Sample records for methyl formate synthesis

  1. Methyl N-phenyl carbamate synthesis from aniline and methyl formate: carbon recycling to chemical products.

    PubMed

    Yalfani, Mohammad S; Lolli, Giulio; Müller, Thomas E; Wolf, Aurel; Mleczko, Leslaw

    2015-02-01

    Methyl N-phenyl carbamate was synthesized from aniline by using methyl formate as a green and efficient carbonylating agent. High yields were obtained at milder reaction conditions compared to the conventional CO/CH3 OH route. Studies on the reaction sequence led to suggest an alternative and more efficient route to the carbamate via formanilide as intermediate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wongnate, T.; Sliwa, D.; Ginovska, B.

    2016-05-19

    Methyl-coenzyme M reductase (MCR), the rate-limiting enzyme in methanogenesis and anaerobic methane oxidation, is responsible for the production of over one billion tons of methane per year. The mechanism of methane synthesis is unknown, with the two leading proposals involving either a methyl-nickel(III) (Mechanism I) or methyl radical/Ni(II)-thiolate (Mechanism II) intermediate(s). When the reaction between the active Ni(I) enzyme with substrates was studied by transient kinetic, spectroscopic and computational methods, formation of an EPR-silent Ni(II)-thiolate intermediate was positively identified by magnetic circular dichroism spectroscopy. There was no evidence for an EPR-active methyl-Ni(III) species. Temperature-dependent transient kinetic studies revealed that themore » activation energy for the initial catalytic step closely matched the value computed by density functional theory for Mechanism II. Thus, our results demonstrate that biological methane synthesis occurs by generation of a methyl radical.« less

  3. Formation of O2-methylthymine in poly(dA-dT) on methylation with N-methyl-N-nitrosourea and dimethyl sulphate. Evidence that O2-methylthymine does not miscode during DNA synthesis.

    PubMed Central

    Saffhill, R; Abbott, P J

    1978-01-01

    The alternating co-polymer has been methylated with either N methyl-N-nitrosourea (MNU) or dimethyl sulphate (DMS) and the levels of the various methylated thymidines (O2-methylthymidine, 3-methylthymidine and O4-methylthymidine) measured. MNU produced all three compounds whereas DMS only produced 3-methylthymidine and O2-methylthymidine at detectable levels. These results have been combined with our earlier results concerning the misincorporation of dGMP with E. coli DNA polymerase using MNU-methylated poly(dA-dT). These results indicate that O2-methylthymidine does not miscode during DNA synthesis. PMID:353735

  4. Copper-catalyzed aerobic oxidative synthesis of α-ketoamides from methyl ketones, amines and NIS at room temperature.

    PubMed

    Zhang, Juan; Wei, Ying; Lin, Shaoxia; Liang, Fushun; Liu, Pengjun

    2012-12-14

    A simple, efficient and practical copper-catalyzed aerobic oxidative synthesis of α-ketoamides from aryl methyl ketones, aliphatic amines and N-iodosuccinimide (NIS) has been developed. The one-pot reaction may proceed smoothly at room temperature in the open air. The possible mechanism for the formation of α-ketoamides was proposed. Molecular oxygen in air functions as both an oxidant and an oxygen source.

  5. Chemistry of Renieramycins. Part 14: Total Synthesis of Renieramycin I and Practical Synthesis of Cribrostatin 4 (Renieramycin H).

    PubMed

    Yokoya, Masashi; Kobayashi, Keiichiro; Sato, Mitsuhiro; Saito, Naoki

    2015-08-06

    The first total synthesis of (±)-renieramycin I, which was isolated from the Indian bright blue sponge Haliclona cribricutis, is described. The key step is the selenium oxide oxidation of pentacyclic bis-p-quinone derivative (3) stereo- and regioselectively. We also report a large-scale synthesis of cribrostatin 4 (renieramycin H) via the C3-C4 double bond formation in an early stage based on the Avendaño's protocol, from readily available 1-acetyl-3-(3-methyl-2,4,5-trimethylphenyl)methyl-piperazine-2,5-dione (8) in 18 steps (8.3% overall yield). The synthesis provides unambiguous evidence supporting the original structure of renieramycin I.

  6. The Metabolic Burden of Methyl Donor Deficiency with Focus on the Betaine Homocysteine Methyltransferase Pathway

    PubMed Central

    Obeid, Rima

    2013-01-01

    Methyl groups are important for numerous cellular functions such as DNA methylation, phosphatidylcholine synthesis, and protein synthesis. The methyl group can directly be delivered by dietary methyl donors, including methionine, folate, betaine, and choline. The liver and the muscles appear to be the major organs for methyl group metabolism. Choline can be synthesized from phosphatidylcholine via the cytidine-diphosphate (CDP) pathway. Low dietary choline loweres methionine formation and causes a marked increase in S-adenosylmethionine utilization in the liver. The link between choline, betaine, and energy metabolism in humans indicates novel functions for these nutrients. This function appears to goes beyond the role of the nutrients in gene methylation and epigenetic control. Studies that simulated methyl-deficient diets reported disturbances in energy metabolism and protein synthesis in the liver, fatty liver, or muscle disorders. Changes in plasma concentrations of total homocysteine (tHcy) reflect one aspect of the metabolic consequences of methyl group deficiency or nutrient supplementations. Folic acid supplementation spares betaine as a methyl donor. Betaine is a significant determinant of plasma tHcy, particularly in case of folate deficiency, methionine load, or alcohol consumption. Betaine supplementation has a lowering effect on post-methionine load tHcy. Hypomethylation and tHcy elevation can be attenuated when choline or betaine is available. PMID:24022817

  7. Reaction products from N-methyl-N-nitrosourea and deoxyribonucleic acid containing thymidine residues. Synthesis and identification of a new methylation product, O4-methyl-thymidine

    PubMed Central

    Lawley, P. D.; Orr, D. J.; Shah, S. A.; Farmer, P. B.; Jarman, M.

    1973-01-01

    1. DNA was treated with N-methyl-N-nitrosourea at pH7–8, 37°C, degraded to yield 3- and 7-methylpurines and deoxyribonucleosides and the reaction products were separated by chromatography on ion-exchange resins. The following methods for identification and determination of products were used: with unlabelled N-methyl-N-nitrosourea, u.v. absorption; use of methyl-14C-labelled N-methyl-N-nitrosourea and use of [14C]thymine-labelled DNA. 2. The synthesis of O4-methylthymidine and its identification by u.v. and mass spectroscopy are reported. 3. 3-Methylthymidine and O4-methylthymidine were found as methylation products from N-methyl-N-nitrosourea with thymidine and with DNA, in relatively small yields. Unidentified products containing thymine were found in enzymic digests of N-methyl-N-nitrosourea-treated DNA, which may be phosphotriesters. 4. The possible role of formation of methylthymines in mutagenesis by N-methyl-N-nitrosourea is discussed. PMID:4798180

  8. A new route to methyl (R,E)-(-)-tetradeca-2,4,5-trienoate (pheromone of Acanthoscelides obtectus) utilizing a palladium-catalyzed asymmetric allene formation reaction.

    PubMed

    Ogasawara, Masamichi; Nagano, Takashi; Hayashi, Tamio

    2005-07-08

    [reaction: see text] A formal total synthesis of the sex attractant of male dried bean beetle, methyl (R,E)-(-)-tetradeca-2,4,5-trienoate, was achieved by a new efficient route utilizing the Pd-catalyzed asymmetric allene synthesis reaction. It was found that the atropisomeric biaryl bisphosphine (R)-segphos showed better enantioselectivity than (R)-binap in the Pd-catalyzed reaction for preparing alkyl-substituted axially chiral allenes.

  9. Radiosynthesis and radiopharmacological evaluation of [N-methyl-11C]Org 34850 as a glucocorticoid receptor (GR)-binding radiotracer.

    PubMed

    Wuest, Frank; Kniess, Torsten; Henry, Brian; Peeters, Bernardus W M M; Wiegerinck, Peter H G; Pietzsch, Jens; Bergmann, Ralf

    2009-02-01

    The radiosynthesis of [N-methyl-(11)C]Org 34850 as a potential brain glucocorticoid receptor (GR)-binding radiotracer is described. The radiosynthesis was accomplished via N-methylation of the corresponding desmethyl precursor with [(11)C]methyl triflate in a remotely controlled synthesis module to give the desired compound in a radiochemical yield of 23+/-5% (decay-corrected, based upon [(11)C]CO(2)) at a specific activity of 47+/-12 GBq/micromol (n=15) at the end-of-synthesis (EOS). The radiochemical purity after semi-preparative HPLC purification exceeded 95%. The total synthesis time was 35-40 min after end-of-bombardment (EOB). The radiotracer is rapidly metabolized in rat plasma leading to the formation of two more hydrophilic metabolites as the major metabolites. Radiopharmacological evaluation involving biodistribution and small animal PET imaging in normal Wistar rats showed that the compound [N-methyl-(11)C]Org 34850 is not able to sufficiently penetrate the blood-brain barrier. Therefore, compound [N-methyl-(11)C]Org 34850 seems not to be a suitable PET radiotracer for imaging rat brain GRs. However, involvement of Pgp or species differences requires further clarification to establish whether the radiotracer [N-methyl-(11)C]Org 34850 may still represent a suitable candidate for imaging GRs in humans.

  10. Reaction of alkylphenols with acetals. II. Reaction of 4methyl-2-tert-butylphenol with dimethoxymethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starikova, O.F.; Gurvich, Y.A.; Kumok, S.T.

    1985-12-20

    The authors explain how di(hydroxydialkylaryl) derivatives of methane play an important role in the inhibition of oxidation processes in polymers, oils, fuels, and other organic materials. They investigate the reaction of 4-methyl-2-tert-butylphenol with dimethoxymethane, and established that the reaction mass contained 2-methoxymethyl-4-6-tert-butylphenol. The formation and the transformations of 2-methoxymethyl-4-methyl-6-tert-butylphenol do not have a significant effect on the synthesis of di(2-hydroxy-5-methyl-3-tert-butylphenyl) methane from 4-methyl-2-tert-butyl-phenol and dimethoxymethane.

  11. The role of sulfur in osmoregulation and salinity tolerance in cyanobacteria, algae, and plants

    NASA Technical Reports Server (NTRS)

    Yopp, J. H.

    1985-01-01

    Organosulfur compounds are involved in osmoregulation and salinity tolerance in some cyanobacteria and photosynthetic eukaryotes. Glycinebetaine, the osmolyte of the halotolerant cyanobacterium, Aphanothece halophytica, requires the sulfonium compound. S-adenosyl-methionine (SAM) for its synthesis. Glutamate is the nitrogen source, SAM is the methyl carbon and serine the carbon backbone source of this unique osmolyte. Inhibitor studies suggest that photorespiration interacts with sulfur metabolism to control betaine synthesis in cyanobacteria. The limiting factor for SAM synthesis is formate from photorespiration. SAM is, in turn, the methyl donor for betaine synthesis from serine. The nitrogen component of serine is from glutamate. Betaine synthesis is hypothesized to be regulated via potassium. The biosynthesis of dimethyl-B-propiothetin (DMPT, which is the same as beta-dimethyl sulfonioprpionate) and diacylsulfoquinovosylglycerol were elucidated as having their roles in osmoregulation and salinity tolerance. The relation between these sulfolipids and the sulfur cycle was discussed.

  12. Hierarchical assembly of branched supramolecular polymers from (cyclic Peptide)-polymer conjugates.

    PubMed

    Koh, Ming Liang; Jolliffe, Katrina A; Perrier, Sébastien

    2014-11-10

    We report the synthesis and assembly of (N-methylated cyclic peptide)-polymer conjugates for which the cyclic peptide is attached to either the α- or both α- and ω- end groups of a polymer. A combination of chromatographic, spectroscopic, and scattering techniques reveals that the assembly of the conjugates follows a two-level hierarchy, initially driven by H-bond formation between two N-methylated cyclic peptides, followed by unspecific, noncovalent aggregation of this peptide into small domains that behave as branching points and lead to the formation of branched supramolecular polymers.

  13. A Review of Study on Thermal Energy Transport System by Synthesis and Decomposition Reactions of Methanol

    NASA Astrophysics Data System (ADS)

    Liu, Qiusheng; Yabe, Akira; Kajiyama, Shiro; Fukuda, Katsuya

    The study on thermal energy transport system by synthesis and decomposition reactions of methanol was reviewed. To promote energy conservation and global environment protection, a two-step liquid-phase methanol synthesis process, which starts with carbonylation of methanol to methyl formate, then followed by the hydrogenolysis of the formate, was studied to recover wasted or unused discharged heat from industrial sources for the thermal energy demands of residential and commercial areas by chemical reactions. The research and development of the system were focused on the following three points. (1) Development of low-temperature decomposition and synthetic catalysts, (2) Development of liquid phase reactor (heat exchanger accompanying chemical reaction), (3) Simulation of the energy transport efficiency of entire system which contains heat recovery and supply sections. As the result of the development of catalyst, promising catalysts which agree with the development purposes for the methyl formate decomposition reaction and the synthetic reaction are being developed though some studies remain for the methanol decomposition and synthetic reactions. In the fundamental development of liquid phase reactor, the solubilities of CO and H2 gases in methanol and methyl formate were measured by the method of total pressure decrease due to absorption under pressures up to 1500kPa and temperatures up to 140°C. The diffusivity of CO gas in methanol was determined by measuring the diameter and solution time of single CO bubbles in methanol. The chemical reaction rate of methanol synthesis by hydrogenolysis of methyl formate was measured using a plate-type of Raney copper catalyst in a reactor with rectangular channel and in an autoclave reactor. The reaction characteristics were investigated by carrying out the experiments at various temperatures, flow rates and at various catalyst development conditions. We focused on the effect of Raney copper catalyst thickness on the liquid-phase chemical reaction by varying the development time of the catalyst. Investigation results of the catalyst such as surface area, pore radius, lattice size, and photographs of scanning electron microscope (SEM) were also given. In the simulation of energy transport efficiency of this system, by simulating the energy transfer system using two-step liquid phase methanol decomposition and synthetic reactions, and comparing with the technology so far, it can be expected that an innovative energy transfer system is possible to realize.

  14. UV-induced solvent free synthesis of truxillic acid-bile acid conjugates

    NASA Astrophysics Data System (ADS)

    Koivukorpi, Juha; Kolehmainen, Erkki

    2009-07-01

    The solvent free UV-induced [2 + 2] intermolecular cycloaddition of two molecules of 3α-cinnamic acid ester of methyl lithocholate produced in 99% yield of α- and ɛ-truxillic acid-bis(methyl lithocholate) isomers, which possess two structurally different potential binding sites. A prerequisite for this effective solid state reaction is a proper self-assembled crystal structure of the starting conjugate crystallized from acetonitrile. The crystallization of cinnamic acid ester of methyl lithocholate from acetonitrile produces two different crystalline forms (polymorphs), which is the reason for the solid state formation of two isomers of truxillic acid-bis(methyl lithocholate).

  15. Synthesis of β-Peptide Standards for Use in Model Prebiotic Reactions

    NASA Astrophysics Data System (ADS)

    Forsythe, Jay G.; English, Sloane L.; Simoneaux, Rachel E.; Weber, Arthur L.

    2018-05-01

    A one-pot method was developed for the preparation of a series of β-alanine standards of moderate size (2 to ≥12 residues) for studies concerning the prebiotic origins of peptides. The one-pot synthesis involved two sequential reactions: (1) dry-down self-condensation of β-alanine methyl ester, yielding β-alanine peptide methyl ester oligomers, and (2) subsequent hydrolysis of β-alanine peptide methyl ester oligomers, producing a series of β-alanine peptide standards. These standards were then spiked into a model prebiotic product mixture to confirm by HPLC the formation of β-alanine peptides under plausible reaction conditions. The simplicity of this approach suggests it can be used to prepare a variety of β-peptide standards for investigating differences between α- and β-peptides in the context of prebiotic chemistry.

  16. Synthesis, spectroscopic investigation and theoretical studies of 2-((E)-(2-(2-cyanoacetyl)hydrazono)methyl)-4-((E)-phenyldiazenyl)phenyl methyl carbonate

    NASA Astrophysics Data System (ADS)

    Arokiasamy, A.; Manikandan, G.; Thanikachalam, V.; Gokula Krishnan, K.

    2017-04-01

    Synthesis and computational optimization studies have been carried out by Hartree-Fock (HF) and Density Functional Theory (DFT-B3LYP) methods with 6-31+G(d, p) basis set for 2-((E)-(2-(2-cyanoacetyl)hydrazono)methyl)-4-((E)-phenyldiazenyl)phenyl methyl carbonate (CHPMC). The stable configuration of CHPMC was confirmed theoretically by potential energy surface scan analysis. The complete vibrational assignments were performed on the basis of total energy distribution (TED) analysis. The vibrational properties studied by IR and Raman spectroscopic data complemented by quantum chemical calculations support the formation of intramolecular hydrogen bond. Furthermore, the UV-Vis spectra are interpreted in terms of TD-DFT quantum chemical calculations. The shapes of the simulated absorption spectra are in good agreement with the experimental data. The comparison between the experimental and theoretical values of FT-IR, FT-Raman vibrational spectra, NMR (1H and 13C) and UV-Vis spectra have also been discussed.

  17. Glycerol as a Building Block for Prochiral Aminoketone, N-Formamide, and N-Methyl Amine Synthesis.

    PubMed

    Dai, Xingchao; Rabeah, Jabor; Yuan, Hangkong; Brückner, Angelika; Cui, Xinjiang; Shi, Feng

    2016-11-23

    Prochiral aminoketones are key intermediates for the synthesis of optically active amino alcohols, and glycerol is one of the main biomass-based alcohols available in industry. In this work, glycerol was catalytically activated and purposefully converted with amines to generate highly valuable prochiral aminoketones, as well as N-formamides and N-methyl amines, over CuNiAlO x catalyst. The catalyst structure can be anticipated as nano-Ni species on or in CuAlO x via the formation of nano- Cu-Ni alloy particles. This concept may present a novel and valuable methodology for glycerol utilization. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Chemoprevention of Prostate Cancer by Phenethyl Isothiocyanate

    DTIC Science & Technology

    2007-03-01

    AD cells were exposed to PEITC, protein synthesis inhibitor cycloheximide (CHX), or proteasome inhibitor MG-132 alone, or to the combination of...The results indicated that down-regulation of Sp1 may require protein synthesis for a proteasome activity, thereby enhancing Sp1 protein degradation...carcinogen N- methyl-N- nitrosourea (MNU) for the formation of prostate tumors. The experimental group of rats was provided with PEITC, to evaluate the

  19. Methylation of the sterol nucleus by STRM-1 regulates dauer larva formation in Caenorhabditis elegans.

    PubMed

    Hannich, J Thomas; Entchev, Eugeni V; Mende, Fanny; Boytchev, Hristio; Martin, René; Zagoriy, Vyacheslav; Theumer, Gabriele; Riezman, Isabelle; Riezman, Howard; Knölker, Hans-Joachim; Kurzchalia, Teymuras V

    2009-06-01

    In response to pheromone(s), Caenorhabditis elegans interrupts its reproductive life cycle and enters diapause as a stress-resistant dauer larva. This decision is governed by a complex system of neuronal and hormonal regulation. All the signals converge onto the nuclear hormone receptor DAF-12. A sterol-derived hormone, dafachronic acid (DA), supports reproductive development by binding to DAF-12 and inhibiting its dauer-promoting activity. Here, we identify a methyltransferase, STRM-1, that modulates DA levels and thus dauer formation. By modifying the substrates that are used for the synthesis of DA, STRM-1 can reduce the amount of hormone produced. Loss of STRM-1 function leads to elevated levels of DA and inefficient dauer formation. Sterol methylation was not previously recognized as a mechanism for regulating hormone activity. Moreover, the C-4 sterol nucleus methylation catalyzed by STRM-1 is unique to nematodes and thus could be a target for therapeutic strategies against parasitic nematode infections.

  20. Sunlight mediated synthesis of silver nanoparticles using redox phytoprotein and their application in catalysis and colorimetric mercury sensing.

    PubMed

    Ahmed, Khan Behlol Ayaz; Senthilnathan, Rajendran; Megarajan, Sengan; Anbazhagan, Veerappan

    2015-10-01

    Owing to the benign nature, plant extracts mediated green synthesis of metal nanoparticles (NPs) is rapidly expanding. In this study, we demonstrated the successful green synthesis of silver nanoparticles (AgNPs) by utilizing natural sunlight and redox protein complex composed of ferredoxin-NADP(+) reductase (FNR) and ferredoxin (FD). The capping and stabilization of the AgNPs by the redox protein was confirmed by Fourier transform infrared spectroscopy. Light and redox protein is the prerequisite factor for the formation of AgNPs. The obtained result shows that the photo generated free radicals by the redox protein is responsible for the reduction of Ag(+) to Ag(0). Transmission electron microscopy revealed the formation of spherical AgNPs with size ranging from 10 to 15 nm. As-prepared AgNPs exhibit excellent catalytic activity toward the degradation of hazardous organic dyes, such as methylene blue, methyl orange and methyl red. These bio-inspired AgNPs is highly sensitive and selective in sensing hazardous mercury ions in the water at micromolar concentration. In addition, FNR/FD extract stabilized AgNPs showed good antimicrobial activity against gram positive and gram negative bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Biosynthesis of S-Methylcysteine in Radish Leaves1

    PubMed Central

    Thompson, John F.; Gering, Rose K.

    1966-01-01

    Investigation on the biosynthesis of S-methyl-L-cysteine in radish leaves has shown that it is formed by the methylation of cysteine. This conclusion is based on: A) the relatively high recovery of radioactivity in methylcysteine sulfoxide after the administration of cysteine or methyl-labeled methionine to radish leaves; B) the nearly complete recovery of label from methyl-labeled methionine in the methyl group of methylcysteine sulfoxide; and C) the similarity in the ratio of tritium to 14C in methylcysteine sulfoxide and in its methyl group to this ratio in the methyl group of methionine given to radish leaves. Direct evidence for the synthesis of methylcysteine in radishes was obtained for the first time. Conclusive evidence against the formation of methylcysteine from serine and a thiomethyl group from methionine as suggested for garlic was the more efficient incorporation of the methyl group of methionine as compared to the sulfur atom into methylcysteine sulfoxide. Images Fig. 1 PMID:16656400

  2. Synthesis of an amine-oleate derivative using an ionic catalyst

    USDA-ARS?s Scientific Manuscript database

    A facile (and environmentally friendly) reaction, between epoxidized methyl oleate and aniline to produce an oleate-aniline adduct, without the formation of fatty amide, was discovered. This reaction was carried out neat, with a catalytic amount of an ionic liquid. No solvent or byproducts were pr...

  3. Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil.

    PubMed

    Ghayal, Dyneshwar; Pandit, Aniruddha B; Rathod, Virendra K

    2013-01-01

    The present work demonstrates the application of a hydrodynamic cavitation reactor for the synthesis of biodiesel with used frying oil as a feedstock. The synthesis involved the transesterification of used frying oil (UFO) with methanol in the presence of potassium hydroxide as a catalyst. The effect of geometry and upstream pressure of a cavitating orifice plate on the rate of transesterification reaction has been studied. It is observed that the micro level turbulence created by hydrodynamic cavitation somewhat overcomes the mass transfer limitations for triphasic transesterification reaction. The significant effects of upstream pressure on the rate of formation of methyl esters have been seen. It has been observed that flow geometry of orifice plate plays a crucial role in process intensification. With an optimized plate geometry of 2mm hole diameter and 25 holes, more than 95% of triglycerides have been converted to methyl esters in 10 min of reaction time with cavitational yield of 1.28 × 10(-3) (Grams of methyl esters produced per Joule of energy supplied). The potential of UFO to produce good quality methyl esters has been demonstrated. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Facile Synthesis and Proposed Mechanism of α,ω-Oxetanyl-Telechelic Poly(3-nitratomethyl-3-methyl oxetane) by an SN2(i) Nitrato Displacement Method in Basic Media

    NASA Astrophysics Data System (ADS)

    Desai, Hemant J.; Acheampong, Daniel O.; Hudson, Robert; Lacey, Richard; Stanley, Claire; Turner, Helen; Whitmore, Hannah; Torry, Simon; Golding, Peter; Erothu, Harikrishna; Topham, Paul

    2017-01-01

    The synthesis of a novel heterocyclic-telechelic polymer, α,ω-oxetanyl-telechelic poly(3-nitratomethyl-3-methyl oxetane), is described. Infrared spectroscopy (IR), gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) spectroscopy have been used to confirm the successful synthesis, demonstrating the presence of the telechelic-oxetanyl moieties. Synthesis of the terminal functionalities has been achieved via displacement of nitrato groups, in a manner similar to that employed with other leaving groups such as azido, bromo, and nitro, initiated by nucleophiles. In the present case, displacement occurs on the ends of a nitrato-functionalized polymer driven by the formation of sodium nitrate, which is supported by the polar aprotic solvent N,N-dimethyl formamide. The formation of an alkoxide at the polymer chain ends is favored and allows internal back-biting to the nearest carbon bearing the nitrato group, intrinsically in an SN2(i) reaction, leading to α,ω-oxetanyl functionalization. The telechelic-oxetanyl moieties have the potential to be cross-linked by chemical (e.g., acidic) or radiative (e.g., ultraviolet) curing methods without the use of high temperatures, usually below 100°C. This type of material was designed for future use as a contraband simulant, whereby it would form the predominant constituent of elastomeric composites comprising rubbery polymer with small quantities of solids, typically crystals of contraband substances, such as explosives or narcotics. This method also provides an alternative approach to ring closure and synthesis of heterocycles.

  5. Two unexpected promiscuous activities of the iron-sulfur protein IspH in production of isoprene and isoamylene.

    PubMed

    Ge, Deyong; Xue, Yanfen; Ma, Yanhe

    2016-05-11

    Bacillus species, possessing the methylerythritol phosphate (MEP) pathway for the synthesis of isoprenoid feedstock, are the highest producers of isoprene among bacteria; however, the enzyme responsible for isoprene synthesis has not been identified. The iron-sulfur protein IspH is the final enzyme of the MEP pathway and catalyses the reductive dehydration of (E)-4-hydroxy-3-methyl-2-butenyl diphosphate (HMBPP) to form isopentenyl diphosphate and dimethylallyl diphosphate (DMAPP). In this study, we demonstrated two unexpected promiscuous activities of IspH from alkaliphilic Bacillus sp. N16-5, which can produce high levels of isoprene. Bacillus sp. N16-5 IspH could catalyse the formation of isoprene from HMBPP and the conversion of DMAPP into a mixture of 2-methyl-2-butene and 3-methyl-1-butene. Both reactions require an electron transfer system, such as that used for HMBPP dehydration. Isoprene and isoamylene synthesis in Bacillus sp. N16-5 was investigated and the reaction system was reconstituted in vitro, including IspH, ferredoxin and ferredoxin-NADP(+)-reductase proteins and NADPH. The roles of specific IspH protein residues were also investigated by site-directed mutagenesis experiments; two variants (H131N and E133Q) were found to have lost the HMBPP reductase activity but could still catalyse the formation of isoprene. Overexpression of IspH H131N in Bacillus sp. N16-5 resulted in a twofold enhancement of isoprene production, and the yield of isoprene from the strain expressing E133Q was increased 300% compared with the wild-type strain. IspH from Bacillus sp. N16-5 is a promiscuous enzyme that can catalyse formation of isoprene and isoamylene. This enzyme, especially the H131N and E133Q variants, could be used for the production of isoprene from HMBPP.

  6. The differential role of cortical protein synthesis in taste memory formation and persistence

    NASA Astrophysics Data System (ADS)

    Levitan, David; Gal-Ben-Ari, Shunit; Heise, Christopher; Rosenberg, Tali; Elkobi, Alina; Inberg, Sharon; Sala, Carlo; Rosenblum, Kobi

    2016-05-01

    The current dogma suggests that the formation of long-term memory (LTM) is dependent on protein synthesis but persistence of the memory trace is not. However, many of the studies examining the effect of protein synthesis inhibitors (PSIs) on LTM persistence were performed in the hippocampus, which is known to have a time-dependent role in memory storage, rather than the cortex, which is considered to be the main structure to store long-term memories. Here we studied the effect of PSIs on LTM formation and persistence in male Wistar Hola (n⩾5) rats by infusing the protein synthesis inhibitor, anisomycin (100 μg, 1 μl), into the gustatory cortex (GC) during LTM formation and persistence in conditioned taste aversion (CTA). We found that local anisomycin infusion to the GC before memory acquisition impaired LTM formation (P=8.9E-5), but had no effect on LTM persistence when infused 3 days post acquisition (P=0.94). However, when we extended the time interval between treatment with anisomycin and testing from 3 days to 14 days, LTM persistence was enhanced (P=0.01). The enhancement was on the background of stable and non-declining memory, and was not recapitulated by another amnesic agent, APV (10 μg, 1 μl), an N-methyl-D-aspartate receptor antagonist (P=0.54). In conclusion, CTA LTM remains sensitive to the action of PSIs in the GC even 3 days following memory acquisition. This sensitivity is differentially expressed between the formation and persistence of LTM, suggesting that increased cortical protein synthesis promotes LTM formation, whereas decreased protein synthesis promotes LTM persistence.

  7. Synthesis of rigid polyurethane foams from phosphorylated biopolyols.

    PubMed

    de Haro, Juan Carlos; López-Pedrajas, Daniel; Pérez, Ángel; Rodríguez, Juan Francisco; Carmona, Manuel

    2017-08-18

    Renewable resources are playing a key role on the synthesis of biodegradable polyols. Moreover, the incorporation of covalently linked additives is increasing in importance in the polyurethane (PU) market. In this work, previously epoxidized grape seed oil and methyl oleate were transformed into phosphorylated biopolyols through an acid-catalyzed ring-opening hydrolysis in the presence of H 3 PO 4 . The formation of phosphate polyesters was confirmed by FT-IR and 31 P-NMR. However, the synthesis of a high-quality PU rigid foam was not possible using exclusively these polyols attending to their low hydroxyl value. In that way, different rigid PU foams were prepared from the phosphorylated biopolyols and the commercial polyol Alcupol R4520. It was observed that phosphorylated biopolyols can be incorporated up to a 57 wt.% in the PU synthesis without significant structural changes with respect to the commercial foam. Finally, thermogravimetric and EDAX analyses revealed an improvement of thermal stability by the formation of a protective phosphorocarbonaceous char layer.

  8. Chemo-Enzymatic Synthesis of Chiral Epoxides Ethyl and Methyl (S)-3-(Oxiran-2-yl)propanoates from Renewable Levoglucosenone: An Access to Enantiopure (S)-Dairy Lactone.

    PubMed

    Peru, Aurélien A M; Flourat, Amandine L; Gunawan, Christian; Raverty, Warwick; Jevric, Martyn; Greatrex, Ben W; Allais, Florent

    2016-07-29

    Chiral epoxides-such as ethyl and methyl (S)-3-(oxiran-2-yl)propanoates ((S)-1a/1b)-are valuable precursors in many chemical syntheses. Until recently, these compounds were synthesized from glutamic acid in four steps (deamination, reduction, tosylation and epoxide formation) in low to moderate overall yield (20%-50%). Moreover, this procedure requires some harmful reagents such as sodium nitrite ((eco)toxic) and borane (carcinogen). Herein, starting from levoglucosenone (LGO), a biobased chiral compound obtained through the flash pyrolysis of acidified cellulose, we propose a safer and more sustainable chemo-enzymatic synthetic pathway involving lipase-mediated Baeyer-Villiger oxidation, palladium-catalyzed hydrogenation, tosylation and treatment with sodium ethoxide/methoxide as key steps. This route afforded ethyl and methyl (S)-3-(oxiran-2-yl)propanoates in 57% overall yield, respectively. To demonstrate the potentiality of this new synthetic pathway from LGO, the synthesis of high value-added (S)-dairy lactone was undertaken from these epoxides and provided the target in 37% overall yield from LGO.

  9. Phosphate Tether-Mediated Approach to the Formal Total Synthesis of (-)-Salicylihalamides A and B

    PubMed Central

    Chegondi, Rambabu; Tan, Mary M. L.; Hanson, Paul R.

    2011-01-01

    A concise formal synthesis of the cytotoxic macrolides (-)-salicylihalamides A and B is reported. Key features of the synthetic strategy include a chemoselective hydroboration, highly regio- and diastereoselective methyl cuprate addition, Pd-catalyzed formate reduction, and an E-selective ring-closing metathesis to construct the 12-membered macrocycle subunit. Overall, two routes have been developed from a readily prepared bicyclic phosphate (4-steps), a 13-step route and a more efficient 9-step sequence relying on regioselective esterification of a key diol. PMID:21504150

  10. Restriction of dietary methyl donors limits methionine availability and affects the partitioning of dietary methionine for creatine and phosphatidylcholine synthesis in the neonatal piglet.

    PubMed

    Robinson, Jason L; McBreairty, Laura E; Randell, Edward W; Brunton, Janet A; Bertolo, Robert F

    2016-09-01

    Methionine is required for protein synthesis and provides a methyl group for >50 critical transmethylation reactions including creatine and phosphatidylcholine synthesis as well as DNA and protein methylation. However, the availability of methionine depends on dietary sources as well as remethylation of demethylated methionine (i.e., homocysteine) by the dietary methyl donors folate and choline (via betaine). By restricting dietary methyl supply, we aimed to determine the extent that dietary methyl donors contribute to methionine availability for protein synthesis and transmethylation reactions in neonatal piglets. Piglets 4-8 days of age were fed a diet deficient (MD-) (n=8) or sufficient (MS+) (n=7) in folate, choline and betaine. After 5 days, dietary methionine was reduced to 80% of requirement in both groups to elicit a response. On day 8, animals were fed [(3)H-methyl]methionine for 6h to measure methionine partitioning into hepatic protein, phosphatidylcholine, creatine and DNA. MD- feeding reduced plasma choline, betaine and folate (P<.05) and increased homocysteine ~3-fold (P<.05). With MD- feeding, hepatic phosphatidylcholine synthesis was 60% higher (P<.05) at the expense of creatine synthesis, which was 30% lower during MD- feeding (P<.05); protein synthesis as well as DNA and protein methylation were unchanged. In the liver, ~30% of dietary label was traced to phosphatidylcholine and creatine together, with ~50% traced to methylation of proteins and ~20% incorporated in synthesized protein. Dietary methyl donors are integral to neonatal methionine requirements and can affect methionine availability for transmethylation pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. New Synthesis, Structure and Analgesic Properties of Methyl 1-R-4-Methyl-2,2-Dioxo-1H-2λ⁶,1-Benzothiazine-3-Carboxylates.

    PubMed

    Azotla-Cruz, Liliana; Lijanova, Irina V; Ukrainets, Igor V; Likhanova, Natalya V; Olivares-Xometl, Octavio; Bereznyakova, Natalya L

    2017-01-12

    According to the principles of the methodology of bioisosteric replacements a series of methyl 1-R-4-methyl-2,2-dioxo-1 H -2λ⁶,1-benzothiazine-3-carboxylates has been obtained as potential analgesics. In addition, a fundamentally new strategy for the synthesis of compounds of this chemical class involving the introduction of N -alkyl substituent at the final stage in 2,1-benzothiazine nucleus already formed has been proposed. Using nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry and X-ray diffraction analysis it has been proven that in the DMSO/K₂CO₃ system the reaction of methyl 4-methyl-2,2-dioxo-1 H -2λ⁶,1-benzothiazine-3-carboxylate and alkyl halides leads to formation of N -substituted derivatives with good yields regardless of the structure of the alkylating agent. The peculiarities of NMR (¹Н and 13 С) spectra of the compounds synthesized, their mass spectrometric behavior and the spatial structure are discussed. In N -benzyl derivative the ability to form a monosolvate with methanol has been found. According to the results of the pharmacological testing conducted on the model of the thermal tail-flick it has been determined that replacement of 4-ОН-group in methyl 1-R-4-hydroxy-2,2-dioxo-1 H -2λ⁶,1-benzothiazine-3-carboxylates for the methyl group is actually bioisosteric since all methyl 1-R-4-methyl-2,2-dioxo-1 H -2λ⁶,1-benzothiazine-3-carboxylates synthesized demonstrated a statistically significant analgesic effect. The majority of the substances can inhibit the thermal pain response much more effective than piroxicam in the same dose. Under the same conditions as an analgesic the N- methyl-substituted analog exceeds not only piroxicam, but more active meloxicam as well. Therefore, it deserves in-depth biological studies on other experimental models.

  12. The Synthesis of Phenyl Acetylene Phenols for Development of New Explosives

    NASA Astrophysics Data System (ADS)

    Chikhradze, Nikoloz; Nadirashvili, Merab; Khomeriki, Sergo; Varshanidze, Iasha

    2017-12-01

    The purpose of this research is to produce derivatives of simple phenols as “raw material” for the synthesis of new phenolic explosives. A big number of valuable products is synthesized from phenol and its homologues including well-known explosives - picric acid, methyl picrate, cresolite, etc. In general, a structural modification of well-known explosives’ molecules is the most important among the methods for the synthesis of new explosives. This method can be used in certain modifications. For example, the synthesis of methyl picrate is possible not only to replace picric acid’s hydroxyl with metoxyl, but with nitration of anisole as well, i. e, by the reciprocating synthesis. Thus, to produce the new analogues of well-known phenolic explosives, the preliminary modification of simple phenols’ molecules and further nitration, presumably by a formation of dinitro derivatives may be performed. The alkylation of phenol, anisole and m - cresol by the secondary phenyl acetylene alcohols in the presence of concentrated phosphoric acid was carried out. Para-substituted alkynyl phenols with high yields were developed. The chemical transformations were carried out by a participation of their molecules’ active centres. The corresponding ethers, esters and saturated isologues have been synthesized. The article describes the conditions of a synthesis of 14 new phenyl acetylenes’ substances that may be used as substrates in a nitration reaction.

  13. Structure-activity relationships of sandalwood odorants: synthesis and odour of methyl-beta-santalol.

    PubMed

    Buchbauer, G; Zechmeister-Machhart, F; Weiss-Greiler, P; Wolschann, P

    1997-04-01

    The synthesis and odour properties of the new santalol analogue, methyl-beta-santalol, are described. The additional methyl group adjacent to the hydroxyl function of the standard molecule, beta-santalol, deprives the new compound of the sandalwood note. The synthesis and the odour evaluation of this compound supports the proposed model for sandalwood fragrance as it shows that the methyl group located at the osmophoric center prevents association of the molecule with the hypothetical receptor.

  14. Characterisation of a proposed internet synthesis of N,N-dimethyltryptamine using liquid chromatography/electrospray ionisation tandem mass spectrometry.

    PubMed

    Martins, Cláudia P B; Freeman, Sally; Alder, John F; Brandt, Simon D

    2009-08-14

    The psychoactive properties of N,N-dimethyltryptamine (DMT) are known to induce altered states of consciousness in humans. These properties attract great interest from clinical, neuroscientific, clandestine and forensic communities. The Breath of Hope Synthesis was reported on an internet website as a convenient two-step methodology for the preparation of DMT. The analytical characterisation of the first stage was the subject of previous publications by the authors and involved the thermal decarboxylation of tryptophan and the formation of tryptamine. The present study reports on the characterisation of the second step of this procedure which was based on the methylation of tryptamine. This employed methyl iodide and benzyltriethylammonium chloride/sodium hydroxide as a phase transfer catalyst. The reaction product was characterised by liquid chromatography/electrospray ionisation tandem mass spectrometry and orthogonal acceleration time-of-flight mass spectrometry. Quantitative evaluation was carried out in positive multiple reaction monitoring mode (MRM), which included synthesis of the identified reaction products. MRM screening of the product did not lead to the detection of DMT. Instead, 11.1% tryptamine starting material, 21.0% N,N,N-trimethyltryptammonium iodide (TMT) and 47.4% 1-N-methyl-TMT were detected. A 0.5% trace of the monomethylated N-methyltryptamine was also detected. This study demonstrated the impact on product purity of doubtful synthetic methodologies discussed on the internet.

  15. Lens lipids.

    PubMed

    Zelenka, P S

    1984-11-01

    Lens cells can synthesize, degrade, and remodel lipids. Endogenous lipid synthesis, in conjunction with uptake of exogenous cholesterol and certain fatty acids, leads to the formation of a plasma membrane that is especially rich in sphingomyelin, cholesterol, and long-chain saturated fatty acids. As a result of this unusual lipid composition, lens membranes have very low fluidity, which is restricted even further by lipid-protein interactions. The composition and metabolism of membrane lipids may affect the formation of various types of cataracts. Diets rich in vegetable oils offer some protection against the formation of osmotic cataracts and the hereditary cataract of the RCS rat, although the mechanism of this effect is not clear. Vitamin E also protects against the formation of several types of cataract in vivo and in vitro, suggesting that lipid peroxidation may play a role in cataractogenesis. Certain drugs which inhibit lipid synthesis or degradation are cataractogenic, and a deficiency in cataractogenic, and a deficiency in phosphatidylserine is associated with a loss of Na+/K+ ATPase activity in several types of cataract. Human senile cataracts show a marked loss of protein-lipid interactions, although the overall lipid composition is normal. This loss of protein-lipid interactions may be related to oxidative damage to membrane-associated proteins. Interestingly, the decrease in the fluidity of lens membranes with age would counteract the formation of aqueous pores in the membrane, which can result from the oxidative cross-linking of membrane-associated proteins. Certain pathways of lipid metabolism seem to have regulatory functions. Among these are phosphatidylinositol turnover, phosphatidylethanolamine methylation, and arachidonic acid metabolism. All of these pathways function in the lens. Phosphatidylinositol turnover is correlated with the rate of lens epithelial cell division, while phosphatidylethanolamine methylation seems to be related to the initiation of lens fiber cell formation. Both pathways are associated with the release and metabolism of arachidonic acid in other cell types. While it is not known whether phosphatidylinositol turnover or phosphatidylethanolamine methylation result in the release of arachidonic acid in the lens, recent work has shown that lens cells from a variety of species can metabolize arachidonic acid by both the cyclooxygenase and lipoxygenase pathways. The possible physiological significance of these metabolites to the lens is yet to be determined.

  16. Process assessment of small scale low temperature methanol synthesis

    NASA Astrophysics Data System (ADS)

    Hendriyana, Susanto, Herri; Subagjo

    2015-12-01

    Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H2 to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H2 for increasing H2/CO ratio. CO2 removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy balance and economic analysis. The presented study is an attempt to compile most of these efforts in order to guide future work to get cheaper low cost investment. From our study the interesting configuration to the next development is D configuration with methanol yield 112 ton/day and capital cost with 526.4 106 IDR. The configuration of D with non-discounted and discounted rate had the break-even point approximately six and eight years.

  17. Inhibition of protein synthesis by N-methyl-N-nitrosourea in vivo

    PubMed Central

    Kleihues, P.; Magee, P. N.

    1973-01-01

    1. The intraperitoneal injection of N-methyl-N-nitrosourea (100mg/kg) caused a partial inhibition of protein synthesis in several organs of the rat, the maximum effect occurring after 2–3h. 2. In the liver the inhibition of protein synthesis was paralleled by a marked disaggregation of polyribosomes and an increase in ribosome monomers and ribosomal subunits. No significant breakdown of polyribosomes was found in adult rat brains although N-methyl-N-nitrosourea inhibited cerebral and hepatic protein synthesis to a similar extent. In weanling rats N-methyl-N-nitrosourea caused a shift in the cerebral polyribosome profile similar to but less marked than that in rat liver. 3. Reaction of polyribosomal RNA with N-[14C]methyl-N-nitrosourea in vitro did not lead to a disaggregation of polyribosomes although the amounts of 7-methylguanine produced were up to twenty times higher than those found after administration of sublethal doses in vivo. 4. It was concluded that changes in the polyribosome profile induced by N-methyl-N-nitrosourea may reflect the mechanism of inhibition of protein synthesis rather than being a direct consequence of the methylation of polyribosomal mRNA. PMID:4774397

  18. Thermomyces lanuginosus lipase-catalyzed synthesis of natural flavor esters in a continuous flow microreactor.

    PubMed

    Gumel, Ahmad Mohammed; Annuar, M S M

    2016-06-01

    Enzymatic catalysis is considered to be among the most environmental friendly processes for the synthesis of fine chemicals. In this study, lipase from Thermomyces lanuginosus (Lecitase Ultra™) was used to catalyze the synthesis of flavor esters, i.e., methyl butanoate and methyl benzoate by esterification of the acids with methanol in a microfluidic system. Maximum reaction rates of 195 and 115 mM min -1 corresponding to catalytic efficiencies (k cat /K M ) of 0.30 and 0.24 min -1  mM -1 as well as yield conversion of 54 and 41 % were observed in methyl butanoate and methyl benzoate synthesis, respectively. Catalytic turnover (k cat ) was higher for methyl butanoate synthesis. Rate of synthesis and yield decreased with increasing flow rates. For both esters, increase in microfluidic flow rate resulted in increased advective transport over molecular diffusion and reaction rate, thus lower conversion. In microfluidic synthesis using T. lanuginosus lipase, the following reaction conditions were 40 °C, flow rate 0.1 mL min -1 , and 123 U g -1 enzyme loading found to be the optimum operating limits. The work demonstrated the application of enzyme(s) in a microreactor system for the synthesis of industrially important esters.

  19. Synthesis of methyl ester sulfonate surfactant from crude palm oil as an active substance of laundry liquid detergent

    NASA Astrophysics Data System (ADS)

    Slamet, Ibadurrohman, Muhammad; Wulandari, Pangiastika Putri

    2017-11-01

    Liquid detergent with combination of MES surfactant and TiO2 nanoparticles to remove and degrade the dirt in the form of methylene blue and produce waste with the lowest surfactant residual concentration has been done. The formation of MES is carried out by esterification and transesterification of crude palm oil, sulfonation, refining, and neutralization. The photocatalyst TiO2 nanoparticles is added as an additive to improve surfactant performance in removing dirt and degrading organic compounds. MES formation is performed by varying the mole ratio of the reactants in the esterification and transesterification reactions, and the mole ratios between methyl esters and NaHSO3 during the sulfonation reaction. Variations of MES surfactant and TiO2 nanoparticles compositions were performed to obtain detergent stability. Data analysis technique in this research is characterization of methyl ester, MES surfactant, and detergent using UV-Vis spectrophotometer instrument, FTIR, GC-MS, and LC-MS. The optimum conditions in the esterification and transesterification process were each mole ratio of 1: 6 between CPO and methanol based on the highest conversion, 99%. The optimum condition of the sulfonation process is the 1: 1.5 mole ratio between methyl ester and NaHSO3 based on the lowest surface tension value, which is about 36 dyne/cm.

  20. Synthesis and properties of 2'-O-methyl-4'-thioRNA.

    PubMed

    Takahashi, Mayumi; Inoue, Naonori; Minakawa, Noriaki; Matsuda, Akira

    2005-01-01

    In this presentation, we will discuss the synthesis and properties of 2'-O-methyl-4'-thioRNA, an RNA molecule consisting of 2'-O-methyl-4'-thionucleosides. We first synthesized 2'-O-methyl-4'-thiouridine and -cytidine derivatives via 2,2'-O-anhydro-4'-thiouridine. The RNA consisting of 2'-O-methyl-4'-thiopyrimidine nucleosides and 2'-O-methylpurine nucleosides, 2'-OMe-4'-thioRNA, was synthesized on a DNA synthesizer according to the standard phosphoramidite protocol.

  1. Dietary Methyl Donors Contribute to Whole-Body Protein Turnover and Protein Synthesis in Skeletal Muscle and the Jejunum in Neonatal Piglets.

    PubMed

    Robinson, Jason L; Harding, Scott V; Brunton, Janet A; Bertolo, Robert F

    2016-10-01

    The neonatal methionine requirement must consider not only the high demand for rapid tissue protein expansion but also the demands as the precursor for a suite of critical transmethylation reactions. However, methionine metabolism is inherently complex because upon transferring its methyl group during transmethylation, methionine can be reformed by the dietary methyl donors choline (via betaine) and folate. We sought to determine whether dietary methyl donors contribute to methionine availability for protein synthesis in neonatal piglets. Yucatan miniature piglets aged 4-8 d were fed a diet that provided 38 μg folate/(kg·d), 60 mg choline/(kg·d), and 238 mg betaine/(kg·d) [methyl-sufficient (MS); n = 8] or a diet devoid of these methyl precursors [methyl-deficient (MD); n = 8]. After 5 d, dietary methionine was reduced from 0.30 to 0.20 g/(kg·d) in both groups. On day 6, piglets received a constant [1- 13 C]phenylalanine infusion to measure whole-body protein kinetics, and on day 8 they received a constant [ 3 H-methyl]methionine infusion to measure tissue-specific protein synthesis in skeletal muscle, the liver, and the jejunum. Whole-body phenylalanine flux, protein synthesis, and protein breakdown were 13%, 12%, and 22% lower, respectively, in the MD group than in the MS group (P < 0.05). Reduced whole-body protein synthesis in the MD piglets was attributed to 50% lower protein synthesis in skeletal muscle and the jejunum than in the MS piglets (P < 0.05). Furthermore, methionine availability in skeletal muscle was halved in piglets fed the MD diet (P < 0.05), and the specific radioactivity of methionine was doubled in the jejunum of MD piglets (P < 0.05), suggesting lower intestinal remethylation. Liver protein synthesis did not significantly differ between the groups, but secreted proteins were not measured. Dietary methyl donors can affect whole-body and tissue-specific protein synthesis in neonatal piglets and should be considered when determining the methionine requirement. © 2016 American Society for Nutrition.

  2. GC-MS studies on the regioisomeric methoxy-methyl-phenethylamines related to MDEA, MDMMA, and MBDB.

    PubMed

    Thigpen, Ashley; Awad, Tamer; Deruiter, Jack; Clark, C Randall

    2008-01-01

    Three regioisomeric 3,4-methylenedioxyphenethylamines having the same molecular weight and major mass spectral fragments of equal mass have been reported as drugs of abuse in forensic studies in recent years. These compounds are 3,4-methylenedioxy-N-ethylamphetamine (MDEA), 3,4-methylenedioxy-N-N-dimethylamphetamine (MDMMA), and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB). The mass spectra of the regioisomers (4-methoxy-3-methyl and 4-methoxy-2-methyl-phenethylamines) are essentially equivalent to the three compounds reported as drugs of abuse. This project focused on the synthesis, mass spectral characterization, and chromatographic analysis of these six regioisomeric methoxy methyl phenethylamines. Additionally, the mass spectral and chromatographic properties of these compounds will be compared to the isobaric 2,3- and 3,4-methylenedioxyphenethyl-amines of the same side chain. The six regioisomeric methoxy-methyl-phenethylamines were synthesized from commercially available starting materials. Side chain differentiation by mass spectrometry was possible after the formation of the perfluoroacyl derivatives, pentafluoropropionylamides (PFPA) and heptafluorobutrylamides (HFBA). Gas chromatographic separation on Rtx-1 was successful at resolving the perfluoroacyl derivatives of the 4-methoxy-3-methyl phenethylamines from those of the 4-methoxy-2-methyl phenethylamines. The 4-methoxy-3-methyl-phenethylamine derivatives eluted before the 4-methoxy-2-methyl-phenethylamine derivatives as both the PFPA and HFBA derivatives.

  3. Total enzymatic synthesis of cholecystokinin CCK-5.

    PubMed

    Xiang, H; Xiang, G Y; Lu, Z M; Guo, L; Eckstein, H

    2004-08-01

    This paper describes the enzymatic synthesis of the C-terminal fragment H-Gly-Trp-Met-Asp-Phe-NH2 of cholecystokinin. Immobilized enzymes were used for the formation of all peptide bonds except thermolysin. Beginning the synthesis with phenylacetyl (PhAc) glycine carboxamidomethyl ester (OCam) and H-Trp-OMe by using immobilized papain as biocatalyst in buffered ethyl acetate, the dipeptide methyl ester was then coupled directly with Met-OEt.HCl by alpha-chymotrypsin/Celite 545 in a solvent free system. For the 3+2 coupling PhAc-Gly-Trp-Met-OEt had to be converted into its OCam ester. The other fragment H-Asp(OMe)-Phe-NH2 resulted from the coupling of Cbo-Asp(OMe)-OH with H-Phe-NH2.HCl and thermolysin as catalyst, followed by catalytic hydrogenation. Finally PhAc-Gly-Trp-Met-Asp-Phe-NH2 was obtained in a smooth reaction from PhAc-Gly-Trp-Met-OCam and H-Asp(OMe)-Phe-NH2 with alpha-chymotrypsin/Celite 545 in acetonitrile, followed by basic hydrolysis of the beta-methyl ester. The PhAc-group is removed with penicillin G amidase and CCK-5 is obtained in an overall isolated yield of 19.6%.

  4. Nucleoside-O-Methyl-(H)-Phosphinates: Novel Monomers for the Synthesis of Methylphosphonate Oligonucleotides Using H-Phosphonate Chemistry.

    PubMed

    Kostov, Ondřej; Páv, Ondřej; Rosenberg, Ivan

    2017-09-18

    This unit comprises the straightforward synthesis of protected 2'-deoxyribonucleoside-O-methyl-(H)-phosphinates in both 3'- and 5'-series. These compounds represent a new class of monomers compatible with the solid-phase synthesis of oligonucleotides using H-phosphonate chemistry and are suitable for the preparation of both 3'- and 5'-O-methylphosphonate oligonucleotides. The synthesis of 4-toluenesulfonyloxymethyl-(H)-phosphinic acid as a new reagent for the preparation of O-methyl-(H)-phosphinic acid derivatives is described. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  5. Engineering Escherichia coli for Biodiesel Production Utilizing a Bacterial Fatty Acid Methyltransferase▿†

    PubMed Central

    Nawabi, Parwez; Bauer, Stefan; Kyrpides, Nikos; Lykidis, Athanasios

    2011-01-01

    The production of low-cost biofuels in engineered microorganisms is of great interest due to the continual increase in the world's energy demands. Biodiesel is a renewable fuel that can potentially be produced in microbes cost-effectively. Fatty acid methyl esters (FAMEs) are a common component of biodiesel and can be synthesized from either triacylglycerol or free fatty acids (FFAs). Here we report the identification of a novel bacterial fatty acid methyltransferase (FAMT) that catalyzes the formation of FAMEs and 3-hydroxyl fatty acid methyl esters (3-OH-FAMEs) from the respective free acids and S-adenosylmethionine (AdoMet). FAMT exhibits a higher specificity toward 3-hydroxy free fatty acids (3-OH-FFAs) than FFAs, synthesizing 3-hydroxy fatty acid methyl esters (3-OH-FAMEs) in vivo. We have also identified bacterial members of the fatty acyl-acyl carrier protein (ACP) thioesterase (FAT) enzyme family with distinct acyl chain specificities. These bacterial FATs exhibit increased specificity toward 3-hydroxyacyl-ACP, generating 3-OH-FFAs, which can subsequently be utilized by FAMTs to produce 3-OH-FAMEs. PhaG (3-hydroxyacyl ACP:coenzyme A [CoA] transacylase) constitutes an alternative route to 3-OH-FFA synthesis; the coexpression of PhaG with FAMT led to the highest level of accumulation of 3-OH-FAMEs and FAMEs. The availability of AdoMet, the second substrate for FAMT, is an important factor regulating the amount of methyl esters produced by bacterial cells. Our results indicate that the deletion of the global methionine regulator metJ and the overexpression of methionine adenosyltransferase result in increased methyl ester synthesis. PMID:21926202

  6. DNA synthesis in HeLa cells and isolated nuclei after treatment with an inhibitor of spermidine synthesis, methyl glyoxal bis(guanylhydrazone).

    PubMed

    Krokan, H; Eriksen, A

    1977-02-01

    Addition of methyl glyoxal bis(guanylhydrazone) to HeLa S3 suspension cultures resulted in increased putrescine levels and decreased spermidine and spermine levels preceding a drop in incorporation of [3H]thymidine, [3H]uridine and [14C]leucine into macromolecules. When putrescine, spermidine, spermine or cadaverine was added simultaneously with methyl glyoxal bis(guanylhydrazone), the drug had no detectable effect on the synthesis of macromolecules. In nuclei isolated from cells treated with methyl glyoxal bis(guanylhydrazone) the reduction in the rate of DNA synthesis was equal to the reduction of [3H]thymidine incorporation in the corresponding whole cells. The capability of the nuclei to synthesize DNA could not be restored by adding spermidine or spermine to the system in vitro. The rate of DNA chain elongation was only reduced slightly by methyl glyoxal bis(guanylhydrazone) indicating that decreased levels of spermidine and spermine lead to a decrease in the number of replication units active in DNA synthesis within each cell.

  7. Metathesis-mediated synthesis of (R)-10-methyl-2-tridecanone, the southern corn rootworm pheromone.

    PubMed

    Shikichi, Yasumasa; Mori, Kenji

    2012-01-01

    (R)-10-Methyl-2-tridecanone, the female sex pheromone of the southern corn rootworm (Diabrotica undecimpunctata howardi Barber), was synthesized in 9 steps from methyl (S)-3-hydroxy-2-methylpropanoate in a 15.7% overall yield. Olefin cross metathesis between (R)-6-methyl-1-nonene and 5-hexen-2-one employing Grubbs' first-generation catalyst was the key step of the synthesis.

  8. Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle.

    PubMed

    Pesavento, James J; Yang, Hongbo; Kelleher, Neil L; Mizzen, Craig A

    2008-01-01

    Methylation of histone H4 at lysine 20 (K20) has been implicated in transcriptional activation, gene silencing, heterochromatin formation, mitosis, and DNA repair. However, little is known about how this modification is regulated or how it contributes to these diverse processes. Metabolic labeling and top-down mass spectrometry reveal that newly synthesized H4 is progressively methylated at K20 during the G(2), M, and G(1) phases of the cell cycle in a process that is largely inescapable and irreversible. Approximately 98% of new H4 becomes dimethylated within two to three cell cycles, and K20 methylation turnover in vivo is undetectable. New H4 is methylated regardless of prior acetylation, and acetylation occurs predominantly on K20-dimethylated H4, refuting the hypothesis that K20 methylation antagonizes H4 acetylation and represses transcription epigenetically. Despite suggestions that it is required for normal mitosis and cell cycle progression, K20 methylation proceeds normally during colchicine treatment. Moreover, delays in PR-Set7 synthesis and K20 methylation which accompany altered cell cycle progression during sodium butyrate treatment appear to be secondary to histone hyperacetylation or other effects of butyrate since depletion of PR-Set7 did not affect cell cycle progression. Together, our data provide an unbiased perspective of the regulation and function of K20 methylation.

  9. Process assessment of small scale low temperature methanol synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendriyana; Chemical Engineering Department, Faculty of Industrial Technology, InstitutTeknologi Bandung; Susanto, Herri, E-mail: herri@che.itb.ac.id

    2015-12-29

    Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developedmore » various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H{sub 2} to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H{sub 2} for increasing H{sub 2}/CO ratio. CO{sub 2} removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy balance and economic analysis. The presented study is an attempt to compile most of these efforts in order to guide future work to get cheaper low cost investment. From our study the interesting configuration to the next development is D configuration with methanol yield 112 ton/day and capital cost with 526.4 10{sup 6} IDR. The configuration of D with non-discounted and discounted rate had the break-even point approximately six and eight years.« less

  10. Synthesis, X-ray structure and cytotoxic effect of nickel(II) complexes with pyrazole ligands.

    PubMed

    Sobiesiak, Marta; Lorenz, Ingo-Peter; Mayer, Peter; Woźniczka, Magdalena; Kufelnicki, Aleksander; Krajewska, Urszula; Rozalski, Marek; Budzisz, Elzbieta

    2011-12-01

    Here we present the synthesis of the new Ni(II) complexes with chelating ligands 1-benzothiazol-2-yl-3,5-dimethyl-1H-pyrazole (a), 5-(2-hydroxyphenyl)-3-methyl-1-(2-pyridylo)-1H-pyrazole-4-carboxylic acid methyl ester (b) and 1-benzothiazol-2-yl-5-(2-hydroxyphenyl)-3-methyl-1H-pyrazole-4-carboxylic acid methyl ester (c). These ligands a-c create solid complexes with Ni(II). The crystal and molecular structures of two complexes were determined by X-ray diffraction method. Thermal stability of two complexes with ligand c by TG/DTG and DSC methods were also shown. Cytotoxic activity of all the complexes against three tumour cell lines and to normal endothelial cells (HUVEC) was also estimated. Complexes with ligand c exhibited relatively high cytotoxic activity towards HL-60 and NALM-6 leukaemia cells and WM-115 melanoma cells. Cytotoxic effectiveness of one of these complexes against melanoma WM-115 cells was two times higher than that of cisplatin. The protonation constant log K=9.63 of ligand b corresponding to the phenol 2-hydroxy group has been determined in 10% (v/v) DMSO/water solution (25°C). The coordination modes (formation of two monomeric species: NiL and NiL(2)) in the complexes with Ni(II) are discussed for b on the basis of the potentiometric and UV/Vis data. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  11. The long underestimated carbonyl function of carbohydrates – an organocatalyzed shot into carbohydrate chemistry.

    PubMed

    Mahrwald, R

    2015-09-21

    The aggressive and strong development of organocatalysis provides several protocols for the convenient utilization of the carbonyl function of unprotected carbohydrates in C-C-bond formation processes. These amine-catalyzed mechanisms enable multiple cascade-protocols for the synthesis of a wide range of carbohydrate-derived compound classes. Several, only slightly different protocols, have been developed for the application of 1,3-dicarbonyl compounds in the stereoselective chain-elongation of unprotected carbohydrates and the synthesis of highly functionalized C-glycosides of defined configuration. In addition, C-glycosides can also be accessed by amine-catalyzed reactions with methyl ketones. By a one-pot cascade reaction of isocyanides with unprotected aldoses and amino acids access to defined configured glycopeptide mimetics is achieved. Depending on the reaction conditions different origins to control the installation of configuration during the bond-formation process were observed.

  12. Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis.

    PubMed

    Kobayashi, Kazuo

    2015-04-01

    Bacillus subtilis is a rhizobacterium that promotes plant growth and health. Cultivation of B. subtilis with an uprooted weed on solid medium produced pleat-like architectures on colonies near the plant. To test whether plants emit signals that affect B. subtilis colony morphology, we examined the effect of plant-related compounds on colony morphology. Bacillus subtilis formed mucoid colonies specifically in response to methyl salicylate, which is a plant-defense signal released in response to pathogen infection. Methyl salicylate induced mucoid colony formation by stimulating poly-γ-glutamic acid biosynthesis, which formed enclosing capsules that protected the cells from exposure to antimicrobial compounds. Poly-γ-glutamic acid synthesis depended on the DegS-DegU two-component regulatory system, which activated DegSU-dependent gene transcription in response to methyl salicylate. Bacillus subtilis did not induce plant methyl salicylate production, indicating that the most probable source of methyl salicylate in the rhizosphere is pathogen-infected plants. Methyl salicylate induced B. subtilis biosynthesis of the antibiotics bacilysin and fengycin, the latter of which exhibited inhibitory activity against the plant pathogenic fungus Fusarium oxysporum. We propose that B. subtilis may sense plants under pathogen attack via methyl salicylate, and express defense responses that protect both B. subtilis and host plants in the rhizosphere. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Weak Maser Emission of Methyl Formate toward Sagittarius B2(N) in the Green Bank Telescope PRIMOS Survey

    NASA Astrophysics Data System (ADS)

    Faure, A.; Remijan, A. J.; Szalewicz, K.; Wiesenfeld, L.

    2014-03-01

    A non-LTE radiative transfer treatment of cis-methyl formate (HCOOCH3) rotational lines is presented for the first time using a set of theoretical collisional rate coefficients. These coefficients have been computed in the temperature range 5-30 K by combining coupled-channel scattering calculations with a high accuracy potential energy surface for HCOOCH3-He. The results are compared to observations toward the Sagittarius B2(N) molecular cloud using the publicly available PRIMOS survey from the Green Bank Telescope. A total of 49 low-lying transitions of methyl formate, with upper levels below 25 K, are identified. These lines are found to probe a presumably cold (~30 K), moderately dense (~104 cm-3), and extended region surrounding Sgr B2(N). The derived column density of ~4 × 1014 cm-2 is only a factor of ~10 larger than the column density of the trans conformer in the same source. Provided that the two conformers have the same spatial distribution, this result suggests that strongly non-equilibrium processes must be involved in their synthesis. Finally, our calculations show that all detected emission lines with a frequency below 30 GHz are (collisionally pumped) weak masers amplifying the continuum of Sgr B2(N). This result demonstrates the importance and generality of non-LTE effects in the rotational spectra of complex organic molecules at centimeter wavelengths.

  14. The Synthesis of Methyl-Substituted Spirocyclic Piperidine-Azetidine (2,7-Diazaspiro[3.5]nonane) and Spirocyclic Piperidine-Pyrrolidine (2,8-Diazaspiro[4.5]decane) Ring Systems.

    PubMed

    Smith, Aaron C; Cabral, Shawn; Kung, Daniel W; Rose, Colin R; Southers, James A; García-Irizarry, Carmen N; Damon, David B; Bagley, Scott W; Griffith, David A

    2016-05-06

    The synthesis of a series of pharmaceutically important N-protected methyl-substituted spirocyclic piperidine-azetidine (2,7-diazaspiro[3.5]nonane) and spirocyclic piperidine-pyrrolidine (2,8-diazaspiro[4.5]decane) ring systems was developed. These motifs contain two differentiated sites (protected secondary amines) to allow for further functionalization via reductive amination, amidation, or other chemistry. The methyl-substituted spiroazetidine ring systems were accessed using nitrile lithiation/alkylation chemistry while the methyl-substituted spiropyrrolidines were synthesized by 1,4-addition reactions with nitroalkanes, followed by reduction and cyclization. These conditions were then scaled for the synthesis of 1-methyl spirocyclic piperidine-pyrrolidine with a classical resolution of the product using a tartaric acid derivative to isolate a single enantiomer.

  15. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  16. A practical and improved synthesis of (3S,5S)-3-[(tert-butyloxycarbonyl)methyl]- 5-[(methanesulfonyloxy)methyl]-2- pyrrolidinone.

    PubMed

    Yee, Nathan K; Dong, Yong; Kapadia, Suresh R; Song, Jinhua J

    2002-11-29

    A practical and improved synthesis of (3S,5S)-3-[(tert-butyloxycarbonyl)methyl]-5-[(methanesulfonyloxy)methyl]-2-pyrrolidinone (1) is described. The key transformations involve a highly efficient reaction sequence consisting of ethoxycarbonylation, alkylation, hydrolysis, and decarboxylation to produce compound 10. The process described herein is practical, robust, and cost-effective, and it has been successfully implemented in a pilot plant to produce a multikilogram quantity of mesylate 1.

  17. Alternative synthesis of 3-acetyl, 3-epoxy, and 3-formyl chlorins from a 3-vinyl chlorin, methyl pyropheophorbide-a, via iodination.

    PubMed

    Oba, Toru; Masuya, Takuto; Yasuda, Satoru; Ito, Satoshi

    2015-08-01

    We developed novel methods to convert the C3-vinyl group of a chlorophyll derivative, methyl pyropheophorbide-a, into an acetyl group, an epoxy group, and a formyl group via iodination with I2 and phenyliodine(III) bis(trifluoroacetate). Reaction of the iodinated intermediate with ethylene glycol and subsequent treatment with base led to formation of the C3-acetyl chlorin. Reaction of the iodinated intermediate with ethylenediamine afforded the C3-oxiranyl chlorin. The C3-formyl chlorin was readily derived from the epoxide without hazardous reagents such as OsO4. These reactions were facile and useful alternatives to the previous methods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Enhanced GSH synthesis by Bisphenol A exposure promoted DNA methylation process in the testes of adult rare minnow Gobiocypris rarus.

    PubMed

    Yuan, Cong; Zhang, Yingying; Liu, Yan; Zhang, Ting; Wang, Zaizhao

    2016-09-01

    DNA methylation is a commonly studied epigenetic modification. The mechanism of BPA on DNA methylation is poorly understood. The present study aims to explore whether GSH synthesis affects DNA methylation in the testes of adult male rare minnow Gobiocypris rarus in response to Bisphenol A (BPA). Male G. rarus was exposed to 1, 15 and 225μgL(-1) BPA for 7 days. The levels of global DNA methylation, hydrogen peroxide (H2O2) and glutathione (GSH) in the testes were analyzed. Meanwhile, the levels of enzymes involved in DNA methylation and de novo GSH synthesis, and the substrate contents for GSH production were measured. Furthermore, gene expression profiles of the corresponding genes of all studied enzymes were analyzed. Results indicated that BPA at 15 and 225μgL(-1) caused hypermethylation of global DNA in the testes. The 15μgL(-1) BPA resulted in significant decrease of ten-eleven translocation proteins (TETs) while 225μgL(-1) BPA caused significant increase of DNA methyltransferase proteins (DNMTs). Moreover, 225μgL(-1) BPA caused significant increase of H2O2 and GSH levels, and the de novo GSH synthesis was enhanced. These results indicated that the significant decrease of the level of TETs may be sufficient to cause the DNA hypermethylation by 15μgL(-1) BPA. However, the significantly increased of DNMTs contributed to the significant increase of DNA methylation levels by 225μgL(-1) BPA. Moreover, the elevated de novo GSH synthesis may promote the DNA methylation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Efficient and scalable synthesis of bardoxolone methyl (cddo-methyl ester).

    PubMed

    Fu, Liangfeng; Gribble, Gordon W

    2013-04-05

    Bardoxolone methyl (2-cyano-3,12-dioxooleane-1,9(11)-dien-28-oic acid methyl ester; CDDO-Me) (1), a synthetic oleanane triterpenoid with highly potent anti-inflammatory activity (levels below 1 nM), has completed a successful phase I clinical trial for the treatment of cancer and a successful phase II trial for the treatment of chronic kidney disease in type 2 diabetes patients. Our synthesis of bardoxolone methyl (1) proceeds in ∼50% overall yield in five steps from oleanolic acid (2), requires only one to two chromatographic purifications, and can provide gram quantities of 1.

  20. Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion.

    PubMed

    Roy, Kaushik; Sarkar, C K; Ghosh, C K

    2015-07-05

    In this study, we have reported a fast and eco-benign procedure to synthesis silver nanoparticle at room temperature using potato (Solanum tuberosum) infusion along with the study of its photocatalytic activity on methyl orange dye. After addition of potato infusion to silver nitrate solution, the color of the mixture changed indicating formation of silver nanoparticles. Time dependent UV-Vis spectra were obtained to study the rate of nanoparticle formation with time. Purity and crystallinity of the biogenic silver nanoparticles were examined by X-ray diffraction (XRD). Average size and morphology of the nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infra-red spectroscopy (FTIR) was employed to detect functional bio-molecules responsible that contribute to the reduction and capping of biosynthesized Ag nanoparticles. Further, these synthesized nanoparticles were used to investigate their ability to degrade methyl orange dye under sunlight irradiation and the results showed effective photocatalytic property of these biogenic silver nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The effects of estrogen receptors α- and β-specific agonists and antagonists on cell proliferation and energy metabolism in human bone cell line.

    PubMed

    Somjen, D; Katzburg, S; Sharon, O; Grafi-Cohen, M; Knoll, E; Stern, N

    2011-02-01

    In cultured human osteoblasts estradiol-17β (E2) modulated DNA synthesis, the specific activity of creatine kinase BB (CK), 12 and 15 lipoxygenase (LO) mRNA expression and formation of 12- and 15-hydroxyeicosatetraenoic acid (HETE). We now investigate the response of human bone cell line (SaOS2) to phytoestrogens and estrogen receptors (ER)-specific agonists and antagonists. Treatment of SaSO2 with E2, 2,3-bis (4-hydroxyphenyl)-propionitrile (DPN; ERβ-specific agonist), 4,4',4″-[4-propyl-(1H)-pyrazol-1,3,5-triyl] tris-phenol (PPT; ERα-specific agonist), biochainin A (BA), daidzein (D), genistein (G) and raloxifene (Ral) showed increased DNA synthesis and CK. Ral inhibited completely all stimulations except DPN and to some extent D. The ERα-specific antagonist methyl-piperidino-pyrazole (MPP) and the ERβ-specific antagonist 4-[2-phenyl-5,7-bis (tri-fluoro-methyl) pyrazolo [1,5-a]pyrimidin-3-yl] phenol (PTHPP) inhibited DNA synthesis, CK and reactive oxygen species (ROS) formation induced by estrogens according to their receptors affinity. The LO inhibitor baicaleine inhibited only E2, DPN and G's effects. E2 and Ral unlike all other compounds had no effect on ERα mRNA expression, while ERβ mRNA expression was stimulated by all compounds. All compounds modulated the expression of 12LO and 15LO mRNA, except E2, PPT and Ral for 12LO, and 12- and 15-HETE productions and stimulated ROS formation which was inhibited by NADPH oxidase inhibitors diphenyleneiodonium chloride (DPI) and N-acetyl cysteine and the estrogen inhibitor ICI. DPI did not affect hormonal-induced DNA and CK. In conclusion, we provide evidence for the separation of mediation via ERα and ERβ pathways in the effects of estrogenic compounds on osteoblasts, but the role of LO/HETE/ROS is unclear. Copyright © 2010 Wiley-Liss, Inc.

  2. Synthesis of a water-soluble analog of 6-methyl-3-N-alkyl catechol labeled with carbon 13: NMR approach to the reactivity of poison ivy/oak sensitizers toward proteins.

    PubMed

    Goetz, G; Meschkat, E; Lepoittevin, J P

    1999-04-19

    A 13-C labeled water soluble derivative of alkylcatechol was synthesized and reacted with human serum albumin in phosphate buffer at pH 7.4 in air to allow a slow oxidation of the catechol into orthoquinone. The formation of several adducts was evidenced by a combination of 13C and 1H-13C correlation NMR. Although some adducts could result from a classical o-quinone formation - Michael type addition, our results suggest that a second pathway, involving a direct reaction of a carbon centered radical with proteins could be an important mechanism in the formation of modified proteins.

  3. Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions.

    PubMed

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2005-12-01

    Abiotic formation of organic compounds under hydrothermal conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich hydrothermal systems have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial hydrothermal systems. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under hydrothermal conditions and warrants further studies.

  4. Synthesis of Methyl Diantilis, a Commercially Important Fragrance

    ERIC Educational Resources Information Center

    Miles, William H.; Connell, Katelyn B.

    2006-01-01

    Synthetic sequences in the undergraduate organic chemistry laboratory illustrate important synthetic strategies, reagents, or experimental techniques, oftentimes resulting in the synthesis of commercially important compounds. A fragrance with a 'spicy, carnation, sweet, vanilla', named after carnations (Dianthus caryophllus), Methyl Diantillis is…

  5. Protocol for the Synthesis of Ortho-trifluoromethoxylated Aniline Derivatives

    PubMed Central

    Feng, Pengju; Ngai, Ming-Yu

    2016-01-01

    Molecules bearing trifluoromethoxy (OCF3) group often show desired pharmacological and biological properties. However, facile synthesis of trifluoromethoxylated aromatic compounds remains a formidable challenge in organic synthesis. Conventional approaches often suffer from poor substrate scope, or require use of highly toxic, difficult-to-handle, and/or thermally labile reagents. Herein, we report a user-friendly protocol for the synthesis of methyl 4-acetamido-3-(trifluoromethoxy)benzoate using 1-trifluoromethyl-1,2-benziodoxol-3(1H)-one (Togni reagent II). Treating methyl 4-(N-hydroxyacetamido)benzoate (1a) with Togni reagent II in the presence of a catalytic amount of cesium carbonate (Cs2CO3) in chloroform at RT afforded methyl 4-(N-(trifluoromethoxy)acetamido)benzoate (2a). This intermediate was then converted to the final product methyl 4-acetamido-3-(trifluoromethoxy)benzoate (3a) in nitromethane at 120 °C. This procedure is general and can be applied to the synthesis of a broad spectrum of ortho-trifluoromethoxylated aniline derivatives, which could serve as useful synthetic building blocks for the discovery and development of new pharmaceuticals, agrochemicals, and functional materials. PMID:26862864

  6. Structure, bioactivity, and synthesis of methylated flavonoids.

    PubMed

    Wen, Lingrong; Jiang, Yueming; Yang, Jiali; Zhao, Yupeng; Tian, Miaomiao; Yang, Bao

    2017-06-01

    Methylated flavonoids are an important type of natural flavonoid derivative with potentially multiple health benefits; among other things, they have improved bioavailability compared with flavonoid precursors. Flavonoids have been documented to have broad bioactivities, such as anticancer, immunomodulation, and antioxidant activities, that can be elevated, to a certain extent, by methylation. Understanding the structure, bioactivity, and bioavailability of methylated flavonoids, therefore, is an interesting topic with broad potential applications. Though methylated flavonoids are widely present in plants, their levels are usually low. Because developing efficient techniques to produce these chemicals would likely be beneficial, we provide an overview of their chemical and biological synthesis. © 2017 New York Academy of Sciences.

  7. Identification, isolation, and synthesis of seven novel impurities of anti-diabetic drug Repaglinide.

    PubMed

    Kancherla, Prasad; Keesari, Srinivas; Alegete, Pallavi; Khagga, Mukkanti; Das, Parthasarathi

    2018-01-01

    Seven unknown impurities in Repaglinide bulk drug batches at below 0.1% (ranging from 0.05 to 0.10%) were detected by an ultra-performance liquid chromatographic (UPLC) method. These impurities were isolated from the crude sample of Repaglinide using preparative high performance liquid chromatography (prep-HPLC). Based on liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI/MS) study, the chemical structures of seven new impurities (8, 9, 10, 11, 13, 14, and 16) were presumed and characterized as 4-(cyanomethyl)-2-ethoxybenzoic acid (8), 4-(cyanomethyl)-2-ethoxy-N-(3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl)benzamide (9), 4-(2-amino-2-oxoethyl)-2-ethoxy-N-(3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl) benzamide (10) and 2-(3-ethoxy-4-((3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl) carbamoyl) phenyl) acetic acid (11) and 4-(cyanomethyl)-N-cyclohexyl-2-ethoxybenzamide (13), 2-(4-(cyclohexylcarbamoyl)-3-ethoxyphenyl) acetic acid (14) and N-cyclohexyl-4-(2-(cyclohexylamino)-2-oxoethyl)-2-ethoxybenzamide (16). The complete spectral analysis, proton nuclear magnetic resonance ( 1 H NMR), 13 C NMR, MS, and infrared (IR) confirmed the proposed chemical structures of impurities. Identification, structural characterization, formation, and their synthesis was first reported in this study. The impurity 11 was crystallized and structure was solved by single crystal X-ray diffraction. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Thermo-reversible supramolecular hydrogels of trehalose-type diblock methylcellulose analogues.

    PubMed

    Yamagami, Mao; Kamitakahara, Hiroshi; Yoshinaga, Arata; Takano, Toshiyuki

    2018-03-01

    This paper describes the design and synthesis of new trehalose-type diblock methylcellulose analogues with nonionic, cationic, and anionic cellobiosyl segments, namely 1-(tri-O-methyl-cellulosyl)-4-[β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyloxymethyl]-1H-1,2,3-triazole (1), 1-(tri-O-methyl-cellulosyl)-4-[(6-amino-6-deoxy-β-d-glucopyranosyl)-(1→4)- 6-amino-6-deoxy-β-d-glucopyranosyloxymethyl]-1H-1,2,3-triazole (2), and 4-(tri-O-methyl-cellulosyloxymethyl)-1-[β-d-glucopyranuronosyl-(1→4)-β-d-glucopyranuronosyl]-1H-1,2,3-triazole (3), respectively. Aqueous solutions of all of the 1,2,3-triazole-linked diblock methylcellulose analogues possessed higher surface activities than that of industrially produced methylcellulose and exhibited lower critical solution temperatures, that allowed the formation of thermoresponsive supramolecular hydrogels at close to human body temperature. Supramolecular structures of thermo-reversible hydrogels based on compounds 1, 2, and 3 were investigated by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Detailed structure-property-function relationships of compounds 1, 2, and 3 were discussed. Not only nonionic hydrophilic segment but also ionic hydrophilic segments of diblock methylcellulose analogues were valid for the formation of thermo-reversible supramolecular hydrogels based on end-functionalized methylcellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Recent Selected Ion Flow Tube (SIFT) Studies Concerning the Formation of Amino Acids in the Gas Phase

    NASA Technical Reports Server (NTRS)

    Jackson, Douglas M.; Adams, Nigel G.; Babcock, Lucia M.

    2006-01-01

    Recently the simplest amino acid, glycine, has been detected in interstellar clouds, ISC, although this has since been contested. In order to substantiate either of these claims, plausible routes to amino acids need to be investigated. For gas phase synthesis, the SIFT technique has been employed to study simple amino acids via ion-molecule reactions of several ions of interstellar interest with methylamine, ethylamine, formic acid, acetic acid, and methyl formate. Carboxylic acid type ions were considered in the reactions involving the amines. In reactions where the carboxylic acid and methyl formate neutrals were studied, the reactant ions were primarily amine ion fragments. It was observed that the amines and acids preferentially fragment or accept a proton whenever energetically possible. NH3(+), however, uniquely reacted with the neutrals via atom abstraction to form NH4(+). These studies yielded a body of data relevant to astrochemistry, supplementing the available literature. However, the search for gas phase routes to amino acids using conventional molecules has been frustrated. Our most recent research investigates the fragmentation patterns of several amino acids and several possible routes have been suggested for future study.

  10. Synthesis, spectral and structural characterization of isobutyl 4-(2-chlorophenyl)-5-cyano-6-(((dimethylamino)methylene)amino)-2-methyl-4H-pyran-3-carboxylate

    NASA Astrophysics Data System (ADS)

    Udhaya Kumar, C.; Velayutham Pillai, M.; Gokula Krishnan, K.; Ramalingan, C.

    2017-09-01

    A fascinating selectivity in the direction of the formation of the formamidine was observed upon the reaction of isobutyl 6-amino-4-(2-chlorophenyl)-5-cyano-2-methyl-4H-pyran-3-carboxylate with N,N-dimethyl formamide. A development in selectivity is explored and a probable mechanism for the reaction is also proposed. The formamidine has been analyzed by FT-IR, FT-Raman, LC-MS and NMR (1D and 2D (1H-1H COSY, 1H-13C COSY and HMBC)) spectra. The experimental findings are compared with the theoretical data calculated by using DFT-B3LYP with 6-311++G(d,p) basis set. A good agreement has been observed between experimental and theoretical data. Single crystal X-ray structural analysis of isobutyl 4-(2-chlorophenyl)-5-cyano-6-(((dimethylamino)methylene)amino)-2-methyl-4H-pyran-3-carboxylate (PDMF), evidences the conformation of pyran ring as "flattened-boat".

  11. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  12. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  13. Scalable synthesis and isolation of the four stereoisomers of methyl 1-amino-3-(4-bromophenyl)cyclopentanecarboxylate, useful intermediates for the synthesis of S1P1 receptor agonists.

    PubMed

    Wallace, Grier A; Gordon, Thomas D; Hayes, Martin E; Konopacki, Donald B; Fix-Stenzel, Shannon R; Zhang, Xiaolei; Grongsaard, Pintipa; Cusack, Kevin P; Schaffter, Lisa M; Henry, Rodger F; Stoffel, Robert H

    2009-07-03

    The individual isomers of methyl 1-amino-3-(4-bromophenyl)cyclopentanecarboxylate are useful intermediates for the synthesis of S1P1 receptor agonists. Herein we describe a scalable synthesis and isolation of each of the four stereoisomers of this compound in gram quantities with >98% ee and de. The utility of this approach is demonstrated by the synthesis of ((1R,3R)-1-amino-3-(4-octylphenyl)cyclopentyl)methanol in 7 steps, 11% overall yield, and >98% ee and de.

  14. Transition metal-free one-pot cascade synthesis of 7-oxa-2-azatricyclo[7.4.0.0(2,6)]trideca-1(9),10,12-trien-3-ones from biomass-derived levulinic acid under mild conditions.

    PubMed

    Jha, Amitabh; Naidu, Ajaya B; Abdelkhalik, Ashraf M

    2013-11-21

    An efficient, environmentally benign, transition-metal free, tandem C-N, C-O bond formation reaction is developed for the synthesis of tricyclic 7-oxa-2-azatricyclo[7.4.0.0(2,6)]trideca-1(9),10,12-trien-3-ones and their homologs from easily available starting materials, including renewable levulinic acid, a keto acid. The reaction of keto acids with methyl chloroformate and variously substituted o-aminobenzyl alcohols using triethylamine as a base in toluene at room temperature gave good to excellent yields. This newly developed protocol was successfully utilized for the synthesis of a variety of polycyclic 7-oxa-2-azatricyclo[7.4.0.0(2,6)]trideca-1(9),10,12-trien-3-ones and related compounds.

  15. A Metabolic Function for Phospholipid and Histone Methylation.

    PubMed

    Ye, Cunqi; Sutter, Benjamin M; Wang, Yun; Kuang, Zheng; Tu, Benjamin P

    2017-04-20

    S-adenosylmethionine (SAM) is the methyl donor for biological methylation modifications that regulate protein and nucleic acid functions. Here, we show that methylation of a phospholipid, phosphatidylethanolamine (PE), is a major consumer of SAM. The induction of phospholipid biosynthetic genes is accompanied by induction of the enzyme that hydrolyzes S-adenosylhomocysteine (SAH), a product and inhibitor of methyltransferases. Beyond its function for the synthesis of phosphatidylcholine (PC), the methylation of PE facilitates the turnover of SAM for the synthesis of cysteine and glutathione through transsulfuration. Strikingly, cells that lack PE methylation accumulate SAM, which leads to hypermethylation of histones and the major phosphatase PP2A, dependency on cysteine, and sensitivity to oxidative stress. Without PE methylation, particular sites on histones then become methyl sinks to enable the conversion of SAM to SAH. These findings reveal an unforeseen metabolic function for phospholipid and histone methylation intrinsic to the life of a cell. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Synthetic versatility of 2-substituted-6-methyl 2,3-dihydropyridinones in the synthesis of polyfunctional piperidine-based compounds and related β amino acid derivatives.

    PubMed

    Yang, Yang; Hardman, Clayton

    2017-10-18

    Chiral 2-substituted-6-methyl 2,3-dihydropyidinones 9, which can be facilely obtained from an asymmetric vinylogous Mannich reaction (VMR) with 1,3-bis-trimethysily enol ether, were used as versatile intermediates in constructing chiral polyfunctional piperidine-based compounds. The 6-methyl group of such compounds can be conveniently functionalized via alkylation and acylation reactions to provide efficient entries to the synthesis of a variety of chiral multi-substituted piperidine-based compounds. Further elaboration of the corresponding intermediates also provided access to polyfunctional indolizidine-based compounds. These methods were showcased in an asymmetric synthesis of 2,6-di-substituted piperidine compound 13, reported as the key intermediate in the synthesis of (+)-calvine and a natural alkaloid (-)-indolizidine 209D. Furthermore, selective C5 iodination of compound 9 enabled the installation of additional functional groups at this position. Finally, we demonstrated that the oxidative cleavage of 2-substituted-6-methyl-2,3-dihydropyidinones is a practical and efficient method for the enantioselective synthesis of β-amino acids, which can undergo further intra-molecular cyclization to give the corresponding chiral four-membered β-lactam derivatives.

  17. O-Alkylated heavy atom carbohydrate probes for protein X-ray crystallography: Studies towards the synthesis of methyl 2-O-methyl-L-selenofucopyranoside.

    PubMed

    Sommer, Roman; Hauck, Dirk; Varrot, Annabelle; Imberty, Anne; Künzler, Markus; Titz, Alexander

    2016-01-01

    Selenoglycosides are used as reactive glycosyl donors in the syntheses of oligosaccharides. In addition, such heavy atom analogs of natural glycosides are useful tools for structure determination of their lectin receptors using X-ray crystallography. Some lectins, e.g., members of the tectonin family, only bind to carbohydrate epitopes with O-alkylated ring hydroxy groups. In this context, we report the first synthesis of an O -methylated selenoglycoside, specifically methyl 2- O -methyl-L-selenofucopyranoside, a ligand of the lectin tectonin-2 from the mushroom Laccaria bicolor . The synthetic route required a strategic revision and further optimization due to the intrinsic lability of alkyl selenoglycosides, in particular for the labile fucose. Here, we describe a successful synthetic access to methyl 2- O -methyl-L-selenofucopyranoside in 9 linear steps and 26% overall yield starting from allyl L-fucopyranoside.

  18. An improved synthesis for the (Z)-14-methyl-9-pentadecenoic acid and its topoisomerase I inhibitory activity

    PubMed Central

    Carballeira, Néstor M.; Sanabria, David; Oyola, Delise

    2006-01-01

    An improved synthesis for the (Z)-14-methyl-9-pentadecenoic acid was developed based on the appropriate use of (trimethylsilyl)acetylene as the key reagent in the synthesis. The reported synthesis started with commercially available 8-bromo-1-octanol and furnished the desired acid in seven steps and in a 16% overall yield, a significant improvement over the previous reported synthesis for this fatty acid. The synthesis reported herein afforded sufficient amounts to study the acid topoisomerase I inhibitory potential and it was found that the title acid inhibits the human placenta DNA topoisomerase I enzyme at concentrations of 500 μM. PMID:17680032

  19. Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica.

    PubMed

    Ghorai, Soumitra; Sarkar, Asish; Raoufi, Mohammad; Panda, Asit Baran; Schönherr, Holger; Pal, Sagar

    2014-04-09

    The synthesis and characterization of a novel nanocomposite is reported that was developed as an efficient adsorbent for the removal of toxic methylene blue (MB) and methyl violet (MV) from aqueous solution. The nanocomposite comprises hydrolyzed polyacrylamide grafted onto xanthan gum as well as incorporated nanosilica. The synthesis exploits the saponification of the grafted polyacrylamide and the in situ formation of nanoscale SiO2 by a sol-gel reaction, in which the biopolymer matrix promotes the silica polymerization and therefore acts as a novel template for nanosilica formation. The detailed investigation of the kinetics and the adsorption isotherms of MB and MV from aqueous solution showed that the dyes adsorb rapidly, in accordance with a pseudo-second-order kinetics and a Langmuir adsorption isotherm. The entropy driven process was furthermore found to strongly depend on the point of zero charge (pzc) of the adsorbent. The remarkably high adsorption capacity of dyes on the nanocomposites (efficiency of MB removal, 99.4%; maximum specific removal Qmax, 497.5 mg g(-1); and efficiency of MV removal, 99.1%; Qmax, 378.8 mg g(-1)) is rationalized on the basis of H-bonding interactions as well as dipole-dipole and electrostatic interactions between anionic adsorbent and cationic dye molecules. Because of the excellent regeneration capacity the nanocomposites are considered interesting materials for the uptake of, for instance, toxic dyes from wastewater.

  20. Developing Critical Thinking Skills: The "Sabotaged" Synthesis of Methyl p-Bromobenzoate

    ERIC Educational Resources Information Center

    Mahan, Eric J.; Nading, Mary Alice

    2006-01-01

    This experiment was designed to help students improve the critical thinking skills that are required to analyze and discuss the results of an organic chemistry experiment in an effective manner. The initial objective indicated in the prelab handout for this puzzle experiment was the synthesis of methyl 4-bromobenzoate using the Fischer…

  1. Identification of a methyltransferase catalyzing the final step of methyl anthranilate synthesis in cultivated strawberry

    USDA-ARS?s Scientific Manuscript database

    Methyl anthranilate (MA) contributes an attractive fruity note to the complex flavor and aroma of strawberry (Fragaria spp.), yet it is rarely found in modern cultivars. The genetic basis for its biosynthesis has not been elucidated. Understanding the specific genes required for its synthesis could ...

  2. Facile synthesis of graphene by pyrolysis of poly(methyl methacrylate) on nickel particles in the confined microzones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Ningning; Yang, Wei; Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute of University of Science and Technology of China, Suzhou, Jiangsu, 215123

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► The GNWs with few defects were synthesized by pyrolyzing PMMA on nickel particles. ► PMMA as carbon source was easily prepared and safe to handle. ► Nickel microparticles were directly used as catalysts without any pre-treatment. ► The method can be used for the low cost and bulk production of graphene. -- Abstract: In this work, multi-layer graphene has been prepared by pyrolyzing poly(methyl methacrylate) (PMMA) on nickel microparticles in the confined microzones formed by organophilic montmorillonite (OMT). Gram-scale of product can be obtained per day by using this method. The obtained graphene wasmore » evaluated by scanning and transmission electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. Pyrolytic conditions such as the system composition of the composites, reaction temperature and the size of catalyst are important parameters affecting the morphology and yield of the final product. Based on the experimental observations and reported literatures, a possible formation process is discussed. The synthesis method of graphene is simple, low-cost, and scalable, which is promising for the application in many fields.« less

  3. Synthesis of Anomeric Methyl Fructofuranosides and Their Separation on an Ion-Exchange Resin

    ERIC Educational Resources Information Center

    Nurminen, Erkki; Poijarvi, Paivi; Koskua, Katja; Hovinen, Jari

    2007-01-01

    Treatment of d-fructose with methanol in the presence of acid as a catalyst gives a mixture of methyl-[beta]-d-fructopyranoside, methyl-[alpha]-D-fructofuranoside, and methyl-[beta]-d-fructofuranoside, which were separated on an ion exchange column and characterized polarimetrically.

  4. Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange.

    PubMed

    Umamaheswari, C; Lakshmanan, A; Nagarajan, N S

    2018-01-01

    The present study reports, novel and greener method for synthesis of gold nanoparticles (AuNPs) using 5,7-dihydroxy-6-metoxy-3 ' ,4 ' methylenedioxyisoflavone (Dalspinin), isolated from the roots of Dalbergia coromandeliana was carried out for the first time. The synthesized gold nanoparticles were characterized by UV-Vis spectroscopy, high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The observed surface plasmon resonance (SPR) at 532nm in the UV-Vis absorption spectrum indicates the formation of gold nanoparticles. The powder XRD and SAED pattern for synthesized gold nanoparticles confirms crystalline nature. The HR-TEM images showed that the AuNPs formed were small in size, highly monodispersed and spherical in shape. The average particle sizes of the AuNPs are found to be ~10.5nm. The prepared AuNPs were found to be stable for more than 5months without any aggregation. The catalytic degradation studies of the synthesized AuNPs towards degradation of congo red and methyl orange, showed good catalytic in the complete degradation of both the dyes. The reduction catalyzed by gold nanoparticles followed the pseudo-first order kinetics, with a rate constant of 4.5×10 -3 s -1 (R 2 =0.9959) and 1.7×10 -3 s -1 (R 2 =0.9918) for congo red (CR) and methyl orange (MO), respectively. Copyright © 2017. Published by Elsevier B.V.

  5. Effects of collision energy and vibrational excitation of CH3 + cations on its reactivity with hydrocarbons: But-2-yne CH3CCCH3 as reagent partner

    NASA Astrophysics Data System (ADS)

    Cernuto, Andrea; Lopes, Allan; Romanzin, Claire; Cunha de Miranda, Barbara; Ascenzi, Daniela; Tosi, Paolo; Tonachini, Glauco; Maranzana, Andrea; Polášek, Miroslav; Žabka, Jan; Alcaraz, Christian

    2017-10-01

    The methyl carbocation is ubiquitous in gaseous environments, such as planetary ionospheres, cometary comae, and the interstellar medium, as well as combustion systems and plasma setups for technological applications. Here we report on a joint experimental and theoretical study on the mechanism of the reaction CH3 + + CH3CCCH3 (but-2-yne, also known as dimethylacetylene), by combining guided ion beam mass spectrometry experiments with ab initio calculations of the potential energy hypersurface. Such a reaction is relevant in understanding the chemical evolution of Saturn's largest satellite, Titan. Two complementary setups have been used: in one case, methyl cations are generated via electron ionization, while in the other case, direct vacuum ultraviolet photoionization with synchrotron radiation of methyl radicals is used to study internal energy effects on the reactivity. Absolute reactive cross sections have been measured as a function of collision energy, and product branching ratios have been derived. The two most abundant products result from electron and hydride transfer, occurring via direct and barrierless mechanisms, while other channels are initiated by the electrophilic addition of the methyl cation to the triple bond of but-2-yne. Among the minor channels, special relevance is placed on the formation of C5H7 +, stemming from H2 loss from the addition complex. This is the only observed condensation product with the formation of new C—C bonds, and it might represent a viable pathway for the synthesis of complex organic species in astronomical environments and laboratory plasmas.

  6. Weak maser emission of methyl formate toward Sagittarius B2(N) in the green bank telescope PRIMOS survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faure, A.; Wiesenfeld, L.; Remijan, A. J.

    A non-LTE radiative transfer treatment of cis-methyl formate (HCOOCH{sub 3}) rotational lines is presented for the first time using a set of theoretical collisional rate coefficients. These coefficients have been computed in the temperature range 5-30 K by combining coupled-channel scattering calculations with a high accuracy potential energy surface for HCOOCH{sub 3}-He. The results are compared to observations toward the Sagittarius B2(N) molecular cloud using the publicly available PRIMOS survey from the Green Bank Telescope. A total of 49 low-lying transitions of methyl formate, with upper levels below 25 K, are identified. These lines are found to probe a presumablymore » cold (∼30 K), moderately dense (∼10{sup 4} cm{sup –3}), and extended region surrounding Sgr B2(N). The derived column density of ∼4 × 10{sup 14} cm{sup –2} is only a factor of ∼10 larger than the column density of the trans conformer in the same source. Provided that the two conformers have the same spatial distribution, this result suggests that strongly non-equilibrium processes must be involved in their synthesis. Finally, our calculations show that all detected emission lines with a frequency below 30 GHz are (collisionally pumped) weak masers amplifying the continuum of Sgr B2(N). This result demonstrates the importance and generality of non-LTE effects in the rotational spectra of complex organic molecules at centimeter wavelengths.« less

  7. Single step synthesis and organization of gold colloids assisted by copolymer templates

    NASA Astrophysics Data System (ADS)

    Sarrazin, Aurélien; Gontier, Arthur; Plaud, Alexandre; Béal, Jérémie; Yockell-Lelièvre, Hélène; Bijeon, Jean-Louis; Plain, Jérôme; Adam, Pierre-Michel; Maurer, Thomas

    2014-06-01

    We report here an original single-step process for the synthesis and self-organization of gold colloids by simply incorporating gold salts into a solution prepared using polystyrene (PS)-polymethylmethacrylate copolymer and thiolated PS with propylene glycol methyl ether acetate as a solvent. The spin-coating and annealing of this solution then allows the formation of PS domains. Depending on the polymer concentration of the as-prepared solution, there can be either one or several gold nanoparticles (Au NPs) per PS domain. For high concentrations of Au NPs in PS domains, the coupling between plasmonic NPs leads to the observation of a second peak in the optical extinction spectrum. Such a collective effect could be relevant for the development of optical strain sensors in the near future.

  8. One-Pot Synthesis of Graphene-Supported Monodisperse Pd Nanoparticles as Catalyst for Formic Acid Electro-oxidation

    PubMed Central

    Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang

    2014-01-01

    To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8 nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis. PMID:24675779

  9. Regulation of Staphylococcal Penicillinase Synthesis

    PubMed Central

    Imsande, John; Zyskind, Judith W.; Mile, Imre

    1972-01-01

    5-Methyl tryptophan was found to be an efficient inducer of penicillinase synthesis in Staphylococcus aureus. Addition of actinomycin D or tryptophan to the culture medium shuts off the 5-methyl tryptophan-induced synthesis of penicillinase with an apparent half-life of approximately 1 to 2 min, respectively. Hence, in the induction of penicillinase synthesis, 5-methyl tryptophan seems to function as a structural analogue of penicillin rather than by becoming incorporated in proteins and thereby creating faulty penicillinase repressor or antirepressor. This conclusion is supported by similarities in the structures of the two compounds as revealed by solid atomic models. The fact that S. aureus exposed to 14C-penicillin in the absence of protein synthesis failed to synthesize penicillinase at an increased level when cell growth was resumed strongly suggests that a protein involved in the regulation of penicillinase synthesis must be synthesized in the presence of the penicillinase inducer. In turn, this observation suggests that the penicillinase inducer promotes penicillinase synthesis by directing the penicillinase regulatory protein (i.e., the penicillinase antirepressor) to acquire a different conformation when it is synthesized in the presence of the penicillinase inducer. A working model for the regulation of penicillinase synthesis based on these and other data has been constructed and is presented. Images PMID:4333374

  10. Synthesis of Quaternary Ammonium Salts of Tricyclic Cationic Drugs: A One-Pot Synthesis for the Bioorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Brunauer, Linda S.; Mogannam, Abid C.; Hwee, Won B.; Chen, James Y.

    2007-01-01

    A one-pot conversion of tricyclic cationic drugs to their quaternary ammonium forms is described for a widely used bioactive drug: chlorpromazine, a phenothiazine-based antipsychotic. After conversion to its free base, the parent drug was methylated using substoichiometric amounts of methyl iodide dissolved in ether; the charged quaternary…

  11. Using a Web Application to Conduct and Investigate Syntheses of Methyl Orange Remotely

    ERIC Educational Resources Information Center

    van Rens, Lisette; van Dijk, Hans; Mulder, Jan; Nieuwland, Pieter

    2013-01-01

    Thirty-six pre-university chemistry students and two chemistry teachers used flow chemistry as a technology for the synthesis of methyl orange. FutureChemistry and VU University Amsterdam cooperatively created FlowStart Remote, a device that enabled the students to remotely conduct this synthesis and in real time monitor and control the device via…

  12. Zeolite/magnetite composites as catalysts on the Synthesis of Methyl Esters (MES) from cooking oil

    NASA Astrophysics Data System (ADS)

    Sriatun; Darmawan, Adi; Sriyanti; Cahyani, Wuri; Widyandari, Hendri

    2018-05-01

    The using of zeolite/magnetite composite as a catalyst for the synthesis of methyl esters (MES) of cooking oil has been performed. In this study the natural magnetite was extracted from the iron sand of Semarang marina beach and milled by high energy Milling (HEM) with ball: magnetite ratio: 1:1. The composites prepared from natural zeolite and natural magnetite with zeolite: magnetite ratio 1:1; 2:1; 3:1 and 4:1. Preparation of methyl ester was catalyzed by composite of zeolite/magnetite through transeserification reaction, it was studied on variation of catalyst concentration (w/v) 1%, 3%, 5% and 10% to feed volume. The reaction product are mixture of methyl Oleic (MES), methyl Palmitic (MES) and methyl Stearic (MES). Character product of this research include density, viscosity, acid number and iodine number has fulfilled to SNI standard 7182: 2015.

  13. Enhanced electrical conductivity of poly(methyl methacrylate) filled with graphene and in situ synthesized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Athanassiou, Athanassia; Bonaccorso, Francesco; Fragouli, Despina

    2018-06-01

    The improvement of the electrical conductivity of polymers by incorporating graphene has been intensively studied in recent years. To further boost the electrical conductivity, blending third-party additives into the polymer/graphene systems has been demonstrated as a viable strategy. Herein, we propose a simple route to increase the electrical conductivity of poly(methyl methacrylate) (PMMA)/graphene nanoplatelet (GnP) composites, by the in situ synthesis of gold nanoparticles directly into the solid film. In particular, PMMA, GnPs and a gold precursor are solution blended to form the composite films. The subsequent heat-induced formation of gold nanoparticles directly in the solid state film, cause the significant decrease of the percolation threshold of GnPs loading, from 3% to 1% by weight in the composite. This is attributed to the preferential formation of the gold nanoparticles onto the GnPs, with synergistic effects beneficial for the improvement of the electrical conductivity. The formation procedure of the gold nanoparticles, and their arrangement into the composite matrix are studied. We demonstrate that following this straightforward process it is possible to form nanocomposites able to conduct efficiently electric current even at low graphene loadings preserving at the same time the mechanical properties of the polymer matrix.

  14. Role of methyl group number on SOA formation from aromatic hydrocarbons photooxidation under low NOx conditions

    NASA Astrophysics Data System (ADS)

    Li, L.; Tang, P.; Nakao, S.; Chen, C.-L.; Cocker, D. R., III

    2015-11-01

    Substitution of methyl groups onto the aromatic ring determines the SOA formation from the aromatic hydrocarbon precursor. This study links the number of methyl groups on the aromatic ring to SOA formation from aromatic hydrocarbons photooxidation under low NOx conditions (HC / NO > 10 ppb C : ppb). Aromatic hydrocarbons with increasing numbers of methyl groups are systematically studied. SOA formation from pentamethylbenzene and hexamethylbenzene are reported for the first time. A decreasing SOA yield with increasing number of methyl groups is observed. Linear trends are found in both f44 vs. f43 and O / C vs. H / C for SOA from aromatic hydrocarbons with zero to six methyl groups. An SOA oxidation state predictive method based on benzene is used to examine the effect of added methyl groups on aromatic oxidation under low NOx conditions. Further, the impact of methyl group number on density and volatility of SOA from aromatic hydrocarbons is explored. Finally, a mechanism for methyl group impact on SOA formation is suggested. Overall, this work suggests as more methyl groups are attached on the aromatic ring, SOA products from these aromatic hydrocarbons become less oxidized per mass/carbon.

  15. Methionine metabolism in Yucatan miniature swine.

    PubMed

    McBreairty, Laura E

    2016-06-01

    Methionine is an essential amino acid which when not incorporated into protein, can be converted to S-adenosylmethionine, the universal methyl donor in over 200 transmethylation reactions, which include creatine and phosphatidylcholine (PC) synthesis, as well as deoxyribonucleic acid (DNA) methylation. Following transmethylation, homocysteine is formed, which can be converted to cysteine via transsulfuration or remethylated to methionine by receiving a methyl group from folate or betaine. Changes to methyl group availability in utero can lead to permanent changes in epigenetic patterns of DNA methylation, which has been implicated in "fetal programming", a phenomenon associated with poor nutrition during fetal development that results in low birth weight and disease in later life. It has been shown that programming can also occur in the neonate. Our global objective was to understand how the variability of nutrients involved in methionine metabolism can affect methionine and methyl group availability. We hypothesize that nutrients that converge on methionine metabolism can affect methionine availability for its various functions. In this thesis, we used intrauterine growth restricted (IUGR) piglets to investigate whether a global nutritional insult in utero can lead to a perturbed methionine metabolism. Our results demonstrate that IUGR piglets have a lower capacity to dispose of homocysteine via both transsulfuration and remethylation pathways, as well as a lower incorporation of methyl groups into PC. The second objective of this thesis was to determine whether variation in methionine supply and demand can affect methionine availability. We demonstrated that stimulating either acute or chronic creatine synthesis leads to lower methyl incorporation into protein and PC in pigs. Furthermore, when methionine is limiting, supplementation with either folate or betaine leads to higher methionine availability for protein synthesis. Finally, because creatine is increasingly being utilized as an ergogenic and neuroprotective supplement, we wanted to determine whether provision of the creatine precursor, guanidinoacetate (GAA), could effectively increase tissue creatine stores. We showed that 2.5 weeks of supplementation with GAA is more effective than creatine at increasing hepatic and muscle creatine stores. The results of this thesis demonstrate that the presence of IUGR, an increased demand for creatine synthesis, or the supplementation with remethylation nutrients can each affect methionine availability; all are important when considering neonatal nutrient requirements. Furthermore, although GAA is effective at increasing levels of tissue creatine, higher GAA methylation can limit methionine availability for growth and synthesis of PC.

  16. Aluminum stress increases carbon-centered radicals in soybean roots.

    PubMed

    Abo, Mitsuru; Yonehara, Hiroki; Yoshimura, Etsuro

    2010-10-15

    The formation of radical species was examined in roots of soybean seedlings exposed to aluminum (Al). Electron spin resonance (ESR) spectra of root homogenates with the spin-trapping reagent 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) indicated the presence of carbon-centered radicals in plants not exposed to Al. Plants exposed to 50 microM Al showed a similar spectrum, with increased signal intensity. These radicals were likely produced through a H-atom abstraction reaction by hydroxyl (*OH) radicals, the synthesis of which was initiated by the formation of superoxide (O2*-) anions. The increased production of the carbon-centered radicals may be responsible for the lipid peroxidation in Al-treated roots. Copyright (c) 2010 Elsevier GmbH. All rights reserved.

  17. A Novel Photosensitizer 3¹,13¹-phenylhydrazine -Mppa (BPHM) and Its in Vitro Photodynamic Therapy against HeLa Cells.

    PubMed

    Li, Wenting; Tan, Guanghui; Cheng, Jianjun; Zhao, Lishuang; Wang, Zhiqiang; Jin, Yingxue

    2016-04-29

    Photodynamic therapy (PDT) has attracted widespread attention due to its potential in the treatment of various cancers. Porphyrinic pyropheophorbide-a (PPa) has been shown to be a potent photosensitizer in PDT experiments. In this paper, a C-3¹,13¹ bisphenylhydrazone modified methyl pyropheophorbide-a (BPHM) was designed and synthesized with the consideration that phenylhydrazone structure may extend absorption wavelength of methyl pyro-pheophorbide-a (Mppa), and make the photosensitizer potential in deep tumor treatment. The synthesis, spectral properties and in vitro photodynamic therapy (PDT) against human HeLa cervical cancer cell line was studied. Methyl thiazolyl tetrazolium (MTT) assay showed the title compound could achieve strong inhibition of cervical cancer cell viability under visible light (675 nm, 25 J/cm²). Cell uptake experiments were performed on HeLa cells. Morphological changes were examined and analyzed by fluorescent inverted microscope. In addition, the mechanism of the photochemical processes of PDT was investigated, which showed that the formation of singlet oxygen after treatment with PDT played a moderate important role.

  18. The Synthesis and Characterization of Tetrakis [(p - amino phenoxy) methyl] methane

    NASA Astrophysics Data System (ADS)

    Peng, Yongli; Zou, Qian

    2017-06-01

    In order to solve the shortcomings of the cured epoxy resin poor toughness, this paper proceeded from the structural design of curing agent to synthesize a special curing agent tetrakis [(p-aminophenoxy) methyl] methane which containing both Benzene ring and amino group. A Symmetric compound of tetrakis [(p - acetamidophenoxy) methyl] methane was prepared by using simple and easy to get pentaerythritoltetratosylate and acetaminophen for raw materials, after Williamson etherification reaction intermediates for synthesis of a symmetrical structure of the compound tetrakis [(p-acetamido phenoxy) methyl] methane, then hydrolysed under acidic conditions it can be tetrakis [(p-amino phenoxy) methyl] methane. The influence of reaction time, reaction temperature and reactant ratio to production yield of tetrakis [(p - acetamidophenoxy) methyl] methane was studied by orthogonal experiment of three factors and three levels, and get the optimal process parameters: the reaction time: 16 h, the reaction temperature: 170 °C, reactant ratio, 1:5. The Structure of tetrakis [(p - acetamidophenoxy) methyl] methane and tetrakis [(p-amino phenoxy) methyl] methane were characterized by infrared and 1H-NMR.

  19. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-31

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  20. Enantioselective Synthesis of Various Cyanohydrins Using Covalently Immobilized Preparations of Hydroxynitrile Lyase from Prunus dulcis.

    PubMed

    Alagöz, Dilek; Tükel, S Seyhan; Yildirim, Deniz

    2015-11-01

    The carrier-based and carrier-free (cross-linked enzyme aggregate) covalent immobilizations of Prunus dulcis hydroxynitrile lyase were investigated. The immobilized preparations were tested for enantioselective carbon-carbon bond formation activity in the biphasic medium. Of the tested preparations, only cross-linked enzyme aggregate of P. dulcis hydroxynitrile lyase (PdHNL-CLEA) achieved the synthesis of (R)-mandelonitrile with 93% yield and 99% enantiopurity. PdHNL-CLEA was also used in the synthesis of various (R)-cyanohydrins from corresponding aldehydes/ketones and hydrocyanic acid. When 4-methoxybenzaldehyde, 4-methyl benzaldehyde, and 4-hydroxybenzaldehyde were used as substrates, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were obtained as 95-95, 85-79, and 2-25%, respectively, after 96 h at pH 4.0 and 5 °C. For acetophenone, 4-fluoroacetophenone, 4-chloroacetophenone, 4-bromoacetophenone, and 4-iodoacetophenone, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were 1-99, 20-84, 11-95, 5-99, and 3-24%, respectively at the same conditions. The results demonstrate PdHNL-CLEA can be effectively used in the synthesis of (R)-mandelonitrile.

  1. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  2. Novel bioassay for the discovery of inhibitors of the 2-C-Methyl-D-Erythritol 4-Phosphate (MEP) and terpenoid pathways leading to carotenoid biosynthesis

    USDA-ARS?s Scientific Manuscript database

    The 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway leads to the synthesis of isopentenyl-phosphate (IPP) in plastids. It is a major branch point providing precursors for the synthesis of carotenoids, tocopherols, plastoquinone and the phytyl chain of chlorophylls, as well as the hormones abscisi...

  3. A GAS-PHASE FORMATION ROUTE TO INTERSTELLAR TRANS-METHYL FORMATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Callie A.; Wehres, Nadine; Yang Zhibo

    2012-07-20

    The abundance of methyl formate in the interstellar medium has previously been underpredicted by chemical models. Additionally, grain surface chemistry cannot account for the relative abundance of the cis- and trans-conformers of methyl formate, and the trans-conformer is not even formed at detectable abundance on these surfaces. This highlights the importance of studying formation pathways to methyl formate in the gas phase. The rate constant and branching fractions are reported for the gas-phase reaction between protonated methanol and formic acid to form protonated trans-methyl formate and water as well as adduct ion: Rate constants were experimentally determined using a flowingmore » afterglow-selected ion flow tube apparatus at 300 K and a pressure of 530 mTorr helium. The results indicate a moderate overall rate constant of (3.19 {+-} 0.39) Multiplication-Sign 10{sup -10} cm{sup 3} s{sup -1} ({+-} 1{sigma}) and an average branching fraction of 0.05 {+-} 0.04 for protonated trans-methyl formate and 0.95 {+-} 0.04 for the adduct ion. These experimental results are reinforced by ab initio calculations at the MP2(full)/aug-cc-pVTZ level of theory to examine the reaction coordinate and complement previous density functional theory calculations. This study underscores the need for continued observational studies of trans-methyl formate and for the exploration of other gas-phase formation routes to complex organic molecules.« less

  4. The Pediatric Methionine Requirement Should Incorporate Remethylation Potential and Transmethylation Demands12

    PubMed Central

    2016-01-01

    The metabolic demand for methionine is great in neonates. Indeed, methionine is the only indispensable sulfur amino acid and is required not only for protein synthesis and growth but is also partitioned to a greater extent to transsulfuration for cysteine and taurine synthesis and to >50 transmethylation reactions that serve to methylate DNA and synthesize metabolites, including creatine and phosphatidylcholine. Therefore, the pediatric methionine requirement must accommodate the demands of rapid protein turnover as well as vast nonprotein demands. Because cysteine spares the methionine requirement, it is likely that the dietary provision of transmethylation products can also feasibly spare methionine. However, understanding the requirement of methionine is further complicated because demethylated methionine can be remethylated by the dietary methyl donors folate and betaine (derived from choline). Intakes of dietary methyl donors are highly variable, which is of particular concern for newborns. It has been demonstrated that many populations have enhanced requirements for these nutrients, and nutrient fortification may exacerbate this phenomenon by selecting phenotypes that increase methyl requirements. Moreover, higher transmethylation rates can limit methyl supply and affect other transmethylation reactions as well as protein synthesis. Therefore, careful investigations are needed to determine how remethylation and transmethylation contribute to the methionine requirement. The purpose of this review is to support our hypothesis that dietary methyl donors and consumers can drive methionine availability for protein synthesis and transmethylation reactions. We argue that nutritional strategies in neonates need to ensure that methionine is available to meet requirements for growth as well as for transmethylation products. PMID:27184279

  5. The Pediatric Methionine Requirement Should Incorporate Remethylation Potential and Transmethylation Demands.

    PubMed

    Robinson, Jason L; Bertolo, Robert F

    2016-05-01

    The metabolic demand for methionine is great in neonates. Indeed, methionine is the only indispensable sulfur amino acid and is required not only for protein synthesis and growth but is also partitioned to a greater extent to transsulfuration for cysteine and taurine synthesis and to >50 transmethylation reactions that serve to methylate DNA and synthesize metabolites, including creatine and phosphatidylcholine. Therefore, the pediatric methionine requirement must accommodate the demands of rapid protein turnover as well as vast nonprotein demands. Because cysteine spares the methionine requirement, it is likely that the dietary provision of transmethylation products can also feasibly spare methionine. However, understanding the requirement of methionine is further complicated because demethylated methionine can be remethylated by the dietary methyl donors folate and betaine (derived from choline). Intakes of dietary methyl donors are highly variable, which is of particular concern for newborns. It has been demonstrated that many populations have enhanced requirements for these nutrients, and nutrient fortification may exacerbate this phenomenon by selecting phenotypes that increase methyl requirements. Moreover, higher transmethylation rates can limit methyl supply and affect other transmethylation reactions as well as protein synthesis. Therefore, careful investigations are needed to determine how remethylation and transmethylation contribute to the methionine requirement. The purpose of this review is to support our hypothesis that dietary methyl donors and consumers can drive methionine availability for protein synthesis and transmethylation reactions. We argue that nutritional strategies in neonates need to ensure that methionine is available to meet requirements for growth as well as for transmethylation products. © 2016 American Society for Nutrition.

  6. Synthesis of [¹¹C]PBR170, a novel imidazopyridine, for imaging the translocator protein with PET.

    PubMed

    Bourdier, Thomas; Henderson, David; Fookes, Christopher J R; Lam, Peter; Mattner, Filomena; Fulham, Michael; Katsifis, Andrew

    2014-08-01

    The translocator protein (TSPO) ligand 2-(6,8-dichloro-2-(4-ethoxyphenyl)imidazo[1,2-a]pyridin-3-yl)-N-(2-fluoropyridin-3-yl)-N-methylacetamide (PBR170), is a novel imidazopyridineacetamide with high affinity (2.6 nm) and selectivity for the TSPO. The synthesis of [(11)C]PBR170 was accomplished by N-methylation of the corresponding desmethyl precursor with [(11)C]methyl iodide in the presence of sodium hydroxide in dimethylformamide. [(11)C]PBR170 was produced in 30-45% radiochemical yield (decay-corrected, based on [(11)C]methyl iodide) with a radiochemical purity >98% and a specific activity of 90-190 GBq/μmol after 35 min of synthesis time. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  7. Potent and selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 labeled with carbon-13 and carbon-14.

    PubMed

    Latli, Bachir; Hrapchak, Matt; Savoie, Jolaine; Zhan, Yongda; Busacca, Carl A; Senanayake, Chris H

    2017-07-01

    (S)-6-(2-Hydroxy-2-methylpropyl)-3-((S)-1-(4-(1-methyl-2-oxo-1,2-dihydropyridin-4-yl)phenyl)ethyl)-6-phenyl-1,3-oxazinan-2-one (1) and (4aR,9aS)-1-(1H-benzo[d]midazole-5-carbonyl)-2,3,4,4a,9,9a-hexahydro-1-H-indeno[2,1-b]pyridine-6-carbonitrile hydrochloride (2) are potent and selective inhibitor of 11β-hydroxysteroid dehydrogenase type 1 enzyme. These 2 drug candidates developed for the treatment of type-2 diabetes were prepared labeled with carbon-13 and carbon-14 to enable drug metabolism, pharmacokinetics, bioanalytical, and other studies. In the carbon-13 synthesis, benzoic- 13 C 6 acid was converted in 7 steps and in 16% overall yield to [ 13 C 6 ]-(1). Aniline- 13 C 6 was converted in 7 steps to 1H-benzimidazole-1-2,3,4,5,6- 13 C 6 -5-carboxylic acid and then coupled to a tricyclic chiral indenopiperidine to afford [ 13 C 6 ]-(2) in 19% overall yield. The carbon-14 labeled (1) was prepared efficiently in 2 radioactive steps in 41% overall yield from an advanced intermediate using carbon-14 labeled methyl magnesium iodide and Suzuki-Miyaura cross coupling via in situ boronate formation. As for the synthesis of [ 14 C]-(2), 1H-benzimidazole-5-carboxylic- 14 C acid was first prepared in 4 steps using potassium cyanide- 14 C, then coupled to the chiral indenopiperidine using amide bond formation conditions in 26% overall yield. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Synthesis biolubricant from rubber seed oil

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Tran Dong; Tuyen, Dang Thi Hong; Viet, Tran Tan

    2017-09-01

    The objective was biolubricant preparation from rubber seed oil (RSO) using polymerization reactor with/without catalyst in batch reactor. Before become reactant in polymerization reaction, a non-edible rubber seed oil was converted into methyl ester by esterification/tranesterification reaction with methanol and acid/base catalyst. The polymerization reaction parameters investigated were reaction time, temperature and weight ratio (catalyst with feed), and their effect on the bio lubricant formation. The result show significant conversion of methyl ester to bio lubricant in the temperature reaction of 160°C, reaction time of 2h min and ratio of super acid catalyst (tetrafluoroboric acid-sHBF4) of 3 %w/w. The resulting products were confirmed by GC-MS, FTIR spectroscopy and also analyzed for the viscosity. The best viscosity value of RSOFAME polymer was 110.6 cSt when the condition polymerization reaction were 160 °C, reaction time 3h, 6 wt% mass ratio of oil:catalyst.

  9. Catalytic production of methyl acrylates by gold-mediated cross coupling of unsaturated aldehydes with methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakalos, Stavros; Zugic, Branko; Stowers, Kara J.

    Modern methods of esterification, one of the most important reactions in organic synthesis, are reaching their limits, as far as waste and expense are concerned. Novel chemical approaches to ester formation are therefore of importance. We report a simple procedure free of caustic reagents or byproducts for the facile direct oxidative methyl esterification of aldehydes over nanoporous Au catalysts. Complementary model studies on single crystal gold surfaces establish the fundamental reactions involved. We also find that methanol more readily reacts with adsorbed active oxygen than do the aldehydes, but that once the aldehydes do react, they form strongly-bound acrylates thatmore » block reactive sites and decrease the yields of acrylic esters under steady flow conditions at 420 K. We can achieve significant improvements in yield by operating at higher temperatures, which render the site-blocking acrylates unstable.« less

  10. Catalytic production of methyl acrylates by gold-mediated cross coupling of unsaturated aldehydes with methanol

    DOE PAGES

    Karakalos, Stavros; Zugic, Branko; Stowers, Kara J.; ...

    2016-03-18

    Modern methods of esterification, one of the most important reactions in organic synthesis, are reaching their limits, as far as waste and expense are concerned. Novel chemical approaches to ester formation are therefore of importance. We report a simple procedure free of caustic reagents or byproducts for the facile direct oxidative methyl esterification of aldehydes over nanoporous Au catalysts. Complementary model studies on single crystal gold surfaces establish the fundamental reactions involved. We also find that methanol more readily reacts with adsorbed active oxygen than do the aldehydes, but that once the aldehydes do react, they form strongly-bound acrylates thatmore » block reactive sites and decrease the yields of acrylic esters under steady flow conditions at 420 K. We can achieve significant improvements in yield by operating at higher temperatures, which render the site-blocking acrylates unstable.« less

  11. Reactivity of Heteropolytungstate and Heteropolymolybdate Metal Transition Salts in the Synthesis of Dimethyl Carbonate from Methanol and CO2

    PubMed Central

    Aouissi, Ahmed; Al-Deyab, Salem S.; Al-Owais, Ahmad; Al-Amro, Amro

    2010-01-01

    A series of Keggin-type heteropoly compounds (HPC) having different countercations (Co, Fe) and different addenda atoms (W, Mo) were synthesized and characterized by means of Fourier-Transform Infrared Spectrometer (FT-IR) and X-ray powder diffraction (XRD). The catalytic properties of the prepared catalysts for the dimethyl carbonate (DMC) synthesis from CO2 and CH3OH were investigated. The experimental results showed that the catalytic activity is significantly influenced by the type of the countercation and addenda atoms transition metal. Among the catalysts examined, Co1.5PW12O40 is the most active for the DMC synthesis, owing to the synergetic effect between Co and W. Investigating the effect of the support showed that the least acidic one (Al2O3) enhanced the conversion but decreased the DMC selectivity in favor of that of methyl formate (MF), while that of dimethoxy methane remained stable. PMID:20717536

  12. Gold-Catalyzed Solid-Phase Synthesis of 3,4-Dihydropyrazin-2(1H)-ones: Relevant Pharmacophores and Peptide Backbone Constraints.

    PubMed

    Přibylka, Adam; Krchňák, Viktor

    2017-11-13

    Here, we report the efficient solid-phase synthesis of N-propargyl peptides using Fmoc-amino acids and propargyl alcohol as key building blocks. Gold-catalyzed nucleophilic addition to the triple bond induced C-N bond formation, which triggered intramolecular cyclization, yielding 1,3,4-trisubstituted-5-methyl-3,4-dihydropyrazin-2(1H)-ones. Conformations of acyclic and constrained peptides were compared using a two-step conformer distribution analysis at the molecular mechanics level and density functional theory. The results indicated that the incorporation of heterocyclic molecular scaffold into a short peptide sequence adopted extended conformation of peptide chain. The amide bond adjacent to the constraint did not show significant preference for either cis or trans isomerism. Prepared model compounds demonstrate a proof of concept for gold-catalyzed polymer-supported synthesis of variously substituted 3,4-dihydropyrazin-2(1H)-ones for applications in drug discovery and peptide backbone constraints.

  13. Synthesis of carbon-11-labeled bivalent β-carbolines as new PET agents for imaging of cholinesterase in Alzheimer's disease.

    PubMed

    Wang, Min; Zheng, David X; Gao, Mingzhang; Hutchins, Gary D; Zheng, Qi-Huang

    2011-04-01

    Carbon-11-labeled bivalent β-carbolines, 9,9'-(pentane-1,5-diyl)bis(2-[(11)C]methyl-9H-pyrido[3,4-b]indol-2-ium)iodide ([(11)C]2a), 9,9'-(nonane-1,9-diyl)bis(2-[(11)C]methyl-9H-pyrido[3,4-b]indol-2-ium)iodide ([(11)C]2b), 9,9'-(dodecane-1,12-diyl)bis(2-[(11)C]methyl-9H-pyrido[3,4-b]indol-2-ium)iodide ([(11)C]2c) and 1,9-bis(2-[(11)C]methyl-3,4-dihydro-1H-pyrido[3,4-b]indol-9(2H)-yl)nonane ([(11)C]3), were prepared by N-[(11)C]methylation of their corresponding amine precursors using [(11)C]CH(3)I and isolated by either a simplified solid-phase extraction (SPE) method or HPLC in 40-60% radiochemical yields based on [(11)C]CO(2) and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 20-30min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 185-370 GBq/μmol. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. A cyclobutane thymine–N4-methylcytosine dimer is resistant to hydrolysis but strongly blocks DNA synthesis

    PubMed Central

    Yamamoto, Junpei; Oyama, Tomoko; Kunishi, Tomohiro; Masutani, Chikahide; Hanaoka, Fumio; Iwai, Shigenori

    2014-01-01

    Exposure of DNA to ultraviolet light produces harmful crosslinks between adjacent pyrimidine bases, to form cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6–4)pyrimidone photoproducts. The CPD is frequently formed, and its repair mechanisms have been exclusively studied by using a CPD formed at a TT site. On the other hand, biochemical analyses using CPDs formed within cytosine-containing sequence contexts are practically difficult, because saturated cytosine easily undergoes hydrolytic deamination. Here, we found that N-alkylation of the exocyclic amino group of 2′-deoxycytidine prevents hydrolysis in CPD formation, and an N-methylated cytosine-containing CPD was stable enough to be derivatized into its phosphoramidite building block and incorporated into oligonucleotides. Kinetic studies of the CPD-containing oligonucleotide indicated that its lifetime under physiological conditions is relatively long (∼7 days). In biochemical analyses using human DNA polymerase η, incorporation of TMP opposite the N-methylcytosine moiety of the CPD was clearly detected, in addition to dGMP incorporation, and the incorrect TMP incorporation blocked DNA synthesis. The thermodynamic parameters confirmed the formation of this unusual base pair. PMID:24185703

  15. Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells

    PubMed Central

    Maddocks, Oliver D.K.; Labuschagne, Christiaan F.; Adams, Peter D.; Vousden, Karen H.

    2016-01-01

    Summary Crosstalk between cellular metabolism and the epigenome regulates epigenetic and metabolic homeostasis and normal cell behavior. Changes in cancer cell metabolism can directly impact epigenetic regulation and promote transformation. Here we analyzed the contribution of methionine and serine metabolism to methylation of DNA and RNA. Serine can contribute to this pathway by providing one-carbon units to regenerate methionine from homocysteine. While we observed this contribution under methionine-depleted conditions, unexpectedly, we found that serine supported the methionine cycle in the presence and absence of methionine through de novo ATP synthesis. Serine starvation increased the methionine/S-adenosyl methionine ratio, decreasing the transfer of methyl groups to DNA and RNA. While serine starvation dramatically decreased ATP levels, this was accompanied by lower AMP and did not activate AMPK. This work highlights the difference between ATP turnover and new ATP synthesis and defines a vital function of nucleotide synthesis beyond making nucleic acids. PMID:26774282

  16. Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells.

    PubMed

    Maddocks, Oliver D K; Labuschagne, Christiaan F; Adams, Peter D; Vousden, Karen H

    2016-01-21

    Crosstalk between cellular metabolism and the epigenome regulates epigenetic and metabolic homeostasis and normal cell behavior. Changes in cancer cell metabolism can directly impact epigenetic regulation and promote transformation. Here we analyzed the contribution of methionine and serine metabolism to methylation of DNA and RNA. Serine can contribute to this pathway by providing one-carbon units to regenerate methionine from homocysteine. While we observed this contribution under methionine-depleted conditions, unexpectedly, we found that serine supported the methionine cycle in the presence and absence of methionine through de novo ATP synthesis. Serine starvation increased the methionine/S-adenosyl methionine ratio, decreasing the transfer of methyl groups to DNA and RNA. While serine starvation dramatically decreased ATP levels, this was accompanied by lower AMP and did not activate AMPK. This work highlights the difference between ATP turnover and new ATP synthesis and defines a vital function of nucleotide synthesis beyond making nucleic acids. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. The Synthesis of Methyl Salicylate: Amine Diazotization.

    ERIC Educational Resources Information Center

    Zanger, Murray; McKee, James R.

    1988-01-01

    Notes that this experiment takes safety and noncarcinogenic reactants into account. Demonstrates the use of diazonium salts for the replacement of an aromatic amine group by a phenolic hydroxyl. Involves two pleasant-smelling organic compounds, methyl anthranilate (grape) and methyl salicylate (oil of wintergreen). (MVL)

  18. Synthesis of methyl 2-O- and 3-O-alpha-D-talopyranosyl-alpha-D-mannopyranoside.

    PubMed

    Rana, S S; Matta, K L

    1986-09-01

    Methyl 3,4,6-tri-O-benzyl-2-O-[6-O-(tert-butyldiphenylsilyl)-alpha-D- mannopyranosyl]-alpha-D-mannopyranoside (2) was synthesized by treatment of methyl 3,4,6-tri-O-benzyl-2-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside with tert-butylchlorodiphenylsilane in the presence of imidazole. Isopropylidenation, followed by oxidation with pyridinium chlorochromate, and stereoselective reduction with sodium borohydride, converted 2 into methyl 3,4,6-tri-O-benzyl-2-O-[6-O-(tert-butyldiphenylsilyl)-2,3-O-isopro pylidene- alpha-D-talopyranosyl]-alpha-D-mannopyranoside (5). Treatment of 5 with a molar solution of tetrabutylammonium fluoride in dry oxolane produced a diol which, on O-de-isopropylidenation followed by catalytic hydrogenolysis, afforded the disaccharide glycoside methyl 2-O-alpha-D-talopyranosyl-alpha-D-mannopyranoside. Synthesis of methyl 3-O-alpha-D-talopyranosyl-alpha-D-mannopyranoside was accomplished by a similar reaction-sequence. The structures of the final disaccharides, and of various other intermediates, were established by 1H- and 13C-n.m.r. spectroscopy.

  19. Methymercury Formation in Marine and Freshwater Systems: Sediment Characteristics, Microbial Activity and SRB Phylogeny Control Formation Rates and Food-Chain Exposure

    NASA Astrophysics Data System (ADS)

    King, J. K.; Saunders, F. M.

    2004-05-01

    Mercury research in freshwater and marine systems suggests that sediment characteristics such as organic substrate, mercury speciation, and sulfate/sulfide concentrations influence availability of inorganic mercury for methylation. Similarly, sediment characteristics also influence sulfate-reducing bacterial (SRB) respiration as well as the presence/distribution of phylogenetic groups responsible for mercury methylation. Our work illustrates that the process of methylmercury formation in freshwater and marine systems are not dissimilar. Rather, the same geochemical parameters and SRB phylogenetic groups determine the propensity for methylmercury formation and are applicable in both fresh- and marine-water systems. The presentation will include our integration of sediment geochemical and microbial parameters affecting mercury methylation in specific freshwater and marine systems. Constructed wetlands planted with Schoenoplectus californicus and amended with gypsum (CaSO4) have demonstrated a capacity to remove inorganic mercury from industrial outfalls. However, bioaccumulation studies of periphyton, eastern mosquitofish (Gambusia holbrooki) and lake chubsucker (Erimyzon sucetta) were conducted in order to ascertain the availability of wetland-generated methylmercury to biota. Total mercury concentrations in mosquitofish from non-sulfate treated controls and the reference location were significantly lower than those from the low and high sulfate treatments while mean total mercury concentrations in lake chubsuckers were also significantly elevated in the high sulfate treatment compared to the low sulfate, control and reference populations. Methylmercury concentrations in periphyton also corresponded with mercury levels found in the tissue of the lake chubsuckers, and these findings fit well given the trophic levels identified for both species of fish. Overall, data from this study suggest that the initial use of gypsum to accelerate the maturity of a constructed wetland may not prove beneficial with respect to the ultimate objective of mercury sequestration. Current regulations place strict requirements on dredge material placed in confined disposal facilities (CDF) as well as associated effluent waters. Although regulatory guidelines typically address total mercury concentrations, historical data specific to bioaccumulation of mercury suggest that methylmercury concentrations found in sediments and water require attention. Resource agencies are now interested in knowing the likelihood of methylmercury formation in dredge spoil since birds and fish are frequently found feeding in CDFs and the associated mixing zones. Mechanisms that influence methylmercury formation in sediments dictate that dredging of mercury-containing sediments will result in an increased availability of inorganic mercury for methylation. Prior to dredging, the undisturbed sediment contains inorganic mercury complexed to sulfide in an insoluble, unavailable form. However, hydraulic or clamshell dredging can result in an oxidation of sediments and remobilization of mercury-sulfide species thus increasing its availability for methylation. Once sediments are disposed in a CDF, sulfate-reducing bacteria profiles are re-established vertically in dredge spoil and methylmercury synthesis can readily occur.

  20. Betaine is as effective as folate at re-synthesizing methionine for protein synthesis during moderate methionine deficiency in piglets.

    PubMed

    McBreairty, Laura E; Robinson, Jason L; Harding, Scott V; Randell, Edward W; Brunton, Janet A; Bertolo, Robert F

    2016-12-01

    Both folate and betaine (synthesized from choline) are nutrients used to methylate homocysteine to reform the amino acid methionine following donation of its methyl group; however, it is unclear whether both remethylation pathways are of equal importance during the neonatal period when remethylation rates are high. Methionine is an indispensable amino acid that is in high demand in neonates not only for protein synthesis, but is also particularly important for transmethylation reactions, such as creatine and phosphatidylcholine synthesis. The objective of this study was to determine whether supplementation with folate, betaine, or a combination of both can equally re-synthesize methionine for protein synthesis when dietary methionine is limiting. Piglets were fed a low methionine diet devoid of folate, choline, and betaine, and on day 6, piglets were supplemented with either folate, betaine, or folate + betaine (n = 6 per treatment) until day 10. [1- 13 C]-phenylalanine oxidation was measured as an indicator of methionine availability for protein synthesis both before and after 2 days of supplementation. Prior to supplementation, piglets had lower concentrations of plasma folate, betaine, and choline compared to baseline with no change in homocysteine. Post-supplementation, phenylalanine oxidation levels were 20-46 % lower with any methyl donor supplementation (P = 0.006) with no difference among different supplementation groups. Furthermore, both methyl donors led to similarly lower concentrations of homocysteine following supplementation (P < 0.05). These data demonstrate an equal capacity for betaine and folate to remethylate methionine for protein synthesis, as indicated by lower phenylalanine oxidation.

  1. Serotonin induces ecdysteroidogenesis and methyl farnesoate synthesis in the mud crab, Scylla serrata.

    PubMed

    Girish, B P; Swetha, C H; Reddy, P Sreenivasula

    2017-09-02

    In the current study, we have examined the role of serotonin in regulating the levels of methyl farnesoate and ecdysteroids in the giant mud crab Scylla serrata and validated that serotonin indeed is a reproductive hormone. Administration of serotonin elevated circulatory levels of methyl farnesoate and ecdysteroids in crabs. Since methyl farnesoate and ecdysteroid act through retinoid X receptor (RXR) and ecdysteroid receptor (EcR) respectively and these receptors are involved in the regulation of reproduction in crustaceans, we have determined the mRNA levels of RXR and EcR in hepatopancreas and ovary after serotonin administration. The expression levels of both RXR and EcR increased significantly in the hepatopancreas and ovary of serotonin injected crabs when compared to the controls. In vitro organ culture studies revealed that incubation of Y-orgas and mandibular organ explants in the presence of serotonin resulted in a significant increase in the secretion of ecdysteroids by Y-organs, but without alterations in MF synthesis in mandibular organs. From the above studies it is evident that serotonin stimulates Y organs resulting in increased ecdysteroidogenesis. Though the circulatory levels methyl farnesoate elevated after serotonin administration, organ culture studies revealed serotonin mediated methyl farnesaote synthesis is indirect probably by inhibiting release of mandibular organ inhibiting hormone from eyestalks. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Synthesis of carbon-11-labeled 4-(phenylamino)-pyrrolo[2,1-f][1,2,4]triazine derivatives as new potential PET tracers for imaging of p38α mitogen-activated protein kinase.

    PubMed

    Wang, Min; Gao, Mingzhang; Zheng, Qi-Huang

    2014-08-15

    The reference standards methyl 4-(2-methyl-5-(methoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylate (10a), methyl 4-(2-methyl-5-(ethoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylate (10b) and corresponding precursors 4-(2-methyl-5-(methoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylic acid (11a), methyl 4-(2-methyl-5-(ethoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylic acid (11b) were synthesized from methyl crotonate and 3-amino-4-methylbenzoic acid in multiple steps with moderate to excellent yields. The target tracer [(11)C]methyl 4-(2-methyl-5-(methoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylate ([(11)C]10a) and [(11)C]methyl 4-(2-methyl-5-(ethoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylate ([(11)C]10b) were prepared from their corresponding precursors with [(11)C]CH3OTf under basic condition through O-[(11)C]methylation and isolated by a simplified solid-phase extraction (SPE) method in 50-60% radiochemical yields at end of bombardment (EOB) with 185-555 GBq/μmol specific activity at end of synthesis (EOS). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Role of methyl group number on SOA formation from monocyclic aromatic hydrocarbons photooxidation under low-NOx conditions

    NASA Astrophysics Data System (ADS)

    Li, L.; Tang, P.; Nakao, S.; Chen, C.-L.; Cocker, D. R., III

    2016-02-01

    Substitution of methyl groups onto the aromatic ring determines the secondary organic aerosol (SOA) formation from the monocyclic aromatic hydrocarbon precursor (SOA yield and chemical composition). This study links the number of methyl groups on the aromatic ring to SOA formation from monocyclic aromatic hydrocarbons photooxidation under low-NOx conditions (HC/NO > 10 ppbC : ppb). Monocyclic aromatic hydrocarbons with increasing numbers of methyl groups are systematically studied. SOA formation from pentamethylbenzene and hexamethylbenzene are reported for the first time. A decreasing SOA yield with increasing number of methyl groups is observed. Linear trends are found in both f44 vs. f43 and O / C vs. H / C for SOA from monocyclic aromatic hydrocarbons with zero to six methyl groups. An SOA oxidation state predictive method based on benzene is used to examine the effect of added methyl groups on aromatic oxidation under low-NOx conditions. Further, the impact of methyl group number on density and volatility of SOA from monocyclic aromatic hydrocarbons is explored. Finally, a mechanism for methyl group impact on SOA formation is suggested. Overall, this work suggests that, as more methyl groups are attached on the aromatic ring, SOA products from these monocyclic aromatic hydrocarbons become less oxidized per mass/carbon on the basis of SOA yield or chemical composition.

  4. Betaine accumulation and (/sup 14/C)formate metabolism in water-stressed barley leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, A.D.; Nelsen, C.E.

    1978-01-01

    Barley (Hordeum vulgare L.) plants at the three-leaf stage were water-stressed by flooding the rooting medium with polyethylene glycol 6000 with an osmotic potential of -19 bars, or by withholding water. While leaf water potential fell and leaf kill progressed, the betaine (trimethylglycine) content of the second leaf blade rose from about 0.4 micromole to about 1.5 micromoles in 4 days. The time course of betaine accumulation resembled that of proline. Choline levels in unstressed second leaf blades were low (<0.1 micromole per blade) and remained low during water stress. Upon relief of stress, betaine-like proline-remained at a high concentrationmore » in drought-killed leaf zones, but betaine did not disappear as rapidly as proline during recovery. When (methyl-/sup 14/C)choline was applied to second leaf blades of intact plants in the growth chamber, water-stressed plants metabolized 5 to 10 times more /sup 14/C label to betaine than control plants during 22 hours. When infiltrated with tracer quantities of (/sup 14/C)formate and incubated for various times in darkness or light, segments cut from water-stressed leaf blades incorporated about 2- to 10-fold more /sup 14/C into betaine than did segments from unstressed leaves. In segments from stressed leaves incubated with (/sup 14/C)formate for about 18 hours in darkness, betaine was always the principal /sup 14/C-labeled soluble metabolite. This /sup 14/C label was located exclusively in the N-methyl groups of betaine; thus, reducing equivalents were available in stressed leaves for the reductive steps of methyl group biosynthesis from formate. Incorporation of /sup 14/C from formate into choline was also increased in stressed leaf tissue, but choline was not a major product formed from (/sup 14/C)formate. These results are consistent with a net de novo synthesis of betaine from 1- and 2-carbon precursors during water stress and indicate that the betaine so accumulated may be a metabolically inert end product.« less

  5. Synthesis of a Chloroamide-Hyperbranched Polymer Additive for Self-Decontaminating Surfaces

    DTIC Science & Technology

    2012-04-01

    dissolved in dichloromethane (DCM) (30 mL) and the solution was dried with anhydrous sodium sulfate (Na2SO4) before being used in the next step...infrared spectroscopy N2 nitrogen Na2SO4 anhydrous sodium sulfate NMP 1-methyl-2-pyrrolidinone PFOA perfluorinated octanoic acid PMMA poly(methyl...16 3.6.1 Synthesis and Characterization of Chlorinated 5,5-Dimethylhydantoin Sodium Salt

  6. Synthesis and evaluation of aminoborates derived from boric acid and diols for protecting wood against fungal and thermal degradation

    Treesearch

    George C. Chen

    2008-01-01

    N-methyl amino catechol borate (1), N-methyl amino-4-methyl catechol borate (2), N-methyl amino-4-t-butyl catechol borate (3), and N-methyl amino-2, 3-naphthyl borate (4) were synthesized by reflux of boric acid with a diol in solvent N,N-dimethyl formamide. The aminoborates were characterized by proton nuclear magnetic resonance spectroscopy, FTIR spectroscopy and...

  7. The effect of ethionine on ribonucleic acid synthesis in rat liver.

    PubMed Central

    Swann, P F

    1975-01-01

    1. By 1h after administration of ethionine to the female rat the appearance of newly synthesized 18SrRNA in the cytoplasm is completely inhibited. This is not caused by inhibition of RNA synthesis, for the synthesis of the large ribosomal precursor RNA (45S) and of tRNA continues. Cleavage of 45S RNA to 32S RNA also occurs, but there was no evidence for the accumulation of mature or immature rRNA in the nucleus. 2. The effect of ethionine on the maturation of rRNA was not mimicked by an inhibitor of protein synthesis (cycloheximide) or an inhibitor of polyamine synthesis [methylglyoxal bis(guanylhydrazone)]. 3. Unlike the ethionine-induced inhibition of protein synthesis, this effect was not prevented by concurrent administration of inosine. A similar effect could be induced in HeLa cells by incubation for 1h in a medium lacking methionine. The ATP concentration in these cells was normal. From these two observations it was concluded that the effect of etionine on rRNA maturation is not caused by an ethionine-induced lack of ATP. It is suggested that ethionine, by lowering the hepatic concentration of S-adenosylmethionine, prevents methylation of the ribosomal precursor. The methylation is essential for the correct maturation of the molecule; without methylation complete degradation occurs. PMID:1212195

  8. Novel insights on interactions between folate and lipid metabolism

    PubMed Central

    da Silva, Robin P; Kelly, Karen B; Al Rajabi, Ala; Jacobs, René L

    2014-01-01

    Folate is an essential B vitamin required for the maintenance of AdoMet-dependent methylation. The liver is responsible for many methylation reactions that are used for post-translational modification of proteins, methylation of DNA, and the synthesis of hormones, creatine, carnitine, and phosphatidylcholine. Conditions where methylation capacity is compromised, including folate deficiency, are associated with impaired phosphatidylcholine synthesis resulting in non-alcoholic fatty liver disease and steatohepatitis. In addition, folate intake and folate status have been associated with changes in the expression of genes involved in lipid metabolism, obesity, and metabolic syndrome. In this review, we provide insight on the relationship between folate and lipid metabolism, and an outlook for the future of lipid-related folate research. © 2013 BioFactors, 40(3):277–283, 2014 PMID:24353111

  9. Excessive S-Adenosyl-L-Methionine-Dependent Methylation Increases Levels of Methanol, Formaldehyde and Formic Acid in Rat Brain Striatal Homogenates: Possible role in S-adenosyl-L-methionine-induced Parkinson’s disease-like disorders

    PubMed Central

    Lee, Eun-Sook; Chen, Hongtao; Hardman, Chadwick; Simm, Anthony; Charlton, Clivel

    2009-01-01

    Aims Excessive methylation may be a precipitating factor for Parkinson’s disease (PD) since S-adenosylmethionine (SAM), the endogenous methyl donor, induces PD-like changes when injected into the rat brain. The hydrolysis of the methyl ester bond of the methylated proteins produces methanol. Since methanol is oxidized into formaldehyde, and formaldehyde into formic acid in the body, we investigated the effects of SAM on the production of methanol, formaldehyde and formic acid in rat brain striatal homogenates and the toxicity of these products in PC12 cells. Main methods radio-enzymatic and colorimetric assays, cell viability, Western blot. Key findings SAM increased the formation of methanol, formaldehyde and formic acid in a concentration and time-dependent manner. Concentrations of [3H-methyl]-SAM at 0.17, 0.33, 0.67 and 1.34 nM produced 3.8, 8.0, 18.3 and 34.4 fmol/mg protein/h of [3H] methanol in rat striatal homogenates, respectively. SAM also significantly generated formaldehyde and formic acid in striatal homogenates. Formaldehyde was the most toxic metabolite to differentiated PC12 pheochromocytoma cells in cell culture studies, indicating that formaldehyde formed endogenously may contribute to neuronal damage in excessive methylation conditions. Subtoxic concentration of formaldehyde decreased the expression of tyrosine hydroxylase, the limiting factor in dopamine synthesis. Formaldehyde was more toxic to catecholaminergic PC12 cells than C6 glioma cells, indicating that neurons are more vulnerable to formaldehyde than glia cells. Significance We suggest that excessive carboxylmethylation of proteins might be involved in the SAM-induced PD-like changes and in the aging process via the toxic effects of formaldehyde. PMID:18930743

  10. The reaction mechanism of methyl-coenzyme M reductase: How an enzyme enforces strict binding order

    DOE PAGES

    Wongnate, Thanyaporn; Ragsdale, Stephen W.

    2015-02-17

    Methyl-coenzyme M reductase (MCR) is a nickel tetrahydrocorphinoid (coenzyme F430) containing enzyme involved in the biological synthesis and anaerobic oxidation of methane. MCR catalyzes the conversion of methyl-2-mercaptoethanesulfonate (methyl-SCoM) and N-7-mercaptoheptanoylthreonine phosphate (CoB 7SH) to CH 4 and the mixed disulfide CoBS-SCoM. In this study, the reaction of MCR from Methanothermobacter marburgensis, with its native substrates was investigated using static binding, chemical quench, and stopped-flow techniques. Rate constants were measured for each step in this strictly ordered ternary complex catalytic mechanism. Surprisingly, in the absence of the other substrate, MCR can bind either substrate; however, only one binary complex (MCR·methyl-SCoM)more » is productive whereas the other (MCR·CoB 7SH) is inhibitory. Moreover, the kinetic data demonstrate that binding of methyl-SCoM to the inhibitory MCR·CoB 7SH complex is highly disfavored ( Kd = 56 mM). However, binding of CoB 7SH to the productive MCR·methyl-SCoM complex to form the active ternary complex (CoB 7SH·MCR(Ni I)·CH 3SCoM) is highly favored ( Kd = 79 μM). Only then can the chemical reaction occur ( kobs = 20 s -1 at 25 °C), leading to rapid formation and dissociation of CH 4 leaving the binary product complex (MCR(Ni II)·CoB 7S -·SCoM), which undergoes electron transfer to regenerate Ni(I) and the final product CoBS-SCoM. In conclusion, this first rapid kinetics study of MCR with its natural substrates describes how an enzyme can enforce a strictly ordered ternary complex mechanism and serves as a template for identification of the reaction intermediates.« less

  11. Synthesis and characterization of DNA minor groove binding alkylating agents.

    PubMed

    Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K; Mascara, Gerard P; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W; Bobola, Michael S; Silber, John R; Gold, Barry

    2013-01-18

    Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases, the N-terminus was appended with an O-methyl sulfonate ester, while the C-terminus group was varied with nonpolar and polar side chains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) versus major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is >10-fold higher than that of the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells overexpressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to the expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and the diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization.

  12. The effect of isoprenaline on induction of tumours by methyl nitrosourea in the salivary and mammary glands of female wistar rats.

    PubMed Central

    Parkin, R.; Neale, S.

    1976-01-01

    Pretreatment of rats with isoprenaline sulphate (IPR) stimulated DNA synthesis in both salivary and mammary gland tissues. Salivary gland tumours induced by N-methyl-N-nitrosourea (MNU) were observed for the first time in rats, but occurred only in IPR-pretreated animals given MNU during the period of IPR-stimulated DNA synthesis. The cumulative index of MNU-induced mammary tumours and the number of tumours per tumour-bearing rat were increased by IPR-pretreament only if the animals received MNU during the period of IPR-stimulated DNA synthesis. PMID:974007

  13. Synthesis and characterization of phosphonates from methyl linoleate and vegetable oils

    USDA-ARS?s Scientific Manuscript database

    Phosphonates were synthesized on a medium scale (~200 g) from three lipids: methyl linoleate (MeLin), high-oleic sunflower oil (HOSO), and soybean oil (SBO), and three dialkyl phosphites: methyl, ethyl, and n-butyl, using radical initiator. A staged addition of the lipid and the initiator was needed...

  14. Synthesis of racemic 9-methyl-10-hexadecenoic acid.

    PubMed

    Carballeira, N M; Sostre, A; Restituyo, J A

    1999-02-01

    The marine bacterial fatty acid 9-methyl-10-hexadecenoic acid was conveniently prepared in 6 steps and in a 22% overall yield, starting from commercially available methyl 10-hydroxydecanoate. The naturally occurring fatty acid has the E double bond configuration as confirmed by gas chromatographic co-elution experiments.

  15. Synthesis and biological studies of positron-emitting radiopharmaceuticals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dischino, D.D.

    The development and clinical evaluation of two-positron emitting radiopharmaceuticals designed to image myelin in humans is reported. Carbon-11-labeled benzyl methyl ether was synthesized by the reaction of carbon-11-labeled methanol and benzyl chloride in dimethyl sulfoxide containing powdered potassium hydroxide in a radiochemical yield of 43% and a synthesis and purification time of 40 minutes. Carbon-11-labeled diphenylmethanol was synthesized by the reaction of carbon-11-labeled carbon dioxide and phenyllithium followed by the reduction of the carbon-11-labeled intermediate to diphenylmethanol via lithium aluminum hydride in a radiochemical yield of 71% and a synthesis and purification time of 38 minutes. Carbon-11-labeled benzyl methyl ethermore » and diphenylmethanol were each evaluated as myelin imaging agents in three patients with multiple sclerosis via positron-emission tomography. In two out of three patients studied with carbon-11-labeled benzyl methyl ether, the distribution of activity in the brain was not consistent with local lipid content. A new synthesis of carbon-11-labeled-DL-phenylalanine labeled in the benzylic position and the synthesis of fluorine-18-labeled 1-(2-nitro-1-imidazolyl)-3-fluoro-2-propanol, a potential in vivo marker of hypoxic tissue, are reported.« less

  16. Constraining the Molecular Complexity in the Interstellar Medium—The Formation of Ethyl Methyl Ether (CH3OCH2CH3) in Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Bergantini, Alexandre; Frigge, Robert; Kaiser, Ralf I.

    2018-05-01

    We report the first confirmed synthesis of ethyl methyl ether (EME, CH3CH2OCH3) within astrophysical model ices containing water (H2O) and methane (CH4) exposed to ionizing radiation at ultra-low temperatures of 5 K. EME (also known as methoxyethane), was recently observed toward Orion KL and currently is the largest confirmed oxygen-bearing molecule found in the interstellar medium. Exploiting isomer-selective photoionization (PI) of the subliming molecules in the temperature-programmed desorption phase at 10.49, 9.92, and 9.70 eV, coupled with reflectron time-of-flight mass spectrometry and isotopic substitution experiments (H2 18O–CH4), the detection of fragment ions of EME at m/z = 45 (C2H5O+) and m/z = 59 (C3H7O+), and probing the proton transfer in subliming ethanol–EME complexes via m/z = 61 (C3H9O+), the present study reveals that EME can be formed from suprathermal reactions initiated by cosmic rays and secondary electrons generated within astrophysical ices. The detection of EME in our experiments represents a significant advance in the understanding of formation pathways of complex organic molecules present in hot cores and helps to constrain astrochemical models on the formation of such species within molecular clouds.

  17. Arginine methylation enhances the RNA chaperone activity of the West Nile virus host factor AUF1 p45.

    PubMed

    Friedrich, Susann; Schmidt, Tobias; Schierhorn, Angelika; Lilie, Hauke; Szczepankiewicz, Grit; Bergs, Sandra; Liebert, Uwe G; Golbik, Ralph P; Behrens, Sven-Erik

    2016-10-01

    A prerequisite for the intracellular replication process of the Flavivirus West Nile virus (WNV) is the cyclization of the viral RNA genome, which enables the viral replicase to initiate RNA synthesis. Our earlier studies indicated that the p45 isoform of the cellular AU-rich element binding protein 1 (AUF1) has an RNA chaperone activity, which supports RNA cyclization and viral RNA synthesis by destabilizing a stem structure at the WNV RNA's 3'-end. Here we show that in mammalian cells, AUF1 p45 is consistently modified by arginine methylation of its C terminus. By a combination of different experimental approaches, we can demonstrate that the methyltransferase PRMT1 is necessary and sufficient for AUF1 p45 methylation and that PRMT1 is required for efficient WNV replication. Interestingly, in comparison to the nonmethylated AUF1 p45, the methylated AUF1 p45(aDMA) exhibits a significantly increased affinity to the WNV RNA termini. Further data also revealed that the RNA chaperone activity of AUF1 p45(aDMA) is improved and the methylated protein stimulates viral RNA synthesis considerably more efficiently than the nonmethylated AUF1 p45. In addition to its destabilizing RNA chaperone activity, we identified an RNA annealing activity of AUF1 p45, which is not affected by methylation. Arginine methylation of AUF1 p45 thus represents a specific determinant of its RNA chaperone activity while functioning as a WNV host factor. Our data suggest that the methylation modifies the conformation of AUF1 p45 and in this way affects its RNA binding and restructuring activities. © 2016 Friedrich et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  18. Dnmts and Tet target memory-associated genes after appetitive olfactory training in honey bees

    PubMed Central

    Biergans, Stephanie D.; Giovanni Galizia, C.; Reinhard, Judith; Claudianos, Charles

    2015-01-01

    DNA methylation and demethylation are epigenetic mechanisms involved in memory formation. In honey bees DNA methyltransferase (Dnmt) function is necessary for long-term memory to be stimulus specific (i.e. to reduce generalization). So far, however, it remains elusive which genes are targeted and what the time-course of DNA methylation is during memory formation. Here, we analyse how DNA methylation affects memory retention, gene expression, and differential methylation in stimulus-specific olfactory long-term memory formation. Out of 30 memory-associated genes investigated here, 9 were upregulated following Dnmt inhibition in trained bees. These included Dnmt3 suggesting a negative feedback loop for DNA methylation. Within these genes also the DNA methylation pattern changed during the first 24 hours after training. Interestingly, this was accompanied by sequential activation of the DNA methylation machinery (i.e. Dnmts and Tet). In sum, memory formation involves a temporally complex epigenetic regulation of memory-associated genes that facilitates stimulus specific long-term memory in the honey bee. PMID:26531238

  19. Involvement of histone methylation in macrophage apoptosis and unstable plaque formation in methionine-induced hyperhomocysteinemic ApoE-/- mice.

    PubMed

    Cong, Guangzhi; Yan, Ru; Huang, Hui; Wang, Kai; Yan, Ning; Jin, Ping; Zhang, Na; Hou, Jianjun; Chen, Dapeng; Jia, Shaobin

    2017-03-15

    Hyperhomocysteinemia (Hhcy) is an independent risk factor of atherosclerosis and promotes unstable plaque formation. Epigenetic mechanisms play an important role in the pathogenesis of atherosclerosis induced by Hhcy. However, the exact mechanism is still undefined. Lesional apoptotic cells and necrotic core formation contribute greatly to the progression of plaque. The present study sought to determine whether modification of histone methylation is involved in macrophage apoptosis and unstable plaque formation in the condition of Hhcy. The unstable plaque formation, lesional apoptotic cells and status of histone methylation were monitored in the aortas of Hhcy ApoE -/- mice induced by a high-methionine (HM) diet for 20weeks. Involvement of histone methylation in macrophage apoptosis and foam cell formation were assessed in macrophage Raw 264.7 cells after being challenged with homocysteine alone or in combination with the histone methylation inhibitor BIX 01294. The unstable plaque formation and lesion apoptotic cells are increased in ApoE -/ - mice supplemented with high-methionine (HM), accompanied with a decreased expression of histone H3 lysine 9 dimethylation. Hhcy increases the apoptosis of macrophages and inhibits the histone H3 lysine 9 dimethylation, as well as the expression of histone methyltransferase G9a in vitro. Inhibition of histone methylation by BIX01294 enhances macrophage apoptosis and foam cell formation in vitro. Our data suggest that Hhcy promotes the progression of atherosclerosis via macrophage apoptosis. Histone methylation might be involved in macrophage apoptosis and unstable plaque formation in methionine induced hyperhomocysteinemic ApoE -/- mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Reaction and catalyst engineering to exploit kinetically controlled whole-cell multistep biocatalysis for terminal FAME oxyfunctionalization.

    PubMed

    Schrewe, Manfred; Julsing, Mattijs K; Lange, Kerstin; Czarnotta, Eik; Schmid, Andreas; Bühler, Bruno

    2014-09-01

    The oxyfunctionalization of unactivated C−H bonds can selectively and efficiently be catalyzed by oxygenase-containing whole-cell biocatalysts. Recombinant Escherichia coli W3110 containing the alkane monooxygenase AlkBGT and the outer membrane protein AlkL from Pseudomonas putida GPo1 have been shown to efficiently catalyze the terminal oxyfunctionalization of renewable fatty acid methyl esters yielding bifunctional products of interest for polymer synthesis. In this study, AlkBGTL-containing E. coli W3110 is shown to catalyze the multistep conversion of dodecanoic acid methyl ester (DAME) via terminal alcohol and aldehyde to the acid, exhibiting Michaelis-Menten-type kinetics for each reaction step. In two-liquid phase biotransformations, the product formation pattern was found to be controlled by DAME availability. Supplying DAME as bulk organic phase led to accumulation of the terminal alcohol as the predominant product. Limiting DAME availability via application of bis(2-ethylhexyl)phthalate (BEHP) as organic carrier solvent enabled almost exclusive acid accumulation. Furthermore, utilization of BEHP enhanced catalyst stability by reducing toxic effects of substrate and products. A further shift towards the overoxidized products was achieved by co-expression of the gene encoding the alcohol dehydrogenase AlkJ, which was shown to catalyze efficient and irreversible alcohol to aldehyde oxidation in vivo. With DAME as organic phase, the aldehyde accumulated as main product using resting cells containing AlkBGT, AlkL, as well as AlkJ. This study highlights the versatility of whole-cell biocatalysis for synthesis of industrially relevant bifunctional building blocks and demonstrates how integrated reaction and catalyst engineering can be implemented to control product formation patterns in biocatalytic multistep reactions. © 2014 Wiley Periodicals, Inc.

  1. Facile hydrothermal synthesis and characterization of cesium-doped PbI2 nanostructures for optoelectronic, radiation detection and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Shkir, Mohd; AlFaify, S.; Yahia, I. S.; Hamdy, Mohamed S.; Ganesh, V.; Algarni, H.

    2017-10-01

    Low-temperature hydrothermal-assisted synthesis of pure and cesium (Cs) (1, 3, 5, 7 and 10 wt%) doped lead iodide (PbI2) nanorods and nanosheets have been achieved successfully for the first time. The structural and vibrational studies confirm the formation of a 2H-polytypic PbI2 predominantly. Scanning electron microscope analysis confirms the formation of well-aligned nanorods of average size 100 nm at low concentration and nanosheets of average thicknesses in the range of 20-40 nm at higher concentrations of Cs doping. The presence of Cs doping was confirmed by energy dispersive X-ray study. Ultra-violet-visible absorbance spectra were recorded, and energy gap was calculated in the range of 3.33 to 3.45 eV for pure and Cs-doped PbI2 nanostructures which is higher than the bulk value (i.e., 2.27 eV) due to quantum confinement effect. Dielectric constant, loss, and AC conductivity studies have been done. Enhancement in Gamma linear absorption coefficient due to Cs doping confirms the suitability of prepared nanostructures for radiation detection applications. Furthermore, the photocatalytic performance of the synthesized nanostructures was evaluated in the decolorization of methyl green (MG) and methyl orange (MO) under the illumination of visible light (λ > 420 nm). The observed photocatalytic activity for 5 and 7 wt% Cs-doped PbI2 was observed to be more than pure PbI2 and also > 10 times higher than the commercially available photocatalysts. The results suggest that the prepared nanostructures are highly applicable in optoelectronic, radiation detection and many other applications. [Figure not available: see fulltext.

  2. Synthesis and characterization of phosphonates from methyl linoleate and vegetable oils

    USDA-ARS?s Scientific Manuscript database

    Phosphonates were synthesized on a medium scale (~200 g) from three lipids: methyl linoleate (MeLin), high-oleic sunflower oil (HOSO) and soybean oil (SBO), and three dialkyl phosphites: methyl, ethyl and n-butyl, using a radical initiator. A staged addition of the lipid and the initiator to the dia...

  3. Synthesis and characterization of phosphonates from methyl linoleate and vegetable oils

    USDA-ARS?s Scientific Manuscript database

    Phosphonates were synthesized on a medium scale (~200 g) from three lipids–methyl linoleate (MeLin), high-oleic sunflower oil (HOSO) and soybean oil (SBO), and three dialkyl phosphites–methyl, ethyl and n-butyl, using a radical initiator. A staged addition of the lipid and the initiator was used to ...

  4. A convenient synthesis of a novel nucleoside analogue: 4-(alpha-diformyl-methyl)-1-(beta-D-ribofuranosyl)-2-pyrimidinone.

    PubMed

    Gao, K; Orgel, L E

    2000-01-01

    The nucleoside analogue 4-(alpha-diformyl-methyl)-1-(beta-D-ribofuranosyl)-2-pyrimidinone (5) was prepared from the corresponding 4-methyl pyrimidinone nucleoside by means of the Vilsmeier reaction. The unprotected nucleoside can be phosphorylated directly with phosphorus oxychloride in triethyl phosphate.

  5. A convenient synthesis of a novel nucleoside analogue: 4-(alpha-diformyl-methyl)-1-(beta-D-ribofuranosyl)-2-pyrimidinone

    NASA Technical Reports Server (NTRS)

    Gao, K.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    2000-01-01

    The nucleoside analogue 4-(alpha-diformyl-methyl)-1-(beta-D-ribofuranosyl)-2-pyrimidinone (5) was prepared from the corresponding 4-methyl pyrimidinone nucleoside by means of the Vilsmeier reaction. The unprotected nucleoside can be phosphorylated directly with phosphorus oxychloride in triethyl phosphate.

  6. Improved synthesis of aryltrialkoxysilanes via treatment of aryl Grignard or lithium reagents with tetraalkyl orthosilicates.

    PubMed

    Manoso, Amy S; Ahn, Chuljin; Soheili, Arash; Handy, Christopher J; Correia, Reuben; Seganish, W Michael; Deshong, Philip

    2004-11-26

    General reaction conditions for the synthesis of aryl(trialkoxy)silanes from aryl Grignard and lithium reagents and tetraalkyl orthosilicates (Si(OR)(4)) have been developed. Ortho-, meta-, and para-substituted bromoarenes underwent efficient metalation and silylation at low temperature to provide aryl siloxanes. Mixed results were obtained with heteroaromatic substrates: 3-bromothiophene, 3-bromo-4-methoxypyridine, 5-bromoindole, and N-methyl-5-bromoindole underwent silylation in good yield, whereas a low yield of siloxane was obtained from 2-bromofuran, and 2-bromopyridine failed to give silylated product. The synthesis of siloxanes via organolithium and magnesium reagents was limited by the formation of di- and triarylated silanes (Ar(2)Si(OR)(2) and Ar(3)SiOR, respectively) and dehalogenated (Ar-H) byproducts. Silylation at low temperature gave predominantly monoaryl siloxanes, without requiring a large excess of the electrophile. Optimal reaction conditions for the synthesis of siloxanes from aryl Grignard reagents entailed addition of arylmagnesium reagents to 3 equiv of tetraethyl- or tetramethyl orthosilicate at -30 degrees C in THF. Aryllithium species were silylated using 1.5 equiv of tetraethyl- or tetramethyl orthosilicate at -78 degrees C in ether.

  7. Synthesis and Reactivity of 1-Methyl-e-Ethynylpyridinium Triflate

    DTIC Science & Technology

    1992-05-15

    Approved for public release, distribution unlimited 13. ABSTRACT (Maximum 200 words) 1- Methyl -4-ethynylpyridiniurn triflate has been prepared by treatment of... treatment of 4-ethynylpyrdine with methyl tinflase in methylene chloride. I his new native acetylenic monomer timerized to tris. 1.3.5-( I...described their conversion to polymers with regular structure.8.9 Using the analogy to vinylpyridine, we examined reactions of 1 with triflic acid and methyl

  8. Engineering of bacterial methyl ketone synthesis for biofuels.

    PubMed

    Goh, Ee-Been; Baidoo, Edward E K; Keasling, Jay D; Beller, Harry R

    2012-01-01

    We have engineered Escherichia coli to overproduce saturated and monounsaturated aliphatic methyl ketones in the C₁₁ to C₁₅ (diesel) range; this group of methyl ketones includes 2-undecanone and 2-tridecanone, which are of importance to the flavor and fragrance industry and also have favorable cetane numbers (as we report here). We describe specific improvements that resulted in a 700-fold enhancement in methyl ketone titer relative to that of a fatty acid-overproducing E. coli strain, including the following: (i) overproduction of β-ketoacyl coenzyme A (CoA) thioesters achieved by modification of the β-oxidation pathway (specifically, overexpression of a heterologous acyl-CoA oxidase and native FadB and chromosomal deletion of fadA) and (ii) overexpression of a native thioesterase (FadM). FadM was previously associated with oleic acid degradation, not methyl ketone synthesis, but outperformed a recently identified methyl ketone synthase (Solanum habrochaites MKS2 [ShMKS2], a thioesterase from wild tomato) in β-ketoacyl-CoA-overproducing strains tested. Whole-genome transcriptional (microarray) studies led to the discovery that FadM is a valuable catalyst for enhancing methyl ketone production. The use of a two-phase system with decane enhanced methyl ketone production by 4- to 7-fold in addition to increases from genetic modifications.

  9. Synthesis of fatty acid methyl ester from crude jatropha (Jatropha curcas Linnaeus) oil using aluminium oxide modified Mg-Zn heterogeneous catalyst.

    PubMed

    Olutoye, M A; Hameed, B H

    2011-06-01

    The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182°C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Synthesis and characterisation of new Schiff base monomers containing N-(alkyl and phenyl) pyrrole moieties

    NASA Astrophysics Data System (ADS)

    Amer, Ahcene Ait; Ilikti, Hocine; Maschke, Ulrich

    2017-11-01

    This article deals with the synthesis and characterisation of seven new functional Schiff base monomers, such as: M1: 1-(3-Pyrrole-1-yl-propylimino-methyl)-naphtalen-2-ol; M2: 2-(3-Pyrrole-1-yl-phenylimino-methyl)-phenol; M3: 1-(3-Pyrrole-1-yl-phenylimino-methyl)-naphtalen-2-ol; M4: N-(pyridin-2-yl-methylene)-2-(pyrrol-1-yl)-benzenamine; M5: N-(pyridin-2-yl-methylene)-3-(pyrrol-1-yl)-propan-1-amine; M6: 2-(3-pyrrol-1-yl-propylimino-methyl)-quinolin-8-ol; M7: 2-(3-pyrrol-1-yl-phenylimino-methyl)-quinolin-8-ol. Two series of compounds emerged from this study, N-propyl pyrrole derivatives (M1, M5, M6) and N-phenyl pyrrole compounds (M2, M3, M4, M7). All monomers were elaborated by condensation reactions between appropriate amines and aldehydes, and their molecular structures were confirmed by spectroscopic analysis methods like FT-IR, 1H NMR, 13C NMR, and GC-MS.

  11. Microwave assisted synthesis and structure-activity relationship of 4-hydroxy-N'-[1-phenylethylidene]-2H/2-methyl-1,2-benzothiazine-3-carbohydrazide 1,1-dioxides as anti-microbial agents.

    PubMed

    Ahmad, Naveed; Zia-ur-Rehman, Muhammad; Siddiqui, Hamid Latif; Ullah, Muhammad Fasih; Parvez, Masood

    2011-06-01

    A series of 4-hydroxy-N'-[1-phenylethylidene]-2H/2-methyl, 1,2-benzothiazine-3-carbohydrazide 1,1-dioxides was synthesized from commercially available sodium saccharin. Base catalyzed ring expansion of methyl (1,1-dioxido-3-oxo-1,2-benzisothiazol-2(3H)-yl)acetate followed by ultrasound mediated hydrazinolysis and subsequent reaction with 1-phenylethanones under the influence of microwaves yielded the title compounds. Besides, microwave assisted synthesis of 1,4-dihydropyrazolo[4,3-c][1,2]benzothiazin-3-ol 5,5-dioxide and 4-methyl-1,4-dihydropyrazolo[4,3-c][1,2]benzothiazin-3-ol 5,5-dioxide is also discussed. Most of the synthesized compounds were found to possess moderate to significant anti-microbial (anti-bacterial and anti-fungal) activities. It is found that compounds with greater lipophilicity (N-methyl analogues) possessed higher anti-bacterial activities. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  12. Design, synthesis, and biological activity of second-generation synthetic oleanane triterpenoids.

    PubMed

    Fu, Liangfeng; Lin, Qi-Xian; Onyango, Evans O; Liby, Karen T; Sporn, Michael B; Gribble, Gordon W

    2017-07-19

    We report the synthesis and biological activity of C-24 demethyl CDDO-Me 2 and the C-28 amide derivatives 3 and 4, which are analogues of the anti-inflammatory synthetic triterpenoid bardoxolone methyl (CDDO-Me) 1. Demethylation of the C-24 methyl group was accomplished via "abnormal Beckmann" rearrangement and subsequent ring A reformation. Amides 3 and 4 were found to be potent inhibitors of the production of the inflammatory mediator NO in vitro.

  13. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    NASA Astrophysics Data System (ADS)

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-08-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.

  14. Inhibition of selenocysteine tRNA[Ser]Sec aminoacylation provides evidence that aminoacylation is required for regulatory methylation of this tRNA

    PubMed Central

    Kim, Jin Young; Carlson, Bradley A.; Xu, Xue-Ming; Zeng, Yu; Chen, Shawn; Gladyshev, Vadim N.; Lee, Byeong Jae; Hatfield, Dolph L.

    2011-01-01

    There are two isoforms of selenocysteine (Sec) tRNA[Ser]Sec that differ by a single methyl group, Um34. The non-Um34 isoform supports the synthesis of a subclass of selenoproteins, designated housekeeping, while the Um34 isoform supports the expression of another subclass, designated stress-related selenoproteins. Herein, we investigated the relationship between tRNA[Ser]Sec aminoacylation and Um34 synthesis which is the last step in the maturation of this tRNA. Mutation of the discriminator base at position 73 in tRNA[Ser]Sec dramatically reduced aminoacylation with serine, as did an inhibitor of seryl-tRNA synthetase, SB-217452. Although both the mutation and the inhibitor prevented Um34 synthesis, neither precluded the synthesis of any other of the known base modifications on tRNA[Ser]Sec following microinjection and incubation of the mutant tRNA[Ser]Sec transcript, or the wild type transcript along with inhibitor, in Xenopus oocytes. The data demonstrate that Sec tRNA[Ser]Sec must be aminoacylated for Um34 addition. The fact that selenium is required for Um34 methylation suggests that Sec must be attached to its tRNA for Um34 methylation. This would explain why selenium is essential for the function of Um34 methylase and provides further insights into the hierarchy of selenoprotein expression. PMID:21624347

  15. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    PubMed Central

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-01-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns. PMID:27502578

  16. Formation of methyl formate in comets by irradiation of methanol-bearing ices

    NASA Astrophysics Data System (ADS)

    Modica, P.; Palumbo, M. E.; Strazzulla, G.

    2012-12-01

    Methyl formate is a complex organic molecule considered potentially relevant as precursor of biologically active molecules. It has been observed in several astrophysical environments, such as hot cores, hot corinos, and comets. The processes that drive the formation of molecules in cometary ices are poorly understood. In particular it is not yet clear if molecules are directly accreted from the pre-solar nebula to form comets or are formed after accretion. The present work analyzes the possible role of cosmic ion irradiation and radioactive decay in methyl formate formation in methanol-bearing ices. The results indicate that cosmic ion irradiation can account for about 12% of the methyl formate observed in comet Hale-Bopp, while radioactive decay can account for about 6% of this amount. The need of new data coming from earth based and space observational projects as well as from laboratory experiments is outlined.

  17. 46 CFR 30.25-1 - Cargoes carried in vessels certificated under the rules of this subchapter.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Amyl methyl ketone, see Methyl amyl ketone D Animal and Fish oils, n.o.s. D (see also Oil, edible, or...-Butyl formate D n-Butyl formate @D Butyl heptyl ketone [C] Butyl methyl ketone, see Methyl butyl ketone... Diisobutyl ketone D Diisobutyl phthalate B Diisodecyl phthalate, see Dialkyl(C7-C13) phthalates Diisononyl...

  18. 46 CFR 30.25-1 - Cargoes carried in vessels certificated under the rules of this subchapter.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Amyl methyl ketone, see Methyl amyl ketone D Animal and Fish oils, n.o.s. D (see also Oil, edible, or...-Butyl formate D n-Butyl formate @D Butyl heptyl ketone [C] Butyl methyl ketone, see Methyl butyl ketone... Diisobutyl ketone D Diisobutyl phthalate B Diisodecyl phthalate, see Dialkyl(C7-C13) phthalates Diisononyl...

  19. 46 CFR 30.25-1 - Cargoes carried in vessels certificated under the rules of this subchapter.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Amyl methyl ketone, see Methyl amyl ketone D Animal and Fish oils, n.o.s. D (see also Oil, edible, or...-Butyl formate D n-Butyl formate @D Butyl heptyl ketone [C] Butyl methyl ketone, see Methyl butyl ketone... Diisobutyl ketone D Diisobutyl phthalate B Diisodecyl phthalate, see Dialkyl(C7-C13) phthalates Diisononyl...

  20. 46 CFR 30.25-1 - Cargoes carried in vessels certificated under the rules of this subchapter.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Amyl methyl ketone, see Methyl amyl ketone D Animal and Fish oils, n.o.s. D (see also Oil, edible, or...-Butyl formate D n-Butyl formate @D Butyl heptyl ketone [C] Butyl methyl ketone, see Methyl butyl ketone... Diisobutyl ketone D Diisobutyl phthalate B Diisodecyl phthalate, see Dialkyl(C7-C13) phthalates Diisononyl...

  1. The metabolic burden of creatine synthesis.

    PubMed

    Brosnan, John T; da Silva, Robin P; Brosnan, Margaret E

    2011-05-01

    Creatine synthesis is required in adult animals to replace creatine that is spontaneously converted to creatinine and excreted in the urine. Additionally, in growing animals it is necessary to provide creatine to the expanding tissue mass. Creatine synthesis requires three amino acids: glycine, methionine and arginine, and three enzymes: L-arginine:glycine amidinotransferase (AGAT), methionine adenosyltransferase (MAT) and guanidinoacetate methyltransferase (GAMT). The entire glycine molecule is consumed in creatine synthesis but only the methyl and amidino groups, respectively, from methionine and arginine. Creatinine loss averages approximately 2 g (14.6 mmol) for 70 kg males in the 20- to 39-year age group. Creatinine loss is lower in females and in older age groups because of lower muscle mass. Approximately half of this creatine lost to creatinine can be replaced, in omnivorous individuals, by dietary creatine. However, since dietary creatine is only provided in animal products, principally in meat and fish, virtually all of the creatine loss in vegetarians must be replaced via endogenous synthesis. Creatine synthesis does not appear to place a major burden on glycine metabolism in adults since this amino acid is readily synthesized. However, creatine synthesis does account for approximately 40% of all of the labile methyl groups provided by S-adenosylmethionine (SAM) and, as such, places an appreciable burden on the provision of such methyl groups, either from the diet or via de novo methylneogenesis. Creatine synthesis consumes some 20-30% of arginine's amidino groups, whether provided in the diet or synthesized within the body. Creatine synthesis is, therefore, a quantitatively major pathway in amino acid metabolism and imposes an appreciable burden on the metabolism of methionine and of arginine.

  2. Small nickel nanoparticle arrays from long chain imidazolium ionic liquids

    DOE PAGES

    Yang, Mei; Campbell, Paul S.; Santini, Catherine C.; ...

    2013-11-08

    A series of six long chain alkyl mono- and bi-cationic imidazolium based salts with bis(trifluoromethylsulfonyl)imide (NTf 2–) as the anion were synthesized and characterized. Single crystal structure of 1-methyl-3-octadecylimidazolium bis(trifluoromethylsulfonyl)imide could be obtained by X-ray analysis. All these long chain alkyl imidazolium based ILs were applied in the synthesis of nickel nanoparticles via chemical decomposition of an organometallic precursor of nickel. In these media, spontaneous decomposition of Ni(COD) 2 (COD = 1,5-cyclooctadiene) in the absence of H 2 occurred giving small NPs (≤4 nm) with narrow size distributions. Interestingly, formation of regularly interspaced NP arrays was also observed in longmore » chain ILs. Lastly, such array formation could be interesting for potential applications such as carbon nanotube growth.« less

  3. Brucella abortus Synthesizes Phosphatidylcholine from Choline Provided by the Host

    PubMed Central

    Comerci, Diego J.; Altabe, Silvia; de Mendoza, Diego; Ugalde, Rodolfo A.

    2006-01-01

    The Brucella cell envelope is characterized by the presence of phosphatidylcholine (PC), a common phospholipid in eukaryotes that is rare in prokaryotes. Studies on the composition of Brucella abortus 2308 phospholipids revealed that the synthesis of PC depends on the presence of choline in the culture medium, suggesting that the methylation biosynthetic pathway is not functional. Phospholipid composition of pmtA and pcs mutants indicated that in Brucella, PC synthesis occurs exclusively via the phosphatidylcholine synthase pathway. Transformation of Escherichia coli with an expression vector containing the B. abortus pcs homologue was sufficient for PC synthesis upon induction with IPTG (isopropyl-β-d-thiogalactopyranoside), while no PC formation was detected when bacteria were transformed with a vector containing pmtA. These findings imply that Brucella depends on choline provided by the host cell to form PC. We could not detect any obvious associated phenotype in the PC-deficient strain under vegetative or intracellular growth conditions in macrophages. However, the pcs mutant strain displays a reproducible virulence defect in mice, which suggests that PC is necessary to sustain a chronic infection process. PMID:16484204

  4. Rotational spectrum of 13C{2}-methyl formate (HCOO13CH{3}) and detection of the two 13C-methyl formate in Orion

    NASA Astrophysics Data System (ADS)

    Carvajal, M.; Margulès, L.; Tercero, B.; Demyk, K.; Kleiner, I.; Guillemin, J. C.; Lattanzi, V.; Walters, A.; Demaison, J.; Wlodarczak, G.; Huet, T. R.; Møllendal, H.; Ilyushin, V. V.; Cernicharo, J.

    2009-06-01

    Context: Laboratory measurements and analysis of the microwave and millimeter-wave spectra of potential interstellar molecules are a prerequisite for their subsequent identification by radioastronomical techniques. The spectral analysis provides spectroscopic parameters that are used in the assignment procedure of the laboratory spectra, and that also predict the frequencies of transitions not measured in the laboratory with a high degree of precision. Aims: An experimental laboratory study and its theoretical analysis is presented for 13C2-methyl formate (HCOO13CH3) allowing a search for this isotopologue in the Orion molecular cloud. The 13C1-methyl formate (H13COOCH3) molecule was also searched for in this interstellar cloud, using previously published spectroscopic data. Methods: The experimental spectra of 13C2-methyl formate were recorded in the microwave and sub-mm energy ranges (4-20 GHz, 8-80 GHz, 150-700 GHz). The spectra were analyzed using the Rho-Axis Method (RAM), which takes the CH3 internal rotation and the coupling between internal rotation and global rotation into account. Results: Twenty-seven spectroscopic constants of 13C2-methyl formate have been obtained from a fit of 936 transitions of the ground torsional state with a standard (unitless) deviation of 1.08. A prediction of line positions and intensities is also produced. This prediction allowed us to identify 230 13C2-methyl formate lines in the Orion interstellar molecular cloud. We refitted all previously published ground state transitions of the 13C1-methyl formate molecule in order to provide a prediction of its ground state spectrum. 234 lines of 13C1-methyl formate were detected in the Orion interstellar cloud using that prediction. Tables A.1-A.5 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/500/1109

  5. Application of Microreactor to the Preparation of C-11-Labeled Compounds via O-[11C]Methylation with [11C]CH3I: Rapid Synthesis of [11C]Raclopride.

    PubMed

    Kawashima, Hidekazu; Kimura, Hiroyuki; Nakaya, Yuta; Tomatsu, Kenji; Arimitsu, Kenji; Nakanishi, Hiroaki; Ozeki, Eiichi; Kuge, Yuji; Saji, Hideo

    2015-01-01

    A new radiolabeling method using a microreactor was developed for the rapid synthesis of [(11)C]raclopride. A chip bearing a Y-shaped mixing junction with a 200 µm (width)×20 µm (depth)×250 mm (length) flow channel was designed, and the efficiency of O-[11C]methylation was evaluated. Dimethyl sulfoxide solutions containing the O-desmethyl precursor or [11C]CH3I were introduced into separate injection ports by infusion syringes, and the radiochemical yields were measured under various conditions. The decay-corrected radiochemical yield of microreactor-derived [11C]raclopride reached 12% in 20 s at 25 °C, which was observed to increase with increasing temperature. In contrast, batch synthesis at 25 °C produced a yield of 5%: this indicates that this device could effectively achieve O-[11C]methylation in a shorter period of time. The microreactor technique may facilitate simple and efficient routine production of 11C-labeled compounds via O-[11C]methylation with [11C]CH3I.

  6. Synthesis and biological activity of novel 1,3-benzoxazine derivatives as K+ channel openers.

    PubMed

    Yamamoto, S; Hashiguchi, S; Miki, S; Igata, Y; Watanabe, T; Shiraishi, M

    1996-04-01

    A new series of 1,3-benzoxazine derivatives with a 2-pyridine 1-oxide group at C4 was designed to explore novel K+ channel openers. Synthesis was carried out by using a palladium(0)-catalyzed carbon-carbon bond formation reaction of imino-triflates with organozinc reagents and via a new one-pot 1,3-benzoxazine skeleton formation reaction of benzoylpyridines. The compounds were tested for vasorelaxant activity in tetraethylammonium chloride (TEA) and BaCl2-induced and high KCl-induced contraction of rat aorta to identify potential K+ channel openers, and also for oral hypotensive effects in spontaneously hypertensive rats. An electron-withdrawing group with the proper shape at C6 and a methyl or halogeno group at C7 of the 1,3-benzoxazine nucleus were required for the development of optimal vasorelaxant and hypotensive activity. In particular, 2-(6-bromo-7-chloro-2,2-dimethyl-2H-1,3-benzoxazin-4-yl)pyridine 1-oxide (71) showed more potent vasorelaxant activity (EC50 = 0.14 microM) against TEA and BaCl2-induced contraction and longer-lasting hypotensive effects than cromakalim (1).

  7. Stereospecific 1,4-addition to an alpha,beta-unsaturated steroidal epoxide: syntheses of new 15-oxygenated sterols.

    PubMed

    Parish, E J; Tsuda, M; Schroepfer, G J

    1988-11-01

    3 beta-Benzoyloxy-14 alpha,15 alpha-epoxy-5 alpha-cholest-7-ene (1) is a key intermediate in the synthesis of C-7 and C-15 oxygenated sterols. Treatment of 1 with benzoyl chloride resulted in the formation of 3 beta,15 alpha-bis-benzoyloxy-7 alpha-chloro-5 alpha-cholest-8(14)-ene (2). Reaction of 2 with LiAlH4 or LiAlD4 resulted in the formation of 5 alpha-cholest-7-ene-3 beta,15 alpha-diol (3a) or [14 alpha-2H]5 alpha-cholest-7-ene-3 beta,15 alpha-diol (3b). Diol 3b was selectively oxidized by Ag2CO3/celite to [14 alpha-2H]5 alpha-cholest-7-en-15 alpha-ol-3-one (4). Treatment of 1 with MeMgI/CuI gave 7 alpha-methyl-5 alpha-cholest-8(14)-ene-3 beta,15 alpha-diol (5). Selective oxidation of 5 with pyridinium chlorochromate (PCC)/pyridine or oxidation with PCC resulted in the formation of 7 alpha-methyl-5 alpha-cholest-8(14)-en-3 beta-ol-15-one (6) and 7 alpha-methyl-5 alpha-cholest-8(14)-ene-3,15-dione, respectively. Reduction of 6 with LiAlH4 yielded 5 and 7 alpha-methyl-5 alpha-cholest-8(14)-ene-3 beta,15 beta-diol (6). Reaction of 1 with benzoic acid/pyridine gave 3 beta,7 alpha-bis-benzoyloxy-5 alpha-cholest-8(14)-en-15 alpha-ol (9). Treatment of 9 with LiAlH4 or ethanolic KOH resulted in the formation of 5 alpha-cholest-8(14)-ene-3 beta,7 alpha,15 alpha-triol (10). Dibenzoate 9, upon brief treatment with mineral acid, gave 3 beta-benzoyloxy-5 alpha-cholest-8(14)-ene-15-one (11). Oxidation of 9 with PCC yielded 3 beta,7 alpha-bis-benzoyloxy-5 alpha-cholest-8(14)-ene-15-one (12). Ketone 12 was also prepared by the selective hydride reduction of 5 alpha-cholest-8(14)-en-7 alpha-ol-3,15-dione (13) to give 5 alpha-cholest-8(14)-ene-3 beta,7 alpha-diol-15-one (14), which was then treated with benzoyl chloride to produce 12.

  8. Valorization of Oleuropein Via Tunable Acid-Promoted Methanolysis.

    PubMed

    Afonso, Carlos; Cavaca, Lidia A S; Rodrigues, Catarina A B; Simeonov, Svilen P; Gomes, Rafael F A; Coelho, Jaime A S; Romanelli, Gustavo P; Sathicq, Angel G; Martínez, José J

    2018-05-28

    The acid-promoted methanolysis of Oleuropein was studied using a variety of homogeneous and heterogeneous acid catalysts. Exclusive cleavage of the acetal bond between the glucoside and the monoterpene subunits or further hydrolysis of the hydroxytyrosol ester and subsequent intramolecular rearrangement were observed upon identification of the most efficient catalyst and experimental conditions. Furthermore, selected conditions were tested using Oleuropein under continuous flow and using a crude mixture extracted from olive leaves under batch. Formation of (-) methyl elenolate was also observed in this study, which is a reported precursor for the synthesis of the antihypertensive drug (-) ajmalicine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status

    PubMed Central

    Friso, Simonetta; Choi, Sang-Woon; Girelli, Domenico; Mason, Joel B.; Dolnikowski, Gregory G.; Bagley, Pamela J.; Olivieri, Oliviero; Jacques, Paul F.; Rosenberg, Irwin H.; Corrocher, Roberto; Selhub, Jacob

    2002-01-01

    DNA methylation, an essential epigenetic feature of DNA that modulates gene expression and genomic integrity, is catalyzed by methyltransferases that use the universal methyl donor S-adenosyl-l-methionine. Methylenetetrahydrofolate reductase (MTHFR) catalyzes the synthesis of 5-methyltetrahydrofolate (5-methylTHF), the methyl donor for synthesis of methionine from homocysteine and precursor of S-adenosyl-l-methionine. In the present study we sought to determine the effect of folate status on genomic DNA methylation with an emphasis on the interaction with the common C677T mutation in the MTHFR gene. A liquid chromatography/MS method for the analysis of nucleotide bases was used to assess genomic DNA methylation in peripheral blood mononuclear cell DNA from 105 subjects homozygous for this mutation (T/T) and 187 homozygous for the wild-type (C/C) MTHFR genotype. The results show that genomic DNA methylation directly correlates with folate status and inversely with plasma homocysteine (tHcy) levels (P < 0.01). T/T genotypes had a diminished level of DNA methylation compared with those with the C/C wild-type (32.23 vs.62.24 ng 5-methylcytosine/μg DNA, P < 0.0001). When analyzed according to folate status, however, only the T/T subjects with low levels of folate accounted for the diminished DNA methylation (P < 0.0001). Moreover, in T/T subjects DNA methylation status correlated with the methylated proportion of red blood cell folate and was inversely related to the formylated proportion of red blood cell folates (P < 0.03) that is known to be solely represented in those individuals. These results indicate that the MTHFR C677T polymorphism influences DNA methylation status through an interaction with folate status. PMID:11929966

  10. Synthesis of small combinatorial libraries of natural products: identification and quantification of new long-chain 3-methyl-2-alkanones from the root essential oil of Inula helenium L. (Asteraceae).

    PubMed

    Radulović, Niko S; Denić, Marija S; Stojanović-Radić, Zorica Z

    2014-01-01

    Recently, a potent anti-staphylococcal activity of Inula helenium L. (Asteraceae) root essential oil was reported. Also, bioassay guided fractionation of the oil pointed to eudesmane sesquiterpene lactones and a series of unidentified constituents as the main carriers of the observed activity. To identify nine new constituents (long-chain 3-methyl-2-alkanones) from a fraction of this root essential oil with a low minimum inhibitory concentration value (0.8 µg/mL) by employing a synthetic methodology that leads to the formation of a small combinatorial library of these compounds. The identity of these constituents was inferred from mass spectral fragmentation patterns and GC retention data. A library of 3-methyl-2-alkanones (C11 -C19 homologous series) was synthesised in three steps starting from methyl acetoacetate and the corresponding alkyl halides. The synthetic library was also screened for in vitro anti-microbial activity. Gas chromatographic analyses of I. helenium essential oil samples with spiked compounds from the synthesised library corroborated the tentative identifications of the long-chain 3-methyl-2-alkanones. The availability of these anti-microbial compounds from this library made it possible to construct GC/FID calibration curves and determine their content in the plant material: 0.08 - 24.2 mg/100 g of dry roots. The small combinatorial library approach enabled the first unequivocal identification of long-chain 3-methyl-2-alkanones as plant secondary metabolites, and, also, allowed determination of not only a single compound and biological properties, but those of a group of structurally related compounds. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Host-guest interaction induced supramolecular amphiphilic star architecture and uniform nanovesicle formation for anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Ling; Liu, Kerh Li; Wen, Yuting; Song, Xia; Li, Jun

    2016-01-01

    A star polymer of poly[(R,S)-3-hydroxybutyrate] (PHB) with adamantyl end-terminals extended from an α-cyclodextrin (α-CD) core is designed. It subsequently self-assembles to form controllable and uniform nanovesicles induced by host-guest interactions between heptakis(2,6-di-O-methyl)-β-CD and the adamantyl ends. The nanovesicles are suitable for loading and intracellular delivery of the anticancer drug doxorubicin.A star polymer of poly[(R,S)-3-hydroxybutyrate] (PHB) with adamantyl end-terminals extended from an α-cyclodextrin (α-CD) core is designed. It subsequently self-assembles to form controllable and uniform nanovesicles induced by host-guest interactions between heptakis(2,6-di-O-methyl)-β-CD and the adamantyl ends. The nanovesicles are suitable for loading and intracellular delivery of the anticancer drug doxorubicin. Electronic supplementary information (ESI) available: Polymer synthesis, characterization, preparation of drug-loaded nanovesicles, intracellular drug release and cytotoxicity assays, TEM and DLS measurements. See DOI: 10.1039/c5nr06744h

  12. Electrochemical and spectroscopic characterisation of amphetamine-like drugs: application to the screening of 3,4-methylenedioxymethamphetamine (MDMA) and its synthetic precursors.

    PubMed

    Milhazes, Nuno; Martins, Pedro; Uriarte, Eugenio; Garrido, Jorge; Calheiros, Rita; Marques, M Paula M; Borges, Fernanda

    2007-07-23

    A complete physicochemical characterisation of MDMA and its synthetic precursors MDA, 3,4-methylenedioxybenzaldehyde (piperonal) and 3,4-methylenedioxy-beta-methyl-beta-nitrostyrene was carried out through voltammetric assays and Raman spectroscopy combined with theoretical (DFT) calculations. The former provided important analytical redox data, concluding that the oxidative mechanism of the N-demethylation of MDMA involves the removal of an electron from the amino-nitrogen atom, leading to the formation of a primary amine and an aldehyde. The vibrational spectroscopic experiments enable to afford a rapid and reliable detection of this type of compounds, since they yield characteristic spectral patterns that lead to an unequivocal identification. Moreover, the rational synthesis of the drug of abuse 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") from one of its most relevant precursors 3,4-methylene-dioxyamphetamine (MDA), is reported. In addition, several approaches for the N-methylation of MDA, a limiting synthetic step, were attempted and the overall yields compared.

  13. The Role and Regulation of TNF-Alpha in Normal Rat Mammary Gland During Development and in Breast Cancer.

    DTIC Science & Technology

    1996-07-01

    autocrine synthesis of TNFcx by the MEC as well. Normally, there is strict control of the expression of this cytokine; however, it is possible that any...1,2-benz-anthracene (DMBA) (Sigma, St. Louis, MO) (in corn oil) p.o. using standard protocols (30) or via i.p. injection of 1-methyl-l- nitrosourea ...Beutler, B. Dexamethasone and pentoxifylline inhibit endotoxin- induced cachectin/tumor necrosis factor synthesis at separate points in the signalling

  14. Stereoselective Total Synthesis of Radiolabeled Artemisinin (Qinghaosu).

    DTIC Science & Technology

    Our previous total synthesis of (+)- artemisinin has been optimized from 18 to 11 steps. The final two steps in the sequence are: 1) alkylation of a...product (+)- artemisinin . The first step was repeated utilizing carbon-14 methyl iodide and the sequence completed as before to afford the desired...carbon-14labeled (+)- artemisinin . The label resides in the methyl group pendant from the lactone ring (ring D), the position of attachment being C-9, the carbon atom being C-16. Keywords: Antimalarials. (aw)

  15. 2-methyl-3-butyn-2-ol as an acetylene precursor in the Mannich reaction. A new synthesis of suicide inactivators of monoamine oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, J.S.

    A two-step reaction process is reported for the synthesis of /sup 11/C, /sup 13/C, or /sup 14/C-labelled propargylamines in moderate yields. The propargylamines were prepared by a modified Mannich scheme without the use of acetylene. The reaction scheme involved the use of 2-methyl-3-butyn-2-ol followed by KOH-catalyzed elimination of acetone from the acetylenic carbinols. (BLM)

  16. A library synthesis of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as anti-tumor agents.

    PubMed

    Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi

    2004-09-06

    As a result of a hit-to-lead program using a technique of solution-phase parallel synthesis, a highly potent (2,4-dimethoxyphenyl)-[6-(3-fluorophenyl)-4-hydroxy-3-methylbenzofuran-2-yl]methanone (15b) was synthesized as an optimized derivative of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which was discovered as a screening hit from small-molecule libraries and exhibited selective cytotoxicity against a tumorigenic cell line.

  17. Template free synthesis of ZnO/Ag2O nanocomposites as a highly efficient visible active photocatalyst for detoxification of methyl orange.

    PubMed

    Kadam, Abhijit; Dhabbe, Rohant; Gophane, Anna; Sathe, Tukaram; Garadkar, Kalyanrao

    2016-01-01

    A simple and effective route for the synthesis of ZnO/Ag2O nanocomposites with different weight ratios (4:1 to 4:4) have been successfully obtained by combination of thermal decomposition and precipitation technique. The structure, composition, morphology and optical properties of the as-prepared ZnO/Ag2O composites were characterized by XRD, FT-IR, EDS, SEM, TEM, UV-Vis DRS and PL, respectively. The photocatalytic performance of the photocatalysts was evaluated towards the degradation of a methyl orange (MO) under UV and visible light. More specifically, the results showed that the photocatalytic activity with highest rate constant of MO degradation over ZnO/Ag2O (4:2) nanocomposites is more than 22 and 4 times than those of pure ZnO and Ag2O under visible light irradiation, respectively. An improved photocatalytic activity was attributed to the formation of heterostructure between Ag2O and ZnO, the strong visible light absorption and more separation efficiency of photoinduced electron-hole pairs. Moreover, the ZnO/Ag2O (4:2) nanocomposite showed excellent stability towards the photodegradation of MO under visible light. Finally, a possible mechanism for enhanced charge separation and photodegrdation is proposed. Genotoxicity of MO before and after photodegradation was also evaluated by simple comet assay technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. 13C-METHYL Formate in Orion-Kl Alma Observations and Spectroscopic Characterization

    NASA Astrophysics Data System (ADS)

    Favre, Cécile; Carvajal, Miguel; Field, David; Bergin, Edwin; Neill, Justin; Crockett, Nathan; Jørgensen, Jes; Bisschop, Suzanne; Brouillet, Nathalie; Despois, Didier; Baudry, Alain; Kleiner, Isabelle; Margulès, L.; Huet, T. R.; Demaison, Jean

    2014-06-01

    Determination of elemental isotopic ratios is valuable for understanding the chemical evolution of interstellar material. Until now the 12C/13C ratio has predominantly been measured in simple species such as CO, CN and H2CO and, becomes larger with increasing distance from the Galactic Center. We have investigated the carbon isotopic ratio for methyl formate HCOOCH3, and its isotopologues H13COOCH3 and HCOO13CH3 addressing the issue whether the 12C/13C ratio is the same for both simple and large molecules. Using ALMA science verification observations of Orion-KL and the spectroscopic characterization of the complex H13COOCH3 and HCOO13CH3 species that we have performed, we have 1) confirmed the detection of the 13C-methyl formate species in Orion-KL and, 2) image for the first time their spatial distribution. I will present some of these results. In particular, our analysis shows that the 12C/13C isotope ratio in methyl formate toward the Compact Ridge and Hot Core-SW components that are associated with Orion-KL are, for both the 13C-methyl formate isotopologues, commensurate with the well-known 12C/13C ratio of the simple species CO. Our findings suggest that grain surface chemistry very likely prevails in the formation of methyl formate main and 13C isotopologues.

  19. Methylated nucleosides in tRNA and tRNA methyltransferases

    PubMed Central

    Hori, Hiroyuki

    2014-01-01

    To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed. PMID:24904644

  20. Synthesis and pharmacological properties of new derivatives of 4-alkoxy-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones.

    PubMed

    Sladowska, Helena; Sabiniarz, Aleksandra; Sapa, Jacek; Filipek, Barbara

    2009-01-01

    Synthesis of 2-(2-hydroxy-3-amino)propyl derivatives of 4-alkoxy-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones (24-35) is described. The chlorides used in the above synthesis exist mainly in the cyclic forms (18, 20-23). Only chloride with benzhydryl substituent at the nitrogen atom of piperazine has the chain structure (19). Among the studied imides the most active analgesics in the "writhing" syndrome test proved to be compounds 30 and 31 (with LD50 > 2000 mg/kg) containing 4-benzylpiperidino group. Furthermore, all imides suppressed significantly spontaneous locomotor activity of mice.

  1. Investigations on the synthesis and pharmacological properties of 4-alkoxy-2-[2-hydroxy-3-(4-aryl-1-piperazinyl)propyl]-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones.

    PubMed

    Sladowska, Helena; Filipek, Barbara; Szkatuła, Dominika; Sabiniarz, Aleksandra; Kardasz, Małgorzata; Potoczek, Joanna; Sieklucka-Dziuba, Maria; Rajtar, Grazyna; Kleinrok, Zdzisław; Lis, Tadeusz

    2002-11-01

    Synthesis of 2-[2-hydroxy-3-(4-aryl-1-piperazinyl)propyl] derivatives of 4-alkoxy-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones (8-12) is described. The chlorides used in the above synthesis can exist in two isomeric forms: chain (18-20) and cyclic (19a, 20a). The compounds 8-12 exhibited potent analgesic activity which was superior than that of acetylsalicylic acid in two different tests. Most of the investigated imides suppressed significantly spontaneous locomotor activity in mice.

  2. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate

    USDA-ARS?s Scientific Manuscript database

    Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O-met...

  3. Low cost, surfactant-less, one pot synthesis of Cu 2O nano-octahedra at room temperature

    NASA Astrophysics Data System (ADS)

    Ahmed, Asar; Gajbhiye, Namdeo S.; Joshi, Amish G.

    2011-08-01

    Cu 2O octahedra were successfully synthesized via a novel wet-chemical method using D-glucose and hydrazine as reducing agent at room temperature without the presence of any other surfactant. Presence of D-glucose was important for the stabilization of the evolved copper octahedra and also for facilitating the reduction of the Cu(II) ions. The existence of glucose moieties on the surface as capping agent was confirmed by the FT-IR spectra while there was presence of excess oxygen atoms on the surface leading to the formation of a thin CuO layer at the octahedra surface, as confirmed by the XPS study, probably promoted by the capping glucose. Effect of NaOH concentration on the reaction and the formation of octahedra was also studied. The formation mechanism of obtained Cu 2O octahedra has been discussed. These octahedra were then studied for their photocatalytic properties in degradation of organic dyes, rhodamine B and methyl orange.

  4. Bioinspired synthesis of a soft-nanofilament-based coating consisting of polysilsesquioxanes/polyamine and its divergent surface control.

    PubMed

    Yuan, Jian-Jun; Kimitsuka, Nobuo; Jin, Ren-Hua

    2013-04-24

    The synthesis of polysilsesquioxanes coating with controllable one-dimensional nanostructure on substrates remains a major long-term challenge by conventional solution-phase method. The hydrolytic polycondensation of organosilanes in solution normally produces a mixture of incomplete cages, ladderlike, and network structures, resulting in the poor control of the formation of specific nanostructure. This paper describes a simple aqueous process to synthesize nanofilament-based coatings of polysilsesquioxanes possessing various organo-functional groups (for example, thiol, methyl, phenyl, vinyl, and epoxy). We utilized a self-assembled nanostructured polyamine layer as a biomimetically catalytic scaffold/template to direct the formation of one-dimensional nanofilament of polysilsesquioxanes by temporally and spatially controlled hydrolytic polycondensation of organosilane. The surface nanostructure and morphology of polysilsesquioxane coating could be modulated by changing hydrolysis and condensation reaction conditions, and the orientation of nanofilaments of polysilsesquioxanes on substrates could be controlled by simply adjusting the self-assembly conditions of polyamine layer. The nanostructure and polyamine@polysilsesquioxane hybrid composition of nanofilament-based coatings were examined by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The template role of nanostructured polyamine layer for the formation of polysilsesquioxane nanofilament was confirmed by combining thin film X-ray diffraction (XRD) and XPS measurements. Moreover, these nanotextured coatings with various organo-functional groups could be changed into superhydrophobic surfaces after surface modification with fluorocarbon molecule.

  5. Synthesis of the Pitstop family of clathrin inhibitors.

    PubMed

    Robertson, Mark J; Deane, Fiona M; Stahlschmidt, Wiebke; von Kleist, Lisa; Haucke, Volker; Robinson, Phillip J; McCluskey, Adam

    2014-07-01

    This protocol describes the synthesis of two classes of clathrin inhibitors, Pitstop 1 and Pitstop 2, along with two inactive analogs that can be used as negative controls (Pitstop inactive controls, Pitnot-2 and Pitnot-2-100). Pitstop-induced inhibition of clathrin TD function acutely interferes with clathrin-mediated endocytosis (CME), synaptic vesicle recycling and cellular entry of HIV, whereas clathrin-independent internalization pathways and secretory traffic proceed unperturbed; these reagents can, therefore, be used to investigate clathrin function, and they have potential pharmacological applications. Pitstop 1 is synthesized in two steps: sulfonation of 1,8-naphthalic anhydride and subsequent reaction with 4-amino(methyl)aniline. Pitnot-1 results from the reaction of 4-amino(methyl)aniline with commercially available 4-sulfo-1,8-naphthalic anhydride potassium salt. Reaction of 1-naphthalene sulfonyl chloride with pseudothiohydantoin followed by condensation with 4-bromobenzaldehyde yields Pitstop 2. The synthesis of the inactive control commences with the condensation of 4-bromobenzaldehyde with the rhodanine core. Thioketone methylation and displacement with 1-napthylamine affords the target compound. Although Pitstop 1-series compounds are not cell permeable, they can be used in biochemical assays or be introduced into cells via microinjection. The Pitstop 2-series compounds are cell permeable. The synthesis of these compounds does not require specialist equipment and can be completed in 3-4 d. Microwave irradiation can be used to reduce the synthesis time. The synthesis of the Pitstop 2 family is easily adaptable to enable the synthesis of related compounds such as Pitstop 2-100 and Pitnot-2-100. The procedures are also simple, efficient and amenable to scale-up, enabling cost-effective in-house synthesis for users of these inhibitor classes.

  6. Efficient syntheses of climate relevant isoprene nitrates and (1R,5S)-(-)-myrtenol nitrate.

    PubMed

    Bew, Sean P; Hiatt-Gipson, Glyn D; Mills, Graham P; Reeves, Claire E

    2016-01-01

    Here we report the chemoselective synthesis of several important, climate relevant isoprene nitrates using silver nitrate to mediate a 'halide for nitrate' substitution. Employing readily available starting materials, reagents and Horner-Wadsworth-Emmons chemistry the synthesis of easily separable, synthetically versatile 'key building blocks' (E)- and (Z)-3-methyl-4-chlorobut-2-en-1-ol as well as (E)- and (Z)-1-((2-methyl-4-bromobut-2-enyloxy)methyl)-4-methoxybenzene has been achieved using cheap, 'off the shelf' materials. Exploiting their reactivity we have studied their ability to undergo an 'allylic halide for allylic nitrate' substitution reaction which we demonstrate generates (E)- and (Z)-3-methyl-4-hydroxybut-2-enyl nitrate, and (E)- and (Z)-2-methyl-4-hydroxybut-2-enyl nitrates ('isoprene nitrates') in 66-80% overall yields. Using NOESY experiments the elucidation of the carbon-carbon double bond configuration within the purified isoprene nitrates has been established. Further exemplifying our 'halide for nitrate' substitution chemistry we outline the straightforward transformation of (1R,2S)-(-)-myrtenol bromide into the previously unknown monoterpene nitrate (1R,2S)-(-)-myrtenol nitrate.

  7. Dynamic in vivo imaging of dual-triggered microspheres for sustained release applications: synthesis, characterization and cytotoxicity study.

    PubMed

    Efthimiadou, Eleni K; Tapeinos, Christos; Chatzipavlidis, Alexandros; Boukos, Nikos; Fragogeorgi, Eirini; Palamaris, Lazaros; Loudos, George; Kordas, George

    2014-01-30

    This paper deals with the synthesis, characterization and property evaluation of drug-loaded magnetic microspheres with pH-responsive cross-linked polymer shell. The synthetic procedure consists of 3 steps, of which the first two comprise the synthesis of a poly methyl methacrylate (PMMA) template and the synthesis of a shell by using acrylic acid (AA) and methyl methacrylate (MMA) as monomers, and divinyl benzene (DVB) as cross-linker. The third step of the procedure refers to the formation of magnetic nanoparticles on the microsphere's surface. AA that attaches pH-sensitivity in the microspheres and magnetic nanoparticles in the inner and the outer surface of the microspheres, enhance the efficacy of this intelligent drug delivery system (DDS), which constitutes a promising approach toward cancer therapy. A number of experimental techniques were used to characterize the resulting microspheres. In order to investigate the in vitro controlled release behavior of the synthesized microspheres, we studied the Dox release percentage under different pH conditions and under external magnetic field. Hyperthermia caused by an alternating magnetic field (AFM) is used in order to study the doxorubicin (Dox) release behavior from microspheres with pH functionality. The in vivo fate of these hybrid-microspheres was tracked by labeling them with the γ-emitting radioisotope (99m)Tc after being intravenously injected in normal mice. According to our results, microsphere present a pH depending and a magnetic heating, release behavior. As expected, labeled microspheres were mainly found in the mononuclear phagocyte system (MPS). The highlights of the current research are: (i) to illustrate the advantages of controlled release by combining hyperthermia and pH-sensitivity and (ii) to provide noninvasive, in vivo information on the spatiotemporal biodistribution of these microsphere by dynamic γ-imaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. General Strategy for Synthesis of C-19 Methyl-Substituted Sarpagine/Macroline/Ajmaline Indole Alkaloids Including Total Synthesis of 19(S),20(R)-Dihydroperaksine, 19(S),20(R)-Dihydroperaksine-17-al, and Peraksine

    PubMed Central

    2015-01-01

    A detailed account of the development of a general strategy for synthesis of the C-19 methyl-substituted alkaloids including total synthesis of 19(S),20(R)-dihydroperaksine-17-al (1), 19(S),20(R)-dihydroperaksine (2), and peraksine (6) is presented. Efforts directed toward the total synthesis of macrosalhine chloride (5) are also reported. Important to success is the sequence of chemical reactions which include a critical haloboration reaction, regioselective hydroboration, and controlled oxidation (to provide sensitive enolizable aldehydes at C-20). In addition, the all-important Pd-catalyzed α-vinylation reaction has been extended to a chiral C-19 alkyl-substituted substrate for the first time. Synthesis of the advanced intermediate 64 completes an improved formal total synthesis of talcarpine (26) and provides a starting point for synthesis of macroline-related alkaloids 27–31. Similarly, extension of this synthetic strategy in the ring A oxygenated series should provide easy access to the northern hemisphere 32b of the bisindoles angustricraline, alstocraline, and foliacraline (Figure 4). PMID:25247616

  9. New synthesis of a stereoisomeric mixture of methyl 12-trishomofarnesoate, a juvenile hormone mimic useful in sericulture by increasing silk production

    PubMed Central

    MORI, Kenji

    2017-01-01

    A mixture of (E,Z)-isomers of methyl 12-trishomofarnesoate (methyl 3,7,11-trimethyl-2,6,10-pentadecatrienoate), a juvenile hormone mimic, was synthesized in nine steps (32.6% overall yield) by starting from only four commercially available materials: 2-hexanone, vinylmagnesium bromide, methyl acetoacetate and trimethyl phosphonoacetate. The mimic is useful in increasing the yield of silk by elongating the larval period of the silkworm, Bombyx mori (L.). PMID:29021513

  10. New synthesis of a stereoisomeric mixture of methyl 12-trishomofarnesoate, a juvenile hormone mimic useful in sericulture by increasing silk production.

    PubMed

    Mori, Kenji

    2017-01-01

    A mixture of (E,Z)-isomers of methyl 12-trishomofarnesoate (methyl 3,7,11-trimethyl-2,6,10-pentadecatrienoate), a juvenile hormone mimic, was synthesized in nine steps (32.6% overall yield) by starting from only four commercially available materials: 2-hexanone, vinylmagnesium bromide, methyl acetoacetate and trimethyl phosphonoacetate. The mimic is useful in increasing the yield of silk by elongating the larval period of the silkworm, Bombyx mori (L.).

  11. An active site mutant of Escherichia coli cyclopropane fatty acid synthase forms new non-natural fatty acids providing insights on the mechanism of the enzymatic reaction.

    PubMed

    E, Guangqi; Drujon, Thierry; Correia, Isabelle; Ploux, Olivier; Guianvarc'h, Dominique

    2013-12-01

    We have produced and purified an active site mutant of the Escherichia coli cyclopropane fatty acid synthase (CFAS) by replacing the strictly conserved G236 within cyclopropane synthases, by a glutamate residue, which corresponds to E146 of the homologous mycolic acid methyltransferase, Hma, producing hydroxymethyl mycolic acids. The G236E CFAS mutant had less than 1% of the in vitro activity of the wild type enzyme. We expressed the G236E CFAS mutant in an E. coli (DE3) strain in which the chromosomal cfa gene had been deleted. After extraction of phospholipids and conversion into the corresponding fatty acid methyl esters (FAMEs), we observed the formation of cyclopropanated FAMEs suggesting that the mutant retained some of the normal activity in vivo. However, we also observed the formation of new C17 methyl-branched unsaturated FAMEs whose structures were determined using GC/MS and NMR analyses. The double bond was located at different positions 8, 9 or 10, and the methyl group at position 10 or 9. Thus, this new FAMEs are likely arising from a 16:1 acyl chain of a phospholipid that had been transformed by the G236E CFAS mutant in vivo. The reaction catalyzed by this G236E CFAS mutant thus starts by the methylation of the unsaturated acyl chain at position 10 or 9 yielding a carbocation at position 9 or 10 respectively. It follows then two competing steps, a normal cyclopropanation or hydride shift/elimination events giving different combinations of alkenes. This study not only provides further evidence that cyclopropane synthases (CSs) form a carbocationic intermediate but also opens the way to CSs engineering for the synthesis of non-natural fatty acids. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Synthesis of carbon-11-labeled 5-HT6R antagonists as new candidate PET radioligands for imaging of Alzheimer's disease.

    PubMed

    Wang, Xiaohong; Dong, Fugui; Miao, Caihong; Li, Wei; Wang, Min; Gao, Mingzhang; Zheng, Qi-Huang; Xu, Zhidong

    2018-06-01

    Carbon-11-labeled serotonin (5-hydroxytryptamine) 6 receptor (5-HT 6 R) antagonists, 1-[(2-bromophenyl)sulfonyl]-5-[ 11 C]methoxy-3-[(4-methyl-1-piperazinyl)methyl]-1H-indole (O-[ 11 C]2a) and 1-[(2-bromophenyl)sulfonyl]-5-methoxy-3-[(4-[ 11 C]methyl-1-piperazinyl)methyl]-1H-indole (N-[ 11 C]2a), 5-[ 11 C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1-(phenylsulfonyl)-1H-indole (O-[ 11 C]2b) and 5-methoxy-3-((4-[ 11 C]methylpiperazin-1-yl)methyl)-1-(phenylsulfonyl)-1H-indole (N-[ 11 C]2b), 1-((4-isopropylphenyl)sulfonyl)-5-[ 11 C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1H-indole (O-[ 11 C]2c) and 1-((4-isopropylphenyl)sulfonyl)-5-methoxy-3-((4-[ 11 C]methylpiperazin-1-yl)methyl)-1H-indole (N-[ 11 C]2c), 1-((4-fluorophenyl)sulfonyl)-5-[ 11 C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1H-indole (O-[ 11 C]2d) and 1-((4-fluorophenyl)sulfonyl)-5-methoxy-3-((4-[ 11 C]methylpiperazin-1-yl)methyl)-1H-indole (N-[ 11 C]2d), were prepared from their O- or N-desmethylated precursors with [ 11 C]CH 3 OTf through O- or N-[ 11 C]methylation and isolated by HPLC combined with SPE in 40-50% radiochemical yield, based on [ 11 C]CO 2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (MA) at EOB was 370-740 GBq/μmol with a total synthesis time of ∼40-min from EOB. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Low-molecular-weight poly(alpha-methyl beta,L-malate) of microbial origin: synthesis and crystallization.

    PubMed

    Fernández, Carlos E; Mancera, Manuel; Holler, Eggehard; Bou, Jordi J; Galbis, Juan A; Muñoz-Guerra, Sebastián

    2005-02-23

    Low-molecular-weight poly(alpha-methyl beta,L-malate) made of approximately 25-30 units was prepared from microbial poly(beta,L-malic acid) by treatment with diazomethane. The thermal characterization of the polymalate methyl ester was carried out and its crystalline structure was preliminary examined. Its ability to crystallize both from solution and from the melt was comparatively evaluated.

  14. Synthesis, spectroscopic investigations (X-ray, NMR and TD-DFT), antimicrobial activity and molecular docking of 2,6-bis(hydroxy(phenyl)methyl)cyclohexanone.

    PubMed

    Barakat, Assem; Ghabbour, Hazem A; Al-Majid, Abdullah Mohammed; Soliman, Saied M; Ali, M; Mabkhot, Yahia Nasser; Shaik, Mohammed Rafi; Fun, Hoong-Kun

    2015-07-21

    The synthesis of 2,6-bis(hydroxy(phenyl)methyl)cyclohexanone 1 is described. The molecular structure of the title compound 1 was confirmed by NMR, FT-IR, MS, CHN microanalysis, and X-ray crystallography. The molecular structure was also investigated by a set of computational studies and found to be in good agreement with the experimental data obtained from the various spectrophotometric techniques. The antimicrobial activity and molecular docking of the synthesized compound was investigated.

  15. A new approach to construct a fused 2-ylidene chromene ring: highly regioselective synthesis of novel chromeno quinoxalines.

    PubMed

    Kumar, K Shiva; Rambabu, D; Prasad, Bagineni; Mujahid, Mohammad; Krishna, G Rama; Rao, M V Basaveswara; Reddy, C Malla; Vanaja, G R; Kalle, Arunasree M; Pal, Manojit

    2012-06-28

    Regioselective construction of a fused 2-ylidene chromene ring was achieved for the first time by using AlCl(3)-induced C-C bond formation followed by Pd/C-Cu mediate coupling-cyclization strategy. A number of chromeno[4,3-b]quinoxaline derivatives were prepared by using this strategy. Single crystal X-ray diffraction study of a representative compound e.g. 6-(2,2-dimethylpropylidene)-4-methyl-6H-chromeno[4,3-b]quinoxalin-3-ol confirmed the presence of an exocyclic C-C double bond with Z-geometry. The crystal structure analysis and hydrogen bonding patterns of the same compound along with its structure elaboration via propargylation followed by Sonogashira coupling of the resulting terminal alkyne is presented. A probable mechanism for the formation of 2-ylidene chromene ring is discussed. Some of the compounds synthesized showed anticancer properties when tested in vitro.

  16. A Biotin Biosynthesis Gene Restricted to Helicobacter

    PubMed Central

    Bi, Hongkai; Zhu, Lei; Jia, Jia; Cronan, John E.

    2016-01-01

    In most bacteria the last step in synthesis of the pimelate moiety of biotin is cleavage of the ester bond of pimeloyl-acyl carrier protein (ACP) methyl ester. The paradigm cleavage enzyme is Escherichia coli BioH which together with the BioC methyltransferase allows synthesis of the pimelate moiety by a modified fatty acid biosynthetic pathway. Analyses of the extant bacterial genomes showed that bioH is absent from many bioC-containing bacteria and is replaced by other genes. Helicobacter pylori lacks a gene encoding a homologue of the known pimeloyl-ACP methyl ester cleavage enzymes suggesting that it encodes a novel enzyme that cleaves this intermediate. We isolated the H. pylori gene encoding this enzyme, bioV, by complementation of an E. coli bioH deletion strain. Purified BioV cleaved the physiological substrate, pimeloyl-ACP methyl ester to pimeloyl-ACP by use of a catalytic triad, each member of which was essential for activity. The role of BioV in biotin biosynthesis was demonstrated using a reconstituted in vitro desthiobiotin synthesis system. BioV homologues seem the sole pimeloyl-ACP methyl ester esterase present in the Helicobacter species and their occurrence only in H. pylori and close relatives provide a target for development of drugs to specifically treat Helicobacter infections. PMID:26868423

  17. Microbundles of zinc oxide nanorods: Assembly in ionic liquid [EMIM]{sup +}[BF{sub 4}]{sup -}, photoluminescence and photocatalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Li; Xu Shenzhi; Li Huijun

    2011-03-15

    A simple, efficient and low-temperature approach for the assembly of hierarchical Zinc oxide (ZnO) microstructures in ionic liquid [EMIM]{sup +}[BF{sub 4}]{sup -} is reported. The as-obtained ZnO superstructures are composed of microbundles of nanorods from the center points, with the diameter and length in the range of 100-150 nm and 2-4 {mu}m, which have been characterized by X-ray diffraction, scanning and transmission electron microscopy, and photoluminescence spectroscopy. The ZnO microstructures exhibit significant defect-related green-yellow emission and high photodegradation of dye Methyl Orange (5x10{sup -5} mol/L) under UV excitation within 80 min. -- Graphical abstract: Easy formation of microbundles of ZnOmore » nanorods were accomplished in low temperature with [EMIM]{sup +}[BF{sub 4}]{sup -} (1-ethyl-3-methylimidazolium tetrafluoroborate) ionic liquid, which exhibit significant green-yellow photoluminescence property and high photodegradation of Methyl Orange dye. Display Omitted Research highlights: {yields} Ionic liquid assisted solid-state route was introduced into synthesis of ZnO nanorods. {yields} The distinctive microbundles ZnO nanorod assembles was evidenced by SEM and TEM. {yields} ZnO nano-material exhibited high efficiency in photodegradation of Methyl Orange.« less

  18. Polymethylated [Fe(η6-arene)2]2+ dications: methyl-group rearrangements and application of the EINS mechanism.

    PubMed

    Štíbr, Bohumil; Bakardjiev, Mario; Hájková, Zuzana; Holub, Josef; Padělková, Zdenka; Růžička, Aleš; Kennedy, John D

    2011-06-14

    Reactions between the methylated arenes ArMe(n) [where ArMe(n) = C(6)Me(n)H((6-n)), and n = 1-6] and FeCl(2) in heptane at 90 °C in the presence of anhydrous AlCl(3) give, for the arenes with n = 1-5, extensive isomerisations and disproportionations involving the methyl groups on the arene rings, and the formation of mixtures of [Fe(ArMe(n))(2)](2+) dications that defy separation into pure species. GC-MS studies of AlCl(3)/mesitylene and AlCl(3)/durene reactions in the absence of FeCl(2) (90 °C, 2 h) allow quantitative assessments of the rearrangements, and the EINS mechanism (electrophile-induced nucleophilic substitution) is applied to rationalise the phenomena. By contrast, ArMe(n) / FeCl(2) /AlCl(3) reactions in heptane for 24-36 h at room-temperature proceed with no rearrangements, allowing the synthesis of the complete series of pure [Fe(ArMen)](2+) cations in yields of 48-71%. The pure compounds are characterised by (1)H NMR spectroscopy and electrospray-ionization mass-spectrometry (ESI-MS), and the structures of [Fe(m-xylene)(2)][PF(6)](2) and [Fe(durene)(2)][PF(6)](2) are established by single-crystal X-ray diffraction analyses.

  19. Evidence for rRNA 2'-O-methylation plasticity: Control of intrinsic translational capabilities of human ribosomes.

    PubMed

    Erales, Jenny; Marchand, Virginie; Panthu, Baptiste; Gillot, Sandra; Belin, Stéphane; Ghayad, Sandra E; Garcia, Maxime; Laforêts, Florian; Marcel, Virginie; Baudin-Baillieu, Agnès; Bertin, Pierre; Couté, Yohann; Adrait, Annie; Meyer, Mélanie; Therizols, Gabriel; Yusupov, Marat; Namy, Olivier; Ohlmann, Théophile; Motorin, Yuri; Catez, Frédéric; Diaz, Jean-Jacques

    2017-12-05

    Ribosomal RNAs (rRNAs) are main effectors of messenger RNA (mRNA) decoding, peptide-bond formation, and ribosome dynamics during translation. Ribose 2'-O-methylation (2'-O-Me) is the most abundant rRNA chemical modification, and displays a complex pattern in rRNA. 2'-O-Me was shown to be essential for accurate and efficient protein synthesis in eukaryotic cells. However, whether rRNA 2'-O-Me is an adjustable feature of the human ribosome and a means of regulating ribosome function remains to be determined. Here we challenged rRNA 2'-O-Me globally by inhibiting the rRNA methyl-transferase fibrillarin in human cells. Using RiboMethSeq, a nonbiased quantitative mapping of 2'-O-Me, we identified a repertoire of 2'-O-Me sites subjected to variation and demonstrate that functional domains of ribosomes are targets of 2'-O-Me plasticity. Using the cricket paralysis virus internal ribosome entry site element, coupled to in vitro translation, we show that the intrinsic capability of ribosomes to translate mRNAs is modulated through a 2'-O-Me pattern and not by nonribosomal actors of the translational machinery. Our data establish rRNA 2'-O-Me plasticity as a mechanism providing functional specificity to human ribosomes.

  20. Synthesis of norbornene copolymers with diazo groups and their application as DUV resists

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Baek; Kim, Kyoung Seon

    2003-06-01

    We synthesized a new type of norbornene-maleic anhydride copolymer which as diazoketo groups instead of acid labile protecting groups. The matrix polymer does not need a photoacid generator for the lithographic evaluation. And there is no necessity for the post-exposure bake step that is the cause of PED effects. Methyl 5-norbornenyl-3-oxopropionate was prepared by the reaction of acetyl norbornene with dimethyl carbonate in the presence of sodium hydride. And methyl 5-norbornenyl-2-diazo-3-oxopropionate was synthesized from the reaction between methyl 5-norbornenyl-3-oxopropionate and p-carboxybenzenesulfonyl azide. The polymer was prepared by free radical polymerization. Upon exposure to DUV light, diazoketo groups undergo a series of reactions that culminate in the formation of a carboxylic acid. The matrix polymer in the exposed region becomes soluble in the aqueous base developer. The polymer showed bleaching effect after exposure. Thermal stability of the polymer is measured by TGA and DSC. Characterization of the polymer is achieved using other techniques such as FT-IR, NMR, GPC, and UV. The resist patterns of 0.6 μm feature size were resolved using a KrF exposure tool and with a conventional developer, 2.38 wt% TMAH aqueous solution.

  1. Synthesis and optical characterization of novel carbazole Schiff bases

    NASA Astrophysics Data System (ADS)

    Çiçek, Baki; Çalışır, Ümit; Tavaslı, Mustafa; Tülek, Remziye; Teke, Ali

    2018-02-01

    In this study, newly substituted carbazole derivatives of S1; (Z)-4-((9-isobutyl-9H-carbazol-3-ylimino)methyl)phenol, S2; (Z)-9-butyl- N-(2,3,4-trimethoxybenzylidine)-9H-carbazol-3-amine, S3; (Z)-4-((9-octyl-9H-carbazol-3-ylimino)methyl)benzene-1,2-diol and S4; (Z)-3-((9-octyl-9H-carbazol-3-ylimino)methyl)benzene-1,2-diol compounds are synthesized by using condensation reaction between carbazole amines and aromatic aldehydes. All synthesized carbazole Schiff bases are purified by crystallizing from chloroform. The structural and optical characterizations of synthesized compounds are investigated by FT-IR (Fourier Transform-Infrared Spectroscopy), 1H NMR (Proton Nuclear Magnetic Resonance), 13C NMR (Carbon Nuclear Magnetic Resonance), LC-MS (Liquid Chromatography-Mass Spectrometry) and temperature dependent PL (Photoluminescence) measurements. The formations of synthesized Schiff bases were confirmed by FT-IR, NMR and microanalysis. Due to stronger π-conjugation and efficient charge transfer from host material, the broad and complex bands centered at about ∼2.16 and ∼1.76 eV are observed in PL spectra for all samples. Their relative intensities depend on functional groups associated with the carbazole. These newly synthesized Schiff bases could be considered as an active emissive layer for organic light emitting diodes.

  2. Abiotic Formation of Methyl Halides in the Terrestrial Environment

    NASA Astrophysics Data System (ADS)

    Keppler, F.

    2011-12-01

    Methyl chloride and methyl bromide are the most abundant chlorine and bromine containing organic compounds in the atmosphere. Since both compounds have relatively long tropospheric lifetimes they can effectively transport halogen atoms from the Earth's surface, where they are released, to the stratosphere and following photolytic oxidation form reactive halogen gases that lead to the chemical destruction of ozone. Methyl chloride and methyl bromide account for more than 20% of the ozone-depleting halogens delivered to the stratosphere and are predicted to grow in importance as the chlorine contribution to the stratosphere from anthropogenic CFCs decline. Today methyl chloride and methyl bromide originate mainly from natural sources with only a minor fraction considered to be of anthropogenic origin. However, until as recently as 2000 most of the methyl chloride and methyl bromide input to the atmosphere was considered to originate from the oceans, but investigations in recent years have clearly demonstrated that terrestrial sources such as biomass burning, wood-rotting fungi, coastal salt marshes, tropical vegetation and organic matter degradation must dominate the atmospheric budgets of these trace gases. However, many uncertainties still exist regarding strengths of both sources and sinks, as well as the mechanisms of formation of these naturally occurring halogenated gases. A better understanding of the atmospheric budget of both methyl chloride and methyl bromide is therefore required for reliable prediction of future ozone depletion. Biotic and abiotic methylation processes of chloride and bromide ion are considered to be the dominant pathways of formation of these methyl halides in nature. In this presentation I will focus on abiotic formation processes in the terrestrial environment and the potential parameters that control their emissions. Recent advances in our understanding of the abiotic formation pathway of methyl halides will be discussed. This will include a consideration on how stable isotope studies assisted advancements in this subject area. For example, it has been shown that the methoxyl groups of lignin and pectin which together constitute the bulk of the C1 plant pool have a carbon isotope signature significantly depleted in 13C. Plant-derived C1 volatile organic compounds (VOCs) are also highly depleted in 13C compared with Cn+1 VOCs. These observations suggest that the plant methoxyl pool is the predominant source of methyl halides released from senescent and dead plant litter. The distinct 13C depletion of plant methoxyl groups and naturally produced methyl halides may provide a helpful tool in constraining complex environmental processes and therefore improve our understanding of the global cycles of atmospheric methyl halides.

  3. Theoretical and Experimental Spectroscopic Analysis of Cyano-Substituted Styrylpyridine Compounds

    PubMed Central

    Castro, Maria Eugenia; Percino, Maria Judith; Chapela, Victor M.; Ceron, Margarita; Soriano-Moro, Guillermo; Lopez-Cruz, Jorge; Melendez, Francisco J.

    2013-01-01

    A combined theoretical and experimental study on the structure, infrared, UV-Vis and 1H NMR data of trans-2-(m-cyanostyryl)pyridine, trans-2-[3-methyl-(m-cyanostyryl)] pyridine and trans-4-(m-cyanostyryl)pyridine is presented. The synthesis was carried out with an efficient Knoevenagel condensation using green chemistry conditions. Theoretical geometry optimizations and their IR spectra were carried out using the Density Functional Theory (DFT) in both gas and solution phases. For theoretical UV-Vis and 1H NMR spectra, the Time-Dependent DFT (TD-DFT) and the Gauge-Including Atomic Orbital (GIAO) methods were used, respectively. The theoretical characterization matched the experimental measurements, showing a good correlation. The effect of cyano- and methyl-substituents, as well as of the N-atom position in the pyridine ring on the UV-Vis, IR and NMR spectra, was evaluated. The UV-Vis results showed no significant effect due to electron-withdrawing cyano- and electron-donating methyl-substituents. The N-atom position, however, caused a slight change in the maximum absorption wavelengths. The IR normal modes were assigned for the cyano- and methyl-groups. 1H NMR spectra showed the typical doublet signals due to protons in the trans position of a double bond. The theoretical characterization was visibly useful to assign accurately the signals in IR and 1H NMR spectra, as well as to identify the most probable conformation that could be present in the formation of the styrylpyridine-like compounds. PMID:23429190

  4. Bioinspired Supramolecular Enzymatic Systems

    DTIC Science & Technology

    2012-09-28

    bearing alkyl chains of various lengths (methyl, ethyl, propyl , butyl, Figure 34. Synthesis of a catalytically active RPM for the hydrolysis...signal or product production. The multidisciplinary work accomplished integrated efforts and expertise in organic and inorganic chemical synthesis ...MURI grant period, Mirkin, Hupp, Stoddart, Ratner, and Nguyen made significant headway into the synthesis and study of supramolecular allosteric

  5. Insulin-like growth factor I has independent effects on bone matrix formation and cell replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hock, J.M.; Centrella, M.; Canalis, E.

    1988-01-01

    The effects of insulin-like growth factor-I (IGF-I) and insulin on bone matrix synthesis and bone cell replication were studied in cultured 21-day-old fetal rat calvariae. Histomorphometry techniques were developed to measure the incorporation of (2,3-/sup 3/H)proline and (methyl-/sup 3/H)thymidine into bone matrix and bone cell nuclei, respectively, using autoradiographs of sagittal sections of calvariae cultured with IGF-I, insulin, or vehicle for up to 96 h. To confirm an effect on bone formation, IGF-I was also studied for its effects on (/sup 3/H)proline incorporation into collagenase-digestible protein (CDP) and noncollagen protein and on (/sup 3/H)thymidine incorporation into acid-precipitable material (DNA). IGF-Imore » at 10(-9)-10(-7) M significantly increased the rate of bone matrix apposition and CDP after 24 h by 45-50% and increased cell labeling by 8-fold in the osteoprogenitor cell zone, by 4-fold in the osteoblast cell zone, and by 2-fold in the periosteal fibroblast zone. Insulin at 10(-9)-10(-6) M also increased matrix apposition rate and CDP by 40-50%, but increased cell labeling by 2-fold only at a concentration of 10(-7) M or higher and then only in the osteoprogenitor cell zone. When hydroxyurea was added to IGF-I-treated bones, the effects of IGF-I on DNA synthesis were abolished, but the increase in bone matrix apposition induced by IGF-I was only partly diminished. In conclusion, IGF-I stimulates matrix synthesis in calvariae, an effect that is partly, although not completely, dependent on its stimulatory effect on DNA synthesis.« less

  6. Aqueous Biphasic Systems for the Synthesis of Formates by Catalytic CO2 Hydrogenation: Integrated Reaction and Catalyst Separation for CO2 -Scrubbing Solutions.

    PubMed

    Scott, Martin; Blas Molinos, Beatriz; Westhues, Christian; Franciò, Giancarlo; Leitner, Walter

    2017-03-22

    Aqueous biphasic systems were investigated for the production of formate-amine adducts by metal-catalyzed CO 2 hydrogenation, including typical scrubbing solutions as feedstocks. Different hydrophobic organic solvents and ionic liquids could be employed as the stationary phase for cis-[Ru(dppm) 2 Cl 2 ] (dppm=bis-diphenylphosphinomethane) as prototypical catalyst without any modification or tagging of the complex. The amines were found to partition between the two phases depending on their structure, whereas the formate-amine adducts were nearly quantitatively extracted into the aqueous phase, providing a favorable phase behavior for the envisaged integrated reaction/separation sequence. The solvent pair of methyl isobutyl carbinol (MIBC) and water led to the most practical and productive system and repeated use of the catalyst phase was demonstrated. The highest single batch activity with a TOF av of approximately 35 000 h -1 and an initial TOF of approximately 180 000 h -1 was achieved in the presence of NEt 3 . Owing to higher stability, the highest productivities were obtained with methyl diethanolamine (Aminosol CST 115) and monoethanolamine (MEA), which are used in commercial scale CO 2 -scrubbing processes. Saturated aqueous solutions (CO 2 overpressure 5-10 bar) of MEA could be converted into the corresponding formate adducts with average turnover frequencies up to 14×10 3  h -1 with an overall yield of 70 % based on the amine, corresponding to a total turnover number of 150 000 over eleven recycling experiments. This opens the possibility for integrated approaches to carbon capture and utilization. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Functional Characterization of a Novel Marine Microbial Esterase and its Utilization in the Enantioselective Preparation of (R)-Methyl 2-Chloropropionate.

    PubMed

    Cao, Yingying; Deng, Dun; Sun, Aijun; Zhang, Yun; Hu, Yunfeng

    2016-09-01

    Chiral 2-chloropropanoic acids and their ester derivatives are crucial intermediates in the synthesis of many chemicals, especially herbicides. The enzymatic synthesis of chiral 2-chloropropanoic acids and their ester derivatives by esterases was not easily achieved, because the structural difference between the two enantiomers was too small to be recognized by esterases. Herein, we report the expression and functional characterization of one novel low temperature-resistant esterase EST12-7 identified from the genome of Pseudonocardia antitumoralis SCSIO 01299 isolated from the sediments of the South China Sea. Biocatalyst EST12-7 could hydrolyze racemic methyl 2-chloropropinate and generate optically pure (R)-methyl 2-chloropropinate with high enantiomeric excess (>99 %) and conversion (>49 %) after process optimization. Notably, the addition of different surfactants and using surfactants of different concentrations in the kinetic resolution catalyzed by EST12-7 could greatly affect the enantiomeric excess and conversion rate of product (R)-methyl 2-chloropropinate.

  8. Feasibility study of molecular memory device based on DNA using methylation to store information

    NASA Astrophysics Data System (ADS)

    Jiang, Liming; Qiu, Wanzhi; Al-Dirini, Feras; Hossain, Faruque M.; Evans, Robin; Skafidas, Efstratios

    2016-07-01

    DNA, because of its robustness and dense information storage capability, has been proposed as a potential candidate for next-generation storage media. However, encoding information into the DNA sequence requires molecular synthesis technology, which to date is costly and prone to synthesis errors. Reading the DNA strand information is also complex. Ideally, DNA storage will provide methods for modifying stored information. Here, we conduct a feasibility study investigating the use of the DNA 5-methylcytosine (5mC) methylation state as a molecular memory to store information. We propose a new 1-bit memory device and study, based on the density functional theory and non-equilibrium Green's function method, the feasibility of electrically reading the information. Our results show that changes to methylation states lead to changes in the peak of negative differential resistance which can be used to interrogate memory state. Our work demonstrates a new memory concept based on methylation state which can be beneficial in the design of next generation DNA based molecular electronic memory devices.

  9. 2'-O-methylation in mRNA disrupts tRNA decoding during translation elongation.

    PubMed

    Choi, Junhong; Indrisiunaite, Gabriele; DeMirci, Hasan; Ieong, Ka-Weng; Wang, Jinfan; Petrov, Alexey; Prabhakar, Arjun; Rechavi, Gideon; Dominissini, Dan; He, Chuan; Ehrenberg, Måns; Puglisi, Joseph D

    2018-03-01

    Chemical modifications of mRNA may regulate many aspects of mRNA processing and protein synthesis. Recently, 2'-O-methylation of nucleotides was identified as a frequent modification in translated regions of human mRNA, showing enrichment in codons for certain amino acids. Here, using single-molecule, bulk kinetics and structural methods, we show that 2'-O-methylation within coding regions of mRNA disrupts key steps in codon reading during cognate tRNA selection. Our results suggest that 2'-O-methylation sterically perturbs interactions of ribosomal-monitoring bases (G530, A1492 and A1493) with cognate codon-anticodon helices, thereby inhibiting downstream GTP hydrolysis by elongation factor Tu (EF-Tu) and A-site tRNA accommodation, leading to excessive rejection of cognate aminoacylated tRNAs in initial selection and proofreading. Our current and prior findings highlight how chemical modifications of mRNA tune the dynamics of protein synthesis at different steps of translation elongation.

  10. Insights into the Formation and Properties of Templated Dual Mesoporous Titania with Enhanced Photocatalytic Activity.

    PubMed

    Naboulsi, Issam; Lebeau, Bénédicte; Michelin, Laure; Carteret, Cédric; Vidal, Loic; Bonne, Magali; Blin, Jean-Luc

    2017-01-25

    The one pot synthesis of dual mesoporous titania (2.3 and 7.7 nm) has been achieved from a mixture of fluorinated and Pluronic surfactants. The small and large mesopore networks are templated, respectively, by a fluorinated-rich liquid crystal and a Pluronic-rich liquid crystal, which are in equilibrium. After calcination at 350 °C, the amorphous walls are transformed into semicrystalline anatase preserving the mesoporous structure. Results concerning the photodegradation of methyl orange using the calcined photocatalysts highlight that the kinetic rate constant (k) determined for the dual mesoporous titania is 2.6 times higher than the k value obtained for the monomodal ones.

  11. Nonaqueous polypyrrole colloids

    DOEpatents

    Armes, Steven P.; Aldissi, Mahmoud

    1991-01-01

    Processable conductive polymers including an oxidized, polymerized aromatic heterocyclic monomer, e.g., pyrrole, an stabilizing effective amount of a poly(vinyl acetate) and dopant anions, and a process of preparing said processable conductive polymers directly in a nonaqueous medium such as methyl acetate, methyl formate, ethyl formate, and propyl formate are disclosed.

  12. Synthesis of 3-Methyl-4-(4-methylbenzoyl)-1-phenyl-pyrazol-5-One: How to Avoid O-Acylation

    ERIC Educational Resources Information Center

    Kurteva, Vanya B.; Petrova, Maria A.

    2015-01-01

    In this laboratory experiment, students synthesize 3-methyl-4-(4-methylbenzoyl)-1-phenyl-pyrazol-5-one by selective C-acylation of 3-methyl-1-phenyl-1H-pyrazol-5-one. Calcium hydroxide is used to push the tautomeric equilibrium toward the enol form, to protect the hydroxyl functionality as a complex, to trap the liberated hydrogen chloride, and to…

  13. Epigenetic Mechanisms of Folate Nutrition in Breast Cancer

    DTIC Science & Technology

    2011-04-01

    relationships between folate , one carbon metabolism, DNA methylation and gene expression within the context of breast cancer. Our hypothesis is that the...lentivirus plasmids containing miRNA against DHFR and AHCY. 2. Test effects of folate deficiency on global and gene specific DNA methylation and gene...including mammary tumors. The B vitamin folate is required for the synthesis of purines, thymidine, and S-adenosylmethionine (SAM), the methyl donor for DNA

  14. Anionic Photopolymerization of Methyl-2-Cyanoacrylate and Simultaneous Color Formation

    DTIC Science & Technology

    2000-11-15

    Anionic polymerization of methyl 2-cyanoacrylate initiated by photoinduced heterolysis of crystal violet leuconitrile (CVCN) and of malachite green leucohydroxide (MGOH) is demonstrated. Polymerization is accompanied by color formation.

  15. Zinc(II)-methimazole complexes: synthesis and reactivity.

    PubMed

    Isaia, Francesco; Aragoni, Maria Carla; Arca, Massimiliano; Bettoschi, Alexandre; Caltagirone, Claudia; Castellano, Carlo; Demartin, Francesco; Lippolis, Vito; Pivetta, Tiziana; Valletta, Elisa

    2015-06-07

    The tetrahedral S-coordinated complex [Zn(MeImHS)4](ClO4)2, synthesised from the reaction of [Zn(ClO4)2] with methimazole (1-methyl-3H-imidazole-2-thione, MeImHS), reacts with triethylamine to yield the homoleptic complex [Zn(MeImS)2] (MeImS = anion methimazole). ESI-MS and MAS (13)C-NMR experiments supported MeImS acting as a (N,S)-chelating ligand. The DFT-optimised structure of [Zn(MeImS)2] is also reported and the main bond lengths compared to those of related Zn-methimazole complexes. The complex [Zn(MeImS)2] reacts under mild conditions with methyl iodide and separates the novel complex [Zn(MeImSMe)2I2] (MeImSMe = S-methylmethimazole). X-ray diffraction analysis of the complex shows a ZnI2N2 core, with the methyl thioethers uncoordinated to zinc. Conversely, the reaction of [Zn(MeImS)2] with hydroiodic acid led to the formation of the complex [Zn(MeImHS)2I2] having a ZnI2S2 core with the neutral methimazole units S-coordinating the metal centre. The Zn-coordinated methimazole can markedly modify the coordination environment when changing from its thione to thionate form and vice versa. The study of the interaction of the drug methimazole with the complex [Zn(MeIm)4](2+) (MeIm = 1-methylimidazole) - as a model for Zn-enzymes containing a N4 donor set from histidine residues - shows that methimazole displaces only one of the coordinated MeIm molecules; the formation constant of the mixed complex [Zn(MeIm)3(MeImHS)](2+) was determined.

  16. Aberrant expression and DNA methylation of lipid metabolism genes in PCOS: a new insight into its pathogenesis.

    PubMed

    Pan, Jie-Xue; Tan, Ya-Jing; Wang, Fang-Fang; Hou, Ning-Ning; Xiang, Yu-Qian; Zhang, Jun-Yu; Liu, Ye; Qu, Fan; Meng, Qing; Xu, Jian; Sheng, Jian-Zhong; Huang, He-Feng

    2018-01-01

    Polycystic ovary syndrome (PCOS), whose etiology remains uncertain, is a highly heterogenous and genetically complex endocrine disorder. The aim of this study was to identify differentially expressed genes (DEGs) in granulosa cells (GCs) from PCOS patients and make epigenetic insights into the pathogenesis of PCOS. Included in this study were 110 women with PCOS and 119 women with normal ovulatory cycles undergoing in vitro fertilization acting as the control group. RNA-seq identified 92 DEGs unique to PCOS GCs in comparison with the control group. Bioinformatic analysis indicated that synthesis of lipids and steroids was activated in PCOS GCs. 5-Methylcytosine analysis demonstrated that there was an approximate 25% reduction in global DNA methylation of GCs in PCOS women (4.44 ± 0.65%) compared with the controls (6.07 ± 0.72%; P  < 0.05). Using MassArray EpiTYPER quantitative DNA methylation analysis, we also found hypomethylation of several gene promoters related to lipid and steroid synthesis, which might result in the aberrant expression of these genes. Our results suggest that hypomethylated genes related to the synthesis of lipid and steroid may dysregulate expression of these genes and promote synthesis of steroid hormones including androgen, which could partially explain mechanisms of hyperandrogenism in PCOS.

  17. Synthesis of magnetic composite nanoparticles enveloped in copolymers specified for scale inhibition application

    NASA Astrophysics Data System (ADS)

    Do, Bao Phuong Huu; Dung Nguyen, Ba; Duy Nguyen, Hoang; Nguyen, Phuong Tung

    2013-12-01

    We report the synthesis of magnetic iron oxide nanoparticles encapsulated in maleic acid-2-acrylamido-2-methyl-1-propanesulfonate based polymer. This composite nanoparticle is specified for the high-pressure/high-temperature (HPHT) oilfield scale inhibition application. The process includes a facile-ultrasound-supported addition reaction to obtain iron oxide nanoparticles with surface coated by oleic acid. Then via inverse microemulsion polymerization with selected monomers, the specifically designed copolymers have been formatted in nanoscale. The structure and morphology of obtained materials were characterized by transmission electron microscopy (TEM), x-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and the thermal stability. The effectiveness of synthesized compounds as a carbonate scale inhibitor was investigated by testing method NACE standard TM 03-074-95 at aging temperature of 70, 90 and 120 °C. The magnetic nanocomposite particles can be easily collected and detected demonstrating their superior monitoring ability, which is absent in the case of conventional copolymer-based scale inhibitor.

  18. Green synthesis and applications of Au-Ag bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Meena Kumari, M.; Jacob, John; Philip, Daizy

    2015-02-01

    This paper reports for the first time the synthesis of bimetallic nanoparticles at room temperature using the fruit juice of pomegranate. Simultaneous reduction of gold and silver ions in different molar ratios leads to the formation of alloy as well as core-shell nanostructures. The nanoparticles have been characterized using UV-vis spectroscopy, transmission electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. The synthesized alloy particles are used as catalysts in the reduction of 2-, 3-, 4-nitrophenols to the corresponding amines and in the degradation of methyl orange. The reduction kinetics for all the reactions follows pseudo-first order. The rate constants follow the order k4-nitrophenol < k2-nitrophenol < k3-nitrophenol. Thermal conductivity is measured as a function of volume fraction and it is observed that the incorporation of the alloy nanoparticles enhances the thermal conductivity of the base fluid (water) showing nanofluid application. The nitric oxide and hydroxyl radical scavenging activity shown by the nanoparticles promise the potential application in biomedical field.

  19. Efficient and Scalable Synthesis of 4-Carboxy-Pennsylvania Green Methyl Ester: A Hydrophobic Building Block for Fluorescent Molecular Probes.

    PubMed

    Woydziak, Zachary R; Fu, Liqiang; Peterson, Blake R

    2014-01-01

    Fluorinated fluorophores are valuable tools for studies of biological systems. However, amine-reactive single-isomer derivatives of these compounds are often very expensive. To provide an inexpensive alternative, we report a practical synthesis of 4-carboxy-Pennsylvania Green methyl ester. Derivatives of this hydrophobic fluorinated fluorophore, a hybrid of the dyes Oregon Green and Tokyo Green, are often cell permeable, enabling labeling of intracellular targets and components. Moreover, the low pKa of Pennsylvania Green (4.8) confers bright fluorescence in acidic cellular compartments such as endosomes, enhancing its utility for chemical biology investigations. To improve access to the key intermediate 2,7-difluoro-3,6-dihydroxyxanthen-9-one, we subjected bis-(2,4,5-trifluorophenyl)methanone to iterative nucleophilic aromatic substitution by hydroxide on scales of > 40 g. This intermediate was used to prepare over 15 grams of pure 4-carboxy-Pennsylvania Green methyl ester in 28% overall yield without requiring chromatography. This compound can be converted into the amine reactive N -hydroxysuccinimidyl ester in essentially quantitative yield for the synthesis of a wide variety of fluorescent molecular probes.

  20. α-Fluorovinyl Weinreb Amides and α- Fluoroenones from a Common Fluorinated Building Block

    PubMed Central

    Ghosh, Arun K.; Banerjee, Shaibal; Sinha, Saikat; Kang, Soon Bang; Zajc, Barbara

    2009-01-01

    Synthesis and reactivity of N-methoxy-N-methyl-(1,3-benzothiazol-2-ylsulfonyl)fluoroacetamide, a building block for Julia olefination, is reported. This reagent undergoes condensation reactions with aldehydes and cyclic ketones, to give α-fluorovinyl Weinreb amides. Olefination reactions proceed under mild, DBU-mediated conditions, or in the presence of NaH. DBU-mediated condensations proceed with either E or Z-selectivity, depending upon reaction conditions, whereas NaH-mediated reactions are ≥98% Z-stereoselective. Conversion of the Weinreb amide moiety in N-methoxy-N-methyl-(1,3-benzothiazol-2-ylsulfanyl)fluoroacetamide to ketones, followed by oxidation, resulted in another set of olefination reagents, namely (1,3-benzothiazol-2-ylsulfonyl)fluoromethyl phenyl and propyl ketones. In the presence of DBU, these compounds react with aldehydes tested to give α-fluoroenones with high Z-selectivity. The use of N-methoxy-N-methyl-(1,3-benzothiazol-2-ylsulfanyl)fluoroacetamide as a common fluorinated intermediate in the synthesis of α-fluorovinyl Weinreb amides and α-fluoroenones has been demonstrated. Application of the Weinreb amide to α-fluoro allyl amine synthesis is also shown. PMID:19361189

  1. New generation of amino coumarin methyl sulfonate-based fluorogenic substrates for amidase assays in droplet-based microfluidic applications.

    PubMed

    Woronoff, Gabrielle; El Harrak, Abdeslam; Mayot, Estelle; Schicke, Olivier; Miller, Oliver J; Soumillion, Patrice; Griffiths, Andrew D; Ryckelynck, Michael

    2011-04-15

    Droplet-based microfluidics is a powerful tool for biology and chemistry as it allows the production and the manipulation of picoliter-size droplets acting as individual reactors. In this format, high-sensitivity assays are typically based on fluorescence, so fluorophore exchange between droplets must be avoided. Fluorogenic substrates based on the coumarin leaving group are widely used to measure a variety of enzymatic activities, but their application in droplet-based microfluidic systems is severely impaired by the fast transport of the fluorescent product between compartments. Here we report the synthesis of new amidase fluorogenic substrates based on 7-aminocoumarin-4-methanesulfonic acid (ACMS), a highly water-soluble dye, and their suitability for droplet-based microfluidics applications. Both substrate and product had the required spectral characteristics and remained confined in droplets from hours to days. As a model experiment, a phenylacetylated ACMS was synthesized and used as a fluorogenic substrate of Escherichia coli penicillin G acylase. Kinetic parameters (k(cat) and K(M)) measured in bulk and in droplets on-chip were very similar, demonstrating the suitability of this synthesis strategy to produce a variety of ACMS-based substrates for assaying amidase activities both in microtiter plate and droplet-based microfluidic formats. © 2011 American Chemical Society

  2. Efficient syntheses of climate relevant isoprene nitrates and (1R,5S)-(−)-myrtenol nitrate

    PubMed Central

    Hiatt-Gipson, Glyn D; Mills, Graham P; Reeves, Claire E

    2016-01-01

    Summary Here we report the chemoselective synthesis of several important, climate relevant isoprene nitrates using silver nitrate to mediate a ’halide for nitrate’ substitution. Employing readily available starting materials, reagents and Horner–Wadsworth–Emmons chemistry the synthesis of easily separable, synthetically versatile ‘key building blocks’ (E)- and (Z)-3-methyl-4-chlorobut-2-en-1-ol as well as (E)- and (Z)-1-((2-methyl-4-bromobut-2-enyloxy)methyl)-4-methoxybenzene has been achieved using cheap, ’off the shelf’ materials. Exploiting their reactivity we have studied their ability to undergo an ‘allylic halide for allylic nitrate’ substitution reaction which we demonstrate generates (E)- and (Z)-3-methyl-4-hydroxybut-2-enyl nitrate, and (E)- and (Z)-2-methyl-4-hydroxybut-2-enyl nitrates (‘isoprene nitrates’) in 66–80% overall yields. Using NOESY experiments the elucidation of the carbon–carbon double bond configuration within the purified isoprene nitrates has been established. Further exemplifying our ‘halide for nitrate’ substitution chemistry we outline the straightforward transformation of (1R,2S)-(−)-myrtenol bromide into the previously unknown monoterpene nitrate (1R,2S)-(−)-myrtenol nitrate. PMID:27340495

  3. Influence of the Reaction Temperature on the Nature of the Active and Deactivating Species During Methanol-to-Olefins Conversion over H-SAPO-34

    PubMed Central

    2017-01-01

    The selectivity toward lower olefins during the methanol-to-olefins conversion over H-SAPO-34 at reaction temperatures between 573 and 773 K has been studied with a combination of operando UV–vis diffuse reflectance spectroscopy and online gas chromatography. It was found that the selectivity toward propylene increases in the temperature range of 573–623 K, while it decreases in the temperature range of 623–773 K. The high degree of incorporation of olefins, mainly propylene, into the hydrocarbon pool affects the product selectivity at lower reaction temperatures. The nature and dynamics of the active and deactivating hydrocarbon species with increasing reaction temperature were revealed by a non-negative matrix factorization of the time-resolved operando UV–vis diffuse reflectance spectra. The active hydrocarbon pool species consist of mainly highly methylated benzene carbocations at temperatures between 573 and 598 K, of both highly methylated benzene carbocations and methylated naphthalene carbocations at 623 K, and of only methylated naphthalene carbocations at temperatures between 673 and 773 K. The operando spectroscopy results suggest that the nature of the active species also influences the olefin selectivity. In fact, monoenylic and highly methylated benzene carbocations are more selective to the formation of propylene, whereas the formation of the group of low methylated benzene carbocations and methylated naphthalene carbocations at higher reaction temperatures (i.e., 673 and 773 K) favors the formation of ethylene. At reaction temperatures between 573 and 623 K, catalyst deactivation is caused by the gradual filling of the micropores with methylated naphthalene carbocations, while between 623 and 773 K the formation of neutral poly aromatics and phenanthrene/anthracene carbocations are mainly responsible for catalyst deactivation, their respective contribution increasing with increasing reaction temperature. Methanol pulse experiments at different temperatures demonstrate the dynamics between methylated benzene and methylated naphthalene carbocations. It was found that methylated naphthalene carbocations species are deactivating and block the micropores at low reaction temperatures, while acting as the active species at higher reaction temperatures, although they give rise to the formation of extended hydrocarbon deposits. PMID:28824823

  4. Part 1: Progress Towards the Synthesis of a Lemonose Derivative Part 2: Synthesis and Characterization of Antibiotic-Labeled Graphite Nanofibers

    NASA Astrophysics Data System (ADS)

    Briegel, Alicia Christine

    Lemonose is a carbohydrate that is part of the natural product lemonomycin, which has shown activity against strains of bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). Lemonose is 2,4,6-trideoxy-4-(dimethylamino)-3- C-methyl-L-lyxohexopyranose. Previous studies on carbohydrate-containing antibiotics showed that structural modifications on the sugar unit changed the activity and/or toxicity of the parent compound. The goal of this work is to synthesize 2,4,6-trideoxy-4-amino-3-C-methyl-L-lyxohexopyranose, a derivative of lemonose (shown below). The key synthetic challenge is the formation of the cis amino alcohol. Two strategies were investigated in this research: epoxidation-reduction and electrophilic cyclization. Graphite nanofibers (GNFs) are novel nanoscale materials that can be prepared inexpensively, in gram quantities, via the catalytic decomposition of carbon monoxide or hydrocarbons over mono- or bi-metallic catalysts. GNFs have potential for applications across a diverse spectrum of research areas in chemistry, biology, medicine, and energy storage. Surface functionalization and characterization are both critical to the further development of GNFs as biomaterials. The covalent functionalization of the GNF surface with antibiotics was carried out in this study. Fibers labeled with antibiotics including amikacin and ciprofloxacin were prepared and studied for their potential biological activity against the common bacterium Pseudomonas aeruginosa. Serial dilution assays and optical density measurements revealed that antibiotic-labeled GNFs possess antibacterial activity.

  5. Epigenetic regulation of memory formation and maintenance

    PubMed Central

    Zovkic, Iva B.; Guzman-Karlsson, Mikael C.; Sweatt, J. David

    2013-01-01

    Understanding the cellular and molecular mechanisms underlying the formation and maintenance of memories is a central goal of the neuroscience community. It is well regarded that an organism's ability to lastingly adapt its behavior in response to a transient environmental stimulus relies on the central nervous system's capability for structural and functional plasticity. This plasticity is dependent on a well-regulated program of neurotransmitter release, post-synaptic receptor activation, intracellular signaling cascades, gene transcription, and subsequent protein synthesis. In the last decade, epigenetic markers like DNA methylation and post-translational modifications of histone tails have emerged as important regulators of the memory process. Their ability to regulate gene transcription dynamically in response to neuronal activation supports the consolidation of long-term memory. Furthermore, the persistent and self-propagating nature of these mechanisms, particularly DNA methylation, suggests a molecular mechanism for memory maintenance. In this review, we will examine the evidence that supports a role of epigenetic mechanisms in learning and memory. In doing so, we hope to emphasize (1) the widespread involvement of these mechanisms across different behavioral paradigms and distinct brain regions, (2) the temporal and genetic specificity of these mechanisms in response to upstream signaling cascades, and (3) the functional outcome these mechanisms may have on structural and functional plasticity. Finally, we consider the future directions of neuroepigenetic research as it relates to neuronal storage of information. PMID:23322554

  6. Synthesis, structural elucidation and pharmacological properties of some 5-acetyl-3,4-dihydro-6-methyl-4-(substituted phenyl)-2(1H) -pyrimidinones.

    PubMed

    Yarim, M; Sarac, S; Ertan, M; Batu, O S; Erol, K

    1999-06-30

    In this study, the synthesis of some new 5-acetyl-3,4-dihydro-6-methyl-4-(substituted phenyl)-2(1H)-pyrimidinones has been reported. The compounds were prepared by the Biginelli reaction of acetylacetone with aromatic aldehydes and urea. The structures of the compounds were characterized by UV, IR, 1H NMR, 13C NRM, mass spectra and elementary analysis. The calcium antagonistic activity of these compounds was tested in vitro on rat ileum precontracted with 4 x 10(-3) M barium chloride.

  7. Synthesis and characterization of starch-poly(methyl acrylate) graft copolymers using horseradish peroxidase.

    PubMed

    Wang, Su; Wang, Qiang; Fan, Xuerong; Xu, Jin; Zhang, Ying; Yuan, Jiugang; Jin, Heling; Cavaco-Paulo, Artur

    2016-01-20

    Horseradish peroxidase (HRP)-mediated graft polymerization in the presence of hydrogen peroxide (H2O2) and acetylacetone (Acac) has been successfully applied to the synthesis of starch-poly(methyl acrylate) (PMA). The graft copolymer was characterized by Fourier transform infrared (FT-IR), elemental analysis, nuclear magnetic resonance ((1)H NMR and (13)C NMR), and differential scanning calorimetry (DSC). FT-IR, elemental analysis and NMR confirmed that methyl acrylate (MA) was grafted onto starch successfully. DSC results showed the graft reaction had changed the crystalline regions of the gelatinized starch. The effects of pH, MA content, HRP dosage, incubation temperature and time on grafting percentage (GP) and grafting efficiency (GE) were also investigated. The GP and GE under optimal conditions reached 30.21% and 45.13%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Synthesis and properties of 4-alkoxy-2-[2-hydroxy-3-(4-o,m,p-halogenoaryl-1 -piperazinyl)propyl]-6-methyl-1H-pyrrolo-[3,4-c]pyridine-1,3(2H)-diones with analgesic and sedative activities.

    PubMed

    Sladowska, Helena; Sabiniarz, Aleksandra; Szkatuła, Dominika; Filipek, Barbara; Sapa, Jacek

    2006-01-01

    Synthesis of N-substituted derivatives of 4-alkoxy-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones (17-26) is described. The chlorides, containing OH group, used in the above synthesis can exist in two isomeric forms: chain (12, 14-16) and cyclic (12a, 14a-16a). All final imides studied exhibited analgesic activity in the "writhing syndrome" test which was superior than that of acetylsalicylic acid. In the "hot plate" test only two compounds (19, 20) were active as antinociceptive agents. Furthermore, all compounds tested significantly suppressed the spontaneous locomotor activity of mice.

  9. Origin and Metabolic Properties of the RNA Species Formed During the Replication Cycle of Virus 2C

    PubMed Central

    Cocito, C.

    1974-01-01

    When short pulses of [3H]uracil were administered to Bacillus subtilis infected with phage 2C, the main species of labeled RNA was a 10S component that hybridized chiefly, but not exclusively, with the heavy strand of 2C DNA. After long pulses, most of the radioactivity was found in the 23S, 16S, and 5S rRNA's, which are coded for by the cell genome. Formation of such RNA species was reduced but not suppressed upon infection, the extent of inhibition being proportional to the virus-to-cell ratio. When bacteria were incubated with virginiamycin, an inhibitor of protein synthesis, and then infected with phage 2C, formation of virus-specific RNA decreased. This antibiotic also reduced the preferential transcription of the heavy strand of 2C DNA. The methylation pattern of rRNA remained unchanged upon infection with phage 2C. Virginiamycin reduced both the methylation and stability of rRNA in uninfected cells; this effect, however, was clearly reduced during the viral cycle. It can be concluded that in 2C-infected B. subtilis, cellular and viral RNA species are simultaneously synthesized and a preferential transcription of viral message depends not only on the number of available copies of viral template, but also on their translation. Moreover, virus-dictated proteins are responsible for the inhibition of cellular RNA formation as well as for the asymmetrical transcription of phage genome. Finally, virginiamycin and phage 2C have antagonistic, nonoverlapping effects on the metabolism and function of the RNA of the host cell. PMID:4214950

  10. Methyl 3-amino-4-butanamido-5-methyl­benzoate

    PubMed Central

    Li, Xiang; Yuan, Lian-shan; Wang, Dan; Yao, Cheng

    2008-01-01

    The title compound, C13H18N2O3, is an inter­mediate in the synthesis of compounds with medicinial applications. The crystal structure is stabilized by inter­molecular N—H⋯O, C—H⋯N and C—H⋯O hydrogen bonds. PMID:21202582

  11. Synthesis of Methyl Cyclopentanecarboxylate: A Laboratory Experience in Carbon Rearrangement

    ERIC Educational Resources Information Center

    Orchard, Alexandra; Maniquis, Roxanne V.; Salzameda, Nicholas T.

    2016-01-01

    We present a novel guided inquiry second semester organic chemistry laboratory rearrangement experiment. Students performed the Favorskii Rearrangement to obtain methyl cyclopentanecarboxylate in good yields. The students learned about the individual steps of the Favorskii mechanism and were required to propose a complete reaction mechanism and…

  12. Synthesis and photochemistry of pH-sensitive GFP chromophore analogues

    USDA-ARS?s Scientific Manuscript database

    Nobel GFP chromophore analogues containing 2-thienyl-, 5-methyl-2-furyl-, 2-pyrryl, and 6-methyl-2-pyridyl-groups were synthesized, and their fluorescence spectra were recorded across pH range of 1 to 7. The GFP chromophores prevent photoisomerizaiton in acidic media and increase their fluorescent a...

  13. Developing a novel catalytic approach for imine formation by using self-replicating catalyst

    NASA Astrophysics Data System (ADS)

    Nasir, Fatin Ilyani; Philp, Douglas; Hasbullah, Siti Aishah; Hassan, Nurul Izzaty

    2015-09-01

    Synthesis of imine compounds usually results in moderate yield due its reversibility characteristic and prone to hydrolysis. Hence, to increase the formation of imine compound, self-replicating catalyst was introduced. The self-replicating catalyst is the imine product itself. The first imine compound, 4-{[4-(3,5-Dimethyl-phenylcarbamoyl)-benzylidene]-amino}-phenyl)-acetic acid has been synthesized from 4-Amino-N-(3,5-dimethyl-phenyl)-benzamide and (4-formyl-phenyl)-acetic acid. Simultaneously, 4-formylbenzoic acid was reacted with thionyl chloride to produce 4-formylbenzoyl chloride, which was then reacted with 2-amino-4,6-dimethylpyridine in the presence of triethylamine to afford N-(4,6-dimethyl-pyridin-2-yl)-4-formyl-benzamide. N-(4,6-dimethyl-pyridin-2-yl)-4-formyl-benzamide formed then reacted with 4-amino-2-methylbenzoic acid to form the second imine derivative, 4-{[4-(4,6-dimethyl-pyridin-2-ylcarbamoyl)-benzylidene]-amino}-2-methyl-benzoic acid. The concentration time profile for the synthesis of self-replicating imine 1 reveals the classic sigmoidal shape characteristics of an autocatalytic process and the rate of the reaction are higher than that observed in the absence of recognition. In order to demonstrate the nature of self-replicating catalyst, a preformed imine 1 was doped into the reaction mixture of amine 1 and the corresponding aldehyde, 4-formylbenzoic acid. The insertion of substoichiometric amounts (15 mol%) of imine 1 at the start of the reaction has accelerated the rate formation of imine 1.

  14. DNA methylation regulates neurophysiological spatial representation in memory formation

    PubMed Central

    Roth, Eric D.; Roth, Tania L.; Money, Kelli M.; SenGupta, Sonda; Eason, Dawn E.; Sweatt, J. David

    2015-01-01

    Epigenetic mechanisms including altered DNA methylation are critical for altered gene transcription subserving synaptic plasticity and the retention of learned behavior. Here we tested the idea that one role for activity-dependent altered DNA methylation is stabilization of cognition-associated hippocampal place cell firing in response to novel place learning. We observed that a behavioral protocol (spatial exploration of a novel environment) known to induce hippocampal place cell remapping resulted in alterations of hippocampal Bdnf DNA methylation. Further studies using neurophysiological in vivo single unit recordings revealed that pharmacological manipulations of DNA methylation decreased long-term but not short-term place field stability. Together our data highlight a role for DNA methylation in regulating neurophysiological spatial representation and memory formation. PMID:25960947

  15. Optimization of process variables for the biosynthesis of silver nanoparticles by Aspergillus wentii using statistical experimental design

    NASA Astrophysics Data System (ADS)

    Biswas, Supratim; Mulaba-Bafubiandi, Antoine F.

    2016-12-01

    The present scientific endeavour focuses on the optimization of process parameters using central composite design towards development of an efficient technique for the biosynthesis of silver nanoparticles. The combined effects of three process variables (days of fermentation, duration of incubation, concentration of AgNO3) upon extracellular biological synthesis of silver nanoparticles (AgNPs) by Aspergillus wentii NCIM 667 were studied. A single absorption peak at 455 nm confirming the presence of silver nanoparticles was observed in the UV-visible spectrophotometric graph. Using Fourier transform infrared spectroscopic analysis the presence of proteins as viable reducing agents for the formation AgNPs was recorded. High resolution transmission electron microscopy showed the realization of spherically shaped AgNPs of size 15-40 nm. Biologically formed AgNPs revealed higher antimicrobial activity against gram-negative than gram-positive bacterial strains. We present the enumeration of the properties of biosynthesized nanoparticles which exhibit photocatalysis exhausting an organic dye, the methyl orange, upon exposure to sunlight thereby accomplishing the degradation of almost (88%) the methyl orange dye within 5 h.

  16. Design, synthesis, and characterization of (1-(4-aryl)- 1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates against Mycobacterium tuberculosis

    PubMed Central

    Venugopala, Katharigatta N; Dharma Rao, G B; Bhandary, Subhrajyoti; Pillay, Melendhran; Chopra, Deepak; Aldhubiab, Bandar E; Attimarad, Mahesh; Alwassil, Osama Ibrahim; Harsha, Sree; Mlisana, Koleka

    2016-01-01

    The novel (1-(4-aryl)-1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives were synthesized by the click reaction of the dihydropyrimidinones, bearing a terminal alkynyl group, with various substituted aryl azides at room temperature using a catalytic amount of Cu(OAc)2 and sodium ascorbate in a 1:2 ratio of acetone and water as a solvent. The newly synthesized compounds were characterized by a number of spectroscopic techniques, such as infrared, liquid chromatography-mass spectrometry, 1H, and 13C nuclear magnetic resonance along with single crystal X-ray diffraction. The current procedure for the synthesis of 1,2,3-triazole hybrids with dihydropyrimidinones is appropriate for the synthesis of a library of analogs 7a-l and the method accessible here is operationally simple and has excellent yields. The title compounds 7a-l were evaluated for their in vitro antitubercular activity against H37RV and multidrug-resistant strains of Mycobacterium tuberculosis by resazurin microplate assay plate method and it was found that compound 7d was promising against H37RV and multidrug-resistant strains of M. tuberculosis at 10 and 15 μg/mL, respectively. PMID:27601885

  17. Design, synthesis, and characterization of (1-(4-aryl)- 1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates against Mycobacterium tuberculosis.

    PubMed

    Venugopala, Katharigatta N; Dharma Rao, G B; Bhandary, Subhrajyoti; Pillay, Melendhran; Chopra, Deepak; Aldhubiab, Bandar E; Attimarad, Mahesh; Alwassil, Osama Ibrahim; Harsha, Sree; Mlisana, Koleka

    2016-01-01

    The novel (1-(4-aryl)-1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives were synthesized by the click reaction of the dihydropyrimidinones, bearing a terminal alkynyl group, with various substituted aryl azides at room temperature using a catalytic amount of Cu(OAc)2 and sodium ascorbate in a 1:2 ratio of acetone and water as a solvent. The newly synthesized compounds were characterized by a number of spectroscopic techniques, such as infrared, liquid chromatography-mass spectrometry, (1)H, and (13)C nuclear magnetic resonance along with single crystal X-ray diffraction. The current procedure for the synthesis of 1,2,3-triazole hybrids with dihydropyrimidinones is appropriate for the synthesis of a library of analogs 7a-l and the method accessible here is operationally simple and has excellent yields. The title compounds 7a-l were evaluated for their in vitro antitubercular activity against H37RV and multidrug-resistant strains of Mycobacterium tuberculosis by resazurin microplate assay plate method and it was found that compound 7d was promising against H37RV and multidrug-resistant strains of M. tuberculosis at 10 and 15 μg/mL, respectively.

  18. Sol–gel auto combustion synthesis of CoFe{sub 2}O{sub 4}/1-methyl-2-pyrrolidone nanocomposite with ethylene glycol: Its magnetic characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Topkaya, R., E-mail: rtopkaya@gyte.edu.tr; Kurtan, U.; Junejo, Y.

    2013-09-01

    Graphical abstract: - Highlights: • CoFe{sub 2}O{sub 4} was generated by sol–gel autocombustion using 1-methyl-2-pyrrolidone and ethylene glycol. • The presence of spin-disordered surface layer on magnetic core was established. • A linear dependence of the coercivity on temperature was fitted to Kneller's law. - Abstract: Magnetic nanoparticles were generated by sol–gel auto combustion synthesis of metal salts in the presence of 1-methyl-2-pyrrolidone, a functional solvent and ethylene glycol as usual solvent. The average crystallite size was obtained by using line profile fitting as 11 ± 5 nm. The saturation magnetization value decreases with usage of the ethylene glycol inmore » synthesis. The observed exchange bias effect further confirms the existence of the magnetically ordered core surrounded by spin-disordered surface layer and the ethylene glycol. Square-root temperature dependence of coercivity can be fitted to Kneller's law in the temperature range of 10–400 K. The reduced remanent magnetization values lower than the theoretical value of 0.5 for non-interacting single domain particles indicate the CoFe{sub 2}O{sub 4}-1-methyl-2-pyrrolidone nanocomposite to have uniaxial anisotropy instead of the expected cubic anisotropy according to the Stoner–Wohlfarth model.« less

  19. Changes in IL12A methylation pattern in livers from mice fed DDC.

    PubMed

    Oliva, J; French, S W

    2012-04-01

    Mallory-Denk body (MDB) formation is a component of alcoholic and non alcoholic hepatitis. Proteins of the TLR pathway were shown to be involved in the formation of MDBs, in mice fed DDC. TLR genes are upregulated and SAMe supplementation prevents this up regulation and prevented the formation of MDBs. DNA of livers from control mice, from mice fed DDC 10weeks, refed 1week with DDC and with DDC+SAMe were extracted and used to study the methylation pattern of genes involves in the TLR pathway. A PCR array was used to analyze it. Using PCR arrays for the mouse TLR pathway,24 genes were found whose expression of IL12A was regulated by the methylation of its gene. DDC fed for 10weeks reduced the methylation of the IL12A gene expression. This expression was also reduced when DDC was refed. However, when SAMe was fed, the intermediate level methylation of IL12A was up regulated to the intermediate level and the methylation of the promoter decreased compared to DDC refeeding or DDC 10weeks. IL12A is known to induce the production of IFNg by NK and L(T). We showed in a previous publication that IFNg is one of the major cytokines involved in the induction of MDB formation. The low expression of IL12A associated with the intermediate methylation of its promoter could explain one step in the mechanism which leads to the formation of MDBs. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Studies of the acidic components of the Colorado Green River formation oil shale-Mass spectrometric identification of the methyl esters of extractable acids.

    NASA Technical Reports Server (NTRS)

    Haug, P.; Schnoes, H. K.; Burlingame, A. L.

    1971-01-01

    Study of solvent extractable acidic constituents of oil shale from the Colorado Green River Formation. Identification of individual components is based on gas chromatographic and mass spectrometric data obtained for their respective methyl esters. Normal acids, isoprenoidal acids, alpha, omega-dicarboxylic acids, mono-alpha-methyl dicarboxylic acids and methyl ketoacids were identified. In addition, the presence of monocyclic, benzoic, phenylalkanoic and naphthyl-carboxylic acids, as well as cycloaromatic acids, is demonstrated by partial identification.

  1. A Concise Synthesis of ent-Cholesterol

    PubMed Central

    Belani, Jitendra D.; Rychnovsky, Scott D.

    2009-01-01

    ent-Cholesterol was synthesized in 16 steps from commercially available (S)-citronellol. The overall yield for the synthesis was 2.0%. This route is amenable to gram scale preparation of ent-cholesterol. Isotopic incorporation near the end of the synthesis was achieved using labeled methyl iodide. This synthesis is the most practical to date, and it will make ent-cholesterol more readily available to use as a probe of the function and metabolism of cholesterol. PMID:18336043

  2. Unlike pregnant adult women, pregnant adolescent girls cannot maintain glycine flux during late pregnancy because of decreased synthesis from serine

    USDA-ARS?s Scientific Manuscript database

    During pregnancy, glycine and serine become more important because they are the primary suppliers of methyl groups for the synthesis of fetal DNA, and more glycine is required for fetal collagen synthesis as pregnancy progresses. In an earlier study, we reported that glycine flux decreased by 39% fr...

  3. Nanocatalysis for Primary and Secondary High Energy Lithium Oxygen Cells

    DTIC Science & Technology

    2011-04-01

    Synthesis of sulfoxyphenyldiazonium Chloride 2.2.3 Assessment of -COOH and –SO3H surface groups on carbon .- Attempts to prepare sulfoxyphenyl...alumina column before used for electrolyte preparation. Synthesis of the electrolyte solvent, methyl n- propyl carbonate (MPC).- The ele- ctrolyte co...2 2.0 EXPERIMENTAL APPROACH AND PROCEDURES ............................ 3 2.1 Synthesis of the Hollow Carbon Sphere

  4. Manufacture of TATB and TNT from Biosynthesized Phloroglucinols

    DTIC Science & Technology

    2010-07-01

    the microbial synthesis of mono-O-methylphloroglucinols, phloroglucinol O-methyl transferase (POMT) from Rosa chinensis var. spontanea has been...successfully de novo synthesized in codon-optimized form for expression in E. coli, which is the host currently used for microbial synthesis of...efforts had been made in both strain development and optimizing fermentation conditions for microbial phloroglucinol synthesis . Under optimized resin

  5. Role of adrenal hormones in the synthesis of noradrenaline in cardiac sympathetic neurones

    PubMed Central

    Bhagat, B.

    1969-01-01

    1. Adrenalectomy or adrenal demedullation affected neither the levels of endogenous catecholamines in the rat heart nor the accumulation of 3H-noradrenaline 1 hr after its intravenous administration. 2. Twenty-four hours after intravenous administration of labelled amine, however, its retention was markedly reduced in the heart of adrenalectomized or demedullated rats. Ganglionic blockade prevented this reduction. 3. Rate calculations from the decline of catecholamine levels after blockade of synthesis with α-methyl-tyrosine showed that cardiac synthesis of noradrenaline increased about four-fold after demedullation and about three-fold after adrenalectomy. This increase in synthesis may compensate for the loss of circulating catecholamines. 4. There was no change in catechol-o-methyl-transferase activity, but monoamine oxidase activity was increased in the homogenates of the heart of adrenalectomized and demedullated rats. The increase in the cardiac monoamine oxidase activity was markedly greater in the adrenalectomized rats than in the demedullated rats. 5. It is suggested that adrenal cortex insufficiency may modulate the rate of synthesis of noradrenaline and monoamine oxidase activity in cardiac sympathetic neurones. PMID:5360339

  6. Bacillus sp. PS35 Lipase-Immobilization on Styrene-Divinyl Benzene Resin and Application in Fatty Acid Methyl Ester Synthesis.

    PubMed

    Palanisamy, Kanmani; Kuppamuthu, Kumaresan; Jeyaseelan, Aravind

    2015-09-01

    Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorption onto styrene-divinyl benzene (Sty-Dvb) hydrophobic resin and to comparatively characterize the free and immobilized lipase preparations. The work also aimed to apply the immobilized lipase for catalysing the fatty acid methyl ester (FAME) synthesis from palm oil and optimize the process parameters for maximizing the yield. In this study, the purified lipase from Bacillus sp. PS35 was immobilized by adsorption onto styrene-divinyl benzene hydrophobic resin with gluteraldehyde cross-linking. The immobilized enzyme showed better pH and temperature stabilities than the free lipase. Organic solvent stability was also enhanced, with the relative activity in the presence of methanol being shifted from 53% to 81%, thereby facilitating the enzyme's application in fatty acid methyl ester synthesis. It exhibited remarkable storage stability over a 30-day period and after 20 repetitive uses. Cross-linking also reduced enzyme leakage by 49%. The immobilized lipase was then applied for biodiesel production from palm oil. Methanol and oil molar ratio of 5:1, three step methanol additions, and an incubation temperature of 50°C were established to be the ideal conditions favoring the transesterification reaction, resulting in 97% methyl ester yield. These promising results offer scope for further investigation and process scale up, permitting the enzyme's commercial application in a practically feasible and economically agreeable manner.

  7. Bacillus sp. PS35 Lipase-Immobilization on Styrene-Divinyl Benzene Resin and Application in Fatty Acid Methyl Ester Synthesis

    PubMed Central

    Palanisamy, Kanmani; Kuppamuthu, Kumaresan; Jeyaseelan, Aravind

    2015-01-01

    Background Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. Objective The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorption onto styrene-divinyl benzene (Sty-Dvb) hydrophobic resin and to comparatively characterize the free and immobilized lipase preparations. The work also aimed to apply the immobilized lipase for catalysing the fatty acid methyl ester (FAME) synthesis from palm oil and optimize the process parameters for maximizing the yield. Materials and Methods In this study, the purified lipase from Bacillus sp. PS35 was immobilized by adsorption onto styrene-divinyl benzene hydrophobic resin with gluteraldehyde cross-linking. Results The immobilized enzyme showed better pH and temperature stabilities than the free lipase. Organic solvent stability was also enhanced, with the relative activity in the presence of methanol being shifted from 53% to 81%, thereby facilitating the enzyme’s application in fatty acid methyl ester synthesis. It exhibited remarkable storage stability over a 30-day period and after 20 repetitive uses. Cross-linking also reduced enzyme leakage by 49%. The immobilized lipase was then applied for biodiesel production from palm oil. Methanol and oil molar ratio of 5:1, three step methanol additions, and an incubation temperature of 50°C were established to be the ideal conditions favoring the transesterification reaction, resulting in 97% methyl ester yield. Conclusions These promising results offer scope for further investigation and process scale up, permitting the enzyme’s commercial application in a practically feasible and economically agreeable manner. PMID:28959298

  8. Effects of Abscisic Acid and Ethylene on the Gibberellic Acid-Induced Synthesis of α-Amylase by Isolated Wheat Aleurone Layers 1

    PubMed Central

    Varty, Keith; Arreguín, Barbarín L.; Gómez, Miguel T.; López, Pablo Jaime T.; Gómez, Miguel Angel L.

    1983-01-01

    Gibberellic acid-induced α-amylase synthesis in wheat aleurone layers (Triticum aestivum L. var Potam S-70) escaped from transcriptional control 30 h after addition of the hormone, as evidenced by the tissue's loss of susceptibility to cordycepin. Abscisic acid inhibited the accumulation of α-amylase activity when added to the tissue during this cordycepin-insensitive phase of enzyme induction. α-Amylase synthesis was not restored by the addition of cordycepin, indicating that the response to abscisic acid was not dependent upon the continuous synthesis of a short lived RNA. When ethylene was added simultaneously or some time after abscisic acid, the accumulation of α-amylase activity was sustained or quickly restored. The loss of susceptibility to cordycepin was completely prevented when aleurone layers were incubated with a combination of gibberellic and abscisic acids from the start of the induction period. This effect of abscisic acid was not reversed by ethylene. On the basis of these observations, it is suggested that abscisic acid inhibits both the transcription and translation of α-amylase mRNA, and that only the latter site of action is susceptible to reversal by ethylene. The rate of incorporation of [methyl-14C]choline into phospholipids was also inhibited by abscisic acid. Ethylene reversed this effect. The effects of abscisic acid and ethylene on phospholipid synthesis were not dependent upon the presence of gibberellic acid. No direct relationship was found between the control of α-amylase synthesis and membrane formation by abscisic acid and ethylene. PMID:16663284

  9. Synthesis and characterization of n-alkylamino derivatives of vitamin K3: Molecular structure of 2-propylamino-3-methyl-1,4-naphthoquinone and antibacterial activities

    NASA Astrophysics Data System (ADS)

    Chadar, Dattatray; Camilles, Maria; Patil, Rishikesh; Khan, Ayesha; Weyhermüller, Thomas; Salunke-Gawali, Sunita

    2015-04-01

    We would like to introduce eight analogues of n-alkylamino derivatives of vitamin K3 (2-methyl-1,4-naphthoquinone) viz, 2-(n-alkylamino)-3-methyl-1,4-naphthoquinone (where n-alkyl is methyl; LM-1, ethyl; LM-2, propyl; LM-3, butyl; LM-4, pentyl; LM-5, hexyl; LM-6, heptyl; LM-7, octyl; LM-8). All the above analogues have been successfully synthesized from vitamin K3 and characterized using different analytical techniques. Furthermore, in order to understand the mechanistic aspects of formation of LM-1 to LM-8 compounds, we could propose the mechanism. The FT-IR analysis of LM-1 to LM-8 indicate the presence of characteristic band of Nsbnd H group ∼3287-3364 cm-1, the variation was attributed to extensive intramolecular hydrogen bonding interaction. The molecular structure of LM-3 compound has been confirmed by single crystal X-ray diffraction analysis. LM-3 compound crystallises in triclinic space group P1. There were four independent molecules in asymmetric unit cell and their molecular interactions observed via Nsbnd H⋯O, Csbnd H⋯O and π-π stacking of quinonoid rings. Pharmacological potential of all compounds has been evaluated in terms of their antibacterial activities against Pseudomonas aeruginosa and Staphylococcus aureus. All the compounds were active against both the strains while LM-2 was found to be more effective with a minimum inhibition concentration of 0.3125 μg/mL and 0.156 μg/mL respectively.

  10. An Undergraduate Organic Chemistry Laboratory: The Facile Hydrogenation of Methyl Trans-Cinnamate

    ERIC Educational Resources Information Center

    O'Connor, Kenneth J.; Zuspan, Kimberly; Berry, Lonnie

    2011-01-01

    Hydrogenation of alkenes is an important reaction in the synthesis of organic molecules. In this experiment, students conduct a high-yield microscale hydrogenation reaction of methyl "trans"-cinnamate using a readily available, safe, and convenient hydrogen source. The conditions are similar to those seen in an organic chemistry textbook for an…

  11. Feasibility study of molecular memory device based on DNA using methylation to store information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Liming; Al-Dirini, Feras; Center for Neural Engineering

    DNA, because of its robustness and dense information storage capability, has been proposed as a potential candidate for next-generation storage media. However, encoding information into the DNA sequence requires molecular synthesis technology, which to date is costly and prone to synthesis errors. Reading the DNA strand information is also complex. Ideally, DNA storage will provide methods for modifying stored information. Here, we conduct a feasibility study investigating the use of the DNA 5-methylcytosine (5mC) methylation state as a molecular memory to store information. We propose a new 1-bit memory device and study, based on the density functional theory and non-equilibriummore » Green's function method, the feasibility of electrically reading the information. Our results show that changes to methylation states lead to changes in the peak of negative differential resistance which can be used to interrogate memory state. Our work demonstrates a new memory concept based on methylation state which can be beneficial in the design of next generation DNA based molecular electronic memory devices.« less

  12. The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during haematopoiesis.

    PubMed

    Tuorto, Francesca; Herbst, Friederike; Alerasool, Nader; Bender, Sebastian; Popp, Oliver; Federico, Giuseppina; Reitter, Sonja; Liebers, Reinhard; Stoecklin, Georg; Gröne, Hermann-Josef; Dittmar, Gunnar; Glimm, Hanno; Lyko, Frank

    2015-09-14

    The Dnmt2 enzyme utilizes the catalytic mechanism of eukaryotic DNA methyltransferases to methylate several tRNAs at cytosine 38. Dnmt2 mutant mice, flies, and plants were reported to be viable and fertile, and the biological function of Dnmt2 has remained elusive. Here, we show that endochondral ossification is delayed in newborn Dnmt2-deficient mice, which is accompanied by a reduction of the haematopoietic stem and progenitor cell population and a cell-autonomous defect in their differentiation. RNA bisulfite sequencing revealed that Dnmt2 methylates C38 of tRNA Asp(GTC), Gly(GCC), and Val(AAC), thus preventing tRNA fragmentation. Proteomic analyses from primary bone marrow cells uncovered systematic differences in protein expression that are due to specific codon mistranslation by tRNAs lacking Dnmt2-dependent methylation. Our observations demonstrate that Dnmt2 plays an important role in haematopoiesis and define a novel function of C38 tRNA methylation in the discrimination of near-cognate codons, thereby ensuring accurate polypeptide synthesis. © 2015 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  13. Set2 Methyltransferase Facilitates DNA Replication and Promotes Genotoxic Stress Responses through MBF-Dependent Transcription.

    PubMed

    Pai, Chen-Chun; Kishkevich, Anastasiya; Deegan, Rachel S; Keszthelyi, Andrea; Folkes, Lisa; Kearsey, Stephen E; De León, Nagore; Soriano, Ignacio; de Bruin, Robertus Antonius Maria; Carr, Antony M; Humphrey, Timothy C

    2017-09-12

    Chromatin modification through histone H3 lysine 36 methylation by the SETD2 tumor suppressor plays a key role in maintaining genome stability. Here, we describe a role for Set2-dependent H3K36 methylation in facilitating DNA replication and the transcriptional responses to both replication stress and DNA damage through promoting MluI cell-cycle box (MCB) binding factor (MBF)-complex-dependent transcription in fission yeast. Set2 loss leads to reduced MBF-dependent ribonucleotide reductase (RNR) expression, reduced deoxyribonucleoside triphosphate (dNTP) synthesis, altered replication origin firing, and a checkpoint-dependent S-phase delay. Accordingly, prolonged S phase in the absence of Set2 is suppressed by increasing dNTP synthesis. Furthermore, H3K36 is di- and tri-methylated at these MBF gene promoters, and Set2 loss leads to reduced MBF binding and transcription in response to genotoxic stress. Together, these findings provide new insights into how H3K36 methylation facilitates DNA replication and promotes genotoxic stress responses in fission yeast. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Specificity and rate of human and mouse liver and plasma phosphatidylcholine synthesis analyzed in vivo[S

    PubMed Central

    Pynn, Christopher J.; Henderson, Neil G.; Clark, Howard; Koster, Grielof; Bernhard, Wolfgang; Postle, Anthony D.

    2011-01-01

    Phosphatidylcholine (PC) synthesis by the direct cytidine diphosphate choline (CDP-choline) pathway in rat liver generates predominantly mono- and di-unsaturated molecular species, while polyunsaturated PC species are synthesized largely by the phosphatidylethanolamine-N-methyltransferase (PEMT) pathway. Although altered PC synthesis has been suggested to contribute to development of hepatocarcinoma and nonalcoholic steatohepatitis, analysis of the specificity of hepatic PC metabolism in human patients has been limited by the lack of sensitive and safe methodologies. Here we incorporated a deuterated methyl-d9-labled choline chloride, to quantify biosynthesis fluxes through both of the PC synthetic pathways in vivo in human volunteers and compared these fluxes with those in mice. Rates and molecular specificities of label incorporated into mouse liver and plasma PC were very similar and strongly suggest that label incorporation into human plasma PC can provide a direct measure of hepatic PC synthesis in human subjects. Importantly, we demonstrate for the first time that the PEMT pathway in human liver is selective for polyunsaturated PC species, especially those containing docosahexaenoic acid. Finally, we present a multiple isotopomer distribution analysis approach, based on transfer of deuterated methyl groups to S-adenosylmethionine and subsequent sequential methylations of PE, to quantify absolute flux rates through the PEMT pathway that are applicable to studies of liver dysfunction in clinical studies. PMID:21068006

  15. Ionothermal synthesis, crystal structure, and magnetic study of Co2PO4OH isostructural with caminite.

    PubMed

    Wang, Guangmei; Valldor, Martin; Spielberg, Eike T; Mudring, Anja-Verena

    2014-03-17

    A new framework cobalt(II) hydroxyl phosphate, Co2PO4OH, was prepared by ionothermal synthesis using 1-butyl-4-methyl-pyridinium hexafluorophosphate as the ionic liquid. As the formation of Co2PO4F competes in the synthesis, the synthesis conditions have to be judiciously chosen to obtain well-crystallized, single phase Co2PO4OH. Single-crystal X-ray diffraction analyses reveal Co2PO4OH crystallizes with space group I41/amd (a = b = 5.2713(7) Å, c = 12.907(3) Å, V = 358.63(10) Å(3), and Z = 4). Astonishingly, it does not crystallize isotypically with Co2PO4F but rather isotypically with the hydroxyl minerals caminite Mg1.33[SO4(OH)0.66(H2O)0.33] and lipscombite Fe(2–y)PO4(OH) (0 ≤ y ≤ 2/3). Phosphate tetrahedra groups interconnect four rod-packed face-sharing ∞(1){CoO(6/2)} octahedra chains to form a three-dimensional framework structure. The compound Co2PO4OH was further characterized by powder X-ray diffraction, Fourier transform–infrared, and ultraviolet–visible spectroscopy, confirming the discussed structure. The magnetic measurement reveals that Co2PO4OH undergoes a magnetic transition and presents at low temperatures a canted antiferromagnetic spin order in the ground state.

  16. Probes for narcotic receptor mediated phenomena. 42. Synthesis and in vitro pharmacological characterization of the N-methyl and N-phenethyl analogues of the racemic ortho-c and para-c oxide-bridged phenylmorphans

    PubMed Central

    Kim, Jin-Hee; Deschamps, Jeffrey R.; Rothman, Richard B.; Dersch, Christina M.; Folk, John E.; Cheng, Kejun; Jacobson, Arthur E.; Rice, Kenner C.

    2011-01-01

    A new synthesis of N-methyl and N-phenethyl substituted ortho-c and para-c oxide-bridged phenylmorphans, using N-benzyl- rather than N-methyl-substituted intermediates, was used and the pharmacological properties of these compounds were determined. The N-phenethyl substituted ortho-c oxide-bridged phenylmorphan (rac-(3R,6aS,11aS)-2-phenethyl-2,3,4,5,6,11a-hexahydro-1H-3,6a-methanobenzofuro[2,3-c]azocin-10-ol (12)) was found to have the highest μ-opioid receptor affinity (Ki = 1.1 nM) of all of the a- through f-oxide-bridged phenylmorphans. Functional data ([35S]GTP-γ-S) showed that the racemate 12 was more than three times more potent than naloxone as an μ-opioid antagonist. PMID:21570305

  17. Controllable synthesis of ZnxCd1-xS@ZnO core-shell nanorods with enhanced photocatalytic activity.

    PubMed

    Xie, Shilei; Lu, Xihong; Zhai, Teng; Gan, Jiayong; Li, Wei; Xu, Ming; Yu, Minghao; Zhang, Yuan-Ming; Tong, Yexiang

    2012-07-17

    We report the synthesis of Zn(x)Cd(1-x)S@ZnO nanorod arrays via a facile two-step process and the implementation of these core-shell nanorods as an environmental friendly and recyclable photocatalyst for methyl orange degradation. The band gap of Zn(x)Cd(1-x)S@ZnO core-shell nanorods can be readily tunable by adjusting the ratio of Zn/Cd during the synthesis. These Zn(x)Cd(1-x)S@ZnO core-shell nanorods exhibit a high photocatalytic activity and good stability in the degradation of the methyl orange. Moreover, these films grown on FTO substrates make the collection and recycle of the photocatalyst easier. These findings may open new opportunities for the design of effective, stable, and easy-recyclable photocatalytic materials.

  18. Use of the Hungate anaerobic technique in the isolation of phloroglucinol-negative mutants of Coprococcus species.

    PubMed Central

    Thompson, L A; Gates, D M; Ingledew, W M; Jones, G A

    1976-01-01

    The Hungate anaerobic technique was used with a standard procedure for bacterial mutagenesis employing N-methyl-N-nitro-N'-nitrosoguanidine to obtain mutants of an obligate anaerobe. Three mutant strains were derived from a Coprococcus sp., strain Pe15, a rumen anaerobe capable of growing on phloroglucinol. The mutants did not grow on phloroglucinol but did degrade the compound in anaerobic washed-cell suspensions, producing the same end products in approximately the same proportions as the wild type. It was concluded that the mutants were blocked in a unique step or steps necessary for carbon skeleton or energy synthesis from phloroglucinol and not in formation of an enzyme involved in the pathway of phloroglucinol degradation. PMID:782358

  19. Use of the Hungate anaerobic technique in the isolation of phloroglucinol-negative mutants of Coprococcus species.

    PubMed

    Thompson, L A; Gates, D M; Ingledew, W M; Jones, G A

    1976-01-01

    The Hungate anaerobic technique was used with a standard procedure for bacterial mutagenesis employing N-methyl-N-nitro-N'-nitrosoguanidine to obtain mutants of an obligate anaerobe. Three mutant strains were derived from a Coprococcus sp., strain Pe15, a rumen anaerobe capable of growing on phloroglucinol. The mutants did not grow on phloroglucinol but did degrade the compound in anaerobic washed-cell suspensions, producing the same end products in approximately the same proportions as the wild type. It was concluded that the mutants were blocked in a unique step or steps necessary for carbon skeleton or energy synthesis from phloroglucinol and not in formation of an enzyme involved in the pathway of phloroglucinol degradation.

  20. Altered sterol metabolism in budding yeast affects mitochondrial iron-sulfur (Fe-S) cluster synthesis.

    PubMed

    Ward, Diane M; Chen, Opal S; Li, Liangtao; Kaplan, Jerry; Bhuiyan, Shah Alam; Natarajan, Selvamuthu K; Bard, Martin; Cox, James E

    2018-05-17

    Ergosterol synthesis is essential for cellular growth and viability of the budding yeast Saccharomyces cerevisiae, and intracellular sterol distribution and homeostasis are therefore highly regulated in this species. Erg25 is an iron-containing C4-methyl sterol oxidase that contributes to the conversion of 4,4-dimethylzymosterol to zymosterol, a precursor of ergosterol. The ERG29 gene encodes an endoplasmic reticulum (ER)-associated protein, and here we identified a role for Erg29 in the methyl sterol oxidase step of ergosterol synthesis. ERG29 deletion resulted in lethality in respiring cells, but respiration-incompetent (Rho- or Rho0) cells survived, suggesting that Erg29 loss leads to accumulation of oxidized sterol metabolites that affect cell viability. Down-regulation of ERG29 expression in Δerg29 cells indeed led to accumulation of methyl sterol metabolites, resulting in increased mitochondrial oxidants and a decreased ability of mitochondria to synthesize iron-sulfur (Fe-S) clusters due to reduced levels of Yfh1, the mammalian frataxin homolog, which is involved in mitochondrial Fe metabolism. Using a high-copy genomic library, we identified suppressor genes that permitted growth of Δerg29 cells on respiratory substrates, and these included genes encoding the mitochondrial proteins Yfh1, Mmt1, Mmt2, and Pet20, which reversed all phenotypes associated with loss of ERG29. Of note, loss of Erg25 also resulted in accumulation of methyl sterol metabolites and also increased mitochondrial oxidants and degradation of Yfh1. We propose that accumulation of toxic intermediates of the methyl sterol oxidase reaction increase mitochondrial oxidants, which affect Yfh1 protein stability. These results indicate an interaction between sterols generated by ER proteins and mitochondrial iron metabolism. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Synthesis and characterization of functionalized methacrylates for coatings and biomedical applications

    NASA Astrophysics Data System (ADS)

    Shemper, Bianca Sadicoff

    The research presented in this dissertation involves the design of polymers for biomaterials and for coatings applications. The development of non-wettable, hard UV-curing, or reactive coatings is discussed. The biomaterials section involves the syntheses of linear and star-like polymers of the functionalized monomer poly(propylene glycol) monomethacrylate (PPGM) via atom transfer radical polymerization (ATRP) (Chapter II). Its copolymerization with a perfluoroalkyl ethyl methacrylate monomer (1H,1H,2H,2H-heptadecafluorodecyl methacrylate) and the syntheses of linear and star-like amphiphilic copolymers containing the fluorinated monomer and poly(ethyleneglycol) methyl ether methacrylate (MPEGMA) are discussed in Chapter III. The four-arm amphiphilic block copolymer obtained showed unique associative properties leading to micellization in selective solvents. Chapter IV includes research involving the design of films with low surface energy by incorporating fluorine into the polymer. The synthesis, characterization and polymerization of a perfluoroalkylether-substituted methacrylic acid (C8F7) are discussed, and the properties of coatings obtained after its photopolymerization on different substrates are evaluated to confirm formation of low-surface energy polymeric coatings. Subsequently, hard coatings based on methyl (alpha-hydroxymethyl)acrylate (MHMA) were prepared via photopolymerization using UV-light. Firstly, mechanistic investigations into the photopolymerization behavior of (alpha-hydroxymethyl)acrylates (RHMA's) are reported (Chapter V). RHMA derivatives were photopolymerized with various multifunctional acrylates and methacrylates and the effect of crosslinker type and degree of functionality on photopolymerization rates and conversions was investigated. Then, in Chapter VI the synthesis of a series of new crosslinkers is described and their photopolymerization kinetics was investigated in bulk. The effect of these novel crosslinkers on the photopolymerization kinetics and coatings properties of MHMA systems is then shown in Chapter VII. This chapter also includes the effect of the presence of synthetic clay in these systems and the preparation of nanocomposite-based films. The final chapter of this dissertation involves the design of reactive coatings for biomedical applications. The syntheses and characterization of novel functionalized methacrylates containing succinimide ester groups susceptible to derivatization with amine-containing species were accomplished. Photopolymerization of these monomers led to formation of hydrogels and derivatization of the hydrogel surfaces with the tripeptide RGD (arginine-glycine-aspartic acid) was successfully achieved.

  2. Synthesis and anticonvulsant activities of N-benzyl (2R)-2-acetamido-3-oxysubstituted propionamide derivatives

    PubMed Central

    Morieux, Pierre; Stables, James P.; Kohn, Harold

    2009-01-01

    Lacosamide has been submitted for regulatory approval in the United States and Europe for the treatment of epilepsy. Previous synthetic methods did not permit the elaboration of the structure–activity relationship (SAR) for the 3-oxy site in lacosamide. We report an expedient five-step stereospecific synthesis for N-benzyl (2R)-2-acetamido-3-oxysubstituted propionamide analogs beginning with d-serine methyl ester. The procedure incorporated alkyl (e.g. methyl, primary, secondary, and tertiary) and aryl groups at this position. The SAR for the 3-oxy site showed maximal activity in animal seizure models for small 3-alkoxy substituents. PMID:18789868

  3. Molecular modelling, synthesis and acetylcholinesterase inhibition of ethyl 5-amino-2-methyl-6,7,8,9-tetrahydrobenzo[b][1,8]naphthyridine-3-carboxylate.

    PubMed

    Soriano, Elena; Samadi, Abdelouahid; Chioua, Mourad; de los Ríos, Cristóbal; Marco-Contelles, José

    2010-05-01

    In silico analysis of ethyl 5-amino-2-methyl-6,7,8,9-tetrahydrobenzo[b][1,8]naphthyridine-3-carboxylate (2) predicts that this molecule should be successfully docked in the PAS, and easily accommodated in the CAS of AChE. The synthesis and the AChE/BuChE inhibition studies are reported, confirming that compound 2 is a potent and selective AChE inhibitor, and consequently, a new lead compound for further development into new dual CAS/PAS cholinergic agents for the treatment of Alzheimer's disease. 2010 Elsevier Ltd. All rights reserved.

  4. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation.

    PubMed

    Zhang, Bo; Tieman, Denise M; Jiao, Chen; Xu, Yimin; Chen, Kunsong; Fei, Zhangjun; Giovannoni, James J; Klee, Harry J

    2016-11-01

    Commercial tomatoes are widely perceived by consumers as lacking flavor. A major part of that problem is a postharvest handling system that chills fruit. Low-temperature storage is widely used to slow ripening and reduce decay. However, chilling results in loss of flavor. Flavor-associated volatiles are sensitive to temperatures below 12 °C, and their loss greatly reduces flavor quality. Here, we provide a comprehensive view of the effects of chilling on flavor and volatiles associated with consumer liking. Reduced levels of specific volatiles are associated with significant reductions in transcripts encoding key volatile synthesis enzymes. Although expression of some genes critical to volatile synthesis recovers after a return to 20 °C, some genes do not. RNAs encoding transcription factors essential for ripening, including RIPENING INHIBITOR (RIN), NONRIPENING, and COLORLESS NONRIPENING are reduced in response to chilling and may be responsible for reduced transcript levels in many downstream genes during chilling. Those reductions are accompanied by major changes in the methylation status of promoters, including RIN Methylation changes are transient and may contribute to the fidelity of gene expression required to provide maximal beneficial environmental response with minimal tangential influence on broader fruit developmental biology.

  5. Steric control of the asymmetric synthesis of N-substituted 2-methyl-4-piperidones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishina, G.V.; Potapov, V.M.; Abdulganeeva, S.A.

    Transmission of the iodomethylate of 1,2-dimethyl-4-piperidone by (S)-sec-butylamine gives 1-(S-sec-butyl)-2S-methyl-4-piperidone in 33% optical yield while transamination by (S)-1-methyl-2-phenylethylamine gives a 1:1 diastereomeric mixture of 1-(1-methyl-2-phenylethyl)-2-methyl-4-piperidone. The decrease in the optical yield is related to the facile opening of the piperidone ring at the C-N bond with subsequent recyclization. The /sup 13/C NMR data indicate that all the diastereomers of the 4-piperidones obtained are in the chain conformation with predominantly equatorial orientation of the methyl group at C/sub (2)/. The chiral optical properties were studied and the absolution configurations of the 4-piperidones obtained were established.

  6. Extinction of Conditioned Taste Aversion Depends on Functional Protein Synthesis but Not on NMDA Receptor Activation in the Ventromedial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Akirav, Irit; Khatsrinov, Vicktoria; Vouimba, Rose-Marie; Merhav, Maayan; Ferreira, Guillaume; Rosenblum, Kobi; Maroun, Mouna

    2006-01-01

    We investigated the role of the ventromedial prefrontal cortex (vmPFC) in extinction of conditioned taste aversion (CTA) by microinfusing a protein synthesis inhibitor or N-methyl-d-asparate (NMDA) receptors antagonist into the vmPFC immediately following a non-reinforced extinction session. We found that the protein synthesis blocker anisomycin,…

  7. The promotional effects of cesium promoter on higher alcohol synthesis from syngas over cesium-promoted Cu/ZnO/Al2O3 catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jie; Cai, Qiuxia; Wan, Yan

    In this study, the promotional effects of cesium promoter on higher alcohol (C2+OH) synthesis from syngas over Cs-Cu/ZnO/Al2O3 catalysts were investigated using a combined experimental and theoretical density functional theory (DFT) calculation method. In the presence of cesium, the C2+OH productivity increases from 77.1 g•kgcat-1•h-1 to 157.3 g•kgcat-1•h-1 at 583 K due to the enhancement of the initial C–C bond formation. Detailed analysis of chain growth probabilities (CGPs) confirms that initial C–C bond formation is the rate-determining step in the temperature range of 543-583 K. Addition of cesium promoter significantly increases the productivities of 2-methyl-1-propanol, while the CGPs values (C3*more » to 2-methyl-C3*) is almost unaffected. With the assistance of cesium promoter, the CGPs of the initial C–C bond formation step (C1* to C2*) could be increased from 0.13 to 0.25 at 583 K. DFT calculations indicate that the initial C–C bond formation is mainly contributed by the HCO+HCO coupling reaction over the ZnCu(211) model surface. In the presence of the Cs2O, the stabilities of key reaction intermediates such as HCO and H2CO are enhanced which facilitates both HCO+HCO and HCO+H2CO coupling reaction steps with lower activation barriers over the Cs2O-ZnCu(211) surface. The promotional effects of cesium on the C2+OH productivity are also benefited from the competitive CH+HCO coupling reaction over CH hydrogenation that leads to lower alkane formation. In addition, Bader charge analysis suggests that the presence of cesium ions would facilitate the nucleophilic reaction between HCO and H2CO for initial C–C bond formation. This work was supported by the National Natural Science Foundation of China (No. 91545114 and No. 91545203). We appreciate the joint PhD scholarship support from the China Scholarship Council. The authors would also like to thank the support from Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM). DM was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Computing time was granted by the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research. PNNL is a multiprogram national laboratory operated for DOE by Battelle Memorial Institute. We also appreciate the support from Sinochem Quanzhou Petrochemical Co. Ltd.« less

  8. Synthesis of High Molecular Weight Fluoroalkylarylene-siloxanylene (FASIL) Polymer

    DTIC Science & Technology

    1979-01-01

    impurity component" is shown in Figure 4. 6 When methyl(3,3,3-trifluoropropyl)diethoxysilane was added to the Grignard reagent at reflux instead of at...only a 34% yield. Inverse addi- tion, where the Grignard reagent was added to the diethoxysilane,gave a 43% yield. An impurity, ethoxymethyl(3,3,3...CH 2 CH2CF 3 Treatment of methyl(3,3,3-trifluoropropyl)dichlorosilane with excess ethanol gave methyl(3,3,3-trifluoropropyl)diethoxysilane. A Grignard

  9. Stereoselective synthesis of nicotinamide beta-riboside and nucleoside analogs.

    PubMed

    Franchetti, Palmarisa; Pasqualini, Michela; Petrelli, Riccardo; Ricciutelli, Massimo; Vita, Patrizia; Cappellacci, Loredana

    2004-09-20

    The beta-anomers of N-ribofuranosylnicotine-3-carboxamide (beta-NAR) and its nicotinic acid analog (beta-NaR) were obtained by stereoselective synthesis via glycosylation of the presilylated bases under Vorbruggen's protocol. A NAR analog, methylated in position 3 of the ribosylic moiety, is also reported.

  10. Synthesis and tribological investigation of lipoyl glycerides

    USDA-ARS?s Scientific Manuscript database

    Lipoyl glycerides (LG) were synthesized by enzymatic transesterification of lipoic acid (LA) with high oleic sunflower oil (HOSuO) in 2-methyl-2-butanol solvent. The synthesis gave a crude product mixture (LGc) comprising unreacted LA, free fatty acids (FFA), and various LG structures with varying d...

  11. Destruction of C2H4O2 isomers in ice-phase by X-rays: Implication on the abundance of acetic acid and methyl formate in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Rachid, Marina G.; Faquine, Karla; Pilling, S.

    2017-12-01

    The C2H4O2 isomers methyl formate (HCOOCH3), acetic acid (CH3COOH) and glycoaldehyde (HOCH2CHO) have been detected in molecular clouds in the interstellar medium, as well as, hot cores, hot corinos and around protostellar objects. However, their abundances are very different, being methyl formate more abundant than the other two isomers. This fact may be related to the different destruction by ionizing radiation of these molecules. The goal of this work is experimentally study the photodissociation processes of methyl formate and acetic acid ices when exposed to broadband soft X-ray from 6 up to 2000 eV. The experiments were performed coupled to the SGM beamline in the Brazilian Synchrotron Light Source (LNLS/CNPEM) at Campinas, Brazil. The simulated astrophysical ices (12 K) were monitored throughout the experiment using infrared vibrational spectroscopy (FTIR). The analysis of processed ices allowed the determination of the effective destruction cross sections of the parent molecules as well as the effective formation cross section of daughter molecular species such as CO, CO2, H2O, CH4 and H2CO (only for methyl formate) and the hydrocarbons C2H6 and C5H10 (only for acetic acid). The half-lives of molecules at ices toward young stellar objects (YSOs) and inside molecular clouds (e.g. Sgr B2 and W51) due to the presence of incoming soft X-rays were estimated. We determined the effective formation rate and the branching ratios for assigned daughter species after the establishment of a chemical equilibrium. The main product from photodissociation of both methyl formate and acetic acid is CO, that can be formed by recombination of ions, formed during the photodissociation, in the ice surface. The relative abundance between methyl formate and acetic acid (NCH3COOH/NHCOOCH3) in different astronomical scenarios and their column density evolution in the presence of X-rays were calculated. Our results suggest that such radiation field can be one of the factors that explain the difference in the C2H4O2 isomers abundances.

  12. An improved procedure to prepare 3-methyl-4-nitroalkylenethylisoxazoles and their reaction under catalytic enantioselective Michael addition with nitromethane.

    PubMed

    Moccia, Maria; Wells, Robert J; Adamo, Mauro F A

    2015-02-21

    Herein, we describe a short synthesis of 3-methyl-4-nitro-5-alkylethenyl isoxazoles and their reactivity as Michael acceptors. The title compounds reacted with nitromethane under phase-transfer catalysis to provide highly enantioenriched adducts (up to 93% ee) which were then converted to the corresponding γ-nitroacids.

  13. Isolation, identification, synthesis and biological activity of volatile compounds from the heads of Atta ants

    Treesearch

    R. G. Riley; R. M. Silverstein; John C. Moser

    1974-01-01

    S-(+)-4-methyl-3-hetanone has been identified as the principal alarm pheromone of Atta texana and Atta cephalotes. Both enantiomers of 4-methyl-3-heptanone have been synthesized and their biological activities have been compared on both species of ants. Comparison of the geometric averages of responnse rations, at...

  14. The Synthesis and Purification of Aromatic Hydrocarbons. 3 - Isobutylbenzene Sec-Butylbenzene

    DTIC Science & Technology

    1946-06-01

    tionsofl-Chloro- 2 -methyl- 2 - phenylpropane (ReophylChloride), Jour. hue Chem.SOCej ml, 65,QOe 8,Aug.1943,pp.2469-1471. 10.Shriner,RalphL.,andFuson...thereactionofphenylmagnesiumbrcmidewitiimethallylchlorideto yield2-reitiyl-3-phenyl-l-?xropene,whichws I?artlyre=wed to 2 -metkyl-l-phenyl-l...Theproceduredescribedhereinforthepreparationf isohutyl- benzeneinvolvesthepreparationfmethallylbenzene( 2 -methyl- 3-phenyl-l-propene)fromphenylmagnesiumbromideandnethaliyl

  15. Synthesis and Characterization of Perfluoroalkyl Heterocyclic Elastomers

    DTIC Science & Technology

    Perfluoroalkyl bibenzoxazole polymers containing a (CF2)8 between heterocyclic rings have been prepared by the reaction of dihydroxybenzidine and...methyl perfluorosebacimidate . Through preparation of this polymer, the basic polymerization system has been significantly improved and polymers with...C. (TGA). Copolymers of dihydroxybenzidine and methyl perfluoro -4,9,14,19- tetraoxadocosanediimidate, which are tacky and resilient, have been

  16. Quantitative methylation level of the EPHX1 promoter in peripheral blood DNA is associated with polycystic ovary syndrome.

    PubMed

    Sang, Qing; Li, Xin; Wang, Haojue; Wang, Huan; Zhang, Shaozhen; Feng, Ruizhi; Xu, Yao; Li, Qiaoli; Zhao, Xinzhi; Xing, Qinghe; Jin, Li; He, Lin; Wang, Lei

    2014-01-01

    Steroid synthesis and metabolic pathways play important roles in the pathophysiology of PCOS, but until now there have been no studies on the methylation profiles of specific genes in steroid synthesis pathways that are known to be associated with PCOS. Here we used MassARRAY quantitative methylation analysis to determine the methylation levels of each CpG site or cluster in the promoters of EPHX1, SRD5A1, and CYP11A1 in 64 peripheral blood samples. We further examined the methylation level of EPHX1 in an independent cohort consisting of 116 people. Finally, we investigated the role of EPHX1 in steroidogenesis in the KGN cell line. For SRD5A1 and CYP11A1, there was no significant difference in methylation level between patients and controls. For EPHX1, however, the methylation levels of a few consecutive CpG sites and clusters were found to be significantly associated with PCOS. The methylation levels of a number of CpG clusters or sites were significantly lower in patients than in controls in the first cohort consisting of 64 people, such as clusters 13-14 (P<0.05), 15-16 (P<0.001), and 19-24 (P<0.001) and sites CpG_53 (P<0.01) and CpG_54 (P<0.05). Among differentiated methylation sites and clusters, the methylation levels of the CpG cluster 13-14 and CpG cluster 19-24 in PCOS patients were significantly lower than in controls in the second cohort of 116 people (P<0.05 for both). In addition, knockdown and overexpression experiments in KGN cells showed that EPHX1 can regulate estradiol concentrations, and this indicates a role for EPHX1 in steroidogenesis. Our study has demonstrated that methylation of the EPHX1 promoter might be associated with PCOS. This study provides direct evidence that methylation plays an important role in PCOS and demonstrates a novel role for EPHX1 in female reproduction.

  17. Quantitative Methylation Level of the EPHX1 Promoter in Peripheral Blood DNA Is Associated with Polycystic Ovary Syndrome

    PubMed Central

    Wang, Huan; Zhang, Shaozhen; Feng, Ruizhi; Xu, Yao; Li, Qiaoli; Zhao, Xinzhi; Xing, Qinghe; Jin, Li; He, Lin; Wang, Lei

    2014-01-01

    Steroid synthesis and metabolic pathways play important roles in the pathophysiology of PCOS, but until now there have been no studies on the methylation profiles of specific genes in steroid synthesis pathways that are known to be associated with PCOS. Here we used MassARRAY quantitative methylation analysis to determine the methylation levels of each CpG site or cluster in the promoters of EPHX1, SRD5A1, and CYP11A1 in 64 peripheral blood samples. We further examined the methylation level of EPHX1 in an independent cohort consisting of 116 people. Finally, we investigated the role of EPHX1 in steroidogenesis in the KGN cell line. For SRD5A1 and CYP11A1, there was no significant difference in methylation level between patients and controls. For EPHX1, however, the methylation levels of a few consecutive CpG sites and clusters were found to be significantly associated with PCOS. The methylation levels of a number of CpG clusters or sites were significantly lower in patients than in controls in the first cohort consisting of 64 people, such as clusters 13–14 (P<0.05), 15–16 (P<0.001), and 19–24 (P<0.001) and sites CpG_53 (P<0.01) and CpG_54 (P<0.05). Among differentiated methylation sites and clusters, the methylation levels of the CpG cluster 13–14 and CpG cluster 19–24 in PCOS patients were significantly lower than in controls in the second cohort of 116 people (P<0.05 for both). In addition, knockdown and overexpression experiments in KGN cells showed that EPHX1 can regulate estradiol concentrations, and this indicates a role for EPHX1 in steroidogenesis. Our study has demonstrated that methylation of the EPHX1 promoter might be associated with PCOS. This study provides direct evidence that methylation plays an important role in PCOS and demonstrates a novel role for EPHX1 in female reproduction. PMID:24505354

  18. Characterisation of cytoplasmic DNA complementary to non-retroviral RNA viruses in human cells

    PubMed Central

    Shimizu, Akira; Nakatani, Yoko; Nakamura, Takako; Jinno-Oue, Atsushi; Ishikawa, Osamu; Boeke, Jef D.; Takeuchi, Yasuhiro; Hoshino, Hiroo

    2014-01-01

    The synthesis and subsequent genomic integration of DNA that is complementary to the genomes of non-retroviral RNA viruses are rarely observed. However, upon infection of various human cell lines and primary fibroblasts with the vesicular stomatitis virus (VSV), we detected DNA complementary to the VSV RNA. The VSV DNA was detected in the cytoplasm as single-stranded DNA fully complementary to the viral mRNA from the poly(A) region to the 7-methyl guanosine cap. The formation of this DNA was cell-dependent. Experimentally, we found that the transduction of cells that do not produce VSV DNA with the long interspersed nuclear element 1 and their infection with VSV could lead to the formation of VSV DNA. Viral DNA complementary to other RNA viruses was also detected in the respective infected human cells. Thus, the genetic information of the non-retroviral RNA virus genome can flow into the DNA of mammalian cells expressing LINE-1-like elements. PMID:24875540

  19. An eco-friendly route of γ-Fe2O3 nanoparticles formation and investigation of the mechanical properties of the HPMC-γ-Fe2O3 nanocomposites.

    PubMed

    Sarkar, Joy; Mollick, Md Masud Rahaman; Chattopadhyay, Dipankar; Acharya, Krishnendu

    2017-03-01

    In recent times, biosynthetic approaches toward the synthesis of nanoparticles have been shown to have several advantages over physical and chemical methods. Here, we report the extracellular mycosynthesis of γ-Fe 2 O 3 nanoparticles by Alternaria alternata. The fungal biomass when exposed to aqueous iron(III) chloride solution led to the formation of highly stable γ-Fe 2 O 3 nanoparticles extracellularly. The influence of these biosynthesized γ-Fe 2 O 3 nanoparticles on the properties of hydroxyl propyl methyl cellulose was also investigated. Characterization of the biosynthesized γ-Fe 2 O 3 nanoparticles and HPMC-γ-Fe 2 O 3 nanocomposite films were done by the different types of spectral and electron microscopic analysis. The size of the γ-Fe 2 O 3 nanoparticles ranges from 75 to 650 nm. The mechanical effect of the agglomerated γ-Fe 2 O 3 nanoparticles into the HPMC polymer matrix was also investigated.

  20. Heat stress enhances LTM formation in Lymnaea: role of HSPs and DNA methylation.

    PubMed

    Sunada, Hiroshi; Riaz, Hamza; de Freitas, Emily; Lukowiak, Kai; Swinton, Cayley; Swinton, Erin; Protheroe, Amy; Shymansky, Tamila; Komatsuzaki, Yoshimasa; Lukowiak, Ken

    2016-05-01

    Environmentally relevant stressors alter the memory-forming process in Lymnaea following operant conditioning of aerial respiration. One such stressor is heat. Previously, we found that following a 1 h heat shock, long-term memory (LTM) formation was enhanced. We also had shown that the heat stressor activates at least two heat shock proteins (HSPs): HSP40 and HSP70. Here, we tested two hypotheses: (1) the production of HSPs is necessary for enhanced LTM formation; and (2) blocking DNA methylation prevents the heat stressor-induced enhancement of LTM formation. We show here that the enhancing effect of the heat stressor on LTM formation occurs even if snails experienced the stressor 3 days previously. We further show that a flavonoid, quercetin, which inhibits HSP activation, blocks the enhancing effect of the heat stressor on LTM formation. Finally, we show that injection of a DNA methylation blocker, 5-AZA, before snails experience the heat stressor prevents enhancement of memory formation. © 2016. Published by The Company of Biologists Ltd.

  1. Generation of hazardous methyl azide and its application to synthesis of a key-intermediate of picarbutrazox, a new potent pesticide in flow.

    PubMed

    Ichinari, Daisuke; Nagaki, Aiichiro; Yoshida, Jun-Ichi

    2017-12-01

    Generation and reactions of methyl azide (MeN 3 ) were successfully performed by using a flow reactor system, demonstrating that the flow method serves as a safe method for handling hazardous explosive methyl azide. The reaction of NaN 3 and Me 2 SO 4 in a flow reactor gave a MeN 3 solution, which was used for Huisgen reaction with benzoyl cyanide in a flow reactor after minimal washing. The resulting 1-methyl-5-benzoyltetrazole serves as a key intermediate of picarbutrazox (IX), a new potent pesticide. Copyright © 2017. Published by Elsevier Ltd.

  2. Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceumL.) peel extract and their photocatalytic activity on methyl orange dye

    NASA Astrophysics Data System (ADS)

    Karnan, Thenmozhi; Selvakumar, Stanly Arul Samuel

    2016-12-01

    In the present study, describes the synthesis of ZnO nanoparticles from rambutan (Nephelium lappaceumL.) peel extract via bio synthesis method and developed a new low cost technology to prepare ZnO nanoparticles. During the synthesis, fruit peel extract act as a natural ligation agent. The successfully prepared product was analyzed with some standard characterization studies like X-Ray Diffraction (XRD), UV-VIS Diffuse reflectance spectra (UV-Vis DRS), Field Emission Scanning Electron Microscope (FESEM), High resolution transmittance electron microscope (HR-TEM), N2 adsorption-desorption isotherm and UV-Vis absorption Spectroscopy. The photocatalytic activity of ZnO nanoparticles was evaluated by photodegradation of methyl orange (MO) dye under UV light and the result depicts around 83.99% decolorisation efficiency at 120 min of illumination. In addition with photodecolorisation, mineralization was also achieved. The mineralization has been confirmed by measuring Chemical Oxygen Demand (COD) values.

  3. THE COMPLETE, TEMPERATURE RESOLVED EXPERIMENTAL SPECTRUM OF METHYL FORMATE (HCOOCH{sub 3}) BETWEEN 214.6 AND 265.4 GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, James P.; Fortman, Sarah M.; Neese, Christopher F.

    2016-05-20

    Because methyl formate (HCOOCH{sub 3}) is abundant in the interstellar medium and has a strong, complex spectrum, it is a major contributor to the list of identified astrophysical lines. Because of its spectral complexity, with many low lying torsional and vibrational states, the quantum mechanical (QM) analysis of its laboratory spectrum is challenging and thus incomplete. As a result it is assumed that methyl formate is also one of the major contributors to the lists of unassigned lines in astrophysical spectra. This paper provides a characterization, without the need for QM analysis, of the spectrum of methyl formate between 214.6more » and 265.4 GHz for astrophysically significant temperatures. The experimental basis for this characterization is a set of 425 spectra, with absolute intensity calibration, recorded between 248 and 408 K. Analysis of these spectra makes possible the calculation of the Complete Experimental Spectrum of methyl formate as a function of temperature. Of the 7132 strongest lines reported in this paper, 2523 are in the QM catalogs. Intensity differences of 5%–10% from those calculated via QM models were also found. Results are provided in a frequency point-by-point catalog that is well suited for the simulation of overlapped spectra. The common astrophysical line frequency, line strength, and lower state energy catalog is also provided.« less

  4. The Complete, Temperature Resolved Experimental Spectrum of Methyl Formate (HCOOCH3) between 214.6 and 265.4 GHz

    NASA Astrophysics Data System (ADS)

    McMillan, James P.; Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.

    2016-05-01

    Because methyl formate (HCOOCH3) is abundant in the interstellar medium and has a strong, complex spectrum, it is a major contributor to the list of identified astrophysical lines. Because of its spectral complexity, with many low lying torsional and vibrational states, the quantum mechanical (QM) analysis of its laboratory spectrum is challenging and thus incomplete. As a result it is assumed that methyl formate is also one of the major contributors to the lists of unassigned lines in astrophysical spectra. This paper provides a characterization, without the need for QM analysis, of the spectrum of methyl formate between 214.6 and 265.4 GHz for astrophysically significant temperatures. The experimental basis for this characterization is a set of 425 spectra, with absolute intensity calibration, recorded between 248 and 408 K. Analysis of these spectra makes possible the calculation of the Complete Experimental Spectrum of methyl formate as a function of temperature. Of the 7132 strongest lines reported in this paper, 2523 are in the QM catalogs. Intensity differences of 5%-10% from those calculated via QM models were also found. Results are provided in a frequency point-by-point catalog that is well suited for the simulation of overlapped spectra. The common astrophysical line frequency, line strength, and lower state energy catalog is also provided.

  5. Novel experimental studies for coal liquefaction: Quarterly progress report, October 1, 1987-December 31, 1987. [In Supercritical State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holder, G.D.; Tierney, J.W.

    Experimental work is presently being concentrated on a two-step synthesis of methanol from CO and H/sub 2/ Which consists of the carbonylation of a molecule of methanol to methyl formate followed by hydrogenation to form two molecules of methanol. Carrying out both reactions concurrently gives different results than predicted. One explanation is interaction between the two catalysts. Since one catalyst is homogeneous and the other heterogeneous, the interaction, due to absorption of the homogeneous catalyst on the heterogeneous one, at room temperature was measured and found to be significant. Measurements of mass transfer cooefficients from gas phase to liquid phasemore » for systems containing H/sub 2/, CO, methanol and methyl formate were made to verify that the reaction rate data being obtained are not influenced by mass transfer limitations. Mass transfer rates in the experimental reactor are a least 1000 times larger than reaction rates and hence are not rate limiting. Modeling of the unsteady state slurry phase Fischer-Tropsch reaction continued in order to investigate interactions among the Fischer-Tropsch reactions, the thermal effects, and the water gas shift reaction. A computer program for solution of the reaction equations was written. Also included in this report is the entire program for evaluating mass transfer coefficients under supercritical conditions is described and a review of current knowledge and planned correlational approaches is given. 61 refs., 22 figs, 7 tabs.« less

  6. UV light selectively coinduces supply pathways from primary metabolism and flavonoid secondary product formation in parsley

    PubMed Central

    Logemann, Elke; Tavernaro, Annette; Schulz, Wolfgang; Somssich, Imre E.; Hahlbrock, Klaus

    2000-01-01

    The UV light-induced synthesis of UV-protective flavonoids diverts substantial amounts of substrates from primary metabolism into secondary product formation and thus causes major perturbations of the cellular homeostasis. Results from this study show that the mRNAs encoding representative enzymes from various supply pathways are coinduced in UV-irradiated parsley cells (Petroselinum crispum) with two mRNAs of flavonoid glycoside biosynthesis, encoding phenylalanine ammonia-lyase and chalcone synthase. Strong induction was observed for mRNAs encoding glucose 6-phosphate dehydrogenase (carbohydrate metabolism, providing substrates for the shikimate pathway), 3-deoxyarabinoheptulosonate 7-phosphate synthase (shikimate pathway, yielding phenylalanine), and acyl-CoA oxidase (fatty acid degradation, yielding acetyl-CoA), and moderate induction for an mRNA encoding S-adenosyl-homocysteine hydrolase (activated methyl cycle, yielding S-adenosyl-methionine for B-ring methylation). Ten arbitrarily selected mRNAs representing various unrelated metabolic activities remained unaffected. Comparative analysis of acyl-CoA oxidase and chalcone synthase with respect to mRNA expression modes and gene promoter structure and function revealed close similarities. These results indicate a fine-tuned regulatory network integrating those functionally related pathways of primary and secondary metabolism that are specifically required for protective adaptation to UV irradiation. Although the response of parsley cells to UV light is considerably broader than previously assumed, it contrasts greatly with the extensive metabolic reprogramming observed previously in elicitor-treated or fungus-infected cells. PMID:10677554

  7. Sulfonated macro-RAFT agents for the surfactant-free synthesis of cerium oxide-based hybrid latexes.

    PubMed

    Garnier, Jérôme; Warnant, Jérôme; Lacroix-Desmazes, Patrick; Dufils, Pierre-Emmanuel; Vinas, Jérôme; van Herk, Alex

    2013-10-01

    Three types of amphiphatic macro-RAFT agents were employed as compatibilizers to promote the polymerization reaction at the surface of nanoceria for the synthesis of CeO2-based hybrid latexes. Macro-RAFT copolymers and terpolymers were first synthesized employing various combinations of butyl acrylate as a hydrophobic monomer and acrylic acid (AA) and/or 2-acrylamido-2-methylpropane sulfonic acid (AMPS) as hydrophilic monomers. After characterizing the adsorption of these macro-RAFT agents at the cerium oxide surface by UV-visible spectrometry, emulsion copolymerization reactions of styrene and methyl acrylate were then carried out in the presence of the surface-modified nanoceria. Dynamic Light Scattering and cryo-Transmission Electron Microscopy were employed to confirm the hybrid structure of the final CeO2/polymer latexes, and proved that the presence of acrylic acid units in amphiphatic macro-RAFT agents enabled an efficient formation of hybrid structures, while the presence of AMPS units, when combined with AA units, resulted in a better distribution of cerium oxide nanoclusters between latex particles. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Three new amino acid derivatives from edible mushroom Pleurotus ostreatus.

    PubMed

    Lu, Xiao-Jie; Feng, Bao-Min; Chen, Shao-Fei; Zhao, Dan; Chen, Gang; Wang, Hai-Feng; Pei, Yue-Hu

    2017-12-01

    Three new amino acid derivatives, oxalamido-L-phenylalanine methyl ester (1), oxalamido-L-leucine methyl ester (2), and lumichrome hydrolyzate (3), together with nine known compounds (4-12), were isolated from the solid culture of edible mushroom Pleurotus ostreatus. Their structures were elucidated on the basis of extensive spectroscopic analysis. The absolute configurations of 1 and 2 were established by the chiral synthesis and confirmed by circular dichroism (CD) analysis of their total synthesis products and natural isolates. All new compounds were evaluated for their antioxidant effects, antimicrobial activities, and cytotoxic activity. Compounds 1-3 showed weak antifungal activities against Candida albicans with minimum inhibitory concentration (MIC) value of 500 μg/ml.

  9. Role of N-methyl-2-pyrrolidone for preparation of Fe3O4@SiO2 controlled the shell thickness

    NASA Astrophysics Data System (ADS)

    Wee, Sung-Bok; Oh, Hyeon-Cheol; Kim, Tae-Gyun; An, Gye-Seok; Choi, Sung-Churl

    2017-04-01

    We developed a simple and novel approach for the synthesis of Fe3O4@SiO2 nanoparticles with controlled shell thickness, and studied the mechanism. The introduction of N-methyl-2-pyrrolidone (NMP) led to trapping of monomer nuclei in single shell and controlled the shell thickness. Fe3O4@SiO2 controlled the shell thickness, showing a high magnetization value (64.47 emu/g). Our results reveal the role and change in the chemical structure of NMP during the core-shell synthesis process. NMP decomposed to 4-aminobutanoic acid in alkaline condition and decreased the hydrolysis rate of the silica coating process.

  10. Microwave-Assisted Synthesis of a Natural Insecticide on Basic Montmorillonite K10 Clay. Green Chemistry in the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Dintzner, Matthew R.; Wucka, Paul R.; Lyons, Thomas W.

    2006-01-01

    A detailed investigation of the clay-catalyzed condensation of sesamol and other phenols with 3-methyl-2-butenal to give methylenedioxyprecocene (MDP) and other chromenes is presented. The clay-catalyzed microwave-assisted condensation of sesamol with 3-methyl-2-butenal is appropriate for incorporation into undergraduate organic laboratory…

  11. INDUCTION OF 6-THIOGUANINE RESISTANCE IN SYNTHRONIZED HUMAN FIBROBLAST CELLS TREATED WITH METHYL METHANESULFONATE, N-ACETOXY-2-ACETHYLAMINOFLUORENE AND N-METHYL-N'-NITRO-N-NITROSOGUANIDINE

    EPA Science Inventory

    Chemical induction of 6-thioguanine resistance was studied in synchronized human fibroblast cells. Cells initially grown in a medium lacking arginine and glutamine for 24 h ceased DNA synthesis and failed to enter the S phase. After introduction of complete medium, the cells prog...

  12. Synthesis of a doxycycline-[(13) CD3 ] standard.

    PubMed

    Bupp, James E; Tanga, Mary J

    2016-06-15

    A stable isotope labelled mass spectrometry internal standard of the antibiotic doxycycline was prepared to assist in pharmacokinetic analyses. Our approach was to first N-demethylate doxycycline using a non-classical Polonovski reaction and then re-methylate using methyl-[(13) CD3 ] iodide, which gave doxycycline-[(13) CD3 ] with an isotopic purity of 99%. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Terpenoid Metabolism in Plastids 1

    PubMed Central

    Camara, Bilal; Bardat, Françoise; Seye, Ababacar; D'Harlingue, Alain; Monéger, René

    1982-01-01

    The synthesis of α-tocopherol from 2,3-dimethylphytylquinol and S-adenosyl-l-methionine was achieved using Capsicum annuum fruit chromoplasts. The enzymes involved in the cyclization (2,3-dimethyl-phytylquinol cyclase) and methylation (S-adenosyl methionine:γ-tocopherol methyl-transferase) are both localized in the chromoplast membrane fraction (envelopes and/or a-chlorophyll lamellae), in contrast to the stroma fraction. PMID:16662717

  14. Synthesis, and anticonvulsant activity of new amides derived from 3-methyl- or 3-ethyl-3-methyl-2,5-dioxo-pyrrolidin-1-yl-acetic acids.

    PubMed

    Obniska, Jolanta; Rapacz, Anna; Rybka, Sabina; Góra, Małgorzata; Kamiński, Krzysztof; Sałat, Kinga; Żmudzki, Paweł

    2016-04-15

    This paper describes the synthesis of the library of 22 new 3-methyl- and 3-ethyl-3-methyl-2,5-dioxo-pyrrolidin-1-yl-acetamides as potential anticonvulsant agents. The maximal electroshock (MES) and the subcutaneous pentylenetetrazole (scPTZ) seizure models were used for screening all the compounds. The 6 Hz model of pharmacoresistant limbic seizures was applied for studying selected derivatives. Six amides were chosen for pharmacological characterization of their antinociceptive activity in the formalin model of tonic pain as well as local anesthetic activity was assessed in mice. The pharmacological data indicate on the broad spectra of activity across the preclinical seizure models. Compounds 10 (ED50=32.08 mg/kg, MES test) and 9 (ED50=40.34 mg/kg, scPTZ test) demonstrated the highest potency. These compounds displayed considerably better safety profiles than clinically relevant antiepileptic drugs phenytoin, ethosuximide, or valproic acid. Several molecules showed antinociceptive and local anesthetic properties. The in vitro radioligand binding studies demonstrated that the influence on the sodium and calcium channels may be one of the essential mechanisms of action. Copyright © 2016. Published by Elsevier Ltd.

  15. Corrigendum to "Synthesis, structural features, and methyl methacrylate polymerisation of binuclear zinc(II) complexes with tetradentate pyrazolyl ligands" [J. Mol. Struct. 1063 (2014) 70-76

    NASA Astrophysics Data System (ADS)

    Kim, Sunghoon; Kim, Dongil; Lee, Ha-Jin; Lee, Hyosun

    2015-05-01

    The authors regret to inform that 4,4‧-bis-(N,N-di(1H-pyrazolyl-1-methyl)phenyl)methane (L2) and its binuclear 4,4‧-bis-(N,N-di-(1H-pyrazolyl-1-methyl)phenyl)methane(dichloro)Zn(II) complex, namely, [L2Zn2Cl4] in the paper were published as the thesis for the degree of master in the Department of Chemistry at Kyungpook National University in 2003.

  16. Synthesis and odor evaluation of five new sulfur-containing ester flavor compounds from 4-ethyloctanoic acid.

    PubMed

    Liu, Yuping; Chen, Haitao; Yin, Decai; Sun, Baoguo

    2010-07-29

    Five sulfur-containing flavor compounds were synthesized for the first time by the reaction of 4-ethyloctanoyl chloride with sulfur-containing alcohols or mercaptans. The synthesized compounds are 3-(methylthio)propyl 4-ethyloctanoate, 2-methyl-3-tetrahydro-furanthiol 4-ethyloctanoate, 4-methyl-5-thiazoleethanol 4-ethyloctanoate, 2-furan-methanethiol 4-ethyloctanoate and 2-methyl-3-furanthiol 4-ethyloctanoate. These five synthetic sulfur-containing ester flavor compounds all have meaty odor and might be used in foods if approved for this purpose in the future.

  17. Synthesis and molecular crystal of 3-Chloro-2-(1-chloro-1-methyl-ethyl)-2,3-dihydro-1H-naphtho[2,1-b]oxepin-4-one

    NASA Astrophysics Data System (ADS)

    Tittal, Ram Kumar

    2018-03-01

    CuCl/TMEDA-promoted halogen atom transfer radical cyclization (HATRC) of dichloroacetic acid 1-(3-methyl-but-2-enyl)-naphthalen-2-yl ester in refluxing DCE gave chlorine containing 7-member lactone 3-Chloro-2-(1-chloro-1-methyl-ethyl)-2,3-dihydro-1H-naphtho[2,1-b]oxepin-4-one via 7-exo trig radical cyclization reaction. The structure of the Lactone was confirmed by X-ray diffraction data.

  18. Metabolomic analysis reveals metabolic changes caused by bisphenol A in rats.

    PubMed

    Chen, Minjian; Zhou, Kun; Chen, Xiaojiao; Qiao, Shanlei; Hu, Yanhui; Xu, Bo; Xu, Bin; Han, Xiumei; Tang, Rong; Mao, Zhilei; Dong, Congcong; Wu, Di; Wang, Yubang; Wang, Shoulin; Zhou, Zuomin; Xia, Yankai; Wang, Xinru

    2014-04-01

    Bisphenol A (BPA) is a widely used material known to cause adverse effects in humans and other mammals. To date, little is known about the global metabolomic alterations caused by BPA using urinalysis. Sprague-Dawley rats were orally administrated BPA at the levels of 0, 0.5 μg/kg/day and 50 mg/kg/day covering a low dose and a reference dose for 8 weeks. We conducted a capillary electrophoresis in tandem with electrospray ionization time-of-flight mass spectrometry based nontargeted metabolomic analysis using rat urine. To verify the metabolic alteration at both low and high doses, reverse transcription-polymerase chain reaction (RT-PCR) and western blotting were further conducted to analyze hepatic expression of methionine adenosyltransferase Iα (Mat1a) and methionine adenosyltransferase IIα (Mat2a). Hepatic S-adenosylmethionine (SAMe) was also analyzed. A total of 199 metabolites were profiled. Statistical analysis and pathway mapping indicated that the most significant metabolic perturbations induced by BPA were the increased biotin and riboflavin excretion, increased synthesis of methylated products, elevated purine nucleotide catabolism, and increased flux through the choline metabolism pathway. We found significantly higher mRNA and protein levels of Mat1a and Mat2a, and significantly higher SAMe levels in rat liver at both low and high doses. These two genes encode critical isoenzymes that catalyze the formation of SAMe, the principal biological methyl donor involved in the choline metabolism. In conclusion, an elevated choline metabolism is underlying the mechanism of highly methylated environment and related metabolic alterations caused by BPA. The data of BPA-elevated accepted biomarkers of injury indicate that BPA induces DNA methylation damage and broad protein degradation, and the increased deleterious metabolites in choline pathway may also be involved in the toxicity of BPA.

  19. Synthesis, crystal structure, photodegradation kinetics and photocatalytic activity of novel photocatalyst ZnBiYO4.

    PubMed

    Cui, Yanbing; Luan, Jingfei

    2015-03-01

    ZnBiYO4 was synthesized by a solid-state reaction method for the first time. The structural and photocatalytic properties of ZnBiYO4 were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-Vis diffuse reflectance. ZnBiYO4 crystallized with a tetragonal spinel structure with space group I41/A. The lattice parameters for ZnBiYO4 were a=b=11.176479Å and c=10.014323Å. The band gap of ZnBiYO4 was estimated to be 1.58eV. The photocatalytic activity of ZnBiYO4 was assessed by photodegradation of methyl orange under visible light irradiation. The results showed that ZnBiYO4 had higher catalytic activity compared with N-doped TiO2 under the same experimental conditions using visible light irradiation. The photocatalytic degradation of methyl orange with ZnBiYO4 or N-doped TiO2 as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01575 and 0.00416 min(-1) for ZnBiYO4 and N-doped TiO2, respectively. After visible light irradiation for 220 min with ZnBiYO4 as catalyst, complete removal and mineralization of methyl orange were observed. The reduction of total organic carbon, formation of inorganic products, SO4(2-) and NO3-, and evolution of CO2 revealed the continuous mineralization of methyl orange during the photocatalytic process. The intermediate products were identified using liquid chromatography-mass spectrometry. The ZnBiYO4/(visible light) photocatalysis system was found to be suitable for textile industry wastewater treatment and could be used to solve other environmental chemical pollution problems. Copyright © 2015. Published by Elsevier B.V.

  20. Supporting technology for the development of Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Li, Ku-Yen; Yaws, Carl L.; Simon, William E.; Mei, Harry T.

    1995-01-01

    To support the development of Controlled Ecological Life Support Systems (CELSS) in the space program, a metabolic simulator has been selected for use in a closed chamber to test functions of the CELSS. This metabolic simulator is a catalytic reactor which oxidizes the methyl acetate to produce carbon dioxide and water vapor. In this project, kinetic studies of catalytic oxidation of methyl acetate were conducted using monolithic and pellet catalysts with 0.5% (by weight) platinum (Pt) on aluminum oxide (Al2O3). The reaction was studied at a pressure of one atmosphere and at temperatures varying from 160 C to 420 C. By-products were identified at the exit of the preheater and reactor. For the kinetic study with the monolithic catalyst, a linear regression method was used to correlate the kinetic data with zero-order, first-order and Langmuir-Hinshelwood models. Results indicate that the first-order model represents the data adequately at low concentrations of methyl acetate. For higher concentrations of methyl acetate, the Langmuir-Hinshelwood model best represents the kinetic data. Both rate constant and adsorption equilibrium constants were estimated from the regression. A Taguchi orthogonal array (L(sub 9)) was used to investigate the effects of temperature, flow rate, and concentration on the catalytic oxidation of methyl acetate. For the monolithic catalyst, temperature exerts the most significant effect, followed by concentration of methyl acetate. For the pellet catalyst, reaction temperature is the most significant factor, followed by gas flow rate and methyl acetate concentration. Concentrations of either carbon dioxide or oxygen were seen to have insignificant effect on the methyl acetate conversion process. Experimental results indicate that the preheater with glass beads can accomplish thermal cracking and catalytic reaction of methyl acetate to produce acetic acid, methanol, methyl formate, and 1-propanol. The concentration of all by-products was measured in ppmv (parts per million by volume). At higher temperatures, greater amounts of these products are produced, as expected. In all cases, methanol was the predominant concentration detected, followed by methyl formate. At temperatures lower than 320 C for the P-type monolithic catalyst, methanol, acetic acid, and acetone were detected, whereas, for the E-type monolithic catalyst, only methanol was detected at 160 C. Both P and E types of the monolithic catalyst were specified with the same substrates (ceramic), washcoat (Al2O3), and promoter (Pt). However, the manufacturing and treatment procedures were quite different. It was therefore concluded that the performance of the E-type monolithic catalyst is superior to that of the P-type for oxidation of methyl acetate. At higher reaction temperatures, e.g., above 420 C, all reactants and byproducts were completely oxidized using these two types of monolithic catalyst to produce carbon dioxide and water vapor. A complex heterogenous catalytic reaction mechanism was proposed to explain the formation of the byproducts (methanol, acetic acid, and methyl formate) as the methyl acetate traveled through the preheater packed with glass beads. The by-product, 1-propanol, may be formed only through a homogeneous reaction, since it is difficult to develop a reasonable sequence of heterogeneous reaction steps to explain its formation. The homogeneous thermal decomposition of methyl acetate to form free radicals was proposed to explain the formation of 1-propanol, and also methanol, in the preheater. A dual-site catalytic reaction mechanism was proposed for the oxidation of methyl acetate over Pt/Al2O3 monolithic catalyst. The dual-site mechanism describes the chemisorption of oxygen molecules as well as a physical adsorption of methyl acetate on the active sites. On the active sites, methyl acetate is oxidized rapidly to form carbon dioxide and water vapor. A rate equation derived from this mechanism gives the Langmuir-Hinshelwood rate formula which has been observed from the experimental data obtained in this project for high methyl acetate concentration (greater than 1000 ppmv) over a monolithic catalyst. If the oxygen concentration is very high and methyl acetate concentration is very low, the reaction rate equation is then reduced to a first-order with respect to methyl acetate concentration. The first-order model has also been observed from the experimental data obtained in this project for low methyl acetate concentration (less than 1000 ppmv).

  1. Synthesis and Characterization of New Phosphazene Polymers.

    DTIC Science & Technology

    1988-01-21

    reaction of a poly( alkyl /arylphosphazene). In this study, one-half of the methyl groups in [Ph(Me)PN]n (chosen for its solubility in THF as opposed to...polymerization reaction ; and (5) the derivative chemistry of the preformed poly( alkyl /arylphosphazenes)., Synthesis of Poly( alkyl /arylphosphazenes) SC A... vessels , these phosphoranimines quantitatively eliminate the silyl ether byproduct, Me3SiOCH2CF 3 , to form the poly( alkyl /arylphosphazenes). The synthesis

  2. Convenient divergent strategy for the synthesis of TunePhos-type chiral diphosphine ligands and their applications in highly enantioselective Ru-catalyzed hydrogenations.

    PubMed

    Sun, Xianfeng; Zhou, Le; Li, Wei; Zhang, Xumu

    2008-02-01

    A convenient, divergent strategy for the synthesis of a series of modular and fine-tunable C3-TunePhos-type chiral diphosphine ligands and their applications in highly efficient Ru-catalyzed asymmetric hydrogenations were explored. Up to 97 and 99% ee values were achieved for the enantioselective synthesis of beta-methyl chiral amines and alpha-hydroxy acid derivatives, respectively.

  3. Design synthesis and structure-activity relationship of 5-substituted (tetrahydronaphthalen-2yl)methyl with N-phenyl-N-(piperidin-2-yl)propionamide derivatives as opioid ligands.

    PubMed

    Deekonda, Srinivas; Rankin, David; Davis, Peg; Lai, Josephine; Vanderah, Todd W; Porecca, Frank; Hruby, Victor J

    2016-01-15

    Here, we report the design, synthesis and structure activity relationship of novel small molecule opioid ligands based on 5-amino substituted (tetrahydronaphthalen-2-yl)methyl moiety with N-phenyl-N-(piperidin-2-yl)propionamide derivatives. We synthesized various molecules including amino, amide and hydroxy substitution on the 5th position of the (tetrahydronaphthalen-2-yl)methyl moiety. In our further designs we replaced the (tetrahydronaphthalen-2-yl)methyl moiety with benzyl and phenethyl moiety. These N-phenyl-N-(piperidin-2-yl)propionamide analogues showed moderate to good binding affinities (850-4 nM) and were selective towards the μ opioid receptor over the δ opioid receptors. From the structure activity relationship studies, we found that a hydroxyl substitution at the 5th position of (tetrahydronapthalen-2yl)methyl group, ligands 19 and 20, showed excellent binding affinities 4 and 5 nM, respectively, and 1000 fold selectivity towards the μ opioid relative to the delta opioid receptor. The ligand 19 showed potent agonist activities 75±21 nM, and 190±42 nM in the GPI and MVD assays. Surprisingly the fluoro analogue 20 showed good agonist activities in MVD assays 170±42 nM, in contrast to its binding affinity results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Bifunctional heterogeneous catalysts from oil palm empty fruit bunches ash and alum for biodiesel synthesis simultaneously

    NASA Astrophysics Data System (ADS)

    Astar, Ismail; Usman, Thamrin; Wahyuni, Nelly; Rudiyansyah, Alimuddin, Andi Hairil

    2017-03-01

    Free fatty acids (FFA) contained in crude palm oil (CPO) and sludge oil has been used as the base material of biodiesel with the aid of a catalyst in the transesterification and esterification reactions. This study aims to synthesize and characterize bifunctional catalysts were synthesized from the ashes of palm empty fruit bunches (EFB) and alum based on the analysis of XRD, XRF and acidity test. Bifunctional catalyst obtained was used as a catalyst to production of biodiesel with different levels of FFA. The optimum ratio alum added was 0.2 mol at 3 hours of reaction time and 3% of catalyst by the FFA samples were used 67,40%. The catalyst with optimum alum mole variations subsequently used on samples with varying levels of FFA, namely 1.29%, 4.98%, 29.21%, 67.40% and 74.47%. Optimum conversion of methyl ester in the esterification reaction occurs in the sample with 67.40% FFA content, which reached 86.17%, while the conversion of methyl ester transesterification process optimum amounted to 45.70% in the samples with 4.98% FFA content. Methyl ester produced has a refractive index of 1.448 (29.8 ° C), density of 0.883 g / mL (25 °C) and a viscosity of 8.933 cSt (25 ° C). The results of GC-MS analysis showed that the main composition of methyl ester result of esterification of sludge oil methyl palmitate (36.84%), while the CPO transesterification shows the main composition of methyl ester is methyl oleic (38.87%). Based on the research results, the catalyst synthesized from alum and EFB ash can be used as a Bifunctional catalysts for biodiesel synthesis.

  5. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine

    PubMed Central

    Li, Laigeng; Popko, Jacqueline L.; Zhang, Xing-Hai; Osakabe, Keishi; Tsai, Chung-Jui; Joshi, Chandrashekhar P.; Chiang, Vincent L.

    1997-01-01

    S-adenosyl-l-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem. PMID:9144260

  6. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine.

    PubMed

    Li, L; Popko, J L; Zhang, X H; Osakabe, K; Tsai, C J; Joshi, C P; Chiang, V L

    1997-05-13

    S-adenosyl-L-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem.

  7. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation

    PubMed Central

    Zhang, Bo; Tieman, Denise M.; Jiao, Chen; Xu, Yimin; Chen, Kunsong; Fei, Zhangjun; Giovannoni, James J.; Klee, Harry J.

    2016-01-01

    Commercial tomatoes are widely perceived by consumers as lacking flavor. A major part of that problem is a postharvest handling system that chills fruit. Low-temperature storage is widely used to slow ripening and reduce decay. However, chilling results in loss of flavor. Flavor-associated volatiles are sensitive to temperatures below 12 °C, and their loss greatly reduces flavor quality. Here, we provide a comprehensive view of the effects of chilling on flavor and volatiles associated with consumer liking. Reduced levels of specific volatiles are associated with significant reductions in transcripts encoding key volatile synthesis enzymes. Although expression of some genes critical to volatile synthesis recovers after a return to 20 °C, some genes do not. RNAs encoding transcription factors essential for ripening, including RIPENING INHIBITOR (RIN), NONRIPENING, and COLORLESS NONRIPENING are reduced in response to chilling and may be responsible for reduced transcript levels in many downstream genes during chilling. Those reductions are accompanied by major changes in the methylation status of promoters, including RIN. Methylation changes are transient and may contribute to the fidelity of gene expression required to provide maximal beneficial environmental response with minimal tangential influence on broader fruit developmental biology. PMID:27791156

  8. Mutations in the human SC4MOL gene encoding a methyl sterol oxidase cause psoriasiform dermatitis, microcephaly, and developmental delay

    PubMed Central

    He, Miao; Kratz, Lisa E.; Michel, Joshua J.; Vallejo, Abbe N.; Ferris, Laura; Kelley, Richard I.; Hoover, Jacqueline J.; Jukic, Drazen; Gibson, K. Michael; Wolfe, Lynne A.; Ramachandran, Dhanya; Zwick, Michael E.; Vockley, Jerry

    2011-01-01

    Defects in cholesterol synthesis result in a wide variety of symptoms, from neonatal lethality to the relatively mild dysmorphic features and developmental delay found in individuals with Smith-Lemli-Opitz syndrome. We report here the identification of mutations in sterol-C4-methyl oxidase–like gene (SC4MOL) as the cause of an autosomal recessive syndrome in a human patient with psoriasiform dermatitis, arthralgias, congenital cataracts, microcephaly, and developmental delay. This gene encodes a sterol-C4-methyl oxidase (SMO), which catalyzes demethylation of C4-methylsterols in the cholesterol synthesis pathway. C4-Methylsterols are meiosis-activating sterols (MASs). They exist at high concentrations in the testis and ovary and play roles in meiosis activation. In this study, we found that an accumulation of MASs in the patient led to cell overproliferation in both skin and blood. SMO deficiency also substantially altered immunocyte phenotype and in vitro function. MASs serve as ligands for liver X receptors α and β (LXRα and LXRβ), which are important in regulating not only lipid transport in the epidermis, but also innate and adaptive immunity. Deficiency of SMO represents a biochemical defect in the cholesterol synthesis pathway, the clinical spectrum of which remains to be defined. PMID:21285510

  9. Diet fat alters synaptosomal phosphatidylethanolaminemethyl-transferase activity and phosphatidylcholine synthesis in brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargreaves, K.M.; Clandinin, M.T.

    1986-03-05

    Phosphatidylcholine (PC) can be synthesized via three routes, each having potentially different metabolic fates. One route for PC synthesis is methylation of phosphatidylethanolamine (PE). To examine if dietary fat affects membrane PE composition and phosphatidylethanolaminemethyltransferase (PEMT) activity, male weanling rats were fed semi-purified diets containing 20% (w/w) fat of differing fatty acid composition for 24 days. Microsomal and synaptic plasma membranes were isolated and phospholipid composition analyzed. PEMT activity was measured by incorporation of the methyl group from /sup 3/H-S-adenosylmethionine into PE. Polyunsaturated diets high in omega 6 fatty acids produce a high ratio of omega 6/omega 3 fatty acidsmore » in synaptic plasma membranes. Dietary omega 3 and omega 6 fatty acid levels are reflected in membrane phospholipid content of 22:6(3), 20:4(6), 22:4(6) and 22:5(6). Diet-induced increase in these longer chain homologues of omega 6 and omega 3 fatty acids and a high ratio of omega 6/omega 3 fatty acids in PE are both associated with increased PEMT activity. These results suggest that diet-fat induced change in fatty acid composition of membrane PE results in transition in PEMT activity and synthesis of PC in brain, by providing preferred species of PE for methylation.« less

  10. Synthesis of methyl esters from relevant palm products in near-critical methanol with modified-zirconia catalysts.

    PubMed

    Laosiripojana, N; Kiatkittipong, W; Sutthisripok, W; Assabumrungrat, S

    2010-11-01

    The transesterification and esterification of palm products i.e. crude palm oil (CPO), refined palm oil (RPO) and palm fatty acid distillate (PFAD) under near-critical methanol in the presence of synthesized SO(4)-ZrO(2), WO(3)-ZrO(2) and TiO(2)-ZrO(2) (with various sulfur- and tungsten loadings, Ti/Zr ratios, and calcination temperatures) were studied. Among them, the reaction of RPO with 20%WO(3)-ZrO(2) (calcined at 800 degrees C) enhanced the highest fatty acid methyl ester (FAME) yield with greatest stability after several reaction cycles; furthermore, it required shorter time, lower temperature and less amount of methanol compared to the reactions without catalyst. These benefits were related to the high acid-site density and tetragonal phase formation of synthesized WO(3)-ZrO(2). For further improvement, the addition of toluene as co-solvent considerably reduced the requirement of methanol to maximize FAME yield, while the addition of molecular sieve along with catalyst significantly increased FAME yield from PFAD and CPO due to the inhibition of hydrolysis reaction. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Bacopa monnieri Phytochemicals Mediated Synthesis of Platinum Nanoparticles and Its Neurorescue Effect on 1-Methyl 4-Phenyl 1,2,3,6 Tetrahydropyridine-Induced Experimental Parkinsonism in Zebrafish

    PubMed Central

    Nellore, Jayshree; Pauline, Cynthia; Amarnath, Kanchana

    2013-01-01

    Current discovery demonstrates the rapid formation of platinum nanoparticles using leaf extract of a neurobeneficial plant, Bacopa monnieri (BmE). The nanoparticles (BmE-PtNPs) were stabilized and then coated with varied phytochemicals present within the leaf extract. These nanoparticles demonstrated the same activity of Complex I, as that of oxidizing NADH to NAD+ using a spectrophotometric method. This suggests that BmE-PtNPs are a potential medicinal substance for oxidative stress mediated disease with suppressed mitochondrial complex I, namely, Parkinson's disease (PD). Hence, the neuroprotective potentials of the phytochemical coated nanoparticle were explored in 1-methyl 4-phenyl 1,2,3,6 tetrahydropyridine- (MPTP-)induced experimental Parkinsonism in zebrafish model. BmE-PtNPs pretreatment significantly reversed toxic effects of MPTP by increasing the levels of dopamine, its metabolites, GSH and activities of GPx, catalase, SOD and complex I, and reducing levels of MDA along with enhanced locomotor activity. Taken together, these findings suggest that BmE-PtNPs have protective effect in MPTP-induced neurotoxicity in this model of Parkinson's disease via their dual functions as mitochondrial complex I and antioxidant activity. PMID:26317003

  12. Synthesis and characterization of the tetranuclear iron(III) complex of a new asymmetric multidentate ligand. A structural model for purple acid phosphatases.

    PubMed

    Boudalis, Athanassios K; Aston, Robyn E; Smith, Sarah J; Mirams, Ruth E; Riley, Mark J; Schenk, Gerhard; Blackman, Allan G; Hanton, Lyall R; Gahan, Lawrence R

    2007-11-28

    The ligand, 2-((2-hydroxy-5-methyl-3-((pyridin-2-ylmethylamino)methyl)benzyl)(2-hydroxybenzyl)amino)acetic acid (H(3)HPBA), which contains a donor atom set that mimics that of the active site of purple acid phosphatase is described. Reaction of H(3)HPBA with iron(III) or iron(II) salts results in formation of the tetranuclear complex, [Fe(4)(HPBA)(2)(OAc)(2)(mu-O)(mu-OH)(OH(2))(2)]ClO(4) x 5H(2)O. X-Ray structural analysis reveals the cation consists of four iron(III) ions, two HPBA(3-) ligands, two bridging acetate ligands, a bridging oxide ion and a bridging hydroxide ion. Each binucleating HPBA(3-) ligand coordinates two structurally distinct hexacoordinate iron(III) ions. The two metal ions coordinated to a HPBA(3-) ligand are linked to the two iron(III) metal ions of a second, similar binuclear unit by intramolecular oxide and hydroxide bridging moieties to form a tetramer. The complex has been further characterised by elemental analysis, mass spectrometry, UV-vis and MCD spectroscopy, X-ray crystallography, magnetic susceptibility measurements and variable-temperature Mössbauer spectroscopy.

  13. Remarkable rate acceleration of SmI3-mediated iodination of acetates of Baylis-Hillman adducts in ionic liquid: facile synthesis of (Z)-allyl iodides*

    PubMed Central

    Liu, Yun-Kui; Zheng, Hui; Xu, Dan-Qian; Xu, Zhen-Yuan; Zhang, Yong-Min

    2006-01-01

    Stereoselective transformation of Baylis-Hillman acetates 1 into corresponding (Z)-allyl iodides 2 has been achieved by treatment of 1 with samarium triiodide in THF. Remarkable rate acceleration of samarium triiodide-mediated iodination of 1 was found when ionic liquid 1-n-butyl-3-methyl-imidazolium tetrafluroborate ([bmim]BF4) was used as reaction media in stead of THF. This novel approach proceeds readily at 50 °C within a few minutes to afford (Z)-allyl iodides 2 in excellent yields. A mechanism involving stereoselective iodination of the acetates of Baylis-Hillman adducts by samarium triiodide is described, in which a six-membered ring transition state played a key role in the stereoselective formation of 2. PMID:16502505

  14. Enzymatic catalysis of formation of Z-aspartame in ionic liquid - An alternative to enzymatic catalysis in organic solvents.

    PubMed

    Erbeldinger, M; Mesiano, A J; Russell, A J

    2000-01-01

    We present the first report of enzymatic catalysis in an ionic liquid. The virtually nonexistent vapor pressure makes ionic liquids an exciting new alternative for enzyme-catalyzed syntheses in environmentally friendly environments. Z-aspartame was synthesized in a thermolysin-catalyzed reaction of carbobenzoxy-L-aspartate and L-phenylalanine methyl ester hydrochloride in 1-butyl-3-methylimidazolium hexafluorophosphate (BP6). Ionic liquids such as BP6 are thermally stable and have a remarkable range of temperatures over which they remain liquid (300 degrees C). With an initial rate of 1.2 +/- 0.1 nmol min(-)(1) mg(-)(1), we observed a competitive rate in comparison to that of enzymatic synthesis in organic solvent. Additionally, the enzyme exhibits outstanding stability, which would normally require immobilization.

  15. Structural and physicochemical studies of two key intermediates and the impurity in the new synthesis route of vitamin MK-7

    NASA Astrophysics Data System (ADS)

    Łaszcz, Marta; Trzcińska, Kinga; Kubiszewski, Marek; Krajewski, Krzysztof

    2018-05-01

    The MK-7 homologues of vitamin K2 are characterized by the best bioavailability among other K vitamins and act effectively in the treatment of osteoporosis and cardiovascular diseases. In this article comprehensive structural studies of two intermediates 1,4-diethoxy-2-methylnaphtalene (M2) and 1,4-diethoxy-2-methyl-3-[(2E)-3-methyl-4-(phenylsulfonyl)-2-buten-1-yl]naphtalene (M3) from the multi-step synthesis of MK-7 vitamin were described. The compounds crystallize in a monoclinic system in P21/n and P21/c for M2 and M3, respectively. Also, the isomer (2E)-4-chloro-3-methyl-1-(phenylsulfonyl)but-2-ene (M1-E verso) was isolated and the single crystal studies were performed. These three compounds were fully characterized by the 1D and 2D NMR technique as well as by Fourier-transformed infrared and Raman spectroscopies.

  16. [Folates and fetal programming: role of epigenetics and epigenomics].

    PubMed

    Guéant, Jean-Louis; Daval, Jean-Luc; Vert, Paul; Nicolas, Jean-Pierre

    2012-12-01

    Folates are needed for synthesis of methionine, the precursor of S-adenosyl methionine (SAM). They play therefore a key role in nutrition and epigenomics by fluxing monocarbons towards synthesis or methylation of DNA and RNA, and methylation of gene transregulators, respectively. The deficiency produces intrauterine growth retardation and birth dejects. Folate deficiency deregulates epigenomic mechanisms related to fetal programming through decreased cellular availability of SAM. Epigenetic mechanisms of folate deficiency are illustrated by inheritance of coat colour of agouti mice model and altered expression of Igf2/H19 imprinting genes. Dietary exposure to fumonisin FB1 acts synergistically with folate deficiency on alterations of heterochromatin assembly. Deficiency in folate and vitamin B12 produces impaired fatty acid oxidation in liver and heart through imbalanced methylation and acetylation of PGC1-alpha and decreased expression of SIRT1, and long-lasting cognitive disabilities through impaired hippocampal cell proliferation, differentiation and plasticity and atrophy of hippocampal CA1. Deciphering these mechanisms will help understand the discordances between experimental models and population studies on folate supplementation.

  17. Synthesis of methyl esters from waste cooking oil using construction waste material as solid base catalyst.

    PubMed

    Balakrishnan, K; Olutoye, M A; Hameed, B H

    2013-01-01

    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Molecular dynamics investigations of BioH protein substrate specificity for biotin synthesis.

    PubMed

    Xue, Qiao; Cui, Ying-Lu; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2016-05-01

    BioH, an enzyme of biotin synthesis, plays an important role in fatty acid synthesis which assembles the pimelate moiety. Pimeloyl-acyl carrier protein (ACP) methyl ester, which is long known to be a biotin precursor, is the physiological substrate of BioH. Azelayl methyl ester, which has a longer chain than pimeloyl methyl ester, conjugated to ACP is also indeed accepted by BioH with very low rate of hydrolysis. To date, the substrate specificity for BioH and the molecular origin for the experimentally observed rate changes of hydrolysis by the chain elongation have remained elusive. To this end, we have investigated chain elongation effects on the structures by using the fully atomistic molecular dynamics simulations combined with binding free energy calculations. The results indicate that the substrate specificity is determined by BioH together with ACP. The added two methylenes would increase the structural flexibility by protein motions at the interface of ACP and BioH, instead of making steric clashes with the side chains of the BioH hydrophobic cavity. On the other hand, the slower hydrolysis of azelayl substrate is suggested to be associated with the loose of contacts between BioH and ACP, and with the lost electrostatic interactions of two ionic/hydrogen bonding networks at the interface of the two proteins. The present study provides important insights into the structure-function relationships of the complex of BioH with pimeloyl-ACP methyl ester, which could contribute to further understanding about the mechanism of the biotin synthetic pathway, including the catalytic role of BioH.

  19. Saccharomyces Cerevisiae Cho2 Mutants Are Deficient in Phospholipid Methylation and Cross-Pathway Regulation of Inositol Synthesis

    PubMed Central

    Summers, E. F.; Letts, V. A.; McGraw, P.; Henry, S. A.

    1988-01-01

    Five allelic Saccharomyces cerevisiae mutants deficient in the methylation of phosphatidylethanolamine (PE) have been isolated, using two different screening techniques. Biochemical analysis suggested that these mutants define a locus, designated CHO2, that may encode a methyltransferase. Membranes of cho2 mutant cells grown in defined medium contain approximately 10% phosphatidylcholine (PC) and 40-50% PE as compared to wild-type levels of 40-45% PC and 15-20% PE. In spite of this greatly altered phospholipid composition, cho2 mutant cells are viable in defined medium and are not auxotrophic for choline or other phospholipid precursors such as monomethylethanolamine (MME). However, analysis of yeast strains carrying more than one mutation affecting phospholipid biosynthesis indicated that some level of methylated phospholipid is essential for viability. The cho2 locus was shown by tetrad analysis to be unlinked to other loci affecting phospholipid synthesis. Interestingly, cho2 mutants and other mutant strains that produce reduced levels of methylated phospholipids are unable to properly repress synthesis of the cytoplasmic enzyme inositol-1-phosphate synthase. This enzyme was previously shown to be regulated at the level of mRNA abundance in response to inositol and choline in the growth medium. We cloned the CHO2 gene on a 3.6-kb genomic DNA fragment and created a null allele of cho2 by disrupting the CHO2 gene in vivo. The cho2 disruptant, like all other cho2 mutants, is viable, exhibits altered regulation of inositol biosynthesis and is not auxotrophic for choline or MME. PMID:3066687

  20. Environmentally evaluated HPLC-ELSD method to monitor enzymatic synthesis of a non-ionic surfactant.

    PubMed

    Gaber, Yasser; Akerman, Cecilia Orellana; Hatti-Kaul, Rajni

    2014-01-01

    N-Lauroyl-N-methylglucamide is a biodegradable surfactant derived from renewable resources. In an earlier study, we presented an enzymatic solvent-free method for synthesis of this compound. In the present report, the HPLC method developed to follow the reaction between lauric acid/methyl laurate and N-methyl glucamine (MEG) and its environmental assessment are described. Use of ultraviolet (UV) absorption or refractive index (RI) detectors did not allow the detection of N-methyl glucamine (MEG). With Evaporative light scattering detector ELSD, it was possible to apply a gradient elution, and detect MEG with a limit of detection, LOD = 0.12 μg. A good separation of the peaks: MEG, lauric acid, product (amide) and by-product (amide-ester) was achieved with the gradient program with a run time of 40 min. The setting of ELSD detector was optimized using methyl laurate as the analyte. LC-MS/MS was used to confirm the amide and amide-ester peaks. We evaluated the greenness of the developed method using the freely available software HPLC-Environmental Assessment Tool (HPLC-EAT) and the method got a scoring of 73 HPLC-EAT units, implying that the analytical procedure was more environmentally benign compared to some other methods reported in literature whose HPLC-EAT values scored up to 182. Use of ELSD detector allowed the detection and quantification of the substrates and the reaction products of enzymatic synthesis of the surfactant, N-lauroyl-N-methylglucamide. The developed HPLC method has acceptable environmental profile based on HPLC-EAT evaluation.

  1. Environmentally evaluated HPLC-ELSD method to monitor enzymatic synthesis of a non-ionic surfactant

    PubMed Central

    2014-01-01

    Background N-Lauroyl-N-methylglucamide is a biodegradable surfactant derived from renewable resources. In an earlier study, we presented an enzymatic solvent-free method for synthesis of this compound. In the present report, the HPLC method developed to follow the reaction between lauric acid/methyl laurate and N-methyl glucamine (MEG) and its environmental assessment are described. Results Use of ultraviolet (UV) absorption or refractive index (RI) detectors did not allow the detection of N-methyl glucamine (MEG). With Evaporative light scattering detector ELSD, it was possible to apply a gradient elution, and detect MEG with a limit of detection, LOD = 0.12 μg. A good separation of the peaks: MEG, lauric acid, product (amide) and by-product (amide-ester) was achieved with the gradient program with a run time of 40 min. The setting of ELSD detector was optimized using methyl laurate as the analyte. LC-MS/MS was used to confirm the amide and amide-ester peaks. We evaluated the greenness of the developed method using the freely available software HPLC-Environmental Assessment Tool (HPLC-EAT) and the method got a scoring of 73 HPLC-EAT units, implying that the analytical procedure was more environmentally benign compared to some other methods reported in literature whose HPLC-EAT values scored up to 182. Conclusion Use of ELSD detector allowed the detection and quantification of the substrates and the reaction products of enzymatic synthesis of the surfactant, N-lauroyl-N-methylglucamide. The developed HPLC method has acceptable environmental profile based on HPLC-EAT evaluation. PMID:24914404

  2. ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE AND THE METHYLATION OF ARSENICALS

    EPA Science Inventory

    Metabolic conversion of inorganic arsenic into methylated products is a multistep process that yields mono, di, and trimethylated arsenicals. In recent years, it has become apparent that formation of methylated metabolites of inorganic arsenic is not necessarily a detoxification...

  3. Synthesis, characterization, DFT calculations and molecular docking studies of metal (II) complexes

    NASA Astrophysics Data System (ADS)

    Ekennia, Anthony C.; Osowole, Aderoju A.; Olasunkanmi, Lukman O.; Onwudiwe, Damian C.; Olubiyi, Olujide O.; Ebenso, Eno E.

    2017-12-01

    Two novel ligands, 2-methyl-6-[(5-methyl benzothiazol-2-ylimino)-methyl]-2-methoxycyclohexa-1,5-dienol (HL1) and 2-methyl-6-[(5-floro-benzothiazol-2-ylimino)-methyl]-2-methoxycyclohexa-1,5-dienol (HL2) were synthesized from the condensation reaction of 2-hydroxy-3-methoxybenzaldehyde with 2-amino-6-methylbenzothiazole and 2-amino-6-florobenzothiazole respectively. Mononuclear Cu(II), Ni(II) and Co(II) complexes of the ligands were synthesized and characterized using elemental analysis, magnetic susceptibility, thermogravimetric, conductance, infrared and UV-visible spectroscopic measurements. The 1H NMR, 13C NMR, Dept-90 NMR spectroscopy of the ligands was also recorded to establish the formation of the Schiff bases. The analytical data of the complexes showed that the metal to ligand ratio was 1:1 for Cu(II), Ni(II) and Co(II) complexes of HL1 and Cu(II) complexes of HL2, while Ni(II) and Co(II) complexes of HL2 was 1:2. The infrared spectral data showed that the chelation behaviour of the ligands towards transition metal ions was through phenolic oxygen and azomethine nitrogen atoms. Molar conductivity revealed the non-electrolytic nature of all chelates in DMSO solution. The geometry of the complexes was deduced from thermal, magnetic susceptibility and UV-visible spectroscopic results and was further confirmed with DFT calculations. The compounds were subjected to in-vitro antibacterial screening using agar well diffusion method on some clinically isolated Gram positive and Gram negative bacteria strains. The compounds showed varied antibacterial activities. Molecular docking studies were carried out to study the molecular interaction between the compounds and different enzymes of the bacterial strains. The antioxidant potentials of the compounds were studied using ferrous ion chelating assay and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. However, the complexes had better antioxidant potentials compared to the ligands.

  4. Synthesis, Structural Property, Photophysical Property, Photocatalytic Property of Novel ZnBiErO4 under Visible Light Irradiation

    PubMed Central

    Zhuang, Yan

    2018-01-01

    A novel photocatalyst ZnBiErO4 was firstly synthesized by solid-state reaction method and its structural and photocatalytic properties were analyzed by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV-Vis diffuse reflectance. The results demonstrated that ZnBiErO4 crystallized with tetragonal crystal structure with space group I41/A. The lattice parameters for ZnBiErO4 were proved to be a = b = 10.255738 Å and c = 9.938888 Å. The band gap of ZnBiErO4 was estimated to be about 1.69 eV. Compared with nitrogen doped TiO2, ZnBiErO4 showed excellent photocatalytic activities for degrading methyl blue during visible light irradiation. The photocatalytic degradation of methyl blue with ZnBiErO4 or N-doped TiO2 as catalyst followed the first-order reaction kinetics. Moreover, the apparent first-order rate constant of ZnBiErO4 or N-doped TiO2 was 0.01607 min−1 or 0.00435 min−1. The reduction of total organic carbon, formation of inorganic products, such as SO42− and NO3− and the evolution of CO2 revealed the continuous mineralization of methyl blue during the photocatalytic process. ZnBiErO4 photocatalyst had great potential to purify textile industry wastewater. PMID:29463016

  5. Continuous-flow Heck synthesis of 4-methoxybiphenyl and methyl 4-methoxycinnamate in supercritical carbon dioxide expanded solvent solutions

    PubMed Central

    Lau, Phei Li; Allen, Ray W K

    2013-01-01

    Summary The palladium metal catalysed Heck reaction of 4-iodoanisole with styrene or methyl acrylate has been studied in a continuous plug flow reactor (PFR) using supercritical carbon dioxide (scCO2) as the solvent, with THF and methanol as modifiers. The catalyst was 2% palladium on silica and the base was diisopropylethylamine due to its solubility in the reaction solvent. No phosphine co-catalysts were used so the work-up procedure was simplified and the green credentials of the reaction were enhanced. The reactions were studied as a function of temperature, pressure and flow rate and in the case of the reaction with styrene compared against a standard, stirred autoclave reaction. Conversion was determined and, in the case of the reaction with styrene, the isomeric product distribution was monitored by GC. In the case of the reaction with methyl acrylate the reactor was scaled from a 1.0 mm to 3.9 mm internal diameter and the conversion and turnover frequency determined. The results show that the Heck reaction can be effectively performed in scCO2 under continuous flow conditions with a palladium metal, phosphine-free catalyst, but care must be taken when selecting the reaction temperature in order to ensure the appropriate isomer distribution is achieved. Higher reaction temperatures were found to enhance formation of the branched terminal alkene isomer as opposed to the linear trans-isomer. PMID:24367454

  6. 13C-Methyl Formate: Observations of a Sample of High-mass Star-forming Regions Including orion-KL and Spectroscopic Characterization

    NASA Astrophysics Data System (ADS)

    Favre, Cécile; Carvajal, Miguel; Field, David; Jørgensen, Jes K.; Bisschop, Suzanne E.; Brouillet, Nathalie; Despois, Didier; Baudry, Alain; Kleiner, Isabelle; Bergin, Edwin A.; Crockett, Nathan R.; Neill, Justin L.; Margulès, Laurent; Huet, Thérèse R.; Demaison, Jean

    2014-12-01

    We have surveyed a sample of massive star-forming regions located over a range of distances from the Galactic center for methyl formate, HCOOCH3, and its isotopologues H13COOCH3 and HCOO13CH3. The observations were carried out with the APEX telescope in the frequency range 283.4-287.4 GHz. Based on the APEX observations, we report tentative detections of the 13C-methyl formate isotopologue HCOO13CH3 toward the following four massive star-forming regions: Sgr B2(N-LMH), NGC 6334 IRS 1, W51 e2, and G19.61-0.23. In addition, we have used the 1 mm ALMA science verification observations of Orion-KL and confirm the detection of the 13C-methyl formate species in Orion-KL and image its spatial distribution. Our analysis shows that the 12C/13C isotope ratio in methyl formate toward the Orion-KL Compact Ridge and Hot Core-SW components (68.4 ± 10.1 and 71.4 ± 7.8, respectively) are, for both the 13C-methyl formate isotopologues, commensurate with the average 12C/13C ratio of CO derived toward Orion-KL. Likewise, regarding the other sources, our results are consistent with the 12C/13C in CO. We also report the spectroscopic characterization, which includes a complete partition function, of the complex H13COOCH3 and HCOO13CH3 species. New spectroscopic data for both isotopomers H13COOCH3 and HCOO13CH3, presented in this study, have made it possible to measure this fundamentally important isotope ratio in a large organic molecule for the first time. This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory (under program ID 089.F-9319).

  7. {sup 13}C-METHYL FORMATE: OBSERVATIONS OF A SAMPLE OF HIGH-MASS STAR-FORMING REGIONS INCLUDING ORION-KL AND SPECTROSCOPIC CHARACTERIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favre, Cécile; Bergin, Edwin A.; Crockett, Nathan R.

    2015-01-01

    We have surveyed a sample of massive star-forming regions located over a range of distances from the Galactic center for methyl formate, HCOOCH{sub 3}, and its isotopologues H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3}. The observations were carried out with the APEX telescope in the frequency range 283.4-287.4 GHz. Based on the APEX observations, we report tentative detections of the {sup 13}C-methyl formate isotopologue HCOO{sup 13}CH{sub 3} toward the following four massive star-forming regions: Sgr B2(N-LMH), NGC 6334 IRS 1, W51 e2, and G19.61-0.23. In addition, we have used the 1 mm ALMA science verification observations of Orion-KL and confirm the detection ofmore » the {sup 13}C-methyl formate species in Orion-KL and image its spatial distribution. Our analysis shows that the {sup 12}C/{sup 13}C isotope ratio in methyl formate toward the Orion-KL Compact Ridge and Hot Core-SW components (68.4 ± 10.1 and 71.4 ± 7.8, respectively) are, for both the {sup 13}C-methyl formate isotopologues, commensurate with the average {sup 12}C/{sup 13}C ratio of CO derived toward Orion-KL. Likewise, regarding the other sources, our results are consistent with the {sup 12}C/{sup 13}C in CO. We also report the spectroscopic characterization, which includes a complete partition function, of the complex H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3} species. New spectroscopic data for both isotopomers H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3}, presented in this study, have made it possible to measure this fundamentally important isotope ratio in a large organic molecule for the first time.« less

  8. Synthesis of novel heterocycles through reaction of indolin-2-one derivatives with active methylene and amino reagents.

    PubMed

    Abdel-Latif, F F; Ahmed, E K; Mekheimer, R; Mashaly, M M

    1997-10-01

    Several new spiro compounds were synthesized via one-pot ternary condensation of isatin, malononitrile and each of thiobarbituric acid, barbituric acid, 3-methyl-pyrazolin-5-one, 1-phenyl-3-methyl-pyrazolin-5-one, acetylacetone, benzoylacetone, ethyl acetoacetate, phenacyl cyanide or ethyl-cyanoacetate dimer. Structures and reaction mechanism were reported and supported via a second synthetic route.

  9. Synthesis and Characterization of Perfluoroalkyl Heterocyclic Elastomers

    DTIC Science & Technology

    Perfluoro -4,9,14,19-tetraoxadocosane diimidate-dihydroxybenzidine polymers have been prepared from carefully purified monomers. DTA measurements show...attained was 0.28. Polymers prepared from dihydroxybenzidine and methyl perfluoro -4,9-dioxadodecanediimidate soften at about 65C. with a Tg near 21C...of 3,3’-diamino-4,4’-dihydroxybenzophenone with methyl perfluorosebacimidate . The polymer softens at 205C., forms films and has excellent thermal

  10. Folate restriction and methylenetetrahydrofolate reductase 677T polymorphism decreases adoMet synthesis via folate-dependent remethylation in human-transformed lymphoblasts.

    PubMed

    Chiang, E-P; Wang, Y-C; Tang, F-Y

    2007-04-01

    The homozygous mutation (677TT) in the methylenetetrahydrofolate reductase (MTHFR) gene reduces enzyme activity and alters cellular folate composition. Previous epidemiological studies reported a potential protective effect of MTHFR677C --> T against acute lymphocytic leukemia and malignant lymphoma, but the mechanism remains to be determined. We investigated the biochemical impacts of MTHFR677C --> T on cellular S-adenosyl methionine (adoMet) synthesis, global DNA methylation, and de novo purine synthesis, all of which are potential regulatory pathways involved in tumorigenesis. Metabolic fluxes of homocysteine remethylation and de novo purine synthesis were compared between Epstein-Barr virus-transformed lymphoblasts expressing MTHFR 677C and MTHFR 677T using stable isotopic tracers and GCMS. MTHFR TT genotype significantly reduced folate-dependent remethylation under folate restriction, reflecting limited methylated folates under folate restriction. Data also suggested increased formylated folate pool and increased purine synthesis when folate is adequate. The impacts of MTHFR 677T polymorphism appeared closely related to folate status, and such alterations may modulate metabolic pathways involved in cancer onset/progression. The advantage of de novo purine synthesis found in the MTHFR TT genotype may account for the protective effect of MTHFR in hematological malignancies. These transformed cells are potential models for studying the consequences of human genetic variation and cancer pathogenesis.

  11. Synthesis of functionalized chromenes from Meldrum's acid, 4-hydroxycoumarin, and ketones or aldehydes.

    PubMed

    Sabbaghan, Maryam; Yavari, Issa; Hossaini, Zinatossadat

    2010-11-01

    An efficient synthesis of 4-alkyl-4-methyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromene-2,5-dione or 4-aryl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromene-2,5-diones via reaction 4-hydroxycoumarin with Meldrum's acid and ketones or aldehydes is described.

  12. Histone lysine methylation: critical regulator of memory and behavior.

    PubMed

    Jarome, Timothy J; Lubin, Farah D

    2013-01-01

    Histone lysine methylation is a well-established transcriptional mechanism for the regulation of gene expression changes in eukaryotic cells and is now believed to function in neurons of the central nervous system to mediate the process of memory formation and behavior. In mature neurons, methylation of histone proteins can serve to both activate and repress gene transcription. This is in stark contrast to other epigenetic modifications, including histone acetylation and DNA methylation, which have largely been associated with one transcriptional state in the brain. In this review, we discuss the evidence for histone methylation mechanisms in the coordination of complex cognitive processes such as long-term memory formation and storage. In addition, we address the current literature highlighting the role of histone methylation in intellectual disability, addiction, schizophrenia, autism, depression, and neurodegeneration. Further, we discuss histone methylation within the context of other epigenetic modifications and the potential advantages of exploring this newly identified mechanism of cognition, emphasizing the possibility that this molecular process may provide an alternative locus for intervention in long-term psychopathologies that cannot be clearly linked to genes or environment alone.

  13. Synthesis, radiolabeling, and preliminary biological evaluation of [3H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine, a potent antagonist radioligand for the P2X7 receptor.

    PubMed

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Pavani, Maria Giovanna; Tabrizi, Mojgan Aghazadeh; Moorman, Allan R; Di Virgilio, Francesco; Cattabriga, Elena; Pancaldi, Cecilia; Gessi, Stefania; Borea, Pier Andrea

    2004-11-15

    The design, synthesis, and preliminary biological evaluation of the first potent radioligand antagonist for the P2X(7) receptor, named [(3)H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine (compound 13), are reported. This compound bound to human P2X(7) receptors expressed in HEK transfected cells with K(D) and B(max) value of 3.46+/-0.1 nM and 727+/-73 fmol/mg of protein, respectively. The high affinity and facile labeling makes it a promising radioligand for a further characterization of P2X(7) receptor subtype.

  14. Extensive genetic and DNA methylation variation contribute to heterosis in triploid loquat hybrids.

    PubMed

    Liu, Chao; Wang, Mingbo; Wang, Lingli; Guo, Qigao; Liang, Guolu

    2018-04-24

    We aim to overcome the unclear origin of the loquat and elucidate the heterosis mechanism of the triploid loquat. Here we investigated the genetic and epigenetic variations between the triploid plant and its parental lines using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified fragment length polymorphism (MSAP) analyses. We show that in addition to genetic variations, extensive DNA methylation variation occurred during the formation process of triploid loquat, with the triploid hybrid having increased DNA methylation compared to the parents. Furthermore, a correlation existed between genetic variation and DNA methylation remodeling, suggesting that genome instability may lead to DNA methylation variation or vice versa. Sequence analysis of the MSAP bands revealed that over 53% of them overlap with protein-coding genes, which may indicate a functional role of the differential DNA methylation in gene regulation and hence heterosis phenotypes. Consistent with this, the genetic and epigenetic alterations were associated closely to the heterosis phenotypes of triploid loquat, and this association varied for different traits. Our results suggested that the formation of triploid is accompanied by extensive genetic and DNA methylation variation, and these changes contribute to the heterosis phenotypes of the triploid loquats from the two cross lines.

  15. The formation of SOA and chemical tracer compounds from the photooxidation of naphthalene and its methyl analogs in the presence and absence of nitrogen oxides

    EPA Science Inventory

    Laboratory smog chamber experiments have been carried out to investigate secondary organic aerosol (SOA)formation from the photooxidation of naphthalene and its methyl analogs, 1- and 2-methylnaphthalene (1-MN and 2- MN, respectively). Laboratory smog chamber irradiations were co...

  16. Formation and Recondensation of Complex Organic Molecules During Protostellar Luminosity Outbursts

    NASA Technical Reports Server (NTRS)

    Taquet, Vianney; Wirstrom, Eva S.; Charnley, Steven B.

    2016-01-01

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion-molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.

  17. Formation and Recondensation of Complex Organic Molecules during Protostellar Luminosity Outbursts

    NASA Astrophysics Data System (ADS)

    Taquet, Vianney; Wirström, Eva S.; Charnley, Steven B.

    2016-04-01

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion-molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.

  18. Oxygenates vs. synthesis gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamil Klier; Richard G. Herman; Alessandra Beretta

    1999-04-01

    Methanol synthesis from H{sub 2}/CO has been carried out at 7.6 MPa over zirconia-supported copper catalysts. Catalysts with nominal compositions of 10/90 mol% and 30/70 mol% Cu/ZrO{sub 2} were used in this study. Additionally, a 3 mol% cesium-doped 10/90 catalyst was prepared to study the effect of doping with heavy alkali, and this promoter greatly increased the methanol productivity. The effects of CO{sub 2} addition, water injection, reaction temperature, and H{sub 2}/C0 ratio have been investigated. Both CO{sub 2} addition to the synthesis gas and cesium doping of the catalyst promoted methanol synthesis, while inhibiting the synthesis of dimethyl ether.more » Injection of water, however, was found to slightly suppress methanol and dimethyl ether formation while being converted to CO{sub 2} via the water gas shift reaction over these catalysts. There was no clear correlation between copper surface area and catalyst activity. Surface analysis of the tested samples revealed that copper tended to migrate and enrich the catalyst surface. The concept of employing a double-bed reactor with a pronounced temperature gradient to enhance higher alcohol synthesis was explored, and it was found that utilization of a Cs-promoted Cu/ZnO/Cr{sub 2}O{sub 3} catalyst as a first lower temperature bed and a Cs-promoted ZnO/Cr{sub 2}O{sub 3} catalyst as a second high-temperature bed significantly promoted the productivity of 2-methyl-1-propanol (isobutanol) from H{sub 2}/CO synthesis gas mixtures. While the conversion of CO to C{sub 2+} oxygenates over the double-bed configuration was comparable to that observed over the single Cu-based catalyst, major changes in the product distribution occurred by the coupling to the zinc chromite catalyst; that is, the productivity of the C{sub 1}-C{sub 3} alcohols decreased dramatically, and 2-methyl branched alcohols were selectively formed. The desirable methanol/2-methyl oxygenate molar ratios close to 1 were obtained in the present double-bed system that provides the feedstock for the synthesis of high octane and high cetane ethers, where the isobutanol productivity was as high as 139 g/kg cat/hr. Higher alcohol synthesis has been investigated over a Cs/Cu/ZnO/Cr{sub 2}O{sub 3} catalyst at temperatures higher (up to 703K) than those previously utilized, and no sintering of the catalyst was observed during the short-term testing. However, the higher reaction temperatures led to lower CO conversion levels and lower yield of alcohols, especially of methanol, because of equilibrium limitations. With the double catalyst bed configuration, the effect of pressure in the range of 7.6--12.4 MPa on catalyst activity and selectivity was studied. The upper bed was composed of the copper-based catalyst at 598K, and the lower bed consisted of a copper-free Cs-ZnO/Cr{sub 2}O{sub 3} catalyst at a high temperature of 678K. High pressure was found to increase CO conversion to oxygenated products, although the increase in isobutanol productivity did not keep pace with that of methanol. It was also shown that the Cs/Cu/ZnO/Cr{sub 2}O{sub 3} catalyst could be utilized to advantage as the second-bed catalyst at 613--643K instead of the previously used copper-free Cs-ZnO/ Cr{sub 2}O{sub 3} catalyst at higher temperature, With double Cs/Cu/ZnO/Cr{sub 2}O{sub 3} catalysts, high space time yields of up to 202 g/kg cat/hr, with high selectivity to isobutanol, were achieved.« less

  19. Effect of surfactants and natural detergents on phosphatidylcholine synthesis in photoreceptor membranes.

    PubMed

    Roque, M E; Castagnet, P I; Giusto, N M

    2001-07-01

    The synthesis of phosphatidylcholine (PC) in rod outer segments (ROS) catalysed by lysophosphatidylcholine acyltransferase and phosphatidylethanolamine N-methyltransferase (PE N-MTase) was studied and the effects of natural (FA and lysophospholipids) and synthetic (Triton X-100, deoxycholate and CHAPS) surfactants was evaluated. In all experimental conditions used, incorporation of labelled oleate into lysophosphatidylcholine (lysoPC) was at least 40 times greater than oleate incorporation into any other lysophospholipid. Acylation of lysoPC was slightly affected by Triton X-100 and was totally inhibited in the presence of 10 mM sodium deoxycholate (NaDOC) or CHAPS. Below their critical micelle concentration (cmc) Triton X-100 and NaDOC stimulated acylation of all ROS lysophospholipids analysed. The activity of PE N-MTase was stimulated at detergent concentrations below the cmc and inhibited at concentrations above the cmc for all three detergents tested. The effect of FA with differing degree of unsaturation on PC synthesis was evaluated. Oleic acid (10 microM) inhibited methyl group incorporation into total PC, whereas from 100 microM onward, the methylating activity increased with preferential synthesis of PC. Docosahexaenoic acid, in turn, inhibited PE N-MTase activity at every concentration tested. These results suggest that PC synthesis in ROS membranes is modified by bioregulators and surfactants altering the physico-chemical state of the membrane.

  20. Mercury methylation in sediments of a Brazilian mangrove under different vegetation covers and salinities.

    PubMed

    de Oliveira, Diana Ciannella Martins; Correia, Raquel Rose Silva; Marinho, Claudio Cardoso; Guimarães, Jean Remy Davée

    2015-05-01

    The presence and formation of methylmercury (MMHg), a highly toxic form of Hg, in mangrove ecosystems is poorly studied. Therefore the aim of this study was to evaluate mercury methylation potentials in sediment, litter and root samples (Avicennia shaueriana and Spartina alterniflora) from different regions of a mangrove ecosystem, as well as the influence of salinity on methylation. Sediment was sampled under different depths and in mangrove regions with different plant covers and salinities. All samples were incubated with (203)Hg and MM(203)Hg was extracted and measured by liquid scintillation. MMHg was formed in all samples and sites tested including plant roots and litter. Higher Hg methylation was found in the superficial fraction of sediments (0.47-7.82%). Infralittoral sandy sediment had low MMHg formation (0.44-1.61%). Sediment under Rhizophora mangle had lower MMHg formation (0.018-2.23%) than under A. shaueriana (0.2-4.63%) and Laguncularia racemosa (0.08-7.82). MMHg formation in sediment tended to increase with salinity but the differences were not significant. Therefore, MMHg formation occurs in different sites of mangrove ecosystems and may be an important threat that requires further study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The α-Effect and Competing Mechanisms: The Gas-Phase Reactions of Microsolvated Anions with Methyl Formate

    NASA Astrophysics Data System (ADS)

    Thomsen, Ditte L.; Nichols, Charles M.; Reece, Jennifer N.; Hammerum, Steen; Bierbaum, Veronica M.

    2014-02-01

    The enhanced reactivity of α-nucleophiles, which contain an electron lone pair adjacent to the reactive site, has been demonstrated in solution and in the gas phase and, recently, for the gas-phase SN2 reactions of the microsolvated HOO-(H2O) ion with methyl chloride. In the present work, we continue to explore the significance of microsolvation on the α-effect as we compare the gas-phase reactivity of the microsolvated α-nucleophile HOO-(H2O) with that of microsolvated normal alkoxy nucleophiles, RO-(H2O), in reactions with methyl formate, where three competing reactions are possible. The results reveal enhanced reactivity of HOO-(H2O) towards methyl formate, and clearly demonstrate the presence of an overall α-effect for the reactions of the microsolvated α-nucleophile. The association of the nucleophiles with a single water molecule significantly lowers the degree of proton abstraction and increases the SN2 and BAC2 reactivity compared with the unsolvated analogs. HOO-(H2O) reacts with methyl formate exclusively via the BAC2 channel. While microsolvation lowers the overall reaction efficiency, it enhances the BAC2 reaction efficiency for all anions compared with the unsolvated analogs. This may be explained by participation of the solvent water molecule in the BAC2 reaction in a way that continuously stabilizes the negative charge throughout the reaction.

  2. Synthesis of chlorophyll-a derivatives methylated in the 3-vinyl group and their intrinsic site energy.

    PubMed

    Tamiaki, Hitoshi; Tsuji, Kazuki; Kuno, Masaki; Kimura, Yuki; Watanabe, Hiroaki; Miyatake, Tomohiro

    2016-07-01

    Wittig reaction of methyl pyropheophorbide-d possessing the 3-formyl group gave readily methyl pyropheophorbides-a bearing a variety of 3-alkenyl groups as semi-synthetic models of chlorophyll-a. The 3-substituents rotated around the C3-C3(1) bond from the coplanar conformation with the chlorin π-system, moving the redmost visible absorption maxima to a shorter wavelength. The model experiments showed that natural chlorophyll-a carrying the 3-vinyl group would take a similar rotamer to control its intrinsic site energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Synthesis and antimicrobial studies of some Mannich bases carrying imidazole moiety.

    PubMed

    Frank, Priya V; Manjunatha Poojary, Mahesha; Damodara, Naral; Chikkanna, Chandrashekhar

    2013-06-01

    3 Starting from 2-methyl-4-nitro-imidazole, new 5-(2-methyl- 4-nitro-1-imidazomethyl)-1,3,4-oxadiazole-2-thione () was synthesized and was subjected to Mannich reaction with appropriate amines to yield a new series of 3-substituted aminomethyl-5-(2-methyl-4-nitro-1-imidazomethyl)- 1,3,4-oxadiazole-2-thiones (4a-j). The structure of the title compounds was elucidated by elemental analysis and spectral data. The newly synthesized Mannich bases were screened for their antibacterial and antifungal activity. Many of these compounds exhibited potent antifungal activity.

  4. Assessment of the aroma impact of major odor-active thiols in pan-roasted white sesame seeds by calculation of odor activity values.

    PubMed

    Tamura, Hitoshi; Fujita, Akira; Steinhaus, Martin; Takahisa, Eisuke; Watanabe, Hiroyuki; Schieberle, Peter

    2011-09-28

    Eleven odor-active thiols, namely, 2-methyl-1-propene-1-thiol, (Z)-3-methyl-1-butene-1-thiol, (E)-3-methyl-1-butene-1-thiol, (Z)-2-methyl-1-butene-1-thiol, (E)-2-methyl-1-butene-1-thiol, 2-methyl-3-furanthiol, 3-mercapto-2-pentanone, 2-mercapto-3-pentanone, 4-mercapto-3-hexanone, 3-mercapto-3-methylbutyl formate, and 2-methyl-3-thiophenethiol, recently identified in an extract prepared from white sesame seeds, were quantitated in sesame using stable isotope dilution analyses. For that purpose, the following deuterium-labeled compounds were synthesized and used as internal standards in the quantitation assays: [2H6]-2-methyl-1-propene-1-thiol, [2H3]-(E)- and [2H3]-(Z)-2-methyl-1-butene-1-thiol, [2H3]-2-methyl-3-furanthiol, [2H2]-3-mercapto-2-pentanone, [2H3]-4-mercapto-3-hexanone, [2H6]-3-mercapto-3-methylbutyl formate, and [2H3]-2-methyl-3-thiophenethiol. On the basis of the results obtained, odor activity values (OAVs) were calculated as ratio of the concentration and odor threshold of the individual compounds in cooking oil. According to their high OAVs, particularly the 3-methyl-1-butene-1-thiols (OAV: 2400) and the 2-methyl-1-butene-1-thiols (OAV: 960) were identified as the most odor-active compounds in pan-roasted white sesame seeds. These compounds were therefore suggested to be mainly responsible for the characteristic but rather unstable sulfury aroma of freshly pan-roasted white sesame seeds.

  5. The importance of being thiomethylated: formation, fate, and effects of methylated thioarsenicals

    EPA Science Inventory

    AbstractAlthough inorganic arsenic has long been recognized as a potent toxicant and carcinogen in humans, recent evidence shows that at least some of its effects are mediated by methylated metabolites. Elucidating the conversion of inorganic arsenic to mono-, di-, and tri-methyl...

  6. The synthesis and characterization of environmentally-responsive water-swellable and water-soluble polymers for wastewater remediation

    NASA Astrophysics Data System (ADS)

    Armentrout, Rodney Scott

    The primary research goal is the development of new polymeric materials that demonstrate the environmentally-responsive sequestration of common water foulants, including surfactants and oils. Water-swellable and water-soluble polymers have been synthesized, structurally characterized, and their physical properties have been determined. In addition, the ability of the materials to sequester model water foulants has been evaluated. Anionic crosslinked polymer networks of 2-acrylamido-2-methyl-1-propanesulfonic acid, acrylamide, and methylene bisacrylamide have been synthesized and characterized by determining the equilibrium water contents as a function of ionic content of the polymer network. The molar ratio of bound surfactant to ionic group was determined to be less than one for all hydrogels studied, indicating an ion-exchange binding mechanism with minimal hydrophobic interactions between bound and unbound surfactant molecules is responsible for surfactant binding. Cationic crosslinked cyclopolymer networks of N,N-diallyl- N-methyl amine (DAMA) and N,N,N,N-tetraallyl ammonium chloride (TAAC) have been synthesized and characterized by determining the equilibrium water content as a function of pH. A maximum in the equilibrium water content is observed for pH-6 when the polymer is fully ionized. The solubilization of a model water foulant, p-cresol, by the polymeric surfactant, Pluronic F127, has been studied via equilibrium dialysis, dynamic light scattering and ultrafiltration experiments. It has been shown that at 25°C p-cresol is readily solubilized by F127 since the polymeric surfactant exists in a multimer conformation. Ultrafiltration experiments have demonstrated that the polymer-foulant binding interactions are largely unaffected by shear in a hollow fiber membrane. Copolymers of the zwitterionic monomer, 3-(N,N-diallyl- N-methyl ammonio) propane sulfonate (DAMAPS) and N,N-diallyl- N,N-dimethylammonium chloride (DADMAC) (the DADS series) or the pH-responsive hydrophobic monomer, N,N-diallyl-N-methyl amine (DAMA) (the DAMS series) have been prepared in a 0.5 M NaCl aqueous solution using 2-hydroxy-1-[4-(hydroxy-ethoxy)phenyl]-2-methyl-1-propanone (Irgacure 2959) as the free-radical photoinitiator. 13C NMR data indicate that the resulting polymers maintain the five-membered ring structure in the cis conformation common to diallylammonium salts. Equilibrium dialysis experiments demonstrate that pH-responsive hydrophobic microdomain formation may be utilized to control the solubilization of the organic solute, p-cresol. Ultrafiltration experiments have demonstrated that the polymer-foulant binding interactions are largely unaffected by shear in a hollow fiber membrane. Macromolecular aggregates of the poly( N,N-diallyl-N-methyl amine)/p-cresol complexes lead to fouling of the ultrafiltration membrane. However, incorporation of the sulfobetaine moiety hinders the formation of the macroscopic structures and higher permeate flux rates are achieved. (Abstract shortened by UMI.)

  7. Methylation-Sensitive Amplification Length Polymorphism (MS-AFLP) Microarrays for Epigenetic Analysis of Human Genomes.

    PubMed

    Alonso, Sergio; Suzuki, Koichi; Yamamoto, Fumiichiro; Perucho, Manuel

    2018-01-01

    Somatic, and in a minor scale also germ line, epigenetic aberrations are fundamental to carcinogenesis, cancer progression, and tumor phenotype. DNA methylation is the most extensively studied and arguably the best understood epigenetic mechanisms that become altered in cancer. Both somatic loss of methylation (hypomethylation) and gain of methylation (hypermethylation) are found in the genome of malignant cells. In general, the cancer cell epigenome is globally hypomethylated, while some regions-typically gene-associated CpG islands-become hypermethylated. Given the profound impact that DNA methylation exerts on the transcriptional profile and genomic stability of cancer cells, its characterization is essential to fully understand the complexity of cancer biology, improve tumor classification, and ultimately advance cancer patient management and treatment. A plethora of methods have been devised to analyze and quantify DNA methylation alterations. Several of the early-developed methods relied on the use of methylation-sensitive restriction enzymes, whose activity depends on the methylation status of their recognition sequences. Among these techniques, methylation-sensitive amplification length polymorphism (MS-AFLP) was developed in the early 2000s, and successfully adapted from its original gel electrophoresis fingerprinting format to a microarray format that notably increased its throughput and allowed the quantification of the methylation changes. This array-based platform interrogates over 9500 independent loci putatively amplified by the MS-AFLP technique, corresponding to the NotI sites mapped throughout the human genome.

  8. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans.

    PubMed

    Walker, Amy K; Jacobs, René L; Watts, Jennifer L; Rottiers, Veerle; Jiang, Karen; Finnegan, Deirdre M; Shioda, Toshi; Hansen, Malene; Yang, Fajun; Niebergall, Lorissa J; Vance, Dennis E; Tzoneva, Monika; Hart, Anne C; Näär, Anders M

    2011-11-11

    Sterol regulatory element-binding proteins (SREBPs) activate genes involved in the synthesis and trafficking of cholesterol and other lipids and are critical for maintaining lipid homeostasis. Aberrant SREBP activity, however, can contribute to obesity, fatty liver disease, and insulin resistance, hallmarks of metabolic syndrome. Our studies identify a conserved regulatory circuit in which SREBP-1 controls genes in the one-carbon cycle, which produces the methyl donor S-adenosylmethionine (SAMe). Methylation is critical for the synthesis of phosphatidylcholine (PC), a major membrane component, and we find that blocking SAMe or PC synthesis in C. elegans, mouse liver, and human cells causes elevated SREBP-1-dependent transcription and lipid droplet accumulation. Distinct from negative regulation of SREBP-2 by cholesterol, our data suggest a feedback mechanism whereby maturation of nuclear, transcriptionally active SREBP-1 is controlled by levels of PC. Thus, nutritional or genetic conditions limiting SAMe or PC production may activate SREBP-1, contributing to human metabolic disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia

    PubMed Central

    Pearce, Kaycey; Cai, Diancai; Roberts, Adam C; Glanzman, David L

    2017-01-01

    Previously, we reported that long-term memory (LTM) in Aplysia can be reinstated by truncated (partial) training following its disruption by reconsolidation blockade and inhibition of PKM (Chen et al., 2014). Here, we report that LTM can be induced by partial training after disruption of original consolidation by protein synthesis inhibition (PSI) begun shortly after training. But when PSI occurs during training, partial training cannot subsequently establish LTM. Furthermore, we find that inhibition of DNA methyltransferase (DNMT), whether during training or shortly afterwards, blocks consolidation of LTM and prevents its subsequent induction by truncated training; moreover, later inhibition of DNMT eliminates consolidated LTM. Thus, the consolidation of LTM depends on two functionally distinct phases of protein synthesis: an early phase that appears to prime LTM; and a later phase whose successful completion is necessary for the normal expression of LTM. Both the consolidation and maintenance of LTM depend on DNA methylation. DOI: http://dx.doi.org/10.7554/eLife.18299.001 PMID:28067617

  10. Inhibition of the 3-hydroxy-3-methyl-glutaryl-CoA reductase induces orofacial defects in zebrafish.

    PubMed

    Signore, Iskra A; Jerez, Carolina; Figueroa, Diego; Suazo, José; Marcelain, Katherine; Cerda, Oscar; Colombo Flores, Alicia

    2016-10-01

    Orofacial clefts (OFCs) are common birth defects, which include a range of disorders with a complex etiology affecting formation of craniofacial structures. Some forms of syndromic OFCs are produced by defects in the cholesterol pathway. The principal enzyme of the cholesterol pathway is the 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR). Our aim is to study whether defects of HMGCR function would produce orofacial malformation similar to those found in disorders of cholesterol synthesis. We used zebrafish hmgcrb mutants and HMGCR inhibition assay using atorvastatin during early and late stages of orofacial morphogenesis in zebrafish. To describe craniofacial phenotypes, we stained cartilage and bone and performed in situ hybridization using known craniofacial markers. Also, we visualized neural crest cell migration in a transgenic fish. Our results showed that mutants displayed loss of cartilage and diminished orofacial outgrowth, and in some cases palatal cleft. Late treatments with statin show a similar phenotype. Affected-siblings displayed a moderate phenotype, whereas early-treated embryos had a minor cleft. We found reduced expression of the downstream component of Sonic Hedgehog-signaling gli1 in ventral brain, oral ectoderm, and pharyngeal endoderm in mutants and in late atorvastatin-treated embryos. Our results suggest that HMGCR loss-of-function primarily affects postmigratory cranial neural crest cells through abnormal Sonic Hedgehog signaling, probably induced by reduction in metabolites of the cholesterol pathway. Malformation severity correlates with the grade of HMGCR inhibition, developmental stage of its disruption, and probably with availability of maternal lipids. Together, our results might help to understand the spectrum of orofacial phenotypes found in cholesterol synthesis disorders. Birth Defects Research (Part A) 106:814-830, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Gestational exposure to inorganic arsenic (iAs3+) alters glutamate disposition in the mouse hippocampus and ionotropic glutamate receptor expression leading to memory impairment.

    PubMed

    Nelson-Mora, Janikua; Escobar, Martha L; Rodríguez-Durán, Luis; Massieu, Lourdes; Montiel, Teresa; Rodríguez, Verónica M; Hernández-Mercado, Karina; Gonsebatt, María E

    2018-03-01

    Early life exposure to environmental pollutants and toxic chemicals has been linked to learning and behavioral alterations in children. iAs exposure is associated with different types neurological disorders such as memory and learning impairment. iAs is methylated in the brain by the arsenic III-methyltransferase in a process that requires glutathione (GSH). The xCT-antiporter cell membrane transporter participates in the influx of cystine for GSH synthesis in exchange for glutamate in a 1:1 ratio. In CD-1 mice gestationally exposed to 20 ppm of sodium arsenite in drinking water, we have previously observed up-regulation of xCT in the male mouse hippocampus which caused glutamatergic synapse alterations affecting learning and memory processes. Here, we used the same gestational iAs exposure model to investigate whether the up-regulation of xCT and down-regulation of GLT-1 transporters were associated with higher levels of extracellular glutamate and changes in the expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor, responsible for excitatory fast synaptic transmission. The induction of LTP in the perforant-dentate gyrus pathway (PP-DG) of the hippocampus was also studied, as well as learning and memory formation using the water maze test. Changes in GSH levels were also tested in the hippocampus of animals exposed to iAs. Results showed increased GSH synthesis (p < 0.05), associated with significantly higher extracellular glutamate levels in iAs exposed mice. Exposure was also significantly associated with AMPA subunits down-regulation, deficient LTP induction, and lower excitability of the PP-DG pathway. In addition, animals showed deficient learning and memory in the Morris Water Maze test.

  12. Synthesis of Improved Antileishmanial and Antitrypanosomal Drugs, Treatment and Prophylaxis

    DTIC Science & Technology

    1988-02-01

    methyl-8-nitroquinoline was hydrogenated using Raney nickel catalyst to give the corresponding 8-aminoquinoline J_ in 84$ yield as described under... nickel catalyst using a procedure (slightly modified) developed under a prior contract (10). The crude product was chromatographed over silica gel...8-Amino-6-methoxy-4-methylquinoline (1): - The title compd was prepared by the reduction of 6-methoxy-4-methyl-8-nitroquinoline (16 g) with Raney

  13. (-)-3 beta,4 beta-epoxyvalerenic acid from Valeriana officinalis.

    PubMed

    Dharmaratne, H Ranjith; Nanayakkara, N P; Khan, Ikhlas A

    2002-07-01

    Chemical investigation of the root extract of Valeriana officinalis afforded a new bicyclic sesquiterpene acid, (-)-3 beta,4 beta-epoxyvalerenic acid together with valerenic acid and hexadecanoic acid. The structure of the new compound was elucidated by spectroscopic data and confirmed by partial synthesis of its methyl ester from valerenic acid. Methyl (-)-3 alpha,4 alpha-epoxyvalerenate was obtained as a minor product from the above reaction.

  14. Sage Gene Expression Profiles Characterizing Cure

    DTIC Science & Technology

    2005-10-01

    achieved in haematological malignancies. In addition, tumour cell lines showed a log-linear dose re- sponse when exposed to alkylating agents [26,27...direct carcinogen, N-methyl nitrosourea (NMU) and an indirect carcinogen, 7,12- dimethylbenzanthracene each depend upon the estrous cycle phase at the...a single dose of N-methyl-N- nitrosourea . Cancer Res 45: 3042–3047, 1995 8. Nagasawa H, Yanai R, Taniguchi H: Importance of mammary gland DNA synthesis

  15. Synthesis of isosteric selenium analog of the PPARbeta/delta agonist GW501516 and comparison of biological activity.

    PubMed

    Sharma, Arun K; Sk, Ugir Hossain; He, Pengfei; Peters, Jeffrey M; Amin, Shantu

    2010-07-15

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors and members of the nuclear hormone receptor superfamily. Herein, we describe an efficient synthesis of a novel isosteric selenium analog of the highly specific PPARbeta/delta ligand 2-methyl-4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-thiazol-5-yl)-methylsulfanyl)phenoxy-acetic acid (GW501516; 1). The study examined the efficiency of the novel selenium analog 2-methyl-4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-selenazol-5-yl)-methylsulfanyl)phenoxy-acetic acid (2) to activate PPARbeta/delta and the effect of ligand activation of PPARbeta/delta on cell proliferation and target gene expression in human HaCaT keratinocytes. The results showed that similar to GW501516, the Se-analog 2 increased expression of the known PPARbeta/delta target gene angiopoietin-like protein 4 (ANGPTL4); the compound 2 was comparable in efficacy as compared to GW501516. Consistent with a large body of evidence, the Se-analog inhibited cell proliferation in HaCaT keratinocytes similar to that observed with GW501516. In summary, the novel Se-analog 2 has been developed as a potent PPARbeta/delta ligand that may possess additional anti-cancer properties of selenium. 2010 Elsevier Ltd. All rights reserved.

  16. Poly(methyl methacrylate) coating of soft magnetic amorphous and crystalline Fe,Co-B nanoparticles by chemical reduction.

    PubMed

    Fernández Barquín, L; Yedra Martínez, A; Rodríguez Fernández, L; Rojas, D P; Murphy, F J; Alba Venero, D; Ruiz González, L; González-Calbet, J; Fdez-Gubieda, M L; Pankhurst, Q A

    2012-03-01

    The structural and magnetic properties of a collection of nanoparticles coated by Poly(methyl methacrylate) through a wet chemical synthesis have been investigated. The particles display either an amorphous (M = Fe, Co) M-B arrangement or a mixed structure bcc-Fe and fcc-Co + amorphous M-B. Both show the presence of a metal oxi-hydroxide formed in aqueous reduction. The organic coating facilitates technological handling. The cost-effective synthesis involves a reduction in a Poly(methyl methacrylate) aqueous solution of iron(II) or cobalt(II) sulphates (< 0.5 M) by sodium borohydride (< 0.5 M). The particles present an oxidized component, as deduced from X-ray diffraction, Mössbauer and Fe- and Co K-edge X-ray absorption spectroscopy and electron microscopy. For the ferrous alloys, this Fe-oxide is alpha-goethite, favoured by the aqueous solution. The Poly(methyl methacrylate) coating is confirmed by Fourier transform infrared spectroscopy. In pure amorphous core alloys there is a drastic change of the coercivity from bulk to around 30 Oe in the nanoparticles. The mixed structured alloys also lie in the soft magnetic regime. Magnetisation values at room temperature range around 100 emu/g. The coercivity stems from multidomain particles and their agglomeration, triggering the dipolar interactions.

  17. The gas phase origin of complex organic molecules precursors in prestellar cores

    NASA Astrophysics Data System (ADS)

    Bacmann, A.; Faure, A.

    2015-05-01

    Complex organic molecules (COMs) have long been observed in the warm regions surrounding nascent protostars. The recent discovery of oxygen-bearing COMs like methyl formate or dimethyl ether in prestellar cores (Bacmann et al. [2]), where gas and dust temperatures rarely exceed 10-15 K, has challenged the previously accepted models according to which COM formation relied on the diffusion of heavy radicals on warm (˜30 K) grains. Following these detections, new questions have arisen: do non-thermal processes play a role in increasing radical mobility or should new gas-phase routes be explored? The radicals involved in the formation of the aforementioned COMs, HCO and CH3O represent intermediate species in the grain-surface synthesis of methanol which proceeds via successive hydrogenations of CO molecules in the ice. We present here observations of methanol and its grain-surface precursors HCO, H2CO, CH3O in a sample of prestellar cores and derive their relative abundances. We find that the relative abundances HCO:H2CO:CH3O:CH3OH are constant across the core sample, close to 10:100:1:100. Our results also show that the amounts of HCO and CH3O are consistent with a gas-phase synthesis of these species from H2CO and CH3OH via radical-neutral or ion-molecule reactions followed by dissociative recombinations. Thus, while grain chemistry is necessary to explain the abundances of the parent volatile CH3OH, and possibly H2CO, the reactive species HCO and CH3O might be daughter molecules directly produced in the gas-phase.

  18. Convenient synthesis of 6-nor-9,10-dihydrolysergic acid methyl ester.

    PubMed

    Crider, A M; Grubb, R; Bachmann, K A; Rawat, A K

    1981-12-01

    6-Nor-9,10-dihydrolysergic acid methyl ester (IV) was prepared by demethylation of 9,10-dihydrolysergic acid methyl ester (II) with 2,2,2-trichloroethyl chloroformate, followed by reduction of the intermediate carbamate (III) with zinc in acetic acid. The 6-ethyl-V and 6-n-propyl-VI derivatives were prepared by alkylation of IV with the appropriate halide. All of the ergoline derivatives were evaluated for stereotyped behavior in rats, with 6-nor-6-ethyl-9,10-dihydrolysergic acid methyl ester (V) being active but much less potent than apomorphine. Compound VI was evaluated for its effect on blood pressure; at a dose of 30 mg/kg ip, it significantly lowered, diastolic pressure in normotensive rats.

  19. Reactions of guanine with methyl chloride and methyl bromide: O6-methylation versus charge transfer complex formation

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.; Mishra, P. C.; Suhai, S.

    Density functional theory (DFT) at the B3LYP/6-31+G* and B3LYP/AUG-cc-pVDZ levels was employed to study O6-methylation of guanine due to its reactions with methyl chloride and methyl bromide and to obtain explanation as to why the methyl halides cause genotoxicity and possess mutagenic and carcinogenic properties. Geometries of the various isolated species involved in the reactions, reactant complexes (RCs), and product complexes (PCs) were optimized in gas phase. Transition states connecting the reactant complexes with the product complexes were also optimized in gas phase at the same levels of theory. The reactant complexes, product complexes, and transition states were solvated in aqueous media using the polarizable continuum model (PCM) of the self-consistent reaction field theory. Zero-point energy (ZPE) correction to total energy and the corresponding thermal energy correction to enthalpy were made in each case. The reactant complexes of the keto form of guanine with methyl chloride and methyl bromide in water are appreciably more stable than the corresponding complexes involving the enol form of guanine. The nature of binding in the product complexes was found to be of the charge transfer type (O6mG+ · X-, X dbond Cl, Br). Binding of HCl, HBr, and H2O molecules to the PCs obtained with the keto form of guanine did not alter the positions of the halide anions in the PCs, and the charge transfer character of the PCs was also not modified due to this binding. Further, the complexes obtained due to the binding of HCl, HBr, and H2O molecules to the PCs had greater stability than the isolated PCs. The reaction barriers involved in the formation of PCs were found to be quite high (?50 kcal/mol). Mechanisms of genotoxicity, mutagenesis and carcinogenesis caused by the methyl halides appear to involve charge transfer-type complex formation. Thus the mechanisms of these processes involving the methyl halides appear to be quite different from those that involve the other strongly carcinogenic methylating agents.

  20. Synthesis of Natural and Unnatural Cyclooligomeric Depsipeptides Enabled by Flow Chemistry

    PubMed Central

    Lücke, Daniel; Dalton, Toryn; Ley, Steven V.

    2016-01-01

    Abstract Flow chemistry has been successfully integrated into the synthesis of a series of cyclooligomeric depsipeptides of three different ring sizes including the natural products beauvericin (1 a), bassianolide (2 b) and enniatin C (1 b). A reliable flow chemistry protocol was established for the coupling and macrocyclisation to form challenging N‐methylated amides. This flexible approach has allowed the rapid synthesis of both natural and unnatural depsipeptides in high yields, enabling further exploration of their promising biological activity. PMID:26844421

  1. Manganese enhances peroxynitrite and leukotriene E4 formation in bovine aortic endothelial cells exposed to arsenic.

    PubMed

    Bunderson, Melisa; Pereira, Flavia; Schneider, Mark C; Shaw, Pamela K; Coffin, J Douglas; Beall, Howard D

    2006-01-01

    Long-term exposure to arsenic in drinking water has been linked to cancer and other health effects, including cardiovascular disease. Arsenic in the environment is found in combination with a range of metals that could influence its toxicity. Manganese, in particular, is a metal that is typically found in conjunction with arsenic in contaminated groundwater. Peroxynitrite is a powerful oxidant formed from the reaction between nitric oxide and superoxide anion. Arsenic has been shown to increase the formation of peroxynitrite in bovine aortic endothelial cells (BAECs) and promote the formation of 3-nitrotyrosine (3-NY) in the atherosclerotic plaque of ApoE-/-/LDLr-/- mice. Arsenic exposure also increases leukotriene E4 (LTE4) formation in both the mice and BAECs, an effect that is partially reversed by the addition of Nomega-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor. In the present study, we investigated the effect of adding nontoxic concentrations of manganese along with arsenic to BAEC cultures. Manganese increased arsenic toxicity and enhanced peroxynitrite, 3-NY, and LTE4 formation in BAECs. Addition of LNAME reduced 3-NY formation induced by arsenic/manganese mixtures, but in contrast to its effect on arsenic alone, L-NAME actually increased LTE4 synthesis in BAECs treated with the arsenic/manganese combination. Overall, these data suggest that manganese may exacerbate the toxic effects of arsenic on the vascular system.

  2. Theoretical study for pyridinium-based ionic liquid 1-ethylpyridinium trifluoroacetate: synthesis mechanism, electronic structure, and catalytic reactivity.

    PubMed

    Zhu, Xueying; Cui, Peng; Zhang, Dongju; Liu, Chengbu

    2011-07-28

    By performing density functional theory calculations, we have studied the synthesis mechanism, electronic structure, and catalytic reactivity of a pyridinium-based ionic liquid, 1-ethylpyridinium trifluoroacetate ([epy](+)[CF(3)COO](-)). It is found that the synthesis of the pyridinium salt follows a S(N)2 mechanism. The electronic structural analyses show that multiple H bonds are generally involved in the pyridinium-based ionic liquid, which may play a decisive role for stabilizing the ionic liquid. The cation-anion interaction mainly involves electron transfer between the lone pair of the oxygen atom in the anion and the antibonding orbital of the C*-H bond (C* denotes the carbon atom at the ortho-position of nitrogen atom in the cation). This present work has also given clearly the catalytic mechanism of [epy](+)[CF(3)COO](-) toward to the Diels-Alder (D-A) reaction of acrylonitrile with 2-methyl-1,3-butadiene. Both the cation and anion are shown to play important roles in promoting the D-A reaction. The cation [epy](+), as a Lewis acid, associates the C≡N group by C≡N···H H bond to increase the polarity of the C═C double bond in acrylonitrile, while the anion CF(3)COO(-) links with the methyl group in 2-methyl-1,3-butadiene by C-H···O H bond, which weakens the electron-donating capability of methyl and thereby lowers the energy barrier of the D-A reaction. The present results are expected to provide valuable information for the design and application of pyridinium-based ionic liquids. © 2011 American Chemical Society

  3. Preabsorptive Metabolism of Sodium Arsenate by Anaerobic Microbiota of Mouse Cecum Forms a Variety of Methylated and Thiolated Arsenicals

    EPA Science Inventory

    The conventional scheme for arsenic methylation accounts for methylated oxyarsenical production but not for thioarsenical formation. Here, we report that in vitro anaerobic microbiota of mouse cecum converts arsenate into oxy- and thio- arsenicals. Besides methylarsonic acid (MMA...

  4. NMDA Receptor- and ERK-Dependent Histone Methylation Changes in the Lateral Amygdala Bidirectionally Regulate Fear Memory Formation

    ERIC Educational Resources Information Center

    Gupta-Agarwal, Swati; Jarome, Timothy J.; Fernandez, Jordan; Lubin, Farah D.

    2014-01-01

    It is well established that fear memory formation requires de novo gene transcription in the amygdala. We provide evidence that epigenetic mechanisms in the form of histone lysine methylation in the lateral amygdala (LA) are regulated by NMDA receptor (NMDAR) signaling and involved in gene transcription changes necessary for fear memory…

  5. Volatile compounds in whole meal bread crust: The effects of yeast level and fermentation temperature.

    PubMed

    Nor Qhairul Izzreen, M N; Hansen, Se S; Petersen, Mikael A

    2016-11-01

    The influence of fermentation temperatures (8°C, 16°C, and 32°C) and yeast levels (2%, 4%, and 6% of the flour) on the formation of volatile compounds in the crust of whole meal wheat bread was investigated. The fermentation times were regulated to optimum bread height for each treatment. The volatile compounds were extracted by dynamic headspace extraction and analyzed by gas chromatography-mass spectrometry. The results were evaluated using multivariate data analysis and ANOVA. In all crust samples 28 volatile compounds out of 58 compounds were identified and the other 30 compounds were tentatively identified. Higher fermentation temperatures promoted the formation of Maillard reaction products 3-methyl-1-butanol, pyrazine, 2-ethylpyrazine, 2-ethyl-3-methylpyrazine, 2-vinylpyrazine, 3-hydroxy-2-butanone, 3-(methylsulfanyl)-propanal, and 5-methyl-2-furancarboxaldehyde whereas at lower temperature (8°C) the formation of 2- and 3-methylbutanal was favored. Higher levels of yeast promoted the formation of 3-methyl-1-butanol, 2-methyl-1-propanol and 3-(methylsulfanyl)-propanal, whereas hexanal was promoted in the crust fermented with lower yeast level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. ASCIZ regulates lesion-specific Rad51 focus formation and apoptosis after methylating DNA damage

    PubMed Central

    McNees, Carolyn J; Conlan, Lindus A; Tenis, Nora; Heierhorst, Jörg

    2005-01-01

    Nuclear Rad51 focus formation is required for homology-directed repair of DNA double-strand breaks (DSBs), but its regulation in response to non-DSB lesions is poorly understood. Here we report a novel human SQ/TQ cluster domain-containing protein termed ASCIZ that forms Rad51-containing foci in response to base-modifying DNA methylating agents but not in response to DSB-inducing agents. ASCIZ foci seem to form prior to Rad51 recruitment, and an ASCIZ core domain can concentrate Rad51 in focus-like structures independently of DNA damage. ASCIZ depletion dramatically increases apoptosis after methylating DNA damage and impairs Rad51 focus formation in response to methylating agents but not after ionizing radiation. ASCIZ focus formation and increased apoptosis in ASCIZ-depleted cells depend on the mismatch repair protein MLH1. Interestingly, ASCIZ foci form efficiently during G1 phase, when sister chromatids are unavailable as recombination templates. We propose that ASCIZ acts as a lesion-specific focus scaffold in a Rad51-dependent pathway that resolves cytotoxic repair intermediates, most likely single-stranded DNA gaps, resulting from MLH1-dependent processing of base lesions. PMID:15933716

  7. ASCIZ regulates lesion-specific Rad51 focus formation and apoptosis after methylating DNA damage.

    PubMed

    McNees, Carolyn J; Conlan, Lindus A; Tenis, Nora; Heierhorst, Jörg

    2005-07-06

    Nuclear Rad51 focus formation is required for homology-directed repair of DNA double-strand breaks (DSBs), but its regulation in response to non-DSB lesions is poorly understood. Here we report a novel human SQ/TQ cluster domain-containing protein termed ASCIZ that forms Rad51-containing foci in response to base-modifying DNA methylating agents but not in response to DSB-inducing agents. ASCIZ foci seem to form prior to Rad51 recruitment, and an ASCIZ core domain can concentrate Rad51 in focus-like structures independently of DNA damage. ASCIZ depletion dramatically increases apoptosis after methylating DNA damage and impairs Rad51 focus formation in response to methylating agents but not after ionizing radiation. ASCIZ focus formation and increased apoptosis in ASCIZ-depleted cells depend on the mismatch repair protein MLH1. Interestingly, ASCIZ foci form efficiently during G1 phase, when sister chromatids are unavailable as recombination templates. We propose that ASCIZ acts as a lesion-specific focus scaffold in a Rad51-dependent pathway that resolves cytotoxic repair intermediates, most likely single-stranded DNA gaps, resulting from MLH1-dependent processing of base lesions.

  8. Aerobic Degradation of N-Methyl-4-Nitroaniline (MNA) by Pseudomonas sp. Strain FK357 Isolated from Soil

    PubMed Central

    Khan, Fazlurrahman; Vyas, Bhawna; Pal, Deepika; Cameotra, Swaranjit Singh

    2013-01-01

    N-Methyl-4-nitroaniline (MNA) is used as an additive to lower the melting temperature of energetic materials in the synthesis of insensitive explosives. Although the biotransformation of MNA under anaerobic condition has been reported, its aerobic microbial degradation has not been documented yet. A soil microcosms study showed the efficient aerobic degradation of MNA by the inhabitant soil microorganisms. An aerobic bacterium, Pseudomonas sp. strain FK357, able to utilize MNA as the sole carbon, nitrogen, and energy source, was isolated from soil microcosms. HPLC and GC-MS analysis of the samples obtained from growth and resting cell studies showed the formation of 4-nitroaniline (4-NA), 4-aminophenol (4-AP), and 1, 2, 4-benzenetriol (BT) as major metabolic intermediates in the MNA degradation pathway. Enzymatic assay carried out on cell-free lysates of MNA grown cells confirmed N-demethylation reaction is the first step of MNA degradation with the formation of 4-NA and formaldehyde products. Flavin-dependent transformation of 4-NA to 4-AP in cell extracts demonstrated that the second step of MNA degradation is a monooxygenation. Furthermore, conversion of 4-AP to BT by MNA grown cells indicates the involvement of oxidative deamination (release of NH2 substituent) reaction in third step of MNA degradation. Subsequent degradation of BT occurs by the action of benzenetriol 1, 2-dioxygenase as reported for the degradation of 4-nitrophenol. This is the first report on aerobic degradation of MNA by a single bacterium along with elucidation of metabolic pathway. PMID:24116023

  9. Aerobic degradation of N-methyl-4-nitroaniline (MNA) by Pseudomonas sp. strain FK357 isolated from soil.

    PubMed

    Khan, Fazlurrahman; Vyas, Bhawna; Pal, Deepika; Cameotra, Swaranjit Singh

    2013-01-01

    N-Methyl-4-nitroaniline (MNA) is used as an additive to lower the melting temperature of energetic materials in the synthesis of insensitive explosives. Although the biotransformation of MNA under anaerobic condition has been reported, its aerobic microbial degradation has not been documented yet. A soil microcosms study showed the efficient aerobic degradation of MNA by the inhabitant soil microorganisms. An aerobic bacterium, Pseudomonas sp. strain FK357, able to utilize MNA as the sole carbon, nitrogen, and energy source, was isolated from soil microcosms. HPLC and GC-MS analysis of the samples obtained from growth and resting cell studies showed the formation of 4-nitroaniline (4-NA), 4-aminophenol (4-AP), and 1, 2, 4-benzenetriol (BT) as major metabolic intermediates in the MNA degradation pathway. Enzymatic assay carried out on cell-free lysates of MNA grown cells confirmed N-demethylation reaction is the first step of MNA degradation with the formation of 4-NA and formaldehyde products. Flavin-dependent transformation of 4-NA to 4-AP in cell extracts demonstrated that the second step of MNA degradation is a monooxygenation. Furthermore, conversion of 4-AP to BT by MNA grown cells indicates the involvement of oxidative deamination (release of NH2 substituent) reaction in third step of MNA degradation. Subsequent degradation of BT occurs by the action of benzenetriol 1, 2-dioxygenase as reported for the degradation of 4-nitrophenol. This is the first report on aerobic degradation of MNA by a single bacterium along with elucidation of metabolic pathway.

  10. A novel process for methanol synthesis. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tierney, J.W.; Wender, I.

    1994-01-25

    The use of methanol (MeOH) as a fuel additive and in MTBE production has renewed interest in the search for improved MeOH processes. Commercial processes are characterized by high pressures and temperatures with low per pass conversion (10--12%). Efforts are underway to find improved MeOH synthesis processes. A slurry phase ``concurrent`` synthesis of MeOH/methyl formate (MeF) which operates under relatively mild conditions (100{degrees}C lower than present commercial processes) was the subject of investigation in this work. Evidence for a reaction scheme involving the carbonylation of MeOH to MeF followed by the hydrogenolysis of MeF to two molecules of MeOH --more » the net result being the reaction of H{sub 2} with CO to give MeOH via MeF, is presented. Up to 90% per pass conversion and 98% selectivity to methanol at rates comparable to commercial processes have been obtained in spite of the presence of as much as 10,000 ppM CO{sub 2} and 3000 ppM H{sub 2}O in the gas and liquid respectively. The effect of process parameters such as temperature, pressure, H{sub 2}/CO ratio in the reactor, flow rate and catalyst loading were also investigated. The use of temperatures above 170{degrees}C at a pressure of 50 atm results in MeF being the limiting reactant. Small amounts of CH{sub 4} are also formed. Significant MeOH synthesis rates at a pressure in the range of 40--50 atm makes possible the elimination of an upstream shift reactor and the use of an air-blown syngas generator. The nature of the catalysts was studied and correlated with the behavior of the various species in the concurrent synthesis.« less

  11. Pore-expanded SBA-15 sulfonic acid silicas for biodiesel synthesis.

    PubMed

    Dacquin, J P; Lee, A F; Pirez, C; Wilson, K

    2012-01-07

    Here we present the first application of pore-expanded SBA-15 in heterogeneous catalysis. Pore expansion over the range 6-14 nm confers a striking activity enhancement towards fatty acid methyl ester (FAME) synthesis from triglycerides (TAG), and free fatty acid (FFA), attributed to improved mass transport and acid site accessibility. This journal is © The Royal Society of Chemistry 2012

  12. The synthesis of chlorophyll-a biosynthetic precursors and methyl substituted iron porphyrins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matera, K.M.

    1988-01-01

    The biosynthetic intermediates were incubated in a plant system. The activity levels calculated show that magnesium 6-acrylate porphyrins and one of the magnesium 6-{beta}-hydroxypropionate porphyrins are not intermediates. In addition, plant systems incubated with {sup 18}O{sub 2} were found to synthesize magnesium 2,4-divinyl pheoporphyrin-a{sub 5} incorporated with {sup 18}O at the 9-carbonyl oxygen. Mass spectroscopy confirmed the presence of the oxygen label, thus eliminating one of two hypothesized pathways to chlorophyll-a. An overall description is given of iron porphyrins and iron porphyrin containing proteins. The function of the propionic side chains of the heme prosthetic group during electron transport reactionsmore » will be investigated. The synthesis of a series of iron(III) hexamethyl porphyrins with increasingly longer substituents in the remaining two peripheral positions of the porphyrin is described. Models for NMR studies of iron chlorin containing enzymes are discussed. Iron(III) pyropheophorbide-a and methyl pyropheophorbide-a were synthesized in addition to 5-CD{sub 3}, 10-CD{sub 2} iron(III) pyropheophorbide-a and methyl pyropheophorbide-a. Together, these pyropheophorbides were used to assign NMR resonances and ultimately provide a model for other iron chlorins. The synthesis of nickel(II) anhydro-mesorhodoporphyrin from zinc(III) anhydromesorhodochlorin is described; this nickel porphyrin was used as a standard for ring current calculations of reduced nickel analogs of anhydromesorhodoporphyrin.« less

  13. Dimethylaminoethanol (deanol) metabolism in rat brain and its effect on acetylcholine synthesis.

    PubMed

    Jope, R S; Jenden, D J

    1979-12-01

    Specific methods utilizing combined gas chromatography mass spectrometry were used to measure the metabolism of [2H6] deanol and its effects on acetylcholine concentration in vitro and in vivo. In vitro [2H6]deanol was rapidly taken up by rat brain synaptosomes, but was neither methylated nor acetylated. [2H6]Deanol was a weak competitive inhibitor of the high affinity transport of [2H4]choline, thus reducing the synthesis of [2H4]acetylcholine. In vivo [2H6]deanol was present in the brain after i.p. or p.o. administration, but was not methylated or acetylated. Treatment of rats with [2H6]deanol significantly increased the concentration of choline in the plasma and brain but did not alter the concentration of acetylcholine in the brain. Treatment of rats with atropine (to stimulate acetylcholine turnover) or with hemicholinium-3 (to inhibit the high affinity transport of choline) did not reveal any effect of [2H6]deanol on acetylcholine synthesis in vivo. However, since [2H6]deanol did increase brain choline, it may prove therapeutically useful when the production of choline is reduced or when the utilization of choline for the synthesis of acetylcholine is impaired.

  14. Comparative evaluation of the chiral recognition potential of single-isomer sulfated beta-cyclodextrin synthesis intermediates in non-aqueous capillary electrophoresis.

    PubMed

    Fejős, Ida; Varga, Erzsébet; Benkovics, Gábor; Darcsi, András; Malanga, Milo; Fenyvesi, Éva; Sohajda, Tamás; Szente, Lajos; Béni, Szabolcs

    2016-10-07

    The enantioselectivity of neutral single-isomer synthetic precursors of sulfated-β-cyclodextrins was studied. Four neutral single-isomer cyclodextrins substituted on the secondary side with acetyl and/or methyl functional groups, heptakis(2-O-methyl-3,6-dihydroxy)-β-cyclodextrin (HM-β-CD), heptakis(2,3-di-O-acetyl-6-hydroxy)-β-cyclodextrin (HDA-β-CD), heptakis(2,3-di-O-methyl-6-hydroxy)-β-cyclodextrin (HDM-β-CD), heptakis(2-O-methyl-3-O-acetyl-6-hydroxy)-β-cyclodextrin (HMA-β-CD), and their sulfated analogs the negatively charged heptakis(2,3-di-O-methyl-6-sulfato)-β-cyclodextrin (HDMS-β-CD) and heptakis(2,3-di-O-acetyl-6-sulfato)-β-cyclodextrin (HDAS-β-CD) were investigated by non-aqueous capillary electrophoresis in the view of enantiodiscrimination for various drugs and related pharmaceutical compounds. The focus of the present work was on the chiral selectivity studies of the neutral derivatives, which are the synthesis intermediates of the sulfated products. The chiral recognition experiments proved that among the neutral compounds the HMA-β-CD shows remarkable enantioselectivity towards chiral guests in non-aqueous capillary electrophoresis, while HM-β-CD, HDA-β-CD and HDM-β-CD failed to resolve any of the 25 studied racemates under the applied experimental conditions. In order to get deeper insight into the molecular interactions between the studied single-isomer cyclodextrin and chiral fluoroquinolones (ofloxacin, gatifloxacin and lomefloxacin) and β-blockers (propranolol), 1 H and ROESY NMR experiments were performed. The 2-O-methylation in combination with the 3-O-acetylation of the host was evidenced to exclusively carry the essential spatial arrangement for chiral recognition. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Diorganotin(IV) complexes of biologically potent 4(3H)-quinazolinone derived Schiff bases: synthesis, spectroscopic characterization, DNA interaction studies and antimicrobial activity.

    PubMed

    Prasad, Kollur Shiva; Kumar, Linganna Shiva; Chandan, Shivamallu; Jayalakshmi, Basvegowda; Revanasiddappa, Hosakere D

    2011-10-15

    Four Schiff base ligands and their corresponding organotin(IV) complexes have been synthesized and characterized by elemental analyses, IR, (1)H NMR, MS and thermal studies. The Schiff bases are obtained by the condensation of 3-amino-2-methyl-4(3H)-quinazolinone with different substituted aldehydes. The elemental analysis data suggest the stoichiometry to be 1:1 ratio formation. Infrared spectral data agreed with the coordination to the central metal ion through imine nitrogen, lactam oxygen and deprotonated phenolic oxygen atoms. All the synthesized compounds have been evaluated for antimicrobial activity against selected species of microorganisms. In addition, DNA binding/cleavage capacity of the compounds was analyzed by absorption spectroscopy, viscosity measurements and gel electrophoresis methods. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Structural and photocatalytic studies on pure and Sn ion doped ZnO-graphene nanocomposites

    NASA Astrophysics Data System (ADS)

    Beura, Rosalin; Thangadurai, P.

    2016-05-01

    Graphene based metal oxide nanocomposites have been widely used as a photocatalyst for the treatment of water pollutants. This work demonstrates the synthesis of graphene composite with pure and Sn ion doped-ZnO and their photocatalytic properties are reported. Structural studies were carried out by X-ray diffraction and Raman spectroscopy to confirm the formation of the nanocomposites. Microstructure was characterized by scanning electron microscopy showing rod shaped ZnO and the layer structured graphene in the ZnO-graphene composite. In comparison with the undoped ZnO-graphene composite, the Sn ion doped ZnO-graphene composite have shown better degradation of methyl orange dye that is about 99% of degradation. Band gap of the composite materials was calculated to be 3.36 eV from the UV-Vis result.

  17. Structural and photocatalytic studies on pure and Sn ion doped ZnO-graphene nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beura, Rosalin; Thangadurai, P., E-mail: thangaduraip.nst@pondiuni.edu.in

    2016-05-23

    Graphene based metal oxide nanocomposites have been widely used as a photocatalyst for the treatment of water pollutants. This work demonstrates the synthesis of graphene composite with pure and Sn ion doped-ZnO and their photocatalytic properties are reported. Structural studies were carried out by X-ray diffraction and Raman spectroscopy to confirm the formation of the nanocomposites. Microstructure was characterized by scanning electron microscopy showing rod shaped ZnO and the layer structured graphene in the ZnO-graphene composite. In comparison with the undoped ZnO-graphene composite, the Sn ion doped ZnO-graphene composite have shown better degradation of methyl orange dye that is aboutmore » 99% of degradation. Band gap of the composite materials was calculated to be 3.36 eV from the UV-Vis result.« less

  18. FORMATION AND RECONDENSATION OF COMPLEX ORGANIC MOLECULES DURING PROTOSTELLAR LUMINOSITY OUTBURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taquet, Vianney; Wirström, Eva S.; Charnley, Steven B.

    2016-04-10

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The modelmore » calculations presented here demonstrate that ion–molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.« less

  19. Control of box C/D snoRNP assembly by N6-methylation of adenine.

    PubMed

    Huang, Lin; Ashraf, Saira; Wang, Jia; Lilley, David Mj

    2017-09-01

    N 6 -methyladenine is the most widespread mRNA modification. A subset of human box C/D snoRNA species have target GAC sequences that lead to formation of N 6 -methyladenine at a key trans Hoogsteen-sugar A·G base pair, of which half are methylated in vivo The GAC target is conserved only in those that are methylated. Methylation prevents binding of the 15.5-kDa protein and the induced folding of the RNA Thus, the assembly of the box C/D snoRNP could in principle be regulated by RNA methylation at its critical first stage. Crystallography reveals that N 6 -methylation of adenine prevents the formation of trans Hoogsteen-sugar A·G base pairs, explaining why the box C/D RNA cannot adopt its kinked conformation. More generally, our data indicate that sheared A·G base pairs (but not Watson-Crick base pairs) are more susceptible to disruption by N 6 mA methylation and are therefore possible regulatory sites. The human signal recognition particle RNA and many related Alu retrotransposon RNA species are also methylated at N6 of an adenine that forms a sheared base pair with guanine and mediates a key tertiary interaction. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  20. Synthesis and characterization of a helicene-based imidazolium salt and its application in organic molecular electronics.

    PubMed

    Storch, Jan; Zadny, Jaroslav; Strasak, Tomas; Kubala, Martin; Sykora, Jan; Dusek, Michal; Cirkva, Vladimir; Matejka, Pavel; Krbal, Milos; Vacek, Jan

    2015-02-02

    Herein we demonstrate the synthesis of a helicene-based imidazolium salt. The salt was prepared by starting from racemic 2-methyl[6]helicene, which undergoes radical bromination to yield 2-(bromomethyl)[6]helicene. Subsequent treatment with 1-butylimidazole leads to the corresponding salt 1-butyl-3-(2-methyl[6]helicenyl)-imidazolium bromide. The prepared salt was subsequently characterized by using NMR spectroscopy and X-ray analysis, various optical spectrometric techniques, and computational chemistry tools. Finally, the imidazolium salt was immobilized onto a SiO2 substrate as a crystalline or amorphous deposit. The deposited layers were used for the development of organic molecular semiconductor devices and the construction of a fully reversible humidity sensor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. An Efficient Amide-Aldehyde-Alkene Condensation: Synthesis for the N-Allyl Amides.

    PubMed

    Quan, Zheng-Jun; Wang, Xi-Cun

    2016-02-01

    The allylamine skeleton represents a significant class of biologically active nitrogen compounds that are found in various natural products and drugs with well-recognized pharmacological properties. In this personal account, we will briefly discuss the synthesis of allylamine skeletons. We will focus on showing a general protocol for Lewis acid-catalyzed N-allylation of electron-poor N-heterocyclic amides and sulfonamide via an amide-aldehyde-alkene condensation reaction. The substrate scope with respect to N-heterocyclic amides, aldehydes, and alkenes will be discussed. This method is also capable of preparing the Naftifine motif from N-methyl-1-naphthamide or methyl (naphthalene-1-ylmethyl)carbamate, with paraformaldehyde and styrene in a one-pot manner. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The Limits of Template-Directed Synthesis with Nucleoside-5'-Phosphoro(2-Methyl) Imidazolides

    NASA Technical Reports Server (NTRS)

    Hill, Aubrey R., Jr.; Orgel, Leslie E.; Wu, Taifeng

    1993-01-01

    In earlier work we have shown that C-rich templates containing isolated A, T or G residues and short oligo(G) sequences can be copied effectively using nucleoside-5'-phosphoro(2-methyl)imidazolides as substrates. We now show that isolated A or T residues within an oligo(G) sequence are a complete block to copying and that an isolated C residue is copied inefficiently. Replication is possible only if there are two complementary oligonucleotides each of which acts as a template to facilitate the synthesis of the other. We emphasize the severity of the problems that need to be overcome to make possible non-enzymatic replication in homogeneous aqueous solution. We conclude that an efficient catalyst was involved in the origin of polynucleotide replication.

  3. Facile and High-Yielding Synthesis of TAM Biradicals and Monofunctional TAM Radicals.

    PubMed

    Trukhin, Dmitry V; Rogozhnikova, Olga Yu; Troitskaya, Tatiana I; Vasiliev, Vladimir G; Bowman, Michael K; Tormyshev, Victor M

    2016-04-01

    Facile and high-yielding procedures for synthesis of monocarboxylic acid derivatives of triarylmethyl radicals (TAMs) were developed. Reaction of methyl thioglycolate with tris(2,3,5,6-tetrathiaaryl)methyl cation smoothly afforded the monosubstituted TAM derivative, which was hydrolyzed to a monocarboxylic acid, with the TAM moiety attached to thioglycolic acid via the sulfur atom. Alternatively, the diamagnetic tricarboxylic acid precursor of Finland trityl was transformed to a trimethyl ester and partially hydrolyzed under controlled conditions. The diester product was isolated and the remaining fractions were converted back to the trimethyl ester for production of more diester. The first representatives of TAM biradicals with different TAM cores and interspin distances were obtained by reaction of these new TAM monocaboxylic acids with N,N'-dimethylethylenediamine.

  4. Biogenic synthesis of Fe3O4 magnetic nanoparticles using Pisum sativum peels extract and its effect on magnetic and Methyl orange dye degradation studies

    NASA Astrophysics Data System (ADS)

    Prasad, Cheera; Yuvaraja, Gutha; Venkateswarlu, Ponneri

    2017-02-01

    We have been developed facile and ecofriendly method for the synthesis of Fe3O4 magnetic nanoparticles (MNPs) using an aqueous extract of Pisum sativum peels (PS) is used as reducing and capping agent. The as synthesized PS-Fe3O4 MNPs are characterized by diverse techniques such as FTIR, powder XRD, TEM, BET and Raman spectroscopy measurements. The results show that the obtained Fe3O4 nanoparticles exhibits high specific surface area (∼17.6 m2/g) and agglomerated spherical in shape with the size range of 20-30 nm. The magnetic properties of PS-Fe3O4 MNPs sample clearly exhibits ferromagnetic nature with a saturation magnetization of 64.2 emu/g. Further, the catalytic properties of PS-Fe3O4 MNPs for degradation of Methyl orange (MO) dye in aqueous solution have been investigated by UV-visible spectroscopy. The results show that PS-Fe3O4 MNPs is an efficient catalyst for degradation of Methyl orange dye than previously reported ones.

  5. 2'-Bispyrene-modified 2'-O-methyl RNA probes as useful tools for the detection of RNA: synthesis, fluorescent properties, and duplex stability.

    PubMed

    Krasheninina, Olga A; Novopashina, Darya S; Lomzov, Alexander A; Venyaminova, Alya G

    2014-09-05

    The synthesis and properties two series of new 2'-O-methyl RNA probes, each containing a single insertion of a 2'-bispyrenylmethylphosphorodiamidate derivative of a nucleotide (U, C, A, and G), are described. As demonstrated by UV melting studies, the probes form stable complexes with model RNAs and DNAs. Significant increases (up to 21-fold) in pyrene excimer fluorescence intensity were observed upon binding of most of the probes with complementary RNAs, but not with DNAs. The fluorescence spectra are independent of the nature of the modified nucleotides. The nucleotides on the 5'-side of the modified nucleotide have no effect on the fluorescence spectra, whereas the natures of the two nucleotides on the 3'-side are important: CC, CG, and UC dinucleotide units on the 3'-side of the modified nucleotide provide the maximum increases in excimer fluorescence intensity. This study suggests that these 2'-bispyrene-labeled 2'-O-methyl RNA probes might be useful tools for detection of RNAs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Solution-phase synthesis of a hindered N-methylated tetrapeptide using Bts-protected amino acid chlorides: efficient coupling and methylation steps allow purification by extraction.

    PubMed

    Vedejs, E; Kongkittingam, C

    2000-04-21

    N-Benzothiazole-2-sulfonyl (Bts)-protected amino acid chlorides were used to prepare the hindered cyclosporin 8-11 tetrapeptide subunit 1. The synthesis was performed via 3a and the deprotected amines 5a, 13, and 19, including three repeated cycles involving N-methylation using iodomethane/potassium carbonate, deprotection of the Bts group, and N-acylation with a N-Bts-amino acid chloride such as 9b or 9c. Among three Bts cleavage methods compared (H3PO2/THF; NaBH4/EtOH; PhSH/K2CO3), the third gave somewhat higher overall yields. N-Acylation of 5a with the Bts-protected N-methylamino acid chloride 10b followed by deprotection was also highly efficient and could be used as an alternative route to 11. Each of the deprotected amines was isolated without chromatography using simple extraction methods to remove neutral byproducts. The tetrapeptide 1 was obtained in analytically pure form as the monohydrate.

  7. FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-π Interactions.

    PubMed

    Qamar, Seema; Wang, GuoZhen; Randle, Suzanne J; Ruggeri, Francesco Simone; Varela, Juan A; Lin, Julie Qiaojin; Phillips, Emma C; Miyashita, Akinori; Williams, Declan; Ströhl, Florian; Meadows, William; Ferry, Rodylyn; Dardov, Victoria J; Tartaglia, Gian G; Farrer, Lindsay A; Kaminski Schierle, Gabriele S; Kaminski, Clemens F; Holt, Christine E; Fraser, Paul E; Schmitt-Ulms, Gerold; Klenerman, David; Knowles, Tuomas; Vendruscolo, Michele; St George-Hyslop, Peter

    2018-04-19

    Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular β-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Synthesis and spectral properties of Methyl-Phenyl pyrazoloquinoxaline fluorescence emitters: Experiment and DFT/TDDFT calculations

    NASA Astrophysics Data System (ADS)

    Gąsiorski, P.; Matusiewicz, M.; Gondek, E.; Uchacz, T.; Wojtasik, K.; Danel, A.; Shchur, Ya.; Kityk, A. V.

    2018-01-01

    Paper reports the synthesis and spectroscopic studies of two novel 1-Methyl-3-phenyl-1H-pyrazolo[3,4-b]quinoxaline (PQX) derivatives with 6-substituted methyl (MeMPPQX) or methoxy (MeOMPPQX) side groups. The optical absorption and fluorescence emission spectra are recorded in solvents of different polarity. Steady state and time-resolved spectroscopy provide photophysical characterization of MeMPPQX and MeOMPPQX dyes as materials for potential luminescence or electroluminescence applications. Measured optical absorption and fluorescence emission spectra are compared with quantum-chemical DFT/TDDFT calculations using long-range corrected xc-functionals, LRC-BLYP and CAM-B3LYP in combination with self-consistent reaction field model based on linear response (LR), state specific (SS) or corrected linear response (CLR) solvations. Performances of relevant theoretical models and approaches are compared. The reparameterized LRC-BLYP functional (ω = 0.231 Bohr-1) in combination with CLR solvation provides most accurate prediction of both excitation and emission energies. The MeMPPQX and MeOMPPQX dyes represent efficient fluorescence emitters in blue-green region of the visible spectra.

  9. Chemical complexity induced by efficient ice evaporation in the Barnard 5 molecular cloud

    NASA Astrophysics Data System (ADS)

    Taquet, V.; Wirström, E. S.; Charnley, S. B.; Faure, A.; López-Sepulcre, A.; Persson, C. M.

    2017-10-01

    Cold gas-phase water has recently been detected in a cold dark cloud, Barnard 5 located in the Perseus complex, by targeting methanol peaks as signposts for ice mantle evaporation. Observed morphology and abundances of methanol and water are consistent with a transient non-thermal evaporation process only affecting the outermost ice mantle layers, possibly triggering a more complex chemistry. Here we present the detection of the complex organic molecules (COMs) acetaldehyde (CH3CHO) and methyl formate (CH3OCHO), as well as formic acid (HCOOH) and ketene (CH2CO), and the tentative detection of di-methyl ether (CH3OCH3) towards the "methanol hotspot" of Barnard 5 located between two dense cores using the single dish OSO 20 m, IRAM 30 m, and NRO 45 m telescopes. The high energy cis-conformer of formic acid is detected, suggesting that formic acid is mostly formed at the surface of interstellar grains and then evaporated. The detection of multiple transitions for each species allows us to constrain their abundances through LTE and non-LTE methods. All the considered COMs show similar abundances between 1 and 10% relative to methanol depending on the assumed excitation temperature. The non-detection of glycolaldehyde, an isomer of methyl formate, with a [glycolaldehyde]/[methyl formate] abundance ratio lower than 6%, favours gas phase formation pathways triggered by methanol evaporation. According to their excitation temperatures derived in massive hot cores, formic acid, ketene, and acetaldehyde have been designated as "lukewarm" COMs whereas methyl formate and di-methyl ether were defined as "warm" species. Comparison with previous observations of other types of sources confirms that lukewarm and warm COMs show similar abundances in low-density cold gas whereas the warm COMs tend to be more abundant than the lukewarm species in warm protostellar cores. This abundance evolution suggests either that warm COMs are indeed mostly formed in protostellar environments and/or that lukewarm COMs are efficiently depleted by increased hydrogenation efficiency around protostars.

  10. Terahertz Spectroscopy of Deuterated Acetaldehyde: CH_2DCHO

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Coudert, L. H.; Guillemin, J.-C.

    2014-06-01

    This study follows our recent investigations about deuterated methyl-top species of complex organic molecules: methanol, methyl formate, In particular these works led the first ISM detection of HCOOCH_2D and CH_2DOCH_3. Acetaldehyde is not very abundant in the ISM, but this is a very interesting case from the spectroscopic point of view as it is an intermediate case between methyl formate and methanol. In the normal species of acetaldehyde, the barrier to internal rotation which is close to the value in methyl formate: 373 cm-1. However, the value of the Coriolis coupling constant ρ is 0.33 in acetaldehyde which is a much larger value than in methyl formate, 0.08, meaning that the coupling between the torsion and the overall rotation is more important. The sample was not a commercial one and half of its amount is the normal species which leads to a more difficult line assignment. The spectra were recorded in Lille between 75 and 950 GHz with a solid-state submillimeter-wave spectrometer. The starting point of the analysis was the centimeter-wave measurements carried out for the sym and asym- conformers. A comparison between the approach developed for deuterated methyl formate (HCOOCH_2D), based on the water dimer formalism, and that designed recently for deuterated methanola (CH_2DOH) will be presented. This work is supported by the CNES and the Action sur Projets de l'INSU, PCMI. Coudert, L. H.; et al. J. Chem. Phys., 140, (2014) 64307 Coudert, L. H.; et al. ApJ, 779, (2013) 119 Richard, C.; et al. A&A, 552, (2013) A117 Smirnov, I. A.; et al. J. Mol. Spectrosc., 295 (2014) 44 Ilyushin, V.; et al. J. Mol. Spectrosc., 255 (2009) 32 Turner, P. H.; and Cox, A. P. Chem. Phys. Lett., 42, (1976) 84 Turner, P. H.; Cox, A. P.; and Hardy, J. A. J.C.S. Farady Trans., 2, (1981) 1217

  11. Solvent-free synthesis of C10 and C11 branched alkanes from furfural and methyl isobutyl ketone.

    PubMed

    Yang, Jinfan; Li, Ning; Li, Guangyi; Wang, Wentao; Wang, Aiqin; Wang, Xiaodong; Cong, Yu; Zhang, Tao

    2013-07-01

    Our best results jet: C10 and C11 branched alkanes, with low freezing points, are synthesized through the aldol condensation of furfural and methyl isobutyl ketone from lignocellulose, which is then followed by hydrodeoxygenation. These jet-fuel-range alkanes are obtained in high overall yields (≈90%) under solvent-free conditions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis, Cytotoxic and Contraceptive Activity of 6,8,9-Trihydroxy-2-methyl-2H-naphtho[2,3-b]pyran-5,10-dione, a Pigment of Echinothrix diadema, and its Analogs.

    PubMed

    Pokhilo, Natalia D; Melman, Galina I; Kiseleva, Marina I; Denisenko, Vladimir A; Anufriev, Victor Ph

    2015-07-01

    6,8,9-Trihydroxy-2-methyl-2H-naphtho[2,3-b]pyran-5,10-dion, a pigment of the sea urchin Echinothrix diadema, and six analogs were synthesized. The cytotoxic activity and contraceptive properties of the synthesized pyranonaphthazarins have been investigated using the sperm and eggs of the sea urchin Strongylocentrotus intermedius.

  13. Synthesis of the olanzapine labeled by carbon-14.

    PubMed

    Saadatjoo, Naghi; Javaheri, Mohsen; Saemian, Nader; Amini, Mohsen

    2016-06-30

    Olanzapine is one of the most widely used antipsychotic drugs, which acts as an antagonist for multiple neurotransmitter receptor sites. 2-Methyl-4-(4-methyl-1-piperazinyl)-10H-thieno [2,3-b][1,5] benzodiazepine (Olanzapine) labeled with carbon-14 in the four positions has been synthesized as part of a three-step sequence from 2-amino-5-methylthiophene-3-carbonitrile-[carbonitrile-(14) C]. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Doubly Vinylogous Aldol Reaction of Furoate Esters with Aldehydes and Ketones.

    PubMed

    Hartwig, William T; Sammakia, Tarek

    2017-01-06

    The use of bulky Lewis acids, aluminum tris(2,6-diphenylphenoxide) (ATPH) and aluminum tris(2,6-di-2-naphthylphenoxide) (ATNP), in the doubly vinylogous aldol reaction between methyl-5-methyl-2-furoate and aldehydes or ketones is described. These reactions proceed smoothly and in high yields with both enolizable and non-enolizable substrates. This C-C bond-forming reaction enables a new bond construction for the synthesis of functionalized furans.

  15. SOA Formation from the Atmospheric Oxidation of 2-Methyl-3-Buten-2-ol and Its Implications for PM2.5

    EPA Science Inventory

    The formation of secondary organic aerosol (SOA) generated by irradiating 2-methyl-3-buten-2-01 (MBO) in the presence and/or absence of NOx H2O2, and/or SO2 was examined. Experiments were conducted. in smog chambers operated either in dyna....

  16. Data on the synthesis and mechanical characterization of polysiloxane-based urea-elastomers prepared from amino-terminated polydimethylsiloxanes and polydimethyl-methyl-phenyl-siloxane-copolymers.

    PubMed

    Riehle, Natascha; Götz, Tobias; Kandelbauer, Andreas; Tovar, Günter E M; Lorenz, Günter

    2018-06-01

    This article contains data on the synthesis and mechanical characterization of polysiloxane-based urea-elastomers (PSUs) and is related to the research article entitled "Influence of PDMS molecular weight on transparency and mechanical properties of soft polysiloxane-urea-elastomers for intraocular lens application" (Riehle et al., 2018) [1]. These elastomers were prepared by a two-step polyaddition using the aliphatic diisocyanate 4,4'-Methylenbis(cyclohexylisocyanate) (H 12 MDI), a siloxane-based chain extender 1,3-Bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (APTMDS) and amino-terminated polydimethylsiloxanes (PDMS) or polydimethyl-methyl-phenyl-siloxane-copolymers (PDMS-Me,Ph), respectively. (More details about the synthesis procedure and the reaction scheme can be found in the related research article (Riehle et al., 2018) [1]). Amino-terminated polydimethylsiloxanes with varying molecular weights and PDMS-Me,Ph-copolymers were prepared prior by a base-catalyzed ring-chain equilibration of a cyclic siloxane and the endblocker APTMDS. This DiB article contains a procedure for the synthesis of the base catalyst tetramethylammonium-3-aminopropyl-dimethylsilanolate and a generic synthesis procedure for the preparation of a PDMS having a targeted number average molecular weight M ¯ n of 3000 g mol -1 . Molecular weights and the amount of methyl-phenyl-siloxane within the polysiloxane-copolymers were determined by 1 H NMR and 29 Si NMR spectroscopy. The corresponding NMR spectra and data are described in this article. Additionally, this DiB article contains processed data on in line and off line FTIR-ATR spectroscopy, which was used to follow the reaction progress of the polyaddition by showing the conversion of the diisocyanate. All relevant IR band assignments of a polydimethylsiloxane-urea spectrum are described in this article. Finally, data on the tensile properties and the mechanical hysteresis-behaviour at 100% elongation of PDMS-based polyurea-elastomers are shown in dependence to the PDMS molecular weight.

  17. An Experimental and Kinetic Modeling Study of Methyl Decanoate Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarathy, S M; Thomson, M J; Pitz, W J

    2009-12-04

    Biodiesel is a mixture of long chain fatty acid methyl esters derived from fats and oils. This research study presents opposed-flow diffusion flame data for one large fatty acid methyl ester, methyl decanoate, and uses the experiments to validate an improved skeletal mechanism consisting of 648 species and 2998 reactions. The results indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular weight oxygenated compounds such as carbon monoxide, formaldehyde, and ketene.

  18. WHSC1L1-mediated EGFR mono-methylation enhances the cytoplasmic and nuclear oncogenic activity of EGFR in head and neck cancer

    PubMed Central

    Saloura, Vassiliki; Vougiouklakis, Theodore; Zewde, Makda; Deng, Xiaolan; Kiyotani, Kazuma; Park, Jae-Hyun; Matsuo, Yo; Lingen, Mark; Suzuki, Takehiro; Dohmae, Naoshi; Hamamoto, Ryuji; Nakamura, Yusuke

    2017-01-01

    While multiple post-translational modifications have been reported to regulate the function of epidermal growth factor receptor (EGFR), the effect of protein methylation on its function has not been well characterized. In this study, we show that WHSC1L1 mono-methylates lysine 721 in the tyrosine kinase domain of EGFR, and that this methylation leads to enhanced activation of its downstream ERK cascade without EGF stimulation. We also show that EGFR K721 mono-methylation not only affects the function of cytoplasmic EGFR, but also that of nuclear EGFR. WHSC1L1-mediated methylation of EGFR in the nucleus enhanced its interaction with PCNA in squamous cell carcinoma of the head and neck (SCCHN) cells and resulted in enhanced DNA synthesis and cell cycle progression. Overall, our study demonstrates the multifaceted oncogenic function of the protein lysine methyltransferase WHSC1L1 in SCCHN, which is mediated through direct non-histone methylation of the EGFR protein with effects both in its cytoplasmic and nuclear functions. PMID:28102297

  19. Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved

    PubMed Central

    Long, Hannah K.; King, Hamish W.; Patient, Roger K.; Odom, Duncan T.; Klose, Robert J.

    2016-01-01

    DNA methylation is a repressive epigenetic modification that covers vertebrate genomes. Regions known as CpG islands (CGIs), which are refractory to DNA methylation, are often associated with gene promoters and play central roles in gene regulation. Yet how CGIs in their normal genomic context evade the DNA methylation machinery and whether these mechanisms are evolutionarily conserved remains enigmatic. To address these fundamental questions we exploited a transchromosomic animal model and genomic approaches to understand how the hypomethylated state is formed in vivo and to discover whether mechanisms governing CGI formation are evolutionarily conserved. Strikingly, insertion of a human chromosome into mouse revealed that promoter-associated CGIs are refractory to DNA methylation regardless of host species, demonstrating that DNA sequence plays a central role in specifying the hypomethylated state through evolutionarily conserved mechanisms. In contrast, elements distal to gene promoters exhibited more variable methylation between host species, uncovering a widespread dependence on nucleotide frequency and occupancy of DNA-binding transcription factors in shaping the DNA methylation landscape away from gene promoters. This was exemplified by young CpG rich lineage-restricted repeat sequences that evaded DNA methylation in the absence of co-evolved mechanisms targeting methylation to these sequences, and species specific DNA binding events that protected against DNA methylation in CpG poor regions. Finally, transplantation of mouse chromosomal fragments into the evolutionarily distant zebrafish uncovered the existence of a mechanistically conserved and DNA-encoded logic which shapes CGI formation across vertebrate species. PMID:27084945

  20. Inhibiting DNA methylation alters olfactory extinction but not acquisition learning in Apis cerana and Apis mellifera.

    PubMed

    Gong, Zhiwen; Wang, Chao; Nieh, James C; Tan, Ken

    2016-07-01

    DNA methylation plays a key role in invertebrate acquisition and extinction memory. Honey bees have excellent olfactory learning, but the role of DNA methylation in memory formation has, to date, only been studied in Apis mellifera. We inhibited DNA methylation by inhibiting DNA methyltransferase (DNMT) with zebularine (zeb) and studied the resulting effects upon olfactory acquisition and extinction memory in two honey bee species, Apis cerana and A. mellifera. We used the proboscis extension reflex (PER) assay to measure memory. We provide the first demonstration that DNA methylation is also important in the olfactory extinction learning of A. cerana. DNMT did not reduce acquisition learning in either species. However, zeb bidirectionally and differentially altered extinction learning in both species. In particular, zeb provided 1h before acquisition learning improved extinction memory retention in A. mellifera, but reduced extinction memory retention in A. cerana. The reasons for these differences are unclear, but provide a basis for future studies to explore species-specific differences in the effects of methylation on memory formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. DNA methylation in memory formation: Emerging insights

    PubMed Central

    Heyward, Frankie D.; Sweatt, J. David

    2016-01-01

    The establishment of synaptic plasticity and long-term memory requires lasting cellular and molecular modifications that, as a whole, must endure despite the rapid turnover of their constituent parts. Such a molecular feat must be mediated by a stable, self-perpetuating, cellular information storage mechanism. DNA methylation, being the archetypal cellular information storage mechanism, has been heavily implicated as being necessary for stable activity-dependent transcriptional alterations within the central nervous system (CNS). This review details the foundational discoveries from both gene-targeted, as well as whole-genome sequencing, studies that have successfully brought DNA methylation to our attention as a chief regulator of activity- and experience-dependent transcriptional alterations within the CNS. We present a hypothetical framework with which the disparate experimental findings dealing with distinct manipulations of the DNA methylation, and their effect on memory, might be resolved while taking into account the unique impact activity-dependent alterations in DNA methylation potentially have on both memory promoting and memory-suppressing gene expression. And last, we discuss potential avenues for future inquiry into the role of DNA methylation during remote memory formation. PMID:25832671

  2. Evolutionary combinatorial chemistry, a novel tool for SAR studies on peptide transport across the blood-brain barrier. Part 2. Design, synthesis and evaluation of a first generation of peptides.

    PubMed

    Teixidó, Meritxell; Belda, Ignasi; Zurita, Esther; Llorà, Xavier; Fabre, Myriam; Vilaró, Senén; Albericio, Fernando; Giralt, Ernest

    2005-12-01

    The use of high-throughput methods in drug discovery allows the generation and testing of a large number of compounds, but at the price of providing redundant information. Evolutionary combinatorial chemistry combines the selection and synthesis of biologically active compounds with artificial intelligence optimization methods, such as genetic algorithms (GA). Drug candidates for the treatment of central nervous system (CNS) disorders must overcome the blood-brain barrier (BBB). This paper reports a new genetic algorithm that searches for the optimal physicochemical properties for peptide transport across the blood-brain barrier. A first generation of peptides has been generated and synthesized. Due to the high content of N-methyl amino acids present in most of these peptides, their syntheses were especially challenging due to over-incorporations, deletions and DKP formations. Distinct fragmentation patterns during peptide cleavage have been identified. The first generation of peptides has been studied by evaluation techniques such as immobilized artificial membrane chromatography (IAMC), a cell-based assay, log Poctanol/water calculations, etc. Finally, a second generation has been proposed. (c) 2005 European Peptide Society and John Wiley & Sons, Ltd.

  3. One-pot template-free synthesis of porous CdMoO4 microspheres and their enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Madhusudan, Puttaswamy; Zhang, Jinfeng; Yu, Jiaguo; Cheng, Bei; Xu, Difa; Zhang, Jun

    2016-11-01

    The optical and catalytic performances of materials strongly depend on their size, morphology, dimensionality and structure. Herein, we demonstrate a facile one-pot template free synthesis of hierarchical CdMoO4 porous microspheres via a simple low temperature oil bath method. The photoactivity of the as-prepared samples was evaluated by photocatalytic decolorization of Methyl Orange (MO) and Methylene Blue (MB) mixed dye aqueous solutions at ambient temperature under full solar spectrum. The results indicated that the concentration of ammonium molybdate and reaction time greatly influence the diameter, average crystallite size, specific surface area, pore structure and photocatalytic activity of the prepared samples. Especially, under the suitable conditions the prepared hierarchical CdMoO porous microspheres exhibited enhanced photocatalytic activity and high stability. Furthermore, it is found that the photocatalytic activity and formation rate of hydroxyl radicals greatly depend on the particle sizes and morphology of as-prepared samples. This work not only demonstrates a simple way to fabricate the hierarchical CdMoO4 porous microspheres but also shows a possibility for utilization of CdMoO4 porous microspheres for the photocatalytic treatment of waste water pollutants.

  4. Facile Synthesis of Worm-like Micelles by Visible Light Mediated Dispersion Polymerization Using Photoredox Catalyst

    PubMed Central

    Yeow, Jonathan; Xu, Jiangtao; Boyer, Cyrille

    2016-01-01

    Presented herein is a protocol for the facile synthesis of worm-like micelles by visible light mediated dispersion polymerization. This approach begins with the synthesis of a hydrophilic poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) homopolymer using reversible addition-fragmentation chain-transfer (RAFT) polymerization. Under mild visible light irradiation (λ = 460 nm, 0.7 mW/cm2), this macro-chain transfer agent (macro-CTA) in the presence of a ruthenium based photoredox catalyst, Ru(bpy)3Cl2 can be chain extended with a second monomer to form a well-defined block copolymer in a process known as Photoinduced Electron Transfer RAFT (PET-RAFT). When PET-RAFT is used to chain extend POEGMA with benzyl methacrylate (BzMA) in ethanol (EtOH), polymeric nanoparticles with different morphologies are formed in situ according to a polymerization-induced self-assembly (PISA) mechanism. Self-assembly into nanoparticles presenting POEGMA chains at the corona and poly(benzyl methacrylate) (PBzMA) chains in the core occurs in situ due to the growing insolubility of the PBzMA block in ethanol. Interestingly, the formation of highly pure worm-like micelles can be readily monitored by observing the onset of a highly viscous gel in situ due to nanoparticle entanglements occurring during the polymerization. This process thereby allows for a more reproducible synthesis of worm-like micelles simply by monitoring the solution viscosity during the course of the polymerization. In addition, the light stimulus can be intermittently applied in an ON/OFF manner demonstrating temporal control over the nanoparticle morphology. PMID:27340940

  5. Facile Synthesis of Worm-like Micelles by Visible Light Mediated Dispersion Polymerization Using Photoredox Catalyst.

    PubMed

    Yeow, Jonathan; Xu, Jiangtao; Boyer, Cyrille

    2016-06-08

    Presented herein is a protocol for the facile synthesis of worm-like micelles by visible light mediated dispersion polymerization. This approach begins with the synthesis of a hydrophilic poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) homopolymer using reversible addition-fragmentation chain-transfer (RAFT) polymerization. Under mild visible light irradiation (λ = 460 nm, 0.7 mW/cm(2)), this macro-chain transfer agent (macro-CTA) in the presence of a ruthenium based photoredox catalyst, Ru(bpy)3Cl2 can be chain extended with a second monomer to form a well-defined block copolymer in a process known as Photoinduced Electron Transfer RAFT (PET-RAFT). When PET-RAFT is used to chain extend POEGMA with benzyl methacrylate (BzMA) in ethanol (EtOH), polymeric nanoparticles with different morphologies are formed in situ according to a polymerization-induced self-assembly (PISA) mechanism. Self-assembly into nanoparticles presenting POEGMA chains at the corona and poly(benzyl methacrylate) (PBzMA) chains in the core occurs in situ due to the growing insolubility of the PBzMA block in ethanol. Interestingly, the formation of highly pure worm-like micelles can be readily monitored by observing the onset of a highly viscous gel in situ due to nanoparticle entanglements occurring during the polymerization. This process thereby allows for a more reproducible synthesis of worm-like micelles simply by monitoring the solution viscosity during the course of the polymerization. In addition, the light stimulus can be intermittently applied in an ON/OFF manner demonstrating temporal control over the nanoparticle morphology.

  6. Petit-High Pressure Carbon Dioxide stress increases synthesis of S-Adenosylmethionine and phosphatidylcholine in yeast Saccharomyces cerevisiae.

    PubMed

    Niu, Liyuan; Nomura, Kazuki; Iwahashi, Hitoshi; Matsuoka, Hiroyuki; Kawachi, Satoshi; Suzuki, Yoshihisa; Tamura, Katsuhiro

    2017-12-01

    Petit-High Pressure Carbon Dioxide (p-HPCD) is a promising nonthermal technology for foods pasteurization. Cluster analysis of gene expression profiles of Saccharomyces cerevisiae exposed to various stresses exhibited that gene expression profile for p-HPCD stress (0.5MPa, 25°C) was grouped into a cluster including profiles for Sodium Dodecyl Sulfate and Roundup herbicide. Both are detergents that can disorder membrane structurally and functionally, which suggests that cell membrane may be a target of p-HPCD stress to cause cell growth inhibition. Through metabolomic analysis, amount of S-Adenosylmethionine (AdoMet) that is used as methyl donor to participate in phosphatidylcholine synthesis via phosphatidylethanolamine (PE) methylation pathway, was increased after p-HPCD treatment for 2h. The key gene OPI3 encoding phospholipid methyltransferase that catalyzes the last two steps in PE methylation pathway was confirmed significantly induced by RT-PCR. Transcriptional expression of genes (MET13, MET16, MET10, MET17, MET6 and SAM2) related to AdoMet biosynthesis was also significantly induced. Choline as the PC precursor and ethanolamine as PE precursor in Kennedy pathway were also found increased under p-HPCD condition. We also found that amounts of most of amino acids involving protein synthesis were found decreased after p-HPCD treatment for 2h. Moreover, morphological changes on cell surface were observed by scanning electron microscope. In conclusion, the effects of p-HPCD stress on cell membrane appear to be a very likely cause of yeast growth inhibition and the enhancement of PC synthesis could contribute to maintain optimum structure and functions of cell membrane and improve cell resistance to inactivation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Bismuth-based oxide semiconductors: Mild synthesis and practical applications

    NASA Astrophysics Data System (ADS)

    Timmaji, Hari Krishna

    In this dissertation study, bismuth based oxide semiconductors were prepared using 'mild' synthesis techniques---electrodeposition and solution combustion synthesis. Potential environmental remediation and solar energy applications of the prepared oxides were evaluated. Bismuth vanadate (BiVO4) was prepared by electrodeposition and solution combustion synthesis. A two step electrosynthesis strategy was developed and demonstrated for the first time. In the first step, a Bi film was first electrodeposited on a Pt substrate from an acidic BiCl3 medium. Then, this film was anodically stripped in a medium containing hydrolyzed vanadium precursor, to generate Bi3+, and subsequent BiVO4 formation by in situ precipitation. The photoelectrochemical data were consistent with the in situ formation of n-type semiconductor films. In the solution combustion synthesis procedure, BiVO4 powders were prepared using bismuth nitrate pentahydrate as the bismuth precursor and either vanadium chloride or vanadium oxysulfate as the vanadium precursor. Urea, glycine, or citric acid was used as the fuel. The effect of the vanadium precursor on the photocatalytic activity of combustion synthesized BiVO 4 was evaluated in this study. Methyl orange was used as a probe to test the photocatalytic attributes of the combustion synthesized (CS) samples, and benchmarked against a commercial bismuth vanadate sample. The CS samples showed superior activity to the commercial benchmark sample, and samples derived from vanadium chloride were superior to vanadium oxysulfate counterparts. The photoelectrochemical properties of the various CS samples were also studied and these samples were shown to be useful both for environmental photocatalytic remediation and water photooxidation applications. Silver bismuth tungstate (AgBiW2O8) nanoparticles were prepared for the first time by solution combustion synthesis by using silver nitrate, bismuth nitrate, sodium tungstate as precursors for Ag, Bi, and W respectively and urea as the fuel. The photocatalytic activity of these nanoparticles was superior to a sample prepared by solid-state synthesis. The combustion-synthesized particles were subsequently modified with Pt catalyst islands using a photodeposition technique and then used for the photo-generation of syngas (CO + H2). Formic acid was used in these experiments for in situ generation of CO2 and its subsequent reduction to CO. In the absence of Pt modification, H2 was not obtained. These results were compared with those obtained with acetic acid in place of formic acid, and finally the mechanistic pathways for syngas and methane photogeneration are presented.

  8. Choline nutrition programs brain development via DNA and histone methylation.

    PubMed

    Blusztajn, Jan Krzysztof; Mellott, Tiffany J

    2012-06-01

    Choline is an essential nutrient for humans. Metabolically choline is used for the synthesis of membrane phospholipids (e.g. phosphatidylcholine), as a precursor of the neurotransmitter acetylcholine, and, following oxidation to betaine, choline functions as a methyl group donor in a pathway that produces S-adenosylmethionine. As a methyl donor choline influences DNA and histone methylation--two central epigenomic processes that regulate gene expression. Because the fetus and neonate have high demands for choline, its dietary intake during pregnancy and lactation is particularly important for normal development of the offspring. Studies in rodents have shown that high choline intake during gestation improves cognitive function in adulthood and prevents memory decline associated with old age. These behavioral changes are accompanied by electrophysiological, neuroanatomical, and neurochemical changes and by altered patterns of expression of multiple cortical and hippocampal genes including those encoding key proteins that contribute to the biochemical mechanisms of learning and memory. These actions of choline are observed long after the exposure to the nutrient ended (months) and correlate with fetal hepatic and cerebral cortical choline-evoked changes in global- and gene-specific DNA cytosine methylation and with dramatic changes of the methylation pattern of lysine residues 4, 9 and 27 of histone H3. Moreover, gestational choline modulates the expression of DNA (Dnmt1, Dnmt3a) and histone (G9a/Ehmt2/Kmt1c, Suv39h1/Kmt1a) methyltransferases. In addition to the central role of DNA and histone methylation in brain development, these processes are highly dynamic in adult brain, modulate the expression of genes critical for synaptic plasticity, and are involved in mechanisms of learning and memory. A recent study documented that in a cohort of normal elderly people, verbal and visual memory function correlated positively with the amount of dietary choline consumption. It will be important to determine if these actions of choline on human cognition are mediated by epigenomic mechanisms or by its influence on acetylcholine or phospholipid synthesis.

  9. Choline nutrition programs brain development via DNA and histone methylation

    PubMed Central

    Blusztajn, Jan Krzysztof; Mellott, Tiffany J.

    2017-01-01

    Choline is an essential nutrient for humans. Metabolically choline is used for the synthesis of membrane phospholipids (e.g. phosphatidylcholine), as a precursor of the neurotransmitter acetylcholine, and, following oxidation to betaine, choline functions as a methyl group donor in a pathway that produces S-adenosylmethionine. As a methyl donor choline influences DNA and histone methylation – two central epigenomic processes that regulate gene expression. Because the fetus and neonate have high demands for choline, its dietary intake during pregnancy and lactation is particularly important for normal development of the offspring. Studies in rodents have shown that high choline intake during gestation improves cognitive function in adulthood and prevents memory decline associated with old age. These behavioral changes are accompanied by electrophysiological, neuroanatomical, and neurochemical changes and by altered patterns of expression of multiple cortical and hippocampal genes including those encoding key proteins that contribute to the biochemical mechanisms of learning and memory. These actions of choline are observed long after the exposure to the nutrient ended (months) and correlate with fetal hepatic and cerebral cortical choline-evoked changes in global- and gene-specific DNA cytosine methylation and with dramatic changes of the methylation pattern of lysine residues 4, 9 and 27 of histone H3. Moreover, gestational choline modulates the expression of DNA (Dnmt1, Dnmt3a) and histone (G9a/Ehmt2/Kmt1c, Suv39h1/Kmt1a) methyltransferases. In addition to the central role of DNA and histone methylation in brain development, these processes are highly dynamic in adult brain, modulate the expression of genes critical for synaptic plasticity, and are involved in mechanisms of learning and memory. A recent study documented that in a cohort of normal elderly people, verbal and visual memory function correlated positively with the amount of dietary choline consumption. It will be important to determine if these actions of choline on human cognition are mediated by epigenomic mechanisms or by its influence on acetylcholine or phospholipid synthesis. PMID:22483275

  10. 40 CFR Appendix A to Part 439 - Tables

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Isobutyraldehyde 1 Aldehydes. n-Heptane 1 Alkanes. n-Hexane 1 Diethylamine 1 Amines. Triethylamine Benzene... Methyl formate Tetrahydrofuran 1 Ethers. Isopropyl ether Acetone 1 Ketones. 4-Methyl-2-pentanone (MIBK...

  11. 40 CFR Appendix A to Part 439 - Tables

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Isobutyraldehyde 1 Aldehydes. n-Heptane 1 Alkanes. n-Hexane 1 Diethylamine 1 Amines. Triethylamine Benzene... Methyl formate Tetrahydrofuran 1 Ethers. Isopropyl ether Acetone 1 Ketones. 4-Methyl-2-pentanone (MIBK...

  12. 40 CFR Appendix A to Part 439 - Tables

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Isobutyraldehyde 1 Aldehydes. n-Heptane 1 Alkanes. n-Hexane 1 Diethylamine 1 Amines. Triethylamine Benzene... Methyl formate Tetrahydrofuran 1 Ethers. Isopropyl ether Acetone 1 Ketones. 4-Methyl-2-pentanone (MIBK...

  13. Synthesis and antimicrobial activity of new 1-[(tetrazol-5-yl)methyl] indole derivatives, their 1,2,4-triazole thioglycosides and acyclic analogs.

    PubMed

    El-Sayed, Weal A; Abdel Megeid, Randa E; Abbas, Hebat-Allah S

    2011-07-01

    New 1-[(tetrazol-5-yl)methyl]indole derivatives, their acyclic nucleoside analogs and the corresponding glycoside derivatives were synthesized. Furthermore, the [)(1,2,4-triazol-3-yl)methyl])-2H-tetrazole derivative as well as the corresponding thioglucoside were prepared. The synthesized compounds were tested for their antimicrobial activity against Aspergillus Niger, Penicillium sp, Candida albican, Bacillus subtilis, Streptococcus lacti, Escherichia coli, Pseudomonas sp., and streptomyces sp. Compounds 3, 5 and 19b exhibited potent antibacterial activity and compounds 4, 5 and 10 exhibited high activities against the tested fungi compared with fusidic acid.

  14. 5-Azacytidine combined with 2,4-D improves somatic embryogenesis of Acca sellowiana (O. Berg) Burret by means of changes in global DNA methylation levels.

    PubMed

    Fraga, Hugo P F; Vieira, Leila N; Caprestano, Clarissa A; Steinmacher, Douglas A; Micke, Gustavo A; Spudeit, Daniel A; Pescador, Rosete; Guerra, Miguel P

    2012-12-01

    DNA methylation is an epigenetic regulatory mechanism of gene expression which can be associated with developmental phases and in vitro morphogenetic competence in plants. The present work evaluated the effects of 5-azacytidine (AzaC) and 2,4-dichlorophenoxyacetic acid (2,4-D) on Acca sellowiana somatic embryogenesis (SE) and global DNA methylation levels by high-performance liquid chromatography mass spectrometry (HPLC/MS/MS). 2,4-D-free treatments revealed no somatic embryo formation in both accessions tested. Treatments supplemented with 2,4-D pulse plus AzaC in the culture medium resulted in increased embryo formation. In AzaC-free treatment, HPLC/MS/MS analysis showed a gradual increase in methylation levels in cultures of both accessions tested during SE induction. Treatment with AzaC and 2,4-D-free resulted in a marked decrease in methylation for both accessions, ranging from 37.6 to 20.8 %. In treatment with 2,4-D and AzaC combined, the 85 accession showed increasing global methylation levels. Otherwise, the 101X458 accession, in the same treatment, showed a decrease between 10 and 20 days, followed by an increase after 30 days (39.5, 36.2 and 41.6 %). These results indicate that 2,4-D pulse combined with AzaC improves SE induction. However, the conversion phase showed that although positively influencing SE induction, AzaC had a dysregulatory effect on the stage of autotrophic plant formation, resulting in significantly lower conversion rates. The results suggest that DNA methylation dramatically influences SE in Acca sellowiana, and global DNA methylation dynamics are related to morphogenetic response. 5-Azacytidine combined with 2,4-D increases the number of Acca sellowiana somatic embryos. Global DNA methylation is directly affected by these compounds.

  15. Synthesis, Antifungal Activity and Structure-Activity Relationships of Novel 3-(Difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic Acid Amides.

    PubMed

    Du, Shijie; Tian, Zaimin; Yang, Dongyan; Li, Xiuyun; Li, Hong; Jia, Changqing; Che, Chuanliang; Wang, Mian; Qin, Zhaohai

    2015-05-08

    A series of novel 3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic acid amides were synthesized and their activities were tested against seven phytopathogenic fungi by an in vitro mycelia growth inhibition assay. Most of them displayed moderate to excellent activities. Among them N-(2-(5-bromo-1H-indazol-1-yl)phenyl)-3-(difluoro-methyl)-1-methyl-1H-pyrazole-4-carboxamide (9m) exhibited higher antifungal activity against the seven phytopathogenic fungi than boscalid. Topomer CoMFA was employed to develop a three-dimensional quantitative structure-activity relationship model for the compounds. In molecular docking, the carbonyl oxygen atom of 9m could form hydrogen bonds towards the hydroxyl of TYR58 and TRP173 on SDH.

  16. Methyl jasmonate leads to necrosis and apoptosis in hepatocellular carcinoma cells via inhibition of glycolysis and represses tumor growth in mice.

    PubMed

    Li, Jingjing; Chen, Kan; Wang, Fan; Dai, Weiqi; Li, Sainan; Feng, Jiao; Wu, Liwei; Liu, Tong; Xu, Shizan; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Xu, Ling; Guo, Chuanyong

    2017-07-11

    Methyl jasmonate has recently been found to have anti-cancer activity. Methyl jasmonate detached hexokinase 2 from a voltage dependent anion channel causing a reduction in mitochondrial transmembrane potential that led to the release of cytochrome C and apoptosis inducing factor resulting in intrinsic apoptosis. Blocked adenosine triphosphate synthesis caused by mitochondrial injury hampered oxidative phosphorylation and led to cell necrosis. The results were applied to the in vivo treatment of nude mice with a satisfactory effect. Collectively, our results suggest that methyl jasmonate may be an adjuvant therapy for liver tumors due to its mechanism in cancer cells compared to that in normal cells: The major function is to inhibit glycolysis instead of changing aerobic metabolism.

  17. Methyl jasmonate leads to necrosis and apoptosis in hepatocellular carcinoma cells via inhibition of glycolysis and represses tumor growth in mice

    PubMed Central

    Li, Jingjing; Chen, Kan; Wang, Fan; Dai, Weiqi; Li, Sainan; Feng, Jiao; Wu, Liwei; Liu, Tong; Xu, Shizan; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Xu, Ling; Guo, Chuanyong

    2017-01-01

    Methyl jasmonate has recently been found to have anti-cancer activity. Methyl jasmonate detached hexokinase 2 from a voltage dependent anion channel causing a reduction in mitochondrial transmembrane potential that led to the release of cytochrome C and apoptosis inducing factor resulting in intrinsic apoptosis. Blocked adenosine triphosphate synthesis caused by mitochondrial injury hampered oxidative phosphorylation and led to cell necrosis. The results were applied to the in vivo treatment of nude mice with a satisfactory effect. Collectively, our results suggest that methyl jasmonate may be an adjuvant therapy for liver tumors due to its mechanism in cancer cells compared to that in normal cells: The major function is to inhibit glycolysis instead of changing aerobic metabolism. PMID:28498814

  18. A Riboproteomic Platform to Identify Novel Targets for Prostate Cancer Therapy

    DTIC Science & Technology

    2015-10-01

    cell lines derived from RWPE1 prostatic epithelial cells after exposure to N-methyl-N- nitrosourea (MNU) (these cell lines are commercially available...is well established that the malignancy of cells is strongly linked to and dependent on aberrant protein synthesis . Current knowledge clearly...highlights deregulation of protein synthesis , in the development of prostate cancer, through aberrant activation of classical signaling pathways. It has

  19. Total synthesis of Ivorenolide A following a base-induced elimination protocol.

    PubMed

    Mohapatra, Debendra K; Umamaheshwar, Gonela; Rao, R Nageshwar; Rao, T Srinivasa; R, Sudheer Kumar; Yadav, Jhillu S

    2015-02-20

    A concise and stereocontrolled first total synthesis of Ivorenolide A (1) is reported in 16 longest linear steps with a 13.4% overall yield starting from (+)-diethyl tartrate (DET). Key features are base-induced elimination protocol for the construction of chiral propargyl alcohols in both fragments, Pd-catalyzed cross-coupling of terminal acetylenes, and Shiina's 2-methyl-6-nitrobezoic anhydride (MNBA) mediated macrolactonization.

  20. THE MICROWAVE SPECTROSCOPY OF METHYL FORMATE IN THE SECOND TORSIONAL EXCITED STATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Kaori; Takamura, Kazunori; Sakai, Yusuke

    2013-03-01

    The cis-methyl formate molecule is a well known molecule found in interstellar space. Recently, rotational lines of methyl formate in the first CH{sub 3} torsional excited state were observed in Orion KL and W51e2. It is quite natural to observe methyl formate in even higher vibrational states considering the temperature estimated in Orion KL and W51e2. Maeda et al. reported results on the laboratory spectroscopy of methyl formate including the spectral analysis in its second CH{sub 3} torsional state. Their assignments were limited to a series of a-type R-branch lines and low K{sub a} b-type R-branch transitions, and many assignedmore » lines are excluded in the least-squares analysis. In the present study, we extended the line assignments of both the A- and E-species transitions in the second CH{sub 3} torsional state especially in the frequency region below the 120 GHz region. By combining the present assignments and those made by Maeda et al., 1951 transitions in total for the second CH{sub 3} torsional state, 1096 A-species transitions up to J = 39, and K{sub a} = 15 and 855 E-species transitions up to J = 35 and K{sub a} = 13, were least-squares analyzed by using the pseudo-principal-axis-method Hamiltonian with 42 parameters consisting of rotational, centrifugal distortion, and internal rotational constants in the second CH{sub 3} torsional state. In addition, 1012 transitions out of 1096 A-species transitions could also be least-squares analyzed by using Watson's A-reduced Hamiltonian with 43 parameters, which can serve to calculate the energy levels of the A-species lines of molecules with the CH{sub 3} internal rotation conveniently.« less

  1. Impacts of crab bioturbation and local pollution on sulfate reduction, Hg distribution and methylation in mangrove sediments, Rio de Janeiro, Brazil.

    PubMed

    Correia, Raquel Rose Silva; Guimarães, Jean Remy Davée

    2016-08-15

    Mercury (Hg) and methylmercury (MeHg) are highly toxic and poorly studied in mangroves. Burrowing Uca crabs change sediment topography and biogeochemistry and thus may affect Hg distribution and MeHg formation. We studied added (203)Hg distribution, Me(203)Hg formation and sulfate reduction rates (SRR) in sediment aquariums containing Uca leptodactyla; and analyzed profiles of Me(203)Hg formation and SRR in sediment cores from two mangroves with distinct environmental impacts. MeHg formation and SRR were higher in the top (≤6cm) sediment and there was no significant difference in Hg methylation in more or less impacted mangroves. In aquariums, crab bioturbation favored Hg retention in the sediment. In the treatment without crabs, Hg volatilization and water Hg concentrations were higher. Hg methylation was higher in bioturbated aquariums but SRR were similar in both treatments. These findings suggest that bioturbating activity favors Hg retention in sediment but also promotes MeHg formation near the surface. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Comparative Analysis of DNA Methylation Reveals Specific Regulations on Ethylene Pathway in Tomato Fruit

    PubMed Central

    Zuo, Jinhua; Wang, Yunxiang; Zhu, Benzhong; Luo, Yunbo; Wang, Qing; Gao, Lipu

    2018-01-01

    DNA methylation is an essential feature of epigenetic regulation and plays a role in various physiological and biochemical processes at CG, CHG, and CHH sites in plants. LeERF1 is an ethylene response factor (ERF) found in tomatoes which plays an important role in ethylene signal transduction. To explore the characteristics of DNA methylation in the ethylene pathway, sense-/antisense-LeERF1 transgenic tomato fruit were chosen for deep sequencing and bioinformatics parsing. The methylation type with the greatest distribution was CG, (71.60–72.80%) and CHH was found least frequently (10.70–12.50%). The level of DNA methylation was different among different tomato genomic regions. The differentially methylated regions (DMRs) and the differentially expressed genes (DEGs) were conjointly analyzed and 3030 different expressed genes were found, of which several are involved in ethylene synthesis and signaling transduction (such as ACS, ACO, MADS-Box, ERFs, and F-box). Furthermore, the relationships between DNA methylation and microRNAs (miRNAs) were also deciphered, providing basic information for the further study of DNA methylation and small RNAs involved in the ethylene pathway. PMID:29883429

  3. Proteomic Identification and Analysis of Arginine-Methylated Proteins of Plasmodium falciparum at Asexual Blood Stages.

    PubMed

    Zeeshan, Mohammad; Kaur, Inderjeet; Joy, Joseph; Saini, Ekta; Paul, Gourab; Kaushik, Abhinav; Dabral, Surbhi; Mohmmed, Asif; Gupta, Dinesh; Malhotra, Pawan

    2017-02-03

    Plasmodium falciparum undergoes a tightly regulated developmental process in human erythrocytes, and recent studies suggest an important regulatory role of post-translational modifications (PTMs). As compared with Plasmodium phosphoproteome, little is known about other PTMs in the parasite. In the present study, we performed a global analysis of asexual blood stages of Plasmodium falciparum to identify arginine-methylated proteins. Using two different methyl arginine-specific antibodies, we immunoprecipitated the arginine-methylated proteins from the stage-specific parasite lysates and identified 843 putative arginine-methylated proteins by LC-MS/MS. Motif analysis of the protein sequences unveiled that the methylation sites are associated with the previously known methylation motifs such as GRx/RGx, RxG, GxxR, or WxxxR. We identified Plasmodium homologues of known arginine-methylated proteins in trypanosomes, yeast, and human. Hydrophilic interaction liquid chromatography (HILIC) was performed on the immunoprecipitates from the trophozoite stage to enrich arginine-methylated peptides. Mass spectrometry analysis of immunoprecipitated and HILIC fractions identified 55 arginine-methylated peptides having 62 methylated arginine sites. Functional classification revealed that the arginine-methylated proteins are involved in RNA metabolism, protein synthesis, intracellular protein trafficking, proteolysis, protein folding, chromatin organization, hemoglobin metabolic process, and several other functions. Summarily, the findings suggest that protein methylation of arginine residues is a widespread phenomenon in Plasmodium, and the PTM may play an important regulatory role in a diverse set of biological pathways, including host-pathogen interactions.

  4. Synthesis, spectroscopic characterization and biological evaluation of unsymmetrical aminosquarylium cyanine dyes.

    PubMed

    Friães, Sofia; Silva, Amélia M; Boto, Renato E; Ferreira, Diana; Fernandes, José R; Souto, Eliana B; Almeida, Paulo; Ferreira, Luis F Vieira; Reis, Lucinda V

    2017-07-15

    New unsymmetrical aminosquarylium cyanine dyes were synthesized and their potential as photosensitizers evaluated. New dyes, derived from benzothiazole and quinoline, were prepared by nucleophilic substitution of the corresponding O-methylated, the key intermediate that was obtained by methylation with CF 3 SO 3 CH 3 of the related zwitterionic unsymmetrical dye, with ammonia and methylamine, respectively. All three news dyes herein described displayed intense and narrow bands in the Vis/NIR region (693-714nm) and their singlet oxygen formation quantum yields ranged from 0.03 to 0.05. In vitro toxicity, in Caco-2 and HepG2 cells, indicated that dark toxicity was absent for concentrations up to 5µM (for the less active dye) or up to 1µM (for the two more active dyes). The three dyes present potential as photosensitizers, differing in irradiation conditions and period of incubation in the presence of irradiated dye. The less active dye needs a longer irradiation period to exhibit phototoxicity which is only evident after longer period of contact with cells (24h). However, the remaining two more active dyes produce higher phototoxicity, even at shorter incubation periods (1h), with shorter irradiation time (7min). Although in different extents, these dyes show promising in vitro results as photosensitizers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. UV-C–Irradiated Arabidopsis and Tobacco Emit Volatiles That Trigger Genomic Instability in Neighboring Plants[W

    PubMed Central

    Yao, Youli; Danna, Cristian H.; Zemp, Franz J.; Titov, Viktor; Ciftci, Ozan Nazim; Przybylski, Roman; Ausubel, Frederick M.; Kovalchuk, Igor

    2011-01-01

    We have previously shown that local exposure of plants to stress results in a systemic increase in genome instability. Here, we show that UV-C–irradiated plants produce a volatile signal that triggers an increase in genome instability in neighboring nonirradiated Arabidopsis thaliana plants. This volatile signal is interspecific, as UV-C–irradiated Arabidopsis plants transmit genome destabilization to naive tobacco (Nicotiana tabacum) plants and vice versa. We report that plants exposed to the volatile hormones methyl salicylate (MeSA) or methyl jasmonate (MeJA) exhibit a similar level of genome destabilization as UV-C–irradiated plants. We also found that irradiated Arabidopsis plants produce MeSA and MeJA. The analysis of mutants impaired in the synthesis and/or response to salicylic acid (SA) and/or jasmonic acid showed that at least one other volatile compound besides MeSA and MeJA can communicate interplant genome instability. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (npr1) mutant, defective in SA signaling, is impaired in both the production and the perception of the volatile signals, demonstrating a key role for NPR1 as a central regulator of genome stability. Finally, various forms of stress resulting in the formation of necrotic lesions also generate a volatile signal that leads to genomic instability. PMID:22028460

  6. Chemoselective methylation of phenolic hydroxyl group prevents quinone methide formation and repolymerization during lignin depolymerization

    DOE PAGES

    Kim, Kwang Ho; Dutta, Tanmoy; Walter, Eric D.; ...

    2017-03-22

    Chemoselective blocking of the phenolic hydroxyl (Ar–OH) group by methylation was found to suppress secondary repolymerization and charring during lignin depolymerization. Methylation of Ar–OH prevents formation of reactive quinone methide intermediates, which are partly responsible for undesirable secondary repolymerization reactions. Instead, this structurally modified lignin produces more relatively low molecular weight products from lignin depolymerization compared to unmodified lignin. This result demonstrates that structural modification of lignin is desirable for production of low molecular weight phenolic products. Finally, this approach could be directed toward alteration of natural lignification processes to produce biomass that is more amenable to chemical depolymerization.

  7. Kinetic and analytic investigations on the formation of N-nitroso-N-methyl-N-cyclohexylamine from bromhexine and nitrite.

    PubMed

    Schmid, J; Daneck, K; Koss, F W; Eisenbrand, G; Schlemmer, K H

    1988-09-01

    Bromhexine (N-methyl-N-cyclohexyl-(2-amino-3,5-dibromobenzyl)-ammoniumhydr ochloride) forms N-nitroso-N-methyl-N-cyclohexylamine (NMCA) under the conditions of the WHO Nitrosation Assay Procedure (NAP-test). The formation kinetics of this compound was investigated. The formation of NMCA depends on the square of the nitrite concentration. The reaction has a narrow pH-optimum at pH 3. The reaction is quick: After 1 h about 70% of the maximum amount of NMCA is formed. To study this reaction kinetics sensitive assays with a detection limit up to 0.5 ng/ml NMCA were developed. The stability of the components of the system, especially that of NMCA and nitrite, were further studied. The latter is rather instable under conditions found in an acidic stomach.

  8. DNA methylation mediates neural processing after odor learning in the honeybee

    PubMed Central

    Biergans, Stephanie D.; Claudianos, Charles; Reinhard, Judith; Galizia, C. Giovanni

    2017-01-01

    DNA methyltransferases (Dnmts) - epigenetic writers catalyzing the transfer of methyl-groups to cytosine (DNA methylation) – regulate different aspects of memory formation in many animal species. In honeybees, Dnmt activity is required to adjust the specificity of olfactory reward memories and bees’ relearning capability. The physiological relevance of Dnmt-mediated DNA methylation in neural networks, however, remains unknown. Here, we investigated how Dnmt activity impacts neuroplasticity in the bees’ primary olfactory center, the antennal lobe (AL) an equivalent of the vertebrate olfactory bulb. The AL is crucial for odor discrimination, an indispensable process in forming specific odor memories. Using pharmacological inhibition, we demonstrate that Dnmt activity influences neural network properties during memory formation in vivo. We show that Dnmt activity promotes fast odor pattern separation in trained bees. Furthermore, Dnmt activity during memory formation increases both the number of responding glomeruli and the response magnitude to a novel odor. These data suggest that Dnmt activity is necessary for a form of homoeostatic network control which might involve inhibitory interneurons in the AL network. PMID:28240742

  9. Automated GMP-production of α-[11 C]Methyl-L-tryptophan using a tracer production system (TPS).

    PubMed

    Nordeman, Patrik; Yngve, Ulrika; Wilking, Helena; Gustavsson, Sven Åke; Eriksson, Jonas; Antoni, Gunnar

    2018-06-14

    The radiosynthesis and GMP validation of [ 11 C] AMT for human use is described. Three consecutive batches were produced giving 940-3790 MBq (4-17% RCY, decay corrected, based on [ 11 C]CO 2 ). The molar activity at the end of synthesis was 19-35 GBq/μmol, the radiochemical purity was ≥98% and the enantiomeric purity was >99%. While the synthesis method was automated using a new generation of synthesis equipment, Tracer Production System (TPS) developed in house, the method should be readily applicable to other synthesis platforms with minor modifications. This article is protected by copyright. All rights reserved.

  10. Synthesis of backbone P-functionalized imidazol-2-ylidene complexes: en route to novel functional ionic liquids.

    PubMed

    Majhi, Paresh Kumar; Sauerbrey, Susanne; Schnakenburg, Gregor; Arduengo, Anthony J; Streubel, Rainer

    2012-10-01

    1-Alkyl-3-methyl-4-diphenylphosphoryl-imidazolium hydrogensulfate (4a,b) (a: R(1) = R(2) = Me; b: R(1) = (i)Pr, R(2) = Me) and 1-alkyl-3-methyl-4,5-bis(diphenylphosphoryl)imidazolium hydrogensulfate (6a,c) (c: R(1) = (n)Bu, R(2) = Me) were obtained selectively and in good yields by oxidative desulfurization of 1-alkyl-3-methyl-4-diphenylphosphino-imidazole-2-thiones (2a,b) and 1-n-butyl-3-methyl-4,5-bis(diphenylphosphoryl)imidazole-2-thione (3c) or 1,3-dimethyl-4-diphenylthiophosphoryl-5-diphenylphosphino-imidazole-2-thione (5a), respectively, with hydrogen peroxide. Synthesis of phosphoryl functionalized imidazol-2-ylidene complexes of group VI metal pentacarbonyls (7a-9a) and (10b-12b) and bis(phosphoryl) functionalized imidazol-2-ylidene complexes of group VI metal pentacarbonyls (13c-15c) and (16a) with low steric demand (methyl, isopropyl, n-butyl) at both N-centers was achieved through deprotonation of imidazolium salts (4a,b) and (6a,c), respectively,-having HSO(4)(-) as a counterion-with potassium tert-butoxide followed by rapid addition of metal pentacarbonyl acetonitrile complexes [M(CO)(5)(CH(3)CN)] (M = Cr, Mo, W). The products were unambiguously characterized by elemental analyses, spectroscopic and spectrometric methods, and in addition, by single-crystal X-ray structure studies in the cases of 4b, 8a, 15c, and 16a; the latter two reveal imidazole ring bond distance alternation in contrast to 8a.

  11. Synthesis of Natural and Unnatural Cyclooligomeric Depsipeptides Enabled by Flow Chemistry.

    PubMed

    Lücke, Daniel; Dalton, Toryn; Ley, Steven V; Wilson, Zoe E

    2016-03-14

    Flow chemistry has been successfully integrated into the synthesis of a series of cyclooligomeric depsipeptides of three different ring sizes including the natural products beauvericin (1 a), bassianolide (2 b) and enniatin C (1 b). A reliable flow chemistry protocol was established for the coupling and macrocyclisation to form challenging N-methylated amides. This flexible approach has allowed the rapid synthesis of both natural and unnatural depsipeptides in high yields, enabling further exploration of their promising biological activity. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Synthesis of Illudinine from Dimedone.

    PubMed

    Morrison, Alec E; Hoang, Tung T; Birepinte, Mélodie; Dudley, Gregory B

    2017-02-17

    A total synthesis of the illudalane sesquiterpene illudinine was realized in eight steps and 14% overall yield from commercially available dimedone. The approach features tandem fragmentation/Knoevenagel-type condensation and microwave-assisted oxidative cycloisomerization to establish the isoquinoline core. Completion of the synthesis involves a recently reported cascade S N Ar/Lossen rearrangement on a densely functionalized aryl bromide and an optimized procedure for O-methylation of 8-hydroxyisoquinolines. The oxidative cycloisomerization proceeds by way of a novel inverse-demand intramolecular dehydro-Diels-Alder cycloaddition, which has a potentially broader appeal for preparing substituted isoquinolines.

  13. Synthesis of the diazonium (perfluoroalkyl) benzenesulfonimide monomer from Nafion monomer for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Mei, Hua; D'Andrea, Dan; Nguyen, Tuyet-Trinh; Nworie, Chima

    2014-02-01

    One diazonium (perfluoroalkyl) benzenesulfonimide monomer, perfluoro-3, 6-dioxa-4-methyl-7-octene benzenesulfonyl imide, has been synthesized from Nafion monomer for the first time. With trifluorovinyl ether and diazonium precursors, the partially-fluorinated diazonium PFSI monomer can be polymerized and will provide chemically bonding with carbon electrode in proton exchange membrane fuel cells. A systematic study of the synthesis and characterization of this diazonium PFSI monomer has been conducted by varying reaction conditions. The optimized synthesis method has been established in the lab.

  14. Neuronal DNA Methyltransferases: Epigenetic Mediators between Synaptic Activity and Gene Expression?

    PubMed Central

    Bayraktar, Gonca; Kreutz, Michael R.

    2017-01-01

    DNMT3A and 3B are the main de novo DNA methyltransferases (DNMTs) in the brain that introduce new methylation marks to non-methylated DNA in postmitotic neurons. DNA methylation is a key epigenetic mark that is known to regulate important cellular processes in neuronal development and brain plasticity. Accumulating evidence disclosed rapid and dynamic changes in DNA methylation of plasticity-relevant genes that are important for learning and memory formation. To understand how DNMTs contribute to brain function and how they are regulated by neuronal activity is a prerequisite for a deeper appreciation of activity-dependent gene expression in health and disease. This review discusses the functional role of de novo methyltransferases and in particular DNMT3A1 in the adult brain with special emphasis on synaptic plasticity, memory formation, and brain disorders. PMID:28513272

  15. Folate, colorectal cancer and the involvement of DNA methylation.

    PubMed

    Williams, Elizabeth A

    2012-11-01

    Diet is a major factor in the aetiology of colorectal cancer (CRC). Epidemiological evidence suggests that folate confers a modest protection against CRC risk. However, the relationship is complex, and evidence from human intervention trials and animal studies suggests that a high-dose of folic acid supplementation may enhance the risk of colorectal carcinogenesis in certain circumstances. The molecular mechanisms underlying the apparent dual modulatory effect of folate on colorectal carcinogenesis are not fully understood. Folate is central to C1 metabolism and is needed for both DNA synthesis and DNA methylation, providing plausible biological mechanisms through which folate could modulate cancer risk. Aberrant DNA methylation is an early event in colorectal carcinogenesis and is typically associated with the transcriptional silencing of tumour suppressor genes. Folate is required for the production of S-adenosyl methionine, which serves as a methyl donor for DNA methylation events; thereby folate availability is proposed to modulate DNA methylation status. The evidence for an effect of folate on DNA methylation in the human colon is limited, but a modulation of DNA methylation in response to folate has been demonstrated. More research is required to clarify the optimum intake of folate for CRC prevention and to elucidate the effect of folate availability on DNA methylation and the associated impact on CRC biology.

  16. Synthesis of Bis(1-Methyl-3-Propyl-4-Nitro)imidazolium Dodecahydrododecaborate and Bis(1-Methyl-3-Propyl-5-Nitro)imidazolium Dodecahydrododecaborate Salts: A New Class of Energetic Fuels

    DTIC Science & Technology

    2013-02-01

    AND ENGINEERING CENTER Munitions Engineering Technology Center Picatinny Arsenal, New Jersey The views, opinions, and/or...ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army ARDEC, METC Energetics, Warheads & Manufacturing Technology Directorate (RDAR-MEE-W) Picatinny Arsenal, NJ...crystal x-ray diffraction, Fourier transform infrared ( FTIR ), melting points, and densities - are provided along with thermal gravimetric analysis of

  17. Vapour-induced solid-state C-H bond activation for the clean synthesis of an organopalladium biothiol sensor.

    PubMed

    Monas, Andrea; Užarević, Krunoslav; Halasz, Ivan; Kulcsár, Marina Juribašić; Ćurić, Manda

    2016-10-27

    Room-temperature accelerated aging in the solid state has been applied for atom- and energy-efficient activation of either one or two C-H bonds of azobenzene and methyl orange by palladium(ii) acetate. Organopalladium complexes are prepared in quantitative reactions without potentially harmful side products. Dicyclopalladated methyl orange is water-soluble and is a selective chromogenic biothiol sensor at physiologically-relevant micromolar concentrations in buffered aqueous media.

  18. Involvement of Cytochrome P450 in Pentachlorophenol Transformation in a White Rot Fungus Phanerochaete chrysosporium

    PubMed Central

    Ning, Daliang; Wang, Hui

    2012-01-01

    The occurrence of cytochrome P450 and P450-mediated pentachlorophenol oxidation in a white rot fungus Phanerochaete chrysosporium was demonstrated in this study. The carbon monoxide difference spectra indicated induction of P450 (103±13 pmol P450 per mg protein in the microsomal fraction) by pentachlorophenol. The pentachlorophenol oxidation by the microsomal P450 was NADPH-dependent at a rate of 19.0±1.2 pmol min−1 (mg protein)−1, which led to formation of tetrachlorohydroquinone and was significantly inhibited by piperonyl butoxide (a P450 inhibitor). Tetrachlorohydroquinone was also found in the cultures, while the extracellular ligninases which were reported to be involved in tetrachlorohydroquinone formation were undetectable. The formation of tetrachlorohydroquinone was not detectable in the cultures added with either piperonyl butoxide or cycloheximide (an inhibitor of de novo protein synthesis). These results revealed the pentachlorophenol oxidation by induced P450 in the fungus, and it should be the first time that P450-mediated pentachlorophenol oxidation was demonstrated in a microorganism. Furthermore, the addition of the P450 inhibitor to the cultures led to obvious increase of pentachlorophenol, suggesting that the relationship between P450 and pentachlorophenol methylation is worthy of further research. PMID:23029295

  19. Thermal formation of hydroxynitriles, precursors of hydroxyacids in astrophysical ice analogs: Acetone ((CH3)2Cdbnd O) and hydrogen cyanide (HCN) reactivity

    NASA Astrophysics Data System (ADS)

    Fresneau, Aurélien; Danger, Grégoire; Rimola, Albert; Duvernay, Fabrice; Theulé, Patrice; Chiavassa, Thierry

    2015-11-01

    Reactivity in astrophysical environments is still poorly understood. In this contribution, we investigate the thermal reactivity of interstellar ice analogs containing acetone ((CH3)2CO), ammonia (NH3), hydrogen cyanide (HCN) and water (H2O) by means of infrared spectroscopy and mass spectrometry techniques, complemented by quantum chemical calculations. We show that no reaction occurs in H2O:HCN:(CH3)2CO ices. Nevertheless, HCN does indeed react with acetone once activated by NH3 into CN- to form 2-hydroxy-2-methylpropanenitrile (HOsbnd C(CH3)2sbnd CN), with a calculated activation energy associated with the rate determining step of about 51 kJ mol-1. This reaction inhibits the formation of 2-aminopropan-2-ol (HOsbnd C(CH3)2sbnd NH2) from acetone and NH3, even in the presence of water, which is the first step of the Strecker synthesis to form 2-aminoisobutyric acid (NH2C(CH3)2COOH). However, HOsbnd C(CH3)2sbnd CN formation could be part of an alternative chemical pathway leading to 2-hydroxy-2-methyl-propanoic acid (HOC(CH3)2COOH), which could explain the presence of hydroxy acids in some meteorites.

  20. Characterization and redox regulation of Plasmodium falciparum methionine adenosyltransferase.

    PubMed

    Pretzel, Jette; Gehr, Marina; Eisenkolb, Maike; Wang, Lihui; Fritz-Wolf, Karin; Rahlfs, Stefan; Becker, Katja; Jortzik, Esther

    2016-12-01

    As a methyl group donor for biochemical reactions, S-adenosylmethionine plays a central metabolic role in most organisms. Depletion of S-adenosylmethionine has downstream effects on polyamine metabolism and methylation reactions, and is an effective way to combat pathogenic microorganisms such as malaria parasites. Inhibition of both the methylation cycle and polyamine synthesis strongly affects Plasmodium falciparum growth. Despite its central position in the methylation cycle, not much is currently known about P. falciparum methionine adenosyltransferase (PfalMAT). Notably, however, PfalMAT has been discussed as a target of different redox regulatory modifications. Modulating the redox state of critical cysteine residues is a way to regulate enzyme activity in different pathways in response to changes in the cellular redox state. In the present study, we optimized an assay for detailed characterization of enzymatic activity and redox regulation of PfalMAT. While the presence of reduced thioredoxin increases the activity of the enzyme, it was found to be inhibited upon S-glutathionylation and S-nitrosylation. A homology model and site-directed mutagenesis studies revealed a contribution of the residues Cys52, Cys113 and Cys187 to redox regulation of PfalMAT by influencing its structure and activity. This phenomenon connects cellular S-adenosylmethionine synthesis to the redox state of PfalMAT and therefore to the cellular redox homeostasis. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  1. The specificity of induction of alpha-galactosidase from Saccharomyces carlsbergensis.

    PubMed

    Flórez, I G; Lazo, P S; Ochoa, A G; Gascón, S

    1981-04-17

    A number of sugars and derivatives have been tested for their ability to induce the synthesis of alpha-galactosidase from Saccharomyces carlsbergensis. Besides galactose and the substrates of the enzyme melibiose, raffinose and stachyose, D-galacturonic acid, L-arabinose, D-tagatose, methyl-alpha-D-galactoside, lactose and isopropyl-beta-D-thiogalactoside were able to act as inducers. Of these, methyl-alpha-D-galactoside, lactose, isopropyl-beta-D-thiogalactoside and L-arabinose have been shown to be gratuitous inducers with which kinetic studies of induction have been carried out. Lactose was the most efficient inducer, giving a maximal differential rate of synthesis of the enzyme of 110 mU/10(7) cells at a concentration of 180 mM, followed by L-arabinose (60 mU/10(7) cells at 40 mM), isopropyl-beta-D-thiogalactoside (43 mU/10(7) cells at 60 mM) and methyl-alpha-D-galactoside (25 mU/10(7) cells at 150 mM). The concentration of inducer required to obtain half-maximal induction was similar for lactose, L-arabinose and isopropyl-beta-D-thiogalactoside and about 5-fold higher for methyl-alpha-D-galactoside. The property of the compounds to act as inducers was compared to their ability to interact with the enzyme and the results discussed in terms of the molecular structures which are recognized by the enzyme and by the induction machinery.

  2. Global DNA methylation patterns in Barrett's esophagus, dysplastic Barrett's, and esophageal adenocarcinoma are associated with BMI, gender, and tobacco use.

    PubMed

    Kaz, Andrew M; Wong, Chao-Jen; Varadan, Vinay; Willis, Joseph E; Chak, Amitabh; Grady, William M

    2016-01-01

    The risk of developing Barrett's esophagus (BE) and/or esophageal adenocarcinoma (EAC) is associated with specific demographic and behavioral factors, including gender, obesity/elevated body mass index (BMI), and tobacco use. Alterations in DNA methylation, an epigenetic modification that can affect gene expression and that can be influenced by environmental factors, is frequently present in both BE and EAC and is believed to play a role in the formation of BE and its progression to EAC. It is currently unknown whether obesity or tobacco smoking influences the risk of developing BE/EAC via the induction of alterations in DNA methylation. To investigate this possibility, we assessed the genome-wide methylation status of 81 esophageal tissues, including BE, dysplastic BE, and EAC epithelia using HumanMethylation450 BeadChips (Illumina). We found numerous differentially methylated loci in the esophagus tissues when comparing males to females, obese to lean individuals, and smokers to nonsmokers. Differences in DNA methylation between these groups were seen in a variety of functional genomic regions and both within and outside of CpG islands. Several cancer-related pathways were found to have differentially methylated genes between these comparison groups. Our findings suggest obesity and tobacco smoking may influence DNA methylation in the esophagus and raise the possibility that these risk factors affect the development of BE, dysplastic BE, and EAC through influencing the epigenetic status of specific loci that have a biologically plausible role in cancer formation.

  3. Synthesis and cytotoxic activity evaluation of some novel 1-(3-(aryl-4,5-dihydroisoxazol-5-yl)methyl)-4-trihalomethyl-1H-pyrimidin-2-ones in human cancer cells.

    PubMed

    Lobo, Marcio M; Viau, Cassiana M; Dos Santos, Josiane M; Bonacorso, Helio G; Martins, Marcos A P; Amaral, Simone S; Saffi, Jenifer; Zanatta, Nilo

    2015-08-28

    The synthesis of a series of 14 new 1-(3-(aryl-4,5-dihydroisoxazol-5-yl)methyl)-4-trihalomethyl-1H-pyrimidin-2-ones from the 1,3-dipolar cycloaddition reaction of 1-allyl-4-(trihalomethyl)pyrimidin-2(1H)-ones with aryl nitrile oxides is described. Also, the antiproliferative activity of the title compounds was tested against five human tumoral cell lines: MCF-7 breast cancer cell line, ER+ (estrogen receptor positive); HepG-2 (hepatoma); T-24 (bladder cancer); HCT-116 cell (colorectal carcinoma); and CACO-2. The preliminary results are promising, since three compounds presented IC50 values below 2 μM, as well as moderate to high selectivity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Biomimetic Synthesis of Macahydantoins A and B from Lepidium meyenii, and Structure Revision of Macahydantoin B as a Class of Thiohydantoin with a 4-Methyl-hexahydropyrrolo[1,2-c]imidazole Skeleton.

    PubMed

    Zhou, Min; Ma, Hang-Ying; Xing, Huan-Huan; Li, Ping; Li, Gan-Peng; Geng, Hui-Chun; Hu, Qiu-Fen; Yang, Guang-Yu

    2017-09-15

    Phytochemical investigation on Lepidium meyenii led to the discovery of macahydantoin C (3), a new thiohydantoin with a 1,3-diazabicyclo[3.3.1]nonane core, the spectral properties of which indicate a potential structural misassignment of its previously reported analogue, macahydantoin B (2a). To probe this hypothesis, a concise, scalable, and biomimetic synthesis of the originally proposed 2a and its revised structure (2b) was efficiently accomplished using the modified Edman degradation as the key step from commercially available materials in 65% (three steps) and 52% (three steps) overall yields, respectively. These synthetic endeavors undoubtedly reassigned the structure of macahydantoin B as an unreported type of thiohydantoin featuring a 4-methyl-hexahydropyrrolo[1,2-c]imidazole scaffold.

  5. Synthesis of acrylates and methacrylates from coal-derived syngas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spivey, J.J.; Gogate, M.R.; Jang, B.W.L.

    1995-12-31

    Acrylates and methacrylates are among the most widely used chemical intermediates in the world. One of the key chemicals of this type is methyl methacrylate. Of the 4 billion pounds produced each year, roughly 85% is made using the acetone-cyanohydrin process, which requires handling of large quantities of hydrogen cyanide and produces ammonium sulfate wastes that pose an environmental disposal challenge. The U.S. Department of Energy and Eastman Chemical Company are sharing the cost of research to develop an alternative process for the synthesis of methyl methacrylate from syngas. Research Triangle Institute is focusing on the synthesis and testing ofmore » active catalysts for the condensation reactions, and Bechtel is analyzing the costs to determine the competitiveness of several process alternatives. Results thus far show that the catalysts for the condensation of formaldehyde and the propionate are key to selectively producing the desired product, methacrylic acid, with a high yield. These condensation catalysts have both acid and base functions and the strength and distribution of these acid-base sites controls the product selectivity and yield.« less

  6. Synthesis of a probe for monitoring HSV1-tk reporter gene expression using chemical exchange saturation transfer MRI

    PubMed Central

    Bar-Shir, Amnon; Liu, Guanshu; Greenberg, Marc M; Bulte, Jeff W M; Gilad, Assaf A

    2013-01-01

    In experiments involving transgenic animals or animals treated with transgenic cells, it is important to have a method to monitor the expression of the relevant genes longitudinally and noninvasively. An MRI-based reporter gene enables monitoring of gene expression in the deep tissues of living subjects. This information can be co-registered with detailed high-resolution anatomical and functional information. We describe here the synthesis of the reporter probe, 5-methyl-5,6-dihydrothymidine (5-MDHT), which can be used for imaging of the herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene expression in rodents by MRI. The protocol also includes data acquisition and data processing routines customized for chemical exchange saturation transfer (CEST) contrast mechanisms. The dihydropyrimidine 5-MDHT is synthesized through a catalytic hydrogenation of the 5,6-double bond of thymidine to yield 5,6-dihydrothymidine, which is methylated on the C-5 position of the resulting saturated pyrimidine ring. The synthesis of 5-MDHT can be completed within 5 d, and the compound is stable for more than 1 year. PMID:24177294

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Abhinandan; Jana, Swapan Kumar; Datta, Sayanti

    The synthesis of two new lead(II) coordination polymers, [Pb{sub 2}(mpic){sub 4}(H{sub 2}O)]·0.5H{sub 2}O (1) and [Pb{sub 2}(phen){sub 2}(cit)(mes)]·2H{sub 2}O (2) has been reported, where mpic=3-methyl picolinate, phen=o-phenanthroline, H{sub 2}cit=citraconic acid, H{sub 2}mes mesaconic acid. X-ray single crystal diffraction analyses showed that the complexes comprise topologically different 1D polymeric chains stabilized by weak interactions and both containing tetranuclear Pb{sub 4} units connected by carboxylate groups. In compound 1 3-methylpicolinic acid is formed in situ from 3-methyl piconitrile, and mesaconate and citraconate anions were surprisingly formed from itaconic acid during the synthesis of 2. The photoluminescence and thermal properties of the complexesmore » have been studied. - Graphical abstract: Two new topologically different 1D coordination polymers formed by Pb{sub 4} clusters have been synthesized and characterized by X-ray analysis. The luminescence and thermal properties have been studied. Display Omitted - Highlights: • Both the complexes, made up of different ligands, forms topologycally different 1D polymeric chains containing Pb{sub 4} clusters. • The final structures are stabilized by weak interactions (H-bond, π∙∙∙π stacking). • In complex 1, the 3-methylpicolinic acid is generated in situ from 3-methyl piconitrile. • Mesaconate and citraconate anions are surprisingly formed in situ from itaconic acid during the synthesis of complex 2, indicating an exceptional transformation.« less

  8. The catalytic potential of cosmic dust: implications for prebiotic chemistry in the solar nebula and other protoplanetary systems.

    PubMed

    Hill, Hugh G M; Nuth, Joseph A

    2003-01-01

    The synthesis of important prebiotic molecules is fundamentally reliant on basic starting ingredients: water, organic species [e.g., methane (CH(4))], and reduced nitrogen compounds [e.g., ammonia (NH(3)), methyl cyanide (CH(3)CN) etc.]. However, modern studies conclude that the primordial Earth's atmosphere was too rich in CO, CO(2), and water to permit efficient synthesis of such reduced molecules as envisioned by the classic Miller-Urey experiment. Other proposed sources of terrestrial nitrogen reduction, like those within submarine vent systems, also seem to be inadequate sources of chemically reduced C-H-O-N compounds. Here, we demonstrate that nebular dust analogs have impressive catalytic properties for synthesizing prebiotic molecules. Using a catalyst analogous to nebular iron silicate condensate, at temperatures ranging from 500K to 900K, we catalyzed both the Fischer-Tropsch conversion of CO and H(2) to methane and water, and the corresponding Haber-Bosch synthesis of ammonia from N(2) and H(2). Remarkably, when CO, N(2), and H(2) were allowed to react simultaneously, these syntheses also yielded nitrogen-containing organics such as methyl amine (CH(3)NH(2)), acetonitrile (CH(3)CN), and N-methyl methylene imine (H(3)CNCH(2)). A fundamental consequence of this work for astrobiology is the potential for a natural chemical pathway to produce complex chemical building blocks of life throughout our own Solar System and beyond.

  9. Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved.

    PubMed

    Long, Hannah K; King, Hamish W; Patient, Roger K; Odom, Duncan T; Klose, Robert J

    2016-08-19

    DNA methylation is a repressive epigenetic modification that covers vertebrate genomes. Regions known as CpG islands (CGIs), which are refractory to DNA methylation, are often associated with gene promoters and play central roles in gene regulation. Yet how CGIs in their normal genomic context evade the DNA methylation machinery and whether these mechanisms are evolutionarily conserved remains enigmatic. To address these fundamental questions we exploited a transchromosomic animal model and genomic approaches to understand how the hypomethylated state is formed in vivo and to discover whether mechanisms governing CGI formation are evolutionarily conserved. Strikingly, insertion of a human chromosome into mouse revealed that promoter-associated CGIs are refractory to DNA methylation regardless of host species, demonstrating that DNA sequence plays a central role in specifying the hypomethylated state through evolutionarily conserved mechanisms. In contrast, elements distal to gene promoters exhibited more variable methylation between host species, uncovering a widespread dependence on nucleotide frequency and occupancy of DNA-binding transcription factors in shaping the DNA methylation landscape away from gene promoters. This was exemplified by young CpG rich lineage-restricted repeat sequences that evaded DNA methylation in the absence of co-evolved mechanisms targeting methylation to these sequences, and species specific DNA binding events that protected against DNA methylation in CpG poor regions. Finally, transplantation of mouse chromosomal fragments into the evolutionarily distant zebrafish uncovered the existence of a mechanistically conserved and DNA-encoded logic which shapes CGI formation across vertebrate species. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Synthesis of Energetic Materials.

    DTIC Science & Technology

    1986-03-31

    give the known’ enol ether 29. Upon 25 *hydrogenation, during which methyl migration from oxygen to nitrogen occurred, 29 gave the double lactam 30... enol acetate corresponding to structure 29. Hydrogenatio6-f 31J gave the N-acetyl double lactam 32. The first approach toward the synthesis of the...a condensation product 26 which was converted into the unsaturated double lactam 27. The chemistry of these materials were explored in detail in an

  11. Inhibition of DNA synthesis by chemical carcinogens in cultures of initiated and normal proliferating rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novicki, D.L.; Rosenberg, M.R.; Michalopoulos, G.

    1985-01-01

    Rat hepatocytes in primary culture can be stimulated to replicate under the influence of rat serum and sparse plating conditions. Higher replication rates are induced by serum from two-thirds partially hepatectomized rats. The effects of carcinogens and noncarcinogens on the ability of hepatocytes to synthesize DNA were examined by measuring the incorporation of (3H)thymidine by liquid scintillation counting and autoradiography. Hepatocyte DNA synthesis was not decreased by ethanol or dimethyl sulfoxide at concentrations less than 0.5%. No effect was observed when 0.1 mM ketamine, Nembutal, hypoxanthine, sucrose, ascorbic acid, or benzo(e)pyrene was added to cultures of replicating hepatocytes. Estrogen, testosterone,more » tryptophan, and vitamin E inhibited DNA synthesis by approximately 50% at 0.1 mM, a concentration at which toxicity was noticeable. Several carcinogens requiring metabolic activation as well as the direct-acting carcinogen N-methyl-N'-nitro-N-nitrosoguanidine interfered with DNA synthesis. Aflatoxin B1 inhibited DNA synthesis by 50% (ID50) at concentrations between 1 X 10(-8) and 1 X 10(-7) M. The ID50 for 2-acetylaminofluorene was between 1 X 10(-7) and 1 X 10(-6) M. Benzo(a)pyrene and 3'-methyl-4-dimethylaminoazobenzene inhibited DNA synthesis 50% between 1 X 10(-5) and 1 X 10(-4) M. Diethylnitrosamine and dimethylnitrosamine (ID50 between 1 X 10(-4) and 5 X 10(-4) M) and 1- and 2-naphthylamine (ID50 between 1 X 10(-5) and 5 X 10(-4) M) caused inhibition of DNA synthesis at concentrations which overlapped with concentrations that caused measurable toxicity.« less

  12. Prevention by thioethers of the hepatotoxicity and covalent binding to macromolecules of N-hydroxy-2-acetylaminofluorene and its sulfate ester in rat liver in vivo and in vitro.

    PubMed

    van den Goorbergh, J A; de Wit, H; Tijdens, R B; Mulder, G J; Meerman, J H

    1987-02-01

    In order to find potentially effective compounds that could prevent the covalent binding of the carcinogen N-hydroxy-2-acetylaminofluorene (N-OH-AAF) to rat liver macromolecules in vivo, the prevention of the covalent binding to RNA of the sulfate ester of the carcinogen N-OH-AAF by a series of thioethers was investigated in vitro. The most effective thioethers, which inhibited the covalent binding by 70% or more, were studied for their protection against acute hepatotoxicity of N-OH-AAF in the rat in vivo. Three of these thioethers, thiazolidine, methyl 4-(methylthio)benzoate, and 2-(methylthio)benzimidazole significantly decreased the hepatoxicity of N-OH-AAF, by 45, 71 and 83%, respectively. The effects of these thioethers on the covalent binding of N-OH-AAF to cellular macromolecules in vivo were also studied. Methyl 4-(methylthio)benzoate and 2-(methylthio)benzimidazole decreased the adduct formation of N-OH-AAF to DNA by 54 and 44%, respectively, but had no effect on protein adduct formation. Only 2-(methylthio)benzimidazole caused a slight decrease (23%) in the AAF-- protein adduct formation. 2-Acetylaminofluorene (AAF) and methyl 4-(methyl-sulfinyl)benzoate were the main products in the incubation of methyl 4-(methylthio)benzoate with AAF-N-sulfate in vitro. This suggests that the thioether attacks the nitrenium ion which is formed by spontaneous breakdown of AAF-N-sulfate; the formation of a sulfonium--AAF conjugate is postulated which decomposes into AAF and a sulfinyl compound.

  13. Metabolic alterations by clofibric acid in the formation of molecular species of phosphatidylcholine in rat liver.

    PubMed

    Mizuguchi, H; Kudo, N; Kawashima, Y

    2001-10-01

    The mechanism by which p-chlorophenoxyisobutyric acid (clofibric acid) induces striking changes in the proportion of the molecular species of phosphatidylcholine (PC) in rat liver was studied. Treatment of rats with clofibric acid strikingly increased the content of 1-palmitoyl-2-oleoyl (16:0-18:1) PC, but decreased the contents of 1-palmitoyl-2-docosahexaenoyl (16:0-22:6), 1-stearoyl-2-arachidonoyl (18:0-20:4), and 1-stearoyl-2-linoleoyl (18:0-18:2) PC; the drug did not change the content of 1-palmitoyl-2-arachidonoyl (16:0-20:4) PC. The mechanism underlying these changes has been investigated with regard to the in vivo formation of the molecular species of PC by: (i) de novo synthesis, (ii) reacylation, and (iii) methylation of phosphatidylethanolamine (PE). We found that (i) the incorporation of [3H]glycerol, which was injected intravenously, into 16:0-18:1 diacylglycerol (DG) and 16:0-18:1 PC was increased markedly by clofibric acid feeding without changing the substrate specificity of CDP-choline:DG cholinephosphotransferase, (ii) the in vivo formation of 16:0-18:1 and 16:0-20:4 PC from 1-16:0-[3H]glycerophosphocholine (GPC), which was injected intraportally, was increased markedly by clofibric acid feeding, and (iii) the incorporation of [14C]ethanolamine, which was injected intravenously into 16:0-22:6, 18:0-22:6, and 18:0-20:4 PC, was decreased by clofibric acid feeding; the extent of the decrease in 16:0-20:4 PC was less than that of 18:0-20:4 PC. It was concluded, therefore, that (i) clofibric acid selectively increased the content and proportion of 16:0-18:1 PC by enhancing both the CDP-choline pathway and the remodeling of the pre-existing PC molecule, and (ii) the drug kept the content of 16:0-20:4 PC unchanged by stimulating the remodeling of the pre-existing PC molecule, whereas the formation of other more long chain, polyunsaturated molecular species, such as 16:0-22:6, 18:0-22:6, and 18:0-20:4, was decreased owing to the suppression of PE methylation.

  14. Biosynthesis of 2-methyl-3-buten-2-ol emitted from needles of Pinus ponderosa via the non-mevalonate DOXP/MEP pathway of isoprenoid formation.

    PubMed

    Zeidler, J; Lichtenthaler, H K

    2001-06-01

    The volatile hemiterpene 2-methyl-3-buten-2-ol (MBO) is emitted from the needles of several pine species from the Western United States and contributes to ozone formation in the atmosphere. It is synthesised enzymatically from dimethylallyl diphosphate (DMAPP). We show here that needles of Pinus ponderosa Laws. incorporated [1-2H1]-1-deoxy-D-xylulose (d-DOX) into the emitted MBO, but not D,L-[2-13C]mevalonic acid lactone. Furthermore, MBO emission was inhibited by fosmidomycin, a specific inhibitor of the second enzyme of the mevalonate-independent pathway of isopentenyl diphosphate and DMAPP formation, i.e. the 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway. We thus prove that MBO emitted from needles of P. ponderosa is primarily formed via the DOXP/MEP pathway.

  15. The laboratory millimeter-wave spectrum of methyl formate in its ground torsional E state

    NASA Technical Reports Server (NTRS)

    Plummer, G. M.; Herbst, E.; De Lucia, F. C.; Blake, G. A.

    1986-01-01

    Over 250 rotational transitions of the internal rotor methyl formate (HCOOCH3) in its ground v(t) = 0 degenerate (E) torsional substate have been measured in the millimeter-wave spectral region. These data and a number of E-state lines identified by several other workers have been analyzed using an extension of the classical principal-axis method in the high barrier limit. The resulting rotational constants allow accurate prediction of the v(t) = 0 E substate methyl formate spectrum below 300 GHz between states with angular momentum J not greater than 30 and rotational energy of not more than 350/cm. The calculated transition frequencies for the E state, when combined with the results of the previous analysis of the ground-symmetric, nondegenerate state, account for over 200 of the emission lines observed toward Orion in a recent survey of the 215-265 GHz band.

  16. Floral benzenoid carboxyl methyltransferases: From in vitro to in planta function

    PubMed Central

    Effmert, Uta; Saschenbrecker, Sandra; Ross, Jeannine; Negre, Florence; Fraser, Chris M.; Noel, Joseph P.; Dudareva, Natalia; Piechulla, Birgit

    2010-01-01

    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT’s three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in planta depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses might represent the ancestor for the presently existing floral genes which during evolution gained different expression profiles and encoded enzymes with the ability to accept structurally similar substrates. PMID:15946712

  17. Synthesis, crystal structures, quantum chemical studies and corrosion inhibition potentials of 4-(((4-ethylphenyl)imino)methyl)phenol and (E)-4-((naphthalen-2-ylimino) methyl) phenol Schiff bases

    NASA Astrophysics Data System (ADS)

    Elemike, Elias E.; Nwankwo, Henry U.; Onwudiwe, Damian C.; Hosten, Eric C.

    2017-11-01

    Two Schiff base ligands, 4-(((4-ethylphenyl)imino)methyl)phenol (4EMP) and (E)-4-((naphthalen-2-ylimino) methyl) phenol (4NMP) were synthesized by the reaction of 4-hydroxybenzaldehyde with 4-ethylaniline, 4EMP, or naphthalene-2-amine, 4NMP. The compounds were characterized using NMR (1H and 13C), Fourier transform infra-red (FTIR) and mass spectroscopic techniques. The proton NMR identified the OH peaks at 9.73 and 9.77 ppm for 4EMP and 4NMP respectively, while the 13C NMR showed the imine carbons at 172.57 ppm for 4EMP and at 160.89 ppm for 4NMP. The FTIR spectra showed characteristic peaks at 1605 cm-1 (4EMP) and 1600 cm-1 (4NMP) typical of the azomethine group, and the mass spectra results gave molecular ion peaks of 226.12 and 248.10 respectively. The structures of the compounds were further established by single crystal X-ray analysis. The corrosion inhibition potential of the compounds were studied on mild steel surface in a 1 M hydrochloric acid (HCl) solution, and was analysed using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The results of the electrochemical methods showed that the studied molecules imparted high resistance in allowing flow of electrons across the metal-electrolyte platform and behaved as mixed type inhibitors with 4EMP showing better inhibition properties than 4NMP. Scanning electron microscopy (SEM) showed the formation of film on the mild steel surface. Quantum chemical calculations achieved by density functional theory (DFT) was further applied to explain the adsorption as well as inhibition abilities of the molecules on the mild steel surface. Thermodynamics studies showed that the two compounds obeyed the Langmuir isotherm with 4EMP conforming to chemisorption mechanism while 4NMP involved competitive physisorption and chemisorption mechanism.

  18. Influence of O-methylated metabolite penetrating the blood-brain barrier to estimation of dopamine synthesis capacity in human L-[β-(11)C]DOPA PET.

    PubMed

    Matsubara, Keisuke; Ikoma, Yoko; Okada, Maki; Ibaraki, Masanobu; Suhara, Tetsuya; Kinoshita, Toshibumi; Ito, Hiroshi

    2014-02-01

    O-methyl metabolite (L-[β-(11)C]OMD) of (11)C-labeled L-3,4-dihydroxyphenylalanine (L-[β-(11)C]DOPA) can penetrate into brain tissue through the blood-brain barrier, and can complicate the estimation of dopamine synthesis capacity by positron emission tomography (PET) study with L-[β-(11)C]DOPA. We evaluated the impact of L-[β-(11)C]OMD on the estimation of the dopamine synthesis capacity in a human L-[β-(11)C]DOPA PET study. The metabolite correction with mathematical modeling of L-[β-(11)C]OMD kinetics in a reference region without decarboxylation and further metabolism, proposed by a previous [(18)F]FDOPA PET study, were implemented to estimate radioactivity of tissue L-[β-(11)C]OMD in 10 normal volunteers. The component of L-[β-(11)C]OMD in tissue time-activity curves (TACs) in 10 regions were subtracted by the estimated radioactivity of L-[β-(11)C]OMD. To evaluate the influence of omitting blood sampling and metabolite correction, relative dopamine synthesis rate (kref) was estimated by Gjedde-Patlak analysis with reference tissue input function, as well as the net dopamine synthesis rate (Ki) by Gjedde-Patlak analysis with the arterial input function and TAC without and with metabolite correction. Overestimation of Ki was observed without metabolite correction. However, the kref and Ki with metabolite correction were significantly correlated. These data suggest that the influence of L-[β-(11)C]OMD is minimal for the estimation of kref as dopamine synthesis capacity.

  19. Photocatalytic properties of h-WO3 nanoparticles obtained by annealing and h-WO3 nanorods prepared by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Boyadjiev, Stefan I.; Nagy-Kovács, Teodóra; Lukács, István; Szilágyi, Imre M.

    2016-03-01

    In the present study, two different methods for preparing hexagonal WO3 (h-WO3) photocatalysts were used - controlled thermal decomposition and hydrothermal synthesis. WO3 nanoparticles with hexagonal structure were obtained by annealing (NH4)xWO3-y at 500 °C in air. WO3 nanorods were prepared by a hydrothermal method using sodium tungstate Na2WO4, HCl, (COOH)2 and NaSO4 precursors at 200 °C. The formation, morphology, structure and composition of the as-prepared nanoparticles and nanorods were studied by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDX). The photocatalytic activity of the h-WO3 nanoparticles and nanorods was studied by decomposing methyl orange in aqueous solution under UV light irradiation.

  20. Easy Access to Supramolecular Gels of the Nonsteroidal Anti-inflammatory Drug Diflunisal: Synthesis, Characterization, and Plausible Biomedical Applications.

    PubMed

    Parveen, Rumana; Dastidar, Parthasarathi

    2015-11-01

    By exploiting salt formation, a new series of primary ammonium monocarboxylate salts of a nonsteroidal anti-inflammatory drug, namely, diflunisal, was synthesized. The majority of the salts thus synthesized turned out to be good gelators of various solvents, including the solvents (e.g., methyl salicylate and pure water) typically used for topical gel formulation. Single-crystal X-ray diffraction studies of a few gelator and nongelator salts in the series revealed details of the hydrogen-bonding networks present in the salts. Furthermore, one such gelator salt, namely, the diflunisal salt of serinol, was found to be biocompatible (MTT assay), and its anti-inflammatory (PGE2 assay) response turned out to be as good as that of the parent drug, which is indicative of its potential in biomedical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthetic Studies on Tricyclic Diterpenoids: Direct Allylic Amination Reaction of Isopimaric Acid Derivatives†

    PubMed Central

    Timoshenko, Mariya A.; Kharitonov, Yurii V.; Shakirov, Makhmut M.; Bagryanskaya, Irina Yu.

    2015-01-01

    Abstract A selective synthesis of 7‐ or 14‐nitrogen containing tricyclic diterpenoids was completed according to a strategy in which the key step was the catalyzed direct allylic amination of methyl 14α‐hydroxy‐15,16‐dihydroisopimarate with a wide variety of nitrogenated nucleophiles. It was revealed that the selectivity of the reaction depends on the nature of nucleophile. The catalyzed reaction of the mentioned diterpenoid allylic alcohol with 3‐nitroaniline, 3‐(trifluoromethyl)aniline, and 4‐(trifluoromethyl)aniline yield the subsequent 7α‐, 7β‐ and 14αnitrogen‐containing diterpenoids. The reaction with 2‐nitroaniline, 4‐nitro‐2‐chloroaniline, 4‐methoxy‐2‐nitroaniline, phenylsulfamide, or tert‐butyl carbamate proceeds with the formation of 7α‐nitrogen‐substituted diterpenoids as the main products. PMID:27308214

  2. Kynurenine 3-monooxygenase polymorphisms: relevance for kynurenic acid synthesis in patients with schizophrenia and healthy controls.

    PubMed

    Holtze, Maria; Saetre, Peter; Engberg, Göran; Schwieler, Lilly; Werge, Thomas; Andreassen, Ole A; Hall, Håkan; Terenius, Lars; Agartz, Ingrid; Jönsson, Erik G; Schalling, Martin; Erhardt, Sophie

    2012-01-01

    Patients with schizophrenia show increased brain and cerebrospinal fluid (CSF) concentrations of the endogenous N-methyl-D-aspartate receptor antagonist kynurenic acid (KYNA). This compound is an end-metabolite of the kynurenine pathway, and its formation indirectly depends on the activity of kynurenine 3-monooxygenase (KMO), the enzyme converting kynurenine to 3-hydroxykynurenine. We analyzed the association between KMO gene polymorphisms and CSF concentrations of KYNA in patients with schizophrenia and healthy controls. Fifteen single nucleotide polymorphisms (SNPs) were selected covering KMO and were analyzed in UNPHASED. We included 17 patients with schizophrenia and 33 controls in our study. We found an association between a KMO SNP (rs1053230), encoding an amino acid change of potential importance for substrate interaction, and CSF concentrations of KYNA. Given the limited sample size, the results are tentative until replication. Our results suggest that the nonsynonymous KMO SNP rs1053230 influences CSF concentrations of KYNA.

  3. Removal of water contaminants by nanoscale zero-valent iron immobilized in PAN-based oxidized membrane

    NASA Astrophysics Data System (ADS)

    Liu, Chunyi; Li, Xiang; Ma, Bomou; Qin, Aiwen; He, Chunju

    2014-12-01

    The functionalizing nanoporous polyacrylonitrile-based oxidized membrane (PAN-OM) firmly immobilized with highly reactive nanoscale zero-valent iron (NZVI) are successfully prepared via an innovative in situ synthesis method. Due to the formation of ladder structure, the PAN-OM present excellent thermal and chemical stabilities as a new carrier for the in-situ growth of NZVI via firm chelation and reduction action, respectively, which prevent the aggregation and release of NZVI. The developed NZVI-immobilized membrane present effective decolorizing efficiency to both anionic methyl blue and cationic methylene blue with a pseudo-first-order decay and degrading efficiency to trichloroethylene (TCE). The regeneration and stability results show that NZVI-immobilized membrane system can be regenerated without obvious performance reduction, which remain the reactivity after half a year storage period. These results suggest that PAN-based oxidized membrane immobilized with NZVI exhibit significant potential for environmental applications.

  4. Functionalizing the γ-Position of α-Diazo-β-ketoesters.

    PubMed

    Nguyen, Thu Q; Alqurafi, Maha; Edwards, Cash; Nguyen, Pauline; Kim, Jean; Casco, Samuel; Bennet, Maricka; Chiang, Christopher; Lohry, Maureen; Cox, Melina; Meshram, Byron; Le, Duyen; Kim, Eugene; Smriti, Snigdha; Oelschlaeger, Peter; Buynak, John D

    2016-06-27

    Although α-diazo-β-ketoesters are synthetically versatile intermediates, methodology for introducing this functionality into complex molecules is still limited, most frequently involving a carboxylic acid precursor, which is then activated and transformed into a β-ketoester, with the diazo group being subsequently added with a diazo transfer reagent. While introducing this highly functional moiety in a convergent one step process would be ideal, such an objective is limited by the relatively few studies which address functionalization of the α-diazo-β-ketoester at the γ-position. In the present investigation, we evaluate strategies, both new and established, for functionalizing α-diazo-β-ketoesters, particularly with regard to generating compounds prospectively useful in the synthesis of C1-substituted carbapenems. We report the first δ-aldehydo-α-diazo-β-ketoester as well as a method for its oxidation to the corresponding methyl ester, and the formation of a new substituted pyrazole under basic conditions.

  5. Enhancement of biodiesel synthesis from soybean oil by potassium fluoride modification of a calcium magnesium oxides catalyst.

    PubMed

    Fan, Mingming; Zhang, Pingbo; Ma, Qinke

    2012-01-01

    Transesterification of soybean oil with methanol was carried out in the presence of CaO-MgO and KF-modified CaO-MgO catalysts at atmospheric pressure. While the methyl ester yield for the CaO-MgO catalyst with a ratio of 8:2 (CaO:MgO) was 63.6%, it was 97.9% for the KF-modified catalyst at a 2% catalyst to the reactants (methanol/oil mixture) weight ratio, a temperature of 65 °C, a methanol-soybean oil ratio of 9:1 and a reaction time of 2.5 h. The KF/CaO-MgO catalyst still yielded 86.7% after four successive uses. The catalytic performance of the KF/CaO-MgO catalyst was attributed to the formation of active KCaF(3) and K(2)MgF(4) centers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Aqueous Biphasic Systems for the Synthesis of Formates by Catalytic CO2 Hydrogenation: Integrated Reaction and Catalyst Separation for CO2‐Scrubbing Solutions

    PubMed Central

    Scott, Martin; Blas Molinos, Beatriz; Westhues, Christian

    2017-01-01

    Abstract Aqueous biphasic systems were investigated for the production of formate–amine adducts by metal‐catalyzed CO2 hydrogenation, including typical scrubbing solutions as feedstocks. Different hydrophobic organic solvents and ionic liquids could be employed as the stationary phase for cis‐[Ru(dppm)2Cl2] (dppm=bis‐diphenylphosphinomethane) as prototypical catalyst without any modification or tagging of the complex. The amines were found to partition between the two phases depending on their structure, whereas the formate–amine adducts were nearly quantitatively extracted into the aqueous phase, providing a favorable phase behavior for the envisaged integrated reaction/separation sequence. The solvent pair of methyl isobutyl carbinol (MIBC) and water led to the most practical and productive system and repeated use of the catalyst phase was demonstrated. The highest single batch activity with a TOFav of approximately 35 000 h−1 and an initial TOF of approximately 180 000 h−1 was achieved in the presence of NEt3. Owing to higher stability, the highest productivities were obtained with methyl diethanolamine (Aminosol CST 115) and monoethanolamine (MEA), which are used in commercial scale CO2‐scrubbing processes. Saturated aqueous solutions (CO2 overpressure 5–10 bar) of MEA could be converted into the corresponding formate adducts with average turnover frequencies up to 14×103 h−1 with an overall yield of 70 % based on the amine, corresponding to a total turnover number of 150 000 over eleven recycling experiments. This opens the possibility for integrated approaches to carbon capture and utilization. PMID:28103428

  7. Formation and accumulation of methylmercury in organisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imura, N.; Pan, S.; Shimizu, M.

    1977-09-01

    Methylation of mercury seems to be a common reaction, at least in microorganisms. The factor that is responsible for methylation of mercury in the anaerobe Clostridium cochlearium is characterized. The possible role of the methylation factor in the accumulation of methylmercury in pelagic fish is investigated. Suggested is a method by which mercurials taken from their surroundings by tuna are converted to the methylated form in the liver and transported to the meat for accumulation. (4 graphs, 19 references, 2 tables)

  8. Reactions in Nitroimidazole and Methylnitroimidazole Triggered by Low-Energy (0-8 eV) Electrons.

    PubMed

    Tanzer, Katrin; Feketeová, Linda; Puschnigg, Benjamin; Scheier, Paul; Illenberger, Eugen; Denifl, Stephan

    2015-06-25

    Low-energy electrons (0-8 eV) effectively decompose 4-nitroimidazole (4NI) and the two methylated isomers 1-methyl-5-nitroimidazole and 1-methyl-4-nitroimidazole via dissociative electron attachment (DEA). The involved unimolecular decompositions range from simple bond cleavages (loss of H(•), formation of NO2(-)) to complex reactions possibly leading to a complete degradation of the target molecule (formation of CN(-), etc.). At energies below 2 eV, the entire rich chemistry induced by DEA is completely quenched by methylation, as demonstrated in a previous communication (Tanzer, K.; Feketeová, L.; Puschnigg, B.; Scheier, P.; Illenberger. E.; Denifl, S. Angew. Chem., Int. Ed. 2014, 53, 12240). The observation that in 4NI neutral radicals and radical anions are formed via DEA at high efficiency already at threshold (0 eV) may have significant implications for the development of nitroimidazole-based radiosensitizers in tumor radiation therapy.

  9. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory.

    PubMed

    Lubin, Farah D; Roth, Tania L; Sweatt, J David

    2008-10-15

    Long-term memory formation requires selective changes in gene expression. Here, we determined the contribution of chromatin remodeling to learning-induced changes in brain-derived neurotrophic factor (bdnf) gene expression in the adult hippocampus. Contextual fear learning induced differential regulation of exon-specific bdnf mRNAs (I, IV, VI, IX) that was associated with changes in bdnf DNA methylation and altered local chromatin structure. Infusions of zebularine (a DNA methyltransferase inhibitor) significantly altered bdnf DNA methylation and triggered changes in exon-specific bdnf mRNA levels, indicating that altered DNA methylation is sufficient to drive differential bdnf transcript regulation in the hippocampus. In addition, NMDA receptor blockade prevented memory-associated alterations in bdnf DNA methylation, resulting in a block of altered bdnf gene expression in hippocampus and a deficit in memory formation. These results suggest epigenetic modification of the bdnf gene as a mechanism for isoform-specific gene readout during memory consolidation.

  10. Energetic Polyoxetane Thermoplastic Elastomers: Synthesis and Characterization

    DTIC Science & Technology

    1988-12-01

    Stockmayer, L. D. Moore, M. Fixman, and B. N. Epstein, Copolymers in Dilute Solution. I. Preliminary Results for Styrene- Methyl Methacrylate , J. Polym. Sci... methyl groups of p-dicumyl chloride showed a singlet peak at about 2.0 ppm. The integration ratio of the peak at 2.0 ppm and 7.6 ppm is about 3 within...were prepared by Aerojet. 1H and 13C NMR spectra of polymer solutions in deuteriochloro- form (CDCl3), MSD Isotopes, Montreal, Quebec, Canada, were

  11. OBO-Protected Pyruvates as Reagents for the Synthesis of Functionalized Heteroaromatic Compounds.

    PubMed

    Alves Esteves, C Henrique; Koyioni, Maria; Christensen, Kirsten E; Smith, Peter D; Donohoe, Timothy J

    2018-06-15

    Pd-catalyzed α-arylation of methyl-OBO-ketone (OBO = 4-methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl) gives rise to arylated OBO-protected pyruvates. By appropriate prefunctionalization of the aryl ring or by subsequent functionalization at the α-carbonyl position of the arylated OBO-ketones, useful diketo OBO-protected carboxylates can be generated. Cyclization, aromatization, and OBO deprotection of these intermediates, using two distinct routes, gives access to valuable α-acyl heteroaromatic compounds.

  12. An efficacious protocol for C-4 substituted 3,4-dihydropyrimidinones. Synthesis and calcium channel binding studies

    PubMed Central

    Arora, Divya; Falkowski, Danielle; Liu, Qingxin; Moreland, Robert S.

    2013-01-01

    Ethyl 1,2-dihydro-1,6-dimethyl/6-methyl-2-oxopyrimidine-5-carboxylates react with C-nucleophiles as well as anion of enantiopure chiral auxiliary (1R,2S,5R)-(−)-methyl (S)-p-toluenesulfinate to afford C-4 substituted and enantiopure congeners of medicinally potent Biginelli dihydropyrimidinones. The calcium channel blocking activity of some of the compounds was evaluated and compared with nifedipine for their ability to relax a membrane depolarization induced contraction. PMID:24273442

  13. Methylation of nuclear proteins by dimethylnitrosamine and by methionine in the rat in vivo

    PubMed Central

    Turberville, C.; Craddock, V. M.

    1971-01-01

    1. The incorporation of methyl groups into histones from dimethylnitrosamine and from methionine was studied by injection of the labelled compounds, isolation of rat liver and kidney histones, and analysis of hydrolysates by column chromatography. 2. Labelled methionine gave rise to labelled ∈-N-methyl-lysine, di-∈-N-methyl-lysine and an amino acid presumed to be ω-N-methyl-arginine. 3. Administration of labelled dimethylnitrosamine gave rise to labelled S-methylcysteine, 1-methylhistidine, 3-methylhistidine and ∈-N-methyl-lysine derived from the alkylating metabolite of dimethylnitrosamine. In addition, labelled formaldehyde released by metabolism of dimethylnitrosamine leads to the formation of labelled S-adenosylmethionine, and hence to labelling of ∈-N-methyl-lysine, di-∈-N-methyl-lysine and ω-N-methylarginine by enzymic methylation. 4. The formation of ∈-N-methyl-lysine by alkylation of liver histones was confirmed by using doubly labelled dimethylnitrosamine to discriminate between direct chemical alkylation and enzymic methylation via S-adenosylmethionine. These experiments also suggested the possibility that methionine residues in the histones were alkylated to give methylmethionine sulphonium residues. 5. The extent of alkylation of liver histones was maximal at about 5h after dosing and declined between 5 and 24h. The methylated amino acids resulting from direct chemical alkylation were preferentially lost: this is ascribed to necrosis of the more highly alkylated cells. 6. Liver histones were about four times as alkylated as kidney histones; the extent of alkylation of liver histones was similar to that of liver total nuclear proteins. 7. Methyl methanesulphonate (120mg/kg) alkylated liver histones to a greater extent than did dimethylnitrosamine. Diethylnitrosamine also alkylated liver histones. 8. The results are discussed with regard to the possible effects of alkylation on histone function, and the possible role of histone alkylation in carcinogenesis by the three compounds. PMID:5131729

  14. Homogeneous Hydrogenation of CO₂ to Methyl Formate Utilizing Switchable Ionic Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Mahendra; Linehan, John C.; Karkamkar, Abhijeet J.

    2014-09-15

    Capture of CO₂ and subsequent hydrogenation allows for base/alcohol-catalyzed conversion of CO₂ to methylformate in one pot. The conversion of CO₂ proceeds via alkylcarbonates, to formate salts and then formate esters, which can be catalyzed by base and alcohol with the only byproduct being water. The system operates at mild conditions (300 psi H₂, 140 °C). Reactivity is strongly influenced by temperature and choice of solvent. In the presence of excess of base (DBU) formate is predominant product while in excess of methanol methyl formate is major product. 110 °C yields formate salts, 140 °C promotes methylformate. The authors acknowledgemore » internal Laboratory Directed Re-search and Development (LDRD) funding from Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.« less

  15. High throughput analysis of red wine and grape phenolics-adaptation and validation of methyl cellulose precipitable tannin assay and modified Somers color assay to a rapid 96 well plate format.

    PubMed

    Mercurio, Meagan D; Dambergs, Robert G; Herderich, Markus J; Smith, Paul A

    2007-06-13

    The methyl cellulose precipitable (MCP) tannin assay and a modified version of the Somers and Evans color assay were adapted to high-throughput (HTP) analysis. To improve efficiency of the MCP tannin assay, a miniaturized 1 mL format and a HTP format using 96 well plates were developed. The Somers color assay was modified to allow the standardization of pH and ethanol concentrations of wine samples in a simple one-step dilution with a buffer solution, thus removing inconsistencies between wine matrices prior to analysis and allowing for its adaptation to a HTP format. Validation studies showed that all new formats were efficient, and results were reproducible and analogous to the original formats.

  16. Mechanisms of Insertion of dCTP and dTTP Opposite the DNA Lesion O6-Methyl-2'-deoxyguanosine by Human DNA Polymerase η.

    PubMed

    Patra, Amitraj; Zhang, Qianqian; Guengerich, F Peter; Egli, Martin

    2016-11-11

    O 6 -Methyl-2'-deoxyguanosine (O 6 -MeG) is a ubiquitous DNA lesion, formed not only by xenobiotic carcinogens but also by the endogenous methylating agent S-adenosylmethionine. It can introduce mutations during DNA replication, with different DNA polymerases displaying different ratios of correct or incorrect incorporation opposite this nucleoside. Of the "translesion" Y-family human DNA polymerases (hpols), hpol η is most efficient in incorporating equal numbers of correct and incorrect C and T bases. However, the mechanistic basis for this specific yet indiscriminate activity is not known. To explore this question, we report biochemical and structural analysis of the catalytic core of hpol η. Activity assays showed the truncated form displayed similar misincorporation properties as the full-length enzyme, incorporating C and T equally and extending from both. X-ray crystal structures of both dC and dT paired with O 6 -MeG were solved in both insertion and extension modes. The structures revealed a Watson-Crick-like pairing between O 6 -MeG and 2"-deoxythymidine-5"-[(α, β)-imido]triphosphate (approximating dT) at both the insertion and extension stages with formation of two H-bonds. Conversely, both the structures with O 6 - MeG opposite dCTP and dC display sheared configuration of base pairs but to different degrees, with formation of two bifurcated H-bonds and two single H-bonds in the structures trapped in the insertion and extension states, respectively. The structural data are consistent with the observed tendency of hpol η to insert both dC and dT opposite the O 6 -MeG lesion with similar efficiencies. Comparison of the hpol η active site configurations with either O 6 -MeG:dC or O 6 -MeG:dT bound compared with the corresponding situations in structures of complexes of Sulfolobus solfataricus Dpo4, a bypass pol that favors C relative to T by a factor of ∼4, helps rationalize the more error-prone synthesis opposite the lesion by hpol η. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Outsmarted by nootropics? An investigation into the thermal degradation of modafinil, modafinic acid, adrafinil, CRL-40,940 and CRL-40,941 in the GC injector: formation of 1,1,2,2-tetraphenylethane and its tetra fluoro analog.

    PubMed

    Dowling, Geraldine; Kavanagh, Pierce V; Talbot, Brian; O'Brien, John; Hessman, Gary; McLaughlin, Gavin; Twamley, Brendan; Brandt, Simon D

    2017-03-01

    2-[(Diphenylmethyl)sulfinyl]acetamide (modafinil) is commonly prescribed for the treatment of narcolepsy. Increasing popularity and off-label use as a cognitive enhancer has resulted in a reputation as an intelligence boosting 'wonder drug'. Common alternatives available from online shops and other retail outlets include 2-[(diphenylmethyl)sulfinyl]-N-hydroxyacetamide (adrafinil), 2-{[bis(4-fluorophenyl)methyl]sulfinyl}acetamide (CRL-40,940), 2-{[bis(4-fluorophenyl)methyl]sulfinyl}-N-hydroxyacetamide (CRL-40,941), and N-methyl-4,4-difluoro-modafinil (modafiendz), respectively. Gas chromatography-mass spectrometry (GC-MS) is a common tool used in forensic and clinical analysis but there is a potential for inducing analysis-related ambiguities. This study reports on the thermal degradation of modafinil, modafinic acid, adrafinil, CRL-40,940, and CRL-40,941 due to exposure to the heated GC injection port dissolved in a variety of solvents. Key degradation products common to modafinil, modafinic acid, and adrafinil analysis included diphenylmethanol and 1,1,2,2-tetraphenylethane (TPE), the latter of which was verified by its synthesis and characterization by x-ray crystallography. The investigated compounds were also characterized by 1 H and 13 C NMR. Diphenylmethane and thiobenzophenone were also identified in some instances. TPE formation was suggested to involve the generation of a benzhydrylium ion and its reaction with the sulfoxide oxygen of the parent compound to give an oxysulfonium intermediate. Correspondingly, the fluorinated TPE analogue was formed during heat-induced degradation of modafiendz, CRL-40,940 and CRL-40,941, respectively. When a mixture of modafinil (non-fluorinated) and modafiendz (fluorinated) were subjected to GC analysis, 4,4'-(2,2-diphenylethane-1,1-diyl)bis(fluorobenzene) was detected as a third cross reaction product in addition to the two expected TPE analogues. These observations served as a reminder that the seemingly straightforward implementation of GC-MS analysis can lead to challenges during routine analysis. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Mechanisms of Insertion of dCTP and dTTP Opposite the DNA Lesion O6-Methyl-2′-deoxyguanosine by Human DNA Polymerase η*

    PubMed Central

    Patra, Amitraj; Zhang, Qianqian; Guengerich, F. Peter; Egli, Martin

    2016-01-01

    O6-Methyl-2′-deoxyguanosine (O6-MeG) is a ubiquitous DNA lesion, formed not only by xenobiotic carcinogens but also by the endogenous methylating agent S-adenosylmethionine. It can introduce mutations during DNA replication, with different DNA polymerases displaying different ratios of correct or incorrect incorporation opposite this nucleoside. Of the “translesion” Y-family human DNA polymerases (hpols), hpol η is most efficient in incorporating equal numbers of correct and incorrect C and T bases. However, the mechanistic basis for this specific yet indiscriminate activity is not known. To explore this question, we report biochemical and structural analysis of the catalytic core of hpol η. Activity assays showed the truncated form displayed similar misincorporation properties as the full-length enzyme, incorporating C and T equally and extending from both. X-ray crystal structures of both dC and dT paired with O6-MeG were solved in both insertion and extension modes. The structures revealed a Watson-Crick-like pairing between O6-MeG and 2"-deoxythymidine-5"-[(α, β)-imido]triphosphate (approximating dT) at both the insertion and extension stages with formation of two H-bonds. Conversely, both the structures with O6- MeG opposite dCTP and dC display sheared configuration of base pairs but to different degrees, with formation of two bifurcated H-bonds and two single H-bonds in the structures trapped in the insertion and extension states, respectively. The structural data are consistent with the observed tendency of hpol η to insert both dC and dT opposite the O6-MeG lesion with similar efficiencies. Comparison of the hpol η active site configurations with either O6-MeG:dC or O6-MeG:dT bound compared with the corresponding situations in structures of complexes of Sulfolobus solfataricus Dpo4, a bypass pol that favors C relative to T by a factor of ∼4, helps rationalize the more error-prone synthesis opposite the lesion by hpol η. PMID:27694439

  19. Design and Synthesis of Irreversible Analogues of Bardoxolone Methyl for the Identification of Pharmacologically Relevant Targets and Interaction Sites.

    PubMed

    Wong, Michael H L; Bryan, Holly K; Copple, Ian M; Jenkins, Rosalind E; Chiu, Pak Him; Bibby, Jaclyn; Berry, Neil G; Kitteringham, Neil R; Goldring, Christopher E; O'Neill, Paul M; Park, B Kevin

    2016-03-24

    Semisynthetic triterpenoids such as bardoxolone methyl (methyl-2-cyano 3,12-dioxooleano-1,9-dien-28-oate; CDDO-Me) (4) are potent inducers of antioxidant and anti-inflammatory signaling pathways, including those regulated by the transcription factor Nrf2. However, the reversible nature of the interaction between triterpenoids and thiols has hindered attempts to identify pharmacologically relevant targets and characterize the sites of interaction. Here, we report a shortened synthesis and SAR profiling of 4, enabling the design of analogues that react irreversibly with model thiols, as well as the model protein glutathione S-transferase P1, in vitro. We show that one of these analogues, CDDO-epoxide (13), is comparable to 4 in terms of cytotoxicity and potency toward Nrf2 in rat hepatoma cells and stably modifies specific cysteine residues (namely, Cys-257, -273, -288, -434, -489, and -613) within Keap1, the major repressor of Nrf2, both in vitro and in living cells. Supported by molecular modeling, these data demonstrate the value of 13 for identifying site(s) of interaction with pharmacologically relevant targets and informing the continuing development of triterpenoids as novel drug candidates.

  20. New copper complexes with bipyrazolic ligands: Synthesis, characterization and evaluation of the antibacterial and catalytic properties

    NASA Astrophysics Data System (ADS)

    Harit, Tarik; Abouloifa, Houssam; Tillard, Monique; Eddike, Driss; Asehraou, Abdeslam; Malek, Fouad

    2018-07-01

    The synthesis of new bipyrazolic ligands functionalized by carboxyl groups, namely 3-Bis(3‧-carboxyl-5‧-methyl-l'-pyrazolyl) propan-2-ol (L1) and 1,3-Bis(3‧-carboxyl-5‧-methyl-l '-pyrazolyl),2-methyl propane (L2) is reported. Their corresponding [C13H15CuN4O5] (CuL1) and [C14H16CuN4O4] (CuL2) copper (II) complexes are also elaborated and characterized by elemental analysis, FTIR an UV-visible spectroscopy. The crystal structure of the CuL1 complex confirms that copper atom is 4-coordinated, in a distorted square planar geometry within the molecule, and achieves its coordination through weak intermolecular interactions leading to two dimensional slabs. This geometry is in agreement with UV-visible results which also evidence that structure of complexes are affected in DMSO in contrast to methanol. No antibacterial activity against all the tested bacterial strains has been found for the Cu (II) complexes. By contrast, CuL1 is characterized with good catalytic properties in the air-oxidation of catechol substrate to quinone.

  1. Synthesis, conformational analysis, and biological activity of new analogues of thiazole-4-carboxamide adenine dinucleotide (TAD) as IMP dehydrogenase inhibitors.

    PubMed

    Franchetti, Palmarisa; Cappellacci, Loredana; Pasqualini, Michela; Petrelli, Riccardo; Jayaprakasan, Vetrichelvan; Jayaram, Hiremagalur N; Boyd, Donald B; Jain, Manojkumar D; Grifantini, Mario

    2005-03-15

    Thiazole-4-carboxamide adenine dinucleotide (TAD) analogues T-2'-MeAD (1) and T-3'-MeAD (2) containing, respectively, a methyl group at the ribose 2'-C-, and 3'-C-position of the adenosine moiety, were prepared as potential selective human inosine monophosphate dehydrogenase (IMPDH) type II inhibitors. The synthesis of heterodinucleotides was carried out by CDI-catalyzed coupling reaction of unprotected 2'-C-methyl- or 3'-C-methyl-adenosine 5'-monophosphate with 2',3'-O-isopropylidene-tiazofurin 5'-monophosphate, and then deisopropylidenation. Biological evaluation of dinucleotides 1 and 2 as inhibitors of recombinant human IMPDH type I and type II resulted in a good activity. Inhibition of both isoenzymes by T-2'-MeAD and T-3'-MeAD was noncompetitive with respect to NAD substrate. Binding of T-3'-MeAD was comparable to that of parent compound TAD, while T-2'-MeAD proved to be a weaker inhibitor. However, no significant difference was found in inhibition of the IMPDH isoenzymes. T-2'-MeAD and T-3'-MeAD were found to inhibit the growth of K562 cells (IC(50) 30.7 and 65.0muM, respectively).

  2. Concise Stereocontrolled Formal Synthesis of (±)-Quinine and Total Synthesis of (±)-7-Hydroxyquinine via Merged Morita-Baylis-Hillman-Tsuji-Trost Cyclization

    PubMed Central

    Webber, Peter; Krische, Michael J.

    2010-01-01

    Concise stereoselective syntheses of (±)-quinine and (±)-7-hydroxyquinine are achieved using a catalytic enone cycloallylation that combines the nucleophilic features of the Morita-Baylis-Hillman reaction and the electrophilic features of the Tsuji-Trost reaction. Cyclization of enone-allyl carbonate 11 delivers the product of cycloallylation 13 in 68% yield. Diastereoselective conjugate reduction of the enone 13 (>20:1 dr) followed by exchange of N-protecting groups provides the saturated N-Boc-protected methyl ketone 19, which upon aldol dehydration provides quinoline containing enone 15, possessing all carbon atoms of quinine. Exposure of ketone 15 to L-selectride enables diastereoselective carbonyl reduction (>20:1 dr) to furnish the allylic alcohol 16. Stereoselective hydroxyl-directed epoxidation using an oxovanadium catalyst modified by N-hydroxy-N-Me-pivalamide delivers epoxide 17 (17:1 dr). Cyclization of the resulting amine-epoxide 17 provides (±)-7-hydroxyquinine in 13 steps and 11% overall yield from aminoacetaldehyde diethyl acetal. Notably, highly stereoselective formation of five contiguous stereocenters is achieved through a series of 1,2-asymmetric induction events. A formal synthesis of (±)-quinine is achieved upon deoxygenation of the N-Cbz-protected allylic acetate 22 to provide olefin 23, which previously has been converted to quinine. Thus, (±)-quinine is accessible in 16 steps and 4% overall yield from commercial aminoacetaldehyde diethyl acetal, making this route the most concise approach to quinine, to date. PMID:18989927

  3. Synthesis of methyl (13(2)R/S)-alkyl-pyropheophorbide a and a non-epimerized chlorophyll a mimic.

    PubMed

    Ogasawara, Shin; Tamiaki, Hitoshi

    2015-10-15

    The (13(2)R/S)-methoxycarbonyl group of methyl pheophorbides a/a' (chlorophyll a/a' derivatives) was converted to methyl, ethyl, propyl, and isopropyl groups through the C13(2)-alkylation under basic conditions followed by pyrolysis in 2,4,6-collidine with lithium iodide. All the resulting products, methyl 13(2)-alkyl-pyropheophorbides a, predominantly gave the (13(2)R)-stereoisomers with about one tenth of the (13(2)S)-epimers. Their stereochemistry was determined by 1D/2D NMR and their optical properties were characterized by visible absorption and circular dichroism spectroscopy. Methyl (13(2)R)-propyl-pyropheophorbide a was converted to (13(2)R)-propyl-pyrochlorophyll a by ester exchanging and magnesium chelating reactions. The synthetic chlorophyll a analogue showed non-epimerization at the 13(2)-position in pyridine-d5 at 40°C, while naturally occurring chlorophyll a was easily epimerized under the same conditions to give its epimeric mixture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A new route to synthesize aryl acetates from carbonylation of aryl methyl ethers

    PubMed Central

    Yang, Youdi; Li, Shaopeng; Han, Buxing

    2018-01-01

    Ether bond activation is very interesting because the synthesis of many valuable compounds involves conversion of ethers. Moreover, C–O bond cleavage is also very important for the transformation of biomass, especially lignin, which abundantly contains ether bonds. Developing efficient methods to activate aromatic ether bonds has attracted much attention. However, this is a challenge because of the inertness of aryl ether bonds. We proposed a new route to activate aryl methyl ether bonds and synthesize aryl acetates by carbonylation of aryl methyl ethers. The reaction could proceed over RhCl3 in the presence of LiI and LiBF4, and moderate to high yields of aryl acetates could be obtained from transformation of various aryl methyl ethers with different substituents. It was found that LiBF4 could assist LiI to cleave aryl methyl ether bonds effectively. The reaction mechanism was proposed by a combination of experimental and theoretical studies. PMID:29795781

  5. Synthesis and crystal structures of three new benzotriazolylpropanamides

    PubMed Central

    Amenta, Donna S.; Liebing, Phil; Biero, Julia E.; Sherman, Robert J.; Gilje, John W.

    2017-01-01

    The base-catalyzed Michael addition of 2-methyl­acryl­amide to benzotriazole afforded 3-(1H-benzotriazol-1-yl)-2-methyl­propanamide, C10H12N4O (1), in 32% yield in addition to small amounts of isomeric 3-(2H-benzotriazol-2-yl)-2-methyl­propanamide, C10H12N4O (2). In a similar manner, 3-(1H-benzotriazol-1-yl)-N,N-di­methyl­propanamide, C11H14N4O (3), was prepared from benzotriazole and N,N-di­methyl­acryl­amide. All three products have been structurally characterized by single-crystal X-ray diffraction. The crystal structures of 1 and 2 comprise infinite arrays formed by N—H⋯O and N—H⋯N bridges, as well as π–π inter­actions, while the mol­ecules of 3 are aggregated to simple π-dimers in the crystal. PMID:28638650

  6. Methyl-branched fatty acids, inhibitors of enoyl-ACP reductase with antibacterial activity from Streptomyces sp. A251.

    PubMed

    Zheng, Chang-Ji; Sohn, Mi-Jin; Chi, Seung-Wook; Kim, Won-Gon

    2010-05-01

    Bacterial enoyl-ACP reductase (FabI) has been demonstrated to be a novel antibacterial target. In the course of our screening for FabI inhibitors we isolated two methyl-branched fatty acids from Streptomyces sp. A251. They were identified as 14-methyl-9(Z)-pentadecenoic acid and 15-methyl-9(Z)-hexadecenoic acid by MS and NMR spectral data. These compounds inhibited Staphylococcus aureus FabI with IC50 of 16.0 and 16.3mu M, respectively, while didn't affect FabK, an enoyl-ACP reductase of Streptococcus pneumonia, at 100muM. Consistent with their selective inhibition for FabI, they blocked intracellular fatty acid synthesis as well as the growth of S. aureus, while didn't inhibit the growth of S. pneumonia. Additionally, these compounds showed reduced antibacterial activity against fabI-overexpressing S. aureus compared to the wild-type strain. These results demonstrate that the methyl-branched fatty acids showed antibacterial activity by inhibiting FabI in vivo.

  7. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer

    PubMed Central

    Hon, Gary C.; Hawkins, R. David; Caballero, Otavia L.; Lo, Christine; Lister, Ryan; Pelizzola, Mattia; Valsesia, Armand; Ye, Zhen; Kuan, Samantha; Edsall, Lee E.; Camargo, Anamaria Aranha; Stevenson, Brian J.; Ecker, Joseph R.; Bafna, Vineet; Strausberg, Robert L.; Simpson, Andrew J.; Ren, Bing

    2012-01-01

    While genetic mutation is a hallmark of cancer, many cancers also acquire epigenetic alterations during tumorigenesis including aberrant DNA hypermethylation of tumor suppressors, as well as changes in chromatin modifications as caused by genetic mutations of the chromatin-modifying machinery. However, the extent of epigenetic alterations in cancer cells has not been fully characterized. Here, we describe complete methylome maps at single nucleotide resolution of a low-passage breast cancer cell line and primary human mammary epithelial cells. We find widespread DNA hypomethylation in the cancer cell, primarily at partially methylated domains (PMDs) in normal breast cells. Unexpectedly, genes within these regions are largely silenced in cancer cells. The loss of DNA methylation in these regions is accompanied by formation of repressive chromatin, with a significant fraction displaying allelic DNA methylation where one allele is DNA methylated while the other allele is occupied by histone modifications H3K9me3 or H3K27me3. Our results show a mutually exclusive relationship between DNA methylation and H3K9me3 or H3K27me3. These results suggest that global DNA hypomethylation in breast cancer is tightly linked to the formation of repressive chromatin domains and gene silencing, thus identifying a potential epigenetic pathway for gene regulation in cancer cells. PMID:22156296

  8. A roadmap to uranium ionic liquids: anti-crystal engineering.

    PubMed

    Yaprak, Damla; Spielberg, Eike T; Bäcker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja-Verena

    2014-05-19

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO2(2+) unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim to establish structure-property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. These materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A roadmap to uranium ionic liquids: Anti-crystal engineering

    DOE PAGES

    Yaprak, Damla; Spielberg, Eike T.; Bäcker, Tobias; ...

    2014-04-15

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C 4mim) cation. As dithiocarbamate ligands binding to the UO 2 2+ unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand withmore » the aim to establish structure–property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. As a result, these materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery.« less

  10. Plasma membrane H(+)-ATPase is involved in methyl jasmonate-induced root hair formation in lettuce (Lactuca sativa L.) seedlings.

    PubMed

    Zhu, Changhua; Yang, Na; Ma, Xiaoling; Li, Guijun; Qian, Meng; Ng, Denny; Xia, Kai; Gan, Lijun

    2015-06-01

    Our results show that methyl jasmonate induces plasma membrane H (+) -ATPase activity and subsequently influences the apoplastic pH of trichoblasts to maintain a cell wall pH environment appropriate for root hair development. Root hairs, which arise from root epidermal cells, are tubular structures that increase the efficiency of water absorption and nutrient uptake. Plant hormones are critical regulators of root hair development. In this study, we investigated the regulatory role of the plasma membrane (PM) H(+)-ATPase in methyl jasmonate (MeJA)-induced root hair formation. We found that MeJA had a pronounced effect on the promotion of root hair formation in lettuce seedlings, but that this effect was blocked by the PM H(+)-ATPase inhibitor vanadate. Furthermore, MeJA treatment increased PM H(+)-ATPase activity in parallel with H(+) efflux from the root tips of lettuce seedlings and rhizosphere acidification. Our results also showed that MeJA-induced root hair formation was accompanied by hydrogen peroxide accumulation. The apoplastic acidification acted in concert with reactive oxygen species to modulate root hair formation. Our results suggest that the effect of MeJA on root hair formation is mediated by modulation of PM H(+)-ATPase activity.

  11. Unified Microscopic-Macroscopic Monte Carlo Simulations of Complex Organic Molecule Chemistry in Cold Cores

    NASA Astrophysics Data System (ADS)

    Chang, Qiang; Herbst, Eric

    2016-03-01

    The recent discovery of methyl formate and dimethyl ether in the gas phase of cold cores with temperatures as cold as 10 K challenges our previous astrochemical models concerning the formation of complex organic molecules (COMs). The strong correlation between the abundances and distributions of methyl formate and dimethyl ether further shows that current astrochemical models may be missing important chemical processes in cold astronomical sources. We investigate a scenario in which COMs and the methoxy radical can be formed on dust grains via a so-called chain reaction mechanism, in a similar manner to CO2. A unified gas-grain microscopic-macroscopic Monte Carlo approach with both normal and interstitial sites for icy grain mantles is used to perform the chemical simulations. Reactive desorption with varying degrees of efficiency is included to enhance the nonthermal desorption of species formed on cold dust grains. In addition, varying degrees of efficiency for the surface formation of methoxy are also included. The observed abundances of a variety of organic molecules in cold cores can be reproduced in our models. The strong correlation between the abundances of methyl formate and dimethyl ether in cold cores can also be explained. Nondiffusive chemical reactions on dust grain surfaces may play a key role in the formation of some COMs.

  12. Synthesis of methyl 2-O-alpha-D-mannopyranosyl-alpha-D-talopyranoside and methyl 2-O-alpha-D-talopyranosyl-alpha-D-talopyranoside.

    PubMed

    Jain, R K; Dubey, R; Abbas, S A; Matta, K L

    1987-03-15

    Treatment of methyl 3-O-benzyl-2-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-alpha-D- mannopyranoside (1) with tert-butyldiphenylsilyl chloride in N,N-dimethylformamide afforded methyl 3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-O-(2,3,4,6-tetra-O-acetyl -alpha-D- mannopyranosyl)-alpha-D-mannopyranoside (2). Oxidation of 2 with pyridinium chlorochromate, followed by reduction of the carbonyl group, and subsequent O-deacetylation afforded methyl 3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-O-alpha-D-mannopyranosyl- alpha-D- talopyranoside (5). Cleavage of the tert-butyldiphenylsilyl group of 5 with tetrabutylammonium fluoride in oxolane, followed by hydrogenolysis, gave methyl 2-O-alpha-D-mannopyranosyl-alpha-D-talopyranoside (7). O-Deacetylation of 1 gave methyl 3-O-benzyl-2-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside (8). Treatment of 8 with tert-butyldiphenylsilyl chloride afforded a 6,6'-disilyl derivative, which was converted into a 2',3'-O-isopropylidene derivative, and then further oxidized with pyridinium chlorochromate. The resulting diketone was reduced and removal of the protecting groups gave methyl 2-O-alpha-D-talopyranosyl-alpha-D-talopyranoside (15). The structures of both 7 and 15 were established by 13C-n.m.r. spectroscopy.

  13. Isolation, characterization and mode of antimicrobial action against Vibrio cholerae of methyl gallate isolated from Acacia farnesiana.

    PubMed

    Sánchez, E; Heredia, N; Camacho-Corona, M Del R; García, S

    2013-12-01

    The antimicrobial activity of Acacia farnesiana against Vibrio cholerae has been demonstrated; however, no information regarding its active compound or its mechanism of action has been documented. The active compound was isolated from A. farnesiana by bioassay-guided fractionation and identified as methyl gallate by nuclear magnetic resonance (NMR) techniques ((1) H NMR and (13) C NMR). The minimum bactericidal concentration (MBC) of methyl gallate and its effect on membrane integrity, cytoplasmic pH, membrane potential, ATP synthesis and gene expression of cholera toxin (ctx) from V. cholerae were determined. The MBC of methyl gallate ranged from 30 ± 1 to 50 ± 1 μg ml(-1) . Methyl gallate affected cell membrane integrity, causing a decrease in cytoplasmic pH (pHin , from 7·3 to <3·0), and membrane hyperpolarization, and ATP was no longer produced by the treated cells. However, methyl gallate did not affect ctx gene expression. Methyl gallate is a major antimicrobial compound from A. farnesiana that disturbs the membrane activity of V. cholerae. The effects of methyl gallate validate several traditional antimicrobial uses of A. farnesiana, and it is an attractive alternative to control V. cholerae. © 2013 The Society for Applied Microbiology.

  14. Oxidative stress and alterations in DNA methylation: two sides of the same coin in reproduction.

    PubMed

    Menezo, Yves J R; Silvestris, Erica; Dale, Brian; Elder, Kay

    2016-12-01

    The negative effect of oxidative stress on the human reproductive process is no longer a matter for debate. Oxidative stress affects female and male gametes and the developmental capacity of embryos. Its effect can continue through late stages of pregnancy. Metabolic disorders and psychiatric problems can also be caued by DNA methylation and epigenetic errors. Age has a negative effect on oxidative stress and DNA methylation, and recent observations suggest that older men are at risk of transmitting epigenetic disorders to their offspring. Environmental endocrine disruptors can also increase oxidative stress and methylation errors. Oxidative stress and DNA methylation feature a common denominator: the one carbon cycle. This important metabolic pathway stimulates glutathione synthesis and recycles homocysteine, a molecule that interferes with the process of methylation. Glutathione plays a pivotal role during oocyte activation, protecting against reactive oxygen species. Assisted reproductive techniques may exacerbate defects in methylation and epigenesis. Antioxidant supplements are proposed to reduce the risk of potentially harmful effects, but their use has failed to prevent problems and may sometimes be detrimental. New concepts reveal a significant correlation between oxidative stress, methylation processes and epigenesis, and have led to changes in media composition with positive preliminary clinical consequences. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  15. Methylation analysis of CMTM3 and DUSP1 gene promoters in high-quality brush hair in the Yangtze River delta white goat.

    PubMed

    Qiang, Wang; Guo, Haiyan; Li, Yongjun; Shi, Jianfei; Yin, Xiuyuan; Qu, Jingwen

    2018-08-20

    The Yangtze River delta white goat is the only goat breed that produces high-quality brush hair, which is specifically used in top-grade writing brushes. Previous studies have indicated that the CMTM3 and DUSP1 genes are involved in the growth and cycle of high-quality brush hair, and these genes are thought to be involved in the formation of high-quality brush hair traits. In this study, we investigated the relationship between methylation of CMTM3 and DUSP1 and such traits. The results indicated that the relative expression levels of the CMTM3 and DUSP1 genes were higher in non-high-quality brush hair than in high-quality brush hair. Furthermore, the CpG sites of the DUSP1 gene were not methylated, and the methylation level of CMTM3 was negatively correlated with the gene expression level. We believe that the DUSP1 gene regulates the formation of high-quality brush hair by non-methylated, and that methylation of the CMTM3 gene results in a decrease in its expression, causing an increase in the activity of the androgen receptor and the level of androgen. This high androgen level promotes the growth of high-quality brush hair. These study results provide a theoretical basis for further elucidating the molecular mechanism of the formation of high-quality brush hair characteristics, and provide scientific reference for the molecular breeding of high-quality brush hair. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Synthesis of ent-kaurane diterpene monoglycosides.

    PubMed

    Chaturvedula, Venkata Sai Prakash; Klucik, Josef; Upreti, Mani; Prakash, Indra

    2011-10-03

    Synthesis of two ent-kaurane diterpene glycosides, steviol 19-O-β-D-glucopyranosiduronic acid (steviol glucuronide, 5), and 13-hydroxy ent-kaur-16-en-19-oic acid-β-D-glucopyranosyl ester (7) has been achieved from a common starting material, steviol, using phase transfer catalyst. Also, synthesis of an additional 17-nor-ent-kaurane glycoside, namely 13-methyl-16-oxo-17-nor-ent-kauran-19-oic acid-β-D-glucopyranosyl ester (10) was performed using the starting material isosteviol and similar synthetic methodology. Synthesis of all three steviol glycosides was performed using straightforward chemistry and their structures were characterized on the basis of 1D and 2D NMR as well as mass spectral (MS) data.

  17. Accelerating spirocyclic polyketide synthesis using flow chemistry.

    PubMed

    Newton, Sean; Carter, Catherine F; Pearson, Colin M; de C Alves, Leandro; Lange, Heiko; Thansandote, Praew; Ley, Steven V

    2014-05-05

    Over the past decade, the integration of synthetic chemistry with flow processing has resulted in a powerful platform for molecular assembly that is making an impact throughout the chemical community. Herein, we demonstrate the extension of these tools to encompass complex natural product synthesis. We have developed a number of novel flow-through processes for reactions commonly encountered in natural product synthesis programs to achieve the first total synthesis of spirodienal A and the preparation of spirangien A methyl ester. Highlights of the synthetic route include an iridium-catalyzed hydrogenation, iterative Roush crotylations, gold-catalyzed spiroketalization and a late-stage cis-selective reduction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Undergraduate Analytical Chemistry Experiment: The Determination of Formation Constants for Acetate and Mono-and Dichloroacetate Salts of Primary, Secondary, and Tertiary Methyl-and Ethylamines

    ERIC Educational Resources Information Center

    D'Amelia, Ronald P.; Chiang, Stephanie; Pollut, Stephanie; Nirode, William F.

    2014-01-01

    The formation and the hydrolysis of organic salts produced by the titration of a 0.1 M solution of the following amines: methyl-, dimethyl-, trimethyl-, ethyl-, diethyl-, and triethylamine with a 0.1 M solution of acetic, chloroacetic, and dichloracetic acids are studied. The pK[subscript b] of the amine and the pH at the end point were determined…

  19. A concise and practical stereoselective synthesis of ipragliflozin L-proline

    PubMed Central

    Ma, Shuai; Liu, Zhenren; Pan, Jing; Zhang, Shunli

    2017-01-01

    A concise and practical stereoselective synthesis of ipragliflozin L-proline was presented starting from 2-[(5-iodo-2-fluorophenyl)methyl]-1-benzothiophene and 2,3,4,6-tetra-O-pivaloyl-α-D-glucopyranosyl bromide without catalyst via iodine–lithium–zinc exchange. The overall yield was 52% in three steps and the product purity was excellent. Two key diastereomers were prepared with efficient and direct access to the α-C-arylglucoside. PMID:28684985

  20. Purification and Characterization of Methyl Phthalyl Ethyl Glycolate (MPEG)

    DTIC Science & Technology

    2014-11-21

    LIST OF FIGURES Heading Page Figure 1. Monsanto Method of MPEG Synthesis 2 Figure 2. Incon Method of MPEG Synthesis 2 Figure 3. Possible...least 1942 (Van Antwerpen, 1942), known then as Santicizer M-17 by the Monsanto Chemical Company. MPEG is used in HES 5808, a high solids-loading...characteristics vary from lot to lot. This situation has emerged since Monsanto no longer produces MPEG, and alternative vendors are currently being used

Top