Science.gov

Sample records for methyl jasmonate-induced ethylene

  1. Methyl jasmonate-induced ethylene production is responsible for conifer phloem defense responses and reprogramming of stem cambial zone for traumatic resin duct formation.

    PubMed

    Hudgins, J W; Franceschi, Vincent R

    2004-08-01

    Conifer stem pest resistance includes constitutive defenses that discourage invasion and inducible defenses, including phenolic and terpenoid resin synthesis. Recently, methyl jasmonate (MJ) was shown to induce conifer resin and phenolic defenses; however, it is not known if MJ is the direct effector or if there is a downstream signal. Exogenous applications of MJ, methyl salicylate, and ethylene were used to assess inducible defense signaling mechanisms in conifer stems. MJ and ethylene but not methyl salicylate caused enhanced phenolic synthesis in polyphenolic parenchyma cells, early sclereid lignification, and reprogramming of the cambial zone to form traumatic resin ducts in Pseudotsuga menziesii and Sequoiadendron giganteum. Similar responses in internodes above and below treated internodes indicate transport of a signal giving a systemic response. Studies focusing on P. menziesii showed MJ induced ethylene production earlier and 77-fold higher than wounding. Ethylene production was also induced in internodes above the MJ-treated internode. Pretreatment of P. menziesii stems with the ethylene response inhibitor 1-methylcyclopropene inhibited MJ and wound responses. Wounding increased 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase protein, but MJ treatment produced a higher and more rapid ACC oxidase increase. ACC oxidase was most abundant in ray parenchyma cells, followed by cambial zone cells and resin duct epithelia. The data show these MJ-induced defense responses are mediated by ethylene. The cambial zone xylem mother cells are reprogrammed to differentiate into resin-secreting epithelial cells by an MJ-induced ethylene burst, whereas polyphenolic parenchyma cells are activated to increase polyphenol production. The results also indicate a central role of ray parenchyma in ethylene-induced defense.

  2. Methyl Jasmonate-Induced Ethylene Production Is Responsible for Conifer Phloem Defense Responses and Reprogramming of Stem Cambial Zone for Traumatic Resin Duct Formation

    PubMed Central

    Hudgins, J.W.; Franceschi, Vincent R.

    2004-01-01

    Conifer stem pest resistance includes constitutive defenses that discourage invasion and inducible defenses, including phenolic and terpenoid resin synthesis. Recently, methyl jasmonate (MJ) was shown to induce conifer resin and phenolic defenses; however, it is not known if MJ is the direct effector or if there is a downstream signal. Exogenous applications of MJ, methyl salicylate, and ethylene were used to assess inducible defense signaling mechanisms in conifer stems. MJ and ethylene but not methyl salicylate caused enhanced phenolic synthesis in polyphenolic parenchyma cells, early sclereid lignification, and reprogramming of the cambial zone to form traumatic resin ducts in Pseudotsuga menziesii and Sequoiadendron giganteum. Similar responses in internodes above and below treated internodes indicate transport of a signal giving a systemic response. Studies focusing on P. menziesii showed MJ induced ethylene production earlier and 77-fold higher than wounding. Ethylene production was also induced in internodes above the MJ-treated internode. Pretreatment of P. menziesii stems with the ethylene response inhibitor 1-methylcyclopropene inhibited MJ and wound responses. Wounding increased 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase protein, but MJ treatment produced a higher and more rapid ACC oxidase increase. ACC oxidase was most abundant in ray parenchyma cells, followed by cambial zone cells and resin duct epithelia. The data show these MJ-induced defense responses are mediated by ethylene. The cambial zone xylem mother cells are reprogrammed to differentiate into resin-secreting epithelial cells by an MJ-induced ethylene burst, whereas polyphenolic parenchyma cells are activated to increase polyphenol production. The results also indicate a central role of ray parenchyma in ethylene-induced defense. PMID:15299142

  3. Canopy light cues affect emission of constitutive and methyl jasmonate-induced volatile organic compounds in Arabidopsis thaliana

    PubMed Central

    Kegge, Wouter; Weldegergis, Berhane T; Soler, Roxina; Eijk, Marleen Vergeer-Van; Dicke, Marcel; Voesenek, Laurentius A C J; Pierik, Ronald

    2013-01-01

    The effects of plant competition for light on the emission of plant volatile organic compounds (VOCs) were studied by investigating how different light qualities that occur in dense vegetation affect the emission of constitutive and methyl-jasmonate-induced VOCs. Arabidopsis thaliana Columbia (Col-0) plants and Pieris brassicae caterpillars were used as a biological system to study the effects of light quality manipulations on VOC emissions and attraction of herbivores. VOCs were analysed using gas chromatography–mass spectrometry and the effects of light quality, notably the red : far red light ratio (R : FR), on expression of genes associated with VOC production were studied using reverse transcriptase–quantitative PCR. The emissions of both constitutive and methyl-jasmonate-induced green leaf volatiles and terpenoids were partially suppressed under low R : FR and severe shading conditions. Accordingly, the VOC-based preference of neonates of the specialist lepidopteran herbivore P. brassicae was significantly affected by the R : FR ratio. We conclude that VOC-mediated interactions among plants and between plants and organisms at higher trophic levels probably depend on light alterations caused by nearby vegetation. Studies on plant–plant and plant–insect interactions through VOCs should take into account the light quality within dense stands when extrapolating to natural and agricultural field conditions. PMID:23845065

  4. Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems.

    PubMed

    Martin, Diane; Tholl, Dorothea; Gershenzon, Jonathan; Bohlmann, Jörg

    2002-07-01

    Norway spruce (Picea abies L. Karst) produces an oleoresin characterized by a diverse array of terpenoids, monoterpenoids, sesquiterpenoids, and diterpene resin acids that can protect conifers against potential herbivores and pathogens. Oleoresin accumulates constitutively in resin ducts in the cortex and phloem (bark) of Norway spruce stems. De novo formation of traumatic resin ducts (TDs) is observed in the developing secondary xylem (wood) after insect attack, fungal elicitation, and mechanical wounding. Here, we characterize the methyl jasmonate-induced formation of TDs in Norway spruce by microscopy, chemical analyses of resin composition, and assays of terpenoid biosynthetic enzymes. The response involves tissue-specific differentiation of TDs, terpenoid accumulation, and induction of enzyme activities of both prenyltransferases and terpene synthases in the developing xylem, a tissue that constitutively lacks axial resin ducts in spruce. The induction of a complex defense response in Norway spruce by methyl jasmonate application provides new avenues to evaluate the role of resin defenses for protection of conifers against destructive pests such as white pine weevils (Pissodes strobi), bark beetles (Coleoptera, Scolytidae), and insect-associated tree pathogens.

  5. Phosphatidylinositol 3-Kinase Promotes Activation and Vacuolar Acidification and Delays Methyl Jasmonate-Induced Leaf Senescence.

    PubMed

    Liu, Jian; Ji, Yingbin; Zhou, Jun; Xing, Da

    2016-03-01

    PI3K and its product PI3P are both involved in plant development and stress responses. In this study, the down-regulation of PI3K activity accelerated leaf senescence induced by methyl jasmonate (MeJA) and suppressed the activation of vacuolar H(+)-ATPase (V-ATPase). Yeast two-hybrid analyses indicated that PI3K bound to the V-ATPase B subunit (VHA-B). Analysis of bimolecular fluorescence complementation in tobacco guard cells showed that PI3K interacted with VHA-B2 in the tonoplasts. Through the use of pharmacological and genetic tools, we found that PI3K and V-ATPase promoted vacuolar acidification and stomatal closure during leaf senescence. Vacuolar acidification was suppressed by the PIKfyve inhibitor in 35S:AtVPS34-YFP Arabidopsis during MeJA-induced leaf senescence, but the decrease was lower than that in YFP-labeled Arabidopsis. These results suggest that PI3K promotes V-ATPase activation and consequently induces vacuolar acidification and stomatal closure, thereby delaying MeJA-induced leaf senescence.

  6. Methyl jasmonate-induced lateral root formation in rice: the role of heme oxygenase and calcium.

    PubMed

    Hsu, Yun Yen; Chao, Yun-Yang; Kao, Ching Huei

    2013-01-01

    Lateral roots (LRs) play important roles in increasing the absorptive capacity of roots as well as to anchor the plant in the soil. Therefore, understanding the regulation of LR development is of agronomic importance. In this study, we examined the effect of methyl jasmonate (MJ) on LR formation in rice. Treatment with MJ induced LR formation and heme oxygenase (HO) activity. As well, MJ could induce OsHO1 mRNA expression. Zinc protoporphyrin IX (the specific inhibitor of HO) and hemoglobin [the carbon monoxide/nitric oxide (NO) scavenger] reduced LR formation, HO activity and OsHO1 expression. LR formation and HO activity induced by MJ was reduced by the specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-oxide. The effects of Ca(2+) chelators, Ca(2+)-channel inhibitors, and calmodulin (CaM) antagonists on LR formation induced by MJ were also examined. All these inhibitors were effective in reducing the action of MJ. However, Ca(2+) chelators and Ca(2+) channel inhibitors induced HO activity when combining with MJ further. It is concluded that Ca(2+) may regulate MJ action mainly through CaM-dependent mechanism.

  7. Comparative proteomic analysis of methyl jasmonate-induced defense responses in different rice cultivars.

    PubMed

    Li, Yunfeng; Nie, Yanfang; Zhang, Zhihui; Ye, Zhijian; Zou, Xiaotao; Zhang, Lianhui; Wang, Zhenzhong

    2014-05-01

    Jasmonate is an important endogenous chemical signal that plays a role in modulation of plant defense responses. To understand its mechanisms in regulation of rice resistance against the fungal pathogen Magnaporthe oryzae, comparative phenotype and proteomic analyses were undertaken using two near-isogenic cultivars with different levels of disease resistance. Methyl-jasmonate (MeJA) treatment significantly enhanced the resistance against M. oryzae in both cultivars but the treated resistant cultivar maintained a higher level of resistance than the same treated susceptible cultivars. Proteomic analysis revealed 26 and 16 MeJA-modulated proteins in resistant and susceptible cultivars, respectively, and both cultivars shared a common set of 13 proteins. Cumulatively, a total of 29 unique MeJA-influenced proteins were identified with many of them known to be associated with plant defense response and ROS accumulation. Consistent with the findings of proteomic analysis, MeJA treatment increased ROS accumulation in both cultivars with the resistant cultivar showing higher levels of ROS production and cell membrane damage than the susceptible cultivar. Taken together, our data add a new insight into the mechanisms of overall MeJA-induced rice defense response and provide a molecular basis of using MeJA to enhance fungal disease resistance in resistant and susceptible rice cultivars.

  8. Methyl jasmonate induces changes mimicking anatomical defenses in diverse members of the Pinaceae.

    PubMed

    Hudgins, J W; Christiansen, Erik; Franceschi, Vincent R

    2003-04-01

    Conifers have defenses such as the production of phenolic compounds and resins that can be induced by bark beetles and other invading organisms, but the signaling agents involved are unknown. The anatomical effects of methyl jasmonate (MJ), a potent inducer of certain plant defenses, were compared with wounding of the bark of 12-15-year-old trees of five conifer species. Wounding in all species resulted in tissue necrosis and wound periderm development immediately around the wound site. One cm from the wound, swelling of phloem polyphenolic parenchyma cells and phenolic accumulation were observed in Pseudotsuga menziesii (Mirb.) Franco, Picea pungens Engelman, Larix occidentalis Nutt. and Pinus monticola Douglas ex D. Don, but not in Taxus brevifolia Nutt. Traumatic resin ducts were formed in response to wounding in three species of Pinaceae, but not in P. monticola, which formed irregular clusters of cells rather than ducts. Taxus brevifolia did not form resin ducts in response to either wounding or MJ treatment. In the Pinaceae species studied, surface application of 100 mM MJ caused similar anatomical changes to those observed in response to wounding, including phenolic accumulation, cell swelling and traumatic resin duct formation, but it did not induce a wound periderm. Traumatic resin ducts differed in size among the study species, ranging from small in L. occidentalis to very large in P. menziesii. In P. menziesii, P. pungens and L. occidentalis, traumatic resin ducts were more abundant after MJ treatment than after wounding. We conclude that the octadecanoid pathway is likely involved in defense responses in stems of the Pinaceae, but not necessarily in other taxa.

  9. Methyl Jasmonate-Induced Monoterpenes in Scots Pine and Norway Spruce Tissues Affect Pine Weevil Orientation.

    PubMed

    Lundborg, Lina; Nordlander, Göran; Björklund, Niklas; Nordenhem, Henrik; Borg-Karlson, Anna-Karin

    2016-12-01

    In large parts of Europe, insecticide-free measures for protecting conifer plants are desired to suppress damage by the pine weevil Hylobius abietis (L.). Treatment with methyl jasmonate (MeJA), a chemical elicitor already used in crop production, may enhance expression of chemical defenses in seedlings in conifer regenerations. However, in a previous experiment, MeJA treatment resulted in substantially better field protection for Scots pine (Pinus sylvestris L.) than for Norway spruce (Picea abies (L.) Karst.). Hypothesizing that the variations may be at least due partly to volatiles released by MeJA-treated seedlings and their effects on pine weevil orientation, we examined tissue extracts of seedlings (from the same batches as previously used) by two-dimensional GC-MS. We found that the MeJA treatment increased contents of the monoterpene (-)-β-pinene in phloem (the weevil's main target tissue) of both tree species, however, the (-)-β-pinene/(-)-α-pinene ratio increased more in the phloem of P. sylvestris. We also tested the attractiveness of individual monoterpenes found in conifer tissues (needles and phloem) for pine weevils using an arena with traps baited with single-substance dispensers and pine twigs. Trap catches were reduced when the pine material was combined with a dispenser releasing (-)-β-pinene, (+)-3-carene, (-)-bornyl acetate or 1,8-cineole. However, (-)-α-pinene did not have this effect. Thus, the greater field protection of MeJA-treated P. sylvestris seedlings may be due to the selective induction of increases in contents of the deterrent (-)-β-pinene, in contrast to strong increases in both non-deterrent (-)-α-pinene and the deterrent (-)-β-pinene in P. abies seedlings.

  10. Methyl Jasmonate-Induced Lipidomic and Biochemical Alterations in the Intertidal Macroalga Gracilaria dura (Gracilariaceae, Rhodophyta)

    PubMed Central

    Kumari, Puja; Reddy, C.R.K.; Jha, Bhavanath

    2015-01-01

    The role of exogenously added methyl jasmonate (MeJA), a lipid-derived signaling compound, in inducing oxidative stress in the marine red macroalga Gracilaria dura was investigated. MeJA at a concentration of 1–100 µM was a strong stimulant of reactive oxygen species (H2O2, HO· and O2·−) (P < 0.05) causing considerable oxidative stress in G. dura. This further led to lipid peroxidation and degradation of the pigments Chl a and phycocyanin, with a concomitant increase in phycoerythrin. The MeJA-induced oxidative burst also led to the induction of a fatty acid oxidation cascade, resulting in the synthesis of hydroxy-oxylipins and the up-regulation of the 13-lipoxygenase pathway. Electrospray ionization-mass spectrometry-based shotgun lipidomic analysis revealed that monogalactosyldiacylglycerol (a chloroplastic glycerolipid) and phosphatidylcholine (extrachloroplastidic phopholipid) were the most affected lipid classes. The degradation of 18:3-fatty acid-containing monogalactosyldiacylglycerol inferred that it provided fatty acyl chains for the biosynthesis of 13-hydroperoxylinolenic acid, which was further directed towards either the jasmonate pathway or other alternative pathways of the fatty acid oxidation cascade, analogous to higher plants. Also, G. dura modulated the lipid acyl chains in such a way that no significant change was observed in the fatty acid profile of the treated thalli as compared with those of the control, except for C16:0, C16:1 (n-9), C20:3 (n-6) and C20:4 (n-6) (P < 0.05). Furthermore, MeJA caused the accumulation of phenolic compounds and the up-regulation of enzymes involved in secondary metabolism such as polyphenol oxidase, shikimate dehydrogenase and phenylalanine ammonia-lyase, indicating a shift towards secondary metabolism as a defense strategy to combat the induced oxidative stress. PMID:26276825

  11. Methyl Jasmonate-Induced Lipidomic and Biochemical Alterations in the Intertidal Macroalga Gracilaria dura (Gracilariaceae, Rhodophyta).

    PubMed

    Kumari, Puja; Reddy, C R K; Jha, Bhavanath

    2015-10-01

    The role of exogenously added methyl jasmonate (MeJA), a lipid-derived signaling compound, in inducing oxidative stress in the marine red macroalga Gracilaria dura was investigated. MeJA at a concentration of 1-100 µM was a strong stimulant of reactive oxygen species (H(2)O(2), HO· and O(2) (·-)) (P < 0.05) causing considerable oxidative stress in G. dura. This further led to lipid peroxidation and degradation of the pigments Chl a and phycocyanin, with a concomitant increase in phycoerythrin. The MeJA-induced oxidative burst also led to the induction of a fatty acid oxidation cascade, resulting in the synthesis of hydroxy-oxylipins and the up-regulation of the 13-lipoxygenase pathway. Electrospray ionization-mass spectrometry-based shotgun lipidomic analysis revealed that monogalactosyldiacylglycerol (a chloroplastic glycerolipid) and phosphatidylcholine (extrachloroplastidic phopholipid) were the most affected lipid classes. The degradation of 18:3-fatty acid-containing monogalactosyldiacylglycerol inferred that it provided fatty acyl chains for the biosynthesis of 13-hydroperoxylinolenic acid, which was further directed towards either the jasmonate pathway or other alternative pathways of the fatty acid oxidation cascade, analogous to higher plants. Also, G. dura modulated the lipid acyl chains in such a way that no significant change was observed in the fatty acid profile of the treated thalli as compared with those of the control, except for C16:0, C16:1 (n-9), C20:3 (n-6) and C20:4 (n-6) (P < 0.05). Furthermore, MeJA caused the accumulation of phenolic compounds and the up-regulation of enzymes involved in secondary metabolism such as polyphenol oxidase, shikimate dehydrogenase and phenylalanine ammonia-lyase, indicating a shift towards secondary metabolism as a defense strategy to combat the induced oxidative stress.

  12. Methyl jasmonate-induced defense responses are associated with elevation of 1-aminocyclopropane-1-carboxylate oxidase in Lycopersicon esculentum fruit.

    PubMed

    Yu, Mengmeng; Shen, Lin; Zhang, Aijun; Sheng, Jiping

    2011-10-15

    It has been known that methyl jasmonate (MeJA) interacts with ethylene to elicit resistance. In green mature tomato fruits (Lycopersicon esculentum cv. Lichun), 0.02mM MeJA increased the activity of 1-aminocyclopropane-1-carboxylate oxidase (ACO), and consequently influenced the last step of ethylene biosynthesis. Fruits treated with a combination of 0.02 MeJA and 0.02 α-aminoisobutyric acid (AIB, a competitive inhibitor of ACO) exhibited a lower ethylene production comparing to that by 0.02mM MeJA alone. The increased activities of defense enzymes and subsequent control of disease incidence caused by Botrytis cinerea with 0.2mM MeJA treatment was impaired by AIB as well. A close relationship (P<0.05) was found between the activity alterations of ACO and that of chitinase (CHI) and β-1,3-glucanase (GLU). In addition, this study further detected the changes of gene expressions and enzyme kinetics of ACO to different concentrations of MeJA. LeACO1 was found the principal member from the ACO gene family to respond to MeJA. Accumulation of LeACO1/3/4 transcripts followed the concentration pattern of MeJA treatments, where the largest elevations were reached by 0.2mM. For kinetic analysis, K(m) values of ACO stepped up during the experiment and reached the maximums at 0.2mM MeJA with ascending concentrations of treatments. V(max) exhibited a gradual increase from 3h to 24h, and the largest induction appeared with 1.0mM MeJA. The results suggested that ACO is involved in MeJA-induced resistance in tomato, and the concentration influence of MeJA on ACO was attributable to the variation of gene transcripts and enzymatic properties.

  13. [An intron-free methyl jasmonate inducible geranylgeranyl diphosphate synthase gene from Taxus media and its functional identification in yeast].

    PubMed

    Liao, Zhihua; Gong, Yifu; Kai, Guoyin; Zuo, Kaijing; Chen, Min; Tan, Qiumin; Wei, Yamin; Guo, Liang; Tan, Feng; Sun, Xiaofen; Tang, Kexuan

    2005-01-01

    Geranylgeranyl diphosphate synthase (GGPPS, EC: 2.5.1.29) catalyzes the biosynthesis of geranylgeranyl diphosphate (GGPP), which is a key precursor for diterpenes including Taxol, one of the most potent antitumor drugs. In order to investigate the role of GGPP synthase in taxol biosynthesis, we cloned, characterized and functionally expressed the GGPP synthase gene from Taxus media. A 3743-bp genomic sequence of T. media was isolated by genome walking strategy which contained an 1182-bp open reading frame (ORF) encoding a 393-amino acid polypeptide that showed high similarity to other plant GGPPSs. Subsequently the full-length cDNA of the GGPPS gene of T. media (designated TmGGPPS) was amplified by RACE. Bioinformatic analysis showed that TmGGPPS was an intron-free gene and its deduced polypeptide contained all the five conserved domains and functional aspartate-rich motifs of the prenyltransferases. By constructing the phylogenetic tree of plant GGPPSs, it was found that plant-derived GGPPSs could be divided into two classes, angiosperm and gymnosperm classes, which might have evolved in parallel from the same ancestor. To our knowledge this was the first report that the geranylgeranyl diphosphate synthase genes were free of intron and evolved in parallel between angiosperms and gymnosperms. The coding sequence of TmGGPPS was expressed in yeast mutant (SFNY368) lacking of GGPP synthase activity through functional complementation, and the transgenic yeast showed to have activity of GGPP synthase. This was also the first time to use SFNY368 to identify the function of plant-derived GGPPSs. Furthermore, investigation of the impact of methyl jasmonate (MeJA) on the expression of TmGGPPS revealed that MeJA-treated T. media cultured cells had much higher expression of TmGGPPS than untreated cells.

  14. Foliar application of methyl jasmonate induced physio-hormonal changes in Pisum sativum under diverse temperature regimes.

    PubMed

    Shahzad, Raheem; Waqas, Muhammad; Khan, Abdul Latif; Hamayun, Muhammad; Kang, Sang-Mo; Lee, In-Jung

    2015-11-01

    Global climate change brings with it unwarranted shifts in both abiotic (heat stress, cold stress, wind, precipitation) and biotic (pathogens, pests) environmental factors, thus posing a threat to agricultural productivity across the world. In plants, lodging due to storms or herbivory causes wounding stress and consequently enhances endogenous jasmonates. In response, the plant growth is arrested as plant defense is prioritized. We pre-treated pea plants with elevated methyl jasmonate (MeJA) levels i.e. 50 μM, 100 μM and 200 μM under controlled growth chamber conditions. The pre-treated plants were then kept at 40 °C (heat stress--HS), 4 °C (cold stress--CS) and 20 °C (optimum/control temperature--OT) for 72 h. The effect of such treatments on plant growth attributes, photosynthesis, stomatal conductance, cell death rate, and regulation of endogenous hormones were observed. Elevated MeJA application hindered plant growth attributes under HS, CS and OT conditions. Moreover, elevated MeJA levels lowered the rate of photosynthesis and stomatal conductance, induced stomatal closure, caused higher cells mortality in leaves under HS, CS, and OT conditions. Endogenous ABA contents significantly declined in all MeJA treatments under HS and OT, but increased under CS conditions. Exogenous MeJA enhanced endogenous jasmonic acid contents of pea plants, but altered endogenous salicylic acid contents under varying temperatures. Current study shows that higher concentrations of exogenous MeJA strengthen plant defense mechanism by hindering plant growth under stress conditions.

  15. Mitogen-activated protein kinase 6 mediates nuclear translocation of ORE3 to promote ORE9 gene expression in methyl jasmonate-induced leaf senescence.

    PubMed

    Zhang, Yushan; Liu, Jian; Chai, Jinyu; Xing, Da

    2016-01-01

    Methyl jasmonate (MeJA) is a potent promoter of plant senescence. ORESARA3 (ORE3)/ETHYLENE INSENSITIVE2 (EIN2), a protein similar to the members of the disease-related Nramp metal transporter family, is involved in cross-talk among several senescence processes related to abscisic acid, ethylene, MeJA, age and darkness. Nevertheless, the mechanism involved in the regulation of ORE3/EIN2 in exogenous MeJA-induced leaf senescence remains unclear. The C-terminal end of ORE3/EIN2 (CEND) was cleaved from ORE3/EIN2 located in the endoplasmic reticulum and then transferred to the nucleus during MeJA-induced senescence. Further analyses showed that mitogen-activated protein kinase 6 (MPK6) promoted CEND cleavage and nuclear translocation. Nuclear CEND accumulated ETHYLENE INSENSITIVE3 (EIN3), a transcription factor that accelerates MeJA-induced leaf senescence wherein ORESARA9 (ORE9) expression was suppressed in ein3, ore3, and mpk6 mutant plants. ChIP experiments revealed that EIN3 bound directly to the ORE9 promoter and this binding was enhanced in MeJA-induced leaf senescence. This study revealed the effect of the signalling pathway involving MPK6-ORE3-EIN3-ORE9 on regulating leaf senescence and provided insights into the mechanism of MeJA in promoting leaf senescence in Arabidopsis thaliana.

  16. Methyl jasmonate induces ATP biosynthesis deficiency and accumulation of proteins related to secondary metabolism in Catharanthus roseus (L.) G. hairy roots.

    PubMed

    Ruiz-May, Eliel; De-la-Peña, Clelia; Galaz-Ávalos, Rosa M; Lei, Zhentian; Watson, Bonnie S; Sumner, Lloyd W; Loyola-Vargas, Víctor M

    2011-08-01

    Jasmonates are specific signal molecules in plants that are involved in a diverse set of physiological and developmental processes. However, methyl jasmonate (MeJA) has been shown to have a negative effect on root growth and, so far, the biochemical mechanism for this is unknown. Using Catharanthus roseus hairy roots, we were able to observe the effect of MeJA on growth inhibition, cell disorganization and cell death of the root cap. Hairy roots treated with MeJA induced the perturbation of mitochondrial membrane integrity and a diminution in ATP biosynthesis. Furthermore, several proteins were identified that were involved in energy and secondary metabolism; the changes in accumulation of these proteins were observed with 100 μM MeJA. In conclusion, our results suggest that a switch of the metabolic fate of hairy roots in response to MeJA could cause an increase in the accumulation of secondary metabolites. This is likely to have important consequences in the production of specific alkaloids important for the pharmaceutical industry.

  17. Endogenous abscisic acid is involved in methyl jasmonate-induced reactive oxygen species and nitric oxide production but not in cytosolic alkalization in Arabidopsis guard cells.

    PubMed

    Ye, Wenxiu; Hossain, Mohammad Anowar; Munemasa, Shintaro; Nakamura, Yoshimasa; Mori, Izumi C; Murata, Yoshiyuki

    2013-09-01

    We recently demonstrated that endogenous abscisic acid (ABA) is involved in methyl jasmonate (MeJA)-induced stomatal closure in Arabidopsis thaliana. In this study, we investigated whether endogenous ABA is involved in MeJA-induced reactive oxygen species (ROS) and nitric oxide (NO) production and cytosolic alkalization in guard cells using an ABA-deficient Arabidopsis mutant, aba2-2, and an inhibitor of ABA biosynthesis, fluridon (FLU). The aba2-2 mutation impaired MeJA-induced ROS and NO production. FLU inhibited MeJA-induced ROS production in wild-type guard cells. Pretreatment with 0.1 μM ABA, which does not induce stomatal closure in the wild type, complemented the insensitivity to MeJA of the aba2-2 mutant. However, MeJA induced cytosolic alkalization in both wild-type and aba2-2 guard cells. These results suggest that endogenous ABA is involved in MeJA-induced ROS and NO production but not in MeJA-induced cytosolic alkalization in Arabidopsis guard cells.

  18. Methyl jasmonate induces lauric acid omega-hydroxylase activity and accumulation of CYP94A1 transcripts but does not affect epoxide hydrolase activities in vicia sativa seedlings

    PubMed

    Pinot; Benveniste; Sala n JP; Durst

    1998-12-01

    Treatment of etiolated Vicia sativa seedlings by the plant hormone methyl jasmonate (MetJA) led to an increase of cytochrome P450 content. Seedlings that were treated for 48 h in a 1 mM solution of MetJA stimulated omega-hydroxylation of 12:0 (lauric acid) 14-fold compared with the control (153 versus 11 pmol min-1 mg-1 protein, respectively). Induction was dose dependent. The increase of activity (2.7-fold) was already detectable after 3 h of treatment. Activity increased as a function of time and reached a steady level after 24 h. Northern-blot analysis revealed that the transcripts coding for CYP94A1, a fatty acid omega-hydroxylase, had already accumulated after 1 h of exposure to MetJA and was maximal between 3 and 6 h. Under the same conditions, a study of the enzymatic hydrolysis of 9,10-epoxystearic acid showed that both microsomal and soluble epoxide hydrolase activities were not affected by MetJA treatment.

  19. Jasmonates induce nonapoptotic death in high-resistance mutant p53-expressing B-lymphoma cells

    PubMed Central

    Fingrut, Orit; Reischer, Dorit; Rotem, Ronit; Goldin, Natalia; Altboum, Irit; Zan-Bar, Israel; Flescher, Eliezer

    2005-01-01

    Mutations in p53, a tumor suppressor gene, occur in more than half of human cancers. Therefore, we tested the hypothesis that jasmonates (novel anticancer agents) can induce death in mutated p53-expressing cells. Two clones of B-lymphoma cells were studied, one expressing wild-type (wt) p53 and the other expressing mutated p53. Jasmonic acid and methyl jasmonate (0.25–3 mM) were each equally cytotoxic to both clones, whereas mutant p53-expressing cells were resistant to treatment with the radiomimetic agent neocarzinostatin and the chemotherapeutic agent bleomycin. Neocarzinostatin and bleomycin induced an elevation in the p53 levels in wt p53-expressing cells, whereas methyl jasmonate did not. Methyl jasmonate induced mostly apoptotic death in the wt p53-expressing cells, while no signs of early apoptosis were detected in mutant p53-expressing cells. In contrast, neocarzinostatin and bleomycin induced death only in wt p53-expressing cells, in an apoptotic mode. Methyl jasmonate induced a rapid depletion of ATP in both clones. In both clones, oligomycin (a mitochondrial ATP synthase inhibitor) did not increase ATP depletion induced by methyl jasmonate, whereas inhibition of glycolysis with 2-deoxyglucose did. High glucose levels protected both clones from methyl jasmonate-induced ATP depletion (and reduced methyl jasmonate-induced cytotoxicity), whereas high levels of pyruvate did not. These results suggest that methyl jasmonate induces ATP depletion mostly by compromising oxidative phosphorylation in the mitochondria. In conclusion, jasmonates can circumvent the resistance of mutant p53-expressing cells towards chemotherapy by inducing a nonapoptotic cell death. PMID:16170329

  20. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-methyl acrylate copolymer resins. 177... Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl... section, the ethylene-methyl acrylate copolymer resins consist of basic copolymers produced by...

  1. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-methyl acrylate copolymer resins. 177.1340... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used as articles or components...

  2. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-methyl acrylate copolymer resins. 177... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used...

  3. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-methyl acrylate copolymer resins. 177... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used...

  4. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-methyl acrylate copolymer resins. 177... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used...

  5. Insect-Induced Conifer Defense. White Pine Weevil and Methyl Jasmonate Induce Traumatic Resinosis, de Novo Formed Volatile Emissions, and Accumulation of Terpenoid Synthase and Putative Octadecanoid Pathway Transcripts in Sitka Spruce1[w

    PubMed Central

    Miller, Barbara; Madilao, Lufiani L.; Ralph, Steven; Bohlmann, Jörg

    2005-01-01

    Stem-boring insects and methyl jasmonate (MeJA) are thought to induce similar complex chemical and anatomical defenses in conifers. To compare insect- and MeJA-induced terpenoid responses, we analyzed traumatic oleoresin mixtures, emissions of terpenoid volatiles, and expression of terpenoid synthase (TPS) genes in Sitka spruce (Picea sitchensis) following attack by white pine weevils (Pissodes strobi) or application of MeJA. Both insects and MeJA caused traumatic resin accumulation in stems, with more accumulation induced by the weevils. Weevil-induced terpenoid emission profiles were also more complex than emissions induced by MeJA. Weevil feeding caused a rapid release of a blend of monoterpene olefins, presumably by passive evaporation of resin compounds from stem feeding sites. These compounds were not found in MeJA-induced emissions. Both weevils and MeJA caused delayed, diurnal emissions of (−)-linalool, indicating induced de novo biosynthesis of this compound. TPS transcripts strongly increased in stems upon insect attack or MeJA treatment. Time courses and intensity of induced TPS transcripts were different for monoterpene synthases, sesquiterpene synthases, and diterpene synthases. Increased levels of weevil- and MeJA-induced TPS transcripts accompanied major changes in terpenoid accumulation in stems. Induced TPS expression profiles in needles were less complex than those in stems and matched induced de novo emissions of (−)-linalool. Overall, weevils and MeJA induced similar, but not identical, terpenoid defense responses in Sitka spruce. Findings of insect- and MeJA-induced accumulation of allene oxide synthase-like and allene oxide cyclase-like transcripts are discussed in the context of traumatic resinosis and induced volatile emissions in this gymnosperm system. PMID:15618433

  6. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation.

    PubMed

    Król, P; Igielski, R; Pollmann, S; Kępczyńska, E

    2015-05-01

    Methyl jasmonate (MeJA) was tested by seed treatment for its ability to protect tomato seedlings against fusarium wilt caused by the soil-borne fungal pathogen Fusarium oxysporum f.sp. lycopersici. Isolated from Solanum lycopersicon L. seeds, cv. Beta fungus was identified as F. oxysporum f.sp. lycopersici Race 3 fungus by using phytopathological and molecular methods. MeJA applied at 0.01, 0.1 and 1 mM reduced spore germination and mycelial growth in vitro. Soaking of tomato seeds in MeJA solution at 0.1 mM for 1 h significantly enhanced the resistance level against the tested fungus in tomato seedlings 4 weeks after inoculation. The extracts from leaves of 15-day-old seedlings obtained from previously MeJA soaked seeds had the ability to inhibit in vitro spore germination of tested fungus. In these seedlings a significant increase in the levels phenolic compounds such as salicylic acid (SA), kaempferol and quercetin was observed. Up-regulation of phenylalanine ammonia-lyase (PAL5) and benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) genes and down-regulation of the isochorysmate synthase (ICS) gene in response to exogenous MeJA application indicate that the phenylalanine ammonia-lyase (PAL), not the isochorismate (IC) pathway, is the primary route for SA production in tomato. Moreover, the increased accumulation of the flavonols quercetin and kaempferol appears closely related to the increase of PAL5, chalcone synthase (CHS) and flavonol synthase/flavanone 3-hydroxylase-like (FLS) genes. Elevated levels of salicylic acid in seedlings raised from MeJA-soaked seeds were simultaneously accompanied by a decrease of jasmonic acid, the precursor of MeJA, and an increase of 12-oxo-phytodienoic acid (OPDA), the precursor of jasmonic acid. The present results indicate that the priming of tomato seeds with 0.1mM MeJA before sowing enables the seedlings grown from these seeds to reduce the attack of the soil-borne fungal pathogen F. oxysporum f.sp. lycopersici

  7. Methylation of ethylene over Lewis-acid catalysts

    SciTech Connect

    Sekhar, M.V.C.

    1994-12-31

    As a major constituent of natural gas, methane is abundant and is a relatively inexpensive feedstock for a variety of chemicals. The use of methane as a fuel is straightforward. Consequently, over the years, considerable research has been conducted to develop technologies for its efficient utilization. Work on adsorbents for storing natural gas on-board automotive vehicles promises to expand its use considerably. Conversely, the use of methane as a chemical feedstock requires either the energy- and capital-intensive production of intermediate synthesis gas or its thermal cracking to a range of hydrocarbons. In recent years there has been a great deal of interest in processes that convert methane directly to olefins, methanol and other functionalized methane derivatives. Among the various conversion processes currently under development, the Oxidative Coupling (OC) route is the most promising. With increased attention being given to OC process, engineers have also begun outlining the corresponding reaction engineering aspects. The OC of methane rich natural gas yields a dilute olefin stream. At 25% hydrocarbon conversion, the ethylene in the dry reactor effluent is about 5%, with some propylene and other hydrocarbons. Because of the presence of large amounts of unconverted methane in the effluent, product separation is one of the main points of optimization in the existing oxidative coupling technology. Consequently, a processing scheme which does not require further separation of the product of the OC rector would be of considerable advantage. Reactions between methane and ethylene using a number of solid acids have also been reported by a number of authors in the past. However, some of these experiments were conducted at temperatures higher than ambient. In this paper we report some of the results obtained at ambient temperature as part of a screening program for developing catalyst systems for co-reacting methane with ethylene to produce higher hydrocarbons.

  8. Ultrafast non-adiabatic dynamics of methyl substituted ethylenes: The π3s Rydberg state

    NASA Astrophysics Data System (ADS)

    Wu, Guorong; Boguslavskiy, Andrey E.; Schalk, Oliver; Schuurman, Michael S.; Stolow, Albert

    2011-10-01

    Excited state unimolecular reactions of some polyenes exhibit localization of their dynamics at a single ethylenic double bond. Here we present studies of the fundamental photophysical processes in the ethylene unit itself. Combined femtosecond time-resolved photoelectron spectroscopy (TRPES) and ab initio quantum chemical calculations was applied to the study of excited state dynamics in cis-butene, trans-butene, trimethylethylene, and tetramethylethylene, following initial excitation to their respective π3s Rydberg states. The wavelength dependence of the π3s Rydberg state dynamics of tetramethylethylene was investigated in more detail. The π3s Rydberg to ππ* valence state decay rate varies greatly with substituent: the 1,2-di- and tri-methyl substituted ethylenes (cis-butene, trans-butene, and trimethylethylene) show an ultrafast decay (˜20 fs), whereas the fully methylated tetramethylethylene shows a decay rate of 2 to 4 orders of magnitude slower. These observations are rationalized in terms of topographical trends in the relevant potential energy surfaces, as found from ab initio calculations: (1) the barrier between the π3s state and the ππ* state increases with increasing methylation, and (2) the π3s/ππ* minimum energy conical intersection displaces monotonically away from the π3s Franck-Condon region with increasing methylation. The use of systematic methylation in combination with TRPES and ab initio computation is emerging as an important tool in discerning the excited state dynamics of unsaturated hydrocarbons.

  9. Jasmonate-induced biosynthesis of andrographolide in Andrographis paniculata.

    PubMed

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar; Geda, Arvind Kumar

    2015-02-01

    Andrographolide is a prominent secondary metabolite found in Andrographis paniculata that exhibits enormous pharmacological effects. In spite of immense value, the normal biosynthesis of andrographolide results in low amount of the metabolite. To induce the biosynthesis of andrographolide, we attempted elicitor-induced activation of andrographolide biosynthesis in cell cultures of A. paniculata. This was carried out by using methyl jasmonate (MeJA) as an elicitor. Among the various concentrations of MeJA tested at different time periods, 5 µM MeJA yielded 5.25 times more andrographolide content after 24 h of treatment. The accumulation of andrographolide was correlated with the expression level of known regulatory genes (hmgs, hmgr, dxs, dxr, isph and ggps) of mevalonic acid (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways. These results established the involvement of MeJA in andrographolide biosynthesis by inducing the transcription of its biosynthetic pathways genes. The coordination of isph, ggps and hmgs expression highly influenced the andrographolide biosynthesis.

  10. Thermo-reversible gelation of atactic poly(methyl methacrylate) in poly(ethylene glycol) oligomers.

    PubMed

    Gao, Yun; Yu, Chunhong; Chen, Minzhi; Wang, Xiaoliang; Zhou, Dongshan; Xue, Gi

    2013-04-01

    The temperature-concentration behavior of physical gel by atactic poly(methyl methacrylate) (aPMMA) in poly(ethylene glycol) oligomer (PEG400) was investigated. A liquid-liquid demixing interferes with a glass transition during cooling. The combination of demixing and T g leads to the formation of amorphous gels at low temperature. We suggest that the gelation of aPMMA/PEG400 is a glassy gel, in which short-range attractive depletion interaction in the polymer/oligomer system was the driving force at molecular level.

  11. Peel/seal properties of poly(ethylene methyl acrylate)/polybutene-1 blend films

    NASA Astrophysics Data System (ADS)

    Mohammdi, Seyedeh Raziyeh; Ajji, Abdellah; Tabatabaei, Seyed H.

    2015-05-01

    Nowadays, the possibility to easy open a food package is of great interest both from the consumer and food producers' perspective. In this study, the peel/seal properties of poly (ethylene methyl acrylate) (EMA)/polybutene-1 (PB-1) blend films were investigated. Three blends of EMA/PB-1 with different methyl acrylate (MA) content were prepared using cast extrusion process. Differential Scanning Calorimetry (DSC) was used to investigate the thermal behavior as well as the crystalinity of the blends. The effect of polymer matrix on the crystalline structure of PB-1 was studied using Wide Angle X-ray Diffraction (WAXD) and DSC. T-peel tests were carried out on the heat sealed films at various seal temperatures. The effect of MA content and heat seal temperature on peel/seal properties (i.e. peel initiation temperature, temperature window of sealability and peel strength) of the films were studied.

  12. Peel/seal properties of poly(ethylene methyl acrylate)/polybutene-1 blend films

    SciTech Connect

    Mohammdi, Seyedeh Raziyeh; Ajji, Abdellah; Tabatabaei, Seyed H.

    2015-05-22

    Nowadays, the possibility to easy open a food package is of great interest both from the consumer and food producers’ perspective. In this study, the peel/seal properties of poly (ethylene methyl acrylate) (EMA)/polybutene-1 (PB-1) blend films were investigated. Three blends of EMA/PB-1 with different methyl acrylate (MA) content were prepared using cast extrusion process. Differential Scanning Calorimetry (DSC) was used to investigate the thermal behavior as well as the crystalinity of the blends. The effect of polymer matrix on the crystalline structure of PB-1 was studied using Wide Angle X-ray Diffraction (WAXD) and DSC. T-peel tests were carried out on the heat sealed films at various seal temperatures. The effect of MA content and heat seal temperature on peel/seal properties (i.e. peel initiation temperature, temperature window of sealability and peel strength) of the films were studied.

  13. Proton nuclear magnetic resonance spectroscopic detection and determination of ethylene glycol dimethacrylate as a contaminant of methyl methacrylate raw material.

    PubMed

    Hanna, G M; Lau-Cam, C A

    1995-01-01

    A simple, specific, and accurate proton nuclear magnetic resonance (1H NMR) spectroscopic method is presented for detection and assay of ethylene glycol dimethacrylate dimer as a contaminant of methyl methacrylate monomer. In addition to minimizing exposure of the analyst to the irritant and toxic methacrylic acid esters, the proposed method requires no sample preparation. Quantitations are based on integrals for signals of methylene protons of ethylene glycol dimethacrylate at 4.37 ppm and methyl protons of methyl methacrylate at 3.70 ppm. Analysis of 10 synthetic mixtures of the monomer with 1-11% of dimer yielded a dimer recovery of 100.5 +/- 2.05% (mean +/- standard deviation). Correspondence (correlation coefficient, r = 0.9999) between the amount of dimer added and the amount found was excellent. The proposed method measures as little as 1% of dimer.

  14. Synthesis of branched poly(methyl methacrylate)s via controlled/living polymerisations exploiting ethylene glycol dimethacrylate as branching agent.

    PubMed

    Isaure, Francoise; Cormack, Peter A G; Graham, Susan; Sherrington, David C; Armes, Steven P; Bütun, Vural

    2004-05-07

    With appropriate choice of reaction composition and conditions, copolymerisation of methyl methacrylate and ethylene glycol dimethacrylate using Cu-based ATRP or GTP methodologies yields soluble branched polymers in facile one-pot reactions.

  15. Microgel formation in the free radical crosslinking copolymerization of methyl methacrylate (MMA) and ethylene glycol dimethcrylate (EGDMA)

    SciTech Connect

    Xiudong Sung; Yuen-Yuen Chiu; Lee, L.J.

    1996-12-31

    The formation of heterogeneous structure through intramolecular reaction is an important feature in the free radical crosslinking copolymerization of methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA). Such structure formation affects not only the curing behavior but also the rheological changes of the resin. In this work, the effect of co-monomer composition on the reaction kinetics, rheological changes and microgel formation of MMA-EGDMA copolymerization was studied. A percolation model was adopted to simulate such monovinyl-divinyl reactions.

  16. Chemocatalytic Conversion of Cellulosic Biomass to Methyl Glycolate, Ethylene Glycol, and Ethanol.

    PubMed

    Xu, Gang; Wang, Aiqin; Pang, Jifeng; Zhao, Xiaochen; Xu, Jinming; Lei, Nian; Wang, Jia; Zheng, Mingyuan; Yin, Jianzhong; Zhang, Tao

    2017-04-10

    Production of chemicals and fuels from renewable cellulosic biomass is important for the creation of a sustainable society, and it critically relies on the development of new and efficient transformation routes starting from cellulose. Here, a chemocatalytic conversion route from cellulosic biomass to methyl glycolate (MG), ethylene glycol (EG), and ethanol (EtOH) is reported. By using a tungsten-based catalyst, cellulose is converted into MG with a yield as high as 57.7 C % in a one-pot reaction in methanol at 240 °C and 1 MPa O2 , and the obtained MG can be easily separated by distillation. Afterwards, it can be nearly quantitatively converted to EG at 200 °C and to EtOH at 280 °C with a selectivity of 50 % through hydrogenation over a Cu/SiO2 catalyst. By this approach, the fine chemical MG, the bulk chemical EG, and the fuel additive EtOH can all be efficiently produced from renewable cellulosic materials, thus providing a new pathway towards mitigating the dependence on fossil resources.

  17. Surface dilational moduli of poly (ethylene oxide), poly (methyl methacrylate), and their blend films.

    PubMed

    Kato, Satoaki; Kawaguchi, Masami

    2012-10-15

    Surface dilational moduli of poly (ethylene oxide) (PEO), poly (methyl methacrylate) (PMMA), and compatible PEO/PMMA blend films spread at the air-water interface were investigated as a function of surface concentration. The surface dilational modulus of an expanded PEO film increased as the surface concentration increased to 0.4 mg/m(2), which corresponds to the limiting surface area of PEO. After peaking at this value, the surface dilational modulus decreased with an increase in the PEO concentration. Lissajous orbits of PEO films exhibited positive hysteresis loops for all surface concentration ranges. On the other hand, the surface dilational modulus of a condensed PMMA film steeply increased as the surface concentration increased. Lissajous orbits of PMMA films changed from positive hysteresis loops to negative loops at the surface concentration at which the surface pressure reached in the plateau region. The magnitude of the surface dilational modulus of PMMA was larger than that of PEO at a fixed surface concentration. The surface dilational moduli of the PEO/PMMA blend films increased with the total surface concentration and their magnitudes were less than those of the individual PMMA films and larger than those of the individual PEO films at fixed surface concentrations. Lissajous orbits of the PEO/PMMA blend films also changed from positive hysteresis loops to negative loops beyond the surface concentration at which the plateau surface pressure of PEO was attained.

  18. Polystyrene nanoparticles based on poly(butyl methacrylate-g-methoxypoly(ethylene glycol)) and poly(methyl methacrylate-g-methoxypoly(ethylene glycol)) graft copolymers.

    PubMed

    Horgan, Adrian; Vincent, Brian

    2003-06-15

    The solubilization of styrene by poly(butyl methacrylate-g-methoxypoly(ethylene glycol)) and poly(methyl methacrylate-g-methoxypoly(ethylene glycol)) graft copolymers has been examined. From turbidity measurements the solubility limit of the monomer in the micelles was obtained and the distribution coefficients were evaluated. Dynamic light scattering revealed that below the solubility limit, solubilization leads to a slight increase in micelle size, while above the solubility limit, there is a dramatic increase in particle size and turbidity as oil-in-water emulsions are formed through coalescence of monomer-swollen micelles. Polymerizations carried out below the solubility limit using the graft copolymer micelles as templates resembled microemulsion polymerizations in nature and led to very fine sterically stabilized polystyrene latex particles. Through careful control of the monomer concentration and the polymerization temperature it was possible to obtain spherical nanosize latex particles with similar size to those of the micelle precursors (10 nm) up to 11% monomer by weight. Polymerizations above the solubility limit, on the other hand, showed similarities with emulsion polymerizations and resulted in larger particles with higher polydispersity.

  19. The modification and characterization of maleic anhydride-styrene-methyl metacrylate terpolymer by poly(ethylene adipate)

    NASA Astrophysics Data System (ADS)

    Boztuğ, Ali; Basan, Satilmiş

    2007-03-01

    In this study, the functionality of maleic anhydride was utilized in the maleic anhydride-styrene-methyl metacrylate (MAStMMA) terpolymer. First, the polyester of poly(ethylene adipate), PEA, polycondensation copolymer was synthesized from ethylene glycol and adipic acid monomers. PEA was then modified on its maleic anhydride units in the MAStMMA terpolymer which has been synthesized previously. This modified copolymer was characterized by FTIR (Fourier Transform Infrared spectroscopy). The viscosimetric and thermomechanical characterization of MAStMMA terpolymer and its modified copolymer were also performed and the results were compared. The modified copolymer obtained was found to be more elastic and more soluble, and had lower viscosity and density.

  20. Plasma graft of poly(ethylene glycol) methyl ether methacrylate (PEGMA) on RGP lens surface for reducing protein adsorption

    NASA Astrophysics Data System (ADS)

    Shiheng, Yin; Li, Ren; Yingjun, Wang

    2017-01-01

    Poly(ethylene glycol) methyl ether methacrylate (PEGMA) was grafted on fluorosilicone acrylate rigid gas permissible contact lens surface by means of argon plasma induced polymerization to improve surface hydrophilicity and reduce protein adsorption. The surface properties were characterized by contact angle measurement, x-ray photoelectron spectroscopy (XPS) and atomic force microscopy respectively. The surface protein adsorption was evaluated by lysozyme solution immersion and XPS analysis. The results indicated that a thin layer of PEGMA was successfully grafted. The surface hydrophilicity was bettered and surface free energy increased. The lysozyme adsorption on the lens surface was reduced greatly. The study was supported by National Natural Science Foundation of China (No. 51273072).

  1. Root and shoot gas exchange respond additively to moderate ozone and methyl jasmonate without induction of ethylene: ethylene is induced at higher O3 concentrations

    PubMed Central

    Grantz, D.A.; Vu, H.-B.

    2012-01-01

    The available literature is conflicting on the potential protection of plants against ozone (O3) injury by exogenous jasmonates, including methyl jasmonate (MeJA). Protective antagonistic interactions of O3 and MeJA have been observed in some systems and purely additive effects in others. Here it is shown that chronic exposure to low to moderate O3 concentrations (4–114 ppb; 12 h mean) and to MeJA induced additive reductions in carbon assimilation (A n) and root respiration (R r), and in calculated whole plant carbon balance. Neither this chronic O3 regime nor MeJA induced emission of ethylene (ET) from the youngest fully expanded leaves. ET emission was induced by acute 3 h pulse exposure to much higher O3 concentrations (685 ppb). ET emission was further enhanced in plants treated with MeJA. Responses of growth, allocation, photosynthesis, and respiration to moderate O3 concentrations and to MeJA appear to be independent and additive, and not associated with emission of ET. These results suggest that responses of Pima cotton to environmentally relevant O3 are not mediated by signalling pathways associated with ET and MeJA, though these pathways are inducible in this species and exhibit a synergistic O3×MeJA interaction at very high O3 concentrations. PMID:22563119

  2. Poly(butyl methacrylate-g-methoxypoly(ethylene glycol)) and poly(methyl methacrylate-g-methoxypoly(ethylene glycol)) graft copolymers: preparation and aqueous solution properties.

    PubMed

    Horgan, Adrian; Saunders, Brian; Vincent, Brian; Heenan, Richard K

    2003-06-15

    A series of water-soluble, amphiphilic graft copolymers has been prepared by free-radical copolymerization of methoxypoly(ethylene glycol) macromonomers, with either methyl methacrylate or butyl methacrylate as the comonomers, in water/ethanol solvent mixtures. Lower molecular weight copolymers were obtained by increasing the concentration of the initiator, azobisisobutyronitrile (AIBN), used in the polymerization reaction. However, the route used also led to the formation of significant quantities of tetramethylsuccinodinitrile, a toxic byproduct resulting from the cage reaction of AIBN. Static fluorescence measurements using pyrene as a probe, along with 1H NMR experiments, showed that the graft copolymers form aggregates in water at very low concentrations (approximately 0.01 g l(-1)) with the pendant hydrophilic graft chains forming a stabilizing shell around the hydrophobic backbone. An increase in the hydrophile-lipophile balance of the graft copolymers was found to lead to smaller aggregates with lower aggregation numbers and highly swollen hydrophilic shells, as revealed by small angle neutron scattering (SANS).

  3. A mathematical model of the interaction of abscisic acid, ethylene and methyl jasmonate on stomatal closure in plants

    PubMed Central

    Hernandez, Bryan Sapon

    2017-01-01

    Stomatal closure is affected by various stimuli such as light, atmospheric carbon dioxide concentration, humidity and phytohormones. Our research focuses on phytohormones, specifically: abscisic acid (ABA), ethylene (ET) and methyl jasmonate (MeJA) that are responsible for the regulation of several plant processes, especially in guard cell signalling. While several studies show that these three phytohormones cause stomatal closure in plants, only two studies are notable for establishing a mathematical model of guard cell signalling involving phytohormones. Those two studies employed Boolean modelling and mechanistic ordinary differential equations modelling. In this study, we propose a new mathematical model of guard cell transduction network for stomatal closure using continuous logical modelling framework. Results showed how the different components of the network function. Furthermore, the model verified the role of antioxidants in the closure mechanism, and the diminished closure level of stomata with combined ABA-ET stimulus. The analysis was extended to ABA-ET-MeJA crosstalk. PMID:28182683

  4. Di(ethylene glycol) methyl ether methacrylate (DEGMEMA)-derived gels align small organic molecules in methanol.

    PubMed

    García, Manuela E; Woodruff, Shannon R; Hellemann, Erich; Tsarevsky, Nicolay V; Gil, Roberto R

    2017-03-01

    Residual dipolar couplings (RDCs) constitute an important NMR parameter for structural elucidation in all areas of chemistry. In this study, di(ethylene glycol) methyl ether methacrylate (DEGMEMA)-based gels are introduced as alignment media for the measurement of RDCs of small organic molecules in polar solvents such as methanol. The low viscosity of methanol permits the execution of J-scaled BIRD HSQC experiments that yield very sharp lines in anisotropic conditions. The gels have excellent mechanical properties, and their compression and expansion in the swollen state can be reversed and performed multiple times. This process enables the easy loading and release of analytes. The excellent performance of these new aligning gels is demonstrated by analyzing the structure of the alkaloid retrorsine. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Chemical grafting of poly(ethylene glycol) methyl ether methacrylate onto polymer surfaces by atmospheric pressure plasma processing.

    PubMed

    D'Sa, Raechelle A; Meenan, Brian J

    2010-02-02

    This article reports the use of atmospheric pressure plasma processing to induce chemical grafting of poly(ethylene glycol) methyl ether methacrylate (PEGMA) onto polystyrene (PS) and poly(methyl methacrylate) (PMMA) surfaces with the aim of attaining an adlayer conformation which is resistant to protein adsorption. The plasma treatment was carried out using a dielectric barrier discharge (DBD) reactor with PEGMA of molecular weights (MW) 1000 and 2000, PEGMA(1000) and PEGMA(2000), being grafted in a two step procedure: (1) reactive groups are generated on the polymer surface followed by (2) radical addition reactions with the PEGMA. The surface chemistry, coherency, and topography of the resulting PEGMA grafted surfaces were characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and atomic force microscopy (AFM), respectively. The most coherently grafted PEGMA layers were observed for the 2000 MW PEGMA macromolecule, DBD processed at an energy dose of 105.0 J/cm(2) as indicated by ToF-SIMS images. The effect of the chemisorbed PEGMA layer on protein adsorption was assessed by evaluating the surface response to bovine serum albumin (BSA) using XPS. BSA was used as a model protein to determine the grafted macromolecular conformation of the PEGMA layer. Whereas the PEGMA(1000) surfaces showed some protein adsorption, the PEGMA(2000) surfaces appeared to absorb no measurable amount of protein, confirming the optimum surface conformation for a nonfouling surface.

  6. Sol–gel auto combustion synthesis of CoFe{sub 2}O{sub 4}/1-methyl-2-pyrrolidone nanocomposite with ethylene glycol: Its magnetic characterization

    SciTech Connect

    Topkaya, R.; Kurtan, U.; Junejo, Y.; Baykal, A.

    2013-09-01

    Graphical abstract: - Highlights: • CoFe{sub 2}O{sub 4} was generated by sol–gel autocombustion using 1-methyl-2-pyrrolidone and ethylene glycol. • The presence of spin-disordered surface layer on magnetic core was established. • A linear dependence of the coercivity on temperature was fitted to Kneller's law. - Abstract: Magnetic nanoparticles were generated by sol–gel auto combustion synthesis of metal salts in the presence of 1-methyl-2-pyrrolidone, a functional solvent and ethylene glycol as usual solvent. The average crystallite size was obtained by using line profile fitting as 11 ± 5 nm. The saturation magnetization value decreases with usage of the ethylene glycol in synthesis. The observed exchange bias effect further confirms the existence of the magnetically ordered core surrounded by spin-disordered surface layer and the ethylene glycol. Square-root temperature dependence of coercivity can be fitted to Kneller's law in the temperature range of 10–400 K. The reduced remanent magnetization values lower than the theoretical value of 0.5 for non-interacting single domain particles indicate the CoFe{sub 2}O{sub 4}-1-methyl-2-pyrrolidone nanocomposite to have uniaxial anisotropy instead of the expected cubic anisotropy according to the Stoner–Wohlfarth model.

  7. Characterization and Antimicrobial Activity of N-Methyl-2-pyrrolidone-loaded Ethylene Oxide-Propylene Oxide Block Copolymer Thermosensitive Gel

    PubMed Central

    Phaechamud, T.; Mahadlek, J.; Charoenteeraboon, J.; Choopun, S.

    2012-01-01

    The purpose of this study is to investigate the effects of N-methyl-2-pyrrolidone on the thermosensitive properties of aqueous ethylene oxide-propylene oxide block copolymer (Lutrol® F127) system. Due to the aqueous solubility enhancement and biocompatibility, N-methyl-2-pyrrolidone is an interesting solubilizer for the poorly water soluble drugs to be incorporated in the Lutrol® F127 system. Effect of N-methyl-2-pyrrolidone on physicochemical properties of Lutrol® F127 system was investigated using appearance, pH, gelation, gel melting temperature and rheology. The antimicrobial activity of the thermosensitive N-methyl-2-pyrrolidone gel was also tested. Lower N-methyl-2-pyrrolidone amount (≤30%w/w) could shift the sol-gel transition to a lower temperature but the gel-sol transition was shifted to a higher temperature. Higher N-methyl-2-pyrrolidone (≥40%w/w) could shift both sol-gel and gel-sol transitions of the system to a lower temperature. The amount of N-methyl-2-pyrrolidone >60% w/w could reverse the phase of the Lutrol® F127 system to non-newtonian flow at 4° and Newtonian flow at high temperature. Aqueous Lutrol® F127 system containing N-methyl-2-pyrrolidone exhibited antimicrobial activities against Staphylococcus aureus, Escherichia coli and Candida albicans with the N-methyl-2-pyrrolidone in a dose-dependent manner. PMID:23798774

  8. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge.

    PubMed

    van Wees, S C; Luijendijk, M; Smoorenburg, I; van Loon, L C; Pieterse, C M

    1999-11-01

    Selected strains of nonpathogenic rhizobacteria from the genus Pseudomonas are capable of eliciting broad-spectrum induced systemic resistance (ISR) in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). In Arabidopsis, the ISR pathway functions independently of salicylic acid (SA) but requires responsiveness to jasmonate and ethylene. Here, we demonstrate that known defense-related genes, i.e. the SA-responsive genes PR-1, PR-2, and PR-5, the ethylene-inducible gene Hel, the ethylene- and jasmonate-responsive genes ChiB and Pdf1.2, and the jasmonate-inducible genes Atvsp, Lox1, Lox2, Pall, and Pin2, are neither induced locally in the roots nor systemically in the leaves upon induction of ISR by Pseudomonas fluorescens WCS417r. In contrast, plants infected with the virulent leaf pathogen Pseudomonas syringae pv. tomato (Pst) or expressing SAR induced by preinfecting lower leaves with the avirulent pathogen Pst(avrRpt2) exhibit elevated expression levels of most of the defense-related genes studied. Upon challenge inoculation with Pst, PR gene transcripts accumulated to a higher level in SAR-expressing plants than in control-treated and ISR-expressing plants, indicating that SAR involves potentiation of SA-responsive PR gene expression. In contrast, pathogen challenge of ISR-expressing plants led to an enhanced level of Atvsp transcript accumulation. The otherjasmonate-responsive defense-related genes studied were not potentiated during ISR, indicating that ISR is associated with the potentiation of specific jasmonate-responsive genes.

  9. 2′-O-Methyl RNA/Ethylene-Bridged Nucleic Acid Chimera Antisense Oligonucleotides to Induce Dystrophin Exon 45 Skipping

    PubMed Central

    Lee, Tomoko; Awano, Hiroyuki; Yagi, Mariko; Matsumoto, Masaaki; Watanabe, Nobuaki; Goda, Ryoya; Koizumi, Makoto; Takeshima, Yasuhiro; Matsuo, Masafumi

    2017-01-01

    Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease characterized by dystrophin deficiency from mutations in the dystrophin gene. Antisense oligonucleotide (AO)-mediated exon skipping targets restoration of the dystrophin reading frame to allow production of an internally deleted dystrophin protein with functional benefit for DMD patients who have out-of-frame deletions. After accelerated US approval of eteplirsen (Exondys 51), which targets dystrophin exon 51 for skipping, efforts are now focused on targeting other exons. For improved clinical benefits, this strategy requires more studies of the delivery method and modification of nucleic acids. We studied a nucleotide with a 2′-O,4′-C-ethylene-bridged nucleic acid (ENA), which shows high nuclease resistance and high affinity for complementary RNA strands. Here, we describe the process of developing a 2′-O-methyl RNA(2′-OMeRNA)/ENA chimera AO to induce dystrophin exon 45 skipping. One 18-mer 2′-OMeRNA/ENA chimera (AO85) had the most potent activity for inducing exon 45 skipping in cultured myotubes. AO85 was administered to mdx mice without significant side effects. AO85 transfection into cultured myotubes from 13 DMD patients induced exon 45 skipping in all samples at different levels and dystrophin expression in 11 patients. These results suggest the possible efficacy of AO-mediated exon skipping changes in individual patients and highlight the 2′-OMeRNA/ENA chimera AO as a potential fundamental treatment for DMD. PMID:28208626

  10. Poly(oligo(ethylene glycol) methyl ether methacrylate) Brushes on High-κ Metal Oxide Dielectric Surfaces for Bioelectrical Environments.

    PubMed

    Joh, Daniel Y; McGuire, Felicia; Abedini-Nassab, Roozbeh; Andrews, Joseph B; Achar, Rohan K; Zimmers, Zackary; Mozhdehi, Darush; Blair, Rebecca; Albarghouthi, Faris; Oles, William; Richter, Jacob; Fontes, Cassio M; Hucknall, Angus M; Yellen, Benjamin B; Franklin, Aaron D; Chilkoti, Ashutosh

    2017-02-15

    Advances in electronics and life sciences have generated interest in "lab-on-a-chip" systems utilizing complementary metal oxide semiconductor (CMOS) circuitry for low-power, portable, and cost-effective biosensing platforms. Here, we present a simple and reliable approach for coating "high-κ" metal oxide dielectric materials with "non-fouling" (protein- and cell-resistant) poly(oligo(ethylene glycol) methyl ether methacrylate (POEGMA) polymer brushes as biointerfacial coatings to improve their relevance for biosensing applications utilizing advanced electronic components. By using a surface-initiated "grafting from" strategy, POEGMA films were reliably grown on each material, as confirmed by ellipsometric measurements and X-ray photoelectron spectroscopy (XPS) analysis. The electrical behavior of these POEGMA films was also studied to determine the potential impact on surrounding electronic devices, yielding information on relative permittivity and breakdown field for POEGMA in both dry and hydrated states. We show that the incorporation of POEGMA coatings significantly reduced levels of nonspecific protein adsorption compared to uncoated high-κ dielectric oxide surfaces as shown by protein resistance assays. These attributes, combined with the robust dielectric properties of POEGMA brushes on high-κ surfaces open the way to incorporate this protein and cell resistant polymer interface into CMOS devices for biomolecular detection in a complex liquid milieu.

  11. Drug release from interpenetrating polymer networks based on poly(ethylene glycol) methyl ether acrylate and gelatin.

    PubMed

    Ding, Frank; Hsu, S-H; Wu, D-H; Chiang, W-Y

    2009-01-01

    In order to develop new materials for biomedical and pharmaceutical applications, interpenetrating polymer networks (IPNs) based on poly(ethylene glycol) methyl ether acrylate (PEGMEA) and gelatin were synthesized. These two materials were cross-linked sequentially using N,N'-methylene bisacrylamide (NMBA) and glutaraldehyde (Glu). Two series of IPNs gels were synthesized by applying different amounts of PEGMEA and gelatin in the initial feed. Sequential IPNs were prepared by polymerizing and cross-linking PEGMEA in the presence of gelatin using redox initiators (e.g., ammonium peroxydisulfate (APS) and N,N,N',N'-tetramethyl ethylenediamine (TEMED)), as well as NMBA as the cross-linking agent. Gelatin in firm gel was then cross-linked with 1% glutaraldehyde. The swelling kinetics, mechanical properties and drug-release behavior of these IPNs were analyzed. The surface properties were examined by scanning electron microscopy. The results indicated that the swelling ratio decreased with an increase in the content of both PEGMEA and gelatin in the IPNs. PEGMEA/gelatin-based full-IPNs had a significantly higher shear modulus (G) and cross-linking density (rho) when the content of PEGMEA was increased. The drug loading was very high due to the full-IPN structure. The drug-release velocity was mainly affected by the content of PEGMEA.

  12. Role of poly(ethylene glycol) in surfactant-free emulsion polymerization of styrene and methyl methacrylate.

    PubMed

    Shi, Yiming; Shan, Guorong; Shang, Yue

    2013-03-05

    Through zeta potential and surface tension measurements and a series of polymerization experiments, the role of poly(ethylene glycol) (PEG) in the process of surfactant-free polymerization of styrene (St)/methyl methacrylate (MMA) has been investigated experimentally. Nanoscale and stable copolymer particles were formed after an abnormal process, in which the nucleation and growth of particles was different from that in previously proposed mechanisms. It has been observed that PEG can exist in both the monomer and the aqueous phases at high temperature. PEG in the aqueous phase could form copolymer particles with a loose structure, making them prone to enter the monomer phase. Entry of these copolymer particles into the monomer phase would introduce excess PEG. From the ternary phase diagram, a solubility curve could be delineated in the ternary system of PEG/monomer/copolymer. The system used the ternary solubility property to regenerate copolymer particles in the monomer phase, which maintained their morphology until the end of the polymerization. At the end, consumption of the monomer resulted in the volume contraction of the particles, and the surface potential increased. This increasing potential is a driving force to prevent particles from stacking, leading to the formation of nanoscale and stable particles.

  13. Encapsulation of glucose oxidase within poly(ethylene glycol) methyl ether methacrylate microparticles for developing an amperometric glucose biosensor.

    PubMed

    Hervás Pérez, J P; López-Cabarcos, E; López-Ruiz, B

    2008-06-15

    Poly(ethylene glycol) methyl ether methacrylate (PEGMEM) microparticles were synthesized and glucose oxidase (GOx) was immobilized within the microparticles. An amperometric biosensor was fabricated using the microparticles with GOx as biological component. The enzyme immobilization method was optimized by investigating the influence of monomer concentration and cross-linker content used in the preparation of the microparticles in the response of the biosensor. The best analytical results were obtained with the microparticles prepared with 0.21 M PEGMEM and 0.74% cross-linking. Furthermore, we have investigated the influence on the biosensor behaviour of parameters such as working potential, pH, temperature and enzymatic load. In addition, analytical properties such as sensitivity, linear range, response time and detection limit were determined. The biosensor was used to determine glucose in human serum samples and to avoid common interferents present in human serum such as uric and ascorbic acids. A Nafion layer was deposited on the electrode surface with satisfactory results. The useful lifetime of the biosensor was at least 520 days.

  14. Antifouling properties of poly(methyl methacrylate) films grafted with poly(ethylene glycol) monoacrylate immersed in seawater.

    PubMed

    Iguerb, O; Poleunis, C; Mazéas, F; Compère, C; Bertrand, P

    2008-11-04

    Biofouling of all structures immersed in seawater constitutes an important problem, and many strategies are currently being developed to tackle it. In this context, our previous work shows that poly(ethylene glycol) monoacrylate (PEGA) macromonomer grafted on preoxidized poly(methyl methacrylate) (PMMAox) films exhibits an excellent repellency against the bovine serum albumin used as a model protein. This study aims to evaluate the following: (1) the prevention of a marine extract material adsorption by the modified surfaces and (2) the antifouling property of the PEGA-g-PMMAox substrates when immersed in natural seawater during two seasons (season 1: end of April-beginning of May 2007, and season 2: end of October-beginning of November 2007). The antifouling performances of the PEGA-g-PMMAox films are investigated for different PEG chain lengths and macromonomer concentrations into the PEGA-based coatings. These two parameters are followed as a function of the immersion time, which evolves up to 14 days. The influence of the PEGA layer on marine compounds (proteins and phospholipids) adsorption is evidenced by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). It was found that the antifouling efficiency of the PEGA-grafted surfaces increases with both PEGA concentration and PEG chain length.

  15. Radiation-grafting of 2-hydroxyethylmethacrylate and oligo (ethylene glycol) methyl ether methacrylate onto polypropylene films by one step method

    NASA Astrophysics Data System (ADS)

    Ramírez-Jiménez, Alejandro; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Bucio, Emilio

    2012-01-01

    Polypropylene films were modified with 2-hydroxyethylmethacrylate (HEMA) and oligo (ethylene glycol) methyl ether methacrylate (OEGMA) using the pre-irradiation method with gamma-rays (one step method). The effect of absorbed dose from 10 to 100 kGy, temperature (50, 60, and 70 °C), monomer concentration between 12.5% and 62.5%, monomers ratio from 10% to 90% and reaction time from 5 to 50 h; on the degree of grafting was determined. The grafted samples were analyzed by FTIR-ATR, TGA, DSC, swelling, and contact angle. Grafts onto polymeric films between 3% and 109% were obtained at doses from 10 to 100 kGy and a dose rate around 7.4 kGy/h. The graft percent increased with the content in HEMA in the HEMA:OEGMA feed mixture, which indicates a lower reactivity of OEGMA compared to HEMA. The hydrogel layer grafted on the polypropylene substrate increases the hydrophilicity of the surface and also provides certain temperature-responsiveness, which may be of interest for biomedical applications.

  16. Synthesis and characterization of poly(methoxyl ethylene glycol-caprolactone-co-methacrylic acid-co-poly(ethylene glycol) methyl ether methacrylate) pH-sensitive hydrogel for delivery of dexamethasone.

    PubMed

    Wang, Ke; Xu, Xu; Wang, YuJun; Yan, Xi; Guo, Gang; Huang, MeiJuan; Luo, Feng; Zhao, Xia; Wei, YuQuan; Qian, ZhiYong

    2010-04-15

    In this work, a novel pH-sensitive hydrogels based on macromonomer of methoxyl poly(ethylene glycol)-poly(caprolactone)-acryloyl chloride (MPEG-PCL-AC, PCE-AC), poly(ethylene glycol) methyl ether methacrylate (MPEGMA), and methacrylic acid (MAA) were successfully synthesized by heat-initiated free radical polymerization method. The obtained macromonomers and hydrogels were characterized by (1)H NMR and FT-IR, respectively. Morphology study, swelling behavior, in vitro drug release behavior, acute oral toxicity of hydrogels, and cytotoxicity of PCE-AC macromonomer were also investigated in this paper. Finally, the hydrogels demonstrated that the sharp change in different pH value, thus believing to be promising the suitability of the candidate for oral drug-delivery systems.

  17. Poly(methyl methacrylate-co-ethyl acrylate) latex particles with poly(ethylene glycol) grafts: structure and film formation.

    PubMed

    Schantz, Staffan; Carlsson, Hans T; Andersson, Thomas; Erkselius, Stefan; Larsson, Anders; Karlsson, Ola J

    2007-03-27

    Water-based copolymer dispersions were prepared using methyl methacrylate (MMA), ethyl acrylate (EA) (MMA/EA = 1:2), and a series of nonionic polymerizable surfactants, i.e., "surfmers" based on poly(ethylene glycol)-(meth)acrylates. The latexes were compared with the behavior of a conventionally stabilized (nonionic nonylphenol ethoxylate, NP100 with 84 ethylene oxide units) dispersion with the same MMA-EA composition (PMMAEA). A number of techniques were employed in order to characterize structure, dynamics, and film formation properties: solution/solid-state NMR, dynamic/static light scattering (DLS/SLS), differential scanning calorimetry (DSC), tensile/shear mode dynamic mechanical thermal analysis (DMTA), and atomic force microscopy (AFM). The surfmers were found to be miscible with the MMA-EA copolymer at room temperature, with 46-85 mol % of the reacted surfmer detected at the particle surfaces, and the remaining part buried in the particle bulk. In contrast, the NP100 surfactant formed a separate interphase between the copolymer particles with no mixing detected at room temperature or at 90 degrees C. For a 4.0% dry weight concentration, NP100 phase separated and further crystallized at room temperature over a period of several months. Composition fluctuations related to a limited blockiness on a length scale above approximately 2 nm were detected for PMMAEA particles, whereas the surfmer particles were found to be homogeneous also below this limit. On a particle-particle level, the dispersions tended to form colloidal crystals unless hindered by a broadened particle size distribution or, in the case of PMMAEA, by the action of NP100. Finally, a surface roughness (Rq) master plot was constructed for data above the glass transition temperature (Tg) from Tg + 11 degrees C to Tg + 57 degrees C and compared with the complex shear modulus over 11 frequency decades. Shift factors from the 2 methods obeyed the same Williams-Landel-Ferry (WLF) temperature

  18. Interchain coupled chain dynamics of poly(ethylene oxide) in blends with poly(methyl methacrylate): Coupling model analysis

    NASA Astrophysics Data System (ADS)

    Ngai, K. L.; Wang, Li-Min

    2011-11-01

    Quasielastic neutron scattering and molecular dynamics simulation data from poly(ethylene oxide) (PEO)/poly(methyl methacrylate) (PMMA) blends found that for short times the self-dynamics of PEO chain follows the Rouse model, but at longer times past tc = 1-2 ns it becomes slower and departs from the Rouse model in dependences on time, momentum transfer, and temperature. To explain the anomalies, others had proposed the random Rouse model (RRM) in which each monomer has different mobility taken from a broad log-normal distribution. Despite the success of the RRM, Diddens et al. [Eur. Phys. Lett. 95, 56003 (2011)] extracted the distribution of friction coefficients from the MD simulations of a PEO/PMMA blend and found that the distribution is much narrower than expected from the RRM. We propose a simpler alternative explanation of the data by utilizing alone the observed crossover of PEO chain dynamics at tc. The present problem is just a special case of a general property of relaxation in interacting systems, which is the crossover from independent relaxation to coupled many-body relaxation at some tc determined by the interaction potential and intermolecular coupling/constraints. The generality is brought out vividly by pointing out that the crossover also had been observed by neutron scattering from entangled chains relaxation in monodisperse homopolymers, and from the segmental α-relaxation of PEO in blends with PMMA. The properties of all the relaxation processes in connection with the crossover are similar, despite the length scales of the relaxation in these systems are widely different.

  19. Interchain coupled chain dynamics of poly(ethylene oxide) in blends with poly(methyl methacrylate): coupling model analysis.

    PubMed

    Ngai, K L; Wang, Li-Min

    2011-11-21

    Quasielastic neutron scattering and molecular dynamics simulation data from poly(ethylene oxide) (PEO)/poly(methyl methacrylate) (PMMA) blends found that for short times the self-dynamics of PEO chain follows the Rouse model, but at longer times past t(c) = 1-2 ns it becomes slower and departs from the Rouse model in dependences on time, momentum transfer, and temperature. To explain the anomalies, others had proposed the random Rouse model (RRM) in which each monomer has different mobility taken from a broad log-normal distribution. Despite the success of the RRM, Diddens et al. [Eur. Phys. Lett. 95, 56003 (2011)] extracted the distribution of friction coefficients from the MD simulations of a PEO/PMMA blend and found that the distribution is much narrower than expected from the RRM. We propose a simpler alternative explanation of the data by utilizing alone the observed crossover of PEO chain dynamics at t(c). The present problem is just a special case of a general property of relaxation in interacting systems, which is the crossover from independent relaxation to coupled many-body relaxation at some t(c) determined by the interaction potential and intermolecular coupling/constraints. The generality is brought out vividly by pointing out that the crossover also had been observed by neutron scattering from entangled chains relaxation in monodisperse homopolymers, and from the segmental α-relaxation of PEO in blends with PMMA. The properties of all the relaxation processes in connection with the crossover are similar, despite the length scales of the relaxation in these systems are widely different.

  20. Reactive Poly(Amic Acid)/ Poly(Glycidyl Methacrylate-r-Poly(ethylene Glycol) Methyl Ether Methacrylate) Blends as Gas Permeation Membranes

    NASA Astrophysics Data System (ADS)

    Beaulieu, Michael; Watkins, James

    2012-02-01

    Polymers containing polar moieties, such as ether groups show an affinity for acidic gases, such as CO2 due to dipole-quadrapole interactions. Polymer blends in which one of the components is poly(ethylene glycol) (PEG) have been studied extensively in literature as a CO2/light gas permeation membrane, but due to the crystallization and poor mechanical properties have been difficult to incorporate PEG above 60wt%. In this study, a series of random copolymers containing both glycidyl methacrylate and poly(ethylene glycol) methyl ether methacrylate in different ratios are blended with a poly(amic acid) prepolymer made from 4, 4'-oxydianiline and pyromellitic dianhydride to create gas permeation membranes. By using a reactive blend PEG loadings above 70% have been realized with sufficient mechanical properties, and since the side chain on the PEGMA is short these blends do not suffer from crystallization.

  1. Surface treatment of poly(ethylene terephthalate) by gamma-ray induced graft copolymerization of methyl acrylate and its toughening effect on poly(ethylene terephthalate)/elastomer blend

    NASA Astrophysics Data System (ADS)

    Ma, Liang; Wang, Mozhen; Ge, Xuewu

    2013-09-01

    To improve the compatibility between ethylene-methyl acrylate-glycidyl methacrylate random terpolymer (E-MA-GMA) elastomer and poly(ethylene terephthalate) (PET), thereby enhance the toughening effect of E-MA-GMA on PET, γ-radiation-induced graft copolymerization technique was used to graft methyl acrylate (MA) monomer onto PET. The produced PET-g-PMA copolymer can be used as a self-compatibilizer in PET/E-MA-GMA blend since the copolymer contains the same segments, respectively, with PET and E-MA-GMA. The impact strength of PET/E-MA-GMA blend increased nearly by 30% in the presence of less than 0.1 wt% PET-g-PMA compared with that of the neat PET/elastomer blend, without loss of the tensile strength of the blends. This work proposed a potential application of radiation-induced grafting copolymerization technique on the in-situ compatibilization of PET/elastomer blends so as to improve the integral mechanical properties of PET based engineering plastic.

  2. Dual-Responsive pH and Temperature Sensitive Nanoparticles Based on Methacrylic Acid and Di(ethylene glycol) Methyl Ether Methacrylate for the Triggered Release of Drugs.

    PubMed

    Khine, Yee Yee; Jiang, Yanyan; Dag, Aydan; Lu, Hongxu; Stenzel, Martina H

    2015-08-01

    A series of thermo-and pH-responsive poly(methyl methacrylate)-block-poly[methacrylic acid-co-di(ethylene glycol) methyl ether methacrylate] PMMA-b-P[MAA-co-DEGMA] block copolymers were synthesized by RAFT polymerization and self-assembled into micelles. The molar ratio of MAA was altered from 0-12% in order to modulate the lower critical solution temperature (LCST) of PDEGMA. The release of the drug albendazole from the micelle was strongly dependent on the temperature and the LCST value of the polymer. Systems below the LCST released the drug slowly while increasing the temperature above the LCST or decreasing the pH value to 5 resulted in the burst-like release of the drug. ABZ delivered in this pH-responsive drug carrier had a higher toxicity than the free drug or the drug delivered in a non-responsive drug carrier.

  3. Fabrication of nanopatterned poly(ethylene glycol) brushes by molecular transfer printing from poly(styrene-block-methyl methacrylate) films to generate arrays of Au nanoparticles.

    PubMed

    Onses, M Serdar

    2015-01-27

    This article presents a soft lithographic approach using block copolymer (BCP) films to fabricate functional chemically patterned polymer brushes on the nanoscale. Hydroxyl-terminated poly(ethylene glycol) (PEG-OH) was transfer printed from the poly(methyl methacrylate) (PMMA) domains of self-assembled poly(styrene-block-methyl methacrylate) films to a substrate in conformal contact with the film to generate patterned PEG brushes mirroring the pattern of BCP domains. A key point in the study is that the chemistry of the functional transferred brushes is different from the chemistry of either block of the copolymer; PEG-OH is miscible only in the PMMA block and therefore transferred only from PMMA domains. The functionality of the PEG brushes was demonstrated by the selective immobilization of citrate-stabilized Au NPs (15 nm) and validated the generation of high-quality chemical patterns with sub-30-nm feature sizes.

  4. A Theoretical Study on Stepwise- and Concertedness of the Mechanism of 1,3-Dipolar Cycloaddition Reaction Between Tetra Amino Ethylene and Trifluoro Methyl Azide.

    PubMed

    Siadati, Seyyed Amir

    2016-01-01

    The order of reaction, especially in 1,3-dipolar cycloadditions directly affects the products' stereo selectivity. Due to this fact that a wide range of heterocyclic rings of natural products and biologically active molecules are synthesizing via this valuable procedure, understanding about the order of this reaction is so useful in designing the synthesis of different types of heterocyclic species. Therefore, the order of 1, 3-dipolar reaction has been carefully studied by many researchers but it seems that this question is still open despite many valuable answers. Considering this, in the present work, it is attempted to pursue this subject by theoretical investigation of any possible pathway of 1, 3-dipolar reaction of tetra amino ethylene as a highly electron rich dipolarophile and trifluoro methyl azide as an electron poor 1,3-dipole. During the calculations, one, two, and three step mechanism(s) have been found to be possible for the present 1, 3-dipolar reaction.

  5. Resistance of medical gloves to permeation by methyl methacrylate (MMA), ethylene glycol dimethacrylate (EGDMA), and 1,4-butanediol dimethacrylate (1,4-BDMA).

    PubMed

    Lönnroth, Emma-Christin; Eystein Ruyter, I

    2003-01-01

    Gloves afford hand protection by minimizing skin contact. The effectiveness of medical gloves to protect against permeation of the monomers, methyl methacrylate (MMA), ethylene glycol dimethacrylate (EGDMA), and 1,4-butanediol dimethacrylate (1,4-BDMA), was assessed focusing on permeation rates and degradation of glove materials caused by monomer contact. Fifteen different brands of gloves were tested using a European Standard procedure. Surface images of glove materials before and after exposure to the monomer mixture were obtained using a scanning electron microscope. The standard is not applicable as the only method for estimating the safety of gloves, but it is useful as guideline together with the cumulative permeation of acrylic monomers. Monomer contact on the outside resulted in substantial swelling of most glove materials, and structure changes of the inside surface.

  6. Influence of ethylene glycol and propylene glycol on polymer diffusion in poly(butyl acrylate-co-methyl methacrylate) latex films.

    PubMed

    Schroeder, Walter F; Liu, Yuanqin; Tomba, J Pablo; Soleimani, Mohsen; Lau, Willie; Winnik, Mitchell A

    2010-03-11

    We describe fluorescence resonance energy transfer (FRET) experiments carried out to examine the effect of ethylene glycol and propylene glycol on the early stages of polymer diffusion in poly(butyl acrylate-co-methyl methacrylate) latex films. In our approach, we temporarily arrest the drying process of a wet latex film by sealing the film in a previously cooled airtight sample chamber. This arrests propagation of the drying front and suppresses polymer diffusion during the measurements. We then measure donor fluorescence decays from 0.5 mm diameter spots at various locations on the film. From our analysis, we obtain information about the earliest stages of polymer diffusion as the film is still drying. We also investigate the effect of these glycols on polymer diffusion at longer aging times on predried latex films. Ethylene glycol and propylene glycol retard polymer diffusion at early times immediately after the passing of the drying front but enhance the rate of polymer diffusion at later aging times. This behavior is described quantitatively in terms of free-volume theory and the partitioning of the glycols between the aqueous and polymer phases in the film.

  7. Poly(ethylene glycol)-block-poly(2-methyl-2-benzoxycarbonyl-propylene carbonate) micelles for rapamycin delivery: in vitro characterization and biodistribution.

    PubMed

    Lu, Wenli; Li, Feng; Mahato, Ram I

    2011-06-01

    Our objective was to synthesize an amphiphilic diblock copolymer for micellar delivery of rapamycin. Poly(ethylene glycol)-block-poly(2-methyl-2-benzoxycarbonyl-propylene carbonate) (PEG-b-PBC) with different hydrophobic core lengths were synthesized from methoxy poly(ethylene glycol) and 2-methyl-2-benzoxycarbonyl-propylene carbonate through ring-opening polymerization using 1,8-diazabicycloundec-7-ene as a catalyst. The critical micelle concentration of PEG-b-PBC was around 10(-8) M and depends on the hydrophobic core length. Rapamycin was effectively incorporated into micelles and drug loading increased with increasing hydrophobic core length, with maximal drug loading of 10% (w/w, drug/polymer), drug loading efficiency of about 85%, and mean particle size of around 70 nm. The drug release profile was also dependent on the hydrophobic core length and the drug release from PEG(114) -b-PBC(30) micelles was the slowest. We also determined the toxicity of rapamycin micelles on insulinoma (INS-1E) β-cells and human islets. Encapsulation of rapamycin into PEG-b-PBC micelles reduced its toxicity. Biodistribution of rapamycin-loaded PEG-b-PBC micelles was determined after systemic administration into mice. Rapamycin-loaded PEG-b-PBC micelles showed little difference in pharmacokinetics and biodistribution characteristics in mice compared with rapamycin carrying nanosuspension. In conclusion, rapamycin formulated with PEG-b-PBC micelles showed significantly reduced toxicity on INS-1E β-cells and human islets, but had similar biodistribution profiles as those of nanosuspensions.

  8. Drug-loading of poly(ethylene glycol methyl ether methacrylate) (PEGMEMA)-based micelles and mechanisms of uptake in colon carcinoma cells.

    PubMed

    Chang, Teddy; Gosain, Pallavi; Stenzel, Martina H; Lord, Megan S

    2016-08-01

    In this study polymeric micelles formed from poly(poly(ethylene glycol) methyl ether methacrylate)-block-poly(methyl methacrylate) (P(PEGMEMA75)-b-PMMA80) block copolymer of approximately 25nm in diameter were used to encapsulate the model drug, Nile Red, with a loading efficiency of 0.08wt% and a chemotherapeutic drug, doxorubicin (DOX), with an efficiency of 2.75wt%. The release of DOX from the micelles was sufficient to be cytotoxic to human colon carcinoma cells, WiDr, while Nile Red and the unloaded micelles were found not to be cytotoxic when exposed to the cells at polymer concentrations up to 200μg/mL. Nile Red loaded micelles were used to analyze uptake of the micelles into the cells which were rapidly internalized within minutes of exposure. The three major endocytotic pathways were involved in the internalization of micelles; however other passive mechanisms were also at play as the addition of inhibitors to all three pathways did not completely inhibit the uptake of these nanoparticles. These data demonstrate the potential of the P(PEGMEMA)75-b-PMMA80 block copolymer micelles to be rapidly internalized by carcinoma cells and deliver low doses of drugs intracellularly for controlled drug release.

  9. On the degelation of networks - Case of the radiochemical degradation of methyl methacrylate - ethylene glycol dimethacrylate copolymers

    NASA Astrophysics Data System (ADS)

    Richaud, Emmanuel; Gilormini, Pierre; Verdu, Jacques

    2016-05-01

    Methyl methacrylate networks were synthetized and submitted to radiochemical degradation. Ageing was monitored by means of sol-gel analysis and glass transition temperature measurements. Networks were shown to undergo exclusively chain scission process leading to the degelation of network. The critical conversion degree corresponding to degelation (loss of all elastically active chains) is discussed regarding a statistical theory.

  10. The catalytic conversion of methyl chloride to ethylene and propylene over phosphorus-modified Mg-ZSM-5 zeolites

    SciTech Connect

    Sun, Y.; Campbell, S.M.; Lunsford, J.H. ); Lewis, G.E.; Palke, D.; Tau, L.M. )

    1993-09-01

    A Mg-ZSM-5 zeolite modified with phosphorus is capable of catalyzing the reaction of CH[sub 3]Cl to C[sub 2]H[sub 4], C[sub 3]H[sub 6], C[sub 4]H[sub 8], and HCl at 500[degrees]C. At a WHSV of 20 h[sup [minus]1], an initial conversion level of 96% was achieved with combined C[sub 2]H[sub 4], C[sub 3]H[sub 6], and C[sub 4]H[sub 8] selectivities of about 80%. During the useful life of the catalyst the C[sub 3]H[sub 6] selectivity was 50-60%. The percent conversion decreased to 50% over a period of 20 h, but the catalyst could be regenerated by heating in flowing air. As the catalyst deactivated, the C[sub 3]H[sub 6] selectivity increased slightly and the C[sub 2]H[sub 4] selectivity decreased. Catalytic and spectroscopic results confirm that phosphorus, derived from trimethylphosphine, was responsible for a decrease in the strong Broensted acidity in the zeolite. For example, the phosphorus-modified zeolite was inactive for n-hexane cracking at 350[degrees]C, and the protonated amount of pyridine, added to the zeolite as a probe for acidity, decreased significantly. The catalyst, however, had sufficient acidity to crack hexene or octene at 500[degrees]C to propylene and ethylene in ratios that were very similar to those detected during the conversion of CH[sub 3]Cl. Without the strong Broensted acidity the PMg-ZSM-5 zeolite apparently is unable to convert the light olefins to paraffins and aromatics. A mechanism is proposed in which magnesium cations activate CH[sub 3]Cl to form HCl and a carbene intermediate. The latter is believed to be responsible for C-C bond formation via reaction with a surface methoxide species. Ethylene probably is the primary hydrocarbon, but it oligomerizes to a higher molecular weight olefin which cracks back to ethylene and propylene. 22 refs., 8 figs., 1 tab.

  11. Photodissociating methyl vinyl ether to calibrate O+ethylene product branching and to test propensity rules for product channel electronic accessibility

    NASA Astrophysics Data System (ADS)

    Morton, M. L.; Szpunar, D. E.; Butler, L. J.

    2001-07-01

    These experiments investigate the photodissociation of methyl vinyl ether at 193 nm in a crossed laser-molecular beam apparatus. We observe two C-O bond fission channels, a minor channel producing CH3+CH2CHO (X˜ 2A″) and the major channel yielding CH3+CH2CHO (à 2A'). Some of the neutral à state vinoxy product undergoes secondary dissociation to produce ketene+H. These experiments on the photodissociation of methyl vinyl ether, which produce nascent vinoxy and methyl radicals cleanly in a one-to-one ratio, serve two purposes. First, using the measured photofragment velocities and product branching we calibrate the relative sensitivity of mass spectrometric detection to the methyl and vinoxy polyatomic radical products at the m/e=15 daughter ion, taking into account the loss of neutral vinoxy to ketene+H formation. This relative mass spectrometric sensitivity calibration factor is determined to be 0.116±0.022. Knowledge of this factor allows us to extract the product branching ratio between the two major competing primary product channels from the O(3P)+ethylene reaction, a branching ratio that has been much disputed in the literature. Our results give a CH3+HCO/H+CH2CHO product branching ratio of R=0.61±.11, corresponding to 38% (±5%) branching to the CH3+HCO channel. Second, we use the result that the channel producing Östate vinoxy dominates over the formation of ground-state vinoxy to test propensity rules being developed to help predict what product channels may be suppressed by electronically nonadiabatic effects in chemical reactions. These propensity rules discriminate between channels that are "electronically facile" and "electronically difficult/prohibitive." We find that a qualitative analysis of the changes in electronic configuration along the reaction coordinates for the photodissociation of methyl vinyl ether correctly predicts the dominant channel to be the production of excited state (Ã) vinoxy, the electronically facile channel.

  12. Dynamics of poly(ethylene oxide) in a blend with poly(methyl methacrylate): A quasielastic neutron scattering and molecular dynamics simulations study

    SciTech Connect

    Genix, A.-C.; Arbe, A.

    2005-09-01

    In this paper, we have addressed the question of the dynamic miscibility in a blend characterized by very different glass-transition temperatures, T{sub g}, for the components: poly(ethylene oxide) and poly(methyl methacrylate) (PEO/PMMA). The combination of quasielastic neutron scattering with isotopic labeling and fully atomistic molecular dynamics simulations has allowed us to selectively investigate the dynamics of the two components in the picosecond--10 nanoseconds scale at temperatures close and above the T{sub g} of the blend. The main focus was on the PEO component, i.e., that of the lowest T{sub g}, but first we have characterized the dynamics of the other component in the blend and of the pure PEO homopolymer as reference. In the region investigated, the dynamics of PMMA in the blend is strongly affected by the {alpha}-methyl rotation; an additional process detected in the experimental window 65 K above the blend-T{sub g} can be identified as the merged {alpha}{beta} process of this component that shows strong deviations from Gaussian behavior. On the other hand, pure PEO displays entropy driven dynamics up to very large momentum transfers. Such kind of motion seems to freeze when the PEO chains are in the blend. There, we have directly observed a very heterogeneous and moreover confined dynamics for the PEO component. The presence of the hardly moving PMMA matrix leads to the creation of little pockets of mobility where PEO can move. The characteristic size of such confined islands of mobility might be estimated to be of {approx_equal}1 nm. These findings are corroborated by the simulation study, which has been an essential support and guide in our data analysis procedure.

  13. Dynamics of poly(ethylene oxide) in a blend with poly(methyl methacrylate): a quasielastic neutron scattering and molecular dynamics simulations study.

    PubMed

    Genix, A-C; Arbe, A; Alvarez, F; Colmenero, J; Willner, L; Richter, D

    2005-09-01

    In this paper, we have addressed the question of the dynamic miscibility in a blend characterized by very different glass-transition temperatures, Tg, for the components: poly(ethylene oxide) and poly(methyl methacrylate) (PEO/PMMA). The combination of quasielastic neutron scattering with isotopic labeling and fully atomistic molecular dynamics simulations has allowed us to selectively investigate the dynamics of the two components in the picosecond-10 nanoseconds scale at temperatures close and above the Tg of the blend. The main focus was on the PEO component, i.e., that of the lowest Tg, but first we have characterized the dynamics of the other component in the blend and of the pure PEO homopolymer as reference. In the region investigated, the dynamics of PMMA in the blend is strongly affected by the alpha-methyl rotation; an additional process detected in the experimental window 65 K above the blend-Tg can be identified as the merged alphabeta process of this component that shows strong deviations from Gaussian behavior. On the other hand, pure PEO displays entropy driven dynamics up to very large momentum transfers. Such kind of motion seems to freeze when the PEO chains are in the blend. There, we have directly observed a very heterogeneous and moreover confined dynamics for the PEO component. The presence of the hardly moving PMMA matrix leads to the creation of little pockets of mobility where PEO can move. The characteristic size of such confined islands of mobility might be estimated to be of approximately 1 nm. These findings are corroborated by the simulation study, which has been an essential support and guide in our data analysis procedure.

  14. Dynamics of a poly(ethylene oxide) tracer in a poly(methyl methacrylate) matrix: remarkable decoupling of local and global motions.

    PubMed

    Haley, Jeffrey C; Lodge, Timothy P

    2005-06-15

    The tracer diffusion coefficient of unentangled poly(ethylene oxide) (PEO, M=1000 gmol) in a matrix of poly(methyl methacrylate) (PMMA, M=10 000 gmol) has been measured over a temperature range from 125 to 220 degrees C with forced Rayleigh scattering. The dynamic viscosities of blends of two different high molecular weight PEO tracers (M=440 000 and 900 000 gmol) in the same PMMA matrix were also measured at temperatures ranging from 160 to 220 degrees C; failure of time-temperature superposition was observed for these systems. The monomeric friction factors for the PEO tracers were extracted from the diffusion coefficients and the rheological relaxation times using the Rouse model. The friction factors determined by diffusion and rheology were in good agreement, even though the molecular weights of the tracers differed by about three orders of magnitude. The PEO monomeric friction factors were compared with literature data for PEO segmental relaxation times measured directly with NMR. The monomeric friction factors of the PEO tracer in the PMMA matrix were found to be from two to six orders of magnitude greater than anticipated based on direct measurements of segmental dynamics. Additionally, the PEO tracer terminal dynamics are a much stronger function of temperature than the corresponding PEO segmental dynamics. These results indicate that the fastest PEO Rouse mode, inferred from diffusion and rheology, is completely separated from the bond reorientation of PEO detected by NMR. This result is unlike other blend systems in which global and local motions have been compared.

  15. Mesoscale simulation of the formation and dynamics of lipid-structured poly(ethylene oxide)-block-poly(methyl methacrylate) diblock copolymers.

    PubMed

    Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu

    2015-05-21

    Twelve poly(ethylene oxide)-block-poly(methyl methacrylate) (PEO-b-PMMA) copolymers with lipid-like structures were designed and investigated by MesoDyn simulation. Spherical and worm-like micelles as well as bicontinuous, lamellar and defected lamellar phases were obtained. A special structure, designated B2412, with two lipid structures connected by their heads, was found to undergo four stages prior to forming a spherical micelle phase. Two possible assembly mechanisms were found via thermodynamic and dynamic process analyses; namely, the fusion and fission of micelles in dynamic equilibrium during the adjustment stage. Water can be encapsulated into these micelles, which can affect their size, particularly in low concentration aqueous solutions. The assignment of weak negative charges to the hydrophilic EO blocks resulted in a clear effect on micelle size. Surprisingly, the largest effect was observed with EO blocks with -0.5 e, wherein an ordered perfect hexagonal phase was formed. The obtained results can be applied in numerous fields of study, including adsorption, catalysis, controlled release and drug delivery.

  16. Nonviral Plasmid DNA Carriers Based on N,N'-Dimethylaminoethyl Methacrylate and Di(ethylene glycol) Methyl Ether Methacrylate Star Copolymers.

    PubMed

    Mendrek, Barbara; Sieroń, Łukasz; Żymełka-Miara, Iwona; Binkiewicz, Paulina; Libera, Marcin; Smet, Mario; Trzebicka, Barbara; Sieroń, Aleksander L; Kowalczuk, Agnieszka; Dworak, Andrzej

    2015-10-12

    Star polymers with random and block copolymer arms made of cationic N,N'-dimethylaminoethyl methacrylate (DMAEMA) and nonionic di(ethylene glycol) methyl ether methacrylate (DEGMA) were synthesized via atom transfer radical polymerization (ATRP) and used for the delivery of plasmid DNA in gene therapy. All stars were able to form polyplexes with plasmid DNA. The structure and size of the polyplexes were precisely determined using light scattering and cryo-TEM microscopy. The hydrodynamic radius of a complex of DNA with star was dependent on the architecture of the star arms, the DEGMA content and the number of amino groups in the star compared to the number of phosphate groups of the nucleic acid (N/P ratio). The smallest polyplexes (Rh90°∼50 nm) with positive zeta potentials (∼15 mV) were formed of stars with N/P=6. The introduction of DEGMA into the star structure caused a decrease of polyplex cytotoxicity in comparison to DMAEMA homopolymer stars. The overall transfection efficiency using HT-1080 cells showed that the studied systems are prospective gene delivery agents. The most promising results were obtained for stars with random copolymer arms of high DEGMA content.

  17. Thin Poly(Di(Ethylene Glycol)Methyl Ether Methacrylate) Homopolymer Brushes Allow Controlled Adsorption and Desorption of PaTu 8988t Cells.

    PubMed

    Voß, Yvonne; Wassel, Ekram; Jiang, Siyu; Song, Qimeng; Druzhinin, Sergey I; Schönherr, Holger

    2016-10-20

    Poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) brushes, which are known to suppress protein adsorption and prevent cell attachment, are reported here to possess interesting and tunable thermoresponsive behavior, if the brush thickness is reduced or the grafting density is altered. PDEGMA brushes with a dry ellipsometric thickness of 5 ± 1 nm can be switched from cell adherent behavior at 37 °C to cell nonadherent at 25 °C. This behavior coincides with the temperature-dependent irreversible adsorption of fibronectin from phosphate saline buffer and proteins present in the cell culture medium, as unveiled by surface plasmon resonance measurements. Unlike for tissue culture polystyrene reference surfaces, swelling of the PDEGMA chains below the lower critical solution temperature results in the absence of paxillin and actin containing cellular filaments responsible for cell attachment. These tunable properties of very thin homopolymer PDEGMA brushes render this system interesting as an alternative thermoresponsive layer for continuous cell culture or enzyme-free cell culture systems.

  18. Filler effect of ionic liquid attached titanium oxide on conducting property of poly(ethylene oxide)/poly(methyl methacrylate) composite electrolytes.

    PubMed

    Lee, Lyungyu; Kim, Ick-Jun; Yang, Sunhye; Kim, Seok

    2014-10-01

    Composite polymer electrolytes (CPEs) were prepared by containing blend of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) as a host polymer, propylene carbonate as a plasticizer, and LiClO4 as a salt. By an addition of a various content of ionic liquid attached TiO2 (IL-TiO2) to above electrolytes, the effects were studied. As a result, by increasing the IL-TiO2 content, the crystallinity of PEO was decreased and the ionic conductivity was increased. The ionic conductivity of CPEs was dependent on the content of IL-TiO2 and showed the highest value of 1.05 x 10(-4) S/cm at 9 wt.%. However, when IL-TiO2 content exceeds 9 wt.%, the ionic conductivity was decreased due to the slow ionic transport due to immiscibility or aggregation of the IL-TiO2 filler within the polymer film matrix.

  19. Novel polymer monolith microextraction using a poly-(methyl methacrylate-co-ethylene dimethacrylate) monolith and its application to the determination of polychlorinated biphenyls in water samples.

    PubMed

    Liu, Lu; Cheng, Jing; Matsadiq, Guzalnur; Li, Jun-Kai

    2011-05-01

    A novel and simple method based on polymer monolith microextraction (PMME) coupled to gas chromatography with electron-capture detection (GC-ECD) was developed for the determination of six polychlorinated biphenyls (PCBs) residues in water samples. The proposed method used poly-(methyl methacrylate-co-ethylene dimethacrylate) (MMA-co-EDMA) monolith as extraction media. Several factors affecting experiments such as sample flow rate, sample volume, the type of eluent, eluent volume, eluent flow rate, effect of salt addition and carry over effect were investigated and optimized systematically. The limits of detection (LODs) for six PCBs were 0.028-0.043 ng mL(-1) in water samples. The intra-day and inter-day precisions (R.S.D.) were less than 9.2% and 9.6%, respectively. The proposed method was successfully applied to the determination of six PCBs in tap water, lake water and industrial waste water and the trueness has been evaluated by recovery experiments. The obtained relative recoveries were in the range of 63.3-105.6%.

  20. Synthesis and self-assembly of brush-type poly[poly(ethylene glycol)methyl ether methacrylate]-block-poly(pentafluorostyrene) amphiphilic diblock copolymers in aqueous solution.

    PubMed

    Tan, B H; Hussain, H; Liu, Y; He, C B; Davis, T P

    2010-02-16

    Well-defined fluorinated brush-like amphiphilic diblock copolymers of poly[poly(ethylene glycol)methyl ether methacrylate] (P(PEGMA)) and poly(pentafluorostyrene) (PPFS) have been successfully synthesized via atom transfer radical polymerization (ATRP). The self-assembly behavior of these polymers in aqueous solutions was studied using (1)H NMR, fluorescence spectrometry, static and dynamic light scattering and transmission electron microscopy techniques. The micellar structure comprised of PPFS as the core and brush-like (hydrophobic main chain and hydrophilic branches) polymers as the coronas. The hydrodynamic radius (R(h)) of the micelles in aqueous solution was in the nanometer range, independent of the polymer concentration, consistent with a closed association model. Diblock copolymers with a longer P(PEGMA) block formed micelles with smaller R(h) and lower aggregation numbers consistent with an improved solubilization of the core. The micelles possessed a thick hydration layer as verified by the ratio of the radius of gyration, R(g) to the hydrodynamic radius, R(h). The aggregation number and ratio of R(g) to R(h) were observed to increase with temperature (20-50 degrees C), while the R(h) of the micelle decreased slightly over the same temperature range. An increase in temperature induced the brush-like PEG segments in the corona to dehydrate and shrink while forming micelles with larger aggregation numbers.

  1. Ethylene update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gaseous plant hormone ethylene is required for many aspects of plant growth, development and responses to the environment. Potato tubers produce low amounts of ethylene and are highly sensitive to ethylene in the atmosphere. Several responses of potato tubers to endogenous and exogenous ethylene...

  2. Dynamic in vitro hemocompatibility testing of poly(ether imide) membranes functionalized with linear, methylated oligoglycerol and oligo(ethylene glycol).

    PubMed

    Braune, Steffen; von Ruesten-Lange, Maik; Mrowietz, Christof; Lützow, Karola; Roch, Toralf; Neffe, Axel T; Lendlein, Andreas; Jung, Friedrich

    2013-01-01

    Linear, side-chain methylated oligoglycerols (OGMe) were recently reported as potential surface passivating molecules for improving the protein resistance of cardiovascular application relevant poly(ether imide) (PEI) membranes. A previously reported in vitro screening under static test conditions allowed an end-point evaluation of the adhesion and activation of adherent thrombocytes performed on the material surfaces and revealed similar levels of thrombogenicity on PEI membranes, functionalized with OGMe and oligo(ethylene glycol) (OEG) of similar molecular weight (Mn = 1,300 g·mol-1 - 1,800 g·mol-1). In the present study, we investigated the hemocompatibility of these materials in a dynamic closed loop system, in order to study time-dependent thrombocyte material interactions also of the circulating thrombocytes by mimicking in vivo relevant flow conditions in a dynamic test system with multiple material contacts. Activation and aggregation of circulating thrombocytes as well as complement activation and plasmatic coagulation were evaluated after 40 circulations of thrombocyte rich plasma in the closed loop system. The results of the dynamic tests revealed no differences between the OGMe and OEG functionalized PEI membranes. Furthermore, no differences were observed between the latter and a PEI membrane treated under the conditions of functionalization at pH 11 (PEI-pH11) without an oligoether being present. Blood plasma protein adsorption, as well as activation, and adherence of circulating thrombocytes occurred in a comparable, but minor manner on all investigated PEI membranes. From this we conclude that the OGMe and OEG surface functionalization did not lead to an improvement of the already good hemocompatibility of the PEI-pH11 membrane.

  3. Dynamics of a poly(ethylene oxide) tracer in a poly(methyl methacrylate) matrix: Remarkable decoupling of local and global motions

    NASA Astrophysics Data System (ADS)

    Haley, Jeffrey C.; Lodge, Timothy P.

    2005-06-01

    The tracer diffusion coefficient of unentangled poly(ethylene oxide) (PEO, M =1000g/mol) in a matrix of poly(methyl methacrylate) (PMMA, M =10000g/mol) has been measured over a temperature range from 125to220°C with forced Rayleigh scattering. The dynamic viscosities of blends of two different high molecular weight PEO tracers (M =440000 and 900000g/mol) in the same PMMA matrix were also measured at temperatures ranging from 160to220°C; failure of time-temperature superposition was observed for these systems. The monomeric friction factors for the PEO tracers were extracted from the diffusion coefficients and the rheological relaxation times using the Rouse model. The friction factors determined by diffusion and rheology were in good agreement, even though the molecular weights of the tracers differed by about three orders of magnitude. The PEO monomeric friction factors were compared with literature data for PEO segmental relaxation times measured directly with NMR. The monomeric friction factors of the PEO tracer in the PMMA matrix were found to be from two to six orders of magnitude greater than anticipated based on direct measurements of segmental dynamics. Additionally, the PEO tracer terminal dynamics are a much stronger function of temperature than the corresponding PEO segmental dynamics. These results indicate that the fastest PEO Rouse mode, inferred from diffusion and rheology, is completely separated from the bond reorientation of PEO detected by NMR. This result is unlike other blend systems in which global and local motions have been compared.

  4. In vitro evaluation of poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether copolymer coating effects on cells adhesion and proliferation

    NASA Astrophysics Data System (ADS)

    Rusen, Laurentiu; Neacsu, Patricia; Cimpean, Anisoara; Valentin, Ion; Brajnicov, Simona; Dumitrescu, L. N.; Banita, Janina; Dinca, Valentina; Dinescu, Maria

    2016-06-01

    Understanding and controlling natural and synthetic biointerfaces is known to be the key to a wide variety of application within cell culture and tissue engineering field. As both material characteristics and methods are important in tailoring biointerfaces characteristics, in this work we explore the feasibility of using Matrix Assisted Pulsed Laser Evaporation technique for obtaining synthetic copolymeric biocoatings (i.e. poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether) for evaluating in vitro Vero and MC3T3-E1 pre-osteoblasts cell response. Characterization and evaluation of the coated substrates were carried out using different techniques. The Fourier transform infrared spectroscopy data demonstrated that the main functional groups in the MAPLE-deposited films remained intact. Atomic Force Microscopy images showed the coatings to be continuous, with the surface roughness depending on the deposition parameters. Moreover, the behaviour of the coatings in medium mimicking the pH and temperature of the human body was studied and corelated to degradation. Spectro-ellipsometry (SE) and AFM measurements revealed the degradation trend during immersion time by the changes in coating thickness and roughness. In vitro biocompatibility was studied by indirect contact tests on Vero cells in accordance with ISO 10993-5/2009. The results obtained in terms of cell morphology (phase contrast microscopy) and cytotoxicity (LDH and MTT assays) proved biocompatibility. Furthermore, direct contact assays on MC3T3-E1 pre-osteoblasts demonstrated the capacity of all analyzed specimens to support cell adhesion, normal cellular morphology and growth.

  5. Self-assembly of brush-like poly[poly(ethylene glycol) methyl ether methacrylate] synthesized via aqueous atom transfer radical polymerization.

    PubMed

    Hussain, Hazrat; Mya, Khine Yi; He, Chaobin

    2008-12-02

    Self-assembly of brush-like well-defined poly[poly(ethylene glycol) methyl ether methacrylate] homopolymers, abbreviated as P(PEGMA-475) and P(PEGMA-1100) is investigated in aqueous solution by employing dynamic/static light scattering (DLS/SLS) and transmission electron microscopy (TEM), whereas 475 and 1100 is molar mass of the respective PEGMA macromonomer. The mentioned brush-like homopolymers are synthesized by aqueous ATRP at room temperature. The critical association concentration (CAC) of the synthesized polymers in water depends on the length of the PEG side chains but not on the overall molar mass of the polymer. Thus, approximately the same CAC of approximately 0.35 mg/mL is estimated for various P(PEGMA-1100) samples, and approximately 0.7 mg/mL is estimated for P(PEGMA-475) series. All the investigated P(PEGMA-1100) samples form multimolecular micelles in aqueous solution, where the hydrodynamic size (Rh) and the aggregation number (Nagg) of micelles decreases as the molecular weight of P(PEGMA-1100) increases. This can be attributed to the increased steric hindrances between the PEG side chains in corona of micelles formed by higher molar mass P(PEGMA-1100). The tendency of micelle formation by samples of P(PEGMA-475) series is significantly lower than that of P(PEGMA-1100) series, as demonstrated by their significantly higher CAC and micelles of lower Nagg. The Rh of micelles does not depend strongly on polymer concentration, which suggests that these micelles are formed via the closed association model. Micelles formed by P(PEGMA-1100) series slightly shrink with increase in temperature from 25 to 60 degrees C, while those of P(PEGMA-475) series are found to be insensitive to the same temperature variation. Finally, TEM is carried out to visualize the formed micelles after transferring the aqueous solution to carbon film.

  6. Conjugation of salmon calcitonin to a combed-shaped end functionalized poly(poly(ethylene glycol) methyl ether methacrylate) yields a bioactive stable conjugate.

    PubMed

    Ryan, Sinéad M; Wang, Xuexuan; Mantovani, Guiseppe; Sayers, Claire T; Haddleton, David M; Brayden, David J

    2009-04-02

    Salmon calcitonin (sCT) was conjugated via its N-terminal cysteine to a comb-shaped end-functionalized poly(poly(ethylene glycol) methyl ether methacrylate) (PolyPEG, 6.5 kDa), and to linear PEG (5 kDa). Conjugate molecular weight and purity was assessed by SEC-HPLC and MALDI-TOF MS. Bioactivity of conjugates was measured by cyclic AMP assay in T47D cells. Calcium and calcitonin levels were measured in rats following intravenous injections. Stability of conjugates was tested against serine proteases, intestinal and liver homogenates and serum. Cytotoxicity of conjugates was assessed by lactate dehydrogenase (LDH) assay and by haemolytic assay of rat red blood cells. Results showed that the two conjugates were of high purity with molecular weights similar to predictions. Both conjugates retained more than 85% bioactivity in vitro and had nanomolar EC(50) values similar to sCT. While both sCT-PolyPEG(6.5 K) and sCT-PEG(5 K) were resistant to metabolism by serine proteases, homogenates and serum, PolyPEG (6.5 K) was more so. Although both conjugates reduced serum calcium to levels similar to those achieved with sCT, PolyPEG(6.5 K) extended the T(1/2) and AUC of serum sCT over values achieved with sCT-PEG and sCT itself. None of PolyPEG, PEG or methacrylic acid displayed significant cytotoxicity. PolyPEG may therefore have potential to improve pharmacokinetic profiles of injected peptides.

  7. Biosynthesis and Defensive Function of Nδ-Acetylornithine, a Jasmonate-Induced Arabidopsis Metabolite[C][W

    PubMed Central

    Adio, Adewale M.; Casteel, Clare L.; De Vos, Martin; Kim, Jae Hak; Joshi, Vijay; Li, Baohua; Juéry, Caroline; Daron, Josquin; Kliebenstein, Daniel J.; Jander, Georg

    2011-01-01

    Since research on plant interactions with herbivores and pathogens is often constrained by the analysis of already known compounds, there is a need to identify new defense-related plant metabolites. The uncommon nonprotein amino acid Nδ-acetylornithine was discovered in a targeted search for Arabidopsis thaliana metabolites that are strongly induced by the phytohormone methyl jasmonate (MeJA). Stable isotope labeling experiments show that, after MeJA elicitation, Arg, Pro, and Glu are converted to Orn, which is acetylated by NATA1 to produce Nδ-acetylornithine. MeJA-induced Nδ-acetylornithine accumulation occurs in all tested Arabidopsis accessions, other Arabidopsis species, Capsella rubella, and Boechera stricta, but not in less closely related Brassicaceae. Both insect feeding and Pseudomonas syringae infection increase NATA1 expression and Nδ-acetylornithine accumulation. NATA1 transient expression in Nicotiana tabacum and the addition of Nδ-acetylornithine to an artificial diet both decrease Myzus persicae (green peach aphid) reproduction, suggesting a direct toxic or deterrent effect. However, since broad metabolic changes that are induced by MeJA in wild-type Arabidopsis are attenuated in a nata1 mutant strain, there may also be indirect effects on herbivores and pathogens. In the case of P. syringae, growth on a nata1 mutant is reduced compared with wild-type Arabidopsis, but growth in vitro is unaffected by Nδ-acetylornithine addition. PMID:21917546

  8. The role of plasma membrane H(+) -ATPase in jasmonate-induced ion fluxes and stomatal closure in Arabidopsis thaliana.

    PubMed

    Yan, Suli; McLamore, Eric S; Dong, Shanshan; Gao, Haibo; Taguchi, Masashige; Wang, Ningning; Zhang, Ting; Su, Xiaohua; Shen, Yingbai

    2015-08-01

    Methyl jasmonate (MeJA) elicits stomatal closure in many plant species. Stomatal closure is accompanied by large ion fluxes across the plasma membrane (PM). Here, we recorded the transmembrane ion fluxes of H(+) , Ca(2+) and K(+) in guard cells of wild-type (Col-0) Arabidopsis, the CORONATINE INSENSITIVE1 (COI1) mutant coi1-1 and the PM H(+) -ATPase mutants aha1-6 and aha1-7, using a non-invasive micro-test technique. We showed that MeJA induced transmembrane H(+) efflux, Ca(2+) influx and K(+) efflux across the PM of Col-0 guard cells. However, this ion transport was abolished in coi1-1 guard cells, suggesting that MeJA-induced transmembrane ion flux requires COI1. Furthermore, the H(+) efflux and Ca(2+) influx in Col-0 guard cells was impaired by vanadate pre-treatment or PM H(+) -ATPase mutation, suggesting that the rapid H(+) efflux mediated by PM H(+) -ATPases could function upstream of the Ca(2+) flux. After the rapid H(+) efflux, the Col-0 guard cells had a longer oscillation period than before MeJA treatment, indicating that the activity of the PM H(+) -ATPase was reduced. Finally, the elevation of cytosolic Ca(2+) concentration and the depolarized PM drive the efflux of K(+) from the cell, resulting in loss of turgor and closure of the stomata.

  9. Cononsolvency-induced micellization of pyrene end-labeled diblock copolymers of N-isopropylacrylamide and oligo(ethylene glycol) methyl ether methacrylate.

    PubMed

    Rao, Jingyi; Xu, Jian; Luo, Shizhong; Liu, Shiyong

    2007-11-06

    Pyrene end-labeled double hydrophilic diblock copolymers, poly(N-isopropylacrylamide)-b-poly(oligo(ethylene glycol) methyl ether methacrylate) (Py-PNIPAM-b-POEGMA), were synthesized via consecutive reversible addition-fragmentation chain transfer polymerization using a pyrene-containing dithioester as the chain transfer agent. These diblock copolymers molecularly dissolve in pure methanol and water, but form well-defined and nearly monodisperse PNIPAM-core micelles in an appropriate mixture of them due to the cononsolvency of PNIPAM block. 1H NMR, laser light scattering, fluorescence spectroscopy, and transmission electron microscopy were employed to characterize the cononsolvency-induced PNIPAM-core micelles. When the volume fraction of water, phi water, in the methanol/water mixture is in the range of 0.5-0.8, the sizes of micelles are in the range of 20-30 nm in radius for Py-PNIPAM50-b- POEGMA18. At phi water = 0.5, the formed micelles possess the highest overall micelle density and the largest molar mass. The effects of varying the block lengths of Py-PNIPAM-b-POEGMA diblock copolymers on the structural parameters of PNIPAM-core micelles have also been explored. Although we can observe the immediate appearance of bluish tinge upon mixing the diblock copolymer solution in methanol with equal volume of water (phi water = 0.5), which is characteristic of the formation of micellar aggregates, the whole micellization process apparently takes a relatively long time to complete, as revealed by monitoring the time dependence of fluorescence emission spectra. The excimer/monomer fluorescence intensity ratios, IE/IM, continuously decrease with time and then reach a plateau value after approximately 20 min. The decrease of IE/IM after the initial formation of pseudo-equilibrium micelles should be ascribed to the structural rearrangement and further packing of PNIPAM segments within the micelle core, restricting the mobility of pyrene end groups and decreasing the

  10. Role of Radical Species in Salicylaldiminato Ni(II) Mediated Polymer Chain Growth: A Case Study for the Migratory Insertion Polymerization of Ethylene in the Presence of Methyl Methacrylate.

    PubMed

    Ölscher, Franz; Göttker-Schnetmann, Inigo; Monteil, Vincent; Mecking, Stefan

    2015-11-25

    To date, an inconclusive and partially contradictive picture exists on the behavior of neutral Ni(II) insertion polymerization catalysts toward methyl methacrylate (MMA). We shed light on this issue by a combination of comprehensive mechanistic NMR and EPR studies, isolation of a key Ni(I) intermediate, and pressure reactor studies with ethylene and MMA, followed by detailed polymer analysis. An interlocking mechanistic picture of an insertion and a free radical polymerization is revealed. Both polymerizations run simultaneously (25 bar ethylene, neat MMA, 70 °C); however, the chain growth cycles are independent of each other, and therefore exclusively a physical mixture of homo-PE and homo-PMMA is obtained. A Ni-C bond cleavage was excluded as a free radical source. Rather a homolytic P-C bond cleavage in the labile aryl phosphine ligand and the reaction of low-valent Ni(0/I) species with specific iodo substituted N^O (Ar-I) ligands were shown to initiate radical MMA polymerizations. Several reductive elimination decomposition pathways of catalyst precursor or active intermediates were shown to form low-valent Ni species. One of those pathways is a bimolecular reductive coupling via intermediate (N^O)Ni(I) formation. These intermediate Ni(I) species can be prevented from ultimate decomposition by capturing with organic radical sources, forming insertion polymerization active [(N^O)Ni(II)-R] species and prolonging the ethylene polymerization activity.

  11. Influence of composition and powder/liquid ratio on setting characteristics and mechanical properties of autopolymerized hard direct denture reline resins based on methyl methacrylate and ethylene glycol dimethacrylate.

    PubMed

    Okuyama, Yoshikazu; Shiraishi, Takanobu; Yoshida, Kazuhiro; Kurogi, Tadafumi; Watanabe, Ikuya; Murata, Hiroshi

    2014-01-01

    We evaluated the influence of composition and powder/liquid (P/L) ratio on the setting characteristics and mechanical properties of autopolymerized hard direct denture reline resins composed of methyl methacrylate (MMA, monomethacrylate) and ethylene glycol dimethacrylate [EGDMA, dimethacrylate (cross-linking agent)], with poly (ethyl methacrylate) used as the powder, and a mixture of MMA and EGDMA containing p-tolyldiethanolamine as the monomer. Setting times were determined using an oscillating rheometer and mechanical properties were based on ISO specifications. Setting time increased exponentially with an increase in the ratio of EGDMA to MMA and decrease in P/L ratio. Materials with a liquid component of approximately 75-85 wt% EGDMA and a higher P/L ratio showed higher ultimate flexural strength and flexural modulus. Our results suggest that setting characteristics are more influenced by the ratio of monomethacrylate and cross-linking agent, whereas mechanical properties are more influenced by P/L ratio.

  12. Electrical stabilities and memory mechanisms of organic bistable devices fabricated utilizing a poly(3,4-ethylene-dioxythiophene): Poly(styrenesulfonate) layer with a poly(methyl methacrylate) buffer layer

    NASA Astrophysics Data System (ADS)

    Min Son, Jung; Seung Song, Woo; Ho Yoo, Chan; Yeol Yun, Dong; Whan Kim, Tae

    2012-04-01

    Organic bistable devices (OBDs) based on a poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer with a poly(methyl methacrylate) (PMMA) buffer layer were fabricated on indium-tin-oxide (ITO)-coated polyethylene terephthalate (PET) flexible substrates. Current-voltage curves for the Al/PEDOT:PSS/PMMA/ITO/PET device showed current bistabilities with an ON/OFF current ratio of 1 × 103, indicative of a significant enhancement of memory storage. The endurance number of the ON/OFF switchings for the OBDs was above 1 × 105 cycles showing high potential applications in read only memory devices. The memory mechanisms for the OBDs on the basis of oxidation and reduction operations were attributed to the filament processes.

  13. Reduced hydrophobic interaction of polystyrene surfaces by spontaneous segregation of block copolymers with oligo (ethylene glycol) methyl ether methacrylate blocks: force measurements in water using atomic force microscope with hydrophobic probes.

    PubMed

    Zhang, Rui; Seki, Akiko; Ishizone, Takashi; Yokoyama, Hideaki

    2008-05-20

    Reduction of hydrophobic interaction in water is important in biological interfaces. In our previous work, we have found that poly(styrene- b-triethylene glycol methyl ether methacrylate) (PS-PME3MA) segregates the PME3MA block to the surface in hydrophobic environment, such as in air or in a vacuum, and shows remarkable resistance against adsorption or adhesion of proteins, platelets, and cells in water. In this paper, we report that atomic force microscopy (AFM) with hydrophobic probes can directly monitor the reduced hydrophobic interaction of the PS surfaces modified by poly(styrene- b-origoethylene glycol methyl ether methacrylate) (PS-PME NMA), where N is the number of ethylene glycol units. The pull-off forces between the hydrophobic probes that are coated with octyltrichlorosilane (OLTS) and the PS-PME NMA modified polystyrene (PS) surfaces in water were measured. The absolute spring constants and tip-curvatures of the AFM cantilevers were measured to compute the work of adhesion by the Johnson, Kendall, and Roberts (JKR) theory, which relates the pull-off force at which the separation occurs between a hemisphere and a plane to the work of adhesion. The hydrophobic interactions between the hydrophobic tip and polymer surfaces in water were greatly reduced with the segregated PME NMA blocks. The hydrophobic interactions decrease with increasing N of the series of PS-PME NMA and show a correlation with the amount of protein adsorbed.

  14. Ethylene glycol

    Integrated Risk Information System (IRIS)

    Ethylene glycol ; CASRN 107 - 21 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  15. Ethylene diamine

    Integrated Risk Information System (IRIS)

    Ethylene diamine ; CASRN 107 - 15 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  16. FT-IR spectra of 90 K films of simple, mixed, and double clathrate hydrates of trimethylene oxide, methyl chloride, carbon dioxide, tetrahydrofuran, and ethylene oxide containing decoupled D/sub 2/O

    SciTech Connect

    Fleyfel, F.; Devlin, J.P.

    1988-02-11

    The spectroscopic investigation of clathrate hydrates prepared by using low-temperature thin-film techniques has been extended to several new gases. These gases have included a highly polar gas (trimethylene oxide or TMO) the simple hydrate of which grows readily from a vapor beam at 120 K, a slightly less polar gas (methyl chloride) the simple hydrate of which grows if the vapor beam is incident onto a crystalline clathrate hydrate base at 125 K, and a nonpolar gas (carbon dioxide) which apparently can only be enclathrated as the mixed hydrate by using a highly polar help gas (e.g., ethylene oxide (EtO)). These structure I hydrates as well as the structure II hydrate of tetrahydrofuran have been prepared under conditions of temperature/base-doping such that no mobile protons exist during the deposit. As a result, it has been possible to isolate intact D/sub 2/O molecules in the water network of the crystalline hydrates. The guest-molecule spectra, all obtained at 90 K, show (a) the apparent generality of the rule that guest-molecule stretching-mode frequencies decrease with an increase in cage size and (b) that the effective size of the structure I small cage increases as the size of the molecule occupying the large cage increases.

  17. Characterization of tailor-made copolymers of oligo(ethylene glycol) methyl ether methacrylate and N,N-dimethylaminoethyl methacrylate as nonviral gene transfer agents: influence of macromolecular structure on gene vector particle properties and transfection efficiency.

    PubMed

    Uzgün, Senta; Akdemir, Ozgür; Hasenpusch, Günther; Maucksch, Christof; Golas, Monika M; Sander, Bjoern; Stark, Holger; Imker, Rabea; Lutz, Jean-François; Rudolph, Carsten

    2010-01-11

    Oligo(ethylene glycol) methyl ether methacrylates (OEGMA) of various chain lengths (i.e., 9, 23, or 45 EG units) and N,N-dimethylaminoethyl methacrylate (DMAEMA) were copolymerized by atom transfer radical polymerization (ATRP), yielding well-defined P(DMAEMA-co-OEGMA) copolymers with increasing OEGMA molar fractions (F(OEGMA)) but a comparable degree of polymerization (DP approximately 120). Increase of both F(OEGMA) and OEGMA chain lengths correlated inversely with gene vector size, morphology, and zeta potential. P(DMAEMA-co-OEGMA) copolymers prevented gene vector aggregation at high plasmid DNA (pDNA) concentrations in isotonic solution and did not induce cytotoxicity even at high concentrations. Transfection efficiency of the most efficient P(DMAEMA-co-OEGMA) copolymers was found to be >10-fold lower compared with branched polyethylenimine (PEI) 25 kDa. Although OEGMA copolymerization largely reduced gene vector binding with the cell surface, cellular internalization of the bound complexes was less affected. These observations suggest that inefficient endolysosomal escape limits transfection efficiency of P(DMAEMA-co-OEGMA) copolymer gene vectors. Despite this observation, optimized p(DMAEMA-co-OEGMA) gene vectors remained stable under conditions for in vivo application leading to 7-fold greater gene expression in the lungs compared with PEI. Tailor-made P(DMAEMA-co-OEGMA) copolymers are promising nonviral gene transfer agents that fulfill the requirements for successful in vivo gene delivery.

  18. Ethylene glycol blood test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003564.htm Ethylene glycol blood test To use the sharing features ... enable JavaScript. This test measures the level of ethylene glycol in the blood. Ethylene glycol is a ...

  19. Cononsolvency-induced micellization kinetics of pyrene end-labeled diblock copolymer of N-isopropylacrylamide and oligo(ethylene glycol) methyl ether methacrylate studied by stopped-flow light-scattering and fluorescence.

    PubMed

    Rao, Jingyi; Zhang, Jingyan; Xu, Jian; Liu, Shiyong

    2008-12-01

    Cononsolvency-induced micellization kinetics of a pyrene end-labeled diblock copolymer of N-isopropylacrylamide and oligo(ethylene glycol) methyl ether methacrylate, Py-PNIPAM-b-POEGMA, was investigated in detail via a combination of stopped-flow light-scattering and fluorescence techniques. Upon a stopped-flow jump from pure methanol to proper methanol/water mixtures, scattered light intensity exhibited an initial increase and then stabilized out; whereas the time-dependence of monomer to excimer fluorescence intensity ratios (I E/I M) revealed an abrupt increase followed by a gradual decrease to plateau values. The dynamic traces of scattered intensity can be well fitted by double exponential functions, the obtained tau 1, scat and tau 2, scat can be ascribed to processes of forming quasi-equilibrium micelles and their relaxation into final equilibrium states, respectively. On the other hand, a triple exponential function was needed to fit the dynamic traces of I E/I M, leading to three characteristic relaxation times (tau 1, fluo, tau 2, fluo, and tau 3, fluo). It was found that the time scales of tau 1, scat and tau 2, scat obtained from stopped-flow light scattering were in general agreement with tau 2, fluo and tau 3, fluo obtained from stopped-flow fluorescence. Considering that excimer fluorescence is extremely sensitive to small aggregates, the newly detected fast process (tau 1, fluo) approximately 10 ms) by stopped-flow fluorescence should be ascribed to the early stage of micellization, i.e., the burst formation of small transient micelles, in which light scattering detection was still not sensitive enough. These small transient micelles fused and grew into quasi-equilibrium micelles, which then slowly relaxed into the final equilibrium state.

  20. A Jasmonate-Inducible Defense Trait Transferred from Wild into Cultivated Tomato Establishes Increased Whitefly Resistance and Reduced Viral Disease Incidence

    PubMed Central

    Escobar-Bravo, Rocío; Alba, Juan M.; Pons, Clara; Granell, Antonio; Kant, Merijn R.; Moriones, Enrique; Fernández-Muñoz, Rafael

    2016-01-01

    Whiteflies damage tomatoes mostly via the viruses they transmit. Cultivated tomatoes lack many of the resistances of their wild relatives. In order to increase protection to its major pest, the whitefly Bemisia tabaci and its transmitted Tomato Yellow Leaf Curl Virus (TYLCV), we introgressed a trichome-based resistance trait from the wild tomato Solanum pimpinellifolium into cultivated tomato, Solanum lycopersicum. The tomato backcross line BC5S2 contains acylsucrose-producing type-IV trichomes, unlike cultivated tomatoes, and exhibits increased, yet limited protection to whiteflies at early development stages. Treatment of young plants with methyl jasmonate (MeJA) resulted in a 60% increase in type-IV trichome density, acylsucrose production, and enhanced resistance to whiteflies, leading to 50% decrease in the virus disease incidence compared to cultivated tomato. Using transcriptomics, metabolite analysis, and insect bioassays we established the basis of this inducible resistance. We found that MeJA activated the expression of the genes involved in the biosynthesis of the defensive acylsugars in young BC5S2 plants leading to enhanced chemical defenses in their acquired type-IV trichomes. Our results show that not only constitutive but also these inducible defenses can be transferred from wild into cultivated crops to aid sustainable protection, suggesting that conventional breeding strategies provide a feasible alternative to increase pest resistance in tomato. PMID:27920785

  1. Nitric oxide counters ethylene effects on ripening fruits

    PubMed Central

    Manjunatha, Girigowda; Gupta, Kapuganti J.; Lokesh, Veeresh; Mur, Luis AJ; Neelwarne, Bhagyalakshmi

    2012-01-01

    Ethylene plays a key role in promoting fruit ripening, so altering its biosynthesis/signaling could be an important means to delay this process. Nitric oxide (NO)-generated signals are now being shown to regulate ethylene pathways. NO signals have been shown to transcriptionally repress the expression of genes involved in ethylene biosynthesis enzymes and post-translationally modify methionine adenosyl transferase (MAT) activity through S-nitrosylation to reduce the availably of methyl groups required to produce ethylene. Additionally, NO cross-talks with plant hormones and other signal molecules and act to orchestrate the suppression of ethylene effects by modulating enzymes/proteins that are generally triggered by ethylene signaling at post-climacteric stage. Thus, medication of endogenous NO production is suggested as a strategy to postpone the climacteric stage of many tropical fruits. PMID:22499176

  2. Ethylene insensitive plants

    DOEpatents

    Ecker, Joseph R.; Nehring, Ramlah; McGrath, Robert B.

    2007-05-22

    Nucleic acid and polypeptide sequences are described which relate to an EIN6 gene, a gene involved in the plant ethylene response. Plant transformation vectors and transgenic plants are described which display an altered ethylene-dependent phenotype due to altered expression of EIN6 in transformed plants.

  3. Ethylene by Naphta Cracking

    ERIC Educational Resources Information Center

    Wiseman, Peter

    1977-01-01

    Presents a discussion of the manufacture of ethylene by thermal cracking of hydrocarbon feedstocks that is useful for introducing the subject of industrial chemistry into a chemistry curriculum. (MLH)

  4. Ethylene-Vapor Optrodes

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Zhou, Quan

    1993-01-01

    Porous optical fibers include sensing regions filled with reagents. Optical-fiber chemical sensors (optrodes) developed to measure concentrations of ethylene in air in enclosed artificial plant-growth environments. Such measurements needed because ethylene acts as plant-growth hormone affecting growth at concentrations less than or equal to 20 parts per billion. Optrodes small, but exhibit sensitivities comparable to those of larger instruments. Operated safely in potentially explosive atmospheres and neither cause, nor susceptible to, electrical interference at suboptical frequencies.

  5. Satellite observations of ethylene

    NASA Astrophysics Data System (ADS)

    Dolan, W.; Payne, V.; Kulawik, S. S.; Bowman, K. W.

    2015-12-01

    Ethylene (C2H4) is a trace gas commonly associated with boreal fire plumes and the petrochemical industry. It has a short lifetime (~1-2 days) in the troposphere due to its reaction with OH. Chemical destruction of ethylene in the atmosphere leads to the production of ozone precursors such as carbon monoxide (CO) and formaldehyde. The Tropospheric Emission Spectrometer (TES) is a Fourier Transform Spectrometer aboard the Aura satellite that measures thermal infrared radiances with high spectral resolution. Trace gas products retrieved routinely from TES spectra include O3, CO, H2O, HDO, CH4, NH3, HCOOH, CH3OH, with OCS and PAN to be included in the next data release. The TES spectra also includes a wealth of untapped information about other trace gasses including ethylene. Ethylene was first observed in TES spectra by Alvarado et al. (2011), though it has yet to be developed into an operational product. Our study focuses on the detection and initial quantitative estimates of ethylene in TES special observations taken in support of the 2008 ARCTAS mission. Initial observations of HCN in the spectra may provide a way to distinguish between fire plume and petrochemical derived ethylene. Results indicate a correlation between ethylene and CO in fresh fire plumes but not in older plumes, consistent with the gas's short lifetime. The approach adopted here to detect ethylene in the TES 2008 ARCTAS special observations can easily be expanded to larger datasets, including those from other thermal infrared sounders as well as to other trace gases.

  6. Inspecting an ethylene pipe line

    SciTech Connect

    Ramsvig, D.M. ); Duncan, J.; Zillinger, L. )

    1991-07-01

    This paper reports on the Alberta Gas Ethylene Co. (AGEC), completion of intensive internal cleaning and inspection program on their 112-mi ethylene pipe line. AGEC operates two ethylene manufacturing facilities in central Alberta, Canada. The ethylene plants are located 12.4 mi east of Red Deer, Alta., at Joffre, and supply two customers in Joffre. The remaining ethylene is shipped by the 112-mi, 12-in. line to a storage cavern near Edmonton.

  7. Design of smart oligo(ethylene glycol)-based biocompatible hybrid microgels loaded with magnetic nanoparticles.

    PubMed

    Boularas, Mohamed; Gombart, Emilie; Tranchant, Jean-François; Billon, Laurent; Save, Maud

    2015-01-01

    This article reports a rational strategy for preparing smart oligo(ethylene glycol)-based hybrid microgels loaded with high content of homogeneously distributed preformed magnetic nanoparticles (NPs) (up to 33 wt%). The strategy is based on the synthesis of biocompatible multiresponsive microgels by precipitation copolymerization of di(ethylene glycol) methyl ether methacrylate, oligo(ethylene glycol) methyl ether methacrylate, methacrylic acid, and oligo(ethylene glycol)diac-rylate. An aqueous dispersion of preformed magnetic NPs is straightforwardly loaded into the microgels. Robust monodisperse thermoresponsive magnetic microgels are produced, exhibiting a constant value of the volume phase transition temperature whatever the NPs content. The homogeneous microstructure of the initial stimuli-responsive biocompatible microgels plays a crucial role for the design of unique well-defined ethylene glycol-based thermoresponsive hybrid microgels.

  8. Preparation of ethylene gas and comparison of ethylene responses induced by ethylene, ACC, and ethephon.

    PubMed

    Zhang, Wei; Wen, Chi-Kuang

    2010-01-01

    Ethylene is a gaseous plant hormone used in many physiological studies examining its role in plant growth and development. However, ethylene gas may not be conveniently available to many laboratories for occasional use, and therefore several chemicals can be used as replacements. Here we report that the kinetics of the ethylene response induced by ethylene and two widely-used ethylene replacements are different. ACC failed to efficiently replace prolonged ethylene treatments, while the decomposition products of ethephon may cause non-specific responses and the efficiency of ethephon conversion to ethylene was relatively low. A cost-effective method to prepare ethylene gas was developed. Analyzed by gas chromatography, the chemically produced ethylene exhibited an identical chromatogram to that from the commercial source. Our synthetic ethylene gave the same dose-response curve in Arabidopsis as gaseous ethylene. Our study shows that the use of the ethylene gas is essential to experiments that are sensitive to treatment duration and dosage. When ACC and ethephon are used as replacements, caution should be taken in the experimental design. For laboratories that do not have an ethylene tank, ethylene gas can be easily prepared by a chemical approach without further purification.

  9. Recovery and purification of ethylene

    DOEpatents

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung; Eng, Wayne W. Y.; Sinclair, Iain; Lodgson, Jeffery S.

    2008-10-21

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  10. Current Toxicology of Ethylene Oxide,

    DTIC Science & Technology

    1982-12-01

    carcinogenicity are presented. The overall toxicological implications and a recommendation on the use of ethylene oxide are briefly discussed. (U...wer exposed to ethylene oxide vapour. A single exposure of the male rats to vapour at 100 ppm for 4 hours resulted in reproduction A abnormalities...oxide causes leukemia. It should be noted also that ethylene oxide in the presence of water produces ethylene glycol. Subchronic and chronic exposures

  11. Biodegradation of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly{(2-hydroxyethyl methacrylate)-co-[poly(ethylene glycol) methyl ether methacrylate]} hydrogels containing peptide-based cross-linking agents.

    PubMed

    Casadio, Ylenia S; Brown, David H; Chirila, Traian V; Kraatz, Heinz-Bernhard; Baker, Murray V

    2010-11-08

    PHEMA-peptide and P[HEMA-co-(MeO-PEGMA)]-peptide conjugate hydrogels [where PHEMA = poly(2-hydroxyethyl methacrylate; PEGMA = poly(ethylene glycol) methacrylate] were readily prepared via photoinitiated free-radical polymerization in water. The PHEMA-peptide hydrogels were opaque and had a heterogeneous morphology of interconnected polymer droplets, characteristic of polymers that separate from the aqueous phase during the polymerization experiment. The P[HEMA-co-(MeO-PEGMA)]-peptide conjugates were transparent gels with a homogeneous morphology when formed in water, but when formed in aqueous NaCl solutions the P[HEMA-co-(MeO-PEGMA)]-peptide conjugates were also opaque and exhibited the heterogeneous morphology of interconnected polymer droplets. When incubated in solutions containing activated papain, P[HEMA-co-(MeO-PEGMA)]-peptide conjugates underwent degradation that was characterized by macroscopic changes to sample shape and size, sample weight, and microscopic structure. PHEMA-peptide conjugates did not undergo any significant degradation when incubated with papain, although ninhydrin-staining experiments suggested that some peptide cross-linker groups were cleaved during the incubation. The difference in degradation behavior of PHEMA-peptide and P[HEMA-co-(MeO-PEGMA)]-peptide conjugates is attributed to differences in aqueous solubility of PHEMA and P[HEMA-co-(MeO-PEGMA)].

  12. Ethylene thiourea (ETU)

    Integrated Risk Information System (IRIS)

    Ethylene thiourea ( ETU ) ; CASRN 96 - 45 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  13. How plants sense ethylene gas--the ethylene receptors.

    PubMed

    Lacey, Randy F; Binder, Brad M

    2014-04-01

    Ethylene is a hormone that affects many processes important for plant growth, development, and responses to stresses. The first step in ethylene signal transduction is when ethylene binds to its receptors. Numerous studies have examined how these receptors function. In this review we summarize many of these studies and present our current understanding about how ethylene binds to the receptors. The biochemical output of the receptors is not known but current models predict that when ethylene binds to the receptors, the activity of the associated protein kinase, CTR1 (constitutive triple response1), is reduced. This results in downstream transcriptional changes leading to ethylene responses. We present a model where a copper cofactor is required and the binding of ethylene causes the receptor to pass through a transition state to become non-signaling leading to lower CTR1 activity.

  14. Methylation matters

    PubMed Central

    Costello, J.; Plass, C.

    2001-01-01

    DNA methylation is not just for basic scientists any more. There is a growing awareness in the medical field that having the correct pattern of genomic methylation is essential for healthy cells and organs. If methylation patterns are not properly established or maintained, disorders as diverse as mental retardation, immune deficiency, and sporadic or inherited cancers may follow. Through inappropriate silencing of growth regulating genes and simultaneous destabilisation of whole chromosomes, methylation defects help create a chaotic state from which cancer cells evolve. Methylation defects are present in cells before the onset of obvious malignancy and therefore cannot be explained simply as a consequence of a deregulated cancer cell. Researchers are now able to detect with exquisite sensitivity the cells harbouring methylation defects, sometimes months or years before the time when cancer is clinically detectable. Furthermore, aberrant methylation of specific genes has been directly linked with the tumour response to chemotherapy and patient survival. Advances in our ability to observe the methylation status of the entire cancer cell genome have led us to the unmistakable conclusion that methylation abnormalities are far more prevalent than expected. This methylomics approach permits the integration of an ever growing repertoire of methylation defects with the genetic alterations catalogued from tumours over the past two decades. Here we discuss the current knowledge of DNA methylation in normal cells and disease states, and how this relates directly to our current understanding of the mechanisms by which tumours arise.


Keywords: methylation; cancer PMID:11333864

  15. Ethylene in mutualistic symbioses

    PubMed Central

    Khatabi, Behnam; Schäfer, Patrick

    2012-01-01

    Ethylene (ET) is a gaseous phytohormone that participates in various plant physiological processes and essentially contributes to plant immunity. ET conducts its functions by regulating the expression of ET-responsive genes or in crosstalk with other hormones. Several recent studies have shown the significance of ET in the establishment and development of plant-microbe interactions. Therefore, it is not surprising that pathogens and mutualistic symbionts target ET synthesis or signaling to colonize plants. This review introduces the significance of ET metabolism in plant-microbe interactions, with an emphasis on its role in mutualistic symbioses. PMID:23072986

  16. Effect of co-doping nano-silica filler and N-methyl- N-propylpiperidinium bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF 3SO 2) 2N/Li

    NASA Astrophysics Data System (ADS)

    Liu, S.; Wang, H.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Yang, J.

    Lithium metal dendrite growth in Li/poly (ethylene oxide)-lithium bis (trifluoromethanesulfonyl) imide (PEO 18LiTFSI), nano-silica, and N-methyl- N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13TFSI) composite solid polymer electrolyte/Li was investigated by direct in situ observation. The dendrite onset time decreased with increasing current density and deviated from Sand's law in the current density range of 0.1-0.5 mA cm -2 at 60 °C. Lithium dendrite formation was not observed until 46 h of polarization at 0.5 mA cm -2 and 60 °C, which is a significant improvement compared to that observed in Li/(PEO 18LiTFSI)/Li, where the dendrite formation was observed after 15 h polarization at 0.5 mA cm -2 and 60 °C. The suppression of dendrite formation could be explained by the electrical conductivity enhancement and decrease of the interface resistance between Li and the polymer electrolyte by the introduction of both nano-SiO 2 and PP13TFSI into PEO 18LiTFSI. The electrical conductivity of 4.96 × 10 -4 S cm -1 at 60 °C was enhanced to 7.6 × 10 -4 S cm -1, and the interface resistance of Li/PEO 18LiTFSI/Li of 248 Ω cm 2 was decreased to 74 Ω cm 2 by the addition of both nano-SiO 2 and PP13TFSI into PEO 18LiTFSI.

  17. pH-sensitive micelles self-assembled from multi-arm star triblock co-polymers poly(ε-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) for controlled anticancer drug delivery.

    PubMed

    Yang, You Qiang; Zhao, Bin; Li, Zhen Dong; Lin, Wen Jing; Zhang, Can Yang; Guo, Xin Dong; Wang, Ju Fang; Zhang, Li Juan

    2013-08-01

    A series of amphiphilic 4- and 6-armed star triblock co-polymers poly(ε-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) (4/6AS-PCL-b-PDEAEMA-b-PPEGMA) were developed by a combination of ring opening polymerization and continuous activators regenerated by electron transfer atom transfer radical polymerization. The critical micelle concentration values of the star co-polymers in aqueous solution were extremely low (2.2-4.0mgl(-1)), depending on the architecture of the co-polymers. The self-assembled blank and doxorubicin (DOX)-loaded three layer micelles were spherical in shape with an average size of 60-220nm determined by scanning electron microscopy and dynamic light scattering. The in vitro release behavior of DOX from the three layer micelles exhibited pH-dependent properties. The DOX release rate was significantly accelerated by decreasing the pH from 7.4 to 5.0, due to swelling of the micelles at lower pH values caused by the protonation of tertiary amine groups in DEAEMA in the middle layer of the micelles. The in vitro cytotoxicity of DOX-loaded micelles to HepG2 cells suggested that the 4/6AS-PCL-b-PDEAEMA-b-PPEGMA micelles could provide equivalent or even enhanced anticancer activity and bioavailability of DOX and thus a lower dosage is sufficient for the same therapeutic efficacy. The results demonstrate that the pH-sensitive multilayer micelles could have great potential application in delivering hydrophobic anticancer drugs for improved cancer therapy.

  18. Wound-Inducible Proteinase Inhibitors in Pepper. Differential Regulation upon Wounding, Systemin, and Methyl Jasmonate1

    PubMed Central

    Moura, Daniel S.; Ryan, Clarence A.

    2001-01-01

    Seven small (approximately 6,000 D) wound-inducible proteinase inhibitor proteins were isolated from leaves of pepper (Capsicum annuum) plants that are members of the potato inhibitor II family. N-terminal sequences obtained indicated that the pepper leaf proteinase inhibitors (PLPIs) exhibit homology to two GenBank accessions that code for preproteins containing three isoinhibitors domains each that, when post-translationally processed, can account for the mixture of isoinhibitors that are reported herein from pepper leaves. A constitutive level of PLPI proteins was found in pepper leaves, and these levels increased up to 2.6-fold upon wounding of the lower leaves. Exposing intact plants to methyl jasmonate vapors induced the accumulation of PLPIs. Supplying excised young pepper plants with water through the cut stems induced PLPI proteins to levels higher than those found in intact plants, but with high variability. Supplying the excised plants with systemin did not result in an increase of PLPI levels that were statistically higher than levels found in excised plants. Gel-blot analyses of PLPI induction revealed the presence of two mRNA bands, having slightly different mobilities in agarose gels. Only the low Mr mRNA is present in untreated control plants, and it appears to be responsible for the constitutive levels of PLPI found in leaves. Both mRNA species are wound- and methyl jasmonate-inducible. Only the low- Mr species is weakly induced by systemin, indicating a differential expression of the two PLPI species. PMID:11351092

  19. Interstellar Antifreeze: Ethylene Glycol

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Lovas, F. J.; Jewell, P. R.; Coudert, L. H.

    2002-01-01

    Interstellar ethylene glycol (HOCH2CH2,OH) has been detected in emission toward the Galactic center source Sagittarius B2(N-LMH) by means of several millimeter-wave rotational torsional transitions of its lowest energy conformer. The types and kinds of molecules found to date in interstellar clouds suggest a chemistry that favors aldehydes and their corresponding reduced alcohols-e.g., formaldehyde (H2CO)/methanol (CH3OH), acetaldehyde (CH3CHO)/ethanol (CH3CH2OH). Similarly, ethylene glycol is the reduced alcohol of glycolaldehyde (CH2OHCHO), which has also been detected toward Sgr B2(N-LMH). While there is no consensus as to how any such large complex molecules are formed in the interstellar clouds, atomic hydrogen (H) and carbon monoxide (CO) could form formaldehyde on grain surfaces, but such surface chemistry beyond that point is uncertain. However, laboratory experiments have shown that the gas-phase reaction of atomic hydrogen (H) and solid-phase CO at 10-20 K can produce formaldehyde and methanol and that alcohols and other complex molecules can be synthesized from cometary ice analogs when subject to ionizing radiation at 15 K. Thus, the presence of aldehyde/ reduced alcohol pairs in interstellar clouds implies that such molecules are a product of a low-temperature chemistry on grain surfaces or in grain ice mantles. This work suggests that aldehydes and their corresponding reduced alcohols provide unique observational constraints on the formation of complex interstellar molecules.

  20. Nonphysiological binding of ethylene by plants.

    PubMed

    Abeles, F B

    1984-03-01

    Ethylene binding to seedling tissue of Vicia faba, Phaseolus vulgaris, Glycine max, and Triticum aestivum was demonstrated by determining transit time required for ethylene to move through a glass tube filled with seedling tissue. Transit time for ethylene was greater than that for methane indicating that these tissues had an affinity for ethylene. However, the following observations suggest that the binding was not physiological. Inhibitors of ethylene action such as Ag(+) ions and CO(2) did not decrease binding. Mushrooms which have no known sites of ethylene action also demonstrated ethylene binding. The binding of acetylene, propylene, ethylene, propane, and ethane more closely followed their solubility in water than any known physiological activity.

  1. Acetone transport in poly(ethylene terephthalate)

    NASA Astrophysics Data System (ADS)

    Ouyang, Hao; Chen, Che-Chen

    1997-05-01

    Organic solvents like acetone can penetrate into poly(ethylene terephthalate) (PET). The model of case I (Fickian) and case II (swelling) is employed to study the phenomenon of mass transport. This model is successful in explaining the behavior of mass transport in an amorphous polymer, for example, poly(methyl methacrylate) (PMMA). The characteristic parameters, diffusivity D and velocity v, can be obtained from the analysis of experimental data. The mass transport in PET is different from that in PMMA. It is accompanied by a large-scale structural rearrangement, which leads to induced crystallization of the original amorphous state. This is the so-called "solvent-induced crystallization." Acetone-induced crystallization was confirmed by x-ray diffraction. The differential scanning calorimetry thermograms of acetone-treated PET show that the crystallization peak disappears and the glass transition temperature decreases.

  2. SYNTHESIS AND INVESTIGATION OF HIGH-MOLECULAR-WEIGHT TERTIARY AMINES AND QUATERNARY AMMONIUM COMPOUNDS FROM COPOLYMERS OF 2-METHYL-5-VINYL-PYRIDINE AND VARIOUS CROSS-LINKING AGENTS

    DTIC Science & Technology

    AMIDES, *COPOLYMERIZATION, *ION EXCHANGE RESINS, *PYRIDINES, ACRYLIC RESINS, ALKYL RADICALS, BENZENE, CHEMICAL PROPERTIES, CHEMICAL REACTIONS ...ETHYLENES, GLYCOLS, METHYL RADICALS, PHYSICAL PROPERTIES, POLYMERIZATION, POLYMERS, SYNTHESIS, VINYL RADICALS.

  3. Monofunctional hyperbranched ethylene oligomers.

    PubMed

    Wiedemann, Thomas; Voit, Gregor; Tchernook, Alexandra; Roesle, Philipp; Göttker-Schnetmann, Inigo; Mecking, Stefan

    2014-02-05

    The neutral κ(2)N,O-salicylaldiminato Ni(II) complexes [κ(2)N,O-{(2,6-(3',5'-R2C6H3)2C6H3-N═C(H)-(3,5-I2-2-O-C6H2)}]NiCH3(pyridine)] (1a-pyr, R = Me; 1b-pyr, R = Et; 1c-pyr, R = iPr) convert ethylene to hyperbranched low-molecular-weight oligomers (Mn ca. 1000 g mol(-1)) with high productivities. While all three catalysts are capable of generating hyperbranched structures, branching densities decrease significantly with the nature of the remote substituent along Me > Et > iPr and oligomer molecular weights increase. Consequently, only 1a-pyr forms hyperbranched structures over a wide range of reaction conditions (ethylene pressure 5-30 atm and 20-70 °C). An in situ catalyst system achieves similar activities and identical highly branched oligomer microstructures, eliminating the bottleneck given by the preparation and isolation of Ni-Me catalyst precursor species. Selective introduction of one primary carboxylic acid ester functional group per highly branched oligoethylene molecule was achieved by isomerizing ethoxycarbonylation and alternatively cross metathesis with ethyl acrylate followed by hydrogenation. The latter approach results in complete functionalization and no essential loss of branched oligomer material and molecular weight, as the reacting double bonds are close to a chain end. Reduction yielded a monoalcohol-functionalized oligomer. Introduction of one reactive epoxide group per branched oligomer occurs completely and selectively under mild conditions. All reaction steps involved in oligomerization and monofunctionalization are efficient and readily scalable.

  4. 46 CFR 154.1725 - Ethylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ethylene oxide. 154.1725 Section 154.1725 Shipping COAST....1725 Ethylene oxide. (a) A vessel carrying ethylene oxide must: (1) Have cargo piping, vent piping, and... space of an ethylene oxide cargo tank for a period of 30 days under the condition of paragraph (e)...

  5. 46 CFR 154.1725 - Ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ethylene oxide. 154.1725 Section 154.1725 Shipping COAST....1725 Ethylene oxide. (a) A vessel carrying ethylene oxide must: (1) Have cargo piping, vent piping, and... space of an ethylene oxide cargo tank for a period of 30 days under the condition of paragraph (e)...

  6. 46 CFR 154.1725 - Ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Ethylene oxide. 154.1725 Section 154.1725 Shipping COAST....1725 Ethylene oxide. (a) A vessel carrying ethylene oxide must: (1) Have cargo piping, vent piping, and... space of an ethylene oxide cargo tank for a period of 30 days under the condition of paragraph (e)...

  7. Participation of ethylene in gravitropism

    NASA Technical Reports Server (NTRS)

    Harrison, M.; Pickard, B. G.

    1984-01-01

    In shoots of many plants, of which tomato (Lycopersicon esculentum Mill.) is an example, ethylene production is substantially increased during gravitropism. As a first step toward elucidating the role of ethylene in gravitropism, detailed time courses of ethylene production in isolated hypocotyl segments and whole plants were measured for gravistimulated and upright tomato seedlings. In the first experiment, seedlings were set upright or laid horizontal and then, at 15 min intervals, sets of hypocotyls were excised and sealed into gas tight vials. A steady long term rise in ethylene production begins after 15 min gravistimulation. It is possible that this increase is a consequence of the accumulation of indoleacetic acid (IAA) in the lower tissue of the hypocotyle. In a second kind of experiment, whole seedlings were enclosed in sealed chambers and air samples were withdrawn at 5 min intervals. Stimulated seedlings produced more ethylene than controls during the first 5 min interval, but not appreciably more during the second. This suggests the possibility that the ethylene production induced during the first 5 min occurs immediately rather than after a lag, and thus much too soon to be controlled by redistribution of IAA.

  8. Novel antifouling oligo(ethylene glycol) methacrylate particles via surfactant-free emulsion polymerization.

    PubMed

    Buyukserin, Fatih; Camli, Sevket Tolga; Yavuz, Mustafa Selman; Budak, Gurer Guven

    2011-03-01

    The use of particle formulations with antifouling surface properties attracts increasing interest in several biotechnological applications. Majority of these studies utilize a poly(ethylene glycol) coating to render the corresponding surface nonrecognizable to biological macromolecules. Herein, we report a simple way to prepare novel antifouling colloids composed of oligo(ethylene glycol) backbones via surfactant-free emulsion polymerization. Monodisperse cross-linked poly(ethylene glycol) ethyl ether methacrylate particles were characterized by dynamic light scattering and transmission electron microscopy. The effects of monomer, cross-linker and initiator on particle characteristics were investigated. More importantly, a prominent blockage of bovine serum albumin adsorption was obtained for the poly(ethylene glycol)-based sub-micron (~200 nm) particles when compared with similar-sized poly(methyl methacrylate) counterparts.

  9. Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via photo-initiated graft polymerization of poly(ethylene glycol)

    NASA Astrophysics Data System (ADS)

    Li, Xiaomeng; Luan, Shifang; Yang, Huawei; Shi, Hengchong; Zhao, Jie; Jin, Jing; Yin, Jinghua; Stagnaro, Paola

    2012-01-01

    Poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) copolymer biomedical elastomer was covalently grafted with poly(ethylene glycol) methyl ether methacrylate (PEGMA) via a photo-initiated graft polymerization technique. The surface graft polymerization of SEBS with PEGMA was verified by ATR-FTIR and XPS. Effect of graft polymerization parameters, i.e., monomer concentration, UV irradiation time and initiator concentration on the grafting density was investigated. Comparing with the virgin SEBS film, the PEGMA-modified SEBS film presented an enhanced wettability and a larger surface energy. Besides, the surface grafting of PEGMA imparted excellent anti-platelet adhesion and anti-protein adsorption to the SEBS surface.

  10. CG methylation.

    PubMed

    Vinson, Charles; Chatterjee, Raghunath

    2012-12-01

    A striking feature of mammalian genomes is the paucity of the CG dinucleotide. There are approximately 20,000 regions termed CpG islands where CGs cluster. This represents 5% of all CGs and 1% of the genome. CpG islands are typically unmethylated and are often promoters for housekeeping genes. The remaining 95% of CG dinucleotides are disposed throughout 99% of the genome and are typically methylated and found in half of all promoters. CG methylation facilitates binding of the C/EBP family of transcription factors, proteins critical for differentiation of many tissues. This allows these proteins to localize in the methylated CG poor regions of the genome where they may produce advantageous changes in gene expression at nearby or more distant regions of the genome. In this review, our growing understanding of the consequences of CG methylation will be surveyed.

  11. Methyl methacrylate

    Integrated Risk Information System (IRIS)

    TOXICOLOGICAL REVIEW of METHYL METHACRYLATE ( CAS No . 80 - 62 - 6 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) January 1998 U.S . Environmental Protection Agency Washington , DC TABLE OF CONTENTS DISCLAIMER . . . . . . . . . . . . . . . . . . . . . . . . .

  12. S-adenosyl-L-methionine usage during climacteric ripening of tomato in relation to ethylene and polyamine biosynthesis and transmethylation capacity.

    PubMed

    Van de Poel, Bram; Bulens, Inge; Oppermann, Yasmin; Hertog, Marten L A T M; Nicolai, Bart M; Sauter, Margret; Geeraerd, Annemie H

    2013-06-01

    S-adenosyl-L-methionine (SAM) is the major methyl donor in cells and it is also used for the biosynthesis of polyamines and the plant hormone ethylene. During climacteric ripening of tomato (Solanum lycopersicum 'Bonaparte'), ethylene production rises considerably which makes it an ideal object to study SAM involvement. We examined in ripening fruit how a 1-MCP treatment affects SAM usage by the three major SAM-associated pathways. The 1-MCP treatment inhibited autocatalytic ethylene production but did not affect SAM levels. We also observed that 1-(malonylamino)cyclopropane-1-carboxylic acid formation during ripening is ethylene dependent. SAM decarboxylase expression was also found to be upregulated by ethylene. Nonetheless polyamine content was higher in 1-MCP-treated fruit. This leads to the conclusion that the ethylene and polyamine pathway can operate simultaneously. We also observed a higher methylation capacity in 1-MCP-treated fruit. During fruit ripening substantial methylation reactions occur which are gradually inhibited by the methylation product S-adenosyl-L-homocysteine (SAH). SAH accumulation is caused by a drop in adenosine kinase expression, which is not observed in 1-MCP-treated fruit. We can conclude that tomato fruit possesses the capability to simultaneously consume SAM during ripening to ensure a high rate of ethylene and polyamine production and transmethylation reactions. SAM usage during ripening requires a complex cellular regulation mechanism in order to control SAM levels.

  13. Ethylene monitoring and control system

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Richard, II, Roy V. (Inventor); Kane, James A. (Inventor)

    2001-01-01

    A system that can accurately monitor and control low concentrations of ethylene gas includes a test chamber configured to receive sample gas potentially containing an ethylene concentration and ozone, a detector configured to receive light produced during a reaction between the ethylene and ozone and to produce signals related thereto, and a computer connected to the detector to process the signals to determine therefrom a value of the concentration of ethylene in the sample gas. The supply for the system can include a four way valve configured to receive pressurized gas at one input and a test chamber. A piston is journaled in the test chamber with a drive end disposed in a drive chamber and a reaction end defining with walls of the test chamber a variable volume reaction chamber. The drive end of the piston is pneumatically connected to two ports of the four way valve to provide motive force to the piston. A manifold is connected to the variable volume reaction chamber, and is configured to receive sample gasses from at least one of a plurality of ports connectable to degreening rooms and to supply the sample gas to the reactive chamber for reaction with ozone. The apparatus can be used to monitor and control the ethylene concentration in multiple degreening rooms.

  14. Ethylene monitoring and control system

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Richard, II, Roy V. (Inventor); Kanc, James A. (Inventor)

    2000-01-01

    A system that can accurately monitor and control low concentrations of ethylene gas includes a test chamber configured to receive sample gas potentially containing an ethylene concentration and ozone, a detector configured to receive light produced during a reaction between the ethylene and ozone and to produce signals related thereto, and a computer connected to the detector to process the signals to determine therefrom a value of the concentration of ethylene in the sample gas. The supply for the system can include a four way valve configured to receive pressurized gas at one input and a test chamber. A piston is journaled in the test chamber with a drive end disposed in a drive chamber and a reaction end defining with walls of the test chamber a variable volume reaction chamber. The drive end of the piston is pneumatically connected to two ports of the four way valve to provide motive force to the piston. A manifold is connected to the variable volume reaction chamber, and is configured to receive sample gasses from at least one of a plurality of ports connectable to degreening rooms and to supply the sample gas to the reactive chamber for reaction with ozone. The apparatus can be used to monitor and control the ethylene concentration in multiple degreening rooms.

  15. Ethylene-producing bacteria that ripen fruit.

    PubMed

    Digiacomo, Fabio; Girelli, Gabriele; Aor, Bruno; Marchioretti, Caterina; Pedrotti, Michele; Perli, Thomas; Tonon, Emil; Valentini, Viola; Avi, Damiano; Ferrentino, Giovanna; Dorigato, Andrea; Torre, Paola; Jousson, Olivier; Mansy, Sheref S; Del Bianco, Cristina

    2014-12-19

    Ethylene is a plant hormone widely used to ripen fruit. However, the synthesis, handling, and storage of ethylene are environmentally harmful and dangerous. We engineered E. coli to produce ethylene through the activity of the ethylene-forming enzyme (EFE) from Pseudomonas syringae. EFE converts a citric acid cycle intermediate, 2-oxoglutarate, to ethylene in a single step. The production of ethylene was placed under the control of arabinose and blue light responsive regulatory systems. The resulting bacteria were capable of accelerating the ripening of tomatoes, kiwifruit, and apples.

  16. Effects of methyl jasmonate on accumulation of flavonoids in seedlings of common buckwheat (Fagopyrum esculentum Moench).

    PubMed

    Horbowicz, M; Wiczkowski, W; Koczkodaj, Danuta; Saniewski, M

    2011-09-01

    The jasmonates, which include jasmonic acid and its methyl ester (MJ), play a central role in regulating the biosynthesis of many secondary metabolites, including flavonoids, and also are signaling molecules in environmental stresses. Synthesis of anthocyanins pigments is a final part of flavonoids pathway route. Accumulation of the pigments in young seedlings is stimulated by various environmental stresses, such as high-intensity light, wounding, pathogen attack, drought, sugar and nutrient deficiency. The anthocyanins take part in defense system against excess of light and UV-B light, and therefore it is probably main reason why young plant tissues accumulate enlarged levels of the pigments. The effects of exogenously applied MJ on level of anthocyanins, glycosides of apigenin, luteolin, quercetin and proanthocyanidins in seedlings of common buckwheat (Fagopyrum esculentum Moench) were studied. MJ decreased contents of all the found cyanidin glycosides and its aglycone in hypocotyls of buckwheat seedlings. However contents of particular anthocyanins in cotyledons of buckwheat seedlings treated with the plant hormone were not significantly different from the control. Applied doses of MJ did not affect levels of quercetin, apigenin and luteolin glycosides in the analyzed parts of buckwheat seedlings: cotyledons and hypocotyls. On the other hand, treatment of buckwheat seedlings with MJ clearly stimulated of proanthocyanidins biosynthesis in hypocotyls. We suggest that methyl jasmonate induces in hypocotyls of buckwheat seedlings the leucocyanidin reductase or anthocyanidin reductase, possible enzymes in proanthocyanidins synthesis, and/or inhibits anthocyanidin synthase, which transforms leucocyanidin into cyanidin. According to our knowledge this is the first report regarding the effect of methyl jasmonate on enhancing the accumulation of proanthocyanidins in cultivated plants.

  17. Synergistic effect of mixing dimethyl ether with methane, ethane, propane, and ethylene fuels on polycyclic aromatic hydrocarbon and soot formation

    SciTech Connect

    Yoon, S.S.; Anh, D.H.; Chung, S.H.

    2008-08-15

    Characteristics of polycyclic aromatic hydrocarbon (PAH) and soot formation in counterflow diffusion flames of methane, ethane, propane, and ethylene fuels mixed with dimethyl ether (DME) have been investigated. Planar laser-induced incandescence and fluorescence techniques were employed to measure relative soot volume fractions and PAH concentrations, respectively. Results showed that even though DME is known to be a clean fuel in terms of soot formation, DME mixture with ethylene fuel increases PAH and soot formation significantly as compared to the pure ethylene case, while the mixture of DME with methane, ethane, and propane decreases PAH and soot formation. Numerical calculations adopting a detailed kinetics showed that DME can be decomposed to produce a relatively large number of methyl radicals in the low-temperature region where PAH forms and grows; thus the mixture of DME with ethylene increases CH{sub 3} radicals significantly in the PAH formation region. Considering that the increase in the concentration of O radicals is minimal in the PAH formation region with DME mixture, the enhancement of PAH and soot formation in the mixture flames of DME and ethylene can be explained based on the role of methyl radicals in PAH and soot formation. Methyl radicals can increase the concentration of propargyls, which could enhance incipient benzene ring formation through the propargyl recombination reaction and subsequent PAH growth. Thus, the result substantiates the importance of methyl radicals in PAH and soot formation, especially in the PAH formation region of diffusion flames. (author)

  18. RESIDUAL RISK ASSESSMENT: ETHYLENE OXIDE ...

    EPA Pesticide Factsheets

    This document describes the residual risk assessment for the Ethylene Oxide Commercial Sterilization source category. For stationary sources, section 112 (f) of the Clean Air Act requires EPA to assess risks to human health and the environment following implementation of technology-based control standards. If these technology-based control standards do not provide an ample margin of safety, then EPA is required to promulgate addtional standards. This document describes the methodology and results of the residual risk assessment performed for the Ethylene Oxide Commercial Sterilization source category. The results of this analyiss will assist EPA in determining whether a residual risk rule for this source category is appropriate.

  19. Ethylene binding site affinity in ripening apples

    SciTech Connect

    Blankenship, S.M. . Dept. of Horticultural Science); Sisler, E.C. )

    1993-09-01

    Scatchard plots for ethylene binding in apples (Malus domestica Borkh.), which were harvested weekly for 5 weeks to include the ethylene climacteric rise, showed C[sub 50] values (concentration of ethylene needed to occupy 50% of the ethylene binding sites) of 0.10, 0.11, 0.34, 0.40, and 0.57 [mu]l ethylene/liter[sup [minus]1], respectively, for each of the 5 weeks. Higher ethylene concentrations were required to saturate the binding sites during the climacteric rise than at other times. Diffusion of [sup 14]C-ethylene from the binding sites was curvilinear and did not show any indication of multiple binding sites. Ethylene was not metabolized by apple tissue.

  20. Colorometric detection of ethylene glycol vapor

    NASA Technical Reports Server (NTRS)

    Helm, C.; Mosier, B.; Verostko, C. E.

    1970-01-01

    Very low concentrations of ethylene glycol in air or other gases are detected by passing a sample through a glass tube with three partitioned compartments containing reagents which successively convert the ethylene glycol vapor into a colored compound.

  1. Volatilization of ethylene dibromide from water

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1987-01-01

    Overall mass-transfer coefficients for the volatilization of ethylene dibromide from water were measured simultaneously with the oxygen absorption coefficient in a laboratory stirred tank. Coefficients were measured as a function of mixing conditions in the water for two windspeeds. The ethylene dibromide mass-transfer coefficient depended on windspeed; the ethylene dibromide liquid-film coefficient did not, in agreement with theory. A constant relation existed between the liquid-film coefficients for ethylene dibromide and oxygen.

  2. 49 CFR 173.323 - Ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.323 Ethylene oxide. (a) For packaging ethylene oxide in non-bulk packagings, silver mercury or any of its alloys or copper may not be used in any... 49 Transportation 2 2012-10-01 2012-10-01 false Ethylene oxide. 173.323 Section...

  3. 21 CFR 573.440 - Ethylene dichloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ethylene dichloride. 573.440 Section 573.440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.440 Ethylene dichloride. The food additive ethylene dichloride may be safely used...

  4. 21 CFR 173.230 - Ethylene dichloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene dichloride. 173.230 Section 173.230 Food... Solvents, Lubricants, Release Agents and Related Substances § 173.230 Ethylene dichloride. A tolerance of 30 parts per million is established for ethylene dichloride in spice oleoresins when present...

  5. 21 CFR 173.230 - Ethylene dichloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene dichloride. 173.230 Section 173.230 Food... Solvents, Lubricants, Release Agents and Related Substances § 173.230 Ethylene dichloride. A tolerance of 30 parts per million is established for ethylene dichloride in spice oleoresins when present...

  6. 21 CFR 173.230 - Ethylene dichloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene dichloride. 173.230 Section 173.230 Food... Solvents, Lubricants, Release Agents and Related Substances § 173.230 Ethylene dichloride. A tolerance of 30 parts per million is established for ethylene dichloride in spice oleoresins when present...

  7. 21 CFR 573.440 - Ethylene dichloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ethylene dichloride. 573.440 Section 573.440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.440 Ethylene dichloride. The food additive ethylene dichloride may be safely used...

  8. 21 CFR 573.440 - Ethylene dichloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ethylene dichloride. 573.440 Section 573.440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.440 Ethylene dichloride. The food additive ethylene dichloride may be safely used...

  9. 21 CFR 573.440 - Ethylene dichloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethylene dichloride. 573.440 Section 573.440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.440 Ethylene dichloride. The food additive ethylene dichloride may be safely used...

  10. 21 CFR 173.230 - Ethylene dichloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene dichloride. 173.230 Section 173.230 Food... Related Substances § 173.230 Ethylene dichloride. A tolerance of 30 parts per million is established for ethylene dichloride in spice oleoresins when present therein as a residue from the extraction of...

  11. 21 CFR 173.230 - Ethylene dichloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene dichloride. 173.230 Section 173.230 Food... Solvents, Lubricants, Release Agents and Related Substances § 173.230 Ethylene dichloride. A tolerance of 30 parts per million is established for ethylene dichloride in spice oleoresins when present...

  12. 21 CFR 573.440 - Ethylene dichloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ethylene dichloride. 573.440 Section 573.440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.440 Ethylene dichloride. The food additive ethylene dichloride may be safely used...

  13. Liquid ethylene-propylene copolymers

    NASA Technical Reports Server (NTRS)

    Rhein, R. A.; Ingham, J. D.; Humphrey, M. F.

    1975-01-01

    Oligomers are prepared by heating solid ethylene-propylene rubber in container that retains solid and permits liquid product to flow out as it is formed. Molecular weight and viscosity of liquids can be predetermined by process temperature. Copolymers have low viscosity for given molecular weight.

  14. Methyl isocyanate

    Integrated Risk Information System (IRIS)

    Methyl isocyanate ; CASRN 624 - 83 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  15. Methyl chlorocarbonate

    Integrated Risk Information System (IRIS)

    Methyl chlorocarbonate ; CASRN 79 - 22 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  16. Methyl iodide

    Integrated Risk Information System (IRIS)

    Methyl iodide ; CASRN 74 - 88 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effe

  17. Methyl parathion

    Integrated Risk Information System (IRIS)

    Methyl parathion ; CASRN 298 - 00 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  18. Methyl acrylate

    Integrated Risk Information System (IRIS)

    Methyl acrylate ; CASRN 96 - 33 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  19. Methyl chloride

    Integrated Risk Information System (IRIS)

    EPA / 635 / R01 / 003 TOXICOLOGICAL REVIEW OF METHYL CHLORIDE ( CAS No . 74 - 87 - 3 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) June 2001 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been reviewed in accordance with U.

  20. Ethylene effects in pea stem tissue

    SciTech Connect

    Steen, D.A.; Chadwick, A.V.

    1981-01-01

    The marked effects of ethylene on pea stem growth have been investigated. Low temperatures and colchicine, both known microtubule depolymerization agents, reverse the effects of ethylene in straight growth tests. Low temperature (6 C) also profoundly reduces the effects of gas in terms of swelling, hook curvature, and horizontal mutation. Deuterium oxide, an agent capable of rigidifying microtubular structure, mimics the effects of ethylene. Electron microscopy shows that microtubule orientation is strikingly altered by ethylene. These findings indicate that some of the ethylene responses may be due to a stabilizing effect on microtubules in plant cells.

  1. Endogenous Auxin and Ethylene in the Lichen Ramalina duriaei1

    PubMed Central

    Epstein, Ephraim; Sagee, Oded; Cohen, Jerry D.; Garty, Jacob

    1986-01-01

    Indole-3-acetic acid (IAA) levels and ethylene evolution rates were measured in a fruticose lichen Ramalina duriaei collected from carob trees growing in northeast Israel. IAA levels were estimated by gas liquid chromatography with electron capture detection of the pentafluorobenzyl ester and also by enzyme-linked immunosorbent assay following methylation. The identity of the isolated IAA was confirmed by gas chromatography-mass spectrometry of both the methyl and the pentafluorobenzyl ester. IAA levels in lichens 1 year after transplanting to an air-polluted urban site were found to be lower than in the control thalli left at a nonpolluted, rural site. The material from the latter contained about 2.5 micrograms per gram fresh weight free IAA and 0.5 microgram per gram fresh weight conjugated IAA, while the urban material contained 0.3 microgram per gram each of free and conjugated IAA. Ethylene production rate was 1.0 nanoliter per gram fresh weight per hour in the material from the rural site and 1.5 nanoliters per gram fresh weight per hour in material from the urban site. PMID:16665145

  2. Methyl eucomate

    PubMed Central

    Li, Linglin; Zhou, Guang-Xiong; Jiang, Ren-Wang

    2008-01-01

    The crystal structure of the title compound [systematic name: methyl 3-carboxy-3-hydr­oxy-3-(4-hydroxy­benz­yl)propanoate], C12H14O6, is stabilized by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds. The mol­ecules are arranged in layers, parallel to (001), which are inter­connected by the O—H⋯O hydrogen bonds. PMID:21202973

  3. Separation of methyl t-butyl ether from close boiling C[sub 5] hydrocarbons by extractive distillation

    SciTech Connect

    Berg, L.

    1993-07-20

    A method for recovering methyl t-butyl ether from a mixture of methyl t-butyl ether and 1-pentene which comprises distilling a mixture of methyl t-butyl ether and 1-pentene in the presence of about one part of an extractive agent per part of methyl t-butyl ether -- 1-pentene mixture, recovering the 1-pentene as overhead product and obtaining the methyl t-butyl ether and the extractive agent from the still pot, wherein said extractive agent consists of one material selected from the group consisting of sulfolane, nitroethane, t-butanol, ethylene glycol diacetate, 1-methoxy-2-propanol acetate, methyl isoamyl ketone, ethylene glycol methyl ether, propylene glycol phenyl ether and diethyl malonate.

  4. Protein-resistant polymer coatings based on surface-adsorbed poly(aminoethyl methacrylate)/poly(ethylene glycol) copolymers.

    PubMed

    Ionov, Leonid; Synytska, Alla; Kaul, Elisabeth; Diez, Stefan

    2010-01-11

    We report on the protein-resistant properties of glass substrates coated with novel copolymers of 2-aminoethyl methacrylate hydrochloride and poly(ethylene glycol) methyl ether methacrylate (AEM-PEG). In comparison to currently available protein-blocking polymer systems, such as poly-l-lysine-poly(ethylene glycol), silane-based poly(ethylene glycol), and poly(ethylene glycol) brushes prepared by surface-initiated polymerization, the proposed AEM-PEG offers the combined advantages of low cost, simplicity of use, and applicability in aqueous solutions. We demonstrate the capability of AEM-PEG to block the surface binding of globular proteins (tubulin), their assemblies (microtubules), and functional motor proteins (kinesin-1). Moreover, we demonstrate the applicability of AEM-PEG for surface patterning of proteins in microfluidic devices.

  5. Ethylene capacity tops 77 million mty

    SciTech Connect

    Rhodes, A.K.; Knott, D.

    1995-04-17

    World ethylene production capacity is 77.8 million metric tons/year (mty). This total represents an increase of more than 6 million mty, or almost 9%, over last year`s survey. The biggest reason for the large change is more information about plants in the CIS. Also responsible for the increase in capacity is the start-up of several large ethylene plants during the past year. The paper discusses construction of ethylene plants, feedstocks, prices, new capacity, price outlook, and problems in Europe`s ethylene market.

  6. Ethylene Regulates Levels of Ethylene Receptor/CTR1 Signaling Complexes in Arabidopsis thaliana

    DOE PAGES

    Shakeel, Samina N.; Gao, Zhiyong; Amir, Madiha; ...

    2015-03-26

    The plant hormone ethylene is perceived by a five-member family of receptors in Arabidopsis thaliana. The receptors function in conjunction with the Raf-like kinase CTR1 to negatively regulate ethylene signal transduction. CTR1 interacts with multiple members of the receptor family based on co-purification analysis, interacting more strongly with receptors containing a receiver domain. Levels of membrane-associated CTR1 vary in response to ethylene, doing so in a post-transcriptional manner that correlates with ethylene-mediated changes in levels of the ethylene receptors ERS1, ERS2, EIN4, and ETR2. Interactions between CTR1 and the receptor ETR1 protect ETR1 from ethylene-induced turnover. Kinetic and dose-response analysesmore » support a model in which two opposing factors control levels of the ethylene receptor/CTR1 complexes. Ethylene stimulates the production of new complexes largely through transcriptional induction of the receptors. However, ethylene also induces turnover of receptors, such that levels of ethylene receptor/CTR1 complexes decrease at higher ethylene concentrations. Lastly, we discuss implications of this model for ethylene signaling.« less

  7. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase

    SciTech Connect

    Carlin, DA; Bertolani, SJ; Siegel, JB

    2015-01-01

    Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.

  8. Ethylene and pollination decrease transcript abundance of an ethylene receptor gene in Dendrobium petals.

    PubMed

    Thongkum, Monthathip; Burns, Parichart; Bhunchoth, Anjana; Warin, Nuchnard; Chatchawankanphanich, Orawan; van Doorn, Wouter G

    2015-03-15

    We studied the expression of a gene encoding an ethylene receptor, called Ethylene Response Sensor 1 (Den-ERS1), in the petals of Dendrobium orchid flowers. Transcripts accumulated during the young floral bud stage and declined by the time the flowers had been open for several days. Pollination or exposure to exogenous ethylene resulted in earlier flower senescence, an increase in ethylene production and a lower Den-ERS1 transcript abundance. Treatment with 1-methylcyclopropene (1-MCP), an inhibitor of the ethylene receptor, decreased ethylene production and resulted in high transcript abundance. The literature indicates two kinds of ethylene receptor genes with regard to the effects of ethylene. One group shows ethylene-induced down-regulated transcription, while the other has ethylene-induced up-regulation. The present gene is an example of the first group. The 5' flanking region showed binding sites for Myb and myb-like, homeodomain, MADS domain, NAC, TCP, bHLH and EIN3-like transcription factors. The binding site for the EIN3-like factor might explain the ethylene effect on transcription. A few other transcription factors (RAV1 and NAC) seem also related to ethylene effects.

  9. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase.

    PubMed

    Carlin, D A; Bertolani, S J; Siegel, J B

    2015-02-11

    Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.

  10. Ethylene Regulates Levels of Ethylene Receptor/CTR1 Signaling Complexes in Arabidopsis thaliana.

    PubMed

    Shakeel, Samina N; Gao, Zhiyong; Amir, Madiha; Chen, Yi-Feng; Rai, Muneeza Iqbal; Haq, Noor Ul; Schaller, G Eric

    2015-05-08

    The plant hormone ethylene is perceived by a five-member family of receptors in Arabidopsis thaliana. The receptors function in conjunction with the Raf-like kinase CTR1 to negatively regulate ethylene signal transduction. CTR1 interacts with multiple members of the receptor family based on co-purification analysis, interacting more strongly with receptors containing a receiver domain. Levels of membrane-associated CTR1 vary in response to ethylene, doing so in a post-transcriptional manner that correlates with ethylene-mediated changes in levels of the ethylene receptors ERS1, ERS2, EIN4, and ETR2. Interactions between CTR1 and the receptor ETR1 protect ETR1 from ethylene-induced turnover. Kinetic and dose-response analyses support a model in which two opposing factors control levels of the ethylene receptor/CTR1 complexes. Ethylene stimulates the production of new complexes largely through transcriptional induction of the receptors. However, ethylene also induces turnover of receptors, such that levels of ethylene receptor/CTR1 complexes decrease at higher ethylene concentrations. Implications of this model for ethylene signaling are discussed.

  11. Ethylene Response Factors Are Controlled by Multiple Harvesting Stresses in Hevea brasiliensis.

    PubMed

    Putranto, Riza-Arief; Duan, Cuifang; Kuswanhadi; Chaidamsari, Tetty; Rio, Maryannick; Piyatrakul, Piyanuch; Herlinawati, Eva; Pirrello, Julien; Dessailly, Florence; Leclercq, Julie; Bonnot, François; Tang, Chaorong; Hu, Songnian; Montoro, Pascal

    2015-01-01

    Tolerance of recurrent mechanical wounding and exogenous ethylene is a feature of the rubber tree. Latex harvesting involves tapping of the tree bark and ethephon is applied to increase latex flow. Ethylene is an essential element in controlling latex production. The ethylene signalling pathway leads to the activation of Ethylene Response Factor (ERF) transcription factors. This family has been identified in Hevea brasiliensis. This study set out to understand the regulation of ERF genes during latex harvesting in relation to abiotic stress and hormonal treatments. Analyses of the relative transcript abundance were carried out for 35 HbERF genes in latex, in bark from mature trees and in leaves from juvenile plants under multiple abiotic stresses. Twenty-one HbERF genes were regulated by harvesting stress in laticifers, revealing an overrepresentation of genes in group IX. Transcripts of three HbERF-IX genes from HbERF-IXc4, HbERF-IXc5 and HbERF-IXc6 were dramatically accumulated by combining wounding, methyl jasmonate and ethylene treatments. When an ethylene inhibitor was used, the transcript accumulation for these three genes was halted, showing ethylene-dependent induction. Subcellular localization and transactivation experiments confirmed that several members of HbERF-IX are activator-type transcription factors. This study suggested that latex harvesting induces mechanisms developed for the response to abiotic stress. These mechanisms probably depend on various hormonal signalling pathways. Several members of HbERF-IX could be essential integrators of complex hormonal signalling pathways in Hevea.

  12. Poly(ethylene oxide) functionalization

    DOEpatents

    Pratt, Russell Clayton

    2014-04-08

    A simple procedure is provided by which the hydroxyl termini of poly(ethylene oxide) can be appended with functional groups to a useful extent by reaction and precipitation. The polymer is dissolved in warmed toluene, treated with an excess of organic base and somewhat less of an excess of a reactive acylating reagent, reacted for several hours, then precipitated in isopropanol so that the product can be isolated as a solid, and salt byproducts are washed away. This procedure enables functionalization of the polymer while not requiring laborious purification steps such as solvent-solvent extraction or dialysis to remove undesirable side products.

  13. Methods and compositions to modulate ethylene sensitivity

    DOEpatents

    Stepanova, Anna N.; Ecker, Joseph R.

    2007-01-30

    The field of the invention relates to plants and plant genes, including both plant mutants and transgenic plants containing a gene that confers an ethylene insensitive phenotype. Also encompassed by the invention are methods of using the disclosed plant gene to confer an ethylene insensitive phenotype.

  14. 29 CFR 1910.1047 - Ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 6 2012-07-01 2012-07-01 false Ethylene oxide. 1910.1047 Section 1910.1047 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous Substances § 1910.1047 Ethylene oxide. (a) Scope and...

  15. 29 CFR 1915.1047 - Ethylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Ethylene oxide. 1915.1047 Section 1915.1047 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1047 Ethylene oxide. Note: The requirements applicable to shipyard employment under this...

  16. 29 CFR 1926.1147 - Ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Ethylene oxide. 1926.1147 Section 1926.1147 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Ethylene oxide. Note: The requirements applicable to construction work under this section are identical...

  17. 29 CFR 1915.1047 - Ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Ethylene oxide. 1915.1047 Section 1915.1047 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1047 Ethylene oxide. Note: The requirements applicable to shipyard employment under this...

  18. 29 CFR 1926.1147 - Ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Ethylene oxide. 1926.1147 Section 1926.1147 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Ethylene oxide. Note: The requirements applicable to construction work under this section are identical...

  19. 29 CFR 1915.1047 - Ethylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Ethylene oxide. 1915.1047 Section 1915.1047 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1047 Ethylene oxide. Note: The requirements applicable to shipyard employment under this...

  20. 29 CFR 1926.1147 - Ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Ethylene oxide. 1926.1147 Section 1926.1147 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Ethylene oxide. Note: The requirements applicable to construction work under this section are identical...

  1. 29 CFR 1915.1047 - Ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Ethylene oxide. 1915.1047 Section 1915.1047 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1047 Ethylene oxide. Note: The requirements applicable to shipyard employment under this...

  2. 29 CFR 1926.1147 - Ethylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Ethylene oxide. 1926.1147 Section 1926.1147 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Ethylene oxide. Note: The requirements applicable to construction work under this section are identical...

  3. 29 CFR 1926.1147 - Ethylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Ethylene oxide. 1926.1147 Section 1926.1147 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Ethylene oxide. Note: The requirements applicable to construction work under this section are identical...

  4. 29 CFR 1915.1047 - Ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Ethylene oxide. 1915.1047 Section 1915.1047 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1047 Ethylene oxide. Note: The requirements applicable to shipyard employment under this...

  5. Targeting Plant Ethylene Responses by Controlling Essential Protein-Protein Interactions in the Ethylene Pathway.

    PubMed

    Bisson, Melanie M A; Groth, Georg

    2015-08-01

    The gaseous plant hormone ethylene regulates many processes of high agronomic relevance throughout the life span of plants. A central element in ethylene signaling is the endoplasmic reticulum (ER)-localized membrane protein ethylene insensitive2 (EIN2). Recent studies indicate that in response to ethylene, the extra-membranous C-terminal end of EIN2 is proteolytically processed and translocated from the ER to the nucleus. Here, we report that the conserved nuclear localization signal (NLS) mediating nuclear import of the EIN2 C-terminus provides an important domain for complex formation with ethylene receptor ethylene response1 (ETR1). EIN2 lacking the NLS domain shows strongly reduced affinity for the receptor. Interaction of EIN2 and ETR1 is also blocked by a synthetic peptide of the NLS motif. The corresponding peptide substantially reduces ethylene responses in planta. Our results uncover a novel mechanism and type of inhibitor interfering with ethylene signal transduction and ethylene responses in plants. Disruption of essential protein-protein interactions in the ethylene signaling pathway as shown in our study for the EIN2-ETR1 complex has the potential to guide the development of innovative ethylene antagonists for modern agriculture and horticulture.

  6. Ethylene synthesis and sensitivity in crop plants

    NASA Technical Reports Server (NTRS)

    Klassen, Stephen P.; Bugbee, Bruce

    2004-01-01

    Closed and semi-closed plant growth chambers have long been used in studies of plant and crop physiology. These studies include the measurement of photosynthesis and transpiration via photosynthetic gas exchange. Unfortunately, other gaseous products of plant metabolism can accumulate in these chambers and cause artifacts in the measurements. The most important of these gaseous byproducts is the plant hormone ethylene (C2H4). In spite of hundreds of manuscripts on ethylene, we still have a limited understanding of the synthesis rates throughout the plant life cycle. We also have a poor understanding of the sensitivity of intact, rapidly growing plants to ethylene. We know ethylene synthesis and sensitivity are influenced by both biotic and abiotic stresses, but such whole plant responses have not been accurately quantified. Here we present an overview of basic studies on ethylene synthesis and sensitivity.

  7. The ethylene signal transduction pathway in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The gaseous hormone ethylene is an important regulator of plant growth and development. Using a simple response of etiolated seedlings to ethylene as a genetic screen, genes involved in ethylene signal transduction have been identified in Arabidopsis. Analysis of two of these genes that have been cloned reveals that ethylene signalling involves a combination of a protein (ETR1) with similarity to bacterial histidine kinases and a protein (CTR1) with similarity to Raf-1, a protein kinase involved in multiple signalling cascades in eukaryotic cells. Several lines of investigation provide compelling evidence that ETR1 encodes an ethylene receptor. For the first time there is a glimpse of the molecular circuitry underlying the signal transduction pathway for a plant hormone.

  8. The ethylene response pathway in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The simple gas ethylene influences a diverse array of plant growth and developmental processes including germination, senescence, cell elongation, and fruit ripening. This review focuses on recent molecular genetic studies, principally in Arabidopsis, in which components of the ethylene response pathway have been identified. The isolation and characterization of two of these genes has revealed that ethylene sensing involves a protein kinase cascade. One of these genes encodes a protein with similarity to the ubiquitous Raf family of Ser/Thr protein kinases. A second gene shows similarity to the prokaryotic two-component histidine kinases and most likely encodes an ethylene receptor. Additional elements involved in ethylene signaling have only been identified genetically. The characterization of these genes and mutants will be discussed.

  9. Reactions of methyl groups on a non-reducible metal oxide: The reaction of iodomethane on stoichiometric α-Cr2O3(0001)

    DOE PAGES

    Dong, Yujung; Brooks, John D.; Chen, Tsung-Liang; ...

    2015-06-10

    The reaction of iodomethane on the nearly stoichiometric α-Cr2O3(0001) surface produces gas phase ethylene, methane, and surface iodine adatoms. The reaction is first initiated by the dissociation of iodomethane into surface methyl fragments, -CH3, and iodine adatoms. Methyl fragments bound at surface Cr cation sites undergo a rate-limiting dehydrogenation reaction to methylene, =CH2. The methylene intermediates formed from methyl dehydrogenation can then undergo coupling reactions to produce ethylene via two principle reaction pathways: (1) direct coupling of methylene and (2) methylene insertion into the methyl surface bond to form surface ethyl groups which undergo β-H elimination to produce ethylene. Themore » liberated hydrogen also combines with methyl groups to form methane. Iodine adatoms from the dissociation of iodomethane deactivate the surface by simple site blocking of the surface Cr3+ cations.« less

  10. Reactions of methyl groups on a non-reducible metal oxide: The reaction of iodomethane on stoichiometric α-Cr2O3(0001)

    NASA Astrophysics Data System (ADS)

    Dong, Yujung; Brooks, John D.; Chen, Tsung-Liang; Mullins, David R.; Cox, David F.

    2015-11-01

    The reaction of iodomethane on the nearly stoichiometric α-Cr2O3(0001) surface produces gas phase ethylene, methane, and surface iodine adatoms. The reaction is initiated by the dissociation of iodomethane into surface methyl fragments, - CH3, and iodine adatoms. Methyl fragments bound at surface Cr cation sites undergo a rate-limiting dehydrogenation reaction to methylene, = CH2. The methylene intermediates formed from methyl dehydrogenation can undergo coupling reactions to produce ethylene via two principle reaction pathways: (1) direct coupling of methylene and (2) methylene insertion into the methyl surface bond to form surface ethyl groups which undergo β-H elimination to produce ethylene. The liberated hydrogen also combines with methyl groups to form methane. Iodine adatoms from the dissociation of iodomethane deactivate the surface by simple site blocking of the surface Cr3 + cations.

  11. Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi.

    PubMed

    Martín-Rodríguez, José Ángel; León-Morcillo, Rafael; Vierheilig, Horst; Ocampo, Juan Antonio; Ludwig-Müller, Jutta; García-Garrido, José Manuel

    2011-04-01

    We investigated the relationship between ABA and ethylene regulating the formation of the arbuscular mycorrhiza (AM) symbiosis in tomato (Solanum lycopersicum) plants and tried to define the specific roles played by each of these phytohormones in the mycorrhization process. We analysed the impact of ABA biosynthesis inhibition on mycorrhization by Glomus intraradices in transgenic tomato plants with an altered ethylene pathway. We also studied the effects on mycorrhization in sitiens plants treated with the aminoethoxyvinyl glycine hydrochloride (AVG) ethylene biosynthesis inhibitor and supplemented with ABA. In addition, the expression of plant and fungal genes involved in the mycorrhization process was studied. ABA biosynthesis inhibition qualitatively altered the parameters of mycorrhization in accordance with the plant's ethylene perception and ethylene biosynthesis abilities. Inhibition of ABA biosynthesis in wild-type plants negatively affected all the mycorrhization parameters studied, while tomato mutants impaired in ethylene synthesis only showed a reduced arbuscular abundance in mycorrhizal roots. Inhibition of ethylene synthesis in ABA-deficient sitiens plants increased the intensity of mycorrhiza development, while ABA application rescued arbuscule abundance in the root's mycorrhizal zones. The results of our study show an antagonistic interaction between ABA and ethylene, and different roles of each of the two hormones during AM formation. This suggests that a dual ethylene-dependent/ethylene-independent mechanism is involved in ABA regulation of AM formation.

  12. Involvement of ethylene in stress-induced expression of the TLC1.1 retrotransposon from Lycopersicon chilense Dun.

    PubMed

    Tapia, Gerardo; Verdugo, Isabel; Yañez, Mónica; Ahumada, Iván; Theoduloz, Cristina; Cordero, Cecilia; Poblete, Fernando; González, Enrique; Ruiz-Lara, Simón

    2005-08-01

    The TLC1 family is one of the four families of long terminal repeat (LTR) retrotransposons identified in the genome of Lycopersicon chilense. Here, we show that this family of retroelements is transcriptionally active and its expression is induced in response to diverse stress conditions such as wounding, protoplast preparation, and high salt concentrations. Several stress-associated signaling molecules, including ethylene, methyl jasmonate, salicylic acid, and 2,4-dichlorophenoxyacetic acid, are capable of inducing TLC1 family expression in vivo. A representative of this family, named TLC1.1, was isolated from a genomic library from L. chilense. Transient expression assays in leaf protoplasts and stably transformed tobacco (Nicotiana tabacum) plants demonstrate that the U3 domain of the 5'-LTR region of this element can drive stress-induced transcriptional activation of the beta-glucuronidase reporter gene. Two 57-bp tandem repeated sequences are found in this region, including an 8-bp motif, ATTTCAAA, previously identified as an ethylene-responsive element box in the promoter region of ethylene-induced genes. Expression analysis of wild-type LTR and single and double ethylene-responsive element box mutants fused to the beta-glucuronidase gene shows that these elements are required for ethylene-responsive gene expression in protoplasts and transgenic plants. We suggest that ethylene-dependent signaling is the main signaling pathway involved in the regulation of the expression of the TLC1.1 element from L. chilense.

  13. Ethylene and flower longevity in Alstroemeria: relationship between tepal senescence, abscission and ethylene biosynthesis.

    PubMed

    Wagstaff, Carol; Chanasut, Usawadee; Harren, Frans J M; Laarhoven, Luc-Jan; Thomas, Brian; Rogers, Hilary J; Stead, Anthony D

    2005-03-01

    Senescence of floral organs is broadly divided into two groups: those that exhibit sensitivity to exogenous ethylene and those that do not. Endogenous ethylene production from the former group is via a well-characterized biochemical pathway and is either due to developmental or pollination-induced senescence. Many flowers from the order Liliales are characterized as ethylene-insensitive since they do not appear to produce endogenous ethylene, or respond to exogenous ethylene treatments, however, the majority of cases studied are wilting flowers, rather than those where life is terminated by perianth abscission. The role of ethylene in the senescence and abscission of Alstroemeria peruviana cv. Rebecca and cv. Samora tepals was previously unclear, with silver treatments recommended for delaying leaf rather than flower senescence. In the present paper the effects of exogenous ethylene, 2-chloroethylphosphonic acid (CEPA) and silver thiosulphate (STS) treatments on tepal senescence and abscission have been investigated. Results indicate that sensitivity to ethylene develops several days after flower opening such that STS only has a limited ability to delay tepal abscission. Detachment force measurements indicate that cell separation events are initiated after anthesis. Endogenous ethylene production was measured using laser photoacoustics and showed that Alstroemeria senesce independently of ethylene production, but that an extremely small amount of ethylene (0.15 nl flower(-1) h(-1)) is produced immediately prior to abscission. Investigation of the expression of genes involved in ethylene biosysnthesis by semi-quantitative RT-PCR indicated that transcriptional regulation is likely to be at the level of ACC oxidase, and that the timing of ACC oxidase gene expression is coincident with development of sensitivity to exogenous ethylene.

  14. Ethylene Glycol Metabolism by Pseudomonas putida

    PubMed Central

    Mückschel, Björn; Simon, Oliver; Klebensberger, Janosch; Graf, Nadja; Rosche, Bettina; Altenbuchner, Josef; Pfannstiel, Jens; Huber, Armin

    2012-01-01

    In this study, we investigated the metabolism of ethylene glycol in the Pseudomonas putida strains KT2440 and JM37 by employing growth and bioconversion experiments, directed mutagenesis, and proteome analysis. We found that strain JM37 grew rapidly with ethylene glycol as a sole source of carbon and energy, while strain KT2440 did not grow within 2 days of incubation under the same conditions. However, bioconversion experiments revealed metabolism of ethylene glycol by both strains, with the temporal accumulation of glycolic acid and glyoxylic acid for strain KT2440. This accumulation was further increased by targeted mutagenesis. The key enzymes and specific differences between the two strains were identified by comparative proteomics. In P. putida JM37, tartronate semialdehyde synthase (Gcl), malate synthase (GlcB), and isocitrate lyase (AceA) were found to be induced in the presence of ethylene glycol or glyoxylic acid. Under the same conditions, strain KT2440 showed induction of AceA only. Despite this difference, the two strains were found to use similar periplasmic dehydrogenases for the initial oxidation step of ethylene glycol, namely, the two redundant pyrroloquinoline quinone (PQQ)-dependent enzymes PedE and PedH. From these results we constructed a new pathway for the metabolism of ethylene glycol in P. putida. Furthermore, we conclude that Pseudomonas putida might serve as a useful platform from which to establish a whole-cell biocatalyst for the production of glyoxylic acid from ethylene glycol. PMID:23023748

  15. Ethylene-forming enzyme and bioethylene production

    PubMed Central

    2014-01-01

    Worldwide, ethylene is the most produced organic compound. It serves as a building block for a wide variety of plastics, textiles, and chemicals, and a process has been developed for its conversion into liquid transportation fuels. Currently, commercial ethylene production involves steam cracking of fossil fuels, and is the highest CO2-emitting process in the chemical industry. Therefore, there is great interest in developing technology for ethylene production from renewable resources including CO2 and biomass. Ethylene is produced naturally by plants and some microbes that live with plants. One of the metabolic pathways used by microbes is via an ethylene-forming enzyme (EFE), which uses α-ketoglutarate and arginine as substrates. EFE is a promising biotechnology target because the expression of a single gene is sufficient for ethylene production in the absence of toxic intermediates. Here we present the first comprehensive review and analysis of EFE, including its discovery, sequence diversity, reaction mechanism, predicted involvement in diverse metabolic modes, heterologous expression, and requirements for harvesting of bioethylene. A number of knowledge gaps and factors that limit ethylene productivity are identified, as well as strategies that could guide future research directions. PMID:24589138

  16. Current methods for detecting ethylene in plants

    PubMed Central

    Cristescu, Simona M.; Mandon, Julien; Arslanov, Denis; De Pessemier, Jérôme; Hermans, Christian; Harren, Frans J. M.

    2013-01-01

    Background In view of ethylene's critical developmental and physiological roles the gaseous hormone remains an active research topic for plant biologists. Progress has been made to understand the ethylene biosynthesis pathway and the mechanisms of perception and action. Still numerous questions need to be answered and findings to be validated. Monitoring gas production will very often complete the picture of any ethylene research topic. Therefore the search for suitable ethylene measuring methods for various plant samples either in the field, greenhouses, laboratories or storage facilities is strongly motivated. Scope This review presents an update of the current methods for ethylene monitoring in plants. It focuses on the three most-used methods – gas chromatography detection, electrochemical sensing and optical detection – and compares them in terms of sensitivity, selectivity, time response and price. Guidelines are provided for proper selection and application of the described sensor methodologies and some specific applications are illustrated of laser-based detector for monitoring ethylene given off by Arabidopsis thaliana upon various nutritional treatments. Conclusions Each method has its advantages and limitations. The choice for the suitable ethylene sensor needs careful consideration and is driven by the requirements for a specific application. PMID:23243188

  17. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-carbon monoxide copolymers. 177.1312... Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide... of this section, ethylene-carbon monoxide copolymers (CAS Reg. No. 25052-62-4) consist of the...

  18. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a...

  19. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a...

  20. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a...

  1. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a...

  2. 21 CFR 880.6860 - Ethylene oxide gas sterilizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas sterilizer is a nonportable device intended for use by a health care provider that uses ethylene oxide (ETO)...

  3. 21 CFR 880.6860 - Ethylene oxide gas sterilizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas sterilizer is a nonportable device intended for use by a health care provider that uses ethylene oxide (ETO)...

  4. 46 CFR 151.50-12 - Ethylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ethylene oxide. 151.50-12 Section 151.50-12 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-12 Ethylene oxide. (a)(1) Ethylene... otherwise provided for in paragraph (a)(3) of this section. (2) Ethylene oxide shall be loaded at...

  5. 21 CFR 880.6860 - Ethylene oxide gas sterilizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas sterilizer is a nonportable device intended for use by a health care provider that uses ethylene oxide (ETO)...

  6. 21 CFR 880.6860 - Ethylene oxide gas sterilizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas sterilizer is a nonportable device intended for use by a health care provider that uses ethylene oxide (ETO)...

  7. 46 CFR 151.50-12 - Ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ethylene oxide. 151.50-12 Section 151.50-12 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-12 Ethylene oxide. (a)(1) Ethylene... otherwise provided for in paragraph (a)(3) of this section. (2) Ethylene oxide shall be loaded at...

  8. 46 CFR 151.50-12 - Ethylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Ethylene oxide. 151.50-12 Section 151.50-12 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-12 Ethylene oxide. (a)(1) Ethylene... otherwise provided for in paragraph (a)(3) of this section. (2) Ethylene oxide shall be loaded at...

  9. 21 CFR 880.6860 - Ethylene oxide gas sterilizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas sterilizer is a nonportable device intended for use by a health care provider that uses ethylene oxide (ETO)...

  10. 46 CFR 151.50-12 - Ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Ethylene oxide. 151.50-12 Section 151.50-12 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-12 Ethylene oxide. (a)(1) Ethylene... otherwise provided for in paragraph (a)(3) of this section. (2) Ethylene oxide shall be loaded at...

  11. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-vinyl acetate copolymers. 177.1350... Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate... with the following prescribed conditions: (a)(1) Ethylene-vinyl acetate copolymers consist of...

  12. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid... for use in contact with food subject to the provisions of this section. (a) The ethylene-acrylic...

  13. Effect of unsaturation on the absorption of ethane and ethylene in imidazolium-based ionic liquids.

    PubMed

    Moura, Leila; Mishra, Manas; Bernales, Varinia; Fuentealba, Patricio; Padua, Agilio A H; Santini, Catherine C; Costa Gomes, Margarida F

    2013-06-20

    The influence of the presence of imidazolium side chain unsaturation on the solubility of ethane and ethylene was studied in three ionic liquids: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide-saturated alkyl side-chain in the cation; 1-methyl-3-(buten-3-yl)imidazolium bis(trifluorosulfonyl)imide-double bond in the side-chain of the cation; and 1-methyl-3-benzylimidazolium bis(trifluorosulfonyl)imide-benzyl group in the side-chain of the cation. The solubility of both gases decreases when the side-chain of the cations is functionalized with an unsaturated group. This can be explained by a less favorable enthalpy of solvation. The difference of solubility between ethane and ethylene can be explained from a balance of enthalpic and entropic factors: for the ionic liquid with the saturated alkyl side-chain and the benzyl-substituted side-chain, it is the favorable entropy of solvation that explains the larger ethylene solubility, whereas in the case of the saturated side-chain, it is the more favorable enthalpy of solvation. Molecular simulation allowed the identification of the mechanisms of solvation and the preferential solvation sites for each gas in the different ionic liquids. Simulations have shown that the entropy of solvation is more favorable when the presence of the gas weakens the cation-anion interactions or when the gas can be solvated near different sites of the ionic liquid.

  14. Transparent Ethylene-Bridged Polymethylsiloxane Aerogels and Xerogels with Improved Bending Flexibility.

    PubMed

    Shimizu, Taiyo; Kanamori, Kazuyoshi; Maeno, Ayaka; Kaji, Hironori; Nakanishi, Kazuki

    2016-12-20

    Transparent, monolithic aerogels with nanosized colloidal skeletons have been obtained from a single precursor of 1,2-bis(methyldiethoxysilyl)ethane (BMDEE) by adopting a liquid surfactant and a two-step process involving strong-acid, followed by strong-base, sol-gel reactions. This precursor BMDEE forms the ethylene-bridged polymethylsiloxane (EBPMS, O2/2(CH3)Si-CH2CH2-Si(CH3)O2/2) network, in which each silicon has one methyl, two bridging oxygens, and one bridging ethylene, exhibiting an analogous structure to that of the previously reported polymethylsilsesquioxane (PMSQ, CH3SiO3/2) aerogels having one methyl and three bridging oxygen atoms. Obtained aerogels consist of fine colloidal skeletons and show high visible-light transparency and a flexible deformation behavior against compression without collapse. Similar to the PMSQ aerogels, a careful tuning of synthetic conditions can produce low-density (0.19 g cm(-3)) and highly transparent (76% at 550 nm, corresponding to 10 mm thick samples) xerogels via ambient pressure drying by solvent evaporation due to their high strength and resilience against compression. Moreover, EBPMS aerogels exhibit higher bending strength and bending strain at break against the three-point bending mode compared to PMSQ aerogels. This improved bendability is presumably derived from the introduced ethylene-bridging parts, suggesting the potential for realizing transparent and bendable aerogels in such polysiloxane materials with organic linking units.

  15. Ethylene preparation and its application to physiological experiments.

    PubMed

    Zhang, Wei; Hu, Wenli; Wen, Chi-Kuang

    2010-04-01

    Ethylene is the first identified gaseous hormone regulating many aspects of plant growth and development. ACC and ethephon are two widely used chemicals replacing ethylene treatment when ethylene is not available. However, the amount of ethylene converted by ACC and ethephon is not controllable, leaving it questionable whether either treatment can mimic the effects of ethylene for experiments that are sensitive to ethylene concentration, response window, and treatment durations. Ethylene can be chemically made by ethanol dehydration; however, further purification from the dehydration products is needed. We previously reported that the ethylene gas can be easily prepared by decomposing ethephon in a buffered condition and the resulting ethylene can be used directly. Ethylene responses can be estimated by the measurement of the hypocotyl length of etiolated seedlings, or by ERF1 (Ethylene Response Factor1) expression. Although ACC of low concentrations is insufficient to induce ERF1 expression, ACC of high concentrations can replace ethylene for experiments where ethylene treatment is not feasible. However, ACC may undergo early consumption. Versatile approaches were developed so that laboratories lacking ethylene and techniques for gas handling can easily perform necessary ethylene treatments.

  16. Ultra-fast RAFT polymerisation of poly(ethylene glycol) acrylate in aqueous media under mild visible light radiation at 25 degrees C.

    PubMed

    Shi, Yi; Gao, Huan; Lu, Lican; Cai, Yuanli

    2009-03-21

    Mild visible light was sufficient to activate RAFT polymerisation of poly(ethylene glycol) methyl ether acrylate in 50 wt% water at 25 degrees C, leading to an ultra-fast and well-controlled living RAFT polymerisation with more than 80% monomer conversion; this is the first example of an ultra-fast RAFT polymerisation under such environmentally friendly mild aqueous conditions.

  17. Nuclear magnetic resonance spectroscopic analysis of homoallylic and bis homoallylic substituted methyl fatty ester derivatives.

    PubMed

    Jie, M S; Cheng, K L

    1995-02-01

    Using a combination of selective irradiation 1H nuclear magnetic resonance experiments and two-dimensional 1H-13C correlation spectroscopy spectral analysis of homoallylic and bis homoallylic substituted (azido, acetoxy, chloro and oxo) fatty ester derivatives, the carbon shifts of the ethylenic carbon atoms were determined. In the case of methyl 12-azido-9Z-octadecenoate (homoallylic), the carbon chemical shifts of the ethylenic C-9 and C-10 carbon nuclei are 133.092 and 124.596 ppm, respectively. In methyl 9-azido-12Z-octadecenoate (bis homoallylic), the carbon chemical shift of the ethylenic C-12 and C-13 carbon nuclei are 128.118 and 131.243 ppm, respectively.

  18. Methyl salicylate overdose

    MedlinePlus

    Methyl salicylate (oil of wintergreen) is a chemical that smells like wintergreen. It is used in many over- ... muscle ache creams. It is related to aspirin. Methyl salicylate overdose occurs when someone swallows a dangerous amount ...

  19. Ethylene signaling and regulation in plant growth and stress responses.

    PubMed

    Wang, Feifei; Cui, Xiankui; Sun, Yue; Dong, Chun-Hai

    2013-07-01

    Gaseous phytohormone ethylene affects many aspects of plant growth and development. The ethylene signaling pathway starts when ethylene binds to its receptors. Since the cloning of the first ethylene receptor ETR1 from Arabidopsis, a large number of studies have steadily improved our understanding of the receptors and downstream components in ethylene signal transduction pathway. This article reviews the regulation of ethylene receptors, signal transduction, and the posttranscriptional modulation of downstream components. Functional roles and importance of the ethylene signaling components in plant growth and stress responses are also discussed. Cross-reactions of ethylene with auxin and other phytohormones in plant organ growth will be analyzed. The studies of ethylene signaling in plant growth, development, and stress responses in the past decade greatly advanced our knowledge of how plants respond to endogenous signals and environmental factors.

  20. Novel membrane technology for green ethylene production.

    SciTech Connect

    Balachandran, U.; Lee, T. H.; Dorris, S. E.; Udovich, C. A.; Scouten, C. G.; Marshall, C. L.

    2008-01-01

    Ethylene is currently produced by pyrolysis of ethane in the presence of steam. This reaction requires substantial energy input, and the equilibrium conversion is thermodynamically limited. The reaction also produces significant amounts of greenhouse gases (CO and CO{sub 2}) because of the direct contact between carbon and steam. Argonne has demonstrated a new way to make ethylene via ethane dehydrogenation using a dense hydrogen transport membrane (HTM) to drive the unfavorable equilibrium conversion. Preliminary experiments show that the new approach can produce ethylene yields well above existing pyrolysis technology and also significantly above the thermodynamic equilibrium limit, while completely eliminating the production of greenhouse gases. With Argonne's approach, a disk-type dense ceramic/metal composite (cermet) membrane is used to produce ethylene by dehydrogenation of ethane at 850 C. The gas-transport membrane reactor combines a reversible chemical reaction with selective separation of one product species and leads to increased reactant conversion to the desired product. In an experiment ethane was passed over one side of the HTM membrane and air over the other side. The hydrogen produced by the dehydrogenation of ethane was removed and transported through the HTM to the air side. The air provided the driving force required for the transport of hydrogen through the HTM. The reaction between transported hydrogen and oxygen in air can provide the energy needed for the dehydrogenation reaction. At 850 C and 1-atm pressure, equilibrium conversion of ethane normally limits the ethylene yield to 64%, but Argonne has shown that an ethylene yield of 69% with a selectivity of 88% can be obtained under the same conditions. Coking was not a problem in runs extending over several weeks. Further improved HTM materials will lower the temperature required for high conversion at a reasonable residence time, while the lower temperature will suppress unwanted side

  1. Portable Apparatus for Electrochemical Sensing of Ethylene

    NASA Technical Reports Server (NTRS)

    Manoukian, Mourad; Tempelman, Linda A.; Forchione, John; Krebs, W. Michael; Schmitt, Edwin W.

    2007-01-01

    A small, lightweight, portable apparatus based on an electrochemical sensing principle has been developed for monitoring low concentrations of ethylene in air. Ethylene has long been known to be produced by plants and to stimulate the growth and other aspects of the development of plants (including, notably, ripening of fruits and vegetables), even at concentrations as low as tens of parts per billion (ppb). The effects are magnified in plant-growth and -storage chambers wherein ethylene can accumulate. There is increasing recognition in agriculture and related industries that it is desirable to monitor and control ethylene concentrations in order to optimize the growth, storage, and ripening of plant products. Hence, there are numerous potential uses for the present apparatus in conjunction with equipment for controlling ethylene concentrations. The ethylene sensor is of a thick-film type with a design optimized for a low detection limit. The sensor includes a noble metal sensing electrode on a chip and a hydrated solid-electrolyte membrane that is held in contact with the chip. Also located on the sensor chip are a counter electrode and a reference electrode. The sensing electrode is held at a fixed potential versus the reference electrode. Detection takes place at active-triple-point areas where the sensing electrode, electrolyte, and sample gas meet. These areas are formed by cutting openings in the electrolyte membrane. The electrode current generated from electrochemical oxidation of ethylene at the active triple points is proportional to the concentration of ethylene. An additional film of the solid-electrolyte membrane material is deposited on the sensing electrode to increase the effective triple-point areas and thereby enhance the detection signal. The sensor chip is placed in a holder that is part of a polycarbonate housing. When fully assembled, the housing holds the solid-electrolyte membrane in contact with the chip (see figure). The housing includes

  2. The impact of cold storage and ethylene on volatile ester production and aroma perception in 'Hort16A' kiwifruit.

    PubMed

    Günther, Catrin S; Marsh, Ken B; Winz, Robert A; Harker, Roger F; Wohlers, Mark W; White, Anne; Goddard, Matthew R

    2015-02-15

    Fruit esters are regarded as key volatiles for fruit aroma. In this study, the effects of cold storage on volatile ester levels of 'Hort16A' (Actinidia chinensis Planch. var chinensis) kiwifruit were examined and the changes in aroma perception investigated. Cold storage (1.5°C) for two or four months of fruit matched for firmness and soluble solids concentration resulted in a significant reduction in aroma-related esters such as methyl/ethyl propanoate, methyl/ethyl butanoate and methyl/ethyl hexanoate. Levels of these esters, however, were restored by ethylene treatment (100ppm, 24h) before ripening. A sensory panel found that "tropical" and "fruit candy" aroma was stronger and "green" odour notes less intensively perceived in kiwifruit which were ethylene-treated after cold storage compared to untreated fruit. The key findings presented in this study may lead to further work on the ethylene pathway, and innovative storage and marketing solutions for current and novel fruit cultivars.

  3. Molecular mechanisms of ethylene signaling in Arabidopsis.

    PubMed

    Benavente, Larissa M; Alonso, Jose M

    2006-03-01

    Ethylene is a gaseous plant hormone involved in several important physiological processes throughout a plant's life cycle. Decades of scientific research devoted to deciphering how plants are able to sense and respond to this key molecule have culminated in the establishment of one of the best characterized signal transduction pathways in plants. The ethylene signaling pathway starts with the perception of this gaseous hormone by a family of membrane-anchored receptors followed by a Raf-like kinase CTR1 that is physically associated with the receptors and actively inhibits downstream components of the pathway. A major gap is represented by the mysterious plant protein EIN2 that genetically works downstream of CTR1 and upstream of the key transcription factor EIN3. Transcriptional regulation by EIN3 and EIN3-family members has emerged as a key aspect of ethylene responses. The major components of this transcriptional cascade have been characterized and the involvement of post-transcriptional control by ubiquitination has been determined. Nevertheless, many aspects of this pathway still remain unknown. Recent genomic studies aiming to provide a more comprehensive view of modulation of gene expression have further emphasized the ample role of ethylene in a myriad of cellular processes and particularly in its crosstalk with other important plant hormones. This review aims to serve as a guide to the main scientific discoveries that have shaped the field of ethylene biology in the recent years.

  4. Ethylene detection in fruit supply chains

    PubMed Central

    Janssen, S.; Schmitt, K.; Blanke, M.; Bauersfeld, M. L.; Wöllenstein, J.; Lang, W.

    2014-01-01

    Ethylene is a gaseous ripening phytohormone of fruits and plants. Presently, ethylene is primarily measured with stationary equipment in laboratories. Applying in situ measurement at the point of natural ethylene generation has been hampered by the lack of portable units designed to detect ethylene at necessary resolutions of a few parts per billion. Moreover, high humidity inside controlled atmosphere stores or containers complicates the realization of gas sensing systems that are sufficiently sensitive, reliable, robust and cost efficient. In particular, three measurement principles have shown promising potential for fruit supply chains and were used to develop independent mobile devices: non-dispersive infrared spectroscopy, miniaturized gas chromatography and electrochemical measurement. In this paper, the measurement systems for ethylene are compared with regard to the needs in fruit logistics; i.e. sensitivity, selectivity, long-term stability, facilitation of automated measurement and suitability for mobile application. Resolutions of 20–10 ppb can be achieved in mobile applications with state-of-the-art equipment, operating with the three methods described in the following. The prices of these systems are in a range below €10 000. PMID:24797138

  5. Ethylene and Metal Stress: Small Molecule, Big Impact

    PubMed Central

    Keunen, Els; Schellingen, Kerim; Vangronsveld, Jaco; Cuypers, Ann

    2016-01-01

    The phytohormone ethylene is known to mediate a diverse array of signaling processes during abiotic stress in plants. Whereas many reports have demonstrated enhanced ethylene production in metal-exposed plants, the underlying molecular mechanisms are only recently investigated. Increasing evidence supports a role for ethylene in the regulation of plant metal stress responses. Moreover, crosstalk appears to exist between ethylene and the cellular redox balance, nutrients and other phytohormones. This review highlights our current understanding of the key role ethylene plays during responses to metal exposure. Moreover, particular attention is paid to the integration of ethylene within the broad network of plant responses to metal stress. PMID:26870052

  6. Ozone-induced ethylene release from leaf surfaces

    SciTech Connect

    Rodecap, K.D.; Tingey, D.T.

    1986-01-01

    Ozone-induced stress-ethylene emissions from the adaxial and abaxial leaf surfaces of four plant species (Glycine max (L) Merr. cv. Dare, Lycopersicon esculentum Mill cv. Roma VF, Eucalyptus globulus Labill. and Hedera helix L.) were studied to determine if the stress ethylene diffused through the stomata or cuticle. In plants not exposed to ozone, basal ethylene was detected above both the adaxial and abaxial leaf surfaces of all the plant species examined, indicating that some ethylene can diffuse across the leaf cuticle. Oxone-induced stress ethylene production in all species examined. These data indicate that ozone-induced stress ethylene primarily diffuses from the leaf via the stomata.

  7. Improved light olefin yield from methyl bromide coupling over modified SAPO-34 molecular sieves.

    PubMed

    Zhang, Aihua; Sun, Shouli; Komon, Zachary J A; Osterwalder, Neil; Gadewar, Sagar; Stoimenov, Peter; Auerbach, Daniel J; Stucky, Galen D; McFarland, Eric W

    2011-02-21

    As an alternative to the partial oxidation of methane to synthesis gas followed by methanol synthesis and the subsequent generation of olefins, we have studied the production of light olefins (ethylene and propylene) from the reaction of methyl bromide over various modified microporous silico-aluminophosphate molecular-sieve catalysts with an emphasis on SAPO-34. Some comparisons of methyl halides and methanol as reaction intermediates in their conversion to olefins are presented. Increasing the ratio of Si/Al and incorporation of Co into the catalyst framework improved the methyl bromide yield of light olefins over that obtained using standard SAPO-34.

  8. Electron scattering from 2-methyl-1,3-butadiene, C5H8 , molecules: Role of methylation

    NASA Astrophysics Data System (ADS)

    Szmytkowski, Czesław; Stefanowska, Sylwia; Zawadzki, Mateusz; Ptasińska-Denga, ElŻbieta; MoŻejko, Paweł

    2016-10-01

    We report cross-section results from experimental and theoretical investigations into electron collisions with the 2-methyl-1,3-butadiene [C5H8] molecule. The current results are compared with our previous results for the 1,3-butadiene [C4H6] molecule, a structural homologue of 2-methyl-1,3-butadiene, to investigate how the methylation (the substitution of hydrogen atom by a methyl group) affects the shape and/or magnitude of the total cross sections (TCSs). Both experimental TCS energy dependencies have certain features in common: the Ramsauer-Townsend-like minimum located within 1.4-1.6 eV; the resonant maximum centered at 3.4 eV for the 2-methyl-1,3-butadiene molecule and at 3.2 eV for 1,3-butadiene; a weak shoulder in the vicinity of 7 eV; and the pronounced broad enhancement peaking around 8.5 eV for 2-methyl-1,3-butadiene and near 9.5 eV for 1,3-butadiene. The magnitude of the TCS for 2-methyl-1,3-butadiene appears to be higher than that for 1,3-butadiene over the whole investigated energy range. Closer analysis of data shows that the TCS for 2-methyl-1,3-butadiene can be reasonably reproduced by the sum of TCSs for 1,3-butadiene and half of the TCS for the ethane [C2H6] molecule—that stays for the TCS of the methyl unit [CH3] . That result can be extended to homologous series of methyl-substituted allenes, ethylenes, and acetylenes.

  9. Reactions of methyl groups on a non-reducible metal oxide: The reaction of iodomethane on stoichiometric α-Cr2O3(0001)

    SciTech Connect

    Dong, Yujung; Brooks, John D.; Chen, Tsung-Liang; Mullins, David R.; Cox, David F.

    2015-06-10

    The reaction of iodomethane on the nearly stoichiometric α-Cr2O3(0001) surface produces gas phase ethylene, methane, and surface iodine adatoms. The reaction is first initiated by the dissociation of iodomethane into surface methyl fragments, -CH3, and iodine adatoms. Methyl fragments bound at surface Cr cation sites undergo a rate-limiting dehydrogenation reaction to methylene, =CH2. The methylene intermediates formed from methyl dehydrogenation can then undergo coupling reactions to produce ethylene via two principle reaction pathways: (1) direct coupling of methylene and (2) methylene insertion into the methyl surface bond to form surface ethyl groups which undergo β-H elimination to produce ethylene. The liberated hydrogen also combines with methyl groups to form methane. Iodine adatoms from the dissociation of iodomethane deactivate the surface by simple site blocking of the surface Cr3+ cations.

  10. Anodic polymerization of vinyl ethylene carbonate in Li-Ion battery electrolyte

    SciTech Connect

    Chen, Guoying; Zhuang, Guorong V.; Richardson, Thomas J.; Gao, Liu; Ross Jr., Philip N.

    2005-02-28

    A study of the anodic oxidation of vinyl ethylene carbonate (VEC) was conducted with post-mortem analysis of reaction products by ATR-FTIR and gel permeation chromatography (GPC). The half-wave potential (E1/2) for oxidation of VEC is ca. 3.6 V producing a resistive film on the electrode surface. GPC analysis of the film on a gold electrode produced by anodization of a commercial Li-ion battery electrolyte containing 2 percent VEC at 4.1 V showed the presence of a high molecular weight polymer. IR analysis indicated polycarbonate with alkyl carbonate rings linked by aliphatic methylene and methyl branches.

  11. Mechanistic investigations of the ethylene tetramerisation reaction.

    PubMed

    Overett, Matthew J; Blann, Kevin; Bollmann, Annette; Dixon, John T; Haasbroek, Daleen; Killian, Esna; Maumela, Hulisani; McGuinness, David S; Morgan, David H

    2005-08-03

    The unprecedented selective tetramerisation of ethylene to 1-octene was recently reported. In the present study various mechanistic aspects of this novel transformation were investigated. The unusually high 1-octene selectivity in chromium-catalyzed ethylene tetramerisation reactions is caused by the unique extended metallacyclic mechanism in operation. Both 1-octene and higher 1-alkenes are formed by further ethylene insertion into a metallacycloheptane intermediate, whereas 1-hexene is formed by elimination from this species as in other reported trimerisation reactions. This is supported by deuterium labeling studies, analysis of the molar distribution of 1-alkene products, and identification of secondary co-oligomerization reaction products. In addition, the formation of two C6 cyclic products, methylenecyclopentane and methylcyclopentane, is discussed, and a bimetallic disproportionation mechanism to account for the available data is proposed.

  12. Plant defense genes are regulated by ethylene

    SciTech Connect

    Ecker, J.R.; Davis, R.W.

    1987-08-01

    One of the earliest detectable events during plant-pathogen interaction is a rapid increase in ethylene biosynthesis. This gaseous plant stress hormone may be a signal for plants to activate defense mechanisms against invading pathogens such as bacteria, fungi, and viruses. The effect of ethylene on four plant genes involved in three separate plant defense response pathways was examined; these included (i and ii) genes that encode L-phenylalanine ammonia-lyase (EC 4.3.1.5) and 4-coumarate:CoA ligase (4-coumarate:CoA ligase (AMP-forming), EC 6.2.1.12), enzymes of the phenylpropanoid pathway, (iii) the gene encoding chalcone synthase, an enzyme of the flavonoid glycoside pathway, and (iv) the genes encoding hydroxyproline-rich glycoprotein, a major protein component(s) of plant cell walls. Blot hybridization analysis of mRNA from ethylene-treated carrot roots reveals marked increases in the levels of phenylalanine ammonia-lyase mRNA, 4-coumarate CoA ligase mRNA, chalcone synthase mRNA, and certain hydroxyproline-rich glycoprotein transcripts. The effect of ethylene on hydroxyproline-rich glycoprotein mRNA accumulation was different from that of wounding. Ethylene induces two hydroxyproline-rich glycoprotein mRNAs (1.8 and 4.0 kilobases), whereas wounding of carrot root leads to accumulation of an additional hydroxyproline-rich mRNA (1.5 kilobases). These results indicate that at least two distinct signals, ethylene and a wound signal, can affect the expression of plant defense-response genes.

  13. Stimulation of Ethylene Production in Apple Tissue Slices by Methionine

    PubMed Central

    Lieberman, Morris; Kunishi, Alice; Mapson, L. W.; Wardale, D. A.

    1966-01-01

    Methionine can induce more than a 100% increase in ethylene production by apple tissue slices. The increased amount of ethylene derives from carbons 3 and 4 of methionine. Only post-climacteric fruit tissues are stimulated by methionine, and stimulation is optimum after 8 months' storage. Copper chelators such as sodium diethyl dithiocarbamate and cuprizone very markedly inhibit ethylene production by tissue slices. Carbon monoxide does not effect ethylene production by the slices. These data suggest that the mechanism for the conversion of methionine to ethylene, in apple tissues, is similar to the previously described model system for producing ethylene from methionine and reduced copper. Therefore, it is suggested that one of the ethylene-forming systems in tissues derives from methionine and proceeds to ethylene via a copper enzyme system which may be a peroxidase. PMID:16656267

  14. A study of ethylene in apple, red raspberry, and cherry.

    PubMed

    Blanpied, G D

    1972-04-01

    High ethylene levels were associated with flower abscission in apple (Malus sylvestris) and cherry (Prunus avium and Prunus cerasus), "June drop" of immature cherries, and harvest drop of apple and red raspberry (Rubus idaeus). However, an increase in ethylene content was not associated with June drop of apples and harvest drop of cherries. During the period of fruit ripening on the plant, the largest increases in ethylene occurred in apple flesh and red raspberry receptacular tissue. Ethylene remained low throughout the period of sweet and tart cherry ripening. The data obtained indicated marked ethylene gradients between adjacent tissues. Increases of ethylene in some tissues may have resulted from ethylene diffusion from adjacent tissues containing high levels of ethylene.

  15. INHIBITION OF FLOWERING IN XANTHIUM PENSYLVANICUM WALLN. BY ETHYLENE

    DTIC Science & Technology

    Indoleacetic acid had been shown earlier to have this same effect. Because it stimulates ethylene evolution from cocklebur leaves, the results suggest that the effect of auxin may be an ethylene effect.

  16. Expression of Ethylene Biosynthesis Genes in Barley Tissue Culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant hormone ethylene influences green plant regeneration rates from barley callus cultures. Our studies have focused on the effects of short treatments of an ethylene inhibitor or an ethylene precursor on green plant regeneration from two barley cultivars and the expression patterns of two eth...

  17. Timing of Ethylene Modification Is Critical For Regeneration In Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : The plant hormone ethylene is important for higher rates of callus formation and green plant regeneration. Ethylene can have positive or negative effects on these traits depending on the genotype, type of explant and stage of application. Therefore, the effects of both ethylene precur...

  18. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be...

  19. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be...

  20. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be...

  1. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be...

  2. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene oxide polymer. 172.770 Section 172.770....770 Ethylene oxide polymer. The polymer of ethylene oxide may be safely used as a foam stabilizer in fermented malt beverages in accordance with the following conditions. (a) It is the polymer of...

  3. 21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated. Ethylene polymer, chlorosulfonated...

  4. REGULATION OF ETHYLENE EVOLUTION AND LEAF ABSCISSION BY AUXIN

    DTIC Science & Technology

    It is shown that auxin enhanced ethylene evolution occurs in a variety of plant material, and that ethylene evolution can be constrolled by...endogenous as well as exogenous levels of auxin . The importance of auxin regulated ethylene evolution on a physiological process is demonstrated by investigating the abscission of bean petiole explants.

  5. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials,...

  6. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-vinyl acetate copolymers. 177.1350... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of...

  7. 21 CFR 880.6100 - Ethylene oxide gas aerator cabinet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ethylene oxide gas aerator cabinet. 880.6100... Miscellaneous Devices § 880.6100 Ethylene oxide gas aerator cabinet. (a) Identification. An ethyene oxide gas... required to remove residual ethylene oxide (ETO) from wrapped medical devices that have undergone...

  8. 21 CFR 880.6100 - Ethylene oxide gas aerator cabinet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ethylene oxide gas aerator cabinet. 880.6100... Miscellaneous Devices § 880.6100 Ethylene oxide gas aerator cabinet. (a) Identification. An ethyene oxide gas... required to remove residual ethylene oxide (ETO) from wrapped medical devices that have undergone...

  9. 21 CFR 880.6100 - Ethylene oxide gas aerator cabinet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide gas aerator cabinet. 880.6100... Miscellaneous Devices § 880.6100 Ethylene oxide gas aerator cabinet. (a) Identification. An ethyene oxide gas... required to remove residual ethylene oxide (ETO) from wrapped medical devices that have undergone...

  10. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate copolymers. 177.1350 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of...

  11. 21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Vinyl chloride-ethylene copolymers. 177.1950... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1950 Vinyl chloride-ethylene copolymers. The vinyl chloride-ethylene copolymers identified in paragraph (a) of this section may be...

  12. 21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl chloride-ethylene copolymers. 177.1950... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1950 Vinyl chloride-ethylene copolymers. The vinyl chloride-ethylene copolymers identified in paragraph (a) of this section may be...

  13. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-vinyl acetate copolymers. 177.1350... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of...

  14. 21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Vinyl chloride-ethylene copolymers. 177.1950... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1950 Vinyl chloride-ethylene copolymers. The vinyl chloride-ethylene copolymers identified in paragraph (a) of this section may be...

  15. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  16. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-vinyl acetate copolymers. 177.1350... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of...

  17. 21 CFR 880.6100 - Ethylene oxide gas aerator cabinet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ethylene oxide gas aerator cabinet. 880.6100... Miscellaneous Devices § 880.6100 Ethylene oxide gas aerator cabinet. (a) Identification. An ethyene oxide gas... required to remove residual ethylene oxide (ETO) from wrapped medical devices that have undergone...

  18. 21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Vinyl chloride-ethylene copolymers. 177.1950... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1950 Vinyl chloride-ethylene copolymers. The vinyl chloride-ethylene copolymers identified in paragraph (a) of this section may be...

  19. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials,...

  20. 21 CFR 880.6100 - Ethylene oxide gas aerator cabinet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ethylene oxide gas aerator cabinet. 880.6100... Miscellaneous Devices § 880.6100 Ethylene oxide gas aerator cabinet. (a) Identification. An ethyene oxide gas... required to remove residual ethylene oxide (ETO) from wrapped medical devices that have undergone...

  1. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials,...

  2. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  3. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  4. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  5. 29 CFR 1910.1047 - Ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ethylene oxide. (a) Scope and application. (1) This section applies to all occupational exposures to... organic compound with chemical formula C2 H4 O. (c) Permissible exposure limits—(1) 8-hour time weighted... ethers, and other organic chemicals. EtO is also used as a sterilant and fumigant. E. Appearance and...

  6. Heat Bonding of Irradiated Ethylene Vinyl Acetate

    NASA Technical Reports Server (NTRS)

    Slack, D. H.

    1986-01-01

    Reliable method now available for joining parts of this difficult-tobond material. Heating fixture encircles ethylene vinyl acetate multiplesocket part, providing heat to it and to tubes inserted in it. Fixtures specially designed to match parts to be bonded. Tube-and-socket bonds made with this technique subjected to tensile tests. Bond strengths of 50 percent that of base material obtained consistently.

  7. Ethylene glycol monobutyl ether (EGBE) (2-Butoxyethanol)

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 08 / 006F www.epa.gov / iris TOXICOLOGICAL REVIEW OF ETHYLENE GLYCOL MONOBUTYL ETHER ( EGBE ) ( CAS No . 111 - 76 - 2 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) March 2010 U.S . Environmental Protection Agency Washington , DC DISCLAIMER Thi

  8. ROLE OF ETHYLENE IN LEAF ABSCISSION

    DTIC Science & Technology

    position of application. The positional effects of auxin are explained as being due to differences in transport in the explant. Thus, distally applied auxin ...inhibits abscission regardless of the accelerated rate of ethylene evolution by being rapidly transported to the abscission zone. Auxin applied

  9. Cancer mortality in ethylene oxide workers.

    PubMed Central

    Bisanti, L; Maggini, M; Raschetti, R; Alegiani, S S; Ippolito, F M; Caffari, B; Segnan, N; Ponti, A

    1993-01-01

    A cohort of 1971 chemical workers licensed to handle ethylene oxide was followed up retrospectively from 1940 to 1984 and the vital status of each subject was ascertained. No quantitative information on exposure was available and therefore cohort members were considered as presumably exposed to ethylene oxide. The cohort comprised 637 subjects allowed to handle only ethylene oxide and 1334 subjects who obtained a licence valid for ethylene oxide as well as other toxic gases. Potential confounding arising from the exposure to these other chemical agents was taken into consideration. Causes of death were found from death certificates and comparisons of mortality were made with the general population of the region where cohort members were resident. Seventy six deaths were reported whereas 98.8 were expected; the difference was statistically significant. The number of malignancies for any site exceeded the expected number (standardised mortality ratio (SMR) = 130; 43 observed deaths; 95% confidence interval (95% CI) 94-175) and approached statistical significance. For all considered cancer sites the SMRs were higher than 100 but the excess was only significant (p < 0.05, two sided test) for lymphosarcoma and reticulosarcoma (International Classification of Diseases--9th revision (ICD-9) = 200; SMR = 682; four observed deaths; 95% CI 186-1745). The excess of cases for all cancers of haematopoietic tissue (ICD-9 = 200-208) also approached statistical significance (SMR = 250; six observed deaths; 95% CI 91-544). Focusing the analysis on the subcohort of the ethylene oxide only licensed workers, who are likely to have experienced a more severe exposure to this gas, it became evident that all but one of the observed cases of haematopoietic tissue cancers in the cohort were confined to this subgroup, enhancing the relevant SMR to 700 (95% CI 237-1637) and the SMR of lymphosarcoma and reticulosarcoma to 1693 (95% CI 349-4953). PMID:8494771

  10. Histone Arginine Methylation

    PubMed Central

    Lorenzo, Alessandra Di; Bedford, Mark T.

    2012-01-01

    Arginine methylation is a common posttranslational modification (PTM). This type of PTM occurs on both nuclear and cytoplasmic proteins, and is particularly abundant on shuttling proteins. In this review, we will focus on one aspect of this PTM: the diverse roles that arginine methylation of the core histone tails play in regulating chromatin function. A family of nine protein arginine methyltransferases (PRMTs) catalyze methylation reactions, and a subset target histones. Importantly, arginine methylation of histone tails can promote or prevent the docking of key transcriptional effector molecules, thus playing a central role in the orchestration of the histone code. PMID:21074527

  11. [DNA methylation and epigenetics].

    PubMed

    Vaniushin, B F

    2006-09-01

    In eukaryotic cells, nuclear DNA is subject to enzymatic methylation with the formation of 5-methylcytosine residues, mostly within the CG and CNG sequences. In plants and animals this DNA methylation is species-, tissue-, and organelle-specific. It changes (decreases) with age and is regulated by hormones. On the other hand, genome methylation can control hormonal signal. Replicative and post-replicative DNA methylation types are distinguished. They are mediated by multiple DNA methyltransferases with different site-specificity. Replication is accompanied by the appearance of hemimethylated DNA sites. Pronounced asymmetry of the DNA strand methylation disappears to the end of the cell cycle. A model of methylation-regulated DNA replication is proposed. DNA methylation controls all genetic processes in the cell (replication, transcription, DNA repair, recombination, and gene transposition). It is the mechanism of cell differentiation, gene discrimination and silencing. In animals, suppression of DNA methylation stops development (embryogenesis), switches on apoptosis, and is usually lethal. Disruption of DNA methylation pattern results in the malignant cell transformation and serves as one of the early diagnostic features of carcinogenesis. In malignant cell the pattern of DNA methylation, as well as the set of DNA methyltransferase activities, differs from that in normal cell. In plants inhibition of DNA methylation is accompanied by the induction of seed storage and florescence genes. In eukaryotes one and the same gene can be simultaneously methylated both at cytosine and adenine residues. It can be thus suggested, that the plant cell contains at least two different, and probably, interdependent systems of DNA methylation. The first eukaryotic adenine DNA methyltransferase was isolated from plants. This enzyme methylates DNA with the formation of N6-methyladenine residues in the sequence TGATCA (TGATCA-->TGm6ATCA). Plants possess AdoMet-dependent endonucleases

  12. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes

    PubMed Central

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-01-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1–MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein–protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes. PMID:23599278

  13. Overexpression of bacterial ethylene-forming enzyme gene in Trichoderma reesei enhanced the production of ethylene

    PubMed Central

    Chen, Xi; Liang, Yong; Hua, Jing; Tao, Li; Qin, Wensheng; Chen, Sanfeng

    2010-01-01

    In order to efficiently utilize natural cellulose materials to produce ethylene, three expression vectors containing the ethylene-forming enzyme (efe) gene from Pseudomonas syringae pv. glycinea were constructed. The target gene was respectively controlled by different promoters: cbh I promoter from Trichoderma reesei cellobiohydrolases I gene, gpd promoter from Aspergillus nidulans glyceraldehyde-3-phosphate dehydrogenase gene and pgk I promoter from T. reesei 3-phosphoglycerate kinase I gene. After transforming into T. reesei QM9414, 43 stable transformants were obtained by PCR amplification and ethylene determination. Southern blot analysis of 14 transformants demonstrated that the efe gene was integrated into chromosomal DNA with copy numbers from 1 to 4. Reverse transcription polymerase chain reaction (RT-PCR) analysis of 6 transformants showed that the heterologous gene was transcribed. By using wheat straw as a carbon source, the ethylene production rates of aforementioned 14 transformants were measured. Transformant C30-3 with pgk I promoter had the highest ethylene production (4,012 nl h-1 l-1). This indicates that agricultural wastes could be used to produce ethylene in recombinant filamentous fungus T. reesei. PMID:20150979

  14. Metal catalyzed synthesis of hyperbranched ethylene and/or .alpha.-olefin polymers

    DOEpatents

    Sen, Ayusman; Kim, Jang Sub; Pawlow, James H.; Murtuza, Shahid; Kacker, Smita; Wojcinski, III, Louis M.

    2001-01-01

    Oily hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin, and a method for their synthesis, are disclosed. The polymers have non-regular microstructures and are characterized by a ratio ({character pullout})of methyl hydrogens centered around 0.85 ppm on the 1H-NMR spectra of the polymers relative to total aliphatic hydrogens of from about 0.40 to about 0.65 for polymers derived from ethylene or butene, and a ratio ({character pullout})of from greater than 0.50 to about 0.65 for polymers derived from propylene. A method for grafting hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin onto aromatic rings in organic molecules and polymers, and the resulting grafted materials, are also disclosed. The hyperbranched polymers and grafted materials are useful, for example, as lubricants and lubricant additives.

  15. Altered cultivar resistance of kimchi cabbage seedlings mediated by salicylic Acid, jasmonic Acid and ethylene.

    PubMed

    Lee, Young Hee; Kim, Sang Hee; Yun, Byung-Wook; Hong, Jeum Kyu

    2014-09-01

    Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ) treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner.

  16. Ethylene Regulates Levels of Ethylene Receptor/CTR1 Signaling Complexes in Arabidopsis thaliana

    SciTech Connect

    Shakeel, Samina N.; Gao, Zhiyong; Amir, Madiha; Chen, Yi-Feng; Rai, Muneeza Iqbal; Haq, Noor Ul; Schaller, George Eric

    2015-03-26

    The plant hormone ethylene is perceived by a five-member family of receptors in Arabidopsis thaliana. The receptors function in conjunction with the Raf-like kinase CTR1 to negatively regulate ethylene signal transduction. CTR1 interacts with multiple members of the receptor family based on co-purification analysis, interacting more strongly with receptors containing a receiver domain. Levels of membrane-associated CTR1 vary in response to ethylene, doing so in a post-transcriptional manner that correlates with ethylene-mediated changes in levels of the ethylene receptors ERS1, ERS2, EIN4, and ETR2. Interactions between CTR1 and the receptor ETR1 protect ETR1 from ethylene-induced turnover. Kinetic and dose-response analyses support a model in which two opposing factors control levels of the ethylene receptor/CTR1 complexes. Ethylene stimulates the production of new complexes largely through transcriptional induction of the receptors. However, ethylene also induces turnover of receptors, such that levels of ethylene receptor/CTR1 complexes decrease at higher ethylene concentrations. Lastly, we discuss implications of this model for ethylene signaling.

  17. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco.

    PubMed

    Zhang, Zhijin; Zhang, Haiwen; Quan, Ruidan; Wang, Xue-Chen; Huang, Rongfeng

    2009-05-01

    Fine-tuning of ethylene production plays an important role in developmental processes and in plant responses to stress, but very little is known about the regulation of ethylene response factor (ERF) proteins in ethylene biosynthesis genes and ethylene production. Identifying cis-acting elements and transcription factors that play a role in this process, therefore, is important. Previously, a tomato (Solanum lycopersicum [f. sp. Lycopersicon esculentum]) ERF protein, LeERF2, an allele of TERF2, was reported to confer ethylene triple response on plants. This paper reports the transcriptional modulation of LeERF2/TERF2 in ethylene biosynthesis in tomato and tobacco (Nicotiana tabacum). Using overexpressing and antisense LeERF2/TERF2 transgenic tomato, we found that LeERF2/TERF2 is an important regulator in the expression of ethylene biosynthesis genes and the production of ethylene. Expression analysis revealed that LeERF2/TERF2 is ethylene inducible, and ethylene production stimulated by ethylene was suppressed in antisense LeERF2/TERF2 transgenic tomato, indicating LeERF2/TERF2 to be a positive regulator in the feedback loop of ethylene induction. Further research showed that LeERF2/TERF2 conservatively modulates ethylene biosynthesis in tobacco and that such regulation in tobacco is associated with the elongation of the hypocotyl and insensitivity to abscisic acid and glucose during germination and seedling development. The effects on ethylene synthesis were similar to those of another ERF protein, TERF1, because TERF1 and LeERF2/TERF2 have overlapping roles in the transcriptional regulation of ethylene biosynthesis in tobacco. Biochemical analysis showed that LeERF2/TERF2 interacted with GCC box in the promoter of NtACS3 and with dehydration-responsive element in the promoter of LeACO3, resulting in transcriptional activation of the genes for ethylene biosynthesis in tomato and tobacco, which is a novel regulatory function of ERF proteins in plant ethylene

  18. Ethylene dynamics in the CELSS biomass production chamber

    NASA Technical Reports Server (NTRS)

    Rakow, Allen L.

    1994-01-01

    A material balance model for ethylene was developed and applied retrospectively to data obtained in the Biomass Production Chamber of CELSS in order to calculate true plant production rates of ethylene. Four crops were analyzed: wheat, lettuce, soybean, and potato. The model represents an effort to account for each and every source and sink for ethylene in the system. The major source of ethylene is the plant biomass and the major sink is leakage to the surroundings. The result, expressed in the units of ppd/day, were converted to nl of ethylene per gram of plant dry mass per hour and compare favorably with recent glasshouse to belljar experiments.

  19. Characterisation of ethylene pathway components in non-climacteric capsicum

    PubMed Central

    2013-01-01

    Background Climacteric fruit exhibit high ethylene and respiration levels during ripening but these levels are limited in non-climacteric fruit. Even though capsicum is in the same family as the well-characterised climacteric tomato (Solanaceae), it is non-climacteric and does not ripen normally in response to ethylene or if harvested when mature green. However, ripening progresses normally in capsicum fruit when they are harvested during or after what is called the ‘Breaker stage’. Whether ethylene, and components of the ethylene pathway such as 1-aminocyclopropane 1-carboxylate (ACC) oxidase (ACO), ACC synthase (ACS) and the ethylene receptor (ETR), contribute to non-climacteric ripening in capsicum has not been studied in detail. To elucidate the behaviour of ethylene pathway components in capsicum during ripening, further analysis is therefore needed. The effects of ethylene or inhibitors of ethylene perception, such as 1-methylcyclopropene, on capsicum fruit ripening and the ethylene pathway components may also shed some light on the role of ethylene in non-climacteric ripening. Results The expression of several isoforms of ACO, ACS and ETR were limited during capsicum ripening except one ACO isoform (CaACO4). ACS activity and ACC content were also low in capsicum despite the increase in ACO activity during the onset of ripening. Ethylene did not stimulate capsicum ripening but 1-methylcyclopropene treatment delayed the ripening of Breaker-harvested fruit. Some of the ACO, ACS and ETR isoforms were also differentially expressed upon treatment with ethylene or 1-methylcyclopropene. Conclusions ACS activity may be the rate limiting step in the ethylene pathway of capsicum which restricts ACC content. The differential expression of several ethylene pathway components during ripening and upon ethylene or 1-methylclopropene treatment suggests that the ethylene pathway may be regulated differently in non-climacteric capsicum compared to the climacteric tomato

  20. Ethylene, a key factor in the regulation of seed dormancy

    PubMed Central

    Corbineau, Françoise; Xia, Qiong; Bailly, Christophe

    2014-01-01

    Ethylene is an important component of the gaseous environment, and regulates numerous plant developmental processes including seed germination and seedling establishment. Dormancy, the inability to germinate in apparently favorable conditions, has been demonstrated to be regulated by the hormonal balance between abscisic acid (ABA) and gibberellins (GAs). Ethylene plays a key role in dormancy release in numerous species, the effective concentrations allowing the germination of dormant seeds ranging between 0.1 and 200 μL L-1. Studies using inhibitors of ethylene biosynthesis or of ethylene action and analysis of mutant lines altered in genes involved in the ethylene signaling pathway (etr1, ein2, ain1, etr1, and erf1) demonstrate the involvement of ethylene in the regulation of germination and dormancy. Ethylene counteracts ABA effects through a regulation of ABA metabolism and signaling pathways. Moreover, ethylene insensitive mutants in Arabidopsis are more sensitive to ABA and the seeds are more dormant. Numerous data also show an interaction between ABA, GAs and ethylene metabolism and signaling pathways. It has been increasingly demonstrated that reactive oxygen species (ROS) may play a significant role in the regulation of seed germination interacting with hormonal signaling pathways. In the present review the responsiveness of seeds to ethylene will be described, and the key role of ethylene in the regulation of seed dormancy via a crosstalk between hormones and other signals will be discussed. PMID:25346747

  1. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem.

    PubMed

    Street, Ian H; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N; Kieber, Joseph J; Schaller, G Eric

    2015-09-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem.

  2. Mechanisms of ethylene biosynthesis and response in plants.

    PubMed

    Larsen, Paul B

    2015-01-01

    Ethylene is the simplest unsaturated hydrocarbon, yet it has profound effects on plant growth and development, including many agriculturally important phenomena. Analysis of the mechanisms underlying ethylene biosynthesis and signalling have resulted in the elucidation of multistep mechanisms which at first glance appear simple, but in fact represent several levels of control to tightly regulate the level of production and response. Ethylene biosynthesis represents a two-step process that is regulated at both the transcriptional and post-translational levels, thus enabling plants to control the amount of ethylene produced with regard to promotion of responses such as climacteric flower senescence and fruit ripening. Ethylene production subsequently results in activation of the ethylene response, as ethylene accumulation will trigger the ethylene signalling pathway to activate ethylene-dependent transcription for promotion of the response and for resetting the pathway. A more detailed knowledge of the mechanisms underlying biosynthesis and the ethylene response will ultimately enable new approaches to be developed for control of the initiation and progression of ethylene-dependent developmental processes, many of which are of horticultural significance.

  3. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 Regulate Ethylene Response of Roots and Coleoptiles and Negatively Affect Salt Tolerance in Rice.

    PubMed

    Yang, Chao; Ma, Biao; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Yin, Cui-Cui; Chen, Hui; Lu, Xiang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-09-01

    Ethylene plays important roles in plant growth, development, and stress responses. The ethylene signaling pathway has been studied extensively, mainly in Arabidopsis (Arabidopsis thaliana). However, the molecular mechanism of ethylene signaling is largely unknown in rice (Oryza sativa). Previously, we have isolated a set of rice ethylene-response mutants. Here, we characterized the mutant maohuzi6 (mhz6). Through map-based cloning, we found that MHZ6 encodes ETHYLENE INSENSITIVE3-LIKE1 (OsEIL1), a rice homolog of ETHYLENE INSENSITIVE3 (EIN3), which is the master transcriptional regulator of ethylene signaling in Arabidopsis. Disruption of MHZ6/OsEIL1 caused ethylene insensitivity mainly in roots, whereas silencing of the closely related OsEIL2 led to ethylene insensitivity mainly in coleoptiles of etiolated seedlings. This organ-specific functional divergence is different from the functional features of EIN3 and EIL1, both of which mediate the incomplete ethylene responses of Arabidopsis etiolated seedlings. In Arabidopsis, EIN3 and EIL1 play positive roles in plant salt tolerance. In rice, however, lack of MHZ6/OsEIL1 or OsEIL2 functions improves salt tolerance, whereas the overexpressing lines exhibit salt hypersensitivity at the seedling stage, indicating that MHZ6/OsEIL1 and OsEIL2 negatively regulate salt tolerance in rice. Furthermore, this negative regulation by MHZ6/OsEIL1 and OsEIL2 in salt tolerance is likely attributable in part to the direct regulation of HIGH-AFFINITY K(+) TRANSPORTER2;1 expression and Na(+) uptake in roots. Additionally, MHZ6/OsEIL1 overexpression promotes grain size and thousand-grain weight. Together, our study provides insights for the functional diversification of MHZ6/OsEIL1 and OsEIL2 in ethylene response and finds a novel mode of ethylene-regulated salt stress response that could be helpful for engineering salt-tolerant crops.

  4. Preparation and in vitro characterization of dexamethasone-loaded poly(D,L-lactic acid) microspheres embedded in poly(ethylene glycol)-poly({varepsilon}-caprolactone)-poly(ethylene glycol) hydrogel for orthopedic tissue engineering.

    PubMed

    Fan, Min; Guo, QingFa; Luo, JingCong; Luo, Feng; Xie, Ping; Tang, XiaoHai; Qian, ZhiYong

    2013-08-01

    The corium is decreased to about half of its thickness in skin defects and wrinkles due to gravity and environment. In this study, dexamethasone/poly(d,l-lactic acid) (Mn = 160,000) microspheres were incorporated into poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) (Mn = 3300) hydrogel to prepare an injectable hydrogel composite. The composite was designed to increase the thickness of the corium. Dexamethasone/poly(d,l-lactic acid) microspheres were prepared by oil-in-water emulsion/solvent evaporation technique. The properties of microspheres were investigated by size distribution measurement, scanning electron microscope and x-ray diffraction. Drug loading, encapsulation efficiency, and drug delivery behavior of microspheres were also studied in detail. Cell adhesion of microspheres was investigated by NIH3T3 cell in vitro. The properties of hydrogel composite were investigated by scanning electron microscope, rheological measurements and methyl thiazolyl tetrazolium assay. Drug release from composite was determined by HPLC-UV analysis. These results suggested that poly(d,l-lactic acid) microspheres encapsulating dexamethasone embedded in poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) hydrogel might have prospective application in orthopedic tissue engineering field.

  5. Enzymatic hydrolysis of poly(ethylene furanoate).

    PubMed

    Pellis, Alessandro; Haernvall, Karolina; Pichler, Christian M; Ghazaryan, Gagik; Breinbauer, Rolf; Guebitz, Georg M

    2016-10-10

    The urgency of producing new environmentally-friendly polyesters strongly enhanced the development of bio-based poly(ethylene furanoate) (PEF) as an alternative to plastics like poly(ethylene terephthalate) (PET) for applications that include food packaging, personal and home care containers and thermoforming equipment. In this study, PEF powders of various molecular weights (6, 10 and 40kDa) were synthetized and their susceptibility to enzymatic hydrolysis was investigated for the first time. According to LC/TOF-MS analysis, cutinase 1 from Thermobifida cellulosilytica liberated both 2,5-furandicarboxylic acid and oligomers of up to DP4. The enzyme preferentially hydrolyzed PEF with higher molecular weights but was active on all tested substrates. Mild enzymatic hydrolysis of PEF has a potential both for surface functionalization and monomers recycling.

  6. Computer control improves ethylene plant operation

    SciTech Connect

    Whitehead, B.D.; Parnis, M.

    1987-11-01

    ICIA Australia ordered a turnkey 250,000-tpy ethylene plant to be built at the Botany site, Sydney, Australia. Following a feasibility study, an additional order was placed for a process computer system for advanced process control and optimization. This article gives a broad outline of the process computer tasks, how the tasks were implemented, what problems were met, what lessons were learned and what results were achieved.

  7. The synthesis of ethylene glycol from formaldehyde

    NASA Astrophysics Data System (ADS)

    Korneeva, G. A.; Loktev, S. M.

    1989-01-01

    The literature and patent data on the hydroformylation of formaldehyde to glycolaldehyde — an intermediate in the synthesis of ethylene glycol — are surveyed. The principal types of catalytic systems based on rhodium and cobalt carbonyl complexes and the characteristic features of the reaction are examined and compared with the hydroformylation of olefins. The reaction mechanism is discussed in the light of the reactions of the formaldehyde complexes of transition metals. The bibliography includes 116 references.

  8. Quasiglobal reaction model for ethylene combustion

    NASA Technical Reports Server (NTRS)

    Singh, D. J.; Jachimowski, Casimir J.

    1994-01-01

    The objective of this study is to develop a reduced mechanism for ethylene oxidation. The authors are interested in a model with a minimum number of species and reactions that still models the chemistry with reasonable accuracy for the expected combustor conditions. The model will be validated by comparing the results to those calculated with a detailed kinetic model that has been validated against the experimental data.

  9. Roles of Ethylene Production and Ethylene Receptor Expression in Regulating Apple Fruitlet Abscission1[OPEN

    PubMed Central

    Eccher, Giulia; Begheldo, Maura; Boschetti, Andrea; Ruperti, Benedetto; Botton, Alessandro

    2015-01-01

    Apple (Malus × domestica) is increasingly being considered an interesting model species for studying early fruit development, during which an extremely relevant phenomenon, fruitlet abscission, may occur as a response to both endogenous and/or exogenous cues. Several studies were carried out shedding light on the main physiological and molecular events leading to the selective release of lateral fruitlets within a corymb, either occurring naturally or as a result of a thinning treatment. Several studies pointed out a clear association between a rise of ethylene biosynthetic levels in the fruitlet and its tendency to abscise. A direct mechanistic link, however, has not yet been established between this gaseous hormone and the generation of the abscission signal within the fruit. In this work, the role of ethylene during the very early stages of abscission induction was investigated in fruitlet populations with different abscission potentials due either to the natural correlative inhibitions determining the so-called physiological fruit drop or to a well-tested thinning treatment performed with the cytokinin benzyladenine. A crucial role was ascribed to the ratio between the ethylene produced by the cortex and the expression of ethylene receptor genes in the seed. This ratio would determine the final probability to abscise. A working model has been proposed consistent with the differential distribution of four receptor transcripts within the seed, which resembles a spatially progressive cell-specific immune-like mechanism evolved by apple to protect the embryo from harmful ethylene. PMID:25888617

  10. Roles of Ethylene Production and Ethylene Receptor Expression in Regulating Apple Fruitlet Abscission.

    PubMed

    Eccher, Giulia; Begheldo, Maura; Boschetti, Andrea; Ruperti, Benedetto; Botton, Alessandro

    2015-09-01

    Apple (Malus × domestica) is increasingly being considered an interesting model species for studying early fruit development, during which an extremely relevant phenomenon, fruitlet abscission, may occur as a response to both endogenous and/or exogenous cues. Several studies were carried out shedding light on the main physiological and molecular events leading to the selective release of lateral fruitlets within a corymb, either occurring naturally or as a result of a thinning treatment. Several studies pointed out a clear association between a rise of ethylene biosynthetic levels in the fruitlet and its tendency to abscise. A direct mechanistic link, however, has not yet been established between this gaseous hormone and the generation of the abscission signal within the fruit. In this work, the role of ethylene during the very early stages of abscission induction was investigated in fruitlet populations with different abscission potentials due either to the natural correlative inhibitions determining the so-called physiological fruit drop or to a well-tested thinning treatment performed with the cytokinin benzyladenine. A crucial role was ascribed to the ratio between the ethylene produced by the cortex and the expression of ethylene receptor genes in the seed. This ratio would determine the final probability to abscise. A working model has been proposed consistent with the differential distribution of four receptor transcripts within the seed, which resembles a spatially progressive cell-specific immune-like mechanism evolved by apple to protect the embryo from harmful ethylene.

  11. Ethylene signaling in rice and Arabidopsis: conserved and diverged aspects.

    PubMed

    Yang, Chao; Lu, Xiang; Ma, Biao; Chen, Shou-Yi; Zhang, Jin-Song

    2015-04-01

    Ethylene as a gas phytohormone plays significant roles in the whole life cycle of plants, ranging from growth and development to stress responses. A linear ethylene signaling pathway has been established in the dicotyledonous model plant Arabidopsis. However, the ethylene signaling mechanism in monocotyledonous plants such as rice is largely unclear. In this review, we compare the ethylene response phenotypes of dark-grown seedlings of Arabidopsis, rice, and other monocotyledonous plants (maize, wheat, sorghum, and Brachypodium distachyon) and pinpoint that rice has a distinct phenotype of root inhibition but coleoptile promotion in etiolated seedlings upon ethylene treatment. We further summarize the homologous genes of Arabidopsis ethylene signaling components in these monocotyledonous plants and discuss recent progress. Although conserved in most aspects, ethylene signaling in rice has evolved new features compared with that in Arabidopsis. These analyses provide novel insights into the understanding of ethylene signaling in the dicotyledonous Arabidopsis and monocotyledonous plants, particularly rice. Further characterization of rice ethylene-responsive mutants and their corresponding genes will help us better understand the whole picture of ethylene signaling mechanisms in plants.

  12. Participation of Ethylene in Two Modes of Gravistimulation of Shoots

    NASA Technical Reports Server (NTRS)

    Harrison, M.

    1985-01-01

    In order to elucidate the role of ehtylene in gravitropism, detailed time courses for ethylene production in horizontal and upright plants were measured. Tomato and pea were chosen as examples of plants which exhibit different patterns of gravitropic curvature. Tomato seedlings were placed in gas-tight lucite boxes from which air was sampled and analyzed for ethylene. During the first 2 min interval after one set of plants was turned horizontal ethylene production was double the baseline. Similarly, plants rotated 3 rpm about a vertical axis transiently doubled ethylene production when the axis was shifted 90 deg. In order to clarify the role of this 2-min burst, the effect of exogenous ethylene was studied. In peas, epicotyls were excised, equilibrated until wound ethylene had subsided to a low stable level, and ethylene production was measured in vertical and horizontal segments. As for tomatoes, excised pea epicotyls increased their rate of ethylene production during the first 2 min of gravistimulation. Also, very low concentrations of exogenous ethylene slightly enhance curvature. On the other hand, higher levels of ethylene and 1-aminocyclopropane-1-carboxylic acid (ACC) inhibit overall curvature.

  13. Detection of poly(ethylene glycol) residues from nonionic surfactants in surface water by1h and13c nuclear magnetic resonance spectrometry

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Brown, P.A.; Noyes, T.I.

    1991-01-01

    ??? Poly(ethylene glycol) (PEG) residues were detected in organic solute isolates from surface water by 1H nuclear magnetic resonance spectrometry (NMR), 13C NMR spectrometry, and colorimetric assay. PEG residues were separated from natural organic solutes in Clear Creek, CO, by a combination of methylation and chromatographic procedures. The isolated PEG residues, characterized by NMR spectrometry, were found to consist of neutral and acidic residues that also contained poly(propylene glycol) moieties. The 1H NMR and the colorimetric assays for poly(ethylene glycol) residues were done on samples collected in the lower Mississippi River and tributaries between St. Louis, MO, and New Orleans, LA, in July-August and November-December 1987. Aqueous concentrations for poly(ethylene glycol) residues based on colorimetric assay ranged from undetectable to ???28 ??g/L. Concentrations based on 1H NMR spectrometry ranged from undetectable to 145 ??g/L.

  14. Role of ethylene in responses of plants to nitrogen availability

    PubMed Central

    Khan, M. I. R.; Trivellini, Alice; Fatma, Mehar; Masood, Asim; Francini, Alessandra; Iqbal, Noushina; Ferrante, Antonio; Khan, Nafees A.

    2015-01-01

    Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signaling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under suboptimal conditions. Among the plant nutrients, the nitrogen (N) is one the most important mineral element required for plant growth and development. The availability of N significantly influences plant metabolism, including ethylene biology. The interaction between ethylene and N affects several physiological processes such as leaf gas exchanges, roots architecture, leaf, fruits, and flowers development. Low plant N use efficiency (NUE) leads to N loss and N deprivation, which affect ethylene biosynthesis and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond differently to N availability balancing ethylene production through its signaling network. This review discusses the recent advances in the interaction between N availability and ethylene at whole plant and different organ levels, and explores how N availability induces ethylene biology and plant responses. Exogenously applied ethylene seems to cope the stress conditions and improves plant physiological performance. This can be explained considering the expression of ethylene biosynthesis and signaling genes under different N availability. A greater understanding of the regulation of N by means of ethylene modulation may help to increase NUE and directly influence crop productivity under conditions of limited N availability, leading to positive effects on the environment. Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees, where ethylene can have detrimental effects especially during postharvest. PMID:26579172

  15. Enhanced Lithium Ion Transport in Poly(ethylene glycol) Diacrylate-Supported Solvate Ionogel Electrolytes via Chemically Cross-linked Ethylene Oxide Pathways.

    PubMed

    D'Angelo, Anthony J; Panzer, Matthew J

    2017-02-02

    Lithium-ion solvate ionic liquids (SILs), consisting of complexed Li(+) cations and a weakly basic anion, represent an emergent class of nonvolatile liquid electrolytes suitable for lithium-based electrochemical energy storage. In this report, solid-state, flexible solvate ionogel electrolytes are synthesized via UV-initiated free radical polymerization/cross-linking of poly(ethylene glycol) diacrylate (PEGDA) in situ within the [Li(G4)][TFSI] electrolyte, which is formed by an equimolar mixture of lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and tetraglyme (G4). Ion diffusivity measurements reveal enhanced Li(+) diffusion in PEGDA-supported solvate ionogels, as compared to poly(methyl methacrylate)-supported gels that lack ethylene oxide chains. At 21 vol% PEGDA, a maximum Li(+) transport number of 0.58 and a room temperature ionic conductivity of 0.43 mS/cm have been achieved in a solvate ionogel electrolyte that exhibits an elastic modulus of 0.47 MPa. These results demonstrate the importance of polymer scaffold selection on solvate ionogel electrolyte performance for advanced lithium-based batteries.

  16. Synthesis and characterization of injectable, water-soluble copolymers of tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates.

    PubMed

    Anderson, Brian C; Mallapragada, Surya K

    2002-11-01

    Several homopolymers and copolymers of 2-(diethylamino)ethyl methacrylate (DEAEM) and poly(ethylene glycol) methyl ether methacrylate (PEGMEM) were synthesized using anionic polymerization initiated by potassium t-butoxide. The polymers were characterized by average molecular weight, polydispersity and monomeric unit composition. A very narrow molecular weight distribution was achieved with a well-controlled composition. The glass transition temperatures and compositions of the copolymers followed a Gordon-Taylor relationship. The water solubility and biocompatibility of the copolymers was compared to their parent homopolymers to determine if the addition of a poly(ethylene glycol) group was sufficient to solubilize the polymers in aqueous buffer solutions and to increase the biocompatibility of the polymers. These water-soluble, injectable cationic copolymers have potential applications in gene delivery as well as other biomaterial applications.

  17. Fourier Transform Microwave Spectra of CO{2}-ETHYLENE Sulfide, CO{2}-ETHYLENE Oxide and CO{2}-PROPYLENE Oxide Complexes

    NASA Astrophysics Data System (ADS)

    Orita, Yukari; Kawashima, Yoshiyuki; Hirota, Eizi

    2010-06-01

    We have previously examined the difference in roles of O and S in structure and dynamics of the CO-ethylene oxide (EO) and CO-ethylene sulfide (ES) complexes. We have extended the investigation to CO{2}-EO and CO{2}-ES for comparison. We have also observed the CO{2}-propylene oxide (PO) complex, which is an important intermediate in the reaction of PO with CO{2} leading to polycarbonate. Both a-type and b-type transitions were observed for the CO{2}-EO and CO{2}-ES, but no c-type transitions were observed at all. We also detected the {34}S and {13}C isotopic species in natural abundance and the species containing {18}OCO and C{18}O% {2}, which were synthesized by burning paper in an {18}O{2} and{% 16}O{2} mixture. By analyzing the observed spectra we concluded the CO{2} moiety of CO{2}-EO and CO{2}-ES located in a plane % prependicular to the three-membered ring and bisecting the COC or CSC angle of EO or ES, respectively, as in the case of CO-EO and CO-ES complexes. An % ab initio MO calculation at the level of MP2/6-311G(d, p) yielded an optimized structure in good agreement with the experimental result. We have derived from the observed spectra the distance, the stretching force constant, and the binding energy of the bonds between the constituents of the CO{2}-EO and CO{2}-ES complexes and have found that the distances of the two complexes were shorter by 0.2Å than those in CO-EO and CO-ES, respectively, and that the intermolecular bonds were two times stronger in the CO{2} complexes than in the corresponding CO complexes. We have concluded from the observed spectra that the CO{2} moiety in CO{2}-PO is located on the PO three-membered ring plane opposite to the methyl group. The constituents in CO{2}-PO were more weakly bound than those in CO{2}-EO and CO{2}-ES. S. Sato, Y. Kawashima, Y. Tatamitani, and E. Hirota, 63rd International Symposium on Molecular Spectroscopy, WF05 (2008).

  18. Low capital implementation of distributed distillation in ethylene recovery

    DOEpatents

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung

    2006-10-31

    An apparatus for recovering ethylene from a hydrocarbon feed stream, where the apparatus is a single distillation column pressure shell encasing an upper region and a lower region. The upper region houses an ethylene distributor rectifying section and the lower region houses a C2 distributor section and an ethylene distributor stripping section. Vapor passes from the lower region into the upper region, and liquid passes from the upper region to the lower region. The process for recovering the ethylene is also disclosed. The hydrocarbon feed stream is introduced into the C2 distributor section, and after a series of stripping and refluxing steps, distinct hydrocarbon products are recovered from the C2 distributor section, the ethylene distributor stripping section, and the ethylene distributor rectifying section, respectively.

  19. Interaction of Light and Ethylene on Stem Gravitropism

    NASA Technical Reports Server (NTRS)

    Harrison, Marcia A.

    1996-01-01

    The major objective of this study was to evaluate light-regulated ethylene production during gravitropic bending in etiolated pea stems. Previous investigations indicated that ethylene production increases after gravistimulation and is associated with the later (counter-reactive) phase of bending. Additionally, changes in the counter-reaction and locus of curvature during gravitropism are greatly influenced by red light and ethylene production. Ethylene production may be regulated by the levels of available precursor (1-aminocyclopropane-l-carboxylic acid, ACC) via its synthesis, conjugation to malonyl-ACC or glutamyl-ACC, or oxidation to ethylene. The regulation of ethylene production by quantifying ACC and conjugated ACC levels in gravistimulated pea stemswas examined. Also measured was the changes in protein and enzyme activity associated with gravitropic curvature by electrophoretic and spectrophotometric techniques. An image analysis system was used to visualize and quantify enzymatic activity and transcriptional products in gravistimulated and red-light treated etiolated pea stem tissues.

  20. Ethylene and Hormonal Cross Talk in Vegetative Growth and Development.

    PubMed

    Van de Poel, Bram; Smet, Dajo; Van Der Straeten, Dominique

    2015-09-01

    Ethylene is a gaseous plant hormone that most likely became a functional hormone during the evolution of charophyte green algae, prior to land colonization. From this ancient origin, ethylene evolved into an important growth regulator that is essential for myriad plant developmental processes. In vegetative growth, ethylene appears to have a dual role, stimulating and inhibiting growth, depending on the species, tissue, and cell type, developmental stage, hormonal status, and environmental conditions. Moreover, ethylene signaling and response are part of an intricate network in cross talk with internal and external cues. Besides being a crucial factor in the growth control of roots and shoots, ethylene can promote flowering, fruit ripening and abscission, as well as leaf and petal senescence and abscission and, hence, plays a role in virtually every phase of plant life. Last but not least, together with jasmonates, salicylate, and abscisic acid, ethylene is important in steering stress responses.

  1. Molecular Requirements for the Biological Activity of Ethylene 1

    PubMed Central

    Burg, Stanley P.; Burg, Ellen A.

    1967-01-01

    The molecular requirements for ethylene action were investigated using the pea straight growth test. Biological activity requires an unsaturated bond adjacent to a terminal carbon atom, is inversely related to molecular size, and is decreased by substitutions which lower the electron density in the unsaturated position. Evidence is presented that ethylene binds to a metal containing receptor site. CO2 is a competitive inhibitor of ethylene action, and prevents high concentrations of auxin (which stimulate ethylene formation) from retarding the elongation of etiolated pea stem sections. It is suggested that CO2 delays fruit ripening by displacing the ripening hormone, ethylene, from its receptor site. Binding of ethylene to the receptor site is also impeded when the O2 concentration is lowered, and this may explain why fruit ripening is delayed at low O2 tensions. PMID:16656478

  2. Microfluidic Separation of Ethylene and Ethane Using Frustrated Lewis Pairs.

    PubMed

    Voicu, Dan; Stephan, Douglas W; Kumacheva, Eugenia

    2015-12-21

    Separation of gaseous olefins and paraffins is one of the most important separation processes in the industry. Development of new cost-effective technologies aims at reducing the high energy consumption during the separation process. Here, we took advantage of the reaction of frustrated Lewis pairs (FLPs) with ethylene to achieve reactive extraction of ethylene from ethylene-ethane mixtures. The extraction was studied using a microfluidic platform, which enabled a rapid, high-throughput assessment of reaction conditions to optimize gas separation efficiency. A separation factor of 7.3 was achieved for ethylene from a 1:1 volume ratio mixture of ethylene and ethane, which corresponded to an extracted ethylene purity of 88 %. The results obtained in the microfluidic studies were validated using infrared spectroscopy. This work paves the way for further development of the FLPs and optimization of reaction conditions, thereby maximizing the separation efficiency of olefins from their mixtures with paraffins.

  3. Spatially well-defined binary brushes of poly(ethylene glycol)s for micropatterning of active proteins on anti-fouling surfaces.

    PubMed

    Xu, F J; Li, H Z; Li, J; Teo, Y H Eric; Zhu, C X; Kang, E T; Neoh, K G

    2008-12-01

    We report a novel method for micropatterning of active proteins on anti-fouling surfaces via spatially well-defined and dense binary poly(ethylene glycol)s (PEGs) brushes with controllable protein-docking sites. Binary brushes of poly(poly(ethylene glycol) methacrylate-co-poly(ethylene glycol)methyl ether methacrylate), or P(PEGMA-co-PEGMEMA), and poly(poly(ethylene glycol)methyl ether methacrylate), or P(PEGMEMA), were prepared via consecutive surface-initiated atom transfer radical polymerizations (SI-ATRPs) from a resist-micropatterned Si(100) wafer surface. The terminal hydroxyl groups on the side chains of PEGMA units in the P(PEGMA-co-PEGMEMA) microdomains were activated directly by 1,1'-carbonyldiimidazole (CDI) for the covalent coupling of human immunoglobulin (IgG) (as a model active protein). The resulting IgG-coupled PEG microdomains interact only and specifically with target anti-IgG, while the other PEG microregions effectively prevent specific and non-specific protein fouling. When extended to other active biomolecules, microarrays for specific and non-specific analyte interactions with a high signal-to-noise ratio could be readily tailored.

  4. ENZYMOLOGY OF ARSENIC METHYLATION

    EPA Science Inventory

    Enzymology of Arsenic Methylation

    David J. Thomas, Pharmacokinetics Branch, Experimental Toxicology Division, National
    Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park...

  5. Novel and existing data for a future physiological toxicokinetic model of ethylene and its metabolite ethylene oxide in mouse, rat, and human.

    PubMed

    Filser, Johannes Georg; Artati, Anna; Li, Qiang; Pütz, Christian; Semder, Brigitte; Klein, Dominik; Kessler, Winfried

    2015-11-05

    The olefin ethylene is a ubiquitously found gas. It originates predominantly from plants, combustion processes and industrial sources. In mammals, inhaled ethylene is metabolized by cytochrome P450-dependent monooxygenases, particularly by cytochrome P450 2E1, to ethylene oxide, an epoxide that directly alkylates proteins and DNA. Ethylene oxide was mutagenic in vitro and in vivo in insects and mammals and carcinogenic in rats and mice. A physiological toxicokinetic model is a most useful tool for estimating the ethylene oxide burden in ethylene-exposed rodents and humans. The only published physiological toxicokinetic model for ethylene and metabolically produced ethylene oxide is discussed. Additionally, existing data required for the development of a future model and for testing its predictive accuracy are reviewed and extended by new gas uptake studies with ethylene and ethylene oxide in B6C3F1 mice and with ethylene in F344 rats.

  6. Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural.

    PubMed

    Pacheco, Joshua J; Davis, Mark E

    2014-06-10

    Terephthalic acid (PTA), a monomer in the synthesis of polyethylene terephthalate (PET), is obtained by the oxidation of petroleum-derived p-xylene. There is significant interest in the synthesis of renewable, biomass-derived PTA. Here, routes to PTA starting from oxidized products of 5-hydroxymethylfurfural (HMF) that can be produced from biomass are reported. These routes involve Diels-Alder reactions with ethylene and avoid the hydrogenation of HMF to 2,5-dimethylfuran. Oxidized derivatives of HMF are reacted with ethylene over solid Lewis acid catalysts that do not contain strong Brønsted acids to synthesize intermediates of PTA and its equally important diester, dimethyl terephthalate (DMT). The partially oxidized HMF, 5-(hydroxymethyl)furoic acid (HMFA), is reacted with high pressure ethylene over a pure-silica molecular sieve containing framework tin (Sn-Beta) to produce the Diels-Alder dehydration product, 4-(hydroxymethyl)benzoic acid (HMBA), with 31% selectivity at 61% HMFA conversion after 6 h at 190 °C. If HMFA is protected with methanol to form methyl 5-(methoxymethyl)furan-2-carboxylate (MMFC), MMFC can react with ethylene in the presence of Sn-Beta for 2 h to produce methyl 4-(methoxymethyl)benzenecarboxylate (MMBC) with 46% selectivity at 28% MMFC conversion or in the presence of a pure-silica molecular sieve containing framework zirconium (Zr-Beta) for 6 h to produce MMBC with 81% selectivity at 26% MMFC conversion. HMBA and MMBC can then be oxidized to produce PTA and DMT, respectively. When Lewis acid containing mesoporous silica (MCM-41) and amorphous silica, or Brønsted acid containing zeolites (Al-Beta), are used as catalysts, a significant decrease in selectivity/yield of the Diels-Alder dehydration product is observed.

  7. The Role of Ethylene in Plants Under Salinity Stress

    PubMed Central

    Tao, Jian-Jun; Chen, Hao-Wei; Ma, Biao; Zhang, Wan-Ke; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Although the roles of ethylene in plant response to salinity and other stresses have been extensively studied, there are still some obscure points left to be clarified. Generally, in Arabidopsis and many other terrestrial plants, ethylene signaling is indispensable for plant rapid response and tolerance to salinity stress. However, a few studies showed that functional knock-out of some ACSs increased plant salinity-tolerance, while overexpression of them caused more sensitivity. This seems to be contradictory to the known opinion that ethylene plays positive roles in salinity response. Differently, ethylene in rice may play negative roles in regulating seedling tolerance to salinity. The main positive ethylene signaling components MHZ7/OsEIN2, MHZ6/OsEIL1, and OsEIL2 all negatively regulate the salinity-tolerance of rice seedlings. Recently, several different research groups all proposed a negative feedback mechanism of coordinating plant growth and ethylene response, in which several ethylene-inducible proteins (including NtTCTP, NEIP2 in tobacco, AtSAUR76/77/78, and AtARGOS) act as inhibitors of ethylene response but activators of plant growth. Therefore, in addition to a summary of the general roles of ethylene biosynthesis and signaling in salinity response, this review mainly focused on discussing (i) the discrepancies between ethylene biosynthesis and signaling in salinity response, (ii) the divergence between rice and Arabidopsis in regulation of salinity response by ethylene, and (iii) the possible negative feedback mechanism of coordinating plant growth and salinity response by ethylene. PMID:26640476

  8. Ethylene: a factor in defoliation induced by auxins.

    PubMed

    Hallaway, M; Osborne, D J

    1969-03-07

    Aerial sprays of synthetic auxins defoliate many species of tropical trees. Treatment of Euonymus japonica leaves with the n-butyl ester of 2,4-dichlorophenoxyacetic acid causes premature senescence and leaf fall and stimulates ethylene production by the blade 5-to 25-fold. Exposure to ethylene alone similarly accelerates senescence and leaf fall. Evidence indicates that the defoliant action of auxin is mediated through the enhanced amounts of ethylene in the blade.

  9. Sorption interactions between ethylene glycol and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Butyrskaya, E. V.; Belyakova, N. V.; Nechaeva, L. S.; Shaposhnik, V. A.; Selemenev, V. F.

    2017-03-01

    The adsorption of ethylene glycol by carbon nanoparticles is studied. Carbon nanoparticles with the highest affinity to ethylene glycol are identified, and an adsorption isotherm is constructed. Based on quantum chemical calculations of the energies of interaction between the sorbate and nanotubes with (4,4) and (6,6) chirality, a change in mechanism is revealed upon the monomolecular adsorption of ethylene glycol on carbon nanotubes, and the adsorption isotherm is thus interpreted.

  10. Extraction of ethylene glycol from aqueous salt solutions

    NASA Astrophysics Data System (ADS)

    Butyrskaya, E. V.; Belyakova, N. V.; Rozhkova, M. V.; Nechaeva, L. S.

    2012-11-01

    A method is proposed for extracting ethylene glycol from aqueous salt solutions by dialysis through ion-exchange membranes, based on the Donnan exclusion of the electrolyte. Dialysis is performed in the continuous and batch modes. It is found that the batch mode of dialysis is more effective for extracting ethylene glycol from its aqueous salt solutions. The effect of the ionic form of the membrane on ethylene glycol fluxes is explained through computer simulation.

  11. Controlling Ethylene for Extended Preservation of Fresh Fruits and Vegetables

    DTIC Science & Technology

    2008-12-01

    containers. As FF&V ripen , they produce and release ethylene. Ethylene (C2H4) is a ripening hormone naturally produced by some produce. The accumulation of...less than I PPM) can induce fruit ripening , produce undesirable changes to flavors (bitterness), color (yellowing or browning), texture (softening...ethylene levels inside a container containing 200 pounds (five 40-pound cases) of bananas . For this test, a temperature of 55° F was maintained in two

  12. Ethylene suppresses tomato (solanum lycopersicum) fruit set through modification of gibberellin metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant hormone ethylene is probably best know as the “ripening hormone”. Ethylene also plays roles in senescence, stress responses and organ shedding (abscission). Regulation of ethylene synthesis, ethylene scavenging and genetic repression of ethylene synthesis and/or signaling are tactics dep...

  13. Evaluation of ethylene as a mediator of gravitropism by tomato hypocotyls

    NASA Technical Reports Server (NTRS)

    Harrison, M. A.; Pickard, B. G.

    1986-01-01

    Assessments of the participation of ethylene in gravitropism by hypocotyls of tomato (Lycopersicon esculentum Mill.) indicate that gravitropism can occur without substantial change in ethylene production. Moreover, lowering or evaluating ethylene over a considerable range, as well as inhibiting ethylene action, fails to influence gravitropic bending. This vitiates the possibility that ethylene is a mediator of the primary, negative gravitropic response of tomato shoots.

  14. DNA methylation and differentiation.

    PubMed Central

    Michalowsky, L A; Jones, P A

    1989-01-01

    The methylation of specific cytosine residues in DNA has been implicated in regulating gene expression and facilitating functional specialization of cellular phenotypes. Generally, the demethylation of certain CpG sites correlates with transcriptional activation of genes. 5-Azacytidine is an inhibitor of DNA methylation and has been widely used as a potent activator of suppressed genetic information. Treatment of cells with 5-azacytidine results in profound phenotypic alterations. The drug-induced hypomethylation of DNA apparently perturbs DNA-protein interactions that may consequently alter transcriptional activity and cell determination. The inhibitory effect of cytosine methylation may be exerted via altered DNA-protein interactions specifically or may be transduced by a change in the conformation of chromatin. Recent studies have demonstrated that cytosine methylation also plays a central role in parental imprinting, which in turn determines the differential expression of maternal and paternal genomes during embryogenesis. In other words, methylation is the mechanism whereby the embryo retains memory of the gametic origin of each component of genetic information. A memory of this type would probably persist during DNA replication and cell division as methylation patterns are stable and heritable. PMID:2466640

  15. Bimetallic effects for enhanced polar comonomer enchainment selectivity in catalytic ethylene polymerization.

    PubMed

    Rodriguez, Brandon A; Delferro, Massimiliano; Marks, Tobin J

    2009-04-29

    The synthesis and characterization of the bimetallic 2,7-di-[(2,6-diisopropylphenyl)imino]-1,8-naphthalenediolato group 10 metal polymerization catalysts {[Ni(CH(3))](2)[1,8-(O)(2)C(10)H(4)-2,7-[CH=N(2,6-(i)Pr(2)C(6)H(3))](PMe(3))(2)} and {[Ni(1-naphthyl)](2)[1,8-(O)(2)C(10)H(4)-2,7-[CH=N(2,6-(i)Pr(2)C(6)H(3))](PPh(3))(2)} [FI(2)-Ni(2)(PR(3))(2)] are presented, along with the synthesis and characterization of the mononuclear analogues {Ni(CH(3))[3-(t)Bu-2-(O)C(6)H(3)CH=N(2,6-(i)Pr(2)C(6)H(3))](PMe)(3)} and {Ni(1-naphthyl)[3-(t)Bu-2-(O)C(6)H(3)CH=N(2,6-(i)Pr(2)C(6)H(3))](PPh)(3)} [FI-Ni (PR(3))]. Monometallic Ni catalysts were also prepared by functionalizing one ligation center of the bimetallic ligand with a trimethylsilyl group (TMS), yielding {Ni(CH(3))[1,8-(O)(TMSO)C(10)H(4)-2,7-[CH=N(2,6-(i)Pr(2)C(6)H(3))](PMe(3))} [TMS-FI(2)-Ni(PMe(3))]. The FI(2)-Ni(2) catalysts exhibit significant increases in ethylene homopolymerization activity versus the monometallic analogues, as well as increased branching and methyl branch selectivity, even in the absence of a Ni(cod)(2) cocatalyst. Increasing ethylene concentrations significantly suppress branching and alter branch morphology. FI(2)-Ni(2)-mediated copolymerizations with ethylene + polar-functionalized norbornenes exhibit a 4-fold increase in comonomer incorporation versus FI-Ni, yielding copolymers with up to 10% norbornene copolymer incorporation. FI(2)-Ni(2)-catalyzed copolymerizations with ethylene + methylacrylate or methyl methacrylate incorporate up to 11% acrylate comonomer, while the corresponding mononuclear FI-Ni catalysts incorporate negligible amounts. Furthermore, the FI(2)-Ni(2)-mediated polymerizations exhibit appreciable polar solvent tolerance, turning over in the presence of ethyl ether, acetone, and even water. The mechanism by which the present cooperative effects take place is investigated, as is the nature of the copolymer microstructures produced.

  16. Controlled release of ethylene via polymeric films for food packaging

    NASA Astrophysics Data System (ADS)

    Pisano, Roberto; Bazzano, Marco; Capozzi, Luigi Carlo; Ferri, Ada; Sangermano, Marco

    2015-12-01

    In modern fruit supply chain a common method to trigger ripening is to keep fruits inside special chambers and initiate the ripening process through administration of ethylene. Ethylene is usually administered through cylinders with inadequate control of its final concentration in the chamber. The aim of this study is the development of a new technology to accurately regulate ethylene concentration in the atmosphere where fruits are preserved: a polymeric film, containing an inclusion complex of α-cyclodextrin with ethylene, was developed. The complex was prepared by molecular encapsulation which allows the entrapment of ethylene into the cavity of α-cyclodextrin. After encapsulation, ethylene can be gradually released from the inclusion complex and its release rate can be regulated by temperature and humidity. The inclusion complex was dispersed into a thin polymeric film produced by UV-curing. This method was used because is solvent-free and involves low operating temperature; both conditions are necessary to prevent rapid release of ethylene from the film. The polymeric films were characterized with respect to thermal behaviour, crystalline structure and kinetics of ethylene release, showing that can effectively control the release of ethylene within confined volume.

  17. Gravitropism in higher plant shoots. I - A role for ethylene

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Salisbury, Frank B.

    1981-01-01

    Two inhibitors of ethylene synthesis, Co(2+) and aminoethoxyvinylglycine (AVG), and two inhibitors of ethylene action, Ag(+) and CO2, are shown to delay the gravitropic response of cocklebur (Xanthium strumarium L.), tomato (Lycopersicon esculentum Mill.), and castor bean (Ricinus communis L.) stems. Gentle shaking on a mechanical shaker does not inhibit the gravitropic response, but vigorous hand shaking for 120 seconds delays the response somewhat. AVG and Ag(+) further delay the response of mechanically stimulated plants. AVG retards the storage of bending energy but not of stimulus. In gravitropism, graviperception may first stimulate ethylene evolution, which may then influence bending directly, or responses involving ethylene could be more indirect.

  18. The involvement of ethylene in regulation of Arabidopsis gravitropism

    NASA Astrophysics Data System (ADS)

    Li, Ning; Zhu, Lin

    Plant gravitropism is a directional response to gravity stimulus. This response involves a com-plex signaling network. Ethylene, a major plant hormone, has been found to modulate grav-itropism. The biosynthesis of ethylene is induced by the gravi-stimulus and the requirement for ethylene during gravitropism is tissue-dependent. While ethylene plays a modulating role in inflorescence stems, the light-grown hypocotyls of Arabidopsis requires ethylene to achieve a maximum gravicurvature. Because both inhibitory and stimulatory effects of ethylene on gravitropism have been overwhelmingly documented, there is a need to postulate a new theory to consolidate the apparently contradictory results. A dual-and-opposing effects (DOE) theory is therefore hypothesized to address how ethylene is involved in regulation of Arabidopsis grav-itropism, in which it is suggested that both stimulatory and inhibitory effects act on the same organ of a plant and co-exist at the same time in a mutually opposing manner. The final out-come of gravitropic response is determined by the dynamic display between the two opposing effects. A prolonged pretreatment of ethylene promotes the gravitropism in both inflorescence and light-grown hypocotyls, while a short ethylene pretreatment inhibits gravitropism. Gener-ally speaking, the inhibitory effect of ethylene is dominant over the expression of the stimula-tory effect in light-grown hypocotyls, whereas the stimulatory effect is dominant in inflorescence stem. Each effect is also positively correlated with concentrations of ethylene and in a time-dependent manner. The stimulatory effect occurs slowly but continues to react after the removal of ethylene, whereas the inhibitory effect takes place abruptly and diminishes shortly after its removal. Forward genetic screening based on the DOE phenotype of ethylene-treated Arabidop-sis has revealed a novel component in gravity signaling pathway: EGY1 (ethylene-dependent gravitropism-deficient and yellow

  19. [Decontamination of some spices by ethylene oxide. Development of 2-chloroethanol and ethylene glycol during the preservation].

    PubMed

    Chaigneau, M; Muraz, B

    1993-01-01

    After the disinfection by ethylene oxide and storage by ethylene oxide in definite conditions of 16 spices (parsley, chervil, tarragone, chive, thyme, rosemary, coriander, nutmeg, mace, cinnamon, allspices, clove, pepper), the authors observed the fast loss of residual ethylene oxide and ethyleneglycol. On the contrary, the persistence of 2-chloroethanol was followed up for 6 months. They turn their attention to the toxicity of this compound to ensure the protection of customers.

  20. Treatment of plants with gaseous ethylene and gaseous inhibitors of ethylene action

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylene is an interesting plant hormone to work with. It’s a gas! Literally. And this affects not only its role in plant biology but also how you treat plants with the hormone. In many ways, it simplifies the treatment problem. Other hormones have to be made up in solution and applied to some ...

  1. Superficial scald and bitter pit development in cold-stored transgenic apples suppressed for ethylene biosynthesis.

    PubMed

    Pesis, Edna; Ibáñez, Ana M; Phu, My Lin; Mitcham, Elizabeth J; Ebeler, Susan E; Dandekar, Abhaya M

    2009-04-08

    The plant hormone ethylene regulates climacteric fruit ripening and plays a major role in the development of superficial scald in apple fruits during cold storage. The effect of cold storage at 0 degrees C on development of superficial scald and bitter pit (BP) in transgenic Greensleeves (GS) apples suppressed for ethylene biosynthesis was investigated. Four apple lines were used: untransformed GS; line 68G, suppressed for 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO); and lines 103Yand 130Y, suppressed for ACC synthase (ACS). Fruits from the transformed lines 68G, 103Y, and 130Y produced very little ethylene during 3 months of cold storage at 0 degrees C and after subsequent transfer to 20 degrees C, whereas untransformed fruits produced significant ethylene during cold storage, which increased dramatically at 20 degrees C. Respiration, expressed as CO(2) production, was similar in all four apple lines. After 2 months at 0 degrees C, all apple lines showed some BP symptoms, but lines 68G and 103Y were more affected than untransformed GS or line 130Y. Both transformed and untransformed apples produced alpha-farnesene, but concentrations were lower in yellow fruit than in green fruit in all lines but 68G. Line 68G produced the most alpha-farnesene after 2 months at 0 degrees C, including both (E,E) alpha-farnesene and (Z,E) alpha-farnesene. Concentrations of (E,E) alpha-farnesene were 100 times greater than those of (Z,E) alpha-farnesene in all lines. After 4 months at 0 degrees C plus 1 week at 20 degrees C, untransformed GS apples exhibited the most superficial scald, whereas fruits from lines 68G and 103Y were less affected and line 130Y had no scald. Superficial scald severity was higher in green fruit than in yellow fruit in all affected lines. These lines also exhibited significant production of 6-methyl-5-hepten-2-one (MHO), a major oxidation product of (E,E) alpha-farnesene. Line 130Y neither exhibited superficial scald nor produced MHO. It is

  2. Cellulose nanocrystal-poly(oligo(ethylene glycol) methacrylate) brushes with tunable LCSTs.

    PubMed

    Grishkewich, Nathan; Akhlaghi, Seyedeh Parinaz; Zhaoling, Yao; Berry, Richard; Tam, Kam C

    2016-06-25

    This paper reports on the synthesis of poly(oligoethylene glycol) methyl ether acrylate (POEGMA) grafted cellulose nanocrystals (CNCs) via surface initiated atom transfer radical polymerization (ATRP). An ATRP initiator (α-Bromoisobutyryl bromide) was covalently bonded to the surface of CNCs, followed by copolymerizing di(ethylene glycol) methyl ether methacrylate (MEO2MA) and oligoethylene glycol methyl ether methacrylate (OEGMA300) monomers from the surface using Cu(I)Br/2,2-dipyridal. Multiple POEGMA-g-CNC systems with varying MEO2MA/OEGMA300 content were synthesized, and they displayed a range of lower critical solution temperatures (LCSTs) in aqueous medium. μDSC endotherms and microstructural analysis indicated the collapse of POEGMA chains, followed by the aggregation of nanoparticles above their LCSTs. Cloud point measurements demonstrated a hysteresis in the heating and cooling of the POEGMA-g-CNC systems. It was found that the LCST of the nanoparticles could be tuned to between 23.8 to 63.8°C by adjusting the OEGMA300 content of the POEGMA brushes.

  3. Ethylene modulates development and toxin biosynthesis in aspergillus possibly via an ethylene sensor-mediated signaling pathway.

    PubMed

    Roze, L V; Calvo, A M; Gunterus, A; Beaudry, R; Kall, M; Linz, J E

    2004-03-01

    Ethylene, a biologically active natural compound, inhibited aflatoxin accumulation by Aspergillus parasiticus on a solid growth medium in a dose-dependent manner at concentrations of 0.1 to 150 ppm. The activity of the nor-1 promoter (an early aflatoxin gene) was reduced to nondetectable levels by similar quantities of ethylene, suggesting that the inhibitory effect on toxin synthesis occurred, at least in part, at the level of transcription. The inhibitory effect of ethylene on aflatoxin accumulation was also observed when A. parasiticus was grown on raw peanuts. Under similar growth conditions and doses, ethylene strongly inhibited development of asci and ascospores in Aspergillus nidulans, with no detectable effect on Hülle cell formation, conidiation, or sterigmatocystin accumulation. During early growth, A. parasiticus and A. nidulans produced ethylene with approximately twofold higher quantities measured in continuous light than in the dark. 1-Methylcyclopropene (an inhibitor of ethylene receptors in plants), light, CO2, temperature, and growth medium composition altered the effect of ethylene on A. nidulans and A. parasiticus. These observations are consistent with the existence of an ethylene sensor molecule that mediates the function of an ethylene-responsive signaling pathway(s) in Aspergillus.

  4. DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes.

    PubMed

    Tran, Robert K; Henikoff, Jorja G; Zilberman, Daniel; Ditt, Renata F; Jacobsen, Steven E; Henikoff, Steven

    2005-01-26

    Cytosine DNA methylation in vertebrates is widespread, but methylation in plants is found almost exclusively at transposable elements and repetitive DNA. Within regions of methylation, methylcytosines are typically found in CG, CNG, and asymmetric contexts. CG sites are maintained by a plant homolog of mammalian Dnmt1 acting on hemi-methylated DNA after replication. Methylation of CNG and asymmetric sites appears to be maintained at each cell cycle by other mechanisms. We report a new type of DNA methylation in Arabidopsis, dense CG methylation clusters found at scattered sites throughout the genome. These clusters lack non-CG methylation and are preferentially found in genes, although they are relatively deficient toward the 5' end. CG methylation clusters are present in lines derived from different accessions and in mutants that eliminate de novo methylation, indicating that CG methylation clusters are stably maintained at specific sites. Because 5-methylcytosine is mutagenic, the appearance of CG methylation clusters over evolutionary time predicts a genome-wide deficiency of CG dinucleotides and an excess of C(A/T)G trinucleotides within transcribed regions. This is exactly what we find, implying that CG methylation clusters have contributed profoundly to plant gene evolution. We suggest that CG methylation clusters silence cryptic promoters that arise sporadically within transcription units.

  5. 49 CFR 173.193 - Bromoacetone, methyl bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... methyl bromide or methyl chloride mixtures, etc. 173.193 Section 173.193 Transportation Other Regulations... bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc. (a) Bromoacetone must be...) Bromoacetone, methyl bromide, chloropicrin and methyl bromide mixtures, chloropicrin and methyl...

  6. 49 CFR 173.193 - Bromoacetone, methyl bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... methyl bromide or methyl chloride mixtures, etc. 173.193 Section 173.193 Transportation Other Regulations... bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc. (a) Bromoacetone must be...) Bromoacetone, methyl bromide, chloropicrin and methyl bromide mixtures, chloropicrin and methyl...

  7. Ethylene production and peroxidase activity in aphid-infested barley.

    PubMed

    Argandoña, V H; Chaman, M; Cardemil, L; Muñoz, O; Zúñiga, G E; Corcuera, L J

    2001-01-01

    The purpose of this work was to investigate whether ethylene is involved in the oxidative and defensive responses of barley to the aphids Schizaphis graminum (biotype C) and Rhopalophum padi. The effect of aphid infestation on ethylene production was measured in two barley cultivars (Frontera and Aramir) that differ in their susceptibility to aphids. Ethylene evolution was higher in plants infested for 16 hr than in plants infested for 4 hr in both cultivars. Under aphid infestation, the production of ethylene was higher in cv. Frontera than in Aramir, the more aphid susceptible cultivar. Ethylene production also increases with the degree of infestation. Maximum ethylene evolution was detected after 16 hr when plants were infested with 10 or more aphids. Comparing the two species of aphids, Schizaphis graminum induced more ethylene evolution than Rhopalosiphum padi. Infestation with S. graminum increased hydrogen peroxide content and total soluble peroxidase activity in cv. Frontera, with a maximum level of H2O2 observed after 20 min of infestation and the maximum in soluble peroxidase activity after 30 min of infestation. When noninfested barley seedlings from cv. Frontera were exposed to ethylene, an increase in hydrogen peroxide and in total peroxidase activity was detected at levels similar to those of infested plants from cv. Frontera. When noninfested plants were treated with 40 ppm of ethylene, the maximum levels of H2O2 and soluble peroxidase activity were at 10 and 40 min, respectively. Ethylene also increased the activity of both cell-wall-bound peroxidases types (ionically and covalently bound), comparable with infestation. These results suggest that ethylene is involved in the oxidative responses of barley plants induced by infestation.

  8. Morphology of poly(ethylene oxide) dissolved in a room temperature ionic liquid: a small angle neutron scattering study.

    PubMed

    Triolo, Alessandro; Russina, Olga; Keiderling, Uwe; Kohlbrecher, Joachim

    2006-02-02

    Solutions of deuterated poly(ethylene oxide) (d-PEO) in 1-butyl-3-methyl imidazolium tetrafluoroborate ([bmim][BF4]), a prototype room-temperature ionic liquid (RTIL), have been studied at room temperature over a range of polymer concentrations, using small angle neutron scattering (SANS), characterizing the conformation of PEO dissolved in RTILs. [bmim][BF4] behaves as a good solvent for d-PEO, which organizes in this solvent in non entangled random coils. These findings will help in optimizing the designing of microemulsions in these potentially environmentally friendly solvents.

  9. Optimization of Aqueous SI-ATRP Grafting of Poly(Oligo(Ethylene Glycol) Methacrylate) Brushes from Benzyl Chloride Macroinitiator Surfaces.

    PubMed

    Rodda, Andrew E; Ercole, Francesca; Nisbet, David R; Forsythe, John S; Meagher, Laurence

    2015-06-01

    Poly(oligo(ethylene glycol) methacrylate) (pOEGMA) brushes were grafted via surface-initiated atom transfer radical polymerization (SI-ATRP) from a poly(styrene-co-vinylbenzyl chloride) macroinitiator. While bromoisobutyryl initiator groups are most commonly used for this purpose, benzyl chloride initiators may be advantageous for some applications due to superior stability. Water-only graft solutions produced thicker brush coatings with superior low fouling properties (low protein adsorption and cell adhesion) versus mixed water/alcohol solutions. Coatings produced using 475 Da OEGMA (methyl ether terminated) further reduced non-specific interactions compared to 360 Da OEGMA (hydroxyl terminated). Initiator density had minimal effect on low fouling properties.

  10. Ethylene-air detonation in water spray

    NASA Astrophysics Data System (ADS)

    Jarsalé, G.; Virot, F.; Chinnayya, A.

    2016-09-01

    Detonation experiments are conducted in a 52 {mm} square channel with an ethylene-air gaseous mixture with dispersed liquid water droplets. The tests were conducted with a fuel-air equivalence ratio ranging from 0.9 to 1.1 at atmospheric pressure. An ultrasonic atomizer generates a polydisperse liquid water spray with droplet diameters of 8.5-12 μm, yielding an effective density of 100-120 g/m3. Pressure signals from seven transducers and cellular structure are recorded for each test. The detonation structure in the two-phase mixture exhibits a gaseous-like behaviour. The pressure profile in the expansion fan is not affected by the addition of water. A small detonation velocity deficit of up to 5 % was measured. However, the investigation highlights a dramatic increase in the cell size (λ ) associated with the increase in the liquid water mass fraction in the two-phase mixture. The detonation structure evolves from a multi-cell to a half-cell mode. The analysis of the decay of the post-shock pressure fluctuations reveals that the ratio of the hydrodynamic thickness over the cell size (x_{{HT}}/{λ }) remains quite constant, between 5 and 7. A slight decrease of this ratio is observed as the liquid water mass fraction is increased, or the ethylene-air mixture is made leaner.

  11. [Interference of ethylene glycol on lactate assays].

    PubMed

    Graïne, H; Toumi, K; Roullier, V; Capeau, J; Lefèvre, G

    2007-01-01

    Ethylene glycol is broken down to three main organic acids: glycolic acid, glyoxylic acid and oxalic acid which cause severe metabolic acidosis. Effect of these three acids on lactate assays was evaluated in five blood gas analysers and two clinical chemistry analysers. For all systems, no influence of oxalic acid on lactate results could be demonstrated. No interference of glycolic acid could be observed on lactate assay performed with Rapid Lab 1265 (R: 104,9 +/- 12,1%), Vitros 950 (R: 105,7 +/- 5,3 %) and Architect ci8200 (R: 104,9 +/- 4,7%), but on the contrary, CCX 4, OMNI S, ABL 725 and 825 demonstrated a concentration-dependent interference. No interference of glyoxylic acid could be observed with Vitros 950, but a positive interference could be observed with ABL 725 and 825, OMNI S, CCX4 and Architect ci8200 A linear relationship between apparent lactate concentration found with ABL 725 and 825, OMNI S, CCX 4, and glyoxylic acid could be observed (0,94 < r < 0,99), a weaker interference being observed with Rapid Lab 1265 and Architect ci 8200. Our results demonstrated that in case of ethylene glycol poisoning, cautious interpretation of lactate assay should be done, since wrong results of lactacidemia could lead to misdiagnostic and delay patient treatment.

  12. Scattering studies on mixtures of poly(ethylene oxide) with poly(methyl methacrylate)

    SciTech Connect

    Russell, T.P.; Ito, H.; Wignall, G.D.

    1986-12-01

    Molten and semi-crystalline mixtures of PEO and PMMA have been investigated by small angle neutron and x-ray scattering. It has been found that the Flory Huggins interaction parameter, evaluated from the intermolecular scattering function, is quite small and is apparently dominated by entropic contributions. Scattering profiles from the semi-crystalline mixtures clearly show that the PMMA is incorporated within the amorphous phase between the crystalline PEO lamellae.

  13. Exogenous ethylene influences flower opening of cut roses (Rosa hybrida) by regulating the genes encoding ethylene biosynthesis enzymes.

    PubMed

    Ma, Nan; Cai, Lei; Lu, Wangjin; Tan, Hui; Gao, Junping

    2005-10-01

    The purpose of this paper is to investigate the differential responses of flower opening to ethylene in two cut rose cultivars, 'Samantha', whose opening process is promoted, and 'Kardinal', whose opening process is inhibited by ethylene. Ethylene production and 1-aminocyclopropane-1-carboxylate (ACC) synthase and oxidase activities were determined first. After ethylene treatment, ethylene production, ACC synthase (ACS) and ACC oxidase (ACO) activities in petals increased and peaked at the earlier stage (stage 3) in 'Samantha', and they were much more dramatically enhanced and peaked at the later stage (stage 4) in 'Kardinal' than control during vasing. cDNA fragments of three Rh-ACSs and one Rh-ACO genes were cloned and designated as Rh-ACS1, Rh-ACS2, Rh-ACS3 and Rh-ACO1 respectively. Northern blotting analysis revealed that, among three genes of ACS, ethylene-in- duced expression patterns of Rh-ACS3 gene corresponded to ACS activity and ethylene production in both cultivars. A more dramatic accumulation of Rh-ACS3 mRNA was induced by ethylene in 'Kardinal' than that of 'Samantha'. As an ethylene action inhibitor, STS at concentration of 0.2 mmol/L generally inhibited the expression of Rh-ACSs and Rh-ACO in both cultivars, although it induced the expression of Rh-ACS3 transiently in 'Kardinal'. Our results suggests that 'Kardinal' is more sensitive to ethylene than 'Samantha'; and the changes of Rh-ACS3 expression caused by ethylene might be related to the acceleration of flower opening in 'Samantha' and the inhibition in 'Kardinal'. Additional results indicated that three Rh-ACSs genes were differentially associated with flower opening and senescence as well as wounding

  14. Abscission of mango fruitlets as influenced by enhanced ethylene biosynthesis.

    PubMed

    Nunez-Elisea, R; Davenport, T L

    1986-12-01

    Experiments were conducted on developing fruitlet explants of two mango (Mangifera indica L.) cultivars to establish the source and dynamics of ethylene production prior to and during fruitlet abscission. Abscission of all fruits in the samples occurred at approximately 86 and 74 hours postharvest in ;Keitt' and ;Tommy Atkins,' respectively. Increased abscission began 26 hours from harvest and was preceded by enhanced ethylene synthesis. Enhanced ethylene production initiated approximately 48 hours prior to abscission and increased to a maximum near the time of fruitlet abscission. The seed produced the highest amount of ethylene on a per gram fresh weight basis. The pericarp, however, was the main source of ethylene on an absolute basis, since it represented more than 85% of total fruitlet weight. Pedicels containing the abscission zone produced no detectable ethylene prior to or at the moment of abscission. Fumigation of ;Tommy Atkins' fruitlets with 1, 15, or 100 microliters per liter ethylene accelerated abscission by 24 to 36 hours in comparison with unfumigated controls. Diffusion of ethylene from distal fruitlet tissues to the abscission zone triggers the events leading to separation of the fruit from the tree.

  15. Investigating the phytohormone ethylene response pathway by chemical genetics.

    PubMed

    Lin, Lee-Chung; Chueh, Chiao-Mei; Wang, Long-Chi

    2014-01-01

    Conventional mutant screening in forward genetics research is indispensible to understand the biological operation behind any given phenotype. However, several issues, such as functional redundancy and lethality or sterility resulting from null mutations, frequently impede the functional characterization of genetic mutants. As an alternative approach, chemical screening with natural products or synthetic small molecules that act as conditional mutagens allows for identifying bioactive compounds as bioprobes to overcome the above-mentioned issues. Ethylene is the simplest olefin and is one of the major phytohormones playing crucial roles in plant physiology. Most of the current information on how ethylene works in plants came primarily from genetic studies of ethylene mutants identified by conventional genetic screening two decades ago. However, we lack a complete picture of functional interaction among components in the ethylene pathway and cross talk of ethylene with other phytohormones. Here, we describe our methodology for using chemical genetics to identify small molecules that interfere with the ethylene response. We set up a phenotype-based screening platform and a reporter gene-based system for verification of the hit compounds identified by chemical screening. We have successfully identified small molecules affecting the ethylene phenotype in etiolated seedlings and showed that a group of structurally similar compounds are novel inhibitors of ACC synthase, a rate-limiting enzyme in the ethylene biosynthesis pathway.

  16. 46 CFR 151.50-12 - Ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... temperature below 70 °F. (3) When ethylene oxide is to be transported at or near atmospheric pressure, the... oxide shall be carried in fixed, independent, pressure vessel type cargo tanks, designed, constructed... handling ethylene oxide. (2) Cargo tanks shall meet the requirements of Class I pressure vessels. (3)...

  17. Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide (Final Report)

    EPA Science Inventory

    EPA has finalized its Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide. This assessment addresses the potential carcinogenicity from long-term inhalation exposure to ethylene oxide. Now final, this assessment updates the carcinogenicity information in EPA’s 1985 Hea...

  18. Regulation of Ethylene Biosynthesis in Avocado Fruit during Ripening 1

    PubMed Central

    Sitrit, Yaron; Riov, Joseph; Blumenfeld, Amos

    1986-01-01

    Preclimacteric avocado (Persea americana Mill.) fruits produced very little ethylene and had only a trace amount of l-aminocyclopropane-1-carboxylic acid (ACC) and a very low activity of ACC synthase. In contrast, a significant amount of l-(malonylamino)cyclopropane-1-carboxylic acid (MACC) was detected during the preclimacteric stage. In harvested fruits, both ACC synthase activity and the level of ACC increased markedly during the climacteric rise reaching a peak shortly before the climacteric peak. The level of MACC also increased at the climacteric stage. Cycloheximide and cordycepin inhibited the synthesis of ACC synthase in discs excised from preclimacteric fruits. A low but measurable ethylene forming enzyme (EFE) activity was detected during the preclimacteric stage. During ripening, EFE activity increased only at the beginning of the climacteric rise. ACC synthase and EFE activities and the ACC level declined rapidly after the climacteric peak. Application of ACC to attached or detached fruits resulted in increased ethylene production and ripening of the fruits. Exogenous ethylene stimulated EFE activity in intact fruits prior to the increase in ethylene production. The data suggest that conversion of S-adenosylmethionine to ACC is the major factor limiting ethylene production during the preclimacteric stage. ACC synthase is first synthesized during ripening and this leads to the production of ethylene which in turn induces an additional increase in ACC synthase activity. Only when ethylene reaches a certain level does it induce increased EFE activity. PMID:16664762

  19. Ammonia And Ethylene Optrodes For Research On Plant Growth

    NASA Technical Reports Server (NTRS)

    Zhou, Quan; Tabacco, Mary Beth

    1995-01-01

    Fiber-optic sensors developed for use in measuring concentrations of ammonia and ethylene near plants during experiments on growth of plants in enclosed environments. Developmental fiber-optic sensors satisfy need to measure concentrations as low as few parts per billion (ppb) and expected to contribute to research on roles of ethylene and ammonia in growth of plants.

  20. Burst of ethylene upon horizontal placement of tomato seedlings

    NASA Technical Reports Server (NTRS)

    Harrison, M.; Pickard, B. G.

    1984-01-01

    Seedlings of Lycopersicon esculentum Mill. cv Rutgers emit a pulse of ethylene during the first 2 to 4 minutes following horizontal placement. Because this burst appears too rapid and brief to be mediated by increase in net activity of 1-aminocyclopropane-1-carboxylic acid synthase, it might result form accelerated transformation of vacuolar 1-aminocyclopropane-1-carboxylic acid to ethylene.

  1. 21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer,...

  2. 21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer,...

  3. 21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer,...

  4. 21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer,...

  5. False hyperlactatemia in life-threatening ethylene glycol poisoning.

    PubMed

    Riquier, T; Geri, G; Mongardon, N; Bourgogne, E; Pène, F

    2014-04-01

    Ethylene glycol poisoning is rare, but prompt diagnosis is crucial, in order to initiate specific treatments. Herein, we report the case of a patient who was admitted to ICU for coma and extreme metabolic acidosis with unexpected hyperlactatemia on initial ICU blood gas analyzer. Ethylene glycol poisoning was diagnosed, and hyperlactatemia was ruled out on a blood sample sent to the biochemistry department. Interference of blood gas analyzers lactate electrodes with metabolites of ethylene glycol were the source of this apparent hyperlactatemia. Symptoms gradually improved and false hyperlactatemia resolved after renal replacement therapy and fomepizole administration. Time course of ethylene glycol concentration showed similar evolution. After initial confirmation of ethylene glycol presence, this biological interference could thus be used as a surrogate of costly and highly specialised dosages.

  6. Ethylene-Mediated Acclimations to Flooding Stress1

    PubMed Central

    Sasidharan, Rashmi; Voesenek, Laurentius A.C.J.

    2015-01-01

    Flooding is detrimental for plants, primarily because of restricted gas exchange underwater, which leads to an energy and carbohydrate deficit. Impeded gas exchange also causes rapid accumulation of the volatile ethylene in all flooded plant cells. Although several internal changes in the plant can signal the flooded status, it is the pervasive and rapid accumulation of ethylene that makes it an early and reliable flooding signal. Not surprisingly, it is a major regulator of several flood-adaptive plant traits. Here, we discuss these major ethylene-mediated traits, their functional relevance, and the recent progress in identifying the molecular and signaling events underlying these traits downstream of ethylene. We also speculate on the role of ethylene in postsubmergence recovery and identify several questions for future investigations. PMID:25897003

  7. Mechanistic Insights in Ethylene Perception and Signal Transduction.

    PubMed

    Ju, Chuanli; Chang, Caren

    2015-09-01

    The gaseous hormone ethylene profoundly affects plant growth, development, and stress responses. Ethylene perception occurs at the endoplasmic reticulum membrane, and signal transduction leads to a transcriptional cascade that initiates diverse responses, often in conjunction with other signals. Recent findings provide a more complete picture of the components and mechanisms in ethylene signaling, now rendering a more dynamic view of this conserved pathway. This includes newly identified protein-protein interactions at the endoplasmic reticulum membrane, as well as the major discoveries that the central regulator ETHYLENE INSENSITIVE2 (EIN2) is the long-sought phosphorylation substrate for the CONSTITUTIVE RESPONSE1 protein kinase, and that cleavage of EIN2 transmits the signal to the nucleus. In the nucleus, hundreds of potential gene targets of the EIN3 master transcription factor have been identified and found to be induced in transcriptional waves, and transcriptional coregulation has been shown to be a mechanism of ethylene cross talk.

  8. Determination of ammonia in ethylene using ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Cross, J. H.; Limero, T. F.; Lane, J. L.; Wang, F.

    1997-01-01

    A simple procedure to analyze ammonia in ethylene by ion mobility spectrometry is described. The spectrometer is operated with a silane polymer membrane., 63Ni ion source, H+ (H2O)n reactant ion, and nitrogen drift and source gas. Ethylene containing parts per billion (ppb) (v/v) concentrations of ammonia is pulled across the membrane and diffuses into the spectrometer. Preconcentration or preseparation is unnecessary, because the ethylene in the spectrometer has no noticeable effect on the analytical results. Ethylene does not polymerize in the radioactive source. Ethylene's flammability is negated by the nitrogen inside the spectrometer. Response to ammonia concentrations between 200 ppb and 1.5 ppm is near linear, and a detection limit of 25 ppb is calculated.

  9. Dinickel Bisphenoxyiminato Complexes for the Polymerization of Ethylene and α-Olefins

    PubMed Central

    Radlauer, Madalyn; Day, Michael W.; Agapie, Theodor

    2012-01-01

    Dinuclear nickelphenoxyiminato olefin polymerization catalysts based on rigid p-terphenyl frameworks are reported. Permethylation of the central arene of the terphenyl unit and oxygen substitution of the peripheral rings ortho to the aryl-aryl linkages blocks rotation around these linkages allowing atropisomers of the ligand to be isolated. The corresponding syn and anti dinickel complexes (25-s and 25-a) were synthesized and characterized by single crystal X-ray diffraction. These frameworks limit the relative movement of the metal centers restricting the metal-metal distance. Kinetics studies of isomerization of a ligand precursor (7-a) allowed the calculation of the activation parameters for the isomerization process (ΔH‡ = 28.0 ± 0.4 kcal×mol−1 and ΔS‡ = −12.3 ± 0.4 cal×mol−1×K−1). The reported nickel complexes are active for ethylene polymerization [TOF up to 3700 (mol C2H4)×(mol Ni)−1×h−1] and ethylene/α-olefin copolymerization. Only methyl branches are observed in the polymerization of ethylene, while α-olefins are incorporated without apparent chain walking. These catalysts are active in the presence of polar additives and in neat tetrahydrofuran. The syn and anti isomers differ in polymerization activity and polymer degree of branching and molecular weight. For comparison, a series of mononuclear nickel complexes (26, 27-s, 27-a, 28, 30) was prepared and studied. The effects of structure and catalyst nuclearity on reactivity are discussed. PMID:22711966

  10. Postharvest treatments with ethylene on Vitis vinifera (cv Sangiovese) grapes affect berry metabolism and wine composition.

    PubMed

    Becatti, Elisa; Genova, Giuseppe; Ranieri, Annamaria; Tonutti, Pietro

    2014-09-15

    Grapes (Vitis vinifera, cv Sangiovese), harvested at standard commercial maturity, were treated for 36 h with ethylene (ET, 1000 ppm) or air (control, CT) before vinification. The composition of the grapes, must and wine was different in the CT and ET samples. In the ET wine, higher concentrations of specific phenol compounds, belonging to the classes of flavonols, anthocyanins, flavan-3-ols, and stilbenes, were detected. ET induced a significant change in the wine aroma profile by increasing free volatile categories such as phenols and fatty acids, and reducing the content of carbonyl compounds and, in particular, of esters. Less pronounced differences between CT and ET wines were observed in terms of glycosidically-bound volatile compounds. The activity of pectin methyl esterase and β-glucosidase was enhanced in ET-treated berry skins, suggesting that cell wall properties and changes in the hydrolytic activity are effective in modulating the composition of CT and ET wines.

  11. Deep micro-machining of poly-ethylene terephthalate for plastic MEMS applications

    NASA Astrophysics Data System (ADS)

    Pajouhi, H.; Mohajerzadeh, S.; Nayeri, F.; Sanaee, Z.

    2010-12-01

    Etching of poly-ethylene terephathalate (PET) is achieved using a chemical solution in di-methyl-formamide assisted by ultra-violet illumination. Deep vertical features suitable for plastic micro-machining, are obtained with features of the order of 2 μm and aspect ratios of the order of 10. By using tin (Sn) as the masking layer, the problem of crack formation on the PET surface during this photochemical etching technique is totally resolved. High etch-rates as 20 μm/h are obtained at a low etching temperature of 60 °C. To improve the thermal dissipation during the etching and to minimize the plastic shrinkage, a layer of silicone-rubber is applied on the backside of the PET. We have successfully fabricated and assembled an all-plastic one directional micro-valve. Preliminary plastic-based micro-structures are demonstrated.

  12. Collective motion in Poly(ethylene oxide)/poly(methylmethacrylate) blends

    SciTech Connect

    Farago, Bela; Chen Chunxia; Maranas, Janna K.; Kamath, Sudesh; Colby, Ralph H.; Pasquale, Anthony J.; Long, Timothy E.

    2005-09-01

    We present neutron spin echo and structural measurements on a perdeutereted miscible polymer blend: poly(ethylene oxide)[PEO]/poly(methyl methacrylate)[PMMA], characterized by a large difference in component glass transition temperatures and minimal interactions. The measurements cover the q range 0.35 to 1.66 A{sup -1} and the temperature range T{sub g}-75 to T{sub g}+89 K, where T{sub g} is the blend glass transition. The spectra, obtained directly in the time domain, are very broad with stretching parameters {beta}{approx}0.30. The relaxation times vary considerably over the spatial range considered however at none of the q values do we see two distinct relaxation times. At small spatial scales relaxations are still detectable at temperatures far below T{sub g}. The temperature dependence of these relaxation times strongly resembles the {beta}-relaxation process observed in pure PMMA.

  13. Ethylene production throughout growth and development of plants

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Peterson, Barbara V.; Stutte, Gary W.

    2004-01-01

    Ethylene production by 10 or 20 m2 stands of wheat, soybean, lettuce, potato, and tomato was monitored throughout growth and development in an atmospherically closed plant chamber. Chamber ethylene levels varied among species and rose during periods of canopy expansion and rapid growth for all species. Following this, ethylene levels either declined during seed fill and maturation for wheat and soybean, or remained relatively constant for potato and tomato (during flowering and early fruit development). Lettuce plants were harvested during rapid growth and peak ethylene production. Chamber ethylene levels increased rapidly during tomato ripening, reaching concentrations about 10 times that measured during vegetative growth. The highest ethylene production rates during vegetative growth ranged from 1.6 to 2.5 nmol m-2 d-1 during rapid growth of lettuce and wheat stands, or about 0.3 to 0.5 nmol g-1 fresh weight per hour. Estimates of stand ethylene production during tomato ripening showed that rates reached 43 nmol m-2 d-1 in one study and 93 nmol m-2 d-1 in a second study with higher lighting, or about 50x that of the rate during vegetative growth of tomato. In a related test with potato, the photoperiod was extended from 12 to 24 hours (continuous light) at 58 days after planting (to increase tuber yield), but this change in the environment caused a sharp increase in ethylene production from the basal rate of 0.4 to 6.2 nmol m-2 d-1. Following this, the photoperiod was changed back to 12 h at 61 days and ethylene levels decreased. The results suggest three separate categories of ethylene production were observed with whole stands of plants: 1) production during rapid vegetative growth, 2) production during climacteric fruit ripening, and 3) production from environmental stress.

  14. Ethylene production throughout growth and development of plants.

    PubMed

    Wheeler, Raymond M; Peterson, Barbara V; Stutte, Gary W

    2004-12-01

    Ethylene production by 10 or 20 m2 stands of wheat, soybean, lettuce, potato, and tomato was monitored throughout growth and development in an atmospherically closed plant chamber. Chamber ethylene levels varied among species and rose during periods of canopy expansion and rapid growth for all species. Following this, ethylene levels either declined during seed fill and maturation for wheat and soybean, or remained relatively constant for potato and tomato (during flowering and early fruit development). Lettuce plants were harvested during rapid growth and peak ethylene production. Chamber ethylene levels increased rapidly during tomato ripening, reaching concentrations about 10 times that measured during vegetative growth. The highest ethylene production rates during vegetative growth ranged from 1.6 to 2.5 nmol m-2 d-1 during rapid growth of lettuce and wheat stands, or about 0.3 to 0.5 nmol g-1 fresh weight per hour. Estimates of stand ethylene production during tomato ripening showed that rates reached 43 nmol m-2 d-1 in one study and 93 nmol m-2 d-1 in a second study with higher lighting, or about 50x that of the rate during vegetative growth of tomato. In a related test with potato, the photoperiod was extended from 12 to 24 hours (continuous light) at 58 days after planting (to increase tuber yield), but this change in the environment caused a sharp increase in ethylene production from the basal rate of 0.4 to 6.2 nmol m-2 d-1. Following this, the photoperiod was changed back to 12 h at 61 days and ethylene levels decreased. The results suggest three separate categories of ethylene production were observed with whole stands of plants: 1) production during rapid vegetative growth, 2) production during climacteric fruit ripening, and 3) production from environmental stress.

  15. Intermolecular hydroamination of ethylene and 1-alkenes with cyclic ureas catalyzed by achiral and chiral gold(I) complexes.

    PubMed

    Zhang, Zhibin; Lee, Seong Du; Widenhoefer, Ross A

    2009-04-22

    Reaction of 1-methyl-imidazolidin-2-one (1) with 1-octene (10 equiv) catalyzed by a 1:1 mixture of (2b)AuCl [2b = 2-di-tert-butylphosphino-1,1'-binaphthyl] and AgSbF(6) in dioxane at 100 degrees C for 24 h led to isolation of 1-methyl-3-(octan-2-yl)imidazolidin-2-one in 96% yield as a single regioisomer. A range of unactivated 1-alkenes and ethylene underwent gold(I)-catalyzed intermolecular hydroamination at or below 100 degrees C in excellent yield with high regioselectivity. Reaction of 1-alkenes with substituted imidazolidin-2-ones catalyzed by chiral bis(gold) phosphine complexes led to enantioselective intermolecular hydroamination with up to 78% ee.

  16. Poly(ethylene glycol)-functionalized polymeric microchips for capillary electrophoresis.

    PubMed

    Sun, Xuefei; Li, Dan; Lee, Milton L

    2009-08-01

    Recently, we reported the synthesis, fabrication, and preliminary evaluation of poly(ethylene glycol) (PEG)-functionalized polymeric microchips that are inherently resistant to protein adsorption without surface modification in capillary electrophoresis (CE). In this study, we investigated the impact of cross-linker purity and addition of methyl methacrylate (MMA) as a comonomer on CE performance. Impure poly(ethylene glycol) diacrylate (PEGDA) induced electroosmotic flow (EOF) and increased the separation time, while the addition of MMA decreased the separation efficiency to approximately 25% of that obtained using microchips fabricated without MMA. Resultant improved microchips were evaluated for the separation of fluorescent dyes, amino acids, peptides, and proteins. A CE efficiency of 4.2 x 10(4) plates for aspartic acid in a 3.5 cm long microchannel was obtained. Chiral separation of 10 different D,L-amino acid pairs was obtained with addition of a chiral selector (i.e., beta-cyclodextrin) in the running buffer. Selectivity (alpha) and resolution (R(s)) for D,L-leucine were 1.16 and 1.64, respectively. Good reproducibility was an added advantage of these PEG-functionalized microchips.

  17. Click chemistry grafting of poly(ethylene glycol) brushes to alkyne-functionalized pseudobrushes.

    PubMed

    Ostaci, Roxana-Viorela; Damiron, Denis; Grohens, Yves; Léger, Liliane; Drockenmuller, Eric

    2010-01-19

    A versatile method for the grafting of azide-terminated polymer chains to alkyne-functionalized pseudobrushes by the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition has been developed. First, poly[(propargyl methacrylate)-r-(glycidyl methacrylate)-r-(methyl methacrylate)] random copolymers with monomer ratios of respectively 27/27/46, 41/31/28, and 45/55/0 were synthesized by RAFT polymerization. Then, dense alkyne-functionalized pseudobrushes were grafted in melt by thermal ring-opening of the glycidyl groups by the silanols from the silicon substrate. Finally, the grafting of tailor-made alpha-methoxy-omega-azido-poly(ethylene glycol)s (M(w) approximately 5000, 20,000, and 50,000 g/mol) by Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition was performed in sealed reactors at 60 degrees C for 72 h using a polymer weight fraction of 10% in tetrahydrofuran and Cu(PPh(3))(3)Br/DIPEA as the catalytic system. Alkyne-functionalized pseudobrushes and poly(ethylene glycol) brushes were characterized by ellipsometry, scanning probe microscopy, and water contact angle measurements. This "grafting-to" approach represents a fast and versatile method to provide thick and homogeneous polymer brushes with a high surface coverage. A major benefit of this strategy is the tunable and versatile tethering of alkyne functionalities to silicon substrates using a straightforward spin-coating procedure.

  18. Preparation and characterization of nonfouling polymer brushes on poly(ethylene terephthalate) film surfaces.

    PubMed

    Li, Jiehua; Tan, Dongsheng; Zhang, Xiaoqing; Tan, Hong; Ding, Mingming; Wan, Changxiu; Fu, Qiang

    2010-07-01

    In this study, a surface grafting of nonfouling poly(ethylene glycol) methyl ether acrylate (PEGMA) on poly(ethylene terephthalate) (PET) was carried out via surface-initiated atom-transfer radical polymerization (SI-ATRP) to improve hemocompatibility of polymer based biomaterials. To do this, the coupling agent with hydroxyl groups for the ATRP initiator was first anchored on the surface of PET films using photochemical method, and then these hydroxyl groups were esterified by bromoisobutyryl bromide, from which PET with various main chain lengths of PEGMA was prepared. The structures and properties of modified PET surfaces were investigated using water contact angle (WAC), ATR-FTIR, X-ray photoelectron spectroscopy (XPS) and Atomic force microscopy (AFM). The molecular weights of the free polymer from solution were determined by gel permeation chromatography (GPC). These results indicated that grafting of PEGMA on PET film is a simple way to change its surface properties. The protein adsorption resistance on the surfaces of PET was primarily evaluated by an enzyme-linked immunosorbent assay (ELISA). The result demonstrated that the protein adsorption could be well suppressed by poly(PEGMA) brush structure on the surface of PET. This work provides a new approach for polymers to enhance their biocompatibility.

  19. Research tools: ethylene preparation. In: Chi-Kuang Wen editor. Ethylene in plants. Springer Netherlands. Springer Link

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylene is a plant hormone that regulates many aspects of plant growth and development, germination, fruit ripening, senescence, sex determination, abscission, defense, gravitropism, epinasty, and more. For experimental purposes, one needs to treat plant material with ethylene and its inhibitors t...

  20. Developing tools for investigating the multiple roles of ethylene: Identification and mapping genes for ethylene biosynthesis and reception in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant hormone ethylene is important to many plant processes from germination through senescence, including responses to in vitro growth and plant regeneration. Knowledge of the number of genes, and of their function, that are involved in ethylene biosynthesis and reception is necessary to determ...

  1. Increased disease resistance and enzyme activity induced by ethylene and ethylene production of black rot infected sweet potato tissue.

    PubMed

    Stahmann, M A; Clare, B G; Woodbury, W

    1966-11-01

    Exposure of root tissue from a susceptible variety of sweet potato to low concentrations of ethylene induced a resistance to infection by Ceratocystis fimbriata and an increase in the activity of peroxidase and polyphenoloxidase in the tissue. Susceptible tissue that was inoculated with a pathogenic strain of C. fimbriata or a nonpathogenic strain that can induce resistance liberated more ethylene into closed chambers than tissue inoculated with strains that did not induce resistance. It is suggested that ethylene may be a stimulus that diffuses from infected areas into adjoining tissue to initiate metabolic changes which may lead to disease resistance. Polyphenol oxidase but not peroxidase activity was increased in slices of potato tubers and parsnip roots treated with ethylene. The activity of these enzymes in root tissue of carrot, radish or turnip was not altered by ethylene treatment.

  2. The adhesion of oxygen-plasma treated poly(ethylene) and poly(ethylene terephthlate) films

    SciTech Connect

    Holton, S.L.; Kinloch, A.J.; Watts, J.F.

    1996-12-31

    The effects of low-pressure oxygen-plasma treatment on the surfaces of poly(ethylene) (PE) and poly(ethylene terephthlate) (PET) films and its influence on the adhesion of PE/PET laminates were assessed. The 90{degree} peel test was used to estimate the adhesive fracture energy, G{sub c} for the laminates. XPS, SEM and AFM were used to analyse the treated films and fracture surfaces. Significant improvements in bond strength occurred within very short treatment times (5s at 50W) with the maximum adhesion occurring after 300s. For longer treatment times the bond strengths decrease slightly. G{sub c} values were found to be low when PET was the peel arm. When PE was the peel arm, the G{sub c} values were substantially larger using the current analysis.

  3. Producing the Ethylene Signal: Regulation and Diversification of Ethylene Biosynthetic Enzymes.

    PubMed

    Booker, Matthew A; DeLong, Alison

    2015-09-01

    Strictly controlled production of ethylene gas lies upstream of the signaling activities of this crucial regulator throughout the plant life cycle. Although the biosynthetic pathway is enzymatically simple, the regulatory circuits that modulate signal production are fine tuned to allow integration of responses to environmental and intrinsic cues. Recently identified posttranslational mechanisms that control ethylene production converge on one family of biosynthetic enzymes and overlay several independent reversible phosphorylation events and distinct mediators of ubiquitin-dependent protein degradation. Although the core pathway is conserved throughout seed plants, these posttranslational regulatory mechanisms may represent evolutionarily recent innovations. The evolutionary origins of the pathway and its regulators are not yet clear; outside the seed plants, numerous biochemical and phylogenetic questions remain to be addressed.

  4. Producing the Ethylene Signal: Regulation and Diversification of Ethylene Biosynthetic Enzymes1

    PubMed Central

    Booker, Matthew A.; DeLong, Alison

    2015-01-01

    Strictly controlled production of ethylene gas lies upstream of the signaling activities of this crucial regulator throughout the plant life cycle. Although the biosynthetic pathway is enzymatically simple, the regulatory circuits that modulate signal production are fine tuned to allow integration of responses to environmental and intrinsic cues. Recently identified posttranslational mechanisms that control ethylene production converge on one family of biosynthetic enzymes and overlay several independent reversible phosphorylation events and distinct mediators of ubiquitin-dependent protein degradation. Although the core pathway is conserved throughout seed plants, these posttranslational regulatory mechanisms may represent evolutionarily recent innovations. The evolutionary origins of the pathway and its regulators are not yet clear; outside the seed plants, numerous biochemical and phylogenetic questions remain to be addressed. PMID:26134162

  5. Kapok oil methyl esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increased need for biodiesel feedstocks has caused various vegetable oils to be examined for this purpose. In the present work, the methyl esters of kapok (Ceiba pentandra) oil were prepared. The essential fuel properties were comprehensively determined and evaluated in comparison to specificati...

  6. Nutrients and DNA Methylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epigenetics is a new mechanism responsible for development, aging, and disease process such as cancer development. One major epigenetic phenomenon is DNA methylation, which attributes to gene expression and integrity. Deepening the knowledge on one-carbon metabolism is very important to understandin...

  7. Chloromethyl methyl ether (CMME)

    Integrated Risk Information System (IRIS)

    Chloromethyl methyl ether ( CMME ) ; CASRN 107 - 30 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  8. Thiophanate-methyl

    Integrated Risk Information System (IRIS)

    Thiophanate - methyl ; CASRN 23564 - 05 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcino

  9. Haloxyfop-methyl

    Integrated Risk Information System (IRIS)

    Haloxyfop - methyl ; CASRN 69806 - 40 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  10. Methyl isobutyl ketone (MIBK)

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 03 / 002 TOXICOLOGICAL REVIEW OF METHYL ISOBUTYL KETONE ( CAS No . 108 - 10 - 1 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) March 2003 U.S . Environmental Protection Agency Washington DC DISCLAIMER This document has been reviewed in accordan

  11. Methyl ethyl ketone (MEK)

    Integrated Risk Information System (IRIS)

    EPA 635 / R - 03 / 009 www.epa.gov / iris TOXICOLOGICAL REVIEW OF METHYL ETHYL KETONE ( CAS No . 78 - 93 - 3 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) September 2003 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been r

  12. Kenaf methyl esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Additional or alternative feedstocks are one of the major areas of interest regarding biodiesel. In this paper, for the first time, the fuel properties of kenaf (Hibiscus cannabinus L.) seed oil methyl esters are comprehensively reported. This biodiesel is also relatively unique by containing small ...

  13. Pirimiphos-methyl

    Integrated Risk Information System (IRIS)

    Pirimiphos - methyl ; CASRN 29232 - 93 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  14. Ethylene: role in fruit abscission and dehiscence processes.

    PubMed

    Lipe, J A; Morgan, P W

    1972-12-01

    Two peaks of ethylene production occur during the development of cotton fruitz (Gossypium hirsutum L.). These periods precede the occurrence of young fruit shedding and mature fruit dehiscence, both of which are abscission phenomena and the latter is generally assumed to be part of the total ripening process. Detailed study of the dehiscence process revealed that ethylene production of individual, attached cotton fruits goes through a rising, cyclic pattern which reaches a maximum prior to dehiscence. With detached pecan fruits (Carya illinoensis [Wang.] K. Koch), ethylene production measured on alternate days rose above 1 microliter per kilogram fresh weight per hour before dehiscence began and reached a peak several days prior to complete dehiscence. Ethylene production by cotton and pecan fruits was measured just prior to dehiscence and then the internal concentration of the gas near the center of the fruit was determined. From these data a ratio of production rate to internal concentration was determined which allowed calculation of the approximate ethylene concentration in the intact fruit prior to dehiscence and selection of appropriate levels to apply to fruits. Ethylene at 10 microliters per liter of air appears to saturate dehiscence of cotton, pecan, and okra (Hibiscus esculentus L.) fruits and the process is completed in 3 to 4 days. In all cases some hastening of dehiscence was observed with as little as 0.1 microliter of exogenous ethylene per liter of air. The time required for response to different levels of ethylene was determined and compared to the time course of ethylene production and dehiscence. We concluded that internal levels of ethylene rose to dehiscence-stimulating levels a sufficience time before dehiscence for the gas to have initiated the process. Since our data and calculations indicate that enough ethylene is made a sufficient time before dehiscence, to account for the process, we propose that ethylene is one of the regulators of

  15. Ethylene: Role in Fruit Abscission and Dehiscence Processes 12

    PubMed Central

    Lipe, John A.; Morgan, Page W.

    1972-01-01

    Two peaks of ethylene production occur during the development of cotton fruitz (Gossypium hirsutum L.). These periods precede the occurrence of young fruit shedding and mature fruit dehiscence, both of which are abscission phenomena and the latter is generally assumed to be part of the total ripening process. Detailed study of the dehiscence process revealed that ethylene production of individual, attached cotton fruits goes through a rising, cyclic pattern which reaches a maximum prior to dehiscence. With detached pecan fruits (Carya illinoensis [Wang.] K. Koch), ethylene production measured on alternate days rose above 1 microliter per kilogram fresh weight per hour before dehiscence began and reached a peak several days prior to complete dehiscence. Ethylene production by cotton and pecan fruits was measured just prior to dehiscence and then the internal concentration of the gas near the center of the fruit was determined. From these data a ratio of production rate to internal concentration was determined which allowed calculation of the approximate ethylene concentration in the intact fruit prior to dehiscence and selection of appropriate levels to apply to fruits. Ethylene at 10 microliters per liter of air appears to saturate dehiscence of cotton, pecan, and okra (Hibiscus esculentus L.) fruits and the process is completed in 3 to 4 days. In all cases some hastening of dehiscence was observed with as little as 0.1 microliter of exogenous ethylene per liter of air. The time required for response to different levels of ethylene was determined and compared to the time course of ethylene production and dehiscence. We concluded that internal levels of ethylene rose to dehiscence-stimulating levels a sufficience time before dehiscence for the gas to have initiated the process. Since our data and calculations indicate that enough ethylene is made a sufficient time before dehiscence, to account for the process, we propose that ethylene is one of the regulators of

  16. DNA Methylation and Cancer Diagnosis

    PubMed Central

    Delpu, Yannick; Cordelier, Pierre; Cho, William C.; Torrisani, Jérôme

    2013-01-01

    DNA methylation is a major epigenetic modification that is strongly involved in the physiological control of genome expression. DNA methylation patterns are largely modified in cancer cells and can therefore be used to distinguish cancer cells from normal tissues. This review describes the main technologies available for the detection and the discovery of aberrantly methylated DNA patterns. It also presents the different sources of biological samples suitable for DNA methylation studies. We discuss the interest and perspectives on the use of DNA methylation measurements for cancer diagnosis through examples of methylated genes commonly documented in the literature. The discussion leads to our consideration for why DNA methylation is not commonly used in clinical practice through an examination of the main requirements that constitute a reliable biomarker. Finally, we describe the main DNA methylation inhibitors currently used in clinical trials and those that exhibit promising results. PMID:23873296

  17. DNA Methylation within Transcribed Regions

    PubMed Central

    To, Taiko K.; Saze, Hidetoshi; Kakutani, Tetsuji

    2015-01-01

    DNA methylation within transcribed genes is commonly found in diverse animals and plants. Here, we provide an overview of recent advances and the remaining mystery regarding intragenic DNA methylation. PMID:26143255

  18. Taste responses of dogs to ethylene glycol, propylene glycol, and ethylene glycol-based antifreeze.

    PubMed

    Marshall, D A; Doty, R L

    1990-12-15

    Although it is widely believed that ethylene glycol-based antifreeze (AF) is an attractive tastant to dogs and other animals, empirical data on this point are not available. In experiment 1, we examined the propensity of 178 adult mixed-breed dogs to approach, sniff, and lick a concentration of AF commonly used in automotive cooling systems (50%). Despite the fact that most of the dogs approached and sniffed the AF in these 5-minute tests, only 9% initiated lick responses and most of these were brief and not followed by additional licking. In experiment 2, the lick responses of five gastric-cannulated dogs to aqueous solutions of 20% sucrose, 50% ethylene glycol, 50% propylene glycol, water, and 50% AF were examined in 14-minute tests before and after periods of food and water deprivation. Under the latter conditions, 2 of the 5 dogs drank amounts of ethylene glycol that would have been lethal to uncannulated dogs. None of the five dogs drank potentially lethal amounts of AF. The preference order for these tastants was sucrose greater than water greater than ethylene glycol greater than AF = propylene glycol. Although these findings question the general belief that AF is highly palatable to most dogs, they do imply that large individual differences in responsiveness exist and that AF ingestion is likely influenced by motivational state. Furthermore, they suggest the possibility that unpleasant-tasting additives could be successfully developed to eliminate the ingestion of AF, because the initial attractiveness of AF is relatively low. Such additives would have to be stable in vehicular cooling systems and not adversely affect the functional aspects of AF performance.

  19. EUV-driven femtosecond dynamics in ethylene

    NASA Astrophysics Data System (ADS)

    van Tilborg, J.; Allison, T. K.; Wright, T. W.; Hertlein, M. P.; Liu, Y.; Merdji, H.; Falcone, R. W.; Belkacem, A.

    2009-11-01

    We studied ion fragment yields from EUV-pump NIR-probe experiments performed on ethylene molecules (C2H4). Through study of the ion yields as a function of pump-probe delay we resolve molecular dynamics on the excited electronic states of the ion. The breakup channel yielding CH+ and CH+3 indicated photo-isomerization to the ethylidene configuration (HC-CH3)+ on an ultrafast timescale. This configuration is predicted to be a transient configuration for electronic relaxation. We observed this channel, and found that it takes the excited cation (C2H+4)* 50 ± 25 fs to reach the ethylidene configuration. The transient ion yield of C2H24 + at zero delay (in combination with independent synchrotron experiments) indicates other ultra-fast dynamics in short-lived intermediate states are present.

  20. Information theory and the ethylene genetic network

    PubMed Central

    González-García, José S

    2011-01-01

    information content in the input message that the cell's genetic machinery is processing during a given time interval. Furthermore, combining Information Theory with the frequency response analysis of dynamical systems we can examine the cell's genetic response to input signals with varying frequencies, amplitude and form, in order to determine if the cell can distinguish between different regimes of information flow from the environment. In the particular case of the ethylene signaling pathway, the amount of information managed by the root cell of Arabidopsis can be correlated with the frequency of the input signal. The ethylene signaling pathway cuts off very low and very high frequencies, allowing a window of frequency response in which the nucleus reads the incoming message as a varying input. Outside of this window the nucleus reads the input message as an approximately non-varying one. This frequency response analysis is also useful to estimate the rate of information transfer during the transport of each new ERF1 molecule into the nucleus. Additionally, application of Information Theory to analysis of the flow of information in the ethylene signaling pathway provides a deeper insight in the form in which the transition between auxin and ethylene hormonal activity occurs during a circadian cycle. An ambitious goal for the future would be to use Information Theory as a theoretical foundation for a suitable model of the information flow that runs at each level and through all levels of biological organization. PMID:21897127

  1. Ethylene Biosynthesis-Inducing Xylanase 1

    PubMed Central

    Dean, Jeffrey F. D.; Anderson, J. D.

    1991-01-01

    The ethylene biosynthesis-inducing endoxylanase (EIX) from xylan-induced cultures of the fungus, Trichoderma viride, was purified to near homogeneity and compared with the EIX isolated from Cellulysin. Both enzymes migrate as 9.2 kilodalton proteins during gel filtration chromatography under nondenaturing conditions, but the mature polypeptide migrates as a 22 kilodalton band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amino acid composition of the 22 kilodalton polypeptide is enriched by Gly, Ser, Thr, Trp, and Tyr, but depleted in Ala, Glx, Leu, and Lys. Both proteins lack sulfur-containing amino acids. The protein is glycosylated, and inhibition of EIX synthesis by tunicamycin suggests that at least some of the sugar moieties are linked to asparagine residues. EIX appears to be synthesized initially as a 25 kilodalton precursor protein that is processed to 22 kilodalton during secretion. Images Figure 2 Figure 4 Figure 5 Figure 6 PMID:16667971

  2. Bacterial Modulation of Plant Ethylene Levels

    PubMed Central

    Gamalero, Elisa; Glick, Bernard R.

    2015-01-01

    A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized. PMID:25897004

  3. Photothermal degradation of ethylene/vinylacetate copolymer

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Chung, S.; Clayton, A.; Di Stefano, S.; Oda, K.; Hong, S. D.; Gupta, A.

    1983-01-01

    Photothermal degradation studies were conducted on a 'stabilized' formulation of ethylene/vinyl acetate copolymer (EVA) in the temperature range 25-105 C under three different oxygen environments (in open air, with limited access to O2, and in a dark closed stagnant oven). These studies were performed in order to evaluate the utility of EVA as an encapsulation material for photovoltaic modules. Results showed that at low temperature (25 C), slow photooxidation of the polymer occurred via electronic energy transfer involving the UV absorber incorporated in the polymer. However, no changes in the physical properties of the bulk polymer were detected up to 1500 hours of irradiation. At elevated temperatures, leaching and evaporation of the additives occurred, which ultimately resulted in the chemical crosslinking of the copolymer and the formation of volatile photoproducts such as acetic acid.

  4. Pressure induced polymerization of fluid ethylene

    NASA Astrophysics Data System (ADS)

    Scelta, Demetrio; Ceppatelli, Matteo; Bini, Roberto

    2016-10-01

    The spontaneous polymerization of fluid ethylene under high temperature and pressure conditions has been characterized by using FTIR absorption spectroscopy. The fluid has been isobarically heated at pressures ranging between 0.4 and 1.5 GPa by means of a resistively heated membrane diamond anvil cell. Besides tracing the instability boundary for spontaneous polymerization in the fluid, we have also measured the reaction kinetics at 1.5 GPa and temperatures ranging between 340 and 423 K. From the rate constants the activation energy of the overall reaction could be computed, information that joined to the molecularity of the initiation step provides some insight about the reaction mechanism. The polymers recovered from the different reactions have been characterized by FTIR, Raman, and X-ray diffraction revealing in all the cases a crystalline material of astonishing quality, likely related to the growth of the polymer in the hot fluid monomer.

  5. Information theory and the ethylene genetic network.

    PubMed

    González-García, José S; Díaz, José

    2011-10-01

    information content in the input message that the cell's genetic machinery is processing during a given time interval. Furthermore, combining Information Theory with the frequency response analysis of dynamical systems we can examine the cell's genetic response to input signals with varying frequencies, amplitude and form, in order to determine if the cell can distinguish between different regimes of information flow from the environment. In the particular case of the ethylene signaling pathway, the amount of information managed by the root cell of Arabidopsis can be correlated with the frequency of the input signal. The ethylene signaling pathway cuts off very low and very high frequencies, allowing a window of frequency response in which the nucleus reads the incoming message as a varying input. Outside of this window the nucleus reads the input message as an approximately non-varying one. This frequency response analysis is also useful to estimate the rate of information transfer during the transport of each new ERF1 molecule into the nucleus. Additionally, application of Information Theory to analysis of the flow of information in the ethylene signaling pathway provides a deeper insight in the form in which the transition between auxin and ethylene hormonal activity occurs during a circadian cycle. An ambitious goal for the future would be to use Information Theory as a theoretical foundation for a suitable model of the information flow that runs at each level and through all levels of biological organization.

  6. Plants having modified response to ethylene

    DOEpatents

    Meyerowitz, Elliott M.; Chang, Caren; Bleecker, Anthony B.

    1997-01-01

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

  7. Plants having modified response to ethylene

    DOEpatents

    Meyerowitz, Elliot M.; Chang, Caren; Bleecker, Anthony B.

    1998-01-01

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

  8. Plants having modified response to ethylene

    DOEpatents

    Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

    1998-10-20

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 67 figs.

  9. Plants having modified response to ethylene

    DOEpatents

    Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

    1997-11-18

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 31 figs.

  10. Preparation and characterization of neutral poly(ethylene glycol) methacrylate-based monolith for normal phase liquid chromatography.

    PubMed

    Li, Yun; Lee, Milton L; Jin, Jing; Chen, Jiping

    2012-09-15

    A novel porous poly(ethylene glycol) methacrylate-based monolithic column for normal phase liquid chromatography was prepared by thermally initiated polymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) and ethylene dimethacrylate (EDMA) in the presence of selected porogens. The monolith was macroscopically homogeneous, had low flow resistance, and did not swell or shrink significantly in solvents of different polarities. Inverse size-exclusion data indicate that the monolith had a total porosity of 79.2%, including an external porosity of 69.3% and an internal porosity of 9.9%. Due to its mild polarity (hydrophilicity), the PEG-functionalized monolith could perform traditional normal phase chromatography using non-polar solvents The van Deemter plot demonstrated that the column efficiency of 33,600-34,320 theoretical plates/m could be achieved at a linear flow velocity of 0.9-1.5mm/s. The dual retention capability (both weak hydrophilic and hydrophobic interactions) investigated in this paper explains well why the PEG-functionalized monolith could operate in various chromatographic modes.

  11. Thermoplastic starch/ethylene vinyl alcohol/forsterite nanocomposite as a candidate material for bone tissue engineering.

    PubMed

    Mahdieh, Zahra; Bagheri, Reza; Eslami, Masoud; Amiri, Mohammad; Shokrgozar, Mohammad Ali; Mehrjoo, Morteza

    2016-12-01

    Recently, biodegradable polymers such as starch based blends have been well renowned in the biomedical field. Studies have considered them suitable for bone scaffolds, bone cements, tissue engineering scaffolds, drug delivery systems and hydrogels. The aim of this study was to synthesize nanocomposite biomaterial consisting a blend of thermoplastic starch and ethylene vinyl alcohol as the polymer matrix, and nano-structured forsterite as the ceramic reinforcing phase for bone tissue engineering applications. Furthermore, vitamin E was applied as a thermal stabilizer during melt compounding. Extrusion and injection molding were incorporated for melt blending and shaping of samples, respectively. With blending thermoplastic starch and ethylene vinyl alcohol, some properties of thermoplastic starch such as degradation rate and water absorption were modified. In addition, using nanoforsterite as the ceramic reinforcing phase resulted in the improvement of mechanical and biological traits. The addition of nanoforsterite decreased the weight loss of the thermoplastic starch and ethylene vinyl alcohol blend in simulated body fluid. Moreover, this addition modified the pH in the MTT (methyl thiazolyl tetrazolium) assay and stimulated the cell proliferation. Cell adhesion assays indicated a favorable interaction between cells and the biomaterial. The proposed nanocomposite has appropriate biocompatibility, as well as mechanical properties in order to be used in bone tissue engineering.

  12. The adsorption and reaction of ethylene glycol and 1,2-propanediol on Pd(111): A TPD and HREELS study

    NASA Astrophysics Data System (ADS)

    Griffin, Michael B.; Jorgensen, Erica L.; Medlin, J. Will

    2010-09-01

    The reactions of ethylene glycol and 1,2-propanediol have been studied on Pd(111) using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). Both molecules initially decompose through O-H activation, forming ethylenedioxy (-OCH 2CH 2O-) and 1,2-propanedioxy (-OCH 2CH(CH 3)O-) surface intermediates. For ethylene glycol, increases in thermal energy lead to dehydrogenation and formation of carbonyl species at both oxygen atoms. The resulting glyoxal (O═CHCH═O) either desorbs molecularly or reacts through one of two competing pathways. The favored pathway proceeds via C-C bond scission, dehydrogenation, and decarbonylation to form carbon monoxide and hydrogen. In a minor pathway, small amounts of glyoxal undergo C-O bond scission and recombination with surface hydrogen to form ethylene and water. The same reaction mechanism occurs for 1,2-propanediol after methyl elimination and formation of glyoxal. However, this is accompanied by a minor pathway involving a methylglyoxal (O=CHC(CH 3)=O) intermediate. The prevalence of the dehydrogenation/decarbonylation pathway in the current work is consistent with the high selectivity for C-C scission in the aqueous phase reforming of polyols on supported Pd catalysts.

  13. Regulated Ethylene Insensitivity through the Inducible Expression of the Arabidopsis etr1-1 Mutant Ethylene Receptor in Tomato1[OA

    PubMed Central

    Gallie, Daniel R.

    2010-01-01

    Ethylene serves as an important hormone controlling several aspects of plant growth and development, including fruit ripening and leaf and petal senescence. Ethylene is perceived following its binding to membrane-localized receptors, resulting in their inactivation and the induction of ethylene responses. Five distinct types of receptors are expressed in Arabidopsis (Arabidopsis thaliana), and mutant receptors have been described that repress ethylene signaling in a dominant negative manner. One such mutant, ethylene resistant1-1 (etr1-1), results in a strong ethylene-insensitive phenotype in Arabidopsis. In this study, regulated expression of the Arabidopsis etr1-1 in tomato (Solanum lycopersicum) was achieved using an inducible promoter. In the absence of the inducer, transgenic seedlings remained sensitive to ethylene, but in its presence, a state of ethylene insensitivity was induced, resulting in the elongation of the hypocotyl and root in dark-grown seedlings in the presence of ethylene, a reduction or absence of an apical hook, and repression of ethylene-inducible E4 expression. The level of ethylene sensitivity could be controlled by the amount of inducer used, demonstrating a linear relationship between the degree of insensitivity and etr1-1 expression. Induction of etr1-1 expression also repressed the epinastic response to ethylene as well as delayed fruit ripening. Restoration of ethylene sensitivity was achieved following the cessation of the induction. These results demonstrate the ability to control ethylene responses temporally and in amount through the control of mutant receptor expression. PMID:20181754

  14. Ethylene Production by Plants in a Closed Environment

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Peterson, B. V.; Sager, J. C.; Knott, W. M.

    1996-01-01

    Ethylene production by 20-sq m stands of wheat, soybean, lettuce and potato was monitored throughout growth and development in NASA's Controlled Ecological Life Support System (CELSS) Biomass Production Chamber. Chamber ethylene concentrations rose during periods of rapid growth for all four species, reaching 120 parts per billion (ppb) for wheat, 60 ppb for soybean, and 40 to 50 ppb for lettuce and potato. Following this, ethylene concentrations declined during seed fill and maturation (wheat and soybean), or remained relatively constant (potato). Lettuce plants were harvested during rapid growth and peak ethylene production. The highest ethylene production rates (unadjusted for chamber leakage) ranged from 0.04 to 0.06 ml/sq m/day during rapid growth of lettuce and wheat stands, or approximately 0.8 to 1.1 ml/g fresh weight/h. Results suggest that ethylene production by plants is a normal event coupled to periods of rapid metabolic activity, and that ethylene removal or control measures should be considered for growing crops in a tightly closed CELSS.

  15. Effects of ethylene on gene expression in carrot roots

    SciTech Connect

    Nichols, S.E.

    1984-01-01

    To investigate ethylene effects on expression of genetic information, cDNA clones corresponding to ethylene-induced carrot root mRNAs were constructed and isolated. RNA dot blot analysis showed that for the three clones studied peak cytosolic mRNA prevalence occurred at 21 hours of treatment followed thereafter by rapid messenger decay. DNA filter excess hybridization to in vitro synthesized nuclear RNA showed that the ethylene-induced mRNA increase is engendered by transcription of previously quiescent genes. The kinetics and magnitude of changes in mRNA prevalence parallel changes in transcriptional activity; therefore, the ethylene effect is primarily at the level of the transcription. In vivo pulse labelling with (/sup 35/S)-methionine showed that between 18 and 27 hours of ethylene treatment a 2.5 fold increase in translational efficiency occurred for one message studied. The resulting protein is the predominant protein synthesized in carrots treated with ethylene for 27 hours. Thus, ethylene exerts multiple regulatory controls on the expression of genetic information.

  16. Ethylene production by plants in a closed environment

    NASA Astrophysics Data System (ADS)

    Wheeler, R. M.; Peterson, B. V.; Sager, J. C.; Knott, W. M.

    Ethylene production by 20-m^2 stands of wheat, soybean, lettuce and potato was monitored throughout growth and development in NASA's Controlled Ecological Life Support System (CELSS) Biomass Production Chamber. Chamber ethylene concentrations rose during periods of rapid growth for all four species, reaching 120 parts per billion (ppb) for wheat, 60 ppb for soybean, and 40 to 50 ppb for lettuce and potato. Following this, ethylene concentrations declined during seed fill and maturation (wheat and soybean), or remained relatively constant (potato). Lettuce plants were harvested during rapid growth and peak ethylene production. The highest ethylene production rates (unadjusted for chamber leakage) ranged from 0.04 to 0.06 ml m^-2 day^-1 during rapid growth of lettuce and wheat stands, or approximately 0.8 to 1.1 nl g^-1 fresh weight h^-1 Results suggest that ethylene production by plants is a normal event coupled to periods of rapid metabolic activity, and that ethylene removal or control measures should be considered for growing crops in a tightly closed CELSS.

  17. Participation of Ethylene in Common Purslane Response to Dicamba 12

    PubMed Central

    Stacewicz-Sapuncakis, Maria; Marsh, Herbert V.; Vengris, Jonas; Jennings, Paul H.; Robinson, Trevor

    1973-01-01

    The responses of common purslane (Portulaca oleracea L.) plants to 2-methoxy-3,6-dichlorobenzoic acid (dicamba) were found to be similar in many respects to ethylene fumigation effects. Dicamba and ethylene increased the permeability of cell membranes in purslane tissues. An increased efflux of electrolytes was observed in the bending region of the stems of dicamba-treated plants. Epinastic leaves after dicamba (10 micrograms) and ethylene (microliter per liter) treatments showed an increased efflux of rubidium. The permeability effects were observable within 1 day after dicamba or ethylene application. Protein metabolism in purslane leaves was not influenced by dicamba until 2 days after treatment, as indicated by reduced nitrate reductase activity. Inhibition of phenylalanine-U-14C incorporation into protein was observed 3 days after treatment. Ethylene reduced both phenylalanine-U-14C incorporation into protein and nitrate reductase activity within 1 day. Dicamba caused a rapid increase in ethylene production in purslane plants to levels many times greater than those observed in untreated plants. It was concluded that the dicamba-enhanced production of ethylene is responsible for many of the observed effects of the herbicide. PMID:16658585

  18. Ethylene Signaling Influences Light-Regulated Development in Pea.

    PubMed

    Weller, James L; Foo, Eloise M; Hecht, Valérie; Ridge, Stephen; Vander Schoor, Jacqueline K; Reid, James B

    2015-09-01

    Plant responses to light involve a complex network of interactions among multiple plant hormones. In a screen for mutants showing altered photomorphogenesis under red light, we identified a mutant with dramatically enhanced leaf expansion and delayed petal senescence. We show that this mutant exhibits reduced sensitivity to ethylene and carries a nonsense mutation in the single pea (Pisum sativum) ortholog of the ethylene signaling gene ETHYLENE INSENSITIVE2 (EIN2). Consistent with this observation, the ein2 mutation rescues the previously described effects of ethylene overproduction in mature phytochrome-deficient plants. In seedlings, ein2 confers a marked increase in leaf expansion under monochromatic red, far-red, or blue light, and interaction with phytochromeA, phytochromeB, and long1 mutants confirms that ein2 enhances both phytochrome- and cryptochrome-dependent responses in a LONG1-dependent manner. In contrast, minimal effects of ein2 on seedling development in darkness or high-irradiance white light show that ethylene is not limiting for development under these conditions. These results indicate that ethylene signaling constrains leaf expansion during deetiolation in pea and provide further evidence that down-regulation of ethylene production may be an important component mechanism in the broader control of photomorphogenic development by phytochrome and cryptochrome.

  19. The evolution of ethylene signaling in plant chemical ecology.

    PubMed

    Groen, Simon C; Whiteman, Noah K

    2014-07-01

    Ethylene is a key hormone in plant development, mediating plant responses to abiotic environmental stress, and interactions with attackers and mutualists. Here, we provide a synthesis of the role of ethylene in the context of plant ecology and evolution, and a prospectus for future research in this area. We focus on the regulatory function of ethylene in multi-organismal interactions. In general, plant interactions with different types of organisms lead to reduced or enhanced levels of ethylene. This in turn affects not only the plant's response to the interacting organism at hand, but also to other organisms in the community. These community-level effects become observable as enhanced or diminished relationships with future commensals, and systemic resistance or susceptibility to secondary attackers. Ongoing comparative genomic and phenotypic analyses continue to shed light on these interactions. These studies have revealed that plants and interacting organisms from separate kingdoms of life have independently evolved the ability to produce, perceive, and respond to ethylene. This signature of convergent evolution of ethylene signaling at the phenotypic level highlights the central role ethylene metabolism and signaling plays in plant interactions with microbes and animals.

  20. 49 CFR 173.193 - Bromoacetone, methyl bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... methyl bromide or methyl chloride mixtures, etc. 173.193 Section 173.193 Transportation Other Regulations... bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc. (a) Bromoacetone must be... Group I performance level. (b) Bromoacetone, methyl bromide, chloropicrin and methyl bromide...

  1. 49 CFR 173.193 - Bromoacetone, methyl bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... methyl bromide or methyl chloride mixtures, etc. 173.193 Section 173.193 Transportation Other Regulations... bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc. (a) Bromoacetone must be... Group I performance level. (b) Bromoacetone, methyl bromide, chloropicrin and methyl bromide...

  2. Apple MdACS6 Regulates Ethylene Biosynthesis During Fruit Development Involving Ethylene-Responsive Factor.

    PubMed

    Li, Tong; Tan, Dongmei; Liu, Zhi; Jiang, Zhongyu; Wei, Yun; Zhang, Lichao; Li, Xinyue; Yuan, Hui; Wang, Aide

    2015-10-01

    Ethylene biosynthesis in plants involves different 1-aminocyclopropane-1-carboxylic acid synthase (ACS) genes. The regulation of each ACS gene during fruit development is unclear. Here, we characterized another apple (Malus×domestica) ACS gene, MdACS6. The transcript of MdACS6 was observed not only in fruits but also in other tissues. During fruit development, MdACS6 was initiated at a much earlier stage, whereas MdACS3a and MdACS1 began to be expressed at 35 d before harvest and immediateley after harvest, respectively. Moreover, the enzyme activity of MdACS6 was significantly lower than that of MdACS3a and MdACS1, accounting for the low ethylene biosynthesis in young fruits. Overexpression of MdACS6 (MdACS6-OE) by transient assay in apple showed enhanced ethylene production, and MdACS3a was induced in MdACS6-OE fruits but not in control fruits. In MdACS6 apple fruits silenced by the virus-induced gene silencing (VIGS) system (MdACS6-AN), neither ethylene production nor MdACS3a transcript was detectable. In order to explore the mechanism through which MdACS3a was induced in MdACS6-OE fruits, we investigated the expression of apple ethylene-responsive factor (ERF) genes. The results showed that the expression of MdERF2 was induced in MdACS6-OE fruits and inhibited in MdACS6-AN fruits. Yeast one-hybrid assay showed that MdERF2 protein could bind to the promoter of MdACS3a. Moreover, down-regulation of MdERF2 in apple flesh callus led to a decrease of MdACS3a expression, demonstrating the regulation of MdERF2 on MdACS3a. The mechanism through which MdACS6 regulates the action of MdACS3a was discussed.

  3. Shedding light on ethylene metabolism in higher plants

    PubMed Central

    Rodrigues, Maria A.; Bianchetti, Ricardo E.; Freschi, Luciano

    2014-01-01

    Ethylene metabolism in higher plants is regulated by a wide array of endogenous and environmental factors. During most physiological processes, ethylene levels are mainly determined by a strict control of the rate-limiting biosynthetic steps responsible for the production of 1-aminocyclopropane-1-carboxylic acid (ACC) and its subsequent conversion to ethylene. Responsible for these reactions, the key enzymes ACC synthase and ACC oxidase are encoded by multigene families formed by members that can be differentially regulated at the transcription and post-translational levels by specific developmental and environmental signals. Among the wide variety of environmental cues controlling plant ethylene production, light quality, duration, and intensity have consistently been demonstrated to influence the metabolism of this plant hormone in diverse plant tissues, organs, and species. Although still not completely elucidated, the mechanisms underlying the interaction between light signal transduction and ethylene evolution appears to involve a complex network that includes central transcription factors connecting multiple signaling pathways, which can be reciprocally modulated by ethylene itself, other phytohormones, and specific light wavelengths. Accumulating evidence has indicated particular photoreceptors as essential mediators in light-induced signaling cascades affecting ethylene levels. Therefore, this review specifically focuses on discussing the current knowledge of the potential molecular mechanisms implicated in the light-induced responses affecting ethylene metabolism during the regulation of developmental and metabolic plant responses. Besides presenting the state of the art in this research field, some overlooked mechanisms and future directions to elucidate the exact nature of the light–ethylene interplay in higher plants will also be compiled and discussed. PMID:25520728

  4. Effects of Abscisic Acid and Ethylene on the Gibberellic Acid-Induced Synthesis of α-Amylase by Isolated Wheat Aleurone Layers 1

    PubMed Central

    Varty, Keith; Arreguín, Barbarín L.; Gómez, Miguel T.; López, Pablo Jaime T.; Gómez, Miguel Angel L.

    1983-01-01

    Gibberellic acid-induced α-amylase synthesis in wheat aleurone layers (Triticum aestivum L. var Potam S-70) escaped from transcriptional control 30 h after addition of the hormone, as evidenced by the tissue's loss of susceptibility to cordycepin. Abscisic acid inhibited the accumulation of α-amylase activity when added to the tissue during this cordycepin-insensitive phase of enzyme induction. α-Amylase synthesis was not restored by the addition of cordycepin, indicating that the response to abscisic acid was not dependent upon the continuous synthesis of a short lived RNA. When ethylene was added simultaneously or some time after abscisic acid, the accumulation of α-amylase activity was sustained or quickly restored. The loss of susceptibility to cordycepin was completely prevented when aleurone layers were incubated with a combination of gibberellic and abscisic acids from the start of the induction period. This effect of abscisic acid was not reversed by ethylene. On the basis of these observations, it is suggested that abscisic acid inhibits both the transcription and translation of α-amylase mRNA, and that only the latter site of action is susceptible to reversal by ethylene. The rate of incorporation of [methyl-14C]choline into phospholipids was also inhibited by abscisic acid. Ethylene reversed this effect. The effects of abscisic acid and ethylene on phospholipid synthesis were not dependent upon the presence of gibberellic acid. No direct relationship was found between the control of α-amylase synthesis and membrane formation by abscisic acid and ethylene. PMID:16663284

  5. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOEpatents

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  6. Highly selective catalytic process for synthesizing 1-hexene from ethylene

    DOEpatents

    Sen, Ayusman; Murtuza, Shahid; Harkins, Seth B.; Andes, Cecily

    2002-01-01

    Ethylene is trimerized to form 1-hexene, at a selectivity of up to about 99 mole percent, by contacting ethylene, at an ethylene pressure of from about 200-1500 psig and at a reaction temperature of from about 0.degree. C. to about 100.degree. C., with a catalyst comprising a tantalum compound (e.g., TaCl.sub.5) and a alkylating component comprising a metal hydrocarbyl compound or a metal hydrocarbyl halide compound (e.g., Sn(CH.sub.3).sub.4).

  7. The molecular basis of ethylene signalling in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Woeste, K.; Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1998-01-01

    The simple gas ethylene profoundly influences plants at nearly every stage of growth and development. In the past ten years, the use of a genetic approach, based on the triple response phenotype, has been a powerful tool for investigating the molecular events that underlie these effects. Several fundamental elements of the pathway have been described: a receptor with homology to bacterial two-component histidine kinases (ETR1), elements of a MAP kinase cascade (CTR1) and a putative transcription factor (EIN3). Taken together, these elements can be assembled into a simple, linear model for ethylene signalling that accounts for most of the well-characterized ethylene mediated responses.

  8. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOEpatents

    Johnson, Richard; Steinberg, Meyer

    1981-01-01

    This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  9. Dimethyl Sulfide-Dimethyl Ether and Ethylene Oxide-Ethylene Sulfide Complexes Investigated by Fourier Transform Microwave Spectroscopy and AB Initio Calculation

    NASA Astrophysics Data System (ADS)

    Kawashima, Yoshiyuki; Tatamitani, Yoshio; Mase, Takayuki; Hirota, Eizi

    2015-06-01

    The ground-state rotational spectra of the dimethyl sulfide-dimethyl ether (DMS-DME) and the ethylene oxide and ethylene sulfide (EO-ES) complexes were observed by Fourier transform microwave spectroscopy, and a-type and c-type transitions were assigned for the normal, 34S, and three 13C species of the DMS-DME and a-type and b-type rotational transitions for the normal, 34S, and two 13C species of the EO-ES. The observed transitions were analyzed by using an S-reduced asymmetric-top rotational Hamiltonian. The rotational parameters thus derived for the DMS-DME were found consistent with a structure of Cs symmetry with the DMS bound to the DME by two C-H(DMS)---O and one S---H-C(DME) hydrogen bonds. The barrier height V3 to internal rotation of the "free" methyl group in the DME was determined to be 915.4 (23) wn, which is smaller than that of the DME monomer, 951.72 (70) wn, and larger than that of the DME dimer, 785.4 (52) wn. For the EO-ES complex the observed data were interpreted in the terms of an antiparallel Cs geometry with the EO bound to the ES by two C-H(ES)---O and two S---H-C(EO) hydrogen bonds. We have applied a natural bond orbital (NBO) analysis to the DMS-DME and EO-ES to calculate the stabilization energy CT (= ΔEσσ*), which were closely correlated with the binding energy EB, as found for other related complexes. Y. Niide and M. Hayashi, J. Mol. Spectrosc. 220, 65-79 (2003). Y. Tatamitani, B. Liu, J. Shimada, T. Ogata, P. Ottaviani, A. Maris, W. Caminati, and J. L. Alonso, J. Am. Chem. Soc. 124, 2739-2743 (2002).

  10. DNA methylation dynamics in neurogenesis.

    PubMed

    Wang, Zhiqin; Tang, Beisha; He, Yuquan; Jin, Peng

    2016-03-01

    Neurogenesis is not limited to the embryonic stage, but continually proceeds in the adult brain throughout life. Epigenetic mechanisms, including DNA methylation, histone modification and noncoding RNA, play important roles in neurogenesis. For decades, DNA methylation was thought to be a stable modification, except for demethylation in the early embryo. In recent years, DNA methylation has proved to be dynamic during development. In this review, we summarize the latest understanding about DNA methylation dynamics in neurogenesis, including the roles of different methylation forms (5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine), as well as their 'writers', 'readers' and interactions with histone modifications.

  11. 40 CFR 61.62 - Emission standard for ethylene dichloride plants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Emission standard for ethylene... Standard for Vinyl Chloride § 61.62 Emission standard for ethylene dichloride plants. (a) Ethylene... used in ethylene dichloride purification is not to exceed 10 ppm (average for 3-hour period), except...

  12. 40 CFR 61.62 - Emission standard for ethylene dichloride plants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Emission standard for ethylene... Standard for Vinyl Chloride § 61.62 Emission standard for ethylene dichloride plants. (a) Ethylene... used in ethylene dichloride purification is not to exceed 10 ppm (average for 3-hour period), except...

  13. 40 CFR 61.62 - Emission standard for ethylene dichloride plants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Emission standard for ethylene... Standard for Vinyl Chloride § 61.62 Emission standard for ethylene dichloride plants. (a) Ethylene... used in ethylene dichloride purification is not to exceed 10 ppm (average for 3-hour period), except...

  14. 21 CFR 172.808 - Copolymer condensates of ethylene oxide and propylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Copolymer condensates of ethylene oxide and... ethylene oxide and propylene oxide. Copolymer condensates of ethylene oxide and propylene oxide may be... percent aqueous solution. (2) α-Hydro-omega-hydroxy-poly (oxy-ethylene)poly(oxypropylene)-(53-59...

  15. 21 CFR 172.808 - Copolymer condensates of ethylene oxide and propylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Copolymer condensates of ethylene oxide and... ethylene oxide and propylene oxide. Copolymer condensates of ethylene oxide and propylene oxide may be... percent aqueous solution. (2) α-Hydro-omega-hydroxy-poly (oxy-ethylene)poly(oxypropylene)-(53-59...

  16. 40 CFR 61.62 - Emission standard for ethylene dichloride plants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Emission standard for ethylene... Standard for Vinyl Chloride § 61.62 Emission standard for ethylene dichloride plants. (a) Ethylene... used in ethylene dichloride purification is not to exceed 10 ppm (average for 3-hour period), except...

  17. 21 CFR 172.808 - Copolymer condensates of ethylene oxide and propylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copolymer condensates of ethylene oxide and... ethylene oxide and propylene oxide. Copolymer condensates of ethylene oxide and propylene oxide may be... percent aqueous solution. (2) α-Hydro-omega-hydroxy-poly (oxy-ethylene)poly(oxypropylene)-(53-59...

  18. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-vinyl acetate-vinyl alcohol copolymers... Repeated Use Food Contact Surfaces § 177.1360 Ethylene-vinyl acetate-vinyl alcohol copolymers. Ethylene... conditions: (a) Ethylene-vinyl acetate-vinyl alcohol copolymers are produced by the partial or...

  19. 40 CFR 61.62 - Emission standard for ethylene dichloride plants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Emission standard for ethylene... Standard for Vinyl Chloride § 61.62 Emission standard for ethylene dichloride plants. (a) Ethylene... used in ethylene dichloride purification is not to exceed 10 ppm (average for 3-hour period), except...

  20. 21 CFR 172.808 - Copolymer condensates of ethylene oxide and propylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Copolymer condensates of ethylene oxide and... ethylene oxide and propylene oxide. Copolymer condensates of ethylene oxide and propylene oxide may be... percent aqueous solution. (2) α-Hydro-omega-hydroxy-poly (oxy-ethylene)poly(oxypropylene)-(53-59...

  1. Novel poly(methyl methacrylate)-based semi-interpenetrating polyelectrolyte gels for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Kalapala, Saibabu; Easteal, Allan J.

    Novel semi-interpenetrating polymer gel electrolytes designed for use in rechargeable lithium polymer batteries are synthesised from methyl methacrylate and the lithium salt of 2-acrylamido-2-methylpropanesulfonic acid (LiAMPS). The gels are made by first synthesising linear chains of poly(LiAMPS) by free radical polymerisation of LiAMPS dissolved in dimethyl acetamide (DMA) or DMA/ethylene carbonate mixtures, then co-polymerisation of methyl methacrylate and a cross-linking monomer (tetraethyleneglycol diacrylate) to form the semi-interpenetrating network. The electrical conductivity of the gels is determined as a function of LiAMPS and methyl methacrylate (MMA) concentrations, cross-link density, and solvent composition. The conductivity ( σ) is found to be in the range 0.2 ≤ σ ≤ 0.8 mS cm -1 at ambient temperature (20 ± 1 °C).

  2. Identification of rice ethylene-response mutants and characterization of MHZ7/OsEIN2 in distinct ethylene response and yield trait regulation.

    PubMed

    Ma, Biao; He, Si-Jie; Duan, Kai-Xuan; Yin, Cui-Cui; Chen, Hui; Yang, Chao; Xiong, Qing; Song, Qing-Xin; Lu, Xiang; Chen, Hao-Wei; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2013-11-01

    Ethylene plays essential roles in adaptive growth of rice plants in water-saturating environment; however, ethylene signaling pathway in rice is largely unclear. In this study, we report identification and characterization of ethylene-response mutants based on the specific ethylene-response phenotypes of etiolated rice seedlings, including ethylene-inhibited root growth and ethylene-promoted coleoptile elongation, which is different from the ethylene triple-response phenotype in Arabidopsis. We establish an efficient system for screening and a set of rice mutants have been identified. Genetic analysis reveals that these mutants form eight complementation groups. All the mutants show insensitivity or reduced sensitivity to ethylene in root growth but exhibit differential responses in coleoptile growth. One mutant group mhz7 has insensitivity to ethylene in both root and coleoptile growth. We identified the corresponding gene by a map-based cloning method. MHZ7 encodes a membrane protein homologous to EIN2, a central component of ethylene signaling in Arabidopsis. Upon ethylene treatment, etiolated MHZ7-overexpressing seedlings exhibit enhanced coleoptile elongation, increased mesocotyl growth and extremely twisted short roots, featuring enhanced ethylene-response phenotypes in rice. Grain length was promoted in MHZ7-transgenic plants and 1000-grain weight was reduced in mhz7 mutants. Leaf senescent process was also affected by MHZ7 expression. Manipulation of ethylene signaling may improve adaptive growth and yield-related traits in rice.

  3. Enhanced ethylene and ethane production with free-radical cracking catalysts.

    PubMed

    Kolts, J H; Delzer, G A

    1986-05-09

    A series of free-radical catalysts have been discovered that increase the yield of highly valuable olefins from the cracking of low molecular weight paraffins. For example, catalytic cracking of n-butane, isobutane, and propane over manganese or iron supported on magnesium oxide (MgO) gave product distributions different from those given by thermal (free-radical) cracking or cracking over traditional acid catalysts. With n-butane and propane feeds, the products from catalytic cracking included large amounts of ethylene and ethane; with isobutane feed, propylene was the major product. Physical characterization of the MgO-supported catalyst showed the manganese to be in a 2+ oxidation state in the reduced catalyst and a 4+ oxidation state in the fully oxidized catalyst. Manganese was also shown to be uniformly distributed in the support material with very little enrichment at the surface. Matrix isolation of the gasphase radicals from n-butane feed showed that ethyl and methyl radicals were produced over the active catalysts. In the thermal process, only methyl radicals were produced. The mechanism of the catalytic reaction appears to be selective formation of primary carbanions at the catalyst surface followed by electron transfer and release of primary hydrocarbon radicals to the gas phase.

  4. Ethylene binding to Au/Cu alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Gammage, Michael D.; Stauffer, Shannon; Henkelman, Graeme; Becker, Michael F.; Keto, John W.; Kovar, Desiderio

    2016-11-01

    Weak chemisorption of ethylene has been shown to be an important characteristic in the use of metals for the separation of ethylene from ethane. Previously, density functional theory (DFT) has been used to predict the binding energies of various metals and alloys, with Ag having the lowest chemisorption energy amongst the metals and alloys studied. Here Au/Cu alloys are investigated by a combination of DFT calculations and experimental measurements. It is inferred from experiments that the binding energy between a Au/Cu alloy and ethylene is lower than to either of the pure metals, and DFT calculations confirm that this is the case when Au segregates to the particle surface. Implications of this work suggest that it may be possible to further tune the binding energy with ethylene by compositional and morphological control of films produced from Au-surface segregated alloys.

  5. Expression of ethylene response genes during persimmon fruit astringency removal.

    PubMed

    Yin, Xue-ren; Shi, Yan-na; Min, Ting; Luo, Zheng-rong; Yao, Yun-Cong; Xu, Qian; Ferguson, Ian; Chen, Kun-song

    2012-05-01

    Thirteen ethylene signaling related genes were isolated and studied during ripening of non-astringent 'Yangfeng' and astringent 'Mopan' persimmon fruit. Some of these genes were characterized as ethylene responsive. Treatments, including ethylene and CO(2), had different effects on persimmon ripening, but overlapping roles in astringency removal, such as increasing the reduction in levels of soluble tannins. DkERS1, DkETR2, and DkERF8, may participate in persimmon fruit ripening and softening. The expression patterns of DkETR2, DkERF4, and DkERF5 had significant correlations with decreases in soluble tannins in 'Mopan' persimmon fruit, suggesting that these genes might be key components in persimmon fruit astringency removal and be the linkage between different treatments, while DkERF1 and DkERF6 may be specifically involved in CO(2) induced astringency removal. The possible roles of ethylene signaling genes in persimmon fruit astringency removal are discussed.

  6. Complete oxidation of ethylene over supported gold nanoparticle catalysts.

    PubMed

    Ahn, Ho-Geun; Choi, Byoung-Min; Lee, Do-Jin

    2006-11-01

    Complete oxidation of ethylene was performed over supported noble metals or transition metals oxide catalysts and on monoliths under atmospheric pressure. Gold nanoparticles on Al2O3 or MxOy(M = Mo, Fe, Mn) were prepared by impregnation, coprecipitation, deposition, and dispersion methods. Nanoparticles prepared by impregnation method were irregular and very large above 25 nm, but those by coprecipitation and deposition method were uniformly nanosized at 4-5 nm. The gold nanoparticle were outstandingly active in catalyzing oxidation of ethylene. The activity order of these catalysts with preparation methods was deposition > coprecipitation > impregnation, and Au/Co3O4 prepared by deposition method showed the best performance in ethylene oxidation. The addition of gold particles to MxOy/Al2O3 catalyst enhanced the ethylene oxidation activity significantly. The main role of the gold nanoparticles apparently was to promote dissociative adsorption of oxygen and to enhance the reoxidation of the catalyst.

  7. 61. SOUTH PLANT ETHYLENE GENERATOR BUILDING, WITH EMERGENCY SHOWER AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. SOUTH PLANT ETHYLENE GENERATOR BUILDING, WITH EMERGENCY SHOWER AT LEFT FOREGROUND. VIEW TO WEST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  8. Ethylene Production Maximum Achievable Control Technology (MACT) Compliance Manual

    EPA Pesticide Factsheets

    This July 2006 document is intended to help owners and operators of ethylene processes understand and comply with EPA's maximum achievable control technology standards promulgated on July 12, 2002, as amended on April 13, 2005 and April 20, 2006.

  9. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics

    PubMed Central

    Prescott, Aaron M.; McCollough, Forest W.; Eldreth, Bryan L.; Binder, Brad M.; Abel, Steven M.

    2016-01-01

    Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene

  10. Ethylene formation by polymorphonuclear leukocytes. Role of myeloperoxidase

    PubMed Central

    1978-01-01

    Ethylene formation from the thioethers, beta-methylthiopropionaldehyde (methional) and 2-keto-4-thiomethylbutyric acid by phagocytosing polymorphonuclear leukocytes (PMNs) was found to be largely dependent on myeloperoxidase (MPO). Conversion was less than 10% of normal when MPO-deficient PMNs were employed; formation by normal PMNs was inhibited by the peroxidase inhibitors, azide, and cyanide, and a model system consisting of MPO, H2O2, chloride (or bromide) and EDTA was found which shared many of the properties of the predominant PMN system. MPO-independent mechanisms of ethylene formation were also identified. Ethylene formation from methional by phagocytosing eosinophils and by H2O2 in the presence or absence of catalase was stimulated by azide. The presence of MPO-independent, azide-stimulable systems in the PMN preparations was suggested by the azide stimulation of ethylene formation from methional when MPO-deficient leukocytes were employed. Ethylene formation by dye-sensitized photooxidation was also demonstrated and evidence obtained for the involvement of singlet oxygen (1O2). These findings are discussed in relation to the participation of H2O2, hydroxyl radicals, the superoxide anion and 1O2 in the formation of ethylene by PMNs and by the MPO model system. PMID:212502

  11. New Insights into the Protein Turnover Regulation in Ethylene Biosynthesis.

    PubMed

    Yoon, Gyeong Mee

    2015-07-01

    Biosynthesis of the phytohormone ethylene is under tight regulation to satisfy the need for appropriate levels of ethylene in plants in response to exogenous and endogenous stimuli. The enzyme 1-aminocyclopropane-1-carboxylic acid synthase (ACS), which catalyzes the rate-limiting step of ethylene biosynthesis, plays a central role to regulate ethylene production through changes in ACS gene expression levels and the activity of the enzyme. Together with molecular genetic studies suggesting the roles of post-translational modification of the ACS, newly emerging evidence strongly suggests that the regulation of ACS protein stability is an alternative mechanism that controls ethylene production, in addition to the transcriptional regulation of ACS genes. In this review, recent new insight into the regulation of ACS protein turnover is highlighted, with a special focus on the roles of phosphorylation, ubiquitination, and novel components that regulate the turnover of ACS proteins. The prospect of cross-talk between ethylene biosynthesis and other signaling pathways to control turnover of the ACS protein is also considered.

  12. Workers exposed to ethylene oxide: a follow up study.

    PubMed Central

    Gardner, M J; Coggon, D; Pannett, B; Harris, E C

    1989-01-01

    A cohort study has been carried out of 2876 men and women with potential exposure to ethylene oxide. Subjects were identified from employment records at four companies that have produced or used ethylene oxide since the 1950s and at eight hospitals which have had ethylene oxide sterilising units since the 1960s. The cohort represents a substantial proportion of the British workforce with a history of occupational exposure to ethylene oxide. Industrial hygiene data were not available before 1977, but since then time weighted average exposures have been less than 5 ppm in almost all jobs and less than 1 ppm in many. Past exposures were probably somewhat higher. In contrast to some previous studies, no clear excess of leukaemia (three deaths observed, 2.09 expected) and no increase in stomach cancer (five deaths observed, 5.95 expected) were found. This discrepancy with earlier reports may be due in part to differences in levels of exposure. Total cancer mortality was similar to that expected from national and local death rates. Some specific cancers showed small excesses but their relevance to ethylene oxide exposure is doubtful. Again, contrary to some earlier reports, no excess of cardiovascular disease was found. This study does not exclude the possibility that ethylene oxide is a human carcinogen but suggests that any risk of cancer from currently permitted occupational exposures is small. PMID:2611160

  13. Methylation profiling using methylated DNA immunoprecipitation and tiling array hybridization.

    PubMed

    Cheung, Hoi-Hung; Lee, Tin-Lap; Rennert, Owen M; Chan, Wai-Yee

    2012-01-01

    DNA methylation is an important epigenetic modification that regulates development and plays a role in the pathophysiology of many diseases. It is dynamically changed during germline development. Methylated DNA immunoprecipitation (MeDIP) is an efficient, cost-effective method for locus-specific and genome-wide analysis. Methylated DNA fragments are enriched by a 5-methylcytidine-recognizing antibody, therefore allowing the analysis of both CpG and non-CpG methylation. The enriched DNA fragments can be amplified and hybridized to tiling arrays covering CpG islands, promoters, or the entire genome. Comparison of different methylomes permits the discovery of differentially methylated regions that might be important in disease- or tissue-specific expression. Here, we describe an established MeDIP protocol and tiling array hybridization method for profiling methylation of testicular germ cells.

  14. The Ethylene Receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 Have Contrasting Roles in Seed Germination of Arabidopsis during Salt Stress1[W][OPEN

    PubMed Central

    Wilson, Rebecca L.; Kim, Heejung; Bakshi, Arkadipta; Binder, Brad M.

    2014-01-01

    In Arabidopsis (Arabidopsis thaliana), ethylene responses are mediated by a family of five receptors that have both overlapping and nonoverlapping roles. In this study, we used loss-of-function mutants for each receptor isoform to determine the role of individual isoforms in seed germination under salt stress. From this analysis, we found subfunctionalization of the receptors in the control of seed germination during salt stress. Specifically, loss of ETHYLENE RESPONSE1 (ETR1) or ETHYLENE INSENSITIVE4 (EIN4) leads to accelerated germination, loss of ETR2 delays germination, and loss of either ETHYLENE RESPONSE SENSOR1 (ERS1) or ERS2 has no measurable effect on germination. Epistasis analysis indicates that ETR1 and EIN4 function additively with ETR2 to control this trait. Interestingly, regulation of germination by ETR1 requires the full-length receptor. The differences in germination between etr1 and etr2 loss-of-function mutants under salt stress could not be explained by differences in the production of or sensitivity to ethylene, gibberellin, or cytokinin. Instead, etr1 loss-of-function mutants have reduced sensitivity to abscisic acid (ABA) and germinate earlier than the wild type, whereas etr2 loss-of-function mutants have increased sensitivity to ABA and germinate slower than the wild type. Additionally, the differences in seed germination on salt between the two mutants and the wild type are eliminated by the ABA biosynthetic inhibitor norflurazon. These data suggest that ETR1 and ETR2 have roles independent of ethylene signaling that affect ABA signaling and result in altered germination during salt stress. PMID:24820022

  15. Exposure to persistent organic pollutants and sperm DNA methylation changes in Arctic and European populations.

    PubMed

    Consales, Claudia; Toft, Gunnar; Leter, Giorgio; Bonde, Jens Peter E; Uccelli, Raffaella; Pacchierotti, Francesca; Eleuteri, Patrizia; Jönsson, Bo A G; Giwercman, Aleksander; Pedersen, Henning S; Struciński, Paweł; Góralczyk, Katarzyna; Zviezdai, Valentyna; Spanò, Marcello

    2016-04-01

    Persistent organic pollutants (POPs), such as PCBs (polychlorinated biphenyls) and DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane], are environmental contaminants with potential endocrine disrupting activity. DNA methylation levels in peripheral blood lymphocytes have been associated with serum concentrations of POPs in Greenland Inuit and Korean populations. Greenland Inuits are characterized by the highest worldwide POP levels. In this cross-sectional study we evaluated the relationship between serum POP concentrations and DNA methylation levels in sperm of non-occupationally exposed fertile men from Greenland, Warsaw (Poland), and Kharkiv (Ukraine). Serum levels of PCB-153 [1,2,4-trichloro-5-(2,4,5-trichlorophenyl)benzene], as a proxy of the total PCBs body burden, and of p,p'-DDE [1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene], the main metabolite of DDT were measured. Sperm DNA methylation level was assessed globally by flow cytometric (FCM) immunodetection of 5-methyl-cytosines and at specific repetitive DNA sequences (Alu, LINE-1, Satα) by PCR-pyrosequencing after bisulfite conversion. Multivariate linear regression analysis was applied to investigate correlations between serum POP concentrations and DNA methylation. No consistent associations between exposure to POPs and sperm DNA methylation at repetitive DNA sequences were detected. A statistically significant global decrease in methylation was associated with exposure to either POP by FCM analysis. This is the first study to investigate environmental exposure to POPs and DNA methylation levels considering sperm as the target cells. Although POP exposure appears to have a limited negative impact on sperm DNA methylation levels in adult males, the global hypomethylation detected by one of the methods applied suggests that further investigation is warranted.

  16. Genetic effects of methylation diets.

    PubMed

    Van den Veyver, Ignatia B

    2002-01-01

    DNA methylation at cytosines in CpG dinucleotides can lead to changes in gene expression and function without altering the primary sequence of the DNA. Methylation can be affected by dietary levels of methyl-donor components, such as folic acid. This may be an important mechanism for environmentally induced changes in gene expression. Recent literature supports a role for DNA-methylation changes in a number of adult-onset disorders and during development. These changes may be significant for better understanding certain birth defects (e.g., neural tube defects) and the long-term consequences of early environmental influences on gene expression (metabolic programming). Optimal "methylation diets" should be investigated as part of the prevention and treatment of all these conditions, as well as in disorders such as Rett syndrome, whose primary defects may lie in DNA methylation-dependent gene regulation.

  17. Structural Studies of Ethylene-1-Octene and Ethylene-Norbornene Random Copolymers by NMR and WAXD

    NASA Astrophysics Data System (ADS)

    Mowery, Daniel; Carrilero, Isabel; Alamo, Rufina

    2003-03-01

    The properties of two series of melt-quenched, random ethylene copolymers (comonomer content < 15 moldiscussed. Changes in the crystallite properties with increasing comonomer content, including crystallite thickness reduction from ^13C T1 NMR relaxation times and chain packing from the line widths of crystal NMR spectra, were found to be independent of comonomer type. Analyses of the non-crystalline regions revealed differences. Copolymers with norbornene showed a larger reduction in the peak position of the WAXD amorphous halo relative to copolymers with the same content of 1-octene. The NMR resonance of the amorphous CH2 backbone units was broader in the copolymers with norbornene. Both observations are due to significant conformational differences in the non-crystalline chains with different comonomer type. Interestingly, the overall decrease in ^13C T1 times of the amorphous CH2 backbone units with increasing comonomer content was the same for both copolymer systems. Hence, in the range of comonomer content studied, the rates of fast motions for ethylene segments in the backbone are independent of comonomer type.

  18. Surface Plasmon Resonance Sensor Based on Ethylene Tetra-Fluoro-Ethylene Hollow Fiber

    PubMed Central

    Chen, Pan; He, Yu-Jing; Zhu, Xiao-Song; Shi, Yi-Wei

    2015-01-01

    A new kind of hollow fiber surface plasmon resonance sensor (HF-SPRS) based on the silver-coated ethylene tetra-fluoro-ethylene (ETFE) hollow fiber (HF) is presented. The ETFE HF-SPRS is fabricated, and its performance is investigated experimentally by measuring the transmission spectra of the sensor when filled by liquid sensed media with different refractive indices (RIs). Theoretical analysis based on the ray transmission model is also taken to evaluate the sensor. Because the RI of ETFE is much lower than that of fused silica (FSG), the ETFE HF-SPRS can extend the lower limit of the detection range of the early reported FSG HF-SPRS from 1.5 to 1.42 approximately. This could greatly enhance the application potential of HF-SPRS. Moreover, the joint use of both ETFE and FSG HF-SPRSs can cover a wide detection range from 1.42 to 1.69 approximately with high sensitivities larger than 1000 nm/RIU. PMID:26540062

  19. Drinking water guideline for ethylene thiourea, a metabolite of ethylene bisdithiocarbamate fungicides

    SciTech Connect

    Frakes, R.A.

    1988-06-01

    The ethylene bisdithiocarbamate fungicides are the most heavily used pesticides in Maine. Ethylene thiourea (ETU) is a metabolite and environmental decomposition product of these compounds, is highly water soluble, and has been detected in groundwater in the state. ETU is a recognized animal carcinogen and teratogen. When administered in the diet, ETU produced a significant increase in thyroid carcinomas in rats in two studies. Two strains of mice fed ETU in the diet developed an increased incidence of hepatomas and a slight increase in lymphomas. Application of the linearized multistage model resulted in virtually safe doses (10(-5) lifetime cancer risk) of 0.25 to 1.6 micrograms/kg/day. The major teratologic effect has been the development of hydrocephalus and other CNS defects postnatally, resulting in a high mortality rate among the offspring. The NOEL for this effect was 5 mg/kg in a single oral dose. Retarded parietal ossification was observed at 5 mg/kg/day. Serious nononcogenic thyroid effects, such as goiter, decreased 131I uptake, and reduced thyroxine production, have been observed. Thyroid hyperplasia was produced at doses as low as 0.3 mg/kg/day ETU ingested in the diet. Based on protection against thyroid and/or liver tumors and alteration in thyroid function, the recommended Drinking Water Guideline for ETU is determined to be 3 ppb. This will also provide protection against developmental effects, since these occur at doses that are one to two orders of magnitude higher. 37 references.

  20. Thermal properties of ethylene glycol aqueous solutions.

    PubMed

    Baudot, A; Odagescu, V

    2004-06-01

    Preventing ice crystallization by transforming liquids into an amorphous state, vitrification can be considered as the most suitable technique allowing complex tissues, and organs cryopreservation. This process requires the use of rapid cooling rates in the presence of cryoprotective solutions highly concentrated in antifreeze compounds, such as polyalcohols. Many of them have already been intensively studied. Their glass forming tendency and the stability of their amorphous state would make vitrification a reality if their biological toxicity did not reduce their usable concentrations often below the concentrations necessary to vitrify organs under achievable thermal conditions. Fortunately, it has been shown that mixtures of cryoprotectants tend to reduce the global toxicity of cryoprotective solutions and various efficient combinations have been proposed containing ethanediol. This work reports on the thermal properties of aqueous solutions with 40, 43, 45, 48, and 50% (w/w) of this compound measured by differential scanning calorimetry. The glass forming tendency and the stability of the amorphous state are evaluated as a function of concentration. They are given by the critical cooling rates v(ccr)above which ice crystallization is avoided, and the critical warming rates v(cwr) necessary to prevent ice crystallization in the supercooled liquid state during rewarming. Those critical rates are calculated using the same semi-empirical model as previously. This work shows a strong decrease of averaged critical cooling and warming rates when ethanediol concentration increases, V(ccr) and V(cwr) = 1.08 x 10 (10) K/min for 40% (w/w) whereas V(ccr) = 11 and V(cwr) = 853 K/min for 50% (w/w). Those results are compared with the corresponding properties of other dialcohols obtained by the same method. Ethylene glycol efficiency is between those of 1,2-propanediol and 1,3-propanediol.

  1. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks.

    PubMed

    Lewis, Daniel R; Ramirez, Melissa V; Miller, Nathan D; Vallabhaneni, Prashanthi; Ray, W Keith; Helm, Richard F; Winkel, Brenda S J; Muday, Gloria K

    2011-05-01

    Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects of auxin and an ethylene precursor on roots of wild-type and hormone-insensitive Arabidopsis (Arabidopsis thaliana) mutants at the transcript, protein, and metabolite levels at high spatial and temporal resolution. Indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) differentially increased flavonol pathway transcripts and flavonol accumulation, altering the relative abundance of quercetin and kaempferol. The IAA, but not ACC, response is lost in the transport inhibitor response1 (tir1) auxin receptor mutant, while ACC responses, but not IAA responses, are lost in ethylene insensitive2 (ein2) and ethylene resistant1 (etr1) ethylene signaling mutants. A kinetic analysis identified increases in transcripts encoding the transcriptional regulators MYB12, Transparent Testa Glabra1, and Production of Anthocyanin Pigment after hormone treatments, which preceded increases in transcripts encoding flavonoid biosynthetic enzymes. In addition, myb12 mutants were insensitive to the effects of auxin and ethylene on flavonol metabolism. The equivalent phenotypes for transparent testa4 (tt4), which makes no flavonols, and tt7, which makes kaempferol but not quercetin, showed that quercetin derivatives are the inhibitors of basipetal root auxin transport, gravitropism, and elongation growth. Collectively, these experiments demonstrate that auxin and ethylene regulate flavonol biosynthesis through distinct signaling networks involving TIR1 and EIN2/ETR1, respectively, both of which converge on MYB12. This study also provides new evidence that quercetin is the flavonol that modulates basipetal auxin transport.

  2. The aqueous photolysis of ethylene glycol adsorbed on geothite

    USGS Publications Warehouse

    Cunningham, Kirkwood M.; Goldberg, Marvin C.; Weiner, E.R.

    1985-01-01

    Suspensions of goethite (α-FeOOH) were photolyzed in aerated ethylene glycol-water solutions at pH 6.5, with ultraviolet light in the wavelength range300–400 nm. Under these conditions, formaldehyde and glycolaldehyde were detected as photoproducts. Quantum yields of formaldehyde production ranged from 1.9 7times; 10-5 to 2.9 × 10-4 over the ethylene glycol concentration range of 0.002-2.0 mol/ℓ, and gave evidence that the reaction occurred at the goethite surface. Quantum yields of glycolaldehyde were 20% less than those of formaldehyde, and displayed a concentration-dependent relationship with ethylene glycol similar to that of formaldehyde. Immediately after photolysis, Fe2+ was measured to be 4.6 × 10-7 mol/ℓ in an aerated suspension containing 1.3 mol/ℓ ethylene glycol, and 8.5 × 10-6 mol/ℓ in the corresponding deoxygenated suspension. Glycolaldehyde was not generated in the deoxygenated suspensions. These results are consistent with a mechanism involving the transfer of an electron from an adsorbed ethylene glycol molecule to an excited state of Fe3+ (Iron[III]) in the goethite lattice, to produce Fe2+ and an organic cation. In a series of reactions involving O2, FeOOH, and Fe2+, the organic cation decomposes to form formaldehyde and the intermediate radicals “OH and” CH2OH. OH reacts further with ethylene glycol in the presence of O2to yield glycolaldehyde. Aqueous photolysis of ethylene glycol sorbed onto goethite is typical of reactions that can occur in the aquatic environment.

  3. Carbohydrates Stimulate Ethylene Production in Tobacco Leaf Discs 1

    PubMed Central

    Meir, Shimon; Philosoph-Hadas, Sonia; Epstein, Ephraim; Aharoni, Nehemia

    1985-01-01

    Various naturally occurring carbohydrates, applied at a concentration range of 1 to 100 mm, stimulated ethylene production for several days in indoleacetic acid (IAA)-treated or untreated tobacco (Nicotiana tabacum L. cv `Xanthi') leaf discs. The lag period for this sugar-stimulated ethylene production was 8 to 12 hours after excision in the untreated leaf discs, but less than 2 hours in the IAA-treated ones. Among the tested carbohydrates, 12 were found to increase synergistically ethylene production, with d-galactose, sucrose, and lactose being the most active; mannitol and l-glucose had no effect. The extent and duration of the increased ethylene production was dependent upon the type of sugar applied, the tissue's age, and the existence of both exogenous IAA and sugar in the medium. Sucrose appeared to elicit a continuous IAA effect for 48 hours, as expressed by increased ethylene production, even when IAA was removed from the medium after a 4-hour pulse. Sucrose stimulated both the uptake and decarboxylation of [1-14C]IAA, as well as the hydrolysis of the esteric and amide IAA conjugates formed in the tissue after application of free IAA. This gradual hydrolysis was accompanied by a further accumulation of a third IAA metabolite. Moreover, synthetic indole-3-acetyl-l-alanine increased ethylene production mainly with sucrose, and this effect was accompanied by its increased decarboxylation and turnover pattern suggesting that release of free IAA was involved. An esteric IAA conjugate, tentatively identified by GC retention time was found to be the major component (84%) of the naturally occurring IAA conjugates in tobacco leaves. Accordingly the sucrose-stimulated ethylene production in tobacco leaves can be ascribed mainly to the sucrose-stimulated hydrolysis of the esteric IAA conjugate. PMID:16664185

  4. Identification of jasmonic acid and its methyl ester as gum-inducing factors in tulips.

    PubMed

    Skrzypek, Edyta; Miyamoto, Kensuke; Saniewski, Marian; Ueda, Junichi

    2005-02-01

    The purpose of this study was to identify endogenous factors that induce gummosis and to show their role in gummosis in tulip (Tulipa gesneriana L. cv. Apeldoorn) stems. Using procedures to detect endogenous factors that induce gum in the stem of tulips, jasmonic acid (JA) and methyl jasmonate (JA-Me) were successfully identified using gas-liquid chromatography-mass spectrometry. Total amounts of JA and JA-Me designated as jasmonates in tulip stems were also estimated at about 70-80 ng/g fresh weight, using deuterium-labeled jasmonates as internal standards. The application of JA and JA-Me as lanolin pastes substantially induced gums in tulip stems with ethylene production. The application of ethephon, an ethylene-generating compound, however, induced no gummosis although it slightly affected jasmonate content in tulip stems. These results strongly suggest that JA and JA-Me are endogenous factors that induce gummosis in tulip stems.

  5. Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening

    NASA Astrophysics Data System (ADS)

    Bisson, Melanie M. A.; Kessenbrock, Mareike; Müller, Lena; Hofmann, Alexander; Schmitz, Florian; Cristescu, Simona M.; Groth, Georg

    2016-08-01

    The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis.

  6. Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening

    PubMed Central

    Bisson, Melanie M. A.; Kessenbrock, Mareike; Müller, Lena; Hofmann, Alexander; Schmitz, Florian; Cristescu, Simona M.; Groth, Georg

    2016-01-01

    The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis. PMID:27477591

  7. Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha.

    PubMed

    Ma, Nan; Tan, Hui; Liu, Xiaohui; Xue, Jingqi; Li, Yunhui; Gao, Junping

    2006-01-01

    In this work, the effect of ethylene on flower opening of cut rose (Rosa hybrida) cv. Samantha was studied. However, although ethylene hastened the process of flower opening, 1-MCP (1-methylcyclopropene), an ethylene action inhibitor, impeded it. Ethylene promoted ethylene production in petals, but 1-MCP did not inhibit this process. Of the four ethylene biosynthetic genes tested, Rh-ACS1 and Rh-ACS2 were undetectable; Rh-ACS3 and Rh-ACO1 expression was enhanced by ethylene slightly and greatly, respectively. However, their mRNA amounts were not inhibited by 1-MCP compared with controls. Expression of seven signalling component genes was also studied, including three ethylene receptors (Rh-ETR1, Rh-ETR3, and Rh-ETR5), two CTRs (Rh-CTR1 and Rh-CTR2), and two transcription factors (Rh-EIN3-1 and Rh-EIN3-2). Transcripts of Rh-ETR5, Rh-EIN3-1, and Rh-EIN3-2 were accumulated in a constitutive manner and had no or little response to ethylene or 1-MCP, while transcript levels of Rh-ETR1 and Rh-CTR1 were substantially elevated by ethylene, and those of Rh-ETR3 and Rh-CTR2 were greatly enhanced by ethylene; 1-MCP reduced all the four genes to levels much less than those in control flowers. These results show that ethylene triggers physiological responses related to flower opening in cut rose cv. Samantha, and that continued ethylene perception results in flower opening. Ethylene may regulate flower opening mainly through expression of two ethylene receptor genes (Rh-ETR1 and Rh-ETR3) and two CTR (Rh-CTR1 and Rh-CTR2) genes.

  8. Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis.

    PubMed

    Alonso, Jose M; Stepanova, Anna N; Solano, Roberto; Wisman, Ellen; Ferrari, Simone; Ausubel, Frederick M; Ecker, Joseph R

    2003-03-04

    Five ethylene-insensitive loci (wei1-wei5) were identified by using a low-dose screen for "weak" ethylene-insensitive mutants. wei1, wei2, and wei3 seedlings showed hormone insensitivity only in roots, whereas wei4 and wei5 displayed insensitivity in both roots and hypocotyls. The genes corresponding to wei1, wei4, and wei5 were isolated using a positional cloning approach. The wei1 mutant harbored a recessive mutation in TIR1, which encodes a component of the SCF protein ubiquitin ligase involved in the auxin response. wei4, a dominant mutant, resulted from a mutation in the ethylene receptor ERS, whereas wei5, a semidominant mutant, was caused by a mutation in the EIN3-related transcription factor gene EIL1. The simultaneous loss of functional WEI5EIL1 and EIN3 nearly completely abolished the ethylene response in etiolated seedlings, and adult plants were highly susceptible to infection by the necrotrophic fungal pathogen Botrytis cinerea. Moreover, wei5eil1 ein3 double mutants were able to fully suppress constitutive signaling caused by ctr1, suggesting a synergistic interaction among these gene products. Unlike previously known root ethylene-insensitive mutants, wei2 and wei3 were not affected in their response to auxin and showed a normal response to gravity. Genetic mapping studies indicate that wei2 and wei3 correspond to previously unidentified ethylene pathway genes that may control cell-elongation processes functioning at the intersection of the ethylene and auxin response pathways.

  9. Regulation of the gravitropic response and ethylene biosynthesis in gravistimulated snapdragon spikes by calcium chelators and ethylene inhibitors.

    PubMed

    Philosoph-Hadas, S; Meir, S; Rosenberger, I; Halevy, A H

    1996-01-01

    The possible involvement of Ca2+ as a second messenger in snapdragon (Antirrhinum majus L.) shoot gravitropism, as well as the role of ethylene in this bending response, were analyzed in terms of stem curvature and gravity-induced asymmetric ethylene production rates, ethylene-related metabolites, and invertase activity across the stem. Application of Ca2+ chelators (ethylenediaminetetraacetic acid, trans-1,2-cyclohexane dinitro-N,N,N',N'-tetraacetic acid, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N',-tetraacetic acid) or a Ca2+ antagonist (LaCl3) to the spikes caused a significant loss of their gravitropic response following horizontal placement. Conversely, the Ca2+ ionophore A23187 or the agonist Bay K-8644 increased gravibending. Longitudinally halved stem sections had significantly higher amounts of ethylene, 1-aminocyclopropane-1-carboxylic acid, and 1-(malonylamino) cyclopropane-1-carboxylic acid compared with vertical controls, with the extra production arising exclusively from the lower half of the stem. trans-1,2-cyclohexane dinitro-N,N,N',N'-tetraacetic acid pretreatment completely abolished the gravity-induced ethylene gradient across the stem, thereby leading to a significant reduction of the curvature. Similarly, reduction of the ethylene produced in the gravistimulated with CoCl2 or inhibition of its action by silver thiosulfate or 2,5-norbornadiene significantly inhibited the subsequent gravibending. Silver thiosulfate and CoCl2 also abolished the gravity-induced gradient of invertase activity across the stem, which is associated with the asymmetric stem elongation. These results suggest that cytosolic Ca2+ may regulate auxin action in snapdragon spikes, manifested as increased ethylene production, which is, in turn, intimately correlated with stem bending. Therefore, both hormones seem to play significant roles in induction and progress of the gravibending of snapdragon spikes.

  10. Identification of Regions in the Receiver Domain of the ETHYLENE RESPONSE1 Ethylene Receptor of Arabidopsis Important for Functional Divergence.

    PubMed

    Bakshi, Arkadipta; Wilson, Rebecca L; Lacey, Randy F; Kim, Heejung; Wuppalapati, Sai Keerthana; Binder, Brad M

    2015-09-01

    Ethylene influences the growth and development of Arabidopsis (Arabidopsis thaliana) via five receptor isoforms. However, the ETHYLENE RESPONSE1 (ETR1) ethylene receptor has unique, and sometimes contrasting, roles from the other receptor isoforms. Prior research indicates that the receiver domain of ETR1 is important for some of these noncanonical roles. We determined that the ETR1 receiver domain is not needed for ETR1's predominant role in mediating responses to the ethylene antagonist, silver. To understand the structure-function relationship underlying the unique roles of the ETR1 receiver domain in the control of specific traits, we performed alanine-scanning mutagenesis. We chose amino acids that are poorly conserved and are in regions predicted to have altered tertiary structure compared with the receiver domains of the other two receptors that contain a receiver domain, ETR2 and ETHYLENE INSENSITIVE4. The effects of these mutants on various phenotypes were examined in transgenic, receptor-deficient Arabidopsis plants. Some traits, such as growth in air and growth recovery after the removal of ethylene, were unaffected by these mutations. By contrast, three mutations on one surface of the receiver domain rendered the transgene unable to rescue ethylene-stimulated nutations. Additionally, several mutations on another surface altered germination on salt. Some of these mutations conferred hyperfunctionality to ETR1 in the context of seed germination on salt, but not for other traits, that correlated with increased responsiveness to abscisic acid. Thus, the ETR1 receiver domain has multiple functions where different surfaces are involved in the control of different traits. Models are discussed for these observations.

  11. ETHY. A Theory of Fruit Climacteric Ethylene Emission1

    PubMed Central

    Génard, Michel; Gouble, Barbara

    2005-01-01

    A theory of fruit climacteric ethylene emission was developed and used as the basis of a simulation model called ETHY. According to the theory, the biosynthetic pathway of ethylene is supplied by ATP and is regulated by 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. The conjugation of ACC with malonate to form MACC was taken into account as a way to decrease the availability of ACC. Because of the seasonal increase of fruit volume, the dilution of biochemical compounds used in ETHY was taken into account. Finally, the ethylene diffusion across the skin was considered. The theory took into account the effect of temperature and O2 and CO2 internal concentrations on ethylene. The model was applied to peach (Prunus persica) fruit over 3 years, several leaf:fruit ratios, and irrigation conditions. An adequate ethylene increase was predicted without considering any increase in respiration during the ripening period, which suggests that the respiratory climacteric may not be required for ripening. Another important result of this study is the high sensitivity of ETHY to the parameters involved in the calculation of ACC oxidase and ACC synthase activities, ATP production, and skin surface and permeability. ETHY was also highly sensitive to changes in fruit growth and temperature. PMID:16143642

  12. Effects of Ethephon, Ethylene, and 2,4-Dichlorophenoxyacetic Acid on Asexual Embryogenesis in Vitro12

    PubMed Central

    Tisserat, Brent; Murashige, Toshio

    1977-01-01

    Asexual embryogenesis in Daucus carota L. `Queen Anne's Lace' callus was suppressed by Ethephon, ethylene, and 2,4-dichlorophenoxyacetic acid (2,4-D). The Ethephon effect could be attributed to volatile and nonvolatile substances. The volatile component was probably entirely ethylene. Ethylene was liberated in the cultures in direct proportion to Ethephon added to the medium. Autoclaving of Ethephon caused a substantial decrease of measurable ethylene. Continuous exposure of callus to 5 μl/l ethylene depressed somatic cell embryogenesis, but not markedly. Depression of embryogenesis by 2,4-D was unrelated to ethylene evolution. PMID:16660109

  13. Managing Nematodes without Methyl Bromide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl bromide is an effective pre-plant soil fumigant used to control nematodes in many high-input, high-value production systems including vegetables, nurseries, ornamentals, tree fruits, strawberries, and grapes. Because methyl bromide has provided a reliable return on investment for nematode c...

  14. Temporally Varying Ethylene Emission on Jupiter

    NASA Technical Reports Server (NTRS)

    Romani, Paul N.; Jennings, Donald E.; Bjoraker, Gordon L.; Sada, Pedro V.; McCabe. Geprge; Boyle, Robert J.

    2008-01-01

    Ethylene (C2H4) emission has been measured in the poles and equator of Jupiter. The 949 cm(sup -1) spectra were recorded with a high resolution spectrometer at the McMath-Pierce telescope at Kitt Peak in October-November 1998 and at the Infrared Telescope Facility at Mauna Kea in June 2000. C2H4 is an important product of methane chemistry in the outer planets. Knowledge of its abundance can help discriminate among the various proposed sets of CH4 photolysis branching ratios at Ly-alpha, and determine the relative importance of the reaction pathways that produce C2H2 and C2H6. In the equatorial region the C2H4 emission is weak, and we were only able to detect it at high air-mass, near the limb. We derive a peak equatorial molar abundance of C2H4 of 4.5 x 10(exp -7) - 1.7 x 10(exp -6) near 2.2 x 10(exp -3) mbar, with a total column of 5.7 x 10(exp 14) - 2.2 x 10(exp 15) molecules cm(exp -2) above 10 mbar depending upon choice of thermal profile. We observed enhanced C2H4 emission from the poles in the regions where auroras are seen in X-ray, UV, and near infrared images. In 2000 we measured a short-term change in the distribution of polar C2H4 emission; the emission in the north IR auroral "hot spot" decreased by a factor of three over a two-day interval. This transient its contribution peak at 5-10 microbar suggests that the polar e is primarily a thermal effect coupled with vertical transport. Comparing our observations from Kitt Peak and Mauna Kea shows that the C2H4 emission of the northern non-"hot spot" auroral regions did not change over the three-year period while that in the southern polar regions decreased.

  15. Methods of DNA methylation detection

    NASA Technical Reports Server (NTRS)

    Maki, Wusi Chen (Inventor); Filanoski, Brian John (Inventor); Mishra, Nirankar (Inventor); Rastogi, Shiva (Inventor)

    2010-01-01

    The present invention provides for methods of DNA methylation detection. The present invention provides for methods of generating and detecting specific electronic signals that report the methylation status of targeted DNA molecules in biological samples.Two methods are described, direct and indirect detection of methylated DNA molecules in a nano transistor based device. In the direct detection, methylated target DNA molecules are captured on the sensing surface resulting in changes in the electrical properties of a nano transistor. These changes generate detectable electronic signals. In the indirect detection, antibody-DNA conjugates are used to identify methylated DNA molecules. RNA signal molecules are generated through an in vitro transcription process. These RNA molecules are captured on the sensing surface change the electrical properties of nano transistor thereby generating detectable electronic signals.

  16. Methyl Halide Production by Fungi

    NASA Astrophysics Data System (ADS)

    Dailey, G. D.; Varner, R. K.; Blanchard, R. O.; Sive, B. C.; Crill, P. M.

    2005-12-01

    Methyl chloride (CH3Cl), methyl bromide (CH3Br) and methyl iodide (CH3I) are methyl halide gases that contribute significant amounts of halogen radicals to the atmosphere. In an effort to better understand the global budget of methyl halides and their impact on the atmosphere, we need to identify the natural sources in addition to the known anthropogenic sources of these compounds. We are investigating the role of fungi in the production of methyl halides in the soils and wetlands in southern New Hampshire, USA. Previous research has shown that wood decay fungi and ectomycorrhizal fungi, which are within a group of fungi called basidiomycetes, emit methyl halides. In our study, measurements of headspace gas extracted from flasks containing fungi grown in culture demonstrate that a variety of fungi, including basidiomycetes and non-basidiomycetes, emit methyl halides. Our research sites include four ecosystems: an agricultural field, a temperate forest, a fresh water wetland, and coastal salt marshes. We have collected and isolated fungi at each site by culturing tissue samples of fruiting bodies and plant material, by using wood baits, and from the direct culture of soil. We compared the rates of methyl halide emissions from the fungi in the four ecosystems. In addition, we measured emissions from previously assayed fungal isolates after reintroducing them to sterilized soils that were collected from their original environments. Fungal biomass was determined by substrate-induced respiration (SIR). The emission rate by the fungus was determined by a linear regression of the concentration of methyl halide in the sample headspace over time divided by the fungal biomass.

  17. Endogenous Auxin and Ethylene in Pellia (Bryophyta) 1

    PubMed Central

    Thomas, Robert J.; Harrison, Marcia A.; Taylor, Jane; Kaufman, Peter B.

    1983-01-01

    The occurrence of endogenous indole-3-acetic acid and ethylene in bryophyte tissue was tentatively demonstrated using gas chromatography, high performance liquid chromatography, and double-standard isotope dilution techniques. Rapidly elongating stalks (or setae) of Pellia epiphylla (L.) Corda sporophytes contain approximately 2.5 to 2.9 micrograms per gram fresh weight of putative free IAA. Ethylene released by setae increases during growth from 0.027 to 0.035 nanoliter per seta per hour. Application of 5 microliters per liter ethylene inhibits auxin-stimulated elongation growth of this tissue, a result which suggests that both endogenously produced compounds act in tandem as natural growth modulators. Images Fig. 1 PMID:16663227

  18. What is Special in Silver for Ethylene Epoxidation

    NASA Astrophysics Data System (ADS)

    Gava, Paola; Kokalj, Anton; de Gironcoli, Stefano; Baroni, Stefano

    2007-03-01

    We present a first-principles study of Ethylene Oxide (EO) synthesis on different transition and noble metal surfaces. Recently Linic et al. have shown that on silver ethylene oxametallacycle (OMC) is a common intermediate for EO as well as for acetaldehyde (Ac) formation, the latter leading to undesired total combustion [1]. Our results provide a rationale of these findings which stem from the mild reactivity of silver that hinders H--C and C--C bond breaking both in ethylene and in the OMC intermediate. By analyzing the transition state geometries toward EO and Ac we identify an indicator that strongly correlates with selectivity for EO formation and could be an useful tool in the rational search for an improved catalyst. [1] S. Linic et al., J. Am. Chem. Soc. 125, 4034 (2003)

  19. [Study on classification of ethylene treated and non-ethylene treated watermelons by visible/near infrared spectroscopy].

    PubMed

    Tian, Hai-qing; Ying, Yi-bin; Lu, Hui-shan; Xu, Hui-rong; Xie, Li-juan

    2009-04-01

    According to the fact that farmers often picked unripe watermelon and treated them with high concentration ethylene to quicken ripeness, classification experiments on the two classes of watermelon mentioned above were conducted based on the Vis/NIR spectroscopy diffuse transmittance technique. In the discriminant analysis, a method to classify them by diffuse transmittance ration at two wavelengths was adopted to discriminate them. Result of mistake ratio 32.5% for samples without ethylene treatment and 20% for ethylene treatment samples indicated that this method could discriminate the two classes of watermelons roughly. Mahalanobis distance and partial least square methods were also used here for discriminant analysis and satisfied results were obtained. The first derivative spectra with Norris derivative filtering of samples without being ethylene-treated using Mahalanobis distance discriminant analysis got the result of mistake ratio 1.67% for calibration set, no mistake for prediction set and no mistake for samples being ethylene treated. No mistake took place for the second derivative spectra using partial least square method. In discriminant analysis, spectral data pretreatment methods influence the discriminant results and it should be selected according to the analysis methods.

  20. The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice.

    PubMed

    Yu, Yanwen; Yang, Dexin; Zhou, Shirong; Gu, Juntao; Wang, Fengru; Dong, Jingao; Huang, Rongfeng

    2017-01-01

    Drought is an important factor limiting plant development and crop production. Dissecting the factors involved in this process is the key for enhancement of plant tolerance to drought stress by genetic approach. Here, we evaluated the regulatory function of a novel rice ethylene response factor (ERF) OsERF109 in drought stress. Expression of OsERF109 was rapidly induced by stress and phytohormones. Subcellular localization and transactivation assay demonstrated that OsERF109 was localized in nucleus and possessed transactivation activity. Transgenic plants overexpressing (OE) and knockdown with RNA interfering (RI) OsERF109 exhibited significantly reduced and improved drought resistance, respectively, indicating that OsERF109 negatively regulates drought resistance in rice. Furthermore, measurement by gas chromatography showed that ethylene contents were less in OE while more in RI lines than these in wild types, supporting the data of drought tolerance and water loss in transgenic lines. Quantitative real-time PCR analysis also proved the regulation of OsERF109 in the expression of OSACS6, OSACO2, and OsERF3, which have been identified to play important roles in ethylene biosynthesis. Based on these results, our data evidence that OsERF109 regulates drought resistance by affecting the ethylene biosynthesis in rice. Overall, our study reveals the negative role of OsERF109 in ethylene biosynthesis and drought tolerance in rice.

  1. Novel insights of ethylene role in strawberry cell wall metabolism.

    PubMed

    Villarreal, Natalia M; Marina, María; Nardi, Cristina F; Civello, Pedro M; Martínez, Gustavo A

    2016-11-01

    Due to its organoleptic and nutraceutical qualities, strawberry fruit (Fragaria x ananassa, Duch) is a worldwide important commodity. The role of ethylene in the regulation of strawberry cell wall metabolism was studied in fruit from Toyonoka cultivar harvested at white stage, when most changes associated with fruit ripening have begun. Fruit were treated with ethephon, an ethylene-releasing reagent, or with 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene action, maintaining a set of non-treated fruit as controls for each condition. Ethephon treated-fruit showed higher contents of hemicelluloses, cellulose and neutral sugars regarding controls, while 1-MCP-treated fruit showed a lower amount of those fractions. On the other hand, ethephon-treated fruit presented a lower quantity of galacturonic acid from ionically and covalently bound pectins regarding controls, while 1-MCP-treated fruit showed higher contents of those components. We also explored the ethylene effect over the mRNA accumulation of genes related to pectins and hemicelluloses metabolism, and a relationship between gene expression patterns and cell wall polysaccharides contents was shown. Moreover, we detected that strawberry necrotrophic pathogens growth more easily on plates containing cell walls from ethephon-treated fruit regarding controls, while a lower growth rate was observed when cell walls from 1-MCP treated fruit were used as the only carbon source, suggesting an effect of ethylene on cell wall structure. Around 60% of strawberry cell wall is made up of pectins, which in turns is 70% made by homogalacturonans. Our findings support the idea of a central role for pectins on strawberry fruit softening and a participation of ethylene in the regulation of this process.

  2. Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis.

    PubMed

    Ueda, Hiroaki; Kusaba, Makoto

    2015-09-01

    Leaf senescence is not a passive degenerative process; it represents a process of nutrient relocation, in which materials are salvaged for growth at a later stage or to produce the next generation. Leaf senescence is regulated by various factors, such as darkness, stress, aging, and phytohormones. Strigolactone is a recently identified phytohormone, and it has multiple functions in plant development, including repression of branching. Although strigolactone is implicated in the regulation of leaf senescence, little is known about its molecular mechanism of action. In this study, strigolactone biosynthesis mutant strains of Arabidopsis (Arabidopsis thaliana) showed a delayed senescence phenotype during dark incubation. The strigolactone biosynthesis genes MORE AXIALLY GROWTH3 (MAX3) and MAX4 were drastically induced during dark incubation and treatment with the senescence-promoting phytohormone ethylene, suggesting that strigolactone is synthesized in the leaf during leaf senescence. This hypothesis was confirmed by a grafting experiment using max4 as the stock and Columbia-0 as the scion, in which the leaves from the Columbia-0 scion senesced earlier than max4 stock leaves. Dark incubation induced the synthesis of ethylene independent of strigolactone. Strigolactone biosynthesis mutants showed a delayed senescence phenotype during ethylene treatment in the light. Furthermore, leaf senescence was strongly accelerated by the application of strigolactone in the presence of ethylene and not by strigolactone alone. These observations suggest that strigolactone promotes leaf senescence by enhancing the action of ethylene. Thus, dark-induced senescence is regulated by a two-step mechanism: induction of ethylene synthesis and consequent induction of strigolactone synthesis in the leaf.

  3. DNA methylation pathways and their crosstalk with histone methylation

    PubMed Central

    Du, Jiamu; Johnson, Lianna M.; Jacobsen, Steven E.; Patel, Dinshaw J.

    2015-01-01

    Methylation of DNA and of histone 3 at Lys 9 (H3K9) are highly correlated with gene silencing in eukaryotes from fungi to humans. Both of these epigenetic marks need to be established at specific regions of the genome and then maintained at these sites through cell division. Protein structural domains that specifically recognize methylated DNA and methylated histones are key for targeting enzymes that catalyse these marks to appropriate genome sites. Genetic, genomic, structural and biochemical data reveal connections between these two epigenetic marks, and these domains mediate much of the crosstalk. PMID:26296162

  4. Anomalous diffusion of poly(ethylene oxide) in agarose gels.

    PubMed

    Brenner, Tom; Matsukawa, Shingo

    2016-11-01

    We report on the effect of probe size and diffusion time of poly(ethylene) oxide in agarose gels. Time-dependence of the diffusion coefficient, reflecting anomalous diffusion, was observed for poly(ethylene) oxide chains with hydrodynamic radii exceeding about 20nm at an agarose concentration of 2%. The main conclusion is that the pore distribution includes pores that are only several nm across, in agreement with scattering reports in the literature. Interpretation of the diffusion coefficient dependence on the probe size based on a model of entangled rigid rods yielded a rod length of 72nm.

  5. Ethylene Trace-gas Techniques for High-speed Flows

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Reichert, Bruce A.

    1994-01-01

    Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.

  6. Mango (Mangifera indica L.) malformation: a malady of stress ethylene origin.

    PubMed

    Ansari, Mohammad W; Rani, Varsha; Shukla, Alok; Bains, Gurdeep; Pant, Ramesh C; Tuteja, Narendra

    2015-01-01

    Mango malformation is a major constrain in mango production worldwide causing heavy economic losses depending on cultivar type and susceptibility. The malady has variously been ascribed to be acarological, viral, fungal and physiological in nature. Here, we discuss the ethylene origin nature of malady. There are indications that most of the symptoms of mango malformation resemble with those of caused by ethylene effects. Multiple evidence reports of putative causal agents including Fusarium mangiferae to augment the endogenous pool of 'stress ethylene' are well documented. Therefore, over load of 'stress ethylene' impairs morphology malformed tissue and cyanide derived from ethylene biosynthesis causes necrosis and death of malformed cells. This review covers various factors eliciting 'stress ethylene' formation, role of ethylene in development of malady and regulation of ethylene action to reduce malformation in mango.

  7. Ethylene Control of Fruit Ripening: Revisiting the Complex Network of Transcriptional Regulation1

    PubMed Central

    Chervin, Christian; Bouzayen, Mondher

    2015-01-01

    The plant hormone ethylene plays a key role in climacteric fruit ripening. Studies on components of ethylene signaling have revealed a linear transduction pathway leading to the activation of ethylene response factors. However, the means by which ethylene selects the ripening-related genes and interacts with other signaling pathways to regulate the ripening process are still to be elucidated. Using tomato (Solanum lycopersicum) as a reference species, the present review aims to revisit the mechanisms by which ethylene regulates fruit ripening by taking advantage of new tools available to perform in silico studies at the genome-wide scale, leading to a global view on the expression pattern of ethylene biosynthesis and response genes throughout ripening. Overall, it provides new insights on the transcriptional network by which this hormone coordinates the ripening process and emphasizes the interplay between ethylene and ripening-associated developmental factors and the link between epigenetic regulation and ethylene during fruit ripening. PMID:26511917

  8. Real World of Industrial Chemistry: Ethylene: The Organic Chemical Industry's Most Important Building Block.

    ERIC Educational Resources Information Center

    Fernelius, W. Conrad, Ed.; And Others

    1979-01-01

    The value of ethylene, as the organic chemical industry's most important building block, is discussed. The discussion focuses on the source of ethylene, its various forms and functions, and the ways in which the forms are made. (SA)

  9. Ethylene Control of Fruit Ripening: Revisiting the Complex Network of Transcriptional Regulation.

    PubMed

    Liu, Mingchun; Pirrello, Julien; Chervin, Christian; Roustan, Jean-Paul; Bouzayen, Mondher

    2015-12-01

    The plant hormone ethylene plays a key role in climacteric fruit ripening. Studies on components of ethylene signaling have revealed a linear transduction pathway leading to the activation of ethylene response factors. However, the means by which ethylene selects the ripening-related genes and interacts with other signaling pathways to regulate the ripening process are still to be elucidated. Using tomato (Solanum lycopersicum) as a reference species, the present review aims to revisit the mechanisms by which ethylene regulates fruit ripening by taking advantage of new tools available to perform in silico studies at the genome-wide scale, leading to a global view on the expression pattern of ethylene biosynthesis and response genes throughout ripening. Overall, it provides new insights on the transcriptional network by which this hormone coordinates the ripening process and emphasizes the interplay between ethylene and ripening-associated developmental factors and the link between epigenetic regulation and ethylene during fruit ripening.

  10. Evaluation of alternate routes for the synthesis of methyl methacrylate

    SciTech Connect

    Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.; Choi, G.N.

    1998-12-31

    The use of coal-derived syngas to produce high value chemicals is an important means of upgrading this resource. One example of a chemical that can be produced from coal-derived syngas is methyl methacrylate (MMA). Poly-methyl methacrylate is widely used in coatings and in various industrial molded products. The most widely practiced commercial technology for the synthesis of MMA is the acetone cyanohydrin (ACH) process. This process requires handling of large quantities of toxic hydrogen cyanide and generates one mole of ammonium bisulfate waste per mole of MMA. This bisulfate must either be regenerated or discarded, either of which substantially increases the cost. The ACH technology is thus environmentally and economically untenable for any new MMA plant expansions that would be needed to meet increasing demand. The RTI-Eastman-Bechtel research team is developing an alternative, environmentally benign route to MMA consisting of three steps; (step 1) synthesis of a propionate from ethylene, carbon monoxide, and steam, (step 2) condensation of this propionate with formaldehyde, and (step 3) esterification of resulting methacrylic acid with methanol to form MMA. This paper describes the preliminary economics of the overall process compared to other emerging processes, and focuses on step 2, including long term testing of catalysts for the condensation of propionic acid with formaldehyde to form MAA.

  11. The ethylene response factor Pti5 contributes to potato aphid resistance in tomato independent of ethylene signalling

    PubMed Central

    Wu, Chengjun; Avila, Carlos A.; Goggin, Fiona L.

    2015-01-01

    Ethylene response factors (ERFs) comprise a large family of transcription factors that regulate numerous biological processes including growth, development, and response to environmental stresses. Here, we report that Pti5, an ERF in tomato [Solanum lycopersicum (Linnaeus)] was transcriptionally upregulated in response to the potato aphid Macrosiphum euphorbiae (Thomas), and contributed to plant defences that limited the population growth of this phloem-feeding insect. Virus-induced gene silencing of Pti5 enhanced aphid population growth on tomato, both on an aphid-susceptible cultivar and on a near-isogenic genotype that carried the Mi-1.2 resistance (R) gene. These results indicate that Pti5 contributes to basal resistance in susceptible plants and also can synergize with other R gene-mediated defences to limit aphid survival and reproduction. Although Pti5 contains the ERF motif, induction of this gene by aphids was independent of ethylene, since the ACC deaminase (ACD) transgene, which inhibits ethylene synthesis, did not diminish the responsiveness of Pti5 to aphid infestation. Furthermore, experiments with inhibitors of ethylene synthesis revealed that Pti5 and ethylene have distinctly different roles in plant responses to aphids. Whereas Pti5 contributed to antibiotic plant defences that limited aphid survival and reproduction on both resistant (Mi-1.2+) and susceptible (Mi-1.2–) genotypes, ethylene signalling promoted aphid infestation on susceptible plants but contributed to antixenotic defences that deterred the early stages of aphid host selection on resistant plants. These findings suggest that the antixenotic defences that inhibit aphid settling and the antibiotic defences that depress fecundity and promote mortality are regulated through different signalling pathways. PMID:25504643

  12. Evolution of soot size distribution in premixed ethylene/air and ethylene/benzene/air flames: Experimental and modeling study

    SciTech Connect

    Echavarria, Carlos A.; Sarofim, Adel F.; Lighty, JoAnn S.; D'Anna, Andrea

    2011-01-15

    The effect of benzene concentration in the initial fuel on the evolution of soot size distribution in ethylene/air and ethylene/benzene/air flat flames was characterized by experimental measurements and model predictions of size and number concentration within the flames. Experimentally, a scanning mobility particle sizer was used to allow spatially resolved and online measurements of particle concentration and sizes in the nanometer-size range. The model couples a detailed kinetic scheme with a discrete-sectional approach to follow the transition from gas-phase to nascent particles and their coagulation to larger soot particles. The evolution of soot size distribution (experimental and modeled) in pure ethylene and ethylene flames doped with benzene showed a typical nucleation-sized (since particles do not actually nucleate in the classical sense particle inception is often used in place of nucleation) mode close to the burner surface, and a bimodal behavior at greater height above burner (HAB). However, major features were distinguished between the data sets. The growth of nucleation and agglomeration-sized particles was faster for ethylene/benzene/air flames, evidenced by the earlier presence of bimodality in these flames. The most significant changes in size distribution were attributed to an increase in benzene concentration in the initial fuel. However, these changes were more evident for high temperature flames. In agreement with the experimental data, the model also predicted the decrease of nucleation-sized particles in the postflame region for ethylene flames doped with benzene. This behavior was associated with the decrease of soot precursors after the main oxidation zone of the flames. (author)

  13. The ethylene response factor Pti5 contributes to potato aphid resistance in tomato independent of ethylene signalling.

    PubMed

    Wu, Chengjun; Avila, Carlos A; Goggin, Fiona L

    2015-02-01

    Ethylene response factors (ERFs) comprise a large family of transcription factors that regulate numerous biological processes including growth, development, and response to environmental stresses. Here, we report that Pti5, an ERF in tomato [Solanum lycopersicum (Linnaeus)] was transcriptionally upregulated in response to the potato aphid Macrosiphum euphorbiae (Thomas), and contributed to plant defences that limited the population growth of this phloem-feeding insect. Virus-induced gene silencing of Pti5 enhanced aphid population growth on tomato, both on an aphid-susceptible cultivar and on a near-isogenic genotype that carried the Mi-1.2 resistance (R) gene. These results indicate that Pti5 contributes to basal resistance in susceptible plants and also can synergize with other R gene-mediated defences to limit aphid survival and reproduction. Although Pti5 contains the ERF motif, induction of this gene by aphids was independent of ethylene, since the ACC deaminase (ACD) transgene, which inhibits ethylene synthesis, did not diminish the responsiveness of Pti5 to aphid infestation. Furthermore, experiments with inhibitors of ethylene synthesis revealed that Pti5 and ethylene have distinctly different roles in plant responses to aphids. Whereas Pti5 contributed to antibiotic plant defences that limited aphid survival and reproduction on both resistant (Mi-1.2+) and susceptible (Mi-1.2-) genotypes, ethylene signalling promoted aphid infestation on susceptible plants but contributed to antixenotic defences that deterred the early stages of aphid host selection on resistant plants. These findings suggest that the antixenotic defences that inhibit aphid settling and the antibiotic defences that depress fecundity and promote mortality are regulated through different signalling pathways.

  14. Oxidation-Responsive and "Clickable" Poly(ethylene glycol) via Copolymerization of 2-(Methylthio)ethyl Glycidyl Ether.

    PubMed

    Herzberger, Jana; Fischer, Karl; Leibig, Daniel; Bros, Matthias; Thiermann, Raphael; Frey, Holger

    2016-07-27

    Poly(ethylene glycol) (PEG) is a widely used biocompatible polymer. We describe a novel epoxide monomer with methyl-thioether moiety, 2-(methylthio)ethyl glycidyl ether (MTEGE), which enables the synthesis of well-defined thioether-functional poly(ethylene glycol). Random and block mPEG-b-PMTEGE copolymers (Mw/Mn = 1.05-1.17) were obtained via anionic ring opening polymerization (AROP) with molecular weights ranging from 5 600 to 12 000 g·mol(-1). The statistical copolymerization of MTEGE with ethylene oxide results in a random microstructure (rEO = 0.92 ± 0.02 and rMTEG E = 1.06 ± 0.02), which was confirmed by in situ (1)H NMR kinetic studies. The random copolymers are thermoresponsive in aqueous solution, with a wide range of tunable transition temperatures of 88 to 28 °C. In contrast, mPEG-b-PMTEGE block copolymers formed well-defined micelles (Rh ≈ 9-15 nm) in water, studied by detailed light scattering (DLS and SLS). Intriguingly, the thioether moieties of MTEGE can be selectively oxidized into sulfoxide units, leading to full disassembly of the micelles, as confirmed by detection of pure unimers (DLS and SLS). Oxidation-responsive release of encapsulated Nile Red demonstrates the potential of these micelles as redox-responsive nanocarriers. MTT assays showed only minor effects of the thioethers and their oxidized derivatives on the cellular metabolism of WEHI-164 and HEK-293T cell lines (1-1000 μg·mL(-1)). Further, sulfonium PEG polyelectrolytes can be obtained via alkylation or alkoxylation of MTEGE, providing access to a large variety of functional groups at the charged sulfur atom.

  15. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction.

    PubMed

    Shi, Jinrui; Drummond, Bruce J; Wang, Hongyu; Archibald, Rayeann L; Habben, Jeffrey E

    2016-08-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize.

  16. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction[OPEN

    PubMed Central

    Shi, Jinrui; Wang, Hongyu; Habben, Jeffrey E.

    2016-01-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. PMID:27268962

  17. Dimethyl Sulfide-Dimethyl Ether and Ethylene Oxide-Ethylene Sulfide Complexes Investigated by Fourier Transform Microwave Spectroscopy and Ab Initio Calculation.

    PubMed

    Kawashima, Yoshiyuki; Tatamitani, Yoshio; Mase, Takayuki; Hirota, Eizi

    2015-10-22

    The ground-state rotational spectra of the dimethyl sulfide-dimethyl ether (DMS-DME) and the ethylene oxide-ethylene sulfide (EO-ES) complexes were observed by Fourier transform microwave spectroscopy, and a-type and c-type transitions were assigned for the normal, (34)S, and three (13)C species of the DMS-DME and a-type and b-type transitions for the normal, (34)S, and two (13)C species of the EO-ES complexes. The transition frequencies measured for both the complexes were analyzed by using an S-reduced asymmetric-top rotational Hamiltonian. The rotational parameters thus derived for the DMS-DME were found to be consistent with a structure of Cs symmetry with the DMS bound to the DME by two C-H(DMS)···O and one S···H-C(DME) hydrogen bonds. Some high-Ka lines were found to be split, and we have interpreted these splittings in terms of internal rotations of the two methyl groups of the DMS and of the "free", i.e., outer group, of the DME. Some forbidden transitions were also observed in cases where Ka = 3 levels were involved, for the DMS-DME complex in the internal-rotation E state. The barrier height, V3, to internal rotation of the CH3 in the DME thus derived is smaller than that of the DME monomer, while the V3 of the CH3 groups in the DMS is nearly the same as that of the DMS monomer. For the EO-ES complex, the observed data were interpreted in terms of an antiparallel structure of Cs symmetry with the EO bound to the ES by two C-H(ES)···O and two S···H-C(EO) hydrogen bonds. An attempt was also made to observe a-type transitions of the DMS dimer without success. We have applied a natural bond orbital analysis to the DMS-DME and EO-ES to calculate the stabilization energy CT (= ΔEσσ*), which was correlated closely with the binding energy as found for other related complexes.

  18. Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide) on polysiloxane.

    PubMed

    Li, Jie; Lin, Yue; Yao, Hehua; Yuan, Changfu; Liu, Jin

    2014-07-01

    A tunable polysiloxane thin-film electrolyte for all-solid-state lithium-ion batteries was developed. The polysiloxane was synthesized by hydrosilylation of polymethylhydrosiloxane with cyclic [(allyloxy)methyl]ethylene ester carbonic acid and vinyl tris(2-methoxyethoxy)silane. (1) H NMR spectroscopy and gel-permeation chromatography demonstrated that the bifunctional groups of the cyclic propylene carbonate (PC) and combed poly(ethylene oxide) (PEO) were well grafted on the polysiloxane. At PC/PEO=6:4, the polysiloxane-based electrolyte had an ionic conductivity of 1.55 × 10(-4) and 1.50 × 10(-3)  S cm(-1) at 25 and 100 °C, respectively. The LiFePO4 /Li batteries fabricated with the thin-film electrolyte presented excellent cycling performance in the temperature range from 25 to 100 °C with an initial discharge capacity at a rate of 1 C of 88.2 and 140 mA h g(-1) at 25 and 100 °C, respectively.

  19. Methylation of cysteine in hemoglobin following exposure to methylating agents

    SciTech Connect

    Bailey, E.; Connors, T.A.; Farmer, P.B.; Gorf, S.M.; Rickard, J.

    1981-06-01

    In addition to reacting with biologically important nucleophilic sites in DNA, alkylating agents also interact with amino acids in proteins. Measurements of the extent of formation of these alkyl amino acids may be used as a means of determining exposure to these compounds. The degree of S-methylation of cysteine in hemoglobin was studied following in vivo exposure of rats to methyl methanesulfonate, dimethylnitrosamine, and 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide. A linear dose-response curve was observed for methyl methanesulfonate over a 100-fold dose range. For dimethylnitrosamine, there was a threshold of doses where no methylation could be detected, and a curved dose-response curve was obtained. At high doses, the degree of methylation of hemoglobin cysteine was 7-fold lower than that with methyl methanesulfonate. In vivo, no alkylation could be observed with 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide; however, the existence of naturally occurring S-methylcysteine in the rat hemoglobin may have overshadowed small increases in alkylation arising from exposure to this compound. The natural occurrence of S-methylcysteine was studied in 13 species, and amounts ranging from 5.6 nmol/g globin (hamster) to 481 nmol/g globin (partridge) were observed. The reason for its occurrence is unknown but is under investigation.

  20. Ethylene Production is Associated with Germination but not Seed Dormancy in Red Rice

    PubMed Central

    Gianinetti, Alberto; Laarhoven, Lucas J. J.; Persijn, Stefan T.; Harren, Frans J. M.; Petruzzelli, Luciana

    2007-01-01

    Background and Aims The relationship between ethylene production and both seed dormancy and germination was investigated using red rice (weedy rice) as a model species. Methods Both fully dormant and after-ripened (non-dormant) naked caryopses were incubated with or without inhibitors of ethylene synthesis [aminoethoxyvinylglycine (AVG)] and perception [silver thiosulfate (STS)], or in the presence of the natural ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). The kinetics of ethylene emissions were measured with a sensitive laser–photoacoustic system. Key Results Dormant red rice caryopses did not produce ethylene. In non-dormant caryopses, ethylene evolution never preceded the first visible stage of germination (pericarp splitting), and ethylene inhibitors completely blocked ethylene production, but not pericarp splitting. Accordingly, endogenous ACC appeared to be lacking before pericarp splitting. However, early seedling growth (radicle or coleoptile attaining the length of 1 mm) followed ethylene evolution and was delayed by the inhibitors. Wounding the dormant caryopses induced them to germinate and produce ethylene, but their germination was slow and pericarp splitting could be speeded up by ethylene. Conclusions The findings suggest that, in red rice, endogenous ethylene stimulates the growth of the nascent seedling, but does not affect seed dormancy or germination inception. Correspondingly, this phytohormone does not play a role in the dormancy breakage induced by wounding, but accelerates germination after such breakage has occurred. PMID:17347162

  1. Role of ethylene receptors during senescence and ripening in horticultural crops.

    PubMed

    Agarwal, Gaurav; Choudhary, Divya; Singh, Virendra P; Arora, Ajay

    2012-07-01

    The past two decades have been rewarding in terms of deciphering the ethylene signal transduction and functional validation of the ethylene receptor and downstream genes involved in the cascade. Our knowledge of ethylene receptors and its signal transduction pathway provides us a robust platform where we can think of manipulating and regulating ethylene sensitivity by the use of genetic engineering and making transgenic. This review focuses on ethylene perception, receptor mediated regulation of ethylene biosynthesis, role of ethylene receptors in flower senescence, fruit ripening and other effects induced by ethylene. The expression behavior of the receptor and downstream molecules in climacteric and non climacteric crops is also elaborated upon. Possible strategies and recent advances in altering the ethylene sensitivity of plants using ethylene receptor genes in an attempt to modulate the regulation and sensitivity to ethylene have also been discussed. Not only will these transgenic plants be a boon to post-harvest physiology and crop improvement but, it will also help us in discovering the mechanism of regulation of ethylene sensitivity.

  2. Role of ethylene receptors during senescence and ripening in horticultural crops

    PubMed Central

    Agarwal, Gaurav; Choudhary, Divya; Singh, Virendra P.; Arora, Ajay

    2012-01-01

    The past two decades have been rewarding in terms of deciphering the ethylene signal transduction and functional validation of the ethylene receptor and downstream genes involved in the cascade. Our knowledge of ethylene receptors and its signal transduction pathway provides us a robust platform where we can think of manipulating and regulating ethylene sensitivity by the use of genetic engineering and making transgenic. This review focuses on ethylene perception, receptor mediated regulation of ethylene biosynthesis, role of ethylene receptors in flower senescence, fruit ripening and other effects induced by ethylene. The expression behavior of the receptor and downstream molecules in climacteric and non climacteric crops is also elaborated upon. Possible strategies and recent advances in altering the ethylene sensitivity of plants using ethylene receptor genes in an attempt to modulate the regulation and sensitivity to ethylene have also been discussed. Not only will these transgenic plants be a boon to post-harvest physiology and crop improvement but, it will also help us in discovering the mechanism of regulation of ethylene sensitivity. PMID:22751331

  3. Ethylene Production by Pseudomonas syringae Pathovars In Vitro and In Planta

    PubMed Central

    Weingart, H.; Volksch, B.

    1997-01-01

    Significant amounts of ethylene were produced by Pseudomonas syringae pv. glycinea, pv. phaseolicola (which had been isolated from viny weed Pueraria lobata [Willd.] Ohwi [common name, kudzu]), and pv. pisi in synthetic medium. On the other hand, the bean strains of P. syringae pv. phaseolicola and strains of 17 other pathovars did not produce ethylene. P. syringae pv. glycinea and P. syringae pv. phaseolicola produced nearly identical levels of ethylene (about 5 x 10(sup-7) nl h(sup-1) cell(sup-1)), which were about 10 times higher than the ethylene level of P. syringae pv. pisi. Two 22-bp oligonucleotide primers derived from the ethylene-forming enzyme (efe) gene of P. syringae pv. phaseolicola PK2 were investigated for their ability to detect ethylene-producing P. syringae strains by PCR analysis. PCR amplification with this primer set resulted in a specific 0.99-kb fragment in all ethylene-producing strains with the exception of the P. syringae pv. pisi strains. Therefore, P. syringae pv. pisi may use a different biosynthetic pathway for ethylene production or the sequence of the efe gene is less conserved in this bacterium. P. syringae pv. phaseolicola isolated from kudzu and P. syringae pv. glycinea also produced ethylene in planta. It could be shown that the enhanced ethylene production in diseased tissue was due to the production of ethylene by the inoculated bacteria. Ethylene production in vitro and in planta was strictly growth associated. PMID:16535480

  4. 21 CFR 872.3410 - Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ethylene oxide homopolymer and/or....3410 Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive. (a) Identification. An ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive is a...

  5. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (generic). 721.10375... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (PMN P-10-200)...

  6. 21 CFR 872.3450 - Ethylene oxide homopolymer and/or karaya denture adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide homopolymer and/or karaya denture... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3450 Ethylene oxide homopolymer and/or karaya denture adhesive. (a) Identification. Ethylene oxide homopolymer and/or...

  7. 21 CFR 177.1345 - Ethylene/1,3-phenylene oxyethylene isophthalate/ terephthalate copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene/1,3-phenylene oxyethylene isophthalate... Ethylene/1,3-phenylene oxyethylene isophthalate/ terephthalate copolymer. Ethylene/1, 3-phenylene... polymers complying with § 177.1630. (a) Identity. For the purpose of this section,...

  8. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  9. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  10. 21 CFR 872.3410 - Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide homopolymer and/or....3410 Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive. (a) Identification. An ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive is a...

  11. 40 CFR 180.1040 - Ethylene glycol; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ethylene glycol; exemption from the... Exemptions From Tolerances § 180.1040 Ethylene glycol; exemption from the requirement of a tolerance. Ethylene glycol as a component of pesticide formulations is exempt from the requirement of a tolerance...

  12. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (generic). 721.10375... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (PMN P-10-200)...

  13. 21 CFR 872.3410 - Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ethylene oxide homopolymer and/or....3410 Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive. (a) Identification. An ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive is a...

  14. 21 CFR 177.1345 - Ethylene/1,3-phenylene oxyethylene isophthalate/ terephthalate copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene/1,3-phenylene oxyethylene isophthalate... Ethylene/1,3-phenylene oxyethylene isophthalate/ terephthalate copolymer. Ethylene/1, 3-phenylene... polymers complying with § 177.1630. (a) Identity. For the purpose of this section,...

  15. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate-vinyl alcohol copolymers... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1360 Ethylene-vinyl acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No....

  16. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  17. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  18. 40 CFR 180.1016 - Ethylene; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ethylene; exemption from the requirement of a tolerance. 180.1016 Section 180.1016 Protection of Environment ENVIRONMENTAL PROTECTION... Exemptions From Tolerances § 180.1016 Ethylene; exemption from the requirement of a tolerance. Ethylene...

  19. 21 CFR 872.3410 - Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ethylene oxide homopolymer and/or....3410 Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive. (a) Identification. An ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive is a...

  20. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...