  20. Influence of clove oil and eugenol on muscle contraction of silkworm (Bombyx mori).

    PubMed

    Kheawfu, Kantaporn; Pikulkaew, Surachai; Hamamoto, Hiroshi; Sekimizu, Kazuhisa; Okonogi, Siriporn

    2017-05-30

    Clove oil is used in fish anesthesia and expected to have a mechanism via glutamic receptor. The present study explores the activities of clove oil and its major compound, eugenol, in comparison with L-glutamic acid on glutamic receptor of silkworm muscle and fish anesthesia. It was found that clove oil and eugenol had similar effects to L-glutamic acid on inhibition of silkworm muscle contraction after treated with D-glutamic acid and kainic acid. Anesthetic activity of the test samples was investigated in goldfish. The results demonstrated that L-glutamic acid at 20 and 40 mM could induce the fish to stage 3 of anesthesia that the fish exhibited total loss of equilibrium and muscle tone, whereas clove oil and eugenol at 60 ppm could induce the fish to stage 4 of anesthesia that the reflex activity of the fish was lost. These results suggest that clove oil and eugenol have similar functional activities and mechanism to L-glutamic acid on muscle contraction and fish anesthesia.

  1. Immediate contact reactions to chemicals in the fragrance mix and a study of the quenching action of eugenol.

    PubMed

    Safford, R J; Basketter, D A; Allenby, C F; Goodwin, B F

    1990-11-01

    In this study, the nature of non-immune immediate contact reactions (NIICR) produced by cinnamic aldehyde, benzoic acid and sorbic acid were investigated, with particular interest in the 'quenching' ability of eugenol. Three groups of human subjects were studied, and the guinea-pig ear was also used as a model of NIICR. Cinnamic aldehyde, benzoic acid and sorbic acid were all able to produce NIICR in the majority of subjects studied. There was a strong correlation between the susceptibility of each subject to each urticant, but no correlation between the susceptibility to NIICR and age, atopic status or tanning ability. Eugenol caused a reduction in NIICR induced by all three urticants. This 'quenching' effect was apparent even when the eugenol was applied up to 60 min prior to application of cinnamic aldehyde, and its effect was not eliminated by washing. In the guinea-pig-ear model, ear thickening was induced by all three urticants, and this response was inhibited by eugenol.

  2. Eugenol in combination with lactic acid bacteria attenuates Listeria monocytogenes virulence in vitro and in invertebrate model Galleria mellonella.

    PubMed

    Upadhyay, Abhinav; Upadhyaya, Indu; Mooyottu, Shankumar; Venkitanarayanan, Kumar

    2016-06-01

    Listeria monocytogenes is a human enteric pathogen that causes severe foodborne illness in high-risk populations. Crossing the intestinal barrier is the first critical step for Listeria monocytogenes infection. Therefore, reducing L. monocytogenes colonization and invasion of intestinal epithelium and production of virulence factors could potentially control listeriosis in humans. This study investigated the efficacy of sub-inhibitory concentration (SIC) of the plant-derived antimicrobial eugenol, either alone, or in combination with five lactic acid bacteria (LAB), namely Bifidobacterium bifidum (NRRL-B41410), Lactobacillus reuteri (B-14172), Lactobacillus fermentum (B-1840), Lactobacillus plantarum (B-4496) and Lactococcus lactis subspecies lactis (B-633) in reducing Listeria monocytogenes adhesion to and invasion of human intestinal epithelial cells (Caco-2). Additionally, the effect of the aforementioned treatments on Listeria monocytogenes listeriolysin production, epithelial E-cadherin binding and expression of virulence genes was investigated. Moreover, the in vivo efficacy of eugenol-LAB treatments in reducing Listeria monocytogenes virulence in the invertebrate model Galleria mellonella was studied. Eugenol and LAB, either alone or in combination, significantly reduced Listeria monocytogenes adhesion to and invasion of intestinal cells (P < 0.05). Moreover, eugenol-LAB treatments decreased Listeria monocytogenes haemolysin production, E-cadherin binding and virulence gene expression (P < 0.05). In addition, the eugenol-LAB treatments significantly enhanced the survival rates of G. mellonella infected with lethal doses of Listeria monocytogenes (P < 0.05). The results highlight the antilisterial effect of eugenol either alone or in combination with LAB, and justify further investigations in a mammalian model.

  3. Simultaneous determination of eugenol, isoeugenol and methyleugenol in fish fillet using gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Ke, Changliang; Liu, Qi; Li, Liudong; Chen, Jiewen; Wang, Xunuo; Huang, Ke

    2016-09-15

    Gas chromatography (GC) coupled with triple quadrupole tandem mass spectrometry (MS/MS) operated in electron ionization mode (EI) has been shown to have advantages in the trace analysis of chemical compounds. Employing the instrument, a method has been built to simultaneously determine eugenol, isoeugenol' and methyleugenol, which have been widely used as fish anesthetic, in the fish fillet. Procedure for the sample preparation was achieved by using hexane extraction followed by phenyl solid phase extraction (SPE) cleanup, which was free of such steps as rotary evaporation and nitrogen blowing by taking the volatility of eugenol and its isomers into consideration. The method was validated by conducting recovery studies on fortified fish fillet samples at four concentrations. The linearity in the range of 5-500μg·L(-1) was forced through the origin giving a coefficient of determination (r(2)) greater than 0.9982. Limits of detection (LODs) for eugenol, isoeugenol' and methyleugenol were 0.4, 1.2' and 0.2μg·kg(-1), respectively. The limits of quantification (LOQs) were 1.2, 4' and 0.7μg·kg(-1) for eugenol, isoeugenol' and methyleugenol, respectively. The recoveries for eugenol and its isomers ranged from 76.4 to 99.9% with relative standard deviations (RSD) in a range from 2.18 to 15.5%. This method is quick, simple and suitable for determining the residues of eugenol, isoeugenol and methyleugenol simultaneously in batch samples of fish fillet. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineages

    PubMed Central

    Koeduka, Takao; Louie, Gordon V.; Orlova, Irina; Kish, Christine M.; Ibdah, Mwafaq; Wilkerson, Curtis G.; Bowman, Marianne E.; Baiga, Thomas J.; Noel, Joseph P.; Dudareva, Natalia; Pichersky, Eran

    2009-01-01

    Summary Many plants synthesize the volatile phenylpropene compounds eugenol and isoeugenol to serve in defense against herbivores and pathogens and to attract pollinators. Clarkia breweri flowers emit a mixture of eugenol and isoeugenol, while Petunia hybrida flowers emit mostly isoeugenol with small amounts of eugenol. We recently reported the identification of a petunia enzyme, PhIGS1, that catalyzes the formation of isoeugenol, and an Ocimum basilicum (basil) enzyme, ObEGS1, that produces eugenol. ObEGS1 and PhIGS1 both utilize coniferyl acetate, are 52% sequence identical, and belong to a family of NADPH-dependent reductases involved in secondary metabolism. Here we show that C. breweri flowers have two closely related proteins (96% identity), CbIGS1 and CbEGS1, that are similar to ObEGS1 (58% and 59%) and catalyze the formation of isoeugenol and eugenol, respectively. In vitro mutagenesis experiments demonstrate that substitution of only a single residue can substantially affect the product specificity of these enzymes. A third C. breweri enzyme identified, CbEGS2, also catalyzes the formation of eugenol from coniferyl acetate and is only 46% identical to CbIGS1 and CbEGS1 but more similar (>70%) to other types of reductases. We also found that petunia flowers contain an enzyme, PhEGS1, that is highly similar to CbEGS2 (82% identity) and that converts coniferyl acetate to eugenol. Our results indicate that plant enzymes with EGS and IGS activities have arisen multiple times and in different protein lineages. PMID:18208524

  5. Management of postharvest grape withering to optimise the aroma of the final wine: A case study on Amarone.

    PubMed

    Bellincontro, A; Matarese, F; D'Onofrio, C; Accordini, D; Tosi, E; Mencarelli, F

    2016-12-15

    Amarone wine is different from regular dry wine due to the postharvest withering of Corvina, Corvinone and Rondinella grapes. Grapes were withered in a commercial facility with variability in terms of temperature and relative humidity (R.H.). Sugar content reached 230-240gL(-1) and 280gL(-1) at 20% and 30% mass loss, respectively. Most of VOCs (volatile organic compounds) decreased during withering but few VOCs increased during withering and we considered as markers; in Corvinone they were methylhexanoate, dimethylsuccinate, nerol, nonanoic acid, and benzyl alcohol; in Corvina, benzyl alcohol, isoamyl alcohol, 1-hexanol, p-cymen-8-ol, 2,3 pinanediol, 3-oxo-ionol and 3-methyl-1-pentanol, coumaran and damascenone; in Rondinella, hexanol, nonanoic acid, methyl vanillate, damascenone, 3-oxo-ionol, eugenol, p-cymen-8-ol, 2,3 pinanediol, coumaran and raspberry keton. Olfactive descriptors of the wines and the potential aroma of the combination of Corvina wine with the wines of the other two varieties at different percentages of mass loss are reported. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philbrook, Nicola A.; Winn, Louise M., E-mail: winnl@queensu.ca; School of Environmental Studies, Queen's University, Kingston, ON K7L3N6

    Exposure to the ubiquitous environmental pollutant benzene is positively correlated with leukemia in adults and may be associated with childhood leukemia following in utero exposure. While numerous studies implicate oxidative stress and DNA damage as playing a role in benzene-mediated carcinogenicity, emerging evidence suggests that alterations in epigenetic regulations may be involved. The present study aimed to determine whether DNA methylation and/or various histone modifications were altered following in utero benzene exposure in CD-1 mice. Global DNA methylation and promoter-specific methylation of the tumor suppressor gene, p15, were assessed. Additionally, levels of acetylated histones H3, H4, and H3K56, as wellmore » as methylated histones H3K9 and H3K27 were assessed by Western blotting. A significant decrease in global DNA methylation of maternal bone marrow was observed following benzene exposure; however no effect on global DNA methylation was detected in fetal livers. Additionally, no effect of benzene exposure was observed on p15 promoter methylation or any measured histone modifications in both maternal bone marrow and fetal livers. These results suggest that the methodology used in the present study did not reveal alterations in DNA methylation and histone modifications following in utero exposure to benzene; however further experimentation investigating these modifications at the whole genome/epigenome level, as well as at later stages of benzene-induced carcinogenesis, are warranted. - Highlights: • Benzene exposure in pregnant mice decreased global DNA methylation in maternal bone marrow. • Benzene exposure in pregnant mice had no effect on global DNA methylation in fetal livers. • No effect of benzene exposure was observed on p15 promoter methylation. • No effect of benzene on measured histone modifications in both maternal bone marrow and fetal livers was observed.« less

  7. Alterations in DNA methylation corresponding with lung inflammation and as a biomarker for disease development after MWCNT exposure.

    PubMed

    Brown, Traci A; Lee, Joong Won; Holian, Andrij; Porter, Virginia; Fredriksen, Harley; Kim, Minju; Cho, Yoon Hee

    2016-01-01

    Use of multi-walled carbon nanotubes (MWCNT) is growing which increases occupational exposures to these materials. Their toxic potential makes it important to have an in-depth understanding of the inflammation and disease that develops due to exposure. Epigenetics is one area of interest that has been quickly developing to assess disease processes due to its ability to change gene expression and thus the lung environment after exposure. In this study, promoter methylation of inflammatory genes (IFN-γ and TNF-α) was measured after MWCNT exposure using the pyrosequencing assay and found to correlate with initial cytokine production. In addition, methylation of a gene involved in tissue fibrosis (Thy-1) was also altered in a way that matched collagen deposition. In addition to using epigenetics to better understand disease processes, it has also been used as a biomarker of exposure and disease. In this study, global methylation was determined in the lung to ascertain whether MWCNT alter global methylation at the site of exposure and if those alterations coincide with disease development. Then, global methylation levels were determined in the blood to ascertain whether global methylation could be used as a biomarker of exposure in a more easily accessible tissue. Using the LuUminometric Methylation Assay (LUMA) and 5-Methylcytosine (5-mC) Quantification assay, we found that MWCNT lead to DNA hypomethylation in the lung and blood, which coincided with disease development. This study provides initial data showing that alterations in gene-specific methylation correspond with an inflammatory response to MWCNT exposure. In addition, global DNA methylation in the lung and blood coincides with MWCNT-induced disease development, suggesting its potential as a biomarker of both exposure and disease development.

  8. Flavorings in Tobacco Products Induce Endothelial Cell Dysfunction.

    PubMed

    Fetterman, Jessica L; Weisbrod, Robert M; Feng, Bihua; Bastin, Reena; Tuttle, Shawn T; Holbrook, Monica; Baker, Gregory; Robertson, Rose Marie; Conklin, Daniel J; Bhatnagar, Aruni; Hamburg, Naomi M

    2018-06-14

    Use of alternative tobacco products including electronic cigarettes is rapidly rising. The wide variety of flavored tobacco products available is of great appeal to smokers and youth. The flavorings added to tobacco products have been deemed safe for ingestion, but the cardiovascular health effects are unknown. The purpose of this study was to examine the effect of 9 flavors on vascular endothelial cell function. Freshly isolated endothelial cells from participants who use nonmenthol- or menthol-flavored tobacco cigarettes showed impaired A23187-stimulated nitric oxide production compared with endothelial cells from nonsmoking participants. Treatment of endothelial cells isolated from nonsmoking participants with either menthol (0.01 mmol/L) or eugenol (0.01 mmol/L) decreased A23187-stimulated nitric oxide production. To further evaluate the effects of flavoring compounds on endothelial cell phenotype, commercially available human aortic endothelial cells were incubated with vanillin, menthol, cinnamaldehyde, eugenol, dimethylpyrazine, diacetyl, isoamyl acetate, eucalyptol, and acetylpyrazine (0.1-100 mmol/L) for 90 minutes. Cell death, reactive oxygen species production, expression of the proinflammatory marker IL-6 (interleukin-6), and nitric oxide production were measured. Cell death and reactive oxygen species production were induced only at high concentrations unlikely to be achieved in vivo. Lower concentrations of selected flavors (vanillin, menthol, cinnamaldehyde, eugenol, and acetylpyridine) induced both inflammation and impaired A23187-stimulated nitric oxide production consistent with endothelial dysfunction. Our data suggest that short-term exposure of endothelial cells to flavoring compounds used in tobacco products have adverse effects on endothelial cell phenotype that may have relevance to cardiovascular toxicity. © 2018 American Heart Association, Inc.

  9. Evaluation of a Method for Quantifying Eugenol Concentrations in the Fillet Tissue from Freshwater Fish Species.

    PubMed

    Meinertz, Jeffery R; Schreier, Theresa M; Porcher, Scott T; Smerud, Justin R

    2016-01-01

    AQUI-S 20E(®) (active ingredient, eugenol; AQUI-S New Zealand Ltd, Lower Hutt, New Zealand) is being pursued for approval as an immediate-release sedative in the United States. A validated method to quantify the primary residue (the marker residue) in fillet tissue from AQUI-S 20E-exposed fish was needed. A method was evaluated for determining concentrations of the AQUI-S 20E marker residue, eugenol, in freshwater fish fillet tissue. Method accuracies from fillet tissue fortified at nominal concentrations of 0.15, 1, and 60 μg/g from six fish species ranged from 88-102%. Within-day and between-day method precisions (% CV) from the fortified tissue were ≤8.4% CV. There were no coextracted compounds from the control fillet tissue of seven fish species that interfered with eugenol analyses. Six compounds used as aquaculture drugs did not interfere with eugenol analyses. The lower limit of quantitation (LLOQ) was 0.012 μg/g. The method was robust, i.e., in most cases, minor changes to the method did not impact method performance. Eugenol was stable in acetonitrile-water (3 + 7, v/v) for at least 14 days, in fillet tissue extracts for 4 days, and in fillet tissue stored at ~ -80°C for at least 84 days.

  10. Evaluation of a method for quantifying eugenol concentrations in the fillet tissue from freshwater fish species

    USGS Publications Warehouse

    Meinertz, Jeffery R.; Schreier, Theresa M.; Porcher, Scott T.; Smerud, Justin R.

    2016-01-01

    AQUI-S 20E® (active ingredient, eugenol; AQUI-S New Zealand Ltd, Lower Hutt, New Zealand) is being pursued for approval as an immediate-release sedative in the United States. A validated method to quantify the primary residue (the marker residue) in fillet tissue from AQUI-S 20E–exposed fish was needed. A method was evaluated for determining concentrations of the AQUI-S 20E marker residue, eugenol, in freshwater fish fillet tissue. Method accuracies from fillet tissue fortified at nominal concentrations of 0.15, 1, and 60 μg/g from six fish species ranged from 88–102%. Within-day and between-day method precisions (% CV) from the fortified tissue were ≤8.4% CV. There were no coextracted compounds from the control fillet tissue of seven fish species that interfered with eugenol analyses. Six compounds used as aquaculture drugs did not interfere with eugenol analyses. The lower limit of quantitation (LLOQ) was 0.012 μg/g. The method was robust, i.e., in most cases, minor changes to the method did not impact method performance. Eugenol was stable in acetonitrile–water (3 + 7, v/v) for at least 14 days, in fillet tissue extracts for 4 days, and in fillet tissue stored at ~ −80°C for at least 84 days.

  11. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species.

    PubMed

    Pinto, Eugénia; Vale-Silva, Luís; Cavaleiro, Carlos; Salgueiro, Lígia

    2009-11-01

    The composition and antifungal activity of clove essential oil (EO), obtained from Syzygium aromaticum, were studied. Clove oil was obtained commercially and analysed by GC and GC-MS. The EO analysed showed a high content of eugenol (85.3 %). MICs, determined according to Clinical and Laboratory Standards Institute protocols, and minimum fungicidal concentration were used to evaluate the antifungal activity of the clove oil and its main component, eugenol, against Candida, Aspergillus and dermatophyte clinical and American Type Culture Collection strains. The EO and eugenol showed inhibitory activity against all the tested strains. To clarify its mechanism of action on yeasts and filamentous fungi, flow cytometric and inhibition of ergosterol synthesis studies were performed. Propidium iodide rapidly penetrated the majority of the yeast cells when the cells were treated with concentrations just over the MICs, meaning that the fungicidal effect resulted from an extensive lesion of the cell membrane. Clove oil and eugenol also caused a considerable reduction in the quantity of ergosterol, a specific fungal cell membrane component. Germ tube formation by Candida albicans was completely or almost completely inhibited by oil and eugenol concentrations below the MIC values. The present study indicates that clove oil and eugenol have considerable antifungal activity against clinically relevant fungi, including fluconazole-resistant strains, deserving further investigation for clinical application in the treatment of fungal infections.

  12. Anti-Giardia activity of Syzygium aromaticum essential oil and eugenol: effects on growth, viability, adherence and ultrastructure.

    PubMed

    Machado, M; Dinis, A M; Salgueiro, L; Custódio, José B A; Cavaleiro, C; Sousa, M C

    2011-04-01

    The present work evaluates the anti-Giardia activity of Syzygium aromaticum and its major compound eugenol. The effects were evaluated on parasite growth, adherence, viability and ultrastructure. S. aromaticum essential oil (IC(50)=134 μg/ml) and eugenol (IC(50)=101 μg/ml) inhibited the growth of G. lamblia. The essential oil inhibited trophozoites adherence since the first hour of incubation and was able to kill almost 50% of the parasites population in a time dependent manner. The eugenol inhibited G. lamblia trophozoites adherence since the third hour and not induce cell lyses. The main morphological alterations were modifications on the cell shape, presence of precipitates in the cytoplasm, autophagic vesicles, internalization of flagella and ventral disc, membrane blebs, and intracellular and nuclear clearing. Taken together, our findings lead us to propose that eugenol was responsible for the anti-giardial activity of the S. aromaticum essential oil and both have potential for use as therapeutic agents against giardiasis. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Inhibitory components from the buds of clove (Syzygium aromaticum) on melanin formation in B16 melanoma cells.

    PubMed

    Arung, Enos Tangke; Matsubara, Eri; Kusuma, Irawan Wijaya; Sukaton, Edi; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2011-03-01

    In the course to find a new whitening agent, we evaluated the methanol extract from bud of clove (Syzygium aromaticum) on melanin formation in B16 melanoma cells. Eugenol and eugenol acetate were isolated as the active compounds and showed melanin inhibition of 60% and 40% in B16 melanoma cell with less cytotoxicity at the concentration of 100 and 200 μg/mL, respectively. Furthermore, an essential oil prepared from the bud of clove, which contain eugenol and eugenol acetate as dominant components, showed melanin inhibition of 50% and 80% in B16 melanoma cells at the concentration of 100 and 200 μg/mL, respectively. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Epigenetic marker (LINE-1 promoter) methylation level was associated with occupational lead exposure.

    PubMed

    Li, Chunping; Yang, Xiaolin; Xu, Ming; Zhang, Jinlong; Sun, Na

    2013-05-01

    Occupational and environmental exposures to lead (Pb) are a worldwide concern. DNA methylation plays an important role in the development of Pb toxicity. Here, we try to find out the evidence to prove that the methylation of the LINE-1 promoter may be involved in Pb toxicity. To determine whether the methylation level of the LINE-1 is associated with the risk of Pb poisoning, we first constructed a Pb acetate-treated cell model to detect the association between LINE-1 methylation and Pb exposure. A case-control study involving 53 workers from a battery plant and 57 healthy volunteers with matching age and gender distribution was carried out. We employed methylation-specific real-time PCR to determine the relationship between LINE-1 methylation level and Pb exposure. In the cell model, Pb exposure significantly decreased the level of LINE-1 methylation (p = 0.009). Significant difference in methylation frequencies was found between the exposed and control samples (p < 0.001). We also found a decreasing trend of LINE-1 methylation level with increasing blood Pb level (p < 0.001). Therefore, the LINE-1 promoter methylation might contribute to the risk of Pb poisoning and identified a possible epigenetic biomarker for Pb toxicity, especially in individuals occupationally exposed to Pb.

  15. In vitro antimicrobial activities of cinnamon bark oil, anethole, carvacrol, eugenol and guaiazulene against Mycoplasma hominis clinical isolates.

    PubMed

    Sleha, Radek; Mosio, Petra; Vydrzalova, Marketa; Jantovska, Alexandra; Bostikova, Vanda; Mazurova, Jaroslava

    2014-06-01

    The aim of this study was to evaluate the antimicrobial effects of five natural substances against 50 clinical isolates of Mycoplasma hominis. The in vitro activity of selected natural compounds, cinnamon bark oil, anethole, carvacrol, eugenol and guaiazulene, was investigated against 50 M. hominis isolates cultivated from cervical swabs by the broth dilution method. All showed valuable antimicrobial activity against the tested isolates. Oil from the bark of Cinnamomum zeylanicum (MBC90 = 500 µg/mL) however was found to be the most effective. Carvacrol (MBC90 = 600 µg/mL) and eugenol (MBC90 = 1000 µg/mL) also possessed strong antimycoplasmal activity. The results indicate that cinnamon bark oil, carvacrol and eugenol have strong antimycoplasmal activity and the potential for use as antimicrobial agents in the treatment of mycoplasmal infections.

  16. Effects of environmental noise exposure on DNA methylation in the brain and metabolic health.

    PubMed

    Guo, Liqiong; Li, Peng-Hui; Li, Hua; Colicino, Elena; Colicino, Silvia; Wen, Yi; Zhang, Ruiping; Feng, Xiaotian; Barrow, Timothy M; Cayir, Akin; Baccarelli, Andrea A; Byun, Hyang-Min

    2017-02-01

    Environmental noise exposure is associated with adverse effects on human health including hearing loss, heart disease, and changes in stress-related hormone levels. Alteration in DNA methylation in response to environmental exposures is a well-known phenomenon and it is implicated in many human diseases. Understanding how environmental noise exposures affect DNA methylation patterns may help to elucidate the link between noise and adverse effects on health. In this pilot study we examined the effects of environmental noise exposure on DNA methylation of genes related to brain function and investigated whether these changes are related with metabolic health. We exposed four groups of male Wistar rats to moderate intensity noise (70-75dB with 20-4000Hz) at night for three days as short-term exposure, and for three weeks as long-term exposure. Noise exposure was limited to 45dB during the daytime. Control groups were exposed to only 45dB, day and night. We measured DNA methylation in the Bdnf, Comt, Crhr1, Mc2r, and Snca genes in tissue from four brain regions of the rats (hippocampus, frontal lobe, medulla oblongata, and inferior colliculus). Further, we measured blood pressure and body weight after long-term noise exposure. We found that environmental noise exposure is associated with gene-specific DNA methylation changes in specific regions of the brain. Changes in DNA methylation are significantly associated with changes in body weight (between Bdnf DNA methylation and Δ body weight: r=0.59, p=0.018; and between LINE-1 ORF DNA methylation and Δ body weight: =-0.80, p=0.0004). We also observed that noise exposure decreased blood pressure (p=0.038 for SBP, p=0.017 for DBP and p 0. 017 for MAP) and decreased body weight (β=-26g, p=0.008). In conclusion, environmental noise exposures can induce changes in DNA methylation in the brain, which may be associated with adverse effects upon metabolic health through modulation of response to stress-related hormones. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. VDR gene methylation as a molecular adaption to light exposure: Historic, recent and genetic influences.

    PubMed

    Beckett, Emma L; Jones, Patrice; Veysey, Martin; Duesing, Konsta; Martin, Charlotte; Furst, John; Yates, Zoe; Jablonski, Nina G; Chaplin, George; Lucock, Mark

    2017-09-10

    The vitamin D receptor (VDR) is a member of the nuclear receptor family of transcription factors. We examined whether degree of VDR gene methylation acts as a molecular adaptation to light exposure. We explored this in the context of photoperiod at conception, recent UV irradiance at 305 nm, and gene-latitude effects. Eighty subjects were examined for VDR gene-CpG island methylation density. VDR gene variants were also examined by PCR-RFLP. Photoperiod at conception was significantly positively related to VDR methylation density, explaining 17% of the variance in methylation (r 2  = 0.17; P = .001). Within this model, photoperiod at conception and plasma 25(OH)D independently predicted methylation density at the VDR-CpG island. Recent UV exposure at 305 nm led to a fivefold increase in mean methylation density (P = .02). Again, UV exposure and plasma 25(OH)D independently predicted methylation density at the VDR-CpG island. In the presence of the BsmI mutant allele, methylation density was increased (P = .01), and in the presence of the TaqI or FokI mutant allele, methylation density was decreased (P = .007 and .04 respectively). Multivariate modelling suggests plasma 25(OH)D, photoperiod at conception, recent solar irradiance, and VDR genotype combine as independent predictors of methylation at the VDR-CpG island, explaining 34% of the variance in methylation (R 2  = 0.34, P < .0001). Duration of early-life light exposure and strength of recent irradiance, along with latitudinal genetic factors, influence degree of VDR gene methylation consistent with this epigenetic phenomenon being a molecular adaptation to variation in ambient light exposure. Findings contribute to our understanding of human biology. © 2017 Wiley Periodicals, Inc.

  18. Endogenous sex hormone exposure and repetitive element DNA methylation in healthy postmenopausal women.

    PubMed

    Boyne, Devon J; Friedenreich, Christine M; McIntyre, John B; Stanczyk, Frank Z; Courneya, Kerry S; King, Will D

    2017-12-01

    Epigenetic mechanisms may help to explain the complex and heterogeneous relation between sex hormones and cancer. Few studies have investigated the effects of sex hormones on epigenetic markers related to cancer risk such as levels of methylation within repetitive DNA elements. Our objective was to describe the association between endogenous sex hormone exposure and levels of LINE-1 and Alu methylation in healthy postmenopausal women. We nested a cross-sectional study within the Alberta Physical Activity and Breast Cancer Prevention Trial (2003-2006). Study participants consisted of healthy postmenopausal women who had never been diagnosed with cancer (n = 289). Sex hormone exposures included serum concentrations of estradiol, estrone, testosterone, androstenedione, and sex hormone-binding globulin. We estimated the participants' lifetime number of menstrual cycles (LNMC) as a proxy for cumulative exposure to ovarian sex hormones. Buffy coat samples were assessed for DNA methylation. Linear regression was used to model the associations of interest and to control for confounding. Both estradiol and estrone had a significant positive dose-response association with LINE-1 methylation. LNMC was associated with both LINE-1 and Alu methylation. Specifically, LNMC had a non-linear "U-shaped" association with LINE-1 methylation regardless of folate intake and a negative linear association with Alu methylation, but only amongst low folate consumers. Androgen exposure was not associated with either outcome. Current and cumulative estrogen exposure was associated with repetitive element DNA methylation in a group of healthy postmenopausal women. LINE-1 and Alu methylation may be epigenetic mechanisms through which estrogen exposure impacts cancer risk.

  19. Effects of methyl mercury exposure on pancreatic beta cell development and function.

    PubMed

    Schumacher, Lauren; Abbott, Louise C

    2017-01-01

    Methyl mercury is an environmental contaminant of worldwide concern. Since the discovery of methyl mercury exposure due to eating contaminated fish as the underlying cause of the Minamata disaster, the scientific community has known about the sensitivity of the developing central nervous system to mercury toxicity. Warnings are given to pregnant women and young children to limit consumption of foods containing methyl mercury to protect the embryonic, fetal and postnatally developing central nervous system. However, evidence also suggests that exposure to methyl mercury or various forms of inorganic mercury may also affect development and function of other organs. Numerous reports indicate a worldwide increase in diabetes, particularly type 2 diabetes. Quite recently, methyl mercury has been shown to have adverse effects on pancreatic beta (β) cell development and function, resulting in insulin resistance and hyperglycemia and may even lead to the development of diabetes. This review discusses possible mechanisms by which methyl mercury exposure may adversely affect pancreatic β cell development and function, and the role that methyl mercury exposure may have in the reported worldwide increase in diabetes, particularly type 2 diabetes. While additional information is needed regarding associations between mercury exposure and specific mechanisms of the pathogenesis of diabetes in the human population, methyl mercury's adverse effects on the body's natural sources of antioxidants suggest that one possible therapeutic strategy could involve supplementation with antioxidants. Thus, it is important that additional investigation be undertaken into the role of methyl mercury exposure and reduced pancreatic β cell function. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Antibacterial activity of essential oil components and their potential use in seed disinfection.

    PubMed

    Lo Cantore, Pietro; Shanmugaiah, Vellasamy; Iacobellis, Nicola Sante

    2009-10-28

    Among the main (> or = 0.7%) components of some essential oils, considerable antibacterial activity was shown by terpenoid and phenylpropanoid derivatives containing phenol and alcohol functionalities. A reduced or no activity was shown by those derivatives containing ketones, aldehydes, ethers, and ester functionalities as well as the remaining terpenoids. Eugenol emulsion treatments (1-8 mg/mL) of bean seeds bearing about 2.6 x 10(6) cfu/seed of strain ICMP239 of Xanthomonas campestris pv. phaseoli var. fuscans determined a highly significant reduction of the bacteria on seeds. In particular, eugenol at 4 mg/mL disinfect seeds bearing about 7.0 x 10(2) cfu/seed and lower densities. However, after 72 h, incubation treatments with 2, 4, and 8 mg/mL of eugenol caused germination reduction of 3%, 7%, and 16%, respectively, which was significantly different from the controls. No effect on germination was observed with 1 mg/mL eugenol emulsion treatment. These data indicate eugenol as potentially useful for bean seed disinfection from X. campestris pv. phaseoli var. fuscans. Further studies on the effects on seed vitality and on formulation of essential oils are needed.

  1. Eugenol and its structural analogs inhibit monoamine oxidase A and exhibit antidepressant-like activity.

    PubMed

    Tao, Guoxin; Irie, Yoshifumi; Li, Dian-Jun; Keung, Wing Ming

    2005-08-01

    Eugenol (1) is an active principle of Rhizoma acori graminei, a medicinal herb used in Asia for the treatment of symptoms reminiscent of Alzheimer's disease (AD). It has been shown to protect neuronal cells from the cytotoxic effect of amyloid beta peptides (Abetas) in cell cultures and exhibit antidepressant-like activity in mice. Results from this study show that eugenol inhibits monoamine oxidase A (MAOA) preferentially with a K(i)=26 microM. It also inhibits MAOB but at much higher concentrations (K(i)=211 microM). In both cases, inhibition is competitive with respect to the monoamine substrate. Survey of compounds structurally related to eugenol has identified a few that inhibit MAOs more potently. Structure activity relationship reveals structural features important for MAOA and MAOB inhibition. Molecular docking experiments were performed to help explain the SAR outcomes. Four of these compounds, two (1, 24) inhibiting MAOA selectively and the other two (19, 21) inhibiting neither MAOA nor MAOB, were tested for antidepressant-like activity using the forced swim test in mice. Results suggest a potential link between the antidepressant activity of eugenol and its MAOA inhibitory activity.

  2. DOSE-RESPONSE MODELING FOR THE ASSESSMENT OF CUMULATIVE RISK DUE TO EXPOSURE TO N-METHYL CARBAMATE PESTICIDES

    EPA Science Inventory

    The US EPAs N-Methyl Carbamate Cumulative Risk Assessment (NMCRA) assesses the effect on acetylcholine esterase (AChE) activity of exposure to 10 N-methyl carbamate (NMC) pesticides through dietary, drinking water, and residential exposures.

  3. A panel study of occupational exposure to fine particulate matter and changes in DNA methylation over a single workday and years worked in boilermaker welders

    PubMed Central

    2013-01-01

    Background Exposure to pollutants including metals and particulate air pollution can alter DNA methylation. Yet little is known about intra-individual changes in DNA methylation over time in relationship to environmental exposures. Therefore, we evaluated the effects of acute- and chronic metal-rich PM2.5 exposures on DNA methylation. Methods Thirty-eight male boilermaker welders participated in a panel study for a total of 54 person days. Whole blood was collected prior to any welding activities (pre-shift) and immediately after the exposure period (post-shift). The percentage of methylated cytosines (%mC) in LINE-1, Alu, and inducible nitric oxide synthase gene (iNOS) were quantified using pyrosequencing. Personal PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 μm) was measured over the work-shift. A questionnaire assessed job history and years worked as a boilermaker. Linear mixed models with repeated measures evaluated associations between DNA methylation, PM2.5 concentration (acute exposure), and years worked as a boilermaker (chronic exposure). Results PM2.5 exposure was associated with increased methylation in the promoter region of the iNOS gene (β = 0.25, SE: 0.11, p-value = 0.04). Additionally, the number of years worked as a boilermaker was associated with increased iNOS methylation (β = 0.03, SE: 0.01, p-value = 0.03). No associations were observed for Alu or LINE-1. Conclusions Acute and chronic exposure to PM2.5 generated from welding activities was associated with a modest change in DNA methylation of the iNOS gene. Future studies are needed to confirm this association and determine if the observed small increase in iNOS methylation are associated with changes in NO production or any adverse health effect. PMID:23758843

  4. Inhibitory Effect of Cinnamaldehyde, Citral, and Eugenol on Aflatoxin Biosynthetic Gene Expression and Aflatoxin B1 Biosynthesis in Aspergillus flavus.

    PubMed

    Liang, Dandan; Xing, Fuguo; Selvaraj, Jonathan Nimal; Liu, Xiao; Wang, Limin; Hua, Huijuan; Zhou, Lu; Zhao, Yueju; Wang, Yan; Liu, Yang

    2015-12-01

    In order to reveal the inhibitory effects of cinnamaldehyde, citral, and eugenol on aflatoxin biosynthesis, the expression levels of 5 key aflatoxin biosynthetic genes were evaluated by real-time PCR. Aspergillus flavus growth and AFB1 production were completely inhibited by 0.80 mmol/L of cinnamaldehyde and 2.80 mmol/L of citral. However, at lower concentration, cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L) significantly reduced AFB1 production with inhibition rate of 68.9%, 95.4%, and 41.8%, respectively, while no effect on fungal growth. Real-time PCR showed that the expressions of aflR, aflT, aflD, aflM, and aflP were down-regulated by cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L). In the presence of cinnamaldehyde, AflM was highly down-regulated (average of 5963 folds), followed by aflP, aflR, aflD, and aflT with the average folds of 55, 18, 6.5, and 5.8, respectively. With 0.80 mmol/L of eugenol, aflP was highly down-regulated (average of 2061-folds), followed by aflM, aflR, aflD, and aflT with average of 138-, 15-, 5.2-, and 4.8-folds reduction, respectively. With 0.56 mmol/L of citral, aflT was completely inhibited, followed by aflM, aflP, aflR, and aflD with average of 257-, 29-, 3.5-, and 2.5-folds reduction, respectively. These results suggest that the reduction in AFB1 production by cinnamaldehyde, eugenol, and citral at low concentration may be due to the down-regulations of the transcription level of aflatoxin biosynthetic genes. Cinnamaldehyde and eugenol may be employed successfully as a good candidate in controlling of toxigenic fungi and subsequently contamination with aflatoxins in practice. © 2015 Institute of Food Technologists®

  5. Basic emotions evoked by eugenol odor differ according to the dental experience. A neurovegetative analysis.

    PubMed

    Robin, O; Alaoui-Ismaïli, O; Dittmar, A; Vernet-Maury, E

    1999-06-01

    Subjective individual experiences seem to indicate that odors may form strong connections with memories, especially those charged with emotional significance. In the dental field, this could be the case with the odorant eugenol, responsible for the typical clinging odor impregnating the dental office. The odor of eugenol could evoke memories of unpleasant dental experiences and, therefore, negative feelings such as anxiety and fear, since eugenates (cements containing eugenol) are used in potentially painful restorative dentistry. This hypothesis was tested by evaluating the emotional impact of the odor of eugenol through autonomic nervous system (ANS) analysis. The simultaneous variations of six ANS parameters (two electrodermal, two thermovascular and two cardiorespiratory), induced by the inhalation of this odorant, were recorded on volunteer subjects. Vanillin (a pleasant odorant) and propionic acid (an unpleasant one) served as controls. After the experiment, subjects were asked to rate the pleasantness versus unpleasantness of each odorant on an 11-point hedonic scale. The patterns of autonomic responses, obtained for each odorant and each subject, were transcribed into one of the six basic emotions defined by Ekman et al. (happiness, surprise, sadness, fear, anger and disgust). Results were compared between two groups of subjects divided according to their dental experience (fearful and non-fearful dental care subjects) and showed significant differences only for eugenol. This odorant was rated as pleasant by non-fearful dental subjects but unpleasant by fearful dental subjects. The evoked autonomic responses were mainly associated with positive basic emotions (happiness and surprise) in non-fearful dental subjects and with negative basic emotions (fear, anger, disgust) in fearful dental subjects. These results suggest that eugenol can be responsible for different emotional states depending on the subjects' dental experience, which seems to confirm the potential role of odors as elicitors of emotional memories. This study also supports the possible influence of the ambient odor impregnating the dental office, strengthening a negative conditioning toward dental care in some anxious patients.

  6. Effects of age, sex, and persistent organic pollutants on DNA methylation in children

    PubMed Central

    Huen, Karen; Yousefi, Paul; Bradman, Asa; Yan, Liying; Harley, Kim G.; Kogut, Katherine; Eskenazi, Brenda; Holland, Nina

    2015-01-01

    Epigenetic changes such as DNA methylation may be a molecular mechanism through which environmental exposures affect health. Methylation of Alu and long interspersed nucleotide elements (LINE-1) is a well-established measure of DNA methylation often used in epidemiologic studies. Yet, few studies have examined the effects of host factors on LINE-1 and Alu methylation in children. We characterized the relationship of age, sex, and prenatal exposure to persistent organic pollutants (POPs), dichlorodiphenyl trichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE), and polybrominated diphenyl ethers (PBDEs), with DNA methylation in a birth cohort of Mexican-American children participating in the CHAMACOS study. We measured Alu and LINE-1 methylation by pyrosequencing bisulfite-treated DNA isolated from whole blood samples collected from newborns and 9-year old children (n=358). POPs were measured in maternal serum during late pregnancy. Levels of DNA methylation were lower in 9-year olds compared to newborns and were higher in boys compared to girls. Higher prenatal DDT/E exposure was associated with lower Alu methylation at birth, particularly after adjusting for cell type composition (p=0.02 for o,p′ -DDT). Associations of POPs with LINE-1 methylation were only identified after examining the co-exposure of DDT/E with PBDEs simultaneously. Our data suggest that repeat element methylation can be an informative marker of epigenetic differences by age and sex and that prenatal exposure to POPs may be linked to hypomethylation in fetal blood. Accounting for co-exposure to different types of chemicals and adjusting for blood cell types may increase sensitivity of epigenetic analyses for epidemiological studies. PMID:24375655

  7. An Olfactory Indicator for Acid-Base Titrations.

    ERIC Educational Resources Information Center

    Flair, Mark N.; Setzer, William N.

    1990-01-01

    The use of an olfactory acid-base indicator in titrations for visually impaired students is discussed. Potential olfactory indicators include eugenol, thymol, vanillin, and thiophenol. Titrations performed with each indicator with eugenol proved to be successful. (KR)

  8. Eugenol Nanoemulsion Stabilized with Zein and Sodium Caseinate by Self-Assembly.

    PubMed

    Wang, Lei; Zhang, Yue

    2017-03-31

    Eugenol-loaded nanoemulsion by zein and sodium caseinate (NaCas) was prepared without using specific equipment or organic solvents. The deprotonated eugenol in hot alkaline was added to NaCas/zein mixtures with different mass ratios at pH 11.5 and then neutralized to pH 7.0. The nanoemulsions showed a well-defined diameter (around 109-139 nm) and a negative surface potential (from -28.5 to -35.8 mV) with spherical morphology. The entrapment efficiency (EE) of 1% (v/v) eugenol reached 84.24% by 2% (m/v) NaCas/zein at a mass ratio of 1:1. This formulation also showed the narrowest size distribution and extraordinary stability during ambient storage (22 °C) up to 30 days and retained good redispersibility after spray- or freeze-drying. The current study showed a promising clean and low-cost strategy to deliver lipophilic compounds containing the hydroxyl group.

  9. PRKCZ methylation is associated with sunlight exposure in a North American but not a Mediterranean population

    USDA-ARS?s Scientific Manuscript database

    Sunlight exposure has been shown to alter DNA methylation patterns across several human cell-types, including T-lymphocytes. Since epigenetic changes establish gene expression profiles, changes in DNA methylation induced by sunlight exposure warrant investigation. The purpose of this study was to as...

  10. Plant terpenoids: acute toxicities and effects on flight motor activity and wing beat frequency in the blow fly Phaenicia sericata.

    PubMed

    Waliwitiya, Ranil; Belton, Peter; Nicholson, Russell A; Lowenberger, Carl A

    2012-02-01

    We evaluated the acute toxicities and the physiological effects of plant monoterpenoids (eugenol, pulegone, citronellal and alpha-terpineol) and neuroactive insecticides (malathion, dieldrin and RH3421) on flight muscle impulses (FMI) and wing beat signals (WBS) of the blow fly (Phaenicia sericata). Topically-applied eugenol, pulegone, citronellal, and alpha-terpineol produced neurotoxic symptoms, but were less toxic than malathion, dieldrin, or RH3421. Topical application of eugenol, pulegone, and citronellal reduced spike amplitude in one of the two banks of blow fly dorsolongitudinal flight muscles within 6-8 min, but with citronellal, the amplitude of FMIs reverted to a normal pattern within 1 hr. In contrast to pulegone and citronellal, where impulse frequency remained relatively constant, eugenol caused a gradual increase, then a decline in the frequency of spikes in each muscle bank. Wing beating was blocked permanently within 6-7 min of administering pulegone or citronellal and within 16 mins with eugenol. alpha-Terpineol-treated blow flies could not beat their wings despite normal FMI patterns. The actions of these monoterpenoids on blow fly flight motor patterns are discussed and compared with those of dieldrin, malathion, RH3421, and a variety of other neuroactive substances we have previously investigated in this system. Eugenol, pulegone and citronellal readily penetrate blow fly cuticle and interfere with flight muscle and/or central nervous function. Although there were differences in the effects of these compounds, they mainly depressed flight-associated responses, and acted similarly to compounds that block sodium channels and facilitate GABA action.

  11. Relationship between LINE-1 methylation pattern and pesticide exposure in urban sprayers.

    PubMed

    Benitez-Trinidad, Alma Betsaida; Medina-Díaz, Irma Martha; Bernal-Hernández, Yael Yvette; Barrón-Vivanco, Briscia Socorro; González-Arias, Cyndia Azucena; Herrera-Moreno, José Francisco; Alvarado-Cruz, Isabel; Quintanilla-Vega, Betzabet; Rojas-García, Aurora Elizabeth

    2018-03-01

    Recently a relationship has been reported between pesticide exposure and changes in global DNA methylation patterns. Urban sprayers are a particularly vulnerable population because of the high risk of pesticide exposure that their work implies. Therefore, the aim of this study was to estimate the changes in the Long Interspersed Nucleotide Element (LINE-1) in urban sprayers and its relationship with pesticide exposure. The study population consisted of 190 individuals stratified into three study groups: no occupational pesticide exposure; moderate exposure, and high exposure. Pesticide exposure and other external factors such as diet, lifestyle, and others were evaluated through a validated questionnaire, and the butyrylcholinesterase enzyme activity was evaluated spectrophotometrically and used as exposure biomarker. DNA methylation was evaluated by pyrosequencing on bisulfite-treated DNA. The results showed a significant decrease of %5mC in both the moderate- and high-exposure groups with respect to the non-exposed group (p < 0.05). In addition, alcohol intake was associated with a higher percentage of LINE- 1 methylation. In conclusion, our results suggest that occupational pesticide exposure and external factors appears to modify the DNA methylation pattern measured through LINE-1. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. PRKCZ methylation is associated with sunlight exposure in a North American but not a Mediterranean population

    PubMed Central

    Aslibekyan, Stella; Dashti, Hassan S.; Tanaka, Toshiko; Sha, Jin; Ferrucci, Luigi; Zhi, Degui; Bandinelli, Stefania; Borecki, Ingrid B.; Absher, Devin M.; Arnett, Donna K.; Ordovas, Jose M.

    2015-01-01

    Sunlight exposure has been shown to alter DNA methylation patterns across several human cell-types, including T-lymphocytes. Since epigenetic changes establish gene expression profiles, changes in DNA methylation induced by sunlight exposure warrant investigation. The purpose of this study was to assess the effects of sunlight exposure on CD4+ T-cell methylation patterns on an epigenome-wide scale in a North American population of European origin (n = 991). In addition, we investigated the genetic contribution to epigenetic variation (methylQTL). We used linear regression to test the associations between methylation scores at 461 281 cytosine-phosphate-guanine (CpG) sites and sunlight exposure, followed by a genome-wide association analysis (methylQTL) to test for associations between methylation at the top CpG locus and common genetic variants, assuming an additive genetic model. We observed an epigenome-wide significant association between sunlight exposure and methylation status at cg26930596 (p = 9.2 × 10−8), a CpG site located in protein kinase C zeta (PRKCZ), a gene previously shown to be entrained by light. MethylQTL analysis resulted in significant associations between cg26930596 and two intergenic single nucleotide polymorphisms on chromosome 3, rs4574216 (p = 1.5 × 10−10) and rs4405858 (p = 1.9 × 10−9). These common genetic variants reside downstream of WWTR1, a transcriptional co-activator of PRKCZ. Associations observed in the North American population, however, did not replicate in an independent Mediterranean cohort. Our preliminary results support the role of sunlight exposure in epigenetic processes, and lay the groundwork for future studies of the molecular link between sunlight and physiologic processes such as tumorigenesis and metabolism. PMID:25075435

  13. PRKCZ methylation is associated with sunlight exposure in a North American but not a Mediterranean population.

    PubMed

    Aslibekyan, Stella; Dashti, Hassan S; Tanaka, Toshiko; Sha, Jin; Ferrucci, Luigi; Zhi, Degui; Bandinelli, Stefania; Borecki, Ingrid B; Absher, Devin M; Arnett, Donna K; Ordovas, Jose M

    2014-11-01

    Sunlight exposure has been shown to alter DNA methylation patterns across several human cell-types, including T-lymphocytes. Since epigenetic changes establish gene expression profiles, changes in DNA methylation induced by sunlight exposure warrant investigation. The purpose of this study was to assess the effects of sunlight exposure on CD4+ T-cell methylation patterns on an epigenome-wide scale in a North American population of European origin (n=991). In addition, we investigated the genetic contribution to epigenetic variation (methylQTL). We used linear regression to test the associations between methylation scores at 461,281 cytosine-phosphate-guanine (CpG) sites and sunlight exposure, followed by a genome-wide association analysis (methylQTL) to test for associations between methylation at the top CpG locus and common genetic variants, assuming an additive genetic model. We observed an epigenome-wide significant association between sunlight exposure and methylation status at cg26930596 (p=9.2×10(-8)), a CpG site located in protein kinase C zeta (PRKCZ), a gene previously shown to be entrained by light. MethylQTL analysis resulted in significant associations between cg26930596 and two intergenic single nucleotide polymorphisms on chromosome 3, rs4574216 (p=1.5×10(-10)) and rs4405858 (p=1.9×10(-9)). These common genetic variants reside downstream of WWTR1, a transcriptional co-activator of PRKCZ. Associations observed in the North American population, however, did not replicate in an independent Mediterranean cohort. Our preliminary results support the role of sunlight exposure in epigenetic processes, and lay the groundwork for future studies of the molecular link between sunlight and physiologic processes such as tumorigenesis and metabolism.

  14. Monitoring of exposure to methylpentanes by diffusive sampling and urine analysis for alcoholic metabolites.

    PubMed Central

    Kawai, T; Mizunuma, K; Yasugi, T; Horiguchi, S; Iguchi, H; Mutti, A; Ghittori, S; Ikeda, M

    1995-01-01

    OBJECTIVES--To investigate the possibilities of personal ambient monitoring and biological monitoring for methylpentane isomers. METHODS--The performance of activated carbon cloth to absorb 2- and 3-methylpentane was studied by experimental vapour exposure followed by solvent extraction and gas chromatography (GC). Urine from workers and rats exposed to 2- and 3-methylpentane was analysed by GC with or without acid or enzymatic hydrolysis. RESULTS--Carbon cloth absorbed 2- and 3-methylpentane linearly to exposures up to eight hours and to 400 ppm, and was sensitive enough to detect a 15 minute peak of exposure. The two isomers were clearly separated from hexane on a DB-1 column. For analysis of the urine, enzymatic hydrolysis was superior to acid hydrolysis. Exposure of rats to methylpentane vapours showed that 2-methyl-2-pentanol and 3-methyl-2-pentanol were excreted in urine in proportion to the dose of 2-methylpentane and 3-methylpentane, respectively. 2-Methyl derivatives of 1-, 3-, and 4-propanol, 2-methylpentane-2,4-diol, and 3-methyl-2-pentanol were minor metabolites. Analysis of urine from the exposed workers showed that 2-methyl- and 3-methyl-2-pentanol are leading urinary metabolites after exposure to the corresponding methylpentane. CONCLUSIONS--Diffusive sampling is applicable to monitor 2- and 3-methylpentane vapours as is the case for hexane vapour. 2-Methyl-2-pentanol and 3-methyl-2-pentanol will be markers of occupational exposure to 2-methylpentane and 3-methylpentane, respectively. Also, 2-methylpentane-2,4-diol might be a marker of exposure to 2-methylpentane. PMID:8535496

  15. Investigating the effects of in utero benzene exposure on epigenetic modifications in maternal and fetal CD-1 mice.

    PubMed

    Philbrook, Nicola A; Winn, Louise M

    2015-11-15

    Exposure to the ubiquitous environmental pollutant benzene is positively correlated with leukemia in adults and may be associated with childhood leukemia following in utero exposure. While numerous studies implicate oxidative stress and DNA damage as playing a role in benzene-mediated carcinogenicity, emerging evidence suggests that alterations in epigenetic regulations may be involved. The present study aimed to determine whether DNA methylation and/or various histone modifications were altered following in utero benzene exposure in CD-1 mice. Global DNA methylation and promoter-specific methylation of the tumor suppressor gene, p15, were assessed. Additionally, levels of acetylated histones H3, H4, and H3K56, as well as methylated histones H3K9 and H3K27 were assessed by Western blotting. A significant decrease in global DNA methylation of maternal bone marrow was observed following benzene exposure; however no effect on global DNA methylation was detected in fetal livers. Additionally, no effect of benzene exposure was observed on p15 promoter methylation or any measured histone modifications in both maternal bone marrow and fetal livers. These results suggest that the methodology used in the present study did not reveal alterations in DNA methylation and histone modifications following in utero exposure to benzene; however further experimentation investigating these modifications at the whole genome/epigenome level, as well as at later stages of benzene-induced carcinogenesis, are warranted. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. An Ill Wind: Methyl Bromide Use Near California Schools, 1998.

    ERIC Educational Resources Information Center

    Ross, Zev; Walker, Bill

    A California study investigates the use of the toxic pesticide methyl bromide near the state's public schools, explains why proposed safety rules have failed to protect children and others from exposure, and examines regions at particular exposure risk. Study results show an increasing exposure to methyl bromide near schools already at risk while…

  17. Prenatal exposure to neurotoxic metals is associated with increased placental glucocorticoid receptor DNA methylation

    PubMed Central

    Appleton, Allison A.; Jackson, Brian P.; Marsit, Carmen J.

    2017-01-01

    ABSTRACT Epigenetic alterations related to prenatal neurotoxic metals exposure may be key in understanding the origins of cognitive and neurobehavioral problems in children. Placental glucocorticoid receptor (NR3C1) methylation has been linked to neurobehavioral risk in early life, but has not been examined in response to neurotoxic metals exposure despite parallel lines of research showing metals exposure and NR3C1 methylation each contribute to a similar set of neurobehavioral phenotypes. Thus, we conducted a study of prenatal neurotoxic metals exposure and placental NR3C1 methylation in a cohort of healthy term singleton pregnancies from Rhode Island, USA (n = 222). Concentrations of arsenic (As; median 0.02 ug/g), cadmium (Cd; median 0.03 μg/g), lead (Pb; median 0.40 μg/g), manganese (Mn; median 0.56 μg/g), mercury (Hg; median 0.02 μg/g), and zinc (Zn; 145.18 μg/g) measured in infant toenails were categorized as tertiles. Multivariable linear regression models tested the independent associations for each metal with NR3C1 methylation, as well as the cumulative risk of exposure to multiple metals simultaneously. Compared to the lowest exposure tertiles, higher levels of As, Cd, Pb, Mn, and Hg were each associated with increased placental NR3C1 methylation (all P<0.02). Coefficients for these associations corresponded with a 0.71–1.41 percent increase in NR3C1 methylation per tertile increase in metals concentrations. For Zn, the lowest exposure tertile compared with the highest tertile was associated with 1.26 percent increase in NR3C1 methylation (P=0.01). Higher cumulative metal risk scores were marginally associated with greater NR3C1 methylation. Taken together, these results indicate that prenatal exposure to neurotoxic metals may affect the offspring's NR3C1 activity, which may help explain cognitive and neurodevelopmental risk later in life. PMID:28548590

  18. Prenatal exposure to neurotoxic metals is associated with increased placental glucocorticoid receptor DNA methylation.

    PubMed

    Appleton, Allison A; Jackson, Brian P; Karagas, Margaret; Marsit, Carmen J

    2017-08-01

    Epigenetic alterations related to prenatal neurotoxic metals exposure may be key in understanding the origins of cognitive and neurobehavioral problems in children. Placental glucocorticoid receptor (NR3C1) methylation has been linked to neurobehavioral risk in early life, but has not been examined in response to neurotoxic metals exposure despite parallel lines of research showing metals exposure and NR3C1 methylation each contribute to a similar set of neurobehavioral phenotypes. Thus, we conducted a study of prenatal neurotoxic metals exposure and placental NR3C1 methylation in a cohort of healthy term singleton pregnancies from Rhode Island, USA (n = 222). Concentrations of arsenic (As; median 0.02 ug/g), cadmium (Cd; median 0.03 μg/g), lead (Pb; median 0.40 μg/g), manganese (Mn; median 0.56 μg/g), mercury (Hg; median 0.02 μg/g), and zinc (Zn; 145.18 μg/g) measured in infant toenails were categorized as tertiles. Multivariable linear regression models tested the independent associations for each metal with NR3C1 methylation, as well as the cumulative risk of exposure to multiple metals simultaneously. Compared to the lowest exposure tertiles, higher levels of As, Cd, Pb, Mn, and Hg were each associated with increased placental NR3C1 methylation (all P<0.02). Coefficients for these associations corresponded with a 0.71-1.41 percent increase in NR3C1 methylation per tertile increase in metals concentrations. For Zn, the lowest exposure tertile compared with the highest tertile was associated with 1.26 percent increase in NR3C1 methylation (P=0.01). Higher cumulative metal risk scores were marginally associated with greater NR3C1 methylation. Taken together, these results indicate that prenatal exposure to neurotoxic metals may affect the offspring's NR3C1 activity, which may help explain cognitive and neurodevelopmental risk later in life.

  19. The synergistic effects of insecticidal essential oils and piperonyl butoxide on biotransformational enzyme activities in Aedes aegypti (Diptera: Culicidae).

    PubMed

    Waliwitiya, Ranil; Nicholson, Russell A; Kennedy, Christopher J; Lowenberger, Carl A

    2012-05-01

    The biochemical mechanisms underlying the increased toxicity of several plant essential oils (thymol, eugenol, pulegone, terpineol, and citronellal) against fourth instar of Aedes aegypti L. when exposed simultaneously with piperonyl butoxide (PBO) were examined. Whole body biotransformational enzyme activities including cytochrome P450-mediated oxidation (ethoxyresorufin O-dethylase [EROD]), glutathione S-transferase (GST), and beta-esterase activity were measured in control, essential oil-exposed only (single chemical), and essential oil + PBO (10 mg/liter) exposed larvae. At high concentrations, thymol, eugenol, pulegone, and citronellal alone reduced EROD activity by 5-25% 16 h postexposure. Terpineol at 10 mg/liter increased EROD activity by 5 +/- 1.8% over controls. The essential oils alone reduced GST activity by 3-20% but PBO exposure alone did not significantly affect the activity of any of the measured enzymes. All essential oils in combination with PBO reduced EROD activity by 58-76% and reduced GST activity by 3-85% at 16 h postexposure. This study indicates a synergistic interaction between essential oils and PBO in inhibiting the cytochrome P450 and GST detoxification enzymes in Ae. aegypti.

  20. Comparative study on gamma irradiation and cold plasma pretreatment for a cellulosic substrate modification with phenolic compounds

    NASA Astrophysics Data System (ADS)

    Irimia, Anamaria; Ioanid, Ghiocel Emil; Zaharescu, Traian; Coroabă, Adina; Doroftei, Florica; Safrany, Agnes; Vasile, Cornelia

    2017-01-01

    The efficiency of the activation of the cellulose/chitin mix substrate by cold plasma or γ-radiation exposure in order to modify it with bioactive compounds was studied. The eugenol or vegetable oils such as grape seed oil and rosehip seed oil have been grafted onto activated substrate. The examination of modified cellulose/chitin mix substrate by ATR-FTIR spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy confirms that the structural and morphological changes took place in both cases. The grafting degrees of the surface layer estimated from XPS data varied from 31.1% to 58.7% for air cold plasma activation and from 9.7% to 22.8% for γ-irradiation treatment. They depend both on bioactive compound used and procedure of substrate activation. Higher grafting degree are obtain by using vegetable oils than in the case of modification with eugenol and the air cold plasma activation seems to be much efficient than γ-irradiation. By grafting the polymeric substrate with bioactive compounds, antimicrobial and antioxidant properties have been conferred. Such materials can be considered promising for food packaging applications and medical textiles and also the applied procedures are environmental friendly ones.

  1. Phenylpropanoids and furanocoumarins as antibacterial and antimalarial constituents of the Bhutanese medicinal plant Pleurospermum amabile.

    PubMed

    Wangchuk, Phurpa; Pyne, Stephen G; Keller, Paul A; Taweechotipatr, Malai; Kamchonwongpaisane, Sumalee

    2014-07-01

    With the objective of determining safety and verifying the traditional uses of the Bhutanese medicinal plant, Pleurospermum amabile Craib & W. W. Smith, we investigated its crude extracts and the isolated phytochemicals for their biological activities. Four phenylpropanoids [(E)-isomyristicin (1), (E)-isoapiol (2), methyl eugenol (3) and (E)-isoelemicin (4)] and six furanocoumarins [psoralen (5), bergapten (6), isoimperatorin (7), isopimpinellin (8), oxypeucedanin hydrate (9) and oxypeucedanin methanolate (10)] were isolated from this plant. Among the test samples, compound 10 showed weak antibacterial activity against Bacillus subtilis and best antimalarial activity against the Plasmodium falciparum strains, TM4/8.2 (chloroquine and antifolate sensitive) and K1CB1 (multidrug resistant). None of the test samples showed cytotoxicity. This study generated scientific data that support the traditional medical uses of the plant.

  2. Pregnancy exposure to atmospheric pollution and meteorological conditions and placental DNA methylation.

    PubMed

    Abraham, Emilie; Rousseaux, Sophie; Agier, Lydiane; Giorgis-Allemand, Lise; Tost, Jörg; Galineau, Julien; Hulin, Agnès; Siroux, Valérie; Vaiman, Daniel; Charles, Marie-Aline; Heude, Barbara; Forhan, Anne; Schwartz, Joel; Chuffart, Florent; Bourova-Flin, Ekaterina; Khochbin, Saadi; Slama, Rémy; Lepeule, Johanna

    2018-06-19

    Air pollution exposure represents a major health threat to the developing foetus. DNA methylation is one of the most well-known molecular determinants of the epigenetic status of cells. Blood DNA methylation has been proven sensitive to air pollutants, but the molecular impact of air pollution on new-borns has so far received little attention. We investigated whether nitrogen dioxide (NO 2 ), particulate matter (PM 10 ), temperature and humidity during pregnancy are associated with differences in placental DNA methylation levels. Whole-genome DNA-methylation was measured using the Illumina's Infinium HumanMethylation450 BeadChip in the placenta of 668 newborns from the EDEN cohort. We designed an original strategy using a priori biological information to focus on candidate genes with a specific expression pattern in placenta (active or silent) combined with an agnostic epigenome-wide association study (EWAS). We used robust linear regression to identify CpGs and differentially methylated regions (DMR) associated with each exposure during short- and long-term time-windows. The candidate genes approach identified nine CpGs mapping to 9 genes associated with prenatal NO 2 and PM 10 exposure [false discovery rate (FDR) p < 0.05]. Among these, the methylation level of 2 CpGs located in ADORA2B remained significantly associated with NO 2 exposure during the 2nd trimester and whole pregnancy in the EWAS (FDR p < 0.05). EWAS further revealed associations between the environmental exposures under study and variations of DNA methylation of 4 other CpGs. We further identified 27 DMRs significantly (FDR p < 0.05) associated with air pollutants exposure and 13 DMRs with meteorological conditions. The methylation of ADORA2B, a gene whose expression was previously associated with hypoxia and pre-eclampsia, was consistently found here sensitive to atmospheric pollutants. In addition, air pollutants were associated to DMRs pointing towards genes previously implicated in preeclampsia, hypertensive and metabolic disorders. These findings demonstrate that air pollutants exposure at levels commonly experienced in the European population are associated with placental gene methylation and provide some mechanistic insight into some of the reported effects of air pollutants on preeclampsia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Critical Concentration of Lecithin Enhances the Antimicrobial Activity of Eugenol against Escherichia coli.

    PubMed

    Zhang, Haoshu; Dudley, Edward G; Davidson, P Michael; Harte, Federico

    2017-04-15

    Lecithin is a natural emulsifier used in a wide range of food and nonfood applications to improve physical stability, with no known bioactive effects. In this study, the effect of lecithin on the antimicrobial performance of a constant eugenol concentration was tested against three Escherichia coli strains (C600, 0.1229, and O157:H7 strain ATCC 700728). This is the first study, to our knowledge, focusing on lecithin at concentrations below those commonly used in foods to improve the stability of oil in water emulsions (≤10 mg/100 ml). For all three cultures, significant synergistic antimicrobial effects were observed when E. coli cultures were exposed to a constant eugenol concentration (ranging from 0.043 to 0.050% [wt/wt]) together with critical lecithin concentrations ranging from 0.5 to 1 mg/100 ml. Increasing the concentration of lecithin above 1 mg/100 ml (up to 10 mg/100 ml lecithin) diminished the antibacterial effect to values similar to those with eugenol-only treatments. The formation of aggregates (<100 nm) at the critical lecithin concentration was observed using cryo-transmission electron microscopy (cryo-TEM), together with a reduction in light absorbance at 284 nm. At critically low concentrations of lecithin, the formation of nanoscale aggregates is responsible for improving eugenol antimicrobial effects. IMPORTANCE Essential oils (EOs) are effective natural antimicrobials. However, their hydrophobicity and strong aromatic character limit the use of essential oils in food systems. Emulsifiers (e.g., lecithin) increase the stability of EOs in water-based systems but fail to consistently improve antimicrobial effects. We demonstrate that lecithin, within a narrow critical concentration window, can enhance the antimicrobial properties of eugenol. This study highlights the potential bioactivity of lecithin when utilized to effectively control foodborne pathogens. Copyright © 2017 American Society for Microbiology.

  4. Boll weevil (Coleoptera: Curculionidae) response to and volatilization rates of grandlure when combined with varying doses of eugenol in the extended-life pheromone lure.

    PubMed

    Armstrong, J S

    2010-04-01

    Boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), trapping and pheromone quantitative analysis of extended-life pheromone lures manufactured with 0, 10, 20, and 30 mg of eugenol was conducted in the Rio Grande Valley of Texas under spring and summer conditions. Boll weevils responded positively to eugenol on one of 12 trapping weeks when densities were high, but when densities were low (<2 weevils trap(-1) wk(-1)), there were no significant differences in captures for any dosage of eugenol offered in a standard boll weevil trap. Weekly grandlure volatilization did not differ by eugenol dose but was significantly different when evaluated over three different trapping periods and by week within trapping period due to differences in ambient temperature. The amount of grandlure that remained after 4 wk in moderate temperatures of spring was 13.1 +/- 0.19 mg (55.7% of original 25 mg of content) compared with 5.5 +/- 0.15 mg remaining (22.8% of original 25 mg content) after for 4 wk in summer heat. Weekly volatilization of grandlure for the summer trapping period was 9.8 +/- 0.32 mg for the first week, declining steadily to 1.0 +/- 0.09 mg by the fourth week of age. The data indicate that at high summer temperatures >30 degrees C, accumulative grandlure loss per week may be too high, leaving too little residual grandlure to effectively attract boll weevils at the end of 3 wk of trapping. Eugenol plays no role in reserving or encouraging the release of grandlure, or in increasing boll weevil captures when boll weevil densities are low.

  5. Critical Concentration of Lecithin Enhances the Antimicrobial Activity of Eugenol against Escherichia coli

    PubMed Central

    Zhang, Haoshu; Dudley, Edward G.; Davidson, P. Michael

    2017-01-01

    ABSTRACT Lecithin is a natural emulsifier used in a wide range of food and nonfood applications to improve physical stability, with no known bioactive effects. In this study, the effect of lecithin on the antimicrobial performance of a constant eugenol concentration was tested against three Escherichia coli strains (C600, 0.1229, and O157:H7 strain ATCC 700728). This is the first study, to our knowledge, focusing on lecithin at concentrations below those commonly used in foods to improve the stability of oil in water emulsions (≤10 mg/100 ml). For all three cultures, significant synergistic antimicrobial effects were observed when E. coli cultures were exposed to a constant eugenol concentration (ranging from 0.043 to 0.050% [wt/wt]) together with critical lecithin concentrations ranging from 0.5 to 1 mg/100 ml. Increasing the concentration of lecithin above 1 mg/100 ml (up to 10 mg/100 ml lecithin) diminished the antibacterial effect to values similar to those with eugenol-only treatments. The formation of aggregates (<100 nm) at the critical lecithin concentration was observed using cryo-transmission electron microscopy (cryo-TEM), together with a reduction in light absorbance at 284 nm. At critically low concentrations of lecithin, the formation of nanoscale aggregates is responsible for improving eugenol antimicrobial effects. IMPORTANCE Essential oils (EOs) are effective natural antimicrobials. However, their hydrophobicity and strong aromatic character limit the use of essential oils in food systems. Emulsifiers (e.g., lecithin) increase the stability of EOs in water-based systems but fail to consistently improve antimicrobial effects. We demonstrate that lecithin, within a narrow critical concentration window, can enhance the antimicrobial properties of eugenol. This study highlights the potential bioactivity of lecithin when utilized to effectively control foodborne pathogens. PMID:28213539

  6. BOTH HYPOMETHYLATION AND HYPERMETHYLATION OF DNA ASSOCIATED WITH ARSENITE EXPOSURE IN CULTURES OF HUMAN CELLS IDENTIFIED BY METHYLATION-SENSITIVE ARBITRARILY-PRIMED PCR

    EPA Science Inventory

    Differentially Methylated DNA Sequences Associated with Exposure to Arsenite in Cultures of Human Cells Identified by Methylation-Sensitive-Primed PCR

    Arsenic, a known human carcinogen, is converted to methylated derivatives by a methyltransferase (Mtase) and its biotra...

  7. Global DNA methylation loss associated with mercury contamination and aging in the American alligator (Alligator mississippiensis).

    PubMed

    Nilsen, Frances M; Parrott, Benjamin B; Bowden, John A; Kassim, Brittany L; Somerville, Stephen E; Bryan, Teresa A; Bryan, Colleen E; Lange, Ted R; Delaney, J Patrick; Brunell, Arnold M; Long, Stephen E; Guillette, Louis J

    2016-03-01

    Mercury is a widespread environmental contaminant with exposures eliciting a well-documented catalog of adverse effects. Yet, knowledge regarding the underlying mechanisms by which mercury exposures are translated into biological effects remains incomplete. DNA methylation is an epigenetic modification that is sensitive to environmental cues, and alterations in DNA methylation at the global level are associated with a variety of diseases. Using a liquid chromatography tandem mass spectrometry-based (LC-MS/MS) approach, global DNA methylation levels were measured in red blood cells of 144 wild American alligators (Alligator mississippiensis) from 6 sites with variable levels of mercury contamination across Florida's north-south axis. Variation in mercury concentrations measured in whole blood was highly associated with location, allowing the comparison of global DNA methylation levels across different "treatments" of mercury. Global DNA methylation in alligators across all locations was weakly associated with increased mercury exposure. However, a much more robust relationship was observed in those animals sampled from locations more highly contaminated with mercury. Also, similar to other vertebrates, global DNA methylation appears to decline with age in alligators. The relationship between age-associated loss of global DNA methylation and varying mercury exposures was examined to reveal a potential interaction. These findings demonstrate that global DNA methylation levels are associated with mercury exposure, and give insights into interactions between contaminants, aging, and epigenetics. Published by Elsevier B.V.

  8. Effects of methyl mercury exposure on the growth of juvenile common loons

    USGS Publications Warehouse

    Kenow, K.P.; Gutreuter, S.; Hines, R.K.; Meyer, M.W.; Fournier, F.; Karasov, W.H.

    2003-01-01

    We conducted a dose-response laboratory study to quantify the level of mercury exposure associated with negative effects on the development of common loon chicks reared in captivity from hatch to 105 days. A dose regimen was implemented that provided exposure levels that bracketed relevant exposure levels of methyl mercury found in loon chicks across North America. We observed no overt signs of mercury toxicosis and detected no significant effect of dietary mercury exposure on growth or food consumption. However, asymptotic mass was lower in chicks that hatched from eggs collected from nests on low pH lakes relative to eggs from neutral pH lakes. Rapid excretion of methyl mercury during feather growth likely provides loon chicks protection from methyl mercury toxicity and may explain the lack of convincing toxicological findings in this study. Lake-source effects suggest that in ovo exposure to methyl mercury or other factors related to lake pH have consequences on chick development.

  9. Eugenol wash and chitosan based coating reduces Campylobacter jejuni counts on poultry products

    USDA-ARS?s Scientific Manuscript database

    Campylobacter, a leading cause of foodborne illness globally in humans, is strongly associated with the consumption of contaminated poultry products. Unfortunately, current strategies to reduce Campylobacter counts in poultry have had limited success. Our study investigated the efficacy of eugenol ...

  10. Bactericidal action of binary and ternary mixtures of carvacrol, thymol, and eugenol against Listeria innocua.

    PubMed

    García-García, Rebeca; López-Malo, Aurelio; Palou, Enrique

    2011-03-01

    The bactericidal effect of 3 natural agents (carvacrol, thymol, and eugenol) was evaluated as well as their binary and ternary mixtures on Listeria innocua inactivation in liquid model systems. Minimal bactericidal concentrations (MBC) of these agents were determined, and then binary and ternary mixtures were evaluated. Culture media were inoculated with L. innocua and incubated for 72 h at 35 °C. Turbidity of studied systems were determined every 24 h. The most effective individual antimicrobial agent was carvacrol, followed by thymol and then eugenol with MBCs of 150, 250, and 450 mg kg(-1), respectively. It was observed that the most effective binary mixture was 75 mg kg(-1) carvacrol and 62.5 mg kg(-1) thymol. Furthermore, the ternary mixture carvacrol-thymol-eugenol in concentrations of 75, 31.25, and 56.25 mg kg(-1), correspondingly, was the most effective for L. innocua inactivation. Several binary and ternary mixtures of these 3 natural antimicrobial agents worked adequately to inactivate L. innocua.

  11. Synthetic scaffolds with full pore interconnectivity for bone regeneration prepared by supercritical foaming using advanced biofunctional plasticizers.

    PubMed

    Salerno, Aurelio; Diéguez, Sara; Diaz-Gomez, Luis; Gómez-Amoza, José L; Magariños, Beatriz; Concheiro, Angel; Domingo, Concepción; Alvarez-Lorenzo, Carmen; García-González, Carlos A

    2017-06-30

    Supercritical foaming allows for the solvent-free processing of synthetic scaffolds for bone regeneration. However, the control on the pore interconnectivity and throat pore size with this technique still needs to be improved. The use of plasticizers may help overcome these limitations. Eugenol, a GRAS natural compound extracted from plants, is proposed in this work as an advanced plasticizer with bioactive properties. Eugenol-containing poly(ε-caprolactone) (PCL) scaffolds were obtained by supercritical foaming (20.0 MPa, 45 °C, 17 h) followed by a one or a two-step depressurization profile. The effects of the eugenol content and the depressurization profile on the porous structure of the material and the physicochemical properties of the scaffold were evaluated. The combination of both processing parameters was successful to simultaneously tune the pore interconnectivity and throat sizes to allow mesenchymal stem cells infiltration. Scaffolds with eugenol were cytocompatible, presented antimicrobial activity preventing the attachment of Gram positive (S. aureus, S. epidermidis) bacteria and showed good tissue integration.

  12. Isolation of Bioactive Compounds That Relate to the Anti-Platelet Activity of Cymbopogon ambiguus

    PubMed Central

    Grice, I. Darren; Rogers, Kelly L.; Griffiths, Lyn R.

    2011-01-01

    Infusions and decoctions of Cymbopogon ambiguus have been used traditionally in Australia for the treatment of headache, chest infections and muscle cramps. The aim of the present study was to screen and identify bioactive compounds from C. ambiguus that could explain this plant's anti-headache activity. A dichloromethane extract of C. ambiguus was identified as having activity in adenosine-diphosphate-induced human platelet aggregation and serotonin-release inhibition bioassays. Subsequent fractionation of this extract led to the isolation of four phenylpropenoids, eugenol, elemicin, eugenol methylether and trans-isoelemicin. While both eugenol and elemicin exhibited dose-dependent inhibition of ADP-induced human platelet serotonin release, only eugenol displayed potent inhibitory activity with an IC50 value of 46.6 μM, in comparison to aspirin, with an IC50 value of 46.1 μM. These findings provide evidence to support the therapeutic efficacy of C. ambiguus in the non-conventional treatment of headache and inflammatory conditions. PMID:20047890

  13. Biotechnological intervention in betelvine (Piper betle L.): A review on recent advances and future prospects.

    PubMed

    Das, Suryasnata; Parida, Reena; Sriram Sandeep, I; Nayak, Sanghamitra; Mohanty, Sujata

    2016-10-01

    Betelvine (Piper betle L.) is cultivated for its deep green heart shaped leaf for (15-20) million Indian and 2 billion foreign consumers annually. The crop provides Rs (6000-7000) million of national income per year and at the same time leaves worth Rs (30-40) million is exported to other countries. The leaves are not only used directly for chewing purposes but also possesses antioxidant, anti-inflammatory, anti-apoptotic, anti-cancer and anti-microbial properties. Besides, the leaves also contain eugenol rich essential oil (1%-3%) which is the source for medicine, stimulant, antiseptic, tonic and other ayurvedic formulations. The essential oil also contains chavibetol, caryophyllene and methyl eugenol which are the potent source for preparation in ayurvedic medicine and herbal products. Cost of betelvine essential oil is 10$ per 5 mL. In spite of its great economical and medicinal importance betelvine is still neglected by the researchers for proper characterization and authentication for selection of elite landraces. Lack of awareness among people, use of same planting material for many generations, existing of many synonyms for a single landraces, no proper characterization of available landraces are some of the significant constraints for its commercialization. Our review endeavours a complete advance in the research on betelvine, existing lacunae for its proper characterization and commercial cultivation. It also attempts to provide a comprehensive account on biotechnological interventions made in betelvine aimed at complementing conventional programmes for improvement of this nutraceutically important cash crop. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  14. Gastroprotective activity of essential oil of the Syzygium aromaticum and its major component eugenol in different animal models.

    PubMed

    Santin, José Roberto; Lemos, Marivane; Klein-Júnior, Luiz Carlos; Machado, Isabel Daufenback; Costa, Philipe; de Oliveira, Ana Paula; Tilia, Crislaine; de Souza, Juliana Paula; de Sousa, João Paulo Barreto; Bastos, Jairo Kenupp; de Andrade, Sérgio Faloni

    2011-02-01

    Syzygium aromaticum, a medicinal plant commonly known as clove, is used to treat toothache, respiratory disorders, inflammation, and gastrointestinal disorders. From the flower buds of S. aromaticum, it is possible to obtain an essential oil comprised of a mixture of aliphatic and cyclic volatile terpenes and phenylpropanoids, being eugenol as the main component. The aims of this study were: (1) to extract the essential oil of the flower buds of S. aromaticum, (2) to identify and quantify the main component of the essential oil, and (3) to evaluate its antiulcer activity using different animal models. Assays were performed using the following protocols in rats: indomethacin-induced and ethanol/HCl-induced ulcer model. Both essential oils from S. aromaticum and eugenol displayed antiulcer activities in the rat models of indomethacin- and ethanol-induced ulcer. Studies focusing on the possible mechanisms of gastroprotection were also undertaken using the following experiments: evaluation of gastric secretion by the pylorus-ligated model, determination of mucus in gastric content, participation of nitric oxide (NO) and endogenous sulfhydryl in gastric protection. The results show that there was no significant effect on the volume of gastric juice and total acidity. However, the quantification of free gastric mucus showed that the clove oil and eugenol were capable of significantly enhancing mucus production. With regard to the NO and endogenous sulfhydryls, the results demonstrated that the gastroprotection induced by clove oil and eugenol are not related to the activities of the nitric oxide and endogenous sulfhydryls. No sign of toxicity was observed in the acute toxicity study. In conclusion, the results of this study show that essential oil of S. aromaticum, as well as its main component (eugenol), possesses antiulcer activity. The data suggest that the effectiveness of the essential oil and eugenol is based on its ability to stimulate the synthesis of mucus, an important gastroprotective factor. However, further pharmacological and toxicological investigations are required to enable its use for the treatment of gastric ulcer.

  15. Longitudinal effects of developmental bisphenol A and variable diet exposures on epigenetic drift in mice.

    PubMed

    Kochmanski, Joseph; Marchlewicz, Elizabeth H; Savidge, Matthew; Montrose, Luke; Faulk, Christopher; Dolinoy, Dana C

    2017-03-01

    Environmental factors, including exogenous exposures and nutritional status, can affect DNA methylation across the epigenome, but effects of exposures on age-dependent epigenetic drift remain unclear. Here, we tested the hypothesis that early-life exposure to bisphenol A (BPA) and/or variable diet results in altered epigenetic drift, as measured longitudinally via target loci methylation in paired mouse tail tissue (3 wks/10 mos old). Methylation was quantified at two repetitive elements (LINE-1, IAP), two imprinted genes (Igf2, H19), and one non-imprinted gene (Esr1) in isogenic mice developmentally exposed to Control, Control+BPA (50μg/kg diet), Mediterranean, Western, Mediterranean+BPA, or Western+BPA diets. Across age, methylation levels significantly (p<0.050) decreased at LINE-1, IAP, and H19, and increased at Esr1. Igf2 demonstrated Western-specific changes in early-life methylation (p=0.027), and IAP showed marginal negative modification of drift in Western (p=0.058) and Western+BPA (p=0.051). Thus, DNA methylation drifts across age, and developmental nutritional exposures can alter age-related methylation patterns. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. [Association between serum aluminium level and methylation of amyloid precursor protein gene in workers engaged in aluminium electrolysis].

    PubMed

    Yang, X J; Yuan, Y Z; Niu, Q

    2016-04-20

    To investigate the association between serum aluminium level and methylation of the promoter region of amyloid precursor protein (APP)gene in workers engaged in aluminium electrolysis. In 2012, 366 electrolysis workers in an aluminium factory were enrolled as exposure group (working years >10 and age >40 years)and divided into low-exposure group and high-exposure group based on the median serum aluminium level. Meanwhile, 102 workers in a cement plant not exposed to aluminium were enrolled as control group. Graphite furnace atomic absorption spectrometry was used to measure serum aluminium level, methylation specific PCR was used to measure the methylation rate of the promoter region of APP gene, and ELI-SA was used to measure the protein expression of APP in lymphocytes in peripheral blood. The exposure group had a significantly higher serum aluminium level than the control group (45.07 μg/L vs 30.51 μg/L, P< 0.01). The exposure group had a significantly lower methylation rate of the promoter region of APP gene than the control group (18.85% vs 25.49%, P=0.025), and the high-exposure group had a significantly lower methylation rate of the promoter region of APP gene than the low-exposure group (15.84% vs 21.85%, P<0.05). The exposure group had a significantly higher protein expression of APP in lymphocytes in peripheral blood than the control group (66.73 ng/ml vs 54.17 ng/ml, P<0.05); compared with the low-exposure group (65.39 ng/ml), the high-exposure group showed an increase in the protein expression of APP in lymphocytes in peripheral blood (67.22 ng/ml), but there was no significant difference between these two groups (P>0.05). The multivariate logistic regression analysis showed that with reference to the control group, low aluminium exposure (OR=1.86, 95% CI 1.67~3.52)and high aluminium exposure (OR=2.98, 95% CI 1.97~4.15)were risk factors for a reduced methylation rate of the promoter region of APP gene. Reduced methylation of the promoter region of APP gene may be associated with increased serum aluminium level, and downregulated methylation of the promoter region of APP gene may accelerate APP gene transcription.

  17. Association between fetal exposure to phthalate endocrine disruptor and genome-wide DNA methylation at birth.

    PubMed

    Chen, Chung-Hsing; Jiang, Shih Sheng; Chang, I-Shou; Wen, Hui-Ju; Sun, Chien-Wen; Wang, Shu-Li

    2018-04-01

    Phthalic acid esters are ubiquitous and antiandrogenic, and may cause systemic effects in humans, particularly with in utero exposure. Epigenetic modification, such as DNA methylation, has been hypothesized to be an important mechanism that mediates certain biological processes and pathogenic effects of in utero phthalate exposure. The aim of this study was to examine the association between genome-wide DNA methylation at birth and prenatal exposure to phthalate. We studied 64 infant-mother pairs included in TMICS (Taiwan Maternal and Infant Cohort Study), a long-term follow-up birth cohort from the general population. DNA methylation levels at more than 450,000 CpG sites were measured in cord blood samples using Illumina Infinium HumanMethylation450 BeadChips. The concentrations of three metabolites of di-(2-ethylhexyl) phthalate (DEHP) were measured using liquid chromatography tandem-mass spectrometry (LC-MS/MS) in urine samples collected from the pregnant women during 28-36 weeks gestation. We identified 25 CpG sites whose methylation levels in cord blood were significantly correlated with prenatal DEHP exposure using a false discovery rate (FDR) of 5% (q-value < 0.05). Via gene-set enrichment analysis (GSEA), we also found that there was significant enrichment of genes involved in the androgen response, estrogen response, and spermatogenesis within those genes showing DNA methylation changes in response to exposure. Specifically, PA2G4, HMGCR, and XRCC6 genes were involved in genes in response to androgen. Phthalate exposure in utero may cause significant alterations in the DNA methylation in cord blood. These changes in DNA methylation might serve as biomarkers of maternal exposure to phthalate in infancy and potential candidates for studying mechanisms via which phthalate may impact on health in later life. Future investigations are warranted. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Effects of metsulfuron methyl and cypermethrin exposure on freshwater model ecosystems.

    PubMed

    Wendt-Rasch, L; Pirzadeh, P; Woin, P

    2003-05-08

    The aim of this study was to investigate the short-term (2 weeks) effects of the herbicide metsulfuron methyl alone and in combination with the insecticide cypermethrin in freshwater enclosures (80 l). We used a factorial design with four levels of herbicide (0, 1, 5, 20 microg/l) and two levels of insecticide (0 and 0.05 microg/l). The root growth of the macrophyte species Elodea canadensis and Myriophyllum spicatum decreased following exposure to the lowest concentration of metsulfuron methyl tested. Metsulfuron methyl exposure resulted in a decreased pH in the aquatic enclosure at the lowest concentration tested, which is most likely a further indication of decreased macrophyte primary production. The biomass of periphytic algae growing on the leaves of M. spicatum increased in the enclosures exposed to metsulfuron methyl. The species composition of the periphytic algae differed significantly from the controls in the enclosures exposed to 20 microg/l of the herbicide. The increased biomass of periphytic algae on the leaves of the macrophytes is probably an indirect effect of the herbicide exposure. The exposure to metsulfuron methyl possibly induced a leakage of nutrients from the macrophyte leaves, which promoted an increased algal growth. The exposure to metsulfuron methyl did not alter the biomass or the species composition of the phytoplankton community. The zooplankton communities in the enclosures were dominated by rotifers, which were not affected by the exposure to cypermethrin. However, a cypermethrin exposure of 0.05 microg/l initially decreased the abundance of copepod nauplii. Ten days after exposure, the abundance of nauplii was significantly higher in the insecticide-exposed enclosures compared with the non-exposed enclosures. This might be an indication of a sub-lethal stress response, which either increased the number of offspring produced or induced an increased hatching of copepod resting stages. No combined effects of the herbicide and insecticide exposure, either direct or indirect, were observed in the enclosure study. Significant effects on the macrophytes were observed following exposure to 1 microg metsulfuron methyl per litre in the enclosure study. Furthermore, a single species laboratory assay indicated that the shoot elongation of E. canadensis decreased following exposure to >or=0.1 microg metsulfuron methyl per litre. These concentrations are well within the range of expected environmental concentrations, thus this study shows that aquatic ecosystems, in particular those which are macrophyte-dominated, may be affected by metsulfuron methyl at concentrations that may well occur in water bodies adjacent to agricultural land.

  19. Chemopreventive efficacy of a betel leaf extract against benzo[a]pyrene-induced forestomach tumors in mice.

    PubMed

    Bhide, S V; Zariwala, M B; Amonkar, A J; Azuine, M A

    1991-09-01

    The effect of betel leaf extract and some of its constituents, eugenol, hydroxychavicol, beta-carotene and alpha-tocopherol, on benzo[a]pyrene-induced forestomach neoplasia in male Swiss mice was examined. Betel leaf and its constituents decreased the number of papillomas per animal with the maximum protection, considering molar dosage, exhibited by beta-carotene and alpha-tocopherol. Except for beta-carotene, eugenol, hydroxychavicol and alpha-tocopherol increased the levels of reduced glutathione in the liver while glutathione S-transferase activity was enhanced by all except eugenol. Of seven sources, Banarasi betel leaves showed the maximum amounts of beta-carotene and alpha-tocopherol.

  20. Blossom thinning in apple and peach with an essential oil

    USDA-ARS?s Scientific Manuscript database

    A series of experiments were conducted with apple (Malus xdomestica) and peach [Prunus persica (L.) Batsch] from 2003-2008 to evaluate the flower thinning efficacy of eugenol and a eugenol-based essential oil. Flower thinning effects by hand defoliation and alternative chemical agents were compared...

  1. Intra-laboratory study to determine the reproducibility of LLNA:BrdU-ELISA for the prediction of the skin sensitizing potential of chemicals.

    PubMed

    Chen, Wei; Xing, Caihong; Hou, Fenxia

    The Local Lymph Node Assay (LLNA) has been designated as the first-choice in vivo assay for identification the skin sensitization potential of new chemicals. The LLNA:BrdU-ELISA is a validated non-radioactive modification to the LLNA. An intra-laboratory reproducibility study for the LLNA:BrdU-ELISA was conducted to demonstrate its adequate performance in our laboratory. Ten independent LLNA:BrdU-ELISAs with the preferred positive controls (PCs), i.e., 25% hexyl cinnamic aldehyde (HCA) and 25% eugenol, were conducted within a period of less than one year. In addition, different concentrations of 2,4-dinitrochlorobenzene (DNCB, an extreme sensitizer) (0.01, 0.1 and 0.3%), HCA (10, 25 and 50%) and eugenol (10, 25 and 50%), were tested to determine the EC1.6 values. Special Pathogen Free female CBA/J mice of 8-10weeks old were randomly allocated to the groups, each group having 4 mice. 25μl of AOO (vehicle, acetone: olive oil=4:1, v/v) or HCA, eugenol, DNCB at the needed concentration was applied to the dorsum of each ear of the mice, daily for 3 consecutive days. A single intraperitoneal injection of 0.5ml of BrdU solution (10mg/ml) was given on day 5. On day 6, a pair of auricular lymph nodes from each mouse was excised, and BrdU ELISA analysis was conducted. The result for each group is expressed as the mean Stimulation Index (SI). The mean of the 10 mean SIs for 25% HCA (2.58±0.95) and 25% eugenol (3.51±1.25) was not significantly different to that from the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) (i.e., the data on the formal validation study for the LLNA:BrdU-ELISA by the ICCVAM) (3.03±2.00 for 25% HCA, 6.13±6.06 for 25% eugenol) (P>0.05), with even smaller Coefficient of Variations (CV) (36.8% for 25% HCA, 35.6% for 25% eugenol) than that from the ICCVAM (66.0% for 25% HCA, 98.8% for 25% eugenol). In addition, the EC1.6 values for HCA, eugenol and DNCB (15.2, 12.5 and 0.25%, respectively) were consistent with that from the ICCVAM (12.92, 8.85 and 0.34%, respectively). The results indicate that the reliability for our laboratory to conduct the LLNA:BrdU-ELISA is successfully determined. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Subtle Decreases in DNA Methylation and Gene Expression at the Mouse Igf2 Locus Following Prenatal Alcohol Exposure: Effects of a Methyl-Supplemented Diet

    PubMed Central

    Downing, Chris; Johnson, Thomas E; Larson, Colin; Leakey, Tatiana I; Siegfried, Rachel N; Rafferty, Tonya M; Cooney, Craig A

    2010-01-01

    C57BL/6J (B6) mice are susceptible to in utero growth retardation and a number of morphological malformations following prenatal alcohol exposure, while DBA/2J (D2) mice are relatively resistant. We have previously shown that genomic imprinting may play a role in differential sensitivity between B6 and D2 (Downing and Gilliam 1999). The best characterized mechanism mediating genomic imprinting is differential DNA methylation. In the present study we examined DNA methylation and gene expression, in both embryonic and placental tissue, at the mouse Igf2 locus following in utero ethanol exposure. We also examined the effects of a methyl-supplemented diet on methylation and ethanol teratogenesis. In embryos from susceptible B6 mice, we found small decreases in DNA methylation at four CpG sites in one of the differentially methylated regions of the Igf2 locus; only one of the four sites showed a statistically significant decrease. We observed no significant decreases in methylation in placentae. All Igf2 transcripts showed approximately 1.5 fold decreases following intrauterine alcohol exposure. Placing dams on a methyl-supplemented diet before pregnancy and throughout gestation brought methylation back up to control levels. Methyl-supplementation also resulted in lower prenatal mortality, greater prenatal growth, and decreased digit malformations; it dramatically reduced vertebral malformations. Thus, while prenatal alcohol had only small effects on DNA methylation at the Igf2 locus, placing dams on a methyl-supplemented diet partially ameliorated ethanol teratogenesis. PMID:20705422

  3. Identification of repellent odorants to the body louse, Pediculus humanus corporis, in clove essential oil.

    PubMed

    Iwamatsu, Takuma; Miyamoto, Daisuke; Mitsuno, Hidefumi; Yoshioka, Yoshiaki; Fujii, Takeshi; Sakurai, Takeshi; Ishikawa, Yukio; Kanzaki, Ryohei

    2016-04-01

    The control of body lice is an important issue for human health and welfare because lice act as vectors of disease such as typhus, relapsing fever, and trench fever. Body lice exhibit avoidance behavior to some essential oils, including clove essential oil. Therefore, odorants containing clove essential oil components may potentially be useful in the development of repellents to body lice. However, such odorants that induce avoidance behavior in body lice have not yet been identified from clove essential oil. Here, we established an analysis method to evaluate the avoidance behavior of body lice to specific odorants. The behavioral analysis of the body lice in response to clove essential oil and its constituents revealed that eugenol, a major component of clove essential oil, has strong repellent effect on body lice, whereas the other components failed to induce obvious avoidance behavior. A comparison of the repellent effects of eugenol with those of other structurally related odorants revealed possible moieties that are important for the avoidance effects to body lice. The repellent effect of eugenol to body lice was enhanced by combining it with the other major component of clove essential oil, β-caryophyllene. We conclude that a synthetic blend of eugenol and β-caryophyllene is the most effective repellent to body lice. This finding will be valuable as the potential use of eugenol as body lice repellent.

  4. Antimicrobial eugenol nanoemulsion prepared by gum arabic and lecithin and evaluation of drying technologies.

    PubMed

    Hu, Qiaobin; Gerhard, Hannah; Upadhyaya, Indu; Venkitanarayanan, Kumar; Luo, Yangchao

    2016-06-01

    The purpose of present work was to develop eugenol oil nanoemulsions using gum arabic and lecithin as food grade natural emulsifiers, and study their antimicrobial activity. In addition, our study also evaluated different drying techniques (spray drying and freeze drying) on the morphology and redispersibility of nanoemulsion powders. The optimal fabrication method, physicochemical and structural characterization, stability, and antimicrobial activity were investigated. Results showed that nanoemusions with a particle size of 103.6±7.5nm were obtained by mixing aqueous phase (0.5% gum arabic, 0.5% lecithin, w/v) and eugenol oil (1.25%, w/v), which was premixed with ethanol (as a co-surfactant), followed by high speed homogenization process. The molecular interactions among emulsifiers and eugenol were evidenced by Fourier transform infrared spectroscopy. Buchi B-90 Nano Spray Dryer was evaluated as a powerful tool to obtain ultrafine spherical powders with a size of less than 500nm, compared to flake-like aggregation obtained by freeze-drying. The dried powders exhibited excellent re-dispersibility in water and maintained their physicochemical properties after re-hydration. The nanoemulsions did not adversely affect the antimicrobial activity of eugenol against Listeria monocytogenes and Salmonella Enteritidis. Therefore, the nanoemulsions have the potential to be applied in the food industry as a food preservative or sanitizer. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Electrochemical oxidation mechanism of eugenol on graphene modified carbon paste electrode and its analytical application to pharmaceutical analysis.

    PubMed

    Yildiz, Gulcemal; Aydogmus, Zeynep; Cinar, M Emin; Senkal, Filiz; Ozturk, Turan

    2017-10-01

    Electrochemical properties of eugenol were investigated on a graphene modified carbon paste electrode (CPE) by using voltammetric methods, which exhibited a well-defined irreversible peak at about 0.7V vs Ag/AgCl, NaCl (3M) in Britton-Robinson buffer at pH 2.0. Mechanism of the electrochemical reaction of eugenol was studied by performing density functional theory (DFT) computations and mass spectroscopic analysis. (CPCM:water)-wB97XD/aug-cc-PVTZ//(CPCM:water)-wB97XD/6-31G(d) level calculations predicted that the formation of product P2, possessing a para-quinoid structure, is preferred rather than the product P1, suggested in the literature, having an ortho-quinoid system. Determination of eugenol in a pharmaceutical sample was realized in the light of the electrochemical findings, and a validated voltammetric method for quantitative analysis of eugenol in a pharmaceutical formulation was proposed. The differential pulse voltammogram (DPV) peak currents were found to be linear in the concentration range of 1.0 × 10 -7 to 1.7 × 10 -5 M. The limit of detection (LOD) and the limit of quantification (LOQ) were obtained to be 7.0 × 10 -9 and 2.3 × 10 -8 , respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Prenatal antidepressant exposure associated with CYP2E1 DNA methylation change in neonates

    PubMed Central

    Gurnot, Cécile; Martin-Subero, Ignacio; Mah, Sarah M; Weikum, Whitney; Goodman, Sarah J; Brain, Ursula; Werker, Janet F; Kobor, Michael S; Esteller, Manel; Oberlander, Tim F; Hensch, Takao K

    2015-01-01

    Some but not all neonates are affected by prenatal exposure to serotonin reuptake inhibitor antidepressants (SRI) and maternal mood disturbances. Distinguishing the impact of these 2 exposures is challenging and raises critical questions about whether pharmacological, genetic, or epigenetic factors can explain the spectrum of reported outcomes. Using unbiased DNA methylation array measurements followed by a detailed candidate gene approach, we examined whether prenatal SRI exposure was associated with neonatal DNA methylation changes and whether such changes were associated with differences in birth outcomes. Prenatal SRI exposure was first associated with increased DNA methylation status primarily at CYP2E1(βNon-exposed = 0.06, βSRI-exposed = 0.30, FDR = 0); however, this finding could not be distinguished from the potential impact of prenatal maternal depressed mood. Then, using pyrosequencing of CYP2E1 regulatory regions in an expanded cohort, higher DNA methylation status—both the mean across 16 CpG sites (P < 0.01) and at each specific CpG site (P < 0.05)—was associated with exposure to lower 3rd trimester maternal depressed mood symptoms only in the SRI-exposed neonates, indicating a maternal mood x SRI exposure interaction. In addition, higher DNA methylation levels at CpG2 (P = 0.04), CpG9 (P = 0.04) and CpG10 (P = 0.02), in the interrogated CYP2E1 region, were associated with increased birth weight independently of prenatal maternal mood, SRI drug exposure, or gestational age at birth. Prenatal SRI antidepressant exposure and maternal depressed mood were associated with altered neonatal CYP2E1 DNA methylation status, which, in turn, appeared to be associated with birth weight. PMID:25891251

  7. ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE AND THE INORGANIC ARSENIC METHYLATION PHENOTYPE

    EPA Science Inventory

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidence suggest that some of the adverse health effects associated with chronic exposure to in...

  8. Gene-Specific Differential DNA Methylation and Chronic Arsenic Exposure in an Epigenome-Wide Association Study of Adults in Bangladesh

    PubMed Central

    Argos, Maria; Chen, Lin; Jasmine, Farzana; Tong, Lin; Pierce, Brandon L.; Roy, Shantanu; Paul-Brutus, Rachelle; Gamble, Mary V.; Harper, Kristin N.; Parvez, Faruque; Rahman, Mahfuzar; Rakibuz-Zaman, Muhammad; Slavkovich, Vesna; Baron, John A.; Graziano, Joseph H.; Kibriya, Muhammad G.

    2014-01-01

    Background: Inorganic arsenic is one of the most common naturally occurring contaminants found in the environment. Arsenic is associated with a number of health outcomes, with epigenetic modification suggested as a potential mechanism of toxicity. Objective: Among a sample of 400 adult participants, we evaluated the association between arsenic exposure, as measured by blood and urinary total arsenic concentrations, and epigenome-wide white blood cell DNA methylation. Methods: We used linear regression models to examine the associations between arsenic exposure and methylation at each CpG site, adjusted for sex, age, and batch. Differentially methylated loci were subsequently examined in relation to corresponding gene expression for functional evidence of gene regulation. Results: In adjusted analyses, we observed four differentially methylated CpG sites with urinary total arsenic concentration and three differentially methylated CpG sites with blood arsenic concentration, based on the Bonferroni-corrected significance threshold of p < 1 × 10–7. Methylation of PLA2G2C (probe cg04605617) was the most significantly associated locus in relation to both urinary (p = 3.40 × 10–11) and blood arsenic concentrations (p = 1.48 × 10–11). Three additional novel methylation loci—SQSTM1 (cg01225779), SLC4A4 (cg06121226), and IGH (cg13651690)—were also significantly associated with arsenic exposure. Further, there was evidence of methylation-related gene regulation based on gene expression for a subset of differentially methylated loci. Conclusions: We observed significant associations between arsenic exposure and gene-specific differential white blood cell DNA methylation, suggesting that epigenetic modifications may be an important pathway underlying arsenic toxicity. The specific differentially methylated loci identified may inform potential pathways for future interventions. Citation: Argos M, Chen L, Jasmine F, Tong L, Pierce BL, Roy S, Paul-Brutus R, Gamble MV, Harper KN, Parvez F, Rahman M, Rakibuz-Zaman M, Slavkovich V, Baron JA, Graziano JH, Kibriya MG, Ahsan H. 2015. Gene-specific differential DNA methylation and chronic arsenic exposure in an epigenome-wide association study of adults in Bangladesh. Environ Health Perspect 123:64–71; http://dx.doi.org/10.1289/ehp.1307884 PMID:25325195

  9. Exposure to Low Levels of Lead in Utero and Umbilical Cord Blood DNA Methylation in Project Viva: An Epigenome-Wide Association Study

    PubMed Central

    Hivert, Marie-France; Cardenas, Andres; Zhong, Jia; Rifas-Shiman, Sheryl L.; Agha, Golareh; Colicino, Elena; Just, Allan C.; Amarasiriwardena, Chitra; Lin, Xihong; Litonjua, Augusto A.; DeMeo, Dawn L.; Gillman, Matthew W.; Wright, Robert O.; Oken, Emily

    2017-01-01

    Background: Early-life exposure to lead is associated with deficits in neurodevelopment and with hematopoietic system toxicity. DNA methylation may be one of the underlying mechanisms for the adverse effects of prenatal lead on the offspring, but epigenome-wide methylation data for low levels of prenatal lead exposure are lacking. Objectives: We investigated the association between prenatal maternal lead exposure and epigenome-wide DNA methylation in umbilical cord blood nucleated cells in Project Viva, a prospective U.S.-based prebirth cohort with relatively low levels of lead exposure. Methods: Among 268 mother–infant pairs, we measured lead concentrations in red blood cells (RBC) from prenatal maternal blood samples, and using HumanMethylation450 Bead Chips, we measured genome-wide methylation levels at 482,397 CpG loci in umbilical cord blood and retained 394,460 loci after quality control. After adjustment for batch effects, cell types, and covariates, we used robust linear regression models to examine associations of prenatal lead exposure with DNA methylation in cord blood at epigenome-wide significance level [false discovery rate (FDR)<0.05]. Results: The mean [standard deviation (SD)] maternal RBC lead level was 1.22 (0.63) μg/dL. CpG cg10773601 showed an epigenome-wide significant negative association with prenatal lead exposure (−1.4% per doubling increase in lead exposure; p=2.3×10−7) and was annotated to C-Type Lectin Domain Family 11, Member A (CLEC11A), which functions as a growth factor for primitive hematopoietic progenitor cells. In sex-specific analyses, we identified more CpGs with FDR<0.05 among female infants (n=38) than among male infants (n=2). One CpG (cg24637308), which showed a strong negative association with prenatal lead exposure among female infants (−4.3% per doubling increase in lead exposure; p=1.1×10−06), was annotated to Dynein Heavy Chain Domain 1 gene (DNHD1) which is highly expressed in human brain. Interestingly, there were strong correlations between blood and brain methylation for CpG (cg24637308) based on another independent set of samples with a high proportion of female participants. Conclusion: Prenatal low-level lead exposure was associated with newborn DNA methylation, particularly in female infants. https://doi.org/10.1289/EHP1246 PMID:28858830

  10. Exposure to Low Levels of Lead in Utero and Umbilical Cord Blood DNA Methylation in Project Viva: An Epigenome-Wide Association Study.

    PubMed

    Wu, Shaowei; Hivert, Marie-France; Cardenas, Andres; Zhong, Jia; Rifas-Shiman, Sheryl L; Agha, Golareh; Colicino, Elena; Just, Allan C; Amarasiriwardena, Chitra; Lin, Xihong; Litonjua, Augusto A; DeMeo, Dawn L; Gillman, Matthew W; Wright, Robert O; Oken, Emily; Baccarelli, Andrea A

    2017-08-25

    Early-life exposure to lead is associated with deficits in neurodevelopment and with hematopoietic system toxicity. DNA methylation may be one of the underlying mechanisms for the adverse effects of prenatal lead on the offspring, but epigenome-wide methylation data for low levels of prenatal lead exposure are lacking. We investigated the association between prenatal maternal lead exposure and epigenome-wide DNA methylation in umbilical cord blood nucleated cells in Project Viva, a prospective U.S.-based prebirth cohort with relatively low levels of lead exposure. Among 268 mother-infant pairs, we measured lead concentrations in red blood cells (RBC) from prenatal maternal blood samples, and using HumanMethylation450 Bead Chips, we measured genome-wide methylation levels at 482,397 CpG loci in umbilical cord blood and retained 394,460 loci after quality control. After adjustment for batch effects, cell types, and covariates, we used robust linear regression models to examine associations of prenatal lead exposure with DNA methylation in cord blood at epigenome-wide significance level [false discovery rate (FDR)<0.05]. The mean [standard deviation (SD)] maternal RBC lead level was 1.22 (0.63) μg/dL. CpG cg10773601 showed an epigenome-wide significant negative association with prenatal lead exposure (-1.4% per doubling increase in lead exposure; p=2.3×10-7) and was annotated to C-Type Lectin Domain Family 11, Member A ( CLEC11A ), which functions as a growth factor for primitive hematopoietic progenitor cells. In sex-specific analyses, we identified more CpGs with FDR<0.05 among female infants (n=38) than among male infants (n=2). One CpG (cg24637308), which showed a strong negative association with prenatal lead exposure among female infants (-4.3% per doubling increase in lead exposure; p=1.1×10-06), was annotated to Dynein Heavy Chain Domain 1 gene ( DNHD1 ) which is highly expressed in human brain. Interestingly, there were strong correlations between blood and brain methylation for CpG (cg24637308) based on another independent set of samples with a high proportion of female participants. Prenatal low-level lead exposure was associated with newborn DNA methylation, particularly in female infants. https://doi.org/10.1289/EHP1246.

  11. Effect of Exposure to 900 MHz GSM Mobile Phone Radiofrequency Radiation on Estrogen Receptor Methylation Status in Colon Cells of Male Sprague Dawley Rats.

    PubMed

    Mokarram, P; Sheikhi, M; Mortazavi, S M J; Saeb, S; Shokrpour, N

    2017-03-01

    Over the past several years, the rapidly increasing use of mobile phones has raised global concerns about the biological effects of exposure to radiofrequency (RF) radiation. Numerous studies have shown that exposure to electromagnetic fields (EMFs) can be associated with effects on the nervous, endocrine, immune, cardiovascular, hematopoietic and ocular systems. In spite of genetic diversity, the onset and progression of cancer can be controlled by epigenetic mechanisms such as gene promoter methylation. There are extensive studies on the epigenetic changes of the tumor suppressor genes as well as the identification of methylation biomarkers in colorectal cancer. Some studies have revealed that genetic changes can be induced by exposure to RF radiation. However, whether or not RF radiation is capable of inducing epigenetic alteration has not been clarified yet. To date, no study has been conducted on the effect of radiation on epigenetic alterations in colorectal cancer (CRC). Several studies have also shown that methylation of estrogen receptor α (ERα), MYOD, MGMT, SFRP2 and P16 play an important role in CRC. It can be hypothesized that RF exposure can be a reason for the high incidence of CRC in Iran. This study aimed to investigate whether epigenetic pattern of ERα is susceptible to RF radiation and if RF radiation can induce radioadaptive response as epigenetic changes after receiving the challenge dose (γ-ray). 40 male Sprague-Dawley rats were divided into 4 equal groups (Group I: exposure to RF radiation of a GSM cell phone for 4 hours and sacrificed after 24 hours; Group II: RF exposure for 4 hours, exposure to Co-60 gamma radiation (3 Gy) after 24 hours and sacrificed after 72 hrs; Group III: only 3Gy gamma radiation; Group 4: control group). DNA from colon tissues was extracted to evaluate the methylation status by methylation specific PCR. Our finding showed that exposure to GSM cell phone RF radiation was capable of altering the pattern of ERα gene methylation compared to that of non-exposed controls. Furthermore, no adaptive response phenomenon was induced in the pattern of ERα gene methylation after exposure to the challenging dose of Co-60 γ-rays. It can be concluded that exposure to RF radiation emitted by GSM mobile phones can lead to epigenetic detrimental changes in ERα promoter methylation pattern.

  12. Preparation of eugenol-based polyurethane

    NASA Astrophysics Data System (ADS)

    Li, Yupeng; Luo, Fang; Cheng, Chuanjie

    2018-03-01

    The regenerative eugenol was used as the starting material to prepare diol species by two steps, with a total yield of 28%. Furthermore, the prepared diol reacts with 1,6-hexadiisocyanate(HDI) to afford the corresponding polyurethane (PU). The structure of intermediates and PU are characterized by 1H-NMR or IR.

  13. Differential DNA methylation at conserved non-genic elements and evidence for transgenerational inheritance following developmental exposure to mono(2-ethylhexyl) phthalate and 5-azacytidine in zebrafish.

    PubMed

    Kamstra, Jorke H; Sales, Liana Bastos; Aleström, Peter; Legler, Juliette

    2017-01-01

    Exposure to environmental stressors during development may lead to latent and transgenerational adverse health effects. To understand the role of DNA methylation in these effects, we used zebrafish as a vertebrate model to investigate heritable changes in DNA methylation following chemical-induced stress during early development. We exposed zebrafish embryos to non-embryotoxic concentrations of the biologically active phthalate metabolite mono(2-ethylhexyl) phthalate (MEHP, 30 µM) and the DNA methyltransferase 1 inhibitor 5-azacytidine (5AC, 10 µM). Direct, latent and transgenerational effects on DNA methylation were assessed using global, genome-wide and locus-specific DNA methylation analyses. Following direct exposure in zebrafish embryos from 0 to 6 days post-fertilization, genome-wide analysis revealed a multitude of differentially methylated regions, strongly enriched at conserved non-genic elements for both compounds. Pathways involved in adipogenesis were enriched with the putative obesogenic compound MEHP. Exposure to 5AC resulted in enrichment of pathways involved in embryonic development and transgenerational effects on larval body length. Locus-specific methylation analysis of 10 differentially methylated sites revealed six of these loci differentially methylated in sperm sampled from adult zebrafish exposed during development to 5AC, and in first and second generation larvae. With MEHP, consistent changes were found at 2 specific loci in first and second generation larvae. Our results suggest a functional role for DNA methylation on cis-regulatory conserved elements following developmental exposure to compounds. Effects on these regions are potentially transferred to subsequent generations.

  14. Effects of Particulate Matter on Genomic DNA Methylation Content and iNOS Promoter Methylation

    PubMed Central

    Tarantini, Letizia; Bonzini, Matteo; Apostoli, Pietro; Pegoraro, Valeria; Bollati, Valentina; Marinelli, Barbara; Cantone, Laura; Rizzo, Giovanna; Hou, Lifang; Schwartz, Joel; Bertazzi, Pier Alberto; Baccarelli, Andrea

    2009-01-01

    Background Altered patterns of gene expression mediate the effects of particulate matter (PM) on human health, but mechanisms through which PM modifies gene expression are largely undetermined. Objectives We aimed at identifying short- and long-term effects of PM exposure on DNA methylation, a major genomic mechanism of gene expression control, in workers in an electric furnace steel plant with well-characterized exposure to PM with aerodynamic diameters < 10 μm (PM10). Methods We measured global genomic DNA methylation content estimated in Alu and long interspersed nuclear element-1 (LINE-1) repeated elements, and promoter DNA methylation of iNOS (inducible nitric oxide synthase), a gene suppressed by DNA methylation and induced by PM exposure in blood leukocytes. Quantitative DNA methylation analysis was performed through bisulfite PCR pyrosequencing on blood DNA obtained from 63 workers on the first day of a work week (baseline, after 2 days off work) and after 3 days of work (postexposure). Individual PM10 exposure was between 73.4 and 1,220 μg/m3. Results Global methylation content estimated in Alu and LINE-1 repeated elements did not show changes in postexposure measures compared with baseline. PM10 exposure levels were negatively associated with methylation in both Alu [β = −0.19 %5-methylcytosine (%5mC); p = 0.04] and LINE-1 [β = −0.34 %5mC; p = 0.04], likely reflecting long-term PM10 effects. iNOS promoter DNA methylation was significantly lower in postexposure blood samples compared with baseline (difference = −0.61 %5mC; p = 0.02). Conclusions We observed changes in global and gene specific methylation that should be further characterized in future investigations on the effects of PM. PMID:19270791

  15. Epigenome-Wide Meta-Analysis of Methylation in Children Related to Prenatal NO2 Air Pollution Exposure

    PubMed Central

    Gruzieva, Olena; Xu, Cheng-Jian; Breton, Carrie V.; Annesi-Maesano, Isabella; Antó, Josep M.; Auffray, Charles; Ballereau, Stéphane; Bellander, Tom; Bousquet, Jean; Bustamante, Mariona; Charles, Marie-Aline; de Kluizenaar, Yvonne; den Dekker, Herman T.; Duijts, Liesbeth; Felix, Janine F.; Gehring, Ulrike; Guxens, Mònica; Jaddoe, Vincent V.W.; Jankipersadsing, Soesma A.; Merid, Simon Kebede; Kere, Juha; Kumar, Ashish; Lemonnier, Nathanael; Lepeule, Johanna; Nystad, Wenche; Page, Christian Magnus; Panasevich, Sviatlana; Postma, Dirkje; Slama, Rémy; Sunyer, Jordi; Söderhäll, Cilla; Yao, Jin; London, Stephanie J.; Pershagen, Göran; Koppelman, Gerard H.; Melén, Erik

    2016-01-01

    Background: Prenatal exposure to air pollution is considered to be associated with adverse effects on child health. This may partly be mediated by mechanisms related to DNA methylation. Objectives: We investigated associations between exposure to air pollution, using nitrogen dioxide (NO2) as marker, and epigenome-wide cord blood DNA methylation. Methods: We meta-analyzed the associations between NO2 exposure at residential addresses during pregnancy and cord blood DNA methylation (Illumina 450K) in four European and North American studies (n = 1,508) with subsequent look-up analyses in children ages 4 (n = 733) and 8 (n = 786) years. Additionally, we applied a literature-based candidate approach for antioxidant and anti-inflammatory genes. To assess influence of exposure at the transcriptomics level, we related mRNA expression in blood cells to NO2 exposure in 4- (n = 111) and 16-year-olds (n = 239). Results: We found epigenome-wide significant associations [false discovery rate (FDR) p < 0.05] between maternal NO2 exposure during pregnancy and DNA methylation in newborns for 3 CpG sites in mitochondria-related genes: cg12283362 (LONP1), cg24172570 (3.8 kbp upstream of HIBADH), and cg08973675 (SLC25A28). The associations with cg08973675 methylation were also significant in the older children. Further analysis of antioxidant and anti-inflammatory genes revealed differentially methylated CpGs in CAT and TPO in newborns (FDR p < 0.05). NO2 exposure at the time of biosampling in childhood had a significant impact on CAT and TPO expression. Conclusions: NO2 exposure during pregnancy was associated with differential offspring DNA methylation in mitochondria-related genes. Exposure to NO2 was also linked to differential methylation as well as expression of genes involved in antioxidant defense pathways. Citation: Gruzieva O, Xu CJ, Breton CV, Annesi-Maesano I, Antó JM, Auffray C, Ballereau S, Bellander T, Bousquet J, Bustamante M, Charles MA, de Kluizenaar Y, den Dekker HT, Duijts L, Felix JF, Gehring U, Guxens M, Jaddoe VV, Jankipersadsing SA, Merid SK, Kere J, Kumar A, Lemonnier N, Lepeule J, Nystad W, Page CM, Panasevich S, Postma D, Slama R, Sunyer J, Söderhäll C, Yao J, London SJ, Pershagen G, Koppelman GH, Melén E. 2017. Epigenome-wide meta-analysis of methylation in children related to prenatal NO2 air pollution exposure. Environ Health Perspect 125:104–110; http://dx.doi.org/10.1289/EHP36 PMID:27448387

  16. Epigenome-Wide Meta-Analysis of Methylation in Children Related to Prenatal NO2 Air Pollution Exposure.

    PubMed

    Gruzieva, Olena; Xu, Cheng-Jian; Breton, Carrie V; Annesi-Maesano, Isabella; Antó, Josep M; Auffray, Charles; Ballereau, Stéphane; Bellander, Tom; Bousquet, Jean; Bustamante, Mariona; Charles, Marie-Aline; de Kluizenaar, Yvonne; den Dekker, Herman T; Duijts, Liesbeth; Felix, Janine F; Gehring, Ulrike; Guxens, Mònica; Jaddoe, Vincent V W; Jankipersadsing, Soesma A; Merid, Simon Kebede; Kere, Juha; Kumar, Ashish; Lemonnier, Nathanael; Lepeule, Johanna; Nystad, Wenche; Page, Christian Magnus; Panasevich, Sviatlana; Postma, Dirkje; Slama, Rémy; Sunyer, Jordi; Söderhäll, Cilla; Yao, Jin; London, Stephanie J; Pershagen, Göran; Koppelman, Gerard H; Melén, Erik

    2017-01-01

    Prenatal exposure to air pollution is considered to be associated with adverse effects on child health. This may partly be mediated by mechanisms related to DNA methylation. We investigated associations between exposure to air pollution, using nitrogen dioxide (NO2) as marker, and epigenome-wide cord blood DNA methylation. We meta-analyzed the associations between NO2 exposure at residential addresses during pregnancy and cord blood DNA methylation (Illumina 450K) in four European and North American studies (n = 1,508) with subsequent look-up analyses in children ages 4 (n = 733) and 8 (n = 786) years. Additionally, we applied a literature-based candidate approach for antioxidant and anti-inflammatory genes. To assess influence of exposure at the transcriptomics level, we related mRNA expression in blood cells to NO2 exposure in 4- (n = 111) and 16-year-olds (n = 239). We found epigenome-wide significant associations [false discovery rate (FDR) p < 0.05] between maternal NO2 exposure during pregnancy and DNA methylation in newborns for 3 CpG sites in mitochondria-related genes: cg12283362 (LONP1), cg24172570 (3.8 kbp upstream of HIBADH), and cg08973675 (SLC25A28). The associations with cg08973675 methylation were also significant in the older children. Further analysis of antioxidant and anti-inflammatory genes revealed differentially methylated CpGs in CAT and TPO in newborns (FDR p < 0.05). NO2 exposure at the time of biosampling in childhood had a significant impact on CAT and TPO expression. NO2 exposure during pregnancy was associated with differential offspring DNA methylation in mitochondria-related genes. Exposure to NO2 was also linked to differential methylation as well as expression of genes involved in antioxidant defense pathways. Citation: Gruzieva O, Xu CJ, Breton CV, Annesi-Maesano I, Antó JM, Auffray C, Ballereau S, Bellander T, Bousquet J, Bustamante M, Charles MA, de Kluizenaar Y, den Dekker HT, Duijts L, Felix JF, Gehring U, Guxens M, Jaddoe VV, Jankipersadsing SA, Merid SK, Kere J, Kumar A, Lemonnier N, Lepeule J, Nystad W, Page CM, Panasevich S, Postma D, Slama R, Sunyer J, Söderhäll C, Yao J, London SJ, Pershagen G, Koppelman GH, Melén E. 2017. Epigenome-wide meta-analysis of methylation in children related to prenatal NO2 air pollution exposure. Environ Health Perspect 125:104-110; http://dx.doi.org/10.1289/EHP36.

  17. USE OF EXPOSURE-RELATED DOSE ESTIMATING MODEL (ERDEM) FOR ASSESSMENT OF AGGREGATE EXPOSURE OF INFANT AND CHILDREN TO N-METHYL CARBAMATE INSECTICIDES

    EPA Science Inventory

    A physiologically based pharmacokinetic (PBPK) model was developed within the Exposure Related Dose Estimating Model (ERDEM) framework to investigate selected exposure inputs related to recognized exposure scenarios of infants and children to N-methyl carbamate pesticides as spec...

  18. Dose-Response Relationship between Inorganic Arsenic Exposure and Lung Cancer among Arseniasis Residents with Low Methylation Capacity.

    PubMed

    Hsu, Kuang-Hung; Tsui, Ke-Hung; Hsu, Ling-I; Chiou, Hung-Yi; Chen, Chien-Jen

    2017-05-01

    Background: Exposure to inorganic arsenic (InAs) has been documented as a risk factor for lung cancer. This study examined the association between InAs exposure, its metabolism, and lung cancer occurrence. Methods: We followed 1,300 residents from an arseniasis area in Taiwan, determined urinary InAs metabolites, and identified 39 lung cancer cases. Cox proportional hazards model was performed. Results: The results demonstrated that participants with either the primary methylation index [monomethylarsonic acid (MMA)/InAs] or the secondary methylation index [dimethylarsenic acid (DMA)/MMA] lower than their respective median values were at a higher risk of lung cancer (HRs from 3.41 to 4.66) than those with high methylation capacity. The incidence density of lung cancer increased from 79.9/100,000 (year -1 ) to 467.4/100,000 (year -1 ) for residents with low methylation capacity and from 0 to 158.5/100,000 (year -1 ) for residents with high methylation capacity when the arsenic exposure dose increased from 2 to 10 ppb to ≥200 ppb, respectively. The analyses revealed a dose-response relationship between lung cancer occurrence and increasing arsenic concentrations in drinking water as well as cumulative arsenic exposure (monotonic trend test; P < 0.05 and P < 0.05, respectively) among the residents with low methylation capacity. The relationship between arsenic exposure and lung cancer among high methylators was not statistically significant. Conclusions: Hypomethylation responses to InAs exposure may dose dependently increase lung cancer occurrence. Impact: The high-risk characteristics observed among those exposed should be considered in future preventive medicine and research on arsenic carcinogenesis. Cancer Epidemiol Biomarkers Prev; 26(5); 756-61. ©2016 AACR . ©2016 American Association for Cancer Research.

  19. DNA methylation levels and long-term trihalomethane exposure in drinking water: an epigenome-wide association study

    PubMed Central

    Salas, Lucas A; Bustamante, Mariona; Gonzalez, Juan R; Gracia-Lavedan, Esther; Moreno, Victor; Kogevinas, Manolis; Villanueva, Cristina M

    2015-01-01

    Trihalomethanes (THM) are undesired disinfection byproducts (DBPs) formed during water treatment. Mice exposed to DBPs showed global DNA hypomethylation and c-myc and c-jun gene-specific hypomethylation, while evidence of epigenetic effects in humans is scarce. We explored the association between lifetime THM exposure and DNA methylation through an epigenome-wide association study. We selected 138 population-based controls from a case-control study of colorectal cancer conducted in Barcelona, Spain, exposed to average lifetime THM levels ≤85 μg/L vs. >85 μg/L (N = 68 and N = 70, respectively). Mean age of participants was 70 years, and 54% were male. Average lifetime THM level in the exposure groups was 64 and 130 µg/L, respectively. DNA was extracted from whole blood and was bisulphite converted to measure DNA methylation levels using the Illumina HumanMethylation450 BeadChip. Data preprocessing was performed using RnBeads. Methylation was compared between exposure groups using empirical Bayes moderated linear regression for CpG sites and Gaussian kernel for CpG regions. ConsensusPathDB was used for gene set enrichment. Statistically significant differences in methylation between exposure groups was found in 140 CpG sites and 30 gene-related regions, after false discovery rate <0.05 and adjustment for age, sex, methylation first principal component, and blood cell proportion. The annotated genes were localized to several cancer pathways. Among them, 29 CpGs had methylation levels associated with THM levels (|Δβ|≥0.05) located in 11 genes associated with cancer in other studies. Our results suggest that THM exposure may affect DNA methylation in genes related to tumors, including colorectal and bladder cancers. Future confirmation studies are required. PMID:26039576

  20. Sex-specific effects of early life cadmium exposure on DNA methylation and implications for birth weight.

    PubMed

    Kippler, Maria; Engström, Karin; Mlakar, Simona Jurkovic; Bottai, Matteo; Ahmed, Sultan; Hossain, Mohammad Bakhtiar; Raqib, Rubhana; Vahter, Marie; Broberg, Karin

    2013-05-01

    Dietary cadmium exposure was recently found to alter DNA methylation in adults, but data on effects early in life are lacking. Our objective was to evaluate associations between prenatal cadmium exposure, DNA methylation and birth weight. In total 127 mother-child pairs from rural Bangladesh were studied. For comparison, we included 56 children at 4.5 y. Cadmium concentrations in mothers' blood (gestational week 14) and children's urine were measured by ICPMS. Global DNA methylation was analyzed by Infinium HumanMethylation450K BeadChip in cord blood and children's blood. Maternal cadmium exposure was associated with cord blood DNA methylation (p-value < 10 (-16) ). The association was markedly sex-specific. In boys, 96% of the top 500 CpG sites showed positive correlations (rS-values > 0.50), whereas most associations in girls were inverse; only 29% were positive (rS > 0.45). In girls we found overrepresentation of methylation changes in genes associated with organ development, morphology and mineralization of bone, whereas changes in boys were found in cell death-related genes. Several individual CpG sites that were positively associated with cadmium were inversely correlated with birth weight, although none statistically significant after correction for multiple comparisons. The associations were, however, fairly robust in multivariable-adjusted linear regression models. We identified CpG sites that were significantly associated with cadmium exposure in both newborns and 4.5-y-old children. In conclusion, cadmium exposure in early life appears to alter DNA methylation differently in girls and boys. This is consistent with previous findings of sex-specific cadmium toxicity. Cadmium-related changes in methylation were also related to lower birth weight.

  1. Sex-specific effects of early life cadmium exposure on DNA methylation and implications for birth weight

    PubMed Central

    Kippler, Maria; Engström, Karin; Mlakar, Simona Jurkovic; Bottai, Matteo; Ahmed, Sultan; Hossain, Mohammad Bakhtiar; Raqib, Rubhana; Vahter, Marie; Broberg, Karin

    2013-01-01

    Dietary cadmium exposure was recently found to alter DNA methylation in adults, but data on effects early in life are lacking. Our objective was to evaluate associations between prenatal cadmium exposure, DNA methylation and birth weight. In total 127 mother-child pairs from rural Bangladesh were studied. For comparison, we included 56 children at 4.5 y. Cadmium concentrations in mothers’ blood (gestational week 14) and children’s urine were measured by ICPMS. Global DNA methylation was analyzed by Infinium HumanMethylation450K BeadChip in cord blood and children’s blood. Maternal cadmium exposure was associated with cord blood DNA methylation (p-value < 10–16). The association was markedly sex-specific. In boys, 96% of the top 500 CpG sites showed positive correlations (rS-values > 0.50), whereas most associations in girls were inverse; only 29% were positive (rS > 0.45). In girls we found overrepresentation of methylation changes in genes associated with organ development, morphology and mineralization of bone, whereas changes in boys were found in cell death-related genes. Several individual CpG sites that were positively associated with cadmium were inversely correlated with birth weight, although none statistically significant after correction for multiple comparisons. The associations were, however, fairly robust in multivariable-adjusted linear regression models. We identified CpG sites that were significantly associated with cadmium exposure in both newborns and 4.5-y-old children. In conclusion, cadmium exposure in early life appears to alter DNA methylation differently in girls and boys. This is consistent with previous findings of sex-specific cadmium toxicity. Cadmium-related changes in methylation were also related to lower birth weight. PMID:23644563

  2. Promoter methylation status in genes related with inflammation, nitrosative stress and xenobiotic metabolism in low-level benzene exposure: Searching for biomarkers of oncogenesis.

    PubMed

    Jiménez-Garza, Octavio; Guo, Liqiong; Byun, Hyang-Min; Carrieri, Mariella; Bartolucci, Giovanni Battista; Zhong, Jia; Baccarelli, Andrea A

    2017-11-01

    Exposure to low levels of benzene may cause acute myeloid leukemia in humans. Epigenetic effects in benzene exposure have been studied for tumor suppressor genes and oxidative stress-related genes, but other cellular pathways must be explored. Here, we studied promoter DNA methylation of IL6, CYP2E1 and iNOS in blood cells from three groups of workers: a) gas station attendants (GS) exposed to low levels of benzene; b) plastic shoe factory workers (PS) exposed to other solvents different to benzene and c) administrative workers as a reference group with no solvent exposure (C). IL6 promoter methylation was higher in GS workers (p < 0.05). Also in GS, CYP2E1 promoter methylation negatively correlated with benzene levels (r = -0.47, p < 0.05); iNOS promoter methylation positively correlated with CYP2E1 promoter methylation (r = 0.29, p < 0.05), cumulative time of exposure (r = 0.31, p < 0.05) as well as with urinary levels of S- Phenyl mercapturic acid (SPMA), (r = 0.55, p < 0.05). Our results demonstrate alterations in the inflammation pathway at the epigenetic level associated with exposure to benzene. Correlations between iNOS methylation with both CYP2E1 methylation and urinary SPMA levels represent novel evidence about CYP2E1 epigenetic regulation and activity related with nitrosative stress, making promoter methylation status of these genes a potential biomarker in early stages of oncogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. DNA methylation and exposure to ambient air pollution in two prospective cohorts.

    PubMed

    Plusquin, Michelle; Guida, Florence; Polidoro, Silvia; Vermeulen, Roel; Raaschou-Nielsen, Ole; Campanella, Gianluca; Hoek, Gerard; Kyrtopoulos, Soterios A; Georgiadis, Panagiotis; Naccarati, Alessio; Sacerdote, Carlotta; Krogh, Vittorio; Bas Bueno-de-Mesquita, H; Monique Verschuren, W M; Sayols-Baixeras, Sergi; Panni, Tommaso; Peters, Annette; Hebels, Dennie G A J; Kleinjans, Jos; Vineis, Paolo; Chadeau-Hyam, Marc

    2017-11-01

    Long-term exposure to air pollution has been associated with several adverse health effects including cardiovascular, respiratory diseases and cancers. However, underlying molecular alterations remain to be further investigated. The aim of this study is to investigate the effects of long-term exposure to air pollutants on (a) average DNA methylation at functional regions and, (b) individual differentially methylated CpG sites. An assumption is that omic measurements, including the methylome, are more sensitive to low doses than hard health outcomes. This study included blood-derived DNA methylation (Illumina-HM450 methylation) for 454 Italian and 159 Dutch participants from the European Prospective Investigation into Cancer and Nutrition (EPIC). Long-term air pollution exposure levels, including NO 2 , NO x , PM 2.5 , PM coarse , PM 10 , PM 2.5 absorbance (soot) were estimated using models developed within the ESCAPE project, and back-extrapolated to the time of sampling when possible. We meta-analysed the associations between the air pollutants and global DNA methylation, methylation in functional regions and epigenome-wide methylation. CpG sites found differentially methylated with air pollution were further investigated for functional interpretation in an independent population (EnviroGenoMarkers project), where (N=613) participants had both methylation and gene expression data available. Exposure to NO 2 was associated with a significant global somatic hypomethylation (p-value=0.014). Hypomethylation of CpG island's shores and shelves and gene bodies was significantly associated with higher exposures to NO 2 and NO x . Meta-analysing the epigenome-wide findings of the 2 cohorts did not show genome-wide significant associations at single CpG site level. However, several significant CpG were found if the analyses were separated by countries. By regressing gene expression levels against methylation levels of the exposure-related CpG sites, we identified several significant CpG-transcript pairs and highlighted 5 enriched pathways for NO 2 and 9 for NO x mainly related to the immune system and its regulation. Our findings support results on global hypomethylation associated with air pollution, and suggest that the shores and shelves of CpG islands and gene bodies are mostly affected by higher exposure to NO 2 and NO x . Functional differences in the immune system were suggested by transcriptome analyses. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. FKBP5 methylation as a possible marker for cortisol state and transient cortisol exposure in healthy human subjects.

    PubMed

    Winkler, Britta K; Lehnert, Hendrik; Oster, Henrik; Kirchner, Henriette; Harbeck, Birgit

    2017-10-01

    Current glucocorticoid replacement regimens, in adrenal insufficiency, fail to mimic the physiological cortisol secretion, thereby fostering serious side effects. To experimentally evaluate the impact of CpG methylation within the FKBP5 gene as a possible short- and long-term marker for cortisol exposure in humans. An ACTH-stimulation test was carried out and methylation status of the FKBP5 gene in leukocytes was determined. A negative correlation between basal levels of methylation and serum cortisol was observed. Individual changes in FKBP5 methylation after 24 h correlated with cortisol responses. Considering previous studies conducted with murine leucocytes, FKBP5 methylation may be suitable as a long-term biomarker, rather than acute glucocorticoid exposure, also in humans.

  5. Bisphenol A Exposure Disrupts Genomic Imprinting in the Mouse

    PubMed Central

    Susiarjo, Martha; Sasson, Isaac; Mesaros, Clementina; Bartolomei, Marisa S.

    2013-01-01

    Exposure to endocrine disruptors is associated with developmental defects. One compound of concern, to which humans are widely exposed, is bisphenol A (BPA). In model organisms, BPA exposure is linked to metabolic disorders, infertility, cancer, and behavior anomalies. Recently, BPA exposure has been linked to DNA methylation changes, indicating that epigenetic mechanisms may be relevant. We investigated effects of exposure on genomic imprinting in the mouse as imprinted genes are regulated by differential DNA methylation and aberrant imprinting disrupts fetal, placental, and postnatal development. Through allele-specific and quantitative real-time PCR analysis, we demonstrated that maternal BPA exposure during late stages of oocyte development and early stages of embryonic development significantly disrupted imprinted gene expression in embryonic day (E) 9.5 and 12.5 embryos and placentas. The affected genes included Snrpn, Ube3a, Igf2, Kcnq1ot1, Cdkn1c, and Ascl2; mutations and aberrant regulation of these genes are associated with imprinting disorders in humans. Furthermore, the majority of affected genes were expressed abnormally in the placenta. DNA methylation studies showed that BPA exposure significantly altered the methylation levels of differentially methylated regions (DMRs) including the Snrpn imprinting control region (ICR) and Igf2 DMR1. Moreover, exposure significantly reduced genome-wide methylation levels in the placenta, but not the embryo. Histological and immunohistochemical examinations revealed that these epigenetic defects were associated with abnormal placental development. In contrast to this early exposure paradigm, exposure outside of the epigenetic reprogramming window did not cause significant imprinting perturbations. Our data suggest that early exposure to common environmental compounds has the potential to disrupt fetal and postnatal health through epigenetic changes in the embryo and abnormal development of the placenta. PMID:23593014

  6. Third trimester phthalate exposure is associated with DNA methylation of growth-related genes in human placenta

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Chen, Jiao; Wang, Xiu; Song, Qi; Xu, Hui-Hui; Zhang, Yun-Hui

    2016-09-01

    Strong evidence implicates maternal phthalate exposure during pregnancy in contributing to adverse birth outcomes. Recent research suggests these effects might be mediated through the improper regulation of DNA methylation in offspring tissue. In this study, we examined associations between prenatal phthalate exposure and DNA methylation in human placenta. We recruited 181 mother-newborn pairs (80 fetal growth restriction newborns, 101 normal newborns) in Wenzhou, China and measured third trimester urinary phthalate metabolite concentrations and placental DNA methylation levels of IGF2 and AHRR. We found urinary concentrations of mono (2-ethyl-5- hydroxyhexyl) phthalate (MEHHP), and mono (2-ethyl-5-oxohexyl) phthalate (MEOHP) were significantly inversely associated with placental IGF2 DNA methylation. The associations were much more evident in fetal growth restriction (FGR) newborns than those in normal newborns. These findings suggest that changes in placental DNA methylation might be part of the underlying biological pathway between prenatal phthalate exposure and adverse fetal growth.

  7. Genome-wide analysis of DNA methylation changes induced by gestational arsenic exposure in liver tumors.

    PubMed

    Suzuki, Takehiro; Yamashita, Satoshi; Ushijima, Toshikazu; Takumi, Shota; Sano, Tomoharu; Michikawa, Takehiro; Nohara, Keiko

    2013-12-01

    Inorganic arsenic is known to be a human carcinogen. Previous studies have reported that DNA methylation changes are involved in arsenic-induced carcinogenesis, therefore, DNA methylation changes that are specific to arsenic-induced tumors would be useful to distinguish tumors induced by arsenic from tumors caused by other factors and to dissect arsenic carcinogenesis. Previous studies have shown that gestational arsenic exposure of C3H mice, which tend to spontaneously develop liver tumors, increases the incidence of tumors in male offspring. In this study we used the same experimental protocol as in those previous studies and searched for DNA regions where methylation status was specifically altered in the liver tumors of arsenic-exposed offspring by using methylated DNA immunoprecipitation-CpG island microarrays. The methylation levels of the DNA regions selected were measured by quantitative methylation-specific PCR and bisulfite sequencing. The results of this study clarified a number of regions where DNA methylation status was altered in the liver tumors in the C3H mice compared to normal liver tissues. Among such regions, we showed that a gene body region of the oncogene Fosb underwent alteration in DNA methylation by gestational arsenic exposure. We also showed that Fosb expression significantly increased corresponding to the DNA methylation level of the gene body in the arsenic-exposed group. These findings suggest that the DNA methylation status can be used to identify tumors increased by gestational arsenic exposure. © 2013 Japanese Cancer Association.

  8. Effects of developmental lead exposure on the hippocampal methylome: Influences of sex and timing and level of exposure.

    PubMed

    Singh, G; Singh, V; Wang, Zi-Xuan; Voisin, G; Lefebvre, F; Navenot, J-M; Evans, B; Verma, M; Anderson, D W; Schneider, J S

    2018-06-15

    Developmental lead (Pb) exposure results in persistent cognitive/behavioral impairments as well as an elevated risk for developing a variety of diseases in later life. Environmental exposures during development can result in a variety of epigenetic changes, including alterations in DNA methylation, that can influence gene expression patterns and affect the function and development of the nervous system. The present promoter-based methylation microarray profiling study explored the extent to which developmental Pb exposure may modify the methylome of a brain region, hippocampus, known to be sensitive to the effects of Pb exposure. Male and female Long Evans rats were exposed to 0 ppm, 150 ppm, 375 ppm, or 750 ppm Pb through perinatal exposures (gestation through lactation), early postnatal exposures (birth through weaning), or long-term postnatal exposures (birth through postnatal day 55). Results showed a significant contribution of sex to the hippocampal methylome and effects of Pb exposure level, with non-linear dose response effects on methylation. Surprisingly, the developmental period of exposure contributed only a small amount of variance to the overall data and gene ontology (GO) analysis revealed the largest number of overrepresented GO terms in the groups with the lowest level of exposure. The highest number of significant differentially methylated regions was found in females exposed to Pb at the lowest exposure level. Our data reinforce the significant effect that low level Pb exposure may have on gene-specific DNA methylation patterns in brain and that this occurs in a sex-dependent manner. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Prostate cancer and toxicity from critical use exemptions of methyl bromide: Environmental protection helps protect against human health risks

    PubMed Central

    2012-01-01

    Background Although ozone-depleting methyl bromide was destined for phase-out by 2005, it is still widely applied as a consequence of various critical-use-exemptions and mandatory international regulations aiming to restrict the spread of pests and alien species (e.g. in globalized transport and storage). The withdrawal of methyl bromide because of its environmental risk could fortuitously help in the containment of its human toxicity. Methods We performed a systematic review of the literature, including in vitro toxicological and epidemiological studies of occupational and community exposure to the halogenated hydrocarbon pesticide methyl bromide. We focused on toxic (especially chronic) or carcinogenic effects from the use of methyl bromide, on biomonitoring data and reference values. Eligible epidemiological studies were subjected to meta-analysis. Results Out of the 542 peer reviewed publications between 1990-2011, we found only 91 referring to toxicity of methyl bromide and 29 using the term "carcinogenic", "neoplastic" or "mutagenic". Several studies provide new additional data pertaining to the mechanistic aspects of methyl bromide toxicity. Few studies have performed a detailed exposure assessment including biomonitoring. Three evaluated epidemiological studies assessed a possible association between cancer and methyl bromide. Overall, exposure to methyl bromide is associated with an increased risk of prostate cancer OR, 1.21; 95% CI (0,98-1.49), P = 0.076. Two epidemiological studies have analyzed environmental, non-occupational exposure to methyl bromide providing evidence for its health risk to the general public. None of the epidemiological studies addressed its use as a fumigant in freight containers, although recent field and case reports do refer to its toxic effects associated with its use in shipping and storage. Conclusions Both the epidemiological evidence and toxicological data suggest a possible link between methyl bromide exposure and serious health problems, including prostate cancer risk from occupational and community exposure. The environmental risks of methyl bromide are not in doubt, but also its health risks, especially for genetically predisposed subjects, should not be underestimated. PMID:22284215

  10. Hair analysis as a useful procedure for detection of vapour exposure to chemical warfare agents: simulation of sulphur mustard with methyl salicylate.

    PubMed

    Spiandore, Marie; Piram, Anne; Lacoste, Alexandre; Josse, Denis; Doumenq, Pierre

    2014-06-01

    Chemical warfare agents (CWA) are highly toxic compounds which have been produced to kill or hurt people during conflicts or terrorist attacks. Despite the fact that their use is strictly prohibited according to international convention, populations' exposure still recently occurred. Development of markers of exposure to CWA is necessary to distinguish exposed victims from unexposed ones. We present the first study of hair usage as passive sampler to assess contamination by chemicals in vapour form. This work presents more particularly the hair adsorption capacity for methyl salicylate used as a surrogate of the vesicant sulphur mustard. Chemical vapours toxicity through the respiratory route has historically been defined through Haber's law's concentration-time (Ct) product, and vapour exposure of hair to methyl salicylate was conducted with various times or doses of exposure in the range of incapacitating and lethal Ct products corresponding to sulphur mustard. Following exposure, extraction of methyl salicylate from hair was conducted by simple soaking in dichloromethane. Methyl salicylate could be detected on hair for vapour concentration corresponding to about one fifth of the sulphur mustard concentration that would kill 50% of exposed individuals (LCt50). The amount of methyl salicylate recovered from hair increased with time or dose of exposure. It showed a good correlation with the concentration-time product, suggesting that hair could be used like a passive sampler to assess vapour exposure to chemical compounds. It introduces great perspectives concerning the use of hair as a marker of exposure to CWA. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Attraction of Diabrotica barberi Smith and Lawrence (Coleoptera: Chrysomelidae) to eugenol-baited traps in soybean

    USDA-ARS?s Scientific Manuscript database

    Diabrotica barberi Smith and Lawrence (the northern corn rootworm) is a native North American leaf beetle and a major pest of corn. However, adult D. barberi forage in various habitats outside of corn, including soybean, roadside vegetation, and prairie. Eugenol is a common floral volatile that ha...

  12. Using Ozone in Organic Chemistry Lab: The Ozonolysis of Eugenol

    ERIC Educational Resources Information Center

    Branan, Bruce M.; Butcher, Joshua T.; Olsen, Lawrence R.

    2007-01-01

    An ozonolysis experiment, suitable for undergraduate organic chemistry lab, is presented. Ozonolysis of eugenol (clove oil), followed by reductive workup furnishes an aldehyde that is easily identified by its NMR and IR spectra. Ozone (3-5% in oxygen) is produced using an easily built generator. (Contains 2 figures and 1 scheme.)

  13. Synthesis of Eugenol–Lauryl Methacrylate Copolymers via Cationic Polymerization

    NASA Astrophysics Data System (ADS)

    Fajrin, A.; Marliana, SD; Handayani, D. S.

    2018-04-01

    Eugenol is one of the most abundant natural resources in Indonesia. The recently bio-based polymer resin is created based on eugenol because eugenol is functionalized with the polymerizable group. In order to improve the functional properties of eugenol, in this research Eugenol–Lauryl Methacrylate copolymers (co-poly(Eg-LMA)) were synthesized by cationic polymerization using H2SO4 as an initiator under the nitrogen atmosphere. Structure identification of the copolymer showed the absorption of the vinyl group from the monomers disappear at the analysis through FTIR at the wave number 1637-1639 and 985-995 cm-1 and also 1H-NMR on the chemical shift 5,97 and 5,08 ppm. The resulting copolymers obtained brown powder in 32.03 % yieldsand melting point at 96 – 97 °C. Solubility test of the co-poly(Eg-LMA) showed that the polymer couldnot soluble in water but soluble in chloroform, diethyl ether, and benzene. Average molecular weight of co-poly(Eg-LMA) Led Ostwald viscometry was obtained 42020 with the degree of polymerization by 200.

  14. Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester

    PubMed Central

    Koeduka, Takao; Fridman, Eyal; Gang, David R.; Vassão, Daniel G.; Jackson, Brenda L.; Kish, Christine M.; Orlova, Irina; Spassova, Snejina M.; Lewis, Norman G.; Noel, Joseph P.; Baiga, Thomas J.; Dudareva, Natalia; Pichersky, Eran

    2006-01-01

    Phenylpropenes such as chavicol, t-anol, eugenol, and isoeugenol are produced by plants as defense compounds against animals and microorganisms and as floral attractants of pollinators. Moreover, humans have used phenylpropenes since antiquity for food preservation and flavoring and as medicinal agents. Previous research suggested that the phenylpropenes are synthesized in plants from substituted phenylpropenols, although the identity of the enzymes and the nature of the reaction mechanism involved in this transformation have remained obscure. We show here that glandular trichomes of sweet basil (Ocimum basilicum), which synthesize and accumulate phenylpropenes, possess an enzyme that can use coniferyl acetate and NADPH to form eugenol. Petunia (Petunia hybrida cv. Mitchell) flowers, which emit large amounts of isoeugenol, possess an enzyme homologous to the basil eugenol-forming enzyme that also uses coniferyl acetate and NADPH as substrates but catalyzes the formation of isoeugenol. The basil and petunia phenylpropene-forming enzymes belong to a structural family of NADPH-dependent reductases that also includes pinoresinol–lariciresinol reductase, isoflavone reductase, and phenylcoumaran benzylic ether reductase. PMID:16782809

  15. Efficient Management of Fruit Pests by Pheromone Nanogels

    PubMed Central

    Bhagat, Deepa; Samanta, Suman K.; Bhattacharya, Santanu

    2013-01-01

    Environment-friendly management of fruit flies involving pheromones is useful in reducing the undesirable pest populations responsible for decreasing the yield and the crop quality. A nanogel has been prepared from a pheromone, methyl eugenol (ME) using a low-molecular mass gelator. This was very stable at open ambient conditions and slowed down the evaporation of pheromone significantly. This enabled its easy handling and transportation without refrigeration, and reduction in the frequency of pheromone recharging in the orchard. Notably the involvement of the nano-gelled pheromone brought about an effective management of Bactrocera dorsalis, a prevalent harmful pest for a number of fruits including guava. Thus a simple, practical and low cost green chemical approach is developed that has a significant potential for crop protection, long lasting residual activity, excellent efficacy and favorable safety profiles. This makes the present invention well-suited for pest management in a variety of crops. PMID:23416455

  16. Early life lead exposure causes gender-specific changes in the DNA methylation profile of DNA extracted from dried blood spots

    PubMed Central

    Sen, Arko; Heredia, Nicole; Senut, Marie-Claude; Hess, Matthew; Land, Susan; Qu, Wen; Hollacher, Kurt; Dereski, Mary O; Ruden, Douglas M

    2015-01-01

    Aims In this paper, we tested the hypothesis that early life lead (Pb) exposure associated DNA methylation (5mC) changes are dependent on the sex of the child and can serve as biomarkers for Pb exposure. Methods In this pilot study, we measured the 5mC profiles of DNA extracted from dried blood spots (DBS) in a cohort of 43 children (25 males and 18 females; ages from 3 months to 5 years) from Detroit. Result & Discussion We found that the effect of Pb-exposure on the 5-mC profiles can be separated into three subtypes: affected methylation loci which are conserved irrespective of the sex of the child (conserved); affected methylation loci unique to males (male-specific); and affected methylation loci unique to females (female-specific). PMID:26077427

  17. Antihypercholesterolemic and Antioxidative Potential of an Extract of the Plant, Piper betle, and Its Active Constituent, Eugenol, in Triton WR-1339-Induced Hypercholesterolemia in Experimental Rats.

    PubMed

    Venkadeswaran, Karuppasamy; Muralidharan, Arumugam Ramachandran; Annadurai, Thangaraj; Ruban, Vasanthakumar Vasantha; Sundararajan, Mahalingam; Anandhi, Ramalingam; Thomas, Philip A; Geraldine, Pitchairaj

    2014-01-01

    Hypercholesterolemia is a dominant risk factor for atherosclerosis and cardiovascular diseases. In the present study, the putative antihypercholesterolemic and antioxidative properties of an ethanolic extract of Piper betle and of its active constituent, eugenol, were evaluated in experimental hypercholesterolemia induced by a single intraperitoneal injection of Triton WR-1339 (300 mg/kg b.wt) in Wistar rats. Saline-treated hypercholesterolemic rats revealed significantly higher mean blood/serum levels of glucose, total cholesterol, triglycerides, low density and very low density lipoprotein cholesterol, and of serum hepatic marker enzymes; in addition, significantly lower mean serum levels of high density lipoprotein cholesterol and significantly lower mean activities of enzymatic antioxidants and nonenzymatic antioxidants were noted in hepatic tissue samples from saline-treated hypercholesterolemic rats, compared to controls. However, in hypercholesterolemic rats receiving the Piper betle extract (500 mg/kg b.wt) or eugenol (5 mg/kg b.wt) for seven days orally, all these parameters were significantly better than those in saline-treated hypercholesterolemic rats. The hypercholesterolemia-ameliorating effect was better defined in eugenol-treated than in Piper betle extract-treated rats, being as effective as that of the standard lipid-lowering drug, lovastatin (10 mg/kg b.wt). These results suggest that eugenol, an active constituent of the Piper betle extract, possesses antihypercholesterolemic and other activities in experimental hypercholesterolemic Wistar rats.

  18. Antihypercholesterolemic and Antioxidative Potential of an Extract of the Plant, Piper betle, and Its Active Constituent, Eugenol, in Triton WR-1339-Induced Hypercholesterolemia in Experimental Rats

    PubMed Central

    Venkadeswaran, Karuppasamy; Muralidharan, Arumugam Ramachandran; Annadurai, Thangaraj; Ruban, Vasanthakumar Vasantha; Sundararajan, Mahalingam; Anandhi, Ramalingam; Thomas, Philip A.; Geraldine, Pitchairaj

    2014-01-01

    Hypercholesterolemia is a dominant risk factor for atherosclerosis and cardiovascular diseases. In the present study, the putative antihypercholesterolemic and antioxidative properties of an ethanolic extract of Piper betle and of its active constituent, eugenol, were evaluated in experimental hypercholesterolemia induced by a single intraperitoneal injection of Triton WR-1339 (300 mg/kg b.wt) in Wistar rats. Saline-treated hypercholesterolemic rats revealed significantly higher mean blood/serum levels of glucose, total cholesterol, triglycerides, low density and very low density lipoprotein cholesterol, and of serum hepatic marker enzymes; in addition, significantly lower mean serum levels of high density lipoprotein cholesterol and significantly lower mean activities of enzymatic antioxidants and nonenzymatic antioxidants were noted in hepatic tissue samples from saline-treated hypercholesterolemic rats, compared to controls. However, in hypercholesterolemic rats receiving the Piper betle extract (500 mg/kg b.wt) or eugenol (5 mg/kg b.wt) for seven days orally, all these parameters were significantly better than those in saline-treated hypercholesterolemic rats. The hypercholesterolemia-ameliorating effect was better defined in eugenol-treated than in Piper betle extract-treated rats, being as effective as that of the standard lipid-lowering drug, lovastatin (10 mg/kg b.wt). These results suggest that eugenol, an active constituent of the Piper betle extract, possesses antihypercholesterolemic and other activities in experimental hypercholesterolemic Wistar rats. PMID:24523820

  19. The effect of root canal sealers and timing of cementation on the microlekage of the parapost luted with resin cement

    PubMed Central

    Al Kahtani, Ahmed M.

    2010-01-01

    Objectives The objectives of the study were to study the effect of root canal sealers either eugenol or non-eugenol and timing of cementation on microleakage of the parapost luted with resin cement. Materials and methods Seventy extracted human, single-rooted teeth were instrumented using a crown-down technique. All teeth were instrumented up to a size 50 .04 taper ProFile followed by the use of Gates Glidden drills from size 2 up to 5. Following instrumentation, the teeth were randomly divided into four experimental groups of fifteen teeth each, based on type of root canal sealer (eugenol or non-eugenol sealer) and timing of post cementation (immediate or delayed). The remaining ten teeth were divided into two control groups with five teeth per group. All teeth were tested for microleakage using a fluid filtration method. Results The microleakage of the paraposts luted with resin cement increased over time, irrespective of sealer type or timing of post cementation. Immediate post cementation following obturation with AH26 (non-eugenol sealer) produced the least microleakage at all three time periods at 24 h, 2 months and 3 months. Conclusions The microleakage paraposts luted with resin cement was not influenced by either sealer type or timing of post placement. All experimental groups demonstrated a significant increase in microleakage over time as well as the presence of voids at the resin–dentin interface. PMID:24109165

  20. Characteristics of DNA methylation changes induced by traffic-related air pollution.

    PubMed

    Ding, Rui; Jin, Yongtang; Liu, Xinneng; Zhu, Ziyi; Zhang, Yuan; Wang, Ting; Xu, Yinchun

    2016-01-15

    Traffic-related air pollution (TRAP) is a potential risk factor for numerous respiratory disorders, including lung cancer, while alteration of DNA methylation may be one of the underlying mechanisms. However, the effects of TRAP mixtures on DNA methylation have not been investigated. We have studied the effects of brief or prolonged TRAP exposures on DNA methylation in the rat. The exposures were performed in spring and autumn, with identical study procedures. In each season, healthy Wistar rats were exposed to TRAP at for 4 h, 7 d, 14 d, or 28 d. Global DNA methylation (LINE-1 and Alu) and specific gene methylation (p16(CDKN2A), APC, and iNOS) in the DNA from blood and lung tissues were quantified by pyrosequencing. Multiple linear regression was applied to assess the influence of air pollutants on DNA methylation levels. The levels of PM2.5, PM10, and NO2 in the high and moderate groups were significantly higher than in the control group. The DNA methylation levels were not significantly different between spring and autumn. When spring and autumn data were analyzed together, PM2.5, PM10, and NO2 exposures were associated with changes in%5mC (95% CI) in LINE-1, iNOS, p16(CDKN2A), and APC ranging from -0.088 (-0.150, -0.026) to 0.102 (0.049, 0.154) per 1 μg/m(3) increase in the pollutant concentration. Prolonged exposure to a high level of TRAP was negatively associated with LINE-1 and iNOS methylation, and positively associated with APC methylations in the DNA from lung tissues but not blood. These findings show that TRAP exposure is associated with decreased methylation of LINE-1 and iNOS, and increased methylation of p16(CDKN2A) and APC. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. [Exploration of Epigenetic Changes and DNA Methylation Markers Associated with Liver Tumors Induced by Inorganic Arsenite Exposure in Mice].

    PubMed

    Suzuki, Takehiro; Nohara, Keiko

    2015-01-01

    Naturally occurring inorganic arsenic is known to increase the risk of cancers of the skin and several other organs, including the urinary bladder, lung, and liver. Epidemiological studies have also indicated that gestational arsenic exposure is associated with increased incidences of cancers in several organs, including the bladder and liver, in adulthood. Previous studies have shown that epigenetic changes are involved in arsenic-induced carcinogenesis. Among epigenetic changes, DNA methylation changes that are specific to arsenic-induced tumors would be useful for distinguishing such tumors from tumors induced by other factors and for clarifying arsenic carcinogenesis. It has been reported that gestational arsenic exposure of C3H mice, whose males tend to spontaneously develop liver tumors, increases the incidence of tumors in the male offspring. Using the same experimental protocol, we found a number of regions where the DNA methylation status was altered in the liver tumors compared with the normal liver tissues by the methylated DNA immunoprecipitation (MeDIP)-CpG island microarray method. Among such regions, we demonstrated using real-time methylation-specific PCR and bisulfite sequencing that a gene body region of the oncogene Fosb underwent alteration in DNA methylation following gestational arsenic exposure. We also showed that the Fosb expression level significantly increased following gestational arsenic exposure. These findings suggest that the DNA methylation status of the Fosb region is implicated in tumor augmentation and can also be utilized for characterizing tumors induced by gestational arsenic exposure.

  2. Cytotoxicity and anti-inflammatory effects of zinc ions and eugenol during setting of ZOE in immortalized human oral keratinocytes grown as three-dimensional spheroids.

    PubMed

    Lee, Jung-Hwan; Lee, Hae-Hyoung; Kim, Kyoung-Nam; Kim, Kwang-Mahn

    2016-05-01

    The objective of this study is to assess the cytotoxic and anti-inflammatory effects of ZOE cement during setting in two-dimensional (2D) or three-dimensional (3D) cultures of immortalized human oral keratinocytes (IHOKs) with determining the extract components responsible for these effects. Extracts of mixed ZOE at different stages of setting were analyzed by a digital pH meter, ICP-MS, and GC-MS. Serial concentrations of extract and their mixture of ZnCl2, ZnSO4·H2O, and eugenol liquid were added to the 2D and 3D IHOK cultures to determine the half maximal effective concentration in investigating the cause of cytotoxicity by means of WST assay and to investigate mRNA expression levels of inflammatory cytokines by RT-PCR. Zn(2+) and eugenol (4-19 ppm) were detected in the extracts. In the early setting stage, significant cytotoxicity was observed in the 2D and 3D IHOK cultures (P<0.05). The EC50 of Zn(2+) from ZnCl2 was 5-44 ppm in both cultures, whereas the EC50 of eugenol was not detectable under 100 ppm. Along with the lower levels of inflammatory cytokine gene expressions in the extract, treatment of the 2D IHOKs with Zn(2+) alone and treatment of the 3D IHOKs with Zn(2+) plus eugenol resulted in significantly lower expression levels of IL-1β, IL-6, and IL-8 (P<0.05). The cytotoxic effect of ZOE on IHOKs was greater during the setting stage owing to the presence of Zn(2+). The anti-inflammatory response to ZOE was induced by a combination of Zn(2+) and eugenol. Cytotoxic and anti-inflammatory effects differed between the 2D and 3D IHOK cultures. Copyright © 2016. Published by Elsevier Ltd.

  3. Densely ionizing radiation affects DNA methylation of selective LINE-1 elements1

    PubMed Central

    Prior, Sara; Miousse, Isabelle R.; Nzabarushimana, Etienne; Pathak, Rupak; Skinner, Charles; Kutanzi, Kristy R.; Allen, Antiño R.; Raber, Jacob; Tackett, Alan J.; Hauer-Jensen, Martin; Nelson, Gregory A.; Koturbash, Igor

    2016-01-01

    Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2′-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promoter type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5′-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. PMID:27419368

  4. Toxicological effects of benzo[a]pyrene on DNA methylation of whole genome in ICR mice.

    PubMed

    Zhao, L; Zhang, S; An, X; Tan, W; Pang, D; Ouyang, H

    2015-10-30

    It has been well known that alterations in DNA methylation - an important regulator of gene transcription - lead to cancer. Therefore a change in the level of DNA methylation of whole genome has been considered as a biomarker of carcinogenesis. Previously, a large number of experimental results in genetic toxicology have showed that benzo[a]pyrene could cause DNA mutation and fragmentation. However, there was little to no studies on alterations in DNA methylation of genome directly result from exposure to benzo[a]pyrene. In this paper, possible mechanisms of alterations in whole genomic DNA methylation by benzo[a]pyrene were investigated using ICR mice after benzo[a]pyrene exposure. The blood, liver, pancreas, skin, lung and bladder of ICR mice were removed and checked after a fixed time interval (6 hours) of benzo[a]pyrene exposure, and whole genomic DNA methylation level was determined by high performance liquid chromatography (HPLC). The results exhibited tissue specificity, that is, the level of whole genomic DNA methylation decreases significantly in blood and liver, rather than pancreas, lung, skin and bladder of ICR mice. This study investigated the direct relationship between aberrant DNA methylation level and benzo[a]pyrene exposure, which might be helpful to clarify the toxicological mechanism of benzo[a]pyrene in epigenetic perspectives.

  5. Effect of Exposure to 900 MHz GSM Mobile Phone Radiofrequency Radiation on Estrogen Receptor Methylation Status in Colon Cells of Male Sprague Dawley Rats

    PubMed Central

    Mokarram, P.; Sheikhi, M.; Mortazavi, S.M.J.; Saeb, S.; Shokrpour, N.

    2017-01-01

    Background: Over the past several years, the rapidly increasing use of mobile phones has raised global concerns about the biological effects of exposure to radiofrequency (RF) radiation. Numerous studies have shown that exposure to electromagnetic fields (EMFs) can be associated with effects on the nervous, endocrine, immune, cardiovascular, hematopoietic and ocular systems. In spite of genetic diversity, the onset and progression of cancer can be controlled by epigenetic mechanisms such as gene promoter methylation. There are extensive studies on the epigenetic changes of the tumor suppressor genes as well as the identification of methylation biomarkers in colorectal cancer. Some studies have revealed that genetic changes can be induced by exposure to RF radiation. However, whether or not RF radiation is capable of inducing epigenetic alteration has not been clarified yet. To date, no study has been conducted on the effect of radiation on epigenetic alterations in colorectal cancer (CRC). Several studies have also shown that methylation of estrogen receptor α (ERα), MYOD, MGMT, SFRP2 and P16 play an important role in CRC. It can be hypothesized that RF exposure can be a reason for the high incidence of CRC in Iran. This study aimed to investigate whether epigenetic pattern of ERα is susceptible to RF radiation and if RF radiation can induce radioadaptive response as epigenetic changes after receiving the challenge dose (γ-ray). Material and Method: 40 male Sprague-Dawley rats were divided into 4 equal groups (Group I: exposure to RF radiation of a GSM cell phone for 4 hours and sacrificed after 24 hours; Group II: RF exposure for 4 hours, exposure to Co-60 gamma radiation (3 Gy) after 24 hours and sacrificed after 72 hrs; Group III: only 3Gy gamma radiation; Group 4: control group). DNA from colon tissues was extracted to evaluate the methylation status by methylation specific PCR. Results: Our finding showed that exposure to GSM cell phone RF radiation was capable of altering the pattern of ERα gene methylation compared to that of non-exposed controls. Furthermore, no adaptive response phenomenon was induced in the pattern of ERα gene methylation after exposure to the challenging dose of Co-60 γ-rays. Conclusion: It can be concluded that exposure to RF radiation emitted by GSM mobile phones can lead to epigenetic detrimental changes in ERα promoter methylation pattern. PMID:28451581

  6. Effectiveness of recommended euthanasia methods in larval zebrafish (Danio rerio).

    PubMed

    Strykowski, Jennifer L; Schech, Joseph M

    2015-01-01

    The popularity of zebrafish and its use as a model organism in biomedical research including genetics, development, and toxicology, has increased over the past 20 y and continues to grow. However, guidelines for euthanasia remain vague, and the responsibility of creating appropriate euthanasia protocols essentially falls on individual facilities. To reduce variation in experimental results among labs, a standard method of euthanasia for zebrafish would be useful. Although various euthanasia methods have been compared, few studies focus on the effectiveness of euthanasia methods for larval zebrafish. In this study, we exposed larval zebrafish to each of 3 euthanasia agents (MS222, eugenol, and hypothermic shock) and assessed the recovery rate. Hypothermic shock appeared to be the most effective method for euthanizing zebrafish at 14 d after fertilization; however, this method may not be considered an efficient method for large numbers of larval zebrafish. Exposure to chemicals, such as MS222 and eugenol, were ineffective methods for euthanasia at this stage of development. When these agents are used, secondary measures should be taken to ensure death. Choosing a euthanasia method that is effective, efficient, and humane can be challenging. Determining a method of euthanasia that is suitable for fish of all stages will bring the zebrafish community closer to meeting this challenge.

  7. Effectiveness of Recommended Euthanasia Methods in Larval Zebrafish (Danio rerio)

    PubMed Central

    Strykowski, Jennifer L; Schech, Joseph M

    2015-01-01

    The popularity of zebrafish and its use as a model organism in biomedical research including genetics, development, and toxicology, has increased over the past 20 y and continues to grow. However, guidelines for euthanasia remain vague, and the responsibility of creating appropriate euthanasia protocols essentially falls on individual facilities. To reduce variation in experimental results among labs, a standard method of euthanasia for zebrafish would be useful. Although various euthanasia methods have been compared, few studies focus on the effectiveness of euthanasia methods for larval zebrafish. In this study, we exposed larval zebrafish to each of 3 euthanasia agents (MS222, eugenol, and hypothermic shock) and assessed the recovery rate. Hypothermic shock appeared to be the most effective method for euthanizing zebrafish at 14 d after fertilization; however, this method may not be considered an efficient method for large numbers of larval zebrafish. Exposure to chemicals, such as MS222 and eugenol, were ineffective methods for euthanasia at this stage of development. When these agents are used, secondary measures should be taken to ensure death. Choosing a euthanasia method that is effective, efficient, and humane can be challenging. Determining a method of euthanasia that is suitable for fish of all stages will bring the zebrafish community closer to meeting this challenge. PMID:25651096

  8. Prenatal Stress Exposure, Oxytocin Receptor Gene (OXTR) Methylation and Child Autistic Traits: The Moderating Role of OXTR rs53576 Genotype

    PubMed Central

    Rijlaarsdam, Jolien; van IJzendoorn, Marinus H.; Verhulst, Frank C; Jaddoe, Vincent W. V.; Felix, Janine F.; Tiemeier, Henning; Bakermans-Kranenburg, Marian J.

    2017-01-01

    Lay Abstract The gene encoding the oxytocin receptor (OXTR), localized on chromosome 3p25, is considered a promising candidate for explaining genetic vulnerability to autistic traits. Although several lines of evidence implicate OXTR SNP rs53576 (G/A) variation in social behavior, findings have been inconsistent, possibly because DNA methylation after stress exposure was eliminated from consideration. This study investigated the main and interactive effects of OXTR rs53576 genotype, stress exposure, and OXTR methylation on child autistic traits. Prenatal maternal stress exposure, but not OXTR rs53576 genotype and OXTR methylation, showed a main effect on child autistic traits. For child autistic traits in general and social communication problems in particular, we observed a significant OXTR rs53576 genotype by OXTR methylation interaction. More specifically, OXTR methylation levels were positively associated with social problems for OXTR rs53576 G-allele homozygous children but not for A-allele carriers. These results highlight the importance of incorporating epi-allelic information and support the role of OXTR methylation in child autistic traits. Scientific Abstract Findings of studies investigating OXTR SNP rs53576 (G-A) variation in social behavior have been inconsistent, possibly because DNA methylation after stress exposure was eliminated from consideration. Our goal was to examine OXTR rs53576 allele-specific sensitivity for neonatal OXTR DNA methylation in relation to (1) a prenatal maternal stress composite, and (2) child autistic traits. Prospective data from fetal life to age 6 years were collected in a total of 743 children participating in the Generation R Study. Prenatal maternal stress exposure was uniquely associated with child autistic traits but was unrelated to OXTR methylation across both OXTR rs53576 G-allele homozygous children and A-allele carriers. For child autistic traits in general and social communication problems in particular, we observed a significant OXTR rs53576 genotype by OXTR methylation interaction in the absence of main effects, suggesting that opposing effects cancelled each other out. Indeed, OXTR methylation levels were positively associated with social problems for OXTR rs53576 G-allele homozygous children but not for A-allele carriers. These results highlight the importance of incorporating epi-allelic information and support the role of OXTR methylation in child autistic traits. PMID:27520745

  9. Effects of metal-rich particulate matter exposure on exogenous and endogenous viral sequence methylation in healthy steel-workers.

    PubMed

    Mercorio, Roberta; Bonzini, Matteo; Angelici, Laura; Iodice, Simona; Delbue, Serena; Mariani, Jacopo; Apostoli, Pietro; Pesatori, Angela Cecilia; Bollati, Valentina

    2017-11-01

    Inhaled particles have been shown to produce systemic changes in DNA methylation. Global hypomethylation has been associated to viral sequence reactivation, possibly linked to the activation of pro-inflammatory pathways occurring after exposure. This observation provides a rationale to investigate viral sequence (both exogenous and endogenous) methylation in association to metal-rich particulate matter exposure. To verify this hypothesis, we chose the Wp promoter of the Epstein-Barr Virus (EBV-Wp) and the promoter of the human-endogenous-retrovirus w (HERV-w), respectively as a paradigm of an exogenous and an endogenous retroviral sequence, to be investigated by bisulfite PCR Pyrosequencing. We enrolled 63 male workers in an electric furnace steel plant, exposed to high level of metal-rich particulate matter. Comparing samples obtained in the first day of a work week (time 0-baseline, after 2 days off work) and the samples obtained after 3 days of work (time 1-post exposure), the mean methylation of EBV-Wp was significantly higher at baseline compared to post-exposure (mean baseline = 56.7%5mC; mean post-exposure = 47.9%5mC; p-value = 0.009), whereas the mean methylation of HERV-w did not significantly differ. Individual exposure to inhalable particles and metals was estimated based on measures in all working areas and time spent by the study subjects in each area. In a regression model adjusted for age, body mass index and smoking, PM and metal components had a positive association with EBV-Wp methylation (i.e. PM10: β = 5.99, p-value < 0.038; nickel: β = 17.82, p-value = 0.02; arsenic: β = 13.59, p-value < 0.015). The difference observed comparing baseline and post-exposure samples may be suggestive of a rapid change in EBV methylation induced by air particles, while correlation between EBV methylation and PM/metal exposure may represent a more stable adaptive mechanism. Future studies investigating a larger panel of viral sequences could better elucidate possible mechanisms and their role in pro-inflammatory pathways leading to systemic health effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Anticancer and antioxidant tannins from Pimenta dioica leaves.

    PubMed

    Marzouk, Mohamed S A; Moharram, Fatma A; Mohamed, Mona A; Gamal-Eldeen, Amira M; Aboutabl, Elsayed A

    2007-01-01

    Two galloylglucosides, 6-hydroxy-eugenol 4-O-(6'-O-galloyl)-beta-D-4C1-glucopyranoside (4) and 3-(4-hydroxy-3-methoxyphenyl)-propane-1,2-diol-2-O-(2',6'-di-O-galloyl)-beta-D -4C1-glucopyranoside (7), and two C-glycosidic tannins, vascalaginone (10) and grandininol (14), together with fourteen known metabolites, gallic acid (1), methyl gallate (2), nilocitin (3), 1-O-galloyl-4,6-(S)-hexahydroxydiphenoyl-(alpha/beta)-D-glucopyranose (5), 4,6-(S)-hexahydroxydiphenoyl-(alpha/beta)-D-glucopyranose (6), 3,4,6-valoneoyl-(alpha/beta)-D-glucopyranose (8), pedunculagin (9), casuariin (11), castalagin (12), vascalagin (13), casuarinin (15), grandinin (16), methyl-flavogallonate (17) and ellagic acid (18), were identified from the leaves of Pimenta dioica (Merr.) L. (Myrtaceae) on the basis of their chemical and physicochemical analysis (UV, HRESI-MS, 1D and 2D NMR). It was found that 9 is the most cytotoxic compound against solid tumour cancer cells, the most potent scavenger against the artificial radical DPPH and physiological radicals including ROO*, OH*, and O2-*, and strongly inhibited the NO generation and induced the proliferation of T-lymphocytes and macrophages. On the other hand, 3 was the strongest NO inhibitor and 16 the highest stimulator for the proliferation of T-lymphocytes, while 10 was the most active inducer of macrophage proliferation.

  11. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle.

    PubMed

    Zore, Gajanan B; Thakre, Archana D; Jadhav, Sitaram; Karuppayil, S Mohan

    2011-10-15

    Anti-Candida potential of six terpenoids were evaluated in this study against various isolates of Candida albicans (n=39) and non-C. albicans (n=9) that are differentially susceptible to fluconazole. All the six terpenoids tested, showed excellent activity and were equally effective against isolates of Candida sps., tested in this study. Linalool and citral were the most effective ones, inhibiting all the isolates at ≤0.064% (v/v). Five among the six terpenoids tested were fungicidal. Time dependent kill curve assay showed that MFCs of linalool and eugenol were highly toxic to C. albicans, killing 99.9% inoculum within seven min of exposure, while that of citronellal, linalyl acetate and citral required 15min, 1h and 2h, respectively. FIC index values (Linalool - 0.140, benzyl benzoate - 0.156, eugenol - 0.265, citral - 0.281 and 0.312 for linalyl acetate and citronellal) and isobologram obtained by checker board assay showed that all the six terpenoids tested exhibit excellent synergistic activity with fluconazole against a fluconazole resistant strain of C. albicans. Terpenoids tested arrested C. albicans cells at different phases of the cell cycle i.e. linalool and LA at G1, citral and citronellal at S phase and benzyl benzoate at G2-M phase and induced apoptosis. Linalool, citral, citronellal and benzyl benzoate caused more than 50% inhibition of germ tube induction at 0.008%, while eugenol and LA required 0.032 and 0.016% (v/v) concentrations, respectively. MICs of all the terpenoids for the C. albicans growth were non toxic to HeLa cells. Terpenoids tested exhibited excellent activity against C. albicans yeast and hyphal form growth at the concentrations that are non toxic to HeLa cells. Terpenoids tested in this study may find use in antifungal chemotherapy, not only as antifungal agents but also as synergistic agents along with conventional drugs like fluconazole. Copyright © 2011 Elsevier GmbH. All rights reserved.

  12. Preferential epigenetic programming of estrogen response after in utero xenoestrogen (bisphenol-A) exposure

    PubMed Central

    Jorgensen, Elisa M.; Alderman, Myles H.; Taylor, Hugh S.

    2016-01-01

    Bisphenol-A (BPA) is an environmentally ubiquitous estrogen-like endocrine-disrupting compound. Exposure to BPA in utero has been linked to female reproductive disorders, including endometrial hyperplasia and breast cancer. Estrogens are an etiological factor in many of these conditions. We sought to determine whether in utero exposure to BPA altered the global CpG methylation pattern of the uterine genome, subsequent gene expression, and estrogen response. Pregnant mice were exposed to an environmentally relevant dose of BPA or DMSO control. Uterine DNA and RNA were examined by using methylated DNA immunoprecipitation methylation microarray, expression microarray, and quantitative PCR. In utero BPA exposure altered the global CpG methylation profile of the uterine genome and subsequent gene expression. The effect on gene expression was not apparent until sexual maturation, which suggested that estrogen response was the primary alteration. Indeed, prenatal BPA exposure preferentially altered adult estrogen-responsive gene expression. Changes in estrogen response were accompanied by altered methylation that preferentially affected estrogen receptor-α (ERα)–binding genes. The majority of genes that demonstrated both altered expression and ERα binding had decreased methylation. BPA selectively altered the normal developmental programming of estrogen-responsive genes via modification of the genes that bind ERα. Gene–environment interactions driven by early life xenoestrogen exposure likely contributes to increased risk of estrogen-related disease in adults.—Jorgensen, E. M., Alderman, M. H., III, Taylor, H. S. Preferential epigenetic programming of estrogen response after in utero xenoestrogen (bisphenol-A) exposure. PMID:27312807

  13. Gene expression response of Salmonella enterica serotype Enteritidis phage type 8 to the subinhibitory concentrations of the plant-derived compounds,trans-cinnamaldehyde,and eugenol

    USDA-ARS?s Scientific Manuscript database

    Background: Salmonella Enteritidis phage type 8 (PT8) is a major poultry-associated Salmonella strain implicated in foodborne outbreaks in the United States. We previously reported that two GRAS-status, plant-derived compounds, trans-cinnamaldehyde (TC) and eugenol (EG) significantly reduced S. Ent...

  14. Effect of therapeutic supplementation of plant molecules, trans-cinnamaldehyde and eugenol on Salmonella Enteritidis colonization in market-age broiler chickens

    USDA-ARS?s Scientific Manuscript database

    This study investigated the therapeutic efficacy of food-grade plant compounds, trans-cinnamaldehyde (TC) and eugenol (EG) on reducing SE in commercial, market-age broiler chickens. In two separate experiments, day-old commercial broiler chicks were randomly grouped into six groups of 14 birds each ...

  15. Densely ionizing radiation affects DNA methylation of selective LINE-1 elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prior, Sara; Miousse, Isabelle R.

    Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2′-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promotermore » type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5′-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. - Highlights: • DNA methylation of LINE-1 elements is dependent on their evolutionary age. • Densely ionizing radiation affects DNA methylation of selective LINE-1 elements. • Radiation-induced reactivation of LINE-1 is DNA methylation-independent. • Histone modifications dictate the transcriptional activity of LINE-1.« less

  16. Neuronal DNA Methylation Profiling of Blast-Related Traumatic Brain Injury.

    PubMed

    Haghighi, Fatemeh; Ge, Yongchao; Chen, Sean; Xin, Yurong; Umali, Michelle U; De Gasperi, Rita; Gama Sosa, Miguel A; Ahlers, Stephen T; Elder, Gregory A

    2015-08-15

    Long-term molecular changes in the brain resulting from blast exposure may be mediated by epigenetic changes, such as deoxyribonucleic acid (DNA) methylation, that regulate gene expression. Aberrant regulation of gene expression is associated with behavioral abnormalities, where DNA methylation bridges environmental signals to sustained changes in gene expression. We assessed DNA methylation changes in the brains of rats exposed to three 74.5 kPa blast overpressure events, conditions that have been associated with long-term anxiogenic manifestations weeks or months following the initial exposures. Rat frontal cortex eight months post-exposure was used for cell sorting of whole brain tissue into neurons and glia. We interrogated DNA methylation profiles in these cells using Expanded Reduced Representation Bisulfite Sequencing. We obtained data for millions of cytosines, showing distinct methylation profiles for neurons and glia and an increase in global methylation in neuronal versus glial cells (p<10(-7)). We detected DNA methylation perturbations in blast overpressure-exposed animals, compared with sham blast controls, within 458 and 379 genes in neurons and glia, respectively. Differentially methylated neuronal genes showed enrichment in cell death and survival and nervous system development and function, including genes involved in transforming growth factor β and nitric oxide signaling. Functional validation via gene expression analysis of 30 differentially methylated neuronal and glial genes showed a 1.2 fold change in gene expression of the serotonin N-acetyltransferase gene (Aanat) in blast animals (p<0.05). These data provide the first genome-based evidence for changes in DNA methylation induced in response to multiple blast overpressure exposures. In particular, increased methylation and decreased gene expression were observed in the Aanat gene, which is involved in converting serotonin to the circadian hormone melatonin and is implicated in sleep disturbance and depression associated with traumatic brain injury.

  17. The epigenetic effects of a high prenatal folate intake in male mouse fetuses exposed in utero to arsenic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, Verne; Fry, Rebecca C.; Niculescu, Mihai D.

    Inorganic arsenic (iAs) is a complete transplacental carcinogen in mice. Previous studies have demonstrated that in utero exposure to iAs promotes cancer in adult mouse offspring, possibly acting through epigenetic mechanisms. Humans and rodents enzymatically convert iAs to its methylated metabolites. This reaction requires S-adenosylmethionine (SAM) as methyl group donor. SAM is also required for DNA methylation. Supplementation with folate, a major dietary source of methyl groups for SAM synthesis, has been shown to modify iAs metabolism and the adverse effects of iAs exposure. However, effects of gestational folate supplementation on iAs metabolism and fetal DNA methylation have never beenmore » thoroughly examined. In the present study, pregnant CD1 mice were fed control (i.e. normal folate, or 2.2 mg/kg) or high folate diet (11 mg/kg) from gestational day (GD) 5 to 18 and drank water with 0 or 85 ppm of As (as arsenite) from GD8 to 18. The exposure to iAs significantly decreased body weight of GD18 fetuses and increased both SAM and S-adenosylhomocysteine (SAH) concentrations in fetal livers. High folate intake lowered the burden of total arsenic in maternal livers but did not prevent the effects of iAs exposure on fetal weight or hepatic SAM and SAH concentrations. In fact, combined folate-iAs exposure caused further significant body weight reduction. Notably, iAs exposure alone had little effect on DNA methylation in fetal livers. In contrast, the combined folate-iAs exposure changed the CpG island methylation in 2,931 genes, including genes known to be imprinted. Most of these genes were associated with neurodevelopment, cancer, cell cycle, and signaling networks. The canonical Wnt-signaling pathway, which regulates fetal development, was among the most affected biological pathways. Taken together, our results suggest that a combined in utero exposure to iAs and a high folate intake may adversely influence DNA methylation profiles and weight of fetuses, compromising fetal development and possibly increasing the risk for early-onset of disease in offspring. Highlights: ► We used transplacental CD1 mice model for inorganic arsenic (iAs) carcinogenesis. ► We examined the effects of gestational iAs and high folate exposure on DNA methylation. ► iAs–folate interaction resulted in low fetal weights and changes in DNA methylation. ► Epigenetically altered genes were associated with cancer and neurodevelopment. ► We showed that in utero iAs–folate interaction negatively affects fetal development.« less

  18. Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter.

    PubMed

    Lovinsky-Desir, Stephanie; Jung, Kyung Hwa; Jezioro, Jacqueline R; Torrone, David Z; de Planell-Saguer, Mariangels; Yan, Beizhan; Perera, Frederica P; Rundle, Andrew G; Perzanowski, Matthew S; Chillrud, Steven N; Miller, Rachel L

    2017-01-01

    Physical activity is associated with improvement in lung function; however, pollution exposure during physical activity can lead to a transient reduction in lung function. This paradoxical relationship may be linked to altered T regulatory (Treg) cell activity, which increases with exercise and suppresses airway inflammation, but decreases in association with exposure to air pollution. To clarify these relationships, we investigated buccal cell DNA methylation of the forkhead box p3 ( FOXP3 ) gene promoter, a proposed biomarker of Treg activity. We hypothesized that active urban children would have lower FOXP3 promoter methylation, associated with better lung function compared to non-active children. We also hypothesized that this relationship would be attenuated by high exposure to the air pollutant black carbon (BC). We performed a cross-sectional study of 135 children ages 9-14 who live in New York City. Activity was measured across 6 days. BC exposure was assessed by personal monitors worn for two 24-h periods, followed by lung function assessment. Buccal swabs were collected for DNA methylation analysis of three regions (six CpG sites) in the FOXP3 promoter. In multivariable regression models, overall, there was no significant relationship between physical activity and FOXP3 promoter methylation ( p  > 0.05). However, in stratified analyses, among children with higher BC exposure (≥1200 ng/m 3 ), physical activity was associated with 2.37% lower methylation in promoter 2 (CpGs -77, -65, and -58) ( β estimate  = -2.37%, p  < 0.01) but not among those with lower BC exposure ( β estimate  = 0.54%, p  > 0.05). Differences across strata were statistically significant ( p interaction  = 0.04). Among all children, after controlling for BC concentration, promoter 2 methylation was associated with reduced FEV 1 /FVC ( β estimate  = -0.40%, p  < 0.01) and reduced FEF 25-75% ( β estimate  = -1.46%, p  < 0.01). Physical activity in urban children appeared associated with lower FOXP3 promoter methylation, a possible indicator of greater Treg function, under conditions of high BC exposure. Reduced FOXP3 promoter methylation was associated with higher lung function. These findings suggest that physical activity may induce immunologic benefits, particularly for urban children with greater risk of impaired lung function due to exposure to higher air pollution. FOXP3 promoter buccal cell methylation may function as a useful biomarker of that benefit.

  19. Associations among oxytocin receptor gene (OXTR) DNA methylation in adulthood, exposure to early life adversity, and childhood trajectories of anxiousness.

    PubMed

    Gouin, J P; Zhou, Q Q; Booij, L; Boivin, M; Côté, S M; Hébert, M; Ouellet-Morin, I; Szyf, M; Tremblay, R E; Turecki, G; Vitaro, F

    2017-08-07

    Recent models propose deoxyribonucleic acid methylation of key neuro-regulatory genes as a molecular mechanism underlying the increased risk of mental disorder associated with early life adversity (ELA). The goal of this study was to examine the association of ELA with oxytocin receptor gene (OXTR) methylation among young adults. Drawing from a 21-year longitudinal cohort, we compared adulthood OXTR methylation frequency of 46 adults (23 males and 23 females) selected for high or low ELA exposure based on childhood socioeconomic status and exposure to physical and sexual abuse during childhood and adolescence. Associations between OXTR methylation and teacher-rated childhood trajectories of anxiousness were also assessed. ELA exposure was associated with one significant CpG site in the first intron among females, but not among males. Similarly, childhood trajectories of anxiousness were related to one significant CpG site within the promoter region among females, but not among males. This study suggests that females might be more sensitive to the impact of ELA on OXTR methylation than males.

  20. Evaluation of active ingredients and larvicidal activity of clove and cinnamon essential oils against Anopheles gambiae (sensu lato).

    PubMed

    Thomas, Adelina; Mazigo, Humphrey D; Manjurano, Alphaxard; Morona, Domenica; Kweka, Eliningaya J

    2017-09-06

    Mosquitoes are well-known vectors of many diseases including malaria and lymphatic filariasis. Uses of synthetic insecticides are associated with high toxicity, resistance, environmental pollution and limited alternative, effective synthetic insecticides. This study was undertaken to evaluate the larvicidal efficacy of clove and cinnamon essential oils against laboratory Anopheles gambiae (sensu stricto) and wild An. arabiensis larvae. The standard WHO guideline for larvicides evaluation was used, and the GC-MS machine was used for active compounds percentage composition analysis and structures identification. Probit regression analysis was used for LC 50 and LC 95 calculations while a t-test was used to test for significant differences between laboratory-reared and wild larvae populations in each concentration of plant extract. Mortality effect of clove and cinnamon essential oils against wild and laboratory-reared larvae had variations indicated by their LC 50 and LC 95 values. The mortality at different concentrations of cinnamon and clove post-exposure for wild and laboratory-reared larvae were dosage-dependent and were higher for cinnamon than for clove essential oils. The mortality effect following exposure to a blend of the two essential oils was higher for blends containing a greater proportion of cinnamon oil. In the chemical analysis of the active ingredients of cinnamon essential oil, the main chemical content was Eugenol, and the rarest was β-Linalool while for clove essential oil, the main chemical content was Eugenol and the rarest was Bicyclo. The essential oils showed a larvicidal effect which was concentration-dependent for both laboratory and wild collected larvae. The active ingredient compositions triggered different responses in mortality. Further research in small-scale should be conducted with concentrated extracted compounds.

  1. Long-term outdoor air pollution and DNA methylation in circulating monocytes: results from the Multi-Ethnic Study of Atherosclerosis (MESA).

    PubMed

    Chi, Gloria C; Liu, Yongmei; MacDonald, James W; Barr, R Graham; Donohue, Kathleen M; Hensley, Mark D; Hou, Lifang; McCall, Charles E; Reynolds, Lindsay M; Siscovick, David S; Kaufman, Joel D

    2016-12-01

    DNA methylation may mediate effects of air pollution on cardiovascular disease. The association between long-term air pollution exposure and DNA methylation in monocytes, which are central to atherosclerosis, has not been studied. We investigated the association between long-term ambient air pollution exposure and DNA methylation (candidate sites and global) in monocytes of adults (aged ≥55). One-year average ambient fine particulate matter (PM 2.5 ) and oxides of nitrogen (NO X ) concentrations were predicted at participants' (n = 1,207) addresses using spatiotemporal models. We assessed DNA methylation in circulating monocytes at 1) 2,713 CpG sites associated with mRNA expression of nearby genes and 2) probes mapping to Alu and LINE-1 repetitive elements (surrogates for global DNA methylation) using Illumina's Infinium HumanMethylation450 BeadChip. We used linear regression models adjusted for demographics, smoking, physical activity, socioeconomic status, methyl-nutrients, and technical variables. For significant air pollution-associated methylation sites, we also assessed the association between expression of gene transcripts previously associated with these CpG sites and air pollution. At a false discovery rate of 0.05, five candidate CpGs (cg20455854, cg07855639, cg07598385, cg17360854, and cg23599683) had methylation significantly associated with PM 2.5 and none were associated with NO X . Cg20455854 had the smallest p-value for the association with PM 2.5 (p = 2.77 × 10 -5 ). mRNA expression profiles of genes near three of the PM 2.5 -associated CpGs (ANKHD1, LGALS2, and ANKRD11) were also significantly associated with PM 2.5 exposure. Alu and LINE-1 methylation were not associated with long-term air pollution exposure. We observed novel associations between long-term ambient air pollution exposure and site-specific DNA methylation, but not global DNA methylation, in purified monocytes of a multi-ethnic adult population. Epigenetic markers may provide insights into mechanisms underlying environmental factors in complex diseases like atherosclerosis.

  2. A cold-tolerant evergreen interspecific hybrid of Ocimum kilimandscharicum and Ocimum basilicum: analyzing trichomes and molecular variations.

    PubMed

    Dhawan, Sunita Singh; Shukla, Preeti; Gupta, Pankhuri; Lal, R K

    2016-05-01

    Ocimum (Lamiaceae) is an important source of essential oils and aroma chemicals especially eugenol, methyl eugenol, linalool, methyl chavicol etc. An elite evergreen hybrid has been developed from Ocimum kilimandscharicum and Ocimum basilicum, which demonstrated adaptive behavior towards cold stress. A comparative molecular analysis has been done through RAPD, AFLP, and ISSR among O. basilicum and O. kilimandscharicum and their evergreen cold-tolerant hybrid. The RAPD and AFLP analyses demonstrated similar results, i.e., the hybrid of O. basilicum and O. kilimandscharicum shares the same cluster with O. kilimandscharicum, while O. basilicum behaves as an outgroup, whereas in ISSR analysis, the hybrid genotype grouped in the same cluster with O. basilicum. Ocimum genotypes were analyzed and compared for their trichome density. There were distinct differences on morphology, distribution, and structure between the two kinds of trichomes, i.e., glandular and non-glandular. Glandular trichomes contain essential oils, polyphenols, flavonoids, and acid polysaccharides. Hair-like trichomes, i.e., non-glandular trichomes, help in keeping the frost away from the living surface cells. O. basilicum showed less number of non-glandular trichomes on leaves compared to O. kilimandscharicum and the evergreen cold-tolerant hybrid. Trichomes were analyzed in O. kilimandscharicum, O. basilicum, and their hybrid. An increased proline content at the biochemical level represents a higher potential to survive in a stress condition like cold stress. In our analysis, the proline content is quite higher in tolerant variety O. kilimandscharicum, low in susceptible variety O. basilicum, and intermediate in the hybrid. Gene expression analysis was done in O. basilicum, O. kilimandscharicum and their hybrid for TTG1, GTL1, and STICHEL gene locus which regulates trichome development and its formation and transcription factors WRKY and MPS involved in the regulation of plant responses to freezing and cold. The analysis showed that O. kilimandscharicum and the hybrid were very close to each other but O. basilicum was more distinct in all respects. The overexpression of the WRKY coding gene showed high expression in the hybrid as compared to O. kilimandscharicum and O. basilicum and the transcription factor microspore-specific (MPS) promoter has also shown overexpression in the hybrid for its response against cold stress. The developed evergreen interspecific hybrid may thus provide a base to various industries which are dependent upon the bioactive constituents of Ocimum species.

  3. Prenatal Arsenic Exposure and DNA Methylation in Maternal and Umbilical Cord Blood Leukocytes

    PubMed Central

    Baccarelli, Andrea; Hoffman, Elaine; Tarantini, Letizia; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Mostofa, Golam; Hsueh, Yu-Mei; Wright, Robert O.; Christiani, David C.

    2012-01-01

    Background: Arsenic is an epigenetic toxicant and could influence fetal developmental programming. Objectives: We evaluated the association between arsenic exposure and DNA methylation in maternal and umbilical cord leukocytes. Methods: Drinking-water and urine samples were collected when women were at ≤ 28 weeks gestation; the samples were analyzed for arsenic using inductively coupled plasma mass spectrometry. DNA methylation at CpG sites in p16 (n = 7) and p53 (n = 4), and in LINE-1 and Alu repetitive elements (3 CpG sites in each), was quantified using pyrosequencing in 113 pairs of maternal and umbilical blood samples. We used general linear models to evaluate the relationship between DNA methylation and tertiles of arsenic exposure. Results: Mean (± SD) drinking-water arsenic concentration was 14.8 ± 36.2 μg/L (range: < 1–230 μg/L). Methylation in LINE-1 increased by 1.36% [95% confidence interval (CI): 0.52, 2.21%] and 1.08% (95% CI: 0.07, 2.10%) in umbilical cord and maternal leukocytes, respectively, in association with the highest versus lowest tertile of total urinary arsenic per gram creatinine. Arsenic exposure was also associated with higher methylation of some of the tested CpG sites in the promoter region of p16 in umbilical cord and maternal leukocytes. No associations were observed for Alu or p53 methylation. Conclusions: Exposure to higher levels of arsenic was positively associated with DNA methylation in LINE-1 repeated elements, and to a lesser degree at CpG sites within the promoter region of the tumor suppressor gene p16. Associations were observed in both maternal and fetal leukocytes. Future research is needed to confirm these results and determine if these small increases in methylation are associated with any health effects. PMID:22466225

  4. Inhalation of diesel exhaust and allergen alters human bronchial epithelium DNA methylation.

    PubMed

    Clifford, Rachel L; Jones, Meaghan J; MacIsaac, Julia L; McEwen, Lisa M; Goodman, Sarah J; Mostafavi, Sara; Kobor, Michael S; Carlsten, Chris

    2017-01-01

    Allergic disease affects 30% to 40% of the world's population, and its development is determined by the interplay between environmental and inherited factors. Air pollution, primarily consisting of diesel exhaust emissions, has increased at a similar rate to allergic disease. Exposure to diesel exhaust may play a role in the development and progression of allergic disease, in particular allergic respiratory disease. One potential mechanism underlying the connection between air pollution and increased allergic disease incidence is DNA methylation, an epigenetic process with the capacity to integrate gene-environment interactions. We sought to investigate the effect of allergen and diesel exhaust exposure on bronchial epithelial DNA methylation. We performed a randomized crossover-controlled exposure study to allergen and diesel exhaust in humans, and measured single-site (CpG) resolution global DNA methylation in bronchial epithelial cells. Exposure to allergen alone, diesel exhaust alone, or allergen and diesel exhaust together (coexposure) led to significant changes in 7 CpG sites at 48 hours. However, when the same lung was exposed to allergen and diesel exhaust but separated by approximately 4 weeks, significant changes in more than 500 sites were observed. Furthermore, sites of differential methylation differed depending on which exposure was experienced first. Functional analysis of differentially methylated CpG sites found genes involved in transcription factor activity, protein metabolism, cell adhesion, and vascular development, among others. These findings suggest that specific exposures can prime the lung for changes in DNA methylation induced by a subsequent insult. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  5. 78 FR 32157 - Methyl 5-(dimethylamino)-2-methyl-5-oxopentanoate; Exemption from the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... assessment of exposures and risks associated with methyl 5-(dimethylamino)-2-methyl-5-oxopentanoate follows... received and the nature of the adverse effects caused by methyl 5-(dimethylamino)-2-methyl-5- oxopentanoate... treatment with methyl 5-(dimethylamino)-2-methyl-5-oxopentanoate. A Mammalian Erythrocyte Micronucleus Test...

  6. In vitro effects of dental cements on hard and soft tissues associated with dental implants.

    PubMed

    Rodriguez, Lucas C; Saba, Juliana N; Chung, Kwok-Hung; Wadhwani, Chandur; Rodrigues, Danieli C

    2017-07-01

    Dental cements for cement-retained restorations are often chosen based on clinician preference for the product's material properties, mixing process, delivery mechanism, or viscosity. The composition of dental cement may play a significant role in the proliferation or inhibition of different bacterial strains associated with peri-implant disease, and the effect of dental cements on host cellular proliferation may provide further insight into appropriate cement material selection. The purpose of this in vitro study was to investigate the cellular host response of bone cells (osteoblasts) and soft tissue cells (gingival fibroblasts) to dental cements. Zinc oxide (eugenol and noneugenol), zinc phosphate, and acrylic resin cements were molded into pellets and directly applied to confluent preosteoblast (cell line MC3T3 E1) or gingival fibroblast cell cultures (cell line HGF) to determine cellular viability after exposure. Controls were defined as confluent cell cultures with no cement exposure. Direct contact cell culture testing was conducted following International Organization for Standardization 10993 methods, and all experiments were performed in triplicate. To compare either the MC3T3 E1 cell line, or the HGF cell line alone, a 1-way ANOVA test with multiple comparisons was used (α=.05). To compare the MC3T3 E1 cell line results and the HGF cell line results, a 2-way ANOVA test with multiple comparisons was used (α=.05). The results of this study illustrated that while both bone and soft tissue cell lines were vulnerable to the dental cement test materials, the soft tissue cell line (human gingival fibroblasts) was more susceptible to reduced cellular viability after exposure. The HGF cell line was much more sensitive to cement exposure. Here, the acrylic resin, zinc oxide (eugenol), and zinc phosphate cements significantly reduced cellular viability after exposure with respect to HGF cells only. Within the limitation of this in vitro cellular study, the results indicated that cell response to various implant cements varied significantly, with osteoblast proliferation much less affected than gingival fibroblast cells. Furthermore, the zinc oxide noneugenol dental cement appeared to affect the cell lines significantly less than the other test cements. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Prenatal Air Pollution Exposures, DNA Methyl Transferase Genotypes, and Associations with Newborn LINE1 and Alu Methylation and Childhood Blood Pressure and Carotid Intima-Media Thickness in the Children's Health Study.

    PubMed

    Breton, Carrie V; Yao, Jin; Millstein, Josh; Gao, Lu; Siegmund, Kimberly D; Mack, Wendy; Whitfield-Maxwell, Lora; Lurmann, Fred; Hodis, Howard; Avol, Ed; Gilliland, Frank D

    2016-12-01

    Although exposure to ambient air pollutants increases cardiovascular disease risk in adults little is known about the effects of prenatal exposure. Genetic variation and epigenetic alterations are two mechanisms that may influence the effects of early-life exposures on cardiovascular phenotypes. We investigated whether genetic and epigenetic variation modify associations between prenatal air pollution on markers of cardiovascular risk in childhood. We used linear regression analysis to investigate the associations between prenatal pollutants (PM2.5, PM10, NO2, O3), long interspersed nuclear elements (LINE1) and AluYb8 DNA methylation levels measured in newborn blood spot tests, and carotid intima-media thickness (CIMT) and blood pressure (BP) in 459 participants as part of the Children's Health Study. Interaction terms were also included to test for effect modification of these associations by genetic variation in methylation reprogramming genes. Prenatal exposure to NO2 in the third trimester of pregnancy was associated with higher systolic BP in 11-year-old children. Prenatal exposure to multiple air pollutants in the first trimester was associated with lower DNA methylation in LINE1, whereas later exposure to O3 was associated with higher LINE1 methylation levels in newborn blood spots. The magnitude of associations with prenatal air pollution varied according to genotype for 11 SNPs within DNA methyltransferase 1 (DNMT1), DNA methyltransferase 3 Beta (DNMT3B), Tet methylcytosine dioxygenase 2 (TET2), and Thymine DNA glycosylase (TDG) genes. Although first-trimester O3 exposure was not associated with CIMT and systolic BP overall, associations within strata of DNMT1 or DNMT3B were observed, and the magnitude and the direction of these associations depended on DNMT1 genotypes. Genetic and epigenetic variation in DNA methylation reprogramming genes and in LINE1 retrotransposons may play important roles in downstream cardiovascular consequences of prenatal air pollution exposure. Citation: Breton CV, Yao J, Millstein J, Gao L, Siegmund KD, Mack W, Whitfield-Maxwell L, Lurmann F, Hodis H, Avol E, Gilliland FD. 2016. Prenatal air pollution exposures, DNA methyl transferase genotypes, and associations with newborn LINE1 and Alu methylation and childhood blood pressure and carotid intima-media thickness in the Children's Health Study. Environ Health Perspect 124:1905-1912; http://dx.doi.org/10.1289/EHP181.

  8. Effects of arsenic exposure on DNA methylation in cord blood samples from newborn babies and in a human lymphoblast cell line

    PubMed Central

    2012-01-01

    Background Accumulating evidence indicates that in utero exposure to arsenic is associated with congenital defects and long-term disease consequences including cancers. Recent studies suggest that arsenic carcinogenesis results from epigenetic changes, particularly in DNA methylation. This study aimed to investigate DNA methylation changes as a result of arsenic exposure in utero and in vitro. Methods For the exposure in utero study, a total of seventy-one newborns (fifty-five arsenic-exposed and sixteen unexposed newborns) were recruited. Arsenic concentrations in the drinking water were measured, and exposure in newborns was assessed by measurement of arsenic concentrations in cord blood, nails and hair by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In the in vitro study, human lymphoblasts were treated with arsenite at 0-100 μM for two, four and eight hours (short-term) and at 0, 0.5 and 1.0 μM for eight-weeks period (long-term). DNA methylation was analyzed in cord blood lymphocytes and lymphoblasts treated with arsenite in vitro. Global DNA methylation was determined as LINE-1 methylation using combined bisulfite restriction analysis (COBRA) and total 5-methyldeoxycytidine (5MedC) content which was determined by HPLC-MS/MS. Methylation of p53 was determined at the promoter region using methylation-specific restriction endonuclease digestion with MspI and HpaII. Results Results showed that arsenic-exposed newborns had significantly higher levels of arsenic in cord blood, fingernails, toenails and hair than those of the unexposed subjects and a slight increase in promoter methylation of p53 in cord blood lymphocytes which significantly correlated with arsenic accumulation in nails (p < 0.05) was observed, while LINE-1 methylation was unchanged. Short-term in vitro arsenite treatment in lymphoblastoid cells clearly demonstrated a significant global hypomethylation, determined as reduction in LINE-1 methylation and total 5-MedC content, and p53 hypermethylation (p < 0.05). However, a slight LINE-1 hypomethylation and transient p53 promoter hypermethylation were observed following long-term in vitro treatment. Conclusions This study provides an important finding that in utero arsenic exposure affects DNA methylation, particularly at the p53 promoter region, which may be linked to the mechanism of arsenic carcinogenesis and the observed increased incidence of cancer later in life. PMID:22551203

  9. [In vitro and in vivo recoveries of cutaneous micro-dialysis probe of paeonol, eugenol and piperine].

    PubMed

    Yang, Chang; Bai, Jie; Du, Shou-Ying; Cui, Ya-Hua; Zhang, Qin-Shuai; Ma, Jun-Ming

    2016-11-01

    To establish a method for detecting micro-dialysis recovery of paeonol, eugenol and piperine in Huoxue Zhitong patch, in order to provide the basis for further percutaneous pharmacokinetics studies. The concentrations of paeonol, eugenol and piperine in dialysates were determined by HPLC, and probe deliveries were calculated respectively. The effects of concentration and calibration approaches on the micro-dialysis probe deliveries of the three components were investigated, and their probe absorbability, in vitro and in vivo probe stability and repeatability were also studied.The results indicated that little paeonol, eugenol and piperine were observed in probes with 30% alcohol as the perfusate, and could be cleaned from probe in a short time. And the in vivo and in vitro probe deliveries of three components were stable within 8 h, drug-containing solution and blank perfusate were alternatively used for three times, and the in vivo and in vitro probe deliveries of three components were basically unchanged. The in vitro recoveries of paeonol, eugenol and piperine with a range of concentration were respectively (45.7±4.66)%, (27.82±2.95)%, (41.3±3.96)%, which indicated no concentration independent. Under the same conditions, the similar delivery was observed by dialysis, retrodialysis and no-net flux. Therefore, the concentrations of analyses of the collected fraction could be calibrated by in vitro or in vivo recoveries. Meanwhile, this also proved that the micro-dialysis method built by this study is applicable to the study on percutaneous pharmacokinetics of Huoxue Zhitong patch. Copyright© by the Chinese Pharmaceutical Association.

  10. Effect of temporary cements on the microtensile bond strength of self-etching and self-adhesive resin cement.

    PubMed

    Carvalho, Edilausson Moreno; Carvalho, Ceci Nunes; Loguercio, Alessandro Dourado; Lima, Darlon Martins; Bauer, José

    2014-11-01

    The aim of this study was to evaluate the microtensile bond strength (µTBS) of self-etching and self-adhesive resin cement systems to dentin affected by the presence of remnants of either eugenol-containing or eugenol-free temporary cements. Thirty extracted teeth were obtained and a flat dentin surface was exposed on each tooth. Acrylic blocks were fabricated and cemented either with one of two temporary cements, one zinc oxide eugenol (ZOE) and one eugenol free (ZOE-free), or without cement (control). After cementation, specimens were stored in water at 37°C for 1 week. The restorations and remnants of temporary cements were removed and dentin surfaces were cleaned with pumice. Resin composite blocks were cemented to the bonded dentin surfaces with one of two resin cements, either self-etching (Panavia F 2.0) or self-adhesive (RelyX U-100). After 24 h, the specimens were sectioned to obtain beams for submission to µTBS. The fracture mode was evaluated under a stereoscopic loupe and a scanning electron microscope (SEM). Data from µTBS were submitted to two-way repeated-measure ANOVA and the Tukey test (alpha = 0.05). The cross-product interaction was statistically significant (p < 0.0003). The presence of temporary cements reduced the bond strength to Panavia self-etching resin cements only (p < 0.05). Fracture occurred predominantly at the dentin-adhesive interface. The presence of eugenol-containing temporary cements did not interfere in the bond strength to dentin of self-adhesive resin cements.

  11. Zebrafish as a model to study the role of DNA methylation in environmental toxicology.

    PubMed

    Kamstra, Jorke H; Aleström, Peter; Kooter, Jan M; Legler, Juliette

    2015-11-01

    Environmental epigenetics is a rapidly growing field which studies the effects of environmental factors such as nutrition, stress, and exposure to compounds on epigenetic gene regulation. Recent studies have shown that exposure to toxicants in vertebrates is associated with changes in DNA methylation, a major epigenetic mechanism affecting gene transcription. Zebra fish, a well-known model in toxicology and developmental biology, are emerging as a model species in environmental epigenetics despite their evolutionary distance to rodents and humans. In this review, recent insights in DNA methylation during zebra fish development are discussed and compared to mammalian models in order to evaluate zebra fish as a model to study the role of DNA methylation in environmental toxicology. Differences exist in DNA methylation reprogramming during early development, whereas in later developmental stages, tissue distribution of both 5-methylcytosine and 5-hydroxymethylcytosine seems more conserved between species, as well as basic DNA (de)methylation mechanisms. All DNA methyl transferases identified so far in mammals are present in zebra fish, as well as a number of major demethylation pathways. However, zebra fish appear to lack some methylation pathways present in mammals, such as parental imprinting. Several studies report effects on DNA methylation in zebra fish following exposure to environmental contaminants, such as arsenic, benzo[a]pyrene, and tris(1,3-dichloro-2-propyl)phosphate. Though more research is needed to examine heritable effects of contaminant exposure on DNA methylation, recent data suggests the usefulness of the zebra fish as a model in environmental epigenetics.

  12. Effects and interactions of gallic acid, eugenol and temperature on thermal inactivation of Salmonella spp. in ground chicken

    USDA-ARS?s Scientific Manuscript database

    The combined effects of heating temperature (55 to 65C), gallic acid (0 to 2.0%), and eugenol (0 to 2.0%) on thermal inactivation of Salmonella in ground chicken were assessed. Thermal death times were determined in bags submerged in a heated water bath maintained at various set temperatures, follo...

  13. Evaluation of attractive toxic sugar bait (ATSB)-barrier for control of vector and nuisance mosquitoes and its effect on non-target organisms in sub-tropical environments in Florida

    USDA-ARS?s Scientific Manuscript database

    We evaluated the efficacy of attractive toxic sugar baits (ATSB) in the laboratory and the field with the Environmental Protection Agency exempt active ingredient eugenol against vector and nuisance mosquitoes. In the laboratory, eugenol combined in attractive sugar bait (ASB) solution provided high...

  14. Do Environmental Fluoride Exposure and ESRα Genetic Variation Modulate Methylation Modification on Bone Changes in Chinese Farmers?

    PubMed

    Zhang, Yanli; Huang, Hui; Gong, Biao; Duan, Leizhen; Sun, Long; He, Tongkun; Cheng, Xuemin; Li, Zhiyuan; Cui, Liuxin; Ba, Yue

    2017-06-19

    Although increasing evidence suggests that estrogen receptor α (ESRα) genetic variation could modify bone damage caused by environmental fluoride exposure, little is known about epigenetic mechanisms in relation to bone changes. A case-control study was conducted among farmers aged 18-55 years in Henan Province, China. X-ray was used to detect bone changes. Methylation status was determined by methylation-specific PCR. Genotypes were identified by Taqman probe and real-time PCR. In this study, we found that methylation status in the promoter region of the ESRα gene was lower in bone change cases than that in controls, which was only observed in male farmers after stratification by gender. Furthermore, methylation level was negatively associated with the urinary fluoride concentration in male farmers. No significant association was found between the distribution of ESRα rs2941740 genotypes and the risk of bone changes. Multivariate logistic regression analysis showed that after adjusting for age and gender, increased serum calcium and methylation status were protective factors for bone changes. No interaction effect was observed between fluoride exposure and ESRα rs2941740 polymorphism on bone changes. In conclusion, the current work suggests that bone changes are associated with methylation status, which might be modulated by fluoride exposure in male farmers. Methylation status and bone changes were not modified by ESRα gene rs2941740 polymorphism in the promoter region.

  15. Evaluation of antifungal activity in essential oil of the Syzygium aromaticum (L.) by extraction, purification and analysis of its main component eugenol

    PubMed Central

    Rana, Inder Singh; Rana, Aarti Singh; Rajak, Ram Charan

    2011-01-01

    Antifungal properties of some essential oils have been well documented. Clove oil is reported to have strong antifungal activity against many fungal species. In this study we have evaluated antifungal potential of essential oil of Syzygium aromaticum (L.) against some common fungal pathogens of plants and animals namely, Fusarium moniliforme NCIM 1100, Fusarium oxysporum MTCC 284, Aspergillus sp., Mucor sp., Trichophyton rubrum and Microsporum gypseum. All fungal species were found to be inhibited by the oil when tested through agar well diffusion method. Minimum inhibitory concentration (MIC) was determined for all the species. Column chromatography was performed to separate the eugenol rich fraction from clove oil. Out of seven fractions maximum activity was obtained in column fraction II. TLC and HPLC data confirmed presence of considerable Eugenol in fraction II and clove oil. Microscopic study on effect of clove oil and column fraction II on spores of Mucor sp. and M. gypseum showed distortion and shrinkage while it was absent in other column fractions. So it can be concluded that the antifungal action of clove oil is due to its high eugenol content. PMID:24031751

  16. Acaricidal Activity of Eugenol Based Compounds against Scabies Mites

    PubMed Central

    Pasay, Cielo; Mounsey, Kate; Stevenson, Graeme; Davis, Rohan; Arlian, Larry; Morgan, Marjorie; Vyszenski-Moher, DiAnn; Andrews, Kathy; McCarthy, James

    2010-01-01

    Backgound Human scabies is a debilitating skin disease caused by the “itch mite” Sarcoptes scabiei. Ordinary scabies is commonly treated with topical creams such as permethrin, while crusted scabies is treated with topical creams in combination with oral ivermectin. Recent reports of acaricide tolerance in scabies endemic communities in Northern Australia have prompted efforts to better understand resistance mechanisms and to identify potential new acaricides. In this study, we screened three essential oils and four pure compounds based on eugenol for acaricidal properties. Methodology/Principal Findings Contact bioassays were performed using live permethrin-sensitive S. scabiei var suis mites harvested from pigs and permethrin-resistant S. scabiei var canis mites harvested from rabbits. Results of bioassays showed that clove oil was highly toxic against scabies mites. Nutmeg oil had moderate toxicity and ylang ylang oil was the least toxic. Eugenol, a major component of clove oil and its analogues –acetyleugenol and isoeugenol, demonstrated levels of toxicity comparable to benzyl benzoate, the positive control acaricide, killing mites within an hour of contact. Conclusions The acaricidal properties demonstrated by eugenol and its analogues show promise as leads for future development of alternative topical acaricides to treat scabies. PMID:20711455

  17. Evaluation of antifungal activity in essential oil of the Syzygium aromaticum (L.) by extraction, purification and analysis of its main component eugenol.

    PubMed

    Rana, Inder Singh; Rana, Aarti Singh; Rajak, Ram Charan

    2011-10-01

    Antifungal properties of some essential oils have been well documented. Clove oil is reported to have strong antifungal activity against many fungal species. In this study we have evaluated antifungal potential of essential oil of Syzygium aromaticum (L.) against some common fungal pathogens of plants and animals namely, Fusarium moniliforme NCIM 1100, Fusarium oxysporum MTCC 284, Aspergillus sp., Mucor sp., Trichophyton rubrum and Microsporum gypseum. All fungal species were found to be inhibited by the oil when tested through agar well diffusion method. Minimum inhibitory concentration (MIC) was determined for all the species. Column chromatography was performed to separate the eugenol rich fraction from clove oil. Out of seven fractions maximum activity was obtained in column fraction II. TLC and HPLC data confirmed presence of considerable Eugenol in fraction II and clove oil. Microscopic study on effect of clove oil and column fraction II on spores of Mucor sp. and M. gypseum showed distortion and shrinkage while it was absent in other column fractions. So it can be concluded that the antifungal action of clove oil is due to its high eugenol content.

  18. Development and Sequential Analysis of a New Multi-Agent, Anti-Acne Formulation Based on Plant-Derived Antimicrobial and Anti-Inflammatory Compounds.

    PubMed

    Saviuc, Crina; Ciubucă, Bianca; Dincă, Gabriela; Bleotu, Coralia; Drumea, Veronica; Chifiriuc, Mariana-Carmen; Popa, Marcela; Gradisteanu Pircalabioru, Gratiela; Marutescu, Luminita; Lazăr, Veronica

    2017-01-17

    The antibacterial and anti-inflammatory potential of natural, plant-derived compounds has been reported in many studies. Emerging evidence indicates that plant-derived essential oils and/or their major compounds may represent a plausible alternative treatment for acne, a prevalent skin disorder in both adolescent and adult populations. Therefore, the purpose of this study was to develop and subsequently analyze the antimicrobial activity of a new multi-agent, synergic formulation based on plant-derived antimicrobial compounds (i.e., eugenol, β-pinene, eucalyptol, and limonene) and anti-inflammatory agents for potential use in the topical treatment of acne and other skin infections. The optimal antimicrobial combinations selected in this study were eugenol/β-pinene/salicylic acid and eugenol/β-pinene/2-phenoxyethanol/potassium sorbate. The possible mechanisms of action revealed by flow cytometry were cellular permeabilization and inhibition of efflux pumps activity induced by concentrations corresponding to sub-minimal inhibitory (sub-MIC) values. The most active antimicrobial combination represented by salycilic acid/eugenol/β-pinene/2-phenoxyethanol/potassium sorbate was included in a cream base, which demonstrated thermodynamic stability and optimum microbiological characteristics.

  19. Early gestation as the critical time-window for changes in the prenatal environment to affect the adult human blood methylome

    PubMed Central

    Tobi, Elmar W; Slieker, Roderick C; Stein, Aryeh D; Suchiman, H Eka D; Slagboom, P Eline; van Zwet, Erik W; Heijmans, Bastiaan T; Lumey, LH

    2015-01-01

    Background: The manipulation of pregnancy diets in animals can lead to changes in DNA methylation with phenotypic consequences in the offspring. Human studies have concentrated on the effects of nutrition during early gestation. Lacking in humans is an epigenome-wide association study of DNA methylation in relation to perturbations in nutrition across all gestation periods. Methods: We used the quasi-experimental setting of the Dutch famine of 1944–45 to evaluate the impact of famine exposure during specific 10-week gestation periods, or during any time in gestation, on genome-wide DNA methylation levels at age ∼ 59 years. In addition, we evaluated the impact of exposure during a shorter pre- and post-conception period. DNA methylation was assessed using the Illumina 450k array in whole blood among 422 individuals with prenatal famine exposure and 463 time- or sibling-controls without prenatal famine exposure. Results: Famine exposure during gestation weeks 1–10, but not weeks 11–20, 21–30 or 31-delivery, was associated with an increase in DNA methylation of CpG dinucleotides cg20823026 (FAM150B), cg10354880 (SLC38A2) and cg27370573 (PPAP2C) and a decrease of cg11496778 (OSBPL5/MRGPRG) (P < 5.9 × 10−7, PFDR < 0.031). There was an increase in methylation of TACC1 and ZNF385A after exposure during any time in gestation (P < 2.0 × 10−7, PFDR = 0.034) and a decrease of cg23989336 (TMEM105) after exposure around conception. These changes represent a shift of 0.3–0.6 standard deviations and are linked to genes involved in growth, development and metabolism. Conclusion: Early gestation, and not mid or late gestation, is identified as a critical time-period for adult DNA methylation changes in whole blood after prenatal exposure to famine. PMID:25944819

  20. The volatile profiles of a rare apple (Malus domestica Borkh.) honey: shikimic acid-pathway derivatives, terpenes, and others.

    PubMed

    Kuś, Piotr Marek; Jerković, Igor; Tuberoso, Carlo Ignazio Giovanni; Šarolić, Mladenka

    2013-09-01

    The volatile profiles of rare Malus domestica Borkh. honey were investigated for the first time. Two representative samples from Poland (sample I) and Spain (sample II) were selected by pollen analysis (44-45% of Malus spp. pollen) and investigated by GC/FID/MS after headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE). The apple honey is characterized by high percentage of shikimic acid-pathway derivatives, as well as terpenes, norisoprenoids, and some other compounds such as coumaran and methyl 1H-indole-3-acetate. The main compounds of the honey headspace were (sample I; sample II): benzaldehyde (9.4%; 32.1%), benzyl alcohol (0.3%; 14.4%), hotrienol (26.0%, 6.2%), and lilac aldehyde isomers (26.3%; 1.7%), but only Spanish sample contained car-2-en-4-one (10.2%). CH2 Cl2 and pentane/Et2 O 1 : 2 (v/v) were used for USE. The most relevant compounds identified in the extracts were: benzaldehyde (0.9-3.9%), benzoic acid (2.0-11.2%), terpendiol I (0.3-7.4%), coumaran (0.0-2.8%), 2-phenylacetic acid (2.0-26.4%), methyl syringate (3.9-13.1%), vomifoliol (5.0-31.8%), and methyl 1H-indole-3-acetate (1.9-10.2%). Apple honey contained also benzyl alcohol, 2-phenylethanol, (E)-cinnamaldehyde, (E)-cinnamyl alcohol, eugenol, vanillin, and linalool that have been found previously in apple flowers, thus disclosing similarity of both volatile profiles. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  1. The Epigenetic Effects of a High Prenatal Folate Intake in Male Mouse Fetuses Exposed In Utero to Arsenic

    PubMed Central

    Tsang, Verne; Fry, Rebecca C.; Niculescu, Mihai D.; Rager, Julia E.; Saunders, Jesse; Paul, David S.; Zeisel, Steven H.; Waalkes, Michael P.; Stýblo, Miroslav; Drobná, Zuzana

    2012-01-01

    Inorganic arsenic (iAs) is a complete transplacental carcinogen in mice. Previous studies have demonstrated that in utero exposure to iAs promotes cancer in adult mouse offspring, possibly acting through epigenetic mechanisms. Humans and rodents enzymatically convert iAs to its methylated metabolites. This reaction requires S-adenosylmethionine (SAM) as methyl group donor. SAM is also required for DNA methylation. Supplementation with folate, a major dietary source of methyl groups for SAM synthesis, has been shown to modify iAs metabolism and the adverse effects of iAs exposure. However, effects of gestational folate supplementation on iAs metabolism and fetal DNA methylation have never been thoroughly examined. In the present study, pregnant CD1 mice were fed control (i.e. normal folate, or 2.2 mg/kg) or high folate diet (11 mg/kg) from gestational day (GD) 5 to 18 and drank water with 0 or 85 ppm of As (as arsenite) from GD8 to 18. The exposure to iAs significantly decreased body weight of GD18 fetuses and increased both SAM and S-adenosylhomocysteine (SAH) concentrations in fetal livers. High folate intake lowered the burden of total arsenic in maternal livers but did not prevent the effects of iAs exposure on fetal weight or hepatic SAM and SAH concentrations. In fact, combined folate-iAs exposure caused further significant body weight reduction. Notably, iAs exposure alone had little effect on DNA methylation in fetal livers. In contrast, the combined folate-iAs exposure changed the CpG island methylation in 2,931 genes, including genes known to be imprinted. Most of these genes were associated with neurodevelopment, cancer, cell cycle, and signaling networks. The canonical Wnt-signaling pathway, which regulates fetal development, was among the most affected biological pathways. Taken together, our results suggest that a combined in utero exposure to iAs and a high folate intake may adversely influence DNA methylation profiles and weight of fetuses, compromising fetal development and possibly increasing the risk for early-onset of disease in offspring. PMID:22959928

  2. Longitudinal changes in glucocorticoid receptor exon 1F methylation and psychopathology after military deployment

    PubMed Central

    Schür, R R; Boks, M P; Rutten, B P F; Daskalakis, N P; de Nijs, L; van Zuiden, M; Kavelaars, A; Heijnen, C J; Joëls, M; Kahn, R S; Geuze, E; Vermetten, E; Vinkers, C H

    2017-01-01

    Several cross-sectional studies have demonstrated the relevance of DNA methylation of the glucocorticoid receptor exon 1F region (GR-1F) for trauma-related psychopathology. We conducted a longitudinal study to examine GR-1F methylation changes over time in relation to trauma exposure and the development of post-deployment psychopathology. GR-1F methylation (52 loci) was quantified using pyrosequencing in whole blood of 92 military men 1 month before and 6 months after a 4-month deployment period to Afghanistan. GR-1F methylation overall (mean methylation and the number of methylated loci) and functional methylation (methylation at loci associated with GR exon 1F expression) measures were examined. We first investigated the effect of exposure to potentially traumatic events during deployment on these measures. Subsequently, changes in GR-1F methylation were related to changes in mental health problems (total Symptom Checklist-90 score) and posttraumatic stress disorder (PTSD) symptoms (Self-Report Inventory for PTSD). Trauma exposure during deployment was associated with an increase in all methylation measures, but development of mental health problems 6 months after deployment was only significantly associated with an increased functional methylation. Emergence of post-deployment PTSD symptoms was not related to increased functional methylation over time. Pre-deployment methylation levels did not predict post-deployment psychopathology. To our knowledge, this is the first study to prospectively demonstrate trauma-related increases in GR-1F methylation, and it shows that only increases at specific functionally relevant sites predispose for post-deployment psychopathology. PMID:28742078

  3. Prenatal lead exposure is associated with decreased cord blood DNA methylation of the glycoprotein VI gene involved in platelet activation and thrombus formation

    PubMed Central

    Engström, Karin; Rydbeck, Filip; Kippler, Maria; Wojdacz, Tomasz K.; Arifeen, Shams; Vahter, Marie; Broberg, Karin

    2015-01-01

    Abstract Early-life lead exposure impairs neurodevelopment and later exposure affects the cardiovascular system. Lead has been associated with reduced global 5-methylcytosine DNA methylation, suggesting that lead toxicity acts through epigenetic mechanisms. The objective of this study is to clarify how early-life lead exposure alters DNA methylation of specific genes, using an epigenomic approach. We measured lead concentrations in urine [gestational week (GW), 8] and erythrocytes (GW 14), using inductively coupled plasma mass spectrometry, for 127 pregnant mothers recruited in the MINIMat food and supplementation cohort in rural Bangladesh. Cord blood DNA methylation was analyzed with the Infinium HumanMethylation450K BeadChip, and top sites were validated by methylation-sensitive high-resolution melt curve analysis. Maternal urinary lead concentrations (divided into quartiles) showed significant (after adjustment for false discovery rate) inverse associations with methylation at nine CpGs. Three of these sites were in the 5′-end, including the promoter, of glycoprotein IV (GP6); cg18355337 (q = 0.029, β = −0.30), cg25818583 (q = 0.041, β = −0.18), and cg23796967 (q = 0.047, β = −0.17). The methylation in another CpG site in GP6 was close to significant (cg05374025, q = 0.057, β = − 0.23). The erythrocyte lead concentrations (divided into quartiles) were also inversely associated with CpG methylation in GP6, although this was not statistically significant after false discovery rate adjustments. Eight CpG sites in GP6 constituted a differentially methylated region in relation to urinary lead (P = 0.005, q = 0.48) and erythrocyte lead (P = 0.007, q = 0.46). In conclusion, we found that moderate prenatal lead exposure appears to epigenetically affect GP6, a key component of platelet aggregation and thrombus formation, suggesting a novel link between early lead exposure and cardiovascular disease later in life. PMID:29492281

  4. 78 FR 22789 - Methyl Jasmonate; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-17

    .... The acute toxicity data show virtual non-toxicity for all routes of exposure and suggest that any...) and confirmed virtual non-toxicity through the oral route of exposure. There were no observed... virtual non-toxicity through the dermal route of exposure. (MRID No. 48653902). Methyl jasmonate is...

  5. Chemical composition and antioxidant properties of clove leaf essential oil.

    PubMed

    Jirovetz, Leopold; Buchbauer, Gerhard; Stoilova, Ivanka; Stoyanova, Albena; Krastanov, Albert; Schmidt, Erich

    2006-08-23

    The antioxidant activity of a commercial rectified clove leaf essential oil (Eugenia caryophyllus) and its main constituent eugenol was tested. This essential oil comprises in total 23 identified constituents, among them eugenol (76.8%), followed by beta-caryophyllene (17.4%), alpha-humulene (2.1%), and eugenyl acetate (1.2%) as the main components. The essential oil from clove demonstrated scavenging activity against the 2,2-diphenyl-1-picryl hydracyl (DPPH) radical at concentrations lower than the concentrations of eugenol, butylated hydroxytoluene (BHT), and butylated hydroxyanisole (BHA). This essential oil also showed a significant inhibitory effect against hydroxyl radicals and acted as an iron chelator. With respect to the lipid peroxidation, the inhibitory activity of clove oil determined using a linoleic acid emulsion system indicated a higher antioxidant activity than the standard BHT.

  6. Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease

    PubMed Central

    Relton, Caroline L; Davey Smith, George

    2012-01-01

    The burgeoning interest in the field of epigenetics has precipitated the need to develop approaches to strengthen causal inference when considering the role of epigenetic mediators of environmental exposures on disease risk. Epigenetic markers, like any other molecular biomarker, are vulnerable to confounding and reverse causation. Here, we present a strategy, based on the well-established framework of Mendelian randomization, to interrogate the causal relationships between exposure, DNA methylation and outcome. The two-step approach first uses a genetic proxy for the exposure of interest to assess the causal relationship between exposure and methylation. A second step then utilizes a genetic proxy for DNA methylation to interrogate the causal relationship between DNA methylation and outcome. The rationale, origins, methodology, advantages and limitations of this novel strategy are presented. PMID:22422451

  7. Adolescent binge-pattern alcohol exposure alters genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve male offspring.

    PubMed

    Asimes, AnnaDorothea; Torcaso, Audrey; Pinceti, Elena; Kim, Chun K; Zeleznik-Le, Nancy J; Pak, Toni R

    2017-05-01

    Teenage binge drinking is a major health concern in the United States, with 21% of teenagers reporting binge-pattern drinking behavior in the previous 30 days. Recently, our lab showed that alcohol-naïve offspring of rats exposed to alcohol during adolescence exhibited altered gene expression profiles in the hypothalamus, a brain region involved in stress regulation. We employed Enhanced Reduced Representation Bisulfite Sequencing as an unbiased approach to test the hypothesis that parental exposure to binge-pattern alcohol during adolescence alters DNA methylation profiles in their alcohol-naïve offspring. Wistar rats were administered a repeated binge-ethanol exposure paradigm during early (postnatal day (PND) 37-44) and late (PND 67-74) adolescent development. Animals were mated 24 h after the last ethanol dose and subsequent offspring were produced. Analysis of male PND7 offspring revealed that offspring of alcohol-exposed parents exhibited differential DNA methylation patterns in the hypothalamus. The differentially methylated cytosines (DMCs) were distinct between offspring depending on which parent was exposed to ethanol. Moreover, novel DMCs were observed when both parents were exposed to ethanol and many DMCs from single parent ethanol exposure were not recapitulated with dual parent exposure. We also measured mRNA expression of several differentially methylated genes and some, but not all, showed correlative changes in expression. Importantly, methylation was not a direct predictor of expression levels, underscoring the complexity of transcriptional regulation. Overall, we demonstrate that adolescent binge ethanol exposure causes altered genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Adolescent binge-pattern alcohol exposure alters genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve male offspring

    PubMed Central

    Asimes, AnnaDorothea; Torcaso, Audrey; Pinceti, Elena; Kim, Chun K; Zeleznik-Le, Nancy J.; Pak, Toni R.

    2016-01-01

    Teenage binge drinking is a major health concern in the United States, with 21% of teenagers reporting binge-pattern drinking behavior in the last 30 days. Recently, our lab showed that alcohol-naïve offspring of rats exposed to alcohol during adolescence exhibited altered gene expression profiles in the hypothalamus, a brain region involved in stress regulation. We employed Enhanced Reduced Representation Bisulfite Sequencing as an unbiased approach to test the hypothesis that parental exposure to binge-pattern alcohol during adolescence alters DNA methylation profiles in their alcohol-naïve offspring. Wistar rats were administered a repeated binge-ethanol exposure paradigm during early (postnatal day (PND) 37-44) and late (PND 67-74) adolescent development. Animals were mated 24h after the last ethanol dose and subsequent offspring were produced. Analysis of male PND7 offspring revealed that offspring of alcohol-exposed parents exhibited differential DNA methylation patterns in the hypothalamus. The differentially methylated cytosines (DMCs) were distinct between offspring depending on which parent was exposed to ethanol. Moreover, novel DMCs were observed when both parents were exposed to ethanol and many DMCs from single parent ethanol exposure were not recapitulated with dual parent exposure. We also measured mRNA expression of several differentially methylated genes and some, but not all, showed correlative changes in expression. Importantly, methylation was not a direct predictor of expression levels, underscoring the complexity of transcriptional regulation. Overall, we demonstrate that adolescent binge ethanol exposure causes altered genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve offspring. PMID:27817987

  9. Maternal phthalate exposure during pregnancy is associated with DNA methylation of LINE-1 and Alu repetitive elements in Mexican-American children

    PubMed Central

    Huen, Karen; Calafat, Antonia M.; Bradman, Asa; Yousefi, Paul; Eskenazi, Brenda; Holland, Nina

    2016-01-01

    Phthalates are frequently used in personal care products and plasticizers and phthalate exposure is ubiquitous in the US population. Exposure to phthalates during critical periods in utero has been associated with a variety of adverse health outcomes but the biological mechanisms linking these exposures with disease are not well characterized. In this study, we examined the relationship of in utero phthalate exposure with repetitive element DNA methylation, an epigenetic marker of genome instability, in children from the longitudinal birth cohort CHAMACOS. Methylation of Alu and long interspersed nucleotide elements (LINE-1) was determined using pyrosequencing of bisulfite-treated DNA isolated from whole blood samples collected from newborns and 9 year old children (n=355). Concentrations of eleven phthalate metabolites were measured in urine collected from pregnant mothers at 13 and 26 weeks gestation. We found a consistent inverse association between prenatal concentrations of monoethyl phthalate, the most frequently detected urinary metabolite, with cord blood methylation of Alu repeats (β(95%CI):−0.14(−0.28,0.00) and −0.16(−0.31,−0.02)) for early and late pregnancy, respectively, and a similar but weaker association with LINE-1 methylation. Additionally, increases in urinary concentrations of di-(2-ethylhexyl) phthalate metabolites during late pregnancy were associated with lower levels of methylation of Alu repeats in 9 year old blood (significant p-values ranged from 0.003 to 0.03). Our findings suggest that prenatal exposure to some phthalates may influence differences in repetitive element methylation, highlighting epigenetics as a plausible biological mechanism through which phthalates may affect health. PMID:27019040

  10. MRI brain in monohalomethane toxic encephalopathy: A case report.

    PubMed

    Deshmukh, Yogeshwari S; Atre, Ashish; Shah, Darshan; Kothari, Sudhir

    2013-07-01

    Monohalomethanes are alkylating agents that have been used as methylating agents, laboratory reagents, refrigerants, aerosol propellants, pesticides, fumigants, fire-extinguishing agents, anesthetics, degreasers, blowing agents for plastic foams, and chemical intermediates. Compounds in this group are methyl chloride, methyl bromide, methyl iodide (MI), and methyl fluoride. MI is a colorless volatile liquid used as a methylating agent to manufacture a few pharmaceuticals and is also used as a fumigative insecticide. It is a rare intoxicant. Neurotoxicity is known with both acute and chronic exposure to MI. We present the characteristic magnetic resonance imaging (MRI) brain findings in a patient who developed neuropsychiatric symptoms weeks after occupational exposure to excessive doses of MI.

  11. Determination of free and glucosidically-bound volatiles in plants. Two case studies: L-menthol in peppermint (Mentha x piperita L.) and eugenol in clove (Syzygium aromaticum (L.) Merr. & L.M.Perry).

    PubMed

    Sgorbini, Barbara; Cagliero, Cecilia; Pagani, Alberto; Sganzerla, Marla; Boggia, Lorenzo; Bicchi, Carlo; Rubiolo, Patrizia

    2015-09-01

    This study arises from both the today's trend towards exploiting plant resources exhaustively, and the wide quantitative discrepancy between the amounts of commercially-valuable markers in aromatic plants and those recovered from the related essential oil. The study addresses the determination of both the qualitative composition and the exhaustive distribution of free and glucosidically-bound L-menthol in peppermint aerial parts (Mentha x piperita L., Lamiaceae) and of eugenol in dried cloves (Syzygium aromaticum (L.) Merr. & L.M.Perry, Myrtaceae), two plants known to provide widely ranging essential oil yields. The two markers were investigated in essential oils and residual hydrodistillation waters, before and after enzymatic hydrolysis. Their amounts were related to those in the headspace taken as reference. The results showed that the difference between marker compound in headspace and in essential oil amounted to 22.8% for L-menthol in peppermint, and 16.5% for eugenol in cloves. The aglycones solubilised in the residual hydrodistillation waters were 7.2% of the headspace reference amount for L-menthol, and 13.3% for eugenol, respectively representing 9.3% and 15.9% of their amounts in the essential oil. The amount of L-menthol from its glucoside in residual hydrodistillation waters was 20.6% of that in the related essential oil, while eugenol from its glucoside accounted for 7.7% of the amount in clove essential oil. The yield of L-menthol, after submitting the plant material to enzymatic hydrolysis before hydrodistillation, increased by 23.1%, and for eugenol the increase was 8.1%, compared to the amount in the respective conventional essential oils. This study also aimed to evaluate the reliability of recently-introduced techniques that are little applied, if at all, in this field. The simultaneous use of high-concentration-capacity sample preparation techniques (SBSE, and HS-SPME and in-solution SPME) to run quali-quantitative analysis without sample manipulation, and direct LC-MS glucoside analysis, provided cross-validation of the results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. [p16 and MGMT gene methylation in sputum cells of uranium workers].

    PubMed

    Su, Shi-biao; Yang, Lu-jing; Zhang, Wei; Jin, Ya-li; Nie, Ji-hua; Tong, Jian

    2006-02-01

    To study the methylation of O-6-methylguanine-DNA methyltransferase (MGMT) and p16 gene in the sputum cells of radon-exposed population. To provide the experimental base for finding the molecular biomarker of the high risk population of the radon-induced lung cancer. 91 radon-exposed workers were divided into 4 groups, high dosage group (> 120 WLM), middle dosage group (between 60 and 120 WLM), low dosage group (between 30 and 60 WLB) and lower dosage group (between 2 and 30 WLM) according to the accumulated exposure dosage of the radon daughters. The abnormal methylation of p16 and MGMT gene in the sputum cells of the population in the four groups was detected with the methylation specific PCR (MSP). There was significantly upward trend for the p16 gene methylation rate (0.00%-20.00%), the MGMT gene methylation rate (0.00%-28.00%) and the total methylation rate (0.00%-40.00%) with the increase of the accumulated exposure dosage of the radon daughters (P < 0.01). The methylation of p16 and MGMT gene is related to the accumulate exposure dosage of the radon daughters.

  13. Asbestos-associated genome-wide DNA methylation changes in lung cancer.

    PubMed

    Kettunen, Eeva; Hernandez-Vargas, Hector; Cros, Marie-Pierre; Durand, Geoffroy; Le Calvez-Kelm, Florence; Stuopelyte, Kristina; Jarmalaite, Sonata; Salmenkivi, Kaisa; Anttila, Sisko; Wolff, Henrik; Herceg, Zdenko; Husgafvel-Pursiainen, Kirsti

    2017-11-15

    Previous studies have revealed a robust association between exposure to asbestos and human lung cancer. Accumulating evidence has highlighted the role of epigenome deregulation in the mechanism of carcinogen-induced malignancies. We examined the impact of asbestos on DNA methylation. Our genome-wide studies (using Illumina HumanMethylation450K BeadChip) of lung cancer tissue and paired normal lung from 28 asbestos-exposed or non-exposed patients, mostly smokers, revealed distinctive DNA methylation changes. We identified a number of differentially methylated regions (DMR) and differentially variable, differentially methylated CpGs (DVMC), with individual CpGs further validated by pyrosequencing in an independent series of 91 non-small cell lung cancer and paired normal lung. We discovered and validated BEND4, ZSCAN31 and GPR135 as significantly hypermethylated in lung cancer. DMRs in genes such as RARB (FDR 1.1 × 10 -19 , mean change in beta [Δ] -0.09), GPR135 (FDR 1.87 × 10 -8 , mean Δ -0.09) and TPO (FDR 8.58 × 10 -5 , mean Δ -0.11), and DVMCs in NPTN, NRG2, GLT25D2 and TRPC3 (all with p <0.05, t-test) were significantly associated with asbestos exposure status in exposed versus non-exposed lung tumors. Hypomethylation was characteristic to DVMCs in lung cancer tissue from asbestos-exposed subjects. When DVMCs related to asbestos or smoking were analyzed, 96% of the elements were unique to either of the exposures, consistent with the concept that the methylation changes in tumors may be specific for risk factors. In conclusion, we identified novel DNA methylation changes associated with lung tumors and asbestos exposure, suggesting that changes may be present in causal pathway from asbestos exposure to lung cancer. © 2017 UICC.

  14. An epigenome-wide association meta-analysis of prenatal maternal stress in neonates: A model approach for replication

    PubMed Central

    Rijlaarsdam, Jolien; Pappa, Irene; Walton, Esther; Bakermans-Kranenburg, Marian J.; Mileva-Seitz, Viara R.; Rippe, Ralph C.A.; Roza, Sabine J.; Jaddoe, Vincent W.V.; Verhulst, Frank C.; Felix, Janine F.; Cecil, Charlotte A.M.; Relton, Caroline L.; Gaunt, Tom R.; McArdle, Wendy; Mill, Jonathan; Barker, Edward D.; Tiemeier, Henning; van IJzendoorn, Marinus H.

    2016-01-01

    ABSTRACT Prenatal maternal stress exposure has been associated with neonatal differential DNA methylation. However, the available evidence in humans is largely based on candidate gene methylation studies, where only a few CpG sites were evaluated. The aim of this study was to examine the association between prenatal exposure to maternal stress and offspring genome-wide cord blood methylation using different methods. First, we conducted a meta-analysis and follow-up pathway analyses. Second, we used novel region discovery methods [i.e., differentially methylated regions (DMRs) analyses]. To this end, we used data from two independent population-based studies, the Generation R Study (n = 912) and the Avon Longitudinal Study of Parents and Children (ALSPAC, n = 828), to (i) measure genome-wide DNA methylation in cord blood and (ii) extract a prenatal maternal stress composite. The meta-analysis (ntotal = 1,740) revealed no epigenome-wide (meta P <1.00e-07) associations of prenatal maternal stress exposure with neonatal differential DNA methylation. Follow-up analyses of the top hits derived from our epigenome-wide meta-analysis (meta P <1.00e-04) indicated an over-representation of the methyltransferase activity pathway. We identified no Bonferroni-corrected (P <1.00e-06) DMRs associated with prenatal maternal stress exposure. Combining data from two independent population-based samples in an epigenome-wide meta-analysis, the current study indicates that there are no large effects of prenatal maternal stress exposure on neonatal DNA methylation. Such replication efforts are essential in the search for robust associations, whether derived from candidate gene methylation or epigenome-wide studies. PMID:26889969

  15. Effects of bisphosphonate treatment on DNA methylation in osteonecrosis of the jaw.

    PubMed

    Polidoro, Silvia; Broccoletti, Roberto; Campanella, Gianluca; Di Gaetano, Cornelia; Menegatti, Elisa; Scoletta, Matteo; Lerda, Ennio; Matullo, Giuseppe; Vineis, Paolo; Berardi, Daniela; Scully, Crispian; Arduino, Paolo G

    2013-10-09

    Bisphosphonates are used in the treatment of hypocalcaemia, mainly in cancer and osteoporosis. Some patients experience adverse events, such as BP-related osteonecrosis of the jaw (BRONJ). DNA methylation plays a key role in gene regulation in many tissues, but its involvement in bone homeostasis is not well characterized, and no information is available regarding altered methylation in BRONJ. Using the Illumina Infinium HumanMethylation27 BeadChip assay, we performed an epigenome-wide association study in peripheral blood samples from 68 patients treated with nitrogenous BP, including 35 with BRONJ. Analysis of the estimated cumulative BP exposure distribution indicated that the exposure of the case group to BP was slightly higher than that of the control group; more severely affected cases (i.e., with BRONJ in both mandible and maxilla) were significantly more exposed to BP than were those with BRONJ only in the mandible or maxilla (one-sided Wilcoxon rank sum test, p=0.002). Logistic regression analysis confirmed the positive association between cumulative bisphosphonates exposure and risk of BRONJ (OR 1.015 per mg of cumulative exposure, 95% CI 1.004-1.032, p=0.036). Although no statistically significant differences were observed between case and control groups, methylation levels of probes mapping on three genes, ERCC8, LEPREL1 and SDC2, were strongly associated with cumulative BP exposure levels (p<1.31E-007). Enrichment analysis, combining differentially methylated genes with genes involved in the mevalonate pathway, showed that BP treatment can affect the methylation pattern of genes involved in extracellular matrix organization and inflammatory responses, leading to more frequent adverse effects such as BRONJ. Differences in DNA methylation induced by BP treatment could be involved in the pathogenesis of the bone lesion. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. (BOSC) DOSE-RESPONSE MODELING FOR THE ASSESSMENT OF CUMULATIVE RISK DUE TO EXPOSURE TO N-METHYL CARBAMATE PRESTICIDES

    EPA Science Inventory

    THE US EPA'S N-METHYL CARBAMATE CUMULATIVE RISK ASSESSMENT (NMCRA) ASSESSES THE EFFECT ON ACETYLCHOLINE ESTERASE (AChE) ACTIVITY OF EXPOSURE TO 10 N-METHLY CARBAMATE (NMC)PESTICIDES THROUGH DIETARY, DRINKING WATER, AND RESIDENTIAL EXPOSURES. THESE DATA THUS INFORM, BUT DO NOT COM...

  17. Benchmark Dose Analysis from Multiple Datasets: The Cumulative Risk Assessment for the N-Methyl Carbamate Pesticides

    EPA Science Inventory

    The US EPA’s N-Methyl Carbamate (NMC) Cumulative Risk assessment was based on the effect on acetylcholine esterase (AChE) activity of exposure to 10 NMC pesticides through dietary, drinking water, and residential exposures, assuming the effects of joint exposure to NMCs is dose-...

  18. Tobacco exposure-related alterations in DNA methylation and gene expression in human monocytes: the Multi-Ethnic Study of Atherosclerosis (MESA)

    PubMed Central

    Reynolds, Lindsay M.; Lohman, Kurt; Pittman, Gary S.; Barr, R. Graham; Chi, Gloria C.; Kaufman, Joel; Wan, Ma; Bell, Douglas A.; Blaha, Michael J.; Rodriguez, Carlos J.; Liu, Yongmei

    2017-01-01

    ABSTRACT Alterations in DNA methylation and gene expression in blood leukocytes are potential biomarkers of harm and mediators of the deleterious effects of tobacco exposure. However, methodological issues, including the use of self-reported smoking status and mixed cell types have made previously identified alterations in DNA methylation and gene expression difficult to interpret. In this study, we examined associations of tobacco exposure with DNA methylation and gene expression, utilizing a biomarker of tobacco exposure (urine cotinine) and CD14+ purified monocyte samples from 934 participants of the community-based Multi-Ethnic Study of Atherosclerosis (MESA). Urine cotinine levels were measured using an immunoassay. DNA methylation and gene expression were measured with microarrays. Multivariate linear regression was used to test for associations adjusting for age, sex, race/ethnicity, education, and study site. Urine cotinine levels were associated with methylation of 176 CpGs [false discovery rate (FDR)<0.01]. Four CpGs not previously identified by studies of non-purified blood samples nominally replicated (P value<0.05) with plasma cotinine-associated methylation in 128 independent monocyte samples. Urine cotinine levels associated with expression of 12 genes (FDR<0.01), including increased expression of P2RY6 (Beta ± standard error = 0.078 ± 0.008, P = 1.99 × 10−22), a gene previously identified to be involved in the release of pro-inflammatory cytokines. No cotinine-associated (FDR<0.01) methylation profiles significantly (FDR<0.01) correlated with cotinine-associated (FDR<0.01) gene expression profiles. In conclusion, our findings i) identify potential monocyte-specific smoking-associated methylation patterns and ii) suggest that alterations in methylation may not be a main mechanism regulating gene expression in monocytes in response to cigarette smoking. PMID:29166816

  19. DNA methylation of ESR-1 and N-33 in colorectal mucosa of patients with ulcerative colitis (UC).

    PubMed

    Arasaradnam, Ramesh P; Khoo, Kevin; Bradburn, Mike; Mathers, John C; Kelly, Seamus B

    2010-07-01

    Epigenetic marking such as DNA methylation influence gene transcription and chromosomal stability and may also be affected by environmental exposures. Few studies exist on alteration in DNA methylation profiles (genomic and gene specific methylation) in patients with Ulcerative Colitis (UC) and no studies exist that assess its relationship with lifestyle exposures. The methylation level of both ESR-1 and N-33 genes were significantly higher in UC subjects compared with controls (7.9% vs. 5.9%; p = 0.015 and 66% vs. 9.3%; p < 0.001 respectively). There was no detectable difference in global DNA methylation between patients with UC and age and sex matched controls. No associations between indices of DNA methylation and anthropometric measures or smoking patterns were detected. To assess genomic methylation and promoter methylation of the ESR-1 (oestrogen receptor-1) and N-33 (tumor suppressor candidate-3) genes in the macroscopically normal mucosa of UC patients as well as to investigate effects of anthropometric and lifestyle exposures on DNA methylation. Sixty eight subjects were recruited (24 UC and 44 age and sex matched controls). Colorectal mucosal biopsies were obtained and DNA was extracted. Genomic DNA methylation was quantified using the tritium-labelled cytosine extension assay (3[H] dCTP) while gene specific methylation was quantified using the COBRA method. For the first time, we have shown increased methylation in the promoter regions of the putative tumor suppressor gene N-33 in macroscopically normal mucosa of patients with UC. In addition, we have confirmed that methylation of ESR-1 promoter is higher in UC patients compared with age and sex matched controls. These findings suggest that inactivation through methylation of the putative tumor suppressor genes N-33 and ESR-1 may not be associated with colorectal carcinogenesis in UC.

  20. Combined Toxicity of Three Essential Oils Against Aedes aegypti (Diptera: Culicidae) Larvae.

    PubMed

    Muturi, Ephantus J; Ramirez, Jose L; Doll, Kenneth M; Bowman, Michael J

    2017-11-07

    Essential oils are potential alternatives to synthetic insecticides because they have low mammalian toxicity, degrade rapidly in the environment, and possess complex mixtures of bioactive constituents with multi-modal activity against the target insect populations. Twenty-one essential oils were initially screened for their toxicity against Aedes aegypti (L.) larvae and three out of the seven most toxic essential oils (Manuka, oregano, and clove bud essential oils) were examined for their chemical composition and combined toxicity against Ae. aegypti larvae. Manuka essential oil interacted synergistically with oregano essential oil and antagonistically with clove bud essential oil. GC-MS analysis revealed the presence of 21 components in Manuka essential oil and three components each in oregano and clove bud essential oils. Eugenol (84.9%) and eugenol acetate (9.6%) were the principal constituents in clove bud essential oil while carvacrol (75.8%) and m-isopropyltoluene (15.5%) were the major constituents in oregano essential oil. The major constituents in Manuka essential oil were calamenene (20%) and 3-dodecyl-furandione (11.4%). Manuka essential oil interacted synergistically with eugenol acetate and antagonistically with eugenol, suggesting that eugenol was a major contributor to the antagonistic interaction between Manuka and clove bud essential oils. In addition, Manuka interacted synergistically with carvacrol suggesting its contribution to the synergistic interaction between Manuka and oregano essential oils. These findings provide novel insights that can be used to develop new and safer alternatives to synthetic insecticides. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  1. Inhibitory Effect of Essential Oils on Aspergillus ochraceus Growth and Ochratoxin A Production

    PubMed Central

    Selvaraj, Jonathan Nimal; Wang, Yan; Zhao, Yueju; Zhou, Lu; Liu, Xiao; Liu, Yang

    2014-01-01

    Ochratoxin A (OTA) is a mycotoxin which is a common contaminant in grains during storage. Aspergillus ochraceus is the most common producer of OTA. Essential oils play a crucial role as a biocontrol in the reduction of fungal contamination. Essential oils namely natural cinnamaldehyde, cinnamon oil, synthetic cinnamaldehyde, Litsea citrate oil, citral, eugenol, peppermint, eucalyptus, anise and camphor oils, were tested for their efficacy against A. ochraceus growth and OTA production by fumigation and contact assays. Natural cinnamaldehyde proved to be the most effective against A. ochraceus when compared to other oils. Complete fungal growth inhibition was obtained at 150–250 µL/L with fumigation and 250–500 µL/L with contact assays for cinnamon oil, natural and synthetic cinnamaldehyde, L. citrate oil and citral. Essential oils had an impact on the ergosterol biosynthesis and OTA production. Complete inhibition of ergosterol biosynthesis was observed at ≥100 µg/mL of natural cinnamaldehyde and at 200 µg/mL of citral, but total inhibition was not observed at 200 µg/mL of eugenol. But, citral and eugenol could inhibit the OTA production at ≥75 µg/mL and ≥150 µg/mL respectively, while natural cinnamaldehyde couldn’t fully inhibit OTA production at ≤200 µg/mL. The inhibition of OTA by natural cinnamaldehyde is mainly due to the reduction in fungal biomass. However, citral and eugenol could significant inhibit the OTA biosynthetic pathway. Also, we observed that cinnamaldehyde was converted to cinnamic alcohol by A. ochraceus, suggesting that the antimicrobial activity of cinnamaldehyde was mainly attributed to its carbonyl aldehyde group. The study concludes that natural cinnamaldehyde, citral and eugenol could be potential biocontrol agents against OTA contamination in storage grains. PMID:25255251

  2. BNDF methylation in mothers and newborns is associated with maternal exposure to war trauma.

    PubMed

    Kertes, Darlene A; Bhatt, Samarth S; Kamin, Hayley S; Hughes, David A; Rodney, Nicole C; Mulligan, Connie J

    2017-01-01

    The BDNF gene codes for brain-derived neurotrophic factor, a growth factor involved in neural development, cell differentiation, and synaptic plasticity. Present in both the brain and periphery, BDNF plays critical roles throughout the body and is essential for placental and fetal development. Rodent studies show that early life stress, including prenatal stress, broadly alters BDNF methylation, with presumed changes in gene expression. No studies have assessed prenatal exposure to maternal traumatic stress and BDNF methylation in humans. This study examined associations of prenatal exposure to maternal stress and BDNF methylation at CpG sites across the BDNF gene. Among 24 mothers and newborns in the eastern Democratic Republic of Congo, a region with extreme conflict and violence to women, maternal experiences of war trauma and chronic stress were associated with BDNF methylation in umbilical cord blood, placental tissue, and maternal venous blood. Associations of maternal stress and BDNF methylation showed high tissue specificity. The majority of significant associations were observed in putative transcription factor binding regions. This is the first study in humans to examine BDNF methylation in relation to prenatal exposure to maternal stress in three tissues simultaneously and the first in any mammalian species to report associations of prenatal stress and BDNF methylation in placental tissue. The findings add to the growing body of evidence highlighting the importance of considering epigenetic effects when examining the impacts of trauma and stress, not only for adults but also for offspring exposed via effects transmitted before birth.

  3. Gestational Alcohol Exposure Altered DNA Methylation Status in the Developing Fetus

    PubMed Central

    Mandal, Chanchal; Halder, Debasish; Jung, Kyoung Hwa; Chai, Young Gyu

    2017-01-01

    Ethanol is well known as a teratogenic factor that is capable of inducing a wide range of developmental abnormalities if the developing fetus is exposed to it. Duration and dose are the critical parameters of exposure that affect teratogenic variation to the developing fetus. It is suggested that ethanol interferes with epigenetic processes especially DNA methylation. We aimed to organize all of the available information on the alteration of DNA methylation by ethanol in utero. Thus, we have summarized all published information regarding alcohol-mediated alterations in DNA methylation during gestation. We tried to arrange information in a way that anyone can easily find the alcohol exposure time, doses, sampling time, and major changes in genomic level. Manuscript texts will also represent the correlation between ethanol metabolites and subsequent changes in methylome patterns. We hope that this review will help future researchers to further examine the issues associated with ethanol exposure. PMID:28657590

  4. Appetite-enhancing effects of vanilla flavours such as vanillin.

    PubMed

    Ogawa, Kakuyou; Tashima, Akira; Sadakata, Momoko; Morinaga, Osamu

    2018-06-01

    Vanilla flavour is familiar to consumers through foods, cosmetics, household products and some medicines. Vanilla flavouring agents typically contain vanillin or its analogue ethyl vanillin. Our previous study revealed that the inhalation of eugenol, which contains a vanillyl group, has an appetite-enhancing effect, and the inhalation of aroma compounds containing the vanillyl group or its analogues led to increased food intake in mice. Here, we found that vanillin, ethyl vanillin and eugenol showed appetite-enhancing effects, whereas isoeugenol and safrole did not. These results suggest that the appetite-enhancing effects could be attributable to the vanillyl group and could be affected by the position of the double bond in the aliphatic chain. Furthermore, the results of intraperitoneal administration of eugenol and vanillin suggest that their appetite-enhancing effects could occur via stimulation of olfactory receptors.

  5. Effects of in ovo exposure to benzo[k]fluoranthene (BkF) on CYP1A expression and promoter methylation in developing chicken embryos.

    PubMed

    Brandenburg, Jonas; Head, Jessica A

    2018-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are toxic environmental pollutants that are potent teratogens. Recent research suggests that early life exposure to PAHs can affect health outcomes later in life. Some of these latent responses may be mediated by epigenetic mechanisms such as DNA methylation. The role of DNA methylation in regulating responses to PAHs in birds is currently unknown. Here, we assess the effect of in ovo exposure to the model PAH, benzo[k]fluoranthene (BkF), on aryl hydrocarbon receptor (AHR) mediated cytochrome P4501A (CYP1A) gene expression and promoter methylation in chicken embryos. Fertilized chicken eggs were injected with BkF (0-100μg/kg) prior to incubation. BkF exposure was associated with an increase in CYP1A4 and CYP1A5 mRNA levels at mid-incubation (embryonic day 10), which dropped to baseline levels towards the end of the incubation period (embryonic day 19). The transient induction in CYP1A expression was accompanied by small but significant increases in CYP1A promoter methylation, which persisted until after shortly after hatching. Methylation within the CYP1A promoter was correlated with levels of CYP1A5, but not CYP1A4 mRNA. Characterization of the role of DNA methylation in the AHR response pathway may increase our understanding of the effects of early life exposure to PAHs in birds. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Transient and permanent changes in DNA methylation patterns in inorganic arsenic-mediated epithelial-to-mesenchymal transition

    PubMed Central

    Eckstein, Meredith; Rea, Matthew; Fondufe-Mittendorf, Yvonne N.

    2017-01-01

    Chronic low dose inorganic arsenic exposure causes cells to take on an epithelial-to-mesenchymal phenotype, which is a crucial process in carcinogenesis. Inorganic arsenic is not a mutagen and thus epigenetic alterations have been implicated in this process. Indeed, during the epithelial-to-mesenchymal transition, morphologic changes to cells correlate with changes in chromatin structure and gene expression, ultimately driving this process. However, studies on the effects of inorganic arsenic exposure/withdrawal on the epithelial-to-mesenchymal transition and the impact of epigenetic alterations in this process are limited. In this study we used high-resolution microarray analysis to measure the changes in DNA methylation in cells undergoing inorganic arsenic-induced epithelial-to-mesenchymal transition, and on the reversal of this process, after removal of the inorganic arsenic exposure. We found that cells exposed to chronic, low-dose inorganic arsenic exposure showed 30,530 sites were differentially methylated, and with inorganic arsenic withdrawal several differential methylated sites were reversed, albeit not completely. Furthermore, these changes in DNA methylation mainly correlated with changes in gene expression at most sites tested but not at all. This study suggests that DNA methylation changes on gene expression are not clear-cut and provide a platform to begin to uncover the relationship between DNA methylation and gene expression, specifically within the context of inorganic arsenic treatment. PMID:28336213

  7. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation

    PubMed Central

    Liu, Yunlong; Balaraman, Yokesh; Wang, Guohua; Nephew, Kenneth P.; Zhou, Feng C.

    2009-01-01

    Alcohol exposure during development can cause variable neurofacial deficit and growth retardation known as fetal alcohol spectrum disorders (FASD). The mechanism underlying FASD is not fully understood. However, alcohol, which is known to affect methyl donor metabolism, may induce aberrant epigenetic changes contributing to FASD. Using a tightly controlled whole-embryo culture, we investigated the effect of alcohol exposure (88 mM) at early embryonic neurulation on genome-wide DNA methylation and gene expression in the C57BL/6 mouse. The DNA methylation landscape around promoter CpG islands at early mouse development was analyzed using MeDIP (methylated DNA immunoprecipitation) coupled with microarray (MeDIP-chip). At early neurulation, genes associated with high CpG promoters (HCP) had a lower ratio of methylation but a greater ratio of expression. Alcohol-induced alterations in DNA methylation were observed, particularly in genes on chromosomes 7, 10 and X; remarkably, a >10 fold increase in the number of genes with increased methylation on chromosomes 10 and X was observed in alcohol-exposed embryos with a neural tube defect phenotype compared to embryos without a neural tube defect. Significant changes in methylation were seen in imprinted genes, genes known to play roles in cell cycle, growth, apoptosis, cancer, and in a large number of genes associated with olfaction. Altered methylation was associated with significant (p < 0.01) changes in expression for 84 genes. Sequenom EpiTYPER DNA methylation analysis was used for validation of the MeDIP-chip data. Increased methylation of genes known to play a role in metabolism (Cyp4f13) and decreased methylation of genes associated with development (Nlgn3, Elavl2, Sox21 and Sim1), imprinting (Igf2r) and chromatin (Hist1h3d) was confirmed. In a mouse model for FASD, we show for the first time that alcohol exposure during early neurulation can induce aberrant changes in DNA methylation patterns with associated changes in gene expression, which together may contribute to the observed abnormal fetal development. PMID:20009564

  8. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation.

    PubMed

    Liu, Yunlong; Balaraman, Yokesh; Wang, Guohua; Nephew, Kenneth P; Zhou, Feng C

    2009-10-01

    Alcohol exposure during development can cause variable neurofacial deficit and growth retardation known as fetal alcohol spectrum disorders (FASD). The mechanism underlying FASD is not fully understood. However, alcohol, which is known to affect methyl donor metabolism, may induce aberrant epigenetic changes contributing to FASD. Using a tightly controlled whole-embryo culture, we investigated the effect of alcohol exposure (88mM) at early embryonic neurulation on genome-wide DNA methylation and gene expression in the C57BL/6 mouse. The DNA methylation landscape around promoter CpG islands at early mouse development was analyzed using MeDIP (methylated DNA immunoprecipitation) coupled with microarray (MeDIP-chip). At early neurulation, genes associated with high CpG promoters (HCP) had a lower ratio of methylation but a greater ratio of expression. Alcohol-induced alterations in DNA methylation were observed, particularly in genes on chromosomes 7, 10, and X; remarkably, a >10 fold increase in the number of genes with increased methylation on chromosomes 10 and X was observed in alcohol-exposed embryos with a neural tube defect phenotype compared to embryos without a neural tube defect. Significant changes in methylation were seen in imprinted genes, genes known to play roles in cell cycle, growth, apoptosis, cancer, and in a large number of genes associated with olfaction. Altered methylation was associated with significant (p<0.01) changes in expression for 84 genes. Sequenom EpiTYPER DNA methylation analysis was used for validation of the MeDIP-chip data. Increased methylation of genes known to play a role in metabolism (Cyp4f13) and decreased methylation of genes associated with development (Nlgn3, Elavl2, Sox21 and Sim1), imprinting (Igf2r) and chromatin (Hist1h3d) was confirmed. In a mouse model for FASD, we show for the first time that alcohol exposure during early neurulation can induce aberrant changes in DNA methylation patterns with associated changes in gene expression, which together may contribute to the observed abnormal fetal development.

  9. Variation of DNA Methylome of Zebrafish Cells under Cold Pressure

    PubMed Central

    Xu, Qiongqiong; Luo, Juntao; Shi, Yingdi; Li, Xiaoxia; Yan, Xiaonan; Zhang, Junfang

    2016-01-01

    DNA methylation is an essential epigenetic mechanism involved in multiple biological processes. However, the relationship between DNA methylation and cold acclimation remains poorly understood. In this study, Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq) was performed to reveal a genome-wide methylation profile of zebrafish (Danio rerio) embryonic fibroblast cells (ZF4) and its variation under cold pressure. MeDIP-seq assay was conducted with ZF4 cells cultured at appropriate temperature of 28°C and at low temperature of 18°C for 5 (short-term) and 30 (long-term) days, respectively. Our data showed that DNA methylation level of whole genome increased after a short-term cold exposure and decreased after a long-term cold exposure. It is interesting that metabolism of folate pathway is significantly hypomethylated after short-term cold exposure, which is consistent with the increased DNA methylation level. 21% of methylation peaks were significantly altered after cold treatment. About 8% of altered DNA methylation peaks are located in promoter regions, while the majority of them are located in non-coding regions. Methylation of genes involved in multiple cold responsive biological processes were significantly affected, such as anti-oxidant system, apoptosis, development, chromatin modifying and immune system suggesting that those processes are responsive to cold stress through regulation of DNA methylation. Our data indicate the involvement of DNA methylation in cellular response to cold pressure, and put a new insight into the genome-wide epigenetic regulation under cold pressure. PMID:27494266

  10. Epigenome-Wide Assessment of DNA Methylation in the Placenta and Arsenic Exposure in the New Hampshire Birth Cohort Study (USA).

    PubMed

    Green, Benjamin B; Karagas, Margaret R; Punshon, Tracy; Jackson, Brian P; Robbins, David J; Houseman, E Andres; Marsit, Carmen J

    2016-08-01

    Arsenic is one of the most commonly encountered environmental toxicants, and research from model systems has suggested that one mode of its toxic activity may be through alterations in DNA methylation. In utero exposure to arsenic can affect fetal, newborn, and infant health, resulting in a range of phenotypic outcomes. This study examined variation in placental DNA methylation and its relationship to arsenic exposure in 343 individuals enrolled in the New Hampshire Birth Cohort Study. Linear regression models using a reference-free correction to account for cellular composition were employed to determine CpG loci affected by arsenic levels. Total arsenic measured in maternal urine during the second trimester was not associated with methylation in the placenta, whereas arsenic levels quantified through maternal toenail collected at birth were associated with methylation at a single CpG locus (p = 4.1 × 10-8). Placenta arsenic levels were associated with 163 differentially methylated loci (false discovery rate < 0.05), with 11 probes within the LYRM2 gene reaching genome-wide significance (p < 10-8). Measurement of LYRM2 mRNA levels indicated that methylation was weakly to moderately correlated with expression (r = 0.15, p < 0.06). In addition, we identified pathways suggesting changes in placental cell subpopulation proportions associated with arsenic exposure. These data demonstrate the potential for arsenic, even at levels commonly experienced in a U.S. population, to have effects on the DNA methylation status of specific genes in the placenta and thus supports a potentially novel mechanism for arsenic to affect long-term children's health. Green BB, Karagas MR, Punshon T, Jackson BP, Robbins DJ, Houseman EA, Marsit CJ. 2016. Epigenome-wide assessment of DNA methylation in the placenta and arsenic exposure in the New Hampshire Birth Cohort Study (USA). Environ Health Perspect 124:1253-1260; http://dx.doi.org/10.1289/ehp.1510437.

  11. Perinatal exposure to environmental tobacco smoke is associated with changes in DNA methylation that precede the adult onset of lung disease in a mouse model.

    PubMed

    Cole, Elizabeth; Brown, Traci A; Pinkerton, Kent E; Postma, Britten; Malany, Keegan; Yang, Mihi; Kim, Yang Jee; Hamilton, Raymond F; Holian, Andrij; Cho, Yoon Hee

    2017-08-01

    Prenatal and early-life environmental tobacco smoke (ETS) exposure can induce epigenetic alterations associated with inflammation and respiratory disease. The objective of this study was to address the long-term epigenetic consequences of perinatal ETS exposure on latent respiratory disease risk, which are still largely unknown. C57BL/6 mice were exposed to prenatal and early-life ETS; offspring lung pathology, global DNA, and gene-specific methylation were measured at two adult ages. Significant alterations in global DNA methylation and promoter methylation of IFN-γ and Thy-1 were found in ETS-exposed offspring at 10-12 and 20 weeks of age. These sustained epigenetic alterations preceded the onset of significant pulmonary pathologies observed at 20 weeks of age. This study suggests that perinatal ETS exposure induces persistent epigenetic alterations in global DNA, as well as IFN-γ and Thy-1 promoter methylation that precede the adult onset of fibrotic lung pathology. These epigenetic findings could represent potential biomarkers of latent respiratory disease risk.

  12. Urinary excretion of the metabolites of n-hexane and its isomers during occupational exposure.

    PubMed Central

    Perbellini, L; Brugnone, F; Faggionato, G

    1981-01-01

    Environmental exposure to commercial hexane (n-hexane, 2-methylpentane, and 3-methylpentane) was tested in several work places in five shoe factories by taking three grap-air samples during the afternoon shift. Individual exposure ranges were 32-500 mg/m3 for n-hexane, 11-250 mg/m3 for 2-methylpentane, and 10-204 mg/m3 for 3-methylpentane. The metabolites of commercial hexane in the urine of 41 workers were measured at the end of the work shift. 2-Hexanol, 2,5-hexanedione, 2,5-dimethylfuran, and gamma-valerolactone were found as n-hexane metabolites and 2-methyl-2-pentanol and 3-methyl-2-pentanol as 2-methylpentane and 3-methylpentane metabolites. The presence of metabolites in the urine was correlated with occupational exposure to solvents. n-Hexane exposure was correlated more positively with 2-hexanol and 2,5-hexanedione than with 2,5-dimethylfuran and gamma-valerolactone. A good correlation was also found between total n-hexane metabolites and n-hexane exposure. 2-Methyl-2-pentanol and 3-methyl-2-pentanol were highly correlated with 2-methylpentane and 3-methylpentane exposure. The results suggest that the urinary excretion of hexane metabolites may be used for monitoring occupational exposure to n-hexane and its isomers. PMID:7470400

  13. Evaluation of in vitro anticancer activity of Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris.

    PubMed

    Behbahani, Mandana

    2014-01-01

    The present investigation was carried out to study the relationship between presence of cytotoxic compounds in Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris. The cytotoxic activity of the pure compounds was performed by MTT assay against breast cancer cell lines (MCF-7 and MDA-MB-231) and normal breast cell line (MCF 10A). The induction of apoptosis was measured by the expression levels of p53, bcl-2, bax and caspase-3 genes using quantitative Real Time PCR. Three active fractions were detected by nuclear magnetic resonance as lutein, lupeol and eugenol, respectively, in C. officinalis, A. maurorum and O. basilicum. These compounds and their epoxidized forms were also detected in their parasite C. campestris. The cytotoxic activity of lutein epoxide, lupeol epoxide and eugenol epoxide was significantly more than lutein, lupeol and eugenol. The mRNA expression level of p53, caspase-3 and bax genes were increased in both cancer cells treated with all pure compounds. However, bcl-2 gene expression decreased in treated breast cancer cells. In conclusion, all the data indicated that the epoxide forms of lupeol, lutein and eugenol are potential drug candidates for inducing apoptosis in human breast cancer cells.

  14. Evaluation of In Vitro Anticancer Activity of Ocimum Basilicum, Alhagi Maurorum, Calendula Officinalis and Their Parasite Cuscuta Campestris

    PubMed Central

    Behbahani, Mandana

    2014-01-01

    The present investigation was carried out to study the relationship between presence of cytotoxic compounds in Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris. The cytotoxic activity of the pure compounds was performed by MTT assay against breast cancer cell lines (MCF-7 and MDA-MB-231) and normal breast cell line (MCF 10A). The induction of apoptosis was measured by the expression levels of p53, bcl-2, bax and caspase-3 genes using quantitative Real Time PCR. Three active fractions were detected by nuclear magnetic resonance as lutein, lupeol and eugenol, respectively, in C. officinalis, A. maurorum and O. basilicum. These compounds and their epoxidized forms were also detected in their parasite C. campestris. The cytotoxic activity of lutein epoxide, lupeol epoxide and eugenol epoxide was significantly more than lutein, lupeol and eugenol. The mRNA expression level of p53, caspase-3 and bax genes were increased in both cancer cells treated with all pure compounds. However, bcl-2 gene expression decreased in treated breast cancer cells. In conclusion, all the data indicated that the epoxide forms of lupeol, lutein and eugenol are potential drug candidates for inducing apoptosis in human breast cancer cells. PMID:25548920

  15. Identification of Insecticidal Constituents from the Essential Oil from the Aerial Parts Stachys riederi var. japonica.

    PubMed

    Quan, Meirong; Liu, Qi Zhi; Liu, Zhi Long

    2018-05-17

    The essential oil of Stachys riederi var. japonica (Family: Lamiaceae) was extracted by hydrodistillation and determined by GC and GC-MS. A total of 40 components were identified, representing 96.01% of the total oil composition. The major compounds in the essential oil were acetanisole (15.43%), anisole (9.43%), 1,8-cineole (8.07%), geraniol (7.89%), eugenol (4.54%), caryophyllene oxide (4.47%), caryophyllene (4.21%) and linalool (4.07%). Five active constituents (acetanisole, anisole, 1,8-cineole, eugenol and geraniol) were identified by bioactivity-directed fractionation. The essential oil possessed fumigant toxicity against maize weevils ( Sitophilus zeamais ) and booklice ( Liposcelis bostrychophila ), with LC 50 values of 15.0 mg/L and 0.7 mg/L, respectively. Eugenol and anisole exhibited stronger fumigant toxicity than the oil against booklice. 1,8-Cineole showed stronger toxicity, and anisole as well as eugenol exhibited the same level of fumigant toxicity as the essential oil against maize weevils. The essential oil also exhibited contact toxicity against S. zeamais adults and L. bostrychophila , with LC 50 values of 21.8 µg/adult and 287.0 µg/cm², respectively. The results indicated that the essential oil of S. riederi var. japonica and its isolates show potential as fumigants, and for their contact toxicity against grain storage insects.

  16. Investigation of the dermal sensitization potential of various essential oils in the local lymph node assay.

    PubMed

    Lalko, J; Api, A M

    2006-05-01

    Essential oils are commonly used fragrance ingredients. The oils themselves are complex mixtures, which may contain naturally occurring contact sensitizers. The local lymph node assay was used to evaluate the dermal sensitization potential of basil, citronella, clove leaf, geranium, litsea cubeba, lemongrass, and palmarosa oils. Three of the major components--citral, eugenol, and geraniol--were included to investigate any difference in sensitization potential arising from their exposure in a mixture. Each fragrance material was tested at five concentration ranging from 2.5% to 50% w/v in 1:3 ethanol:diethyl phthalate. The stimulation index (SI) values were calculated for each dose level, an SI > or = 3 was considered a positive response. The estimated concentration (EC3) required to elicit a positive was calculated and taken as a measure of relative potency. The EC3 values and potency classification for basil, clove leaf, litsea cubeba, lemongrass and palmarosa oils were calculated to be <2.5% (> or = moderate), 7.1% (weak), 8.4% (weak), 6.5% (weak) and 9.6% (weak), respectively. Citronella and geranium oils were negative. The individual components citral, eugenol and geraniol resulted in EC3 values of 6.3%, 5.4% and 11.4%, respectively. In general, the potency of each essential oil did not differ significantly from that observed for its main individual component.

  17. The O-methyltransferase gene MdoOMT1 is required for biosynthesis of methylated phenylpropenes in ripe apple fruit.

    PubMed

    Yauk, Yar-Khing; Chagné, David; Tomes, Sumathi; Matich, Adam J; Wang, Mindy Y; Chen, Xiuyin; Maddumage, Ratnasiri; Hunt, Martin B; Rowan, Daryl D; Atkinson, Ross G

    2015-06-01

    Phenylpropenes, such as eugenol and trans-anethole, are important aromatic compounds that determine flavour and aroma in many herbs and spices. Some apple varieties produce fruit with a highly desirable spicy/aromatic flavour that has been attributed to the production of estragole, a methylated phenylpropene. To elucidate the molecular basis for estragole production and its contribution to ripe apple flavour and aroma we characterised a segregating population from a Royal Gala (RG, estragole producer) × Granny Smith (GS, non-producer) apple cross. Two quantitative trait loci (QTLs; accounting for 9.2 and 24.8% of the variation) on linkage group (LG) 1 and LG2 were identified that co-located with seven candidate genes for phenylpropene O-methyltransferases (MdoOMT1-7). Of these genes, only expression of MdoOMT1 on LG1 increased strongly with ethylene and could be correlated with increasing estragole production in ripening RG fruit. Transient over-expression in tobacco showed that MdoOMT1 utilised a range of phenylpropene substrates and catalysed the conversion of chavicol to estragole. Royal Gala carried two alleles (MdoOMT1a, MdoOMT1b) whilst GS appeared to be homozygous for MdoOMT1b. MdoOMT1a showed a higher affinity and catalytic efficiency towards chavicol than MdoOMT1b, which could account for the phenotypic variation at the LG1 QTL. Multiple transgenic RG lines with reduced MdoOMT1 expression produced lower levels of methylated phenylpropenes, including estragole and methyleugenol. Differences in fruit aroma could be perceived in these fruit, compared with controls, by sensory analysis. Together these results indicate that MdoOMT1 is required for the production of methylated phenylpropenes in apple and that phenylpropenes including estragole may contribute to ripe apple fruit aroma. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  18. Whole DNA methylome profiling in mice exposed to secondhand smoke.

    PubMed

    Tommasi, Stella; Zheng, Albert; Yoon, Jae-In; Li, Arthur Xuejun; Wu, Xiwei; Besaratinia, Ahmad

    2012-11-01

    Aberration of DNA methylation is a prime epigenetic mechanism of carcinogenesis. Aberrant DNA methylation occurs frequently in lung cancer, with exposure to secondhand smoke (SHS) being an established risk factor. The causal role of SHS in the genesis of lung cancer, however, remains elusive. To investigate whether SHS can cause aberrant DNA methylation in vivo, we have constructed the whole DNA methylome in mice exposed to SHS for a duration of 4 mo, both after the termination of exposure and at ensuing intervals post-exposure (up to 10 mo). Our genome-wide and gene-specific profiling of DNA methylation in the lung of SHS-exposed mice revealed that all groups of SHS-exposed mice and controls share a similar pattern of DNA methylation. Furthermore, the methylation status of major repetitive DNA elements, including long-interspersed nuclear elements (LINE L1), intracisternal A particle long-terminal repeat retrotransposons (IAP-LTR), and short-interspersed nuclear elements (SINE B1), in the lung of all groups of SHS-exposed mice and controls remains comparable. The absence of locus-specific gain of DNA methylation and global loss of DNA methylation in the lung of SHS-exposed mice within a timeframe that precedes neoplastic-lesion formation underscore the challenges of lung cancer biomarker development. Identifying the initiating events that cause aberrant DNA methylation in lung carcinogenesis may help improve future strategies for prevention, early detection and treatment of this highly lethal disease.

  19. Prenatal fine particulate exposure associated with reduced childhood lung function and nasal epithelia GSTP1 hypermethylation: Sex-specific effects.

    PubMed

    Lee, Alison G; Le Grand, Blake; Hsu, Hsiao-Hsien Leon; Chiu, Yueh-Hsiu Mathilda; Brennan, Kasey J; Bose, Sonali; Rosa, Maria José; Brunst, Kelly J; Kloog, Itai; Wilson, Ander; Schwartz, Joel; Morgan, Wayne; Coull, Brent A; Wright, Robert O; Baccarelli, Andrea A; Wright, Rosalind J

    2018-04-27

    In utero exposure to particulate matter with an aerodynamic diameter of less than 2.5 μm (PM 2.5 ) has been linked to child lung function. Overlapping evidence suggests that child sex and exposure timing may modify effects and associations may be mediated through glutathione S-transferase P1 (GSTP1) methylation. We prospectively examined associations among prenatal PM 2.5 exposure and child lung function and GSTP1 methylation in an urban pregnancy cohort study. We employed a validated satellite-based spatiotemporally resolved prediction model to estimate daily prenatal PM 2.5 exposure over gestation. We used Baysian distributed lag interaction models (BDLIMs) to identify sensitive windows for prenatal PM 2.5 exposure on child lung function and nasal epithelia GSTP1 methylation at age 7 years, and to examine effect modification by child sex. BDLIMs identified a sensitive window for prenatal PM 2.5 exposure at 35-40 weeks gestation [cumulative effect estimate (CEE) = - 0.10, 95%CI = - 0.19 to - 0.01, per μg/m 3 increase in PM 2.5 ] and at 36-40 weeks (CEE = - 0.12, 95%CI = - 0.20 to - 0.01) on FEV 1 and FVC, respectively, in boys. BDLIMs also identified a sensitive window of exposure at 37-40 weeks gestation between higher prenatal PM 2.5 exposure and increased GSTP1 percent methylation. The association between higher GSTP1 percent methylation and decreased FEV1 was borderline significant in the sample as a whole (β = - 0.37, SE = 0.20, p = 0.06) and in boys in stratified analyses (β = - 0.56, SE = 0.29, p = 0.05). Prenatal PM 2.5 exposure in late pregnancy was associated with impaired early childhood lung function and hypermethylation of GSTPI in DNA isolated from nasal epithelial cells. There was a trend towards higher GSTP1 percent methylation being associated with reduced FEV1. All findings were most evident among boys.

  20. Associative DNA methylation changes in children with prenatal alcohol exposure.

    PubMed

    Laufer, Benjamin I; Kapalanga, Joachim; Castellani, Christina A; Diehl, Eric J; Yan, Liying; Singh, Shiva M

    2015-01-01

    Prenatal alcohol exposure (PAE) can cause fetal alcohol spectrum disorders (FASD). Previously, we assessed PAE in brain tissue from mouse models, however whether these changes are present in humans remains unknown. In this report, we show some identical changes in DNA methylation in the buccal swabs of six children with FASD using the 450K array. The changes occur in genes related to protocadherins, glutamatergic synapses, and hippo signaling. The results were found to be similar in another heterogeneous replication group of six FASD children. The replicated results suggest that children born with FASD have unique DNA methylation defects that can be influenced by sex and medication exposure. Ultimately, with future clinical development, assessment of DNA methylation from buccal swabs can provide a novel strategy for the diagnosis of FASD.

  1. Polycyanurates and Polycarbonates Based on Eugenol: Alternatives to Thermosetting and Thermoplastic Polymers Based on Bisphenol A

    DTIC Science & Technology

    2014-08-14

    to 5a. CONTRACT NUMBER In-House Thermosetting and Thermoplastic Polymers based on Bisphenol A 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Francisco, CA, 14 August 2014. PA#14389 14. ABSTRACT Polycyanurate thermosetting networks, polycarbonate thermoplastics, and homogenous polycarbonate...ON EUGENOL: ALTERNATIVES TO THERMOSETTING AND THERMOPLASTIC POLYMES BASED ON BISPHENOL A 14 August 2014 Andrew J. Guenthner1, Benjamin G. Harvey2

  2. Composition of the essential oils of three Uzbek Scutellaria species (Lamiaceae) and their antioxidant activities.

    PubMed

    Mamadalieva, Nilufar Zokirjonovna; Sharopov, Farukh; Satyal, Prabodh; Azimova, Shahnoz Sadykovna; Wink, Michael

    2017-05-01

    The chemical composition of the essential oils obtained from aerial parts of Scutellaria immaculata Nevski ex Juz., Scutellaria ramosissima M. Pop. and Scutellaria schachristanica Juz. (Lamiaceae) growing wild in Uzbekistan was analysed by GC and GC-MS. The main constituents of the essential oils from S. immaculata were acetophenone (30.39%), eugenol (20.61%), thymol (10.04%) and linalool (6.92%), whereas constituents of the essential oils fromS. schachristanica were acetophenone (34.74%), linalool (26.98%) and eugenol (20.67%). The S. ramosissima oil is dominated by germacrene D (23.96%), β-caryophyllene (11.09%), linalool (9.63%) and hexadecanoic acid (8.34%). The essential oils of Scutellaria species exhibited weaker antioxidant effects in DPPH, ABTS and FRAP assays. In FRAP assay, only eugenol exhibited a substantial reducing power IC 50  = 2476.92 ± 15.8 (mM Fe(II)/g).

  3. Effects of Ionizing Radiation on DNA Methylation: From Experimental Biology to Clinical Applications

    PubMed Central

    Miousse, Isabelle R.; Kutanzi, Kristy R.; Koturbash, Igor

    2017-01-01

    Purpose Ionizing radiation (IR) is a ubiquitous environmental stressor with genotoxic and epigenotoxic capabilities. Terrestrial IR, predominantly a low-linear energy transfer (LET) radiation, is being widely utilized in medicine, as well as in multiple industrial applications. Additionally, an interest in understanding the effects of high-LET irradiation is emerging due to the potential of exposure during space missions and the growing utilization of LET radiation in medicine. Conclusions In this review, we summarize the current knowledge of the effects of IR on DNA methylation, a key epigenetic mechanism regulating the expression of genetic information. We discuss global, repetitive elements and gene-specific DNA methylation in light of exposure to high and low doses of high- or low-LET IR, fractionated IR exposure, and bystander effects. Finally, we describe the mechanisms of IR-induced alterations to DNA methylation and discuss ways in which that understanding can be applied clinically, including utilization of DNA methylation as a predictor of response to radiotherapy and in the manipulation of DNA methylation patterns for tumor radiosensitization. PMID:28134023

  4. Effects of ionizing radiation on DNA methylation: from experimental biology to clinical applications.

    PubMed

    Miousse, Isabelle R; Kutanzi, Kristy R; Koturbash, Igor

    2017-05-01

    Ionizing radiation (IR) is a ubiquitous environmental stressor with genotoxic and epigenotoxic capabilities. Terrestrial IR, predominantly a low-linear energy transfer (LET) radiation, is being widely utilized in medicine, as well as in multiple industrial applications. Additionally, an interest in understanding the effects of high-LET irradiation is emerging due to the potential of exposure during space missions and the growing utilization of high-LET radiation in medicine. In this review, we summarize the current knowledge of the effects of IR on DNA methylation, a key epigenetic mechanism regulating the expression of genetic information. We discuss global, repetitive elements and gene-specific DNA methylation in light of exposure to high and low doses of high- or low-LET IR, fractionated IR exposure, and bystander effects. Finally, we describe the mechanisms of IR-induced alterations to DNA methylation and discuss ways in which that understanding can be applied clinically, including utilization of DNA methylation as a predictor of response to radiotherapy and in the manipulation of DNA methylation patterns for tumor radiosensitization.

  5. Plants of the Melaleuca Genus as Antimicrobial Agents: From Farm to Pharmacy.

    PubMed

    Sharifi-Rad, Javad; Salehi, Bahare; Varoni, Elena Maria; Sharopov, Farukh; Yousaf, Zubaida; Ayatollahi, Seyed Abdulmajid; Kobarfard, Farzad; Sharifi-Rad, Mehdi; Afdjei, Mohammad Hossain; Sharifi-Rad, Majid; Iriti, Marcello

    2017-10-01

    Plants belonging to Melaleuca genus (Myrtaceae family) are native to Oceania, where they have been used for ages by Aborigine people in Australian traditional medicine, mainly because of their broad-spectrum antimicrobial activity. Although, M. linariifolia, M. dissitiflora, and other species of Melaleuca can also be used, the tea tree oil, an essential oil obtained from M. alternifolia shows the longest history of medicinal uses. Tea tree oil contains for the 80-90% several monoterpenes (terpinen-4-ol, α-terpinene, 1,8-cineol, p-cymene, α-terpineol, α-pinene, terpinolene, limonene, and sabinene). Sesquiterpenes and aromatic compounds further compose this oil. The essential oil of Melaleuca spp. has been reported to possess effective antibacterial and antifungal properties in vitro. In particular, data show that 1,8-cineol, terpinen-4-ol and methyl eugenol play the key role in mediating this oil's antimicrobial activity. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Antioxidant and Anticholinesterase Activities of Essential Oils of Cinnamomum griffithii and C. macrocarpum.

    PubMed

    Salleh, Wan Mohd Nuzul Hakimi; Ahmad, Farediah; Yen, Khong Heng

    2015-08-01

    The essential oils of Cinnamomum griffithii and C. macrocarpum were analyzed by GC and GC-MS and evaluated for their antioxidant and anticholinesterase activities. The essential oils of leaf and bark of C. grffithii were characterized by the presence of 30 components, with methyl eugenol (38.5-43.8%) as the major component. A total of 11 components were characterized in.the leaf and bark of C. macrocarpum essential oil with the most abundant component was safrole (54.5-59.5%). The bark oil of C. griffithii demonstrated significant activity on DPPH (IC50 73.4 microg/mL) and a high phenolic content (192.0%), while the leaf oil inhibited oxidation of β-carotene/linoleic acid with an inhibition value of 65.5 μg/mL. Acetylcholinesterase and butyrylcholinesterase inhibition were assessed and the results showed that C. macrocarpun bark oil exhibited significant activity with inhibition values of 55.8% and 66.1%, respectively at a concentration of 1 mg/mL.

  7. Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae).

    PubMed

    Govindarajan, M; Sivakumar, R; Rajeswary, M; Yogalakshmi, K

    2013-05-01

    The toxicity of mosquito larvicidal activity of leaf essential oil and their major chemical constituents from Ocimum basilicum were evaluated against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus. The chemical composition of the leaf essential oil was analyzed using gas chromatography-mass spectroscopy. GC-MS revealed that the essential oil of O. basilicum contained 20 compounds. The major chemical components identified were linalool (52.42%), methyl eugenol (18.74%) and 1, 8-cineol (5.61%). The essential oil had a significant toxic effect against late third-stage larvae of Cx. tritaeniorhynchus, Ae. albopictus and An. subpictus with an LC(50) values of 14.01, 11.97 and 9.75 ppm and an LC(90) values of 23.44, 21.17 and 18.56 ppm, respectively. The results could be useful in search for newer, safer, and more effective natural larvicidal agents against Cx. tritaeniorhynchus, Ae. albopictus and An. subpictus. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. DNA methylation alterations in response to pesticide exposure in vitro

    PubMed Central

    Zhang, Xiao; Wallace, Andrew D.; Du, Pan; Kibbe, Warren A.; Jafari, Nadereh; Xie, Hehuang; Lin, Simon; Baccarelli, Andrea; Soares, Marcelo Bento; Hou, Lifang

    2013-01-01

    Although pesticides are subject to extensive carcinogenicity testing before regulatory approval, pesticide exposure has repeatedly been associated with various cancers. This suggests that pesticides may cause cancer via non-mutagenicity mechanisms. The present study provides evidence to support the hypothesis that pesticide-induced cancer may be mediated in part by epigenetic mechanisms. We examined whether exposure to 7 commonly used pesticides (i.e., fonofos, parathion, terbufos, chlorpyrifos, diazinon, malathion, and phorate) induces DNA methylation alterations in vitro. We conducted genome-wide DNA methylation analyses on DNA samples obtained from the human hematopoietic K562 cell line exposed to ethanol (control) and several OPs using the Illumina Infinium HumanMethylation27 BeadChip. Bayesian-adjusted t-tests were used to identify differentially methylated gene promoter CpG sites. In this report, we present our results on three pesticides (fonofos, parathion, and terbufos) that clustered together based on principle component analysis and hierarchical clustering. These three pesticides induced similar methylation changes in the promoter regions of 712 genes, while also exhibiting their own OP-specific methylation alterations. Functional analysis of methylation changes specific to each OP, or common to all three OPs, revealed that differential methylation was associated with numerous genes that are involved in carcinogenesis-related processes. Our results provide experimental evidence that pesticides may modify gene promoter DNA methylation levels, suggesting that epigenetic mechanisms may contribute to pesticide-induced carcinogenesis. Further studies in other cell types and human samples are required, as well as determining the impact of these methylation changes on gene expression. PMID:22847954

  9. Transient and permanent changes in DNA methylation patterns in inorganic arsenic-mediated epithelial-to-mesenchymal transition.

    PubMed

    Eckstein, Meredith; Rea, Matthew; Fondufe-Mittendorf, Yvonne N

    2017-09-15

    Chronic low dose inorganic arsenic exposure causes cells to take on an epithelial-to-mesenchymal phenotype, which is a crucial process in carcinogenesis. Inorganic arsenic is not a mutagen and thus epigenetic alterations have been implicated in this process. Indeed, during the epithelial-to-mesenchymal transition, morphologic changes to cells correlate with changes in chromatin structure and gene expression, ultimately driving this process. However, studies on the effects of inorganic arsenic exposure/withdrawal on the epithelial-to-mesenchymal transition and the impact of epigenetic alterations in this process are limited. In this study we used high-resolution microarray analysis to measure the changes in DNA methylation in cells undergoing inorganic arsenic-induced epithelial-to-mesenchymal transition, and on the reversal of this process, after removal of the inorganic arsenic exposure. We found that cells exposed to chronic, low-dose inorganic arsenic exposure showed 30,530 sites were differentially methylated, and with inorganic arsenic withdrawal several differential methylated sites were reversed, albeit not completely. Furthermore, these changes in DNA methylation mainly correlated with changes in gene expression at most sites tested but not at all. This study suggests that DNA methylation changes on gene expression are not clear-cut and provide a platform to begin to uncover the relationship between DNA methylation and gene expression, specifically within the context of inorganic arsenic treatment. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Global and gene-specific promoter methylation changes are related to anti-B[a]PDE-DNA adduct levels and influence micronuclei levels in polycyclic aromatic hydrocarbon-exposed individuals.

    PubMed

    Pavanello, Sofia; Bollati, Valentina; Pesatori, Angela Cecilia; Kapka, Lucyna; Bolognesi, Claudia; Bertazzi, Pier Alberto; Baccarelli, Andrea

    2009-10-01

    We investigated the effect of chronic exposure to polycyclic aromatic hydrocarbons (PAHs) on DNA methylation states (percentage of methylated cytosines (%mC)) in Polish male nonsmoking coke-oven workers and matched controls. Methylation states of gene-specific promoters (p53, p16, HIC1 and IL-6) and of Alu and LINE-1 repetitive elements, as surrogate measures of global methylation, were quantified by pyrosequencing in peripheral blood lymphocytes (PBLs). DNA methylation was evaluated in relation to PAH exposure, assessed by urinary 1-pyrenol and anti-benzo[a]pyrene diolepoxide (anti-B[a]PDE)-DNA adduct levels, a critical genetic damage from B[a]P. We also evaluated whether PAH-induced DNA methylation states were in turn associated with micronuclei in PBLs, an indicator of chromosomal instability.

  11. Hypermethylation of Homeobox A10 by in Utero Diethylstilbestrol Exposure: An Epigenetic Mechanism for Altered Developmental Programming

    PubMed Central

    Bromer, Jason G.; Wu, Jie; Zhou, Yuping; Taylor, Hugh S.

    2009-01-01

    Diethylstilbestrol (DES) is a nonsteroidal estrogen that induces developmental anomalies of the female reproductive tract. The homeobox gene HOXA10 controls uterine organogenesis, and its expression is altered after in utero DES exposure. We hypothesized that an epigenetic mechanism underlies DES-mediated alterations in HOXA10 expression. We analyzed the expression pattern and methylation profile of HOXA10 after DES exposure. Expression of HOXA10 is increased in human endometrial cells after DES exposure, whereas Hoxa10 expression is repressed and shifted caudally from its normal location in mice exposed in utero. Cytosine guanine dinucleotide methylation frequency in the Hoxa10 intron was higher in DES-exposed offspring compared with controls (P = 0.017). The methylation level of Hoxa10 was also higher in the caudal portion of the uterus after DES exposure at the promoter and intron (P < 0.01). These changes were accompanied by increased expression of DNA methyltransferases 1 and 3b. No changes in methylation were observed after in vitro or adult DES exposure. DES has a dual mechanism of action as an endocrine disruptor; DES functions as a classical estrogen and directly stimulates HOXA10 expression with short-term exposure, however, in utero exposure results in hypermethylation of the HOXA10 gene and long-term altered HOXA10 expression. We identify hypermethylation as a novel mechanism of DES-induced altered developmental programming. PMID:19299448

  12. CYP2E1 epigenetic regulation in chronic, low-level toluene exposure: Relationship with oxidative stress and smoking habit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiménez-Garza, Octavio, E-mail: ojimenezgarza@ugto.mx; Baccarelli, Andrea A.; Byun, Hyang-Min

    Background: CYP2E1 is a versatile phase I drug-metabolizing enzyme responsible for the biotransformation of most volatile organic compounds, including toluene. Human toluene exposure increases CYP2E1 mRNA and modifies its activity in leucocytes; however, epigenetic implications of this interaction have not been investigated. Goal: To determine promoter methylation of CYP2E1 and other genes known to be affected by toluene exposure. Methods: We obtained venous blood from 24 tannery workers exposed to toluene (mean levels: 10.86 +/− 7 mg/m{sup 3}) and 24 administrative workers (reference group, mean levels 0.21 +/− 0.02 mg/m{sup 3}) all of them from the city of León, Guanajuato,more » México. After DNA extraction and bisulfite treatment, we performed PCR-pyrosequencing in order to measure methylation levels at promoter region of 13 genes. Results: In exposed group we found significant correlations between toluene airborne levels and CYP2E1 promoter methylation (r = − .36, p < 0.05), as well as for IL6 promoter methylation levels (r = .44, p < 0.05). Moreover, CYP2E1 promoter methylation levels where higher in toluene-exposed smokers compared to nonsmokers (p = 0.009). We also observed significant correlations for CYP2E1 promoter methylation with GSTP1 and SOD1 promoter methylation levels (r = − .37, p < 0.05 and r = − .34, p < 0.05 respectively). Conclusion: These results highlight the importance of considering CYP2E1 epigenetic modifications, as well as its interactions with other genes, as key factors for unraveling the sub cellular mechanisms of toxicity exerted by oxidative stress, which can initiate disease process in chronic, low-level toluene exposure. People co-exposed to toluene and tobacco smoke are in higher risk due to a possible CYP2E1 repression. - Highlights: • We investigated gene-specific methylation in persons chronically exposed to toluene. • In a previous study, a reduced CYP2E1 activity was observed in these participants. • CYP2E1 promoter methylation correlated with oxidative-stress related gene methylation. • CYP2E1 promoter methylation was higher in exposed smokers compared to nonsmokers. • Epigenetic modifications are critical to detect early toluene-exposure effects.« less

  13. DNA methylation signature of human fetal alcohol spectrum disorder.

    PubMed

    Portales-Casamar, Elodie; Lussier, Alexandre A; Jones, Meaghan J; MacIsaac, Julia L; Edgar, Rachel D; Mah, Sarah M; Barhdadi, Amina; Provost, Sylvie; Lemieux-Perreault, Louis-Philippe; Cynader, Max S; Chudley, Albert E; Dubé, Marie-Pierre; Reynolds, James N; Pavlidis, Paul; Kobor, Michael S

    2016-01-01

    Prenatal alcohol exposure is the leading preventable cause of behavioral and cognitive deficits, which may affect between 2 and 5 % of children in North America. While the underlying mechanisms of alcohol's effects on development remain relatively unknown, emerging evidence implicates epigenetic mechanisms in mediating the range of symptoms observed in children with fetal alcohol spectrum disorder (FASD). Thus, we investigated the effects of prenatal alcohol exposure on genome-wide DNA methylation in the NeuroDevNet FASD cohort, the largest cohort of human FASD samples to date. Genome-wide DNA methylation patterns of buccal epithelial cells (BECs) were analyzed using the Illumina HumanMethylation450 array in a Canadian cohort of 206 children (110 FASD and 96 controls). Genotyping was performed in parallel using the Infinium HumanOmni2.5-Quad v1.0 BeadChip. After correcting for the effects of genetic background, we found 658 significantly differentially methylated sites between FASD cases and controls, with 41 displaying differences in percent methylation change >5 %. Furthermore, 101 differentially methylated regions containing two or more CpGs were also identified, overlapping with 95 different genes. The majority of differentially methylated genes were highly expressed at the level of mRNA in brain samples from the Allen Brain Atlas, and independent DNA methylation data from cortical brain samples showed high correlations with BEC DNA methylation patterns. Finally, overrepresentation analysis of genes with up-methylated CpGs revealed a significant enrichment for neurodevelopmental processes and diseases, such as anxiety, epilepsy, and autism spectrum disorders. These findings suggested that prenatal alcohol exposure is associated with distinct DNA methylation patterns in children and adolescents, raising the possibility of an epigenetic biomarker of FASD.

  14. Development and utilization of an ex vivo bromodeoxyuridine local lymph node assay protocol for assessing potential chemical sensitizers.

    PubMed

    Williams, W C; Copeland, C; Boykin, E; Quell, S J; Lehmann, D M

    2015-01-01

    The murine local lymph node assay (LLNA) is widely used to identify chemicals that may cause allergic contact dermatitis. Exposure to a dermal sensitizer results in proliferation of local lymph node T cells, which has traditionally been measured by in vivo incorporation of [(3) H]methyl thymidine. A more recent non-isotopic variation of the assay utilizes bromodeoxyuridine (BrdU) incorporation in vivo. To further improve the utility of this assay, we developed an ex vivo BrdU labeling procedure eliminating the need for in vivo injections. The results of this assay correctly identified a strong sensitizer (i.e., trimellitic anhydride) as well as weak/moderate sensitizers (i.e., eugenol, cinnamaldehyde and hexylcinnaminic aldehyde). As anticipated, neither non-sensitizers isopropanol and lactic acid nor the false negative chemical nickel II sulfate hexahydrate induced a positive threshold response in the assay. The results of this assay are in close agreement with those of the in vivo LLNA:BrdU-enzyme-linked immunosorbent assay labeling procedure. We also used the ex vivo BrdU LLNA procedure to evaluate ammonium hexachloroplatinate, ammonium tetrachloroplatinate and cis-diamminedichloroplatinum(II) and the assay correctly identified them as sensitizers based on the calculation of EC2 values. We conclude that this ex vivo BrdU labeling method offers predictive capacity comparable to previously established LLNA protocols while eliminating animal injections and the use of radioisotope. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  15. RIFM fragrance ingredient safety assessment, Eugenol, CAS Registry Number 97-53-0.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Miyachi, Y; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2016-11-01

    The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Reproductive toxicity was determined to have the most conservative systemic exposure derived NO[A]EL of 230 mg/kg/day. A gavage multigenerational continuous breeding study conducted in rats on a suitable read across analog resulted in a MOE of 12,105 while considering 22.6% absorption from skin contact and 100% from inhalation. A MOE of >100 is deemed acceptable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. REFINED PBPK MODEL OF AGGREGATE EXPOSURE TO METHYL TERTIARY-BUTYL ETHER

    EPA Science Inventory

    Aggregate (multiple pathway) exposures to methyl tertiary-butyl ether (MTBE) in air and water occur via dermal, inhalation, and oral routes. Previously, physiologically-based pharmacokinetic (PBPK) models have been used to quantify the kinetic behavior of MTBE and its primary met...

  17. A Sustained Dietary Change Increases Epigenetic Variation in Isogenic Mice

    PubMed Central

    Cowley, Mark J.; Preiss, Thomas; Martin, David I. K.; Suter, Catherine M.

    2011-01-01

    Epigenetic changes can be induced by adverse environmental exposures, such as nutritional imbalance, but little is known about the nature or extent of these changes. Here we have explored the epigenomic effects of a sustained nutritional change, excess dietary methyl donors, by assessing genomic CpG methylation patterns in isogenic mice exposed for one or six generations. We find stochastic variation in methylation levels at many loci; exposure to methyl donors increases the magnitude of this variation and the number of variable loci. Several gene ontology categories are significantly overrepresented in genes proximal to these methylation-variable loci, suggesting that certain pathways are susceptible to environmental influence on their epigenetic states. Long-term exposure to the diet (six generations) results in a larger number of loci exhibiting epigenetic variability, suggesting that some of the induced changes are heritable. This finding presents the possibility that epigenetic variation within populations can be induced by environmental change, providing a vehicle for disease predisposition and possibly a substrate for natural selection. PMID:21541011

  18. Lead Exposure during Early Human Development and DNA Methylation of Imprinted Gene Regulatory Elements in Adulthood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yue; Xie, Changchun; Murphy, Susan K.

    Here, lead exposure during early development causes neurodevelopmental disorders by unknown mechanisms. Epidemiologic studies have focused recently on determining associations between lead exposure and global DNA methylation; however, such approaches preclude the identification of loci that may alter human disease risk. The objective of this study was to determine whether maternal, postnatal, and early childhood lead exposure can alter the differentially methylated regions (DMRs) that control the monoallelic expression of imprinted genes involved in metabolism, growth, and development. Questionnaire data and serial blood lead levels were obtained from 105 participants (64 females, 41 males) of the Cincinnati Lead Study frommore » birth to 78 months. When participants were adults, we used Sequenom EpiTYPER assays to test peripheral blood DNA to quantify CpG methylation in peripheral blood leukocytes at DMRs of 22 human imprinted genes. Statistical analyses were conducted using linear regression. Mean blood lead concentration from birth to 78 months was associated with a significant decrease in PEG3 DMR methylation (β = –0.0014; 95% CI: –0.0023, –0.0005, p = 0.002), stronger in males (β = –0.0024; 95% CI: –0.0038, –0.0009, p = 0.003) than in females (β = –0.0009; 95% CI: –0.0020, 0.0003, p = 0.1). Elevated mean childhood blood lead concentration was also associated with a significant decrease in IGF2/H19 (β = –0.0013; 95% CI: –0.0023, –0.0003, p = 0.01) DMR methylation, but primarily in females, (β = –0.0017; 95% CI: –0.0029, –0.0006, p = 0.005) rather than in males, (β = –0.0004; 95% CI: –0.0023, 0.0015, p = 0.7). Elevated blood lead concentration during the neonatal period was associated with higher PLAGL1/HYMAI DMR methylation regardless of sex (β = 0.0075; 95% CI: 0.0018, 0.0132, p = 0.01). The magnitude of associations between cumulative lead exposure and CpG methylation remained unaltered from 30 to 78 months. Our findings provide evidence that early childhood lead exposure results in sexdependent and gene-specific DNA methylation differences in the DMRs of PEG3, IGF2/H19, and PLAGL1/HYMAI in adulthood.« less

  19. Lead Exposure during Early Human Development and DNA Methylation of Imprinted Gene Regulatory Elements in Adulthood

    DOE PAGES

    Li, Yue; Xie, Changchun; Murphy, Susan K.; ...

    2015-06-26

    Here, lead exposure during early development causes neurodevelopmental disorders by unknown mechanisms. Epidemiologic studies have focused recently on determining associations between lead exposure and global DNA methylation; however, such approaches preclude the identification of loci that may alter human disease risk. The objective of this study was to determine whether maternal, postnatal, and early childhood lead exposure can alter the differentially methylated regions (DMRs) that control the monoallelic expression of imprinted genes involved in metabolism, growth, and development. Questionnaire data and serial blood lead levels were obtained from 105 participants (64 females, 41 males) of the Cincinnati Lead Study frommore » birth to 78 months. When participants were adults, we used Sequenom EpiTYPER assays to test peripheral blood DNA to quantify CpG methylation in peripheral blood leukocytes at DMRs of 22 human imprinted genes. Statistical analyses were conducted using linear regression. Mean blood lead concentration from birth to 78 months was associated with a significant decrease in PEG3 DMR methylation (β = –0.0014; 95% CI: –0.0023, –0.0005, p = 0.002), stronger in males (β = –0.0024; 95% CI: –0.0038, –0.0009, p = 0.003) than in females (β = –0.0009; 95% CI: –0.0020, 0.0003, p = 0.1). Elevated mean childhood blood lead concentration was also associated with a significant decrease in IGF2/H19 (β = –0.0013; 95% CI: –0.0023, –0.0003, p = 0.01) DMR methylation, but primarily in females, (β = –0.0017; 95% CI: –0.0029, –0.0006, p = 0.005) rather than in males, (β = –0.0004; 95% CI: –0.0023, 0.0015, p = 0.7). Elevated blood lead concentration during the neonatal period was associated with higher PLAGL1/HYMAI DMR methylation regardless of sex (β = 0.0075; 95% CI: 0.0018, 0.0132, p = 0.01). The magnitude of associations between cumulative lead exposure and CpG methylation remained unaltered from 30 to 78 months. Our findings provide evidence that early childhood lead exposure results in sexdependent and gene-specific DNA methylation differences in the DMRs of PEG3, IGF2/H19, and PLAGL1/HYMAI in adulthood.« less

  20. Synthesis and leishmanicidal activity of eugenol derivatives bearing 1,2,3-triazole functionalities.

    PubMed

    Teixeira, Róbson Ricardo; Gazolla, Poliana Aparecida Rodrigues; da Silva, Adalberto Manoel; Borsodi, Maria Paula Gonçalves; Bergmann, Bartira Rossi; Ferreira, Rafaela Salgado; Vaz, Boniek Gontijo; Vasconcelos, Géssica Adriana; Lima, Wallace Pacienza

    2018-02-25

    In this paper, it is described the synthesis and the evaluation of the leishmanicidal activity of twenty-six eugenol derivatives bearing 1,2,3-triazole functionalities. The evaluation of the compounds on promastigotes of Leishmania amazonensis (WHOM/BR/75/Josefa) showed that eugenol derivatives present leishmanicidal activities with varying degrees of effectiveness. The most active compound, namely 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(4-methylbenzyl)-1H-1,2,3-triazole (7k) (IC 50  = 7.4 ± 0.8 μmol L -1 ), also targeted Leishmania parasites inside peritoneal macrophages (IC 50  = 1.6 μmol L -1 ) without interfering with cell viability. The cytotoxicity of 7k against macrophage cells presented IC 50 of 211.9 μmol L -1 and the selective index was equal to 132.5. Under similar conditions, compound 7k was more effective than glucantime and pentamidine, two drugs currently in the clinic. In addition, theoretical calculations showed that this compound also presents most physicochemical and pharmacokinetic properties within the ranges expected for orally available drugs. It is believed that eugenol bearing 1,2,3-triazole functionalities may represent a scaffold to be explored toward the development of new agents to treat leishmaniasis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Efficacy of Benzocaine, Eugenol and Menthol as Anesthetics for Freshwater Angelfish (Pterophyllum scalare).

    PubMed

    de Souza Romaneli, Rafael; Boaratti, André Zuffo; Tellechea Rodrigues, Andressa; de Almeida Ueiroz, Daniel Monge; Khan, Kifayat Ullah; Nascimento, Thiago Matias Torres; Fernandes, João Batista Kochenborger

    2018-05-29

    For the production and commercialization of ornamental fish species, it is indispensable to collect biometric data for the selection of animals for trade and genetic improvement of the stock. However, during handling processes, fishes receive more stress if proper anesthetics are not used. Thus, using appropriate anesthetics is an important tool for minimizing stress in animals. The objective of this study was to determine the effective concentrations of benzocaine, eugenol and menthol for angelfish (Pterophyllum scalare) anesthesia and to develop induction and recovery response curves for different concentrations of these anesthetics. A total of 75 fish were exposed to five concentrations of three different anesthetics, benzocaine (60, 85, 110, 135 and 160 mg L -1 ), eugenol (40, 80, 120, 160 and 200 mg L -1 ) and menthol (50, 75, 150, 200 and 250 mg L -1 ) in a completely randomized design. Each concentration (5 fish per concentration) consisted of five replicates and each replicate was represented by a single fish (1 fish per replicate). The results indicate that the tested substances have met the criteria of anesthetic efficiency. The effective concentrations of benzocaine, eugenol and menthol determined to be 89.25 mg L -1 , 90.6 mg L -1 and 92.1 mg L -1 , respectively for the anesthesia of freshwater angelfish. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Grandmaternal stress during pregnancy and DNA methylation of the third generation: an epigenome-wide association study

    PubMed Central

    Serpeloni, F; Radtke, K; de Assis, S G; Henning, F; Nätt, D; Elbert, T

    2017-01-01

    Stress during pregnancy may impact subsequent generations, which is demonstrated by an increased susceptibility to childhood and adulthood health problems in the children and grandchildren. Although the importance of the prenatal environment is well reported with regards to future physical and emotional outcomes, little is known about the molecular mechanisms that mediate the long-term consequences of early stress across generations. Recent studies have identified DNA methylation as a possible mediator of the impact of prenatal stress in the offspring. Whether psychosocial stress during pregnancy also affects DNA methylation of the grandchildren is still not known. In the present study we examined the multigenerational hypothesis, that is, grandmaternal exposure to psychosocial stress during pregnancy affecting DNA methylation of the grandchildren. We determined the genome-wide DNA methylation profile in 121 children (65 females and 56 males) and tested for associations with exposure to grandmaternal interpersonal violence during pregnancy. We observed methylation variations of five CpG sites significantly (FDR<0.05) associated with the grandmother’s report of exposure to violence while pregnant with the mothers of the children. The results revealed differential methylation of genes previously shown to be involved in circulatory system processes (FDR<0.05). This study provides support for DNA methylation as a biological mechanism involved in the transmission of stress across generations and motivates further investigations to examine prenatal-dependent DNA methylation as a potential biomarker for health problems. PMID:28809857

  3. Grandmaternal stress during pregnancy and DNA methylation of the third generation: an epigenome-wide association study.

    PubMed

    Serpeloni, F; Radtke, K; de Assis, S G; Henning, F; Nätt, D; Elbert, T

    2017-08-15

    Stress during pregnancy may impact subsequent generations, which is demonstrated by an increased susceptibility to childhood and adulthood health problems in the children and grandchildren. Although the importance of the prenatal environment is well reported with regards to future physical and emotional outcomes, little is known about the molecular mechanisms that mediate the long-term consequences of early stress across generations. Recent studies have identified DNA methylation as a possible mediator of the impact of prenatal stress in the offspring. Whether psychosocial stress during pregnancy also affects DNA methylation of the grandchildren is still not known. In the present study we examined the multigenerational hypothesis, that is, grandmaternal exposure to psychosocial stress during pregnancy affecting DNA methylation of the grandchildren. We determined the genome-wide DNA methylation profile in 121 children (65 females and 56 males) and tested for associations with exposure to grandmaternal interpersonal violence during pregnancy. We observed methylation variations of five CpG sites significantly (FDR<0.05) associated with the grandmother's report of exposure to violence while pregnant with the mothers of the children. The results revealed differential methylation of genes previously shown to be involved in circulatory system processes (FDR<0.05). This study provides support for DNA methylation as a biological mechanism involved in the transmission of stress across generations and motivates further investigations to examine prenatal-dependent DNA methylation as a potential biomarker for health problems.

  4. Whole DNA methylome profiling in mice exposed to secondhand smoke

    PubMed Central

    Tommasi, Stella; Zheng, Albert; Yoon, Jae-In; Li, Arthur Xuejun; Wu, Xiwei; Besaratinia, Ahmad

    2012-01-01

    Aberration of DNA methylation is a prime epigenetic mechanism of carcinogenesis. Aberrant DNA methylation occurs frequently in lung cancer, with exposure to secondhand smoke (SHS) being an established risk factor. The causal role of SHS in the genesis of lung cancer, however, remains elusive. To investigate whether SHS can cause aberrant DNA methylation in vivo, we have constructed the whole DNA methylome in mice exposed to SHS for a duration of 4 mo, both after the termination of exposure and at ensuing intervals post-exposure (up to 10 mo). Our genome-wide and gene-specific profiling of DNA methylation in the lung of SHS-exposed mice revealed that all groups of SHS-exposed mice and controls share a similar pattern of DNA methylation. Furthermore, the methylation status of major repetitive DNA elements, including long-interspersed nuclear elements (LINE L1), intracisternal A particle long-terminal repeat retrotransposons (IAP-LTR), and short-interspersed nuclear elements (SINE B1), in the lung of all groups of SHS-exposed mice and controls remains comparable. The absence of locus-specific gain of DNA methylation and global loss of DNA methylation in the lung of SHS-exposed mice within a timeframe that precedes neoplastic-lesion formation underscore the challenges of lung cancer biomarker development. Identifying the initiating events that cause aberrant DNA methylation in lung carcinogenesis may help improve future strategies for prevention, early detection and treatment of this highly lethal disease. PMID:23051858

  5. Methyl group balance in brain and liver: role of choline on increased S-adenosyl methionine (SAM) demand by chronic arsenic exposure.

    PubMed

    Ríos, Rosalva; Santoyo, Martha E; Cruz, Daniela; Delgado, Juan Manuel; Zarazúa, Sergio; Jiménez-Capdeville, María E

    2012-11-30

    Arsenic toxicity has been related to its interference with one carbon metabolism, where a high demand of S-adenosylmethionine (SAM) for arsenic methylation as well as a failure of its regeneration would compromise the availability of methyl groups for diverse cellular functions. Since exposed animals show disturbances of methylated products such as methylated arginines, myelin and axon membranes, this work investigates whether alterations of SAM, choline and phosphatidylcholine (PC) in the brain of arsenic exposed rats are associated with myelin alterations and myelin basic protein (MBP) immunoreactivity. Also these metabolites, morphologic and biochemical markers of methyl group alterations were analyzed in the liver, the main site of arsenic methylation. In adult, life-long arsenic exposed rats through drinking water (3 ppm), no changes of SAM, choline and PC concentrations where found in the brain, but SAM and PC were severely decreased in liver accompanied by a significant increase of choline. These results suggest that choline plays an important role as methyl donor in arsenic exposure, which could underlie hepatic affections observed when arsenic exposure is combined with other environmental factors. Also, important myelin and nerve fiber alterations, accompanied by a 75% decrease of MBP immunoreactivity were not associated with a SAM deficit in the brain. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Breast tumor DNA methylation patterns associated with smoking in the Carolina Breast Cancer Study.

    PubMed

    Conway, Kathleen; Edmiston, Sharon N; Parrish, Eloise; Bryant, Christopher; Tse, Chiu-Kit; Swift-Scanlan, Theresa; McCullough, Lauren E; Kuan, Pei Fen

    2017-06-01

    Tobacco smoking is a risk factor in several cancers, yet its roles as a putative etiologic exposure or poor prognostic factor in breast cancer are less clear. Altered DNA methylation contributes to breast cancer development and may provide a mechanistic link between smoking and gene expression changes leading to cancer development or progression. Using a cancer-focused array, we examined methylation at 933 CpGs in 517 invasive breast tumors in the Carolina Breast Cancer Study to determine whether methylation patterns differ by exposure to tobacco smoke. Multivariable generalized linear regression models were used to compare tumor methylation profiles between smokers and never smokers, overall, or stratified on hormone receptor (HR) status. Modest differences in CpG methylation were detected at p < 0.05 in breast tumors from current or ever smokers compared with never smokers. In stratified analyses, HR- tumors from smokers exhibited primarily hypomethylation compared with tumors from never smokers; hypomethylation was similarly detected within the more homogeneous basal-like subtype. Most current smoking-associated CpG loci exhibited methylation levels in former smokers that were intermediate between those in current and never smokers and exhibited progressive changes in methylation with increasing duration of smoking. Among former smokers, restoration of methylation toward baseline (never smoking) levels was observed with increasing time since quitting. Moreover, smoking-related hypermethylation was stronger in HR+ breast tumors from blacks than in whites. Our results suggest that breast tumor methylation patterns differ with tobacco smoke exposure; however, additional studies are needed to confirm these findings.

  7. Poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications.

    PubMed

    Gomes, Carmen; Moreira, Rosana G; Castell-Perez, Elena

    2011-03-01

    Eugenol and trans-cinnamaldehyde are natural compounds known to be highly effective antimicrobials; however, both are hydrophobic molecules, a limitation to their use within the food industry. The goal of this study was to synthesize spherical poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped eugenol and trans-cinnamaldehyde for future antimicrobial delivery applications. The emulsion evaporation method was used to form the nanoparticles in the presence of poly (vinyl alcohol) (PVA) as a surfactant. The inclusion of antimicrobial compounds into the PLGA nanoparticles was accomplished in the organic phase. Synthesis was followed by ultrafiltration (performed to eliminate the excess of PVA and antimicrobial compound) and freeze-drying. The nanoparticles were characterized by their shape, size, entrapment efficiency, and antimicrobial efficiency. The entrapment efficiency for eugenol and trans-cinnamaldehyde was approximately 98% and 92%, respectively. Controlled release experiments conducted in vitro at 37 °C and 100 rpm for 72 h showed an initial burst followed by a slower rate of release of the antimicrobial entrapped inside the PLGA matrix. All loaded nanoparticles formulations proved to be efficient in inhibiting growth of Salmonella spp. (Gram-negative bacterium) and Listeria spp. (Gram-positive bacterium) with concentrations ranging from 20 to 10 mg/mL. Results suggest that the application of these antimicrobial nanoparticles in food systems may be effective at inhibiting specific pathogens. Nanoencapsulation of lipophilic antimicrobial compounds has great potential for improving the effectiveness and efficiency of delivery in food systems. This study consisted of synthesizing PLGA nanoparticles with entrapped eugenol and trans-cinnamaldehyde. By characterizing these new delivery systems, one can understand the controlled-release mechanism and antimicrobial efficiency that provides a foundation that will enable food manufacturers to design smart food systems for future delivery applications, including packaging and processing, capable of ensuring food safety to consumers.

  8. 76 FR 22620 - Triflusulfuron-Methyl; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... under the Federal Food, Drug, and Cosmetic Act (FFDCA). DATES: This regulation is effective April 22... Determination of Safety Section 408(b)(2)(A)(i) of FFDCA allows EPA to establish a tolerance (the legal limit... determination on aggregate exposure for triflusulfuron-methyl, including exposure resulting from the tolerances...

  9. Long-term air pollution exposure, genome-wide DNA methylation and lung function in the LifeLines cohort study.

    EPA Science Inventory

    BACKGROUND: Long-term air pollution exposure is negatively associated with lung function, yet the mechanisms underlying this association are not·­ fully clear.Differential DNA methylation may explain this association. OBJECTIVES: Our main aim was to study the associati...

  10. [Association of etheno-DNA adduct and DNA methylation level among workers exposed to diesel engine exhaust].

    PubMed

    Shen, M L; He, Z N; Zhang, X; Duan, H W; Niu, Y; Bin, P; Ye, M; Meng, T; Dai, Y F; Yu, S F; Chen, W; Zheng, Y X

    2017-06-06

    Objective: To investigate the association between etheno-DNA adduct and the promoter of DNA methylation levels of cyclin dependent kinase inhibitor 2A (P16), Ras association domain family 1 (RASSF1A) and O-6-methylguanine-DNA methyltransferase (MGMT) in workers with occupational exposure to diesel engine exhaust (DEE). Methods: We recruited 124 diesel engine testing workers as DEE exposure group and 112 water pump operator in the same area as control group in Henan province in 2012 using cluster sampling. The demographic data were obtained by questionnaire survey; urine after work and venous blood samples were collected from each subject. The urinary etheno-DNA adducts were detected using UPLC-MS/MS, including 1,N6-etheno-2'-deoxyadenosine (εdA) and 3,N4-etheno-2'-deoxycytidine(εdC). The DNA methylation levels of P16, RASSF1A, and MGMT were evaluated using bisulfite-pyrosequencing assay. The percentage of methylation was expressed as the 5-methylcytosine (5mC) over the sum of cytosines (%5mC). Spearman correlation and multiple linear regression were applied to analyze the association between etheno-DNA adducts and DNA methylation of P16, RASSF1A, and MGMT. Results: The median ( P (25)- P (75)) of urinary εdA level was 230.00 (98.04-470.91) pmol/g creatinine in DEE exposure group, and 102.10 (49.95-194.48) creatinine in control group. The level of εdA was higher in DEE exposure group than control group ( P< 0.001). DNA methylation levels of P16, RASSF1A and MGMT were 2.04±0.41, 2.19 (1.94-2.51), 2.22 (1.94-2.46)%5mC in exposure group, and 2.19±0.40, 2.41 (2.11-2.67), 2.44 (2.15-2.91)%5mC in control group. DNA methylation levels were lower in exposure group ( P values were 0.005, 0.002 and 0.001, respectively). Spearman correlation analysis showed that DNA methylation levels of P16, RASSF1A, and MGMT were negative associated with urinary εdA level ( r values were -0.155, -0.137, and -0.198, respectively, P< 0.05). No significant correlation was observed between the εdC level and any measured DNA methylation levels ( P> 0.05) . Multiple linear regression confirmed the negative correlation between εdA and DNA methylation levels of P16, RASSF1A, and MGMT in non-smoking group (β (95 %CI ) was -0.068 (-0.132--0.003), -0.082 (-0.159--0.004) and -0.048 (-0.090--0.007), P values were 0.039, 0.039 and 0.024, respectively). Moreover, εdC was negative associated with DNA methylation level of MGMT in non-smoking group (β (95 %CI ) was -0.094 (-0.179--0.008), P= 0.032). Conclusion: DEE exposure could induce the increased of εdA and decreased of DNA methylation levels of P16, RASSF1A and MGMT.

  11. Intrauterine Exposure to Maternal Stress Alters Bdnf IV DNA Methylation and Telomere Length in the Brain of Adult Rat Offspring

    NASA Technical Reports Server (NTRS)

    Blaze, Jennifer; Asok, Arun; Borrelli, Kristyn; Tulbert, Christine; Bollinger, Justin; Ronca Finco, April E.; Roth, Tania L.

    2017-01-01

    DNA methylation (addition of methyl groups to cytosines which normally represses gene transcription) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could contribute to the long-term effects of intrauterine exposure to maternal stress on offspring behavioral outcomes. Here, we measured methylation of Brain-derived neurotrophic factor (Bdnf), a gene important in development and plasticity, and telomere length in the brains of adult rat male and female offspring whose mothers were exposed to unpredictable and variable stressors throughout gestation. Males exposed to prenatal stress had greater methylation (Bdnf IV) in the medial prefrontal cortex (mPFC) compared to non-stressed controls. Further, prenatally-stressed males had shorter telomeres than controls in the mPFC. This study provides the first evidence in a rodent model of an association between prenatal stress exposure and subsequent shorter brain telomere length. Together findings indicate a long-term impact of prenatal stress on DNA methylation and telomere biology with relevance for behavioral and health outcomes, and contribute to a growing literature linking stress to intergenerational epigenetic alterations and changes in telomere length.

  12. Self-reported smoking, serum cotinine, and blood DNA methylation.

    PubMed

    Zhang, Yan; Florath, Ines; Saum, Kai-Uwe; Brenner, Hermann

    2016-04-01

    Epigenome-wide profiling of DNA methylation pattern with respect to tobacco smoking has given rise to a new measure of smoking exposure. We investigated the relationships of methylation markers with both cotinine, an established marker of internal smoking exposure, and self-reported smoking. Blood DNA methylation levels across the genome and serum cotinine were measured in 1000 older adults aged 50-75 years. Epigenome-wide scans were performed to identify methylation markers associated with cotinine. The inter-dose-response relationships between the number of cigarettes smoked per day, cotinine concentration, and DNA methylation were modeled by restricted cubic spline regression. Of 61 CpGs that passed the genome-wide significance threshold (p<1.13×10(-7)), 40 CpGs in 25 chromosomal regions were successfully replicated, showing 0.2-3% demethylation per 10ng/ml increases in cotinine. The strongest associations were observed for several loci at AHRR, F2RL3, 2q37.1, 6p21.33, and GFI1 that were previously identified to be related to self-reported smoking. One locus at RAB34 was newly discovered. Both cotinine and methylation markers exhibited non-linear relationships with the number of cigarettes smoked per day, where the highest rates of increase in cotinine and decreases in methylation were observed at low smoking intensity (1-15 cigarettes/day) and plateaued at high smoking intensity (>15-20 cigarettes/day). A clear linear relationship was observed between cotinine concentration and methylation level. Both cotinine and methylation markers showed similar accuracy in distinguishing current from never smoker, but only methylation markers distinguished former from never smoker with high accuracy. Our study corroborates and expands the list of smoking-associated DNA methylation markers. Methylation levels were linearly related to cotinine concentration and provided accurate measures for both current and past smoking exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The effect of inflammation-related lifestyle exposures and interactions with gene variants on long interspersed nuclear element-1 DNA methylation.

    PubMed

    Gogna, Priyanka; O'Sullivan, Dylan E; King, Will D

    2018-06-11

    To examine the relationship between inflammation-related lifestyle factors and long interspersed nuclear element-1 (LINE-1) DNA methylation, and test for interaction by gene variants involved in one-carbon metabolism. The study population consisted of 280 individuals undergoing colonoscopy screening. Multivariable linear regression was employed to examine associations of physical activity, BMI and NSAID use with LINE-1 DNA methylation and interactions with MTR and MTHFR gene variants. The highest quartile of physical activity compared with the lowest was associated with higher LINE-1 DNA methylation (p = 0.005). Long-term NSAID use and a normal BMI were associated with increased LINE-1 DNA methylation among individuals with the variant MTR allele (p = 0.02; p = 0.03). This study provides evidence that inflammation-related exposures may influence LINE-1 DNA methylation.

  14. Bioconcentration and Acute Intoxication of Brazilian Freshwater Fishes by the Methyl Parathion Organophosphate Pesticide

    PubMed Central

    Bosco de Salles, João; Matos Lopes, Renato; de Salles, Cristiane M. C.; Cassano, Vicente P. F.; de Oliveira, Manildo Marcião; Cunha Bastos, Vera L. F.; Bastos, Jayme Cunha

    2015-01-01

    Three species of freshwater Brazilian fishes (pacu, Piaractus mesopotamicus; piavussu, Leporinus macrocephalus, and curimbatá, Prochilodus lineatus) were exposed to an acute dose of 5 ppm methyl parathion organophosphate pesticide. Three to five individuals per species were exposed, one at a time, to 40 liters tap water spiked with Folidol 600. Pesticide concentrations and cholinesterase (ChE) activities were evaluated in serum, liver, brain, heart, and muscle. The bioconcentration of methyl parathion was similar for all studied fishes. Brain tissue showed the highest pesticide concentration, reaching 80 ppm after exposure for 30 min to methyl parathion. Three to 5 hours of 5 ppm methyl parathion exposure provoked the death of all P. lineatus at 92% brain AChE inhibition, whereas fish from the other two species survived for up to 78 hours with less than 80% brain AChE inhibition. Our results indicate that acute toxic effects of methyl parathion to fish are correlated with brain AChE sensitivity to methyl paraoxon. PMID:26339593

  15. Stability of the human sperm DNA methylome to folic acid fortification and short-term supplementation

    PubMed Central

    Chan, D.; McGraw, S.; Klein, K.; Wallock, L.M.; Konermann, C.; Plass, C.; Chan, P.; Robaire, B.; Jacob, R.A.; Greenwood, C.M.T.; Trasler, J.M.

    2017-01-01

    STUDY QUESTION Do short-term and long-term exposures to low-dose folic acid supplementation alter DNA methylation in sperm? SUMMARY ANSWER No alterations in sperm DNA methylation patterns were found following the administration of low-dose folic acid supplements of 400 μg/day for 90 days (short-term exposure) or when pre-fortification of food with folic acid and post-fortification sperm samples (long-term exposure) were compared. WHAT IS KNOWN ALREADY Excess dietary folate may be detrimental to health and DNA methylation profiles due to folate's role in one-carbon metabolism and the formation of S-adenosyl methionine, the universal methyl donor. DNA methylation patterns are established in developing male germ cells and have been suggested to be affected by high-dose (5 mg/day) folic acid supplementation. STUDY DESIGN, SIZE, DURATION This is a control versus treatment study where genome-wide sperm DNA methylation patterns were examined prior to fortification of food (1996–1997) in men with no history of infertility at baseline and following 90-day exposure to placebo (n = 9) or supplement containing 400 μg folic acid/day (n = 10). Additionally, pre-fortification sperm DNA methylation profiles (n = 19) were compared with those of a group of post-fortification (post-2004) men (n = 8) who had been exposed for several years to dietary folic acid fortification. PARTICIPANTS/MATERIALS, SETTING, METHODS Blood and seminal plasma folate levels were measured in participants before and following the 90-day treatment with placebo or supplement. Sperm DNA methylation was assessed using the whole-genome and genome-wide techniques, MassArray epityper, restriction landmark genomic scanning, methyl-CpG immunoprecipitation and Illumina HumanMethylation450 Bead Array. MAIN RESULTS AND THE ROLE OF CHANCE Following treatment, supplemented individuals had significantly higher levels of blood and seminal plasma folates compared to placebo. Initial first-generation genome-wide analyses of sperm DNA methylation showed little evidence of changes when comparing pre- and post-treatment samples. With Illumina HumanMethylation450 BeadChip arrays, no significant changes were observed in individual probes following low-level supplementation; when compared with those of the post-fortification cohort, there were also few differences in methylation despite exposure to years of fortified foods. LARGE SCALE DATA Illumina HumanMethylation450 BeadChip data from this study have been submitted to the NCBI Gene Expression Omnibus under the accession number GSE89781. LIMITATIONS, REASONS FOR CAUTION This study was limited to the number of participants available in each cohort, in particular those who were not exposed to early (pre-1998) fortification of food with folic acid. While genome-wide DNA methylation was assessed with several techniques that targeted genic and CpG-rich regions, intergenic regions were less well interrogated. WIDER IMPLICATIONS OF THE FINDINGS Overall, our findings provide evidence that short-term exposure to low-dose folic acid supplements of 400 μg/day, over a period of 3 months, a duration of time that might occur during infertility treatments, has no major impact on the sperm DNA methylome. STUDY FUNDING/COMPETING INTERESTS This work was supported by a grant to J.M.T. from the Canadian Institutes of Health Research (CIHR: MOP-89944). The authors have no conflicts of interest to declare. PMID:27994001

  16. Stability of the human sperm DNA methylome to folic acid fortification and short-term supplementation.

    PubMed

    Chan, D; McGraw, S; Klein, K; Wallock, L M; Konermann, C; Plass, C; Chan, P; Robaire, B; Jacob, R A; Greenwood, C M T; Trasler, J M

    2017-02-01

    Do short-term and long-term exposures to low-dose folic acid supplementation alter DNA methylation in sperm? No alterations in sperm DNA methylation patterns were found following the administration of low-dose folic acid supplements of 400 μg/day for 90 days (short-term exposure) or when pre-fortification of food with folic acid and post-fortification sperm samples (long-term exposure) were compared. Excess dietary folate may be detrimental to health and DNA methylation profiles due to folate's role in one-carbon metabolism and the formation of S-adenosyl methionine, the universal methyl donor. DNA methylation patterns are established in developing male germ cells and have been suggested to be affected by high-dose (5 mg/day) folic acid supplementation. This is a control versus treatment study where genome-wide sperm DNA methylation patterns were examined prior to fortification of food (1996-1997) in men with no history of infertility at baseline and following 90-day exposure to placebo (n = 9) or supplement containing 400 μg folic acid/day (n = 10). Additionally, pre-fortification sperm DNA methylation profiles (n = 19) were compared with those of a group of post-fortification (post-2004) men (n = 8) who had been exposed for several years to dietary folic acid fortification. Blood and seminal plasma folate levels were measured in participants before and following the 90-day treatment with placebo or supplement. Sperm DNA methylation was assessed using the whole-genome and genome-wide techniques, MassArray epityper, restriction landmark genomic scanning, methyl-CpG immunoprecipitation and Illumina HumanMethylation450 Bead Array. Following treatment, supplemented individuals had significantly higher levels of blood and seminal plasma folates compared to placebo. Initial first-generation genome-wide analyses of sperm DNA methylation showed little evidence of changes when comparing pre- and post-treatment samples. With Illumina HumanMethylation450 BeadChip arrays, no significant changes were observed in individual probes following low-level supplementation; when compared with those of the post-fortification cohort, there were also few differences in methylation despite exposure to years of fortified foods. Illumina HumanMethylation450 BeadChip data from this study have been submitted to the NCBI Gene Expression Omnibus under the accession number GSE89781. This study was limited to the number of participants available in each cohort, in particular those who were not exposed to early (pre-1998) fortification of food with folic acid. While genome-wide DNA methylation was assessed with several techniques that targeted genic and CpG-rich regions, intergenic regions were less well interrogated. Overall, our findings provide evidence that short-term exposure to low-dose folic acid supplements of 400 μg/day, over a period of 3 months, a duration of time that might occur during infertility treatments, has no major impact on the sperm DNA methylome. This work was supported by a grant to J.M.T. from the Canadian Institutes of Health Research (CIHR: MOP-89944). The authors have no conflicts of interest to declare. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Comparative evaluation of zinc oxide eugenol versus gelatin sponge soaked in plasma rich in growth factor in the treatment of dry socket: An initial study

    PubMed Central

    Pal, U. S.; Singh, Balendra Pratap; Verma, Vikas

    2013-01-01

    Purpose: The aim of this study was to report a comparison between the zinc oxide eugenol dressing and plasma rich in growth factor (PRGF) with gelatin sponge in the treatment of dry socket. Materials and Methods: This study comprised of 45 patients of dry socket in the span of one year. The patients were randomly divided into three groups on the basis of treatments: Group A (PRGF with gelatin sponge), group B (zinc oxide eugenol group), and group C (irrigation with sterile saline only). The clinical progress was noted at 1st, 2nd, 3rd, 7th, and 15th day after the treatment. Results: Patient's healing was better in group A than in group B but symptomatic pain relief was faster in group B. Group C fared worst in both aspects. Conclusion: We conclude that PRGF with gelatin sponge might be a treatment of choice in the management of dry socket. PMID:23853450

  18. Ternary liquid-liquid equilibrium for eugenol + tert-butanol + water system at 303.15 and 323.15K and atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Sucipto, Retno Kumala Hesti; Kuswandi, Wibawa, Gede

    2017-05-01

    The objective of this study was to determine ternary liquid-liquid equilibrium for eugenol + tert-butanol + water system at 303.15 and 323.15K and atmospheric pressure. Using 25 mL equilibrium cell equipped jacketted water connected to water bath to maintain equilibrium temperature constant. The procedure of this experiment was conducted by inserting mixture of eugenol + tert-butanol + water system at certain composition into equilibrium cell. The solution was stirred for 4 hours and then was allowed for 20 hours in order to separate aqueous and organic phases completely. The temperature equilibrium cell of and the atmosphere pressure were recorded as equilibrium temperature and pressure for each measurenment. The equilibrium compositions of each phase were analyzed using Gas Chromatography. The experimental data obtained in this work were correlated with NRTL and UNIQUAC models with root mean square deviation between esperimental and calculated equilibrium compositions of 0.03% and 0.04% respectively.

  19. Clove (Syzygium aromaticum): a precious spice

    PubMed Central

    Cortés-Rojas, Diego Francisco; de Souza, Claudia Regina Fernandes; Oliveira, Wanderley Pereira

    2014-01-01

    Clove (Syzygium aromaticum) is one of the most valuable spices that has been used for centuries as food preservative and for many medicinal purposes. Clove is native of Indonesia but nowadays is cultured in several parts of the world including Brazil in the state of Bahia. This plant represents one of the richest source of phenolic compounds such as eugenol, eugenol acetate and gallic acid and posses great potential for pharmaceutical, cosmetic, food and agricultural applications. This review includes the main studies reporting the biological activities of clove and eugenol. The antioxidant and antimicrobial activity of clove is higher than many fruits, vegetables and other spices and should deserve special attention. A new application of clove as larvicidal agent is an interesting strategy to combat dengue which is a serious health problem in Brazil and other tropical countries. Pharmacokinetics and toxicological studies were also mentioned. The different studies reviewed in this work confirm the traditional use of clove as food preservative and medicinal plant standing out the importance of this plant for different applications. PMID:25182278

  20. Toxicity of basil oil constituents and related compounds and the efficacy of spray formulations to Dermatophagoides farinae (Acari: Pyroglyphidae).

    PubMed

    Perumalsamy, Haribalan; Kim, Jae Yeon; Kim, Jun-Ran; Hwang, Kum Na Ra; Ahn, Young-Joon

    2014-05-01

    Pyroglyphid house dust mites are the most common cause of allergic symptoms in humans. An assessment was made of the toxicity of basil, Ocimum basilicum L, essential oil, 11 basil oil constituents, seven structurally related compounds, and another 22 previously known basil oil constituents to adult American house dust mites, Dermatophagoides farinae Hughes. The efficacy of four experimental spray formulations containing basil oil (1, 2, 3, and 4% sprays) was also assessed. Results were compared with those of two conventional acaricides benzyl benzoate and N,N-diethyl-3-methylbenzamide. The active principles of basil oil were determined to be citral, alpha-terpineol, and linalool. Citral (24 h LC50, 1.13 microg/cm2) and menthol (1.69 microg/cm2) were the most toxic compounds, followed by methyl eugenol (5.78 microg/cm2). These compounds exhibited toxicity greater than benzyl benzoate (LC50, 8.41 microg/cm2) and N,N-diethyl-3-methylbenzamide (37.67 microg/cm2). Potent toxicity was also observed with eugenol, menthone, spathulenol, alpha-terpineol, nerolidol, zerumbone, and nerol (LC50, 12.52-21.44 microg/cm2). Interestingly, the sesquiterpenoid alpha-humulene, lacking only the carbonyl group present in zerumbone, was significantly less effective than zerumbone, indicating that the alpha,beta-unsaturated carbonyl group of zerumbone is a prerequisite component for toxicity. These compounds were consistently more toxic in closed versus open containers, indicating that their mode of delivery was largely a result of vapor action. Basil oil applied as 3 and 4% sprays provided 97 and 100% mortality against the mites, respectively, whereas permethrin (cis:trans, 25:75) 2.5 g/liter spray treatment resulted in 17% mortality. Our results indicate that practical dust mite control in indoor environments can be achieved by basil oil spray formulations (3 and 4% sprays) as potential contact-action fumigants.

  1. Toxicity of inhaled methyl isocyanate in F344/N rats and B6C3F1 mice. I. Acute exposure and recovery studies.

    PubMed Central

    Bucher, J R; Gupta, B N; Adkins, B; Thompson, M; Jameson, C W; Thigpen, J E; Schwetz, B A

    1987-01-01

    Male and female F344/N rats and B6C3F1 mice were exposed to lethal and sublethal concentrations of methyl isocyanate by inhalation. Mortality, clinical signs, body and organ weights, and changes in clinical pathology and hematology were monitored immediately after 2-hr exposures and during the ensuing 3 months. Additional studies investigated the possible involvement of cyanide in the toxicity of methyl isocyanate. During exposures, signs of restlessness, lacrimation, and a reddish discharge from the nose and mouth were evident in rats and mice. Following exposures, rats and mice were dyspneic and weak. Deaths of rats and mice exposed to lethal concentrations (20 to 30 ppm) began within 15-18 hr, with males more prone to early death than females. A second wave of deaths occurred after 8 to 10 days, affecting primarily female rats and mice exposed to 20 to 30 ppm of methyl isocyanate, and male and female rats exposed to 10 ppm. Most deaths occurred during the first month following the exposures and were preceded by periods of severe respiratory distress. Body weights decreased in proportion to dose early, but then weight gain resumed in survivors at control rates. The only organ with a consistent, dose-related weight change was the lung, which was heavier throughout the studies in animals exposed to high concentrations of methyl isocyanate. No significant clinical pathology, or hematologic changes were observed in exposed rats. Blood and brain cholinesterase were not inhibited. Studies attempting to measure cyanide in the blood of methyl isocyanate-exposed rats, and attempting to affect lethality with a cyanide antidote (sodium nitrite and sodium thiosulfate) gave negative results.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3622444

  2. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation.

    PubMed

    Alamdar, Ambreen; Xi, Guochen; Huang, Qingyu; Tian, Meiping; Eqani, Syed Ali Musstjab Akber Shah; Shen, Heqing

    2017-07-01

    Arsenic exposure has been associated with male reproductive dysfunction by disrupting steroidogenesis; however, the roles of epigenetic drivers, especially histone methylation in arsenic-induced steroidogenic toxicity remain not well documented. In this study, we investigated the role of histone H3 lysine 9 (H3K9) methylation in steroidogenesis disturbance in mouse Leydig cells (MLTC-1) due to arsenic exposure. Our results indicated that mRNA and protein expression levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) were both significantly up-regulated while the rest of key genes involved in steroidogenesis were down-regulated. Moreover, arsenic exposure significantly decreased the histone H3K9 di- and tri-methylation (H3K9me2/3) levels in MLTC-1 cells. Since H3K9 demethylation leads to gene activation, we further investigated whether the induction of 3β-HSD expression was ascribed to reduced H3K9 methylation. The results showed that H3K9me2/3 demethylase (JMJD2A) inhibitor, quercetin (Que) significantly attenuated the decrease of H3K9me2/3 and increase of 3β-HSD expression induced by arsenic. To further elucidate the mechanism for the activation of 3β-HSD, we determined the histone H3K9 methylation levels in Hsd3b gene promoter, which also showed significant decrease of H3K9me2/3 in the investigated region after arsenic exposure. Considering these results, we conclude that arsenic exposure induced 3β-HSD up-regulation by suppressing H3K9me2/3 status, which is suggested as a compensatory mechanism for steroidogenic disturbance in MLTC-1 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effects on specific promoter DNA methylation in zebrafish embryos and larvae following benzo[a]pyrene exposure

    USDA-ARS?s Scientific Manuscript database

    Benzo[a]pyrene (BaP) is an established reproductive and developmental toxicant. BaP exposure in humans and animals has been linked to infertility and multigenerational health consequences. DNA methylation is the most studied epigenetic mechanism that regulates gene expression, and mapping of methyla...

  4. IMBALANCE OF DNA METHYLATION, BOTH HYPERMETHYLATION AND HYPOMETHYLATION, OCCUR AFTER EXPOSURE OF HUMAN CELLS TO NANOMOLAR CONCENTRATIONS OF ARSENITE IN CULTURE.

    EPA Science Inventory

    Imbalance of DNA methylation, BOTH hypermethylation and hypomethylation, occur after exposure of human cells to nanomolar concentrations of arsenite in culture.

    We and others have hypothesized that a mechanism of arsenic carcinogenesis could involve alteration of DNA methy...

  5. Methyl substituted polyimides containing carbonyl and ether connecting groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)

    1992-01-01

    Polyimides were prepared from the reaction of aromatic dianhydrides with novel aromatic diamines having carbonyl and ether groups connecting aromatic rings containing pendant methyl groups. The methyl substituent polyimides exhibit good solubility and form tough, strong films. Upon exposure to ultraviolet irradiation and/or heat, the methyl substituted polyimides crosslink to become insoluble.

  6. Toxicity and DNA methylation changes induced by perfluorooctane sulfonate (PFOS) in sea urchin Glyptocidaris crenularis.

    PubMed

    Ding, Guanghui; Wang, Luyan; Zhang, Jing; Wei, Yuanyuan; Wei, Lie; Li, Yang; Shao, Mihua; Xiong, Deqi

    2015-06-01

    Perfluorooctane sulfonate (PFOS) is an ubiquitous persistent organic pollutant, which can be bioaccumulated and cause adverse effects on organisms. However, there is very limited information about the toxic effects of PFOS to marine organisms and its mechanisms. Therefore, in the present study, adult sea urchins Glyptocidaris crenularis were exposed to PFOS for 21 d, followed by a 7-d depuration period, in order to investigate the toxicity of PFOS to sea urchin and its potential epigenetic mechanisms. Sea urchins dropped spines, and lowered down the motor ability and feeding ability after the PFOS exposure. Superoxide dismutase activities in supernatant of coelomic fluid of sea urchin increased firstly and then dropped down, while the change of the catalase activity took an opposite trend during the exposure period. They both approached to the corresponding activity of the control after the depuration period. The DNA methylation polymorphism, methylation rate and demethylation rate in sea urchin gonad all increased following the prolonged exposure time, and then decreased after the depuration period. The demethylation rates were lower than the corresponding methylation rates, therefore methylation events were dominant during the whole experimental period. This might suggest that sea urchin have strong self-protection mechanisms and can survive from the PFOS exposure presented in this study. Further efforts are needed to more precisely investigate the DNA methylation effects of PFOS and the self-protection mechanism of sea urchin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Accounting for Life-Course Exposures in Epigenetic Biomarker Association Studies: Early Life Socioeconomic Position, Candidate Gene DNA Methylation, and Adult Cardiometabolic Risk

    PubMed Central

    Huang, Jonathan Y.; Gavin, Amelia R.; Richardson, Thomas S.; Rowhani-Rahbar, Ali; Siscovick, David S.; Hochner, Hagit; Friedlander, Yechiel; Enquobahrie, Daniel A.

    2016-01-01

    Abstract Recent studies suggest that epigenetic programming may mediate the relationship between early life environment, including parental socioeconomic position, and adult cardiometabolic health. However, interpreting associations between early environment and adult DNA methylation may be difficult because of time-dependent confounding by life-course exposures. Among 613 adult women (mean age = 32 years) of the Jerusalem Perinatal Study Family Follow-up (2007–2009), we investigated associations between early life socioeconomic position (paternal occupation and parental education) and mean adult DNA methylation at 5 frequently studied cardiometabolic and stress-response genes ( ABCA1 , INS-IGF2 , LEP , HSD11B2 , and NR3C1 ). We used multivariable linear regression and marginal structural models to estimate associations under 2 causal structures for life-course exposures and timing of methylation measurement. We also examined whether methylation was associated with adult cardiometabolic phenotype. Higher maternal education was consistently associated with higher HSD11B2 methylation (e.g., 0.5%-point higher in 9–12 years vs. ≤8 years, 95% confidence interval: 0.1, 0.8). Higher HSD11B2 methylation was also associated with lower adult weight and total and low-density lipoprotein cholesterol. We found that associations with early life socioeconomic position measures were insensitive to different causal assumption; however, exploratory analysis did not find evidence for a mediating role of methylation in socioeconomic position-cardiometabolic risk associations. PMID:27651384

  8. Ethanol deregulates Mecp2/MeCP2 in differentiating neural stem cells via interplay between 5-methylcytosine and 5-hydroxymethylcytosine at the Mecp2 regulatory elements

    PubMed Central

    Liyanage, Vichithra Rasangi Batuwita; Zachariah, Robby Mathew; Davie, James Ronald; Rastegar, Mojgan

    2017-01-01

    Methyl CpG Binding Protein 2 (MeCP2) is an important epigenetic factor in the brain. MeCP2 expression is affected by different environmental insults including alcohol exposure. Accumulating evidence supports the role of aberrant MeCP2 expression in ethanol exposure-induced neurological symptoms. However, the underlying molecular mechanisms of ethanol-induced MeCP2 deregulation remain elusive. To study the effect of ethanol on Mecp2/MeCP2 expression during neurodifferentiation, we established an in vitro model of ethanol exposure, using differentiating embryonic brain-derived neural stem cells (NSC). Previously, we demonstrated the impact of DNA methylation at the Mecp2 regulatory elements (REs) on Mecp2/MeCP2 expression in vitro and in vivo. Here, we studied whether altered DNA methylation at these REs is associated with the Mecp2/MeCP2 misexpression induced by ethanol. Binge-like and continuous ethanol exposure upregulated Mecp2/MeCP2, while ethanol withdrawal downregulated its expression. DNA methylation analysis by methylated DNA immunoprecipitation indicated that increased 5-hydroxymethylcytosine (5hmC) and decreased 5-methylcytosine (5mC) enrichment at specific REs were associated with upregulated Mecp2/MeCP2 following continuous ethanol exposure. The reduced Mecp2/MeCP2 expression upon ethanol withdrawal was associated with reduced 5hmC and increased 5mC enrichment at these REs. Moreover, ethanol altered global DNA methylation (5mC and 5hmC). Under the tested conditions, ethanol had minimal effects on NSC cell fate commitment, but caused changes in neuronal morphology and glial cell size. Taken together, our data represent an epigenetic mechanism for ethanol-mediated misexpression of Mecp2/MeCP2 in differentiating embryonic brain cells. We also show the potential role of DNA methylation and MeCP2 in alcohol-related neurological disorders, specifically Fetal Alcohol Spectrum Disorders. PMID:25620416

  9. Cigarette smoke condensate induces differential expression and promoter methylation profiles of critical genes involved in lung cancer in NL-20 lung cells in vitro: short-term and chronic exposure.

    PubMed

    Word, Beverly; Lyn-Cook, Lascelles E; Mwamba, Bibi; Wang, Honggang; Lyn-Cook, Beverly; Hammons, George

    2013-01-01

    Establishing early diagnostic markers of harm is critical for effective prevention programs and regulation of tobacco products. This study examined effects of cigarette smoke condensate (CSC) on expression and promoter methylation profile of critical genes (DAPK, ECAD, MGMT, and RASSF1A) involved in lung cancer development in different human lung cell lines. NL-20 cells were treated with 0.1-100 μg/ml of CSC for 24 to 72 hrs for short-term exposures. DAPK expression or methylation status was not significantly affected. However, CSC treatment resulted in changes in expression and promoter methylation profile of ECAD, MGMT, and RASSF1A. For chronic studies, cells were exposed to 1 or 10 μg/ml CSC up to 28 days. Cells showed morphological changes associated with transformation and changes in invasion capacities and global methylation status. This study provides critical data suggesting that epigenetic changes could serve as an early biomarker of harm due to exposure to cigarette smoke.

  10. MGMT hypomethylation is associated with DNA damage in workers exposed to low-dose benzene.

    PubMed

    Li, Jie; Zhang, Xinjie; He, Zhini; Sun, Qing; Qin, Fei; Huang, Zhenlie; Zhang, Xiao; Sun, Xin; Liu, Linhua; Chen, Liping; Gao, Chen; Wang, Shan; Wang, Fangping; Li, Daochuan; Zeng, Xiaowen; Deng, Qifei; Wang, Qing; Zhang, Bo; Tang, Huanwen; Chen, Wen; Xiao, Yongmei

    2017-07-01

    This study aims to assess the effects of low-dose benzene on DNA damage and O 6 -methylguanine-DNA methyltransferase (MGMT) methylation in occupational workers. We recruited 96 nonsmoking male petrochemical industry workers exposed to low-dose benzene and 100 matched control workers. Urinary S-phenylmercapturic acid (SPMA) and S-benzylmercapturic acid (SBMA) were measured for indicating internal exposure of benzene and toluene. The degree of DNA damage was determined by the Comet assay. The levels of MGMT methylation were detected quantitatively by bisulphite-PCR pyrosequencing assay. The benzene-exposed workers had significantly higher levels of urinary SPMA, degree of DNA damage but decreased MGMT methylation than the controls (all p < 0.05). In contrast, the level of urinary SBMA does not differ between benzene-exposed workers and the controls. In all participants, MGMT methylation was negatively associated with the urinary SPMA and the degree of DNA damage, indicating that epigenetic regulation might be involved in response to low-dose benzene exposure-induced genetic damage. MGMT methylation could be a potent biomarker associated with low-dose benzene exposure and benzene-induced DNA damage.

  11. The mutagenicities of safrole, estragole, eugenol, trans-anethole, and some of their known or possible metabolites for Salmonella typhimurium mutants.

    PubMed

    Swanson, A B; Chambliss, D D; Blomquist, J C; Miller, E C; Miller, J A

    1979-04-01

    Safrole, estragole, anethole, and eugenol and some of their known or possible metabolites were tested for mutagenic activity for S. typhimurium TA1535, TA100, and TA98. Highly purified 1'-hydroxyestragole and 1'-hydroxysafrole were mutagenic (approximately 15 and 10 revertants/micromole, respectively) for strain TA100 in the absence of fortified liver microsomes; trans-anethole and estragole appeared to have very weak activity. 3'-Hydroxyanethole was too toxic for an adequate test. Supplementation with NADPH-fortified rat-liver microsomes and cytosol converted 3'-hydroxyanethole to a mutagen(s) and increased the mutagenic activities for strain TA100 of 1'-hydroxyestragole, 1'-hydroxysafrole, estragole, and anethole. No mutagenicity was detected for safrole or eugenol with or without added NADPH-fortified liver preparations. The electrophilic 2',3'-oxides of safrole, 1'-hydroxysafrole, 1'-acetoxysafrole, 1'-oxosafrole, estragole, 1'-hydroxyestragole, and eugenol showed dose-dependent mutagenic activities for strain TA1535 in the absence of fortified liver microsomes. These mutagenic activities ranged from about 330 revertants/micromole for 1'-oxosafrole-2',3'-oxide to about 7000 revertants/micromole for safrole-2',3'-oxide. The arylalkenes, their hydroxylated derivatives, or their epoxides did not show mutagenic activity for strain TA98, except for 1'-oxosafrole-2',3'-oxide, which had weak activity. Since the arylalkenes are hydroxylated and/or epoxidized by hepatic microsomes, hydroxy and epoxide derivatives appear to be proximate and ultimate mutagenic metabolites, respectively, of the arylalkenes.

  12. Cytotoxicity Testing of Temporary Luting Cements with Two- and Three-Dimensional Cultures of Bovine Dental Pulp-Derived Cells

    PubMed Central

    Ülker, Hayriye Esra; Ülker, Mustafa; Gümüş, Hasan Önder; Yalçın, Muhammet; Şengün, Abdulkadir

    2013-01-01

    This study evaluated the cytotoxicity of eugenol-containing and eugenol-free temporary luting cements. For cytotoxicity testing, bovine pulp-derived cells transfected with Simian virus 40 Large T antigen were exposed to extracts of eugenol-containing (Rely X Temp E) and eugenol-free (Provicol, PreVISION CEM, and Rely X Temp NE) temporary luting cements for 24 h. The cytotoxicity of the same materials was also evaluated in a dentin barrier test device using three-dimensional cell cultures of bovine pulp-derived cells. The results of the cytotoxicity studies with two-dimensional cultures of bovine dental pulp-derived cells revealed that cell survival with the extracts of Rely X Temp E, Provicol, PreVISION CEM, and Rely X Temp NE was 89.1%, 84.9%, 92.3%, and 66.8%, respectively. Rely X Temp NE and Provicol showed cytotoxic effects on bovine dental pulp-derived cells (P < 0.05). The results of the dentin barrier test revealed that cell survival with the above-mentioned temporary cement was 101.5%, 91.9%, 93.5%, and 90.6%, respectively. None of the temporary luting cements significantly reduced cell survival compared with the negative control in the dentin barrier test (P > 0.05). Biologically active materials released from temporary luting cements may not influence the dentine-pulp complex if the residual dentine layer is at least 0.5 mm thick. PMID:23984419

  13. Genome-wide DNA methylation at birth in relation to in utero arsenic exposure and the associated health in later life.

    PubMed

    Kaushal, Akhilesh; Zhang, Hongmei; Karmaus, Wilfried J J; Everson, Todd M; Marsit, Carmen J; Karagas, Margaret R; Tsai, Shih-Fen; Wen, Hui-Ju; Wang, Shu-Li

    2017-05-30

    In utero arsenic exposure may alter fetal developmental programming by altering DNA methylation, which may result in a higher risk of disease in later life. We evaluated the association between in utero arsenic exposure and DNA methylation (DNAm) in cord blood and its influence in later life. Genome-wide DNA methylation in cord blood from 64 subjects in the Taiwanese maternal infant and birth cohort was analyzed. Robust regressions were applied to assess the association of DNA methylation with in utero arsenic exposure. Multiple testing was adjusted by controlling false discovery rate (FDR) of 0.05. The DAVID bioinformatics tool was implemented for functional annotation analyses on the detected CpGs. The identified CpGs were further tested in an independent cohort. For the CpGs replicated in the independent cohort, linear mixed models were applied to assess the association of DNA methylation with low-density lipoprotein (LDL) at different ages (2, 5, 8, 11 and 14 years). In total, 579 out of 385,183 CpGs were identified after adjusting for multiple testing (FDR = 0.05), of which ~60% were positively associated with arsenic exposure. Functional annotation analysis on these CpGs detected 17 KEGG pathways (FDR = 0.05) including pathways for cardiovascular diseases (CVD) and diabetes mellitus. In the independent cohort, about 46% (252 out of 553 CpGs) of the identified CpGs showed associations consistent with those in the study cohort. In total, 11 CpGs replicated in the independent cohort were in the pathways related to CVD and diabetes mellitus. Via longitudinal analyses, we found at 5 out of the 11 CpGs methylation was associated with LDL over time and interactions between DNA methylation and time were observed at 4 of the 5 CpGs, cg25189764 (coeff = 0.157, p-value = 0.047), cg04986899 (coeff. For interaction [coeff.int] = 0.030, p-value = 0.024), cg04903360 (coeff.int = 0.026, p-value = 0.032), cg08198265 (coeff.int = -0.063, p-value = 0.0021), cg10473311 (coeff.int = -0.021, p-value = 0.027). In utero arsenic exposure was associated with cord blood DNA methylation at various CpGs. The identified CpGs may help determine pathological epigenetic mechanisms linked to in utero arsenic exposure. Five CpGs (cg25189764, cg04986899, cg04903360, cg08198265 and cg10473311) may serve as epigenetic markers for changes in LDL later in life.

  14. Prenatal stress exposure, oxytocin receptor gene (OXTR) methylation, and child autistic traits: The moderating role of OXTR rs53576 genotype.

    PubMed

    Rijlaarsdam, Jolien; van IJzendoorn, Marinus H; Verhulst, Frank C; Jaddoe, Vincent W V; Felix, Janine F; Tiemeier, Henning; Bakermans-Kranenburg, Marian J

    2017-03-01

    Findings of studies investigating OXTR SNP rs53576 (G-A) variation in social behavior have been inconsistent, possibly because DNA methylation after stress exposure was eliminated from consideration. Our goal was to examine OXTR rs53576 allele-specific sensitivity for neonatal OXTR DNA methylation in relation to (1) a prenatal maternal stress composite, and (2) child autistic traits. Prospective data from fetal life to age 6 years were collected in a total of 743 children participating in the Generation R Study. Prenatal maternal stress exposure was uniquely associated with child autistic traits but was unrelated to OXTR methylation across both OXTR rs53576 G-allele homozygous children and A-allele carriers. For child autistic traits in general and social communication problems in particular, we observed a significant OXTR rs53576 genotype by OXTR methylation interaction in the absence of main effects, suggesting that opposing effects cancelled each other out. Indeed, OXTR methylation levels were positively associated with social problems for OXTR rs53576 G-allele homozygous children but not for A-allele carriers. These results highlight the importance of incorporating epi-allelic information and support the role of OXTR methylation in child autistic traits. Autism Res 2017, 10: 430-438. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  15. Global cytosine methylation in Daphnia magna depends on genotype, environment, and their interaction.

    PubMed

    Asselman, Jana; De Coninck, Dieter I M; Vandegehuchte, Michiel B; Jansen, Mieke; Decaestecker, Ellen; De Meester, Luc; Vanden Bussche, Julie; Vanhaecke, Lynn; Janssen, Colin R; De Schamphelaere, Karel A C

    2015-05-01

    The authors characterized global cytosine methylation levels in 2 different genotypes of the ecotoxicological model organism Daphnia magna after exposure to a wide array of biotic and abiotic environmental stressors. The present study aimed to improve the authors' understanding of the role of cytosine methylation in the organism's response to environmental conditions. The authors observed a significant genotype effect, an environment effect, and a genotype × environment effect. In particular, global cytosine methylation levels were significantly altered after exposure to Triops predation cues, Microcystis, and sodium chloride compared with control conditions. Significant differences between the 2 genotypes were observed when animals were exposed to Triops predation cues, Microcystis, Cryptomonas, and sodium chloride. Despite the low global methylation rate under control conditions (0.49-0.52%), global cytosine methylation levels upon exposure to Triops demonstrated a 5-fold difference between the genotypes (0.21% vs 1.02%). No effects were found in response to arsenic, cadmium, fish, lead, pH of 5.5, pH of 8, temperature, hypoxia, and white fat cell disease. The authors' results point to the potential role of epigenetic effects under changing environmental conditions such as predation (i.e., Triops), diet (i.e., Cryptomonas and Microcystis), and salinity. The results of the present study indicate that, despite global cytosine methylation levels being low, epigenetic effects may be important in environmental studies on Daphnia. © 2015 SETAC.

  16. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aluru, Neelakanteswar, E-mail: naluru@whoi.edu; Kuo, Elaine; Stanford University, 450 Serra Mall, Stanford, CA 94305

    2015-04-15

    DNA methylation is one of the most important epigenetic modifications involved in the regulation of gene expression. The DNA methylation reaction is catalyzed by DNA methyltransferases (DNMTs). Recent studies have demonstrated that toxicants can affect normal development by altering DNA methylation patterns, but the mechanisms of action are poorly understood. Hence, we tested the hypothesis that developmental exposure to TCDD affects dnmt gene expression patterns. Zebrafish embryos were exposed to 5 nM TCDD for 1 h from 4 to 5 h post-fertilization (hpf) and sampled at 12, 24, 48, 72, and 96 hpf to determine dnmt gene expression and DNAmore » methylation patterns. We performed a detailed analysis of zebrafish dnmt gene expression during development and in adult tissues. Our results demonstrate that dnmt3b genes are highly expressed in early stages of development, and dnmt3a genes are more abundant in later stages. TCDD exposure upregulated dnmt1 and dnmt3b2 expression, whereas dnmt3a1, 3b1, and 3b4 are downregulated following exposure. We did not observe any TCDD-induced differences in global methylation or hydroxymethylation levels, but the promoter methylation of aryl hydrocarbon receptor (AHR) target genes was altered. In TCDD-exposed embryos, AHR repressor a (ahrra) and c-fos promoters were differentially methylated. To characterize the TCDD effects on DNMTs, we cloned the dnmt promoters with xenobiotic response elements and conducted AHR transactivation assays using a luciferase reporter system. Our results suggest that ahr2 can regulate dnmt3a1, dnmt3a2, and dnmt3b2 expression. Overall, we demonstrate that developmental exposure to TCDD alters dnmt expression and DNA methylation patterns. - Highlights: • TCDD altered the dnmt expression in a gene and developmental time-specific manner. • TCDD hypermethylated ahrra and hypomethylated c-fos proximal promoter regions. • Functional analysis suggests that ahr2 can regulate dnmt3a1, 3a2, and 3b2 expression. • Dnmt3b genes are expressed early whereas dnmt3a are abundant later in development.« less

  17. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alamdar, Ambreen; Xi, Guochen

    Arsenic exposure has been associated with male reproductive dysfunction by disrupting steroidogenesis; however, the roles of epigenetic drivers, especially histone methylation in arsenic-induced steroidogenic toxicity remain not well documented. In this study, we investigated the role of histone H3 lysine 9 (H3K9) methylation in steroidogenesis disturbance in mouse Leydig cells (MLTC-1) due to arsenic exposure. Our results indicated that mRNA and protein expression levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) were both significantly up-regulated while the rest of key genes involved in steroidogenesis were down-regulated. Moreover, arsenic exposure significantly decreased the histone H3K9 di- and tri-methylation (H3K9me2/3) levels in MLTC-1 cells. Sincemore » H3K9 demethylation leads to gene activation, we further investigated whether the induction of 3β-HSD expression was ascribed to reduced H3K9 methylation. The results showed that H3K9me2/3 demethylase (JMJD2A) inhibitor, quercetin (Que) significantly attenuated the decrease of H3K9me2/3 and increase of 3β-HSD expression induced by arsenic. To further elucidate the mechanism for the activation of 3β-HSD, we determined the histone H3K9 methylation levels in Hsd3b gene promoter, which also showed significant decrease of H3K9me2/3 in the investigated region after arsenic exposure. Considering these results, we conclude that arsenic exposure induced 3β-HSD up-regulation by suppressing H3K9me2/3 status, which is suggested as a compensatory mechanism for steroidogenic disturbance in MLTC-1 cells. - Highlights: • Epigenetic mechanisms of arsenic-induced male reproductive toxicity remain unclear. • Arsenic disturbs the expression of key steroidogenic genes in MLTC-1 cells. • Histone H3K9 di- and tri-methylation was suppressed in arsenic-exposed cells. • Arsenic activates 3β-HSD expression through repression of histone H3K9 methylation.« less

  18. Placental mitochondrial DNA and CYP1A1 gene methylation as molecular signatures for tobacco smoke exposure in pregnant women and the relevance for birth weight.

    PubMed

    Janssen, Bram G; Gyselaers, Wilfried; Byun, Hyang-Min; Roels, Harry A; Cuypers, Ann; Baccarelli, Andrea A; Nawrot, Tim S

    2017-01-04

    Maternal smoking during pregnancy results in an increased risk of low birth weight through perturbations in the utero-placental exchange. Epigenetics and mitochondrial function in fetal tissues might be molecular signatures responsive to in utero tobacco smoke exposure. In the framework of the ENVIRONAGE birth cohort, we investigated the effect of self-reported tobacco smoke exposure during pregnancy on birth weight and the relation with placental tissue markers such as, (1) relative mitochondrial DNA (mtDNA) content as determined by real-time quantitative PCR, (2) DNA methylation of specific loci of mtDNA (D-loop and MT-RNR1), and (3) DNA methylation of the biotransformation gene CYP1A1 (the last two determined by bisulfite-pyrosequencing). The total pregnant mother sample included 255 non-smokers, 65 former-smokers who had quit smoking before pregnancy, and 62 smokers who continued smoking during pregnancy. Smokers delivered newborns with a birth weight on average 208 g lower [95% confidence interval (CI) -318 to -99, p = 0.0002] than mothers who did not smoke during pregnancy. In the smoker group, the relative mtDNA content was lower (-21.6%, 95% CI -35.4 to -4.9%, p = 0.01) than in the non-smoker group; whereas, absolute mtDNA methylation levels of MT-RNR1 were higher (+0.62%, 95% CI 0.21 to 1.02%, p = 0.003). Lower CpG-specific methylation of CYP1A1 in placental tissue (-4.57%, 95% CI -7.15 to -1.98%, p < 0.0001) were observed in smokers compared with non-smokers. Nevertheless, no mediation of CYP1A1 methylation nor any other investigated molecular signature was observed for the association between tobacco smoke exposure and birth weight. mtDNA content, methylation of specific loci of mtDNA, and CYP1A1 methylation in placental tissue may serve as molecular signatures for the association between gestational tobacco smoke exposure and low birth weight.

  19. A food effect study and dose proportionality study to assess the pharmacokinetics and safety of bardoxolone methyl in healthy volunteers.

    PubMed

    Teuscher, Nathan S; Kelley, Richard J; Dumas, Emily O; Klein, Cheri Enders; Awni, Walid M; Meyer, Colin J

    2014-07-01

    This study investigated the effect of food on the plasma pharmacokinetics of bardoxolone methyl, an antioxidant inflammation modulator, at a 20 mg dose, and the dose proportionality of bardoxolone methyl pharmacokinetics from 20 to 80 mg. It was a single-dose study conducted at a single center in 32 healthy volunteers aged 18-45 years using an amorphous spray-dried dispersion formulation of bardoxolone methyl. In Part A, 16 subjects received single 20 mg doses of bardoxolone methyl under fasting and non-fasting conditions. In Part B, 16 subjects received a single 60 or 80 mg dose of bardoxolone methyl and a matching placebo dose under fasting conditions. Blood samples for pharmacokinetic analysis were taken over 120 hours following dose administration. Single dose administration of 20, 60, and 80 mg bardoxolone methyl was safe and well-tolerated in healthy volunteers. Total bardoxolone methyl exposure was unchanged in the presence of food. However, doses of bardoxolone methyl above 20 mg appear to have a saturated dissolution or absorption process and are associated with less than proportional increases in drug exposure. © 2013, The American College of Clinical Pharmacology.

  20. DNA methylation profiling of asbestos-treated MeT5A cell line reveals novel pathways implicated in asbestos response.

    PubMed

    Casalone, E; Allione, A; Viberti, C; Pardini, B; Guarrera, S; Betti, M; Dianzani, I; Aldieri, E; Matullo, G

    2018-05-01

    Occupational and environmental asbestos exposure is the main determinant of malignant pleural mesothelioma (MPM), however, the mechanisms by which its fibres contribute to cell toxicity and transformation are not completely clear. Aberrant DNA methylation is a common event in cancer but epigenetic modifications involved specifically in MPM carcinogenesis need to be better clarified. To investigate asbestos-induced DNA methylation and gene expression changes, we treated Met5A mesothelial cells with different concentrations of crocidolite and chrysotile asbestos (0.5 ÷ 5.0 µg/cm 2 , 72 h incubation). Overall, we observed 243 and 302 differentially methylated CpGs (≥ 10%) between the asbestos dose at 5 µg/cm 2 and untreated control, in chrysotile and crocidolite treatment, respectively. To examine the dose-response effect, Spearman's correlation test was performed and significant CpGs located in genes involved in migration/cell adhesion processes were identified in both treatments. Moreover, we found that both crocidolite and chrysotile exposure induced a significant up-regulation of CA9 and SRGN (log2 fold change > 1.5), previously reported as associated with a more aggressive MPM phenotype. However, we found no correlation between methylation and gene expression changes, except for a moderate significant inverse correlation at the promoter region of DKK1 (Spearman rho = - 1, P value = 0.02) after chrysotile exposure. These results describe for the first time the relationship between DNA methylation modifications and asbestos exposure. Our findings provide a basis to further explore and validate asbestos-induced DNA methylation changes, that could influence MPM carcinogenesis and possibly identifying new chemopreventive target.

  1. Bisphenol A-associated epigenomic changes in prepubescent girls: a cross-sectional study in Gharbiah, Egypt

    PubMed Central

    2013-01-01

    Background There is now compelling evidence that epigenetic modifications link adult disease susceptibility to environmental exposures during specific life stages, including pre-pubertal development. Animal studies indicate that bisphenol A (BPA), the monomer used in epoxy resins and polycarbonate plastics, may impact health through epigenetic mechanisms, and epidemiological data associate BPA levels with metabolic disorders, behavior changes, and reproductive effects. Thus, we conducted an environmental epidemiology study of BPA exposure and CpG methylation in pre-adolescent girls from Gharbiah, Egypt hypothesizing that methylation profiles exhibit exposure-dependent trends. Methods Urinary concentrations of total (free plus conjugated) species of BPA in spot samples were quantified for 60 girls aged 10 to 13. Genome-wide CpG methylation was concurrently measured in bisulfite-converted saliva DNA using the Infinium HumanMethylation27 BeadChip (N = 46). CpG sites from four candidate genes were validated via quantitative bisulfite pyrosequencing. Results CpG methylation varied widely among girls, and higher urinary BPA concentrations were generally associated with less genomic methylation. Based on pathway analyses, genes exhibiting reduced methylation with increasing urinary BPA were involved in immune function, transport activity, metabolism, and caspase activity. In particular, hypomethylation of CpG targets on chromosome X was associated with higher urinary BPA. Using the Comparative Toxicogenomics Database, we identified a number of candidate genes in our sample that previously have been associated with BPA-related expression change. Conclusions These data indicate that BPA may affect human health through specific epigenomic modification of genes in relevant pathways. Thus, epigenetic epidemiology holds promise for the identification of biomarkers from previous exposures and the development of epigenetic-based diagnostic strategies. PMID:23590724

  2. Smoking-Associated Site-Specific Differential Methylation in Buccal Mucosa in the COPDGene Study

    PubMed Central

    Qiu, Weiliang; Carey, Vincent J.; Morrow, Jarrett; Bacherman, Helene; Foreman, Marilyn G.; Hokanson, John E.; Bowler, Russell P.; Crapo, James D.; DeMeo, Dawn L.

    2015-01-01

    DNA methylation is a complex, tissue-specific phenomenon that can reflect both endogenous factors and exogenous exposures. Buccal brushings represent an easily accessible source of DNA, which may be an appropriate surrogate tissue in the study of environmental exposures and chronic respiratory diseases. Buccal brushings were obtained from a subset of current and former smokers from the COPDGene study. Genome-wide DNA methylation data were obtained in the discovery cohort (n = 82) using the Illumina HumanMethylation450K array. Empirical Bayes methods were used to test for differential methylation by current smoking status at 468,219 autosomal CpG sites using linear models adjusted for age, sex, and race. Pyrosequencing was performed in a nonoverlapping replication cohort (n = 130). Current smokers were significantly younger than former smokers in both the discovery and replication cohorts. Seven CpG sites were associated with current smoking at a false discovery rate less than 0.05 in the discovery cohort. Six of the seven significant sites were pyrosequenced in the replication cohort; five CpG sites, including sites annotated to CYP1B1 and PARVA, were replicated. Correlations between cumulative smoke exposure and time since smoking cessation were observed in a subset of the significantly associated CpG sites. A significant correlation between reduced lung function and increased radiographic emphysema with methylation at cg02162897 (CYP1B1) was observed among female subjects. Site-specific methylation of DNA isolated from buccal mucosa is associated with exposure to cigarette smoke, and may provide insights into the mechanisms underlying differential susceptibility toward the development of smoking-related chronic respiratory diseases. PMID:25517428

  3. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    PubMed

    Buscariollo, Daniela L; Fang, Xiefan; Greenwood, Victoria; Xue, Huiling; Rivkees, Scott A; Wendler, Christopher C

    2014-01-01

    Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs) mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg) or vehicle (0.09% NaCl) i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs) within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  4. The association of serotonin receptor 3A methylation with maternal violence exposure, neural activity, and child aggression.

    PubMed

    Schechter, Daniel S; Moser, Dominik A; Pointet, Virginie C; Aue, Tatjana; Stenz, Ludwig; Paoloni-Giacobino, Ariane; Adouan, Wafae; Manini, Aurélia; Suardi, Francesca; Vital, Marylene; Sancho Rossignol, Ana; Cordero, Maria I; Rothenberg, Molly; Ansermet, François; Rusconi Serpa, Sandra; Dayer, Alexandre G

    2017-05-15

    Methylation of the serotonin 3A receptor gene (HTR3A) has been linked to child maltreatment and adult psychopathology. The present study examined whether HTR3A methylation might be associated with mothers' lifetime exposure to interpersonal violence (IPV), IPV-related psychopathology, child disturbance of attachment, and maternal neural activity. Number of maternal lifetime IPV exposures and measures of maternal psychopathology including posttraumatic stress disorder (PTSD), major depression and aggressive behavior (AgB), and a measure of child attachment disturbance known as "secure base distortion" (SBD) were assessed in a sample of 35 mothers and children aged 12-42 months. Brain fMRI activation was assessed in mothers using 30-s silent film excerpts depicting menacing adult male-female interactions versus prosocial and neutral interactions. Group and continuous analyses were performed to test for associations between clinical and fMRI variables with DNA methylation. Maternal IPV exposure-frequency was associated with maternal PTSD; and maternal IPV-PTSD was in turn associated with child SBD. Methylation status of several CpG sites in the HTR3A gene was associated with maternal IPV and IPV-PTSD severity, AgB and child SBD, in particular, self-endangering behavior. Methylation status at a specific CpG site (CpG2_III) was associated with decreased medial prefrontal cortical (mPFC) activity in response to film-stimuli of adult male-female interactions evocative of violence as compared to prosocial and neutral interactions. Methylation status of the HTR3A gene in mothers is linked to maternal IPV-related psychopathology, trauma-induced brain activation patterns, and child attachment disturbance in the form of SBD during a sensitive period in the development of self-regulation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Investigating the epigenetic effects of a prototype smoke-derived carcinogen in human cells.

    PubMed

    Tommasi, Stella; Kim, Sang-in; Zhong, Xueyan; Wu, Xiwei; Pfeifer, Gerd P; Besaratinia, Ahmad

    2010-05-12

    Global loss of DNA methylation and locus/gene-specific gain of DNA methylation are two distinct hallmarks of carcinogenesis. Aberrant DNA methylation is implicated in smoking-related lung cancer. In this study, we have comprehensively investigated the modulation of DNA methylation consequent to chronic exposure to a prototype smoke-derived carcinogen, benzo[a]pyrene diol epoxide (B[a]PDE), in genomic regions of significance in lung cancer, in normal human cells. We have used a pulldown assay for enrichment of the CpG methylated fraction of cellular DNA combined with microarray platforms, followed by extensive validation through conventional bisulfite-based analysis. Here, we demonstrate strikingly similar patterns of DNA methylation in non-transformed B[a]PDE-treated cells vs control using high-throughput microarray-based DNA methylation profiling confirmed by conventional bisulfite-based DNA methylation analysis. The absence of aberrant DNA methylation in our model system within a timeframe that precedes cellular transformation suggests that following carcinogen exposure, other as yet unknown factors (secondary to carcinogen treatment) may help initiate global loss of DNA methylation and region-specific gain of DNA methylation, which can, in turn, contribute to lung cancer development. Unveiling the initiating events that cause aberrant DNA methylation in lung cancer has tremendous public health relevance, as it can help define future strategies for early detection and prevention of this highly lethal disease.

  6. Investigating the Epigenetic Effects of a Prototype Smoke-Derived Carcinogen in Human Cells

    PubMed Central

    Tommasi, Stella; Kim, Sang-in; Zhong, Xueyan; Wu, Xiwei; Pfeifer, Gerd P.; Besaratinia, Ahmad

    2010-01-01

    Global loss of DNA methylation and locus/gene-specific gain of DNA methylation are two distinct hallmarks of carcinogenesis. Aberrant DNA methylation is implicated in smoking-related lung cancer. In this study, we have comprehensively investigated the modulation of DNA methylation consequent to chronic exposure to a prototype smoke-derived carcinogen, benzo[a]pyrene diol epoxide (B[a]PDE), in genomic regions of significance in lung cancer, in normal human cells. We have used a pulldown assay for enrichment of the CpG methylated fraction of cellular DNA combined with microarray platforms, followed by extensive validation through conventional bisulfite-based analysis. Here, we demonstrate strikingly similar patterns of DNA methylation in non-transformed B[a]PDE-treated cells vs control using high-throughput microarray-based DNA methylation profiling confirmed by conventional bisulfite-based DNA methylation analysis. The absence of aberrant DNA methylation in our model system within a timeframe that precedes cellular transformation suggests that following carcinogen exposure, other as yet unknown factors (secondary to carcinogen treatment) may help initiate global loss of DNA methylation and region-specific gain of DNA methylation, which can, in turn, contribute to lung cancer development. Unveiling the initiating events that cause aberrant DNA methylation in lung cancer has tremendous public health relevance, as it can help define future strategies for early detection and prevention of this highly lethal disease. PMID:20485678

  7. Yield, Composition and Antioxidant Capacity of the Essential Oil of Sweet Basil and Holy Basil as Influenced by Distillation Methods.

    PubMed

    Shiwakoti, Santosh; Saleh, Osama; Poudyal, Shital; Barka, Abdulssamad; Qian, Yanping; Zheljazkov, Valtcho D

    2017-04-01

    The profile and bioactivity of essential oil (EO) depends on genetic, environmental, and other factors. We hypothesized that the basil EO may be influenced by the distillation methods. Hence, a study was conducted to evaluate the effect of steam distillation (SD) and hydrodistillation (HD) extraction method on the yield, composition, and bioactivity of EO of sweet basil (Ocimum basilicum) and holy basil (Ocimum tenuiflorum). In both basil species, the EO yield (content) was significantly higher from SD than from HD. There were significant differences in the compounds' concentrations of EO obtained from SD and HD as well, however, the same compounds were identified in the EO from HD and SD. In the EO of O. basilicum, the concentration of 74% of the identified compounds were higher in SD than HD, whereas in the EO of O. tenuiflorum, the concentration of 84% of identified compounds were higher in SD than in HD. However, the concentrations of two of the major compounds of O. basilicum EO (estragole and methyl cinnamate) and a major compound of O. tenuiflorum EO (methyl eugenol) were significantly higher in HD than in SD. The type of distillation did not affect the antioxidant capacity of basil EO within the species. This study demonstrated that the type of distillation may significantly affect oil yield and composition but not the antioxidant capacity of the EO from sweet and holy basil. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  8. Suitability of macrophage inflammatory protein-1beta production by THP-1 cells in differentiating skin sensitizers from irritant chemicals.

    PubMed

    Lim, Yeon-Mi; Moon, Seong-Joon; An, Su-Sun; Lee, Soo-Jin; Kim, Seo-Young; Chang, Ih-Seop; Park, Kui-Lea; Kim, Hyoung-Ah; Heo, Yong

    2008-04-01

    Worldwide restrictions in animal use for research have driven efforts to develop alternative methods. The study aimed to test the efficacy of the macrophage inflammatory protein-1beta (MIP-1beta) assay for testing chemicals' skin-sensitizing capacity. The assay was performed using 9 chemicals judged to be sensitizing and 7 non-sensitizing by the standard in vivo assays. THP-1 cells were cultured in the presence or absence of 4 doses, 0.01x, 0.1x, 0.5x, or 1x IC(50) (50% inhibitory concentration for THP-1 cell proliferation) of these chemicals for 24 hr, and the MIP-1beta level in the supernatants was determined. Skin sensitization by the test chemicals was determined by MIP-1beta production rates. The MIP-1beta production rate was expressed as the relative increase in MIP-1beta production in response to chemical treatment compared with vehicle treatment. When the threshold MIP-1beta production rate used was 100% or 105% of dimethyl sulfoxide, all the sensitizing chemicals tested (dinitrochlorobenzene, hexyl cinnamic aldehyde, eugenol, hydroquinone, dinitrofluorobenzene, benzocaine, nickel, chromium, and 5-chloro-2-methyl-4-isothiazolin-3-one) were positive, and all the non-sensitizing chemicals (methyl salicylate, benzalkonium chloride, lactic acid, isopropanol, and salicylic acid), with the exception of sodium lauryl sulfate, were negative for MIP-1beta production. These results indicate that MIP-1beta could be a biomarker for classification of chemicals as sensitizers or non-sensitizers.

  9. An improvement of LLNA:DA to assess the skin sensitization potential of chemicals.

    PubMed

    Zhang, Hongwei; Shi, Ying; Wang, Chao; Zhao, Kangfeng; Zhang, Shaoping; Wei, Lan; Dong, Li; Gu, Wen; Xu, Yongjun; Ruan, Hongjie; Zhi, Hong; Yang, Xiaoyan

    2017-01-01

    We developed a modified local lymph node assay based on ATP (LLNA:DA), termed the Two-Stage LLNA:DA, to further reduce the animal numbers in the identification of sensitizers. In the Two-Stage LLNA:DA procedure, 13 chemicals ranging from non-sensitizers to extreme sensitizers were selected. The first stage used reduced LLNA:DA (rLLNA:DA) to screen out sensitive chemicals. The second stage used LLNA:DA based on OECD 442 (A) to classify those potential sensitizers screened out in the first stage. In the first stage, the SIs of the methyl methacrylate, salicylic acid, methyl salicylate, ethyl salicylate, isopropanol and propanediol were below 1.8 and need not to be tested in the second step. Others continued to be tested by LLNA:DA. In the second stage, sodium lauryl sulphate and xylene were classified as weak sensitizers. a-hexyl cinnamic aldehyde and eugenol were moderate sensitizers. Benzalkonium chloride and glyoxal were strong sensitizers, and phthalic anhydride was an extreme sensitizer. The 9/9, 11/12, 10/11, and 8/13 (positive or negative only) categories of the Two-Stage LLNA:DA were consistent with those from the other methods (LLNA, LLNA:DA, GPMT/BT and HMT/HPTA), suggesting that Two-Stage LLNA:DA have a high coincidence rate with reported data. In conclusion, The Two-Stage LLNA:DA is in line with the "3R" rules, and can be a modification of LLNA:DA but needs more study.

  10. Mutations associated with base excision repair deficiency and methylation-induced genotoxic stress

    PubMed Central

    Sobol, Robert W.; Watson, David E.; Nakamura, Jun; Yakes, F. Michael; Hou, Esther; Horton, Julie K.; Ladapo, Joseph; Van Houten, Bennett; Swenberg, James A.; Tindall, Kenneth R.; Samson, Leona D.; Wilson, Samuel H.

    2002-01-01

    The long-term effect of exposure to DNA alkylating agents is entwined with the cell's genetic capacity for DNA repair and appropriate DNA damage responses. A unique combination of environmental exposure and deficiency in these responses can lead to genomic instability; this “gene–environment interaction” paradigm is a theme for research on chronic disease etiology. In the present study, we used mouse embryonic fibroblasts with a gene deletion in the base excision repair (BER) enzymes DNA β-polymerase (β-pol) and alkyladenine DNA glycosylase (AAG), along with exposure to methyl methanesulfonate (MMS) to study mutagenesis as a function of a particular gene–environment interaction. The β-pol null cells, defective in BER, exhibit a modest increase in spontaneous mutagenesis compared with wild-type cells. MMS exposure increases mutant frequency in β-pol null cells, but not in isogenic wild-type cells; UV light exposure or N-methyl-N′-nitro-N-nitrosoguanidine exposure increases mutant frequency similarly in both cell lines. The MMS-induced increase in mutant frequency in β-pol null cells appears to be caused by DNA lesions that are AAG substrates, because overexpression of AAG in β-pol null cells eliminates the effect. In contrast, β-pol/AAG double null cells are slightly more mutable than the β-pol null cells after MMS exposure. These results illustrate that BER plays a role in protecting mouse embryonic fibroblast cells against methylation-induced mutations and characterize the effect of a particular combination of BER gene defect and environmental exposure. PMID:11983862

  11. Methylation-sensitive amplified polymorphism analysis of Verticillium wilt-stressed cotton (Gossypium).

    PubMed

    Wang, W; Zhang, M; Chen, H D; Cai, X X; Xu, M L; Lei, K Y; Niu, J H; Deng, L; Liu, J; Ge, Z J; Yu, S X; Wang, B H

    2016-10-06

    In this study, a methylation-sensitive amplification polymorphism analysis system was used to analyze DNA methylation level in three cotton accessions. Two disease-sensitive near-isogenic lines, PD94042 and IL41, and one disease-resistant Gossypium mustelinum accession were exposed to Verticillium wilt, to investigate molecular disease resistance mechanisms in cotton. We observed multiple different DNA methylation types across the three accessions following Verticillium wilt exposure. These included hypomethylation, hypermethylation, and other patterns. In general, the global DNA methylation level was significantly increased in the disease-resistant accession G. mustelinum following disease exposure. In contrast, there was no significant difference in the disease-sensitive accession PD94042, and a significant decrease was observed in IL41. Our results suggest that disease-resistant cotton might employ a mechanism to increase methylation level in response to disease stress. The differing methylation patterns, together with the increase in global DNA methylation level, might play important roles in tolerance to Verticillium wilt in cotton. Through cloning and analysis of differently methylated DNA sequences, we were also able to identify several genes that may contribute to disease resistance in cotton. Our results revealed the effect of DNA methylation on cotton disease resistance, and also identified genes that played important roles, which may shed light on the future cotton disease-resistant molecular breeding.

  12. Light at night and melatonin have opposite effects on breast cancer tumors in mice assessed by growth rates and global DNA methylation.

    PubMed

    Schwimmer, Hagit; Metzer, Avishag; Pilosof, Yonit; Szyf, Moshe; Machnes, Ziv M; Fares, Fuad; Harel, Orna; Haim, Abraham

    2014-02-01

    Light-at-night (LAN) is a worldwide problem co-distributed with breast cancer prevalence. We hypothesized that exposure to LAN is coincided with a decreased melatonin (MLT) secretion level, followed by epigenetic modifications and resulted in higher breast cancer tumors growth-rate. Accordingly, we studied the effect of LAN exposure and exogenous MLT on breast cancer tumors growth-rate. 4T1 cells were inoculated into BALB/c short day-acclimated mice, resulting in tumors growth. Growth rates were followed under various light exposures and global DNA methylations were measured. Results demonstrated the positive effect of LAN on tumors growth-rate, reversed by MLT through global DNA methylation.

  13. DNA methyltransferases and stress-related genes expression in zebrafish larvae after exposure to heat and copper during reprogramming of DNA methylation.

    PubMed

    Dorts, Jennifer; Falisse, Elodie; Schoofs, Emilie; Flamion, Enora; Kestemont, Patrick; Silvestre, Frédéric

    2016-10-12

    DNA methylation, a well-studied epigenetic mark, is important for gene regulation in adulthood and for development. Using genetic and epigenetic approaches, the present study aimed at evaluating the effects of heat stress and copper exposure during zebrafish early embryogenesis when patterns of DNA methylation are being established, a process called reprogramming. Embryos were exposed to 325 μg Cu/L from fertilization (<1 h post fertilization - hpf) to 4 hpf at either 26.5 °C or 34 °C, followed by incubation in clean water at 26.5 °C till 96 hpf. Significant increased mortality rates and delayed hatching were observed following exposure to combined high temperature and Cu. Secondly, both stressors, alone or in combination, significantly upregulated the expression of de novo DNA methyltransferase genes (dnmt3) along with no differences in global cytosine methylation level. Finally, Cu exposure significantly increased the expression of metallothionein (mt2) and heat shock protein (hsp70), the latter being also increased following exposure to high temperature. These results highlighted the sensitivity of early embryogenesis and more precisely of the reprogramming period to environmental challenges, in a realistic situation of combined stressors.

  14. Perinatal lead (Pb) exposure results in sex and tissue-dependent adult DNA methylation alterations in murine IAP transposons.

    PubMed

    Montrose, L; Faulk, C; Francis, J; Dolinoy, D C

    2017-10-01

    Epidemiological and animal data suggest that adult chronic disease is influenced by early-life exposure-induced changes to the epigenome. Previously, we observed that perinatal lead (Pb) exposure results in persistent murine metabolic- and activity-related effects. Using phylogenetic and DNA methylation analysis, we have also identified novel intracisternal A particle (IAP) retrotransposons exhibiting regions of variable methylation as candidate loci for environmental effects on the epigenome. Here, we now evaluate brain and kidney DNA methylation profiles of four representative IAPs in adult mice exposed to human physiologically relevant levels of Pb two weeks prior to mating through lactation. When IAPs across the genome were evaluated globally, average (sd) methylation levels were 92.84% (3.74) differing by tissue (P < 0.001), but not sex or dose. By contrast, the four individual IAPs displayed tissue-specific Pb and sex effects. Medium Pb-exposed mice had 3.86% less brain methylation at IAP 110 (P < 0.01), while high Pb-exposed mice had 2.83% less brain methylation at IAP 236 (P = 0.01) and 1.77% less at IAP 506 (P = 0.05). Individual IAP DNA methylation differed by sex for IAP 110 in the brain and kidney, IAP 236 in the kidney, and IAP 1259 in the kidney. Using Tomtom, we identified three binding motifs that matched to each of our novel IAPs impacted by Pb, one of which (HMGA2) has been linked to metabolic-related conditions in both mice and humans. Thus, these recently identified IAPs display tissue-specific environmental lability as well as sex-specific differences supporting an epigenetic link between early exposure to Pb and later-in-life health outcomes. Environ. Mol. Mutagen. 58:540-550, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Gender-specific association of exposure to non-dioxin-like polychlorinated biphenyls during pregnancy with methylation levels of H19 and long interspersed nuclear element-1 in cord blood in the Hokkaido study.

    PubMed

    Kobayashi, Sumitaka; Sata, Fumihiro; Miyashita, Chihiro; Miura, Ryu; Azumi, Kaoru; Kobayashi, Sachiko; Goudarzi, Houman; Araki, Atsuko; Ishizuka, Mayumi; Todaka, Takashi; Kajiwara, Jumboku; Hori, Tsuguhide; Kishi, Reiko

    2017-09-01

    Associations between prenatal exposure to polychlorinated biphenyls (PCBs) and reduced birth-size, and between DNA methylation of insulin-like growth factor-2 (IGF-2), H19 locus, and long interspersed nuclear element-1 (LINE-1) and reduced birth-size are well established. To date, however, studies on the associations between prenatal exposure to PCBs and alterations in methylation of IGF-2, H19, and LINE-1 are lacking. Thus, in this study, we examined these associations with infant-gender stratification. We performed a prospective birth cohort study using the Sapporo cohort from the previously described Hokkaido Birth Cohort Study on Environment and Children's Health conducted between 2002 and 2005 in Japan. In the final 169 study participants included in this study, we measured the concentrations of various non-dioxin-like PCBs in maternal blood during pregnancy using high-resolution gas chromatography/high-resolution mass spectrometry. IGF-2, H19 and LINE-1 methylation levels in cord blood were measured using the bisulfite pyrosequencing methods Finally, we assessed the associations between prenatal exposure to various PCBs and the gene methylation levels using multiple regression models stratified by infant gender. We observed a 0.017 (95% confidence interval [CI]: 0.003-0.031) increase in the log 10 -transformed H19 methylation levels (%) in cord blood for each ten-fold increase in the levels of decachlorinated biphenyls (decaCBs) in maternal blood among all infants. Similarly, a 0.005 (95% CI: 0.000-0.010) increase in the log 10 -transformed LINE-1 methylation levels (%) in cord blood was associated with each ten-fold increase in heptachlorinated biphenyls (heptaCBs) in maternal blood among all infants. In particular, we observed a dose-dependent association of the decaCB levels in maternal blood with the H19 methylation levels among female infants (P value for trend=0.040); likewise a dose-dependent association of heptaCB levels was observed with LINE-1 methylation levels among female infants (P value for trend=0.015). Moreover, these associations were only observed among infants of primiparous women. Our results suggest that the dose-dependent association between prenatal exposure to specific non-dioxin-like PCBs and increases in the H19 and LINE-1 methylation levels in cord blood might be more predominant in females than in males. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Epigenetic Signatures of Cigarette Smoking

    PubMed Central

    Joehanes, Roby; Just, Allan C.; Marioni, Riccardo E.; Pilling, Luke C.; Reynolds, Lindsay M.; Mandaviya, Pooja R.; Guan, Weihua; Xu, Tao; Elks, Cathy E.; Aslibekyan, Stella; Moreno-Macias, Hortensia; Smith, Jennifer A.; Brody, Jennifer A.; Dhingra, Radhika; Yousefi, Paul; Pankow, James S.; Kunze, Sonja; Shah, Sonia; McRae, Allan F.; Lohman, Kurt; Sha, Jin; Absher, Devin M.; Ferrucci, Luigi; Zhao, Wei; Demerath, Ellen W.; Bressler, Jan; Grove, Megan L.; Huan, Tianxiao; Liu, Chunyu; Mendelson, Michael M.; Yao, Chen; Kiel, Douglas P.; Peters, Annette; Wang-Sattler, Rui; Visscher, Peter M.; Wray, Naomi R.; Starr, John M.; Ding, Jingzhong; Rodriguez, Carlos J.; Wareham, Nicholas J.; Irvin, Marguerite R.; Zhi, Degui; Barrdahl, Myrto; Vineis, Paolo; Ambatipudi, Srikant; Uitterlinden, André G.; Hofman, Albert; Schwartz, Joel; Colicino, Elena; Hou, Lifang; Vokonas, Pantel S.; Hernandez, Dena G.; Singleton, Andrew B.; Bandinelli, Stefania; Turner, Stephen T.; Ware, Erin B.; Smith, Alicia K.; Klengel, Torsten; Binder, Elisabeth B.; Psaty, Bruce M.; Taylor, Kent D.; Gharib, Sina A.; Swenson, Brenton R.; Liang, Liming; DeMeo, Dawn L.; O'Connor, George T.; Herceg, Zdenko; Ressler, Kerry J.; Conneely, Karen N.; Sotoodehnia, Nona; Kardia, Sharon L. R.; Melzer, David; Baccarelli, Andrea A.; van Meurs, Joyce B. J.; Romieu, Isabelle; Arnett, Donna K.; Ong, Ken K.; Liu, Yongmei; Waldenberger, Melanie; Deary, Ian J.; Fornage, Myriam; Levy, Daniel; London, Stephanie J.

    2016-01-01

    Background DNA methylation leaves a long-term signature of smoking exposure and is one potential mechanism by which tobacco exposure predisposes to adverse health outcomes, such as cancers, osteoporosis, lung, and cardiovascular disorders. Methods and Results To comprehensively determine the association between cigarette smoking and DNA methylation, we conducted a meta-analysis of genome-wide DNA methylation assessed using the Illumina BeadChip 450K array on 15,907 blood derived DNA samples from participants in 16 cohorts (including 2,433 current, 6,518 former, and 6,956 never smokers). Comparing current versus never smokers, 2,623 CpG sites (CpGs), annotated to 1,405 genes, were statistically significantly differentially methylated at Bonferroni threshold of p<1×10−7 (18,760 CpGs at False Discovery Rate (FDR)<0.05). Genes annotated to these CpGs were enriched for associations with several smoking-related traits in genome-wide studies including pulmonary function, cancers, inflammatory diseases and heart disease. Comparing former versus never smokers, 185 of the CpGs that differed between current and never smokers were significant p<1×10−7 (2,623 CpGs at FDR<0.05), indicating a pattern of persistent altered methylation, with attenuation, after smoking cessation. Transcriptomic integration identified effects on gene expression at many differentially methylated CpGs. Conclusions Cigarette smoking has a broad impact on genome-wide methylation that, at many loci, persists many years after smoking cessation. Many of the differentially methylated genes were novel genes with respect to biologic effects of smoking, and might represent therapeutic targets for prevention or treatment of tobacco-related diseases. Methylation at these sites could also serve as sensitive and stable biomarkers of lifetime exposure to tobacco smoke. PMID:27651444

  17. Epigenetic Signatures of Cigarette Smoking.

    PubMed

    Joehanes, Roby; Just, Allan C; Marioni, Riccardo E; Pilling, Luke C; Reynolds, Lindsay M; Mandaviya, Pooja R; Guan, Weihua; Xu, Tao; Elks, Cathy E; Aslibekyan, Stella; Moreno-Macias, Hortensia; Smith, Jennifer A; Brody, Jennifer A; Dhingra, Radhika; Yousefi, Paul; Pankow, James S; Kunze, Sonja; Shah, Sonia H; McRae, Allan F; Lohman, Kurt; Sha, Jin; Absher, Devin M; Ferrucci, Luigi; Zhao, Wei; Demerath, Ellen W; Bressler, Jan; Grove, Megan L; Huan, Tianxiao; Liu, Chunyu; Mendelson, Michael M; Yao, Chen; Kiel, Douglas P; Peters, Annette; Wang-Sattler, Rui; Visscher, Peter M; Wray, Naomi R; Starr, John M; Ding, Jingzhong; Rodriguez, Carlos J; Wareham, Nicholas J; Irvin, Marguerite R; Zhi, Degui; Barrdahl, Myrto; Vineis, Paolo; Ambatipudi, Srikant; Uitterlinden, André G; Hofman, Albert; Schwartz, Joel; Colicino, Elena; Hou, Lifang; Vokonas, Pantel S; Hernandez, Dena G; Singleton, Andrew B; Bandinelli, Stefania; Turner, Stephen T; Ware, Erin B; Smith, Alicia K; Klengel, Torsten; Binder, Elisabeth B; Psaty, Bruce M; Taylor, Kent D; Gharib, Sina A; Swenson, Brenton R; Liang, Liming; DeMeo, Dawn L; O'Connor, George T; Herceg, Zdenko; Ressler, Kerry J; Conneely, Karen N; Sotoodehnia, Nona; Kardia, Sharon L R; Melzer, David; Baccarelli, Andrea A; van Meurs, Joyce B J; Romieu, Isabelle; Arnett, Donna K; Ong, Ken K; Liu, Yongmei; Waldenberger, Melanie; Deary, Ian J; Fornage, Myriam; Levy, Daniel; London, Stephanie J

    2016-10-01

    DNA methylation leaves a long-term signature of smoking exposure and is one potential mechanism by which tobacco exposure predisposes to adverse health outcomes, such as cancers, osteoporosis, lung, and cardiovascular disorders. To comprehensively determine the association between cigarette smoking and DNA methylation, we conducted a meta-analysis of genome-wide DNA methylation assessed using the Illumina BeadChip 450K array on 15 907 blood-derived DNA samples from participants in 16 cohorts (including 2433 current, 6518 former, and 6956 never smokers). Comparing current versus never smokers, 2623 cytosine-phosphate-guanine sites (CpGs), annotated to 1405 genes, were statistically significantly differentially methylated at Bonferroni threshold of P<1×10 -7 (18 760 CpGs at false discovery rate <0.05). Genes annotated to these CpGs were enriched for associations with several smoking-related traits in genome-wide studies including pulmonary function, cancers, inflammatory diseases, and heart disease. Comparing former versus never smokers, 185 of the CpGs that differed between current and never smokers were significant P<1×10 -7 (2623 CpGs at false discovery rate <0.05), indicating a pattern of persistent altered methylation, with attenuation, after smoking cessation. Transcriptomic integration identified effects on gene expression at many differentially methylated CpGs. Cigarette smoking has a broad impact on genome-wide methylation that, at many loci, persists many years after smoking cessation. Many of the differentially methylated genes were novel genes with respect to biological effects of smoking and might represent therapeutic targets for prevention or treatment of tobacco-related diseases. Methylation at these sites could also serve as sensitive and stable biomarkers of lifetime exposure to tobacco smoke. © 2016 American Heart Association, Inc.

  18. DNA Methylation in the Neuropeptide S Receptor 1 (NPSR1) Promoter in Relation to Asthma and Environmental Factors

    PubMed Central

    Reinius, Lovisa E.; Gref, Anna; Sääf, Annika; Acevedo, Nathalie; Joerink, Maaike; Kupczyk, Maciej; D'Amato, Mauro; Bergström, Anna; Melén, Erik; Scheynius, Annika; Dahlén, Sven-Erik; Pershagen, Göran; Söderhäll, Cilla; Kere, Juha

    2013-01-01

    Asthma and allergy are complex disorders influenced by both inheritance and environment, a relationship that might be further clarified by epigenetics. Neuropeptide S Receptor 1 (NPSR1) has been associated with asthma and allergy and a study suggested modulation of the genetic risk by environmental factors. We aimed to study DNA methylation in the promoter region of NPSR1 in relation to asthma and environmental exposures. Electrophoretic Mobility Shift Assay (EMSA) was used to investigate potential functional roles of both genotypes and methylation status in the NPSR1 promoter. DNA methylation was analysed using EpiTYPER in blood samples from two well-characterized cohorts; the BIOAIR study of severe asthma in adults and the Swedish birth cohort BAMSE. We observed that DNA methylation and genetic variants in the promoter influenced the binding of nuclear proteins to DNA, suggesting functional relevance. Significant, although small, differences in methylation were related to both adult severe asthma (p = 0.0001) and childhood allergic asthma (p = 0.01). Furthermore, DNA methylation was associated with exposures such as current smoking in adults for two CpG sites (p = 0.005 and 0.04), parental smoking during infancy in the children (p = 0.02) and in which month the sample was taken (p = 0.01). In summary, DNA methylation levels in the promoter of NPSR1 showed small but significant associations with asthma, both in adults and in children, and to related traits such as allergy and certain environmental exposures. Both genetic variation and the methylated state of CpG sites seem to have an effect on the binding of nuclear proteins in the regulatory region of NPSR1 suggesting complex regulation of this gene in asthma and allergy. PMID:23372674

  19. Safety assessment of Salicylic Acid, Butyloctyl Salicylate, Calcium Salicylate, C12-15 Alkyl Salicylate, Capryloyl Salicylic Acid, Hexyldodecyl Salicylate, Isocetyl Salicylate, Isodecyl Salicylate, Magnesium Salicylate, MEA-Salicylate, Ethylhexyl Salicylate, Potassium Salicylate, Methyl Salicylate, Myristyl Salicylate, Sodium Salicylate, TEA-Salicylate, and Tridecyl Salicylate.

    PubMed

    2003-01-01

    Salicylic Acid is an aromatic acid used in cosmetic formulations as a denaturant, hair-conditioning agent, and skin-conditioning agent--miscellaneous in a wide range of cosmetic products at concentrations ranging from 0.0008% to 3%. The Calcium, Magnesium, and MEA salts are preservatives, and Potassium Salicylate is a cosmetic biocide and preservative, not currently in use. Sodium Salicylate is used as a denaturant and preservative (0.09% to 2%). The TEA salt of Salicylic Acid is used as an ultraviolet (UV) light absorber (0.0001% to 0.75%). Several Salicylic Acid esters are used as skin conditioning agents--miscellaneous (Capryloyl, 0.1% to 1%; C12-15 Alkyl, no current use; Isocetyl, 3% to 5%; Isodecyl, no current use; and Tridecyl, no current use). Butyloctyl Salicylate (0.5% to 5%) and Hexyldodecyl Salicylate (no current use) are hair-conditioning agents and skin-conditioning agents--miscellaneous. Ethylhexyl Salicylate (formerly known as Octyl Salicylate) is used as a fragrance ingredient, sunscreen agent, and UV light absorber (0.001% to 8%), and Methyl Salicylate is used as a denaturant and flavoring agent (0.0001% to 0.6%). Myristyl Salicylate has no reported function. Isodecyl Salicylate is used in three formulations, but no concentration of use information was reported. Salicylates are absorbed percutaneously. Around 10% of applied salicylates can remain in the skin. Salicylic Acid is reported to enhance percutaneous penetration of some agents (e.g., vitamin A), but not others (e.g., hydrocortisone). Little acute toxicity (LD(50) in rats; >2 g/kg) via a dermal exposure route is seen for Salicylic Acid, Methyl Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate. Short-term oral, inhalation, and parenteral exposures to salicylates sufficient to produce high blood concentrations are associated primarily with liver and kidney damage. Subchronic dermal exposures to undiluted Methyl Salicylate were associated with kidney damage. Chronic oral exposure to Methyl Salicylate produced bone lesions as a function of the level of exposure in 2-year rat studies; liver damage was seen in dogs exposed to 0.15 g/kg/day in one study; kidney and liver weight increases in another study at the same exposure; but no liver or kidney abnormalities in a study at 0.167 g/kg/day. Applications of Isodecyl, Tridecyl, and Butyloctyl Salicylate were not irritating to rabbit skin, whereas undiluted Ethylhexyl Salicylate produced minimal to mild irritation. Methyl Salicylate at a 1% concentration with a 70% ethanol vehicle were irritating, whereas a 6% concentration in polyethylene glycol produced little or no irritation. Isodecyl Salicylate, Methyl Salicylate, Ethylhexyl (Octyl) Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate were not ocular irritants. Although Salicylic Acid at a concentration of 20% in acetone was positive in the local lymph node assay, a concentration of 20% in acetone/olive oil was not. Methyl Salicylate was negative at concentrations up to 25% in this assay, independent of vehicle. Maximization tests of Methyl Salicylate, Ethylhexyl Salicylate, and Butyloctyl Salicylate produced no sensitization in guinea pigs. Neither Salicylic Acid nor Tridecyl Salicylate were photosensitizers. Salicylic Acid, produced when aspirin is rapidly hydrolyzed after absorption from the gut, was reported to be the causative agent in aspirin teratogenesis in animals. Dermal exposures to Methyl Salicylate, oral exposures to Salicylic Acid, Sodium Salicylate, and Methyl Salicylate, and parenteral exposures to Salicylic Acid, Sodium Salicylate, and Methyl Salicylate are all associated with reproductive and developmental toxicity as a function of blood levels reached as a result of exposure. An exposure assessment of a representative cosmetic product used on a daily basis estimated that the exposure from the cosmetic product would be only 20% of the level seen with ingestion of a "baby" aspirin (81 mg) on a daily basis. Studies of the genotoxic potential of Salicylic Acid, Sodium Salicylate, Isodecyl Salicylate, Methyl Salicylate, cosmetic product would be only 20% of the level seen with ingestion of a "baby" aspirin (81 mg) on a daily basis. Studies of the genotoxic potential of Salicylic Acid, Sodium Salicylate, Isodecyl Salicylate, Methyl Salicylate, Ethylhexyl (Octyl) Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate were generally negative. Methyl Salicylate, in a mouse skin-painting study, did not induce neoplasms. Likewise, Methyl Salicylate was negative in a mouse pulmonary tumor system. In clinical tests, Salicylic Acid (2%) produced minimal cumulative irritation and slight or no irritation(1.5%); TEA-Salicylate (8%) produced no irritation; Methyl Salicylate (>12%) produced pain and erythema, a 1% aerosol produced erythema, but an 8% solution was not irritating; Ethylhexyl Salicylate (4%) and undiluted Tridecyl Salicylate produced no irritation. In atopic patients, Methyl Salicylate caused irritation as a function of concentration (no irritation at concentrations of 15% or less). In normal skin, Salicylic Acid, Methyl Salicylate, and Ethylhexyl (Octyl) Salicylate are not sensitizers. Salicylic Acid is not a photosensitizer, nor is it phototoxic. Salicylic Acid and Ethylhexyl Salicylate are low-level photoprotective agents. Salicylic Acid is well-documented to have keratolytic action on normal human skin. Because of the possible use of these ingredients as exfoliating agents, a concern exists that repeated use may effectively increase exposure of the dermis and epidermis to UV radiation. It was concluded that the prudent course of action would be to advise the cosmetics industry that there is a risk of increased UV radiation damage with the use of any exfoliant, including Salicylic Acid and the listed salicylates, and that steps need to be taken to formulate cosmetic products with these ingredients as exfoliating agents so as not to increase sun sensitivity, or when increased sun sensitivity would be expected, to include directions for the daily use of sun protection. The available data were not sufficient to establish a limit on concentration of these ingredients, or to identify the minimum pH of formulations containing these ingredients, such that no skin irritation would occur, but it was recognized that it is possible to formulate cosmetic products in a way such that significant irritation would not be likely, and it was concluded that the cosmetics industry should formulate products containing these ingredients so as to be nonirritating. Although simultaneous use of several products containing Salicylic Acid could produce exposures greater than would be seen with use of baby aspirin (an exposure generally considered to not present a reproductive or developmental toxicity risk), it was not considered likely that consumers would simultaneously use multiple cosmetic products containing Salicylic Acid. Based on the available information, the Cosmetic Ingredient Review Expert Panel reached the conclusion that these ingredients are safe as used when formulated to avoid skin irritation and when formulated to avoid increasing the skin's sun sensitivity, or, when increased sun sensitivity would be expected, directions for use include the daily use of sun protection.

  20. Use of LC-MS/MS and Stable Isotopes to Differentiate Hydroxymethyl and Methyl DNA Adducts from Formaldehyde and Nitrosodimethylamine

    PubMed Central

    Lu, Kun; Craft, Sessaly; Nakamura, Jun; Moeller, Benjamin C.; Swenberg, James A.

    2012-01-01

    Formaldehyde is a known human and animal carcinogen that forms DNA adducts, and causes mutations. While there is widespread exposure to formaldehyde in the environment, formaldehyde is also an essential biochemical in all living cells. The presence of both endogenous and exogenous sources of formaldehyde makes it difficult to develop exposure-specific DNA biomarkers. Furthermore, chemicals such as nitrosodimethylamine form one mole of formaldehyde for every mole of methylating agent, raising questions about potential co-carcinogenesis. Formaldehyde-induced hydroxymethyl DNA adducts are not stable and need to be reduced to stable methyl adducts for detection, which adds another layer of complexity to identifying the origins of these adducts. In this study, highly sensitive mass spectrometry methods and isotope labeled compounds were used to differentiate between endogenous and exogenous hydroxymethyl and methyl DNA adducts. We demonstrate that N2-hydroxymethyl-dG is the primary DNA adduct formed in cells following formaldehyde exposure. In addition, we show that alkylating agents induce methyl adducts at N2-dG and N6-dA positions, which are identical to the reduced forms of hydroxymethyl adducts arising from formaldehyde. The use of highly sensitive LC-MS/MS and isotope labeled compounds for exposure solves these challenges and provides mechanistic insights on the formation and role of these DNA adducts. PMID:22148432

  1. Traumatic stress and accelerated DNA methylation age: A meta-analysis.

    PubMed

    Wolf, Erika J; Maniates, Hannah; Nugent, Nicole; Maihofer, Adam X; Armstrong, Don; Ratanatharathorn, Andrew; Ashley-Koch, Allison E; Garrett, Melanie; Kimbrel, Nathan A; Lori, Adriana; Va Mid-Atlantic Mirecc Workgroup; Aiello, Allison E; Baker, Dewleen G; Beckham, Jean C; Boks, Marco P; Galea, Sandro; Geuze, Elbert; Hauser, Michael A; Kessler, Ronald C; Koenen, Karestan C; Miller, Mark W; Ressler, Kerry J; Risbrough, Victoria; Rutten, Bart P F; Stein, Murray B; Ursano, Robert J; Vermetten, Eric; Vinkers, Christiaan H; Uddin, Monica; Smith, Alicia K; Nievergelt, Caroline M; Logue, Mark W

    2018-06-01

    Recent studies examining the association between posttraumatic stress disorder (PTSD) and accelerated aging, as defined by DNA methylation-based estimates of cellular age that exceed chronological age, have yielded mixed results. We conducted a meta-analysis of trauma exposure and PTSD diagnosis and symptom severity in association with accelerated DNA methylation age using data from 9 cohorts contributing to the Psychiatric Genomics Consortium PTSD Epigenetics Workgroup (combined N = 2186). Associations between demographic and cellular variables and accelerated DNA methylation age were also examined, as was the moderating influence of demographic variables. Meta-analysis of regression coefficients from contributing cohorts revealed that childhood trauma exposure (when measured with the Childhood Trauma Questionnaire) and lifetime PTSD severity evidenced significant, albeit small, meta-analytic associations with accelerated DNA methylation age (ps = 0.028 and 0.016, respectively). Sex, CD4T cell proportions, and natural killer cell proportions were also significantly associated with accelerated DNA methylation age (all ps < 0.02). PTSD diagnosis and lifetime trauma exposure were not associated with advanced DNA methylation age. There was no evidence of moderation of the trauma or PTSD variables by demographic factors. Results suggest that traumatic stress is associated with advanced epigenetic age and raise the possibility that cells integral to immune system maintenance and responsivity play a role in this. This study highlights the need for additional research into the biological mechanisms linking traumatic stress to accelerated DNA methylation age and the importance of furthering our understanding of the neurobiological and health consequences of PTSD. Published by Elsevier Ltd.

  2. Hydroquinone Increases 5-Hydroxymethylcytosine Formation through Ten Eleven Translocation 1 (TET1) 5-Methylcytosine Dioxygenase*

    PubMed Central

    Coulter, Jonathan B.; O'Driscoll, Cliona M.; Bressler, Joseph P.

    2013-01-01

    DNA methylation regulates gene expression throughout development and in a wide range of pathologies such as cancer and neurological disorders. Pathways controlling the dynamic levels and targets of methylation are known to be disrupted by chemicals and are therefore of great interest in both prevention and clinical contexts. Benzene and its metabolite hydroquinone have been shown to lead to decreased levels of DNA methylation, although the mechanism is not known. This study employs a cell culture model to investigate the mechanism of hydroquinone-mediated changes in DNA methylation. Exposures that do not affect HEK293 cell viability led to genomic and methylated reporter DNA demethylation. Hydroquinone caused reactivation of a methylated reporter plasmid that was prevented by the addition of N-acetylcysteine. Hydroquinone also caused an increase in Ten Eleven Translocation 1 activity and global levels of 5-hydroxymethylcytosine. 5-Hydroxymethylcytosine was found enriched at LINE-1 prior to a decrease in both 5-hydroxymethylcytosine and 5-methylcytosine. Ten Eleven Translocation-1 knockdown decreased 5-hydroxymethylcytosine formation following hydroquinone exposure as well as the induction of glutamate-cysteine ligase catalytic subunit and 14-3-3σ. Finally, Ten Eleven Translocation 1 knockdown decreased the percentage of cells accumulating in G2+M following hydroquinone exposure, indicating that it may have a role in cell cycle changes in response to toxicants. This work demonstrates that hydroquinone exposure leads to active and functional DNA demethylation in HEK293 cells in a mechanism involving reactive oxygen species and Ten Eleven Translocation 1 5-methylcytosine dioxygenase. PMID:23940045

  3. Hydroquinone increases 5-hydroxymethylcytosine formation through ten eleven translocation 1 (TET1) 5-methylcytosine dioxygenase.

    PubMed

    Coulter, Jonathan B; O'Driscoll, Cliona M; Bressler, Joseph P

    2013-10-04

    DNA methylation regulates gene expression throughout development and in a wide range of pathologies such as cancer and neurological disorders. Pathways controlling the dynamic levels and targets of methylation are known to be disrupted by chemicals and are therefore of great interest in both prevention and clinical contexts. Benzene and its metabolite hydroquinone have been shown to lead to decreased levels of DNA methylation, although the mechanism is not known. This study employs a cell culture model to investigate the mechanism of hydroquinone-mediated changes in DNA methylation. Exposures that do not affect HEK293 cell viability led to genomic and methylated reporter DNA demethylation. Hydroquinone caused reactivation of a methylated reporter plasmid that was prevented by the addition of N-acetylcysteine. Hydroquinone also caused an increase in Ten Eleven Translocation 1 activity and global levels of 5-hydroxymethylcytosine. 5-Hydroxymethylcytosine was found enriched at LINE-1 prior to a decrease in both 5-hydroxymethylcytosine and 5-methylcytosine. Ten Eleven Translocation-1 knockdown decreased 5-hydroxymethylcytosine formation following hydroquinone exposure as well as the induction of glutamate-cysteine ligase catalytic subunit and 14-3-3σ. Finally, Ten Eleven Translocation 1 knockdown decreased the percentage of cells accumulating in G2+M following hydroquinone exposure, indicating that it may have a role in cell cycle changes in response to toxicants. This work demonstrates that hydroquinone exposure leads to active and functional DNA demethylation in HEK293 cells in a mechanism involving reactive oxygen species and Ten Eleven Translocation 1 5-methylcytosine dioxygenase.

  4. Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response

    PubMed Central

    Bromer, Jason G.; Zhou, Yuping; Taylor, Melissa B.; Doherty, Leo; Taylor, Hugh S.

    2010-01-01

    Bisphenol-A (BPA) is a nonsteroidal estrogen that is ubiquitous in the environment. The homeobox gene Hoxa10 controls uterine organogenesis, and its expression is affected by in utero BPA exposure. We hypothesized that an epigenetic mechanism underlies BPA-mediated alterations in Hoxa10 expression. We analyzed the expression pattern and methylation profile of Hoxa10 after in utero BPA exposure. Pregnant CD-1 mice were treated with BPA (5 mg/kg IP) or vehicle control on d 9–16 of pregnancy. Hoxa10 mRNA and protein expression were increased by 25% in the reproductive tract of mice exposed in utero. Bisulfite sequencing revealed that cytosine-guanine dinucleotide methylation was decreased from 67 to 14% in the promoter and from 71 to 3% in the intron of Hoxa10 after in utero BPA exposure. Decreased DNA methylation led to an increase in binding of ER-α to the Hoxa10 ERE both in vitro as and in vivo as determined by EMSA and chromatin immunoprecipitation, respectively. Diminished methylation of the ERE-containing promoter sequence resulted in an increase in ERE-driven gene expression in reporter assays. We identify altered methylation as a novel mechanism of BPA-induced altered developmental programming. Permanent epigenetic alteration of ERE sensitivity to estrogen may be a general mechanism through which endocrine disruptors exert their action.—Bromer, J. G., Zhou, Y., Taylor, M. B., Doherty, L., Taylor, H. S.. Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. PMID:20181937

  5. Effectiveness of methyl bromide as a cargo fumigant for brown treesnakes

    USGS Publications Warehouse

    Savarie, P.J.; Wood, W.S.; Rodda, G.H.; Bruggers, R.L.; Engeman, R.M.

    2005-01-01

    The effectiveness of methyl bromide as a fumigant for brown treesnake (Boiga irregularis) management was evaluated on Guam. Eighteen snakes in secured cloth bags were randomly positioned in a 47.7-m3 tarpaulin-covered cargo container for each fumigation treatment. Methyl bromide treatments tested were: 24 g m−3 and and 12 g m−3, both for 2-h and 1-h exposures. All treatments, except for 12 g m−3 for 1 h, resulted in 100% mortality. Two-hour exposures to methyl bromide at 24 and 12 g m−3 appear to be effective in killing brown treesnakes within reasonable time-frames for shippers under Guam field conditions.

  6. Persistent organic pollutants alter DNA methylation during human adipocyte differentiation.

    PubMed

    van den Dungen, Myrthe W; Murk, Albertinka J; Kok, Dieuwertje E; Steegenga, Wilma T

    2017-04-01

    Ubiquitous persistent organic pollutants (POPs) can accumulate in humans where they might influence differentiation of adipocytes. The aim of this study was to investigate whether DNA methylation is one of the underlying mechanisms by which POPs affect adipocyte differentiation, and to what extent DNA methylation can be related to gene transcription. Adipocyte differentiation was induced in two human cell models with continuous exposure to different POPs throughout differentiation. From the seven tested POPs, perfluorooctanesulfonic acid (PFOS) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) decreased lipid accumulation, while tributyltin (TBT) increased lipid accumulation. In human mesenchymal stem cells (hMSCs), TCDD and TBT induced opposite gene expression profiles, whereas after PFOS exposure gene expression remained relatively stable. Genome-wide DNA methylation analysis showed that all three POPs affected DNA methylation patterns in adipogenic and other genes, possibly related to the phenotypic outcome, but without concomitant gene expression changes. Differential methylation was predominantly detected in intergenic regions, where the biological relevance of alterations in DNA methylation is unclear. This study demonstrates that POPs, at environmentally relevant levels, are able to induce differential DNA methylation in human differentiating adipocytes. Copyright © 2017 Wageningen University. Published by Elsevier Ltd.. All rights reserved.

  7. Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds

    NASA Astrophysics Data System (ADS)

    Abd-Elsalam, Kamel A.; Khokhlov, Alexei R.

    2015-02-01

    The current research deals with the formulation and characterization of bio-based oil-in-water nanoemulsion. The formulated eugenol oil nanoemulsion was characterized by dynamic light scattering, stability test, transmission electron microscopy and thin layer chromatography. The nanoemulsion droplets were found to have a Z-average diameter of 80 nm and TEM study reveals the spherical shape of eugenol oil nanoemulsion (EON). The size of the nanoemulsion was found to be physically stable up to more than 1-month when it was kept at room temperature (25 °C). The TEM micrograph showed that the EON was spherical in shape and moderately mono or di-dispersed and was in the range of 50-110 nm. Three concentrations of the nanoformulation were used to evalute the anti-fusarium activity both in vitro and in vivo experiments. SDS-PAGE results of total protein from the Fusarium oxysporum f. sp. vasinfectum (FOV) isolate before and after treatment with eugenol oil nanoemulsion indicate that the content of extra cellular soluble small molecular proteins decreased significantly in EON-treated fungus. Light micrographs of mycelia and spores treated with EON showed the disruption of the fungal structures. The analysis of variance (ANOVA) for Fusarium wilt incidence indicated highly significant ( p = 0.000) effects of concentration, genotype, and their interaction. The difference in wilt incidence between concentrations and control was not the same for each genotype, that is, the genotypes responded differently to concentrations. Effects of three EON concentration on germination percentage, and radicle length, were determined in the laboratory. One very interesting finding in the current study is that cotton genotypes was the most important factors in determining wilt incidence as it accounted for 93.18 % of the explained (model) variation. In vitro experiments were conducted to evaluate the potential phytotoxic effect of three EON concentrations. Concentration, genotype and concentration x genotype interaction were all highly significant sources of variation in seed germination; however, interaction was the first in importance as a source of variation followed by the concentration, while genotype was the least important source of variation. These results suggest the potential use of eugenol oil nanoemulsion for protecting seedcotton from Fusarium wilt infection.

  8. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blossom, Sarah J., E-mail: blossomsarah@uams.edu; Cooney, Craig A.; Melnyk, Stepan B.

    2013-06-15

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers ofmore » oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced locomotor activity and exploratory behavior.« less

  9. Eugenol-rich Fraction of Syzygium aromaticum (Clove) Reverses Biochemical and Histopathological Changes in Liver Cirrhosis and Inhibits Hepatic Cell Proliferation

    PubMed Central

    Ali, Shakir; Prasad, Ram; Mahmood, Amena; Routray, Indusmita; Shinkafi, Tijjani Salihu; Sahin, Kazim; Kucuk, Omer

    2014-01-01

    Background: Dried flower bud of Syzygium aromaticum (clove) is rich in eugenol, an antioxidant and antiinflammatory compound that can protect liver against injury. Clove, besides eugenol, also contains other pharmacologically active phytochemicals such as β-sitosterol and ascorbic acid. This study reports the effect of eugenol-rich fraction (ERF) of clove on liver cirrhosis induced by thioacetamide. Methods: Cirrhosis of the liver, which predisposes to hepatocellular carcinoma, was induced by administering thioacetamide (0.03%) in drinking water for 16 weeks. Cirrhotic animals were divided into two groups; the treated group was administered ERF for 9 weeks, one week after discontinuation of thioacetamide, while the other group received normal saline for a similar duration of time. Results: The treatment with ERF, as determined by histopathology and through a battery of biochemical markers of hepatic injury, oxidative stress and drug metabolizing enzymes, significantly ameliorated the signs of liver cirrhosis. It lowered the elevated levels of alkaline phosphatase, γ-glutamyl transferase and other biochemical changes in liver cirrhosis. Histopathology of the liver corroborated the effect of ERF with biochemical findings. ERF treatment further inhibited cell proliferation, as demonstrated by reduced [3H]-thymidine uptake. Conclusions: Data provide evidence supporting the protective action of ERF on liver cirrhosis. The study assumes significance because cirrhosis predisposes the liver to cancer, which is characterized by abnormal cell proliferation. ERF in this study is reported to inhibit hepatic cell proliferation and at the same time decrease oxidative stress, which might be the mechanism of protection against liver cirrhosis. PMID:25574464

  10. Effects of topical and systemic administration of Eugenia caryophyllata buds essential oil on corneal anesthesia and analgesia

    PubMed Central

    Khalilzadeh, Emad; Hazrati, Reza; Saiah, Gholamreza Vafaei

    2016-01-01

    Clinical studies suggest that essential oil of Eugenia caryophyllata (Clove) buds (EOEC) is efficacious in the treatment of dental pain. In the present study, we investigated the analgesic and local anesthetic effects of EOEC and its possible mechanisms of action in acute corneal pain in rats. EOEC was extracted by hydro-distillation in a Clevenger type apparatus from clove buds. The acute corneal pain was induced by applying a drop (40 µl) of 5 M NaCl solution on the corneal surface, and the numbers of eye wipes were counted during the first 30 s. The mechanical sensation of the cornea was evaluated by calibrated Von Frey filaments. Systemic administration of EOEC (100 and 200 mg/kg, SC) and morphine (2.5 and 5 mg/kg, IP) produced a significant antinociceptive effect in acute corneal pain. Pretreatment with naloxone or atropine prevented the EOEC-induced analgesia. However, L-arginine and methylene blue did not change the suppressive effect of EOEC on corneal pain response. Topical application of EOEC, eugenol and lidocaine significantly decreased corneal sensitivity. Combination treatments of eugenol (25 µg) with lidocaine (0.5%) and EOEC (50 µg) with lidocaine (0.5%) also significantly suppressed corneal sensitivity. Systemic administration of EOEC produced analgesia in the acute corneal pain through mechanisms that involved both opioidergic and cholinergic systems. In addition, topical instillation of EOEC, eugenol, and lidocaine produced local anesthesia in the rat cornea. Sub-anesthetic doses of EOEC or eugenol produced a significant local anesthetic effect when concurrently used with the sub-anesthetic dose of lidocaine. PMID:27651809

  11. Novel eugenol derivatives: Potent acetylcholinesterase and carbonic anhydrase inhibitors.

    PubMed

    Topal, Fevzi; Gulcin, Ilhami; Dastan, Arif; Guney, Murat

    2017-01-01

    Eugenol was used as starting material to obtain some phenolic compounds. The synthesis of these phenolic compounds was performed in a two-step procedure. The structures of the formed products (novel eugenol derivatives 1-6) have been determined on the basis of NMR spectroscopy and other spectroscopic methods. The compounds were tested in terms of carbonic anhydrase (CA) inhibition potency. Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes, which catalyse the reaction between carbon dioxide (CO 2 ) and water (H 2 O), to generate bicarbonate (HCO 3 - ) and protons (H + ). CO 2 , HCO 3 - and H + are essential molecules and ions for many important physiologic processes occurring in all living organisms. Acetylcholinesterase (AChE, E.C.3.1.1.7) is found in high concentrations in the red blood cells and brain. Novel eugenol derivatives (1-6) were tested for the inhibition of two cytosolic CA isoforms I, and II (hCA I, and II) and AChE. These compounds demonstrated effective inhibitory profiles with Ki values in ranging of 113.48-738.69nM against hCA I, 92.35-530.81nM against hCA II, and 90.10-379.57nM against AChE, respectively. On the other hand, acetazolamide clinically used as CA inhibitor, shoed Ki value of 594.11nM against hCA I, and 120.68nM against hCA II, respectively. Also, AChE was inhibited by tacrine as an AChE inhibitor at the 71.18nM level. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Spice phenolics inhibit human PMNL 5-lipoxygenase.

    PubMed

    Prasad, N Satya; Raghavendra, R; Lokesh, B R; Naidu, K Akhilender

    2004-06-01

    A wide variety of phenolic compounds and flavonoids present in spices possess potent antioxidant, antimutagenic and anticarcinogenic activities. We examined whether 5-lipoxygenase (5-LO), the key enzyme involved in biosynthesis of leukotrienes is a possible target for the spices. Effect of aqueous extracts of turmeric, cloves, pepper, chili, cinnamon, onion and also their respective active principles viz., curcumin, eugenol, piperine, capsaicin, cinnamaldehyde, quercetin, and allyl sulfide were tested on human PMNL 5-LO activity by spectrophotomeric and HPLC methods. The formation of 5-LO product 5-HETE was significantly inhibited in a concentration-dependent manner with IC(50) values of 0.122-1.44 mg for aqueous extracts of spices and 25-83 microM for active principles, respectively. The order of inhibitory activity was of quercetin>eugenol>curcumin>cinnamaldehyde>piperine>capsaicin>allyl sulfide. Quercetin, eugenol and curcumin with one or more phenolic ring and methoxy groups in their structure showed high inhibitory effect, while the non-phenolic spice principle allyl sulfide showed least inhibitory effect on 5-LO. The inhibitory effect of quercetin, curcumin and eugenol was similar to that of synthetic 5-LO inhibitors-phenidone and NDGA. Moreover, the inhibitory potency of aqueous extracts of spice correlated with the active principles of their respective spices. The synergistic or antagonistic effect of mixtures of spice active principles and spice extracts were investigated and all the combinations of spice active principles/extracts exerted synergistic effect in inhibiting 5-LO activity. These findings clearly suggest that phenolic compounds present in spices might have physiological role in modulating 5-LO pathway.

  13. The effects of chronic oral methyl mercury exposure on the lysosome system of rat kidney. Morphometric and biochemical studies.

    PubMed

    Fowler, B A; Brown, H W; Lucier, G W; Krigman, M R

    1975-03-01

    This report describes morphometric and biochemical changes in the renal lysosome system of rats exposed to 3, 5, or 10 p.p.m. concentrations of methyl mercury hydroxide in their drinking water for 4 weeks. Increased numbers of dense, granular lysosomes, previously found to contain mercury, were observed in tubule cells of rats receiving the 3 and 5 p.p.m. dose levels but not those of the 10 p.p.m. group. Tubule cells from animals given the 10 p.p;m. dose level displayed proteinaceous vacuoles with dense crystalloid structures, apical cytoplasmic extrusion, and cellular degeneration; Mitochondrial swelling within tubule cells of treated animals showed a marked dose-response relationship. Renal microsomal activity levels of ss-glucuronidase were strongly inhibited by methyl mercury hydroxide exposure at all dose levels, whereas the activity levels of acid phosphatase were unchanged. Lysosomal beta-glucuronidase was also inhibited by methyl mercury hydroxide exposure, whereas lysosomal acid phosphatase showed approximately a 2-fold increase in activity. The results are discussed in relation to the role of lysosomes in mediating the nephrotoxic effects of methyl mercury and other toxic trace metals.

  14. Sex differences in DNA methylation of the cord blood are related to sex-bias psychiatric diseases

    NASA Astrophysics Data System (ADS)

    Maschietto, Mariana; Bastos, Laura Caroline; Tahira, Ana Carolina; Bastos, Elen Pereira; Euclydes, Veronica Luiza Vale; Brentani, Alexandra; Fink, Günther; de Baumont, Angelica; Felipe-Silva, Aloísio; Francisco, Rossana Pulcineli Vieira; Gouveia, Gisele; Grisi, Sandra Josefina Ferraz Ellero; Escobar, Ana Maria Ulhoa; Moreira-Filho, Carlos Alberto; Polanczyk, Guilherme Vanoni; Miguel, Euripedes Constantino; Brentani, Helena

    2017-03-01

    Sex differences in the prevalence of psychiatric disorders are well documented, with exposure to stress during gestation differentially impacting females and males. We explored sex-specific DNA methylation in the cord blood of 39 females and 32 males born at term and with appropriate weight at birth regarding their potential connection to psychiatric outcomes. Mothers were interviewed to gather information about environmental factors (gestational exposure) that could interfere with the methylation profiles in the newborns. Bisulphite converted DNA was hybridized to Illumina HumanMethylation450 BeadChips. Excluding XYS probes, there were 2,332 differentially methylated CpG sites (DMSs) between sexes, which were enriched within brain modules of co-methylated CpGs during brain development and also differentially methylated in the brains of boys and girls. Genes associated with the DMSs were enriched for neurodevelopmental disorders, particularly for CpG sites found differentially methylated in brain tissue between patients with schizophrenia and controls. Moreover, the DMS had an overlap of 890 (38%) CpG sites with a cohort submitted to toxic exposition during gestation. This study supports the evidences that sex differences in DNA methylation of autosomes act as a primary driver of sex differences that are found in psychiatric outcomes.

  15. Sex differences in DNA methylation of the cord blood are related to sex-bias psychiatric diseases

    PubMed Central

    Maschietto, Mariana; Bastos, Laura Caroline; Tahira, Ana Carolina; Bastos, Elen Pereira; Euclydes, Veronica Luiza Vale; Brentani, Alexandra; Fink, Günther; de Baumont, Angelica; Felipe-Silva, Aloísio; Francisco, Rossana Pulcineli Vieira; Gouveia, Gisele; Grisi, Sandra Josefina Ferraz Ellero; Escobar, Ana Maria Ulhoa; Moreira-Filho, Carlos Alberto; Polanczyk, Guilherme Vanoni; Miguel, Euripedes Constantino; Brentani, Helena

    2017-01-01

    Sex differences in the prevalence of psychiatric disorders are well documented, with exposure to stress during gestation differentially impacting females and males. We explored sex-specific DNA methylation in the cord blood of 39 females and 32 males born at term and with appropriate weight at birth regarding their potential connection to psychiatric outcomes. Mothers were interviewed to gather information about environmental factors (gestational exposure) that could interfere with the methylation profiles in the newborns. Bisulphite converted DNA was hybridized to Illumina HumanMethylation450 BeadChips. Excluding XYS probes, there were 2,332 differentially methylated CpG sites (DMSs) between sexes, which were enriched within brain modules of co-methylated CpGs during brain development and also differentially methylated in the brains of boys and girls. Genes associated with the DMSs were enriched for neurodevelopmental disorders, particularly for CpG sites found differentially methylated in brain tissue between patients with schizophrenia and controls. Moreover, the DMS had an overlap of 890 (38%) CpG sites with a cohort submitted to toxic exposition during gestation. This study supports the evidences that sex differences in DNA methylation of autosomes act as a primary driver of sex differences that are found in psychiatric outcomes. PMID:28303968

  16. Arsenic Methylation Capacity and Metabolic Syndrome in the 2013–2014 U.S. National Health and Nutrition Examination Survey (NHANES)

    PubMed Central

    Pace, Clare; Smith-Gagen, Julie

    2018-01-01

    Arsenic methylation capacity is associated with metabolic syndrome and its components among highly exposed populations. However, this association has not been investigated in low to moderately exposed populations. Therefore, we investigated arsenic methylation capacity in relation to the clinical diagnosis of metabolic syndrome in a low arsenic exposure population. Additionally, we compared arsenic methylation patterns present in our sample to those of more highly exposed populations. Using logistic regression models adjusted for relevant biological and lifestyle covariates, we report no association between increased arsenic methylation and metabolic syndrome in a population in which arsenic is regulated at 10 ppb in drinking water. However, we cannot rule out the possibility of a positive association between arsenic methylation and metabolic syndrome in a subsample of women with normal body mass index (BMI). To our knowledge this is the first investigation of arsenic methylation capacity with respect to metabolic syndrome in a low exposure population. We also report that methylation patterns in our sample are similar to those found in highly exposed populations. Additionally, we report that gender and BMI significantly modify the effect of arsenic methylation on metabolic syndrome. Future studies should evaluate the effectiveness of arsenic policy enforcement on subclinical biomarkers of cardiovascular disease. PMID:29361794

  17. EFFECTS OF METHYL MERCURY ON REPRODUCTION IN AMERICAN KESTRELS

    EPA Science Inventory

    This presentation contains results of a study of the impact of methyl mercury on reproduction of American kestrels. Egg production, incubation performance, and the number of eggs hatched markedly decreased between exposures of 3.2 and 4.6 ppm methyl mercury dry weight in the diet...

  18. ARSENITE EXPOSURE CAUSES BOTH HYPOMETHYLATION AND HYPERMETHYLATION IN HUMAN CELL LINES IN CULTURE AT LOW CONCENTRATIONS

    EPA Science Inventory

    We and others have hypothesized that a mechanism of arsenic carcinogenesis could involve alteration of DNA methylation since this process utilizes a methyltransferase and consumes S-adenosylmethionine (SAM) as the methyl donor. We analyzed differentially methylated regions of ge...

  19. Bioassay-guided investigation of two Monarda essential oils as repellents of yellow fever mosquito Aedes aegypti.

    PubMed

    Tabanca, Nurhayat; Bernier, Ulrich R; Ali, Abbas; Wang, Mei; Demirci, Betul; Blythe, Eugene K; Khan, Shabana I; Baser, K Husnu Can; Khan, Ikhlas A

    2013-09-11

    As part of an ongoing research program to identify active mosquito repellents, Monarda bradburiana Beck and Monarda fistulosa L. essential oils showed good repellent activity with minimum effective dosages (MED) of 0.055 ± 0.036 and 0.078 ± 0.027 mg/cm(2), respectively, compared to reference standard N,N-diethyl-3-methylbenzamide (DEET) (0.039 ± 0.014 mg/cm(2)). Systematic bioassay-guided fractionation of essential oils of both Monarda species was performed to identify the active repellent compounds, and isolated pure compounds were individually tested for repellency. Of the isolated compounds, carvacrol, thymol, eugenol, and carvacrol methyl ether were found to be the repellent compounds with MEDs in the range of 0.013-0.063 mg/cm(2). Active repellent compounds were also tested for larvicidal activity against 1-day-old Aedes aegypti larvae. Thymol was the best larvicide among the tested individual compounds (LD50 of 13.9 ppm). None of the individual compounds showed cytotoxicity against mammalian cells; however, the essential oils were toxic to all cell lines.

  20. Characterization of the Key Aroma Compounds in Chinese Syrah Wine by Gas Chromatography-Olfactometry-Mass Spectrometry and Aroma Reconstitution Studies.

    PubMed

    Zhao, Pengtao; Gao, Jinxin; Qian, Michael; Li, Hua

    2017-06-24

    The key aroma compounds and the organoleptic quality of two Chinese Syrah wines from the Yunnan Shangri-La region and Ningxia Helan mountain region were characterized. The most important eighty aroma-active compounds were identified by Gas Chromatography-Olfactometry. In both Syrah samples, ethyl 2-methylpropanoate, ethyl 3-methylbutanoate, 3-methylbutyl acetate, 2- and 3-methyl-1-butanol, ethyl hexanoate, ethyl octanoate, 2-phenethyl acetate, methional, 3-methylbutanoic acid, hexanoic acid, octanoic acid, β -damascenone, guaiacol, 2-phenylethanol, trans -whiskylactone, 4-ethylguaiacol, eugenol, 4-ethylphenol, and sotolon were detected to have the highest odor intensities. In the chemical analysis, 72 compounds were quantitated by Stir Bar Sorptive Extraction combined with Gas Chromatography Mass Spectrometry. Based on the Odor Activity Value (OAV), the aromas were reconstituted by combining aroma compounds in the synthetic wine, and sensory descriptive analysis was used to verify the chemical data. Fatty acid ethyl esters, acetate esters, and β -damascenone were found with higher OAVs in the more fruity-smelling sample of Helan Mountain rather than Shangri-La.

  1. Active compound diffusivity of particle size reduced S. aromaticum and C. cassia fused starch edible films and the shelf life of mutton (Capra aegagrus hircus) meat.

    PubMed

    Chandra Mohan, C; Radha Krishnan, K; Babuskin, S; Sudharsan, K; Aafrin, Vajiha; Lalitha Priya, U; Mariyajenita, P; Harini, K; Madhushalini, D; Sukumar, M

    2017-06-01

    In the present study, mathematical models were used to examine the effect of active compound diffusion from edible film (supplemented with S. aromaticum and C. cassia) on the microbial, physical and chemical quality of mutton stored at 4 and 10°C. Cinnamaldehyde and eugenol release from edible film into liquid was found to be 80% and 75% of the equilibrium concentration. Active compound release into meat was 42-51% for cinnamaldehyde and 38-48% for eugenol, in storage temperatures of 4-15°C. Developed mathematical models showed the diffusivity of cinnamaldehyde (0.45×10 -15 ±0.04×10 -15 ) and eugenol (0.63×10 -10 ±0.01×10 -10 ) into meat, which was about 40% of that in liquid medium. On comparing physical, chemical and microbial results, shelf life of mutton meat was found to be increased by 1week at storage temperature of 10°C and 3weeks at storage temperature of 4°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Essential oil composition and acaricidal activity of Schinus terebinthifolius from Atlantic Forest of Pernambuco, Brazil against Tetranychus urticae.

    PubMed

    do Nascimento, Aline Fonseca; da Camara, Claudio Augusto Gomes; de Moraes, Marcílio Martins; Ramos, Clécio Souza

    2012-01-01

    The compositions of the essential oils from unripe (UFr) and ripe (RFr) fruits of Schinus terebinthifolius were analyzed by GC and GC/MS. The major compound identified in both oils was limonene (UFr = 44.1 +/- 1.3%; RFr = 31.8 +/- 1.2%), followed by alpha-phellandrene (15.7 +/- 0.4%) in the UFr oil and thujene (21.7 +/- 0.9%) in the RFr oil. Repellent and toxicity activities of the two oils were also evaluated, and the results compared with eugenol. The UFr oil was more active in the fumigation tests (LC50 = 1.46 microL/L of air), whereas the RFr oil was more active in the sealed dishes (SD) than open dishes (OD) contact assay (LC50 = 3.04 microL/cm2) and not significantly different from eugenol. Both oils exhibited significant repellent activity comparable with that of eugenol. The results suggest that the repellent activity of these oils in association with its toxicity could be a great advantage for the integrated management of T. urticae.

  3. Smoke-derived taint in wine: effect of postharvest smoke exposure of grapes on the chemical composition and sensory characteristics of wine.

    PubMed

    Kennison, Kristen R; Wilkinson, Kerry L; Williams, Hannah G; Smith, Jeanette H; Gibberd, Mark R

    2007-12-26

    Although smoke exposure has been associated with the development of smoke taint in grapes and subsequently in wine, to date there have been no studies that have demonstrated a direct link. In this study, postharvest smoke exposure of grapes was utilized to demonstrate that smoke significantly influences the chemical composition and sensory characteristics of wine and causes an apparent 'smoke taint'. Verdelho grapes were exposed to straw-derived smoke for 1 h and then fermented according to two different winemaking treatments. Control wines were made by fermenting unsmoked grapes. Sensory studies established a perceivable difference between smoked and unsmoked wines; smoked wines were described as exhibiting 'smoky', 'dirty', 'earthy', 'burnt' and 'smoked meat' characteristics. Quantitative analysis, by means of gas chromatography-mass spectrometry, identified guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-ethylphenol, eugenol, and furfural in each of the wines made from smoked grapes. However, these compounds were not detected in the unsmoked wines, and their origin is therefore attributed to the application of smoke. Increased ethanol concentrations and browning were also observed in wines made from grapes exposed to smoke.

  4. Exposure of amateur gardeners to pesticides via the non-gloved skin per day.

    PubMed

    Beránková, Martina; Hojerová, Jarmila; Melegová, Linda

    2017-10-01

    To predict a risk to gardeners not wearing protective gloves, the dermal absorption of three active insecticides was assessed in vitro using porcine ear-skin simulating 1-h handling of diluted plant protection products. Acetamiprid and Pirimicarb were found in the receptor fluid immediately after 1-h skin exposure, whereas Chlorpyrifos-methyl absorbed in the skin was not released into the receptor fluid even after 23 hours. The Estimated Gardener Exposure Level (EGEL) at 23 hours after 1-h exposure for two worst-case scenarios (i) non-gloved hands; (ii) non-gloved hands/uncovered forearms, was (i) 0.002, 0.042, and 0.057; (ii) 0.006, 0.101, and 0.135 mg/kg bw/day for Acetamiprid, Pirimicarb, and Chlorpyrifos-methyl, respectively, although the systemically available Chlorpyrifos-methyl amount, due to retention in the skin, is probably lower than determined. The Gardener Exposure Risk (GER), as a ratio of Acceptable Operator Exposure Level (databased values) to EGEL, for Acetamiprid was (i) 35 and 12-fold higher than the limit 1, so the risk via the skin is assumed to be low. Based on the GER values of (i) 0.83 and 0.18; (ii) 0.34 and 0.07 (i.e.<1) for Pirimicarb and Chlorpyrifos-methyl, respectively there is a level of concern regarding the health risk to gardeners handling pesticide products without skin protection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Arsenic exposure from drinking water is associated with decreased gene expression and increased DNA methylation in peripheral blood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ameer, Syeda Shegufta

    Background: Exposure to inorganic arsenic increases the risk of cancer and non-malignant diseases. Inefficient arsenic metabolism is a marker for susceptibility to arsenic toxicity. Arsenic may alter gene expression, possibly by altering DNA methylation. Objectives: To elucidate the associations between arsenic exposure, gene expression, and DNA methylation in peripheral blood, and the modifying effects of arsenic metabolism. Methods: The study participants, women from the Andes, Argentina, were exposed to arsenic via drinking water. Arsenic exposure was assessed as the sum of arsenic metabolites in urine (U-As), using high performance liquid-chromatography hydride-generation inductively-coupled-plasma-mass-spectrometry, and arsenic metabolism efficiency was assessed by themore » urinary fractions (%) of the individual metabolites. Genome-wide gene expression (N = 80 women) and DNA methylation (N = 93; 80 overlapping with gene expression) in peripheral blood were measured using Illumina DirectHyb HumanHT-12 v4.0 and Infinium Human-Methylation 450K BeadChip, respectively. Results: U-As concentrations, ranging 10–1251 μg/L, was associated with decreased gene expression: 64% of the top 1000 differentially expressed genes were down-regulated with increasing U-As. U-As was also associated with hypermethylation: 87% of the top 1000 CpGs were hypermethylated with increasing U-As. The expression of six genes and six individual CpG sites were significantly associated with increased U-As concentration. Pathway analyses revealed enrichment of genes related to cell death and cancer. The pathways differed somewhat depending on arsenic metabolism efficiency. We found no overlap between arsenic-related gene expression and DNA methylation for individual genes. Conclusions: Increased arsenic exposure was associated with lower gene expression and hypermethylation in peripheral blood, but with no evident overlap. - Highlights: • Women exposed to inorganic arsenic were studied for molecular responses in blood. • Arsenic is associated with decreased gene expression and increased DNA methylation. • Arsenic related pathways differed to some extent due to arsenic metabolism efficiency.« less

  6. Sulfur mustard-induced epigenetic modifications over time - a pilot study.

    PubMed

    Simons, Thilo; Steinritz, Dirk; Bölck, Birgit; Schmidt, Annette; Popp, Tanja; Thiermann, Horst; Gudermann, Thomas; Bloch, Wilhelm; Kehe, Kai

    2018-09-01

    The chemical warfare agent sulfur mustard (SM) can cause long-term health effects that may occur even years after a single exposure. The underlying pathophysiology is unknown, but epigenetic mechanisms are discussed as feasible explanation. "Epigenetics" depicts regulation of gene function without affecting the DNA sequence itself. DNA-methylation and covalent histone modifications (methylation or acetylation) are regarded as important processes. In the present in vitro study using early endothelial cells (EEC), we analyzed SM-induced DNA methylation over time and compared results to an in vivo skin sample that was obtained approx. one year after an accidental SM exposure. EEC were exposed to low SM concentrations (0.5 and 1.0μM). DNA methylation and histone acetylation (H3-K9, H3-K27, H4-K8) or histone di-methylation (H3-K9, H3-K27, H3-K36) were investigated 24h after exposure, and after 2 or 4 additional cell passages. The human skin sample was assessed in parallel. SM had only some minor effects on histone modifications. However, a significant and pronounced increase of DNA methylation was detected in the late cell passages as well as in the skin sample. Our results indicate that SM does indeed cause epigenetic modifications that appear to persist over time. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Hypermethylations of RASAL1 and KLOTHO is associated with renal dysfunction in a Chinese population environmentally exposed to cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chen; Liang, Yihuai; Key Laboratory of Public Health Safety, Ministry of Education, 130 DongAn Road, Shanghai 200032

    2013-08-15

    Exposure to cadmium (Cd) can affect both DNA methylation and renal function, but there are few examples of the association between epigenetic markers and Cd-induced kidney damage. It has been suggested that hypermethylation of the genes RASAL1 and KLOTHO is associated with renal fibrogenesis. To investigate whether hypermethylation of RASAL1 and KLOTHO in peripheral blood DNA can be associated with Cd exposure and/or Cd-induced renal dysfunction, the degrees of methylation of RASAL1 and KLOTHO in peripheral blood DNA from 81 residents in Cd-polluted and non-polluted areas were measured using bisulfate-PCR-pyrosequencing. Changes in blood cadmium (BCd), urinary cadmium (UCd), and kidneymore » parameters were measured, and the glomerular filtration rate (eGFR) was estimated. The levels of BCd and UCd correlated positively with the levels of DNA methylation in RASAL1 and in KLOTHO. The more heavily exposed residents (BCd, 4.23–13.22 μg/L; UCd, 8.65–32.90 μg/g creatinine) exhibited obvious renal dysfunction. Notably, when Cd concentration in blood and urine was adjusted, the increased methylation level in RASAL1 was inversely correlated with eGFR (P < 0.01) but the relationship between hypermethylation of KLOTHO and eGFR was not statistically significant. The methylation of RASAL1 increased along with the increased abnormal prevalence of eGFR. Our findings suggest that Cd exposure can induce the hypermethylation of RASAL1 and KLOTHO. Hypermethylation of RASAL1 may be an indicator of the progress for chronic kidney disease. - Highlights: • A long term heavily Cd exposure induced renal dysfunction. • Cd exposure correlated positively with DNA methylation in RASAL1 and KLOTHO. • Hypermethylation of RASAL1 correlated with adjusted renal function indicators.« less

  8. Oxidative stress, telomere shortening, and DNA methylation in relation to low-to-moderate occupational exposure to welding fumes.

    PubMed

    Li, Huiqi; Hedmer, Maria; Wojdacz, Tomasz; Hossain, Mohammad Bakhtiar; Lindh, Christian H; Tinnerberg, Håkan; Albin, Maria; Broberg, Karin

    2015-10-01

    Evidence suggests that exposure to welding fumes is a risk factor for lung cancer. We examined relationships between low-to-moderate occupational exposure to particles from welding fumes and cancer-related biomarkers for oxidative stress, changes in telomere length, and alterations in DNA methylation. We enrolled 101 welders and 127 controls (all currently nonsmoking men) from southern Sweden. We performed personal sampling of respirable dust and measured 8-oxodG concentrations in urine using a simplified liquid chromatography tandem mass spectrometry method. Telomere length in peripheral blood was measured by quantitative polymerase chain reaction. Methylation status of 10 tumor suppressor genes was determined by methylation-sensitive high-resolution melting analysis. All analyses were adjusted for age, body mass index, previous smoking, passive smoking, current residence, and wood burning stove/boiler at home. Welders were exposed to respirable dust at 1.2 mg/m(3) (standard deviation, 3.3 mg/m(3); range, 0.1-19.3), whereas control exposures did not exceed 0.1 mg/m(3) (P < 0.001). Welders and controls did not differ in 8-oxodG levels (β = 1.2, P = 0.17) or relative telomere length (β = -0.053, P = 0.083) in adjusted models. Welders showed higher probability of adenomatous polyposis coli (APC) methylation in the unadjusted model (odds ratio = 14, P = 0.014), but this was not significant in the fully adjusted model (P = 0.052). Every working year as a welder was associated with 0.0066 units shorter telomeres (95% confidence interval -0.013 to -0.00053, P = 0.033). Although there were no clear associations between concentrations of respirable dust and the biomarkers, there were modest signs of associations between oxidative stress, telomere alterations, DNA methylation, and occupational exposure to low-to-moderate levels of particles. © 2015 Wiley Periodicals, Inc.

  9. Altered Methylation in Tandem Repeat Element and Elemental Component Levels in Inhalable Air Particles

    PubMed Central

    Hou, Lifang; Zhang, Xiao; Zheng, Yinan; Wang, Sheng; Dou, Chang; Guo, Liqiong; Byun, Hyang-Min; Motta, Valeria; McCracken, John; Díaz, Anaité; Kang, Choong-Min; Koutrakis, Petros; Bertazzi, Pier Alberto; Li, Jingyun; Schwartz, Joel; Baccarelli, Andrea A.

    2014-01-01

    Exposure to particulate matter (PM) has been associated with lung cancer risk in epidemiology investigations. Elemental components of PM have been suggested to have critical roles in PM toxicity, but the molecular mechanisms underlying their association with cancer risks remain poorly understood. DNA methylation has emerged as a promising biomarker for environmental-related diseases, including lung cancer. In this study, we evaluated the effects of PM elemental components on methylation of three tandem repeats in a highly-exposed population in Beijing, China. The Beijing Truck Driver Air Pollution Study was conducted shortly before the 2008 Beijing Olympic Games (June 15-July 27, 2008) and included 60 truck drivers and 60 office workers. On two days separated by 1-2 weeks, we measured blood DNA methylation of SATα, NBL2, D4Z4, and personal exposure to eight elemental components in PM2.5, including aluminum (Al), silicon (Si), sulfur (S), potassium (K), calcium (Ca) titanium (Ti), iron (Fe), and zinc (Zn). We estimated the associations of individual elemental component with each tandem repeat methylation in generalized estimating equations (GEE) models adjusted for PM2.5 mass and other covariates. Out of the eight examined elements, NBL2 methylation was positively associated with concentrations of Si (0.121, 95%CI: 0.030; 0.212, FDR=0.047) and Ca (0.065, 95%CI: 0.014; 0.115, FDR=0.047) in truck drivers. In office workers, SATα methylation was positively associated with concentrations of S (0.115, 95%CI: 0.034; 0.196, FDR=0.042). PM-associated differences in blood tandem-repeat methylation may help detect biological effects of the exposure and identify individuals who may eventually experience higher lung cancer risk. PMID:24273195

  10. Mechanisms of Breast Cancer in Shift Workers: DNA Methylation in Five Core Circadian Genes in Nurses Working Night Shifts.

    PubMed

    Samulin Erdem, Johanna; Skare, Øivind; Petersen-Øverleir, Marte; Notø, Heidi Ødegaard; Lie, Jenny-Anne S; Reszka, Edyta; Pepłońska, Beata; Zienolddiny, Shanbeh

    2017-01-01

    Shift work has been suggested to be associated with breast cancer risk, and circadian disruption in shift workers is hypothesized as one of the mechanisms of increased cancer risk. There is, however, insufficient molecular evidence supporting this hypothesis. Using the quantitative methodology of pyrosequencing, epigenetic changes in 5-methyl cytosine (5mC) in five circadian genes CLOCK , BMAL1 , CRY1, PER1 and PER2 in female nurses working night shift work (278 breast cancer cases, 280 controls) were analyzed. In breast cancer cases, a medium exposure to night work was associated with increased methylation levels of the CLOCK (p=0.050), BMAL1 (p=0.001) and CRY1 (p=0.040) genes, compared with controls. Within the cases, analysis of the effects of shift work on the methylation patterns showed that methylation of CRY1 was lower in those who had worked night shift and had a high exposure (p=0.006) compared with cases that had worked only days. For cases with a medium exposure to night work, an increase in BMAL1 (p=0.003) and PER1 (p=0.035) methylation was observed compared with day working (unexposed) cases. The methylation levels of the five core circadian genes were also analyzed in relation to the estrogen and progesterone receptors status of the tumors in the cases, and no correlations were observed. Furthermore, nineteen polymorphisms in the five circadian genes were assessed for their effects on the methylation levels of the respective genes, but no associations were found. In summary, our data suggest that epigenetic regulation of CLOCK , BMAL1, CRY1 and PER1 may contribute to breast cancer in shift workers.

  11. Accounting for Life-Course Exposures in Epigenetic Biomarker Association Studies: Early Life Socioeconomic Position, Candidate Gene DNA Methylation, and Adult Cardiometabolic Risk.

    PubMed

    Huang, Jonathan Y; Gavin, Amelia R; Richardson, Thomas S; Rowhani-Rahbar, Ali; Siscovick, David S; Hochner, Hagit; Friedlander, Yechiel; Enquobahrie, Daniel A

    2016-10-01

    Recent studies suggest that epigenetic programming may mediate the relationship between early life environment, including parental socioeconomic position, and adult cardiometabolic health. However, interpreting associations between early environment and adult DNA methylation may be difficult because of time-dependent confounding by life-course exposures. Among 613 adult women (mean age = 32 years) of the Jerusalem Perinatal Study Family Follow-up (2007-2009), we investigated associations between early life socioeconomic position (paternal occupation and parental education) and mean adult DNA methylation at 5 frequently studied cardiometabolic and stress-response genes (ABCA1, INS-IGF2, LEP, HSD11B2, and NR3C1). We used multivariable linear regression and marginal structural models to estimate associations under 2 causal structures for life-course exposures and timing of methylation measurement. We also examined whether methylation was associated with adult cardiometabolic phenotype. Higher maternal education was consistently associated with higher HSD11B2 methylation (e.g., 0.5%-point higher in 9-12 years vs. ≤8 years, 95% confidence interval: 0.1, 0.8). Higher HSD11B2 methylation was also associated with lower adult weight and total and low-density lipoprotein cholesterol. We found that associations with early life socioeconomic position measures were insensitive to different causal assumption; however, exploratory analysis did not find evidence for a mediating role of methylation in socioeconomic position-cardiometabolic risk associations. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Mechanisms of Breast Cancer in Shift Workers: DNA Methylation in Five Core Circadian Genes in Nurses Working Night Shifts

    PubMed Central

    Samulin Erdem, Johanna; Skare, Øivind; Petersen-Øverleir, Marte; Notø, Heidi Ødegaard; Lie, Jenny-Anne S.; Reszka, Edyta; Pepłońska, Beata; Zienolddiny, Shanbeh

    2017-01-01

    Shift work has been suggested to be associated with breast cancer risk, and circadian disruption in shift workers is hypothesized as one of the mechanisms of increased cancer risk. There is, however, insufficient molecular evidence supporting this hypothesis. Using the quantitative methodology of pyrosequencing, epigenetic changes in 5-methyl cytosine (5mC) in five circadian genes CLOCK, BMAL1, CRY1, PER1 and PER2 in female nurses working night shift work (278 breast cancer cases, 280 controls) were analyzed. In breast cancer cases, a medium exposure to night work was associated with increased methylation levels of the CLOCK (p=0.050), BMAL1 (p=0.001) and CRY1 (p=0.040) genes, compared with controls. Within the cases, analysis of the effects of shift work on the methylation patterns showed that methylation of CRY1 was lower in those who had worked night shift and had a high exposure (p=0.006) compared with cases that had worked only days. For cases with a medium exposure to night work, an increase in BMAL1 (p=0.003) and PER1 (p=0.035) methylation was observed compared with day working (unexposed) cases. The methylation levels of the five core circadian genes were also analyzed in relation to the estrogen and progesterone receptors status of the tumors in the cases, and no correlations were observed. Furthermore, nineteen polymorphisms in the five circadian genes were assessed for their effects on the methylation levels of the respective genes, but no associations were found. In summary, our data suggest that epigenetic regulation of CLOCK, BMAL1, CRY1 and PER1 may contribute to breast cancer in shift workers. PMID:28928877

  13. Residential proximity to methyl bromide use and birth outcomes in an agricultural population in California.

    PubMed

    Gemmill, Alison; Gunier, Robert B; Bradman, Asa; Eskenazi, Brenda; Harley, Kim G

    2013-06-01

    Methyl bromide, a fungicide often used in strawberry cultivation, is of concern for residents who live near agricultural applications because of its toxicity and potential for drift. Little is known about the effects of methyl bromide exposure during pregnancy. We investigated the relationship between residential proximity to methyl bromide use and birth outcomes. Participants were from the CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas) study (n = 442), a longitudinal cohort study examining the health effects of environmental exposures on pregnant women and their children in an agricultural community in northern California. Using data from the California Pesticide Use Reporting system, we employed a geographic information system to estimate the amount of methyl bromide applied within 5 km of a woman's residence during pregnancy. Multiple linear regression models were used to estimate associations between trimester-specific proximity to use and birth weight, length, head circumference, and gestational age. High methyl bromide use (vs. no use) within 5 km of the home during the second trimester was negatively associated with birth weight (β = -113.1 g; CI: -218.1, -8.1), birth length (β = -0.85 cm; CI: -1.44, -0.27), and head circumference (β = -0.33 cm; CI: -0.67, 0.01). These outcomes were also associated with moderate methyl bromide use during the second trimester. Negative associations with fetal growth parameters were stronger when larger (5 km and 8 km) versus smaller (1 km and 3 km) buffer zones were used to estimate exposure. Residential proximity to methyl bromide use during the second trimester was associated with markers of restricted fetal growth in our study.

  14. Dermal insecticide residues from birds inhabiting an orchard

    USGS Publications Warehouse

    Vyas, N.B.; Spann, J.W.; Hulse, C.S.; Gentry, S.; Borges, S.L.

    2007-01-01

    The US Environmental Protection Agency conducts risk assessments of insecticide applications to wild birds using a model that is limited to the dietary route of exposure. However, free-flying birds are also exposed to insecticides via the inhalation and dermal routes. We measured azinphos-methyl residues on the skin plus feathers and the feet of brown-headed cowbirds (Molothrus ater) in order to quantify dermal exposure to songbirds that entered and inhabited an apple (Malus x domestica) orchard following an insecticide application. Exposure to azinphos-methyl was measured by sampling birds from an aviary that was built around an apple tree. Birds sampled at 36 h and 7-day post-application were placed in the aviary within 1 h after the application whereas birds exposed for 3 days were released into the aviary 4-day post-application. Residues on vegetation and soil were also measured. Azinphos-methyl residues were detected from the skin plus feathers and the feet from all exposure periods. Our results underscore the importance of incorporating dermal exposure into avian pesticide risk assessments.

  15. Heart rate variability and DNA methylation levels are altered after short-term metal fume exposure among occupational welders: a repeated-measures panel study.

    PubMed

    Fan, Tianteng; Fang, Shona C; Cavallari, Jennifer M; Barnett, Ian J; Wang, Zhaoxi; Su, Li; Byun, Hyang-Min; Lin, Xihong; Baccarelli, Andrea A; Christiani, David C

    2014-12-16

    In occupational settings, boilermakers are exposed to high levels of metallic fine particulate matter (PM2.5) generated during the welding process. The effect of welding PM2.5 on heart rate variability (HRV) has been described, but the relationship between PM2.5, DNA methylation, and HRV is not known. In this repeated-measures panel study, we recorded resting HRV and measured DNA methylation levels in transposable elements Alu and long interspersed nuclear element-1 (LINE-1) in peripheral blood leukocytes under ambient conditions (pre-shift) and right after a welding task (post-shift) among 66 welders. We also monitored personal PM2.5 level in the ambient environment and during the welding procedure. The concentration of welding PM2.5 was significantly higher than background levels in the union hall (0.43 mg/m3 vs. 0.11 mg/m3, p < 0.0001). The natural log of transformed power in the high frequency range (ln HF) had a significantly negative association with PM2.5 exposure (β = -0.76, p = 0.035). pNN10 and pNN20 also had a negative association with PM2.5 exposure (β = -0.16%, p = 0.006 and β = -0.13%, p = 0.030, respectively). PM2.5 was positively associated with LINE-1 methylation [β = 0.79%, 5-methylcytosince (%mC), p = 0.013]; adjusted for covariates. LINE-1 methylation did not show an independent association with HRV. Acute decline of HRV was observed following exposure to welding PM2.5 and evidence for an epigenetic response of transposable elements to short-term exposure to high-level metal-rich particulates was reported.

  16. Prenatal exposure to allergen, DNA methylation, and allergy in grandoffspring mice.

    PubMed

    Niedzwiecki, M; Zhu, H; Corson, L; Grunig, G; Factor, P H; Chu, S; Jiang, H; Miller, R L

    2012-07-01

    Prenatal allergen exposure has been linked to both induction and protection of allergic sensitization in offspring. We hypothesized that prenatal exposure of mice (F0) to Aspergillus fumigatus (A. fumigatus) would be associated with decreased immunoglobulin (Ig) E and airway eosinophilia and alterations in CpG methylation of T-helper genes in third-generation mice (F2). Female BALB/c mice were sensitized to A. fumigatus (62.5, 125, 1250 μg, or saline) and re-exposed to the same dose on days 7 and 14 (early) or days 12 and 17 (late) gestation. Grandoffspring were treated with A. fumigatus (62.5 μg) at 9 weeks. IgE, IgG(1) , and IgG(2a) levels and cell counts from bronchoalveolar lavage fluid were determined. Lung DNA was pyrosequenced at multiple sites in the interferon (IFN)-γ and interleukin (IL)-4 promoters. Grandoffspring of mothers dosed with 1250 μg early during pregnancy developed increased airway eosinophilia (P < 0.05). Grandoffspring of mothers dosed late in pregnancy developed lower IgE (P < 0.05) and airway eosinophilia (P < 0.05). Grandoffspring of mothers dosed early had lower methylation at IL-4 CpG(-408) and CpG(-393) compared to late dosed mice (P < 0.005 across all doses). Few correlations were found between methylation levels and airway eosinophilia and IgE. Prenatal exposure to A. fumigatus late during pregnancy, but not early, was associated with lower IgE and airway eosinophilia in grandoffspring. Prenatal exposure to A. fumigatus was associated with changes in CpG methylation in the IFN-γ and IL-4 promoters that did not correlate consistently with indicators of allergic sensitization. © 2012 John Wiley & Sons A/S.

  17. Soy Formula and Epigenetic Modifications: Analysis of Vaginal Epithelial Cells from Infant Girls in the IFED Study

    PubMed Central

    Harlid, Sophia; Adgent, Margaret; Jefferson, Wendy N.; Panduri, Vijayalakshmi; Umbach, David M.; Xu, Zongli; Stallings, Virginia A.; Williams, Carmen J.; Rogan, Walter J.; Taylor, Jack A.

    2016-01-01

    Background: Early-life exposure to estrogenic compounds affects the development of the reproductive system in rodent models and humans. Soy products, which contain phytoestrogens such as genistein, are one source of exposure in infants fed soy formula, and they result in high serum concentrations. Objectives: Our goal was to determine whether soy exposure is associated with differential DNA methylation in vaginal cells from soy-fed infant girls. Methods: Using the Illumina HumanMethylation450 BeadChip, we evaluated epigenome-wide DNA methylation in vaginal cells from four soy formula–fed and six cow formula–fed girls from the Infant Feeding and Early Development (IFED) study. Using pyrosequencing we followed up the two most differentially methylated sites in 214 vaginal cell samples serially collected between birth and 9 months of age from 50 girls (28 soy formula–fed and 22 cow formula–fed). With a mouse model, we examined the effect of neonatal exposure to genistein on gene specific mRNA levels in vaginal tissue. Results: The epigenome-wide scan suggested differences in methylation between soy formula–fed and cow formula–fed infants at three CpGs in the gene proline rich 5 like (PRR5L) (p < 104). Pyrosequencing of the two feeding groups found that methylation levels progressively diverged with age, with pointwise differences becoming statistically significant after 126 days. Genistein-exposed mice showed a 50% decrease in vaginal Prr5l mRNA levels compared to controls. Conclusions: Girls fed soy formula have altered DNA methylation in vaginal cell DNA which may be associated with decreased expression of an estrogen-responsive gene. Citation: Harlid S, Adgent M, Jefferson WN, Panduri V, Umbach DM, Xu Z, Stallings VA, Williams CJ, Rogan WJ, Taylor JA. 2017. Soy formula and epigenetic modifications: analysis of vaginal epithelial cells from infant girls in the IFED study. Environ Health Perspect 125:447–452; http://dx.doi.org/10.1289/EHP428 PMID:27539829

  18. Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes.

    PubMed

    Rojas, Daniel; Rager, Julia E; Smeester, Lisa; Bailey, Kathryn A; Drobná, Zuzana; Rubio-Andrade, Marisela; Stýblo, Miroslav; García-Vargas, Gonzalo; Fry, Rebecca C

    2015-01-01

    Prenatal exposure to inorganic arsenic (iAs) is detrimental to the health of newborns and increases the risk of disease development later in life. Here we examined a subset of newborn cord blood leukocyte samples collected from subjects enrolled in the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Gómez Palacio, Mexico, who were exposed to a range of drinking water arsenic concentrations (0.456-236 µg/l). Changes in iAs-associated DNA 5-methylcytosine methylation were assessed across 424,935 CpG sites representing 18,761 genes and compared with corresponding mRNA expression levels and birth outcomes. In the context of arsenic exposure, a total of 2919 genes were identified with iAs-associated differences in DNA methylation. Site-specific analyses identified DNA methylation changes that were most predictive of gene expression levels where CpG methylation within CpG islands positioned within the first exon, the 5' untranslated region and 200 bp upstream of the transcription start site yielded the most significant association with gene expression levels. A set of 16 genes was identified with correlated iAs-associated changes in DNA methylation and mRNA expression and all were highly enriched for binding sites of the early growth response (EGR) and CCCTC-binding factor (CTCF) transcription factors. Furthermore, DNA methylation levels of 7 of these genes were associated with differences in birth outcomes including gestational age and head circumference.These data highlight the complex interplay between DNA methylation, functional changes in gene expression and health outcomes and underscore the need for functional analyses coupled to epigenetic assessments. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. CYP2E1 epigenetic regulation in chronic, low-level toluene exposure: Relationship with oxidative stress and smoking habit.

    PubMed

    Jiménez-Garza, Octavio; Baccarelli, Andrea A; Byun, Hyang-Min; Márquez-Gamiño, Sergio; Barrón-Vivanco, Briscia Socorro; Albores, Arnulfo

    2015-08-01

    CYP2E1 is a versatile phase I drug-metabolizing enzyme responsible for the biotransformation of most volatile organic compounds, including toluene. Human toluene exposure increases CYP2E1 mRNA and modifies its activity in leucocytes; however, epigenetic implications of this interaction have not been investigated. To determine promoter methylation of CYP2E1 and other genes known to be affected by toluene exposure. We obtained venous blood from 24 tannery workers exposed to toluene (mean levels: 10.86+/-7mg/m(3)) and 24 administrative workers (reference group, mean levels 0.21+/-0.02mg/m(3)) all of them from the city of León, Guanajuato, México. After DNA extraction and bisulfite treatment, we performed PCR-pyrosequencing in order to measure methylation levels at promoter region of 13 genes. In exposed group we found significant correlations between toluene airborne levels and CYP2E1 promoter methylation (r=-.36, p<0.05), as well as for IL6 promoter methylation levels (r=.44, p<0.05). Moreover, CYP2E1 promoter methylation levels where higher in toluene-exposed smokers compared to nonsmokers (p=0.009). We also observed significant correlations for CYP2E1 promoter methylation with GSTP1 and SOD1 promoter methylation levels (r=-.37, p<0.05 and r=-.34, p<0.05 respectively). These results highlight the importance of considering CYP2E1 epigenetic modifications, as well as its interactions with other genes, as key factors for unraveling the sub cellular mechanisms of toxicity exerted by oxidative stress, which can initiate disease process in chronic, low-level toluene exposure. People co-exposed to toluene and tobacco smoke are in higher risk due to a possible CYP2E1 repression. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Soy Formula and Epigenetic Modifications: Analysis of Vaginal Epithelial Cells from Infant Girls in the IFED Study.

    PubMed

    Harlid, Sophia; Adgent, Margaret; Jefferson, Wendy N; Panduri, Vijayalakshmi; Umbach, David M; Xu, Zongli; Stallings, Virginia A; Williams, Carmen J; Rogan, Walter J; Taylor, Jack A

    2017-03-01

    Early-life exposure to estrogenic compounds affects the development of the reproductive system in rodent models and humans. Soy products, which contain phytoestrogens such as genistein, are one source of exposure in infants fed soy formula, and they result in high serum concentrations. Our goal was to determine whether soy exposure is associated with differential DNA methylation in vaginal cells from soy-fed infant girls. Using the Illumina HumanMethylation450 BeadChip, we evaluated epigenome-wide DNA methylation in vaginal cells from four soy formula-fed and six cow formula-fed girls from the Infant Feeding and Early Development (IFED) study. Using pyrosequencing we followed up the two most differentially methylated sites in 214 vaginal cell samples serially collected between birth and 9 months of age from 50 girls (28 soy formula-fed and 22 cow formula-fed). With a mouse model, we examined the effect of neonatal exposure to genistein on gene specific mRNA levels in vaginal tissue. The epigenome-wide scan suggested differences in methylation between soy formula-fed and cow formula-fed infants at three CpGs in the gene proline rich 5 like ( PRR5L ) ( p < 10 4 ). Pyrosequencing of the two feeding groups found that methylation levels progressively diverged with age, with pointwise differences becoming statistically significant after 126 days. Genistein-exposed mice showed a 50% decrease in vaginal Prr5l mRNA levels compared to controls. Girls fed soy formula have altered DNA methylation in vaginal cell DNA which may be associated with decreased expression of an estrogen-responsive gene. Citation: Harlid S, Adgent M, Jefferson WN, Panduri V, Umbach DM, Xu Z, Stallings VA, Williams CJ, Rogan WJ, Taylor JA. 2017. Soy formula and epigenetic modifications: analysis of vaginal epithelial cells from infant girls in the IFED study. Environ Health Perspect 125:447-452; http://dx.doi.org/10.1289/EHP428.

  1. Prenatal synthetic glucocorticoid treatment changes DNA methylation states in male organ systems: multigenerational effects.

    PubMed

    Crudo, Ariann; Petropoulos, Sophie; Moisiadis, Vasilis G; Iqbal, Majid; Kostaki, Alisa; Machnes, Ziv; Szyf, Moshe; Matthews, Stephen G

    2012-07-01

    Prenatal synthetic glucocorticoids (sGC) are administered to pregnant women at risk of delivering preterm, approximately 10% of all pregnancies. Animal studies have demonstrated that offspring exposed to elevated glucocorticoids, either by administration of sGC or as a result of maternal stress, are at increased risk of developing behavioral, endocrine, and metabolic abnormalities. DNA methylation is a covalent modification of DNA that plays a critical role in long-lasting programming of gene expression. Here we tested the hypothesis that prenatal sGC treatment has both acute and long-term effects on DNA methylation states in the fetus and offspring and that these effects extend into a subsequent generation. Pregnant guinea pigs were treated with sGC in late gestation, and methylation analysis by luminometric methylation assay was undertaken in organs from fetuses and offspring across two generations. Expression of genes that modify the epigenetic state were measured by quantitative real-time PCR. Results indicate that there are organ-specific developmental trajectories of methylation in the fetus and newborn. Furthermore, these trajectories are substantially modified by intrauterine exposure to sGC. These sGC-induced changes in DNA methylation remain into adulthood and are evident in the next generation. Furthermore, prenatal sGC exposure alters the expression of several genes encoding proteins that modulate the epigenetic state. Several of these changes are long lasting and are also present in the next generation. These data support the hypothesis that prenatal sGC exposure leads to broad changes in critical components of the epigenetic machinery and that these effects can pass to the next generation.

  2. Comprehensive Analysis of DNA Methylation in Head and Neck Squamous Cell Carcinoma Indicates Differences by Survival and Clinicopathologic Characteristics

    PubMed Central

    Colacino, Justin A.; Dolinoy, Dana C.; Duffy, Sonia A.; Sartor, Maureen A.; Chepeha, Douglas B.; Bradford, Carol R.; McHugh, Jonathan B.; Patel, Divya A.; Virani, Shama; Walline, Heather M.; Bellile, Emily; Terrell, Jeffrey E.; Stoerker, Jay A.; Taylor, Jeremy M. G.; Carey, Thomas E.; Wolf, Gregory T.; Rozek, Laura S.

    2013-01-01

    Head and neck squamous cell carcinoma (HNSCC) is the eighth most commonly diagnosed cancer in the United States. The risk of developing HNSCC increases with exposure to tobacco, alcohol and infection with human papilloma virus (HPV). HPV-associated HNSCCs have a distinct risk profile and improved prognosis compared to cancers associated with tobacco and alcohol exposure. Epigenetic changes are an important mechanism in carcinogenic progression, but how these changes differ between viral- and chemical-induced cancers remains unknown. CpG methylation at 1505 CpG sites across 807 genes in 68 well-annotated HNSCC tumor samples from the University of Michigan Head and Neck SPORE patient population were quantified using the Illumina Goldengate Methylation Cancer Panel. Unsupervised hierarchical clustering based on methylation identified 6 distinct tumor clusters, which significantly differed by age, HPV status, and three year survival. Weighted linear modeling was used to identify differentially methylated genes based on epidemiological characteristics. Consistent with previous in vitro findings by our group, methylation of sites in the CCNA1 promoter was found to be higher in HPV(+) tumors, which was validated in an additional sample set of 128 tumors. After adjusting for cancer site, stage, age, gender, alcohol consumption, and smoking status, HPV status was found to be a significant predictor for DNA methylation at an additional 11 genes, including CASP8 and SYBL1. These findings provide insight into the epigenetic regulation of viral vs. chemical carcinogenesis and could provide novel targets for development of individualized therapeutic and prevention regimens based on environmental exposures. PMID:23358896

  3. Comprehensive analysis of DNA methylation in head and neck squamous cell carcinoma indicates differences by survival and clinicopathologic characteristics.

    PubMed

    Colacino, Justin A; Dolinoy, Dana C; Duffy, Sonia A; Sartor, Maureen A; Chepeha, Douglas B; Bradford, Carol R; McHugh, Jonathan B; Patel, Divya A; Virani, Shama; Walline, Heather M; Bellile, Emily; Terrell, Jeffrey E; Stoerker, Jay A; Taylor, Jeremy M G; Carey, Thomas E; Wolf, Gregory T; Rozek, Laura S

    2013-01-01

    Head and neck squamous cell carcinoma (HNSCC) is the eighth most commonly diagnosed cancer in the United States. The risk of developing HNSCC increases with exposure to tobacco, alcohol and infection with human papilloma virus (HPV). HPV-associated HNSCCs have a distinct risk profile and improved prognosis compared to cancers associated with tobacco and alcohol exposure. Epigenetic changes are an important mechanism in carcinogenic progression, but how these changes differ between viral- and chemical-induced cancers remains unknown. CpG methylation at 1505 CpG sites across 807 genes in 68 well-annotated HNSCC tumor samples from the University of Michigan Head and Neck SPORE patient population were quantified using the Illumina Goldengate Methylation Cancer Panel. Unsupervised hierarchical clustering based on methylation identified 6 distinct tumor clusters, which significantly differed by age, HPV status, and three year survival. Weighted linear modeling was used to identify differentially methylated genes based on epidemiological characteristics. Consistent with previous in vitro findings by our group, methylation of sites in the CCNA1 promoter was found to be higher in HPV(+) tumors, which was validated in an additional sample set of 128 tumors. After adjusting for cancer site, stage, age, gender, alcohol consumption, and smoking status, HPV status was found to be a significant predictor for DNA methylation at an additional 11 genes, including CASP8 and SYBL1. These findings provide insight into the epigenetic regulation of viral vs. chemical carcinogenesis and could provide novel targets for development of individualized therapeutic and prevention regimens based on environmental exposures.

  4. Sex- and Tissue-Specific Methylome Changes in Brains of Mice Perinatally Exposed to Lead

    PubMed Central

    Sánchez-Martín, Francisco Javier; Lindquist, Diana M.; Landero-Figueroa, Julio; Zhang, Xiang; Chen, Jing; Cecil, Kim M.; Medvedovic, Mario; Puga, Alvaro

    2014-01-01

    Changes in DNA methylation and subsequent changes in gene expression regulation are the hallmarks of age- and tissue-dependent epigenetic drift and plasticity resulting from the combinatorial integration of genetic determinants and environmental cues. To determine whether perinatal lead exposure caused persistent DNA methylation changes in target tissues, we exposed mouse dams to 0, 3 or 30 ppm of lead acetate in drinking water for a period extending from 2 months prior to mating, through gestation, until weaning of pups at postnatal day-21, and analyzed whole-genome DNA methylation in brain cortex and hippocampus of 2-month old exposed and unexposed progeny. Lead exposure resulted in hypermethylation of three differentially methylated regions in the hippocampus of females, but not males. These regions mapped to Rn4.5s, Sfi1, and Rn45s loci in mouse chromosomes 2, 11 and 17, respectively. At a conservative fdr<0.001, 1,623 additional CpG sites were differentially methylated in female hippocampus, corresponding to 117 unique genes. Sixty of these genes were tested for mRNA expression and showed a trend towards negative correlation between mRNA expression and methylation in exposed females but not males. No statistically significant methylome changes were detected in male hippocampus or in cortex of either sex. We conclude that exposure to lead during embryonic life, a time when the organism is most sensitive to environmental cues, appears to have a sex- and tissue-specific effect on DNA methylation that may produce pathological or physiological deviations from the epigenetic plasticity operative in unexposed mice. PMID:25530354

  5. Childhood maltreatment and methylation of FK506 binding protein 5 gene (FKBP5).

    PubMed

    Tyrka, Audrey R; Ridout, Kathryn K; Parade, Stephanie H; Paquette, Alison; Marsit, Carmen J; Seifer, Ronald

    2015-11-01

    A growing body of evidence suggests that alterations of the stress response system may be a mechanism by which childhood maltreatment alters risk for psychopathology. FK506 binding protein 51 (FKBP5) binds to the glucocorticoid receptor and alters its ability to respond to stress signaling. The aim of the present study was to examine methylation of the FKBP5 gene (FKBP5), and the role of an FKBP5 genetic variant, in relation to childhood maltreatment in a sample of impoverished preschool-aged children. One hundred seventy-four families participated in this study, including 69 with child welfare documentation of moderate to severe maltreatment in the past 6 months. The children, who ranged in age from 3 to 5 years, were racially and ethnically diverse. Structured record review and interviews in the home were used to assess a history of maltreatment, other traumas, and contextual life stressors; and a composite variable assessed the number exposures to these adversities. Methylation of two sites in intron 7 of FKBP5 was measured via sodium bisulfite pyrosequencing. Maltreated children had significantly lower levels of methylation at both CpG sites (p < .05). Lifetime contextual stress exposure showed a trend for lower levels of methylation at one of the sites, and a trend for an interaction with the FKBP5 polymorphism. A composite adversity variable was associated with lower levels of methylation at one of the sites as well (p < .05). FKBP5 alters glucocorticoid receptor responsiveness, and FKBP5 gene methylation may be a mechanism of the biobehavioral effects of adverse exposures in young children.

  6. Biosynthesis of t-Anethole in Anise: Characterization of t-Anol/Isoeugenol Synthase and an O-Methyltransferase Specific for a C7-C8 Propenyl Side Chain1[W][OA

    PubMed Central

    Koeduka, Takao; Baiga, Thomas J.; Noel, Joseph P.; Pichersky, Eran

    2009-01-01

    The phenylpropene t-anethole imparts the characteristic sweet aroma of anise (Pimpinella anisum, family Apiaceae) seeds and leaves. Here we report that the aerial parts of the anise plant accumulate t-anethole as the plant matures, with the highest levels of t-anethole found in fruits. Although the anise plant is covered with trichomes, t-anethole accumulates inside the leaves and not in the trichomes or the epidermal cell layer. We have obtained anise cDNA encoding t-anol/isoeugenol synthase 1 (AIS1), an NADPH-dependent enzyme that can biosynthesize t-anol and isoeugenol (the latter not found in anise) from coumaryl acetate and coniferyl acetate, respectively. In addition, we have obtained a cDNA encoding S-[methyl-14C]adenosyl-l-methionine:t-anol/isoeugenol O-methyltransferase 1 (AIMT1), an enzyme that can convert t-anol or isoeugenol to t-anethole or methylisoeugenol, respectively, via methylation of the para-OH group. The genes encoding AIS1 and AIMT1 were expressed throughout the plant and their transcript levels were highest in developing fruits. The AIS1 protein is 59% identical to petunia (Petunia hybrida) isoeugenol synthase 1 and displays apparent Km values of 145 μm for coumaryl acetate and 230 μm for coniferyl acetate. AIMT1 prefers isoeugenol to t-anol by a factor of 2, with Km values of 19.3 μm for isoeugenol and 54.5 μm for S-[methyl-14C]adenosyl-l-methionine. The AIMT1 protein sequence is approximately 40% identical to basil (Ocimum basilicum) and Clarkia breweri phenylpropene O-methyltransferases, but unlike these enzymes, which do not show large discrimination between substrates with isomeric propenyl side chains, AIMT1 shows a 10-fold preference for t-anol over chavicol and for isoeugenol over eugenol. PMID:18987218

  7. Biosynthesis of t-anethole in anise: characterization of t-anol/isoeugenol synthase and an O-methyltransferase specific for a C7-C8 propenyl side chain.

    PubMed

    Koeduka, Takao; Baiga, Thomas J; Noel, Joseph P; Pichersky, Eran

    2009-01-01

    The phenylpropene t-anethole imparts the characteristic sweet aroma of anise (Pimpinella anisum, family Apiaceae) seeds and leaves. Here we report that the aerial parts of the anise plant accumulate t-anethole as the plant matures, with the highest levels of t-anethole found in fruits. Although the anise plant is covered with trichomes, t-anethole accumulates inside the leaves and not in the trichomes or the epidermal cell layer. We have obtained anise cDNA encoding t-anol/isoeugenol synthase 1 (AIS1), an NADPH-dependent enzyme that can biosynthesize t-anol and isoeugenol (the latter not found in anise) from coumaryl acetate and coniferyl acetate, respectively. In addition, we have obtained a cDNA encoding S-[methyl-14C]adenosyl-l-methionine:t-anol/isoeugenol O-methyltransferase 1 (AIMT1), an enzyme that can convert t-anol or isoeugenol to t-anethole or methylisoeugenol, respectively, via methylation of the para-OH group. The genes encoding AIS1 and AIMT1 were expressed throughout the plant and their transcript levels were highest in developing fruits. The AIS1 protein is 59% identical to petunia (Petunia hybrida) isoeugenol synthase 1 and displays apparent Km values of 145 microm for coumaryl acetate and 230 microm for coniferyl acetate. AIMT1 prefers isoeugenol to t-anol by a factor of 2, with Km values of 19.3 microm for isoeugenol and 54.5 microm for S-[methyl-14C]adenosyl-l-methionine. The AIMT1 protein sequence is approximately 40% identical to basil (Ocimum basilicum) and Clarkia breweri phenylpropene O-methyltransferases, but unlike these enzymes, which do not show large discrimination between substrates with isomeric propenyl side chains, AIMT1 shows a 10-fold preference for t-anol over chavicol and for isoeugenol over eugenol.

  8. Neonatal exposure to diethylstilbestrol alters expression of DNA methyltransferases and methylation of genomic DNA in the mouse uterus.

    PubMed

    Sato, Koji; Fukata, Hideki; Kogo, Yasushi; Ohgane, Jun; Shiota, Kunio; Mori, Chisato

    2009-01-01

    Perinatal exposure to diethylstilbestrol (DES) can have numerous adverse effects on the reproductive organs later in life, such as vaginal clear-cell adenocarcinoma. Epigenetic processes including DNA methylation may be involved in the mechanisms. We subcutaneously injected DES to neonatal C57BL/6 mice. At days 5, 14, and 30, expressions of DNA methyltransferases (Dnmts) Dnmt1, Dnmt3a, and Dnmt3b, and transcription factors Sp1 and Sp3 were examined. We also performed restriction landmark genomic scanning (RLGS) to detect aberrant DNA methylation. Real-time RT-PCR revealed that expressions of Dnmt1, Dnmt3b, and Sp3 were decreased at day 5 in DES-treated mice, and that those of Dnmt1, Dnmt3a, and Sp1 were also decreased at day 14. RLGS analysis revealed that 5 genomic loci were demethylated, and 5 other loci were methylated by DES treatment. Two loci were cloned, and differential DNA methylation was quantified. Our results indicated that DES altered the expression levels of Dnmts and DNA methylation.

  9. BDNF rs6265 methylation and genotype interact on risk for schizophrenia.

    PubMed

    Ursini, Gianluca; Cavalleri, Tommaso; Fazio, Leonardo; Angrisano, Tiziana; Iacovelli, Luisa; Porcelli, Annamaria; Maddalena, Giancarlo; Punzi, Giovanna; Mancini, Marina; Gelao, Barbara; Romano, Raffaella; Masellis, Rita; Calabrese, Francesca; Rampino, Antonio; Taurisano, Paolo; Di Giorgio, Annabella; Keller, Simona; Tarantini, Letizia; Sinibaldi, Lorenzo; Quarto, Tiziana; Popolizio, Teresa; Caforio, Grazia; Blasi, Giuseppe; Riva, Marco A; De Blasi, Antonio; Chiariotti, Lorenzo; Bollati, Valentina; Bertolino, Alessandro

    2016-01-01

    Epigenetic mechanisms can mediate gene-environment interactions relevant for complex disorders. The BDNF gene is crucial for development and brain plasticity, is sensitive to environmental stressors, such as hypoxia, and harbors the functional SNP rs6265 (Val(66)Met), which creates or abolishes a CpG dinucleotide for DNA methylation. We found that methylation at the BDNF rs6265 Val allele in peripheral blood of healthy subjects is associated with hypoxia-related early life events (hOCs) and intermediate phenotypes for schizophrenia in a distinctive manner, depending on rs6265 genotype: in ValVal individuals increased methylation is associated with exposure to hOCs and impaired working memory (WM) accuracy, while the opposite is true for ValMet subjects. Also, rs6265 methylation and hOCs interact in modulating WM-related prefrontal activity, another intermediate phenotype for schizophrenia, with an analogous opposite direction in the 2 genotypes. Consistently, rs6265 methylation has a different association with schizophrenia risk in ValVals and ValMets. The relationships of methylation with BDNF levels and of genotype with BHLHB2 binding likely contribute to these opposite effects of methylation. We conclude that BDNF rs6265 methylation interacts with genotype to bridge early environmental exposures to adult phenotypes, relevant for schizophrenia. The study of epigenetic changes in regions containing genetic variation relevant for human diseases may have beneficial implications for the understanding of how genes are actually translated into phenotypes.

  10. Ancestral TCDD exposure promotes epigenetic transgenerational inheritance of imprinted gene Igf2: Methylation status and DNMTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jing; Chen, Xi; Liu, Yanan

    2015-12-01

    Ancestral TCDD exposure could induce epigenetic transgenerational phenotypes, which may be mediated in part by imprinted gene inheritance. The aim of our study was to evaluate the transgenerational effects of ancestral TCDD exposure on the imprinted gene insulin-like growth factor-2 (Igf2) in rat somatic tissue. TCDD was administered daily by oral gavage to groups of F0 pregnant SD rats at dose levels of 0 (control), 200 or 800 ng/kg bw during gestation day 8–14. Animal transgenerational model of ancestral exposure to TCDD was carefully built, avoiding sibling inbreeding. Hepatic Igf2 expression of the TCDD male progeny was decreased concomitantly withmore » hepatic damage and increased activities of serum hepatic enzymes both in the F1 and F3 generation. Imprinted Control Region (ICR) of Igf2 manifested a hypermethylated pattern, whereas methylation status in the Differentially Methylated Region 2 (DMR2) showed a hypomethylated manner in the F1 generation. These epigenetic alterations in these two regions maintained similar trends in the F3 generation. Meanwhile, the expressions of DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) changed in a non-monotonic manner both in the F1 and F3 generation. This study provides evidence that ancestral TCDD exposure may promote epigenetic transgenerational alterations of imprinted gene Igf2 in adult somatic tissue. - Highlights: • Ancestral TCDD exposure induces epigenetic transgenerational inheritance. • Ancestral TCDD exposure affects methylation status in ICR and DMR2 region of Igf2. • DNMTs play a role in TCDD induced epigenetic transgenerational changes of Igf2.« less

  11. Community exposures to airborne agricultural pesticides in California: ranking of inhalation risks.

    PubMed Central

    Lee, Sharon; McLaughlin, Robert; Harnly, Martha; Gunier, Robert; Kreutzer, Richard

    2002-01-01

    We assessed inhalation risks to California communities from airborne agricultural pesticides by probability distribution analysis using ambient air data provided by the California Air Resources Board and the California Department of Pesticide Regulation. The pesticides evaluated include chloropicrin, chlorothalonil, chlorpyrifos, S,S,S-tributyl phosphorotrithioate, diazinon, 1,3-dichloropropene, dichlorvos (naled breakdown product), endosulfan, eptam, methidathion, methyl bromide, methyl isothiocyanate (MITC; metam sodium breakdown product), molinate, propargite, and simazine. Risks were estimated for the median and 75th and 95th percentiles of probability (50, 25, and 5% of the exposed populations). Exposure estimates greater than or equal to noncancer reference values occurred for 50% of the exposed populations (adults and children) for MITC subchronic and chronic exposures, methyl bromide subchronic exposures (year 2000 monitoring), and 1,3-dichloropropene subchronic exposures (1990 monitoring). Short-term chlorpyrifos exposure estimates exceeded the acute reference value for 50% of children (not adults) in the exposed population. Noncancer risks were uniformly higher for children due to a proportionately greater inhalation rate-to-body weight ratio compared to adults and other factors. Target health effects of potential concern for these exposures include neurologic effects (methyl bromide and chlorpyrifos) and respiratory effects (1,3-dichloropropene and MITC). The lowest noncancer risks occurred for simazine and chlorothalonil. Lifetime cancer risks of one-in-a-million or greater were estimated for 50% of the exposed population for 1,3-dichloropropene (1990 monitoring) and 25% of the exposed populations for methidathion and molinate. Pesticide vapor pressure was found to be a better predictor of inhalation risk compared to other methods of ranking pesticides as potential toxic air contaminants. PMID:12460795

  12. Determination of eugenol, anethole, and coumarin in the mainstream cigarette smoke of Indonesian clove cigarettes.

    PubMed

    Polzin, Gregory M; Stanfill, Stephen B; Brown, Candace R; Ashley, David L; Watson, Clifford H

    2007-10-01

    Indonesian clove cigarettes (kreteks), typically have the appearance of a conventional domestic cigarette. The unique aspects of kreteks are that in addition to tobacco they contain dried clove buds (15-40%, by wt.), and are flavored with a proprietary "sauce". Whereas the clove buds contribute to generating high levels of eugenol in the smoke, the "sauce" may also contribute other potentially harmful constituents in addition to those associated with tobacco use. We measured levels of eugenol, trans-anethole (anethole), and coumarin in smoke from 33 brands of clove-flavored cigarettes (filtered and unfiltered) from five kretek manufacturers. In order to provide information for evaluating the delivery of these compounds under standard smoking conditions, a quantification method was developed for their measurement in mainstream cigarette smoke. The method allowed collection of mainstream cigarette smoke particulate matter on a Cambridge filter pad, extraction with methanol, sampling by automated headspace solid-phase microextraction, and subsequent analysis using gas chromatography/mass spectrometry. The presence of these compounds was confirmed in the smoke of kreteks using mass spectral library matching, high-resolution mass spectrometry (+/-0.0002 amu), and agreement with a relative retention time index, and native standards. We found that when kreteks were smoked according to standardized machine smoke parameters as specified by the International Standards Organization, all 33 clove brands contained levels of eugenol ranging from 2,490 to 37,900 microg/cigarette (microg/cig). Anethole was detected in smoke from 13 brands at levels of 22.8-1,030 microg/cig, and coumarin was detected in 19 brands at levels ranging from 9.2 to 215 microg/cig. These detected levels are significantly higher than the levels found in commercial cigarette brands available in the United States.

  13. Bio-based thermosetting copolymers of eugenol and tung oil

    NASA Astrophysics Data System (ADS)

    Handoko, Harris

    There has been an increasing demand for novel synthetic polymers made of components derived from renewable sources to cope with the depletion of petroleum sources. In fact, monomers derived vegetable oils and plant sources have shown promising results in forming polymers with good properties. The following is a study of two highly viable renewable sources, eugenol and tung oil (TO) to be copolymerized into fully bio-based thermosets. Polymerization of eugenol required initial methacrylate-functionalization through Steglich esterification and the synthesized methacrylated eugenol (ME) was confirmed by 1H-NMR. Rheological studies showed ideal Newtonian behavior in ME and five other blended ME resins containing 10 -- 50 wt% TO. Free-radical copolymerization using 5 mol% of tert-butyl peroxybenzoate (crosslinking catalyst) and curing at elevated temperatures (90 -- 160 °C) formed a series of soft to rigid highly-crosslinked thermosets. Crosslinked material (89 -- 98 %) in the thermosets were determined by Soxhlet extraction to decrease with increase of TO content (0 -- 30%). Thermosets containing 0 -- 30 wt% TO possessed ultimate flexural (3-point bending) strength of 32.2 -- 97.2 MPa and flexural moduli of 0.6 -- 3.5 GPa, with 3.2 -- 8.8 % strain-to-failure ratio. Those containing 10 -- 40 wt% TO exhibited ultimate tensile strength of 3.3 -- 45.0 MPa and tensile moduli of 0.02 GPa to 1.12 GPa, with 8.5 -- 76.7 % strain-to-failure ratio. Glass transition temperatures ranged from 52 -- 152 °C as determined by DMA in 3-point bending. SEM analysis on fractured tensile test specimens detected a small degree of heterogeneity. All the thermosets are thermally stable up to approximately 300 °C based on 5% weight loss.

  14. Increased methylation of repetitive elements and DNA repair genes is associated with higher DNA oxidation in children in an urbanized, industrial environment.

    PubMed

    Alvarado-Cruz, Isabel; Sánchez-Guerra, Marco; Hernández-Cadena, Leticia; De Vizcaya-Ruiz, Andrea; Mugica, Violeta; Pelallo-Martínez, Nadia Azenet; Solís-Heredia, María de Jesús; Byun, Hyang-Min; Baccarelli, Andrea; Quintanilla-Vega, Betzabet

    2017-01-01

    DNA methylation in DNA repair genes participates in the DNA damage regulation. Particulate matter (PM), which has metals and polycyclic aromatic hydrocarbons (PAHs) adsorbed, among others has been linked to adverse health outcomes and may modify DNA methylation. To evaluate PM exposure impact on repetitive elements and gene-specific DNA methylation and DNA damage, we conducted a cross-sectional study in 150 schoolchildren (7-10 years old) from an urbanized, industrial area of the metropolitan area of Mexico City (MAMC), which frequently exhibits PM concentrations above safety standards. Methylation (5mC) of long interspersed nuclear element-1 (LINE1) and DNA repair gene (OGG1, APEX, and PARP1) was assessed by pyrosequencing in peripheral mononuclear cells, DNA damage by comet assay and DNA oxidation by 8-OHdG content. PAH and metal contents in PM 10 (≤10μm aerodynamic diameter) were determined by HPLC-MS and ICP-AES, respectively. Multiple regression analysis between DNA methylation, DNA damage, and PM 10 exposure showed that PM 10 was significantly associated with oxidative DNA damage; a 1% increase in 5mC at all CpG sites in PARP1 promoter was associated with a 35% increase in 8-OHdG, while a 1% increase at 1, 2, and 3 CpG sites resulted in 38, 9, and 56% increments, respectively. An increase of 10pg/m 3 in benzo[b]fluoranthene content of PM 10 was associated with a 6% increase in LINE1 methylation. Acenaphthene, indene [1,2,3-cd] pyrene, and pyrene concentrations correlated with higher dinucleotide methylation in OGG1, APEX and PARP1 genes, respectively. Vanadium concentration correlated with increased methylation at selected APEX and PARP1 CpG sites. DNA repair gene methylation was significantly correlated with DNA damage and with specific PM 10 -associated PAHs and Vanadium. Data suggest that exposure to PM and its components are associated with differences in DNA methylation of repair genes in children, which may contribute to DNA damage. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Neonatal Persistent Exposure to 6-Propyl-2-thiouracil, a Thyroid-Disrupting Chemical, Differentially Modulates Expression of Hepatic Catalase and C/EBP-β in Adult Rats.

    PubMed

    Bunker, Suresh Kumar; Dandapat, Jagneshwar; Sahoo, Sunil Kumar; Roy, Anita; Chainy, Gagan B N

    2016-02-01

    Persistent exposure of rats to 6-propyl-2-thiouracil (PTU) from birth resulted in decreases in plasma thyroid hormone (TH) levels and hepatic expression of catalase and CCAAT enhancer binding protein β (C/EBP-β). Catalase promoter region (-185 to +52) that contains binding sites for C/EBP-β showed an augmentation in the methylation level along with a change in methylation pattern of CpG islands in response to PTU treatment. PTU withdrawal on 30 days of birth restored TH levels and C/EBP-β to control rats in adulthood. Although catalase expression was restored to some extent in adult rats in response to PTU withdrawal, a permanent change in its promoter CpG methylation pattern was recorded. The results suggest that downregulation of adult hepatic catalase gene in response to persistent neonatal PTU exposure may not solely be attributed to thyroid-disrupting properties of PTU. It is possible that besides thyroid-disrupting behavior, PTU may impair expression of hepatic catalase by altering methylation pattern of its promoter. © 2015 Wiley Periodicals, Inc.

  16. Generational comparisons (F1 versus F3) of vinclozolin induced epigenetic transgenerational inheritance of sperm differential DNA methylation regions (epimutations) using MeDIP-Seq.

    PubMed

    Beck, Daniel; Sadler-Riggleman, Ingrid; Skinner, Michael K

    2017-07-01

    Environmentally induced epigenetic transgenerational inheritance of disease and phenotypic variation has been shown to involve DNA methylation alterations in the germline (e.g. sperm). These differential DNA methylation regions (DMRs) are termed epimutations and in part transmit the transgenerational phenotypes. The agricultural fungicide vinclozolin exposure of a gestating female rat has previously been shown to promote transgenerational disease and epimutations in F3 generation (great-grand-offspring) animals. The current study was designed to investigate the actions of direct fetal exposure on the F1 generation rat sperm DMRs compared to the F3 transgenerational sperm DMRs. A protocol involving methylated DNA immunoprecipitation (MeDIP) followed by next-generation sequencing (Seq) was used in the current study. Bioinformatics analysis of the MeDIP-Seq data was developed and several different variations in the bioinformatic analysis were evaluated. Observations indicate needs to be considered. Interestingly, the F1 generation DMRs were found to be fewer in number and for the most part distinct from the F3 generation epimutations. Observations suggest the direct exposure induced F1 generation sperm DMRs appear to promote in subsequent generations alterations in the germ cell developmental programming that leads to the distinct epimutations in the F3 generation. This may help explain the differences in disease and phenotypes between the direct exposure F1 generation and transgenerational F3 generation. Observations demonstrate a distinction between the direct exposure versus transgenerational epigenetic programming induced by environmental exposures and provide insights into the molecular mechanisms involved in the epigenetic transgenerational inheritance phenomenon.

  17. Short-term exposure to engineered nanomaterials affects cellular epigenome

    PubMed Central

    Lu, Xiaoyan; Miousse, Isabelle R.; Pirela, Sandra V.; Melnyk, Stepan; Koturbash, Igor; Demokritou, Philip

    2015-01-01

    Extensive incorporation of engineered nanomaterials (ENMs) into industrial and biomedical applications increases the risks of exposure to these potentially hazardous materials. While the geno- and cytotoxic effects of ENMs have been investigated, the potential of ENMs to target the cellular epigenome remains largely unknown. Our goal was to determine whether or not industry relevant ENMs can affect the epigenome at low cytotoxic doses. A panel of cells relevant to inhalation exposures such as human and murine macrophages (THP-1 and RAW264.7, respectively) and human small airway epithelial cells (SAEC) were exposed to printer-emitted engineered nanoparticles (PEPs), mild steel welding fumes (MS-WF), copper oxide (CuO), and titanium dioxide (TiO2) nanoparticles. Toxicological effects, including cytotoxicity, oxidative stress, and inflammatory responses were assessed, taking into consideration in-vitro dosimetry. The effects of ENMs on cellular epigenome were determined by addressing the global and transposable elements (TEs)-associated DNA methylation and expression of DNA methylation machinery and TEs. The percentage of ENMs-induced cytotoxicity for all cell lines was in the range of 0-15%. Oxidative stress was evident in SAEC after exposure to PEPs and in THP-1 when exposed to CuO. Additionally, exposure to ENMs resulted in modest alterations in DNA methylation of two most abundant TEs in mammalian genomes, LINE-1 and Alu/SINE, their transcriptional reactivation, and decreased expression of DNA methylation machinery in a cell-, dose-, and ENM-dependent manner. These results indicate that exposure to ENMs at environmentally relevant concentrations, aside from the geno- and cytotoxic effects, can also affect the epigenome of target cells. PMID:25938281

  18. Effects of Inorganic Arsenic, Methylated Arsenicals, and Arsenobetaine on Atherosclerosis in the apoE−/− Mouse Model and the Role of As3mt-Mediated Methylation

    PubMed Central

    Negro Silva, Luis Fernando; Lemaire, Maryse; Lemarié, Catherine A.; Plourde, Dany; Bolt, Alicia M.; Chiavatti, Christopher; Bohle, D. Scott; Slavkovich, Vesna; Graziano, Joseph H.; Lehoux, Stéphanie

    2017-01-01

    Background: Arsenic is metabolized through a series of oxidative methylation reactions by arsenic (3) methyltransferase (As3MT) to yield methylated intermediates. Although arsenic exposure is known to increase the risk of atherosclerosis, the contribution of arsenic methylation and As3MT remains undefined. Objectives: Our objective was to define whether methylated arsenic intermediates were proatherogenic and whether arsenic biotransformation by As3MT was required for arsenic-enhanced atherosclerosis. Methods: We utilized the apoE−/− mouse model to compare atherosclerotic plaque size and composition after inorganic arsenic, methylated arsenical, or arsenobetaine exposure in drinking water. We also generated apoE−/−/As3mt−/− double knockout mice to test whether As3MT-mediated biotransformation was required for the proatherogenic effects of inorganic arsenite. Furthermore, As3MT expression and function were assessed in in vitro cultures of plaque-resident cells. Finally, bone marrow transplantation studies were performed to define the contribution of As3MT-mediated methylation in different cell types to the development of atherosclerosis after inorganic arsenic exposure. Results: We found that methylated arsenicals, but not arsenobetaine, are proatherogenic and that As3MT is required for arsenic to induce reactive oxygen species and promote atherosclerosis. Importantly, As3MT was expressed and functional in multiple plaque-resident cell types, and transplant studies indicated that As3MT is required in extrahepatic tissues to promote atherosclerosis. Conclusion: Taken together, our findings indicate that As3MT acts to promote cardiovascular toxicity of arsenic and suggest that human AS3MT SNPs that correlate with enzyme function could predict those most at risk to develop atherosclerosis among the millions that are exposed to arsenic. https://doi.org/10.1289/EHP806 PMID:28728140

  19. Trichloroethylene-induced alterations in DNA methylation were enriched in polycomb protein binding sites in effector/memory CD4+ T cells

    PubMed Central

    Gilbert, Kathleen M.; Blossom, Sarah J.; Reisfeld, Brad; Erickson, Stephen W.; Vyas, Kanan; Maher, Mary; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A.; Bhattacharyya, Sudeepa

    2017-01-01

    Abstract Exposure to industrial solvent and water pollutant trichloroethylene (TCE) can promote autoimmunity, and expand effector/memory (CD62L) CD4+ T cells. In order to better understand etiology reduced representation bisulfite sequencing was used to study how a 40-week exposure to TCE in drinking water altered methylation of ∼337 770 CpG sites across the entire genome of effector/memory CD4+ T cells from MRL+/+ mice. Regardless of TCE exposure, 62% of CpG sites in autosomal chromosomes were hypomethylated (0–15% methylation), and 25% were hypermethylated (85–100% methylation). In contrast, only 6% of the CpGs on the X chromosome were hypomethylated, and 51% had mid-range methylation levels. In terms of TCE impact, TCE altered (≥ 10%) the methylation of 233 CpG sites in effector/memory CD4+ T cells. Approximately 31.7% of these differentially methylated sites occurred in regions known to bind one or more Polycomb group (PcG) proteins, namely Ezh2, Suz12, Mtf2 or Jarid2. In comparison, only 23.3% of CpG sites not differentially methylated by TCE were found in PcG protein binding regions. Transcriptomics revealed that TCE altered the expression of ∼560 genes in the same effector/memory CD4+ T cells. At least 80% of the immune genes altered by TCE had binding sites for PcG proteins flanking their transcription start site, or were regulated by other transcription factors that were in turn ordered by PcG proteins at their own transcription start site. Thus, PcG proteins, and the differential methylation of their binding sites, may represent a new mechanism by which TCE could alter the function of effector/memory CD4+ T cells. PMID:29129997

  20. Tricholoma matsutake 1-Ocen-3-ol and methyl cinnamate repel mycophagous Proisotoma minuta (Collembola: Insecta)

    PubMed Central

    Shimano, Satoshi; Suzuki, Masahiro

    2007-01-01

    Two major volatiles produced by the mycelia and fruiting bodies of Tricholoma matsutake (1-octen-3-ol and methyl cinnamate) repel a mycophagous collembolan, Proisotoma minuta. Aggregation of the collembolans on their diet was significantly inhibited by exposure to 1 ppm methyl cinnamate or 10 to 100 ppm 1-octen-3-ol. The aggregation activity decreased dose-dependently upon exposure to 1-octen-3-ol at concentrations higher than 0.01 ppm. Aggregation in the presence of methyl cinnamate exhibited three phases: no significant effect at concentrations ranging from 0.001 to 0.1 ppm, significant inhibition from 1 to 100 ppm, and strong inhibition at 1,000 ppm. These results may explain why certain collembolan species do not prefer T. matsutake fruiting bodies. PMID:18066606

  1. Chronic exposure to a low concentration of bisphenol A during follicle culture affects the epigenetic status of germinal vesicles and metaphase II oocytes.

    PubMed

    Trapphoff, Tom; Heiligentag, Martyna; El Hajj, Nady; Haaf, Thomas; Eichenlaub-Ritter, Ursula

    2013-12-01

    To determine whether exposure to low concentrations of the endocrine disrupting chemical bisphenol A (BPA) during follicle culture and oocyte growth alters the methylation status of differentially methylated regions (DMRs) of imprinted genes and histone posttranslational modification patterns in mammalian oocytes. Comparative and control study. Experimental laboratory. C57/Bl6JxCBA/Ca mice. Exposure of oocytes to 3 nM or 300 nM BPA during follicle culture from preantral to antral stage. Methylation status of DMRs of maternally imprinted (Snrpn, Igf2r, and Mest) and paternally imprinted gene(s) (H19) in mouse germinal vesicle oocytes; trimethylation of histone H3K9, acetylation of histone H4K12, and distance between centromeres of sister chromatids in metaphase II oocytes. Exposure to 3 nM BPA was associated with slightly accelerated follicle development, statistically significant increases in allele methylation errors in DMRs of maternally imprinted genes, and statistically significant decreases in histone H3K9 trimethylation and interkinetochore distance. The disturbances in oocyte genomic imprinting and modification of posttranslational histone and centromere architecture provide the first link between low BPA exposures and induction of epigenetic changes that may contribute to chromosome congression failures and meiotic errors, and to altered gene expression that might affect health of the offspring. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Evaluation of the Antioxidant Activity of Extracts and Active Principles of Commonly Consumed Indian Spices.

    PubMed

    Patra, Kartick; Jana, Samarjit; Mandal, Deba Prasad; Bhattacharjee, Shamee

    2016-01-01

    Accumulating evidence suggests that free radical reactions play a key part in the development of degenerative diseases and that an antioxidant-rich diet is a major defense against these free radical reactions. In this study, we explore comparative antioxidant capacities of extracts of some commonly used in Indian spices (anise, cardamom, Ceylon cinnamon, and clove) along with their purified components (anethole, eucalyptol, cinnamaldehyde, and eugenol, respectively). Eugenol shows the highest 1,1-diphenyl-2-picrylhydrazyl, hydroxyl, and superoxide scavenging and reducing power activity in terms of weight; however, this was not found when compared in terms of equivalence. Extracts of the other three spices were found to be more potent antioxidants than their corresponding active components. Interestingly, clove extract, despite possessing the highest phenol and flavonoid content, is not the most potent radical scavenger. At low concentrations, both the crude extracts and their purified components (except for anethole and eugenol) have low hemolytic activity, but at higher concentrations purified components are more toxic than their respective crude extract. This study suggests that spices as a whole are more potent antioxidants than their purified active components, perhaps reflecting the synergism among different phytochemicals present in spice extracts.

  3. Concentrations of nine alkenylbenzenes, coumarin, piperonal and pulegone in Indian bidi cigarette tobacco.

    PubMed

    Stanfill, S B; Calafat, A M; Brown, C R; Polzin, G M; Chiang, J M; Watson, C H; Ashley, D L

    2003-02-01

    Indian-made bidi cigarettes sold in the United States are available in a variety of exotic (e.g. clove, mango) and candy-like (e.g. chocolate, raspberry) flavors. Because certain tobacco flavorings contain alkenylbenzenes and other toxic or carcinogenic chemicals, we measured the concentration of flavor-related compounds in bidi tobacco using a previously developed method. Twenty-three brands of bidis were sampled using automated headspace solid-phase microextraction and subsequently analyzed for 12 compounds by gas chromatography-mass spectrometry. Two alkenylbenzene compounds, trans-anethole and eugenol, were found in greater than 90% of the brands analyzed. Methyleugenol, pulegone and estragole were each detected in 30% or more of the brands, whereas safrole and elemicin were not detected in any of the brands. The flavor-related compounds with the highest tobacco concentrations were eugenol (12,000 microg/g tobacco) and trans-anethole (2200 microg/g tobacco). The highest eugenol and trans-anethole concentrations found in bidi tobacco were about 70,000 and 7500 times greater, respectively, than the highest levels previously found in US cigarette brands. Measurement of these compounds is crucial to evaluation of potential risks associated with inhaling highly concentrated flavor-related compounds from bidis or other tobacco products.

  4. Subcutaneous Connective Tissue Reaction to a New Nano Zinc-Oxide Eugenol Sealer in Rat Model

    PubMed Central

    Omidi, Salma; Javidi, Maryam; Zarei, Mina; Mushakhian, Siavash; Jafarian, Amirhossein

    2017-01-01

    Introduction: The aim of this animal study was to evaluate the histological response of the new nano zinc-oxide eugenol (NZOE) sealer in comparison with Pulp Canal Sealer (ZOE based) and AH-26 (epoxy resin sealer). Methods and Materials: A total of 27 Wistar rats were used. Four polyethylene tubes were implanted in the back of each rat (three tubes containing the test materials and an empty tube as a control). Then, 9 animals were sacrificed at each interval of 15, 30 and 60 days, and the implants were removed with the surrounding tissues.Samples were evaluated for the presence of inflammatory cell (mononuclear cell), vascular changes, fibrous tissue formation and present of giant cell. Comparisons between groups and time-periods were performed using the Kruskal-Wallis and Mann-Whitney U non-parametric tests. The level of significance was set at 0.05. Results: No significant difference was observed in tissue reactions and biocompatibility pattern of three sealers during 3 experimental periods (P<0.05). In all groups the tissue behavior showed tendency to decrease the irritation effect over time. Conclusion: The new nano zinc-oxide eugenol sealer has histocompatibility properties comparable to conventional commercial sealers. PMID:28179927

  5. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi.

    PubMed

    Abbaszadeh, S; Sharifzadeh, A; Shokri, H; Khosravi, A R; Abbaszadeh, A

    2014-06-01

    This work is an attempt to examine the antifungal activity of thymol, carvacrol, eugenol and menthol against 11 food-decaying fungi. The susceptibility test for the compounds was carried out in terms of minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) using microdilution method in 96 multi-well microtiter plates. Results indicated that all compounds were effective to varying extents against various fungal isolates, with the highest efficacy displayed by carvacrol (mean MIC value: 154.5 μg/mL) (P<0.05). The incorporation of increased concentrations of all compounds to the media led to progressive and significant reduction in growth for all fungi. The most potent inhibitory activity of thymol, carvacrol, eugenol and menthol was found for Cladosporium spp. (MIC: 100 μg/mL), Aspergillus spp. (MIC: 100 μg/mL), Cladosporium spp. (MIC: 350 μg/mL), and Aspergillus spp. and Cladosporium spp. (MIC: 125 μg/mL), respectively. Thus, the application of these herbal components could be considered as a good alternatives to inhibit fungal growth and to reduce the use of synthetic fungicides. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. ESR studies on reactivity of protein-derived tyrosyl radicals formed by prostaglandin H synthase and ribonucleotide reductase.

    PubMed

    Lassmann, G; Curtis, J; Liermann, B; Mason, R P; Eling, T E

    1993-01-01

    Using ESR spectroscopy, the ability of enzyme inhibitors to quench protein-derived tyrosyl radicals was studied in two different enzymes, prostaglandin H synthase and ribonucleotide reductase. The prostaglandin H synthase inhibitors indomethacin, eugenol, and MK-410 effectively prevent the formation of tyrosyl radicals during the oxidation of arachidonic acid by prostaglandin H synthase from ram seminal vesicles. A direct reaction with preformed tyrosyl radicals was observed only with eugenol. The other prostaglandin H synthase inhibitors were ineffective. The ribonucleotide reductase inhibitors hydroxyurea and 4-hydroxyanisole, which effectively inactivate the tyrosyl radical in the active site of ribonucleotide reductase present in tumor cells, exhibit a different reactivity with tyrosyl radicals formed by prostaglandin H synthase. Hydroxyurea quenches preformed tyrosyl radicals in prostaglandin H synthase weakly, whereas 4-hydroxyanisole does not quench tyrosyl radicals in prostaglandin H synthase at all. Eugenol, which quenches preformed prostaglandin H synthase-derived tyrosyl radicals, also quenches the tyrosyl radical in ribonucleotide reductase. The results suggest that the reactivity of protein-linked tyrosyl radicals in ribonucleotide reductase and those formed during prostaglandin H synthase catalysis are very different and have unrelated roles in enzyme catalysis.

  7. Effect of oven drying and storage on essential oil composition of clove (Syzygium aromaticum) from Toli-Toli

    NASA Astrophysics Data System (ADS)

    Murni, V. W.; Saepudin, E.; Cahyana, A. H.; Rahayu, D. U. C.; Hastuti, L. T.; Haib, J.

    2017-07-01

    The research about post-harvested clove is still limited especially in Indonesia, as the biggest producer of clove in the world. The present study was aimed to investigate the effect of drying process and storage on the composition of essential oil of Indonesian clove originated from Toli-Toli. The essential oil of fresh and dried clove was obtained by steam distillation and the composition of the oil was analyzed by gas chromatography-mass spectrometry (GC-MS). In all of the clove oil samples, eugenol was the major component, followed by caryophyllene and acetyleugenol. The drying method used was oven drying at 50°C until clove's moisture content reaches 13±1%. During the drying process, the content of phenylpropanoids such as eugenol, isoeugenol, and chavicol increased, while esters and monoterpenes decreased. The composition of clove oil was studied from dried clove after oven drying, then stored in the laboratory at room temperature for 4 months. There was slightly change on clove oil composition after 4 months of storage. The content of major components of clove like eugenol was higher while acetyleugenol was lower after 4 months of storage.

  8. Genome wide analysis of DNA methylation and gene expression changes in the mouse lung following subchronic arsenate exposure

    EPA Science Inventory

    Alterations in DNA methylation have been proposed as a mechanism for the complex toxicological effects of arsenic. In this study, whole genome DNA methylation and gene expression changes were evaluated in lungs from female mice exposed for 90 days to 50 ppm arsenate (As) in drink...

  9. Chemical composition, immunostimulatory, cytotoxic and antiparasitic activities of the essential oil from Brazilian red propolis

    PubMed Central

    das Neves, Raquel Nascimento; de Pinho, Rodrigo Barros; Silva, Mara Thais de Oliveira; Savegnago, Lucielli; Collares, Tiago; Seixas, Fabiana; Begnini, Karine; Henriques, João Antonio Pêgas; Ely, Mariana Roesch; Rufatto, Luciane C.; Moura, Sidnei; Barcellos, Thiago; Padilha, Francine; Dellagostin, Odir; Borsuk, Sibele

    2018-01-01

    Most studies of Brazilian red propolis have explored the composition and biological properties of its ethanolic extracts. In this work, we chemically extracted and characterized the essential oil of Brazilian red propolis (EOP) and assessed its adjuvant, antiparasitic and cytotoxic activities. The chemical composition of EOP was analyzed using gas chromatography with mass spectrometry (GC-MS). EOP was tested for in vitro activity against Trichomonas vaginalis (ATCC 30236 isolate); trophozoites were treated with different concentrations of EOP (ranging from 25 to 500 μg/mL) in order to establish the MIC and IC50 values. A cytotoxicity assay was performed in CHO-K1 cells submitted to different EOP concentrations. BALB/c mice were used to test the adjuvant effect of EOP. The animals were divided in 3 groups and inoculated as follows: 0.4 ng/kg BW EOP (G1); 50 μg of rCP40 protein (G2); or a combination of 0.4 ng/kg BW EOP and 50 μg of rCP40 (G3). Total IgG, IgG1 and IgG2a levels were assessed by ELISA. The major constituent compounds of EOP were methyl eugenol (13.1%), (E)-β-farnesene (2.50%), and δ-amorphene (2.3%). Exposure to EOP inhibited the growth of T. vaginalis, with an IC50 value of 100 μg/mL of EOP. An EOP concentration of 500 μg/mL was able to kill 100% of the T. vaginalis trophozoites. The EOP kinetic growth curve showed a 36% decrease in trophozoite growth after a 12 h exposure to 500 μg/mL of EOP, while complete parasite death was induced at 24 h. With regard to CHO-K1 cells, the CC50 was 266 μg/mL, and 92% cytotoxicity was observed after exposure to 500 μg/mL of EOP. Otherwise, a concentration of 200 μg/mL of EOP was able to reduce parasite proliferation by 70% and was not cytotoxic to CHO-K1 cells. As an adjuvant, a synergistic effect was observed when EOP was combined with the rCP40 protein (G3) in comparison to the administration of each component alone (G1 and G2), resulting in higher concentrations of IgG, IgG1 and IgG2a. EOP is constituted by biologically active components with promising antiparasitic and immunostimulatory activities and can be investigated for the formulation of new vaccines or trichomonacidal drugs. PMID:29390009

  10. Chemical composition, immunostimulatory, cytotoxic and antiparasitic activities of the essential oil from Brazilian red propolis.

    PubMed

    Sena-Lopes, Ângela; Bezerra, Francisco Silvestre Brilhante; das Neves, Raquel Nascimento; de Pinho, Rodrigo Barros; Silva, Mara Thais de Oliveira; Savegnago, Lucielli; Collares, Tiago; Seixas, Fabiana; Begnini, Karine; Henriques, João Antonio Pêgas; Ely, Mariana Roesch; Rufatto, Luciane C; Moura, Sidnei; Barcellos, Thiago; Padilha, Francine; Dellagostin, Odir; Borsuk, Sibele

    2018-01-01

    Most studies of Brazilian red propolis have explored the composition and biological properties of its ethanolic extracts. In this work, we chemically extracted and characterized the essential oil of Brazilian red propolis (EOP) and assessed its adjuvant, antiparasitic and cytotoxic activities. The chemical composition of EOP was analyzed using gas chromatography with mass spectrometry (GC-MS). EOP was tested for in vitro activity against Trichomonas vaginalis (ATCC 30236 isolate); trophozoites were treated with different concentrations of EOP (ranging from 25 to 500 μg/mL) in order to establish the MIC and IC50 values. A cytotoxicity assay was performed in CHO-K1 cells submitted to different EOP concentrations. BALB/c mice were used to test the adjuvant effect of EOP. The animals were divided in 3 groups and inoculated as follows: 0.4 ng/kg BW EOP (G1); 50 μg of rCP40 protein (G2); or a combination of 0.4 ng/kg BW EOP and 50 μg of rCP40 (G3). Total IgG, IgG1 and IgG2a levels were assessed by ELISA. The major constituent compounds of EOP were methyl eugenol (13.1%), (E)-β-farnesene (2.50%), and δ-amorphene (2.3%). Exposure to EOP inhibited the growth of T. vaginalis, with an IC50 value of 100 μg/mL of EOP. An EOP concentration of 500 μg/mL was able to kill 100% of the T. vaginalis trophozoites. The EOP kinetic growth curve showed a 36% decrease in trophozoite growth after a 12 h exposure to 500 μg/mL of EOP, while complete parasite death was induced at 24 h. With regard to CHO-K1 cells, the CC50 was 266 μg/mL, and 92% cytotoxicity was observed after exposure to 500 μg/mL of EOP. Otherwise, a concentration of 200 μg/mL of EOP was able to reduce parasite proliferation by 70% and was not cytotoxic to CHO-K1 cells. As an adjuvant, a synergistic effect was observed when EOP was combined with the rCP40 protein (G3) in comparison to the administration of each component alone (G1 and G2), resulting in higher concentrations of IgG, IgG1 and IgG2a. EOP is constituted by biologically active components with promising antiparasitic and immunostimulatory activities and can be investigated for the formulation of new vaccines or trichomonacidal drugs.

  11. Asbestos-Induced Epithelial Changes in Organ Cultures of Hamster Trachea: Inhibition by Retinyl Methyl Ether

    NASA Astrophysics Data System (ADS)

    Mossman, B. T.; Craighead, J. E.; MacPherson, B. V.

    1980-01-01

    The epithelium of the hamster trachea in organ culture undergoes hyperplasia and squamous metaplasia after exposure to the amphibole types of asbestos, crocidolite and amosite. These changes are inhibited when the synthetic vitamin A analog, retinyl methyl ether, is incorporated into the culture medium. These findings suggest a possible use for retinoids in the prevention and treatment of respiratory tract disease associated with environmental exposure to asbestos.

  12. Recovery study of cholinesterases and neurotoxic signs in the non-target freshwater invertebrate Chilina gibbosa after an acute exposure to an environmental concentration of azinphos-methyl.

    PubMed

    Cossi, Paula Fanny; Beverly, Boburg; Carlos, Luquet; Kristoff, Gisela

    2015-10-01

    Azinphos-methyl belongs to the class of organophosphate insecticides which are recognized for their anticholinesterase action. It is one of the most frequently used insecticides in the Upper Valley of Río Negro and Río Neuquén in Argentina, where agriculture represents the second most important economic activity. It has been detected in water from this North Patagonian region throughout the year and the maximum concentration found was 22.48 μg L(-1) during the application period. Chilina gibbosa is a freshwater gastropod widely distributed in South America, particularly in Patagonia, Argentina and in Southern Chile. Toxicological studies performed with C. gibbosa in our laboratory have reported neurotoxicity signs and cholinesterase inhibition after exposure to azinphos-methyl for 48 h. Recovery studies together with characterization of the enzyme and sensitivity of the enzyme to pesticides can improve the toxicological evaluation. However, little is known about recovery patterns in organisms exposed to organophosphates. The aim of the present work was to evaluate the recovery capacity (during 21 days in pesticide-free water) of cholinesterase activity and neurotoxicity in C. gibbosa after 48 h of exposure to azinphos-methyl. Also, lethality and carboxylesterase activity were registered during the recovery period. Regarding enzyme activities, after a 48-h exposure to 20 μg L(-1) of azinphos-methyl, cholinesterases showed an inhibition of 85% with respect to control, while carboxylesterases were not affected. After 21 days in pesticide-free water, cholinesterases continued to be inhibited (70%). Severe neurotoxicity signs were observed after exposure: 82% of the snails presented lack of adherence to vessels, 11% showed weak adherence, and 96% exhibited an abnormal protrusion of the head-foot region from shell. After 21 days in pesticide-free water, only 15% of the snails presented severe signs of neurotoxicity. However, during the recovery period significant lethality (30%) was registered in treated snails. C. gibbosa is a very sensitive organism to azinphos-methyl. These snails play an important role in the structure and function of aquatic food webs in this region. Thus, a decline of this species' population would probably have an impact on aquatic and non-aquatic communities. Our results show that C. gibbosa is a relevant sentinel species for studying exposure and effects of azinphos-methyl using behavioral and biochemical biomarkers. Neurotoxic behavioral signs are very sensitive, non-destructive biomarkers, which can be easily detected for about one week after acute exposure. Cholinesterse activity is a very useful biomarker showing a high sensitivity and a slow recovery capacity increasing the possibility to indirectly detect organophosphates for long periods after a contaminant event. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Kidney Dysfunction in Adult Offspring Exposed In Utero to Type 1 Diabetes Is Associated with Alterations in Genome-Wide DNA Methylation

    PubMed Central

    Gautier, Jean-François; Porcher, Raphaël; Abi Khalil, Charbel; Bellili-Munoz, Naima; Fetita, Lila Sabrina; Travert, Florence; Choukem, Simeon-Pierre; Riveline, Jean-Pierre; Hadjadj, Samy; Larger, Etienne; Boudou, Philippe; Blondeau, Bertrand; Roussel, Ronan; Ferré, Pascal; Ravussin, Eric; Rouzet, François; Marre, Michel

    2015-01-01

    Background Fetal exposure to hyperglycemia impacts negatively kidney development and function. Objective Our objective was to determine whether fetal exposure to moderate hyperglycemia is associated with epigenetic alterations in DNA methylation in peripheral blood cells and whether those alterations are related to impaired kidney function in adult offspring. Design Twenty nine adult, non-diabetic offspring of mothers with type 1 diabetes (T1D) (case group) were matched with 28 offspring of T1D fathers (control group) for the study of their leukocyte genome-wide DNA methylation profile (27,578 CpG sites, Human Methylation 27 BeadChip, Illumina Infinium). In a subset of 19 cases and 18 controls, we assessed renal vascular development by measuring Glomerular Filtration Rate (GFR) and Effective Renal Plasma Flow (ERPF) at baseline and during vasodilatation produced by amino acid infusion. Results Globally, DNA was under-methylated in cases vs. controls. Among the 87 CpG sites differently methylated, 74 sites were less methylated and 13 sites more methylated in cases vs. controls. None of these CpG sites were located on a gene known to be directly involved in kidney development and/or function. However, the gene encoding DNA methyltransferase 1 (DNMT1)—a key enzyme involved in gene expression during early development–was under-methylated in cases. The average methylation of the 74 under-methylated sites differently correlated with GFR in cases and controls. Conclusion Alterations in methylation profile imprinted by the hyperglycemic milieu of T1D mothers during fetal development may impact kidney function in adult offspring. The involved pathways seem to be a nonspecific imprinting process rather than specific to kidney development or function. PMID:26258530

  14. Kidney Dysfunction in Adult Offspring Exposed In Utero to Type 1 Diabetes Is Associated with Alterations in Genome-Wide DNA Methylation.

    PubMed

    Gautier, Jean-François; Porcher, Raphaël; Abi Khalil, Charbel; Bellili-Munoz, Naima; Fetita, Lila Sabrina; Travert, Florence; Choukem, Simeon-Pierre; Riveline, Jean-Pierre; Hadjadj, Samy; Larger, Etienne; Boudou, Philippe; Blondeau, Bertrand; Roussel, Ronan; Ferré, Pascal; Ravussin, Eric; Rouzet, François; Marre, Michel

    2015-01-01

    Fetal exposure to hyperglycemia impacts negatively kidney development and function. Our objective was to determine whether fetal exposure to moderate hyperglycemia is associated with epigenetic alterations in DNA methylation in peripheral blood cells and whether those alterations are related to impaired kidney function in adult offspring. Twenty nine adult, non-diabetic offspring of mothers with type 1 diabetes (T1D) (case group) were matched with 28 offspring of T1D fathers (control group) for the study of their leukocyte genome-wide DNA methylation profile (27,578 CpG sites, Human Methylation 27 BeadChip, Illumina Infinium). In a subset of 19 cases and 18 controls, we assessed renal vascular development by measuring Glomerular Filtration Rate (GFR) and Effective Renal Plasma Flow (ERPF) at baseline and during vasodilatation produced by amino acid infusion. Globally, DNA was under-methylated in cases vs. controls. Among the 87 CpG sites differently methylated, 74 sites were less methylated and 13 sites more methylated in cases vs. controls. None of these CpG sites were located on a gene known to be directly involved in kidney development and/or function. However, the gene encoding DNA methyltransferase 1 (DNMT1)--a key enzyme involved in gene expression during early development--was under-methylated in cases. The average methylation of the 74 under-methylated sites differently correlated with GFR in cases and controls. Alterations in methylation profile imprinted by the hyperglycemic milieu of T1D mothers during fetal development may impact kidney function in adult offspring. The involved pathways seem to be a nonspecific imprinting process rather than specific to kidney development or function.

  15. Cigarette smoke induces methylation of the tumor suppressor gene NISCH

    PubMed Central

    Ostrow, Kimberly Laskie; Michalidi, Christina; Guerrero-Preston, Rafael; Hoque, Mohammad O.; Greenberg, Alissa; Rom, William; Sidransky, David

    2013-01-01

    We have previously identified a putative tumor suppressor gene, NISCH, whose promoter is methylated in lung tumor tissue as well as in plasma obtained from lung cancer patients. NISCH was observed to be more frequently methylated in smoker lung cancer patients than in non-smoker lung cancer patients. Here, we investigated the effect of tobacco smoke exposure on methylation of the NISCH gene. We tested methylation of NISCH after oral keratinocytes were exposed to mainstream and side stream cigarette smoke extract in culture. Methylation of the promoter region of the NISCH gene was also evaluated in plasma obtained from lifetime non-smokers and light smokers (< 20 pack/year), with and without lung tumors, and heavy smokers (20+ pack/year) without disease. Promoter methylation of NISCH was tested by quantitative fluorogenic real-time PCR in all samples. Promoter methylation of NISCH occurred after exposure to mainstream tobacco smoke as well as to side stream tobacco smoke in normal oral keratinocyte cell lines. NISCH methylation was also detected in 68% of high-risk, heavy smokers without detectable tumors. Interestingly, in light smokers, NISCH methylation was present in 69% of patients with lung cancer and absent in those without disease. Our pilot study indicates that tobacco smoke induces methylation changes in the NISCH gene promoter before any detectable cancer. Methylation of the NISCH gene was also found in lung cancer patients’ plasma samples. After confirming these findings in longitudinally collected plasma samples from high-risk populations (such as heavy smokers), examining patients for hypermethylation of the NISCH gene may aid in identifying those who should undergo additional screening for lung cancer. PMID:23503203

  16. Prenatal Exposure to Maternal Cigarette Smoking and DNA Methylation: Epigenome-Wide Association in a Discovery Sample of Adolescents and Replication in an Independent Cohort at Birth through 17 Years of Age

    PubMed Central

    Lee, Ken W.K.; Richmond, Rebecca; Hu, Pingzhao; French, Leon; Shin, Jean; Bourdon, Celine; Reischl, Eva; Waldenberger, Melanie; Zeilinger, Sonja; Gaunt, Tom; McArdle, Wendy; Ring, Susan; Woodward, Geoff; Bouchard, Luigi; Gaudet, Daniel; Smith, George Davey; Relton, Caroline; Paus, Tomas

    2014-01-01

    Background: Prenatal exposure to maternal cigarette smoking (prenatal smoke exposure) had been associated with altered DNA methylation (DNAm) at birth. Objective: We examined whether such alterations are present from birth through adolescence. Methods: We used the Infinium HumanMethylation450K BeadChip to search across 473,395 CpGs for differential DNAm associated with prenatal smoke exposure during adolescence in a discovery cohort (n = 132) and at birth, during childhood, and during adolescence in a replication cohort (n = 447). Results: In the discovery cohort, we found five CpGs in MYO1G (top-ranking CpG: cg12803068, p = 3.3 × 10–11) and CNTNAP2 (cg25949550, p = 4.0 × 10–9) to be differentially methylated between exposed and nonexposed individuals during adolescence. The CpGs in MYO1G and CNTNAP2 were associated, respectively, with higher and lower DNAm in exposed versus nonexposed adolescents. The same CpGs were differentially methylated at birth, during childhood, and during adolescence in the replication cohort. In both cohorts and at all developmental time points, the differential DNAm was in the same direction and of a similar magnitude, and was not altered appreciably by adjustment for current smoking by the participants or their parents. In addition, four of the five EWAS (epigenome-wide association study)–significant CpGs in the adolescent discovery cohort were also among the top sites of differential methylation in a previous birth cohort, and differential methylation of CpGs in CYP1A1, AHRR, and GFI1 observed in that study was also evident in our discovery cohort. Conclusions: Our findings suggest that modifications of DNAm associated with prenatal maternal smoking may persist in exposed offspring for many years—at least until adolescence. Citation: Lee KW, Richmond R, Hu P, French L, Shin J, Bourdon C, Reischl E, Waldenberger M, Zeilinger S, Gaunt T, McArdle W, Ring S, Woodward G, Bouchard L, Gaudet D, Davey Smith G, Relton C, Paus T, Pausova Z. 2015. Prenatal exposure to maternal cigarette smoking and DNA methylation: epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age. Environ Health Perspect 123:193–199; http://dx.doi.org/10.1289/ehp.1408614 PMID:25325234

  17. Prenatal maternal immune activation causes epigenetic differences in adolescent mouse brain

    PubMed Central

    Basil, P; Li, Q; Dempster, E L; Mill, J; Sham, P-C; Wong, C C Y; McAlonan, G M

    2014-01-01

    Epigenetic processes such as DNA methylation have been implicated in the pathophysiology of neurodevelopmental disorders including schizophrenia and autism. Epigenetic changes can be induced by environmental exposures such as inflammation. Here we tested the hypothesis that prenatal inflammation, a recognized risk factor for schizophrenia and related neurodevelopmental conditions, alters DNA methylation in key brain regions linked to schizophrenia, namely the dopamine rich striatum and endocrine regulatory centre, the hypothalamus. DNA methylation across highly repetitive elements (long interspersed element 1 (LINE1) and intracisternal A-particles (IAPs)) were used to proxy global DNA methylation. We also investigated the Mecp2 gene because it regulates transcription of LINE1 and has a known association with neurodevelopmental disorders. Brain tissue was harvested from 6 week old offspring of mice exposed to the viral analog PolyI:C or saline on gestation day 9. We used Sequenom EpiTYPER assay to quantitatively analyze differences in DNA methylation at IAPs, LINE1 elements and the promoter region of Mecp2. In the hypothalamus, prenatal exposure to PolyI:C caused significant global DNA hypomethylation (t=2.44, P=0.019, PolyI:C mean 69.67%, saline mean 70.19%), especially in females, and significant hypomethylation of the promoter region of Mecp2, (t=3.32, P=0.002; PolyI:C mean 26.57%, saline mean 34.63%). IAP methylation was unaltered. DNA methylation in the striatum was not significantly altered. This study provides the first experimental evidence that exposure to inflammation during prenatal life is associated with epigenetic changes, including Mecp2 promoter hypomethylation. This suggests that environmental and genetic risk factors associated with neurodevelopmental disorders may act upon similar pathways. This is important because epigenetic changes are potentially modifiable and their investigation may open new avenues for treatment. PMID:25180573

  18. The role of DNA methylation in catechol-enhanced erythroid differentiation of K562 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiao-Fei; Wu, Xiao-Rong; Xue, Ming

    2012-11-15

    Catechol is one of phenolic metabolites of benzene in vivo. Catechol is also widely used in pharmaceutical and chemical industries. In addition, fruits, vegetables and cigarette smoke also contain catechol. Our precious study showed that several benzene metabolites (phenol, hydroquinone, and 1,2,4-benzenetriol) inhibited erythroid differentiation of K562 cells. In present study, the effect of catechol on erythroid differentiation of K562 cells was investigated. Moreover, to address the role of DNA methylation in catechol-induced effect on erythroid differentiation in K562 cells, methylation levels of erythroid-specific genes were analyzed by Quantitative MassARRAY methylation analysis platform. Benzidine staining showed that exposure to catecholmore » enhanced hemin-induced hemoglobin accumulation in K562 cells in concentration- and time-dependent manners. The mRNA expression of erythroid specific genes, including α-globin, β-globin, γ-globin, erythroid 5-aminolevulinate synthase, erythroid porphobilinogen deaminase, and transcription factor GATA-1 genes, showed a significant concentration-dependent increase in catechol-treated K562 cells. The exposure to catechol caused a decrease in DNA methylation levels at a few CpG sites in some erythroid specific genes including α-globin, β-globin and erythroid porphobilinogen deaminase genes. These results indicated that catechol improved erythroid differentiation potency of K562 cells at least partly via up-regulating transcription of some erythroid related genes, and suggested that inhibition of DNA methylation might be involved in up-regulated expression of some erythroid related genes. -- Highlights: ► Catechol enhanced hemin-induced hemoglobin accumulation. ► Exposure to catechol resulted in up-regulated expression of erythroid genes. ► Catechol reduced methylation levels at some CpG sites in erythroid genes.« less

  19. Changes in DNA methylation over the growing season differ between North Carolina farmworkers and non-farmworkers.

    PubMed

    Howard, Timothy D; Hsu, Fang-Chi; Chen, Haiying; Quandt, Sara A; Talton, Jennifer W; Summers, Phillip; Arcury, Thomas A

    2016-10-01

    The occupational risk to farmworkers, particularly chronic exposure to pesticides, is an acknowledged environmental and work-related health problem. Epigenetics has recently been shown to contribute to a number of complex diseases and traits, including measures of cognitive function and preclinical neurodegenerative disease. We sought to determine whether changes in DNA methylation existed between farmworker and non-farmworker populations and to identify the genes most likely involved in those changes. Eighty-three farmworkers and 60 non-farmworkers were selected from PACE4, a community-based, participatory research project comparing occupational exposures between immigrant Latino farmworker and non-farmworker manual workers. Measurements of DNA methylation were performed with the Infinium HumanMethylation450 BeadChip, at the beginning and end of the 2012 growing season. Bonferroni adjustment was used to identify significant findings (p = 1.03 × 10(-7), based on 485,000 tested methylation sites), although less stringent criteria (i.e., p ≤ 1 × 10(-6)) were used to identify sites of interest. Expression quantitative trait locus (eQTL) databases were used to help identify the most likely functional genes for each associated methylation site. Methylation at 36 CpG sites, located in or near 72 genes, differed between the two groups (p ≤ 1 × 10(-6)). The difference between the two groups was generally due to an increase in methylation in the farmworkers and a slight decrease in methylation in the non-farmworkers. Enrichment was observed in several biological pathways, including those involved in the immune response, as well as growth hormone signaling, role of BRCA1 in DNA damage response, p70S6K signaling, and PI3K signaling in B lymphocytes. We identified considerable changes in DNA methylation at 36 CpG sites over the growing season that differed between farmworkers and non-farmworkers. Dominant pathways included immune-related (HLA) processes, as well as a number of diverse biological systems. Further studies are necessary to determine which exposures or behaviors are responsible for the observed changes, and whether these changes eventually lead to disease-related phenotypes in this population.

  20. DNA methylation differences in exposed workers and nearby residents of the Ma Ta Phut industrial estate, Rayong, Thailand

    PubMed Central

    Peluso, Marco; Bollati, Valentina; Munnia, Armelle; Srivatanakul, Petcharin; Jedpiyawongse, Adisorn; Sangrajrang, Suleeporn; Piro, Sara; Ceppi, Marcello; Bertazzi, Pier Alberto; Boffetta, Paolo; Baccarelli, Andrea A

    2012-01-01

    Background Adverse biological effects from airborne pollutants are a primary environmental concern in highly industrialized areas. Recent studies linked air pollution exposures with altered blood Deoxyribo-nucleic acid (DNA) methylation, but effects from industrial sources and underlying biological mechanisms are still largely unexplored. Methods The Ma Ta Phut industrial estate (MIE) in Rayong, Thailand hosts one of the largest steel, oil refinery and petrochemical complexes in south-eastern Asia. We measured a panel of blood DNA methylation markers previously associated with air pollution exposures, including repeated elements [long interspersed nuclear element-1 (LINE-1) and Alu] and genes [p53, hypermethylated-in-cancer-1 (HIC1), p16 and interleukin-6 (IL-6)], in 67 MIE workers, 65 Ma Ta Phut residents and 45 rural controls. To evaluate the role of DNA damage and oxidation, we correlated DNA methylation measures with bulky DNA and 3-(2-deoxy-β-D-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine (M1dG) adducts. Results In covariate-adjusted models, MIE workers, compared with rural residents, showed lower LINE-1 (74.8% vs 78.0%; P < 0.001), p53 (8.0% vs 15.7%; P < 0.001) and IL-6 methylation (39.2% vs 45.0%; P = 0.027) and higher HIC1 methylation (22.2% vs 15.3%, P < 0.001). For all four markers, Ma Ta Phut residents exhibited methylation levels intermediate between MIE workers and rural controls (LINE-1, 75.7%, P < 0.001; p53, 9.0%, P < 0.001; IL-6, 39.8%, P = 0.041; HIC1, 17.8%, P = 0.05; all P-values vs rural controls). Bulky DNA adducts showed negative correlation with p53 methylation (P = 0.01). M1dG showed negative correlations with LINE-1 (P = 0.003) and IL-6 methylation (P = 0.05). Conclusions Our findings indicate that industrial exposures may induce alterations of DNA methylation patterns detectable in blood leucocyte DNA. Correlation of DNA adducts with DNA hypomethylation suggests potential mediation by DNA damage. PMID:23064502

  1. BDNF rs6265 methylation and genotype interact on risk for schizophrenia

    PubMed Central

    Ursini, Gianluca; Cavalleri, Tommaso; Fazio, Leonardo; Angrisano, Tiziana; Iacovelli, Luisa; Porcelli, Annamaria; Maddalena, Giancarlo; Punzi, Giovanna; Mancini, Marina; Gelao, Barbara; Romano, Raffaella; Masellis, Rita; Calabrese, Francesca; Rampino, Antonio; Taurisano, Paolo; Giorgio, Annabella Di; Keller, Simona; Tarantini, Letizia; Sinibaldi, Lorenzo; Quarto, Tiziana; Popolizio, Teresa; Caforio, Grazia; Blasi, Giuseppe; Riva, Marco A.; De Blasi, Antonio; Chiariotti, Lorenzo; Bollati, Valentina; Bertolino, Alessandro

    2016-01-01

    Abstract Epigenetic mechanisms can mediate gene-environment interactions relevant for complex disorders. The BDNF gene is crucial for development and brain plasticity, is sensitive to environmental stressors, such as hypoxia, and harbors the functional SNP rs6265 (Val66Met), which creates or abolishes a CpG dinucleotide for DNA methylation. We found that methylation at the BDNF rs6265 Val allele in peripheral blood of healthy subjects is associated with hypoxia-related early life events (hOCs) and intermediate phenotypes for schizophrenia in a distinctive manner, depending on rs6265 genotype: in ValVal individuals increased methylation is associated with exposure to hOCs and impaired working memory (WM) accuracy, while the opposite is true for ValMet subjects. Also, rs6265 methylation and hOCs interact in modulating WM-related prefrontal activity, another intermediate phenotype for schizophrenia, with an analogous opposite direction in the 2 genotypes. Consistently, rs6265 methylation has a different association with schizophrenia risk in ValVals and ValMets. The relationships of methylation with BDNF levels and of genotype with BHLHB2 binding likely contribute to these opposite effects of methylation. We conclude that BDNF rs6265 methylation interacts with genotype to bridge early environmental exposures to adult phenotypes, relevant for schizophrenia. The study of epigenetic changes in regions containing genetic variation relevant for human diseases may have beneficial implications for the understanding of how genes are actually translated into phenotypes. PMID:26889735

  2. Identification of Novel Gene Targets and Putative Regulators of Arsenic-Associated DNA Methylation in Human Urothelial Cells and Bladder Cancer

    PubMed Central

    Rager, Julia E.; Miller, Sloane; Tulenko, Samantha E.; Smeester, Lisa; Ray, Paul D.; Yosim, Andrew; Currier, Jenna M.; Ishida, María C.; González-Horta, Maria del Carmen; Sánchez-Ramírez, Blanca; Ballinas-Casarrubias, Lourdes; Gutiérrez-Torres, Daniela S.; Drobná, Zuzana; Del Razo, Luz M.; García-Vargas, Gonzalo G.; Kim, William Y.; Zhou, Yi-Hui; Wright, Fred A.; Stýblo, Miroslav; Fry, Rebecca C.

    2016-01-01

    There is strong epidemiologic evidence linking chronic exposure to inorganic arsenic (iAs) to a myriad of adverse health effects, including cancer of the bladder. The present study set out to identify DNA methylation patterns associated with iAs and its metabolites in exfoliated urothelial cells (EUCs) that originate primarily from the urinary bladder, one of the targets of arsenic (As)-induced carcinogenesis. Genome-wide, gene-specific promoter DNA methylation levels were assessed in EUCs from 46 residents of Chihuahua, Mexico, and the relationship was examined between promoter methylation profiles and the intracellular concentrations of total As (tAs) and As species. A set of 49 differentially methylated genes was identified with increased promoter methylation associated with EUC tAs, iAs, and/or monomethylated As (MMAs) enriched for their roles in metabolic disease and cancer. Notably, no genes had differential methylation associated with EUC dimethylated As (DMAs), suggesting that DMAs may influence DNA methylation-mediated urothelial cell responses to a lesser extent than iAs or MMAs. Further analysis showed that 22 of the 49 As-associated genes (45%) are also differentially methylated in bladder cancer tissue identified using The Cancer Genome Atlas repository. Both the As- and cancer-associated genes are enriched for the binding sites of common transcription factors known to play roles in carcinogenesis, demonstrating a novel potential mechanistic link between iAs exposure and bladder cancer. PMID:26039340

  3. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis.

    PubMed

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-02-06

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (p< 0.000001) following arsenic exposure: inorganic arsenic (iAs), monomethyl arsenic (MMA), dimethyl arsenic (DMA), and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD): 1.00; 95% confidence interval (CI): 0.60-1.40; p< 0.00001) and MMA (SMD: 0.49; 95% CI: 0.21-0.77; p = 0.0006) also increase, while the percentage of DMA (SMD: -0.57; 95% CI: -0.80--0.31; p< 0.0001), primary methylation index (SMD: -0.57; 95% CI: -0.94--0.20; p = 0.002), and secondary methylation index (SMD: -0.27; 95% CI: -0.46--0.90; p = 0.004) decrease. Smoking, drinking, and older age can reduce arsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process.

  4. DNA methylation at stress-related genes is associated with exposure to early life institutionalization

    PubMed Central

    Non, Amy L.; Hollister, Brittany M.; Humphreys, Kathryn L.; Childebayeva, Ainash; Esteves, Kyle; Zeanah, Charles H.; Fox, Nathan A.; Nelson, Charles A.; Drury, Stacy S.

    2017-01-01

    Objectives Differences in DNA methylation have been associated with early life adversity, suggesting that alterations in methylation function as one pathway through which adverse early environments are biologically embedded. This study examined associations between exposure to institutional care, quantified as the percent time in institutional care at specified follow-up assessment ages, and DNA methylation status in two stress-related genes: FKBP5 and SLC6A4. Materials and Methods We analyzed data from the Bucharest Early Intervention Project, which is a prospective study in which children reared in institutional settings were randomly assigned (mean age 22 months) to either newly created foster care or care as usual (to remain in their current placement) and prospectively followed. A group of children from the same geographic area, with no history of institutionalized caregiving, were also recruited. DNA methylation status was determined in DNA extracted from buccal epithelial cells of children at age 12. Results An inverse association was identified such that more time spent in institutional care was associated with lower DNA methylation at specific CpG sites within both genes. Discussion These results suggest a lasting impact of early severe social deprivation on methylation patterns in these genes, and contribute to a growing literature linking early adversity and epigenetic variation in children. PMID:27218411

  5. The effect of VUV radiation from Ar/O2 plasmas on low-k SiOCH films

    NASA Astrophysics Data System (ADS)

    Lee, J.; Graves, D. B.

    2011-08-01

    The degradation of porous low-k materials, like SiOCH, under plasma processing continues to be a problem in the next generation of integrated-circuit fabrication. Due to the exposure of the film to many species during plasma treatment, such as photons, ions, radicals, etc, it is difficult to identify the mechanisms responsible for plasma-induced damage. Using a vacuum beam apparatus with a calibrated Xe vacuum ultraviolet (VUV) lamp, we show that 147 nm VUV photons and molecular O2 alone can damage these low-k materials. Using Fourier-transform infrared (FTIR) spectroscopy, we show that VUV/O2 exposure causes a loss of methylated species, resulting in a hydrophilic, SiOx-like layer that is susceptible to H2O absorption, leading to an increased dielectric constant. The effect of VUV radiation on chemical modification of porous SiOCH films in the vacuum beam apparatus and in Ar and O2 plasma exposure was found to be a significant contributor to dielectric damage. Measurements of dielectric constant change using a mercury probe are consistent with chemical modification inferred from FTIR analysis. Furthermore, the extent of chemical modification appears to be limited by the penetration depth of the VUV photons, which is dependent on wavelength of radiation. The creation of a SiOx-like layer near the surface of the material, which grows deeper as more methyl is extracted, introduces a dynamic change of VUV absorption throughout the material over time. As a result, the rate of methyl loss is continuously changing during the exposure. We present a model that attempts to capture this dynamic behaviour and compare the model predictions to experimental data through a fitting parameter that represents the effective photo-induced methyl removal. While this model accurately simulates the methyl loss through VUV exposure by the Xe lamp and Ar plasma, the methyl loss from VUV photons in O2 plasma are only accurately depicted at longer exposure times. We conclude that other species, such as oxygen radicals or ions, may play a major role in chemical modification at short times near the surface of the material, while VUV photons contribute to the majority of the damage in the bulk.

  6. Low-Level Environmental Cadmium Exposure Is Associated with DNA Hypomethylation in Argentinean Women

    PubMed Central

    Hossain, Mohammad Bakhtiar; Vahter, Marie; Concha, Gabriela

    2012-01-01

    Background: Cadmium, a common food pollutant, alters DNA methylation in vitro. Epigenetic effects might therefore partly explain cadmium’s toxicity, including its carcinogenicity; however, human data on epigenetic effects are lacking. Objective: We evaluated the effects of dietary cadmium exposure on DNA methylation, considering other environmental exposures, genetic predisposition, and gene expression. Methods: Concentrations of cadmium, arsenic, selenium, and zinc in blood and urine of nonsmoking women (n = 202) from the northern Argentinean Andes were measured by inductively coupled mass spectrometry. Methylation in CpG islands of LINE-1 (long interspersed nuclear element-1; a proxy for global DNA methylation) and promoter regions of p16 [cyclin-dependent kinase inhibitor 2A (CDKN2A)] and MLH1 (mutL homolog 1) in peripheral blood were measured by bisulfite polymerase chain reaction pyrosequencing. Genotyping (n = 172) for the DNA (cytosine-5-)-methyltransferase 1 gene (DNMT1 rs10854076 and rs2228611) and DNA (cytosine-5-)-methyltransferase 3 beta gene (DNMT3B rs2424913 and rs2424932) was performed with Sequenom iPLEX GOLD SNP genotyping; and gene expression (n = 90), with DirectHyb HumanHT-12 (version 3.0). Results: Cadmium exposure was low: median concentrations in blood and urine were 0.36 and 0.23 µg/L, respectively. Urinary cadmium (natural log transformed) was inversely associated with LINE-1 methylation (β = –0.50, p = 0.0070; β = –0.44, p = 0.026, adjusted for age and coca chewing) but not with p16 or MLH1 methylation. Both DNMT1 rs10854076 and DNMT1 rs2228611 polymorphisms modified associations between urinary cadmium and LINE-1 (p-values for interaction in adjusted models were 0.045 and 0.064, respectively). The rare genotypes demonstrated stronger hypomethylation with increasing urinary cadmium concentrations. Cadmium was inversely associated with DNMT3B (rS = –0.28, p = 0.0086) but not with DNMT1 expression (rS = –0.075, p = 0.48). Conclusion: Environmental cadmium exposure was associated with DNA hypomethylation in peripheral blood, and DNMT1 genotypes modified this association. The role of epigenetic modifications in cadmium-associated diseases needs clarification. PMID:22382075

  7. Phenanthrene exposure induces cardiac hypertrophy via reducing miR-133a expression by DNA methylation

    PubMed Central

    Huang, Lixing; Xi, Zhihui; Wang, Chonggang; Zhang, Youyu; Yang, Zhibing; Zhang, Shiqi; Chen, Yixin; Zuo, Zhenghong

    2016-01-01

    Growing evidence indicates that there is an emerging link between environmental pollution and cardiac hypertrophy, while the mechanism is unclear. The objective of this study was to examine whether phenanthrene (Phe) could cause cardiac hypertrophy, and elucidate the molecular mechanisms involved. We found that: 1) Phe exposure increased the heart weight and cardiomyocyte size of rats; 2) Phe exposure led to enlarged cell size, and increased protein synthesis in H9C2 cells; 3) Phe exposure induced important markers of cardiac hypertrophy, such as atrial natriuretic peptide, B-type natriuretic peptide, and c-Myc in H9C2 cells and rat hearts; 4) Phe exposure perturbed miR-133a, CdC42 and RhoA, which were key regulators of cardiac hypertrophy, in H9C2 cells and rat hearts; 5) Phe exposure induced DNA methyltransferases (DNMTs) in H9C2 cells and rat hearts; 6) Phe exposure led to methylation of CpG sites within the miR-133a locus and reduced miR-133a expression in H9C2 cells; 7) DNMT inhibition and miR-133a overexpression could both alleviate the enlargement of cell size and perturbation of CdC42 and RhoA caused by Phe exposure. These results indicated that Phe could induce cardiomyocyte hypertrophy in the rat and H9C2 cells. The mechanism might involve reducing miR-133a expression by DNA methylation. PMID:26830171

  8. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    NASA Astrophysics Data System (ADS)

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-08-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.

  9. Epigenetic modulations in early endothelial cells and DNA hypermethylation in human skin after sulfur mustard exposure.

    PubMed

    Steinritz, Dirk; Schmidt, Annette; Balszuweit, Frank; Thiermann, Horst; Simons, Thilo; Striepling, Enno; Bölck, Birgit; Bloch, Wilhelm

    2016-02-26

    Victims that were exposed to the chemical warfare agent sulfur mustard (SM) suffer from chronic dermal and ocular lesions, severe pulmonary problems and cancer development. It has been proposed that epigenetic perturbations might be involved in that process but this has not been investigated so far. In this study, we investigated epigenetic modulations in vitro using early endothelial cells (EEC) that were exposed to different SM concentrations (0.5, 1.0, 23.5 and 50μM). A comprehensive analysis of 78 genes related to epigenetic pathways (i.e., DNA-methylation and post-translational histone modifications) was performed. Moreover, we analyzed global DNA methylation in vitro in EEC after SM exposure as a maker for epigenetic modulations and in vivo using human skin samples that were obtained from a patient 1 year after an accidently exposure to pure SM. SM exposure resulted in a complex regulation pattern of epigenetic modulators which was accompanied by a global increase of DNA methylation in vitro. Examination of the SM exposed human skin samples also revealed a significant increase of global DNA methylation in vivo, underlining the biological relevance of our findings. Thus, we demonstrated for the first time that SM affects epigenetic pathways and causes epigenetic modulations both in vivo and in vitro. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    PubMed Central

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-01-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns. PMID:27502578

  11. The effect of preconception paternal alcohol exposure on epigenetic remodeling of the h19 and rasgrf1 imprinting control regions in mouse offspring.

    PubMed

    Knezovich, Jaysen Gregory; Ramsay, Michèle

    2012-01-01

    Imprinted loci play a critical role in fetal development. Their expression is often regulated by CCCTC-binding factor (CTCF) protein binding at imprinting control regions (ICRs). Prenatal alcohol exposure has been shown to reduce global DNA methylation in the developing mouse fetus. This study explored the effect of preconception paternal alcohol exposure on DNA methylation at two paternally methylated ICRs (H19 and Rasgrf1) in the sperm of exposed males and somatic DNA of sired offspring. Significant reductions at the H19 CTCF 1 (p = 0.0027) and CTCF 2 (p = 0.0009) binding sites were observed in the offspring of ethanol-treated sires, which was significantly correlated with reduced weight at postnatal days 35-42 (p < 0.05). As birth weight was unaffected and growth was only delayed during the postnatal weaning period, with subsequent re-convergence, we hypothesize that this may be the result of a mental deficit causing delayed establishment of independent feeding following weaning and would explain why this effect is transient. No difference in DNA methylation was observed in the sperm of alcohol-exposed males, indicating that the transmission of the epigenetic signal at conception is not due to altered methylation, but may be the result of an RNA-mediated mechanism or altered chromatin remodeling.

  12. Methylation of Exons 1D, 1F, and 1H of the Glucocorticoid Receptor Gene Promoter and Exposure to Adversity in Pre-School Aged Children

    PubMed Central

    Tyrka, Audrey R.; Parade, Stephanie H.; Eslinger, Nicole M.; Marsit, Carmen J.; Lesseur, Corina; Armstrong, David A.; Philip, Noah S.; Josefson, Brittney; Seifer, Ronald

    2016-01-01

    Epigenetic modifications to the genome are a key mechanism involved in the biological encoding of experience. Animal studies and a growing body of literature in humans have shown that early adversity is linked to methylation of the gene for the glucocorticoid receptor (GR) which is a key regulator of the hypothalamic-pituitary-adrenal (HPA) axis as well as a broad range of physiological systems including metabolic and immune function. One hundred eighty-four families participated, including n=74 with child welfare documentation of moderate-severe maltreatment in the past six months. Children ranged in age from 3 to 5 years, and were racially and ethnically diverse. Structured record review and interviews in the home were used to assess a history of maltreatment, other traumas, and contextual life stressors, and a composite variable assessed the number exposures to these adversities. Methylation of regions 1D, 1F, and 1H of the GR gene was measured via sodium bisulfite pyrosequencing. The composite measure of adversity was positively correlated with methylation at exons 1D and 1F in the promoter of NR3C1. Individual stress measures were significantly associated with a several CpG sites in these regions. GR gene methylation may be a mechanism of the bio-behavioral effects of adverse exposures in young children. PMID:25997773

  13. Prenatal Polycyclic Aromatic Hydrocarbon, Adiposity, Peroxisome Proliferator-Activated Receptor (PPAR) γ Methylation in Offspring, Grand-Offspring Mice

    PubMed Central

    Yan, Zhonghai; Zhang, Hanjie; Maher, Christina; Arteaga-Solis, Emilio; Champagne, Frances A.; Wu, Licheng; McDonald, Jacob D.; Yan, Beizhan; Schwartz, Gary J.; Miller, Rachel L.

    2014-01-01

    Rationale Greater levels of prenatal exposure to polycyclic aromatic hydrocarbon (PAH) have been associated with childhood obesity in epidemiological studies. However, the underlying mechanisms are unclear. Objectives We hypothesized that prenatal PAH over-exposure during gestation would lead to weight gain and increased fat mass in offspring and grand-offspring mice. Further, we hypothesized that altered adipose gene expression and DNA methylation in genes important to adipocyte differentiation would be affected. Materials and Methods Pregnant dams were exposed to a nebulized PAH mixture versus negative control aerosol 5 days a week, for 3 weeks. Body weight was recorded from postnatal day (PND) 21 through PND60. Body composition, adipose cell size, gene expression of peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer-binding proteins (C/EBP) α, cyclooxygenase (Cox)-2, fatty acid synthase (FAS) and adiponectin, and DNA methylation of PPAR γ, were assayed in both the offspring and grand-offspring adipose tissue. Findings Offspring of dams exposed to greater PAH during gestation had increased weight, fat mass, as well as higher gene expression of PPAR γ, C/EBP α, Cox2, FAS and adiponectin and lower DNA methylation of PPAR γ. Similar differences in phenotype and DNA methylation extended through the grand-offspring mice. Conclusions Greater prenatal PAH exposure was associated with increased weight, fat mass, adipose gene expression and epigenetic changes in progeny. PMID:25347678

  14. The impact of methylation quantitative trait loci (mQTLs) on active smoking-related DNA methylation changes.

    PubMed

    Gao, Xu; Thomsen, Hauke; Zhang, Yan; Breitling, Lutz Philipp; Brenner, Hermann

    2017-01-01

    Methylation quantitative trait loci (mQTLs) are the genetic variants that may affect the DNA methylation patterns of CpG sites. However, their roles in influencing the disturbances of smoking-related epigenetic changes have not been well established. This study was conducted to address whether mQTLs exist in the vicinity of smoking-related CpG sites (± 50 kb) and to examine their associations with smoking exposure and all-cause mortality in older adults. We obtained DNA methylation profiles in whole blood samples by Illumina Infinium Human Methylation 450 BeadChip array of two independent subsamples of the ESTHER study (discovery set, n  = 581; validation set, n  = 368) and their corresponding genotyping data using the Illumina Infinium OncoArray BeadChip. After correction for multiple testing (FDR), we successfully identified that 70 out of 151 previously reported smoking-related CpG sites were significantly associated with 192 SNPs within the 50 kb search window of each locus. The 192 mQTLs significantly influenced the active smoking-related DNA methylation changes, with percentage changes ranging from 0.01 to 18.96%, especially for the weakly/moderately smoking-related CpG sites. However, these identified mQTLs were not directly associated with active smoking exposure or all-cause mortality. Our findings clearly demonstrated that if not dealt with properly, the mQTLs might impair the power of epigenetic-based models of smoking exposure to a certain extent. In addition, such genetic variants could be the key factor to distinguish between the heritable and smoking-induced impact on epigenome disparities. These mQTLs are of special importance when DNA methylation markers measured by Illumina Infinium assay are used for any comparative population studies related to smoking-related cancers and chronic diseases.

  15. Ontogeny-Driven rDNA Rearrangement, Methylation, and Transcription, and Paternal Influence

    PubMed Central

    Shiao, Yih-Horng; Leighty, Robert M.; Wang, Cuiju; Ge, Xin; Crawford, Erik B.; Spurrier, Joshua M.; McCann, Sean D.; Fields, Janet R.; Fornwald, Laura; Riffle, Lisa; Driver, Craig; Quiñones, Octavio A.; Wilson, Ralph E.; Kasprzak, Kazimierz S.; Travlos, Gregory S.; Alvord, W. Gregory; Anderson, Lucy M.

    2011-01-01

    Gene rearrangement occurs during development in some cell types and this genome dynamics is modulated by intrinsic and extrinsic factors, including growth stimulants and nutrients. This raises a possibility that such structural change in the genome and its subsequent epigenetic modifications may also take place during mammalian ontogeny, a process undergoing finely orchestrated cell division and differentiation. We tested this hypothesis by comparing single nucleotide polymorphism-defined haplotype frequencies and DNA methylation of the rDNA multicopy gene between two mouse ontogenic stages and among three adult tissues of individual mice. Possible influences to the genetic and epigenetic dynamics by paternal exposures were also examined for Cr(III) and acid saline extrinsic factors. Variables derived from litters, individuals, and duplicate assays in large mouse populations were examined using linear mixed-effects model. We report here that active rDNA rearrangement, represented by changes of haplotype frequencies, arises during ontogenic progression from day 8 embryos to 6-week adult mice as well as in different tissue lineages and is modifiable by paternal exposures. The rDNA methylation levels were also altered in concordance with this ontogenic progression and were associated with rDNA haplotypes. Sperm showed highest level of methylation, followed by lungs and livers, and preferentially selected haplotypes that are positively associated with methylation. Livers, maintaining lower levels of rDNA methylation compared with lungs, expressed more rRNA transcript. In vitro transcription demonstrated haplotype-dependent rRNA expression. Thus, the genome is also dynamic during mammalian ontogeny and its rearrangement may trigger epigenetic changes and subsequent transcriptional controls, that are further influenced by paternal exposures. PMID:21765958

  16. Effects of chronic cobalt and chromium exposure after metal‐on‐metal hip resurfacing: An epigenome‐wide association pilot study

    PubMed Central

    Steinberg, Julia; Shah, Karan M.; Gartland, Alison; Zeggini, Eleftheria

    2017-01-01

    ABSTRACT Metal‐on‐metal (MOM) hip resurfacing has recently been a popular prosthesis choice for the treatment of symptomatic arthritis, but results in the release of cobalt and chromium ions into the circulation that can be associated with adverse clinical effects. The mechanism underlying these effects remains unclear. While chromosomal aneuploidy and translocations are associated with this exposure, the presence of subtle structural epigenetic modifications in patients with MOM joint replacements remains unexplored. Consequently, we analyzed whole blood DNA methylation in 34 OA patients with MOM hip resurfacing (MOM HR) compared to 34 OA patients with non‐MOM total hip replacements (non‐MOM THR), using the genome‐wide Illumina HumanMethylation 450k BeadChip. No probes showed differential methylation significant at 5% false‐discovery rate (FDR). We also tested association of probe methylation levels with blood chromium and cobalt levels directly; there were no significant associations at 5% FDR. Finally, we used the “epigenetic clock” to compare estimated to actual age at sample for all individuals. We found no significant difference between MOM HR and non‐MOM THR, and no correlation of age acceleration with blood metal levels. Our results suggest the absence of large methylation differences systemically following metal exposure, however, larger sample sizes will be required to identify potential small effects. Any DNA methylation changes that may occur in the local periprosthetic tissues remain to be elucidated. © 2017 The Authors. Orthopaedic Research Society. Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:2323–2328, 2017. PMID:28098396

  17. DNA methylome changes by estradiol benzoate and bisphenol A links early-life environmental exposures to prostate cancer risk

    PubMed Central

    Cheong, Ana; Zhang, Xiang; Cheung, Yuk-Yin; Tang, Wan-yee; Chen, Jing; Ye, Shu-Hua; Medvedovic, Mario; Leung, Yuet-Kin; Prins, Gail S.; Ho, Shuk-Mei

    2016-01-01

    ABSTRACT Developmental exposure to endocrine-disrupting chemicals (EDCs), 17β-estradiol-3-benzoate (EB) and bisphenol A (BPA), increases susceptibility to prostate cancer (PCa) in rodent models. Here, we used the methylated-CpG island recovery assay (MIRA)-assisted genomic tiling and CpG island arrays to identify treatment-associated methylome changes in the postnatal day (PND)90 dorsal prostate tissues of Sprague-Dawley rats neonatally (PND1, 3, and 5) treated with 25 µg/pup or 2,500 µg EB/kg body weight (BW) or 0.1 µg BPA/pup or 10 µg BPA/kg BW. We identified 111 EB-associated and 86 BPA-associated genes, with 20 in common, that have significant differentially methylated regions. Pathway analysis revealed cancer as the top common disease pathway. Bisulfite sequencing validated the differential methylation patterns observed by array analysis in 15 identified candidate genes. The methylation status of 7 (Pitx3, Wnt10b, Paqr4, Sox2, Chst14, Tpd52, Creb3l4) of these 15 genes exhibited an inverse correlation with gene expression in tissue samples. Cell-based assays, using 5-aza-cytidine-treated normal (NbE-1) and cancerous (AIT) rat prostate cells, added evidence of DNA methylation-mediated gene expression of 6 genes (exception: Paqr4). Functional connectivity of these genes was linked to embryonic stem cell pluripotency. Furthermore, clustering analyses using the dataset from The Cancer Genome Atlas revealed that expression of this set of 7 genes was associated with recurrence-free survival of PCa patients. In conclusion, our study reveals that gene-specific promoter methylation changes, resulting from early-life EDC exposure in the rat, may serve as predictive epigenetic biomarkers of PCa recurrence, and raises the possibility that such exposure may impact human disease. PMID:27415467

  18. DNA methylome changes by estradiol benzoate and bisphenol A links early-life environmental exposures to prostate cancer risk.

    PubMed

    Cheong, Ana; Zhang, Xiang; Cheung, Yuk-Yin; Tang, Wan-Yee; Chen, Jing; Ye, Shu-Hua; Medvedovic, Mario; Leung, Yuet-Kin; Prins, Gail S; Ho, Shuk-Mei

    2016-09-01

    Developmental exposure to endocrine-disrupting chemicals (EDCs), 17β-estradiol-3-benzoate (EB) and bisphenol A (BPA), increases susceptibility to prostate cancer (PCa) in rodent models. Here, we used the methylated-CpG island recovery assay (MIRA)-assisted genomic tiling and CpG island arrays to identify treatment-associated methylome changes in the postnatal day (PND)90 dorsal prostate tissues of Sprague-Dawley rats neonatally (PND1, 3, and 5) treated with 25 µg/pup or 2,500 µg EB/kg body weight (BW) or 0.1 µg BPA/pup or 10 µg BPA/kg BW. We identified 111 EB-associated and 86 BPA-associated genes, with 20 in common, that have significant differentially methylated regions. Pathway analysis revealed cancer as the top common disease pathway. Bisulfite sequencing validated the differential methylation patterns observed by array analysis in 15 identified candidate genes. The methylation status of 7 (Pitx3, Wnt10b, Paqr4, Sox2, Chst14, Tpd52, Creb3l4) of these 15 genes exhibited an inverse correlation with gene expression in tissue samples. Cell-based assays, using 5-aza-cytidine-treated normal (NbE-1) and cancerous (AIT) rat prostate cells, added evidence of DNA methylation-mediated gene expression of 6 genes (exception: Paqr4). Functional connectivity of these genes was linked to embryonic stem cell pluripotency. Furthermore, clustering analyses using the dataset from The Cancer Genome Atlas revealed that expression of this set of 7 genes was associated with recurrence-free survival of PCa patients. In conclusion, our study reveals that gene-specific promoter methylation changes, resulting from early-life EDC exposure in the rat, may serve as predictive epigenetic biomarkers of PCa recurrence, and raises the possibility that such exposure may impact human disease.

  19. Exposure of hospital operating room personnel to potentially harmful environmental agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sass-Kortsak, A.M.; Purdham, J.T.; Bozek, P.R.

    1992-03-01

    Epidemiologic studies of risk to reproductive health arising from the operating room environment have been inconclusive and lack quantitative exposure information. This study was undertaken to quantify exposure of operating room (OR) personnel to anesthetic agents, x-radiation, methyl methacrylate, and ethylene oxide and to determine how exposure varies with different operating room factors. Exposures of anesthetists and nurses to these agents were determined in selected operating rooms over three consecutive days. Each subject was asked to wear an x-radiation dosimeter for 1 month. Exposure to anesthetic agents was found to be influenced by the age of the OR facility, typemore » of surgical service, number of procedures carried out during the day, type of anesthetic circuitry, and method of anesthesia delivery. Anesthetists were found to have significantly greater exposures than OR nurses. Exposure of OR personnel to ethylene oxide, methyl methacrylate, and x-radiation were well within existing standards. Exposure of anesthetists and nurses to anesthetic agents, at times, was in excess of Ontario exposure guidelines, despite improvements in the control of anesthetic pollution.« less

  20. Arsenic methylation capacity is associated with breast cancer in northern Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Carrillo, Lizbeth; Hernández-Ramírez, Raúl Ulises; Gandolfi, A. Jay

    Exposure to environmental contaminants, dietary factors and lifestyles may explain worldwide different breast cancer (BC) incidence. Inorganic arsenic (iAs) in the drinking water is a concern in many regions, such as northern Mexico. Studies in several countries have associated the proportion of urinary monomethylarsenic (%MMA) with increased risks for many As-related diseases, including cancer. To investigate the potential relationships between the risk of BC and the capacity to methylate iAs, a hospital-based case–control study (1016 cases/1028 controls) was performed in northern Mexico. Women were directly interviewed about their reproductive histories. The profile of As metabolites in urine was determined bymore » HPLC-ICP-MS and methylation capacity was assessed by metabolite percentages and indexes. Total urinary As, excluding arsenobetaine (TAs-AsB), ranged from 0.26 to 303.29 μg/L. Most women (86%) had TAs-AsB levels below As biological exposure index (35 μg/L). Women with higher %MMA and/or primary methylation index (PMI) had an increased BC risk (%MMA OR{sub Q5vs.Q1} = 2.63; 95%CI 1.89,3.66; p for trend < 0.001; PMI OR{sub Q5vs.Q1} = 1.90; 95%CI 1.39,2.59, p for trend < 0.001). In contrast, women with higher proportion of urinary dimethylarsenic (%DMA) and/or secondary methylation index (SMI) had a reduced BC risk (%DMA OR{sub Q5vs.Q1} = 0.63; 95%CI 0.45,0.87, p for trend 0.006; SMI OR{sub Q5vsQ1} = 0.42, 95%CI 0.31,0.59, p for trend < 0.001). Neither %iAs nor total methylation index was associated to BC risk. Inter-individual variations in iAs metabolism may play a role in BC carcinogenesis. Women with higher capacity to methylate iAs to MMA and/or a lower capacity to further methylate MMA to DMA were at higher BC risk. - Highlights: • Arsenic methylation capacity is associated to an increased breast cancer (BC) risk. • Women with higher capacity to methylate arsenic to MMA were at higher BC risk. • Women with higher capacity to methylate arsenic to DMA were at lower BC risk. • Associations occurred at urinary As levels near the biological exposure index.« less

Top