Baubec, Tuncay; Pecinka, Ales; Rozhon, Wilfried; Mittelsten Scheid, Ortrun
2009-01-01
Covalent modification by methylation of cytosine residues represents an important epigenetic hallmark. While sequence analysis after bisulphite conversion allows correlative analyses with single-base resolution, functional analysis by interference with DNA methylation is less precise, due to the complexity of methylation enzymes and their targets. A cytidine analogue, 5-azacytidine, is frequently used as an inhibitor of DNA methyltransferases, but its rapid degradation in aqueous solution is problematic for culture periods of longer than a few hours. Application of zebularine, a more stable cytidine analogue with a similar mode of action that is successfully used as a methylation inhibitor in Neurospora and mammalian tumour cell lines, can significantly reduce DNA methylation in plants in a dose-dependent and transient manner independent of sequence context. Demethylation is connected with transcriptional reactivation and partial decondensation of heterochromatin. Zebularine represents a promising new and versatile tool for investigating the role of DNA methylation in plants with regard to transcriptional control, maintenance and formation of (hetero-) chromatin. PMID:18826433
Tissue Specific and Hormonal Regulation of Gene Expression
1997-08-01
interference assays were performed. These assays identify DNA bases that, when modified, interfere with the binding of the nuclear factor to the hCRH promoter...thymidine residues. The DNA bases that when modified affected the binding of the protein are noted with arrows, and their location in the hCRH...indicated. B. Methylation interference. The fragments were partially methylated using dimethyl sulfate. The DNA bases that when modified affected the
Regulation and function of DNA methylation in plants and animals
He, Xin-Jian; Chen, Taiping; Zhu, Jian-Kang
2011-01-01
DNA methylation is an important epigenetic mark involved in diverse biological processes. In plants, DNA methylation can be established through the RNA-directed DNA methylation pathway, an RNA interference pathway for transcriptional gene silencing (TGS), which requires 24-nt small interfering RNAs. In mammals, de novo DNA methylation occurs primarily at two developmental stages: during early embryogenesis and during gametogenesis. While it is not clear whether establishment of DNA methylation patterns in mammals involves RNA interference in general, de novo DNA methylation and suppression of transposons in germ cells require 24-32-nt piwi-interacting small RNAs. DNA methylation status is dynamically regulated by DNA methylation and demethylation reactions. In plants, active DNA demethylation relies on the repressor of silencing 1 family of bifunctional DNA glycosylases, which remove the 5-methylcytosine base and then cleave the DNA backbone at the abasic site, initiating a base excision repair (BER) pathway. In animals, multiple mechanisms of active DNA demethylation have been proposed, including a deaminase- and DNA glycosylase-initiated BER pathway. New information concerning the effects of various histone modifications on the establishment and maintenance of DNA methylation has broadened our understanding of the regulation of DNA methylation. The function of DNA methylation in plants and animals is also discussed in this review. PMID:21321601
Olson, M.L.; Cleckner, L.B.; Hurley, J.P.; Krabbenhoft, D.P.; Heelan, T.W.
1997-01-01
Aqueous samples from the Florida Everglades present several problems for the analysis of total mercury (HgT) and methyl mercury (MeHg). Constituents such as dissolved organic carbon (DOC) and sulfide at selected sites present particular challenges due to interferences with standard analytical techniques. This is manifested by 1) the inability to discern when bromine monochloride (BrCl) addition is sufficient for sample oxidation for HgT analysis; and 2) incomplete spike recoveries using the distillation/ethylation technique for MeHg analysis. Here, we suggest ultra-violet (UV) oxidation prior to addition of BrCl to ensure total oxidation of DOC prior to HgT analysis and copper sulfate (CuSO4) addition to aid in distillation in the presence of sulfide for MeHg analysis. Despite high chloride (Cl-) levels, we observed no effects on MeHg distillation/ethylation analyses. ?? Springer-Verlag 1997.
Ch, Muhammad Ishtiaq; Wen, Yang F; Cheng, YiYu
2007-01-01
This paper describes a simple and novel on-column derivatization procedure used with gas chromatography/mass spectrometry (GC/MS) for the analysis of essential oil of Houttuynia cordata Thunb (HCT), a traditional Chinese medicine. In the procedure, the essential oil was obtained by hydrodistillation, and the fatty acid components were derivatized with tetramethylammonium acetate (TMAA) at 250 degrees C and identified by GC/MS. Methylation improved the determination of both the fatty acids and the other components in the essential oil of HCT. To obtain optimum methylation conditions, several important factors were investigated with pentadecane as the internal standard and a GC inlet temperature of 250 degres C. Tetramethylammonium hydroxide (TMAH) and TMAA were compared as the derivatization agent, and a 2:1 ratio of TMAA to capric acid was evaluated. Fatty acid methyl esters produced good chromatographic peak shapes and did not interfere with the determination of dodecanal and caryophyllene. TMAA is a neutral methylation reagent, and it yielded no side reactions during derivatization. It was found that the fatty acid content of the essential oil was about 81%; among the methylated fatty acids found were capric acid, methyl (43.66%), methyl laurate (16.15%), methyl hexadecanoate (9.27%), undecanoic acid, methyl (5.62%), methyl oleate (1.98%), and methyl linoleate (1.40%). Other major constituents were (-)-beta-pinene (1.02%), beta-myrcene (1.62%), 1-terpinen-4-ol (1.59%), decanal (1.49%), and 2-undecanone (1.47%). The results obtained demonstrated good efficiency for the procedure. Pure chromatograms allowed quantitation, which was obtained by total volume integration. The on-column derivatization procedure was simple to perform, and it improved the sensitivity, the peak resolution, and the selectivity of the GC/MS determination.
Li-Byarlay, Hongmei; Li, Yang; Stroud, Hume; Feng, Suhua; Newman, Thomas C.; Kaneda, Megan; Hou, Kirk K.; Worley, Kim C.; Elsik, Christine G.; Wickline, Samuel A.; Jacobsen, Steven E.; Ma, Jian; Robinson, Gene E.
2013-01-01
Studies of DNA methylation from fungi, plants, and animals indicate that gene body methylation is ancient and highly conserved in eukaryotic genomes, but its role has not been clearly defined. It has been postulated that regulation of alternative splicing of transcripts was an original function of DNA methylation, but a direct experimental test of the effect of methylation on alternative slicing at the whole genome level has never been performed. To do this, we developed a unique method to administer RNA interference (RNAi) in a high-throughput and noninvasive manner and then used it to knock down the expression of DNA methyl-transferase 3 (dnmt3), which is required for de novo DNA methylation. We chose the honey bee (Apis mellifera) for this test because it has recently emerged as an important model organism for studying the effects of DNA methylation on development and social behavior, and DNA methylation in honey bees is predominantly on gene bodies. Here we show that dnmt3 RNAi decreased global genomic methylation level as expected and in addition caused widespread and diverse changes in alternative splicing in fat tissue. Four different types of splicing events were affected by dnmt3 gene knockdown, and change in two types, exon skipping and intron retention, was directly related to decreased methylation. These results demonstrate that one function of gene body DNA methylation is to regulate alternative splicing. PMID:23852726
NASA Astrophysics Data System (ADS)
Msimanga, Huggins Z.; Lam, Truong Thach Ho; Latinwo, Nathaniel; Song, Mihyang Kristy; Tavakoli, Newsha
2018-03-01
A calibration matrix has been developed and successfully applied to quantify actives in Children's Dimetapp®, a cough mixture whose active components suffer from heavy spectral interference. High-performance liquid chromatography/photodiode array instrument was used to identify the actives and any other UV-detectable excipients that might contribute to interferences. The instrument was also used to obtain reference data on the actives, instead of relying on the manufacturer's claims. Principal component analysis was used during the developmental stages of the calibration matrix to highlight any mismatch between the calibration and sample spectra, making certain that "apples" were not compared with "oranges". The prediction model was finally calculated using target factor analysis and partial least squares regression. In addition to the actives in Children's Dimetapp® (brompheniramine maleate, phenylephrine hydrogen chloride, and dextromethorphan hydrogen bromide), sodium benzoate was identified as the major and FD&C Blue #1, FD&C Red #40, and methyl anthranilate as minor spectral interferences. Model predictions were compared before and after the interferences were included into the calibration matrix. Before including interferences, the following results were obtained: brompheniramine maleate = 481.3 mg L- 1 ± 134% RE; phenylephrine hydrogen chloride = 1041 mg L- 1 ± 107% RE; dextromethorphan hydrogen bromide = 1571 mg L- 1 ± 107% RE, where % RE = percent relative error based on the reference HPLC data. After including interferences, the results were as follows: brompheniramine maleate = 196.3 mg L- 1 ± 4.4% RE; phenylephrine hydrogen chloride = 501.3 mg L- 1 ± 0.10% RE; dextromethorphan hydrogen bromide = 998.7 mg L- 1 ± 1.6% RE as detailed in Table 6.
Walter, R F H; Rozynek, P; Casjens, S; Werner, R; Mairinger, F D; Speel, E J M; Zur Hausen, A; Meier, S; Wohlschlaeger, J; Theegarten, D; Behrens, T; Schmid, K W; Brüning, T; Johnen, G
2018-01-01
Lung cancer is the major cause of cancer-related deaths worldwide. Differential diagnosis can be difficult, especially when only small samples are available. Epigenetic changes are frequently tissue-specific events in carcinogenesis and hence may serve as diagnostic biomarkers. 138 representative formalin-fixed, paraffin-embedded (FFPE) tissues (116 lung cancer cases and 22 benign controls) were used for targeted DNA methylation analysis via pyrosequencing of ten literature-derived methylation markers (APC, CDH1, CDKN2A, EFEMP1, FHIT, L1RE1, MGMT, PTEN, RARB, and RASSF1). Methylation levels were analyzed with the Classification and Regression Tree Algorithm (CART), Conditional Interference Trees (ctree) and ROC. Validation was performed with additional 27 lung cancer cases and 38 benign controls. TCGA data for 282 lung cancer cases was included in the analysis. CART and ctree analysis identified the combination of L1RE1 and RARB as well as L1RE1 and RASSF1 as independent methylation markers with high discriminative power between tumor and benign tissue (for each combination, 91% specificity and 100% sensitivity). L1RE1 methylation associated significantly with tumor type and grade (p<0.001) with highest methylation in the control group. The opposite was found for RARB (p<0.001). RASSF1 methylation increased with tumor type and grade (p<0.001) with strongest methylation in neuroendocrine tumors (NET). Hypomethylation of L1RE1 is frequent in tumors compared to benign controls and associates with higher grade, whereas increasing methylation of RARB is an independent marker for tumors and higher grade. RASSF1 hypermethylation was frequent in tumors and most prominent in NET making it an auxiliary marker for separation of NSCLC and NET. L1RE1 in combination with either RARB or RASSF1 could function as biomarkers for separating lung cancer and non-cancerous tissue and could be useful for samples of limited size such as biopsies.
Controlling DNA methylation: many roads to one modification.
Freitag, Michael; Selker, Eric U
2005-04-01
Genetic, biochemical and cytological studies on DNA methylation in several eukaryotic organisms have resulted in leaps of understanding in the past three years. Discoveries of mechanistic links between DNA methylation and histone methylation, and between these processes and RNA interference (RNAi) machineries have reinvigorated the field. The details of the connections between DNA methylation, histone modifications and RNA silencing remain to be elucidated, but it is already clear that no single pathway accounts for all DNA methylation found in eukaryotes. Rather, different taxa use one or more of several general mechanisms to control methylation. Despite recent progress, classic questions remain, including: What are the signals for DNA methylation? Are "de novo" and "maintenance" methylation truly separate processes? How is DNA methylation regulated?
Du, Zhenhui; Wan, Jiaxin; Li, Jinyi; Luo, Gang; Gao, Hong; Ma, Yiwen
2017-01-01
Detection of methyl mercaptan (CH3SH) is essential for environmental atmosphere assessment and exhaled-breath analysis. This paper presents a sensitive CH3SH sensor based on wavelength modulation spectroscopy (WMS) with a mid-infrared distributed feedback interband cascade laser (DFB-ICL). Multicomponent spectral fitting was used not only to enhance the sensitivity of the sensor but also to determine the concentration of interferents (atmospheric water and methane). The results showed that the uncertainties in the measurement of CH3SH, H2O, and CH4 were less than 1.2%, 1.7% and 2.0%, respectively, with an integration time of 10 s. The CH3SH detection limit was as low as 7.1 ppb with an integration time of 295 s. Overall, the reported sensor, boasting the merits of high sensitivity, can be used for atmospheric methyl mercaptan detection, as well as multiple components detection of methyl mercaptan, water, and methane, simultaneously. PMID:28212311
Goedecke, Simon; Mühlisch, Jörg; Hempel, Georg; Frühwald, Michael C; Wünsch, Bernhard
2015-12-01
Along with histone modifications, RNA interference and delayed replication timing, DNA methylation belongs to the key processes in epigenetic regulation of gene expression. Therefore, reliable information about the methylation level of particular DNA fragments is of major interest. Herein the methylation level at two positions of the promoter region of the gene methylguanine-O(6) -DNA-Methyltransferase (MGMT) was investigated. Previously, it was demonstrated that the epigenetic status of this DNA region correlates with response to alkylating anticancer agents. An automated CGE method with LIF detection was established to separate the six DNA fragments resulting from combined bisulfite restriction analysis of the methylated and non-methylated MGMT promoter. In COBRA, the DNA was treated with bisulfite converting cytosine into uracil. During PCR uracil pairs with adenine, which changes the original recognition site of the restriction enzyme Taql. Artificial probes generated by mixing appropriate amounts of DNA after bisulfite treatment and PCR amplification were used for validation of the method. The methylation levels of these samples could be determined with high accuracy and precision. DNA samples prepared by mixing the corresponding clones first and then performing PCR amplification led to non-linear correlation between the corrected peak areas and the methylation levels. This effect is explained by slightly different PCR amplification of DNA with different sequences present in the mixture. The superiority of CGE over PAGE was clearly demonstrated. Finally, the established method was used to analyze the methylation levels of human brain tumor tissue samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anecdotal reports suggest that high environmental or occupational exposures to the fuel oxygenate methyl tert-butyl ether (MTBE) may result in breath concentrations that are sufficiently elevated to cause a false positive on commercial breath-alcohol analyzers. We evaluated th...
The mouse arsenic (+3 oxidation state) methyltransferase (As3mt) gene encodes a ~ 43 kDa protein that catalyzes conversion of inorganic arsenic into methylated products. Heterologous expression of AS3MT or its silencing by RNA interference controls arsenic methylation phenotypes...
Casjens, S.; Werner, R.; Mairinger, F. D.; Speel, E. J. M.; Zur Hausen, A.; Meier, S.; Wohlschlaeger, J.; Theegarten, D.; Behrens, T.; Schmid, K. W.; Brüning, T.; Johnen, G.
2018-01-01
Background Lung cancer is the major cause of cancer-related deaths worldwide. Differential diagnosis can be difficult, especially when only small samples are available. Epigenetic changes are frequently tissue-specific events in carcinogenesis and hence may serve as diagnostic biomarkers. Material and methods 138 representative formalin-fixed, paraffin-embedded (FFPE) tissues (116 lung cancer cases and 22 benign controls) were used for targeted DNA methylation analysis via pyrosequencing of ten literature-derived methylation markers (APC, CDH1, CDKN2A, EFEMP1, FHIT, L1RE1, MGMT, PTEN, RARB, and RASSF1). Methylation levels were analyzed with the Classification and Regression Tree Algorithm (CART), Conditional Interference Trees (ctree) and ROC. Validation was performed with additional 27 lung cancer cases and 38 benign controls. TCGA data for 282 lung cancer cases was included in the analysis. Results CART and ctree analysis identified the combination of L1RE1 and RARB as well as L1RE1 and RASSF1 as independent methylation markers with high discriminative power between tumor and benign tissue (for each combination, 91% specificity and 100% sensitivity). L1RE1 methylation associated significantly with tumor type and grade (p<0.001) with highest methylation in the control group. The opposite was found for RARB (p<0.001). RASSF1 methylation increased with tumor type and grade (p<0.001) with strongest methylation in neuroendocrine tumors (NET). Conclusion Hypomethylation of L1RE1 is frequent in tumors compared to benign controls and associates with higher grade, whereas increasing methylation of RARB is an independent marker for tumors and higher grade. RASSF1 hypermethylation was frequent in tumors and most prominent in NET making it an auxiliary marker for separation of NSCLC and NET. L1RE1 in combination with either RARB or RASSF1 could function as biomarkers for separating lung cancer and non-cancerous tissue and could be useful for samples of limited size such as biopsies. PMID:29851970
Li, Shuxia; Zhu, Dongyi; Duan, Hongmei; Ren, Anran; Glintborg, Dorte; Andersen, Marianne; Skov, Vibe; Thomassen, Mads; Kruse, Torben; Tan, Qihua
2017-03-28
As a universally common endocrinopathy in women of reproductive age, the polycystic ovarian syndrome is characterized by composite clinical phenotypes reflecting the contributions of reproductive impact of ovarian dysfunction and metabolic abnormalities with widely varying symptoms resulting from interference of the genome with the environment through integrative biological mechanisms including epigenetics. We have performed a genome-wide DNA methylation analysis on polycystic ovarian syndrome and identified a substantial number of genomic sites differentially methylated in the whole blood of PCOS patients and healthy controls (52 sites, false discovery rate < 0.05 and corresponding p value < 5.68e-06), highly consistently replicating biological pathways extensively implicated in immunity and immunity-related inflammatory disorders (false discovery rate < 0.05) that were reportedly regulated in the DNA methylome from ovarian tissue under PCOS condition. Most importantly, our genome-wide profiling focusing on PCOS patients revealed a large number of DNA methylation sites and their enriched functional pathways significantly associated with diverse clinical features (levels of prolactin, estradiol, progesterone and menstrual cycle) that could serve as novel molecular basis of the clinical heterogeneity observed in PCOS women.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Kousuke; Emoto, Noriko; Sunohara, Mitsuhiro
2010-08-27
Research highlights: {yields} Incubating PCR products at a high temperature causes smears in gel electrophoresis. {yields} Smears interfere with the interpretation of methylation analysis using COBRA. {yields} Treatment with exonuclease I and heat-labile alkaline phosphatase eliminates smears. {yields} The elimination of smears improves the visibility of COBRA. -- Abstract: DNA methylation plays a vital role in the regulation of gene expression. Abnormal promoter hypermethylation is an important mechanism of inactivating tumor suppressor genes in human cancers. Combined bisulfite restriction analysis (COBRA) is a widely used method for identifying the DNA methylation of specific CpG sites. Here, we report that exonucleasemore » I and heat-labile alkaline phosphatase can be used for PCR purification for COBRA, improving the visibility of gel electrophoresis after restriction digestion. This improvement is observed when restriction digestion is performed at a high temperature, such as 60 {sup o}C or 65 {sup o}C, with BstUI and TaqI, respectively. This simple method can be applied instead of DNA purification using spin columns or phenol/chloroform extraction. It can also be applied to other situations when PCR products are digested by thermophile-derived restriction enzymes, such as PCR restriction fragment length polymorphism (RFLP) analysis.« less
Zhou, L.; Chao, T.T.; Sanzolone, R.F.
1985-01-01
Iron is a common interferent in the determination of many elements in geochemical samples. Two approaches for its removal have been taken. The first involves removal of iron by extraction with methyl isobutyl ketone (MIBK) from hydrochloric acid medium, leaving the analytes in the aqueous phase. The second consists of reduction of iron(III) to iron(II) by ascorbic acid to minimize its extraction into MIBK, so that the analytes may be isolated by extraction. Elements of interest can then be determined using the aqueous solution or the organic extract, as appropriate. Operating factors such as the concentration of hydrochloric acid, amounts of iron present, number of extractions, the presence or absence of a salting-out agent, and the optimum ratio of ascorbic acid to iron have been determined. These factors have general applications in geochemical analysis by atomic-absorption spectrophotometry. ?? 1985.
Laudenbach, Beatrice Theres; Martínez-Montero, Saúl; Cencic, Regina; Habjan, Matthias; Pichlmair, Andreas; Damha, Masad J.; Pelletier, Jerry; Nagar, Bhushan
2017-01-01
IFIT1 (IFN-induced protein with tetratricopeptide repeats-1) is an effector of the host innate immune antiviral response that prevents propagation of virus infection by selectively inhibiting translation of viral mRNA. It relies on its ability to compete with the translation initiation factor eIF4F to specifically recognize foreign capped mRNAs, while remaining inactive against host mRNAs marked by ribose 2′-O methylation at the first cap-proximal nucleotide (N1). We report here several crystal structures of RNA-bound human IFIT1, including a 1.6-Å complex with capped RNA. IFIT1 forms a water-filled, positively charged RNA-binding tunnel with a separate hydrophobic extension that unexpectedly engages the cap in multiple conformations (syn and anti) giving rise to a relatively plastic and nonspecific mode of binding, in stark contrast to eIF4E. Cap-proximal nucleotides encircled by the tunnel provide affinity to compete with eIF4F while allowing IFIT1 to select against N1 methylated mRNA. Gel-shift binding assays confirm that N1 methylation interferes with IFIT1 binding, but in an RNA-dependent manner, whereas translation assays reveal that N1 methylation alone is not sufficient to prevent mRNA recognition at high IFIT1 concentrations. Structural and functional analysis show that 2′-O methylation at N2, another abundant mRNA modification, is also detrimental for RNA binding, thus revealing a potentially synergistic role for it in self- versus nonself-mRNA discernment. Finally, structure-guided mutational analysis confirms the importance of RNA binding for IFIT1 restriction of a human coronavirus mutant lacking viral N1 methylation. Our structural and biochemical analysis sheds new light on the molecular basis for IFIT1 translational inhibition of capped viral RNA. PMID:28251928
Crump-Wiesner, Hans J.; Purdy, W.C.
1969-01-01
Because of its advantages in atomic-absorption spectroscopy, isobutyl methyl ketone was chosen as organic solvent for an extraction study on vanadium. Of eight chelating agents which were evaluated for completeness of extraction, ease of use, working pH range, and freedom from interference, cupferron was judged best. ?? 1969.
Sperm DNA fragmentation affects epigenetic feature in human male pronucleus.
Rajabi, H; Mohseni-Kouchesfehani, H; Eslami-Arshaghi, T; Salehi, M
2018-02-01
To evaluate whether the sperm DNA fragmentation affects male pronucleus epigenetic factors, semen analysis was performed and DNA fragmentation was assessed by the method of sperm chromatin structure assay (SCSA). Human-mouse interspecies fertilisation was used to create human male pronucleus. Male pronucleus DNA methylation and H4K12 acetylation were evaluated by immunostaining. Results showed a significant positive correlation between the level of sperm DNA fragmentation and DNA methylation in male pronuclei. In other words, an increase in DNA damage caused an upsurge in DNA methylation. In the case of H4K12 acetylation, no correlation was detected between DNA damage and the level of histone acetylation in the normal group, but results for the group in which male pronuclei were derived from sperm cells with DNA fragmentation, increased DNA damage led to a decreased acetylation level. Sperm DNA fragmentation interferes with the active demethylation process and disrupts the insertion of histones into the male chromatin in the male pronucleus, following fertilisation. © 2017 Blackwell Verlag GmbH.
Mayerhöfer, Thomas G; Pahlow, Susanne; Hübner, Uwe; Popp, Jürgen
2018-06-25
A hybrid formalism combining elements from Kramers-Kronig based analyses and dispersion analysis was developed, which allows removing interference-based effects in the infrared spectra of layers on highly reflecting substrates. In order to enable a highly convenient application, the correction procedure is fully automatized and usually requires less than a minute with non-optimized software on a typical office PC. The formalism was tested with both synthetic and experimental spectra of poly(methyl methacrylate) on gold. The results confirmed the usefulness of the formalism: apparent peak ratios as well as the interference fringes in the original spectra were successfully corrected. Accordingly, the introduced formalism makes it possible to use inexpensive and robust highly reflecting substrates for routine infrared spectroscopic investigations of layers or films the thickness of which is limited by the imperative that reflectance absorbance must be smaller than about 1. For thicker films the formalism is still useful, but requires estimates for the optical constants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moberly, James G; Miller, Carrie L; Brown, Steven D
2012-01-01
The biogeochemical transformations of mercury are a complex process, with the production of methylmercury, a potent human neurotoxin, repeatedly demonstrated in sulfate- and Fe(III)- reducing as well as methanogenic bacteria. However, little is known regarding the morphology, genes or proteins involved in methylmercury generation. Desulfovibrio africanus strain Walvis Bay is a Hg-methylating -proteobacterium with a sequenced genome and has unusual pleomorphic forms. In this study, a relationship between the pleomorphism and Hg methylation was investigated. Proportional increases in the sigmoidal (regular) cell form corresponded with increased net MeHg production, but decreased when the pinched cocci (persister) form became the majormore » morphotype. D. africanus microarrays indicated that the ferrous iron transport genes (feoAB), as well as ribosomal genes and several genes whose products are predicted to have metal binding domains (CxxC), were up-regulated during exposure to Hg in the exponential phase. While no specific methylation pathways were identified, the finding that Hg may interfere with iron transport and the correlation of growth-phase dependent morphology with MeHg production are notable. The identification of these relationships between differential gene expression, morphology, and the growth phase dependence of Hg transformations suggests that actively growing cells are primarily responsible for methylation, and so areas with ample carbon and electron-acceptor concentrations may also generate a higher proportion of methylmercury than more oligotrophic environments. The observation of increased iron transporter expression also suggests that Hg methylation may interfere with iron biogeochemical cycles.« less
PRMT5: A novel regulator of Hepatitis B virus replication and an arginine methylase of HBV core
Lubyova, Barbora; Hodek, Jan; Zabransky, Ales; Prouzova, Hana; Hubalek, Martin; Hirsch, Ivan
2017-01-01
In mammals, protein arginine methyltransferase 5, PRMT5, is the main type II enzyme responsible for the majority of symmetric dimethylarginine formation in polypeptides. Recent study reported that PRMT5 restricts Hepatitis B virus (HBV) replication through epigenetic repression of HBV DNA transcription and interference with encapsidation of pregenomic RNA. Here we demonstrate that PRMT5 interacts with the HBV core (HBc) protein and dimethylates arginine residues within the arginine-rich domain (ARD) of the carboxyl-terminus. ARD consists of four arginine rich subdomains, ARDI, ARDII, ARDIII and ARDIV. Mutation analysis of ARDs revealed that arginine methylation of HBc required the wild-type status of both ARDI and ARDII. Mass spectrometry analysis of HBc identified multiple potential ubiquitination, methylation and phosphorylation sites, out of which lysine K7 and arginines R150 (within ARDI) and R156 (outside ARDs) were shown to be modified by ubiquitination and methylation, respectively. The HBc symmetric dimethylation appeared to be linked to serine phosphorylation and nuclear import of HBc protein. Conversely, the monomethylated HBc retained in the cytoplasm. Thus, overexpression of PRMT5 led to increased nuclear accumulation of HBc, and vice versa, down-regulation of PRMT5 resulted in reduced levels of HBc in nuclei of transfected cells. In summary, we identified PRMT5 as a potent controller of HBc cell trafficking and function and described two novel types of HBc post-translational modifications (PTMs), arginine methylation and ubiquitination. PMID:29065155
2010-06-30
Interference Testing Our testing shows that it is unlikely that the Eclox Chemiluminescence Test will respond to the common disinfectant chloramine ...common disinfectants (chlorine and chloramine ), cyanobacterial byproducts (geosmin and MIB) or water quality parameters (humic/fulvic acids or water...toxicity sensor testing Table 2-2: Interferences Test Chemicals Concentration (mg/L) Chlorine 10 Chloramines 10 Geosmin 0.0001 Methyl-isoborneol
Metabolic effects of p,p'-DDE on Atlantic salmon hepatocytes.
Olsvik, Pål A; Søfteland, Liv
2018-04-01
Decades after being banned in many countries, DDT and its metabolites are still considered major environmental hazards. The p,p'-DDE isomer, the DDT metabolite found in highest concentration in aquaculture feeds, is an endocrine disruptor with demonstrated ability to induce epigenetic effects. This study aimed at examining the impact of p,p'-DDE on Atlantic salmon. Primary hepatocytes were exposed to four concentrations of p,p'-DDE (0.1, 1, 10, 100 μm) for 48 hours, and endpoints included cytotoxicity, global DNA methylation, targeted transcription and metabolomics profiling (100 μm). p,p'-DDE was moderately cytotoxic at 100 μm. No impact was seen on global DNA methylation. Vtg1 and esr1 transcription, markers of endocrine disruption, was most strongly induced at 10 μm p,p'-DDE, while ar showed strongest response at 100 μm. Metabolomics profiling showed that p,p'-DDE at 100 μm most strongly affected carbohydrate metabolism, primary bile acid metabolism, leucine, isoleucine and valine metabolism, diacylglycerol and sphingolipid metabolism. Observed changes in lipid levels suggest that p,p'-DDE interferes with phospholipid membrane biosynthesis. Elevation of bile acid levels in p,p'-DDE-exposed hepatocytes indicates upregulation of synthesis of bile acids after cytochrome P450 activation. Pathway analysis showed that the superpathway of methionine degradation was the most significantly affected pathway by p,p'-DDE exposure, while endocrine system disorder topped the diseases and disorder ranking. In conclusion, this work predicts an endocrine response to p,p'-DDE exposure, and demonstrates how this legacy pesticide might interfere with mechanisms linked to DNA methylation in Atlantic salmon hepatocytes. Copyright © 2017 John Wiley & Sons, Ltd.
Rothkegel, Karin; Sánchez, Evelyn; Montes, Christian; Greve, Macarena; Tapia, Sebastián; Bravo, Soraya; Prieto, Humberto; Almeida, Andréa Miyasaka
2017-12-01
Epigenetic modifications can yield information about connections between genotype, phenotype variation and environmental conditions. Bud dormancy release in temperate perennial fruit trees depends on internal and environmental signals such as cold accumulation and photoperiod. Previous investigations have noted the participation of epigenetic mechanisms in the control of this physiological process. We examined whether epigenetic modifications were modulated in MADS-box genes, potential candidates for the regulation of bud dormancy and flowering in sweet cherry (Prunus avium L.). We identified and cloned two MADS-box genes homologous to the already-characterized dormancy regulators DORMANCY-ASSOCIATED MADS-box (DAM3 and DAM5) from Prunus persica (L.) Batsch. Bisulfite sequencing of the identified genes (PavMADS1 and PavMADS2), Methylated DNA Immunoprecipitation and small RNA deep sequencing were performed to analyze the presence of DNA methylations that could be guided by non-coding RNAs in the floral buds exposed to differential chilling hours. The results obtained reveal an increase in the level of DNA methylation and abundance of matching small interference RNAs (siRNAs) in the promoter of PavMADS1 when the chilling requirement is complete. For the first intron and 5' UTR of PavMADS1, de novo DNA methylation could be associated with the increase in the abundance of 24-nt siRNA matching the promoter area. Also, in the second large intron of PavMADS1, maintenance DNA methylation in all cytosine contexts is associated with the presence of homologous siRNAs in that zone. For PavMADS2, only maintenance methylation was present in the CG context, and no matching siRNAs were detected. Silencing of PavMADS1 and PavMADS2 coincided with an increase in Flowering Locus T expression during dormancy. In conclusion, DNA methylations and siRNAs appear to be involved in the silencing of PavMADS1 during cold accumulation and dormancy release in sweet cherry. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Musiyenko, Alla; Majumdar, Tanmay; Andrews, Joel; Adams, Brian; Barik, Sailen
2013-01-01
Summary Argonaute (Ago) plays a central role in RNA interference in metazoans, but its status in lower organisms remains ill-defined. We report on the Ago complex of the unicellular protozoan, Toxoplasma gondii (Tg), an obligatory pathogen of mammalian hosts. The PIWI-like domain of TgAgo lacked the canonical DDE/H catalytic triad, explaining its weak target RNA cleavage activity. However, TgAgo associated with a stronger RNA slicer, a Tudor staphylococcal nuclease (TSN), and with a protein Arg methyl transferase, PRMT1. Mutational analysis suggested that the N-terminal RGG-repeat domain of TgAgo was methylated by PRMT1, correlating with the recruitment of TSN. The slicer activity of TgAgo was Mg2+-dependent and required perfect complementarity between the guide RNA and the target. In contrast, the TSN activity was Ca2+-dependent and required an imperfectly paired guide RNA. Ago knockout parasites showed essentially normal growth, but in contrast, the PRMT1 knockouts grew abnormally. Chemical inhibition of Arg-methylation also had an anti-parasitic effect. These results suggest that the parasitic PRMT1 plays multiple roles, and its loss affects the recruitment of a more potent second slicer to the parasitic RNA silencing complex, the exact mechanism of which remains to be determined. PMID:22309152
Sex differences in DNA methylation of the cord blood are related to sex-bias psychiatric diseases
NASA Astrophysics Data System (ADS)
Maschietto, Mariana; Bastos, Laura Caroline; Tahira, Ana Carolina; Bastos, Elen Pereira; Euclydes, Veronica Luiza Vale; Brentani, Alexandra; Fink, Günther; de Baumont, Angelica; Felipe-Silva, Aloísio; Francisco, Rossana Pulcineli Vieira; Gouveia, Gisele; Grisi, Sandra Josefina Ferraz Ellero; Escobar, Ana Maria Ulhoa; Moreira-Filho, Carlos Alberto; Polanczyk, Guilherme Vanoni; Miguel, Euripedes Constantino; Brentani, Helena
2017-03-01
Sex differences in the prevalence of psychiatric disorders are well documented, with exposure to stress during gestation differentially impacting females and males. We explored sex-specific DNA methylation in the cord blood of 39 females and 32 males born at term and with appropriate weight at birth regarding their potential connection to psychiatric outcomes. Mothers were interviewed to gather information about environmental factors (gestational exposure) that could interfere with the methylation profiles in the newborns. Bisulphite converted DNA was hybridized to Illumina HumanMethylation450 BeadChips. Excluding XYS probes, there were 2,332 differentially methylated CpG sites (DMSs) between sexes, which were enriched within brain modules of co-methylated CpGs during brain development and also differentially methylated in the brains of boys and girls. Genes associated with the DMSs were enriched for neurodevelopmental disorders, particularly for CpG sites found differentially methylated in brain tissue between patients with schizophrenia and controls. Moreover, the DMS had an overlap of 890 (38%) CpG sites with a cohort submitted to toxic exposition during gestation. This study supports the evidences that sex differences in DNA methylation of autosomes act as a primary driver of sex differences that are found in psychiatric outcomes.
Sex differences in DNA methylation of the cord blood are related to sex-bias psychiatric diseases
Maschietto, Mariana; Bastos, Laura Caroline; Tahira, Ana Carolina; Bastos, Elen Pereira; Euclydes, Veronica Luiza Vale; Brentani, Alexandra; Fink, Günther; de Baumont, Angelica; Felipe-Silva, Aloísio; Francisco, Rossana Pulcineli Vieira; Gouveia, Gisele; Grisi, Sandra Josefina Ferraz Ellero; Escobar, Ana Maria Ulhoa; Moreira-Filho, Carlos Alberto; Polanczyk, Guilherme Vanoni; Miguel, Euripedes Constantino; Brentani, Helena
2017-01-01
Sex differences in the prevalence of psychiatric disorders are well documented, with exposure to stress during gestation differentially impacting females and males. We explored sex-specific DNA methylation in the cord blood of 39 females and 32 males born at term and with appropriate weight at birth regarding their potential connection to psychiatric outcomes. Mothers were interviewed to gather information about environmental factors (gestational exposure) that could interfere with the methylation profiles in the newborns. Bisulphite converted DNA was hybridized to Illumina HumanMethylation450 BeadChips. Excluding XYS probes, there were 2,332 differentially methylated CpG sites (DMSs) between sexes, which were enriched within brain modules of co-methylated CpGs during brain development and also differentially methylated in the brains of boys and girls. Genes associated with the DMSs were enriched for neurodevelopmental disorders, particularly for CpG sites found differentially methylated in brain tissue between patients with schizophrenia and controls. Moreover, the DMS had an overlap of 890 (38%) CpG sites with a cohort submitted to toxic exposition during gestation. This study supports the evidences that sex differences in DNA methylation of autosomes act as a primary driver of sex differences that are found in psychiatric outcomes. PMID:28303968
Li, Longxue; Wang, Maoqing; Chen, Shuhong; Zhao, Wei; Zhao, Yue; Wang, Xu; Zhang, Yang
2016-03-01
The study was to assess the long-term toxic effects of acetochlor on rats. Two different doses (42.96 and 107.4 mg/kg body weight/day) of acetochlor were administered to Wistar rats through their food for over 24 weeks. Rat urine samples were collected at two time-points for the measurements of the metabonomics profiles with ultra-performance liquid chromatography-mass spectrometry (UPLC-MSMS). The results of clinical chemistry and histopathology suggested that long-term use of acetochlor in rats caused liver and kidney damage, and dysfunction of antioxidant system. The urinary metabonomics analysis indicated that the high and low-dose exposure of acetochlor could cause alterations of these metabonomics in urine in the rat. Significant changes of the levels of hippuric acid (0.403-fold decrease), citric acid (0.430-fold decrease), pantothenic acid (0.486-fold decrease), uracil (0.419-fold decrease), β-Alanine (0.325-fold decrease), nonanedioic acid (0.445-fold decrease), L-tyrosine (0.410-fold decrease), D-glucuronic acid (8.389-fold increase) and 2-ethyl-6-methyl-N-methyl-2-chloro-acetanilide in urine were observed. In addition, it may interfere with the fatty acid synthesis, the pyrimidine degradation and pantothenate biosynthesis. The level of 2-ethyl-6-methyl-N-methyl-2-chloro-acetanilide is detected in all treated groups which is not found in the control groups, indicating which can be used as an early, sensitive marker of acetochlor exposure in rat. This study illustrates the important utility of metabonomics approaches to understand the toxicity of long-term exposure of acetochlor. Copyright © 2015. Published by Elsevier Inc.
Sanzolone, R.F.; Chao, T.T.; Crenshaw, G.L.
1979-01-01
An atomic-absorption spectrometric method is reported for the determination of cobalt, nickel, and copper in a variety of geological materials including iron- and manganese-rich, and calcareous samples. The sample is decomposed with HP-HNO3 and the residue is dissolved in hydrochloric acid. Ammonium fluoride is added to mask iron and 'aluminum. After adjustment to pH 6, cobalt, nickel, and copper are chelated with sodium diethyl-dithiocarbamate and extracted into methyl isobutyl ketone. The sample is set aside for 24 h before analysis to remove interferences from manganese. For a 0.200-g sample, the limits of determination are 5-1000 ppm for Co, Ni, and Cu. As much as 50% Fe, 25% Mn or Ca, 20% Al and 10% Na, K, or Mg in the sample either individually or in various combinations do not interfere. Results obtained on five U.S. Geological Survey rock standards are in general agreement with values reported in the literature. ?? 1979.
Eddy covariance measurement of isoprene fluxes
NASA Astrophysics Data System (ADS)
Guenther, Alex B.; Hills, Alan J.
1998-06-01
A system has been developed to directly measure isoprene flux above a forest canopy by eddy covariance using the combination of a fast response, real-time isoprene sensor and sonic anemometer. This system is suitable for making nearly unattended, long-term, and continuous measurements of isoprene fluxes. Isoprene detection is based on chemiluminescence between isoprene and reactant ozone, which produces green light at 500 nm. The sensor has a noise level (1σ) of 450 pptv for a 1-s integration which is dominated by random high-frequency noise that does not significantly degrade eddy covariance flux measurements. Interference from the flux of other compounds is primarily due to the emission of monoterpenes, propene, ethene, and methyl butenol and the deposition of methacrolein and methyl vinyl ketone. The average total interference for North American landscapes in midday summer is estimated to be about 5% for emissions and -3% for deposition fluxes. In only a few North American landscapes, where isoprene emissions are very low and methyl butenol emissions are high, are interferences predicted to be significant. The system was field tested on a tower above a mixed deciduous forest canopy (Duke Forest, North Carolina, U.S.A.) dominated by oak trees, which are strong isoprene emitters. Isoprene fluxes were estimated for 307 half-hour sampling periods over 10 days. Daytime fluxes ranging from 1 to 14 mg C m-2 h-1 were strongly correlated with light and temperature. The daytime mean flux of 6 mg C m-2 h-1 is similar to previous estimates determined by relaxed eddy accumulation by Geron et al [1997] at this site. Nighttime fluxes were near zero (0.01±0.03 mg C m-2 h-1).
Chiliveri, Sai Chaitanya; Kumar, Sonu; Marelli, Udaya Kiran; Deshmukh, Mandar V
2012-10-01
The RNAi pathway of several organisms requires presence of double stranded RNA binding proteins for functioning of Dicer in gene regulation. In C. elegans, a double stranded RNA binding protein, RDE-4 (385 aa, 44 kDa) recognizes long exogenous dsRNA and initiates the RNAi pathway. We have achieved complete backbone and stereospecific methyl sidechain Ile (δ1), Leu and Val chemical shifts of first 243 amino acids of RDE-4, namely RDE-4ΔC.
Gestational Alcohol Exposure Altered DNA Methylation Status in the Developing Fetus
Mandal, Chanchal; Halder, Debasish; Jung, Kyoung Hwa; Chai, Young Gyu
2017-01-01
Ethanol is well known as a teratogenic factor that is capable of inducing a wide range of developmental abnormalities if the developing fetus is exposed to it. Duration and dose are the critical parameters of exposure that affect teratogenic variation to the developing fetus. It is suggested that ethanol interferes with epigenetic processes especially DNA methylation. We aimed to organize all of the available information on the alteration of DNA methylation by ethanol in utero. Thus, we have summarized all published information regarding alcohol-mediated alterations in DNA methylation during gestation. We tried to arrange information in a way that anyone can easily find the alcohol exposure time, doses, sampling time, and major changes in genomic level. Manuscript texts will also represent the correlation between ethanol metabolites and subsequent changes in methylome patterns. We hope that this review will help future researchers to further examine the issues associated with ethanol exposure. PMID:28657590
Phase 1 Methyl Iodide Deep-Bed Adsorption Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soelberg, Nick; Watson, Tony
2014-08-22
Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing hasmore » progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that are soluble in NaOH scrubbing solution for iodine analysis. But when NOx and H2O are not present, then the majority of the uncaptured iodine exiting iodine-laden sorbent is in the form of methyl iodide. Methyl iodide adsorption efficiencies have been high enough so that initial DFs exceed 1,000 to 10,000. The methyl iodide mass transfer zone depths are estimated at 4-8 inches, possibly deeper than mass transfer zone depths estimated for I2 adsorption on AgZ. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less
Oxidative stress and alterations in DNA methylation: two sides of the same coin in reproduction.
Menezo, Yves J R; Silvestris, Erica; Dale, Brian; Elder, Kay
2016-12-01
The negative effect of oxidative stress on the human reproductive process is no longer a matter for debate. Oxidative stress affects female and male gametes and the developmental capacity of embryos. Its effect can continue through late stages of pregnancy. Metabolic disorders and psychiatric problems can also be caued by DNA methylation and epigenetic errors. Age has a negative effect on oxidative stress and DNA methylation, and recent observations suggest that older men are at risk of transmitting epigenetic disorders to their offspring. Environmental endocrine disruptors can also increase oxidative stress and methylation errors. Oxidative stress and DNA methylation feature a common denominator: the one carbon cycle. This important metabolic pathway stimulates glutathione synthesis and recycles homocysteine, a molecule that interferes with the process of methylation. Glutathione plays a pivotal role during oocyte activation, protecting against reactive oxygen species. Assisted reproductive techniques may exacerbate defects in methylation and epigenesis. Antioxidant supplements are proposed to reduce the risk of potentially harmful effects, but their use has failed to prevent problems and may sometimes be detrimental. New concepts reveal a significant correlation between oxidative stress, methylation processes and epigenesis, and have led to changes in media composition with positive preliminary clinical consequences. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Ning, Xi; Sun, Yao; Wang, Changchun; Zhang, Weilin; Sun, Meihao; Hu, Haitao; Liu, Jianzhong; Yang, Ling
2018-01-01
Glutaredoxins (GRXs) belong to the antioxidants involved in the cellular stress responses. In spite of the identification 48 GRX genes in rice genomes, the biological functions of most of them remain unknown. Especially, the biological roles of members of GRX family in disease resistance are still lacking. Our proteomic analysis found that OsGRX20 increased by 2.7-fold after infection by bacterial blight. In this study, we isolated and characterized the full-length nucleotide sequences of the rice OsGRX20 gene, which encodes a GRX family protein with CPFC active site of CPYC-type class. OsGRX20 protein was localized in nucleus and cytosol, and its transcripts were expressed predominantly in leaves. Several stress- and hormone-related motifs putatively acting as regulatory elements were found in the OsGRX20 promoter. Real-time quantitative PCR analysis indicated that OsGRX20 was expressed at a significantly higher level in leaves of a resistant or tolerant rice genotype, Yongjing 50A, than in a sensitive genotype, Xiushui 11, exposed to bacterial blight, methyl viologen, heat, and cold. Its expression could be induced by salt, PEG-6000, 2,4-D, salicylic acid, jasmonic acid, and abscisic acid treatments in Yongjing 50A. Overexpression of OsGRX20 in rice Xiushui 11 significantly enhanced its resistance to bacterial blight attack, and tolerance to methyl viologen and salt stresses. In contrast, interference of OsGRX20 in Yongjing 50A led to increased susceptibility to bacterial blight, methyl viologen and salt stresses. OsGRX20 restrained accumulation of superoxide radicals in aerial tissue during methyl viologen treatment. Consistently, alterations in OsGRX20 expression affect the ascorbate/dehydroascorbate ratio and the abundance of transcripts encoding four reactive oxygen species scavenging enzymes after methyl viologen-induced stress. Our results demonstrate that OsGRX20 functioned as a positive regulator in rice tolerance to multiple stresses, which may be of significant use in the genetic improvement of rice resistance.
Dijkman, E; Mooibroek, D; Hoogerbrugge, R; Hogendoorn, E; Sancho, J V; Pozo, O; Hernández, F
2001-08-10
This study investigated the effects of matrix interferences on the analytical performance of a triple quadrupole mass spectrometric (MS-MS) detector coupled to various reversed-phase liquid chromatographic (LC) modes for the on-line determination of various types of acidic herbicides in water using external calibration for quantification of the analytes tested at a level of 0.4 microg/l. The LC modes included (i) a single-column configuration (LC), (ii) precolumn switching (PC-LC) and (iii) coupled-column LC (LC-LC). As regards detection, electrospray (ESI) and atmospheric pressure chemical ionization (APCI) in both positive (PI) and negative (NI) ionization modes were examined. Salinity and dissolved organic carbon (DOC) were selected as interferences to study matrix effects in this type of analysis. Therefore, Milli-Q and tap water samples both fortified with 12 mg/l DOC and spiked with sulfometuron-methyl, bentazone, bromoxynil, 2-methyl-4-chlorophenoxyacetic acid, and 2-methyl-4-chlorophenoxypropionic acid at a level of about 0.4 microg/l were analyzed with the various LC-MS approaches. Direct sample injection was performed with volumes of 0.25 ml or 2.0 ml on a column of 2.1 mm I.D. or 4.6 mm I.D. for the ESI and APCI modes, respectively. The recovery data were used to compare and evaluate the analytical performance of the various LC approaches. As regards matrix effects, the salinity provided a dramatic decrease in response for early eluting analytes (k value of about 1) when using the LC mode. Both PC-LC and LC-LC efficiently eliminated this problem. The high DOC content hardly effected the responses of analytes in the ESI mode, while in most cases the responses increased when using APCI-MS-MS detection. Of all the tested configurations, LC-LC-ESI-MS-MS with the column combination Discovery C18/ABZ+ was the most favorable as regards elimination of matrix effects and provided reliable quantification of all compounds using external calibration at the tested low level. The major observed effects were verified with statistical evaluation of the data employing backwards ordinary least-square regression. All tested column-switching modes hyphenated to ESI- or APCI-MS-MS allowed the on-line multi-residue analysis of acidic pesticides in the reference water down to a level of 0.1 microg/l in less than 10 min, emphasizing the feasibility of such an approach in this field of analysis.
Maier, Holly; Colbert, Jeff; Fitzsimmons, Daniel; Clark, Dawn R.; Hagman, James
2003-01-01
Methylation of cytosine in CpG dinucleotides promotes transcriptional repression in mammals by blocking transcription factor binding and recruiting methyl-binding proteins that initiate chromatin remodeling. Here, we use a novel cell-based system to show that retrovirally expressed Pax-5 protein activates endogenous early B-cell-specific mb-1 genes in plasmacytoma cells, but only when the promoter is hypomethylated. CpG methylation does not directly affect binding of the promoter by Pax-5. Instead, methylation of an adjacent CpG interferes with assembly of ternary complexes comprising Pax-5 and Ets proteins. In electrophoretic mobility shift assays, recruitment of Ets-1 is blocked by methylation of the Ets site (5′CCGGAG) on the antisense strand. In transfection assays, selective methylation of a single CpG within the Pax-5-dependent Ets site greatly reduces mb-1 promoter activity. Prior demethylation of the endogenous mb-1 promoter is required for its activation by Pax-5 in transduced cells. Although B-lineage cells have only unmethylated mb-1 genes and do not modulate methylation of the mb-1 promoter during development, other tissues feature high percentages of methylated alleles. Together, these studies demonstrate a novel DNA methylation-dependent mechanism for regulating transcriptional activity through the inhibition of DNA-dependent protein-protein interactions. PMID:12612069
A review on environmental factors regulating arsenic methylation in humans.
Tseng, Chin-Hsiao
2009-03-15
Subjects exposed to arsenic show significant inter-individual variation in urinary patterns of arsenic metabolites but insignificant day-to-day intra-individual variation. The inter-individual variation in arsenic methylation can be partly responsible for the variation in susceptibility to arsenic toxicity. Wide inter-ethnic variation and family correlation in urinary arsenic profile suggest a genetic effect on arsenic metabolism. In this paper the environmental factors affecting arsenic metabolism are reviewed. Methylation capacity might reduce with increasing dosage of arsenic exposure. Furthermore, women, especially at pregnancy, have better methylation capacity than their men counterparts, probably due to the effect of estrogen. Children might have better methylation capacity than adults and age shows inconsistent relevance in adults. Smoking and alcohol consumption might be associated with a poorer methylation capacity. Nutritional status is important in the methylation capacity and folate may facilitate the methylation and excretion of arsenic. Besides, general health conditions and medications might influence the arsenic methylation capacity; and technical problems can cause biased estimates. The consumption of seafood, seaweed, rice and other food with high arsenic contents and the extent of cooking and arsenic-containing water used in food preparation may also interfere with the presentation of the urinary arsenic profile. Future studies are necessary to clarify the effects of the various arsenic metabolites including the trivalent methylated forms on the development of arsenic-induced human diseases with the consideration of the effects of confounding factors and the interactions with other effect modifiers.
An increasing number of pharmaceutical and industrial chemicals are being classified as endocrine disrupting compounds (EDCs). These chemicals can interfere with hormonal homeostasis and lead to developmental disorders, cancer and other pathologies. One such EDC is 17α-ethy...
[Long non-coding RNAs in plants].
Xiaoqing, Huang; Dandan, Li; Juan, Wu
2015-04-01
Long non-coding RNAs (lncRNAs), which are longer than 200 nucleotides in length, widely exist in organisms and function in a variety of biological processes. Currently, most of lncRNAs found in plants are transcribed by RNA polymerase Ⅱ and mediate gene expression through multiple mechanisms, such as target mimicry, transcription interference, histone methylation and DNA methylation, and play important roles in flowering, male sterility, nutrition metabolism, biotic and abiotic stress and other biological processes as regulators in plants. In this review, we summarize the databases, prediction methods, and possible functions of plant lncRNAs discovered in recent years.
Progression of Prostate Carcinogenesis and Dietary Methyl Donors: Temporal Dependence
Shabbeer, Shabana; Williams, Simon A.; Simons, Brian W.; Herman, James G.; Carducci, Michael A.
2011-01-01
Insufficient dose of dietary methyl groups are associated with a host of conditions ranging from neural tube defects to cancer. On the other hand, it is not certain what effect excess dietary methyl groups could have on cancer. This is especially true for prostate cancer (PCa), a disease that is characterized by increasing DNA methylation changes with increasing grade of the cancer. In this three-part study in animals, we look at (i) the effect of excess methyl donors on the growth rate of PCa in vivo, (ii) the ability of 5-aza-2'-deoxycytidine, a demethylating agent, to demethylate in the presence of excess dietary methyl donors and (iii) the effect of in utero feeding of excess methyl donors to the later onset of PCa. The results show that when mice are fed a dietary excess of methyl donors, we do not see (i) an increase in the growth rate of DU-145 and PC-3 xenografts in vivo, or (ii) interference in the ability of 5-aza-2'-deoxycytidine to demethylate the promoters of Androgen Receptor or Reprimo of PCa xenografts but (iii) a protective effect on the development of higher grades of PCa in the “Hi-myc” mouse model of PCa which were fed the increased methyl donors in utero. We conclude that the impact of dietary methyl donors on PCa progression depends upon the timing of exposure to the dietary agents. When fed before the onset of cancer, i.e. in utero, excess methyl donors can have a protective effect on the progression of cancer. PMID:22139053
Ríos, Rosalva; Santoyo, Martha E; Cruz, Daniela; Delgado, Juan Manuel; Zarazúa, Sergio; Jiménez-Capdeville, María E
2012-11-30
Arsenic toxicity has been related to its interference with one carbon metabolism, where a high demand of S-adenosylmethionine (SAM) for arsenic methylation as well as a failure of its regeneration would compromise the availability of methyl groups for diverse cellular functions. Since exposed animals show disturbances of methylated products such as methylated arginines, myelin and axon membranes, this work investigates whether alterations of SAM, choline and phosphatidylcholine (PC) in the brain of arsenic exposed rats are associated with myelin alterations and myelin basic protein (MBP) immunoreactivity. Also these metabolites, morphologic and biochemical markers of methyl group alterations were analyzed in the liver, the main site of arsenic methylation. In adult, life-long arsenic exposed rats through drinking water (3 ppm), no changes of SAM, choline and PC concentrations where found in the brain, but SAM and PC were severely decreased in liver accompanied by a significant increase of choline. These results suggest that choline plays an important role as methyl donor in arsenic exposure, which could underlie hepatic affections observed when arsenic exposure is combined with other environmental factors. Also, important myelin and nerve fiber alterations, accompanied by a 75% decrease of MBP immunoreactivity were not associated with a SAM deficit in the brain. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Shanker, A; Sood, C; Kumar, V; Ravindranath, S D
2001-05-01
Recent advances in methodology and instrumentation have made possible the detection and determination of pesticides at microgram kg-1 (ppb) levels. The sensitivity of a method of analysis depends greatly on the efficient extraction of the pesticide and the subsequent clean-up of the extract. The extract from green tea leaves is a mixture of aroma components, polyphenols and caffeine. The preparation of made tea from green tea leaves adds to this complexity by concentrating these coextractives. Conventional clean-up techniques provide poor recoveries for parathion-methyl and chlorpyrifos from both green tea leaves and made tea. This arises from interference by caffeine during gas chromatography, as it has a similar retention time to the two pesticides and peaks overlap. A modification to the protocol based on a solvent partitioning process using dichloromethane and subsequent washing of the extracts with warm water removed the caffeine, and pigments were removed by column chromatography. Recoveries ranging from 80 to 90% were then obtained for both pesticides.
A mutated dph3 gene causes sensitivity of Schizosaccharomyces pombe cells to cytotoxic agents.
Villahermosa, Desirée; Knapp, Karen; Fleck, Oliver
2017-12-01
Dph3 is involved in diphthamide modification of the eukaryotic translation elongation factor eEF2 and in Elongator-mediated modifications of tRNAs, where a 5-methoxycarbonyl-methyl moiety is added to wobble uridines. Lack of such modifications affects protein synthesis due to inaccurate translation of mRNAs at ribosomes. We have discovered that integration of markers at the msh3 locus of Schizosaccharomyces pombe impaired the function of the nearby located dph3 gene. Such integrations rendered cells sensitive to the cytotoxic drugs hydroxyurea and methyl methanesulfonate. We constructed dph3 and msh3 strains with mutated ATG start codons (ATGmut), which allowed investigating drug sensitivity without potential interference by marker insertions. The dph3-ATGmut and a dph3::loxP-ura4-loxM gene disruption strain, but not msh3-ATGmut, turned out to be sensitive to hydroxyurea and methyl methanesulfonate, likewise the strains with cassettes integrated at the msh3 locus. The fungicide sordarin, which inhibits diphthamide modified eEF2 of Saccharomyces cerevisiae, barely affected survival of wild type and msh3Δ S. pombe cells, while the dph3Δ mutant was sensitive. The msh3-ATG mutation, but not dph3Δ or the dph3-ATG mutation caused a defect in mating-type switching, indicating that the ura4 marker at the dph3 locus did not interfere with Msh3 function. We conclude that Dph3 is required for cellular resistance to the fungicide sordarin and to the cytotoxic drugs hydroxyurea and methyl methanesulfonate. This is likely mediated by efficient translation of proteins in response to DNA damage and replication stress.
Cocaine Directly Impairs Memory Extinction and Alters Brain DNA Methylation Dynamics in Honey Bees.
Søvik, Eirik; Berthier, Pauline; Klare, William P; Helliwell, Paul; Buckle, Edwina L S; Plath, Jenny A; Barron, Andrew B; Maleszka, Ryszard
2018-01-01
Drug addiction is a chronic relapsing behavioral disorder. The high relapse rate has often been attributed to the perseverance of drug-associated memories due to high incentive salience of stimuli learnt under the influence of drugs. Drug addiction has also been interpreted as a memory disorder since drug associated memories are unusually enduring and some drugs, such as cocaine, interfere with neuroepigenetic machinery known to be involved in memory processing. Here we used the honey bee (an established invertebrate model for epigenomics and behavioral studies) to examine whether or not cocaine affects memory processing independently of its effect on incentive salience. Using the proboscis extension reflex training paradigm we found that cocaine strongly impairs consolidation of extinction memory. Based on correlation between the observed effect of cocaine on learning and expression of epigenetic processes, we propose that cocaine interferes with memory processing independently of incentive salience by directly altering DNA methylation dynamics. Our findings emphasize the impact of cocaine on memory systems, with relevance for understanding how cocaine can have such an enduring impact on behavior.
Cocaine Directly Impairs Memory Extinction and Alters Brain DNA Methylation Dynamics in Honey Bees
Søvik, Eirik; Berthier, Pauline; Klare, William P.; Helliwell, Paul; Buckle, Edwina L. S.; Plath, Jenny A.; Barron, Andrew B.; Maleszka, Ryszard
2018-01-01
Drug addiction is a chronic relapsing behavioral disorder. The high relapse rate has often been attributed to the perseverance of drug-associated memories due to high incentive salience of stimuli learnt under the influence of drugs. Drug addiction has also been interpreted as a memory disorder since drug associated memories are unusually enduring and some drugs, such as cocaine, interfere with neuroepigenetic machinery known to be involved in memory processing. Here we used the honey bee (an established invertebrate model for epigenomics and behavioral studies) to examine whether or not cocaine affects memory processing independently of its effect on incentive salience. Using the proboscis extension reflex training paradigm we found that cocaine strongly impairs consolidation of extinction memory. Based on correlation between the observed effect of cocaine on learning and expression of epigenetic processes, we propose that cocaine interferes with memory processing independently of incentive salience by directly altering DNA methylation dynamics. Our findings emphasize the impact of cocaine on memory systems, with relevance for understanding how cocaine can have such an enduring impact on behavior. PMID:29487536
Inductively Coupled Plasma Optical Emission Spectrometry for Rare Earth Elements Analysis
NASA Astrophysics Data System (ADS)
He, Man; Hu, Bin; Chen, Beibei; Jiang, Zucheng
2017-01-01
Inductively coupled plasma optical emission spectrometry (ICP-OES) merits multielements capability, high sensitivity, good reproducibility, low matrix effect and wide dynamic linear range for rare earth elements (REEs) analysis. But the spectral interference in trace REEs analysis by ICP-OES is a serious problem due to the complicated emission spectra of REEs, which demands some correction technology including interference factor method, derivative spectrum, Kalman filtering algorithm and partial least-squares (PLS) method. Matrix-matching calibration, internal standard, correction factor and sample dilution are usually employed to overcome or decrease the matrix effect. Coupled with various sample introduction techniques, the analytical performance of ICP-OES for REEs analysis would be improved. Compared with conventional pneumatic nebulization (PN), acid effect and matrix effect are decreased to some extent in flow injection ICP-OES, with higher tolerable matrix concentration and better reproducibility. By using electrothermal vaporization as sample introduction system, direct analysis of solid samples by ICP-OES is achieved and the vaporization behavior of refractory REEs with high boiling point, which can easily form involatile carbides in the graphite tube, could be improved by using chemical modifier, such as polytetrafluoroethylene and 1-phenyl-3-methyl-4-benzoyl-5-pyrazone. Laser ablation-ICP-OES is suitable for the analysis of both conductive and nonconductive solid samples, with the absolute detection limit of ng-pg level and extremely low sample consumption (0.2 % of that in conventional PN introduction). ICP-OES has been extensively employed for trace REEs analysis in high-purity materials, and environmental and biological samples.
van Boxtel, Niels; Wolfs, Kris; Palacín, Marta Guillén; Van Schepdael, Ann; Adams, Erwin
2016-12-09
The analysis of quaternary ammonium salts (QAS) using GC is often performed by "in injector" pyrolysis to create volatile degradation products for quantification purposes. Besides the risk of severe system contamination, the application of this approach on aqueous samples is problematic. In this work, the sample is treated in a vial with 2,2-dimethoxypropane (DMP) under acidic catalysis. In addition to the removal of water and sample enrichment, the QAS are decomposed. As HS transfers only volatile compounds to the GC system, contamination is avoided. It was found that depending on the presence of benzyl, phenyl or methyl groups on the quaternary nitrogen; benzyl chloride, N,N-dimethylaniline or chloromethane are formed respectively in the sealed vial. All these can be used as an analytical target. A calibration curve for benzyl chloride could be derived from the pure compound. Chloromethane was generated from pure benzyldimethyldecylammonium chloride (BEDIDE), a pure QAS with benzyl and methyl groups, to construct a secondary calibration curve using a back analysis approach. It has been proven that by quantifying the formed analytical targets, the mass balance for the QAS under investigation was close to 100%. The presented procedure allows the quantification of any aromatic substituted QAS without the need for a matching reference, which is a major advantage over existing CE and LC methods The proposed methodology was validated for mouth sprays containing benzethonium chloride (BZTCl) or benzoxonium chloride (BZOCl) and for denatonium benzoate (DB) in ethylene glycol (EG) based cooling liquids. Results showed that the approach provided excellent linearity (R 2 ≥0.999) and limits of detection around 0.01μg/vial for benzyl chloride. It was found that the reaction product of DMP and glycerol which was also present in the mouthspray and some cooling liquids, caused chromatographic interference with benzyl chloride. Treating those samples in the vial with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) after the enrichment step removes the interference and leaves a possible pathway for the simultaneous determination of glycerol in those samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Sun, Yueying; Sun, Yuanyuan; Tian, Weimin; Liu, Chenghui; Gao, Kejian; Li, Zhengping
2018-02-07
Sensitive and accurate detection of site-specific DNA methylation is of critical significance for early diagnosis of human diseases, especially cancers. Herein, for the first time we employ a novel methylation-dependent restriction endonuclease GlaI to detect site-specific DNA methylation in a highly specific and sensitive way by coupling with isothermal exponential amplification reaction (EXPAR). GlaI can only cut the methylated target site with excellent selectivity but leave the unmethylated DNA intact. Then the newly exposed end fragments of methylated DNA can trigger EXPAR for highly efficient signal amplification while the intact unmethylated DNA will not initiate EXPAR at all. As such, only the methylated DNA is quantitatively and faithfully reflected by the real-time fluorescence signal of the GlaI-EXPAR system, and the potential false positive interference from unmethylated DNA can be effectively eliminated. Therefore, by integrating the unique features of GlaI for highly specific methylation discrimination and EXPAR for rapid and powerful signal amplification, the elegant GlaI-EXPAR assay allows the direct quantification of methylated DNA with ultrahigh sensitivity and accuracy. The detection limit of methylated DNA target has been pushed down to the aM level and the whole detection process of GlaI-EXPAR can be accomplished within a short time of 2 h. More importantly, ultrahigh specificity is achieved and as low as 0.01% methylated DNA can be clearly identified in the presence of a large excess of unmethylated DNA. This GlaI-EXPAR is also demonstrated to be capable of determining site-specific DNA methylations in real genomic DNA samples. Sharing the distinct advantages of ultrahigh sensitivity, outstanding specificity and facile operation, this new GlaI-EXPAR strategy may provide a robust and reliable platform for the detection of site-specific DNA methylations with low abundances.
Lin, Lin; Liu, Yong; Xu, Fengping; Huang, Jinrong; Daugaard, Tina Fuglsang; Petersen, Trine Skov; Hansen, Bettina; Ye, Lingfei; Zhou, Qing; Fang, Fang; Yang, Ling; Li, Shengting; Fløe, Lasse; Jensen, Kristopher Torp; Shrock, Ellen; Chen, Fang; Yang, Huanming; Wang, Jian; Liu, Xin; Xu, Xun; Bolund, Lars; Nielsen, Anders Lade; Luo, Yonglun
2018-01-01
Abstract Background Fusion of DNA methyltransferase domains to the nuclease-deficient clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9 (dCas9) has been used for epigenome editing, but the specificities of these dCas9 methyltransferases have not been fully investigated. Findings We generated CRISPR-guided DNA methyltransferases by fusing the catalytic domain of DNMT3A or DNMT3B to the C terminus of the dCas9 protein from Streptococcus pyogenes and validated its on-target and global off-target characteristics. Using targeted quantitative bisulfite pyrosequencing, we prove that dCas9-BFP-DNMT3A and dCas9-BFP-DNMT3B can efficiently methylate the CpG dinucleotides flanking its target sites at different genomic loci (uPA and TGFBR3) in human embryonic kidney cells (HEK293T). Furthermore, we conducted whole genome bisulfite sequencing (WGBS) to address the specificity of our dCas9 methyltransferases. WGBS revealed that although dCas9-BFP-DNMT3A and dCas9-BFP-DNMT3B did not cause global methylation changes, a substantial number (more than 1000) of the off-target differentially methylated regions (DMRs) were identified. The off-target DMRs, which were hypermethylated in cells expressing dCas9 methyltransferase and guide RNAs, were predominantly found in promoter regions, 5΄ untranslated regions, CpG islands, and DNase I hypersensitivity sites, whereas unexpected hypomethylated off-target DMRs were significantly enriched in repeated sequences. Through chromatin immunoprecipitation with massive parallel DNA sequencing analysis, we further revealed that these off-target DMRs were weakly correlated with dCas9 off-target binding sites. Using quantitative polymerase chain reaction, RNA sequencing, and fluorescence reporter cells, we also found that dCas9-BFP-DNMT3A and dCas9-BFP-DNMT3B can mediate transient inhibition of gene expression, which might be caused by dCas9-mediated de novo DNA methylation as well as interference with transcription. Conclusion Our results prove that dCas9 methyltransferases cause efficient RNA-guided methylation of specific endogenous CpGs. However, there is significant off-target methylation indicating that further improvements of the specificity of CRISPR-dCas9 based DNA methylation modifiers are required. PMID:29635374
Lin, Lin; Liu, Yong; Xu, Fengping; Huang, Jinrong; Daugaard, Tina Fuglsang; Petersen, Trine Skov; Hansen, Bettina; Ye, Lingfei; Zhou, Qing; Fang, Fang; Yang, Ling; Li, Shengting; Fløe, Lasse; Jensen, Kristopher Torp; Shrock, Ellen; Chen, Fang; Yang, Huanming; Wang, Jian; Liu, Xin; Xu, Xun; Bolund, Lars; Nielsen, Anders Lade; Luo, Yonglun
2018-03-01
Fusion of DNA methyltransferase domains to the nuclease-deficient clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9 (dCas9) has been used for epigenome editing, but the specificities of these dCas9 methyltransferases have not been fully investigated. We generated CRISPR-guided DNA methyltransferases by fusing the catalytic domain of DNMT3A or DNMT3B to the C terminus of the dCas9 protein from Streptococcus pyogenes and validated its on-target and global off-target characteristics. Using targeted quantitative bisulfite pyrosequencing, we prove that dCas9-BFP-DNMT3A and dCas9-BFP-DNMT3B can efficiently methylate the CpG dinucleotides flanking its target sites at different genomic loci (uPA and TGFBR3) in human embryonic kidney cells (HEK293T). Furthermore, we conducted whole genome bisulfite sequencing (WGBS) to address the specificity of our dCas9 methyltransferases. WGBS revealed that although dCas9-BFP-DNMT3A and dCas9-BFP-DNMT3B did not cause global methylation changes, a substantial number (more than 1000) of the off-target differentially methylated regions (DMRs) were identified. The off-target DMRs, which were hypermethylated in cells expressing dCas9 methyltransferase and guide RNAs, were predominantly found in promoter regions, 5΄ untranslated regions, CpG islands, and DNase I hypersensitivity sites, whereas unexpected hypomethylated off-target DMRs were significantly enriched in repeated sequences. Through chromatin immunoprecipitation with massive parallel DNA sequencing analysis, we further revealed that these off-target DMRs were weakly correlated with dCas9 off-target binding sites. Using quantitative polymerase chain reaction, RNA sequencing, and fluorescence reporter cells, we also found that dCas9-BFP-DNMT3A and dCas9-BFP-DNMT3B can mediate transient inhibition of gene expression, which might be caused by dCas9-mediated de novo DNA methylation as well as interference with transcription. Our results prove that dCas9 methyltransferases cause efficient RNA-guided methylation of specific endogenous CpGs. However, there is significant off-target methylation indicating that further improvements of the specificity of CRISPR-dCas9 based DNA methylation modifiers are required.
Indirect spectrophotometric determination of trace cyanide with cationic porphyrins.
Ishii, H; Kohata, K
1991-05-01
Three highly sensitive methods for the determination of cyanide have been developed, based on the fact that the complexation of silver ions with three cationic porphyrins, 5,10,15,20-tetrakis-(1-methyl-2-pyridinio)porphine [T(2-MPy)P], 5,10,15,20-tetrakis(1-methyl-3-pyridinio)porphine [T(3-MPy)P] and 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphine [T(4-MPy)P], in alkaline media is inhibited by cyanide and the decrease in absorbance of the silver(II) complex is proportional to the cyanide concentration. Sensitivities of the procedures developed are 0.133, 0.126 and 0.234 ng/cm(2), respectively for an absorbance of 0.001. Cadmium(II), copper(II), mercury(II), zinc(II), iodide and sulfide interfere with the cyanide determination. One of the proposed methods was applied to the determination of cyanide in waste-water samples, with satisfactory results.
THE DETERMINATION OF TRACES OF BORON IN ZIRCONIUM METAL AND ZIRCONIUM ALLOYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, M.R.; Metcalfe, J.
1962-01-01
A general procedure is given for the determination of B, down to 0.2 ppm, in Zr and Zr alloys. Separation of the B is not necessary, the B-curcumin complex being formed directly in an aliquot of the metal sulfate solution. An interference effect has been noted when analyzing Zr alloys containing Sn. The interference is caused by an insoluble compound of curcumin which separates and has similar properties to the B-curcumin complex. This source of interference is, however, readily eliminated during the procedure for the determination of B. The procedure has been applied to the determination of B in puremore » Zr, zr--0.5% Cu-- 0.5% MO, and Zr--1.5% Sn--0.1% Fe--0.1% Cr--0.05% Ni alloys. Results are comparable with those obtained by methods requiring the separation of the B as methyl borate. (auth)« less
Jiao, Zhe; Jiang, Zhimei; Wang, Jingtao; Xu, Hui; Zhang, Qiang; Liu, Shuang; Du, Ning; Zhang, Yuanyuan; Qiu, Hongbin
2017-01-01
Cerebral palsy (CP) is a severe type of brain disease affecting movement and posture. Although CP has strong genetic and environmental components, considerable differences in the methylome between monozygotic (MZ) twins discordant for CP implicates epigenetic contributors as well. In order to determine the differences in methylation in patients with CP without interference of the interindividual genomic variation, four pairs of MZ twins discordant for CP were profiled for DNA methylation changes using reduced representation bisulfite sequencing on the genomic-scale. Similar DNA methylation patterns were observed in all samples. However, MZ twins demonstrated higher correlations and closer evolutionary associations compared with the other samples, indicating a stable methylome of MZ twins. A total of 190 differentially methylated genes (DMGs) were identified using Student's t-test, of which 37 genes were hypermethylated in the CP group while the remainders were hypomethylated compared with control group. The identified DMGs were enriched in several cerebral abnormalities, including cerebral cortical atrophy and cerebral atrophy, suggesting that the occurrence of CP may be associated with the methylation alterations. The neighboring genes of DMGs in the protein-protein interaction network were enriched in numerous important functions in essential processes. The results of the present study identified important genes that may epigenetically contribute to the occurrence and development of CP in MZ twins, suggesting that the different prevalence of CP in identical twins may be associated with DNA methylation alterations. PMID:29039597
Activation barriers for methylation of DNA bases by dimethyl sulfate
NASA Astrophysics Data System (ADS)
Eichler, Daniel R.; Papadantonakis, George A.
2017-12-01
The SN2 transition states of the methylation reaction of DNA bases with dimethyl sulfate were examined employing DFT/ M06-2X/6-31+G∗ and DFT/B3LYP-D3/6-311+G (2df, 2p) levels of theory. Solvation effects were examined using the conductor-like polarizable continuum model (CPCM). Calculation results and feedback from electrostatic potential maps show that in water, charge separation lowers the activation barriers relative to the gas phase for the reactions at N7 of guanine, N3 of adenine and cytosine. Also, the reaction at the O6 site of guanine is governed by steric interference and exhibits a higher activation barrier in water.
Tian, Meiping; Peng, Siyuan; Martin, Francis L; Zhang, Jie; Liu, Liangpo; Wang, Zhanlin; Dong, Sijun; Shen, Heqing
2012-06-14
Perfluorooctanoic acid (PFOA) is one of the most commonly used perfluorinated compounds. Being a persistent environmental pollutant, it can accumulate in human tissues via various exposure routes. PFOA may interfere in a toxic fashion on the immune system, liver, development, and endocrine systems. In utero human exposure had been associated with cord serum global DNA hypomethylation. In light of this, we investigated possible PFOA-induced DNA methylation alterations in L02 cells in order to shed light into its epigenetic-mediated mechanisms of toxicity in human liver. L02 cells were exposed to 5, 10, 25, 50 or 100 mg/L PFOA for 72h. Global DNA methylation levels were determined by LC/ESI-MS, glutathione-S-transferase Pi (GSTP) gene promoter DNA methylation was investigated by methylation-specific polymerase chain reaction (PCR) with bisulfite sequencing, and consequent mRNA expression levels were measured with quantitative real-time reverse transcriptase PCR. A dose-related increase of GSTP promoter methylation at the transcription factor specificity protein 1 (SP1) binding site was observed. However, PFOA did not significantly influence global DNA methylation; nor did it markedly alter the promoter gene methylation of p16 (cyclin-dependent kinase inhibitor 2A), ERα (estrogen receptor α) or PRB (progesterone receptor B). In addition, PFOA significantly elevated mRNA transcript levels of DNMT3A (which mediates de novo DNA methylation), Acox (lipid metabolism) and p16 (cell apoptosis). Considering the role of GSTP in detoxification, aberrant methylation may be pivotal in PFOA-mediated toxicity response via the inhibition of SP1 binding to GSTP promoter. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Baryshnikov, I I
1997-01-01
Pathogenesis of poisoning with hydrazine seems complicated. Hydrazines inhibit pyridoxal-dependent enzymes, interfere with carbohydrates transformation and lipid metabolism, alter the processes of energy metabolism. Treatment of poisoning with hydrazine is effective only when containing drug combinations. Based experimentally, recommendations on the combination (phenazepam, be methyl, piracetam, ionol) were supported by chemical testing of the drugs.
Multielement extraction system for determining 19 trace elements in gold exploration samples
Clark, J. Robert; Viets, John G.; ,
1990-01-01
A multielement extraction system is being used successfully to provide essentially interference-free geochemical analyses to aid in gold exploration. The Methyl isobutyl ketone-Amine synerGistic Iodide Complex (MAGIC) extraction system separates Ag, As, Au, Bi, Cd, Cu, Ga, Hg, In, Mo, Pb, Pd, Pt, Sb, Se, Sn, Te, Tl, and Zn from interfering geological matrices. Quantitative extraction of these elements is accomplished over a broad range of acid normality making it possible to economically determine all 19 elements from a single digestion or leach solution. The resulting organic extracts are amenable to analysis by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and flame atomic absorption spectroscopy (FAAS). For many years the principal shortcoming of ICP-AES was the complex spectral and stray-light interferences that were caused by the extreme variability of components such as Fe, Na, and Ca in common geological matrices. The MAGIC extraction allows determination of the extracted elements with enhanced sensitivity, from a virtually uniform matrix, by ICP-AES and FAAS. Because of its simultaneous multichannel capabilities, ICP-AES is the ideal instrumental technique for determining these 19 extracted elements. Ultratrace (sub-part-per-billion) determinations of Au and many of the other extracted elements can be made by graphite furnace atomic absorption spectroscopy (GFAAS), following back stripping of the extracts. The combination of the extraction followed by stripping of the organic phase eliminates 99.999% of potential interferences for Au. Gold determination by GFAAS from these extracts under the specified conditions yields a fourfold improvement in sensitivity over conventional GFAAS methods. This sensitivity enhancement and the interference-free matrix allow highly reliable determinations well into the parts-per-trillion range.
Bongiorni, Silvia; Pasqualini, Barbara; Taranta, Monia; Singh, Prim B; Prantera, Giorgio
2007-03-15
Using RNA interference (RNAi) we have conducted a functional analysis of the HP1-like chromobox gene pchet2 during embryogenesis of the mealybug Planococcus citri. Knocking down pchet2 expression results in decondensation of the male-specific chromocenter that normally arises from the developmentally-regulated facultative heterochromatinisation of the paternal chromosome complement. Together with the disappearance of the chromocenter the staining levels of two associated histone modifications, tri-methylated lysine 9 of histone H3 [Me(3)K9H3] and tri-methylated lysine 20 of histone H4 [Me(3)K20H4], are reduced to undetectable levels. Embryos treated with double-stranded RNA (dsRNA) targeting pchet2 also exhibit chromosome abnormalities, such as aberrant chromosome condensation, and also the presence of metaphases that contain 'lagging' chromosomes. We conclude that PCHET2 regulates chromosome behavior during metaphase and is a crucial component of a Me(3)K9H3-HP1-Me(3)K20H4 pathway involved in the facultative heterochromatinisation of the (imprinted) paternal chromosome set.
Hernández-Zavala, Araceli; Matoušek, Tomáš; Drobná, Zuzana; Paul, David S.; Walton, Felecia; Adair, Blakely M.; Jiří, Dědina; Thomas, David J.
2008-01-01
Analyses of arsenic (As) species in tissues and body fluids of individuals chronically exposed to inorganic arsenic (iAs) provide essential information about the exposure level and pattern of iAs metabolism. We have previously described an oxidation state-specific analysis of As species in biological matrices by hydride-generation atomic absorption spectrometry (HG-AAS), using cryotrapping (CT) for preconcentration and separation of arsines. To improve performance and detection limits of the method, HG and CT steps are automated and a conventional flame-in-tube atomizer replaced with a recently developed multiple microflame quartz tube atomizer (multiatomizer). In this system, arsines from AsIII-species are generated in a mixture of Tris-HCl (pH 6) and sodium borohydride. For generation of arsines from both AsIII- and AsV-species, samples are pretreated with L-cysteine. Under these conditions, dimethylthioarsinic acid, a newly described metabolite of iAs, does not interfere significantly with detection and quantification of methylated trivalent arsenicals. Analytical performance of the automated HG-CT-AAS was characterized by analyses of cultured cells and mouse tissues that contained mono- and dimethylated metabolites of iAs. The capacity to detect methylated AsIII- and AsV-species was verified, using an in vitro methylation system containing recombinant rat arsenic (+3 oxidation state) methyltransferase and cultured rat hepatocytes treated with iAs. Compared with the previous HG-CT-AAS design, detection limits for iAs and its metabolites have improved significantly with the current system, ranging from 8 to 20 pg. Recoveries of As were between 78 and 117%. The precision of the method was better than 5% for all biological matrices examined. Thus, the automated HG-CT-AAS system provides an effective and sensitive tool for analysis of all major human metabolites of iAs in complex biological matrices. PMID:18677417
Aiba, Toshiki; Saito, Toshiyuki; Hayashi, Akiko; Sato, Shinji; Yunokawa, Harunobu; Maruyama, Toru; Fujibuchi, Wataru; Kurita, Hisaka; Tohyama, Chiharu; Ohsako, Seiichiroh
2017-03-09
It has been pointed out that environmental factors or chemicals can cause diseases that are developmental in origin. To detect abnormal epigenetic alterations in DNA methylation, convenient and cost-effective methods are required for such research, in which multiple samples are processed simultaneously. We here present methylated site display (MSD), a unique technique for the preparation of DNA libraries. By combining it with amplified fragment length polymorphism (AFLP) analysis, we developed a new method, MSD-AFLP. Methylated site display libraries consist of only DNAs derived from DNA fragments that are CpG methylated at the 5' end in the original genomic DNA sample. To test the effectiveness of this method, CpG methylation levels in liver, kidney, and hippocampal tissues of mice were compared to examine if MSD-AFLP can detect subtle differences in the levels of tissue-specific differentially methylated CpGs. As a result, many CpG sites suspected to be tissue-specific differentially methylated were detected. Nucleotide sequences adjacent to these methyl-CpG sites were identified and we determined the methylation level by methylation-sensitive restriction endonuclease (MSRE)-PCR analysis to confirm the accuracy of AFLP analysis. The differences of the methylation level among tissues were almost identical among these methods. By MSD-AFLP analysis, we detected many CpGs showing less than 5% statistically significant tissue-specific difference and less than 10% degree of variability. Additionally, MSD-AFLP analysis could be used to identify CpG methylation sites in other organisms including humans. MSD-AFLP analysis can potentially be used to measure slight changes in CpG methylation level. Regarding the remarkable precision, sensitivity, and throughput of MSD-AFLP analysis studies, this method will be advantageous in a variety of epigenetics-based research.
NASA Astrophysics Data System (ADS)
Eichler, Daniel R.; Hamann, Haley A.; Harte, Katherine A.; Papadantonakis, George A.
2017-07-01
Results from DFT calculations indicate that states originating from gas-phase ionization of the phosphate and the base are degenerate in syn-5‧-dGMP- and that bulk hydration lowers the base-localized ionization energy by <0.5 eV. Local ionization maps show that micro-hydration leads to the formation of donor and acceptor hydrogen bonds and the ionization energy decreases or increases in each case respectively. The SN2 transition states of the methylation reactions of guanine with methane diazonium ions are lower at the N7 than at the O6 sites and they are influenced by local ionization energy and steric interference.
Demethylating Agents in the Treatment of Cancer
Howell, Paul M.; Liu, Zixing; Khong, Hung T.
2010-01-01
Gene silencing resulting from aberrant DNA methylation can lead to tumorigenesis. Therefore, drugs that inhibit or interfere with DNA methylation have been used to reactivate and induce silenced gene re-expression in malignancies. Two demethylating agents, azacitidine and decitabine, are approved for the treatment of myelodysplastic syndromes (MDS) by the U.S. Food and Drug Administration (FDA), and are now considered the standard of care in MDS. In this review, we discuss clinical data, including clinical benefits and toxicities, which led to the approval of azacitidine and decitabine. We also summarize findings from clinical trials that used these two demethylating agents in the treatment of solid tumors. Lastly, we discuss some limitations in the use of azacitidine and decitabine in cancer therapy. PMID:27713340
RNA major groove modifications improve siRNA stability and biological activity
Terrazas, Montserrat; Kool, Eric T.
2009-01-01
RNA 5-methyl and 5-propynyl pyrimidine analogs were substituted into short interfering RNAs (siRNAs) to probe major groove steric effects in the active RNA-induced silencing complex (RISC). Synthetic RNA guide strands containing varied combinations of propynyl and methyl substitution revealed that all C-5 substitutions increased the thermal stability of siRNA duplexes containing them. Cellular gene suppression experiments using luciferase targets in HeLa cells showed that the bulky 5-propynyl modification was detrimental to RNA interference activity, despite its stabilization of the helix. Detrimental effects of this substitution were greatest at the 5′-half of the guide strand, suggesting close steric approach of proteins in the RISC complex with that end of the siRNA/mRNA duplex. However, substitutions with the smaller 5-methyl group resulted in gene silencing activities comparable to or better than that of wild-type siRNA. The major groove modifications also increased the serum stability of siRNAs. PMID:19042976
SPE-GC/FTD determination of N-methyl-2-pyrrolidone and its metabolites in urine.
Kubota, Ryuichi; Endo, Yoko; Takeuchi, Akito; Inoue, Yoshinori; Ogata, Hiroko; Ogawa, Masanori; Nakagawa, Tomoo; Onda, Nobuhiko; Endo, Ginji
2007-07-01
An analytical method using a combination of solid-phase extraction (SPE) and gas chromatography with a flame thermionic detector (GC/FTD) was developed for determination of N-methyl-2-pyrrolidone (NMP), N-methylsuccinimide (MSI), and 2-hydroxy-N-methylsuccinimide (2-HMSI) in human urine. The SPE cartridge of poly(divinylbenzene/hydroxymethacrylate) used was directly loaded with urine sample, followed by elution with methyl isobutyl ketone (MIBK) and subsequent centrifugation, and the supernatant was injected into the capillary GC using a DB1701. This method allowed efficient separation of NMP, MSI, and 2-HMSI, which were nearly free of interference by other GC peaks arising from urine. Recoveries of NMP, MSI, and 2-HMSI from the SPE cartridge were about 98, 101, and 67%, respectively, with limits of detection of 0.04, 0.02, and 0.06 mg/L, respectively, which met the regulatory requirements. The present method was used for assay in biological monitoring of workers exposed to NMP in their occupational environment.
Haam, Keeok; Kim, Hee-Jin; Lee, Kyung-Tae; Kim, Jeong-Hwan; Kim, Mirang; Kim, Seon-Young; Noh, Seung-Moo; Song, Kyu-Sang; Kim, Yong Sung
2014-09-01
BTB and CNC homology 2 (BACH2) is a lymphoid-specific transcription factor with a prominent role in B-cell development. Genetic polymorphisms within a single locus encoding BACH2 are associated with various autoimmune diseases and allergies. In this study, restriction landmark genomic scanning revealed methylation at a NotI site in a CpG island covering the BACH2 promoter in gastric cancer cell lines and primary gastric tumors. Increased methylation of the BACH2 promoter was observed in 52% (43/83) of primary gastric tumors, and BACH2 hypermethylation was significantly associated with decreased gene expression. Treatment with 5-aza-2'-deoxycytidine and/or trichostatin. A restored BACH2 expression in BACH2-silenced gastric cancer cell lines, and knockdown of BACH2 using short hairpin RNA (i.e. RNA interference) increased cell proliferation in gastric cancer cells. Clinicopathologic data showed that decreased BACH2 expression occurred significantly more frequently in intestinal-type (27/44, 61%) compared with diffuse-type (13/50, 26%) gastric cancers (P<0.001). Furthermore, BACH2 promoter methylation paralleled that of previously identified targets, such as LRRC3B, LIMS2, PRKD1 and POPDC3, in a given set of gastric tumors. We propose that concerted methylation in many promoters plays a role in accelerating gastric tumor formation and that methylated promoter loci may be targets for therapeutic treatment, such as the recently introduced technique of epigenetic editing. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Alessandri, Ivano; Biavardi, Elisa; Gianoncelli, Alessandra; Bergese, Paolo; Dalcanale, Enrico
2016-06-22
SiO2/TiO2 microbeads (T-rex) are promising materials for plasmon-free surface-enhanced Raman scattering (SERS), offering several key advantages in biodiagnostics. In this paper we report the combination of T-rex beads with tetraphosphonate cavitands (Tiiii), which imparts selectivity toward Nε-methylated lysine. SERS experiments demonstrated the efficiency and selectivity of the T-rex-Tiiii assays in detecting methylated lysine hydrochloride (Nε-Me-Lys-Fmoc) from aqueous solutions, even in the presence of the parent Lys-Fmoc hydrochloride as interferent. The negative results obtained in control experiments using TSiiii ruled out any other form of surface recognition or preferential physisorption. MALDI-TOF analyses on the beads exposed to Nε-Me-Lys-Fmoc revealed the presence of the Tiiii•Nε-Me-Lys-Fmoc complex. Raman analyses based on the intensity ratio of Nε-Me-Lys-Fmoc and cavitand-specific modes resulted in a dose-response plot, which allowed for estimating the concentration of Nε-methylated lysine from initial solutions in the 1 × 10(-3) to 1 × 10(-5) M range. These results can set the basis for the development of new Raman assays for epigenetic diagnostics.
Fan, Shuzhen; Qi, Feng; Notake, Takashi; Nawata, Kouji; Takida, Yuma; Matsukawa, Takeshi; Minamide, Hiroaki
2015-03-23
Real-time terahertz (THz) wave imaging has wide applications in areas such as security, industry, biology, medicine, pharmacy, and the arts. This report describes real-time room-temperature THz imaging by nonlinear optical frequency up-conversion in an organic 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate (DAST) crystal, with high resolution reaching the diffraction limit. THz-wave images were converted to the near infrared region and then captured using an InGaAs camera in a tandem imaging system. The resolution of the imaging system was analyzed. Diffraction and interference of THz wave were observed in the experiments. Videos are supplied to show the interference pattern variation that occurs with sample moving and tilting.
Methylome reorganization during in vitro dedifferentiation and regeneration of Populus trichocarpa
2013-01-01
Background Cytosine DNA methylation (5mC) is an epigenetic modification that is important to genome stability and regulation of gene expression. Perturbations of 5mC have been implicated as a cause of phenotypic variation among plants regenerated through in vitro culture systems. However, the pattern of change in 5mC and its functional role with respect to gene expression, are poorly understood at the genome scale. A fuller understanding of how 5mC changes during in vitro manipulation may aid the development of methods for reducing or amplifying the mutagenic and epigenetic effects of in vitro culture and plant transformation. Results We investigated the in vitro methylome of the model tree species Populus trichocarpa in a system that mimics routine methods for regeneration and plant transformation in the genus Populus (poplar). Using methylated DNA immunoprecipitation followed by high-throughput sequencing (MeDIP-seq), we compared the methylomes of internode stem segments from micropropagated explants, dedifferentiated calli, and internodes from regenerated plants. We found that more than half (56%) of the methylated portion of the genome appeared to be differentially methylated among the three tissue types. Surprisingly, gene promoter methylation varied little among tissues, however, the percentage of body-methylated genes increased from 9% to 14% between explants and callus tissue, then decreased to 8% in regenerated internodes. Forty-five percent of differentially-methylated genes underwent transient methylation, becoming methylated in calli, and demethylated in regenerants. These genes were more frequent in chromosomal regions with higher gene density. Comparisons with an expression microarray dataset showed that genes methylated at both promoters and gene bodies had lower expression than genes that were unmethylated or only promoter-methylated in all three tissues. Four types of abundant transposable elements showed their highest levels of 5mC in regenerated internodes. Conclusions DNA methylation varies in a highly gene- and chromosome-differential manner during in vitro differentiation and regeneration. 5mC in redifferentiated tissues was not reset to that in original explants during the study period. Hypermethylation of gene bodies in dedifferentiated cells did not interfere with transcription, and may serve a protective role against activation of abundant transposable elements. PMID:23799904
Epigenetic changes in solid and hematopoietic tumors.
Toyota, Minoru; Issa, Jean-Pierre J
2005-10-01
There are three connected molecular mechanisms of epigenetic cellular memory in mammalian cells: DNA methylation, histone modifications, and RNA interference. The first two have now been firmly linked to neoplastic transformation. Hypermethylation of CpG-rich promoters triggers local histone code modifications resulting in a cellular camouflage mechanism that sequesters gene promoters away from transcription factors and results in stable silencing. This normally restricted mechanism is ubiquitously used in cancer to silence hundreds of genes, among which some critically contribute to the neoplastic phenotype. Virtually every pathway important to cancer formation is affected by this process. Methylation profiling of human cancers reveals tissue-specific epigenetic signatures, as well as tumor-specific signatures, reflecting in particular the presence of epigenetic instability in a subset of cancers affected by the CpG island methylator phenotype. Generally, methylation patterns can be traced to a tissue-specific, proliferation-dependent accumulation of aberrant promoter methylation in aging tissues, a process that can be accelerated by chronic inflammation and less well-defined mechanisms including, possibly, diet and genetic predisposition. The epigenetic machinery can also be altered in cancer by specific lesions in epigenetic effector genes, or by aberrant recruitment of these genes by mutant transcription factors and coactivators. Epigenetic patterns are proving clinically useful in human oncology via risk assessment, early detection, and prognostic classification. Pharmacologic manipulation of these patterns-epigenetic therapy-is also poised to change the way we treat cancer in the clinic.
Mega, Filipe; de Meireles, André Luís Ferreira; Piazza, Francele Valente; Spindler, Christiano; Segabinazi, Ethiane; Dos Santos Salvalaggio, Gabriela; Achaval, Matilde; Marcuzzo, Simone
2018-08-01
Maternal exercise is known to have beneficial effects in progeny development, but the influence of paternal exercise on the offspring still unclear. Since spermatogenesis is a continuous process, the father's life experiences can reprogram epigenetic content of the sperm and somehow interfere on offspring phenotype. This study was designed to evaluate the effects of paternal physical exercise on cognitive and physical development and on hippocampal DNA methylation levels of the offspring. Adult male Wistar rats were divided into two groups: sedentary and exercised. The exercise protocol occurred before mating and consisted of treadmill running, 5 consecutive days/week for 8 weeks (20 min/day). The mothers were not trained. The following developmental parameters were examined in male offspring: body growth, physical and cognitive performance, weights of adrenal glands, gonadal fat and hindlimb muscles, BDNF expression and global DNA methylation at the hippocampus. The progeny of trained and sedentary fathers did not differ in relation to physical parameters and performance, spatial memory and BDNF expression. However, paternal exercise promoted a decrease in offspring´s relative gonadal fat weight and a lower percentage of global hippocampal DNA methylation compared to offspring of sedentary fathers. These results pointed to interference of male physical activity at the time of conception on adiposity and hippocampal epigenetic reprogramming of male offspring. The data reinforces that exercise does not harm the descendant's development and emphasize the benefits to include the practice of physical exercise in a healthier lifestyle of the parents. Nevertheless, future studies are necessary and should investigate further the long-effects of epigenetic mechanisms in order to elucidate the father's contribution in fetal programming. Copyright © 2018 Elsevier B.V. All rights reserved.
Paul, Ligi; Jacques, Paul F; Aviv, Abraham; Vasan, Ramachandran S; D'Agostino, Ralph B; Levy, Daniel; Selhub, Jacob
2015-03-01
Shortening of telomeres, the protective structures at the ends of eukaryotic chromosomes, is associated with age-related pathologies. Telomere length is influenced by DNA integrity and DNA and histone methylation. Folate plays a role in providing precursors for nucleotides and methyl groups for methylation reactions and has the potential to influence telomere length. We determined the association between leukocyte telomere length and long-term plasma folate status (mean of 4 years) in Framingham Offspring Study (n = 1,044, females = 52.1 %, mean age 59 years) using data from samples collected before and after folic acid fortification. Leukocyte telomere length was determined by Southern analysis and fasting plasma folate concentration using microbiological assay. There was no significant positive association between long-term plasma folate and leukocyte telomere length among the Framingham Offspring Study participants perhaps due to their adequate folate status. While the leukocyte telomere length in the second quintile of plasma folate was longer than that in the first quintile, the difference was not statistically significant. The leukocyte telomere length of the individuals in the fifth quintile of plasma folate was shorter than that of those in the second quintile by 180 bp (P < 0.01). There was a linear decrease in leukocyte telomere length with higher plasma folate concentrations in the upper four quintiles of plasma folate (P for trend = 0.001). Multivitamin use was associated with shorter telomeres in this cohort (P = 0.015). High plasma folate status possibly resulting from high folic acid intake may interfere with the role of folate in maintaining telomere integrity.
Epigenetics in prostate cancer: biologic and clinical relevance.
Jerónimo, Carmen; Bastian, Patrick J; Bjartell, Anders; Carbone, Giuseppina M; Catto, James W F; Clark, Susan J; Henrique, Rui; Nelson, William G; Shariat, Shahrokh F
2011-10-01
Prostate cancer (PCa) is one of the most common human malignancies and arises through genetic and epigenetic alterations. Epigenetic modifications include DNA methylation, histone modifications, and microRNAs (miRNA) and produce heritable changes in gene expression without altering the DNA coding sequence. To review progress in the understanding of PCa epigenetics and to focus upon translational applications of this knowledge. PubMed was searched for publications regarding PCa and DNA methylation, histone modifications, and miRNAs. Reports were selected based on the detail of analysis, mechanistic support of data, novelty, and potential clinical applications. Aberrant DNA methylation (hypo- and hypermethylation) is the best-characterized alteration in PCa and leads to genomic instability and inappropriate gene expression. Global and locus-specific changes in chromatin remodeling are implicated in PCa, with evidence suggesting a causative dysfunction of histone-modifying enzymes. MicroRNA deregulation also contributes to prostate carcinogenesis, including interference with androgen receptor signaling and apoptosis. There are important connections between common genetic alterations (eg, E twenty-six fusion genes) and the altered epigenetic landscape. Owing to the ubiquitous nature of epigenetic alterations, they provide potential biomarkers for PCa detection, diagnosis, assessment of prognosis, and post-treatment surveillance. Altered epigenetic gene regulation is involved in the genesis and progression of PCa. Epigenetic alterations may provide valuable tools for the management of PCa patients and be targeted by pharmacologic compounds that reverse their nature. The potential for epigenetic changes in PCa requires further exploration and validation to enable translation to the clinic. Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.
DNA-Methylation Patterns in Trisomy 21 Using Cells from Monozygotic Twins
Sailani, M. Reza; Santoni, Federico A.; Letourneau, Audrey; Borel, Christelle; Makrythanasis, Periklis; Hibaoui, Youssef; Popadin, Konstantin; Bonilla, Ximena; Guipponi, Michel; Gehrig, Corinne; Vannier, Anne; Carre-Pigeon, Frederique; Feki, Anis; Nizetic, Dean; Antonarakis, Stylianos E.
2015-01-01
DNA methylation is essential in mammalian development. We have hypothesized that methylation differences induced by trisomy 21 (T21) contribute to the phenotypic characteristics and heterogeneity in Down syndrome (DS). In order to determine the methylation differences in T21 without interference of the interindividual genomic variation, we have used fetal skin fibroblasts from monozygotic (MZ) twins discordant for T21. We also used skin fibroblasts from MZ twins concordant for T21, normal MZ twins without T21, and unrelated normal and T21 individuals. Reduced Representation Bisulfite Sequencing (RRBS) revealed 35 differentially methylated promoter regions (DMRs) (Absolute methylation differences = 25%, FDR < 0.001) in MZ twins discordant for T21 that have also been observed in comparison between unrelated normal and T21 individuals. The identified DMRs are enriched for genes involved in embryonic organ morphogenesis (FDR = 1.60 e -03) and include genes of the HOXB and HOXD clusters. These DMRs are maintained in iPS cells generated from this twin pair and are correlated with the gene expression changes. We have also observed an increase in DNA methylation level in the T21 methylome compared to the normal euploid methylome. This observation is concordant with the up regulation of DNA methyltransferase enzymes (DNMT3B and DNMT3L) and down regulation of DNA demethylation enzymes (TET2 and TET3) observed in the iPSC of the T21 versus normal twin. Altogether, the results of this study highlight the epigenetic effects of the extra chromosome 21 in T21 on loci outside of this chromosome that are relevant to DS associated phenotypes. PMID:26317209
Pauwels, Jochen; D'Autry, Ward; Van den Bossche, Larissa; Dewever, Cédric; Forier, Michel; Vandenwaeyenberg, Stephanie; Wolfs, Kris; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin
2012-02-23
Capsaicinoids, salicylic acid, methyl and ethyl salicylate, glycol monosalicylate, camphor and l-menthol are widely used in topical formulations to relieve local pain. For each separate compound or simple mixtures, quantitative analysis methods are reported. However, for a mixture containing all above mentioned active compounds, no assay methods were found. Due to the differing physicochemical characteristics, two methods were developed and optimized simultaneously. The non-volatile capsaicinoids, salicylic acid and glycol monosalicylate were analyzed with liquid chromatography following liquid-liquid extraction, whereas the volatile compounds were analyzed with static headspace-gas chromatography. For the latter method, liquid paraffin was selected as compatible dilution solvent. The optimized methods were validated in terms of specificity, linearity, accuracy and precision in a range of 80% to 120% of the expected concentrations. For both methods, peaks were well separated without interference of other compounds. Linear relationships were demonstrated with R² values higher than 0.996 for all compounds. Accuracy was assessed by performing replicate recovery experiments with spiked blank samples. Mean recovery values were all between 98% and 102%. Precision was checked at three levels: system repeatability, method precision and intermediate precision. Both methods were found to be acceptably precise at all three levels. Finally, the method was successfully applied to the analysis of some real samples (cutaneous sticks). Copyright © 2011 Elsevier B.V. All rights reserved.
Pecher, Daniel; Dokupilová, Svetlana; Zelinková, Zuzana; Peppelenbosch, Maikel; Mikušová, Veronika; Mikuš, Peter
2017-08-05
Thiopurine S-methyltransferase (TPMT) plays an important role in the metabolism of thiopurines used in the therapy of inflammatory bowel diseases (IBD). In this work a new progressive method for the determination of TPMT activity in red blood cells lysates was developed. Analysis was carried out by means of hydrophilic interaction liquid chromatography (HILIC) hyphenated with mass spectrometry (MS). In comparison with reversed-phase high-performance liquid chromatography (RP-HPLC), that has been typically applied in determination of TPMT activity, the HILIC significantly improved the analytical signal provided by MS, shortened analysis time, and improved chromatographic resolution. The HILIC-HPLC-MS method was optimized and validated, providing favorable parameters of detection and quantitation limits (5.5 and 16.5pmol/mL, respectively), linearity (coefficient of determination 0.9999 in the range of 0.01-1.0nmol/mL), recovery and precision (93.25-100.37% with RSD 1.06-1.32% in the whole concentration range of QC samples). Moreover, in contrast to the conventional RP-HPLC-UV approach, the complex phenotype TPMT profiles can be reliably and without interferences monitored using the HILIC-HPLC-MS method. Such advanced monitoring can provide valuable detail information on the thiopurines (e.g. evaluating ratio of methylated and non-methylated 6-mercaptopurine) and, by that, TPMT action in biological systems before and during the therapy of IBD. Copyright © 2017 Elsevier B.V. All rights reserved.
Tost, Jörg
2016-01-01
DNA methylation is the most studied epigenetic modification, and altered DNA methylation patterns have been identified in cancer and more recently also in many other complex diseases. Furthermore, DNA methylation is influenced by a variety of environmental factors, and the analysis of DNA methylation patterns might allow deciphering previous exposure. Although a large number of techniques to study DNA methylation either genome-wide or at specific loci have been devised, they all are based on a limited number of principles for differentiating the methylation state, viz., methylation-specific/methylation-dependent restriction enzymes, antibodies or methyl-binding proteins, chemical-based enrichment, or bisulfite conversion. Second-generation sequencing has largely replaced microarrays as readout platform and is also becoming more popular for locus-specific DNA methylation analysis. In this chapter, the currently used methods for both genome-wide and locus-specific analysis of 5-methylcytosine and as its oxidative derivatives, such as 5-hydroxymethylcytosine, are reviewed in detail, and the advantages and limitations of each approach are discussed. Furthermore, emerging technologies avoiding PCR amplification and allowing a direct readout of DNA methylation are summarized, together with novel applications, such as the detection of DNA methylation in single cells or in circulating cell-free DNA.
Li, Ying; Yi, Fan; Zheng, Yiliang; Wang, Yu; Ye, Jiannong; Chu, Qingcui
2015-08-01
An environmentally friendly method for the trace analysis of four aliphatic aldehydes as water disinfection byproducts has been developed based on hollow-fiber liquid-phase microextraction followed by miniature capillary electrophoresis with amperometric detection. After derivatization with 2-thiobarbituric acid, four aliphatic aldehydes (formaldehyde, acetaldehyde, propylaldehyde, and butyraldehyde) became detectable by the amperometric detector. Under the optimum conditions, four aliphatic aldehydes can be well separated from the coexisting interferents as well as their homologs (pentanal, glyoxal, and methyl-glyoxal), and the limits of detection (S/N = 3) could reach sub-nanogram-per-milliliter level based on hollow-fiber liquid-phase microextraction. The proposed method has been applied for the analyses of above four aliphatic aldehydes in different water samples such as drinking water, tap water, and river water, and the average recoveries were in the range of 90-113%, providing an alternative to conventional and microchip capillary electrophoresis approaches. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kaur, Inderjeet; Zeeshan, Mohammad; Saini, Ekta; Kaushik, Abhinav; Mohmmed, Asif; Gupta, Dinesh; Malhotra, Pawan
2016-10-20
Post-transcriptional and post-translational modifications play a major role in Plasmodium life cycle regulation. Lysine methylation of histone proteins is well documented in several organisms, however in recent years lysine methylation of proteins outside histone code is emerging out as an important post-translational modification (PTM). In the present study we have performed global analysis of lysine methylation of proteins in asexual blood stages of Plasmodium falciparum development. We immunoprecipitated stage specific Plasmodium lysates using anti-methyl lysine specific antibodies that immunostained the asexual blood stage parasites. Using liquid chromatography and tandem mass spectrometry analysis, 570 lysine methylated proteins at three different blood stages were identified. Analysis of the peptide sequences identified 605 methylated sites within 422 proteins. Functional classification of the methylated proteins revealed that the proteins are mainly involved in nucleotide metabolic processes, chromatin organization, transport, homeostatic processes and protein folding. The motif analysis of the methylated lysine peptides reveals novel motifs. Many of the identified lysine methylated proteins are also interacting partners/substrates of PfSET domain proteins as revealed by STRING database analysis. Our findings suggest that the protein methylation at lysine residues is widespread in Plasmodium and plays an important regulatory role in diverse set of the parasite pathways.
The determination of vanadium in brines by atomic absorption spectroscopy
Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.
1971-01-01
A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.
Vilkin, Alex; Niv, Yaron
2011-04-01
Incorporation of viral DNA may interfere with the normal sequence of human DNA bases on the genetic level or cause secondary epigenetic changes such as gene promoter methylation or histone acetylation. Colorectal cancer (CRC) is the second leading cause of cancer mortality in the USA. Chromosomal instability (CIN) was established as the key mechanism in cancer development. Later, it was found that CRC results not only from the progressive accumulation of genetic alterations but also from epigenetic changes. JC virus (JCV) is a candidate etiologic factor in sporadic CRC. It may act by stabilizing β-catenin, facilitating its entrance to the cell nucleus, initialing proliferation and cancer development. Diploid CRC cell lines transfected with JCV-containing plasmids developed CIN. This result provides direct experimental evidence for the ability of JCV T-Ag to induce CIN in the genome of colonic epithelial cells. The association of CRC hMLH1 methylation and tumor positivity for JCV was recently documented. JC virus T-Ag DNA sequences were found in 77% of CRCs and are associated with promoter methylation of multiple genes. hMLH1 was methylated in 25 out of 80 CRC patients positive for T-Ag (31%) in comparison with only one out of 11 T-Ag negative cases (9%). Thus, JCV can mediate both CIN and aberrant methylation in CRC. Like other viruses, chronic infection with JCV may induce CRC by different mechanisms which should be further investigated. Thus, gene promoter methylation induced by JCV may be an important process in CRC and the polyp-carcinoma sequence.
W.L. Mattice; F.L. Tobiason; K. Houghlum; A. Shanafelt
1982-01-01
A conformational energy analysis has been performed for tetra-0-methyl-(+)-catechin and tetra-O-methyl-(-)-epicatechin. Rotation was permitted about five C-O bonds and about the single bond connecting two rings. Eighteen rotational isomers each were assigned for tetra-0-methyl-(-)-epicatechin. Relative...
NASA Astrophysics Data System (ADS)
Rickly, Pamela; Stevens, Philip S.
2018-01-01
Reactions of the hydroxyl radical (OH) play a central role in the chemistry of the atmosphere, and measurements of its concentration can provide a rigorous test of our understanding of atmospheric oxidation. Several recent studies have shown large discrepancies between measured and modeled OH concentrations in forested areas impacted by emissions of biogenic volatile organic compounds (BVOCs), where modeled concentrations were significantly lower than measurements. A potential reason for some of these discrepancies involves interferences associated with the measurement of OH using the laser-induced fluorescence-fluorescence assay by gas expansion (LIF-FAGE) technique in these environments. In this study, a turbulent flow reactor operating at atmospheric pressure was coupled to a LIF-FAGE cell and the OH signal produced from the ozonolysis of α-pinene, β-pinene, ocimene, isoprene, and 2-methyl-3-buten-2-ol (MBO) was measured. To distinguish between OH produced from the ozonolysis reactions and any OH artifact produced inside the LIF-FAGE cell, an external chemical scrubbing technique was used, allowing for the direct measurement of any interference. An interference under high ozone (between 2 × 1013 and 10 × 1013 cm-3) and BVOC concentrations (between approximately 0.1 × 1012 and 40 × 1012 cm-3) was observed that was not laser generated and was independent of the ozonolysis reaction time. For the ozonolysis of α- and β-pinene, the observed interference accounted for approximately 40 % of the total OH signal, while for the ozonolysis of ocimene the observed interference accounted for approximately 70 % of the total OH signal. Addition of acetic acid to the reactor eliminated the interference, suggesting that the source of the interference in these experiments involved the decomposition of stabilized Criegee intermediates (SCIs) inside the FAGE detection cell. Extrapolation of these measurements to ambient concentrations suggests that these interferences should be below the detection limit of the instrument.
Skorodumova, L O; Babalyan, K A; Sultanov, R; Vasiliev, A O; Govorov, A V; Pushkar, D Y; Prilepskaya, E A; Danilenko, S A; Generozov, E V; Larin, A K; Kostryukova, E S; Sharova, E I
2016-11-01
There is a clear need in molecular markers for prostate cancer (PC) risk stratification. Alteration of DNA methylation is one of processes that occur during ÐÑ progression. Methylation-sensitive PCR with high resolution melting curve analysis (MS-HRM) can be used for gene methylation analysis in routine laboratory practice. This method requires very small amounts of DNA for analysis. Numerous results have been accumulated on DNA methylation in PC samples analyzed by the Infinium HumanMethylation450 BeadChip (HM450). However, the consistency of MS-HRM results with chip hybridization results has not been examined yet. The aim of this study was to assess the consistency of results of GSTP1, APC and RASSF1 gene methylation analysis in ÐÑ biopsy samples obtained by MS-HRM and chip hybridization. The methylation levels of each gene determined by MS-HRM were statistically different in the group of PC tissue samples and the samples without signs of tumor growth. Chip hybridization data analysis confirmed the results obtained with the MS-HRM. Differences in methylation levels between tumor tissue and histologically intact tissue of each sample determined by MS-HRM and chip hybridization, were consistent with each other. Thus, we showed that the assessment of GSTP1, APC and RASSF1 gene methylation analysis using MS-HRM is suitable for the design of laboratory assays that will differentiate the PC tissue from the tissue without signs of tumor growth.
Prognosis value of MGMT promoter methylation for patients with lung cancer: a meta-analysis
Chen, Chao; Hua, Haiqing; Han, Chenglong; Cheng, Yuan; Cheng, Yin; Wang, Zhen; Bao, Jutao
2015-01-01
The role of MGMT promoter methylation in lung cancer (LC) remains controversial. To clarify the association of MGMT promoter methylation with survival in LC, we performed a meta-analysis of the literature with meta-analysis. Trials were selected for further analysis if they provided an independent assessment of MGMT promoter methylation in LC and reported the survival data in the context of MGMT promoter methylation status. Subgroup analyses were conducted according to the study characteristic. A total of 9 trials, which comprised 859 patients, were included in the meta-analysis. The combined hazard ratio (HR) of 1.27 [95% CI 0.88-1.82; test for heterogeneity P = 0.027] suggests that MGMT promoter methylation has none impact on patient survival. In Stage I-III or younger populations, a significant association was found for MGMT promoter methylation in the prognosis of LC. In addition, the heterogeneity disappeared when the analysis was restricted to Stage I-III LC. Our analysis indicates that MGMT promoter methylation in stage I-III or younger patients was significantly correlated with wore survival. Further study is needed to determine these specific subgroups of LC patients. PMID:26617891
Prognosis value of MGMT promoter methylation for patients with lung cancer: a meta-analysis.
Chen, Chao; Hua, Haiqing; Han, Chenglong; Cheng, Yuan; Cheng, Yin; Wang, Zhen; Bao, Jutao
2015-01-01
The role of MGMT promoter methylation in lung cancer (LC) remains controversial. To clarify the association of MGMT promoter methylation with survival in LC, we performed a meta-analysis of the literature with meta-analysis. Trials were selected for further analysis if they provided an independent assessment of MGMT promoter methylation in LC and reported the survival data in the context of MGMT promoter methylation status. Subgroup analyses were conducted according to the study characteristic. A total of 9 trials, which comprised 859 patients, were included in the meta-analysis. The combined hazard ratio (HR) of 1.27 [95% CI 0.88-1.82; test for heterogeneity P = 0.027] suggests that MGMT promoter methylation has none impact on patient survival. In Stage I-III or younger populations, a significant association was found for MGMT promoter methylation in the prognosis of LC. In addition, the heterogeneity disappeared when the analysis was restricted to Stage I-III LC. Our analysis indicates that MGMT promoter methylation in stage I-III or younger patients was significantly correlated with wore survival. Further study is needed to determine these specific subgroups of LC patients.
Redundancy analysis allows improved detection of methylation changes in large genomic regions.
Ruiz-Arenas, Carlos; González, Juan R
2017-12-14
DNA methylation is an epigenetic process that regulates gene expression. Methylation can be modified by environmental exposures and changes in the methylation patterns have been associated with diseases. Methylation microarrays measure methylation levels at more than 450,000 CpGs in a single experiment, and the most common analysis strategy is to perform a single probe analysis to find methylation probes associated with the outcome of interest. However, methylation changes usually occur at the regional level: for example, genomic structural variants can affect methylation patterns in regions up to several megabases in length. Existing DMR methods provide lists of Differentially Methylated Regions (DMRs) of up to only few kilobases in length, and cannot check if a target region is differentially methylated. Therefore, these methods are not suitable to evaluate methylation changes in large regions. To address these limitations, we developed a new DMR approach based on redundancy analysis (RDA) that assesses whether a target region is differentially methylated. Using simulated and real datasets, we compared our approach to three common DMR detection methods (Bumphunter, blockFinder, and DMRcate). We found that Bumphunter underestimated methylation changes and blockFinder showed poor performance. DMRcate showed poor power in the simulated datasets and low specificity in the real data analysis. Our method showed very high performance in all simulation settings, even with small sample sizes and subtle methylation changes, while controlling type I error. Other advantages of our method are: 1) it estimates the degree of association between the DMR and the outcome; 2) it can analyze a targeted or region of interest; and 3) it can evaluate the simultaneous effects of different variables. The proposed methodology is implemented in MEAL, a Bioconductor package designed to facilitate the analysis of methylation data. We propose a multivariate approach to decipher whether an outcome of interest alters the methylation pattern of a region of interest. The method is designed to analyze large target genomic regions and outperforms the three most popular methods for detecting DMRs. Our method can evaluate factors with more than two levels or the simultaneous effect of more than one continuous variable, which is not possible with the state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Field, J. A.; Reusser, D. E.; Beller, H. R.; Istok, J. D.
2001-12-01
Obtaining unambiguous evidence of in-situ transformation of benzene, toluene, ethylbenzene and xylene (BTEX) in the subsurface is a difficult task. Recently, benzylsuccinic acid and its methyl analogues were shown to be unequivocal degradation products of anaerobic toluene and xylene biodegradation. Conducting tracer tests at BTEX-contaminated field sites is problematic because background contaminant concentrations potentially interfere with the interpretation of field test data. To avoid the time and cost associated with removing background contaminants, alternative approaches are needed. Deuterated analogs of toluene and xylene are well-suited for use in field tracer tests because they are inexpensive and can be distinguished analytically from background toluene and xylene. In this study, single-well push-pull tests, in which deuterated toluene and xylene were injected, were performed to assess the in-situ anaerobic biotransformation of toluene and xylene in BTEX-contaminated wells. A total of 4 single-well push-pull tests were conducted at BTEX-contaminated field sites near Portland, OR and Kansas City, KS. Test solutions consisting of 100 mg/L bromide, 250 mg/L nitrate, 0.4 to 2.5 mg/L toluene-d8, and 0.4 to 1.0 mg/L o-xylene-d10.were injected at a rate of 0.5 - 2 L/min. During the extraction phase, samples were taken daily to biweekly for up to 30 days. Samples for volatile organic analytes were collected in 40-mL volatile organic analysis (VOA) vials without headspace. Samples for BSA and methyl-BSA were collected in 1 L glass bottles and preserved with 5% (w/w) formalin. Samples were shipped on ice and stored at 4 C until analysis. Unambiguous evidence of toluene and xylene biotransformation was obtained with the in-situ formation of BSA and methyl-BSA. The concentrations of BSA ranged from below the detection limit (0.2 ug/L) to 1.5 ug/L. The concentrations of methyl-BSA ranged from below detection to the quantitation limit (0.7 ug/L). The highest BSA concentrations detected corresponded to 0.1 - 0.2 mol% of the injected deuterated toluene. Zero-order degradation rates for deuterated toluene, estimated as the rates of BSA formation, were 0.0004 to 0.001 day-1. Because methyl-BSA concentrations did not exceed the quantitation limit, the rate of xylene degradation could not be calculated. The formation of BSA and methyl-BSA was coupled with the utilization of nitrate, presumably due to denitrification. Transformation of toluene and xylene to BSA and methyl-BSA, respectively, was observed for wells characterized by low concentrations of toluene and xylene relative to total BTEX. To the best of our knowledge, this is the first report to document the use of deuterated BTEX surrogates in field-tracer experiments.
Dikow, Nicola; Nygren, Anders Oh; Schouten, Jan P; Hartmann, Carolin; Krämer, Nikola; Janssen, Bart; Zschocke, Johannes
2007-06-01
Standard methods used for genomic methylation analysis allow the detection of complete absence of either methylated or non-methylated alleles but are usually unable to detect changes in the proportion of methylated and unmethylated alleles. We compare two methods for quantitative methylation analysis, using the chromosome 15q11-q13 imprinted region as model. Absence of the non-methylated paternal allele in this region leads to Prader-Willi syndrome (PWS) whilst absence of the methylated maternal allele results in Angelman syndrome (AS). A proportion of AS is caused by mosaic imprinting defects which may be missed with standard methods and require quantitative analysis for their detection. Sequence-based quantitative methylation analysis (SeQMA) involves quantitative comparison of peaks generated through sequencing reactions after bisulfite treatment. It is simple, cost-effective and can be easily established for a large number of genes. However, our results support previous suggestions that methods based on bisulfite treatment may be problematic for exact quantification of methylation status. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) avoids bisulfite treatment. It detects changes in both CpG methylation as well as copy number of up to 40 chromosomal sequences in one simple reaction. Once established in a laboratory setting, the method is more accurate, reliable and less time consuming.
Triplex-mediated analysis of cytosine methylation at CpA sites in DNA.
Johannsen, Marie W; Gerrard, Simon R; Melvin, Tracy; Brown, Tom
2014-01-18
Modified triplex-forming oligonucleotides distinguish 5-methyl cytosine from unmethylated cytosine in DNA duplexes by differences in triplex melting temperatures. The discrimination is sequence-specific; dramatic differences in stabilisation are seen for CpA methylation, whereas CpG methylation is not detected. This direct detection of DNA methylation constitutes a new approach for epigenetic analysis.
Epigenetic Events in Liver Cancer Resulting From Alcoholic Liver Disease
French, Samuel W.
2013-01-01
Epigenetic mechanisms play an extensive role in the development of liver cancer (i.e., hepatocellular carcinoma [HCC]) associated with alcoholic liver disease (ALD) as well as in liver disease associated with other conditions. For example, epigenetic mechanisms, such as changes in the methylation and/or acetylation pattern of certain DNA regions or of the histone proteins around which the DNA is wrapped, contribute to the reversion of normal liver cells into progenitor and stem cells that can develop into HCC. Chronic exposure to beverage alcohol (i.e., ethanol) can induce all of these epigenetic changes. Thus, ethanol metabolism results in the formation of compounds that can cause changes in DNA methylation and interfere with other components of the normal processes regulating DNA methylation. Alcohol exposure also can alter histone acetylation/deacetylation and methylation patterns through a variety of mechanisms and signaling pathways. Alcohol also acts indirectly on another molecule called toll-like receptor 4 (TLR4) that is a key component in a crucial regulatory pathway in the cells and whose dysregulation is involved in the development of HCC. Finally, alcohol use regulates an epigenetic mechanism involving small molecules called miRNAs that control transcriptional events and the expression of genes important to ALD. PMID:24313165
Wang, Po; Chen, Hanbin; Tian, Jiuying; Dai, Zong; Zou, Xiaoyong
2013-07-15
An efficient electrochemical approach for the evaluation of DNA methylation level was proposed according to the oxidation signal of DNA bases at an overoxidized polypyrrole (PPyox) directed multiwalled carbon nanotubes (MWNTs) film modified glassy carbon electrode (GCE). The PPyox/MWNTs/GCE exhibited remarkable electrocatalytic activities towards the oxidation of DNA bases due to the advantages of wide potential window, large effective surface area, and excellent antifouling property. As a result, all purine and pyrimidine bases of guanine (G), adenine (A), thymine (T), cytosine (C) and 5-methylcytosine (5-mC) exhibited well identified oxidation peaks at the PPyox/MWNTs/GCE. The direct potential resolution between 5-mC and C was obtained to be 180 mV, which was large enough for their signal recognition and accurate detection in mixture. In particular, the signal interference from T, a great challenge in exploring DNA methylation, was successfully eliminated by an innovative strategy, which was developed based on the stoichiometric relationship between purine and pyrimidine bases in DNA molecular structure. The proposed method was effectively applied to the rapid detection of DNA methylation status in real sample within 45 min with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.
Zackay, Arie; Steinhoff, Christine
2010-12-15
Exploration of DNA methylation and its impact on various regulatory mechanisms has become a very active field of research. Simultaneously there is an arising need for tools to process and analyse the data together with statistical investigation and visualisation. MethVisual is a new application that enables exploratory analysis and intuitive visualization of DNA methylation data as is typically generated by bisulfite sequencing. The package allows the import of DNA methylation sequences, aligns them and performs quality control comparison. It comprises basic analysis steps as lollipop visualization, co-occurrence display of methylation of neighbouring and distant CpG sites, summary statistics on methylation status, clustering and correspondence analysis. The package has been developed for methylation data but can be also used for other data types for which binary coding can be inferred. The application of the package, as well as a comparison to existing DNA methylation analysis tools and its workflow based on two datasets is presented in this paper. The R package MethVisual offers various analysis procedures for data that can be binarized, in particular for bisulfite sequenced methylation data. R/Bioconductor has become one of the most important environments for statistical analysis of various types of biological and medical data. Therefore, any data analysis within R that allows the integration of various data types as provided from different technological platforms is convenient. It is the first and so far the only specific package for DNA methylation analysis, in particular for bisulfite sequenced data available in R/Bioconductor enviroment. The package is available for free at http://methvisual.molgen.mpg.de/ and from the Bioconductor Consortium http://www.bioconductor.org.
2010-01-01
Background Exploration of DNA methylation and its impact on various regulatory mechanisms has become a very active field of research. Simultaneously there is an arising need for tools to process and analyse the data together with statistical investigation and visualisation. Findings MethVisual is a new application that enables exploratory analysis and intuitive visualization of DNA methylation data as is typically generated by bisulfite sequencing. The package allows the import of DNA methylation sequences, aligns them and performs quality control comparison. It comprises basic analysis steps as lollipop visualization, co-occurrence display of methylation of neighbouring and distant CpG sites, summary statistics on methylation status, clustering and correspondence analysis. The package has been developed for methylation data but can be also used for other data types for which binary coding can be inferred. The application of the package, as well as a comparison to existing DNA methylation analysis tools and its workflow based on two datasets is presented in this paper. Conclusions The R package MethVisual offers various analysis procedures for data that can be binarized, in particular for bisulfite sequenced methylation data. R/Bioconductor has become one of the most important environments for statistical analysis of various types of biological and medical data. Therefore, any data analysis within R that allows the integration of various data types as provided from different technological platforms is convenient. It is the first and so far the only specific package for DNA methylation analysis, in particular for bisulfite sequenced data available in R/Bioconductor enviroment. The package is available for free at http://methvisual.molgen.mpg.de/ and from the Bioconductor Consortium http://www.bioconductor.org. PMID:21159174
Hung, Chiu-Yueh; Fan, Longjiang; Kittur, Farooqahmed S.; Sun, Kehan; Qiu, Jie; Tang, She; Holliday, Bronwyn M.; Xiao, Bingguang; Burkey, Kent O.; Bush, Lowell P.; Conkling, Mark A.; Roje, Sanja; Xie, Jiahua
2013-01-01
Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the tetrahydrofolate (THF)-mediated one-carbon (C1) metabolic network. This enzyme catalyzes the reduction of 5,10-methylene-THF to 5-methyl-THF. The latter donates its methyl group to homocysteine, forming methionine, which is then used for the synthesis of S-adenosyl-methionine, a universal methyl donor for numerous methylation reactions, to produce primary and secondary metabolites. Here, we demonstrate that manipulating tobacco (Nicotiana tabacum) MTHFR gene (NtMTHFR1) expression dramatically alters the alkaloid profile in transgenic tobacco plants by negatively regulating the expression of a secondary metabolic pathway nicotine N-demethylase gene, CYP82E4. Quantitative real-time polymerase chain reaction and alkaloid analyses revealed that reducing NtMTHFR expression by RNA interference dramatically induced CYP82E4 expression, resulting in higher nicotine-to-nornicotine conversion rates. Conversely, overexpressing NtMTHFR1 suppressed CYP82E4 expression, leading to lower nicotine-to-nornicotine conversion rates. However, the reduced expression of NtMTHFR did not affect the methionine and S-adenosyl-methionine levels in the knockdown lines. Our finding reveals a new regulatory role of NtMTHFR1 in nicotine N-demethylation and suggests that the negative regulation of CYP82E4 expression may serve to recruit methyl groups from nicotine into the C1 pool under C1-deficient conditions. PMID:23221678
A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis
Down, Thomas A.; Rakyan, Vardhman K.; Turner, Daniel J.; Flicek, Paul; Li, Heng; Kulesha, Eugene; Gräf, Stefan; Johnson, Nathan; Herrero, Javier; Tomazou, Eleni M.; Thorne, Natalie P.; Bäckdahl, Liselotte; Herberth, Marlis; Howe, Kevin L.; Jackson, David K.; Miretti, Marcos M.; Marioni, John C.; Birney, Ewan; Hubbard, Tim J. P.; Durbin, Richard; Tavaré, Simon; Beck, Stephan
2009-01-01
DNA methylation is an indispensible epigenetic modification of mammalian genomes. Consequently there is great interest in strategies for genome-wide/whole-genome DNA methylation analysis, and immunoprecipitation-based methods have proven to be a powerful option. Such methods are rapidly shifting the bottleneck from data generation to data analysis, necessitating the development of better analytical tools. Until now, a major analytical difficulty associated with immunoprecipitation-based DNA methylation profiling has been the inability to estimate absolute methylation levels. Here we report the development of a novel cross-platform algorithm – Bayesian Tool for Methylation Analysis (Batman) – for analyzing Methylated DNA Immunoprecipitation (MeDIP) profiles generated using arrays (MeDIP-chip) or next-generation sequencing (MeDIP-seq). The latter is an approach we have developed to elucidate the first high-resolution whole-genome DNA methylation profile (DNA methylome) of any mammalian genome. MeDIP-seq/MeDIP-chip combined with Batman represent robust, quantitative, and cost-effective functional genomic strategies for elucidating the function of DNA methylation. PMID:18612301
Zeeshan, Mohammad; Kaur, Inderjeet; Joy, Joseph; Saini, Ekta; Paul, Gourab; Kaushik, Abhinav; Dabral, Surbhi; Mohmmed, Asif; Gupta, Dinesh; Malhotra, Pawan
2017-02-03
Plasmodium falciparum undergoes a tightly regulated developmental process in human erythrocytes, and recent studies suggest an important regulatory role of post-translational modifications (PTMs). As compared with Plasmodium phosphoproteome, little is known about other PTMs in the parasite. In the present study, we performed a global analysis of asexual blood stages of Plasmodium falciparum to identify arginine-methylated proteins. Using two different methyl arginine-specific antibodies, we immunoprecipitated the arginine-methylated proteins from the stage-specific parasite lysates and identified 843 putative arginine-methylated proteins by LC-MS/MS. Motif analysis of the protein sequences unveiled that the methylation sites are associated with the previously known methylation motifs such as GRx/RGx, RxG, GxxR, or WxxxR. We identified Plasmodium homologues of known arginine-methylated proteins in trypanosomes, yeast, and human. Hydrophilic interaction liquid chromatography (HILIC) was performed on the immunoprecipitates from the trophozoite stage to enrich arginine-methylated peptides. Mass spectrometry analysis of immunoprecipitated and HILIC fractions identified 55 arginine-methylated peptides having 62 methylated arginine sites. Functional classification revealed that the arginine-methylated proteins are involved in RNA metabolism, protein synthesis, intracellular protein trafficking, proteolysis, protein folding, chromatin organization, hemoglobin metabolic process, and several other functions. Summarily, the findings suggest that protein methylation of arginine residues is a widespread phenomenon in Plasmodium, and the PTM may play an important regulatory role in a diverse set of biological pathways, including host-pathogen interactions.
2014-01-01
Potential interferences tested were chlorine and chloramine (commonly used for drinking water disinfection ), geosmin and 2-methyl-isoborneol (MIB...Protection Agency maximum residual disinfectant level for chlorine and chloramine is set at 4 mg l1 under the Safe Drinking Water Act and thus would...Evaluation and refinement of a field-portable drinking water toxicity sensor utilizing electric cell–substrate impedance sensing and a fluidic
Immunoaffinity Enrichment and Mass Spectrometry Analysis of Protein Methylation
Guo, Ailan; Gu, Hongbo; Zhou, Jing; Mulhern, Daniel; Wang, Yi; Lee, Kimberly A.; Yang, Vicky; Aguiar, Mike; Kornhauser, Jon; Jia, Xiaoying; Ren, Jianmin; Beausoleil, Sean A.; Silva, Jeffrey C.; Vemulapalli, Vidyasiri; Bedford, Mark T.; Comb, Michael J.
2014-01-01
Protein methylation is a common posttranslational modification that mostly occurs on arginine and lysine residues. Arginine methylation has been reported to regulate RNA processing, gene transcription, DNA damage repair, protein translocation, and signal transduction. Lysine methylation is best known to regulate histone function and is involved in epigenetic regulation of gene transcription. To better study protein methylation, we have developed highly specific antibodies against monomethyl arginine; asymmetric dimethyl arginine; and monomethyl, dimethyl, and trimethyl lysine motifs. These antibodies were used to perform immunoaffinity purification of methyl peptides followed by LC-MS/MS analysis to identify and quantify arginine and lysine methylation sites in several model studies. Overall, we identified over 1000 arginine methylation sites in human cell line and mouse tissues, and ∼160 lysine methylation sites in human cell line HCT116. The number of methylation sites identified in this study exceeds those found in the literature to date. Detailed analysis of arginine-methylated proteins observed in mouse brain compared with those found in mouse embryo shows a tissue-specific distribution of arginine methylation, and extends the types of proteins that are known to be arginine methylated to include many new protein types. Many arginine-methylated proteins that we identified from the brain, including receptors, ion channels, transporters, and vesicle proteins, are involved in synaptic transmission, whereas the most abundant methylated proteins identified from mouse embryo are transcriptional regulators and RNA processing proteins. PMID:24129315
McHugh, J.B.
1984-01-01
A method has been developed using electrothermal atomization to effectively determine the amount of gold in natural water within the nanogram range. The method has four basic steps: (1) evaporating a 1-L sample; (2) putting it in hydrobromic acid-bromine solution; (3) extracting the sample with methyl-isobutyl-ketone; and (4) determining the amount of gold using an atomic absorption spectrophotometer. The limit of detection is 0.001 ??g gold per liter. Results from three studies indicate, respectively, that the method is precise, effective, and free of interference. Specifically, a precision study indicates that the method has a relative standard deviation of 16-18%; a recovery study indicates that the method recovers gold at an average of 93%; and an interference study indicates that the interference effects are eliminated with solvent extraction and background correction techniques. Application of the method to water samples collected from 41 sites throughout the Western United States and Alaska shows a gold concentration range of < 0.001 to 0.036 ??g gold per liter, with an average of 0.005 ??g/L. ?? 1984.
Zapadlo, Michal; Krupčík, Ján; Kovalczuk, Tomáš; Májek, Pavel; Spánik, Ivan; Armstrong, Daniel W; Sandra, Pat
2011-02-04
A total of 196 out of 209 polychlorobiphenyl (PCB) congeners were resolved using GC×GC-TOFMS with a non-polar/ionic liquid column series consisting of poly(50%-n-octyl-50%-methyl)siloxane and (1,12-di(tripropylphosphonium)dodecane bis(trifluoromethansulfonyl)amide) in the first and second dimension, respectively. It has been found that 13 PCB congeners overlap in five doublets (CB12+CB13, CB62+CB75, CB70+CB76, CB97+CB125 and CB153+CB168) and one triplet (CB90+CB101+CB113). All toxic, "dioxin like" congeners were separated with no interferences from any PCB congener. The 109 PCBs present in Aroclor 1242 and the 82 PCBs present in Aroclor 1260 were resolved GC×GC-TOFMS analysis on this column set. Copyright © 2010 Elsevier B.V. All rights reserved.
Dubin, Sergey; Gilje, Scott; Wang, Kan; Tung, Vincent C.; Cha, Kitty; Hall, Anthony S.; Farrar, Jabari; Varshneya, Rupal; Yang, Yang; Kaner, Richard B.
2014-01-01
Refluxing graphene oxide (GO) in N-methyl-2-pyrrolidinone (NMP) results in deoxygenation and reduction to yield a stable colloidal dispersion. The solvothermal reduction is accompanied by a color change from light brown to black. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images of the product confirm the presence of single sheets of the solvothermally reduced graphene oxide (SRGO). X-ray photoelectron spectroscopy (XPS) of SRGO indicates a significant increase in intensity of the C=C bond character, while the oxygen content decreases markedly after the reduction is complete. X-ray diffraction analysis of SRGO shows a single broad peak at 26.24° 2θ (3.4 Å), confirming the presence of graphitic stacking of reduced sheets. SRGO sheets are redispersible in a variety of organic solvents, which may hold promise as an acceptor material for bulk heterojunction photovoltaic cells, or electromagnetic interference shielding applications. PMID:20586422
Xie, Fang-Fei; Deng, Fei-Yan; Wu, Long-Fei; Mo, Xing-Bo; Zhu, Hong; Wu, Jian; Guo, Yu-Fan; Zeng, Ke-Qin; Wang, Ming-Jun; Zhu, Xiao-Wei; Xia, Wei; Wang, Lan; He, Pei; Bing, Peng-Fei; Lu, Xin; Zhang, Yong-Hong; Lei, Shu-Feng
2018-01-01
DNA methylation is an important regulator on the mRNA expression. However, a genome-wide correlation pattern between DNA methylation and mRNA expression in human peripheral blood mononuclear cells (PBMCs) is largely unknown. The comprehensive relationship between mRNA and DNA methylation was explored by using four types of correlation analyses and a genome-wide methylation-mRNA expression quantitative trait locus (eQTL) analysis in PBMCs in 46 unrelated female subjects. An enrichment analysis was performed to detect biological function for the detected genes. Single pair correlation coefficient (r T1 ) between methylation level and mRNA is moderate (-0.63-0.62) in intensity, and the negative and positive correlations are nearly equal in quantity. Correlation analysis on each gene (T4) found 60.1% genes showed correlations between mRNA and gene-based methylation at P < 0.05 and more than 5.96% genes presented very strong correlation (R T4 > 0.8). Methylation sites have regulation effects on mRNA expression in eQTL analysis, with more often observations in region of transcription start site (TSS). The genes under significant methylation regulation both in correlation analysis and eQTL analysis tend to cluster to the categories (e.g., transcription, translation, regulation of transcription) that are essential for maintaining the basic life activities of cells. Our findings indicated that DNA methylation has predictive regulation effect on mRNA with a very complex pattern in PBMCs. The results increased our understanding on correlation of methylation and mRNA and also provided useful clues for future epigenetic studies in exploring biological and disease-related regulatory mechanisms in PBMC.
USDA-ARS?s Scientific Manuscript database
Background: DNA methylation is influenced by diet and single nucleotide polymorphisms (SNPs), and methylation modulates gene expression. Objective: We aimed to explore whether the gene-by-diet interactions on blood lipids act through DNA methylation. Design: We selected 7 SNPs on the basis of predic...
Wang, Yao; Jadhav, Rohit Ramakant; Liu, Joseph; Wilson, Desiree; Chen, Yidong; Thompson, Ian M; Troyer, Dean A; Hernandez, Javier; Shi, Huidong; Leach, Robin J; Huang, Tim H-M; Jin, Victor X
2016-02-29
Aberrant DNA methylation at promoters is often linked to tumorigenesis. But many aspects of DNA methylation remain unexplored, including the individual roles of distal and gene body methylation, as well as their collaborative roles with promoter methylation. Here we performed a MBD-seq analysis on prostate specimens classified into low, high, and very high risk group based on Gleason score and TNM stages. We identified gene sets with differential methylation regions (DMRs) in Distal, TSS, gene body and TES. To understand the collaborative roles, TSS was compared with the other three DMRs, resulted in 12 groups of genes with collaborative differential methylation patterns (CDMPs). We found several groups of genes that show opposite methylation patterns in Distal and Genic regions compared to TSS region, and in general they are differentially expressed genes (DEGs) in tumors in TCGA RNA-seq data. IPA (Ingenuity Pathway Analysis) reveals AR/TP53 signaling network to be a major signaling pathway, and survival analysis indicates genes subsets significantly associated with prostate cancer recurrence. Our results suggest that DNA methylation in Distal and Genic regions also plays critical roles in contributing to prostate tumorigenesis, and may act either positively or negatively with TSSs to alter gene regulation in tumors.
Kim, Byungtak; Kang, Seongeun; Jeong, Gookjoo; Park, Sung-Bin; Kim, Sun Jung
2014-01-01
Aberrant methylation of specific CpG sites at the promoter is widely responsible for genesis and development of various cancer types. Even though the microarray-based methylome analyzing techniques have contributed to the elucidation of the methylation change at the genome-wide level, the identification of key methylation markers or top regulatory networks appearing common in highly incident cancers through comparison analysis is still limited. In this study, we in silico performed the genome-wide methylation analysis on each 10 sets of normal and cancer pairs of five tissues: breast, colon, liver, lung, and stomach. The methylation array covers 27,578 CpG sites, corresponding to 14,495 genes, and significantly hypermethylated or hypomethylated genes in the cancer were collected (FDR adjusted p-value <0.05; methylation difference >0.3). Analysis of the dataset confirmed the methylation of previously known methylation markers and further identified novel methylation markers, such as GPX2, CLDN15, and KL. Cluster analysis using the methylome dataset resulted in a diagram with a bipartite mode distinguishing cancer cells from normal cells regardless of tissue types. The analysis further revealed that breast cancer was closest with lung cancer, whereas it was farthest from colon cancer. Pathway analysis identified that either the "cancer" related network or the "cancer" related bio-function appeared as the highest confidence in all the five cancers, whereas each cancer type represents its tissue-specific gene sets. Our results contribute toward understanding the essential abnormal epigenetic pathways involved in carcinogenesis. Further, the novel methylation markers could be applied to establish markers for cancer prognosis.
Liu, Zhaojun; Zhou, Jing; Gu, Liankun; Deng, Dajun
2016-08-30
Methylation changes of CpG islands can be determined using PCR-based assays. However, the exact impact of the amount of input templates (TAIT) on DNA methylation analysis has not been previously recognized. Using COL2A1 gene as an input reference, TAIT difference between human tissues with methylation-positive and -negative detection was calculated for two representative genes GFRA1 and P16. Results revealed that TAIT in GFRA1 methylation-positive frozen samples (n = 332) was significantly higher than the methylation-negative ones (n = 44) (P < 0.001). Similar difference was found in P16 methylation analysis. The TAIT-related effect was also observed in methylation-specific PCR (MSP) and denatured high performance liquid chromatography (DHPLC) analysis. Further study showed that the minimum TAIT for a successful MethyLight PCR reaction should be ≥ 9.4 ng (CtCOL2A1 ≤ 29.3), when the cutoff value of the methylated-GFRA1 proportion for methylation-positive detection was set at 1.6%. After TAIT of the methylation non-informative frozen samples (n = 94; CtCOL2A1 > 29.3) was increased above the minimum TAIT, the methylation-positive rate increased from 72.3% to 95.7% for GFRA1 and 26.6% to 54.3% for P16, respectively (Ps < 0.001). Similar results were observed in the FFPE samples. In conclusion, TAIT critically affects results of various PCR-based DNA methylation analyses. Characterization of the minimum TAIT for target CpG islands is essential to avoid false-negative results.
Ellis, Justine A; Munro, Jane E; Chavez, Raul A; Gordon, Lavinia; Joo, Jihoon E; Akikusa, Jonathan D; Allen, Roger C; Ponsonby, Anne-Louise; Craig, Jeffrey M; Saffery, Richard
2012-11-13
Juvenile Idiopathic Arthritis (JIA) is a complex autoimmune rheumatic disease of largely unknown cause. Evidence is growing that epigenetic variation, particularly DNA methylation, is associated with autoimmune disease. However, nothing is currently known about the potential role of aberrant DNA methylation in JIA. As a first step to addressing this knowledge gap, we have profiled DNA methylation in purified CD4+ T cells from JIA subjects and controls. Genomic DNA was isolated from peripheral blood CD4+ T cells from 14 oligoarticular and polyarticular JIA cases with active disease, and healthy age- and sex-matched controls. Genome-scale methylation analysis was carried out using the Illumina Infinium HumanMethylation27 BeadChip. Methylation data at >25,000 CpGs was compared in a case-control study design. Methylation levels were significantly different (FDR adjusted p<0.1) at 145 loci. Removal of four samples exposed to methotrexate had a striking impact on the outcome of the analysis, reducing the number of differentially methylated loci to 11. The methotrexate-naive analysis identified reduced methylation at the gene encoding the pro-inflammatory cytokine IL32, which was subsequently replicated using a second analysis platform and a second set of case-control pairs. Our data suggests that differential T cell DNA methylation may be a feature of JIA, and that reduced methylation at IL32 is associated with this disease. Further work in larger prospective and longitudinal sample collections is required to confirm these findings, assess whether the identified differences are causal or consequential of disease, and further investigate the epigenetic modifying properties of therapeutic regimens.
Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw
2017-01-01
Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare . However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop plants with large and complex genomes.
Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw
2017-01-01
Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare. However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop plants with large and complex genomes. PMID:29250096
Relationship between methylation and colonic inflammation in inflammatory bowel disease
Lobatón, Triana; Azuara, Daniel; Rodríguez-Moranta, Francisco; Loayza, Carolina; Sanjuan, Xavier; de Oca, Javier; Fernández-Robles, Ana; Guardiola, Jordi; Capellá, Gabriel
2014-01-01
AIM: To investigate the relationship between the methylation status in the SLIT2 and TGFB2 promoters and colonic inflammation in inflammatory bowel disease patients. METHODS: We evaluated the methylation status of 2 genes (SLIT2 and TGFB2) in 226 biopsies taken from 62 colonoscopies of 38 patients (29 ulcerative colitis and 9 Crohn’s colitis) using methylation-specific melting curve analysis. The relationships between methylation status and clinical, biological, endoscopic and histological activities were evaluated. Twenty-three of the 38 patients had a second colonoscopy and were included in a longitudinal analysis. Numerical results were given as the means ± SD of the sample and range, except when specified. Student t analysis, U Mann Whitney and ANOVA factor were used to compare the means. Qualitative results were based on the χ2 test. RESULTS: SLIT2 methylation was more frequent in samples with endoscopic activity than with endoscopic remission (55% vs 18%, P < 0.001). SLIT2 methylation was also higher in samples with acute inflammation (56.5%) than in samples with chronic (24%) or absent inflammation (15%) (P < 0.001). For TGFB2 methylation, the correlation was only significant with endoscopic activity. Methylation was higher in the distal colon for both genes (P < 0.001 for SLIT2 and P = 0.022 for TGFB2). In the multivariate analysis, only inflammation status (and not disease duration or extension) was independently associated with SLIT2 methylation [OR = 6.6 (95%CI: 1.65-27.36), P = 0.009]. In the longitudinal analysis, the maintenance of endoscopic remission was protective for methylation. CONCLUSION: Endoscopic and histological inflammation are predictive for SLIT2 methylation. PMID:25132780
Trimarchi, Michael P.; Yan, Pearlly; Groden, Joanna; Bundschuh, Ralf; Goodfellow, Paul J.
2017-01-01
Background DNA methylation is a stable epigenetic mark that is frequently altered in tumors. DNA methylation features are attractive biomarkers for disease states given the stability of DNA methylation in living cells and in biologic specimens typically available for analysis. Widespread accumulation of methylation in regulatory elements in some cancers (specifically the CpG island methylator phenotype, CIMP) can play an important role in tumorigenesis. High resolution assessment of CIMP for the entire genome, however, remains cost prohibitive and requires quantities of DNA not available for many tissue samples of interest. Genome-wide scans of methylation have been undertaken for large numbers of tumors, and higher resolution analyses for a limited number of cancer specimens. Methods for analyzing such large datasets and integrating findings from different studies continue to evolve. An approach for comparison of findings from a genome-wide assessment of the methylated component of tumor DNA and more widely applied methylation scans was developed. Methods Methylomes for 76 primary endometrial cancer and 12 normal endometrial samples were generated using methylated fragment capture and second generation sequencing, MethylCap-seq. Publically available Infinium HumanMethylation 450 data from The Cancer Genome Atlas (TCGA) were compared to MethylCap-seq data. Results Analysis of methylation in promoter CpG islands (CGIs) identified a subset of tumors with a methylator phenotype. We used a two-stage approach to develop a 13-region methylation signature associated with a “hypermethylator state.” High level methylation for the 13-region methylation signatures was associated with mismatch repair deficiency, high mutation rate, and low somatic copy number alteration in the TCGA test set. In addition, the signature devised showed good agreement with previously described methylation clusters devised by TCGA. Conclusion We identified a methylation signature for a “hypermethylator phenotype” in endometrial cancer and developed methods that may prove useful for identifying extreme methylation phenotypes in other cancers. PMID:28278225
Jenkinson, Garrett; Abante, Jordi; Feinberg, Andrew P; Goutsias, John
2018-03-07
DNA methylation is a stable form of epigenetic memory used by cells to control gene expression. Whole genome bisulfite sequencing (WGBS) has emerged as a gold-standard experimental technique for studying DNA methylation by producing high resolution genome-wide methylation profiles. Statistical modeling and analysis is employed to computationally extract and quantify information from these profiles in an effort to identify regions of the genome that demonstrate crucial or aberrant epigenetic behavior. However, the performance of most currently available methods for methylation analysis is hampered by their inability to directly account for statistical dependencies between neighboring methylation sites, thus ignoring significant information available in WGBS reads. We present a powerful information-theoretic approach for genome-wide modeling and analysis of WGBS data based on the 1D Ising model of statistical physics. This approach takes into account correlations in methylation by utilizing a joint probability model that encapsulates all information available in WGBS methylation reads and produces accurate results even when applied on single WGBS samples with low coverage. Using the Shannon entropy, our approach provides a rigorous quantification of methylation stochasticity in individual WGBS samples genome-wide. Furthermore, it utilizes the Jensen-Shannon distance to evaluate differences in methylation distributions between a test and a reference sample. Differential performance assessment using simulated and real human lung normal/cancer data demonstrate a clear superiority of our approach over DSS, a recently proposed method for WGBS data analysis. Critically, these results demonstrate that marginal methods become statistically invalid when correlations are present in the data. This contribution demonstrates clear benefits and the necessity of modeling joint probability distributions of methylation using the 1D Ising model of statistical physics and of quantifying methylation stochasticity using concepts from information theory. By employing this methodology, substantial improvement of DNA methylation analysis can be achieved by effectively taking into account the massive amount of statistical information available in WGBS data, which is largely ignored by existing methods.
Kageyama, Shinji; Shinmura, Kazuya; Yamamoto, Hiroko; Goto, Masanori; Suzuki, Koichi; Tanioka, Fumihiko; Tsuneyoshi, Toshihiro; Sugimura, Haruhiko
2008-04-01
The PCR-based DNA fingerprinting method called the methylation-sensitive amplified fragment length polymorphism (MS-AFLP) analysis is used for genome-wide scanning of methylation status. In this study, we developed a method of fluorescence-labeled MS-AFLP (FL-MS-AFLP) analysis by applying a fluorescence-labeled primer and fluorescence-detecting electrophoresis apparatus to the existing method of MS-AFLP analysis. The FL-MS-AFLP analysis enables quantitative evaluation of more than 350 random CpG loci per run. It was shown to allow evaluation of the differences in methylation level of blood DNA of gastric cancer patients and evaluation of hypermethylation and hypomethylation in DNA from gastric cancer tissue in comparison with adjacent non-cancerous tissue.
Grasso, Chiara; Trevisan, Morena; Fiano, Valentina; Tarallo, Valentina; De Marco, Laura; Sacerdote, Carlotta; Richiardi, Lorenzo; Merletti, Franco; Gillio-Tos, Anna
2016-01-01
Pyrosequencing has emerged as an alternative method of nucleic acid sequencing, well suited for many applications which aim to characterize single nucleotide polymorphisms, mutations, microbial types and CpG methylation in the target DNA. The commercially available pyrosequencing systems can harbor two different types of software which allow analysis in AQ or CpG mode, respectively, both widely employed for DNA methylation analysis. Aim of the study was to assess the performance for DNA methylation analysis at CpG sites of the two pyrosequencing software which allow analysis in AQ or CpG mode, respectively. Despite CpG mode having been specifically generated for CpG methylation quantification, many investigations on this topic have been carried out with AQ mode. As proof of equivalent performance of the two software for this type of analysis is not available, the focus of this paper was to evaluate if the two modes currently used for CpG methylation assessment by pyrosequencing may give overlapping results. We compared the performance of the two software in quantifying DNA methylation in the promoter of selected genes (GSTP1, MGMT, LINE-1) by testing two case series which include DNA from paraffin embedded prostate cancer tissues (PC study, N = 36) and DNA from blood fractions of healthy people (DD study, N = 28), respectively. We found discrepancy in the two pyrosequencing software-based quality assignment of DNA methylation assays. Compared to the software for analysis in the AQ mode, less permissive criteria are supported by the Pyro Q-CpG software, which enables analysis in CpG mode. CpG mode warns the operators about potential unsatisfactory performance of the assay and ensures a more accurate quantitative evaluation of DNA methylation at CpG sites. The implementation of CpG mode is strongly advisable in order to improve the reliability of the methylation analysis results achievable by pyrosequencing.
2015-01-01
Background Recently, a wide range of diseases have been associated with changes in DNA methylation levels, which play a vital role in gene expression regulation. With ongoing developments in technology, attempts to understand disease mechanism have benefited greatly from epigenetics and transcriptomics studies. In this work, we have used expression and methylation data of thyroid carcinoma as a case study and explored how to optimally incorporate expression and methylation information into the disease study when both data are available. Moreover, we have also investigated whether there are important post-translational modifiers which could drive critical insights on thyroid cancer genetics. Results In this study, we have conducted a threshold analysis for varying methylation levels to identify whether setting a methylation level threshold increases the performance of functional enrichment. Moreover, in order to decide on best-performing analysis strategy, we have performed data integration analysis including comparison of 10 different analysis strategies. As a result, combining methylation with expression and using genes with more than 15% methylation change led to optimal detection rate of thyroid-cancer associated pathways in top 20 functional enrichment results. Furthermore, pooling the data from different experiments increased analysis confidence by improving the data range. Consequently, we have identified 207 transcription factors and 245 post-translational modifiers with more than 15% methylation change which may be important in understanding underlying mechanisms of thyroid cancer. Conclusion While only expression or only methylation information would not reveal both primary and secondary mechanisms involved in disease state, combining expression and methylation led to a better detection of thyroid cancer-related genes and pathways that are found in the recent literature. Moreover, focusing on genes that have certain level of methylation change improved the functional enrichment results, revealing the core pathways involved in disease development such as; endocytosis, apoptosis, glutamatergic synapse, MAPK, ErbB, TGF-beta and Toll-like receptor pathways. Overall, in addition to novel analysis framework, our study reveals important thyroid-cancer related mechanisms, secondary molecular alterations and contributes to better knowledge of thyroid cancer aetiology. PMID:26678064
Sha, A H; Lin, X H; Huang, J B; Zhang, D P
2005-07-01
DNA methylation is known to play an important role in the regulation of gene expression in eukaryotes. The rice cultivar Wase Aikoku 3 becomes resistant to the blight pathogen Xanthomonas oryzae pv. oryzae at the adult stage. Using methylation-sensitive amplified polymorphism (MSAP) analysis, we compared the patterns of cytosine methylation in seedlings and adult plants of the rice cultivar Wase Aikoku 3 that had been inoculated with the pathogen Xanthomonas oryzae pv. oryzae, subjected to mock inoculation or left untreated. In all, 2000 DNA fragments, each representing a recognition site cleaved by either or both of two isoschizomers, were amplified using 60 pairs of selective primers. A total of 380 sites were found to be methylated. Of these, 45 showed differential cytosine methylation among the seedlings and adult plants subjected to different treatments, and overall levels of methylation were higher in adult plants than in seedlings. All polymorphic fragments were sequenced, and six showed homology to genes that code for products of known function. Northern analysis of three fragments indicated that their expression varied with methylation pattern, with hypermethylation being correlated with repression of transcription, as expected. The results suggest that significant differences in cytosine methylation exist between seedlings and adult plants, and that hypermethylation or hypomethylation of specific genes may be involved in the development of adult plant resistance (APR) in rice plants.
Hayashi, Masamichi; Guerrero-Preston, Rafael; Sidransky, David; Koch, Wayne M.
2015-01-01
Molecular deep surgical margin analysis has been shown to predict locoregional recurrences of head and neck squamous cell carcinoma (HNSCC). In order to improve the accuracy and versatility of the analysis, we used a highly tumor-specific methylation marker and highly sensitive detection technology to test DNA from surgical margins. Histologically cancer-negative deep surgical margin samples were prospectively collected from 82 eligible HNSCC surgeries by an imprinting procedure (n=75) and primary tissue collection (n=70). Bisulfite treated DNA from each sample was analyzed by both conventional quantitative methylation-specific polymerase chain reaction (QMSP) and QMSP by droplet digital PCR (ddQMSP) targeting PAX5 gene promoter methylation. The association between the presence of PAX5 methylation and locoregional recurrence free survival (LRFS) was evaluated. PAX5 methylation was found in 68.0% (51/75) of tumors in the imprint samples and 71.4% (50/70) in the primary tissue samples. Among cases which did not have postoperative radiation, (n=31 in imprint samples, n=29 in tissue samples), both conventional QMSP and ddQMSP revealed that PAX5 methylation positive margins was significantly associated with poor LRFS by univariate analysis. In particular, ddQMSP increased detection of the PAX5 marker from 29% to 71% in the non-radiated imprint cases. Also, PAX5 methylated imprint margins were an excellent predictor of poor LRFS (HR=3.89, 95%CI:1.19-17.52, P=0.023) by multivariate analysis. PAX5 methylation appears to be an excellent tumor-specific marker for molecular deep surgical margin analysis of HNSCC. Moreover, the ddQMSP assay displays increased sensitivity for methylation marker detection. PMID:26304463
White-Al Habeeb, Nicole M A; Ho, Linh T; Olkhov-Mitsel, Ekaterina; Kron, Ken; Pethe, Vaijayanti; Lehman, Melanie; Jovanovic, Lidija; Fleshner, Neil; van der Kwast, Theodorus; Nelson, Colleen C; Bapat, Bharati
2014-09-15
Epigenetic silencing mediated by CpG methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with tumor progression may identify potential prognostic markers for prostate cancer (PCa). We treated two PCa cell lines, 22Rv1 and DU-145 with the demethylating agent 5-Aza 2'-deoxycitidine (DAC) and global methylation status was analyzed by performing methylation-sensitive restriction enzyme based differential methylation hybridization strategy followed by genome-wide CpG methylation array profiling. In addition, we examined gene expression changes using a custom microarray. Gene Set Enrichment Analysis (GSEA) identified the most significantly dysregulated pathways. In addition, we assessed methylation status of candidate genes that showed reduced CpG methylation and increased gene expression after DAC treatment, in Gleason score (GS) 8 vs. GS6 patients using three independent cohorts of patients; the publically available The Cancer Genome Atlas (TCGA) dataset, and two separate patient cohorts. Our analysis, by integrating methylation and gene expression in PCa cell lines, combined with patient tumor data, identified novel potential biomarkers for PCa patients. These markers may help elucidate the pathogenesis of PCa and represent potential prognostic markers for PCa patients.
Honda, Shohei; Haruta, Masayuki; Sugawara, Waka; Sasaki, Fumiaki; Ohira, Miki; Matsunaga, Tadashi; Yamaoka, Hiroaki; Horie, Hiroshi; Ohnuma, Naomi; Nakagawara, Akira; Hiyama, Eiso; Todo, Satoru; Kaneko, Yasuhiko
2008-09-01
Despite the progress of therapy, outcomes of advanced hepatoblastoma patients who are refractory to standard preoperative chemotherapy remain unsatisfactory. To improve the mortality rate, novel prognostic markers are needed for better therapy planning. We examined the methylation status of 13 candidate tumor suppressor genes in 20 hepatoblastoma tumors by conventional methylation-specific PCR (MSP) and found hypermethylation in 3 of the 13 genes. We analyzed the methylation status of these 3 genes (RASSF1A, SOCS1 and CASP8) in 97 tumors and found hypermethylation in 30.9, 33.0 and 15.5%, respectively. Univariate analysis showed that only the methylation status of RASSF1A but not the other 2 genes predicted the outcome, and multivariate analysis showed a weak contribution of RASSF1A methylation to overall survival. Using quantitative MSP, we found RASSF1A methylation in 44.3% of the 97 tumors. CTNNB1 mutation was detected in 67.0% of the 97 tumors. While univariate analysis demonstrated RASSF1A methylation, CTNNB1 mutation and other clinicopathological variables as prognostic factors, multivariate analysis identified RASSF1A methylation (p = 0.043; relative risk 9.39) and the disease stage (p = 0.002; relative risk 7.67) but not CTNNB1 mutation as independent prognostic factors. In survival analysis of 33 patients in stage 3B or 4, patients with unmethylated tumor had better overall survival than those with methylated tumor (p = 0.035). RASSF1A methylation may be a promising molecular-genetic marker to predict the treatment outcome and may be used to stratify patients when clinical trials are carried out.
Lu, X K; Shu, N; Wang, J J; Chen, X G; Wang, D L; Wang, S; Fan, W L; Guo, X N; Guo, L X; Ye, W W
2017-06-29
Cytosine DNA methylation is a significant form of DNA modification closely associated with gene expression in eukaryotes, fungi, animals, and plants. Although the reference genomes of cotton (Gossypium hirsutum L.) have been publically available, the salinity-stress-induced DNA methylome alterations in cotton are not well understood. Here, we constructed a map of genome-wide DNA methylation characteristics of cotton leaves under salt stress using the methylated DNA immunoprecipitation sequencing method. The results showed that the methylation reads on chromosome 9 were most comparable with those on the other chromosomes, but the greatest changes occurred on chromosome 8 under salt stress. The DNA methylation pattern analysis indicated that a relatively higher methylation density was found in the upstream2k and downstream2k elements of the CDS region and CG-islands. Almost 94% of the reads belonged to LTR-gspsy and LTR-copia, and the number of methylation reads in LTR-gypsy was four times greater than that in LTR-copia in both control and stressed samples. The analysis of differentially methylated regions (DMRs) showed that the gene elements upstream2k, intron, and downstream2k were hypomethylated, but the CDS regions were hypermethylated. The GO (Gene Ontology) analysis suggested that the methylated genes were most enriched in cellular processes, metabolic processes, cell parts and catalytic activities, which might be closely correlated with response to NaCl stress. In this study, we completed a genomic DNA methylation profile and conducted a DMR analysis under salt stress, which provided valuable information for the better understanding of epigenetics in response to salt stress in cotton.
Banelli, Barbara; Brigati, Claudio; Di Vinci, Angela; Casciano, Ida; Forlani, Alessandra; Borzì, Luana; Allemanni, Giorgio; Romani, Massimo
2012-03-01
Epigenetic alterations are hallmarks of cancer and powerful biomarkers, whose clinical utilization is made difficult by the absence of standardization and of common methods of data interpretation. The coordinate methylation of many loci in cancer is defined as 'CpG island methylator phenotype' (CIMP) and identifies clinically distinct groups of patients. In neuroblastoma (NB), CIMP is defined by a methylation signature, which includes different loci, but its predictive power on outcome is entirely recapitulated by the PCDHB cluster only. We have developed a robust and cost-effective pyrosequencing-based assay that could facilitate the clinical application of CIMP in NB. This assay permits the unbiased simultaneous amplification and sequencing of 17 out of 19 genes of the PCDHB cluster for quantitative methylation analysis, taking into account all the sequence variations. As some of these variations were at CpG doublets, we bypassed the data interpretation conducted by the methylation analysis software to assign the corrected methylation value at these sites. The final result of the assay is the mean methylation level of 17 gene fragments in the protocadherin B cluster (PCDHB) cluster. We have utilized this assay to compare the methylation levels of the PCDHB cluster between high-risk and very low-risk NB patients, confirming the predictive value of CIMP. Our results demonstrate that the pyrosequencing-based assay herein described is a powerful instrument for the analysis of this gene cluster that may simplify the data comparison between different laboratories and, in perspective, could facilitate its clinical application. Furthermore, our results demonstrate that, in principle, pyrosequencing can be efficiently utilized for the methylation analysis of gene clusters with high internal homologies.
Role of the Trypanosoma brucei HEN1 Family Methyltransferase in Small Interfering RNA Modification
Shi, Huafang; Barnes, Rebecca L.; Carriero, Nicholas; Atayde, Vanessa D.
2014-01-01
Parasitic protozoa of the flagellate order Kinetoplastida represent one of the deepest branches of the eukaryotic tree. Among this group of organisms, the mechanism of RNA interference (RNAi) has been investigated in Trypanosoma brucei and to a lesser degree in Leishmania (Viannia) spp. The pathway is triggered by long double-stranded RNA (dsRNA) and in T. brucei requires a set of five core genes, including a single Argonaute (AGO) protein, T. brucei AGO1 (TbAGO1). The five genes are conserved in Leishmania (Viannia) spp. but are absent in other major kinetoplastid species, such as Trypanosoma cruzi and Leishmania major. In T. brucei small interfering RNAs (siRNAs) are methylated at the 3′ end, whereas Leishmania (Viannia) sp. siRNAs are not. Here we report that T. brucei HEN1, an ortholog of the metazoan HEN1 2′-O-methyltransferases, is required for methylation of siRNAs. Loss of TbHEN1 causes a reduction in the length of siRNAs. The shorter siRNAs in hen1−/− parasites are single stranded and associated with TbAGO1, and a subset carry a nontemplated uridine at the 3′ end. These findings support a model wherein TbHEN1 methylates siRNA 3′ ends after they are loaded into TbAGO1 and this methylation protects siRNAs from uridylation and 3′ trimming. Moreover, expression of TbHEN1 in Leishmania (Viannia) panamensis did not result in siRNA 3′ end methylation, further emphasizing mechanistic differences in the trypanosome and Leishmania RNAi mechanisms. PMID:24186950
Dynamic spiking studies using the DNPH sampling train
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steger, J.L.; Knoll, J.E.
1996-12-31
The proposed aldehyde and ketone sampling method using aqueous 2,4-dinitrophenylhydrazine (DNPH) was evaluated in the laboratory and in the field. The sampling trains studied were based on the train described in SW 846 Method 0011. Nine compounds were evaluated: formaldehyde, acetaldehyde, quinone, acrolein, propionaldeyde, methyl isobutyl ketone, methyl ethyl ketone, acetophenone, and isophorone. In the laboratory, the trains were spiked both statistically and dynamically. Laboratory studies also investigated potential interferences to the method. Based on their potential to hydrolyze in acid solution to form formaldehyde, dimethylolurea, saligenin, s-trioxane, hexamethylenetetramine, and paraformaldehyde were investigated. Ten runs were performed using quadruplicate samplingmore » trains. Two of the four trains were dynamically spiked with the nine aldehydes and ketones. The test results were evaluated using the EPA method 301 criteria for method precision (< + pr - 50% relative standard deviation) and bias (correction factor of 1.00 + or - 0.30).« less
Chollet, D F; Castella, E; Goumaz, L; Anderegg, G
1999-11-01
A gas chromatography-mass spectrometry assay method suitable for the therapeutic drug monitoring of the antiepileptic drug tiagabine is described. Tiagabine and its desmethylated analogue used as internal standard were first extracted from serum by liquid-liquid extraction using an ethyl ether-isobutanol 98:2 mixture. Tiagabine and the internal standard were then methylated in the organic phase in presence of methanol by means of a safe and stable diazomethane derivative. After evaporation, the reconstituted extracts were chromatographed on a crosslinked phenyl methyl siloxane capillary column and detected by mass fragmentometry at m/z = 156. No other antiepileptic drug possibly administrated in polytherapy and no metabolite were found to interfere in the assay. The limit of quantification was 5 ng/ml. The precision and the accuracy were found to be suitable for the therapeutic drug monitoring of tiagabine.
Mukherjee, Anadi; Dunayevskiy, Ilya; Prasanna, Manu; Go, Rowel; Tsekoun, Alexei; Wang, Xiaojun; Fan, Jenyu; Patel, C Kumar N
2008-04-01
The need for the detection of chemical warfare agents (CWAs) is no longer confined to battlefield environments because of at least one confirmed terrorist attack, the Tokyo Subway [Emerg. Infect. Dis. 5, 513 (1999)] in 1995, and a suspected, i.e., a false-alarm of a CWA in the Russell Senate Office Building [Washington Post, 9 February 2006, p. B01]. Therefore, detection of CWAs with high sensitivity and low false-alarm rates is considered an important priority for ensuring public safety. We report a minimum detection level for a CWA simulant, dimethyl methyl phosphonate (DMMP), of <0.5 ppb (parts in 10(9)) by use of a widely tunable external grating cavity quantum cascade laser and photoacoustic spectroscopy. With interferents present in Santa Monica, California street air, we demonstrate a false-alarm rate of 1:10(6) at a detection threshold of 1.6 ppb.
Ren, Hu-Bo; Yan, Xiu-Ping
2012-08-15
An ultrasonic assisted approach was developed for rapid synthesis of highly water soluble phosphorescent adenosine triphosphate (ATP)-capped Mn-doped ZnS QDs. The prepared ATP-capped Mn-doped ZnS QDs allow selective phosphorescent detection of arginine and methylated arginine based on the specific recognition nature of supramolecular Mg(2+)-ATP-arginine ternary system in combination with the phosphorescence property of Mn-doped ZnS QDs. The developed QD based probe gives excellent selectivity and reproducibility (1.7% relative standard deviation for 11 replicate detections of 10 μM arginine) and low detection limit (3 s, 0.23 μM), and favors biological applications due to the effective elimination of interference from scattering light and autofluorescence. Copyright © 2012 Elsevier B.V. All rights reserved.
Methylation analysis of polysaccharides: Technical advice.
Sims, Ian M; Carnachan, Susan M; Bell, Tracey J; Hinkley, Simon F R
2018-05-15
Glycosyl linkage (methylation) analysis is used widely for the structural determination of oligo- and poly-saccharides. The procedure involves derivatisation of the individual component sugars of a polysaccharide to partially methylated alditol acetates which are analysed and quantified by gas chromatography-mass spectrometry. The linkage positions for each component sugar can be determined by correctly identifying the partially methylated alditol acetates. Although the methods are well established, there are many technical aspects to this procedure and both careful attention to detail and considerable experience are required to achieve a successful methylation analysis and to correctly interpret the data generated. The aim of this article is to provide the technical details and critical procedural steps necessary for a successful methylation analysis and to assist researchers (a) with interpreting data correctly and (b) in providing the comprehensive data required for reviewers to fully assess the work. Copyright © 2018 Elsevier Ltd. All rights reserved.
[Genome-scale sequence data processing and epigenetic analysis of DNA methylation].
Wang, Ting-Zhang; Shan, Gao; Xu, Jian-Hong; Xue, Qing-Zhong
2013-06-01
A new approach recently developed for detecting cytosine DNA methylation (mC) and analyzing the genome-scale DNA methylation profiling, is called BS-Seq which is based on bisulfite conversion of genomic DNA combined with next-generation sequencing. The method can not only provide an insight into the difference of genome-scale DNA methylation among different organisms, but also reveal the conservation of DNA methylation in all contexts and nucleotide preference for different genomic regions, including genes, exons, and repetitive DNA sequences. It will be helpful to under-stand the epigenetic impacts of cytosine DNA methylation on the regulation of gene expression and maintaining silence of repetitive sequences, such as transposable elements. In this paper, we introduce the preprocessing steps of DNA methylation data, by which cytosine (C) and guanine (G) in the reference sequence are transferred to thymine (T) and adenine (A), and cytosine in reads is transferred to thymine, respectively. We also comprehensively review the main content of the DNA methylation analysis on the genomic scale: (1) the cytosine methylation under the context of different sequences; (2) the distribution of genomic methylcytosine; (3) DNA methylation context and the preference for the nucleotides; (4) DNA- protein interaction sites of DNA methylation; (5) degree of methylation of cytosine in the different structural elements of genes. DNA methylation analysis technique provides a powerful tool for the epigenome study in human and other species, and genes and environment interaction, and founds the theoretical basis for further development of disease diagnostics and therapeutics in human.
Michiels, Stefan; Metzger-Filho, Otto; Saini, Kamal S.
2016-01-01
Until recently, an elevated disease risk has been ascribed to a genetic predisposition, however, exciting progress over the past years has discovered alternate elements of inheritance that involve epigenetic regulation. Epigenetic changes are heritably stable alterations that include DNA methylation, histone modifications and RNA-mediated silencing. Aberrant DNA methylation is a common molecular basis for a number of important human diseases, including breast cancer. Changes in DNA methylation profoundly affect global gene expression patterns. What is emerging is a more dynamic and complex association between DNA methylation and gene expression than previously believed. Although many tools have already been developed for analyzing genome-wide gene expression data, tools for analyzing genome-wide DNA methylation have not yet reached the same level of refinement. Here we provide an in-depth analysis of DNA methylation in parallel with gene expression data characteristics and describe the particularities of low-level and high-level analyses of DNA methylation data. Low-level analysis refers to pre-processing of methylation data (i.e. normalization, transformation and filtering), whereas high-level analysis is focused on illustrating the application of the widely used class comparison, class prediction and class discovery methods to DNA methylation data. Furthermore, we investigate the influence of DNA methylation on gene expression by measuring the correlation between the degree of CpG methylation and the level of expression and to explore the pattern of methylation as a function of the promoter region. PMID:26657508
Singhal, Sandeep K; Usmani, Nawaid; Michiels, Stefan; Metzger-Filho, Otto; Saini, Kamal S; Kovalchuk, Olga; Parliament, Matthew
2016-01-19
Until recently, an elevated disease risk has been ascribed to a genetic predisposition, however, exciting progress over the past years has discovered alternate elements of inheritance that involve epigenetic regulation. Epigenetic changes are heritably stable alterations that include DNA methylation, histone modifications and RNA-mediated silencing. Aberrant DNA methylation is a common molecular basis for a number of important human diseases, including breast cancer. Changes in DNA methylation profoundly affect global gene expression patterns. What is emerging is a more dynamic and complex association between DNA methylation and gene expression than previously believed. Although many tools have already been developed for analyzing genome-wide gene expression data, tools for analyzing genome-wide DNA methylation have not yet reached the same level of refinement. Here we provide an in-depth analysis of DNA methylation in parallel with gene expression data characteristics and describe the particularities of low-level and high-level analyses of DNA methylation data. Low-level analysis refers to pre-processing of methylation data (i.e. normalization, transformation and filtering), whereas high-level analysis is focused on illustrating the application of the widely used class comparison, class prediction and class discovery methods to DNA methylation data. Furthermore, we investigate the influence of DNA methylation on gene expression by measuring the correlation between the degree of CpG methylation and the level of expression and to explore the pattern of methylation as a function of the promoter region.
Cruz, Karla Dias; Cruz, Thayana Araújo; Veras de Moraes, Gabriela; Paredes-Santos, Tatiana Christina; Attias, Marcia; de Souza, Wanderley
2014-01-01
The intracellular parasite Toxoplasma gondii can penetrate any warm-blooded animal cell. Conserved molecular assemblies of host cell plasma membranes should be involved in the parasite-host cell recognition. Lipid rafts are well-conserved membrane microdomains that contain high concentrations of cholesterol, sphingolipids, glycosylphosphatidylinositol, GPI-anchored proteins, and dually acylated proteins such as members of the Src family of tyrosine kinases. Disturbing lipid rafts of mouse peritoneal macrophages and epithelial cells of the lineage LLC-MK2 with methyl-beta cyclodextrin (M β CD) and filipin, which interfere with cholesterol or lidocaine, significantly inhibited internalization of T. gondii in both cell types, although adhesion remained unaffected in macrophages and decreased only in LLC-MK2 cells. Scanning and transmission electron microscopy confirmed these observations. Results are discussed in terms of the original role of macrophages as professional phagocytes versus the LLC-MK2 cell lineage originated from kidney epithelial cells.
Kristensen, Lasse S; Wojdacz, Tomasz K; Thestrup, Britta B; Wiuf, Carsten; Hager, Henrik; Hansen, Lise Lotte
2009-12-21
The High Resolution Melting (HRM) technology has recently been introduced as a rapid and robust analysis tool for the detection of DNA methylation. The methylation status of multiple tumor suppressor genes may serve as biomarkers for early cancer diagnostics, for prediction of prognosis and for prediction of response to treatment. Therefore, it is important that methodologies for detection of DNA methylation continue to evolve. Sensitive Melting Analysis after Real Time - Methylation Specific PCR (SMART-MSP) and Methylation Sensitive - High Resolution Melting (MS-HRM) are two methods for single locus DNA methylation detection based on HRM. Here, we have assessed the quality of DNA extracted from up to 30 years old Formalin Fixed Paraffin Embedded (FFPE) tissue for DNA methylation analysis using SMART-MSP and MS-HRM. The quality assessment was performed on DNA extracted from 54 Non-Small Cell Lung Cancer (NSCLC) samples derived from FFPE tissue, collected over 30 years and grouped into five years intervals. For each sample, the methylation levels of the CDKN2A (p16) and RARB promoters were estimated using SMART-MSP and MS-HRM assays designed to assess the methylation status of the same CpG positions. This allowed for a direct comparison of the methylation levels estimated by the two methods for each sample. CDKN2A promoter methylation levels were successfully determined by SMART-MSP and MS-HRM in all 54 samples. Identical methylation estimates were obtained by the two methods in 46 of the samples. The methylation levels of the RARB promoter were successfully determined by SMART-MSP in all samples. When using MS-HRM to assess RARB methylation five samples failed to amplify and 15 samples showed a melting profile characteristic for heterogeneous methylation. Twenty-seven of the remaining 34 samples, for which the methylation level could be estimated, gave the same result as observed when using SMART-MSP. MS-HRM and SMART-MSP can be successfully used for single locus methylation studies using DNA derived from up to 30 years old FFPE tissue. Furthermore, it can be expected that MS-HRM and SMART-MSP will provide similar methylation estimates when assays are designed to analyze the same CpG positions.
Heritable DNA methylation marks associated with susceptibility to breast cancer.
Joo, Jihoon E; Dowty, James G; Milne, Roger L; Wong, Ee Ming; Dugué, Pierre-Antoine; English, Dallas; Hopper, John L; Goldgar, David E; Giles, Graham G; Southey, Melissa C
2018-02-28
Mendelian-like inheritance of germline DNA methylation in cancer susceptibility genes has been previously reported. We aimed to scan the genome for heritable methylation marks associated with breast cancer susceptibility by studying 25 Australian multiple-case breast cancer families. Here we report genome-wide DNA methylation measured in 210 peripheral blood DNA samples provided by family members using the Infinium HumanMethylation450. We develop and apply a new statistical method to identify heritable methylation marks based on complex segregation analysis. We estimate carrier probabilities for the 1000 most heritable methylation marks based on family structure, and we use Cox proportional hazards survival analysis to identify 24 methylation marks with corresponding carrier probabilities significantly associated with breast cancer. We replicate an association with breast cancer risk for four of the 24 marks using an independent nested case-control study. Here, we report a novel approach for identifying heritable DNA methylation marks associated with breast cancer risk.
Deciphering the Epigenetic Code: An Overview of DNA Methylation Analysis Methods
Umer, Muhammad
2013-01-01
Abstract Significance: Methylation of cytosine in DNA is linked with gene regulation, and this has profound implications in development, normal biology, and disease conditions in many eukaryotic organisms. A wide range of methods and approaches exist for its identification, quantification, and mapping within the genome. While the earliest approaches were nonspecific and were at best useful for quantification of total methylated cytosines in the chunk of DNA, this field has seen considerable progress and development over the past decades. Recent Advances: Methods for DNA methylation analysis differ in their coverage and sensitivity, and the method of choice depends on the intended application and desired level of information. Potential results include global methyl cytosine content, degree of methylation at specific loci, or genome-wide methylation maps. Introduction of more advanced approaches to DNA methylation analysis, such as microarray platforms and massively parallel sequencing, has brought us closer to unveiling the whole methylome. Critical Issues: Sensitive quantification of DNA methylation from degraded and minute quantities of DNA and high-throughput DNA methylation mapping of single cells still remain a challenge. Future Directions: Developments in DNA sequencing technologies as well as the methods for identification and mapping of 5-hydroxymethylcytosine are expected to augment our current understanding of epigenomics. Here we present an overview of methodologies available for DNA methylation analysis with special focus on recent developments in genome-wide and high-throughput methods. While the application focus relates to cancer research, the methods are equally relevant to broader issues of epigenetics and redox science in this special forum. Antioxid. Redox Signal. 18, 1972–1986. PMID:23121567
Lehmann, Leane; Metzler, Manfred
2004-04-15
Bisphenol A (BPA), a monomer of polycarbonate plastics and epoxy resins, has previously been reported to induce micronuclei containing whole chromosomes in Chinese hamster V79 cells. In the present study, the aneuploidogenic potential of BPA was investigated in cultured human AG01522C fibroblasts. In contrast to the known aneugens diethylstilbestrol (DES) and 17beta-estradiol, which caused mitotic arrest and the induction of kinetochore-positive micronuclei, BPA did not induce micronuclei and inhibited the proliferation of AG01522C cells in G2 phase and probably also in G1 phase. Fluorescence microscopy of the BPA-treated cells after immunofluorescent staining of microtubules revealed structural abnormalities of the cytoplasmic microtubule complex (CMTC): densely stained rings and loops of tubulin were observed, which increased in number with increasing BPA concentration and were more stable against low temperature than normal microtubules. The mechanisms of the growth inhibition and the interference with microtubules elicited by BPA in AG01522C cells are presently unknown. The formation of rings and loops in the CMTC of AG01522C cells was also observed with two congeners of BPA carrying one and two, respectively, additional methyl groups in ortho-position to the phenolic hydroxyl group at each aromatic ring. However, in contrast to BPA itself, these congeners of BPA behaved "DES-like" by inducing mitotic arrest and kinetochore-positive micronuclei in AG01522C cells.
Gao, Zhihua; Yang, Jun; Huang, Yun; Yu, Yingnian
2005-03-01
Many environmental factors, such as ultraviolet (UV) and arsenic, can induce the clustering of cell surface receptors, including epidermal growth factor receptor (EGFR). This is accompanied by the phosphorylation of the receptors and the activation of ensuing cellular signal transduction pathways, which are implicated in the various cellular responses caused by the exposure to these factors. In this study, we have shown that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), an alkylating agent, also induced the clustering of EGFR in human amnion FL cells, which was similar in morphology to that of epidermal growth factor treatment. However, MNNG treatment did not activate Ras, the downstream mediator in EGFR signaling pathway, as compared to EGF treatment. The autophosphorylation of tyrosine residues Y1068 and Y1173 at the intracellular domain of EGFR, which is related to Ras activation under EGF treatment, was also not observed by MNNG exposure. Interestingly, although MNNG did not affect the binding of EGF to EGFR, MNNG can interfere with EGF function. For instance, pre-incubating FL cells with MNNG inhibited the autophosphorylation of EGFR by EGF treatment, as well as the activation of Ras. In addition, the phosphorylation of Y845 on EGFR by EGF, which is mediated through c-Src or related kinases but not autophosphorylation, was also affected by MNNG. Therefore, MNNG may influence the tyrosine kinase activity as well as the phosphorylation of EGFR through its interaction with EGFR.
Pardo, Carolina E; Carr, Ian M; Hoffman, Christopher J; Darst, Russell P; Markham, Alexander F; Bonthron, David T; Kladde, Michael P
2011-01-01
Bisulfite sequencing is a widely-used technique for examining cytosine DNA methylation at nucleotide resolution along single DNA strands. Probing with cytosine DNA methyltransferases followed by bisulfite sequencing (MAPit) is an effective technique for mapping protein-DNA interactions. Here, MAPit methylation footprinting with M.CviPI, a GC methyltransferase we previously cloned and characterized, was used to probe hMLH1 chromatin in HCT116 and RKO colorectal cancer cells. Because M.CviPI-probed samples contain both CG and GC methylation, we developed a versatile, visually-intuitive program, called MethylViewer, for evaluating the bisulfite sequencing results. Uniquely, MethylViewer can simultaneously query cytosine methylation status in bisulfite-converted sequences at as many as four different user-defined motifs, e.g. CG, GC, etc., including motifs with degenerate bases. Data can also be exported for statistical analysis and as publication-quality images. Analysis of hMLH1 MAPit data with MethylViewer showed that endogenous CG methylation and accessible GC sites were both mapped on single molecules at high resolution. Disruption of positioned nucleosomes on single molecules of the PHO5 promoter was detected in budding yeast using M.CviPII, increasing the number of enzymes available for probing protein-DNA interactions. MethylViewer provides an integrated solution for primer design and rapid, accurate and detailed analysis of bisulfite sequencing or MAPit datasets from virtually any biological or biochemical system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghisari, Mandana; Long, Manhai; Tabbo, Agnese
Evidence suggest that exposure to pesticides can interfere with the endocrine system by multiple mechanisms. The endocrine disrupting potential of currently used pesticides in Denmark was analyzed as single compounds and in an equimolar mixture of 5 selected pesticides. The pesticides were previously analyzed for effects on the function of estrogen and androgen receptors, the aromatase enzyme and steroidogenesis in vitro. In this study, the effect on thyroid hormone (TH) function and aryl hydrocarbon receptor (AhR) transactivity was assessed using GH3 cell proliferation assay (T-screen) and AhR responsive luciferase reporter gene bioassay, respectively. Thirteen pesticides were analyzed as follows: 2-methyl-4-chlorophenoxyaceticmore » acid, terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb and its metabolite ethylene thiourea, cypermethrin, tau-fluvalinate, and malathion (currently banned in DK). In the T-screen, prothioconazole, malathion, tau-fluvalinate, cypermethrin, terbuthylazine and mancozeb significantly stimulated and bitertanol and propiconazole slightly reduced the GH3 cell proliferation. In the presence of triiodothyronine (T3), prothioconazole, tau-fluvalinate, propiconazole, cypermethrin and bitertanol significantly antagonized the T3-induced GH3 cell proliferation. Eleven of the tested pesticides agonized the AhR function, and bitertanol and prothioconazole inhibited the basal AhR activity. Bitertanol, propiconazole, prothioconazole and cypermethrin antagonized the TCDD-induced AhR transactivation at the highest tested concentration. The 5-component mixture had inducing effect but the combined effect could not be predicted due to the presence of bitertanol eliciting inhibitory effect. Upon removal of bitertanol from the mixture, the remaining four pesticides acted additively. In conclusion, our data suggest that pesticides currently used in Denmark can interfere with TH signaling and AhR function in vitro and might have the potential to cause endocrine disruption. - Highlights: • Endocrine disrupting (ED) potential of currently used pesticides were evaluated in cell culture. • Pesticides were analyzed for disruption of TH and aryl hydrocarbon receptor function. • 6 pesticides increased the GH3 cell proliferation, whereasfour antagonized the T3-induced cell growth. • 11 pesticides had agonistic effect on AhR and 4 antagonized the TCDD-induced AhR transactivation. • The five component mixture had inducing effect in both assays.« less
Kanchanaketu, T; Sangduen, N; Toojinda, T; Hongtrakul, V
2012-04-13
Genetic analysis of 56 samples of Jatropha curcas L. collected from Thailand and other countries was performed using the methylation-sensitive amplification polymorphism (MSAP) technique. Nine primer combinations were used to generate MSAP fingerprints. When the data were interpreted as amplified fragment length polymorphism (AFLP) markers, 471 markers were scored. All 56 samples were classified into three major groups: γ-irradiated, non-toxic and toxic accessions. Genetic similarity among the samples was extremely high, ranging from 0.95 to 1.00, which indicated very low genetic diversity in this species. The MSAP fingerprint was further analyzed for DNA methylation polymorphisms. The results revealed differences in the DNA methylation level among the samples. However, the samples collected from saline areas and some species hybrids showed specific DNA methylation patterns. AFLP data were used, together with methylation-sensitive AFLP (MS-AFLP) data, to construct a phylogenetic tree, resulting in higher efficiency to distinguish the samples. This combined analysis separated samples previously grouped in the AFLP analysis. This analysis also distinguished some hybrids. Principal component analysis was also performed; the results confirmed the separation in the phylogenetic tree. Some polymorphic bands, involving both nucleotide and DNA methylation polymorphism, that differed between toxic and non-toxic samples were identified, cloned and sequenced. BLAST analysis of these fragments revealed differences in DNA methylation in some known genes and nucleotide polymorphism in chloroplast DNA. We conclude that MSAP is a powerful technique for the study of genetic diversity for organisms that have a narrow genetic base.
Walton, David M; Beattie, Tyler; Putos, Joseph; MacDermid, Joy C
2016-06-01
The Brief Pain Inventory is composed of two quantifiable scales: pain severity and pain interference. The reported factor structure of the interference subscale is not consistent in the extant literature, with no clear choice between a single- or two-factor structure. Here, we report on the results of Rasch-based analysis of the interference subscale using a large population-based ambulatory patient database (the Quebec Pain Registry). Observational cohort. A total of 1,000 responses were randomly drawn from a total database of 5,654 for this analysis. Both the original 7-item and an expanded 10-item version (Tyler 2002) of the interference subscale were evaluated. Rasch analysis revealed significant misfit of both versions of the scale, with the original 7-item version outperforming the expanded 10-item version. Analysis of dimensionality revealed that both versions showed improved model fit when considered two subscales (affective and physical interference) with the item on sleep interference removed or considered separately. Additionally, significant uniform differential item functioning was identified for 6 of the 7 original items when the sample was stratified by age above or below 55 years. The interference subscale achieved adequate model fit when considered as two separate subscales with age as a mediator of response, while interpreting the sleep interference item separately. A transformation matrix revealed that in all cases, ordinal-level change at the extreme ends of the scale appears to be more meaningful than does a similar change at the midpoints. The Interference subscale of the BPI should be interpreted as two separate subscales (Affective Interference, Physical Interference) with the sleep item removed or interpreted separately for optimal fit to the Rasch model. Implications for research and clinical use are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, W; Zhang, M; Chen, H D; Cai, X X; Xu, M L; Lei, K Y; Niu, J H; Deng, L; Liu, J; Ge, Z J; Yu, S X; Wang, B H
2016-10-06
In this study, a methylation-sensitive amplification polymorphism analysis system was used to analyze DNA methylation level in three cotton accessions. Two disease-sensitive near-isogenic lines, PD94042 and IL41, and one disease-resistant Gossypium mustelinum accession were exposed to Verticillium wilt, to investigate molecular disease resistance mechanisms in cotton. We observed multiple different DNA methylation types across the three accessions following Verticillium wilt exposure. These included hypomethylation, hypermethylation, and other patterns. In general, the global DNA methylation level was significantly increased in the disease-resistant accession G. mustelinum following disease exposure. In contrast, there was no significant difference in the disease-sensitive accession PD94042, and a significant decrease was observed in IL41. Our results suggest that disease-resistant cotton might employ a mechanism to increase methylation level in response to disease stress. The differing methylation patterns, together with the increase in global DNA methylation level, might play important roles in tolerance to Verticillium wilt in cotton. Through cloning and analysis of differently methylated DNA sequences, we were also able to identify several genes that may contribute to disease resistance in cotton. Our results revealed the effect of DNA methylation on cotton disease resistance, and also identified genes that played important roles, which may shed light on the future cotton disease-resistant molecular breeding.
High-coverage methylation data of a gene model before and after DNA damage and homologous repair.
Pezone, Antonio; Russo, Giusi; Tramontano, Alfonso; Florio, Ermanno; Scala, Giovanni; Landi, Rosaria; Zuchegna, Candida; Romano, Antonella; Chiariotti, Lorenzo; Muller, Mark T; Gottesman, Max E; Porcellini, Antonio; Avvedimento, Enrico V
2017-04-11
Genome-wide methylation analysis is limited by its low coverage and the inability to detect single variants below 10%. Quantitative analysis provides accurate information on the extent of methylation of single CpG dinucleotide, but it does not measure the actual polymorphism of the methylation profiles of single molecules. To understand the polymorphism of DNA methylation and to decode the methylation signatures before and after DNA damage and repair, we have deep sequenced in bisulfite-treated DNA a reporter gene undergoing site-specific DNA damage and homologous repair. In this paper, we provide information on the data generation, the rationale for the experiments and the type of assays used, such as cytofluorimetry and immunoblot data derived during a previous work published in Scientific Reports, describing the methylation and expression changes of a model gene (GFP) before and after formation of a double-strand break and repair by homologous-recombination or non-homologous-end-joining. These data provide: 1) a reference for the analysis of methylation polymorphism at selected loci in complex cell populations; 2) a platform and the tools to compare transcription and methylation profiles.
High-coverage methylation data of a gene model before and after DNA damage and homologous repair
Pezone, Antonio; Russo, Giusi; Tramontano, Alfonso; Florio, Ermanno; Scala, Giovanni; Landi, Rosaria; Zuchegna, Candida; Romano, Antonella; Chiariotti, Lorenzo; Muller, Mark T.; Gottesman, Max E.; Porcellini, Antonio; Avvedimento, Enrico V.
2017-01-01
Genome-wide methylation analysis is limited by its low coverage and the inability to detect single variants below 10%. Quantitative analysis provides accurate information on the extent of methylation of single CpG dinucleotide, but it does not measure the actual polymorphism of the methylation profiles of single molecules. To understand the polymorphism of DNA methylation and to decode the methylation signatures before and after DNA damage and repair, we have deep sequenced in bisulfite-treated DNA a reporter gene undergoing site-specific DNA damage and homologous repair. In this paper, we provide information on the data generation, the rationale for the experiments and the type of assays used, such as cytofluorimetry and immunoblot data derived during a previous work published in Scientific Reports, describing the methylation and expression changes of a model gene (GFP) before and after formation of a double-strand break and repair by homologous-recombination or non-homologous-end-joining. These data provide: 1) a reference for the analysis of methylation polymorphism at selected loci in complex cell populations; 2) a platform and the tools to compare transcription and methylation profiles. PMID:28398335
Prognostic Value of Protocadherin10 (PCDH10) Methylation in Serum of Prostate Cancer Patients.
Deng, Qiu-Kui; Lei, Yong-Gang; Lin, Ying-Li; Ma, Jian-Guo; Li, Wen-Ping
2016-02-16
BACKGROUND Prostate cancer is a heterogeneous malignancy with outcome difficult to predict. Currently, there is an urgent need to identify novel biomarkers that can accurately predict patient outcome and improve the treatment strategy. The aim of this study was to investigate the methylation status of PCDH10 in serum of prostate cancer patients and its potential relevance to clinicopathological features and prognosis. MATERIAL AND METHODS The methylation status of PCDH10 in serum of 171 primary prostate cancer patients and 65 controls was evaluated by methylation-specific PCR (MSP), after which the relationship between PCDH10 methylation and clinicopathologic features was evaluated. Kaplan-Meier survival analysis and Cox analysis were used to evaluate the correlation between PCDH10 methylation and prognosis. RESULTS PCDH10 methylation occurred frequently in serum of prostate cancer patients. Moreover, PCDH10 methylation was significantly associated with higher preoperative PSA level, advanced clinical stage, higher Gleason score, lymph node metastasis, and biochemical recurrence (BCR). In addition, patients with methylated PCDH10 had shorter BCR-free survival and overall survival than patients with unmethylated PCDH10. Univariate and multivariate Cox proportional hazards model analysis indicated that PCDH10 methylation in serum is an independent predictor of worse BCR-free survival and overall survival. CONCLUSIONS PCDH10 methylation in serum is a potential prognostic biomarker for prostate cancer.
Single-tube analysis of DNA methylation with silica superparamagnetic beads.
Bailey, Vasudev J; Zhang, Yi; Keeley, Brian P; Yin, Chao; Pelosky, Kristen L; Brock, Malcolm; Baylin, Stephen B; Herman, James G; Wang, Tza-Huei
2010-06-01
DNA promoter methylation is a signature for the silencing of tumor suppressor genes. Most widely used methods to detect DNA methylation involve 3 separate, independent processes: DNA extraction, bisulfite conversion, and methylation detection via a PCR method, such as methylation-specific PCR (MSP). This method includes many disconnected steps with associated losses of material, potentially reducing the analytical sensitivity required for analysis of challenging clinical samples. Methylation on beads (MOB) is a new technique that integrates DNA extraction, bisulfite conversion, and PCR in a single tube via the use of silica superparamagnetic beads (SSBs) as a common DNA carrier for facilitating cell debris removal and buffer exchange throughout the entire process. In addition, PCR buffer is used to directly elute bisulfite-treated DNA from SSBs for subsequent target amplifications. The diagnostic sensitivity of MOB was evaluated by methylation analysis of the CDKN2A [cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4); also known as p16(INK4a)] promoter in serum DNA of lung cancer patients and compared with that of conventional methods. Methylation analysis consisting of DNA extraction followed by bisulfite conversion and MSP was successfully carried out within 9 h in a single tube. The median pre-PCR DNA yield was 6.61-fold higher with the MOB technique than with conventional techniques. Furthermore, MOB increased the diagnostic sensitivity in our analysis of the CDKN2A promoter in patient serum by successfully detecting methylation in 74% of cancer patients, vs the 45% detection rate obtained with conventional techniques. The MOB technique successfully combined 3 processes into a single tube, thereby allowing ease in handling and an increased detection throughput. The increased pre-PCR yield in MOB allowed efficient, diagnostically sensitive methylation detection.
missMethyl: an R package for analyzing data from Illumina's HumanMethylation450 platform.
Phipson, Belinda; Maksimovic, Jovana; Oshlack, Alicia
2016-01-15
DNA methylation is one of the most commonly studied epigenetic modifications due to its role in both disease and development. The Illumina HumanMethylation450 BeadChip is a cost-effective way to profile >450 000 CpGs across the human genome, making it a popular platform for profiling DNA methylation. Here we introduce missMethyl, an R package with a suite of tools for performing normalization, removal of unwanted variation in differential methylation analysis, differential variability testing and gene set analysis for the 450K array. missMethyl is an R package available from the Bioconductor project at www.bioconductor.org. alicia.oshlack@mcri.edu.au Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Shen, Shixuan; Chen, Xiaohui; Li, Hao; Sun, Liping; Yuan, Yuan
2018-01-01
Background: The promoter methylation of MLH1 gene and gastric cancer (GC)has been investigated previously. To get a more credible conclusion, we performed a systematic review and meta and bioinformatic analysis to clarify the role of MLH1 methylation in the prediction and prognosis of GC. Methods: Eligible studies were targeted after searching the PubMed, Web of Science, Embase, BIOSIS, CNKI and Wanfang Data to collect the information of MLH1 methylation and GC. The link strength between the two was estimated by odds ratio with its 95% confidence interval. The Newcastle-Ottawa scale was used for quantity assessment . Subgroup and sensitivity analysis were conducted to explore sources of heterogeneity. The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were employed for bioinformatics analysis on the correlation between MLH1 methylation and GC risk, clinicopathological behavior as well as prognosis. Results: 2365 GC and 1563 controls were included in the meta-analysis. The pooled OR of MLH1 methylation in GC was 4.895 (95% CI: 3.149-7.611, P<0.001), which considerably associated with increased GC risk. No significant difference was found in relation to Lauren classification, tumor invasion, lymph node/distant metastasis and tumor stage in GC. Analysis based on GEO and TCGA showed that high MLH1 methylation enhanced GC risk but might not related with GC clinicopathological features and prognosis. Conclusion: MLH1 methylation is an alive biomarker for the prediction of GC and it might not affect GC behavior. Further study could be conducted to verify the impact of MLH1 methylation on GC prognosis.
Shen, Shixuan; Chen, Xiaohui; Li, Hao; Sun, Liping; Yuan, Yuan
2018-01-01
Background: The promoter methylation of MLH1 gene and gastric cancer (GC)has been investigated previously. To get a more credible conclusion, we performed a systematic review and meta and bioinformatic analysis to clarify the role of MLH1 methylation in the prediction and prognosis of GC. Methods: Eligible studies were targeted after searching the PubMed, Web of Science, Embase, BIOSIS, CNKI and Wanfang Data to collect the information of MLH1 methylation and GC. The link strength between the two was estimated by odds ratio with its 95% confidence interval. The Newcastle-Ottawa scale was used for quantity assessment. Subgroup and sensitivity analysis were conducted to explore sources of heterogeneity. The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were employed for bioinformatics analysis on the correlation between MLH1 methylation and GC risk, clinicopathological behavior as well as prognosis. Results: 2365 GC and 1563 controls were included in the meta-analysis. The pooled OR of MLH1 methylation in GC was 4.895 (95% CI: 3.149-7.611, P<0.001), which considerably associated with increased GC risk. No significant difference was found in relation to Lauren classification, tumor invasion, lymph node/distant metastasis and tumor stage in GC. Analysis based on GEO and TCGA showed that high MLH1 methylation enhanced GC risk but might not related with GC clinicopathological features and prognosis. Conclusion: MLH1 methylation is an alive biomarker for the prediction of GC and it might not affect GC behavior. Further study could be conducted to verify the impact of MLH1 methylation on GC prognosis. PMID:29896277
Comparisons of non-Gaussian statistical models in DNA methylation analysis.
Ma, Zhanyu; Teschendorff, Andrew E; Yu, Hong; Taghia, Jalil; Guo, Jun
2014-06-16
As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance.
Comparisons of Non-Gaussian Statistical Models in DNA Methylation Analysis
Ma, Zhanyu; Teschendorff, Andrew E.; Yu, Hong; Taghia, Jalil; Guo, Jun
2014-01-01
As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance. PMID:24937687
In Situ Analysis of DNA Methylation in Plants.
Kathiria, Palak; Kovalchuk, Igor
2017-01-01
Epigenetic regulation in the plant genome is associated with the determination of expression patterns of various genes. Methylation of DNA at cytosine residues is one of the mechanisms of epigenetic regulation and has been a subject of various studies. Various techniques have been developed to analyze DNA methylation, most of which involve isolation of chromatin from cells and further in vitro studies. Limited techniques are available for in situ study of DNA methylation in plants. Here, we present such an in situ method for DNA methylation analysis which has high sensitivity and good reproducibility.
Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers.
Cervera, M T; Ruiz-García, L; Martínez-Zapater, J M
2002-12-01
AFLP analysis using restriction enzyme isoschizomers that differ in their sensitivity to methylation of their recognition sites has been used to analyse the methylation state of anonymous CCGG sequences in Arabidopsis thaliana. The technique was modified to improve the quality of fingerprints and to visualise larger numbers of scorable fragments. Sequencing of amplified fragments indicated that detection was generally associated with non-methylation of the cytosine to which the isoschizomer is sensitive. Comparison of EcoRI/ HpaII and EcoRI/ MspI patterns in different ecotypes revealed that 35-43% of CCGG sites were differentially digested by the isoschizomers. Interestingly, the pattern of digestion among different plants belonging to the same ecotype is highly conserved, with the rate of intra-ecotype methylation-sensitive polymorphisms being less than 1%. However, pairwise comparisons of methylation patterns between samples belonging to different ecotypes revealed differences in up to 34% of the methylation-sensitive polymorphisms. The lack of correlation between inter-ecotype similarity matrices based on methylation-insensitive or methylation-sensitive polymorphisms suggests that whatever the mechanisms regulating methylation may be, they are not related to nucleotide sequence variation.
Ogino, S; Cantor, M; Kawasaki, T; Brahmandam, M; Kirkner, G J; Weisenberger, D J; Campan, M; Laird, P W; Loda, M; Fuchs, C S
2006-07-01
The concept of CpG island methylator phenotype (CIMP) is not universally accepted. Even if specific clinicopathological features have been associated with CIMP, investigators often failed to demonstrate a bimodal distribution of the number of methylated markers, which would suggest CIMP as a distinct subtype of colorectal cancer. Previous studies primarily used methylation specific polymerase chain reaction which might detect biologically insignificant low levels of methylation. To demonstrate a distinct genetic profile of CIMP colorectal cancer using quantitative DNA methylation analysis that can distinguish high from low levels of DNA methylation. We developed quantitative real time polymerase chain reaction (MethyLight) assays and measured DNA methylation (percentage of methylated reference) of five carefully selected loci (promoters of CACNA1G, CDKN2A (p16), CRABP1, MLH1, and NEUROG1) in 460 colorectal cancers from large prospective cohorts. There was a clear bimodal distribution of 80 microsatellite instability-high (MSI-H) tumours according to the number of methylated promoters, with no tumours showing 3/5 methylated loci. Thus we defined CIMP as having >or=4/5 methylated loci, and 17% (78) of the 460 tumours were classified as CIMP. CIMP was significantly associated with female sex, MSI, BRAF mutations, and wild-type KRAS. Both CIMP MSI-H tumours and CIMP microsatellite stable (MSS) tumours showed much higher frequencies of BRAF mutations (63% and 54%) than non-CIMP counterparts (non-CIMP MSI-H (0%, p<10(-5)) and non-CIMP MSS tumours (6.6%, p<10(-4)), respectively). CIMP is best characterised by quantitative DNA methylation analysis. CIMP is a distinct epigenotype of colorectal cancer and may be less frequent than previously reported.
Regional differences in mitochondrial DNA methylation in human post-mortem brain tissue.
Devall, Matthew; Smith, Rebecca G; Jeffries, Aaron; Hannon, Eilis; Davies, Matthew N; Schalkwyk, Leonard; Mill, Jonathan; Weedon, Michael; Lunnon, Katie
2017-01-01
DNA methylation is an important epigenetic mechanism involved in gene regulation, with alterations in DNA methylation in the nuclear genome being linked to numerous complex diseases. Mitochondrial DNA methylation is a phenomenon that is receiving ever-increasing interest, particularly in diseases characterized by mitochondrial dysfunction; however, most studies have been limited to the investigation of specific target regions. Analyses spanning the entire mitochondrial genome have been limited, potentially due to the amount of input DNA required. Further, mitochondrial genetic studies have been previously confounded by nuclear-mitochondrial pseudogenes. Methylated DNA Immunoprecipitation Sequencing is a technique widely used to profile DNA methylation across the nuclear genome; however, reads mapped to mitochondrial DNA are often discarded. Here, we have developed an approach to control for nuclear-mitochondrial pseudogenes within Methylated DNA Immunoprecipitation Sequencing data. We highlight the utility of this approach in identifying differences in mitochondrial DNA methylation across regions of the human brain and pre-mortem blood. We were able to correlate mitochondrial DNA methylation patterns between the cortex, cerebellum and blood. We identified 74 nominally significant differentially methylated regions ( p < 0.05) in the mitochondrial genome, between anatomically separate cortical regions and the cerebellum in matched samples ( N = 3 matched donors). Further analysis identified eight significant differentially methylated regions between the total cortex and cerebellum after correcting for multiple testing. Using unsupervised hierarchical clustering analysis of the mitochondrial DNA methylome, we were able to identify tissue-specific patterns of mitochondrial DNA methylation between blood, cerebellum and cortex. Our study represents a comprehensive analysis of the mitochondrial methylome using pre-existing Methylated DNA Immunoprecipitation Sequencing data to identify brain region-specific patterns of mitochondrial DNA methylation.
Whole-Genome Saliva and Blood DNA Methylation Profiling in Individuals with a Respiratory Allergy
Declerck, Ken; Traen, Sophie; Koppen, Gudrun; Van Camp, Guy; Schoeters, Greet; Vanden Berghe, Wim; De Boever, Patrick
2016-01-01
The etiology of respiratory allergies (RA) can be partly explained by DNA methylation changes caused by adverse environmental and lifestyle factors experienced early in life. Longitudinal, prospective studies can aid in the unravelment of the epigenetic mechanisms involved in the disease development. High compliance rates can be expected in these studies when data is collected using non-invasive and convenient procedures. Saliva is an attractive biofluid to analyze changes in DNA methylation patterns. We investigated in a pilot study the differential methylation in saliva of RA (n = 5) compared to healthy controls (n = 5) using the Illumina Methylation 450K BeadChip platform. We evaluated the results against the results obtained in mononuclear blood cells from the same individuals. Differences in methylation patterns from saliva and mononuclear blood cells were clearly distinguishable (PAdj<0.001 and |Δβ|>0.2), though the methylation status of about 96% of the cg-sites was comparable between peripheral blood mononuclear cells and saliva. When comparing RA cases with healthy controls, the number of differentially methylated sites (DMS) in saliva and blood were 485 and 437 (P<0.05 and |Δβ|>0.1), respectively, of which 216 were in common. The methylation levels of these sites were significantly correlated between blood and saliva. The absolute levels of methylation in blood and saliva were confirmed for 3 selected DMS in the PM20D1, STK32C, and FGFR2 genes using pyrosequencing analysis. The differential methylation could only be confirmed for DMS in PM20D1 and STK32C genes in saliva. We show that saliva can be used for genome-wide methylation analysis and that it is possible to identify DMS when comparing RA cases and healthy controls. The results were replicated in blood cells of the same individuals and confirmed by pyrosequencing analysis. This study provides proof-of-concept for the applicability of saliva-based whole-genome methylation analysis in the field of respiratory allergy. PMID:26999364
Genome-wide association between DNA methylation and alternative splicing in an invertebrate
2012-01-01
Background Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee) and Nasonia vitripennis (jewel wasp) analyzed transcription and DNA methylation data for one gene in each species to demonstrate that exon-specific DNA methylation may be associated with alternative splicing events. In this study we investigated the relationship between DNA methylation, alternative splicing, and cross-species gene conservation on a genome-wide scale using genome-wide transcription and DNA methylation data. Results We generated RNA deep sequencing data (RNA-seq) to measure genome-wide mRNA expression at the exon- and gene-level. We produced a de novo transcriptome from this RNA-seq data and computationally predicted splice variants for the honeybee genome. We found that exons that are included in transcription are higher methylated than exons that are skipped during transcription. We detected enrichment for alternative splicing among methylated genes compared to unmethylated genes using fisher’s exact test. We performed a statistical analysis to reveal that the presence of DNA methylation or alternative splicing are both factors associated with a longer gene length and a greater number of exons in genes. In concordance with this observation, a conservation analysis using BLAST revealed that each of these factors is also associated with higher cross-species gene conservation. Conclusions This study constitutes the first genome-wide analysis exhibiting a positive relationship between exon-level DNA methylation and mRNA expression in the honeybee. Our finding that methylated genes are enriched for alternative splicing suggests that, in invertebrates, exon-level DNA methylation may play a role in the construction of splice variants by positively influencing exon inclusion during transcription. The results from our cross-species homology analysis suggest that DNA methylation and alternative splicing are genetic mechanisms whose utilization could contribute to a longer gene length and a slower rate of gene evolution. PMID:22978521
Liu, Xu; Wang, Lina; Guo, Yongtie
2016-10-01
To systematically evaluate the relationship of the methylation of the human-runt-related transcription factor 3 (RUNX3) promoter region and gastric cancer risk through meta-analysis. The studies published in PubMed, EMBASE, Ovid, and CNKI were retrieved. The association between RUNX3 gene promoter methylation and gastric cancer was analyzed using Stata 11.0 (http://www.stata.com; Stata Corporation, College Station, TX, USA) and Review Man 5.0 software (http://ims.cochrane.org/revman/download). Seventeen studies are included in the analysis. Meta-analysis reveals that the odds ratio of the methylation of the RUNX3 promoter region in gastric was 7.32 (95% confidence interval: 5.12-10.47), which was significant higher than the normal gastric tissues (P < 0.05). The RUNX3 gene promoter methylation rate was much higher in tumor tissue than that in normal gastric tissue in patient with gastric cancer, which indicates a close association between gastric cancer and RUNX3 gene promoter methylation.
DNA methylation-based reclassification of olfactory neuroblastoma.
Capper, David; Engel, Nils W; Stichel, Damian; Lechner, Matt; Glöss, Stefanie; Schmid, Simone; Koelsche, Christian; Schrimpf, Daniel; Niesen, Judith; Wefers, Annika K; Jones, David T W; Sill, Martin; Weigert, Oliver; Ligon, Keith L; Olar, Adriana; Koch, Arend; Forster, Martin; Moran, Sebastian; Tirado, Oscar M; Sáinz-Japeado, Miguel; Mora, Jaume; Esteller, Manel; Alonso, Javier; Del Muro, Xavier Garcia; Paulus, Werner; Felsberg, Jörg; Reifenberger, Guido; Glatzel, Markus; Frank, Stephan; Monoranu, Camelia M; Lund, Valerie J; von Deimling, Andreas; Pfister, Stefan; Buslei, Rolf; Ribbat-Idel, Julika; Perner, Sven; Gudziol, Volker; Meinhardt, Matthias; Schüller, Ulrich
2018-05-05
Olfactory neuroblastoma/esthesioneuroblastoma (ONB) is an uncommon neuroectodermal neoplasm thought to arise from the olfactory epithelium. Little is known about its molecular pathogenesis. For this study, a retrospective cohort of n = 66 tumor samples with the institutional diagnosis of ONB was analyzed by immunohistochemistry, genome-wide DNA methylation profiling, copy number analysis, and in a subset, next-generation panel sequencing of 560 tumor-associated genes. DNA methylation profiles were compared to those of relevant differential diagnoses of ONB. Unsupervised hierarchical clustering analysis of DNA methylation data revealed four subgroups among institutionally diagnosed ONB. The largest group (n = 42, 64%, Core ONB) presented with classical ONB histology and no overlap with other classes upon methylation profiling-based t-distributed stochastic neighbor embedding (t-SNE) analysis. A second DNA methylation group (n = 7, 11%) with CpG island methylator phenotype (CIMP) consisted of cases with strong expression of cytokeratin, no or scarce chromogranin A expression and IDH2 hotspot mutation in all cases. T-SNE analysis clustered these cases together with sinonasal carcinoma with IDH2 mutation. Four cases (6%) formed a small group characterized by an overall high level of DNA methylation, but without CIMP. The fourth group consisted of 13 cases that had heterogeneous DNA methylation profiles and strong cytokeratin expression in most cases. In t-SNE analysis, these cases mostly grouped among sinonasal adenocarcinoma, squamous cell carcinoma, and undifferentiated carcinoma. Copy number analysis indicated highly recurrent chromosomal changes among Core ONB with a high frequency of combined loss of chromosome 1-4, 8-10, and 12. NGS sequencing did not reveal highly recurrent mutations in ONB, with the only recurrently mutated genes being TP53 and DNMT3A. In conclusion, we demonstrate that institutionally diagnosed ONB are a heterogeneous group of tumors. Expression of cytokeratin, chromogranin A, the mutational status of IDH2 as well as DNA methylation patterns may greatly aid in the precise classification of ONB.
Brown, William M
2015-12-01
Epigenetics is the study of processes--beyond DNA sequence alteration--producing heritable characteristics. For example, DNA methylation modifies gene expression without altering the nucleotide sequence. A well-studied DNA methylation-based phenomenon is genomic imprinting (ie, genotype-independent parent-of-origin effects). We aimed to elucidate: (1) the effect of exercise on DNA methylation and (2) the role of imprinted genes in skeletal muscle gene networks (ie, gene group functional profiling analyses). Gene ontology (ie, gene product elucidation)/meta-analysis. 26 skeletal muscle and 86 imprinted genes were subjected to g:Profiler ontology analysis. Meta-analysis assessed exercise-associated DNA methylation change. g:Profiler found four muscle gene networks with imprinted loci. Meta-analysis identified 16 articles (387 genes/1580 individuals) associated with exercise. Age, method, sample size, sex and tissue variation could elevate effect size bias. Only skeletal muscle gene networks including imprinted genes were reported. Exercise-associated effect sizes were calculated by gene. Age, method, sample size, sex and tissue variation were moderators. Six imprinted loci (RB1, MEG3, UBE3A, PLAGL1, SGCE, INS) were important for muscle gene networks, while meta-analysis uncovered five exercise-associated imprinted loci (KCNQ1, MEG3, GRB10, L3MBTL1, PLAGL1). DNA methylation decreased with exercise (60% of loci). Exercise-associated DNA methylation change was stronger among older people (ie, age accounted for 30% of the variation). Among older people, genes exhibiting DNA methylation decreases were part of a microRNA-regulated gene network functioning to suppress cancer. Imprinted genes were identified in skeletal muscle gene networks and exercise-associated DNA methylation change. Exercise-associated DNA methylation modification could rewind the 'epigenetic clock' as we age. CRD42014009800. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Schütte, B; El Hajj, N; Kuhtz, J; Nanda, I; Gromoll, J; Hahn, T; Dittrich, M; Schorsch, M; Müller, T; Haaf, T
2013-11-01
Aberrant sperm DNA methylation patterns, mainly in imprinted genes, have been associated with male subfertility and oligospermia. Here, we performed a genome-wide methylation analysis in sperm samples representing a wide range of semen parameters. Sperm DNA samples of 38 males attending a fertility centre were analysed with Illumina HumanMethylation27 BeadChips, which quantify methylation of >27 000 CpG sites in cis-regulatory regions of almost 15 000 genes. In an unsupervised analysis of methylation of all analysed sites, the patient samples clustered into a major and a minor group. The major group clustered with samples from normozoospermic healthy volunteers and, thus, may more closely resemble the normal situation. When correlating the clusters with semen and clinical parameters, the sperm counts were significantly different between groups with the minor group exhibiting sperm counts in the low normal range. A linear model identified almost 3000 CpGs with significant methylation differences between groups. Functional analysis revealed a broad gain of methylation in spermatogenesis-related genes and a loss of methylation in inflammation- and immune response-related genes. Quantitative bisulfite pyrosequencing validated differential methylation in three of five significant candidate genes on the array. Collectively, we identified a subgroup of sperm samples for assisted reproduction with sperm counts in the low normal range and broad methylation changes (affecting approximately 10% of analysed CpG sites) in specific pathways, most importantly spermatogenesis-related genes. We propose that epigenetic analysis can supplement traditional semen parameters and has the potential to provide new insights into the aetiology of male subfertility. © 2013 American Society of Andrology and European Academy of Andrology.
Fang, Ti-Kun; Yan, Cheng-Jun; Du, Juan
2018-05-01
Myasthenia gravis (MG) is a progressive autoimmune disease that occurs as a result of the failure of neuromuscular transmission and is characterized by muscle weakness. There has been evidence on the correlations between the genetic predisposition of cytotoxic T lymphocyte and the antigen-4 (CTLA-4) and MG. Thus, the present study was conducted to study is designed to examine the effects of CTLA-4 methylation on the pathogenesis of MG and the expressions of related cytokines. The CTLA-4 methylation levels in peripheral blood were quantified in 103 samples collected from MG patients and 86 samples from healthy individiuals. The expression of serum-related cytokines as well as the Treg cell ratio were examined so as to define the contributory role of CTLA-4 methylation in MG and to identify the interaction between CTLA-4 methylation and related factors, the expressions of DNA methyltransferase (DNMT)l, DNMT3A and DNMT3B, CTLA-4, AchR-Ab, Titin-Ab, RyR-Ab, IL-2, IL-10, IFN-γ, and TGF-β, activity of P- acetylcholinesterase (AchE) and E-AchE. The results indicated that the incidence of CTLA-4 methylation was significantly higher in the control group when compared with the MG group, and CTLA-4 methylation was also found to be associated with the thymus status of MG patients. It was also observed from the experiment data that the expressions of DNMTl, DNMT3A, and DNMT3B, along with the expressions of AchR-Ab, Titin-Ab, RyR-Ab, IL-2, IL-10, IFN-γ and TGF-β, and the activity of P-AchE and E-AchE were all higher in the MG group than in the control group, with a reduction of CTLA-4 expression. Another key finding from this study revealed that methylation interference can lead to the suppression in the expression of AchR-Ab, the activity of E-AchE, the expression of IL-2, IL-10, IFN-γ, and TGF-β and the Treg cell ratio in lymphocytes. In conclusion, the results obtained from the present study highly indicated that CTLA-4 methylation might play a role in facilitating the occurrence of MG and increasing the expressions of related cytokines through the upregulation of AchR-Ab and E-Ach.
Liu, Zongxiang; Wu, Cui; Xie, Nina; Wang, Penglai
2017-10-01
This study aimed to investigate how long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) inhibits the growth and metastasis of oral squamous cell carcinoma (OSCC) by regulating WNT/β-catenin signaling pathway in order to explore the antitumor effect of MEG3 and to provide a potential molecular target for the treatment of OSCC. The RT-qPCR technique was used to quantitatively analyze the expression of MEG3 in cancer and adjacent tissues collected from the patients after surgery. Using the Lipofectamine method, the MEG3 overexpression vector and the siRNA interference vector were constructed and transfected into SCC15 and Cal27 cells, respectively, followed by cell proliferation, apoptosis and metastasis analyses. The semi-quantitative analysis of the expression of the β-catenin protein in transfected cells was performed by the western blot analysis, and the activity of the WNT/β-catenin signaling pathway was analyzed using the TOP/FOP flash reporters. In addition, the cells were treated with decitabine to investigate the correlation between the MEG3 expression and the DNA methylation. Results showed that the expression level of MEG3 was significantly decreased in OSCC (p<0.05) and overexpression of MEG3 inhibited the proliferation and metastasis of cancer cells and promoted apoptosis. Importantly, MEG3 played a role as a tumor suppressor by inhibiting the WNT/β-catenin signaling pathway. In addition, the expression of the MEG3 was significantly affected by the degree of DNA methylation. It was concluded that the lncRNA MEG3 can inhibit the growth and metastasis of OSCC by negatively regulating the WNT/β-catenin signaling pathway.
NASA Astrophysics Data System (ADS)
Malherbe, C.; Hutchinson, I. B.; Ingley, R.; Boom, A.; Carr, A. S.; Edwards, H.; Vertruyen, B.; Gilbert, B.; Eppe, G.
2017-11-01
In 2020, the ESA ExoMars and NASA Mars 2020 missions will be launched to Mars to search for evidence of past and present life. In preparation for these missions, terrestrial analog samples of rock formations on Mars are studied in detail in order to optimize the scientific information that the analytical instrumentation will return. Desert varnishes are thin mineral coatings found on rocks in arid and semi-arid environments on Earth that are recognized as analog samples. During the formation of desert varnishes (which takes many hundreds of years), organic matter is incorporated, and microorganisms may also play an active role in the formation process. During this study, four complementary analytical techniques proposed for Mars missions (X-ray diffraction [XRD], Raman spectroscopy, elemental analysis, and pyrolysis-gas chromatography-mass spectrometry [Py-GC-MS]) were used to interrogate samples of desert varnish and describe their capacity to sustain life under extreme scenarios. For the first time, both the geochemistry and the organic compounds associated with desert varnish are described with the use of identical sets of samples. XRD and Raman spectroscopy measurements were used to nondestructively interrogate the mineralogy of the samples. In addition, the use of Raman spectroscopy instruments enabled the detection of β-carotene, a highly Raman-active biomarker. The content and the nature of the organic material in the samples were further investigated with elemental analysis and methylated Py-GC-MS, and a bacterial origin was determined to be likely. In the context of planetary exploration, we describe the habitable nature of desert varnish based on the biogeochemical composition of the samples. Possible interference of the geological substrate on the detectability of pyrolysis products is also suggested.
Global Proteomics Analysis of Protein Lysine Methylation.
Cao, Xing-Jun; Garcia, Benjamin A
2016-11-01
Lysine methylation is a common protein post-translational modification dynamically mediated by protein lysine methyltransferases (PKMTs) and protein lysine demethylases (PKDMs). Beyond histone proteins, lysine methylation on non-histone proteins plays a substantial role in a variety of functions in cells and is closely associated with diseases such as cancer. A large body of evidence indicates that the dysregulation of some PKMTs leads to tumorigenesis via their non-histone substrates. However, most studies on other PKMTs have made slow progress owing to the lack of approaches for extensive screening of lysine methylation sites. However, recently, there has been a series of publications to perform large-scale analysis of protein lysine methylation. In this unit, we introduce a protocol for the global analysis of protein lysine methylation in cells by means of immunoaffinity enrichment and mass spectrometry. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Jiao, J; Wu, J; Lv, Z; Sun, C; Gao, L; Yan, X; Cui, L; Tang, Z; Yan, B; Jia, Y
2015-11-26
This study aimed to investigate cytosine methylation profiles in different tobacco (Nicotiana tabacum) cultivars grown in China. Methylation-sensitive amplified polymorphism was used to analyze genome-wide global methylation profiles in four tobacco cultivars (Yunyan 85, NC89, K326, and Yunyan 87). Amplicons with methylated C motifs were cloned by reamplified polymerase chain reaction, sequenced, and analyzed. The results show that geographical location had a greater effect on methylation patterns in the tobacco genome than did sampling time. Analysis of the CG dinucleotide distribution in methylation-sensitive polymorphic restriction fragments suggested that a CpG dinucleotide cluster-enriched area is a possible site of cytosine methylation in the tobacco genome. The sequence alignments of the Nia1 gene (that encodes nitrate reductase) in Yunyan 87 in different regions indicate that a C-T transition might be responsible for the tobacco phenotype. T-C nucleotide replacement might also be responsible for the tobacco phenotype and may be influenced by geographical location.
DNA methylation: the future of crime scene investigation?
Gršković, Branka; Zrnec, Dario; Vicković, Sanja; Popović, Maja; Mršić, Gordan
2013-07-01
Proper detection and subsequent analysis of biological evidence is crucial for crime scene reconstruction. The number of different criminal acts is increasing rapidly. Therefore, forensic geneticists are constantly on the battlefield, trying hard to find solutions how to solve them. One of the essential defensive lines in the fight against the invasion of crime is relying on DNA methylation. In this review, the role of DNA methylation in body fluid identification and other DNA methylation applications are discussed. Among other applications of DNA methylation, age determination of the donor of biological evidence, analysis of the parent-of-origin specific DNA methylation markers at imprinted loci for parentage testing and personal identification, differentiation between monozygotic twins due to their different DNA methylation patterns, artificial DNA detection and analyses of DNA methylation patterns in the promoter regions of circadian clock genes are the most important ones. Nevertheless, there are still a lot of open chapters in DNA methylation research that need to be closed before its final implementation in routine forensic casework.
Guo, Shicheng; Diep, Dinh; Plongthongkum, Nongluk; Fung, Ho-Lim; Zhang, Kang; Zhang, Kun
2017-04-01
Adjacent CpG sites in mammalian genomes can be co-methylated owing to the processivity of methyltransferases or demethylases, yet discordant methylation patterns have also been observed, which are related to stochastic or uncoordinated molecular processes. We focused on a systematic search and investigation of regions in the full human genome that show highly coordinated methylation. We defined 147,888 blocks of tightly coupled CpG sites, called methylation haplotype blocks, after analysis of 61 whole-genome bisulfite sequencing data sets and validation with 101 reduced-representation bisulfite sequencing data sets and 637 methylation array data sets. Using a metric called methylation haplotype load, we performed tissue-specific methylation analysis at the block level. Subsets of informative blocks were further identified for deconvolution of heterogeneous samples. Finally, using methylation haplotypes we demonstrated quantitative estimation of tumor load and tissue-of-origin mapping in the circulating cell-free DNA of 59 patients with lung or colorectal cancer.
García-Becerra, Rocío; Ordaz-Rosado, David; Noé, Gabriela; Chávez, Bertha; Cooney, Austin J; Larrea, Fernando
2012-02-01
7α-methyl-19-nortestosterone (MENT) is an androgen with potent gonadotropin inhibitory activity and prostate-sparing effects. These attributes give MENT advantages over testosterone as a male contraceptive, but, as in the case of testosterone, a partial dose-dependent suppression of spermatogenesis has been observed. Combination of testosterone or MENT with synthetic progestins improves the rate of azoospermia; however, it is unknown whether these combinations affect hormone androgenicity or exert synergistic effects via progestational or androgenic interaction. Herein, using transactivation assays, we examined the ability of MENT alone or combined with several 19-nor-derived synthetic progestins to activate androgen receptor (AR)-dependent gene transcription. In addition, the capability of 7α-methyl-estradiol (7α-methyl-E(2)), an aromatized metabolite of MENT, to transactivate gene transcription via estrogen receptor α (ERα; ESR1) or ERβ (ESR2) was also investigated. As expected, MENT induced gene transactivation through either the progesterone receptor (PGR) or the AR. MENT was as efficient as progesterone in activating PGR-mediated reporter gene expression, but it was ten times more potent than testosterone and dihydrotestoterone in activating of AR-driven gene expression. The addition of increasing concentrations of other 19-nortestosterone derivatives (norethisterone or levonorgestrel) did not affect, in a significant manner, the ability of MENT to activate AR-dependent reporter gene transcription. The same results were obtained with different cell lines. 7α-Methyl-E(2) resulted in potent estrogen activity via both ER subtypes with efficiency similar to natural E(2). These results suggest that the addition of 19-nortestosterone-derived progestins, as a hormonal adjuvant in male fertility strategies for effective spermatogenic suppression, does not display any detrimental effect that would interfere with MENT androgenic transcriptional activity.
Nkembo, Marguerite Kasidimoko; Lee, Jung-Bum; Nakagiri, Takeshi; Hayashi, Toshimitsu
2006-05-01
Specific inhibitors of the MVA pathway (pravastatin) and the MEP pathway (fosmidomycin) were used to interfere with the biosynthetic flux which leads to the production of aphidicolin-like diterpene in leaf organ cultures of Scoparia dulcis. Treatment of leaf organs with fosmidomycin resulted in dose dependent inhibition of chlorophylls, carotenoids, scopadulcic acid B (SDB) and phytol production, and no effect on sterol production was observed. In response to the pravastatin treatment, a significant decrease in sterol and perturbation of SDB production was observed.
Ariza, Pedro; Solesio-Jofre, Elena; Martínez, Johann H.; Pineda-Pardo, José A.; Niso, Guiomar; Maestú, Fernando; Buldú, Javier M.
2015-01-01
In this study we used graph theory analysis to investigate age-related reorganization of functional networks during the active maintenance of information that is interrupted by external interference. Additionally, we sought to investigate network differences before and after averaging network parameters between both maintenance and interference windows. We compared young and older adults by measuring their magnetoencephalographic recordings during an interference-based working memory task restricted to successful recognitions. Data analysis focused on the topology/temporal evolution of functional networks during both the maintenance and interference windows. We observed that: (a) Older adults require higher synchronization between cortical brain sites in order to achieve a successful recognition, (b) The main differences between age groups arise during the interference window, (c) Older adults show reduced ability to reorganize network topology when interference is introduced, and (d) Averaging network parameters leads to a loss of sensitivity to detect age differences. PMID:26029079
Guevara, María Ángeles; de María, Nuria; Sáez-Laguna, Enrique; Vélez, María Dolores; Cervera, María Teresa; Cabezas, José Antonio
2017-01-01
Different molecular techniques have been developed to study either the global level of methylated cytosines or methylation at specific gene sequences. One of them is the methylation-sensitive amplified polymorphism technique (MSAP) which is a modification of amplified fragment length polymorphism (AFLP). It has been used to study methylation of anonymous CCGG sequences in different fungi, plants, and animal species. The main variation of this technique resides on the use of isoschizomers with different methylation sensitivity (such as HpaII and MspI) as a frequent-cutter restriction enzyme. For each sample, MSAP analysis is performed using both EcoRI/HpaII- and EcoRI/MspI-digested samples. A comparative analysis between EcoRI/HpaII and EcoRI/MspI fragment patterns allows the identification of two types of polymorphisms: (1) methylation-insensitive polymorphisms that show common EcoRI/HpaII and EcoRI/MspI patterns but are detected as polymorphic amplified fragments among samples and (2) methylation-sensitive polymorphisms which are associated with the amplified fragments that differ in their presence or absence or in their intensity between EcoRI/HpaII and EcoRI/MspI patterns. This chapter describes a detailed protocol of this technique and discusses the modifications that can be applied to adjust the technology to different species of interest.
The Stroop Revisited: A Meta-Analysis of Interference Control in AD/HD
ERIC Educational Resources Information Center
Van Mourik, Rosa; Oosterlaan, Jaap; Sergeant, Joseph A.
2005-01-01
Background: An inhibition deficit, including poor interference control, has been implicated as one of the core deficits in AD/HD. Interference control is clinically measured by the Stroop Colour-Word Task. The aim of this meta-analysis was to investigate the strength of an interference deficit in AD/HD as measured by the Stroop Colour-Word Task…
Niu, Heng; Yang, Jingyu; Yang, Kunxian; Huang, Yingze
2017-11-01
DNA promoter methylation can suppresses gene expression and shows an important role in the biological functions of Ras association domain family 1A (RASSF1A). Many studies have performed to elucidate the role of RASSF1A promoter methylation in thyroid carcinoma, while the results were conflicting and heterogeneous. Here, we analyzed the data of databases to determine the relationship between RASSF1A promoter methylation and thyroid carcinoma. We used the data from 14 cancer-normal studies and Gene Expression Omnibus (GEO) database to analyze RASSF1A promoter methylation in thyroid carcinoma susceptibility. The data from the Cancer Genome Atlas project (TCGA) database was used to analyze the relationship between RASSF1A promoter methylation and thyroid carcinoma susceptibility, clinical characteristics, prognosis. Odds ratios were estimated for thyroid carcinoma susceptibility and hazard ratios were estimated for thyroid carcinoma prognosis. The heterogeneity between studies of meta-analysis was explored using H, I values, and meta-regression. We adopted quality criteria to classify the studies of meta-analysis. Subgroup analyses were done for thyroid carcinoma susceptibility according to ethnicity, methods, and primers. Result of meta-analysis indicated that RASSF1A promoter methylation is associated with higher susceptibility to thyroid carcinoma with small heterogeneity. Similarly, the result from GEO database also showed that a significant association between RASSF1A gene promoter methylation and thyroid carcinoma susceptibility. For the results of TCGA database, we found that RASSF1A promoter methylation is associated with susceptibility and poor disease-free survival (DFS) of thyroid carcinoma. In addition, we also found a close association between RASSF1A promoter methylation and patient tumor stage and age, but not in patients of different genders. The methylation status of RASSF1A promoter is strongly associated with thyroid carcinoma susceptibility and DFS. The RASSF1A promoter methylation test can be applied in the clinical diagnosis of thyroid carcinoma.
Modeling DNA methylation by analyzing the individual configurations of single molecules
Affinito, Ornella; Scala, Giovanni; Palumbo, Domenico; Florio, Ermanno; Monticelli, Antonella; Miele, Gennaro; Avvedimento, Vittorio Enrico; Usiello, Alessandro; Chiariotti, Lorenzo; Cocozza, Sergio
2016-01-01
ABSTRACT DNA methylation is often analyzed by reporting the average methylation degree of each cytosine. In this study, we used a single molecule methylation analysis in order to look at the methylation conformation of individual molecules. Using D-aspartate oxidase as a model gene, we performed an in-depth methylation analysis through the developmental stages of 3 different mouse tissues (brain, lung, and gut), where this gene undergoes opposite methylation destiny. This approach allowed us to track both methylation and demethylation processes at high resolution. The complexity of these dynamics was markedly simplified by introducing the concept of methylation classes (MCs), defined as the number of methylated cytosines per molecule, irrespective of their position. The MC concept smooths the stochasticity of the system, allowing a more deterministic description. In this framework, we also propose a mathematical model based on the Markov chain. This model aims to identify the transition probability of a molecule from one MC to another during methylation and demethylation processes. The results of our model suggest that: 1) both processes are ruled by a dominant class of phenomena, namely, the gain or loss of one methyl group at a time; and 2) the probability of a single CpG site becoming methylated or demethylated depends on the methylation status of the whole molecule at that time. PMID:27748645
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yuan-I; Hsu, Sheng-Chieh; Chau, Gar-Yang
2011-01-21
Research highlights: {yields} Verifying by direct methylation assay the substrate sites of PRMT1 in the hnRNP K protein. {yields} Identifying the preferred PMRT1 methylation regions in hnRNP K by kinetic analysis. {yields} Linking methylation in regulating nuclear localization of hnRNP K. -- Abstract: Protein arginine methylation plays crucial roles in numerous cellular processes. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a multi-functional protein participating in a variety of cellular functions including transcription and RNA processing. HnRNP K is methylated at multiple sites in the glycine- and arginine-rich (RGG) motif. Using various RGG domain deletion mutants of hnRNP K as substrates,more » here we show by direct methylation assay that protein arginine methyltransferase 1 (PRMT1) methylated preferentially in a.a. 280-307 of the RGG motif. Kinetic analysis revealed that deletion of a.a. 280-307, but not a.a. 308-327, significantly inhibited rate of methylation. Importantly, nuclear localization of hnRNP K was significantly impaired in mutant hnRNP K lacking the PRMT1 methylation region or upon pharmacological inhibition of methylation. Together our results identify preferred PRMT1 methylation sequences of hnRNP K by direct methylation assay and implicate a role of arginine methylation in regulating intracellular distribution of hnRNP K.« less
Interference fits and stress-corrosion failure. [aircraft parts fatigue life analysis
NASA Technical Reports Server (NTRS)
Hanagud, S.; Carter, A. E.
1976-01-01
It is pointed out that any proper design of interference fit fastener, interference fit bushings, or stress coining processes should consider both the stress-corrosion susceptibility and fatigue-life improvement together. Investigations leading to such a methodology are discussed. A service failure analysis of actual aircraft parts is considered along with the stress-corrosion susceptibility of cold-working interference fit bushings. The optimum design of the amount of interference is considered, giving attention to stress formulas and aspects of design methodology.
Zhao, Ye; Chen, Muyan; Storey, Kenneth B; Sun, Lina; Yang, Hongsheng
2015-03-01
DNA methylation plays an important role in regulating transcriptional change in response to environmental stimuli. In the present study, DNA methylation levels of tissues of the sea cucumber Apostichopus japonicus were analyzed by the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) technique over three stages of the aestivation cycle. Overall, a total of 26,963 fragments were amplified including 9112 methylated fragments among four sea cucumber tissues using 18 pairs of selective primers. Results indicated an average DNA methylation level of 33.79% for A. japonicus. The incidence of DNA methylation was different across tissue types in the non-aestivation stage: intestine (30.16%), respiratory tree (27.61%), muscle (27.94%) and body wall (56.25%). Our results show that hypermethylation accompanied deep-aestivation in A. japonicus, which suggests that DNA methylation may have an important role in regulating global transcriptional suppression during aestivation. Further analysis indicated that the main DNA modification sites were focused on intestine and respiratory tree tissues and that full-methylation but not hemi-methylation levels exhibited significant increases in the deep-aestivation stage. Copyright © 2014 Elsevier Inc. All rights reserved.
DNA methylation biomarkers for head and neck squamous cell carcinoma.
Zhou, Chongchang; Ye, Meng; Ni, Shumin; Li, Qun; Ye, Dong; Li, Jinyun; Shen, Zhishen; Deng, Hongxia
2018-06-21
DNA methylation plays an important role in the etiology and pathogenesis of head and neck squamous cell carcinoma (HNSCC). The current study aimed to identify aberrantly methylated-differentially expressed genes (DEGs) by a comprehensive bioinformatics analysis. In addition, we screened for DEGs affected by DNA methylation modification and further investigated their prognostic values for HNSCC. We included microarray data of DNA methylation (GSE25093 and GSE33202) and gene expression (GSE23036 and GSE58911) from Gene Expression Omnibus. Aberrantly methylated-DEGs were analyzed with R software. The Cancer Genome Atlas (TCGA) RNA sequencing and DNA methylation (Illumina HumanMethylation450) databases were utilized for validation. In total, 27 aberrantly methylated genes accompanied by altered expression were identified. After confirmation by The Cancer Genome Atlas (TCGA) database, 2 hypermethylated-low-expression genes (FAM135B and ZNF610) and 2 hypomethylated-high-expression genes (HOXA9 and DCC) were identified. A receiver operating characteristic (ROC) curve confirmed the diagnostic value of these four methylated genes for HNSCC. Multivariate Cox proportional hazards analysis showed that FAM135B methylation was a favorable independent prognostic biomarker for overall survival of HNSCC patients.
Claus, Rainer; Lucas, David M.; Stilgenbauer, Stephan; Ruppert, Amy S.; Yu, Lianbo; Zucknick, Manuela; Mertens, Daniel; Bühler, Andreas; Oakes, Christopher C.; Larson, Richard A.; Kay, Neil E.; Jelinek, Diane F.; Kipps, Thomas J.; Rassenti, Laura Z.; Gribben, John G.; Döhner, Hartmut; Heerema, Nyla A.; Marcucci, Guido; Plass, Christoph; Byrd, John C.
2012-01-01
Purpose Increased ZAP-70 expression predicts poor prognosis in chronic lymphocytic leukemia (CLL). Current methods for accurately measuring ZAP-70 expression are problematic, preventing widespread application of these tests in clinical decision making. We therefore used comprehensive DNA methylation profiling of the ZAP-70 regulatory region to identify sites important for transcriptional control. Patients and Methods High-resolution quantitative DNA methylation analysis of the entire ZAP-70 gene regulatory regions was conducted on 247 samples from patients with CLL from four independent clinical studies. Results Through this comprehensive analysis, we identified a small area in the 5′ regulatory region of ZAP-70 that showed large variability in methylation in CLL samples but was universally methylated in normal B cells. High correlation with mRNA and protein expression, as well as activity in promoter reporter assays, revealed that within this differentially methylated region, a single CpG dinucleotide and neighboring nucleotides are particularly important in ZAP-70 transcriptional regulation. Furthermore, by using clustering approaches, we identified a prognostic role for this site in four independent data sets of patients with CLL using time to treatment, progression-free survival, and overall survival as clinical end points. Conclusion Comprehensive quantitative DNA methylation analysis of the ZAP-70 gene in CLL identified important regions responsible for transcriptional regulation. In addition, loss of methylation at a specific single CpG dinucleotide in the ZAP-70 5′ regulatory sequence is a highly predictive and reproducible biomarker of poor prognosis in this disease. This work demonstrates the feasibility of using quantitative specific ZAP-70 methylation analysis as a relevant clinically applicable prognostic test in CLL. PMID:22564988
Protein arginine methylation: Cellular functions and methods of analysis.
Pahlich, Steffen; Zakaryan, Rouzanna P; Gehring, Heinz
2006-12-01
During the last few years, new members of the growing family of protein arginine methyltransferases (PRMTs) have been identified and the role of arginine methylation in manifold cellular processes like signaling, RNA processing, transcription, and subcellular transport has been extensively investigated. In this review, we describe recent methods and findings that have yielded new insights into the cellular functions of arginine-methylated proteins, and we evaluate the currently used procedures for the detection and analysis of arginine methylation.
Differential DNA Methylation Analysis without a Reference Genome.
Klughammer, Johanna; Datlinger, Paul; Printz, Dieter; Sheffield, Nathan C; Farlik, Matthias; Hadler, Johanna; Fritsch, Gerhard; Bock, Christoph
2015-12-22
Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS), which we have validated in nine species (human, mouse, rat, cow, dog, chicken, carp, sea bass, and zebrafish). Bioinformatically, we developed the RefFreeDMA software to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions between samples or groups of individuals (http://RefFreeDMA.computational-epigenetics.org). The identified regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell-type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Dou, MengMeng; Zhou, XueLiang; Fan, ZhiRui; Ding, XianFei; Li, LiFeng; Wang, ShuLing; Xue, Wenhua; Wang, Hui; Suo, Zhenhe; Deng, XiaoMing
2018-01-01
Retinoic acid receptor beta (RAR beta) is a retinoic acid receptor gene that has been shown to play key roles during multiple cancer processes, including cell proliferation, apoptosis, migration and invasion. Numerous studies have found that methylation of the RAR beta promoter contributed to the occurrence and development of malignant tumors. However, the connection between RAR beta promoter methylation and prostate cancer (PCa) remains unknown. This meta-analysis evaluated the clinical significance of RAR beta promoter methylation in PCa. We searched all published records relevant to RAR beta and PCa in a series of databases, including PubMed, Embase, Cochrane Library, ISI Web of Science and CNKI. The rates of RAR beta promoter methylation in the PCa and control groups (including benign prostatic hyperplasia and normal prostate tissues) were summarized. In addition, we evaluated the source region of available samples and the methods used to detect methylation. To compare the incidence and variation in RAR beta promoter methylation in PCa and non-PCa tissues, the odds ratio (OR) and 95% confidence interval (CI) were calculated accordingly. All the data were analyzed with the statistical software STATA 12.0. Based on the inclusion and exclusion criteria, 15 articles assessing 1,339 samples were further analyzed. These data showed that the RAR beta promoter methylation rates in PCa tissues were significantly higher than the rates in the non-PCa group (OR=21.65, 95% CI: 9.27-50.57). Subgroup analysis according to the source region of samples showed that heterogeneity in Asia was small (I2=0.0%, P=0.430). Additional subgroup analysis based on the method used to detect RAR beta promoter methylation showed that the heterogeneity detected by MSP (methylation-specific PCR) was relatively small (I2=11.3%, P=0.343). Although studies reported different rates for RAR beta promoter methylation in PCa tissues, the total analysis demonstrated that RAR beta promoter methylation may be correlated with PCa carcinogenesis and that the RAR beta gene is particularly susceptible. Additional studies with sufficient data are essential to further evaluate the clinical features and prognostic utility of RAR beta promoter methylation in PCa. © 2018 The Author(s). Published by S. Karger AG, Basel.
Beltrami, Caroline Moraes; Dos Reis, Mariana Bisarro; Barros-Filho, Mateus Camargo; Marchi, Fabio Albuquerque; Kuasne, Hellen; Pinto, Clóvis Antônio Lopes; Ambatipudi, Srikant; Herceg, Zdenko; Kowalski, Luiz Paulo; Rogatto, Silvia Regina
2017-01-01
Papillary thyroid carcinoma (PTC) is a common endocrine neoplasm with a recent increase in incidence in many countries. Although PTC has been explored by gene expression and DNA methylation studies, the regulatory mechanisms of the methylation on the gene expression was poorly clarified. In this study, DNA methylation profile (Illumina HumanMethylation 450K) of 41 PTC paired with non-neoplastic adjacent tissues (NT) was carried out to identify and contribute to the elucidation of the role of novel genic and intergenic regions beyond those described in the promoter and CpG islands (CGI). An integrative and cross-validation analysis were performed aiming to identify molecular drivers and pathways that are PTC-related. The comparisons between PTC and NT revealed 4995 methylated probes (88% hypomethylated in PTC) and 1446 differentially expressed transcripts cross-validated by the The Cancer Genome Atlas data. The majority of these probes was found in non-promoters regions, distant from CGI and enriched by enhancers. The integrative analysis between gene expression and DNA methylation revealed 185 and 38 genes (mainly in the promoter and body regions, respectively) with negative and positive correlation, respectively. Genes showing negative correlation underlined FGF and retinoic acid signaling as critical canonical pathways disrupted by DNA methylation in PTC. BRAF mutation was detected in 68% (28 of 41) of the tumors, which presented a higher level of demethylation (95% hypomethylated probes) compared with BRAF wild-type tumors. A similar integrative analysis uncovered 40 of 254 differentially expressed genes, which are potentially regulated by DNA methylation in BRAF V600E-positive tumors. The methylation and expression pattern of six selected genes ( ERBB3 , FGF1 , FGFR2 , GABRB2 , HMGA2 , and RDH5 ) were confirmed as altered by pyrosequencing and RT-qPCR. DNA methylation loss in non-promoter, poor CGI and enhancer-enriched regions was a significant event in PTC, especially in tumors harboring BRAF V600E. In addition to the promoter region, gene body and 3'UTR methylation have also the potential to influence the gene expression levels (both, repressing and inducing). The integrative analysis revealed genes potentially regulated by DNA methylation pointing out potential drivers and biomarkers related to PTC development.
Stress analysis under component relative interference fit
NASA Technical Reports Server (NTRS)
Taylor, C. M.
1978-01-01
Finite-element computer program enables analysis of distortions and stresses occurring in components having relative interference. Program restricts itself to simple elements and axisymmetric loading situations. External inertial and thermal loads may be applied in addition to forces arising from interference conditions.
Tahara, Tomomitsu; Hirata, Ichiro; Nakano, Naoko; Tahara, Sayumi; Horiguchi, Noriyuki; Kawamura, Tomohiko; Okubo, Masaaki; Ishizuka, Takamitsu; Yamada, Hyuga; Yoshida, Dai; Ohmori, Takafumi; Maeda, Kohei; Komura, Naruomi; Ikuno, Hirokazu; Jodai, Yasutaka; Kamano, Toshiaki; Nagasaka, Mitsuo; Nakagawa, Yoshihito; Tuskamoto, Tetsuya; Urano, Makoto; Shibata, Tomoyuki; Kuroda, Makoto; Ohmiya, Naoki
2017-01-01
BACKGROUND AND AIM Fusobacterium enrichment has been associated with colorectal cancer development. Ulcerative colitis (UC) associated tumorigenesis is characterized as high degree of methylation accumulation through continuous colonic inflammation. The aim of this study was to investigate a potential link between Fusobacterium enrichment and DNA methylation accumulation in the inflammatory colonic mucosa in UC. METHODS In the candidate analysis, inflamed colonic mucosa from 86 UC patients were characterized the methylation status of colorectal a panel of cancer related 24 genes. In the genome-wide analysis, an Infinium HumanMethylation450 BeadChip array was utilized to characterize the methylation status of >450,000 CpG sites for fourteen UC patients. Results were correlated with Fusobacterium status. RESULTS UC with Fusobacterium enrichment (FB-high) was characterized as high degree of type C (for cancer-specific) methylation compared to other (FB-low/neg) samples (P<0.01). Genes hypermethylated in FB-high samples included well-known type C genes in colorectal cancer, such as MINT2 and 31, P16 and NEUROG1. Multivariate analysis demonstrated that the FB high status held an increased likelihood for methylation high as an independent factor (odds ratio: 16.18, 95% confidence interval: 1.94-135.2, P=0.01). Genome-wide methylation analysis demonstrated a unique methylome signature of FB-high cases irrespective of promoter, outside promoter, CpG and non-CpG sites. Group of promoter CpG sites that were exclusively hypermethylated in FB-high cases significantly codified the genes related to the catalytic activity (P=0.039). CONCLUSION Our findings suggest that Fusobacterium accelerates DNA methylation in specific groups of genes in the inflammatory colonic mucosa in UC. PMID:28977914
BPA-Induced Deregulation Of Epigenetic Patterns: Effects On Female Zebrafish Reproduction.
Santangeli, Stefania; Maradonna, Francesca; Gioacchini, Giorgia; Cobellis, Gilda; Piccinetti, Chiara Carla; Dalla Valle, Luisa; Carnevali, Oliana
2016-02-25
Bisphenol A (BPA) is one of the commonest Endocrine Disruptor Compounds worldwide. It interferes with vertebrate reproduction, possibly by inducing deregulation of epigenetic mechanisms. To determine its effects on female reproductive physiology and investigate whether changes in the expression levels of genes related to reproduction are caused by histone modifications, BPA concentrations consistent with environmental exposure were administered to zebrafish for three weeks. Effects on oocyte growth and maturation, autophagy and apoptosis processes, histone modifications, and DNA methylation were assessed by Real-Time PCR (qPCR), histology, and chromatin immunoprecipitation combined with qPCR analysis (ChIP-qPCR). The results showed that 5 μg/L BPA down-regulated oocyte maturation-promoting signals, likely through changes in the chromatin structure mediated by histone modifications, and promoted apoptosis in mature follicles. These data indicate that the negative effects of BPA on the female reproductive system may be due to its upstream ability to deregulate epigenetic mechanism.
Goodenough, Angela K.; Schut, Herman A. J.; Turesky, Robert J.
2008-01-01
An accurate and sensitive liquid chromatography-electrospray ionization/multi-stage mass spectrometry (LC-ESI/MS/MSn) technique has been developed for the characterization and quantification of 2′-deoxyguanosine (dG) adducts of the dietary mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). PhIP is an animal and potential human carcinogen that occurs in grilled meats. Following enzymatic digestion and adduct enrichment by solid-phase extraction (SPE), PhIP—DNA adducts were analyzed by MS/MS and MSn scan modes on a 2-D linear quadrupole ion trap mass spectrometer (QIT/MS). The major DNA adduct, N-(deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP), was detected in calf thymus (CT) DNA modified in vitro with a bioactivated form of PhIP and in the colon and liver of rats given PhIP as part of the diet. The lower limit of detection (LOD) was 1 adduct per 108 DNA bases, and the limit of quantification (LOQ) was 3 adducts per 108 DNA bases in both MS/MS and MS3 scan modes, using 27 μg of DNA for analysis. Measurements were based on isotope dilution with the internal standard, N-(deoxyguanosin-8-yl)-2-amino-1-(trideutero)methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-[2H3C]-PhIP). The selected reaction monitoring (SRM) scan mode in MS/MS was employed to monitor the loss of deoxyribose (dR) from the protonated molecules of the adducts ([M + H - 116]+). The consecutive reaction monitoring (CRM) scan modes in MS3 and MS4 were used to measure and further characterize product ions of the aglycone ion (BH2+) (Guanyl-PhIP). The MS3 scan mode was effective in eliminating isobaric interferences observed in the MS/MS scan mode and resulted in an improved signal-to-noise (S/N) ratio. Moreover, the product ion spectra obtained by the MSn scan modes provided rich structural information about the adduct and were used to corroborate the identity of dG-C8-PhIP. In addition, an isomeric dG-PhIP adduct was detected in vivo. This LCESI/MS/MSn method is the first reported application on the use of the MS3 scan mode for the analysis of DNA adducts in vivo. PMID:17305409
Min, Lingfeng; Wang, Fang; Hu, Suwei; Chen, Yong; Yang, Junjun; Liang, Sudong; Xu, Xingxiang
2018-01-01
MicroRNA-137 (miR-137) functions as a tumor suppressor and is silenced by aberrant promoter methylation. Previous studies have demonstrated that miR-137 is downregulated in lung cancer. The purpose of the present study was to investigate miR-137 promoter methylation and to assess its prognostic value in non-small cell lung cancer (NSCLC). The expression of miR-137 was analyzed inhuman lung cancer A549 and H1299 cells and normal bronchial epithelial BEAS-2B cells, 10 paired formalin-fixed paraffin-embedded lung cancer and normal tissue samples, and 56 archived paraffin-embedded lung cancer tissues. Quantitative methylation-specific polymerase chain reaction analysis was used to assess the miR-137 methylation status. The associations between miR-137 promoter methylation and the clinicopathological features and prognosis of patients with NSCLC (n=56) were analyzed using analysis of variance. miR-137 was markedly downregulated in lung cancer cells and lung cancer tissue specimens compared with expression in BEAS-2B cells and matched adjacent normal lung tissues. A significant negative correlation between miR-137 expression and miR-137 promoter methylation was observed in human lung cancer tissues (r=−0.343; P=0.01). Smoking, lymph node metastasis and advanced clinical stage were associated with significantly lower expression of miR-137 in variance analysis. High levels of miR-137 promoter methylation were associated with a significantly poorer disease-free survival rate (P=0.034), but were not associated with overall survival, in Kaplan-Meier analysis and univariate analysis. In conclusion, the results of the present study indicated that miR-137 is downregulated and that its promoter is aberrantly methylated in lung cancer, and that high levels of miR-137 promoter methylation may have prognostic value for poor disease-free survival. PMID:29740491
Klajic, Jovana; Fleischer, Thomas; Dejeux, Emelyne; Edvardsen, Hege; Warnberg, Fredrik; Bukholm, Ida; Lønning, Per Eystein; Solvang, Hiroko; Børresen-Dale, Anne-Lise; Tost, Jörg; Kristensen, Vessela N
2013-10-05
Aberrant DNA methylation of regulatory genes has frequently been found in human breast cancers and correlated to clinical outcome. In the present study we investigate stage specific changes in the DNA methylation patterns in order to identify valuable markers to understand how these changes affect breast cancer progression. Quantitative DNA methylation analyses of 12 candidate genes ABCB1, BRCCA1, CDKN2A, ESR1, GSTP1, IGF2, MGMT, HMLH1, PPP2R2B, PTEN, RASSF1A and FOXC1 was performed by pyrosequencing a series of 238 breast cancer tissue samples from DCIS to invasive tumors stage I to IV. Significant differences in methylation levels between the DCIS and invasive stage II tumors were observed for six genes RASSF1A, CDKN2A, MGMT, ABCB1, GSTP1 and FOXC1. RASSF1A, ABCB1 and GSTP1 showed significantly higher methylation levels in late stage compared to the early stage breast carcinoma. Z-score analysis revealed significantly lower methylation levels in DCIS and stage I tumors compared with stage II, III and IV tumors. Methylation levels of PTEN, PPP2R2B, FOXC1, ABCB1 and BRCA1 were lower in tumors harboring TP53 mutations then in tumors with wild type TP53. Z-score analysis showed that TP53 mutated tumors had significantly lower overall methylation levels compared to tumors with wild type TP53. Methylation levels of RASSF1A, PPP2R2B, GSTP1 and FOXC1 were higher in ER positive vs. ER negative tumors and methylation levels of PTEN and CDKN2A were higher in HER2 positive vs. HER2 negative tumors. Z-score analysis also showed that HER2 positive tumors had significantly higher z-scores of methylation compared to the HER2 negative tumors. Univariate survival analysis identifies methylation status of PPP2R2B as significant predictor of overall survival and breast cancer specific survival. In the present study we report that the level of aberrant DNA methylation is higher in late stage compared with early stage of invasive breast cancers and DCIS for genes mentioned above.
Fu, J; Su, Y; Liu, Y; Zhang, X Y
2018-04-09
Objective: To compare the methylation profiles in tissues of oral leukoplakia (OLK) and oral squamous cell carcinoma (OSCC) with healthy tissues of oral mucosa, in order to identify the role of DNA methylation played in tumorigenesis. Methods: DNA samples extracted from tissues of 4 healthy oral mucosa, 4 OSCC and 4 OLK collected from patients of the Department of Oral Medicine, Capital Medical University School of Stomatology were examined and compared using Methylation 450 Bead Chip. The genes associated with differentially methylated CpG sites were selected for gene ontology (GO) analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment. Results: Multiple differentially methylated CpG sites were identified by using the above mentioned assay. Hypermethylation constitutes 86.18% (23 290/27 025) of methylation changes in OLK and hypomethylation accounts for 13.82% (3 734/27 025) of methylation changes. Both hypermethylated and hypomethylated CpG sites were markedly increased in OSCC tissue compared with OLK tissue. The majority of differentially methylated CpG sites were located outside CpG islands, with approximately one-fourth in CpG shores flanking the islands, which were considered highly important for gene regulation and tumorigenesis. Pathway analysis revealed that differentially methylated CpG sites in both OLK and OSCC patients shared the same pathway enrichments, most of which were correlated with carcinogenesis and cancer progression (e.g., DNA repair, cell cycle, and apoptosis). Conclusions: In the present study, methylation-associated alterations affect almost all pathways in the cellular network in both OLK and OSCC. OLK and OSCC shared similar methylation changes whether in pathways or genes, indicating that epigenetically they might have the same molecular basis for disease progression.
Kim, Yong-June; Yoon, Hyung-Yoon; Kim, Seon-Kyu; Kim, Young-Won; Kim, Eun-Jung; Kim, Isaac Yi; Kim, Wun-Jae
2011-07-01
Abnormal DNA methylation is associated with many human cancers. The aim of the present study was to identify novel methylation markers in prostate cancer (PCa) by microarray analysis and to test whether these markers could discriminate normal and PCa cells. Microarray-based DNA methylation and gene expression profiling was carried out using a panel of PCa cell lines and a control normal prostate cell line. The methylation status of candidate genes in prostate cell lines was confirmed by real-time reverse transcriptase-PCR, bisulfite sequencing analysis, and treatment with a demethylation agent. DNA methylation and gene expression analysis in 203 human prostate specimens, including 106 PCa and 97 benign prostate hyperplasia (BPH), were carried out. Further validation using microarray gene expression data from the Gene Expression Omnibus (GEO) was carried out. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) was identified as a lead candidate methylation marker for PCa. The gene expression level of EFEMP1 was significantly higher in tissue samples from patients with BPH than in those with PCa (P < 0.001). The sensitivity and specificity of EFEMP1 methylation status in discriminating between PCa and BPH reached 95.3% (101 of 106) and 86.6% (84 of 97), respectively. From the GEO data set, we confirmed that the expression level of EFEMP1 was significantly different between PCa and BPH. Genome-wide characterization of DNA methylation profiles enabled the identification of EFEMP1 aberrant methylation patterns in PCa. EFEMP1 might be a useful indicator for the detection of PCa.
Comprehensive Analysis of DNA Methylation Data with RnBeads
Walter, Jörn; Lengauer, Thomas; Bock, Christoph
2014-01-01
RnBeads is a software tool for large-scale analysis and interpretation of DNA methylation data, providing a user-friendly analysis workflow that yields detailed hypertext reports (http://rnbeads.mpi-inf.mpg.de). Supported assays include whole genome bisulfite sequencing, reduced representation bisulfite sequencing, Infinium microarrays, and any other protocol that produces high-resolution DNA methylation data. Important applications of RnBeads include the analysis of epigenome-wide association studies and epigenetic biomarker discovery in cancer cohorts. PMID:25262207
NASA Technical Reports Server (NTRS)
Crews, J. H., Jr.
1975-01-01
A fatigue analysis, based on finite-element calculations and fatigue tests, was conducted for an aluminum-alloy sheet specimen with a steel interference-fit bolt. The stress analysis of the region near the bolt hole showed that the beneficial effect of an interference-fit bolt can be interpreted as the combined result of two effects: (1) load transfer through the bolt and (2) the compressive interference stresses in the sheet. Results of the fatigue tests show that progressively higher interference levels produced longer fatigue lives. The tests also show that a high level of interference prevents fretting at the bolt-sheet interface and that interferences larger than this level produced little additional improvement in fatigue life.
Novakovic, Boris; Evain-Brion, Danièle; Murthi, Padma; Fournier, Thiery; Saffery, Richard
2017-06-01
Placental functioning relies on the appropriate differentiation of progenitor villous cytotrophoblasts (CTBs) into extravillous cytotrophoblasts (EVCTs), including invasive EVCTs, and the multinucleated syncytiotrophoblast (ST) layer. This is accompanied by a general move away from a proliferative, immature phenotype. Genome-scale expression studies have provided valuable insight into genes that are associated with the shift to both an invasive EVCT and ST phenotype, whereas genome-scale DNA methylation analysis has shown that differentiation to ST involves widespread methylation shifts, which are counteracted by low oxygen. In the current study, we sought to identify DNA methylation variation that is associated with transition from CTB to ST in vitro and from a noninvasive to invasive EVCT phenotype after culture on Matrigel. Of the several hundred differentially methylated regions that were identified in each comparison, the majority showed a loss of methylation with differentiation. This included a large differentially methylated region (DMR) in the gene body of death domain-associated protein 6 ( DAXX ), which lost methylation during both CTB syncytialization to ST and EVCT differentiation to invasive EVCT. Comparison to publicly available methylation array data identified the same DMR as among the most consistently differentially methylated genes in placental samples from preeclampsia pregnancies. Of interest, in vitro culture of CTB or ST in low oxygen increases methylation in the same region, which correlates with delayed differentiation. Analysis of combined epigenomics signatures confirmed DAXX DMR as a likely regulatory element, and direct gene expression analysis identified a positive association between methylation at this site and DAXX expression levels. The widespread dynamic nature of DAXX methylation in association with trophoblast differentiation and placenta-associated pathologies is consistent with an important role for this gene in proper placental development and function.-Novakovic, B., Evain-Brion, D., Murthi, P., Fournier, T., Saffery, R. Variable DAXX gene methylation is a common feature of placental trophoblast differentiation, preeclampsia, and response to hypoxia. © FASEB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inawaka, Kunifumi; Kawabe, Mayumi; DIMS Institute of Medical Science, Inc., Ichinomiya
To verify whether anti-androgens cause transgenerational effects on spermatogenesis and DNA methylation in rats, gravid Crl:CD(SD) female rats (4 or 5/group, gestational day (GD) 0 = day sperm detected) were intraperitoneally treated with anti-androgenic compounds, such as vinclozolin (100 mg/kg/day), procymidone (100 mg/kg/day), or flutamide (10 mg/kg/day), from GD 8 to GD 15. Testes were collected from F1 male pups at postnatal day (PND) 6 for DNA methylation analysis of the region (210 bp including 7 CpG sites) within the lysophospholipase gene by bisulfite DNA sequencing method. F0 and F1 males underwent the sperm analysis (count, motility and morphology), followedmore » by DNA methylation analysis of the sperm. Remaining F1 males were cohabited with untreated-females to obtain F2 male pups for subsequent DNA methylation analysis of the testes at PND 6. These analyses showed no effects on spermatogenesis and fertility in F1 males of any treatment group. DNA methylation status in testes (F1 and F2 pups at PND 6) or sperms (F1 males at 13 weeks old) of the treatment groups were comparable to the control at all observation points, although DNA methylation rates in testes were slightly lower than those in sperm. In F0 males, no abnormalities in the spermatogenesis, fertility and DNA methylation status of sperm were observed. No transgenerational abnormalities of spermatogenesis and DNA methylation status caused by anti-androgenic compounds were observed.« less
Inawaka, Kunifumi; Kawabe, Mayumi; Takahashi, Satoru; Doi, Yuko; Tomigahara, Yoshitaka; Tarui, Hirokazu; Abe, Jun; Kawamura, Satoshi; Shirai, Tomoyuki
2009-06-01
To verify whether anti-androgens cause transgenerational effects on spermatogenesis and DNA methylation in rats, gravid Crl:CD(SD) female rats (4 or 5/group, gestational day (GD) 0=day sperm detected) were intraperitoneally treated with anti-androgenic compounds, such as vinclozolin (100 mg/kg/day), procymidone (100 mg/kg/day), or flutamide (10 mg/kg/day), from GD 8 to GD 15. Testes were collected from F1 male pups at postnatal day (PND) 6 for DNA methylation analysis of the region (210 bp including 7 CpG sites) within the lysophospholipase gene by bisulfite DNA sequencing method. F0 and F1 males underwent the sperm analysis (count, motility and morphology), followed by DNA methylation analysis of the sperm. Remaining F1 males were cohabited with untreated-females to obtain F2 male pups for subsequent DNA methylation analysis of the testes at PND 6. These analyses showed no effects on spermatogenesis and fertility in F1 males of any treatment group. DNA methylation status in testes (F1 and F2 pups at PND 6) or sperms (F1 males at 13 weeks old) of the treatment groups were comparable to the control at all observation points, although DNA methylation rates in testes were slightly lower than those in sperm. In F0 males, no abnormalities in the spermatogenesis, fertility and DNA methylation status of sperm were observed. No transgenerational abnormalities of spermatogenesis and DNA methylation status caused by anti-androgenic compounds were observed.
Role of RNA interference (RNAi) in the Moss Physcomitrella patens.
Arif, Muhammad Asif; Frank, Wolfgang; Khraiwesh, Basel
2013-01-14
RNA interference (RNAi) is a mechanism that regulates genes by either transcriptional (TGS) or posttranscriptional gene silencing (PTGS), required for genome maintenance and proper development of an organism. Small non-coding RNAs are the key players in RNAi and have been intensively studied in eukaryotes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs are synthesized from a short hairpin structure while siRNAs are derived from long double-stranded RNAs (dsRNA). Both miRNA and siRNAs control the expression of cognate target RNAs by binding to reverse complementary sequences mediating cleavage or translational inhibition of the target RNA. They also act on the DNA and cause epigenetic changes such as DNA methylation and histone modifications. In the last years, the analysis of plant RNAi pathways was extended to the bryophyte Physcomitrella patens, a non-flowering, non-vascular ancient land plant that diverged from the lineage of seed plants approximately 450 million years ago. Based on a number of characteristic features and its phylogenetic key position in land plant evolution P. patens emerged as a plant model species to address basic as well as applied topics in plant biology. Here we summarize the current knowledge on the role of RNAi in P. patens that shows functional overlap with RNAi pathways from seed plants, and also unique features specific to this species.
Genomic DNA sequence and cytosine methylation changes of adult rice leaves after seeds space flight
NASA Astrophysics Data System (ADS)
Shi, Jinming
In this study, cytosine methylation on CCGG site and genomic DNA sequence changes of adult leaves of rice after seeds space flight were detected by methylation-sensitive amplification polymorphism (MSAP) and Amplified fragment length polymorphism (AFLP) technique respectively. Rice seeds were planted in the trial field after 4 days space flight on the shenzhou-6 Spaceship of China. Adult leaves of space-treated rice including 8 plants chosen randomly and 2 plants with phenotypic mutation were used for AFLP and MSAP analysis. Polymorphism of both DNA sequence and cytosine methylation were detected. For MSAP analysis, the average polymorphic frequency of the on-ground controls, space-treated plants and mutants are 1.3%, 3.1% and 11% respectively. For AFLP analysis, the average polymorphic frequencies are 1.4%, 2.9%and 8%respectively. Total 27 and 22 polymorphic fragments were cloned sequenced from MSAP and AFLP analysis respectively. Nine of the 27 fragments from MSAP analysis show homology to coding sequence. For the 22 polymorphic fragments from AFLP analysis, no one shows homology to mRNA sequence and eight fragments show homology to repeat region or retrotransposon sequence. These results suggest that although both genomic DNA sequence and cytosine methylation status can be effected by space flight, the genomic region homology to the fragments from genome DNA and cytosine methylation analysis were different.
Schwalbe, E C; Hicks, D; Rafiee, G; Bashton, M; Gohlke, H; Enshaei, A; Potluri, S; Matthiesen, J; Mather, M; Taleongpong, P; Chaston, R; Silmon, A; Curtis, A; Lindsey, J C; Crosier, S; Smith, A J; Goschzik, T; Doz, F; Rutkowski, S; Lannering, B; Pietsch, T; Bailey, S; Williamson, D; Clifford, S C
2017-10-18
Rapid and reliable detection of disease-associated DNA methylation patterns has major potential to advance molecular diagnostics and underpin research investigations. We describe the development and validation of minimal methylation classifier (MIMIC), combining CpG signature design from genome-wide datasets, multiplex-PCR and detection by single-base extension and MALDI-TOF mass spectrometry, in a novel method to assess multi-locus DNA methylation profiles within routine clinically-applicable assays. We illustrate the application of MIMIC to successfully identify the methylation-dependent diagnostic molecular subgroups of medulloblastoma (the most common malignant childhood brain tumour), using scant/low-quality samples remaining from the most recently completed pan-European medulloblastoma clinical trial, refractory to analysis by conventional genome-wide DNA methylation analysis. Using this approach, we identify critical DNA methylation patterns from previously inaccessible cohorts, and reveal novel survival differences between the medulloblastoma disease subgroups with significant potential for clinical exploitation.
Shah, Nameeta; Lin, Biaoyang; Sibenaller, Zita; Ryken, Timothy; Lee, Hwahyung; Yoon, Jae-Geun; Rostad, Steven; Foltz, Greg
2011-01-07
O⁶-methylguanine DNA-methyltransferase (MGMT) promoter methylation has been identified as a potential prognostic marker for glioblastoma patients. The relationship between the exact site of promoter methylation and its effect on gene silencing, and the patient's subsequent response to therapy, is still being defined. The aim of this study was to comprehensively characterize cytosine-guanine (CpG) dinucleotide methylation across the entire MGMT promoter and to correlate individual CpG site methylation patterns to mRNA expression, protein expression, and progression-free survival. To best identify the specific MGMT promoter region most predictive of gene silencing and response to therapy, we determined the methylation status of all 97 CpG sites in the MGMT promoter in tumor samples from 70 GBM patients using quantitative bisulfite sequencing. We next identified the CpG site specific and regional methylation patterns most predictive of gene silencing and improved progression-free survival. Using this data, we propose a new classification scheme utilizing methylation data from across the entire promoter and show that an analysis based on this approach, which we call 3R classification, is predictive of progression-free survival (HR = 5.23, 95% CI [2.089-13.097], p<0.0001). To adapt this approach to the clinical setting, we used a methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) test based on the 3R classification and show that this test is both feasible in the clinical setting and predictive of progression free survival (HR = 3.076, 95% CI [1.301-7.27], p = 0.007). We discuss the potential advantages of a test based on this promoter-wide analysis and compare it to the commonly used methylation-specific PCR test. Further prospective validation of these two methods in a large independent patient cohort will be needed to confirm the added value of promoter wide analysis of MGMT methylation in the clinical setting.
Shah, Nameeta; Lin, Biaoyang; Sibenaller, Zita; Ryken, Timothy; Lee, Hwahyung; Yoon, Jae-Geun; Rostad, Steven; Foltz, Greg
2011-01-01
O6-methylguanine DNA-methyltransferase (MGMT) promoter methylation has been identified as a potential prognostic marker for glioblastoma patients. The relationship between the exact site of promoter methylation and its effect on gene silencing, and the patient's subsequent response to therapy, is still being defined. The aim of this study was to comprehensively characterize cytosine-guanine (CpG) dinucleotide methylation across the entire MGMT promoter and to correlate individual CpG site methylation patterns to mRNA expression, protein expression, and progression-free survival. To best identify the specific MGMT promoter region most predictive of gene silencing and response to therapy, we determined the methylation status of all 97 CpG sites in the MGMT promoter in tumor samples from 70 GBM patients using quantitative bisulfite sequencing. We next identified the CpG site specific and regional methylation patterns most predictive of gene silencing and improved progression-free survival. Using this data, we propose a new classification scheme utilizing methylation data from across the entire promoter and show that an analysis based on this approach, which we call 3R classification, is predictive of progression-free survival (HR = 5.23, 95% CI [2.089–13.097], p<0.0001). To adapt this approach to the clinical setting, we used a methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) test based on the 3R classification and show that this test is both feasible in the clinical setting and predictive of progression free survival (HR = 3.076, 95% CI [1.301–7.27], p = 0.007). We discuss the potential advantages of a test based on this promoter-wide analysis and compare it to the commonly used methylation-specific PCR test. Further prospective validation of these two methods in a large independent patient cohort will be needed to confirm the added value of promoter wide analysis of MGMT methylation in the clinical setting. PMID:21249131
DNA-bending properties of TF1.
Schneider, G J; Sayre, M H; Geiduschek, E P
1991-10-05
Transcription factor 1 (TF1) is the Bacillus subtilis phage SPO1-encoded member of the family of DNA-binding proteins that includes Escherichia coli HU and integration host factor, IHF. A gel electrophoretic retardation method has been used to show that a TF1 dimer binding to one of its preferred sites in (5-hydroxymethyl)uracil (hmUra)-containing DNA sharply bends the latter. In fact, the DNA-bending properties of TF1 and E. coli IHF are indistinguishable. Substitutions at amino acid 61 in the DNA-binding "arm" of TF1 are known to affect DNA-binding affinity and site selectivity. Experiments described here show that these substitutions also affect DNA bending. The selectivity of TF1 binding is very greatly diminished and the affinity is reduced when hmUra is replaced in DNA by thymine (T). An extension of the gel retardation method that permits an analysis of DNA bending by non-specifically bound TF1 is proposed. Under the assumptions of this analysis, the reduced affinity of TF1 for T-containing DNA is shown to be associated with bending that is still sharp. The analysis of the TF1-DNA interaction has also been extended by hydroxyl radical (.OH) and methylation interference footprinting at two DNA sites. At each of these sites, and on each strand, TF1 strongly protects three segments of DNA from attack by OH. Patches of protected DNA are centered approximately ten base-pairs apart and fall on one side of the B-helix. Methylation in either the major or minor groove in the central ten base-pairs of the two TF1 binding sites quantitatively diminishes, but does not abolish, TF1 binding. We propose that multiple protein contacts allow DNA to wrap around the relatively small TF1 dimer, considerably deforming the DNA B-helix in the process.
Karim, Hazhar; Ghalali, Aram; Lafolie, Pierre; Vitols, Sigurd; Fotoohi, Alan K
2013-07-26
The thiopurine antimetabolites, 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) are inactive pro-drugs that require intracellular metabolism for activation to cytotoxic metabolites. Thiopurine methyltransferase (TPMT) is one of the most important enzymes in this process metabolizing both 6-MP and 6-TG to different methylated metabolites including methylthioinosine monophosphate (meTIMP) and methylthioguanosine monophosphate (meTGMP), respectively, with different suggested pharmacological and cytotoxic properties. While meTIMP is a potent inhibitor of de novo purine synthesis (DNPS) and significantly contributes to the cytotoxic effects of 6-MP, meTGMP, does not add much to the effects of 6-TG, and the cytotoxicity of 6-TG seems to be more dependent on incorporation of thioguanine nucleotides (TGNs) into DNA rather than inhibition of DNPS. In order to investigate the role of TPMT in metabolism and thus, cytotoxic effects of 6-MP and 6-TG, we knocked down the expression of the gene encoding the TPMT enzyme using specifically designed small interference RNA (siRNA) in human MOLT4 leukemia cells. The knock-down was confirmed at RNA, protein, and enzyme function levels. Apoptosis was determined using annexin V and propidium iodide staining and FACS analysis. The results showed a 34% increase in sensitivity of MOLT4 cells to 1μM 6-TG after treatment with TPMT-targeting siRNA, as compared to cells transfected with non-targeting siRNA, while the sensitivity of the cells toward 6-MP was not affected significantly by down-regulation of the TPMT gene. This differential contribution of the enzyme TPMT to the cytotoxicity of the two thiopurines is probably due to its role in formation of the meTIMP, the cytotoxic methylated metabolite of 6-MP, while in case of 6-TG methylation by TPMT substantially deactivates the drug. Copyright © 2013 Elsevier Inc. All rights reserved.
Establishment and Maintenance of a Heterochromatin Domain
NASA Astrophysics Data System (ADS)
Hall, Ira M.; Shankaranarayana, Gurumurthy D.; Noma, Ken-ichi; Ayoub, Nabieh; Cohen, Amikam; Grewal, Shiv I. S.
2002-09-01
The higher-order assembly of chromatin imposes structural organization on the genetic information of eukaryotes and is thought to be largely determined by posttranslational modification of histone tails. Here, we study a 20-kilobase silent domain at the mating-type region of fission yeast as a model for heterochromatin formation. We find that, although histone H3 methylated at lysine 9 (H3 Lys9) directly recruits heterochromatin protein Swi6/HP1, the critical determinant for H3 Lys9 methylation to spread in cis and to be inherited through mitosis and meiosis is Swi6 itself. We demonstrate that a centromere-homologous repeat (cenH) present at the silent mating-type region is sufficient for heterochromatin formation at an ectopic site, and that its repressive capacity is mediated by components of the RNA interference (RNAi) machinery. Moreover, cenH and the RNAi machinery cooperate to nucleate heterochromatin assembly at the endogenous mat locus but are dispensable for its subsequent inheritance. This work defines sequential requirements for the initiation and propagation of regional heterochromatic domains.
Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming
2015-01-01
PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. PMID:26149688
Search for methylation-sensitive amplification polymorphisms in mutant figs.
Rodrigues, M G F; Martins, A B G; Bertoni, B W; Figueira, A; Giuliatti, S
2013-07-08
Fig (Ficus carica) breeding programs that use conventional approaches to develop new cultivars are rare, owing to limited genetic variability and the difficulty in obtaining plants via gamete fusion. Cytosine methylation in plants leads to gene repression, thereby affecting transcription without changing the DNA sequence. Previous studies using random amplification of polymorphic DNA and amplified fragment length polymorphism markers revealed no polymorphisms among select fig mutants that originated from gamma-irradiated buds. Therefore, we conducted methylation-sensitive amplified polymorphism analysis to verify the existence of variability due to epigenetic DNA methylation among these mutant selections compared to the main cultivar 'Roxo-de-Valinhos'. Samples of genomic DNA were double-digested with either HpaII (methylation sensitive) or MspI (methylation insensitive) and with EcoRI. Fourteen primer combinations were tested, and on an average, non-methylated CCGG, symmetrically methylated CmCGG, and hemimethylated hmCCGG sites accounted for 87.9, 10.1, and 2.0%, respectively. MSAP analysis was effective in detecting differentially methylated sites in the genomic DNA of fig mutants, and methylation may be responsible for the phenotypic variation between treatments. Further analyses such as polymorphic DNA sequencing are necessary to validate these differences, standardize the regions of methylation, and analyze reads using bioinformatic tools.
Li, Wanzhen; Wang, Yulong; Zhu, Jianyu; Wang, Zhangxun; Tang, Guiliang; Huang, Bo
2017-03-01
Conidia and mycelia are two important developmental stages in the asexual life cycle of entomopathogenic fungus Metarhizium. Despite the crucial role that DNA methylation plays in many biological processes, its role in regulation of gene expression and development in fungi is not yet fully understood. We performed genome-wide analysis of DNA methylation patterns of an M. robertsii strain with single base pair resolution. Specifically, we examined for changes in methylation patterns between the conidia and mycelia stages. The results showed that approximately 0.38 % of cytosines are methylated in conidia, which is lower than the DNA methylation level (0.42 %) in mycelia. We found that DNA methylation undergoes genome-wide reprogramming during fungal development in M. robertsii. 132 differentially methylated regions (DMRs), which were mostly distributed in gene regions, were identified. KEGG analysis revealed that the DMR-associated genes belong to metabolic pathways. Intriguingly, in contrast to most other eukaryotes, promoter activities in M. robertsii seemed differentially modulated by DNA methylation levels. We found that transcription tended to be enhanced in genes with moderate promoter methylation, while gene expression was decreased in genes with high or low promoter methylation. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
DNA methylation analysis reveals distinct methylation signatures in pediatric germ cell tumors.
Amatruda, James F; Ross, Julie A; Christensen, Brock; Fustino, Nicholas J; Chen, Kenneth S; Hooten, Anthony J; Nelson, Heather; Kuriger, Jacquelyn K; Rakheja, Dinesh; Frazier, A Lindsay; Poynter, Jenny N
2013-06-27
Aberrant DNA methylation is a prominent feature of many cancers, and may be especially relevant in germ cell tumors (GCTs) due to the extensive epigenetic reprogramming that occurs in the germ line during normal development. We used the Illumina GoldenGate Cancer Methylation Panel to compare DNA methylation in the three main histologic subtypes of pediatric GCTs (germinoma, teratoma and yolk sac tumor (YST); N = 51) and used recursively partitioned mixture models (RPMM) to test associations between methylation pattern and tumor and demographic characteristics. We identified genes and pathways that were differentially methylated using generalized linear models and Ingenuity Pathway Analysis. We also measured global DNA methylation at LINE1 elements and evaluated methylation at selected imprinted loci using pyrosequencing. Methylation patterns differed by tumor histology, with 18/19 YSTs forming a distinct methylation class. Four pathways showed significant enrichment for YSTs, including a human embryonic stem cell pluripotency pathway. We identified 190 CpG loci with significant methylation differences in mature and immature teratomas (q < 0.05), including a number of CpGs in stem cell and pluripotency-related pathways. Both YST and germinoma showed significantly lower methylation at LINE1 elements compared with normal adjacent tissue while there was no difference between teratoma (mature and immature) and normal tissue. DNA methylation at imprinted loci differed significantly by tumor histology and location. Understanding methylation patterns may identify the developmental stage at which the GCT arose and the at-risk period when environmental exposures could be most harmful. Further, identification of relevant genetic pathways could lead to the development of new targets for therapy.
Li, Yongsheng; Camarillo, Cynthia; Xu, Juan; Arana, Tania Bedard; Xiao, Yun; Zhao, Zheng; Chen, Hong; Ramirez, Mercedes; Zavala, Juan; Escamilla, Michael A.; Armas, Regina; Mendoza, Ricardo; Ontiveros, Alfonso; Nicolini, Humberto; Jerez Magaña, Alvaro Antonio; Rubin, Lewis P.; Li, Xia; Xu, Chun
2015-01-01
Schizophrenia (SZ) and bipolar disorder (BP) are complex genetic disorders. Their appearance is also likely informed by as yet only partially described epigenetic contributions. Using a sequencing-based method for genome-wide analysis, we quantitatively compared the blood DNA methylation landscapes in SZ and BP subjects to control, both in an understudied population, Hispanics along the US-Mexico border. Remarkably, we identified thousands of differentially methylated regions for SZ and BP preferentially located in promoters 3′-UTRs and 5′-UTRs of genes. Distinct patterns of aberrant methylation of promoter sequences were located surrounding transcription start sites. In these instances, aberrant methylation occurred in CpG islands (CGIs) as well as in flanking regions as well as in CGI sparse promoters. Pathway analysis of genes displaying these distinct aberrant promoter methylation patterns showed enhancement of epigenetic changes in numerous genes previously related to psychiatric disorders and neurodevelopment. Integration of gene expression data further suggests that in SZ aberrant promoter methylation is significantly associated with altered gene transcription. In particular, we found significant associations between (1) promoter CGIs hypermethylation with gene repression and (2) CGI 3′-shore hypomethylation with increased gene expression. Finally, we constructed a specific methylation analysis platform that facilitates viewing and comparing aberrant genome methylation in human neuropsychiatric disorders. PMID:25734057
Powrózek, Tomasz; Krawczyk, Paweł; Kuźnar-Kamińska, Barbara; Batura-Gabryel, Halina; Milanowski, Janusz
2016-08-01
Analysis of epigenetic alterations such as methylation of circulating-free DNA (cf-DNA) expression significantly broadened perspectives of lung cancer (LC) screening. Moreover, methylation of tumor suppressor genes may be analyzed with non-invasive manner in patients' blood samples (liquid biopsy), what underline necessity of detailed investigation of tumor cf-DNA. The purpose of current study was to assess methylation of RTEL1 and PCDHGB6 promoter regions in cf-DNA of 70 LC patients and 80 healthy individuals using qMSP-PCR technique. Methylation status of both genes has not been investigated in cf-DNA of LC patients before. PCDHGB6 promoter methylation was found in 41.4% of LC patients and in 1.3% of healthy individuals, whereas promoter of RTEL1 was found methylated in 51.4% of LC patients and in 8.8% of healthy individuals. Combined analysis of two markers improved test sensitivity up to 62.9% and specificity up to 90% with area under the curve (AUC) in receiver operating curve (ROC) of 0.755. The evaluation of RTEL1 and PCDHGB6 promoter methylation may be an useful tool for non-invasive diagnosis of LC in liquid biopsy.
Skillman, Britni; Kerrigan, Sarah
2018-08-01
Suvorexant is a novel drug for the treatment of insomnia that is marketed under the trade name Belsomra®. Unlike other hypnotics, suvorexant is a dual orexin receptor antagonist that is believed to have a lower abuse potential compared to other therapeutics. Although sedative hypnotics feature prominently in forensic toxicology investigations, there have been limited reports that describe the analysis of suvorexant in biological samples. Following a 10-mg oral dose, peak concentrations are typically <200 ng/mL. A highly sensitive assay is required because forensic toxicology laboratories are often required to identify a drug several hours after a single dose. A new analytical procedure for the quantification of suvorexant in whole blood was developed that will aid in the identification of this new drug in forensic toxicology casework. A simple acidic/neutral liquid-liquid extraction (LLE) was used to isolate suvorexant from whole blood followed by liquid chromatography-quadrupole/time of flight (LC-Q/TOF) mass spectrometry analysis using positive electrospray ionization (ESI). The extraction efficiencies of various solvents in blood were evaluated in addition to limit of detection, limit of quantitation, precision, accuracy and bias, calibration model, matrix effects, interferences, and carryover. The recovery of suvorexant was evaluated using four different extraction solvents (N-butyl chloride, ether/toluene (1:1), hexane/ethyl acetate (9:1), and methyl tert-butyl ether (MTBE). Although no significant differences in analytical recovery were observed, N-butyl chloride demonstrated improved reproducibility, efficiency and convenience. A weighted (1/x) quadratic calibration model was selected over a range of 2-200 ng/mL (R 2 = 0.995). Using only 0.5 mL whole blood, limits of detection and quantification were 0.5 ng/mL. Intra-assay (n = 5) and inter-assay (n = 15) precision (% CV) were ≤ 13% and bias ranged from -5 to 2% at concentrations of 5, 50, and 160 ng/mL. Matrix effects were 16% (9% CV) and 15% (8% CV) for 20 ng/mL and 100 ng/mL (n = 20), respectively. No qualitative interferences or carryover were observed; however, a quantitative interference with the internal standard (estazolam-D5) could be attributed to sertraline when present at a 10-fold higher concentration. In the absence of a commercially available deuterated internal standard, the potential for quantitative interferences using LC-based methods are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Investigating the epigenetic effects of a prototype smoke-derived carcinogen in human cells.
Tommasi, Stella; Kim, Sang-in; Zhong, Xueyan; Wu, Xiwei; Pfeifer, Gerd P; Besaratinia, Ahmad
2010-05-12
Global loss of DNA methylation and locus/gene-specific gain of DNA methylation are two distinct hallmarks of carcinogenesis. Aberrant DNA methylation is implicated in smoking-related lung cancer. In this study, we have comprehensively investigated the modulation of DNA methylation consequent to chronic exposure to a prototype smoke-derived carcinogen, benzo[a]pyrene diol epoxide (B[a]PDE), in genomic regions of significance in lung cancer, in normal human cells. We have used a pulldown assay for enrichment of the CpG methylated fraction of cellular DNA combined with microarray platforms, followed by extensive validation through conventional bisulfite-based analysis. Here, we demonstrate strikingly similar patterns of DNA methylation in non-transformed B[a]PDE-treated cells vs control using high-throughput microarray-based DNA methylation profiling confirmed by conventional bisulfite-based DNA methylation analysis. The absence of aberrant DNA methylation in our model system within a timeframe that precedes cellular transformation suggests that following carcinogen exposure, other as yet unknown factors (secondary to carcinogen treatment) may help initiate global loss of DNA methylation and region-specific gain of DNA methylation, which can, in turn, contribute to lung cancer development. Unveiling the initiating events that cause aberrant DNA methylation in lung cancer has tremendous public health relevance, as it can help define future strategies for early detection and prevention of this highly lethal disease.
Investigating the Epigenetic Effects of a Prototype Smoke-Derived Carcinogen in Human Cells
Tommasi, Stella; Kim, Sang-in; Zhong, Xueyan; Wu, Xiwei; Pfeifer, Gerd P.; Besaratinia, Ahmad
2010-01-01
Global loss of DNA methylation and locus/gene-specific gain of DNA methylation are two distinct hallmarks of carcinogenesis. Aberrant DNA methylation is implicated in smoking-related lung cancer. In this study, we have comprehensively investigated the modulation of DNA methylation consequent to chronic exposure to a prototype smoke-derived carcinogen, benzo[a]pyrene diol epoxide (B[a]PDE), in genomic regions of significance in lung cancer, in normal human cells. We have used a pulldown assay for enrichment of the CpG methylated fraction of cellular DNA combined with microarray platforms, followed by extensive validation through conventional bisulfite-based analysis. Here, we demonstrate strikingly similar patterns of DNA methylation in non-transformed B[a]PDE-treated cells vs control using high-throughput microarray-based DNA methylation profiling confirmed by conventional bisulfite-based DNA methylation analysis. The absence of aberrant DNA methylation in our model system within a timeframe that precedes cellular transformation suggests that following carcinogen exposure, other as yet unknown factors (secondary to carcinogen treatment) may help initiate global loss of DNA methylation and region-specific gain of DNA methylation, which can, in turn, contribute to lung cancer development. Unveiling the initiating events that cause aberrant DNA methylation in lung cancer has tremendous public health relevance, as it can help define future strategies for early detection and prevention of this highly lethal disease. PMID:20485678
MMASS: an optimized array-based method for assessing CpG island methylation.
Ibrahim, Ashraf E K; Thorne, Natalie P; Baird, Katie; Barbosa-Morais, Nuno L; Tavaré, Simon; Collins, V Peter; Wyllie, Andrew H; Arends, Mark J; Brenton, James D
2006-01-01
We describe an optimized microarray method for identifying genome-wide CpG island methylation called microarray-based methylation assessment of single samples (MMASS) which directly compares methylated to unmethylated sequences within a single sample. To improve previous methods we used bioinformatic analysis to predict an optimized combination of methylation-sensitive enzymes that had the highest utility for CpG-island probes and different methods to produce unmethylated representations of test DNA for more sensitive detection of differential methylation by hybridization. Subtraction or methylation-dependent digestion with McrBC was used with optimized (MMASS-v2) or previously described (MMASS-v1, MMASS-sub) methylation-sensitive enzyme combinations and compared with a published McrBC method. Comparison was performed using DNA from the cell line HCT116. We show that the distribution of methylation microarray data is inherently skewed and requires exogenous spiked controls for normalization and that analysis of digestion of methylated and unmethylated control sequences together with linear fit models of replicate data showed superior statistical power for the MMASS-v2 method. Comparison with previous methylation data for HCT116 and validation of CpG islands from PXMP4, SFRP2, DCC, RARB and TSEN2 confirmed the accuracy of MMASS-v2 results. The MMASS-v2 method offers improved sensitivity and statistical power for high-throughput microarray identification of differential methylation.
van Alebeek, Gert-Jan W M; Christensen, Tove M I E; Schols, Henk A; Mikkelsen, Jørn D; Voragen, Alphons G J
2002-07-19
A thorough investigation of the mode of action of Aspergillus niger (4M-147) pectin lyase A (PLA) on differently C(6)-substituted oligogalacturonides is described. PLA appeared to be very specific for fully methyl-esterified oligogalacturonides: removal of the methyl-ester or changing the type of ester (ethyl esterification) or transamidation resulted in (almost) complete loss of conversion. The PLA activity increased with increasing length of the substrate up to a degree of polymerization (DP) of 8 indicating the presence of at least eight subsites on the enzyme. Product analysis demonstrated the formation of several Delta 4,5 unsaturated products and their saturated counterparts. The Delta 4,5 unsaturated trimer was the main product up to DP 8. For DP 9 and 10 Delta 4,5 unsaturated tetramer was the major product. Based upon the bond cleavage frequencies, a provisional subsite map was calculated, which supports the presence of eight subsites. By limited alkaline de-esterification of fully methyl-esterified pentamer and hexamer two sets of partially methyl-esterified pentamers (x and y methyl groups) and hexamers (a and b methyl groups) were prepared. Matrix-assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF MS) analysis demonstrated that the methyl-ester distribution was fully random. Using these partially methyl-esterified oligogalacturonides as substrates for PLA a 10-fold decrease in reaction rate was recorded compared with the fully methyl-esterified counterparts. Analysis of the methyl-ester distribution of the products showed that PLA tolerates carboxyl groups in the substrate binding cleft. At either subsite +2, +4, or -1 to -4 a free carboxyl group could be tolerated, whereas methyl-esters were obligatory at subsite +1 and +3. So PLA is capable to cleave the bond between a methyl-esterified and a non-esterified galacturonic acid residue, where the newly formed Delta 4,5 unsaturated non-reducing end residue always contains a methyl-ester.
Single-component supported lipid bilayers probed using broadband nonlinear optics.
Olenick, Laura L; Chase, Hilary M; Fu, Li; Zhang, Yun; McGeachy, Alicia C; Dogangun, Merve; Walter, Stephanie R; Wang, Hong-Fei; Geiger, Franz M
2018-01-31
Broadband SFG spectroscopy is shown to offer considerable advantages over scanning systems in terms of signal-to-noise ratios when probing well-formed single-component supported lipid bilayers formed from zwitterionic lipids with PC headgroups. The SFG spectra obtained from bilayers formed from DOPC, POPC, DLPC, DMPC, DPPC and DSPC show a common peak at ∼2980 cm -1 , which is subject to interference between the C-H and the O-H stretches from the aqueous phase, while membranes having transition temperatures above the laboratory temperature produce SFG spectra with at least two additional peaks, one at ∼2920 cm -1 and another at ∼2880 cm -1 . The results validate spectroscopic and structural data from SFG experiments utilizing asymmetric bilayers in which one leaflet differs from the other in the extent of deuteration. Differences in H 2 O-D 2 O exchange experiments reveal that the lineshapes of the broadband SFG spectra are significantly influenced by interference from OH oscillators in the aqueous phase, even when those oscillators are not probed by the incident infrared light in our broadband setup. In the absence of spectral interference from the OH stretches of the solvent, the alkyl chain terminal methyl group of the bilayer is found to be tilted at an angle of 15° to 35° from the surface normal.
Molecular mechanisms of CRISPR-mediated microbial immunity.
Gasiunas, Giedrius; Sinkunas, Tomas; Siksnys, Virginijus
2014-02-01
Bacteriophages (phages) infect bacteria in order to replicate and burst out of the host, killing the cell, when reproduction is completed. Thus, from a bacterial perspective, phages pose a persistent lethal threat to bacterial populations. Not surprisingly, bacteria evolved multiple defense barriers to interfere with nearly every step of phage life cycles. Phages respond to this selection pressure by counter-evolving their genomes to evade bacterial resistance. The antagonistic interaction between bacteria and rapidly diversifying viruses promotes the evolution and dissemination of bacteriophage-resistance mechanisms in bacteria. Recently, an adaptive microbial immune system, named clustered regularly interspaced short palindromic repeats (CRISPR) and which provides acquired immunity against viruses and plasmids, has been identified. Unlike the restriction–modification anti-phage barrier that subjects to cleavage any foreign DNA lacking a protective methyl-tag in the target site, the CRISPR–Cas systems are invader-specific, adaptive, and heritable. In this review, we focus on the molecular mechanisms of interference/immunity provided by different CRISPR–Cas systems.
Clark, J.R.; Viets, J.G.
1981-01-01
The Methyl isobutyl ketone-Amine synerGistic Iodkte Complex (MAGIC) extraction system offers the advantage that a large number of trace elements can be rapidly determined with a single sample preparation procedure. However, many of the elements extracted by the MAGIC system form volatile organometallic halide salts when the organic extract is heated in the graphite furnace. High concentrations of some elements such as Cu and Zn extracted by the system from anomalous geological samples produce serious interferences when certain other elements are determined by flameless atomic absorption. Stripping systems have been developed using solutions of HNO3, H2SO4, and CH3COOH individually or combined with H2O2 in order to circumvent these problems. With these systems most of the elements in the organic extract can be sequentially stripped into an aqueous phase. Organometallic volatilization and the most serious interelement interferences, therefore, can be eliminated by stripping with various combinations of reagents in a series of steps.
Zheng, Xiaoguo; Li, Zhenhua; Wang, Guishuan; Li, Zhengzheng; Liang, Ajuan; Wang, Hanshu; Dai, Yubing; Huang, Xingxu; Chen, Xuejin; Ma, Yuanwu; Sun, Fei
2017-01-01
DNA methylation is the major focus of studies on paternal epigenetic inheritance in mammals, but most previous studies about inheritable DNA methylation changes are passively induced by environmental factors. However, it is unclear whether the active changes mediated by variations in DNA methyltransferase activity are heritable. Here, we established human-derived DNMT3A (hDNMT3A) transgenic rats to study the effect of hDNMT3A overexpression on the DNA methylation pattern of rat sperm and to investigate whether this actively altered DNA methylation status is inheritable. Our results revealed that hDNMT3A was overexpressed in the testis of transgenic rats and induced genome-wide alterations in the DNA methylation pattern of rat sperm. Among 5438 reliable loci identified with 64 primer-pair combinations using a methylation-sensitive amplification polymorphism method, 28.01% showed altered amplified band types. Among these amplicons altered loci, 68.42% showed an altered DNA methylation status in the offspring of transgenic rats compared with wild-type rats. Further analysis based on loci which had identical DNA methylation status in all three biological replicates revealed that overexpression of hDNMT3A in paternal testis induced hypermethylation in sperm of both genotype-negative and genotype-positive offspring. Among the differentially methylated loci, 34.26% occurred in both positive and negative offspring of transgenic rats, indicating intergenerational inheritance of active DNA methylation changes in the absence of hDNM3A transmission. Furthermore, 75.07% of the inheritable loci were hyper-methylated while the remaining were hypomethylated. Distribution analysis revealed that the DNA methylation variations mainly occurred in introns and intergenic regions. Functional analysis revealed that genes related to differentially methylated loci were involved in a wide range of functions. Finally, this study demonstrated that active DNA methylation changes induced by hDNMT3A expression were intergenerationally inherited by offspring without transmission of the transgene, which provided evidence for the transmission of active endogenous-factors-induced epigenetic variations. PMID:29312436
Identification of Differentially Methylated Sites with Weak Methylation Effects
Tran, Hong; Zhu, Hongxiao; Wu, Xiaowei; Kim, Gunjune; Clarke, Christopher R.; Larose, Hailey; Haak, David C.; Westwood, James H.; Zhang, Liqing
2018-01-01
Deoxyribonucleic acid (DNA) methylation is an epigenetic alteration crucial for regulating stress responses. Identifying large-scale DNA methylation at single nucleotide resolution is made possible by whole genome bisulfite sequencing. An essential task following the generation of bisulfite sequencing data is to detect differentially methylated cytosines (DMCs) among treatments. Most statistical methods for DMC detection do not consider the dependency of methylation patterns across the genome, thus possibly inflating type I error. Furthermore, small sample sizes and weak methylation effects among different phenotype categories make it difficult for these statistical methods to accurately detect DMCs. To address these issues, the wavelet-based functional mixed model (WFMM) was introduced to detect DMCs. To further examine the performance of WFMM in detecting weak differential methylation events, we used both simulated and empirical data and compare WFMM performance to a popular DMC detection tool methylKit. Analyses of simulated data that replicated the effects of the herbicide glyphosate on DNA methylation in Arabidopsis thaliana show that WFMM results in higher sensitivity and specificity in detecting DMCs compared to methylKit, especially when the methylation differences among phenotype groups are small. Moreover, the performance of WFMM is robust with respect to small sample sizes, making it particularly attractive considering the current high costs of bisulfite sequencing. Analysis of empirical Arabidopsis thaliana data under varying glyphosate dosages, and the analysis of monozygotic (MZ) twins who have different pain sensitivities—both datasets have weak methylation effects of <1%—show that WFMM can identify more relevant DMCs related to the phenotype of interest than methylKit. Differentially methylated regions (DMRs) are genomic regions with different DNA methylation status across biological samples. DMRs and DMCs are essentially the same concepts, with the only difference being how methylation information across the genome is summarized. If methylation levels are determined by grouping neighboring cytosine sites, then they are DMRs; if methylation levels are calculated based on single cytosines, they are DMCs. PMID:29419727
Harazono, Akira; Kobayashi, Tetsu; Kawasaki, Nana; Itoh, Satsuki; Tada, Minoru; Hashii, Noritaka; Ishii, Akiko; Arato, Teruyo; Yanagihara, Shigehiro; Yagi, Yuki; Koga, Akiko; Tsuda, Yuriko; Kimura, Mikiko; Sakita, Masashi; Kitamura, Satoshi; Yamaguchi, Hideto; Mimura, Hisashi; Murata, Yoshimi; Hamazume, Yasuki; Sato, Takayuki; Natsuka, Shunji; Kakehi, Kazuaki; Kinoshita, Mitsuhiro; Watanabe, Sakie; Yamaguchi, Teruhide
2011-05-01
The various monosaccharide composition analysis methods were evaluated as monosaccharide test for glycoprotein-based pharmaceuticals. Neutral and amino sugars were released by hydrolysis with 4-7N trifluoroacetic acid. The monosaccharides were N-acetylated if necessary, and analyzed by high-performance liquid chromatography (HPLC) with fluorometric or UV detection after derivatization with 2-aminopyridine, ethyl 4-aminobenzoate, 2-aminobenzoic acid or 1-phenyl-3-methyl-5-pyrazolone, or high pH anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Sialic acids were released by mild acid hydrolysis or sialidase digestion, and analyzed by HPLC with fluorometric detection after derivatization with 1,2-diamino-4,5-methylenedioxybenzene, or HPAEC-PAD. These methods were verified for resolution, linearity, repeatability, and accuracy using a monosaccharide standard solution, a mixture of epoetin alfa and beta, and alteplase as models. It was confirmed that those methods were useful for ensuring the consistency of glycosylation. It is considered essential that the analytical conditions including desalting, selection of internal standards, release of monosaccharides, and gradient time course should be determined carefully to eliminate interference of sample matrix. Various HPLC-based monosaccharide analysis methods were evaluated as a carbohydrate test for glycoprotein pharmaceuticals by an inter-laboratory study. Copyright © 2011 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
The Relations Among Inhibition and Interference Control Functions: A Latent-Variable Analysis
ERIC Educational Resources Information Center
Friedman, Naomi P.; Miyake, Akira
2004-01-01
This study used data from 220 adults to examine the relations among 3 inhibition-related functions. Confirmatory factor analysis suggested that Prepotent Response Inhibition and Resistance to Distractor Interference were closely related, but both were unrelated to Resistance to Proactive Interference. Structural equation modeling, which combined…
Rijlaarsdam, Jolien; Pappa, Irene; Walton, Esther; Bakermans-Kranenburg, Marian J.; Mileva-Seitz, Viara R.; Rippe, Ralph C.A.; Roza, Sabine J.; Jaddoe, Vincent W.V.; Verhulst, Frank C.; Felix, Janine F.; Cecil, Charlotte A.M.; Relton, Caroline L.; Gaunt, Tom R.; McArdle, Wendy; Mill, Jonathan; Barker, Edward D.; Tiemeier, Henning; van IJzendoorn, Marinus H.
2016-01-01
ABSTRACT Prenatal maternal stress exposure has been associated with neonatal differential DNA methylation. However, the available evidence in humans is largely based on candidate gene methylation studies, where only a few CpG sites were evaluated. The aim of this study was to examine the association between prenatal exposure to maternal stress and offspring genome-wide cord blood methylation using different methods. First, we conducted a meta-analysis and follow-up pathway analyses. Second, we used novel region discovery methods [i.e., differentially methylated regions (DMRs) analyses]. To this end, we used data from two independent population-based studies, the Generation R Study (n = 912) and the Avon Longitudinal Study of Parents and Children (ALSPAC, n = 828), to (i) measure genome-wide DNA methylation in cord blood and (ii) extract a prenatal maternal stress composite. The meta-analysis (ntotal = 1,740) revealed no epigenome-wide (meta P <1.00e-07) associations of prenatal maternal stress exposure with neonatal differential DNA methylation. Follow-up analyses of the top hits derived from our epigenome-wide meta-analysis (meta P <1.00e-04) indicated an over-representation of the methyltransferase activity pathway. We identified no Bonferroni-corrected (P <1.00e-06) DMRs associated with prenatal maternal stress exposure. Combining data from two independent population-based samples in an epigenome-wide meta-analysis, the current study indicates that there are no large effects of prenatal maternal stress exposure on neonatal DNA methylation. Such replication efforts are essential in the search for robust associations, whether derived from candidate gene methylation or epigenome-wide studies. PMID:26889969
Li, Zibo; Heng, Jianfu; Yan, Jinhua; Guo, Xinwu; Tang, Lili; Chen, Ming; Peng, Limin; Wu, Yepeng; Wang, Shouman; Xiao, Zhi; Deng, Zhongping; Dai, Lizhong; Wang, Jun
2016-11-01
Gene-specific methylation and expression have shown biological and clinical importance for breast cancer diagnosis and prognosis. Integrated analysis of gene methylation and gene expression may identify genes associated with biology mechanism and clinical outcome of breast cancer and aid in clinical management. Using high-throughput microfluidic quantitative PCR, we analyzed the expression profiles of 48 candidate genes in 96 Chinese breast cancer patients and investigated their correlation with gene methylation and associations with breast cancer clinical parameters. Breast cancer-specific gene expression alternation was found in 25 genes with significant expression difference between paired tumor and normal tissues. A total of 9 genes (CCND2, EGFR, GSTP1, PGR, PTGS2, RECK, SOX17, TNFRSF10D, and WIF1) showed significant negative correlation between methylation and gene expression, which were validated in the TCGA database. Total 23 genes (ACADL, APC, BRCA2, CADM1, CAV1, CCND2, CST6, EGFR, ESR2, GSTP1, ICAM5, NPY, PGR, PTGS2, RECK, RUNX3, SFRP1, SOX17, SYK, TGFBR2, TNFRSF10D, WIF1, and WRN) annotated with potential TFBSs in the promoter regions showed negative correlation between methylation and expression. In logistics regression analysis, 31 of the 48 genes showed improved performance in disease prediction with combination of methylation and expression coefficient. Our results demonstrated the complex correlation and the possible regulatory mechanisms between DNA methylation and gene expression. Integration analysis of methylation and expression of candidate genes could improve performance in breast cancer prediction. These findings would contribute to molecular characterization and identification of biomarkers for potential clinical applications.
NASA Astrophysics Data System (ADS)
Treadaway, Victoria; Heikes, Brian G.; McNeill, Ashley S.; Silwal, Indira K. C.; O'Sullivan, Daniel W.
2018-04-01
A chemical ionization mass spectrometry (CIMS) method utilizing a reagent gas mixture of O2, CO2, and CH3I in N2 is described and optimized for quantitative gas-phase measurements of hydrogen peroxide (H2O2), methyl peroxide (CH3OOH), formic acid (HCOOH), and the sum of acetic acid (CH3COOH) and hydroxyacetaldehyde (HOCH2CHO; also known as glycolaldehyde). The instrumentation and methodology were designed for airborne in situ field measurements. The CIMS quantification of formic acid, acetic acid, and hydroxyacetaldehyde used I- cluster formation to produce and detect the ion clusters I-(HCOOH), I-(CH3COOH), and I-(HOCH2CHO), respectively. The CIMS also produced and detected I- clusters with hydrogen peroxide and methyl peroxide, I-(H2O2) and I-(CH3OOH), though the sensitivity was lower than with the O2- (CO2) and O2- ion clusters, respectively. For that reason, while the I- peroxide clusters are presented, the focus is on the organic acids. Acetic acid and hydroxyacetaldehyde were found to yield equivalent CIMS responses. They are exact isobaric compounds and indistinguishable in the CIMS used. Consequently, their combined signal is referred to as the acetic acid equivalent sum
. Within the resolution of the quadrupole used in the CIMS (1 m/z), ethanol and 1- and 2-propanol were potential isobaric interferences to the measurement of formic acid and the acetic acid equivalent sum, respectively. The CIMS response to ethanol was 3.3 % that of formic acid and the response to either 1- or 2-propanol was 1 % of the acetic acid response; therefore, the alcohols were not considered to be significant interferences to formic acid or the acetic acid equivalent sum. The multi-reagent ion system was successfully deployed during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) in 2014. The combination of FRAPPÉ and laboratory calibrations allowed for the post-mission quantification of formic acid and the acetic acid equivalent sum observed during the Deep Convective Clouds and Chemistry Experiment in 2012.
2008-03-01
overcomes bias in bisulfite PCR methylation analysis. Biotechniques, 42: 48, 50, 52 passim, 2007. 46. Warnecke, P. M., Stirzaker, C., Melki , J. R...overcomes bias in bisulfite PCR methylation analysis. Biotechniques 2007;42:48, 50, 2 passim. 36. Warnecke PM, Stirzaker C, Melki JR, Millar DS, Paul CL
DNA methylome signature in rheumatoid arthritis.
Nakano, Kazuhisa; Whitaker, John W; Boyle, David L; Wang, Wei; Firestein, Gary S
2013-01-01
Epigenetics can influence disease susceptibility and severity. While DNA methylation of individual genes has been explored in autoimmunity, no unbiased systematic analyses have been reported. Therefore, a genome-wide evaluation of DNA methylation loci in fibroblast-like synoviocytes (FLS) isolated from the site of disease in rheumatoid arthritis (RA) was performed. Genomic DNA was isolated from six RA and five osteoarthritis (OA) FLS lines and evaluated using the Illumina HumanMethylation450 chip. Cluster analysis of data was performed and corrected using Benjamini-Hochberg adjustment for multiple comparisons. Methylation was confirmed by pyrosequencing and gene expression was determined by qPCR. Pathway analysis was performed using the Kyoto Encyclopedia of Genes and Genomes. RA and control FLS segregated based on DNA methylation, with 1859 differentially methylated loci. Hypomethylated loci were identified in key genes relevant to RA, such as CHI3L1, CASP1, STAT3, MAP3K5, MEFV and WISP3. Hypermethylation was also observed, including TGFBR2 and FOXO1. Hypomethylation of individual genes was associated with increased gene expression. Grouped analysis identified 207 hypermethylated or hypomethylated genes with multiple differentially methylated loci, including COL1A1, MEFV and TNF. Hypomethylation was increased in multiple pathways related to cell migration, including focal adhesion, cell adhesion, transendothelial migration and extracellular matrix interactions. Confirmatory studies with OA and normal FLS also demonstrated segregation of RA from control FLS based on methylation pattern. Differentially methylated genes could alter FLS gene expression and contribute to the pathogenesis of RA. DNA methylation of critical genes suggests that RA FLS are imprinted and implicate epigenetic contributions to inflammatory arthritis.
In Vivo Control of CpG and Non-CpG DNA Methylation by DNA Methyltransferases
Arand, Julia; Spieler, David; Karius, Tommy; Branco, Miguel R.; Meilinger, Daniela; Meissner, Alexander; Jenuwein, Thomas; Xu, Guoliang; Leonhardt, Heinrich; Wolf, Verena; Walter, Jörn
2012-01-01
The enzymatic control of the setting and maintenance of symmetric and non-symmetric DNA methylation patterns in a particular genome context is not well understood. Here, we describe a comprehensive analysis of DNA methylation patterns generated by high resolution sequencing of hairpin-bisulfite amplicons of selected single copy genes and repetitive elements (LINE1, B1, IAP-LTR-retrotransposons, and major satellites). The analysis unambiguously identifies a substantial amount of regional incomplete methylation maintenance, i.e. hemimethylated CpG positions, with variant degrees among cell types. Moreover, non-CpG cytosine methylation is confined to ESCs and exclusively catalysed by Dnmt3a and Dnmt3b. This sequence position–, cell type–, and region-dependent non-CpG methylation is strongly linked to neighboring CpG methylation and requires the presence of Dnmt3L. The generation of a comprehensive data set of 146,000 CpG dyads was used to apply and develop parameter estimated hidden Markov models (HMM) to calculate the relative contribution of DNA methyltransferases (Dnmts) for de novo and maintenance DNA methylation. The comparative modelling included wild-type ESCs and mutant ESCs deficient for Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3a/3b, respectively. The HMM analysis identifies a considerable de novo methylation activity for Dnmt1 at certain repetitive elements and single copy sequences. Dnmt3a and Dnmt3b contribute de novo function. However, both enzymes are also essential to maintain symmetrical CpG methylation at distinct repetitive and single copy sequences in ESCs. PMID:22761581
NASA Astrophysics Data System (ADS)
Heikes, Brian G.; Treadaway, Victoria; McNeill, Ashley S.; Silwal, Indira K. C.; O'Sullivan, Daniel W.
2018-04-01
An ion-neutral chemical kinetic model is described and used to simulate the negative ion chemistry occurring within a mixed-reagent ion chemical ionization mass spectrometer (CIMS). The model objective was the establishment of a theoretical basis to understand ambient pressure (variable sample flow and reagent ion carrier gas flow rates), water vapor, ozone and oxides of nitrogen effects on ion cluster sensitivities for hydrogen peroxide (H2O2), methyl peroxide (CH3OOH), formic acid (HFo) and acetic acid (HAc). The model development started with established atmospheric ion chemistry mechanisms, thermodynamic data and reaction rate coefficients. The chemical mechanism was augmented with additional reactions and their reaction rate coefficients specific to the analytes. Some existing reaction rate coefficients were modified to enable the model to match laboratory and field campaign determinations of ion cluster sensitivities as functions of CIMS sample flow rate and ambient humidity. Relative trends in predicted and observed sensitivities are compared as instrument specific factors preclude a direct calculation of instrument sensitivity as a function of sample pressure and humidity. Predicted sensitivity trends and experimental sensitivity trends suggested the model captured the reagent ion and cluster chemistry and reproduced trends in ion cluster sensitivity with sample flow and humidity observed with a CIMS instrument developed for atmospheric peroxide measurements (PCIMSs). The model was further used to investigate the potential for isobaric compounds as interferences in the measurement of the above species. For ambient O3 mixing ratios more than 50 times those of H2O2, O3-(H2O) was predicted to be a significant isobaric interference to the measurement of H2O2 using O2-(H2O2) at m/z 66. O3 and NO give rise to species and cluster ions, CO3-(H2O) and NO3-(H2O), respectively, which interfere in the measurement of CH3OOH using O2-(CH3OOH) at m/z 80. The CO3-(H2O) interference assumed one of its O atoms was 18O and present in the cluster in proportion to its natural abundance. The model results indicated monitoring water vapor mixing ratio, m/z 78 for CO3-(H2O) and m/z 98 for isotopic CO3-(H2O)2 can be used to determine when CO3-(H2O) interference is significant. Similarly, monitoring water vapor mixing ratio, m/z 62 for NO3- and m/z 98 for NO3-(H2O)2 can be used to determine when NO3-(H2O) interference is significant.
Scala, Giovanni; Affinito, Ornella; Palumbo, Domenico; Florio, Ermanno; Monticelli, Antonella; Miele, Gennaro; Chiariotti, Lorenzo; Cocozza, Sergio
2016-11-25
CpG sites in an individual molecule may exist in a binary state (methylated or unmethylated) and each individual DNA molecule, containing a certain number of CpGs, is a combination of these states defining an epihaplotype. Classic quantification based approaches to study DNA methylation are intrinsically unable to fully represent the complexity of the underlying methylation substrate. Epihaplotype based approaches, on the other hand, allow methylation profiles of cell populations to be studied at the single molecule level. For such investigations, next-generation sequencing techniques can be used, both for quantitative and for epihaplotype analysis. Currently available tools for methylation analysis lack output formats that explicitly report CpG methylation profiles at the single molecule level and that have suited statistical tools for their interpretation. Here we present ampliMethProfiler, a python-based pipeline for the extraction and statistical epihaplotype analysis of amplicons from targeted deep bisulfite sequencing of multiple DNA regions. ampliMethProfiler tool provides an easy and user friendly way to extract and analyze the epihaplotype composition of reads from targeted bisulfite sequencing experiments. ampliMethProfiler is written in python language and requires a local installation of BLAST and (optionally) QIIME tools. It can be run on Linux and OS X platforms. The software is open source and freely available at http://amplimethprofiler.sourceforge.net .
Gim, Jeong-An; Hong, Chang Pyo; Kim, Dae-Soo; Moon, Jae-Woo; Choi, Yuri; Eo, Jungwoo; Kwon, Yun-Jeong; Lee, Ja-Rang; Jung, Yi-Deun; Bae, Jin-Han; Choi, Bong-Hwan; Ko, Junsu; Song, Sanghoon; Ahn, Kung; Ha, Hong-Seok; Yang, Young Mok; Lee, Hak-Kyo; Park, Kyung-Do; Do, Kyoung-Tag; Han, Kyudong; Yi, Joo Mi; Cha, Hee-Jae; Ayarpadikannan, Selvam; Cho, Byung-Wook; Bhak, Jong; Kim, Heui-Soo
2015-01-01
Athletic performance is an important criteria used for the selection of superior horses. However, little is known about exercise-related epigenetic processes in the horse. DNA methylation is a key mechanism for regulating gene expression in response to environmental changes. We carried out comparative genomic analysis of genome-wide DNA methylation profiles in the blood samples of two different thoroughbred horses before and after exercise by methylated-DNA immunoprecipitation sequencing (MeDIP-Seq). Differentially methylated regions (DMRs) in the pre-and post-exercise blood samples of superior and inferior horses were identified. Exercise altered the methylation patterns. After 30 min of exercise, 596 genes were hypomethylated and 715 genes were hypermethylated in the superior horse, whereas in the inferior horse, 868 genes were hypomethylated and 794 genes were hypermethylated. These genes were analyzed based on gene ontology (GO) annotations and the exercise-related pathway patterns in the two horses were compared. After exercise, gene regions related to cell division and adhesion were hypermethylated in the superior horse, whereas regions related to cell signaling and transport were hypermethylated in the inferior horse. Analysis of the distribution of methylated CpG islands confirmed the hypomethylation in the gene-body methylation regions after exercise. The methylation patterns of transposable elements also changed after exercise. Long interspersed nuclear elements (LINEs) showed abundance of DMRs. Collectively, our results serve as a basis to study exercise-based reprogramming of epigenetic traits. PMID:25666347
[Novel Approaches in DNA Methylation Studies - MS-HRM Analysis and Electrochemistry].
Bartošík, M; Ondroušková, E
Cytosine methylation in DNA is an epigenetic mechanism regulating gene expression and plays a vital role in cell differentiation or proliferation. Tumor cells often exhibit aberrant DNA methylation, e.g. hypermethylation of tumor suppressor gene promoters. New methods, capable of determining methylation status of specific DNA sequences, are thus being developed. Among them, MS-HRM (methylation-specific high resolution melting) and electrochemistry offer relatively inexpensive instrumentation, fast assay times and possibility of screening multiple samples/DNA regions simultaneously. MS-HRM is due to its sensitivity and simplicity an interesting alternative to already established techniques, including methylation-specific PCR or bisulfite sequencing. Electrochemistry, when combined with suitable electroactive labels and electrode surfaces, has been applied in several unique strategies for discrimination of cytosines and methylcytosines. Both techniques were successfully tested in analysis of DNA methylation within promoters of important tumor suppressor genes and could thus help in achieving more precise diagnostics and prognostics of cancer. Aberrant methylation of promoters has already been described in hundreds of genes associated with tumorigenesis and could serve as important biomarker if new methods applicable into clinical practice are sufficiently advanced.Key words: DNA methylation - 5-methylcytosine - HRM analysis - melting temperature - DNA duplex - electrochemistry - nucleic acid hybridizationThis work was supported by MEYS - NPS I - LO1413.The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.Submitted: 6. 5. 2016Accepted: 16. 5. 2016.
Alonso, Conchita; Pérez, Ricardo; Bazaga, Pilar; Medrano, Mónica; Herrera, Carlos M
2016-01-01
Methylation of DNA cytosines affects whether transposons are silenced and genes are expressed, and is a major epigenetic mechanism whereby plants respond to environmental change. Analyses of methylation-sensitive amplification polymorphism (MS-AFLP or MSAP) have been often used to assess methyl-cytosine changes in response to stress treatments and, more recently, in ecological studies of wild plant populations. MSAP technique does not require a sequenced reference genome and provides many anonymous loci randomly distributed over the genome for which the methylation status can be ascertained. Scoring of MSAP data, however, is not straightforward, and efforts are still required to standardize this step to make use of the potential to distinguish between methylation at different nucleotide contexts. Furthermore, it is not known how accurately MSAP infers genome-wide cytosine methylation levels in plants. Here, we analyse the relationship between MSAP results and the percentage of global cytosine methylation in genomic DNA obtained by HPLC analysis. A screening of literature revealed that methylation of cytosines at cleavage sites assayed by MSAP was greater than genome-wide estimates obtained by HPLC, and percentages of methylation at different nucleotide contexts varied within and across species. Concurrent HPLC and MSAP analyses of DNA from 200 individuals of the perennial herb Helleborus foetidus confirmed that methyl-cytosine was more frequent in CCGG contexts than in the genome as a whole. In this species, global methylation was unrelated to methylation at the inner CG site. We suggest that global HPLC and context-specific MSAP methylation estimates provide complementary information whose combination can improve our current understanding of methylation-based epigenetic processes in nonmodel plants. © 2015 John Wiley & Sons Ltd.
Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP).
Yaish, Mahmoud W; Peng, Mingsheng; Rothstein, Steven J
2014-01-01
DNA methylation is a crucial epigenetic process which helps control gene transcription activity in eukaryotes. Information regarding the methylation status of a regulatory sequence of a particular gene provides important knowledge of this transcriptional control. DNA methylation can be detected using several methods, including sodium bisulfite sequencing and restriction digestion using methylation-sensitive endonucleases. Methyl-Sensitive Amplification Polymorphism (MSAP) is a technique used to study the global DNA methylation status of an organism and hence to distinguish between two individuals based on the DNA methylation status determined by the differential digestion pattern. Therefore, this technique is a useful method for DNA methylation mapping and positional cloning of differentially methylated genes. In this technique, genomic DNA is first digested with a methylation-sensitive restriction enzyme such as HpaII, and then the DNA fragments are ligated to adaptors in order to facilitate their amplification. Digestion using a methylation-insensitive isoschizomer of HpaII, MspI is used in a parallel digestion reaction as a loading control in the experiment. Subsequently, these fragments are selectively amplified by fluorescently labeled primers. PCR products from different individuals are compared, and once an interesting polymorphic locus is recognized, the desired DNA fragment can be isolated from a denaturing polyacrylamide gel, sequenced and identified based on DNA sequence similarity to other sequences available in the database. We will use analysis of met1, ddm1, and atmbd9 mutants and wild-type plants treated with a cytidine analogue, 5-azaC, or zebularine to demonstrate how to assess the genetic modulation of DNA methylation in Arabidopsis. It should be noted that despite the fact that MSAP is a reliable technique used to fish for polymorphic methylated loci, its power is limited to the restriction recognition sites of the enzymes used in the genomic DNA digestion.
Profile analysis and prediction of tissue-specific CpG island methylation classes
2009-01-01
Background The computational prediction of DNA methylation has become an important topic in the recent years due to its role in the epigenetic control of normal and cancer-related processes. While previous prediction approaches focused merely on differences between methylated and unmethylated DNA sequences, recent experimental results have shown the presence of much more complex patterns of methylation across tissues and time in the human genome. These patterns are only partially described by a binary model of DNA methylation. In this work we propose a novel approach, based on profile analysis of tissue-specific methylation that uncovers significant differences in the sequences of CpG islands (CGIs) that predispose them to a tissue- specific methylation pattern. Results We defined CGI methylation profiles that separate not only between constitutively methylated and unmethylated CGIs, but also identify CGIs showing a differential degree of methylation across tissues and cell-types or a lack of methylation exclusively in sperm. These profiles are clearly distinguished by a number of CGI attributes including their evolutionary conservation, their significance, as well as the evolutionary evidence of prior methylation. Additionally, we assess profile functionality with respect to the different compartments of protein coding genes and their possible use in the prediction of DNA methylation. Conclusion Our approach provides new insights into the biological features that determine if a CGI has a functional role in the epigenetic control of gene expression and the features associated with CGI methylation susceptibility. Moreover, we show that the ability to predict CGI methylation is based primarily on the quality of the biological information used and the relationships uncovered between different sources of knowledge. The strategy presented here is able to predict, besides the constitutively methylated and unmethylated classes, two more tissue specific methylation classes conserving the accuracy provided by leading binary methylation classification methods. PMID:19383127
Electrochemical biosensing strategies for DNA methylation analysis.
Hossain, Tanvir; Mahmudunnabi, Golam; Masud, Mostafa Kamal; Islam, Md Nazmul; Ooi, Lezanne; Konstantinov, Konstantin; Hossain, Md Shahriar Al; Martinac, Boris; Alici, Gursel; Nguyen, Nam-Trung; Shiddiky, Muhammad J A
2017-08-15
DNA methylation is one of the key epigenetic modifications of DNA that results from the enzymatic addition of a methyl group at the fifth carbon of the cytosine base. It plays a crucial role in cellular development, genomic stability and gene expression. Aberrant DNA methylation is responsible for the pathogenesis of many diseases including cancers. Over the past several decades, many methodologies have been developed to detect DNA methylation. These methodologies range from classical molecular biology and optical approaches, such as bisulfite sequencing, microarrays, quantitative real-time PCR, colorimetry, Raman spectroscopy to the more recent electrochemical approaches. Among these, electrochemical approaches offer sensitive, simple, specific, rapid, and cost-effective analysis of DNA methylation. Additionally, electrochemical methods are highly amenable to miniaturization and possess the potential to be multiplexed. In recent years, several reviews have provided information on the detection strategies of DNA methylation. However, to date, there is no comprehensive evaluation of electrochemical DNA methylation detection strategies. Herein, we address the recent developments of electrochemical DNA methylation detection approaches. Furthermore, we highlight the major technical and biological challenges involved in these strategies and provide suggestions for the future direction of this important field. Copyright © 2017 Elsevier B.V. All rights reserved.
Pedigree data analysis with crossover interference.
Browning, Sharon
2003-01-01
We propose a new method for calculating probabilities for pedigree genetic data that incorporates crossover interference using the chi-square models. Applications include relationship inference, genetic map construction, and linkage analysis. The method is based on importance sampling of unobserved inheritance patterns conditional on the observed genotype data and takes advantage of fast algorithms for no-interference models while using reweighting to allow for interference. We show that the method is effective for arbitrarily many markers with small pedigrees. PMID:12930760
Lott, Kaylen; Li, Jun; Fisk, John C.; Wang, Hao; Aletta, John M.; Qu, Jun; Read, Laurie K.
2013-01-01
Arginine methylation is a common posttranslational modification with reported functions in transcription, RNA processing and translation, and DNA repair. Trypanosomes encode five protein arginine methyltransferases, suggesting that arginine methylation exerts widespread impacts on the biology of these organisms. Here, we performed a global proteomic analysis of T. brucei to identify arginine methylated proteins and their sites of modification. Using an approach entailing two-dimensional chromatographic separation, and alternating electron transfer dissociation and collision induced dissociation, we identified 1332 methylarginines in 676 proteins. The resulting data set represents the largest compilation of arginine methylated proteins in any organism to date. Functional classification revealed numerous arginine methylated proteins involved in flagellar function, RNA metabolism, DNA replication and repair, and intracellular protein trafficking. Thus, arginine methylation has the potential to impact aspects of T. brucei gene expression, cell biology, and pathogenesis. Interestingly, pathways with known methylated proteins in higher eukaryotes were identified in this study, but often different components of the pathway were methylated in trypanosomes. Methylarginines were often identified in glycine rich contexts, although exceptions to this rule were detected. Collectively, these data inform on a multitude of aspects of trypanosome biology and serve as a guide for the identification of homologous arginine methylated proteins in higher eukaryotes. PMID:23872088
Association between H3K4 methylation and cancer prognosis: A meta-analysis.
Li, Simin; Shen, Luyan; Chen, Ke-Neng
2018-05-08
Histone H3 lysine 4 methylation (H3K4 methylation), including mono-methylation (H3K4me1), di-methylation (H3K4me2), or tri-methylation (H3K4me3), is one of the epigenetic modifications to histone proteins, which are related to the transcriptional activation of genes. H3K4 methylation has both tumor inhibiting and promoting effects, and the prognostic value of H3K4 methylation in cancer remains controversial. Therefore, we performed a systematic review and meta-analysis to examine the association between H3K4 methylation and cancer prognosis. A comprehensive search of PubMed, Web of Science, ScienceDirect, Embase, and Ovid databases was conducted to identify studies investigating the association between H3K4 methylation and prognosis of patients with malignant tumors. The data and characteristics of each study were extracted, and the hazard ratio (HR) at a 95% confidence interval (CI) was calculated to estimate the effect. A total of 1474 patients in 10 studies were enrolled in this meta-analysis. The pooled HR of 1.52 (95% CI 1.02-2.26) indicated that patients with a lower level of H3K4me2 expression were expected to have shorter overall survival, while the pooled HR of 0.45 (95% CI 0.27-0.74) indicated that patients with a lower level of H3K4me3 expression were expected to have longer overall survival. This meta-analysis indicates that increased H3K4me3 expression and decreased H3K4me2 expression might be predictive factors of poor prognosis in cancer. Further large cohort studies are needed to confirm these findings. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
DNA Methylation and BMI: Investigating Identified Methylation Sites at HIF3A in a Causal Framework
Richmond, Rebecca C.; Ward, Mary E.; Fraser, Abigail; Lyttleton, Oliver; McArdle, Wendy L.; Ring, Susan M.; Gaunt, Tom R.; Lawlor, Debbie A.; Davey Smith, George; Relton, Caroline L.
2016-01-01
Multiple differentially methylated sites and regions associated with adiposity have now been identified in large-scale cross-sectional studies. We tested for replication of associations between previously identified CpG sites at HIF3A and adiposity in ∼1,000 mother-offspring pairs from the Avon Longitudinal Study of Parents and Children (ALSPAC). Availability of methylation and adiposity measures at multiple time points, as well as genetic data, allowed us to assess the temporal associations between adiposity and methylation and to make inferences regarding causality and directionality. Overall, our results were discordant with those expected if HIF3A methylation has a causal effect on BMI and provided more evidence for causality in the reverse direction (i.e., an effect of BMI on HIF3A methylation). These results are based on robust evidence from longitudinal analyses and were also partially supported by Mendelian randomization analysis, although this latter analysis was underpowered to detect a causal effect of BMI on HIF3A methylation. Our results also highlight an apparent long-lasting intergenerational influence of maternal BMI on offspring methylation at this locus, which may confound associations between own adiposity and HIF3A methylation. Further work is required to replicate and uncover the mechanisms underlying the direct and intergenerational effect of adiposity on DNA methylation. PMID:26861784
Kuo, Lu-Ting; Lu, Hsueh-Yi; Lee, Chien-Chang; Tsai, Jui-Chang; Lai, Hong-Shiee; Tseng, Ham-Min; Kuo, Meng-Fai; Tu, Yong-Kwang
2016-08-01
Aberrant methylation has been associated with transcriptional inactivation of tumor-related genes in a wide spectrum of human neoplasms. The influence of DNA methylation in oligodendroglial tumors is not fully understood. Genomic DNA was isolated from 61 oligodendroglial tumors for analysis of methylation using methylation-specific multiplex ligation-dependent probe amplification assay (MS-MLPA). We correlated methylation status with clinicopathological findings and outcome. The genes found to be most frequently methylated in oligodendroglial tumors were RASSF1A (80.3%), CASP8 (70.5%), and CDKN2A (52.5%). Kaplan-Meier survival curve analysis demonstrated longer duration of progression-free survival in patients with 19q loss, aged less than 38 years, and with a proliferative index of less than 5%. Methylation of the ESR1 promoter is significantly associated with shorter duration of overall survival and progression-free survival, and that methylation of IGSF4 and RASSF1A is significantly associated with shorter duration of progression-free survival. However, none of the methylation status of ESR1, IGSF4, and RASSF1A was of prognostic value for survival in a multivariate Cox model. A number of novel and interesting epigenetic alterations were identified in this study. The findings highlight the importance of methylation profiles in oligodendroglial tumors and their possible involvement in tumorigenesis. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
The relationship between promoter methylation of p16 gene and bladder cancer risk: a meta-analysis
Qi, Defeng; Li, Jinhui; Jiang, Mei; Liu, Chenli; Hu, Yuan; Li, Mengxi; Su, Jialin; Que, Biao; Ji, Weidong
2015-01-01
Purpose: Many scientific evidences suggested that the methylation of p16INK4a (p16) was associated with bladder cancer, but some existing studies have yielded inconclusive results about the relationship between p16 promoter methylation and pathological features or the tumor grade of bladder cancer. This meta-analysis of studies aims to evaluate the clinical and prognostic significance of p16 methylation in bladder carcinogenesis. Methods: Studies were systemically searched via PubMed and Google Scholar in English up to Sept 2015 and a total of ten appropriate studies (693 cases and 290 controls) with an average NOS score of 6.8 were included. The quality of the appropriate studies was measured by the Newcastle-Ottawa Scale (NOS) assessment. Results: The meta-analysis results revealed that the methylation state of p16 was statistically significantly associated with an increased risk of bladder cancer (OR=6.71, 95% CI=3.79-11.87) compared to control, and there is no statistically significantly association between the p16 methylation and the tumor pTNM staging (OR=0.59, 95% CI=0.22-1.60) or the tumor grade (OR=1.01, 95% CI=0.52-1.94) in p16 methylated patients compared to unmethylated patients. Conclusions: our meta-analysis indicates that p16 promoter methylation may be a promising biomarker for the diagnosis of bladder cancer and the inactivation of p16 may be an early event in bladder carcinogenesis. More studies with larger numbers of participants worldwide are needed to further identify the obvious association above. PMID:26884993
Toward a comprehensive and systematic methylome signature in colorectal cancers.
Ashktorab, Hassan; Rahi, Hamed; Wansley, Daniel; Varma, Sudhir; Shokrani, Babak; Lee, Edward; Daremipouran, Mohammad; Laiyemo, Adeyinka; Goel, Ajay; Carethers, John M; Brim, Hassan
2013-08-01
CpG Island Methylator Phenotype (CIMP) is one of the underlying mechanisms in colorectal cancer (CRC). This study aimed to define a methylome signature in CRC through a methylation microarray analysis and a compilation of promising CIMP markers from the literature. Illumina HumanMethylation27 (IHM27) array data was generated and analyzed based on statistical differences in methylation data (1st approach) or based on overall differences in methylation percentages using lower 95% CI (2nd approach). Pyrosequencing was performed for the validation of nine genes. A meta-analysis was used to identify CIMP and non-CIMP markers that were hypermethylated in CRC but did not yet make it to the CIMP genes' list. Our 1st approach for array data analysis demonstrated the limitations in selecting genes for further validation, highlighting the need for the 2nd bioinformatics approach to adequately select genes with differential aberrant methylation. A more comprehensive list, which included non-CIMP genes, such as APC, EVL, CD109, PTEN, TWIST1, DCC, PTPRD, SFRP1, ICAM5, RASSF1A, EYA4, 30ST2, LAMA1, KCNQ5, ADHEF1, and TFPI2, was established. Array data are useful to categorize and cluster colonic lesions based on their global methylation profiles; however, its usefulness in identifying robust methylation markers is limited and rely on the data analysis method. We have identified 16 non-CIMP-panel genes for which we provide rationale for inclusion in a more comprehensive characterization of CIMP+ CRCs. The identification of a definitive list for methylome specific genes in CRC will contribute to better clinical management of CRC patients.
Tea and coffee consumption in relation to DNA methylation in four European cohorts.
Ek, Weronica E; Tobi, Elmar W; Ahsan, Muhammad; Lampa, Erik; Ponzi, Erica; Kyrtopoulos, Soterios A; Georgiadis, Panagiotis; Lumey, L H; Heijmans, Bastiaan T; Botsivali, Maria; Bergdahl, Ingvar A; Karlsson, Torgny; Rask-Andersen, Mathias; Palli, Domenico; Ingelsson, Erik; Hedman, Åsa K; Nilsson, Lena M; Vineis, Paolo; Lind, Lars; Flanagan, James M; Johansson, Åsa
2017-08-15
Lifestyle factors, such as food choices and exposure to chemicals, can alter DNA methylation and lead to changes in gene activity. Two such exposures with pharmacologically active components are coffee and tea consumption. Both coffee and tea have been suggested to play an important role in modulating disease-risk in humans by suppressing tumour progression, decreasing inflammation and influencing estrogen metabolism. These mechanisms may be mediated by changes in DNA methylation. To investigate if DNA methylation in blood is associated with coffee and tea consumption, we performed a genome-wide DNA methylation study for coffee and tea consumption in four European cohorts (N = 3,096). DNA methylation was measured from whole blood at 421,695 CpG sites distributed throughout the genome and analysed in men and women both separately and together in each cohort. Meta-analyses of the results and additional regional-level analyses were performed. After adjusting for multiple testing, the meta-analysis revealed that two individual CpG-sites, mapping to DNAJC16 and TTC17, were differentially methylated in relation to tea consumption in women. No individual sites were associated with men or with the sex-combined analysis for tea or coffee. The regional analysis revealed that 28 regions were differentially methylated in relation to tea consumption in women. These regions contained genes known to interact with estradiol metabolism and cancer. No significant regions were found in the sex-combined and male-only analysis for either tea or coffee consumption. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M
2016-06-01
Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter(®). Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas.
A New Reassigned Spectrogram Method in Interference Detection for GNSS Receivers.
Sun, Kewen; Jin, Tian; Yang, Dongkai
2015-09-02
Interference detection is very important for Global Navigation Satellite System (GNSS) receivers. Current work on interference detection in GNSS receivers has mainly focused on time-frequency (TF) analysis techniques, such as spectrogram and Wigner-Ville distribution (WVD), where the spectrogram approach presents the TF resolution trade-off problem, since the analysis window is used, and the WVD method suffers from the very serious cross-term problem, due to its quadratic TF distribution nature. In order to solve the cross-term problem and to preserve good TF resolution in the TF plane at the same time, in this paper, a new TF distribution by using a reassigned spectrogram has been proposed in interference detection for GNSS receivers. This proposed reassigned spectrogram method efficiently combines the elimination of the cross-term provided by the spectrogram itself according to its inherent nature and the improvement of the TF aggregation property achieved by the reassignment method. Moreover, a notch filter has been adopted in interference mitigation for GNSS receivers, where receiver operating characteristics (ROCs) are used as metrics for the characterization of interference mitigation performance. The proposed interference detection method by using a reassigned spectrogram is evaluated by experiments on GPS L1 signals in the disturbing scenarios in comparison to the state-of-the-art TF analysis approaches. The analysis results show that the proposed interference detection technique effectively overcomes the cross-term problem and also keeps good TF localization properties, which has been proven to be valid and effective to enhance the interference Sensors 2015, 15 22168 detection performance; in addition, the adoption of the notch filter in interference mitigation has shown a significant acquisition performance improvement in terms of ROC curves for GNSS receivers in jamming environments.
A New Reassigned Spectrogram Method in Interference Detection for GNSS Receivers
Sun, Kewen; Jin, Tian; Yang, Dongkai
2015-01-01
Interference detection is very important for Global Navigation Satellite System (GNSS) receivers. Current work on interference detection in GNSS receivers has mainly focused on time-frequency (TF) analysis techniques, such as spectrogram and Wigner–Ville distribution (WVD), where the spectrogram approach presents the TF resolution trade-off problem, since the analysis window is used, and the WVD method suffers from the very serious cross-term problem, due to its quadratic TF distribution nature. In order to solve the cross-term problem and to preserve good TF resolution in the TF plane at the same time, in this paper, a new TF distribution by using a reassigned spectrogram has been proposed in interference detection for GNSS receivers. This proposed reassigned spectrogram method efficiently combines the elimination of the cross-term provided by the spectrogram itself according to its inherent nature and the improvement of the TF aggregation property achieved by the reassignment method. Moreover, a notch filter has been adopted in interference mitigation for GNSS receivers, where receiver operating characteristics (ROCs) are used as metrics for the characterization of interference mitigation performance. The proposed interference detection method by using a reassigned spectrogram is evaluated by experiments on GPS L1 signals in the disturbing scenarios in comparison to the state-of-the-art TF analysis approaches. The analysis results show that the proposed interference detection technique effectively overcomes the cross-term problem and also keeps good TF localization properties, which has been proven to be valid and effective to enhance the interference detection performance; in addition, the adoption of the notch filter in interference mitigation has shown a significant acquisition performance improvement in terms of ROC curves for GNSS receivers in jamming environments. PMID:26364637
Hatt, Lotte; Aagaard, Mads M; Bach, Cathrine; Graakjaer, Jesper; Sommer, Steffen; Agerholm, Inge E; Kølvraa, Steen; Bojesen, Anders
2016-01-01
Methylation-based non-invasive prenatal testing of fetal aneuploidies is an alternative method that could possibly improve fetal aneuploidy diagnosis, especially for trisomy 13(T13) and trisomy 18(T18). Our aim was to study the methylation landscape in placenta DNA from trisomy 13, 18 and 21 pregnancies in an attempt to find trisomy-specific methylation differences better suited for non-invasive prenatal diagnosis. We have conducted high-resolution methylation specific bead chip microarray analyses assessing more than 450,000 CpGs analyzing placentas from 12 T21 pregnancies, 12 T18 pregnancies and 6 T13 pregnancies. We have compared the methylation landscape of the trisomic placentas to the methylation landscape from normal placental DNA and to maternal blood cell DNA. Comparing trisomic placentas to normal placentas we identified 217 and 219 differentially methylated CpGs for CVS T18 and CVS T13, respectively (delta β>0.2, FDR<0.05), but only three differentially methylated CpGs for T21. However, the methylation differences was only modest (delta β<0.4), making them less suitable as diagnostic markers. Gene ontology enrichment analysis revealed that the gene set connected to theT18 differentially methylated CpGs was highly enriched for GO terms related to"DNA binding" and "transcription factor binding" coupled to the RNA polymerase II transcription. In the gene set connected to the T13 differentially methylated CpGs we found no significant enrichments.
Hatt, Lotte; Aagaard, Mads M.; Bach, Cathrine; Graakjaer, Jesper; Sommer, Steffen; Agerholm, Inge E.; Bojesen, Anders
2016-01-01
Methylation-based non-invasive prenatal testing of fetal aneuploidies is an alternative method that could possibly improve fetal aneuploidy diagnosis, especially for trisomy 13(T13) and trisomy 18(T18). Our aim was to study the methylation landscape in placenta DNA from trisomy 13, 18 and 21 pregnancies in an attempt to find trisomy–specific methylation differences better suited for non-invasive prenatal diagnosis. We have conducted high-resolution methylation specific bead chip microarray analyses assessing more than 450,000 CpGs analyzing placentas from 12 T21 pregnancies, 12 T18 pregnancies and 6 T13 pregnancies. We have compared the methylation landscape of the trisomic placentas to the methylation landscape from normal placental DNA and to maternal blood cell DNA. Comparing trisomic placentas to normal placentas we identified 217 and 219 differentially methylated CpGs for CVS T18 and CVS T13, respectively (delta β>0.2, FDR<0.05), but only three differentially methylated CpGs for T21. However, the methylation differences was only modest (delta β<0.4), making them less suitable as diagnostic markers. Gene ontology enrichment analysis revealed that the gene set connected to theT18 differentially methylated CpGs was highly enriched for GO terms related to”DNA binding” and “transcription factor binding” coupled to the RNA polymerase II transcription. In the gene set connected to the T13 differentially methylated CpGs we found no significant enrichments. PMID:27490343
Li, Yanwei; Ding, Xianlong; Wang, Xuan; He, Tingting; Zhang, Hao; Yang, Longshu; Wang, Tanliu; Chen, Linfeng; Gai, Junyi; Yang, Shouping
2017-08-10
DNA methylation is an important epigenetic modification. It can regulate the expression of many key genes without changing the primary structure of the genomic DNA, and plays a vital role in the growth and development of the organism. The genome-wide DNA methylation profile of the cytoplasmic male sterile (CMS) line in soybean has not been reported so far. In this study, genome-wide comparative analysis of DNA methylation between soybean CMS line NJCMS5A and its maintainer NJCMS5B was conducted by whole-genome bisulfite sequencing. The results showed 3527 differentially methylated regions (DMRs) and 485 differentially methylated genes (DMGs), including 353 high-credible methylated genes, 56 methylated genes coding unknown protein and 76 novel methylated genes with no known function were identified. Among them, 25 DMRs were further validated that the genome-wide DNA methylation data were reliable through bisulfite treatment, and 9 DMRs were confirmed the relationship between DNA methylation and gene expression by qRT-PCR. Finally, 8 key DMGs possibly associated with soybean CMS were identified. Genome-wide DNA methylation profile of the soybean CMS line NJCMS5A and its maintainer NJCMS5B was obtained for the first time. Several specific DMGs which participated in pollen and flower development were further identified to be probably associated with soybean CMS. This study will contribute to further understanding of the molecular mechanism behind soybean CMS.
Liao, Ai-Jun; Su, Qi; Wang, Xun; Zeng, Bin; Shi, Wei
2008-01-01
AIM: To isolate and analyze the DNA sequences which are methylated differentially between gastric cancer and normal gastric mucosa. METHODS: The differentially methylated DNA sequences between gastric cancer and normal gastric mucosa were isolated by methylation-sensitive representational difference analysis (MS-RDA). Similarities between the separated fragments and the human genomic DNA were analyzed with Basic Local Alignment Search Tool (BLAST). RESULTS: Three differentially methylated DNA sequences were obtained, two of which have been accepted by GenBank. The accession numbers are AY887106 and AY887107. AY887107 was highly similar to the 11th exon of LOC440683 (98%), 3’ end of LOC440887 (99%), and promoter and exon regions of DRD5 (94%). AY887106 was consistent (98%) with a CpG island in ribosomal RNA isolated from colorectal cancer by Minoru Toyota in 1999. CONCLUSION: The methylation degree is different between gastric cancer and normal gastric mucosa. The differentially methylated DNA sequences can be isolated effectively by MS-RDA. PMID:18322944
Lambrot, R; Xu, C; Saint-Phar, S; Chountalos, G; Cohen, T; Paquet, M; Suderman, M; Hallett, M; Kimmins, S
2013-01-01
Epidemiological studies suggest that a father's diet can influence offspring health. A proposed mechanism for paternal transmission of environmental information is via the sperm epigenome. The epigenome includes heritable information such as DNA methylation. We hypothesize that the dietary supply of methyl donors will alter epigenetic reprogramming in sperm. Here we feed male mice either a folate-deficient or folate-sufficient diet throughout life. Paternal folate deficiency is associated with increased birth defects in the offspring, which include craniofacial and musculoskeletal malformations. Genome-wide DNA methylation analysis and the subsequent functional analysis identify differential methylation in sperm of genes implicated in development, chronic diseases such as cancer, diabetes, autism and schizophrenia. While >300 genes are differentially expressed in offspring placenta, only two correspond to genes with differential methylation in sperm. This model suggests epigenetic transmission may involve sperm histone H3 methylation or DNA methylation and that adequate paternal dietary folate is essential for offspring health.
Lambrot, R.; Xu, C.; Saint-Phar, S.; Chountalos, G.; Cohen, T.; Paquet, M.; Suderman, M.; Hallett, M.; Kimmins, S.
2013-01-01
Epidemiological studies suggest that a father’s diet can influence offspring health. A proposed mechanism for paternal transmission of environmental information is via the sperm epigenome. The epigenome includes heritable information such as DNA methylation. We hypothesize that the dietary supply of methyl donors will alter epigenetic reprogramming in sperm. Here we feed male mice either a folate-deficient or folate-sufficient diet throughout life. Paternal folate deficiency is associated with increased birth defects in the offspring, which include craniofacial and musculoskeletal malformations. Genome-wide DNA methylation analysis and the subsequent functional analysis identify differential methylation in sperm of genes implicated in development, chronic diseases such as cancer, diabetes, autism and schizophrenia. While >300 genes are differentially expressed in offspring placenta, only two correspond to genes with differential methylation in sperm. This model suggests epigenetic transmission may involve sperm histone H3 methylation or DNA methylation and that adequate paternal dietary folate is essential for offspring health. PMID:24326934
DMRfinder: efficiently identifying differentially methylated regions from MethylC-seq data.
Gaspar, John M; Hart, Ronald P
2017-11-29
DNA methylation is an epigenetic modification that is studied at a single-base resolution with bisulfite treatment followed by high-throughput sequencing. After alignment of the sequence reads to a reference genome, methylation counts are analyzed to determine genomic regions that are differentially methylated between two or more biological conditions. Even though a variety of software packages is available for different aspects of the bioinformatics analysis, they often produce results that are biased or require excessive computational requirements. DMRfinder is a novel computational pipeline that identifies differentially methylated regions efficiently. Following alignment, DMRfinder extracts methylation counts and performs a modified single-linkage clustering of methylation sites into genomic regions. It then compares methylation levels using beta-binomial hierarchical modeling and Wald tests. Among its innovative attributes are the analyses of novel methylation sites and methylation linkage, as well as the simultaneous statistical analysis of multiple sample groups. To demonstrate its efficiency, DMRfinder is benchmarked against other computational approaches using a large published dataset. Contrasting two replicates of the same sample yielded minimal genomic regions with DMRfinder, whereas two alternative software packages reported a substantial number of false positives. Further analyses of biological samples revealed fundamental differences between DMRfinder and another software package, despite the fact that they utilize the same underlying statistical basis. For each step, DMRfinder completed the analysis in a fraction of the time required by other software. Among the computational approaches for identifying differentially methylated regions from high-throughput bisulfite sequencing datasets, DMRfinder is the first that integrates all the post-alignment steps in a single package. Compared to other software, DMRfinder is extremely efficient and unbiased in this process. DMRfinder is free and open-source software, available on GitHub ( github.com/jsh58/DMRfinder ); it is written in Python and R, and is supported on Linux.
Rodríguez-Dorantes, M; Lizano-Soberón, M; Camacho-Arroyo, I; Calzada-León, R; Morimoto, S; Téllez-Ascencio, N; Cerbón, M A
2002-03-01
The synthesis of dihydrotestosterone (DHT) is catalyzed by steroid 5alpha-reductase isozymes 1 and 2, and this function determines the development of the male phenotype during embriogenesis and the growth of androgen sensitive tissues during puberty. The aim of this study was to determine the cytosine methylation status of 5alpha-reductase isozymes types 1 and 2 genes in normal and in 5alpha-reductase deficient men. Genomic DNA was obtained from lymphocytes of both normal subjects and patients with primary 5alpha-reductase deficiency due to point mutations in 5alpha-reductase 2 gene. Southern blot analysis of 5alpha-reductase types 1 and 2 genes from DNA samples digested with HpaII presented a different cytosine methylation pattern compared to that observed with its isoschizomer MspI, indicating that both genes are methylated in CCGG sequences. The analysis of 5alpha-reductase 1 gene from DNA samples digested with Sau3AI and its isoschizomer MboI which recognize methylation in GATC sequences showed an identical methylation pattern. In contrast, 5alpha-reductase 2 gene digested with Sau3AI presented a different methylation pattern to that of the samples digested with MboI, indicating that steroid 5alpha-reductase 2 gene possess methylated cytosines in GATC sequences. Analysis of exon 4 of 5alpha-reductase 2 gene after metabisulfite PCR showed that normal and deficient subjects present a different methylation pattern, being more methylated in patients with 5alpha-reductase 2 mutated gene. The overall results suggest that 5alpha-reductase genes 1 and 2 are differentially methylated in lymphocytes from normal and 5alpha-reductase deficient patients. Moreover, the extensive cytosine methylation pattern observed in exon 4 of 5alpha-reductase 2 gene in deficient patients, points out to an increased rate of mutations in this gene.
Röhrich, Manuel; Huang, Kristin; Schrimpf, Daniel; Albert, Nathalie L; Hielscher, Thomas; von Deimling, Andreas; Schüller, Ulrich; Dimitrakopoulou-Strauss, Antonia; Haberkorn, Uwe
2018-05-07
Dynamic 18 F-FET PET/CT is a powerful tool for the diagnosis of gliomas. 18 F-FET PET time-activity curves (TAC) allow differentiation between histological low-grade gliomas (LGG) and high-grade gliomas (HGG). Molecular methods such as epigenetic profiling are of rising importance for glioma grading and subclassification. Here, we analysed dynamic 18 F-FET PET data, and the histological and epigenetic features of 44 gliomas. Dynamic 18 F-FET PET was performed in 44 patients with newly diagnosed, untreated glioma: 10 WHO grade II glioma, 13 WHO grade III glioma and 21 glioblastoma (GBM). All patients underwent stereotactic biopsy or tumour resection after 18 F-FET PET imaging. As well as histological analysis of tissue samples, DNA was subjected to epigenetic analysis using the Illumina 850 K methylation array. TACs, standardized uptake values corrected for background uptake in healthy tissue (SUVmax/BG), time to peak (TTP) and kinetic modelling parameters were correlated with histological diagnoses and with epigenetic signatures. Multivariate analyses were performed to evaluate the diagnostic accuracy of 18 F-FET PET in relation to the tumour groups identified by histological and methylation-based analysis. Epigenetic profiling led to substantial tumour reclassification, with six grade II/III gliomas reclassified as GBM. Overlap of HGG-typical TACs and LGG-typical TACs was dramatically reduced when tumours were clustered on the basis of their methylation profile. SUVmax/BG values of GBM were higher than those of LGGs following both histological diagnosis and methylation-based diagnosis. The differences in TTP between GBMs and grade II/III gliomas were greater following methylation-based diagnosis than following histological diagnosis. Kinetic modeling showed that relative K1 and fractal dimension (FD) values significantly differed in histology- and methylation-based GBM and grade II/III glioma between those diagnosed histologically and those diagnosed by methylation analysis. Multivariate analysis revealed slightly greater diagnostic accuracy with methylation-based diagnosis. IDH-mutant gliomas and GBM subgroups tended to differ in their 18 F-FET PET kinetics. The status of dynamic 18 F-FET PET as a biologically and clinically relevant imaging modality is confirmed in the context of molecular glioma diagnosis.
Variation in Genomic Methylation in Natural Populations of Chinese White Poplar
Ma, Kaifeng; Song, Yuepeng; Yang, Xiaohui; Zhang, Zhiyi; Zhang, Deqiang
2013-01-01
Background It is thought that methylcytosine can be inherited through meiosis and mitosis, and that epigenetic variation may be under genetic control or correlation may be caused by neutral drift. However, DNA methylation also varies with tissue, developmental stage, and environmental factors. Eliminating these factors, we analyzed the levels and patterns, diversity and structure of genomic methylcytosine in the xylem of nine natural populations of Chinese white poplar. Principal Findings On average, the relative total methylation and non-methylation levels were approximately 26.567% and 42.708% (P<0.001), respectively. Also, the relative CNG methylation level was higher than the relative CG methylation level. The relative methylation/non-methylation levels were significantly different among the nine natural populations. Epigenetic diversity ranged from 0.811 (Gansu) to 1.211 (Shaanxi), and the coefficients of epigenetic differentiation (GST = 0.159) were assessed by Shannon’s diversity index. Co-inertia analysis indicated that methylation-sensitive polymorphism (MSP) and genomic methylation pattern (CG-CNG) profiles gave similar distributions. Using a between-group eigen analysis, we found that the Hebei and Shanxi populations were independent of each other, but the Henan population intersected with the other populations, to some degree. Conclusions Genome methylation in Populus tomentosa presented tissue-specific characteristics and the relative 5′-CCGG methylation level was higher in xylem than in leaves. Meanwhile, the genome methylation in the xylem shows great epigenetic variation and could be fixed and inherited though mitosis. Compared to genetic structure, data suggest that epigenetic and genetic variation do not completely match. PMID:23704963
Motion interference analysis and optimal control of an electronic controlled bamboo-dance mechanism
NASA Astrophysics Data System (ADS)
Liu, Xiaohong; Xu, Liang; Hu, Xiaobin
2017-08-01
An electric bamboo-dance mechanism was designed and developed to realize mechanism of automation and mechanization. For coherent and fluent motion, ANSYS finite element analysis was applied on movement interference. Static structural method was used for analyzing dynamic deflection and deformation of the slender rod, while modal analysis was applied on frequency analysis to avoid second deformation caused by resonance. Therefore, the deformation in vertical and horizontal direction was explored and reasonable optimization was taken to avoid interference.
Meng, Wei; Jiang, Yangyang; Ma, Jie
2017-01-01
O6-methylguanine-DNA methyltransferase (MGMT) is an independent predictor of therapeutic response and potential prognosis in patients with glioblastoma multiforme (GBM). However, its significance of clinical prognosis in different continents still needs to be explored. To explore the effects of MGMT promoter methylation on both progression-free survival (PFS) and overall survival (OS) among GBM patients from different continents, a systematic review of published studies was conducted. A total of 5103 patients from 53 studies were involved in the systematic review and the total percentage of MGMT promoter methylation was 45.53%. Of these studies, 16 studies performed univariate analyses and 17 performed multivariate analyses of MGMT promoter methylation on PFS. The pooled hazard ratio (HR) estimated for PFS was 0.55 (95% CI 0.50, 0.60) by univariate analysis and 0.43 (95% CI 0.38, 0.48) by multivariate analysis. The effect of MGMT promoter methylation on OS was explored in 30 studies by univariate analysis and in 30 studies by multivariate analysis. The combined HR was 0.48 (95% CI 0.44, 0.52) and 0.42 (95% CI 0.38, 0.45), respectively. In each subgroup divided by areas, the prognostic significance still remained highly significant. The proportion of methylation in each group was in inverse proportion to the corresponding HR in the univariate and multivariate analyses of PFS. However, from the perspective of OS, compared with data from Europe and the US, higher methylation rates in Asia did not bring better returns.
Chi-square analysis of the reduction of ATP levels in L-02 hepatocytes by hexavalent chromium.
Yuan, Yang; Peng, Li; Gong-Hua, Hu; Lu, Dai; Xia-Li, Zhong; Yu, Zhou; Cai-Gao, Zhong
2012-06-01
This study explored the reduction of adenosine triphosphate (ATP) levels in L-02 hepatocytes by hexavalent chromium (Cr(VI)) using chi-square analysis. Cells were treated with 2, 4, 8, 16, or 32 μM Cr(VI) for 12, 24, or 36 h. Methyl thiazolyl tetrazolium (MTT) experiments and measurements of intracellular ATP levels were performed by spectrophotometry or bioluminescence assays following Cr(VI) treatment. The chi-square test was used to determine the difference between cell survival rate and ATP levels. For the chi-square analysis, the results of the MTT or ATP experiments were transformed into a relative ratio with respect to the control (%). The relative ATP levels increased at 12 h, decreased at 24 h, and increased slightly again at 36 h following 4, 8, 16, 32 μM Cr(VI) treatment, corresponding to a "V-shaped" curve. Furthermore, the results of the chi-square analysis demonstrated a significant difference of the ATP level in the 32-μM Cr(VI) group (P < 0.05). The results suggest that the chi-square test can be applied to analyze the interference effects of Cr(VI) on ATP levels in L-02 hepatocytes. The decreased ATP levels at 24 h indicated disruption of mitochondrial energy metabolism and the slight increase of ATP levels at 36 h indicated partial recovery of mitochondrial function or activated glycolysis in L-02 hepatocytes.
Genome-Wide Methylation Analyses in Glioblastoma Multiforme
Lai, Rose K.; Chen, Yanwen; Guan, Xiaowei; Nousome, Darryl; Sharma, Charu; Canoll, Peter; Bruce, Jeffrey; Sloan, Andrew E.; Cortes, Etty; Vonsattel, Jean-Paul; Su, Tao; Delgado-Cruzata, Lissette; Gurvich, Irina; Santella, Regina M.; Ostrom, Quinn; Lee, Annette; Gregersen, Peter; Barnholtz-Sloan, Jill
2014-01-01
Few studies had investigated genome-wide methylation in glioblastoma multiforme (GBM). Our goals were to study differential methylation across the genome in gene promoters using an array-based method, as well as repetitive elements using surrogate global methylation markers. The discovery sample set for this study consisted of 54 GBM from Columbia University and Case Western Reserve University, and 24 brain controls from the New York Brain Bank. We assembled a validation dataset using methylation data of 162 TCGA GBM and 140 brain controls from dbGAP. HumanMethylation27 Analysis Bead-Chips (Illumina) were used to interrogate 26,486 informative CpG sites in both the discovery and validation datasets. Global methylation levels were assessed by analysis of L1 retrotransposon (LINE1), 5 methyl-deoxycytidine (5m-dC) and 5 hydroxylmethyl-deoxycytidine (5hm-dC) in the discovery dataset. We validated a total of 1548 CpG sites (1307 genes) that were differentially methylated in GBM compared to controls. There were more than twice as many hypomethylated genes as hypermethylated ones. Both the discovery and validation datasets found 5 tumor methylation classes. Pathway analyses showed that the top ten pathways in hypomethylated genes were all related to functions of innate and acquired immunities. Among hypermethylated pathways, transcriptional regulatory network in embryonic stem cells was the most significant. In the study of global methylation markers, 5m-dC level was the best discriminant among methylation classes, whereas in survival analyses, high level of LINE1 methylation was an independent, favorable prognostic factor in the discovery dataset. Based on a pathway approach, hypermethylation in genes that control stem cell differentiation were significant, poor prognostic factors of overall survival in both the discovery and validation datasets. Approaches that targeted these methylated genes may be a future therapeutic goal. PMID:24586730
Schroeder, Diane I.; Jayashankar, Kartika; Douglas, Kory C.; Thirkill, Twanda L.; York, Daniel; Dickinson, Pete J.; Williams, Lawrence E.; Samollow, Paul B.; Ross, Pablo J.; Bannasch, Danika L.; Douglas, Gordon C.; LaSalle, Janine M.
2015-01-01
Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs) and highly methylated domains (HMDs) with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq) analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo. PMID:26241857
Methylation signature of lymph node metastases in breast cancer patients
2012-01-01
Background Invasion and metastasis are two important hallmarks of malignant tumors caused by complex genetic and epigenetic alterations. The present study investigated the contribution of aberrant methylation profiles of cancer related genes, APC, BIN1, BMP6, BRCA1, CST6, ESR-b, GSTP1, P14 (ARF), P16 (CDKN2A), P21 (CDKN1A), PTEN, and TIMP3, in the matched axillary lymph node metastasis in comparison to the primary tumor tissue and the adjacent normal tissue from the same breast cancer patients to identify the potential of candidate genes methylation as metastatic markers. Methods The quantitative methylation analysis was performed using the SEQUENOM’s EpiTYPER™ assay which relies on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Results The quantitative DNA methylation analysis of the candidate genes showed higher methylation proportion in the primary tumor tissue than that of the matched normal tissue and the differences were significant for the APC, BIN1, BMP6, BRCA1, CST6, ESR-b, P16, PTEN and TIMP3 promoter regions (P<0.05). Among those candidate methylated genes, APC, BMP6, BRCA1 and P16 displayed higher methylation proportion in the matched lymph node metastasis than that found in the normal tissue (P<0.05). The pathway analysis revealed that BMP6, BRCA1 and P16 have a role in prevention of neoplasm metastasis. Conclusions The results of the present study showed methylation heterogeneity between primary tumors and metastatic lesion. The contribution of aberrant methylation alterations of BMP6, BRCA1 and P16 genes in lymph node metastasis might provide a further clue to establish useful biomarkers for screening metastasis. PMID:22695536
Fonteneau, M; Filliol, D; Anglard, P; Befort, K; Romieu, P; Zwiller, J
2017-03-01
DNA methylation is a major epigenetic process which regulates the accessibility of genes to the transcriptional machinery. In the present study, we investigated whether modifying the global DNA methylation pattern in the brain would alter cocaine intake by rats, using the cocaine self-administration test. The data indicate that treatment of rats with the DNA methyltransferase inhibitors 5-aza-2'-deoxycytidine (dAZA) and zebularine enhanced the reinforcing properties of cocaine. To obtain some insights about the underlying neurobiological mechanisms, a genome-wide methylation analysis was undertaken in the prefrontal cortex of rats self-administering cocaine and treated with or without dAZA. The study identified nearly 189 000 differentially methylated regions (DMRs), about half of them were located inside gene bodies, while only 9% of DMRs were found in the promoter regions of genes. About 99% of methylation changes occurred outside CpG islands. Gene expression studies confirmed the inverse correlation usually observed between increased methylation and transcriptional activation when methylation occurs in the gene promoter. This inverse correlation was not observed when methylation took place inside gene bodies. Using the literature-based Ingenuity Pathway Analysis, we explored how the differentially methylated genes were related. The analysis showed that increase in cocaine intake by rats in response to DNA methyltransferase inhibitors underlies plasticity mechanisms which mainly concern axonal growth and synaptogenesis as well as spine remodeling. Together with the Akt/PI3K pathway, the Rho-GTPase family was found to be involved in the plasticity underlying the effect of dAZA on the observed behavioral changes. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Song, Yuepeng; Ma, Kaifeng; Ci, Dong; Chen, Qingqing; Tian, Jiaxing; Zhang, Deqiang
2013-12-01
Dioecious plants have evolved sex-specific floral development mechanisms. However, the precise gene expression patterns in dioecious plant flower development remain unclear. Here, we used andromonoecious poplar, an exceptional model system, to eliminate the confounding effects of genetic background of dioecious plants. Comparative transcriptome and physiological analysis allowed us to characterize sex-specific development of female and male flowers. Transcriptome analysis identified genes significantly differentially expressed between the sexes, including genes related to floral development, phytohormone synthesis and metabolism, and DNA methylation. Correlation analysis revealed a significant correlation between phytohormone signaling and gene expression, identifying specific phytohormone-responsive genes and their cis-regulatory elements. Two genes related to DNA methylation, METHYLTRANSFERASE1 (MET1) and DECREASED DNA METHYLATION 1 (DDM1), which are located in the sex determination region of Chromosome XIX, have differential expression between female and male flowers. A time-course analysis revealed that MET1 and DDM1 expression may produce different DNA methylation levels in female and male flowers. Understanding the interactions of phytohormone signaling, DNA methylation and target gene expression should lead to a better understanding of sexual differences in floral development. Thus, this study identifies a set of candidate genes for further studies of poplar sexual dimorphism and relates sex-specific floral development to physiological and epigenetic changes.
Wang, Yongming; Lin, Xiuyun; Dong, Bo; Wang, Yingdian; Liu, Bao
2004-01-01
RAPD (randomly amplified polymorphic DNA) and ISSR (inter-simple sequence repeat) fingerprinting on HpaII/MspI-digested genomic DNA of nine elite japonica rice cultivars implies inter-cultivar DNA methylation polymorphism. Using both DNA fragments isolated from RAPD or ISSR gels and selected low-copy sequences as probes, methylation-sensitive Southern blot analysis confirms the existence of extensive DNA methylation polymorphism in both genes and DNA repeats among the rice cultivars. The cultivar-specific methylation patterns are stably maintained, and can be used as reliable molecular markers. Transcriptional analysis of four selected sequences (RdRP, AC9, HSP90 and MMR) on leaves and roots from normal and 5-azacytidine-treated seedlings of three representative cultivars shows an association between the transcriptional activity of one of the genes, the mismatch repair (MMR) gene, and its CG methylation patterns.
USDA-ARS?s Scientific Manuscript database
DNA methylation at CpG sites is both heritable and influenced by environment, but the relative contributions of each to DNA methylation levels are unclear. We conducted a heritability analysis of CpG methylation in human CD4+ cells across 975 individuals from 163 families in the Genetics of Lipid-lo...
Yang, Jin-Lan; Liu, Li-Wang; Gong, Yi-Qin; Huang, Dan-Qiong; Wang, Feng; He, Ling-Li
2007-06-01
The level of cytosine methylation induced by cadmium in radish (Raphanus sativus L.) genome was analysed using the technique of methylation-sensitive amplified polymorphism (MSAP). The MSAP ratios in radish seedling exposed to cadmium chloride at the concentration of 50, 250 and 500 mg/L were 37%, 43% and 51%, respectively, and the control was 34%; the full methylation levels (C(m)CGG in double strands) were at 23%, 25% and 27%, respectively, while the control was 22%. The level of increase in MSAP and full methylation indicated that de novo methylation occurred in some 5'-CCGG sites under Cd stress. There was significant positive correlation between increase of total DNA methylation level and CdCl(2) concentration. Four types of MSAP patterns: de novo methylation, de-methylation, atypical pattern and no changes of methylation pattern were identified among CdCl(2) treatments and the control. DNA methylation alteration in plants treated with CdCl(2) was mainly through de novo methylation.
Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia
2016-02-06
Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (p< 0.000001) following arsenic exposure: inorganic arsenic (iAs), monomethyl arsenic (MMA), dimethyl arsenic (DMA), and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD): 1.00; 95% confidence interval (CI): 0.60-1.40; p< 0.00001) and MMA (SMD: 0.49; 95% CI: 0.21-0.77; p = 0.0006) also increase, while the percentage of DMA (SMD: -0.57; 95% CI: -0.80--0.31; p< 0.0001), primary methylation index (SMD: -0.57; 95% CI: -0.94--0.20; p = 0.002), and secondary methylation index (SMD: -0.27; 95% CI: -0.46--0.90; p = 0.004) decrease. Smoking, drinking, and older age can reduce arsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process.
An Improved Time-Frequency Analysis Method in Interference Detection for GNSS Receivers
Sun, Kewen; Jin, Tian; Yang, Dongkai
2015-01-01
In this paper, an improved joint time-frequency (TF) analysis method based on a reassigned smoothed pseudo Wigner–Ville distribution (RSPWVD) has been proposed in interference detection for Global Navigation Satellite System (GNSS) receivers. In the RSPWVD, the two-dimensional low-pass filtering smoothing function is introduced to eliminate the cross-terms present in the quadratic TF distribution, and at the same time, the reassignment method is adopted to improve the TF concentration properties of the auto-terms of the signal components. This proposed interference detection method is evaluated by experiments on GPS L1 signals in the disturbing scenarios compared to the state-of-the-art interference detection approaches. The analysis results show that the proposed interference detection technique effectively overcomes the cross-terms problem and also preserves good TF localization properties, which has been proven to be effective and valid to enhance the interference detection performance of the GNSS receivers, particularly in the jamming environments. PMID:25905704
Genomewide DNA methylation analysis in combat veterans reveals a novel locus for PTSD.
Mehta, D; Bruenig, D; Carrillo-Roa, T; Lawford, B; Harvey, W; Morris, C P; Smith, A K; Binder, E B; Young, R McD; Voisey, J
2017-11-01
Epigenetic modifications such as DNA methylation may play a key role in the aetiology and serve as biomarkers for post-traumatic stress disorder (PTSD). We performed a genomewide analysis to identify genes whose DNA methylation levels are associated with PTSD. A total of 211 individuals comprising Australian male Vietnam War veterans (n = 96) and males from a general population belonging to the Grady Trauma Project (n = 115) were included. Genomewide DNA methylation was performed from peripheral blood using the Illumina arrays. Data analysis was performed using generalized linear regression models. Differential DNA methylation of 17 previously reported PTSD candidate genes was associated with PTSD symptom severity. Genomewide analyses revealed CpG sites spanning BRSK1, LCN8, NFG and DOCK2 genes were associated with PTSD symptom severity. We replicated the findings of DOCK2 in an independent cohort. Pathway analysis revealed that among the associated genes, genes within actin cytoskeleton and focal adhesion molecular pathways were enriched. These data highlight the role of DNA methylation as biomarkers of PTSD. The results support the role of previous candidates and uncover novel genes associated with PTSD, such as DOCK2. This study contributes to our understanding of the biological underpinnings of PTSD. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Song, Minyan; He, Yanghua; Zhou, Huangkai; Zhang, Yi; Li, Xizhi; Yu, Ying
2016-07-14
Subclinical mastitis is a widely spread disease of lactating cows. Its major pathogen is Staphylococcus aureus (S. aureus). In this study, we performed genome-wide integrative analysis of DNA methylation and transcriptional expression to identify candidate genes and pathways relevant to bovine S. aureus subclinical mastitis. The genome-scale DNA methylation profiles of peripheral blood lymphocytes in cows with S. aureus subclinical mastitis (SA group) and healthy controls (CK) were generated by methylated DNA immunoprecipitation combined with microarrays. We identified 1078 differentially methylated genes in SA cows compared with the controls. By integrating DNA methylation and transcriptome data, 58 differentially methylated genes were shared with differently expressed genes, in which 20.7% distinctly hypermethylated genes showed down-regulated expression in SA versus CK, whereas 14.3% dramatically hypomethylated genes showed up-regulated expression. Integrated pathway analysis suggested that these genes were related to inflammation, ErbB signalling pathway and mismatch repair. Further functional analysis revealed that three genes, NRG1, MST1 and NAT9, were strongly correlated with the progression of S. aureus subclinical mastitis and could be used as powerful biomarkers for the improvement of bovine mastitis resistance. Our studies lay the groundwork for epigenetic modification and mechanistic studies on susceptibility of bovine mastitis.
Song, Minyan; He, Yanghua; Zhou, Huangkai; Zhang, Yi; Li, Xizhi; Yu, Ying
2016-01-01
Subclinical mastitis is a widely spread disease of lactating cows. Its major pathogen is Staphylococcus aureus (S. aureus). In this study, we performed genome-wide integrative analysis of DNA methylation and transcriptional expression to identify candidate genes and pathways relevant to bovine S. aureus subclinical mastitis. The genome-scale DNA methylation profiles of peripheral blood lymphocytes in cows with S. aureus subclinical mastitis (SA group) and healthy controls (CK) were generated by methylated DNA immunoprecipitation combined with microarrays. We identified 1078 differentially methylated genes in SA cows compared with the controls. By integrating DNA methylation and transcriptome data, 58 differentially methylated genes were shared with differently expressed genes, in which 20.7% distinctly hypermethylated genes showed down-regulated expression in SA versus CK, whereas 14.3% dramatically hypomethylated genes showed up-regulated expression. Integrated pathway analysis suggested that these genes were related to inflammation, ErbB signalling pathway and mismatch repair. Further functional analysis revealed that three genes, NRG1, MST1 and NAT9, were strongly correlated with the progression of S. aureus subclinical mastitis and could be used as powerful biomarkers for the improvement of bovine mastitis resistance. Our studies lay the groundwork for epigenetic modification and mechanistic studies on susceptibility of bovine mastitis. PMID:27411928
Haller, Florian; Zhang, Jitao David; Moskalev, Evgeny A; Braun, Alexander; Otto, Claudia; Geddert, Helene; Riazalhosseini, Yasser; Ward, Aoife; Balwierz, Aleksandra; Schaefer, Inga-Marie; Cameron, Silke; Ghadimi, B Michael; Agaimy, Abbas; Fletcher, Jonathan A; Hoheisel, Jörg; Hartmann, Arndt; Werner, Martin; Wiemann, Stefan; Sahin, Ozgür
2015-03-01
Gastrointestinal stromal tumors (GISTs) have distinct gene expression patterns according to localization, genotype and aggressiveness. DNA methylation at CpG dinucleotides is an important mechanism for regulation of gene expression. We performed targeted DNA methylation analysis of 1.505 CpG loci in 807 cancer-related genes in a cohort of 76 GISTs, combined with genome-wide mRNA expression analysis in 22 GISTs, to identify signatures associated with clinicopathological parameters and prognosis. Principal component analysis revealed distinct DNA methylation patterns associated with anatomical localization, genotype, mitotic counts and clinical follow-up. Methylation of a single CpG dinucleotide in the non-CpG island promoter of SPP1 was significantly correlated with shorter disease-free survival. Hypomethylation of this CpG was an independent prognostic parameter in a multivariate analysis compared to anatomical localization, genotype, tumor size and mitotic counts in a cohort of 141 GISTs with clinical follow-up. The epigenetic regulation of SPP1 was confirmed in vitro, and the functional impact of SPP1 protein on tumorigenesis-related signaling pathways was demonstrated. In summary, SPP1 promoter methylation is a novel and independent prognostic parameter in GISTs, and might be helpful in estimating the aggressiveness of GISTs from the intermediate-risk category. © 2014 UICC.
Radhakrishna, Uppala; Albayrak, Samet; Alpay-Savasan, Zeynep; Zeb, Amna; Turkoglu, Onur; Sobolewski, Paul; Bahado-Singh, Ray O
2016-01-01
Congenital heart defect (CHD) is the most common cause of death from congenital anomaly. Among several candidate epigenetic mechanisms, DNA methylation may play an important role in the etiology of CHDs. We conducted a genome-wide DNA methylation analysis using an Illumina Infinium 450k human methylation assay in a cohort of 24 newborns who had aortic valve stenosis (AVS), with gestational-age matched controls. The study identified significantly-altered CpG methylation at 59 sites in 52 genes in AVS subjects as compared to controls (either hypermethylated or demethylated). Gene Ontology analysis identified biological processes and functions for these genes including positive regulation of receptor-mediated endocytosis. Consistent with prior clinical data, the molecular function categories as determined using DAVID identified low-density lipoprotein receptor binding, lipoprotein receptor binding and identical protein binding to be over-represented in the AVS group. A significant epigenetic change in the APOA5 and PCSK9 genes known to be involved in AVS was also observed. A large number CpG methylation sites individually demonstrated good to excellent diagnostic accuracy for the prediction of AVS status, thus raising possibility of molecular screening markers for this disorder. Using epigenetic analysis we were able to identify genes significantly involved in the pathogenesis of AVS.
Radhakrishna, Uppala; Albayrak, Samet; Alpay-Savasan, Zeynep; Zeb, Amna; Turkoglu, Onur; Sobolewski, Paul; Bahado-Singh, Ray O.
2016-01-01
Congenital heart defect (CHD) is the most common cause of death from congenital anomaly. Among several candidate epigenetic mechanisms, DNA methylation may play an important role in the etiology of CHDs. We conducted a genome-wide DNA methylation analysis using an Illumina Infinium 450k human methylation assay in a cohort of 24 newborns who had aortic valve stenosis (AVS), with gestational-age matched controls. The study identified significantly-altered CpG methylation at 59 sites in 52 genes in AVS subjects as compared to controls (either hypermethylated or demethylated). Gene Ontology analysis identified biological processes and functions for these genes including positive regulation of receptor-mediated endocytosis. Consistent with prior clinical data, the molecular function categories as determined using DAVID identified low-density lipoprotein receptor binding, lipoprotein receptor binding and identical protein binding to be over-represented in the AVS group. A significant epigenetic change in the APOA5 and PCSK9 genes known to be involved in AVS was also observed. A large number CpG methylation sites individually demonstrated good to excellent diagnostic accuracy for the prediction of AVS status, thus raising possibility of molecular screening markers for this disorder. Using epigenetic analysis we were able to identify genes significantly involved in the pathogenesis of AVS. PMID:27152866
Jelinek, Jaroslav; Liang, Shoudan; Lu, Yue; He, Rong; Ramagli, Louis S.; Shpall, Elizabeth J.; Estecio, Marcos R.H.; Issa, Jean-Pierre J.
2012-01-01
Genome wide analysis of DNA methylation provides important information in a variety of diseases, including cancer. Here, we describe a simple method, Digital Restriction Enzyme Analysis of Methylation (DREAM), based on next generation sequencing analysis of methylation-specific signatures created by sequential digestion of genomic DNA with SmaI and XmaI enzymes. DREAM provides information on 150,000 unique CpG sites, of which 39,000 are in CpG islands and 30,000 are at transcription start sites of 13,000 RefSeq genes. We analyzed DNA methylation in healthy white blood cells and found methylation patterns to be remarkably uniform. Inter individual differences > 30% were observed only at 227 of 28,331 (0.8%) of autosomal CpG sites. Similarly, > 30% differences were observed at only 59 sites when we comparing the cord and adult blood. These conserved methylation patterns contrasted with extensive changes affecting 18–40% of CpG sites in a patient with acute myeloid leukemia and in two leukemia cell lines. The method is cost effective, quantitative (r2 = 0.93 when compared with bisulfite pyrosequencing) and reproducible (r2 = 0.997). Using 100-fold coverage, DREAM can detect differences in methylation greater than 10% or 30% with a false positive rate below 0.05 or 0.001, respectively. DREAM can be useful in quantifying epigenetic effects of environment and nutrition, correlating developmental epigenetic variation with phenotypes, understanding epigenetics of cancer and chronic diseases, measuring the effects of drugs on DNA methylation or deriving new biological insights into mammalian genomes. PMID:23075513
DNA methylation analysis of phenotype specific stratified Indian population.
Rotti, Harish; Mallya, Sandeep; Kabekkodu, Shama Prasada; Chakrabarty, Sanjiban; Bhale, Sameer; Bharadwaj, Ramachandra; Bhat, Balakrishna K; Dedge, Amrish P; Dhumal, Vikram Ram; Gangadharan, G G; Gopinath, Puthiya M; Govindaraj, Periyasamy; Joshi, Kalpana S; Kondaiah, Paturu; Nair, Sreekumaran; Nair, S N Venugopalan; Nayak, Jayakrishna; Prasanna, B V; Shintre, Pooja; Sule, Mayura; Thangaraj, Kumarasamy; Patwardhan, Bhushan; Valiathan, Marthanda Varma Sankaran; Satyamoorthy, Kapaettu
2015-05-08
DNA methylation and its perturbations are an established attribute to a wide spectrum of phenotypic variations and disease conditions. Indian traditional system practices personalized medicine through indigenous concept of distinctly descriptive physiological, psychological and anatomical features known as prakriti. Here we attempted to establish DNA methylation differences in these three prakriti phenotypes. Following structured and objective measurement of 3416 subjects, whole blood DNA of 147 healthy male individuals belonging to defined prakriti (Vata, Pitta and Kapha) between the age group of 20-30years were subjected to methylated DNA immunoprecipitation (MeDIP) and microarray analysis. After data analysis, prakriti specific signatures were validated through bisulfite DNA sequencing. Differentially methylated regions in CpG islands and shores were significantly enriched in promoters/UTRs and gene body regions. Phenotypes characterized by higher metabolism (Pitta prakriti) in individuals showed distinct promoter (34) and gene body methylation (204), followed by Vata prakriti which correlates to motion showed DNA methylation in 52 promoters and 139 CpG islands and finally individuals with structural attributes (Kapha prakriti) with 23 and 19 promoters and CpG islands respectively. Bisulfite DNA sequencing of prakriti specific multiple CpG sites in promoters and 5'-UTR such as; LHX1 (Vata prakriti), SOX11 (Pitta prakriti) and CDH22 (Kapha prakriti) were validated. Kapha prakriti specific CDH22 5'-UTR CpG methylation was also found to be associated with higher body mass index (BMI). Differential DNA methylation signatures in three distinct prakriti phenotypes demonstrate the epigenetic basis of Indian traditional human classification which may have relevance to personalized medicine.
Analysis of DNA methylation and gene expression in radiation-resistant head and neck tumors.
Chen, Xiaofei; Liu, Liang; Mims, Jade; Punska, Elizabeth C; Williams, Kristin E; Zhao, Weiling; Arcaro, Kathleen F; Tsang, Allen W; Zhou, Xiaobo; Furdui, Cristina M
2015-01-01
Resistance to radiation therapy constitutes a significant challenge in the treatment of head and neck squamous cell cancer (HNSCC). Alteration in DNA methylation is thought to play a role in this resistance. Here, we analyzed DNA methylation changes in a matched model of radiation resistance for HNSCC using the Illumina HumanMethylation450 BeadChip. Our results show that compared to radiation-sensitive cells (SCC-61), radiation-resistant cells (rSCC-61) had a significant increase in DNA methylation. After combining these results with microarray gene expression data, we identified 84 differentially methylated and expressed genes between these 2 cell lines. Ingenuity Pathway Analysis revealed ILK signaling, glucocorticoid receptor signaling, fatty acid α-oxidation, and cell cycle regulation as top canonical pathways associated with radiation resistance. Validation studies focused on CCND2, a protein involved in cell cycle regulation, which was identified as hypermethylated in the promoter region and downregulated in rSCC-61 relative to SCC-61 cells. Treatment of rSCC-61 and SCC-61 with the DNA hypomethylating agent 5-aza-2'deoxycitidine increased CCND2 levels only in rSCC-61 cells, while treatment with the control reagent cytosine arabinoside did not influence the expression of this gene. Further analysis of HNSCC data from The Cancer Genome Atlas found increased methylation in radiation-resistant tumors, consistent with the cell culture data. Our findings point to global DNA methylation status as a biomarker of radiation resistance in HNSCC, and suggest a need for targeted manipulation of DNA methylation to increase radiation response in HNSCC.
Jiang, Qun; Li, Qi; Yu, Hong; Kong, Lingfeng
2016-02-01
DNA methylation is an important epigenetic mechanism that could be responsive to environmental changes indicating a potential role in natural selection and adaption. In order to evaluate an evolutionary role of DNA methylation, it is essential to first gain a better insight into inheritability. To address this question, this study investigated DNA methylation variation from parents to offspring in the Pacific oyster Crassostrea gigas using fluorescent-labeled methylation-sensitive amplified polymorphism (F-MSAP) analysis. Most of parental methylated loci were stably transmitted to offspring segregating following Medelian expectation. However, methylated loci deviated more often than non-methylated loci and offspring showed a few de novo methylated loci indicating DNA methylation changes from parents to offspring. Interestingly, some male-specific methylated loci were found in this study which might help to explore sex determination in oyster. Despite environmental stimuli, genomic stresses such as polyploidization also can induce methylation changes. This study also compared global DNA methylation level and individual methylated loci between diploid and triploid oysters. Results showed no difference in global methylation state but a few ploidy-specific loci were detected. DNA methylation variation during polyploidization was less than autonomous methylation variation from parents to offspring.
Geraghty, Aisling A; Sexton-Oates, Alexandra; O'Brien, Eileen C; Alberdi, Goiuri; Fransquet, Peter; Saffery, Richard; McAuliffe, Fionnuala M
2018-04-06
The epigenetic profile of the developing fetus is sensitive to environmental influence. Maternal diet has been shown to influence DNA methylation patterns in offspring, but research in humans is limited. We investigated the impact of a low glycaemic index dietary intervention during pregnancy on offspring DNA methylation patterns using a genome-wide methylation approach. Sixty neonates were selected from the ROLO (Randomised cOntrol trial of LOw glycaemic index diet to prevent macrosomia) study: 30 neonates from the low glycaemic index intervention arm and 30 from the control, whose mothers received no specific dietary advice. DNA methylation was investigated in 771,484 CpG sites in free DNA from cord blood serum. Principal component analysis and linear regression were carried out comparing the intervention and control groups. Gene clustering and pathway analysis were also explored. Widespread variation was identified in the newborns exposed to the dietary intervention, accounting for 11% of the total level of DNA methylation variation within the dataset. No association was found with maternal early-pregnancy body mass index (BMI), infant sex, or birthweight. Pathway analysis identified common influences of the intervention on gene clusters plausibly linked to pathways targeted by the intervention, including cardiac and immune functioning. Analysis in 60 additional samples from the ROLO study failed to replicate the original findings. Using a modest-sized discovery sample, we identified preliminary evidence of differential methylation in progeny of mothers exposed to a dietary intervention during pregnancy.
An optimized rapid bisulfite conversion method with high recovery of cell-free DNA.
Yi, Shaohua; Long, Fei; Cheng, Juanbo; Huang, Daixin
2017-12-19
Methylation analysis of cell-free DNA is a encouraging tool for tumor diagnosis, monitoring and prognosis. Sensitivity of methylation analysis is a very important matter due to the tiny amounts of cell-free DNA available in plasma. Most current methods of DNA methylation analysis are based on the difference of bisulfite-mediated deamination of cytosine between cytosine and 5-methylcytosine. However, the recovery of bisulfite-converted DNA based on current methods is very poor for the methylation analysis of cell-free DNA. We optimized a rapid method for the crucial steps of bisulfite conversion with high recovery of cell-free DNA. A rapid deamination step and alkaline desulfonation was combined with the purification of DNA on a silica column. The conversion efficiency and recovery of bisulfite-treated DNA was investigated by the droplet digital PCR. The optimization of the reaction results in complete cytosine conversion in 30 min at 70 °C and about 65% of recovery of bisulfite-treated cell-free DNA, which is higher than current methods. The method allows high recovery from low levels of bisulfite-treated cell-free DNA, enhancing the analysis sensitivity of methylation detection from cell-free DNA.
Liu, Yan; Yang, Shanli; Niu, Weifen
2013-08-01
Simple, rapid, green and one-step electrodeposition strategy was first proposed to synthesis of graphene/carbon nanotubes/chitosan (GR/CNTs/CS) hybrid. The one-step electrodeposition approach for the construction of GR-based hybrid is green environmentally, which would not involve the chemical reduction of graphene oxide (GO) and therefore result in no further contamination. The whole procedure is simple and needs only several minutes. Combining the advantages of GR (large surface area, high conductivity and good adsorption ability), CNTs (high surface area, high enrichment capability and good adsorption ability) and CS (good adsorption and excellent film-forming ability), the obtained GR/CNTs/CS composite could be highly efficient to capture organophosphate pesticides (OPs) and used as solid phase extraction (SPE). The GR/CNTs/CS sensor is used for enzymeless detection of OPs, using methyl parathion (MP) as a model analyte. Significant redox response of MP on GR/CNTs/CS sensor is proved. The linear range is wide from 2.0ngmL(-1) to 500ngmL(-1), with a detection limit of 0.5ngmL(-1). Detection limit of the proposed sensor is much lower than those enzyme-based sensors and many other enzymeless sensors. Moreover, the proposed sensor exhibits high reproducibility, long-time storage stability and satisfactory anti-interference ability. This work provides a green and one-step route for the preparation of GR-based hybrid, and also offers a new promising protocol for OPs analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
Mechanisms of the Testis Toxicity Induced by Chronic Exposure to Mequindox.
Liu, Qianying; Lei, Zhixin; Huang, Anxiong; Lu, Qirong; Wang, Xu; Ahmed, Saeed; Awais, Ihsan; Yuan, Zonghui
2017-01-01
Mequindox (MEQ) is a synthetic antimicrobial agent widely used in China since the 1980s. Although the toxicity of MEQ is well recognized, its testis toxicity has not been adequately investigated. In the present study, we provide evidence that MEQ triggers oxidative stress, mitochondrion dysfunction and spermatogenesis deficiency in mice after exposure to MEQ (0, 25, 55, and 110 mg/kg in the diet) for up to 18 months. The genotoxicity and adrenal toxicity may contribute to sperm abnormalities caused by MEQ. Moreover, using LC/MS-IT-TOF analysis, two metabolites, 3-methyl-2-(1-hydroxyethyl) quinoxaline- N 4-monoxide (M4) and 3-methyl-2-(1-hydroxyethyl) quinoxaline- N 1-monoxide (M8), were detected in the serum of mice, which directly confirms the relationship between the N →O group reduction metabolism of MEQ and oxidative stress. Interestingly, only M4 was detected in the testes, suggesting that the higher reproductive toxicity of M4 than M8 might be due to the increased stability of M4-radical (M4-R) compared to M8-radical (M8-R). Furthermore, the expression of the blood-testis barrier (BTB)-associated junctions such as tight junctions, gap junctions and basal ectoplasmic specializations were also examined. The present study demonstrated for the first time the role of the M4 in testis toxicity, and illustrated that the oxidative stress, mitochondrion dysfunction and interference in spermatogenesis, as well as the altered expression of BTB related junctions, were involved in the reproductive toxicity mediated by MEQ in vivo .
Mechanisms of the Testis Toxicity Induced by Chronic Exposure to Mequindox
Liu, Qianying; Lei, Zhixin; Huang, Anxiong; Lu, Qirong; Wang, Xu; Ahmed, Saeed; Awais, Ihsan; Yuan, Zonghui
2017-01-01
Mequindox (MEQ) is a synthetic antimicrobial agent widely used in China since the 1980s. Although the toxicity of MEQ is well recognized, its testis toxicity has not been adequately investigated. In the present study, we provide evidence that MEQ triggers oxidative stress, mitochondrion dysfunction and spermatogenesis deficiency in mice after exposure to MEQ (0, 25, 55, and 110 mg/kg in the diet) for up to 18 months. The genotoxicity and adrenal toxicity may contribute to sperm abnormalities caused by MEQ. Moreover, using LC/MS-IT-TOF analysis, two metabolites, 3-methyl-2-(1-hydroxyethyl) quinoxaline-N4-monoxide (M4) and 3-methyl-2-(1-hydroxyethyl) quinoxaline-N1-monoxide (M8), were detected in the serum of mice, which directly confirms the relationship between the N→O group reduction metabolism of MEQ and oxidative stress. Interestingly, only M4 was detected in the testes, suggesting that the higher reproductive toxicity of M4 than M8 might be due to the increased stability of M4-radical (M4-R) compared to M8-radical (M8-R). Furthermore, the expression of the blood-testis barrier (BTB)-associated junctions such as tight junctions, gap junctions and basal ectoplasmic specializations were also examined. The present study demonstrated for the first time the role of the M4 in testis toxicity, and illustrated that the oxidative stress, mitochondrion dysfunction and interference in spermatogenesis, as well as the altered expression of BTB related junctions, were involved in the reproductive toxicity mediated by MEQ in vivo. PMID:29018347
The Influence of Metabolic Syndrome and Sex on the DNA Methylome in Schizophrenia
Lines, Brittany N.
2018-01-01
Introduction The mechanism by which metabolic syndrome occurs in schizophrenia is not completely known; however, previous work suggests that changes in DNA methylation may be involved which is further influenced by sex. Within this study, the DNA methylome was profiled to identify altered methylation associated with metabolic syndrome in a schizophrenia population on atypical antipsychotics. Methods Peripheral blood from schizophrenia subjects was utilized for DNA methylation analyses. Discovery analyses (n = 96) were performed using an epigenome-wide analysis on the Illumina HumanMethylation450K BeadChip based on metabolic syndrome diagnosis. A secondary discovery analysis was conducted based on sex. The top hits from the discovery analyses were assessed in an additional validation set (n = 166) using site-specific methylation pyrosequencing. Results A significant increase in CDH22 gene methylation in subjects with metabolic syndrome was identified in the overall sample. Additionally, differential methylation was found within the MAP3K13 gene in females and the CCDC8 gene within males. Significant differences in methylation were again observed for the CDH22 and MAP3K13 genes, but not CCDC8, in the validation sample set. Conclusions This study provides preliminary evidence that DNA methylation may be associated with metabolic syndrome and sex in schizophrenia. PMID:29850476
Yehuda, Rachel; Daskalakis, Nikolaos P; Lehrner, Amy; Desarnaud, Frank; Bader, Heather N; Makotkine, Iouri; Flory, Janine D; Bierer, Linda M; Meaney, Michael J
2014-08-01
Differential effects of maternal and paternal posttraumatic stress disorder (PTSD) have been observed in adult offspring of Holocaust survivors in both glucocorticoid receptor sensitivity and vulnerability to psychiatric disorder. The authors examined the relative influences of maternal and paternal PTSD on DNA methylation of the exon 1F promoter of the glucocorticoid receptor (GR-1F) gene (NR3C1) in peripheral blood mononuclear cells and its relationship to glucocorticoid receptor sensitivity in Holocaust offspring. Adult offspring with at least one Holocaust survivor parent (N=80) and demographically similar participants without parental Holocaust exposure or parental PTSD (N=15) completed clinical interviews, self-report measures, and biological procedures. Blood samples were collected for analysis of GR-1F promoter methylation and of cortisol levels in response to low-dose dexamethasone, and two-way analysis of covariance was performed using maternal and paternal PTSD as main effects. Hierarchical clustering analysis was used to permit visualization of maternal compared with paternal PTSD effects on clinical variables and GR-1F promoter methylation. A significant interaction demonstrated that in the absence of maternal PTSD, offspring with paternal PTSD showed higher GR-1F promoter methylation, whereas offspring with both maternal and paternal PTSD showed lower methylation. Lower GR-1F promoter methylation was significantly associated with greater postdexamethasone cortisol suppression. The clustering analysis revealed that maternal and paternal PTSD effects were differentially associated with clinical indicators and GR-1F promoter methylation. This is the first study to demonstrate alterations of GR-1F promoter methylation in relation to parental PTSD and neuroendocrine outcomes. The moderation of paternal PTSD effects by maternal PTSD suggests different mechanisms for the intergenerational transmission of trauma-related vulnerabilities.
Wiestler, Benedikt; Capper, David; Hovestadt, Volker; Sill, Martin; Jones, David T.W.; Hartmann, Christian; Felsberg, Joerg; Platten, Michael; Feiden, Wolfgang; Keyvani, Kathy; Pfister, Stefan M.; Wiestler, Otmar D.; Meyermann, Richard; Reifenberger, Guido; Pietsch, Thorsten; von Deimling, Andreas; Weller, Michael; Wick, Wolfgang
2014-01-01
Background Molecular biomarkers including isocitrate dehydrogenase 1 or 2 (IDH1/2) mutation, 1p/19q codeletion, and O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation may improve prognostication and guide treatment decisions for patients with World Health Organization (WHO) anaplastic gliomas. At present, each marker is individually tested by distinct assays. Illumina Infinium HumanMethylation450 BeadChip arrays (HM450) enable the determination of large-scale methylation profiles and genome-wide DNA copy number changes. Algorithms have been developed to detect the glioma CpG island methylator phenotype (G-CIMP) associated with IDH1/2 mutation, 1p/19q codeletion, and MGMT promoter methylation using a single assay. Methods Here, we retrospectively investigated the diagnostic and prognostic performance of these algorithms in comparison to individual marker testing and patient outcome in the biomarker cohort (n = 115 patients) of the NOA-04 trial. Results Concordance for IDH and 1p/19q status was very high: In 92% of samples, the HM450 and reference data agreed. In discordant samples, survival analysis by Kaplan-Meier and Cox regression analyses suggested a more accurate assessment of biological phenotype by the HM450 analysis. The HM450-derived MGMT-STP27 model to calculate MGMT promoter methylation probability revealed this aberration in a significantly higher fraction of samples than conventional methylation-specific PCR, with 87 of 91 G-CIMP tumors predicted as MGMT promoter-methylated. Pyrosequencing of discordant samples confirmed the HM450 assessment in 14 of 17 cases. Conclusions G-CIMP and 1p/19q codeletion are reliably detectable by HM450 analysis and are associated with prognosis in the NOA-04 trial. For MGMT, HM450 suggests promoter methylation in the vast majority of G-CIMP tumors, which is supported by pyrosequencing. PMID:25028501
Chen, Yung-Che; Chen, Ting-Wen; Su, Mao-Chang; Chen, Chung-Jen; Chen, Kuang-Den; Liou, Chia-Wei; Tang, Petrus; Wang, Ting-Ya; Chang, Jen-Chieh; Wang, Chin-Chou; Lin, Hsin-Ching; Chin, Chien-Hung; Huang, Kuo-Tung; Lin, Meng-Chih; Hsiao, Chang-Chun
2016-04-01
We hypothesized that DNA methylation patterns may contribute to disease severity or the development of hypertension and excessive daytime sleepiness (EDS) in patients with obstructive sleep apnea (OSA). Illumina's (San Diego, CA, USA) DNA methylation 27-K assay was used to identify differentially methylated loci (DML). DNA methylation levels were validated by pyrosequencing. A discovery cohort of 15 patients with OSA and 6 healthy subjects, and a validation cohort of 72 patients with sleep disordered breathing (SDB). Microarray analysis identified 636 DMLs in patients with OSA versus healthy subjects, and 327 DMLs in patients with OSA and hypertension versus those without hypertension. In the validation cohort, no significant difference in DNA methylation levels of six selected genes was found between the primary snoring subjects and OSA patients (primary outcome). However, a secondary outcome analysis showed that interleukin-1 receptor 2 (IL1R2) promoter methylation (-114 cytosine followed by guanine dinucleotide sequence [CpG] site) was decreased and IL1R2 protein levels were increased in the patients with SDB with an oxygen desaturation index > 30. Androgen receptor (AR) promoter methylation (-531 CpG site) and AR protein levels were both increased in the patients with SDB with an oxygen desaturation index > 30. Natriuretic peptide receptor 2 (NPR2) promoter methylation (-608/-618 CpG sites) were decreased, whereas levels of both NPR2 and serum C type natriuretic peptide protein were increased in the SDB patients with EDS. Speckled protein 140 (SP140) promoter methylation (-194 CpG site) was increased, and SP140 protein levels were decreased in the patients with SDB and EDS. IL1R2 hypomethylation and AR hypermethylation may constitute an important determinant of disease severity, whereas NPR2 hypomethylation and SP140 hypermethylation may provide a biomarker for vulnerability to EDS in OSA. A commentary on this article appears in this issue on page 723. © 2016 Associated Professional Sleep Societies, LLC.
McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M
2016-01-01
Aim: Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Materials & methods: Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter®. Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. Results: MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. Conclusion: MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas. PMID:27337298
Microarray-based DNA methylation study of Ewing's sarcoma of the bone.
Park, Hye-Rim; Jung, Woon-Won; Kim, Hyun-Sook; Park, Yong-Koo
2014-10-01
Alterations in DNA methylation patterns are a hallmark of malignancy. However, the majority of epigenetic studies of Ewing's sarcoma have focused on the analysis of only a few candidate genes. Comprehensive studies are thus lacking and are required. The aim of the present study was to identify novel methylation markers in Ewing's sarcoma using microarray analysis. The current study reports the microarray-based DNA methylation study of 1,505 CpG sites of 807 cancer-related genes from 69 Ewing's sarcoma samples. The Illumina GoldenGate Methylation Cancer Panel I microarray was used, and with the appropriate controls (n=14), a total of 92 hypermethylated genes were identified in the Ewing's sarcoma samples. The majority of the hypermethylated genes were associated with cell adhesion, cell regulation, development and signal transduction. The overall methylation mean values were compared between patients who survived and those that did not. The overall methylation mean was significantly higher in the patients who did not survive (0.25±0.03) than in those who did (0.22±0.05) (P=0.0322). However, the overall methylation mean was not found to significantly correlate with age, gender or tumor location. GDF10 , OSM , APC and HOXA11 were the most significant differentially-methylated genes, however, their methylation levels were not found to significantly correlate with the survival rate. The DNA methylation profile of Ewing's sarcoma was characterized and 92 genes that were significantly hypermethylated were detected. A trend towards a more aggressive behavior was identified in the methylated group. The results of this study indicated that methylation may be significant in the development of Ewing's sarcoma.
Microarray-based DNA methylation study of Ewing’s sarcoma of the bone
PARK, HYE-RIM; JUNG, WOON-WON; KIM, HYUN-SOOK; PARK, YONG-KOO
2014-01-01
Alterations in DNA methylation patterns are a hallmark of malignancy. However, the majority of epigenetic studies of Ewing’s sarcoma have focused on the analysis of only a few candidate genes. Comprehensive studies are thus lacking and are required. The aim of the present study was to identify novel methylation markers in Ewing’s sarcoma using microarray analysis. The current study reports the microarray-based DNA methylation study of 1,505 CpG sites of 807 cancer-related genes from 69 Ewing’s sarcoma samples. The Illumina GoldenGate Methylation Cancer Panel I microarray was used, and with the appropriate controls (n=14), a total of 92 hypermethylated genes were identified in the Ewing’s sarcoma samples. The majority of the hypermethylated genes were associated with cell adhesion, cell regulation, development and signal transduction. The overall methylation mean values were compared between patients who survived and those that did not. The overall methylation mean was significantly higher in the patients who did not survive (0.25±0.03) than in those who did (0.22±0.05) (P=0.0322). However, the overall methylation mean was not found to significantly correlate with age, gender or tumor location. GDF10, OSM, APC and HOXA11 were the most significant differentially-methylated genes, however, their methylation levels were not found to significantly correlate with the survival rate. The DNA methylation profile of Ewing’s sarcoma was characterized and 92 genes that were significantly hypermethylated were detected. A trend towards a more aggressive behavior was identified in the methylated group. The results of this study indicated that methylation may be significant in the development of Ewing’s sarcoma. PMID:25202378
Salamon, Sylwia; Flisikowski, Krzysztof; Switonski, Marek
2017-01-01
Ovotesticular or testicular disorder of sexual development in dogs with female karyotype and lack of SRY (XX DSD) is a common sexual anomaly diagnosed in numerous breeds. The molecular background, however, remains unclear, and epigenetic mechanisms, including DNA methylation, have not been studied. The aim of our study was comparative methylation analysis of CpG islands in promoters of candidate genes for XX DSD: SOX9, SOX3, and WNT4. Methylation studies were performed on DNA extracted from formalin-fixed/paraffin-embedded or frozen gonads from 2 dogs with ovotesticular and 2 dogs with testicular XX DSD as well as control females (n = 4) and males (n = 2). Bisulfite-converted DNA was used for CpG methylation analysis using quantitative pyrosequencing. Promoter regions of SOX9 and WNT4 showed similar CpG methylation in each group, ranging from 0 to 5.5% and from 39 to 74%, respectively. The SOX3 promoter showed significantly higher methylation in the ovotesticular XX DSD cases and the testicular XX DSD and control males, suggesting that SOX3 methylation may play a role in canine XX DSD pathogenesis. © 2017 S. Karger AG, Basel.
Fu, Sheng-Jie; Wang, Hui; Feng, Li-Na; Sun, Yi; Yang, Wen-Xiang; Liu, Da-Qun
2009-03-01
Intrinsic DNA methylation pattern is an integral component of the epigenetic network in many eukaryotes. DNA methylation plays an important role in regulating gene expression in eukaryotes. Biological stress in plant provides an inherent epigenetic driving force of evolution. Study of DNA methylation patterns arising from biological stress will help us fully understand the epigenetic regulation of gene expression and DNA methylation of biological functions. The wheat near-isogenic lines TcLr19 and TcLr41 were resistant to races THTT and TKTJ, respectively, and Thatcher is compatible in the interaction with Puccinia triticina THTT and TKTJ, respectively. By means of methylation-sensitive amplified polymorphism (MSAP) analysis, the patterns of cytosine methylation in TcLr19, TcLr41, and Thatcher inoculated with P. triticina THTT and TKTJ were compared with those of the untreated samples. All the DNA fragments, each representing a recognition site cleaved by each or both of isoschizomers, were amplified using 60 pairs of selective primers. The results indicated that there was no significant difference between the challenged and unchallenged plants at DNA methylation level. However, epigenetic difference between the near-isogenic line for wheat leaf rust resistance gene Lr41 and Thatcher was present.
Giri, Anil K; Bharadwaj, Soham; Banerjee, Priyanka; Chakraborty, Shraddha; Parekatt, Vaisak; Rajashekar, Donaka; Tomar, Abhishek; Ravindran, Aarthi; Basu, Analabha; Tandon, Nikhil; Bharadwaj, Dwaipayan
2017-06-01
Phenotypic characteristics are known to vary substantially among different ethnicities around the globe. These variations are mediated by number of stochastic events and cannot be attributed to genetic architecture alone. DNA methylation is a well-established mechanism that sculpts our epigenome influencing phenotypic variation including disease manifestation. Since DNA methylation is an important determinant for health issues of a population, it demands a thorough investigation of the natural differences in genome wide DNA methylation patterns across different ethnic groups. This study is based on comparative analyses of methylome from five different ethnicities with major focus on Indian subjects. The current study uses hierarchical clustering approaches, principal component analysis and locus specific differential methylation analysis on Illumina 450K methylation data to compare methylome of different ethnic subjects. Our data indicates that the variations in DNA methylation patterns of Indians are less among themselves compared to other global population. It empirically correlated with dietary, cultural and demographical divergences across different ethnic groups. Our work further suggests that Indians included in this study, despite their genetic similarity with the Caucasian population, are in close proximity with Japanese in terms of their methylation signatures.
2013-01-01
Background In contrast to wild species, which have typically evolved phenotypes over long periods of natural selection, domesticates rapidly gained human-preferred agronomic traits in a relatively short-time frame via artificial selection. Under domesticated conditions, many traits can be observed that cannot only be due to environmental alteration. In the case of silkworms, aside from genetic divergence, whether epigenetic divergence played a role in domestication is an unanswered question. The silkworm is still an enigma in that it has two DNA methyltransferases (DNMT1 and DNMT2) but their functionality is unknown. Even in particular the functionality of the widely distributed DNMT1 remains unknown in insects in general. Results By embryonic RNA interference, we reveal that knockdown of silkworm Dnmt1 caused decreased hatchability, providing the first direct experimental evidence of functional significance of insect Dnmt1. In the light of this fact and those that DNA methylation is correlated with gene expression in silkworms and some agronomic traits in domesticated organisms are not stable, we comprehensively compare silk gland methylomes of 3 domesticated (Bombyx mori) and 4 wild (Bombyx mandarina) silkworms to identify differentially methylated genes between the two. We observed 2-fold more differentiated methylated cytosinces (mCs) in domesticated silkworms as compared to their wild counterparts, suggesting a trend of increasing DNA methylation during domestication. Further study of more domesticated and wild silkworms narrowed down the domesticates’ epimutations, and we were able to identify a number of differential genes. One such gene showing demethyaltion in domesticates correspondently displays lower gene expression, and more interestingly, has experienced selective sweep. A methylation-increased gene seems to result in higher expression in domesticates and the function of its Drosophila homolog was previously found to be essential for cell volume regulation, indicating a possible correlation with the enlargement of silk glands in domesticated silkworms. Conclusions Our results imply epigenetic influences at work during domestication, which gives insight into long time historical controversies regarding acquired inheritance. PMID:24059350
Shi, Song-Hai; Cheng, Tong; Jan, Lily Yeh; Jan, Yuh-Nung
2004-01-01
In the developing mammalian brain, a large fraction of excitatory synapses initially contain only N-methyl-d-aspartate receptor and thus are “silent” at the resting membrane potential. As development progresses, synapses acquire α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-Rs). Although this maturation of excitatory synapses has been well characterized, the molecular basis for this developmental change is not known. Here, we report that dendrite arborization and synapse maturation 1 (Dasm1), an Ig superfamily member, controls excitatory synapse maturation. Dasm1 is localized at the excitatory synapses. Suppression of Dasm1 expression by using RNA interference or expression of dominant negative deletion mutants of Dasm1 in hippocampal neurons at late developmental stage specifically impairs AMPA-R-mediated, but not N-methyl-d-aspartate receptor-mediated, synaptic transmission. The ability of Dasm1 to regulate synaptic AMPA-Rs requires its intracellular C-terminal PDZ domain-binding motif, which interacts with two synaptic PDZ domain-containing proteins involved in spine/synapse maturation, Shank and S-SCAM. Moreover, expression of dominant negative deletion mutants of Dasm1 leads to more immature silent synapses. These results suggest that Dasm1, as a transmembrane molecule, likely provides a link to bridge extracellular signals and intracellular signaling complexes in controlling excitatory synapse maturation. PMID:15340156
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, ChengJian; Zhang, HuiPing; Zhao, Li
MicroRNAs (miRNAs) are short non-coding RNA and play crucial roles in a wide array of biological processes, including cell proliferation, differentiation and apoptosis. Our previous studies found that homocysteine(Hcy) can stimulate the proliferation of vascular smooth muscle cells (VSMCs), however, the underlying mechanisms were not fully elucidated. Here, we found proliferation of VSMCs induced by Hcy was of correspondence to the miR-125b expression reduced both in vitro and in the ApoE knockout mice, the hypermethylation of p53, its decreased expression, and DNA (cytosine-5)-methyltransferase 3b (DNMT3b) up-regulated. And, we found DNMT3b is a target of miR-125b, which was verified by themore » Dual-Luciferase reporter assay and western blotting. Besides, the siRNA interference for DNMT3b significantly decreased the methylation level of p53, which unveiled the causative role of DNMT3b in p53 hypermethylation. miR-125b transfection further confirmed its regulative roles on p53 gene methylation status and the VSMCs proliferation. Our data suggested that a miR-125b-DNMT3b-p53 signal pathway may exist in the VSMCs proliferation induced by Hcy.« less
Almeida, Diogo; Skov, Ida; Lund, Jesper; Mohammadnejad, Afsaneh; Silva, Artur; Vandin, Fabio; Tan, Qihua; Baumbach, Jan; Röttger, Richard
2016-10-01
Measuring differential methylation of the DNA is the nowadays most common approach to linking epigenetic modifications to diseases (called epigenome-wide association studies, EWAS). For its low cost, its efficiency and easy handling, the Illumina HumanMethylation450 BeadChip and its successor, the Infinium MethylationEPIC BeadChip, is the by far most popular techniques for conduction EWAS in large patient cohorts. Despite the popularity of this chip technology, raw data processing and statistical analysis of the array data remains far from trivial and still lacks dedicated software libraries enabling high quality and statistically sound downstream analyses. As of yet, only R-based solutions are freely available for low-level processing of the Illumina chip data. However, the lack of alternative libraries poses a hurdle for the development of new bioinformatic tools, in particular when it comes to web services or applications where run time and memory consumption matter, or EWAS data analysis is an integrative part of a bigger framework or data analysis pipeline. We have therefore developed and implemented Jllumina, an open-source Java library for raw data manipulation of Illumina Infinium HumanMethylation450 and Infinium MethylationEPIC BeadChip data, supporting the developer with Java functions covering reading and preprocessing the raw data, down to statistical assessment, permutation tests, and identification of differentially methylated loci. Jllumina is fully parallelizable and publicly available at http://dimmer.compbio.sdu.dk/download.html.
Almeida, Diogo; Skov, Ida; Lund, Jesper; Mohammadnejad, Afsaneh; Silva, Artur; Vandin, Fabio; Tan, Qihua; Baumbach, Jan; Röttger, Richard
2016-12-18
Measuring differential methylation of the DNA is the nowadays most common approach to linking epigenetic modifications to diseases (called epigenome-wide association studies, EWAS). For its low cost, its efficiency and easy handling, the Illumina HumanMethylation450 BeadChip and its successor, the Infinium MethylationEPIC BeadChip, is the by far most popular techniques for conduction EWAS in large patient cohorts. Despite the popularity of this chip technology, raw data processing and statistical analysis of the array data remains far from trivial and still lacks dedicated software libraries enabling high quality and statistically sound downstream analyses. As of yet, only R-based solutions are freely available for low-level processing of the Illumina chip data. However, the lack of alternative libraries poses a hurdle for the development of new bioinformatic tools, in particular when it comes to web services or applications where run time and memory consumption matter, or EWAS data analysis is an integrative part of a bigger framework or data analysis pipeline. We have therefore developed and implemented Jllumina, an open-source Java library for raw data manipulation of Illumina Infinium HumanMethylation450 and Infinium MethylationEPIC BeadChip data, supporting the developer with Java functions covering reading and preprocessing the raw data, down to statistical assessment, permutation tests, and identification of differentially methylated loci. Jllumina is fully parallelizable and publicly available at http://dimmer.compbio.sdu.dk/download.html.
Cell-of-Origin DNA Methylation Signatures Are Maintained during Colorectal Carcinogenesis.
Bormann, Felix; Rodríguez-Paredes, Manuel; Lasitschka, Felix; Edelmann, Dominic; Musch, Tanja; Benner, Axel; Bergman, Yehudit; Dieter, Sebastian M; Ball, Claudia R; Glimm, Hanno; Linhart, Heinz G; Lyko, Frank
2018-06-12
Colorectal adenomas are precursor lesions of colorectal cancers and represent clonal amplifications of single cells from colonic crypts. DNA methylation patterns specify cell-type identity during cellular differentiation and, therefore, provide opportunities for the molecular analysis of tumors. We have now analyzed DNA methylation patterns in colorectal adenomas and identified three biologically defined subclasses that describe different intestinal crypt differentiation stages. Importantly, colorectal carcinomas could be classified into the same methylation subtypes, reflecting their shared cell types of origin with adenomas. Further data analysis also revealed significantly reduced overall survival for one of the subtypes. Our results provide a concept for understanding the methylation patterns observed in colorectal cancer and provide opportunities for tumor subclassification and patient stratification. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
R tool for analysis of DNA methylation and expression datasets. Integrative analysis allows reconstruction of in vivo transcription factor networks altered in cancer along with identification of the underlying gene regulatory sequences.
Vorontsov, Egor A.; Rensen, Elena; Prangishvili, David; Krupovic, Mart; Chamot-Rooke, Julia
2016-01-01
Protein post-translational methylation has been reported to occur in archaea, including members of the genus Sulfolobus, but has never been characterized on a proteome-wide scale. Among important Sulfolobus proteins carrying such modification are the chromatin proteins that have been described to be methylated on lysine side chains, resembling eukaryotic histones in that aspect. To get more insight into the extent of this modification and its dynamics during the different growth steps of the thermoacidophylic archaeon S. islandicus LAL14/1, we performed a global and deep proteomic analysis using a combination of high-throughput bottom-up and top-down approaches on a single high-resolution mass spectrometer. 1,931 methylation sites on 751 proteins were found by the bottom-up analysis, with methylation sites on 526 proteins monitored throughout three cell culture growth stages: early-exponential, mid-exponential, and stationary. The top-down analysis revealed 3,978 proteoforms arising from 681 proteins, including 292 methylated proteoforms, 85 of which were comprehensively characterized. Methylated proteoforms of the five chromatin proteins (Alba1, Alba2, Cren7, Sul7d1, Sul7d2) were fully characterized by a combination of bottom-up and top-down data. The top-down analysis also revealed an increase of methylation during cell growth for two chromatin proteins, which had not been evidenced by bottom-up. These results shed new light on the ubiquitous lysine methylation throughout the S. islandicus proteome. Furthermore, we found that S. islandicus proteins are frequently acetylated at the N terminus, following the removal of the N-terminal methionine. This study highlights the great value of combining bottom-up and top-down proteomics for obtaining an unprecedented level of accuracy in detecting differentially modified intact proteoforms. The data have been deposited to the ProteomeXchange with identifiers PXD003074 and PXD004179. PMID:27555370
Induction of a Pregnancy-Like Mammary Gland Differentiation by Docosapentaenoic Omega-3 Fatty Acid
2008-09-01
xylenes, and stored in methyl salicylate . Morphological Assessment of Mammary Gland—Whole inguinal mammary glands were removed from virgin control as...respectively, defatted in xylenes, and stored in methyl salicylate . Quantitative RT-PCR analyses RNA was isolated and subjected to real time PCR analysis... methylation , and fatty acid analysis were performed as previously described [28,48]. Briefly, an ali- quot of mammary tissue homogenate in a glass
Identification of an Epigenetic Signature of Osteoporosis in Blood DNA of Post-menopausal Women.
Cheishvili, David; Parashar, Surabhi; Mahmood, Niaz; Arakelian, Ani; Kremer, Richard; Goltzman, David; Szyf, Moshe; Rabbani, Shafaat A
2018-06-20
Osteoporosis is one of the most common age-related progressive bone diseases in elderly people. Approximately one in three women and one in five men are predisposed to developing OP. In postmenopausal women a reduction in bone mineral density (BMD) leads to an increased risk of fractures. In the current study we delineated the DNA methylation signatures in whole blood samples of postmenopausal osteoporotic women. We obtained whole blood DNA from 22 normal women and 22 postmenopausal osteoporotic women (51-89 years) from the Canadian Multicenter Osteoporosis Study (CaMos) cohort. These DNA samples were subjected to Illumina Infinium Human Methylation 450 K analysis. Illumina 450K raw data was analyzed by Genome Studio software. Analysis of the female participants with early and advanced osteoporosis resulted in the generation of a list of 1233 differentially methylated CpG sites when compared with age matched normal females. T-test, ANOVA and post-hoc statistical analyses were performed and 77 significantly differentially methylated CpG sites were identified. From the 13 most significant genes, ZNF267, ABLIM2, RHOJ, CDKL5, PDCD1 were selected for their potential role in bone biology. A weighted polygenic DNA methylation score of these genes predicted osteoporosis at an early stage with high sensitivity and specificity and correlated with measures of bone density. Pyrosequencing analysis of these genes was performed to validate the results obtained from Illumina 450 K methylation analysis. The current study provides proof of principal for the role of DNA methylation in osteoporosis. Using whole blood DNA methylation analysis, women at risk of developing osteoporosis can be identified before a diagnosis of osteoporosis is made using BMD as a screening method. Early diagnosis will help to select patients that might benefit from early therapeutic intervention. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Chen, Yung-Che; Chen, Ting-Wen; Su, Mao-Chang; Chen, Chung-Jen; Chen, Kuang-Den; Liou, Chia-Wei; Tang, Petrus; Wang, Ting-Ya; Chang, Jen-Chieh; Wang, Chin-Chou; Lin, Hsin-Ching; Chin, Chien-Hung; Huang, Kuo-Tung; Lin, Meng-Chih; Hsiao, Chang-Chun
2016-01-01
Study Objectives: We hypothesized that DNA methylation patterns may contribute to disease severity or the development of hypertension and excessive daytime sleepiness (EDS) in patients with obstructive sleep apnea (OSA). Methods: Illumina's (San Diego, CA, USA) DNA methylation 27-K assay was used to identify differentially methylated loci (DML). DNA methylation levels were validated by pyrosequencing. A discovery cohort of 15 patients with OSA and 6 healthy subjects, and a validation cohort of 72 patients with sleep disordered breathing (SDB). Results: Microarray analysis identified 636 DMLs in patients with OSA versus healthy subjects, and 327 DMLs in patients with OSA and hypertension versus those without hypertension. In the validation cohort, no significant difference in DNA methylation levels of six selected genes was found between the primary snoring subjects and OSA patients (primary outcome). However, a secondary outcome analysis showed that interleukin-1 receptor 2 (IL1R2) promoter methylation (−114 cytosine followed by guanine dinucleotide sequence [CpG] site) was decreased and IL1R2 protein levels were increased in the patients with SDB with an oxygen desaturation index > 30. Androgen receptor (AR) promoter methylation (−531 CpG site) and AR protein levels were both increased in the patients with SDB with an oxygen desaturation index > 30. Natriuretic peptide receptor 2 (NPR2) promoter methylation (−608/−618 CpG sites) were decreased, whereas levels of both NPR2 and serum C type natriuretic peptide protein were increased in the SDB patients with EDS. Speckled protein 140 (SP140) promoter methylation (−194 CpG site) was increased, and SP140 protein levels were decreased in the patients with SDB and EDS. Conclusions: IL1R2 hypomethylation and AR hypermethylation may constitute an important determinant of disease severity, whereas NPR2 hypomethylation and SP140 hypermethylation may provide a biomarker for vulnerability to EDS in OSA. Commentary: A commentary on this article appears in this issue on page 723. Citation: Chen YC, Chen TW, Su MC, Chen CJ, Chen KD, Liou CW, Tang P, Wang TY, Chang JC, Wang CC, Lin HC, Chin CH, Huang KT, Lin MC, Hsiao CC. Whole genome DNA methylation analysis of obstructive sleep apnea: IL1R2, NPR2, AR, SP140 methylation and clinical phenotype. SLEEP 2016;39(4):743–755. PMID:26888452
Klette, Kevin L; Horn, Carl K; Stout, Peter R; Anderson, Cynthia J
2002-01-01
2-Oxo-3-hydroxy lysergic acid diethylamide (O-H-LSD), a major LSD metabolite, has previously been demonstrated to be a superior marker for identifying LSD use compared with the parent drug, LSD. Specifically, O-H-LSD analyzed using liquid chromatography-mass spectrometry has been reported to be present in urine at concentrations 16 to 43 times greater than LSD. To further support forensic application of this procedure, the specificity of the assay was assessed using compounds that have structural and chemical properties similar to O-H-LSD, common over-the-counter products, prescription drugs and some of their metabolites, and other drugs of abuse. Of the wide range of compounds studied, none were found to interfere with the detection of O-H-LSD or the internal standard 2-oxo-3-hydroxy lysergic acid methyl propylamide. The stability of O-H-LSD was investigated from 0 to 9 days at various temperatures, pH conditions, and exposures to fluorescent light. Additionally, the effect of long-term frozen storage and pH was investigated from 0 to 60 days. There was no significant loss of O-H-LSD under both refrigerated and frozen conditions within the normal human physiological pH range of urine (4.6-8.4). However, significant loss of O-H-LSD was observed in samples prepared at pH 4.6-8.4 and stored at room temperature or higher (24-50 degrees C).
Sun, You-Wen; Liu, Wen-Qing; Wang, Shi-Mei; Huang, Shu-Hua; Yu, Xiao-Man
2011-10-01
A method of interference correction for nondispersive infrared multi-component gas analysis was described. According to the successive integral gas absorption models and methods, the influence of temperature and air pressure on the integral line strengths and linetype was considered, and based on Lorentz detuning linetypes, the absorption cross sections and response coefficients of H2O, CO2, CO, and NO on each filter channel were obtained. The four dimension linear regression equations for interference correction were established by response coefficients, the absorption cross interference was corrected by solving the multi-dimensional linear regression equations, and after interference correction, the pure absorbance signal on each filter channel was only controlled by the corresponding target gas concentration. When the sample cell was filled with gas mixture with a certain concentration proportion of CO, NO and CO2, the pure absorbance after interference correction was used for concentration inversion, the inversion concentration error for CO2 is 2.0%, the inversion concentration error for CO is 1.6%, and the inversion concentration error for NO is 1.7%. Both the theory and experiment prove that the interference correction method proposed for NDIR multi-component gas analysis is feasible.
Ethical Perspectives on RNA Interference Therapeutics
Ebbesen, Mette; Jensen, Thomas G.; Andersen, Svend; Pedersen, Finn Skou
2008-01-01
RNA interference is a mechanism for controlling normal gene expression which has recently begun to be employed as a potential therapeutic agent for a wide range of disorders, including cancer, infectious diseases and metabolic disorders. Clinical trials with RNA interference have begun. However, challenges such as off-target effects, toxicity and safe delivery methods have to be overcome before RNA interference can be considered as a conventional drug. So, if RNA interference is to be used therapeutically, we should perform a risk-benefit analysis. It is ethically relevant to perform a risk-benefit analysis since ethical obligations about not inflicting harm and promoting good are generally accepted. But the ethical issues in RNA interference therapeutics not only include a risk-benefit analysis, but also considerations about respecting the autonomy of the patient and considerations about justice with regard to the inclusion criteria for participation in clinical trials and health care allocation. RNA interference is considered a new and promising therapeutic approach, but the ethical issues of this method have not been greatly discussed, so this article analyses these issues using the bioethical theory of principles of the American bioethicists, Tom L. Beauchamp and James F. Childress. PMID:18612370
2′-O Methylation of Internal Adenosine by Flavivirus NS5 Methyltransferase
Dong, Hongping; Chang, David C.; Hua, Maggie Ho Chia; Lim, Siew Pheng; Chionh, Yok Hian; Hia, Fabian; Lee, Yie Hou; Kukkaro, Petra; Lok, Shee-Mei; Dedon, Peter C.; Shi, Pei-Yong
2012-01-01
RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2′-O methyltransferase activities that are required for the formation of 5′ type I cap (m7GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2′-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2′-O-methyladenosine. The 2′-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2′-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of viral RNA in vivo and host ribosomal RNAs in vitro. PMID:22496660
Bednarek, Piotr T; Orłowska, Renata; Niedziela, Agnieszka
2017-04-21
We present a new methylation-sensitive amplified polymorphism (MSAP) approach for the evaluation of relative quantitative characteristics such as demethylation, de novo methylation, and preservation of methylation status of CCGG sequences, which are recognized by the isoschizomers HpaII and MspI. We applied the technique to analyze aluminum (Al)-tolerant and non-tolerant control and Al-stressed inbred triticale lines. The approach is based on detailed analysis of events affecting HpaII and MspI restriction sites in control and stressed samples, and takes advantage of molecular marker profiles generated by EcoRI/HpaII and EcoRI/MspI MSAP platforms. Five Al-tolerant and five non-tolerant triticale lines were exposed to aluminum stress using the physiologicaltest. Total genomic DNA was isolated from root tips of all tolerant and non-tolerant lines before and after Al stress following metAFLP and MSAP approaches. Based on codes reflecting events affecting cytosines within a given restriction site recognized by HpaII and MspI in control and stressed samples demethylation (DM), de novo methylation (DNM), preservation of methylated sites (MSP), and preservation of nonmethylatedsites (NMSP) were evaluated. MSAP profiles were used for Agglomerative hierarchicalclustering (AHC) based on Squared Euclidean distance and Ward's Agglomeration method whereas MSAP characteristics for ANOVA. Relative quantitative MSAP analysis revealed that both Al-tolerant and non-tolerant triticale lines subjected to Al stress underwent demethylation, with demethylation of CG predominating over CHG. The rate of de novo methylation in the CG context was ~3-fold lower than demethylation, whereas de novo methylation of CHG was observed only in Al-tolerant lines. Our relative quantitative MSAP approach, based on methylation events affecting cytosines within HpaII-MspI recognition sequences, was capable of quantifying de novo methylation, demethylation, methylation, and non-methylated status in control and stressed Al-tolerant and non-tolerant triticale inbred lines. The method could also be used to analyze methylation events affecting CG and CHG contexts, which were differentially methylated under Al stress. We cannot exclude that the methylation changes revealed among lines as well as between Al-tolerant and non-tolerant groups of lines were due to some experimental errors or that the number of lines was too small for ANOVA to prove the influence of Al stress. Nevertheless, we suspect that Al tolerance in triticale could be partly regulated by epigenetic factors acting at the level of DNA methylation. This method provides a valuable tool for studies of abiotic stresses in plants.
Promoter methylation assay of SASH1 gene in hepatocellular carcinoma.
Peng, Liu; Wei, He; Liren, Li
2014-01-01
To analyse the relationship between the expression of SASH1 and its methylation level in human hepatocellular carcinoma. Expression levels of SASH1 were examined with real-time PCR (RT-PCR) in tissues and cells, and methylation analysis was performed with MassArray. The expression levels of SASH1 were strongly reduced in liver cancer tissues compared with adjacent normal tissues. Quantitative methylation analysis by MassArray revealed different CpG sites in SASH1 promoter shared similar methylation pattern between liver cancer tissues and adjacent normal tissues and the CpG sites of significant difference in methylation level were found as follows: CpG_3, CpG_17, CpG_21.22, CpG_25, CpG_26.27, CpG_28, CpG_34.35.36 and CpG_51.52. Moreover, 5-aza-2'-deoxycytidine treatment of Hep-G2 cell line caused significant elevation of SASH1 mRNA. Based on these data, we propose that increase of DNA methylation degree in the promoter region of SASH1 gene, particularly CpG_26.27 sites, possibly repressed SASH1 expression in liver cancer.
Promoter methylation assay of SASH1 gene in breast cancer.
Sheyu, Lin; Hui, Liu; Junyu, Zhang; Jiawei, Xu; Honglian, Wang; Qing, Sang; Hengwei, Zhang; Xuhui, Guo; Qinghe, Xing; Lin, He
2013-01-01
To analyze the relationship between the expression of SASH1 and its methylation level of SASH1 gene promoter in human breast cancer. Expression levels of SASH1 were examined in breast cancer tissues and adjacent normal tissues with immunohistochemistry and with real time PCR (RT-PCR) methylation analysis was performed with MassArray. Immunohistochemistry showed that SASH1 expression was strongly reduced in breast cancer compared with adjacent normal tissues. Quantitative methylation analysis by MassArray revealed that CpG sites in SASH1 promoter shared similar methylation pattern in tumor tissue and adjacent normal tissue. The CpG sites with significant difference in methylation level were CpG_26.27 and CpG_54.55. Moreover, 5-aza-2'-deoxycytidine (5-Aza-dc) treatment of tumor cell line MDA-MB-231 caused significant elevation of SASH1 mRNA. Based on these data, we propose that increase of DNA methylation level in the promoter region of gene SASH1, particularly CpG_26.27 or CpG_54.55 sites, possibly repressed SASH1 expression in breast cancer.
Steenbergen, Renske D M; Ongenaert, Maté; Snellenberg, Suzanne; Trooskens, Geert; van der Meide, Wendy F; Pandey, Deeksha; Bloushtain-Qimron, Noga; Polyak, Kornelia; Meijer, Chris J L M; Snijders, Peter J F; Van Criekinge, Wim
2013-09-01
Transformation of epithelial cells by high-risk human papillomavirus (hrHPV) types can lead to anogenital carcinomas, particularly cervical cancer, and oropharyngeal cancers. This process is associated with DNA methylation alterations, often affecting tumour suppressor gene expression. This study aimed to comprehensively unravel genome-wide DNA methylation events linked to a transforming hrHPV-infection, which is driven by deregulated expression of the viral oncogenes E6 and E7 in dividing cells. Primary human keratinocytes transduced with HPV16E6E7 and their untransduced counterparts were subjected to methylation-specific digital karyotyping (MSDK) to screen for genome-wide DNA-methylation changes at different stages of HPV-induced transformation. Integration of the obtained methylation profiles with genome-wide gene expression patterns of cervical carcinomas identified 34 genes with increased methylation in HPV-transformed cells and reduced expression in cervical carcinomas. For 12 genes (CLIC3, CREB3L1, FAM19A4, LFNG, LHX1, MRC2, NKX2-8, NPTX-1, PHACTR3, PRDM14, SOST and TNFSF13) specific methylation in HPV-containing cell lines was confirmed by semi-quantitative methylation-specific PCR. Subsequent analysis of FAM19A4, LHX1, NKX2-8, NPTX-1, PHACTR3 and PRDM14 in cervical tissue specimens showed increasing methylation levels for all genes with disease progression. All six genes were frequently methylated in cervical carcinomas, with highest frequencies (up to 100%) seen for FAM19A4, PHACTR3 and PRDM14. Analysis of hrHPV-positive cervical scrapes revealed significantly increased methylation levels of the latter three genes in women with high-grade cervical disease compared to controls. In conclusion, MSDK analysis of HPV16-transduced keratinocytes at different stages of HPV-induced transformation resulted in the identification of novel DNA methylation events, involving FAM19A4, LHX1, NKX2-8, PHACTR3 and PRDM14 genes in cervical carcinogenesis. These genes may provide promising triage markers to assess the presence of (pre)cancerous cervical lesions in hrHPV-positive women. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
2013-01-01
Background Human papillomavirus-positive (HPV+) head and neck squamous cell carcinoma (HNSCC) represents a distinct clinical and epidemiological condition compared with HPV-negative (HPV-) HNSCC. To test the possible involvement of epigenetic modulation by HPV in HNSCC, we conducted a genome-wide DNA-methylation analysis. Methods Using laser-capture microdissection of 42 formalin-fixed paraffin wax-embedded (FFPE) HNSCCs, we generated DNA-methylation profiles of 18 HPV+ and 14 HPV- samples, using Infinium 450 k BeadArray technology. Methylation data were validated in two sets of independent HPV+/HPV- HNSCC samples (fresh-frozen samples and cell lines) using two independent methods (Infinium 450 k and whole-genome methylated DNA immunoprecipitation sequencing (MeDIP-seq)). For the functional analysis, an HPV- HNSCC cell line was transduced with lentiviral constructs containing the two HPV oncogenes (E6 and E7), and effects on methylation were assayed using the Infinium 450 k technology. Results and discussion Unsupervised clustering over the methylation variable positions (MVPs) with greatest variation showed that samples segregated in accordance with HPV status, but also that HPV+ tumors are heterogeneous. MVPs were significantly enriched at transcriptional start sites, leading to the identification of a candidate CpG island methylator phenotype in a sub-group of the HPV+ tumors. Supervised analysis identified a strong preponderance (87%) of MVPs towards hypermethylation in HPV+ HNSCC. Meta-analysis of our HNSCC and publicly available methylation data in cervical and lung cancers confirmed the observed DNA-methylation signature to be HPV-specific and tissue-independent. Grouping of MVPs into functionally more significant differentially methylated regions identified 43 hypermethylated promoter DMRs, including for three cadherins of the Polycomb group target genes. Integration with independent expression data showed strong negative correlation, especially for the cadherin gene-family members. Combinatorial ectopic expression of the two HPV oncogenes (E6 and E7) in an HPV- HNSCC cell line partially phenocopied the hypermethylation signature seen in HPV+ HNSCC tumors, and established E6 as the main viral effector gene. Conclusions Our data establish that archival FFPE tissue is very suitable for this type of methylome analysis, and suggest that HPV modulates the HNSCC epigenome through hypermethylation of Polycomb repressive complex 2 target genes such as cadherins, which are implicated in tumor progression and metastasis. PMID:23419152
Aging effects on DNA methylation modules in human brain and blood tissue
2012-01-01
Background Several recent studies reported aging effects on DNA methylation levels of individual CpG dinucleotides. But it is not yet known whether aging-related consensus modules, in the form of clusters of correlated CpG markers, can be found that are present in multiple human tissues. Such a module could facilitate the understanding of aging effects on multiple tissues. Results We therefore employed weighted correlation network analysis of 2,442 Illumina DNA methylation arrays from brain and blood tissues, which enabled the identification of an age-related co-methylation module. Module preservation analysis confirmed that this module can also be found in diverse independent data sets. Biological evaluation showed that module membership is associated with Polycomb group target occupancy counts, CpG island status and autosomal chromosome location. Functional enrichment analysis revealed that the aging-related consensus module comprises genes that are involved in nervous system development, neuron differentiation and neurogenesis, and that it contains promoter CpGs of genes known to be down-regulated in early Alzheimer's disease. A comparison with a standard, non-module based meta-analysis revealed that selecting CpGs based on module membership leads to significantly increased gene ontology enrichment, thus demonstrating that studying aging effects via consensus network analysis enhances the biological insights gained. Conclusions Overall, our analysis revealed a robustly defined age-related co-methylation module that is present in multiple human tissues, including blood and brain. We conclude that blood is a promising surrogate for brain tissue when studying the effects of age on DNA methylation profiles. PMID:23034122
Ligand binding pocket function of drosophila USP is necessary for metamorphosis
USDA-ARS?s Scientific Manuscript database
The widely accepted paradigm that epoxidized methyl farnesoates (“juvenile hormones,” JHs) are the principle sesquiterpenoid hormones regulating insect metamorphosis was assessed in Drosophila melanogaster. GC-MS analysis showed that methyl farnesoate, rather than methyl epoxyfarnesoate (= JH III), ...
Lysine Methylation of Nuclear Co-repressor Receptor Interacting Protein 140
Huq, MD Mostaqul; Ha, Sung Gil; Barcelona, Helene; Wei, Li-Na
2009-01-01
Receptor interacting protein 140 (RIP140) undergoes extensive posttranslational modifications (PTMs), including phosphorylation, acetylation, arginine methylation, and pyridoxylation. PTMs affect its sub-cellular distribution, protein-protein interaction, and biological activity in adipocyte differentiation. Arginine methylation on Arg240, Arg650, and Arg948 suppresses the repressive activity of RIP140. Here we find that endogenous RIP140 in differentiated 3T3-L1 cells is also modified by lysine methylation. Three lysine residues, Lys591, Lys653, and Lys757 are mapped as potential methylation sites by mass spectrometry. Site-directed mutagenesis study shows that lysine methylation enhances its gene repressive activity. Mutation of lysine methylation sites enhances arginine methylation, while mutation on arginine methylation sites has little effect on its lysine methylation, suggesting a relationship between lysine methylation and arginine methylation. Kinetic analysis of PTMs of endogenous RIP140 in differentiated 3T3-L1 cells demonstrates sequential modifications on RIP140, initiated from constitutive lysine methylation, followed by increased arginine methylation later in differentiation. This study reveals a potential hierarchy of modifications, at least for lysine and arginine methylation, which bi-directionally regulate the functionality of a non-histone protein. PMID:19216533
A Pre-mRNA-Splicing Factor Is Required for RNA-Directed DNA Methylation in Arabidopsis
Huang, Chao-Feng; Miki, Daisuke; Tang, Kai; Zhou, Hao-Ran; Zheng, Zhimin; Chen, Wei; Ma, Ze-Yang; Yang, Lan; Zhang, Heng; Liu, Renyi; He, Xin-Jian; Zhu, Jian-Kang
2013-01-01
Cytosine DNA methylation is a stable epigenetic mark that is frequently associated with the silencing of genes and transposable elements (TEs). In Arabidopsis, the establishment of DNA methylation is through the RNA-directed DNA methylation (RdDM) pathway. Here, we report the identification and characterization of RDM16, a new factor in the RdDM pathway. Mutation of RDM16 reduced the DNA methylation levels and partially released the silencing of a reporter gene as well as some endogenous genomic loci in the DNA demethylase ros1-1 mutant background. The rdm16 mutant had morphological defects and was hypersensitive to salt stress and abscisic acid (ABA). Map-based cloning and complementation test led to the identification of RDM16, which encodes a pre-mRNA-splicing factor 3, a component of the U4/U6 snRNP. RNA-seq analysis showed that 308 intron retention events occurred in rdm16, confirming that RDM16 is involved in pre-mRNA splicing in planta. RNA-seq and mRNA expression analysis also revealed that the RDM16 mutation did not affect the pre-mRNA splicing of known RdDM genes, suggesting that RDM16 might be directly involved in RdDM. Small RNA expression analysis on loci showing RDM16-dependent DNA methylation suggested that unlike the previously reported putative splicing factor mutants, rdm16 did not affect small RNA levels; instead, the rdm16 mutation caused a decrease in the levels of Pol V transcripts. ChIP assays revealed that RDM16 was enriched at some Pol V target loci. Our results suggest that RDM16 regulates DNA methylation through influencing Pol V transcript levels. Finally, our genome-wide DNA methylation analysis indicated that RDM16 regulates the overall methylation of TEs and gene-surrounding regions, and preferentially targets Pol IV-dependent DNA methylation loci and the ROS1 target loci. Our work thus contributes to the understanding of RdDM and its interactions with active DNA demethylation. PMID:24068953
Bacterial cell identification in differential interference contrast microscopy images.
Obara, Boguslaw; Roberts, Mark A J; Armitage, Judith P; Grau, Vicente
2013-04-23
Microscopy image segmentation lays the foundation for shape analysis, motion tracking, and classification of biological objects. Despite its importance, automated segmentation remains challenging for several widely used non-fluorescence, interference-based microscopy imaging modalities. For example in differential interference contrast microscopy which plays an important role in modern bacterial cell biology. Therefore, new revolutions in the field require the development of tools, technologies and work-flows to extract and exploit information from interference-based imaging data so as to achieve new fundamental biological insights and understanding. We have developed and evaluated a high-throughput image analysis and processing approach to detect and characterize bacterial cells and chemotaxis proteins. Its performance was evaluated using differential interference contrast and fluorescence microscopy images of Rhodobacter sphaeroides. Results demonstrate that the proposed approach provides a fast and robust method for detection and analysis of spatial relationship between bacterial cells and their chemotaxis proteins.
Cao, Zipei; Wei, Lijuan; Zhu, Weizhi; Yao, Xuping
2018-03-01
Reduction of cyclin-dependent kinase inhibitor 2A (CDKN2A) (p16 and p14) expression through DNA methylation has been reported in prostate cancer (PCa). This meta-analysis was conducted to assess the difference of p16 and p14 methylation between PCa and different histological types of nonmalignant controls and the correlation of p16 or p14 methylation with clinicopathological features of PCa. According to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement criteria, articles were searched in PubMed, Embase, EBSCO, Wanfang, and CNKI databases. The strength of correlation was calculated by the pooled odds ratios (ORs) and their corresponding 95% confidence intervals (95% CIs). Trial sequential analysis (TSA) was used to estimate the required population information for significant results. A total of 20 studies published from 1997 to 2017 were identified in this meta-analysis, including 1140 PCa patients and 530 cases without cancer. Only p16 methylation in PCa was significantly higher than in benign prostatic lesions (OR = 4.72, P = .011), but had a similar level in PCa and adjacent tissues or high-grade prostatic intraepithelial neoplasias (HGPIN). TSA revealed that this analysis on p16 methylation is a false positive result in cancer versus benign prostatic lesions (the estimated required information size of 5116 participants). p16 methylation was not correlated with PCa in the urine and blood. Besides, p16 methylation was not linked to clinical stage, prostate-specific antigen (PSA) level, and Gleason score (GS) of patients with PCa. p14 methylation was not correlated with PCa in tissue and urine samples. No correlation was observed between p14 methylation and clinical stage or GS. CDKN2A mutation and copy number alteration were not associated with prognosis of PCa in overall survival and disease-free survival. CDKN2A expression was not correlated with the prognosis of PCa in overall survival (492 cases) (P > .1), while CDKN2A expression was significantly associated with a poor disease-free survival (P < .01). CDKN2A methylation may not be significantly associated with the development, progression of PCa. Although CDKN2A expression had an unfavorable prognosis in disease-free survival. More studies are needed to confirm our results.
Kolarova, Julia; Tangen, Imke; Bens, Susanne; Gillessen-Kaesbach, Gabriele; Gutwein, Jana; Kautza, Monika; Rydzanicz, Malgorzata; Stephani, Ulrich; Siebert, Reiner; Ammerpohl, Ole; Caliebe, Almuth
2015-08-01
Despite recent progress in molecular karyotyping and clinical sequencing the cause of intellectual disability in a considerable subset of individuals affected by this phenotype remains elusive. As intellectual disability is also a feature of various imprinting disorders and some monogenic forms of intellectual disability are caused by epigenetic modifiers we hypothesized that changes in DNA methylation might be associated with or even causative in some cases of intellectual disability. Therefore, we performed a DNA methylation analysis of peripheral blood samples from 82 patients with intellectual disability and additional features using the HumanMethylation450 BeadChip. The findings were compared to that of 19 normal controls. Differentially methylated loci were validated by bisulfite pyrosequencing. On a global level, we failed to detect a robust DNA methylation signature segregating individuals with intellectual disability from controls. Using an individual approach, we identified 157 regions showing individual DNA methylation changes in at least one patient. These correlated to 107 genes including genes linked to conditions associated with intellectual disability, namely COLEC11, SHANK2, GLI2 and KCNQ2, as well as imprinted genes like FAM50B and MEG3. The latter was suggestive of an undiagnosed Temple syndrome which could be confirmed by diagnostic tests. Subsequent in-depth analysis of imprinted loci revealed DNA methylation changes at additional imprinted loci, i.e. PPIEL, IGF2R, MEG8 and MCTS2/HM13, in up to five patients. Our findings indicate that imprinting disorders are rare but probably under-diagnosed in patients with intellectual disability and moreover point to DNA methylation changes as potential alternative means to identify deregulated genes involved in the pathogenesis of intellectual disability. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Meta-analysis of the association between APC promoter methylation and colorectal cancer.
Ding, Zhenyu; Jiang, Tong; Piao, Ying; Han, Tao; Han, Yaling; Xie, Xiaodong
2015-01-01
Previous studies investigating the association between adenomatous polyposis coli (APC) gene promoter methylation and colorectal cancer (CRC) have yielded conflicting results. The aim of this study was to comprehensively evaluate the potential application of the detection of APC promoter methylation to the prevention and treatment of CRC. PubMed, Embase, and MEDLINE (results updated to October 2014) were searched for relevant studies. The effect size was defined as the weighted odds ratio (OR), which was calculated using either the fixed-effects or random-effects model. Prespecified subgroup and sensitivity analyses were conducted to evaluate potential heterogeneity among the included studies. Nineteen studies comprising 2,426 participants were selected for our meta-analysis. The pooled results of nine studies comprising a total of 740 subjects indicated that APC promoter methylation was significantly associated with CRC risk (pooled OR 5.53; 95% confidence interval [CI] 3.50-8.76; P<0.01). Eleven studies with a total of 1,219 patients evaluated the association between APC promoter methylation and the presence of CRC metastasis, and the pooled OR was 0.80 (95% CI 0.44-1.46; P=0.47). A meta-analysis conducted with four studies with a total of 467 patients found no significant correlation between APC promoter methylation and the presence of colorectal adenoma (pooled OR 1.85; 95% CI 0.67-5.10; P=0.23). No significant correlation between APC promoter methylation and patients' Dukes' stage, TNM stage, differentiation grade, age, or sex was identified. In conclusion, APC promoter methylation was found to be significantly associated with a higher risk of developing CRC. The findings indicate that APC promoter methylation may be a potential biomarker for the carcinogenesis of CRC.
Ma, Hongying; Chen, Xiaoying; Hu, Haochang; Li, Bin; Ying, Xiuru; Zhou, Cong; Zhong, Jie; Zhao, Guofang; Duan, Shiwei
2018-06-01
Non-small cell lung carcinoma (NSCLC) is a major subtype of lung cancer. Aberrant DNA methylation has been frequently observed in NSCLC. The aim of the present study was to investigate the role of MyoD family inhibitor ( MDFI ) methylation in NSCLC. Formalin-fixed paraffin-embedded tumor tissues and adjacent non-cancerous tissues were collected from a total of 111 patients with NSCLC. A methylation assay was performed using the quantitative methylation-specific polymerase chain reaction method. The percentage of methylated reference was used to represent the methylation level of the MDFI promoter. Data mining of a dataset from The Cancer Genome Atlas (TCGA) demonstrated that MDFI promoter methylation levels were significantly increased in 830 tumor tissues compared with 75 non-tumor tissues (P=0.012). However, the results on tissues obtained in the present study indicated that the MDFI promoter methylation levels in tumor tissues were not significantly different compared with those in the adjacent non-tumor tissues (P=0.159). Subsequent breakdown analysis identified that higher MDFI promoter methylation levels were significantly associated with NSCLC in females (P=0.031), but not in males (P=0.832). Age-based subgroup analysis demonstrated that higher MDFI promoter methylation levels were significantly associated with NSCLC in younger patients (≤65 years; P=0.003), but not in older patients (P=0.327). In addition, the association of MDFI methylation with NSCLC was significant in non-smokers (P=0.014), but not in smokers (P=0.832). Similar results also have been determined from subgroup analysis of the TCGA datasets. The Gene Expression Omnibus database indicated MDFI expression restoration in partial lung cancer cell lines (H1299 and Hotz) following demethylation treatment. However, it was identified that MDFI promoter hypermethylation was not significantly associated with prognosis of NSCLC (P>0.05). In conclusion, the present study indicated that the association of higher methylation of the MDFI promoter with NSCLC may be specific to females, non-smokers and people aged ≤65.
Association between P16INK4a Promoter Methylation and Non-Small Cell Lung Cancer: A Meta-Analysis
Zhu, Siwei; Hua, Feng; Zhao, Hui; Xu, Hongrui; You, Jiacong; Sun, Linlin; Wang, Weiqiang; Chen, Jun; Zhou, Qinghua
2013-01-01
Background Aberrant methylation of CpG islands acquired in tumor cells in promoter regions plays an important role in carcinogenesis. Accumulated evidence demonstrates P16INK4a gene promoter hypermethylation is involved in non-small cell lung carcinoma (NSCLC), indicating it may be a potential biomarker for this disease. The aim of this study is to evaluate the frequency of P16INK4a gene promoter methylation between cancer tissue and autologous controls by summarizing published studies. Methods By searching Medline, EMBSE and CNKI databases, the open published studies about P16INK4a gene promoter methylation and NSCLC were identified using a systematic search strategy. The pooled odds of P16INK4A promoter methylation in lung cancer tissue versus autologous controls were calculated by meta-analysis method. Results Thirty-four studies, including 2 652 NSCLC patients with 5 175 samples were included in this meta-analysis. Generally, the frequency of P16INK4A promoter methylation ranged from 17% to 80% (median 44%) in the lung cancer tissue and 0 to 80% (median 15%) in the autologous controls, which indicated the methylation frequency in cancer tissue was much higher than that in autologous samples. We also find a strong and significant correlation between tumor tissue and autologous controls of P16INK4A promoter methylation frequency across studies (Correlation coefficient 0.71, 95% CI:0.51–0.83, P<0.0001). And the pooled odds ratio of P16INK4A promoter methylation in cancer tissue was 3.45 (95% CI: 2.63–4.54) compared to controls under random-effect model. Conclusion Frequency of P16INK4a promoter methylation in cancer tissue was much higher than that in autologous controls, indicating promoter methylation plays an important role in carcinogenesis of the NSCLC. Strong and significant correlation between tumor tissue and autologous samples of P16INK4A promoter methylation demonstrated a promising biomarker for NSCLC. PMID:23577085
Influence of sample preparation on lipidomics analysis of polar lipids in adipose tissue.
López-Bascón, M A; Calderón-Santiago, M; Sánchez-Ceinos, J; Fernández-Vega, A; Guzmán-Ruiz, R; López-Miranda, J; Malagon, M M; Priego-Capote, F
2018-01-15
The main limitations of lipidomics analysis are the chemical complexity of the lipids, the range of concentrations at which they exist, and the variety of samples usually analyzed. These limitations particularly affect the characterization of polar lipids owing to the interference of neutral lipids, essentially acylglycerides, which are at high concentration and suppress ionization of low concentrated lipids in mass spectrometry detection. The influence of sample preparation on lipidomics analysis of polar lipids in adipose tissue by LC-MS/MS was the aim of this research. Two common extractants used for lipids isolation, methanol:chloroform (MeOH:CHCl 3 ) and methyl tert-butyl ether (MTBE), were qualitatively and quantitatively compared for the extraction of the main families of lipids. The obtained results showed that each family of lipids is influenced differently by the extractant used. However, as a general trend, the use of MTBE as extractant led to higher extraction efficiency for unsaturated fatty acids, glycerophospholipids and ceramides, while MeOH:CHCl 3 favored the isolation of saturated fatty acids and plasmalogens. The implementation of a solid-phase extraction (SPE) step for selective isolation of glycerophospholipids prior to LC-MS/MS analysis was assayed to evaluate its influence on lipids detection coverage as compared to direct analysis. This step was critical to enhance the detection coverage of glycerophospholipids by removal of ionization suppression effects caused by acylglycerides. Copyright © 2017 Elsevier B.V. All rights reserved.
The effect of the ovarian varicose vein on the DNA methylation in the rat’s oocyte
Mohammadi, Amirhossein; Zangi, Bagher Minaei; Azari, Mahshid Delfan; Alizadeh, Rafieh; Salehi, Mohammad; Daneshi, Erfan; Rezaei, Mohammad Jafar; Abbasi, Mehdi
2017-01-01
Objective(s): We intended to determine whether the ovarian varicose which is one of the common etiologies of the pelvic congestion syndrome, has the ability to interfere with the DNA methylation reprogramming in the oocyte and thereby affect the oocyte quality or not. Materials and Methods: Varicose model was induced according to the Turner’s method in the rats. Briefly, a 20-gauge needle was placed on the left renal vein and a thread was tied over both the needle and the renal vein medial to the insertion of the ovarian vein, and then the needle was removed. Evaluation of prooxidant-antioxidant balance (PAB) was assessed using specific kits and the expression level of the DNA methyltransferase genes Dnmt1, Dnmt3a and Dnmt3L was assessed by Real-time PCR. Immunofluorescent staining for 5-methylcytosine in the oocytes evaluated the global DNA methylation. Results: A significant PAB increase in the ovaries from varicose group was seen. Real-time PCR demonstrated a remarkable decrease in the expression of the Dnmt3a and Dnmt3L which are responsible for de novo DNA methylation in the oocytes. Immunofluorescent staining for 5-mC showed a reduction in the fluorescence intensity in the oocytes collected from the varicose group. Conclusion: Our findings from Real-time PCR and immunocytochemistry suggest that the epigenetic parameters in the oocyte could be affected by varicose induction and these epigenetic alteration has the potential to affect the oocyte quality. We suggest that the epigenetic changes could happen in the oocytes after the induction of ovarian varicose and lead to the oocyte quality reduction or even infertility. PMID:29147493
Development of a multilayer interference simulation program for MSS systems
NASA Technical Reports Server (NTRS)
Izadian, Jamal S.
1993-01-01
This paper discusses the development of a multilayer interference analysis and simulation program which is used to evaluate interference between non-geostationary and geostationary satellites. In addition to evaluating interference, this program can be used in the development of sharing criteria and coordination among various Mobile Satellite Services (MSS) systems. A C++/Windows implementation of this program, called Globalstar Interference Simulation Program (GISP), has been developed.
A Psychophysiological Analysis of Developmental Differences in the Ability to Resist Interference.
ERIC Educational Resources Information Center
Ridderinkhof, K. Richard; van der Molen, Maurits W.
1995-01-01
Examined age-related changes in visual selective attention--ability to resist interference--in children 5 to 12 years old and adults. The interference effect on stimulus evaluation did not discriminate between age groups; however, the interference effect on correct response activation showed a pronounced age-related reduction, suggesting a…
Wu, Dongping; Chen, Xiaoying; Xu, Yan; Wang, Haiyong; Yu, Guangmao; Jiang, Luping; Hong, Qingxiao; Duan, Shiwei
2017-04-01
The DNA mismatch repair (MMR) gene MutL homolog 1 ( MLH1 ) is critical for the maintenance of genomic integrity. Methylation of the MLH1 gene promoter was identified as a prognostic marker for numerous types of cancer including glioblastoma, colorectal, ovarian and gastric cancer. The present study aimed to determine whether MLH1 promoter methylation was associated with survival in male patients with esophageal squamous cell carcinoma (ESCC). Formalin-fixed, paraffin-embedded ESCC tissues were collected from 87 male patients. MLH1 promoter methylation was assessed using the methylation-specific polymerase chain reaction approach. Kaplan-Meier survival curves and log-rank tests were used to evaluate the association between MLH1 promoter methylation and overall survival (OS) in patients with ESCC. Cox regression analysis was used to obtain crude and multivariate hazard ratios (HR), and 95% confidence intervals (CI). The present study revealed that MLH1 promoter methylation was observed in 53/87 (60.9%) of male patients with ESCC. Kaplan-Meier survival analysis demonstrated that MLH1 promoter hypermethylation was significantly associated with poorer prognosis in patients with ESCC (P=0.048). Multivariate survival analysis revealed that MLH1 promoter hypermethylation was an independent predictor of poor OS in male patients with ESCC (HR=1.716; 95% CI=1.008-2.921). Therefore, MLH1 promoter hypermethylation may be a predictor of prognosis in male patients with ESCC.
Sebastian, Sr S H Roseline; Al-Tamimi, Abdul-Malek S; El-Brollosy, Nasser R; El-Emam, Ali A; Yohannan Panicker, C; Van Alsenoy, Christian
2015-01-05
6-Methyl-1-({[(2E)-2-methyl-3-phenyl-prop-2-en-1-yl]oxy}methyl)-1,2,3,4-tetra-hydro quinazoline-2,4-dione was prepared via treatment of silylated 6-methylquinazoline-2,4-dione with bis-[(E)-2-methyl-3-phenylallyloxy]methane. FT-IR and FT-Raman spectra were recorded and analyzed. The vibrational wavenumbers were computed using DFT methods and are assigned with the help of potential energy distribution method. The first hyperpolarizability, infrared intensities and Raman activities also reported. The geometrical parameters of the title compound obtained from XRD studies are in agreement with the calculated (B3LYP) values. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The HOMO and LUMO analysis are used to determine the charge transfer within the molecule. MEP was performed by the B3LYP method and from the MEP it is evident that the negative charge covers the CO group and the positive region is over the phenyl ring and NH group. Copyright © 2014 Elsevier B.V. All rights reserved.
An analysis of the 'legal high' mephedrone.
Gibbons, Simon; Zloh, Mire
2010-07-15
'Legal highs' are compounds, plant or fungal material which can be readily bought from the internet without legal restriction and the single chemicals may be structurally related to illegal drugs of abuse such as the amphetamines. Several recent deaths in the UK have been attributed to these legal highs and unfortunately there is little chemical or biological literature on these materials or certified standards. Here, we detail the analysis of the widely consumed synthetic N-methyl-cathinone analogue known as mephedrone ((1) 2-aminomethyl-1-tolyl-propan-1-one (4'-methylmethcathinone)) and report its spectral data and molecular properties. Material was purchased from an internet site and examined by extensive one- and two-dimensional NMR studies, high-resolution mass spectrometry, elemental analysis and optical rotation, which demonstrated the sample to be of high purity and racemic in nature. Additionally, we report the molecular modelling properties of methyl-cathinones and compare them to their corresponding methyl-amphetamine series. This indicated that the methyl-cathinones are considerably more hydrophilic than the methyl-amphetamines which may account for the higher doses that are needed to demonstrate similar effects. The presence of a ketone in the side chain introduces a far more planar quality to the methyl-cathinones which is absent in the methyl-amphetamine series, and this planarity may contribute to toxicity. 2010 Elsevier Ltd. All rights reserved.
Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia
2016-01-01
Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (p< 0.000001) following arsenic exposure: inorganic arsenic (iAs), monomethyl arsenic (MMA), dimethyl arsenic (DMA), and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD): 1.00; 95% confidence interval (CI): 0.60–1.40; p< 0.00001) and MMA (SMD: 0.49; 95% CI: 0.21–0.77; p = 0.0006) also increase, while the percentage of DMA (SMD: −0.57; 95% CI: −0.80–−0.31; p< 0.0001), primary methylation index (SMD: −0.57; 95% CI: −0.94–−0.20; p = 0.002), and secondary methylation index (SMD: −0.27; 95% CI: −0.46–−0.90; p = 0.004) decrease. Smoking, drinking, and older age can reduce arsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process. PMID:26861378
Zhou, Dan; Tang, Weiwei; Wang, Wenyi; Pan, Xiaoyan; An, Han-Xiang; Zhang, Yun
2016-01-01
Background. Adenomatous polyposis coli (APC) is widely known as an antagonist of the Wnt signaling pathway via the inactivation of β-catenin. An increasing number of studies have reported that APC methylation contributes to the predisposition to breast cancer (BC). However, recent studies have yielded conflicting results. Methods. Herein, we systematically carried out a meta-analysis to assess the correlation between APC methylation and BC risk. Based on searches of the Cochrane Library, PubMed, Web of Science and Embase databases, the odds ratio (OR) with 95% confidence interval (CI) values were pooled and summarized. Results. A total of 31 articles involving 35 observational studies with 2,483 cases and 1,218 controls met the inclusion criteria. The results demonstrated that the frequency of APC methylation was significantly higher in BC cases than controls under a random effect model (OR = 8.92, 95% CI [5.12-15.52]). Subgroup analysis further confirmed the reliable results, regardless of the sample types detected, methylation detection methods applied and different regions included. Interestingly, our results also showed that the frequency of APC methylation was significantly lower in early-stage BC patients than late-stage ones (OR = 0.62, 95% CI [0.42-0.93]). Conclusion. APC methylation might play an indispensable role in the pathogenesis of BC and could be regarded as a potential biomarker for the diagnosis of BC.
INVOLVED IN DE NOVO 2-containing complex involved in RNA-directed DNA methylation in Arabidopsis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ausin, Israel; Greenberg, Maxim V.C.; Simanshu, Dhirendra K.
2012-10-23
At least three pathways control maintenance of DNA cytosine methylation in Arabidopsis thaliana. However, the RNA-directed DNA methylation (RdDM) pathway is solely responsible for establishment of this silencing mark. We previously described INVOLVED IN DE NOVO 2 (IDN2) as being an RNA-binding RdDM component that is required for DNA methylation establishment. In this study, we describe the discovery of two partially redundant proteins that are paralogous to IDN2 and that form a stable complex with IDN2 in vivo. Null mutations in both genes, termed IDN2-LIKE 1 and IDN2-LIKE 2 (IDNL1 and IDNL2), result in a phenotype that mirrors, but doesmore » not further enhance, the idn2 mutant phenotype. Genetic analysis suggests that this complex acts in a step in the downstream portion of the RdDM pathway. We also have performed structural analysis showing that the IDN2 XS domain adopts an RNA recognition motif (RRM) fold. Finally, genome-wide DNA methylation and expression analysis confirms the placement of the IDN proteins in an RdDM pathway that affects DNA methylation and transcriptional control at many sites in the genome. Results from this study identify and describe two unique components of the RdDM machinery, adding to our understanding of DNA methylation control in the Arabidopsis genome.« less
A parallel and sensitive software tool for methylation analysis on multicore platforms.
Tárraga, Joaquín; Pérez, Mariano; Orduña, Juan M; Duato, José; Medina, Ignacio; Dopazo, Joaquín
2015-10-01
DNA methylation analysis suffers from very long processing time, as the advent of Next-Generation Sequencers has shifted the bottleneck of genomic studies from the sequencers that obtain the DNA samples to the software that performs the analysis of these samples. The existing software for methylation analysis does not seem to scale efficiently neither with the size of the dataset nor with the length of the reads to be analyzed. As it is expected that the sequencers will provide longer and longer reads in the near future, efficient and scalable methylation software should be developed. We present a new software tool, called HPG-Methyl, which efficiently maps bisulphite sequencing reads on DNA, analyzing DNA methylation. The strategy used by this software consists of leveraging the speed of the Burrows-Wheeler Transform to map a large number of DNA fragments (reads) rapidly, as well as the accuracy of the Smith-Waterman algorithm, which is exclusively employed to deal with the most ambiguous and shortest reads. Experimental results on platforms with Intel multicore processors show that HPG-Methyl significantly outperforms in both execution time and sensitivity state-of-the-art software such as Bismark, BS-Seeker or BSMAP, particularly for long bisulphite reads. Software in the form of C libraries and functions, together with instructions to compile and execute this software. Available by sftp to anonymous@clariano.uv.es (password 'anonymous'). juan.orduna@uv.es or jdopazo@cipf.es. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
DNA methylation alterations in response to pesticide exposure in vitro
Zhang, Xiao; Wallace, Andrew D.; Du, Pan; Kibbe, Warren A.; Jafari, Nadereh; Xie, Hehuang; Lin, Simon; Baccarelli, Andrea; Soares, Marcelo Bento; Hou, Lifang
2013-01-01
Although pesticides are subject to extensive carcinogenicity testing before regulatory approval, pesticide exposure has repeatedly been associated with various cancers. This suggests that pesticides may cause cancer via non-mutagenicity mechanisms. The present study provides evidence to support the hypothesis that pesticide-induced cancer may be mediated in part by epigenetic mechanisms. We examined whether exposure to 7 commonly used pesticides (i.e., fonofos, parathion, terbufos, chlorpyrifos, diazinon, malathion, and phorate) induces DNA methylation alterations in vitro. We conducted genome-wide DNA methylation analyses on DNA samples obtained from the human hematopoietic K562 cell line exposed to ethanol (control) and several OPs using the Illumina Infinium HumanMethylation27 BeadChip. Bayesian-adjusted t-tests were used to identify differentially methylated gene promoter CpG sites. In this report, we present our results on three pesticides (fonofos, parathion, and terbufos) that clustered together based on principle component analysis and hierarchical clustering. These three pesticides induced similar methylation changes in the promoter regions of 712 genes, while also exhibiting their own OP-specific methylation alterations. Functional analysis of methylation changes specific to each OP, or common to all three OPs, revealed that differential methylation was associated with numerous genes that are involved in carcinogenesis-related processes. Our results provide experimental evidence that pesticides may modify gene promoter DNA methylation levels, suggesting that epigenetic mechanisms may contribute to pesticide-induced carcinogenesis. Further studies in other cell types and human samples are required, as well as determining the impact of these methylation changes on gene expression. PMID:22847954
Tang, Xiao-Mei; Tao, Xiang; Wang, Yan; Ma, Dong-Wei; Li, Dan; Yang, Hong; Ma, Xin-Rong
2014-12-01
Perennial ryegrass (Lolium perenne), an excellent grass for forage and turf, is widespread in temperate regions. Drought is an important factor that limits its growth, distribution, and yield. DNA methylation affects gene expression and plays an important role in adaptation to adverse environments. In this study, the DNA methylation changes in perennial ryegrass under drought stress were assessed using methylation-sensitive amplified polymorphism (MSAP). After 15 days of drought stress treatment, the plant height was less than half of the control, and the leaves were smaller and darker. Genome-wide, a total of 652 CCGG sites were detected by MSAP. The total methylation level was 57.67 and 47.39 % in the control and drought treatment, respectively, indicating a decrease of 10.28 % due to drought exposure. Fifteen differentially displayed DNA fragments in MSAP profiles were cloned for sequencing analysis. The results showed that most of the genes involved in stress responses. The relative expression levels revealed that three demethylated fragments were up-regulated. The expression of a predicted retrotransposon increased significantly, changing from hypermethylation to non-methylation. Although the extent of methylation in two other genes decreased, the sites of methylation remained, and the expression increased only slightly. All of these results suggested that drought stress decreased the total DNA methylation level in perennial ryegrass and demethylation up-regulated related gene expressions and that the extent of methylation was negatively correlated with expression. Overall, the induced epigenetic changes in genome probably are an important regulatory mechanism for acclimating perennial ryegrass to drought and possibly other environmental stresses.
Is the Fungus Magnaporthe Losing DNA Methylation?
Ikeda, Ken-ichi; Van Vu, Ba; Kadotani, Naoki; Tanaka, Masaki; Murata, Toshiki; Shiina, Kohta; Chuma, Izumi; Tosa, Yukio; Nakayashiki, Hitoshi
2013-01-01
The long terminal repeat retrotransposon, Magnaporthe gypsy-like element (MAGGY), has been shown to be targeted for cytosine methylation in a subset of Magnaporthe oryzae field isolates. Analysis of the F1 progeny from a genetic cross between methylation-proficient (Br48) and methylation-deficient (GFSI1-7-2) isolates revealed that methylation of the MAGGY element was governed by a single dominant gene. Positional cloning followed by gene disruption and complementation experiments revealed that the responsible gene was the DNA methyltransferase, MoDMT1, an ortholog of Neurospora crassa Dim-2. A survey of MAGGY methylation in 60 Magnaporthe field isolates revealed that 42 isolates from rice, common millet, wheat, finger millet, and buffelgrass were methylation proficient while 18 isolates from foxtail millet, green bristlegrass, Japanese panicgrass, torpedo grass, Guinea grass, and crabgrass were methylation deficient. Phenotypic analyses showed that MoDMT1 plays no major role in development and pathogenicity of the fungus. Quantitative polymerase chain reaction analysis showed that the average copy number of genomic MAGGY elements was not significantly different between methylation-deficient and -proficient field isolates even though the levels of MAGGY transcript were generally higher in the former group. MoDMT1 gene sequences in the methylation-deficient isolates suggested that at least three independent mutations were responsible for the loss of MoDMT1 function. Overall, our data suggest that MoDMT1 is not essential for the natural life cycle of the fungus and raise the possibility that the genus Magnaporthe may be losing the mechanism of DNA methylation on the evolutionary time scale. PMID:23979580
Hernández, Luis; Navarro, Alba; Beà, Sílvia; Pinyol, Magda; López-Guillermo, Armando; Rosenwald, Andreas; Ott, German; Campo, Elías; Jares, Pedro
2011-01-01
Background Mantle cell lymphoma (MCL) is genetically characterized by the t(11;14)(q13;q32) translocation and a high number of secondary chromosomal alterations. The contribution of DNA methylation to MCL lymphomagenesis is not well known. We sought to identify epigenetically silenced genes in these tumours that might have clinical relevance. Methodology/Principal Findings To identify potential methylated genes in MCL we initially investigated seven MCL cell lines treated with epigenetic drugs and gene expression microarray profiling. The methylation status of selected candidate genes was validated by a quantitative assay and subsequently analyzed in a series of primary MCL (n = 38). After pharmacological reversion we identified 252 potentially methylated genes. The methylation analysis of a subset of these genes (n = 25) in the MCL cell lines and normal B lymphocytes confirmed that 80% of them were methylated in the cell lines but not in normal lymphocytes. The subsequent analysis in primary MCL identified five genes (SOX9, HOXA9, AHR, NR2F2, and ROBO1) frequently methylated in these tumours. The gene methylation events tended to occur in the same primary neoplasms and correlated with higher proliferation, increased number of chromosomal abnormalities, and shorter survival of the patients. Conclusions We have identified a set of genes whose methylation degree and gene expression levels correlate with aggressive clinicopathological features of MCL. Our findings also suggest that a subset of MCL might show a CpG island methylator phenotype (CIMP) that may influence the behaviour of the tumours. PMID:21603610
DNA Methylation and BMI: Investigating Identified Methylation Sites at HIF3A in a Causal Framework.
Richmond, Rebecca C; Sharp, Gemma C; Ward, Mary E; Fraser, Abigail; Lyttleton, Oliver; McArdle, Wendy L; Ring, Susan M; Gaunt, Tom R; Lawlor, Debbie A; Davey Smith, George; Relton, Caroline L
2016-05-01
Multiple differentially methylated sites and regions associated with adiposity have now been identified in large-scale cross-sectional studies. We tested for replication of associations between previously identified CpG sites at HIF3A and adiposity in ∼1,000 mother-offspring pairs from the Avon Longitudinal Study of Parents and Children (ALSPAC). Availability of methylation and adiposity measures at multiple time points, as well as genetic data, allowed us to assess the temporal associations between adiposity and methylation and to make inferences regarding causality and directionality. Overall, our results were discordant with those expected if HIF3A methylation has a causal effect on BMI and provided more evidence for causality in the reverse direction (i.e., an effect of BMI on HIF3A methylation). These results are based on robust evidence from longitudinal analyses and were also partially supported by Mendelian randomization analysis, although this latter analysis was underpowered to detect a causal effect of BMI on HIF3A methylation. Our results also highlight an apparent long-lasting intergenerational influence of maternal BMI on offspring methylation at this locus, which may confound associations between own adiposity and HIF3A methylation. Further work is required to replicate and uncover the mechanisms underlying the direct and intergenerational effect of adiposity on DNA methylation. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Goltz, Diane; Holmes, Emily Eva; Gevensleben, Heidrun; Sailer, Verena; Dietrich, Jörn; Jung, Maria; Röhler, Magda; Meller, Sebastian; Ellinger, Jörg; Kristiansen, Glen; Dietrich, Dimo
2016-08-16
The CXCR4/CXCL12 axis plays a central role in systemic metastasis of prostate carcinoma (PCa), thereby representing a promising target for future therapies. Recent data suggest that the CXCR4/CXCL12 axis is functionally linked to the PD-1/PD-L1 immune checkpoint. We evaluated the prognostic value of aberrant CXCL12 DNA methylation with respect to PD-L1 expression in primary PCa. CXCL12 methylation showed a consistent significant correlation with Gleason grading groups in both cohorts (p < 0.001 for training and p = 0.034 for testing cohort). Short BCR-free survival was significantly associated with aberrant CXCL12 methylation in both cohorts and served as an independent prognostic factor in the testing cohort (hazard ratio = 1.92 [95%CI: 1.12-3.27], p = 0.049). Concomitant aberrant CXCL12 methylation and high PD-L1 expression was significantly associated with shorter BCR-free survival (p = 0.005). In comparative analysis, the CXCL12 methylation assay was able to provide approximately equivalent results in biopsy and prostatectomy specimens. CXCL12 methylation was determined by means of a methylation specific quantitative PCR analysis in a radical prostatectomy patient cohort (n = 247, training cohort). Data published by The Cancer Genome Atlas served as a testing cohort (n = 498). CXCL12 methylation results were correlated to clinicopathological parameters including biochemical recurrence (BCR)-free survival. CXCL12 methylation is a powerful prognostic biomarker for BCR in PCa patients after radical prostatectomy. Further studies need to ascertain if CXCL12 methylation may aid in planning active surveillance strategies.
Collective Protection (ColPro) Field Testing
2011-09-28
It is recommended that methyl salicylate (MeS) or similar simulants that are not difficult to decontaminate should be used for this purpose. 4.4.3...ce nt ra tio n (m g/ m 3 ) Figure 3. Analysis of ppbRAE® and Solid Sorbent Tube (SST) Data, Methyl Salicylate (MeS) Challenge to the Interior of...the Vehicle. Figure 4. Gasmet™ Analysis of the Methyl Salicylate (MeS) Challenge in the Simulant- Exposure Area (SEA). TOP 08-2-198 28 September
Li, Shi-Rong; Wang, Zhen-Ming; Wang, Yu-Hui; Wang, Xi-Bo; Zhao, Jian-Qiang; Xue, Hai-Bin; Jiang, Fu-Guo
2015-01-01
Detection of cervical high grade lesions in patients with atypical squamous cells of undetermined significance (ASCUS) is still a challenge. Our study tested the efficacy of the paired boxed gene 1 (PAX1) methylation analysis by methylation-sensitive high-resolution melting (MS-HRM) in the detection of high grade lesions in ASCUS and compared performance with the hybrid capture 2 (HC2) human papillomavirus (HPV) test. A total of 463 consecutive ASCUS women from primary screening were selected. Their cervical scrapings were collected and assessed by PAX1 methylation analysis (MS-HRM) and high-risk HPV-DNA test (HC2). All patients with ASCUS were admitted to colposcopy and cervical biopsies. The Chi- square test was used to test the differences of PAX1 methylation or HPV infection between groups. The specificity, sensitivity, and accuracy for detecting CIN2 + lesions were: 95.6%, 82.4%, and 94.6%, respectively, for the PAX1 MS-HRM test; and 59.7%, 64.7%, and 60.0% for the HC2 HPV test. The PAX1 methylation analysis by MS-HRM demonstrated a better performance than the high-risk HPV-DNA test for the detection of high grade lesions (CIN2 +) in ASCUS cases. This approach could screen out the majority of low grade cases of ASCUS, and thus reduce the referral rate to colposcopy.
Sun, Han; Guo, Zhiai; Gao, Lifeng; Zhao, Guangyao; Zhang, Wenping; Zhou, Ronghua; Wu, Yongzhen; Wang, Haiyang; An, Hailong; Jia, Jizeng
2014-11-01
As one of the three key components of the 'Green Revolution', photoperiod insensitivity is vital for improved adaptation of wheat (Triticum aestivum) cultivars to a wider geographical range. Photoperiod-B1a (Ppd-B1a) is one of the major genes that confers photoperiod insensitivity in 'Green Revolution' varieties, and has made a significant contribution to wheat yield improvement. In this study, we investigated the mechanisms underlying the photoperiod insensitivity of Ppd-B1a alleles from an epigenetic perspective using a combination of bisulfite genomic sequencing, orthologous comparative analysis, association analysis, linkage analysis and gene expression analysis. Based on the study of a large collection of wheat germplasm, we report two methylation haplotypes of Ppd-B1 and demonstrate that the higher methylation haplotype (haplotype a) was associated with increased copy numbers and higher expression levels of the Ppd-B1 gene, earlier heading and photoperiod insensitivity. Furthermore, assessment of the distribution frequency of the different methylation haplotypes suggested that the methylation patterns have undergone selection during the wheat breeding process. Our study suggests that DNA methylation in the regulatory region of the Ppd-B1 alleles, which is closely related to copy number variation, plays a significant role in wheat breeding, to confer photoperiod insensitivity and better adaptation to a wider geographical range. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Atypia and DNA methylation in nipple duct lavage in relation to predicted breast cancer risk.
Euhus, David M; Bu, Dawei; Ashfaq, Raheela; Xie, Xian-Jin; Bian, Aihua; Leitch, A Marilyn; Lewis, Cheryl M
2007-09-01
Tumor suppressor gene (TSG) methylation is identified more frequently in random periareolar fine needle aspiration samples from women at high risk for breast cancer than women at lower risk. It is not known whether TSG methylation or atypia in nipple duct lavage (NDL) samples is related to predicted breast cancer risk. 514 NDL samples obtained from 150 women selected to represent a wide range of breast cancer risk were evaluated cytologically and by quantitative multiplex methylation-specific PCR for methylation of cyclin D2, APC, HIN1, RASSF1A, and RAR-beta2. Based on methylation patterns and cytology, NDL retrieved cancer cells from only 9% of breasts ipsilateral to a breast cancer. Methylation of >/=2 genes correlated with marked atypia by univariate analysis, but not multivariate analysis, that adjusted for sample cellularity and risk group classification. Both marked atypia and TSG methylation independently predicted abundant cellularity in multivariate analyses. Discrimination between Gail lower-risk ducts and Gail high-risk ducts was similar for marked atypia [odds ratio (OR), 3.48; P = 0.06] and measures of TSG methylation (OR, 3.51; P = 0.03). However, marked atypia provided better discrimination between Gail lower-risk ducts and ducts contralateral to a breast cancer (OR, 6.91; P = 0.003, compared with methylation OR, 4.21; P = 0.02). TSG methylation in NDL samples does not predict marked atypia after correcting for sample cellularity and risk group classification. Rather, both methylation and marked atypia are independently associated with highly cellular samples, Gail model risk classifications, and a personal history of breast cancer. This suggests the existence of related, but independent, pathogenic pathways in breast epithelium.
Huang, Yi-Wen; Roa, Juan C.; Goodfellow, Paul J.; Kizer, E. Lynette; Huang, Tim H. M.; Chen, Yidong
2013-01-01
Background DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies make it possible to find the functional relationship between cancer-specific methylation patterns and their clinicopathological parameters. Methodology/Principal Findings Cancer methylome system (CMS) is a web-based database application designed for the visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22 normal specimen) and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries utilizing the framework. Conclusions/Significance CMS provides visualization and analytic functions for cancer methylome datasets. A comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological and translational significance make this system powerful and unique in cancer methylation research. CMS is freely accessible at: http://cbbiweb.uthscsa.edu/KMethylomes/. PMID:23630576
Gu, Fei; Doderer, Mark S; Huang, Yi-Wen; Roa, Juan C; Goodfellow, Paul J; Kizer, E Lynette; Huang, Tim H M; Chen, Yidong
2013-01-01
DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies make it possible to find the functional relationship between cancer-specific methylation patterns and their clinicopathological parameters. Cancer methylome system (CMS) is a web-based database application designed for the visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22 normal specimen) and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries utilizing the framework. CMS provides visualization and analytic functions for cancer methylome datasets. A comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological and translational significance make this system powerful and unique in cancer methylation research. CMS is freely accessible at: http://cbbiweb.uthscsa.edu/KMethylomes/.
Khandelwal, Ashish; Gupta, Suman; Gajbhiye, Vijay T; Varghese, Eldho
2016-01-01
In the present investigation, persistence of kresoxim-methyl (a broad spectrum strobilurin fungicide) was studied in water. Results revealed that kresoxim-methyl readily form acid metabolite. Therefore, residues of kresoxim-methyl were quantified on the basis of parent molecule alone and sum total of kresoxim-methyl and its acid metabolite. In water, influence of various abiotic factors like pH, temperature, light and atmospheric carbon dioxide level on dissipation of kresoxim-methyl was studied. The half life value for kresoxim-methyl and total residue varied from 1 to 26.1 and 6.1 to 94.0 days under different conditions. Statistical analysis revealed the significant effect of abiotic factors on the dissipation of kresoxim-methyl from water.
Novel epigenetic changes unveiled by monozygotic twins discordant for smoking habits.
Allione, Alessandra; Marcon, Francesca; Fiorito, Giovanni; Guarrera, Simonetta; Siniscalchi, Ester; Zijno, Andrea; Crebelli, Riccardo; Matullo, Giuseppe
2015-01-01
Exposure to cigarette smoking affects the epigenome and could increase the risk of developing diseases such as cancer and cardiovascular disorders. Changes in DNA methylation associated with smoking may help to identify molecular pathways that contribute to disease etiology. Previous studies are not completely concordant in the identification of differentially methylated regions in the DNA of smokers. We performed an epigenome-wide DNA methylation study in a group of monozygotic (MZ) twins discordant for smoking habits to determine the effect of smoking on DNA methylation. As MZ twins are considered genetically identical, this model allowed us to identify smoking-related DNA methylation changes independent from genetic components. We investigated the whole blood genome-wide DNA methylation profiles in 20 MZ twin pairs discordant for smoking habits by using the Illumina HumanMethylation450 BeadChip. We identified 22 CpG sites that were differentially methylated between smoker and non-smoker MZ twins by intra-pair analysis. We confirmed eight loci already described by other groups, located in AHRR, F2RL3, MYOG1 genes, at 2q37.1 and 6p21.33 regions, and also identified several new loci. Moreover, pathway analysis showed an enrichment of genes involved in GTPase regulatory activity. Our study confirmed the evidence of smoking-related DNA methylation changes, emphasizing that well-designed MZ twin models can aid the discovery of novel DNA methylation signals, even in a limited sample population.
Watanabe, Yoshiyuki; Yamamoto, Hiroyuki; Oikawa, Ritsuko; Toyota, Minoru; Yamamoto, Masakazu; Kokudo, Norihiro; Tanaka, Shinji; Arii, Shigeki; Yotsuyanagi, Hiroshi; Koike, Kazuhiko; Itoh, Fumio
2015-01-01
Integration of DNA viruses into the human genome plays an important role in various types of tumors, including hepatitis B virus (HBV)–related hepatocellular carcinoma. However, the molecular details and clinical impact of HBV integration on either human or HBV epigenomes are unknown. Here, we show that methylation of the integrated HBV DNA is related to the methylation status of the flanking human genome. We developed a next-generation sequencing-based method for structural methylation analysis of integrated viral genomes (denoted G-NaVI). This method is a novel approach that enables enrichment of viral fragments for sequencing using unique baits based on the sequence of the HBV genome. We detected integrated HBV sequences in the genome of the PLC/PRF/5 cell line and found variable levels of methylation within the integrated HBV genomes. Allele-specific methylation analysis revealed that the HBV genome often became significantly methylated when integrated into highly methylated host sites. After integration into unmethylated human genome regions such as promoters, however, the HBV DNA remains unmethylated and may eventually play an important role in tumorigenesis. The observed dynamic changes in DNA methylation of the host and viral genomes may functionally affect the biological behavior of HBV. These findings may impact public health given that millions of people worldwide are carriers of HBV. We also believe our assay will be a powerful tool to increase our understanding of the various types of DNA virus-associated tumorigenesis. PMID:25653310
Supramolecular Affinity Chromatography for Methylation-Targeted Proteomics.
Garnett, Graham A E; Starke, Melissa J; Shaurya, Alok; Li, Janessa; Hof, Fraser
2016-04-05
Proteome-wide studies of post-translationally methylated species using mass spectrometry are complicated by high sample diversity, competition for ionization among peptides, and mass redundancies. Antibody-based enrichment has powered methylation proteomics until now, but the reliability, pan-specificity, polyclonal nature, and stability of the available pan-specific antibodies are problematic and do not provide a standard, reliable platform for investigators. We have invented an anionic supramolecular host that can form host-guest complexes selectively with methyllysine-containing peptides and used it to create a methylysine-affinity column. The column resolves peptides on the basis of methylation-a feat impossible with a comparable commercial cation-exchange column. A proteolyzed nuclear extract was separated on the methyl-affinity column prior to standard proteomics analysis. This experiment demonstrates that such chemical methyl-affinity columns are capable of enriching and improving the analysis of methyllysine residues from complex protein mixtures. We discuss the importance of this advance in the context of biomolecule-driven enrichment methods.
NASA Astrophysics Data System (ADS)
Zhu, Wei; Chen, Qianghua; Wang, Yanghong; Luo, Huifu; Wu, Huan; Ma, Binwu
2018-06-01
In the laser self-mixing interference vibration measurement system, the self mixing interference signal is usually weak so that it can be hardly distinguished from the environmental noise. In order to solve this problem, we present a self-mixing interference optical path with a pre-feedback mirror, a pre-feedback mirror is added between the object and the collimator lens, corresponding feedback light enters into the inner cavity of the laser and the interference by the pre-feedback mirror occurs. The pre-feedback system is established after that. The self-mixing interference theoretical model with a pre-feedback based on the F-P model is derived. The theoretical analysis shows that the amplitude of the intensity of the interference signal can be improved by 2-4 times. The influence factors of system are also discussed. The experiment results show that the amplitude of the signal is greatly improved, which agrees with the theoretical analysis.
YY1 as a controlling factor for the Peg3 and Gnas imprinted domains
Kim, Jeong Do; Hinz, Angela K.; Choo, Jung Ha; Stubbs, Lisa; Kim, Joomyeong
2007-01-01
Imprinting Control Regions (ICRs) often harbor tandem arrays of transcription factor binding sites, as demonstrated by the identification of multiple YY1 binding sites within the ICRs of Peg3, Nespas, and Xist/Tsix domains. In the current study, we have sought to characterize possible roles of YY1 in transcriptional control and epigenetic modification of these imprinted domains. RNA interference-based knockdown experiments in Neuro2A cells resulted in overall transcriptional up-regulation of most of the imprinted genes within the Peg3 domain and also, concomitantly, caused significant loss in the DNA methylation of Peg3-DMR (Differentially Methylated Regions). A similar overall and coordinated expression change was also observed for the imprinted genes of the Gnas domain: up-regulation of Nespas and down-regulation of Nesp and Gnasxl. YY1 knockdown also resulted in changes in the expression levels of Xist and Snrpn. These results support the idea that YY1 plays a major role, as a trans factor, for the control of these imprinted domains. PMID:17067777
NASA Astrophysics Data System (ADS)
Nagaraja, Padmarajaiah; Avinash, Krishnegowda; Shivakumar, Anantharaman; Dinesh, Rangappa; Shrestha, Ashwinee Kumar
2010-11-01
We here describe a new spectrophotometric method for measuring total bilirubin in serum. The method is based on the cleavage of bilirubin giving formaldehyde which further reacts with diazotized 3-methyl-2-benzothiazolinone hydrazone hydrochloride giving blue colored solution with maximum absorbance at 630 nm. Sensitivity of the developed method was compared with Jendrassik-Grof assay procedure and its applicability has been tested with human serum samples. Good correlation was attained between both methods giving slope of 0.994, intercept 0.015, and R2 = 0.997. Beers law obeyed in the range of 0.068-17.2 μM with good linearity, absorbance y = 0.044 Cbil + 0.003. Relative standard deviation was 0.006872, within day precision ranged 0.3-1.2% and day-to-day precision ranged 1-6%. Recovery of the method varied from 97 to 102%. The proposed method has higher sensitivity with less interference. The obtained product was extracted and was spectrally characterized for structural confirmation with FT-IR, 1H NMR.
NASA Astrophysics Data System (ADS)
Entezarian, Majid; Geiger, Bob
2016-03-01
The trend in microelectronics fabrication is to produce nano-features measuring down to 10 nm and finer. The PPT levels of organic and inorganic contaminants in the photoresist, solvent and cleaning solutions are becoming a major processing variable affecting the process capability and defectivity. The photoresist usually contains gels, metals, and particulates that could interfere with the lithography process and cause microbridging defects. Nano filters of 5 nm polypropylene, 5 nm polyethylene, and 10 nm natural nylon were used to filter propylene glycol methyl ether acetate PGMEA containing 50 ppb of Na, Mg, Al, Ca, Cr, Mn, Fe, Cu, Zn, and Pb. All filters were effective in removing trivalent Al, Cr, and Fe metals indicating the mechanism for their removal as mechanical sieving. However, the nylon was also very effective in removing the divalent metals showing adsorptive properties. Furthermore, the metal removal of the nylon membrane was studied as a function of surface chemistry. Natural and charged 40 nm nylon membranes were tested and found that charged nylon is more effective for metal removal.
Morgan, T J; Herod, A A; Brain, S A; Chambers, F M; Kandiyoti, R
2005-11-18
Soil from a redundant coke oven site has been examined by extraction of soluble materials using 1-methyl-2-pyrrolidinone (NMP) followed by size exclusion chromatography (SEC) of the extracted material. The extracted material was found to closely resemble a high temperature coal tar pitch. Standard humic and fulvic acids were also examined since these materials are very soluble in NMP and would be extracted with pitch if present in the soil. Humic substances derived from peat samples and NMP-extracts of peats were also examined. The results show that the humic and fulvic substances were not extracted directly by NMP from peats. They were extracted using caustic soda solution and were different from the peat extracts in NMP. These results indicate that humic and fulvic acids were soluble in NMP in the protonated polyelectrolyte form but not in the original native polyelectrolyte form. The extraction of soil using NMP followed by SEC appears to be a promising method for identifying contamination by coal-based industries.
MutS HOMOLOG1-Derived Epigenetic Breeding Potential in Tomato1[OPEN
Kundariya, Hardik; Xu, Ying-Zhi; Sandhu, Ajay; Yu, Jiantao; Zhang, Mingfang
2015-01-01
Evidence is compelling in support of a naturally occurring epigenetic influence on phenotype expression in land plants, although discerning the epigenetic contribution is difficult. Agriculturally important attributes like heterosis, inbreeding depression, phenotypic plasticity, and environmental stress response are thought to have significant epigenetic components, but unequivocal demonstration of this is often infeasible. Here, we investigate gene silencing of a single nuclear gene, MutS HOMOLOG1 (MSH1), in the tomato (Solanum lycopersicum) ‘Rutgers’ to effect developmental reprogramming of the plant. The condition is heritable in subsequent generations independent of the MSH1-RNA interference transgene. Crossing these transgene-null, developmentally altered plants to the isogenic cv Rutgers wild type results in progeny lines that show enhanced, heritable growth vigor under both greenhouse and field conditions. This boosted vigor appears to be graft transmissible and is partially reversed by treatment with the methylation inhibitor 5-azacytidine, implying the influence of mobile, epigenetic factors and DNA methylation changes. These data provide compelling evidence for the feasibility of epigenetic breeding in a crop plant. PMID:25736208
Yang, Mihi; Youn, Je-In; Kim, Seung Joon; Park, Jong Y
2015-11-01
DNA methylation in promoter region can be a new chemopreventive marker against polycyclic aromatic hydrocarbons (PAHs). We performed a randomized, double blind and cross-over trial (N=12 healthy females) to evaluate chlorella (Chlorella vulgaris)-induced epigenetic modulation on exposure to PAHs. The subjects consumed 4 tablets of placebo or chlorella supplement (total chlorophyll ≈ 8.3mg/tablet) three times a day before meals for 2 weeks. When the subjects consumed chlorella, status of global hypermethylation (5-methylcytosine) was reduced, compared to placebo (p=0.04). However, DNA methylation at the DNMT1 or NQO1 was not modified by chlorella. We observed the reduced levels of urinary 1-hydroxypyrene (1-OHP), a typical metabolite of PAHs, by chlorella intake (p<0.1) and a positive association between chlorella-induced changes in global hypermethylation and urinary 1-OHP (p<0.01). Therefore, our study suggests chlorella works for PAH-detoxification through the epigenetic modulation, the interference of ADME of PAHs and the interaction of mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.
Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming
2015-08-14
PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Ali, Esam M A; Edwards, Howell G M; Scowen, Ian J
2011-10-01
Trace amounts of street samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine (MDMA) on natural and synthetic textiles were successfully detected in situ using confocal Raman microscopy. The presence of some excipient bands in the spectra of the drugs did not prevent the unambiguous identification of the drugs. Raman spectra of the drugs were readily obtained without significant interference from the fibre substrates. Interfering bands arising from the fibre natural or synthetic polymer structure and/or dye molecules did not overlap with the characteristic Raman bands of the drugs. If needed, interfering bands could be successfully removed by spectral subtraction. Also, Raman spectra could be acquired from drug particles trapped between the fibres of highly fluorescent textile specimens. The total acquisition time of the spectra of the drug particles was 90 s accomplished non-destructively and without detachment from their substrates. Sample preparation was not required and spectra of the drugs could be obtained non-invasively preserving the integrity of the evidential material for further analysis. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ali, Esam M. A.; Edwards, Howell G. M.; Scowen, Ian J.
2011-10-01
Trace amounts of street samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine (MDMA) on natural and synthetic textiles were successfully detected in situ using confocal Raman microscopy. The presence of some excipient bands in the spectra of the drugs did not prevent the unambiguous identification of the drugs. Raman spectra of the drugs were readily obtained without significant interference from the fibre substrates. Interfering bands arising from the fibre natural or synthetic polymer structure and/or dye molecules did not overlap with the characteristic Raman bands of the drugs. If needed, interfering bands could be successfully removed by spectral subtraction. Also, Raman spectra could be acquired from drug particles trapped between the fibres of highly fluorescent textile specimens. The total acquisition time of the spectra of the drug particles was 90 s accomplished non-destructively and without detachment from their substrates. Sample preparation was not required and spectra of the drugs could be obtained non-invasively preserving the integrity of the evidential material for further analysis.
Tumor purity and differential methylation in cancer epigenomics.
Wang, Fayou; Zhang, Naiqian; Wang, Jun; Wu, Hao; Zheng, Xiaoqi
2016-11-01
DNA methylation is an epigenetic modification of DNA molecule that plays a vital role in gene expression regulation. It is not only involved in many basic biological processes, but also considered an important factor for tumorigenesis and other human diseases. Study of DNA methylation has been an active field in cancer epigenomics research. With the advances of high-throughput technologies and the accumulation of enormous amount of data, method development for analyzing these data has gained tremendous interests in the fields of computational biology and bioinformatics. In this review, we systematically summarize the recent developments of computational methods and software tools in high-throughput methylation data analysis with focus on two aspects: differential methylation analysis and tumor purity estimation in cancer studies. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Genome-wide analysis of DNA methylation in five tissues of sika deer (Cervus nippon).
Yang, Chun; Zhang, Yan; Liu, Wenyuan; Lu, Xiao; Li, Chunyi
2018-03-01
DNA methylation plays an important role in regulating gene expression during tissue development and differentiation in eukaryotes. In contrast to domestic animals, epigenetic studies have been seldom conducted in wild animals. In the present study, we conducted the genome-wide profiling of DNA methylation for five tissues of sika deer using the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) technique. Overall, a total of 104,131 fragments were amplified including 41,951 methylated fragments using 32 pairs of selected primers. The average incidence of DNA methylation was approximately 38.18% in muscle, 40.32% in heart, 41.86% in liver, 41.20% in lung, and 41.68% in kidney, respectively. Also, the significant differences of the DNA methylation levels were found between the different tissue types (P<0.05), which indicates that the differences of genome-wide DNA methylation levels may be related to gene expression during tissue development and differentiation. In addition, 37 tissue-specific differentially methylated regions (T-DMRs) were identified and recovered by MSAP in five tissues, and were further confirmed by Southern blot analysis. Our study presents the first look at the T-DMRs in sika deer and represents an initial step towards understanding of epigenetic regulatory mechanism underlying tissue development and differentiation in sika deer. Copyright © 2017. Published by Elsevier B.V.
Determination of niobium in rocks by an isotope dilution spectrophotometric method
Greenland, L.P.; Campbell, E.Y.
1970-01-01
Rocks and minerals are fused with sodium peroxide in the presence of carrierfree 95Nb. The fusion cake is leached with water and the precipitate dissolved in hydrofluoric-sulfuric acid mixture. Niobium is extracted into methyl isobutyl ketone and further purified by ion exchange. The amount of niobium is determined spectrophotometrically with 4-(2-pyridylazo)-resorcinol, and the chemical yield of the separations determined by counting 95Nb. This procedure is faster and less sensitive to interferences than previously proposed methods for determining niobium in rocks.The high purity of the separated niobium makes the method applicable to nearly all matrices. ?? 1970.
MBTH: A novel approach to rapid, spectrophotometric quantitation of total algal carbohydrates
Van Wychen, Stefanie; Long, William; Black, Stuart K.; ...
2016-11-24
A high-throughput and robust application of the 3-methyl-2-benzothiazolinone hydrazone (MBTH) method was developed for carbohydrate determination in microalgae. The traditional phenol-sulfuric acid method to quantify carbohydrates is strongly affected by algal biochemical components and exhibits a highly variable response to microalgal monosaccharides. We present a novel use of the MBTH method to accurately quantify carbohydrates in hydrolyzate after acid hydrolysis of algal biomass, without a need for neutralization. As a result, the MBTH method demonstrated consistent and sensitive quantitation of algae-specific monosaccharides down to 5 ug mL -1 without interference from other algae acidic hydrolyzate components.
MBTH: A novel approach to rapid, spectrophotometric quantitation of total algal carbohydrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Wychen, Stefanie; Long, William; Black, Stuart K.
A high-throughput and robust application of the 3-methyl-2-benzothiazolinone hydrazone (MBTH) method was developed for carbohydrate determination in microalgae. The traditional phenol-sulfuric acid method to quantify carbohydrates is strongly affected by algal biochemical components and exhibits a highly variable response to microalgal monosaccharides. We present a novel use of the MBTH method to accurately quantify carbohydrates in hydrolyzate after acid hydrolysis of algal biomass, without a need for neutralization. As a result, the MBTH method demonstrated consistent and sensitive quantitation of algae-specific monosaccharides down to 5 ug mL -1 without interference from other algae acidic hydrolyzate components.
Draht, Muriel X G; Smits, Kim M; Jooste, Valérie; Tournier, Benjamin; Vervoort, Martijn; Ramaekers, Chantal; Chapusot, Caroline; Weijenberg, Matty P; van Engeland, Manon; Melotte, Veerle
2016-01-01
Already since the 1990s, promoter CpG island methylation markers have been considered promising diagnostic, prognostic, and predictive cancer biomarkers. However, so far, only a limited number of DNA methylation markers have been introduced into clinical practice. One reason why the vast majority of methylation markers do not translate into clinical applications is lack of independent validation of methylation markers, often caused by differences in methylation analysis techniques. We recently described RET promoter CpG island methylation as a potential prognostic marker in stage II colorectal cancer (CRC) patients of two independent series. In the current study, we analyzed the RET promoter CpG island methylation of 241 stage II colon cancer patients by direct methylation-specific PCR (MSP), nested-MSP, pyrosequencing, and methylation-sensitive high-resolution melting (MS-HRM). All primers were designed as close as possible to the same genomic region. In order to investigate the effect of different DNA methylation assays on patient outcome, we assessed the clinical sensitivity and specificity as well as the association of RET methylation with overall survival for three and five years of follow-up. Using direct-MSP and nested-MSP, 12.0 % (25/209) and 29.6 % (71/240) of the patients showed RET promoter CpG island methylation. Methylation frequencies detected by pyrosequencing were related to the threshold for positivity that defined RET methylation. Methylation frequencies obtained by pyrosequencing (threshold for positivity at 20 %) and MS-HRM were 13.3 % (32/240) and 13.8 % (33/239), respectively. The pyrosequencing threshold for positivity of 20 % showed the best correlation with MS-HRM and direct-MSP results. Nested-MSP detected RET promoter CpG island methylation in deceased patients with a higher sensitivity (33.1 %) compared to direct-MSP (10.7 %), pyrosequencing (14.4 %), and MS-HRM (15.4 %). While RET methylation frequencies detected by nested-MSP, pyrosequencing, and MS-HRM varied, the prognostic effect seemed similar (HR 1.74, 95 % CI 0.97-3.15; HR 1.85, 95 % CI 0.93-3.86; HR 1.83, 95 % CI 0.92-3.65, respectively). Our results show that upon optimizing and aligning four RET methylation assays with regard to primer location and sensitivity, differences in methylation frequencies and clinical sensitivities are observed; however, the effect on the marker's prognostic outcome is minimal.
Su, Chang; Wang, Chao; He, Lin; Yang, Chuanping; Wang, Yucheng
2014-01-01
DNA methylation plays a critical role in the regulation of gene expression. Most studies of DNA methylation have been performed in herbaceous plants, and little is known about the methylation patterns in tree genomes. In the present study, we generated a map of methylated cytosines at single base pair resolution for Betula platyphylla (white birch) by bisulfite sequencing combined with transcriptomics to analyze DNA methylation and its effects on gene expression. We obtained a detailed view of the function of DNA methylation sequence composition and distribution in the genome of B. platyphylla. There are 34,460 genes in the whole genome of birch, and 31,297 genes are methylated. Conservatively, we estimated that 14.29% of genomic cytosines are methylcytosines in birch. Among the methylation sites, the CHH context accounts for 48.86%, and is the largest proportion. Combined transcriptome and methylation analysis showed that the genes with moderate methylation levels had higher expression levels than genes with high and low methylation. In addition, methylated genes are highly enriched for the GO subcategories of binding activities, catalytic activities, cellular processes, response to stimulus and cell death, suggesting that methylation mediates these pathways in birch trees. PMID:25514241
Nonparametric Bayesian clustering to detect bipolar methylated genomic loci.
Wu, Xiaowei; Sun, Ming-An; Zhu, Hongxiao; Xie, Hehuang
2015-01-16
With recent development in sequencing technology, a large number of genome-wide DNA methylation studies have generated massive amounts of bisulfite sequencing data. The analysis of DNA methylation patterns helps researchers understand epigenetic regulatory mechanisms. Highly variable methylation patterns reflect stochastic fluctuations in DNA methylation, whereas well-structured methylation patterns imply deterministic methylation events. Among these methylation patterns, bipolar patterns are important as they may originate from allele-specific methylation (ASM) or cell-specific methylation (CSM). Utilizing nonparametric Bayesian clustering followed by hypothesis testing, we have developed a novel statistical approach to identify bipolar methylated genomic regions in bisulfite sequencing data. Simulation studies demonstrate that the proposed method achieves good performance in terms of specificity and sensitivity. We used the method to analyze data from mouse brain and human blood methylomes. The bipolar methylated segments detected are found highly consistent with the differentially methylated regions identified by using purified cell subsets. Bipolar DNA methylation often indicates epigenetic heterogeneity caused by ASM or CSM. With allele-specific events filtered out or appropriately taken into account, our proposed approach sheds light on the identification of cell-specific genes/pathways under strong epigenetic control in a heterogeneous cell population.
Sahm, Felix; Schrimpf, Daniel; Stichel, Damian; Jones, David T W; Hielscher, Thomas; Schefzyk, Sebastian; Okonechnikov, Konstantin; Koelsche, Christian; Reuss, David E; Capper, David; Sturm, Dominik; Wirsching, Hans-Georg; Berghoff, Anna Sophie; Baumgarten, Peter; Kratz, Annekathrin; Huang, Kristin; Wefers, Annika K; Hovestadt, Volker; Sill, Martin; Ellis, Hayley P; Kurian, Kathreena M; Okuducu, Ali Fuat; Jungk, Christine; Drueschler, Katharina; Schick, Matthias; Bewerunge-Hudler, Melanie; Mawrin, Christian; Seiz-Rosenhagen, Marcel; Ketter, Ralf; Simon, Matthias; Westphal, Manfred; Lamszus, Katrin; Becker, Albert; Koch, Arend; Schittenhelm, Jens; Rushing, Elisabeth J; Collins, V Peter; Brehmer, Stefanie; Chavez, Lukas; Platten, Michael; Hänggi, Daniel; Unterberg, Andreas; Paulus, Werner; Wick, Wolfgang; Pfister, Stefan M; Mittelbronn, Michel; Preusser, Matthias; Herold-Mende, Christel; Weller, Michael; von Deimling, Andreas
2017-05-01
The WHO classification of brain tumours describes 15 subtypes of meningioma. Nine of these subtypes are allotted to WHO grade I, and three each to grade II and grade III. Grading is based solely on histology, with an absence of molecular markers. Although the existing classification and grading approach is of prognostic value, it harbours shortcomings such as ill-defined parameters for subtypes and grading criteria prone to arbitrary judgment. In this study, we aimed for a comprehensive characterisation of the entire molecular genetic landscape of meningioma to identify biologically and clinically relevant subgroups. In this multicentre, retrospective analysis, we investigated genome-wide DNA methylation patterns of meningiomas from ten European academic neuro-oncology centres to identify distinct methylation classes of meningiomas. The methylation classes were further characterised by DNA copy number analysis, mutational profiling, and RNA sequencing. Methylation classes were analysed for progression-free survival outcomes by the Kaplan-Meier method. The DNA methylation-based and WHO classification schema were compared using the Brier prediction score, analysed in an independent cohort with WHO grading, progression-free survival, and disease-specific survival data available, collected at the Medical University Vienna (Vienna, Austria), assessing methylation patterns with an alternative methylation chip. We retrospectively collected 497 meningiomas along with 309 samples of other extra-axial skull tumours that might histologically mimic meningioma variants. Unsupervised clustering of DNA methylation data clearly segregated all meningiomas from other skull tumours. We generated genome-wide DNA methylation profiles from all 497 meningioma samples. DNA methylation profiling distinguished six distinct clinically relevant methylation classes associated with typical mutational, cytogenetic, and gene expression patterns. Compared with WHO grading, classification by individual and combined methylation classes more accurately identifies patients at high risk of disease progression in tumours with WHO grade I histology, and patients at lower risk of recurrence among WHO grade II tumours (p=0·0096) from the Brier prediction test). We validated this finding in our independent cohort of 140 patients with meningioma. DNA methylation-based meningioma classification captures clinically more homogenous groups and has a higher power for predicting tumour recurrence and prognosis than the WHO classification. The approach presented here is potentially very useful for stratifying meningioma patients to observation-only or adjuvant treatment groups. We consider methylation-based tumour classification highly relevant for the future diagnosis and treatment of meningioma. German Cancer Aid, Else Kröner-Fresenius Foundation, and DKFZ/Heidelberg Institute of Personalized Oncology/Precision Oncology Program. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chae, Heejoon; Lee, Sangseon; Seo, Seokjun; Jung, Daekyoung; Chang, Hyeonsook; Nephew, Kenneth P; Kim, Sun
2016-12-01
Measuring gene expression, DNA sequence variation, and DNA methylation status is routinely done using high throughput sequencing technologies. To analyze such multi-omics data and explore relationships, reliable bioinformatics systems are much needed. Existing systems are either for exploring curated data or for processing omics data in the form of a library such as R. Thus scientists have much difficulty in investigating relationships among gene expression, DNA sequence variation, and DNA methylation using multi-omics data. In this study, we report a system called BioVLAB-mCpG-SNP-EXPRESS for the integrated analysis of DNA methylation, sequence variation (SNPs), and gene expression for distinguishing cellular phenotypes at the pairwise and multiple phenotype levels. The system can be deployed on either the Amazon cloud or a publicly available high-performance computing node, and the data analysis and exploration of the analysis result can be conveniently done using a web-based interface. In order to alleviate analysis complexity, all the process are fully automated, and graphical workflow system is integrated to represent real-time analysis progression. The BioVLAB-mCpG-SNP-EXPRESS system works in three stages. First, it processes and analyzes multi-omics data as input in the form of the raw data, i.e., FastQ files. Second, various integrated analyses such as methylation vs. gene expression and mutation vs. methylation are performed. Finally, the analysis result can be explored in a number of ways through a web interface for the multi-level, multi-perspective exploration. Multi-level interpretation can be done by either gene, gene set, pathway or network level and multi-perspective exploration can be explored from either gene expression, DNA methylation, sequence variation, or their relationship perspective. The utility of the system is demonstrated by performing analysis of phenotypically distinct 30 breast cancer cell line data set. BioVLAB-mCpG-SNP-EXPRESS is available at http://biohealth.snu.ac.kr/software/biovlab_mcpg_snp_express/. Copyright © 2016 Elsevier Inc. All rights reserved.
Traumatic stress and accelerated DNA methylation age: A meta-analysis.
Wolf, Erika J; Maniates, Hannah; Nugent, Nicole; Maihofer, Adam X; Armstrong, Don; Ratanatharathorn, Andrew; Ashley-Koch, Allison E; Garrett, Melanie; Kimbrel, Nathan A; Lori, Adriana; Va Mid-Atlantic Mirecc Workgroup; Aiello, Allison E; Baker, Dewleen G; Beckham, Jean C; Boks, Marco P; Galea, Sandro; Geuze, Elbert; Hauser, Michael A; Kessler, Ronald C; Koenen, Karestan C; Miller, Mark W; Ressler, Kerry J; Risbrough, Victoria; Rutten, Bart P F; Stein, Murray B; Ursano, Robert J; Vermetten, Eric; Vinkers, Christiaan H; Uddin, Monica; Smith, Alicia K; Nievergelt, Caroline M; Logue, Mark W
2018-06-01
Recent studies examining the association between posttraumatic stress disorder (PTSD) and accelerated aging, as defined by DNA methylation-based estimates of cellular age that exceed chronological age, have yielded mixed results. We conducted a meta-analysis of trauma exposure and PTSD diagnosis and symptom severity in association with accelerated DNA methylation age using data from 9 cohorts contributing to the Psychiatric Genomics Consortium PTSD Epigenetics Workgroup (combined N = 2186). Associations between demographic and cellular variables and accelerated DNA methylation age were also examined, as was the moderating influence of demographic variables. Meta-analysis of regression coefficients from contributing cohorts revealed that childhood trauma exposure (when measured with the Childhood Trauma Questionnaire) and lifetime PTSD severity evidenced significant, albeit small, meta-analytic associations with accelerated DNA methylation age (ps = 0.028 and 0.016, respectively). Sex, CD4T cell proportions, and natural killer cell proportions were also significantly associated with accelerated DNA methylation age (all ps < 0.02). PTSD diagnosis and lifetime trauma exposure were not associated with advanced DNA methylation age. There was no evidence of moderation of the trauma or PTSD variables by demographic factors. Results suggest that traumatic stress is associated with advanced epigenetic age and raise the possibility that cells integral to immune system maintenance and responsivity play a role in this. This study highlights the need for additional research into the biological mechanisms linking traumatic stress to accelerated DNA methylation age and the importance of furthering our understanding of the neurobiological and health consequences of PTSD. Published by Elsevier Ltd.
Kawai, T; Mizunuma, K; Yasugi, T; Horiguchi, S; Iguchi, H; Mutti, A; Ghittori, S; Ikeda, M
1995-01-01
OBJECTIVES--To investigate the possibilities of personal ambient monitoring and biological monitoring for methylpentane isomers. METHODS--The performance of activated carbon cloth to absorb 2- and 3-methylpentane was studied by experimental vapour exposure followed by solvent extraction and gas chromatography (GC). Urine from workers and rats exposed to 2- and 3-methylpentane was analysed by GC with or without acid or enzymatic hydrolysis. RESULTS--Carbon cloth absorbed 2- and 3-methylpentane linearly to exposures up to eight hours and to 400 ppm, and was sensitive enough to detect a 15 minute peak of exposure. The two isomers were clearly separated from hexane on a DB-1 column. For analysis of the urine, enzymatic hydrolysis was superior to acid hydrolysis. Exposure of rats to methylpentane vapours showed that 2-methyl-2-pentanol and 3-methyl-2-pentanol were excreted in urine in proportion to the dose of 2-methylpentane and 3-methylpentane, respectively. 2-Methyl derivatives of 1-, 3-, and 4-propanol, 2-methylpentane-2,4-diol, and 3-methyl-2-pentanol were minor metabolites. Analysis of urine from the exposed workers showed that 2-methyl- and 3-methyl-2-pentanol are leading urinary metabolites after exposure to the corresponding methylpentane. CONCLUSIONS--Diffusive sampling is applicable to monitor 2- and 3-methylpentane vapours as is the case for hexane vapour. 2-Methyl-2-pentanol and 3-methyl-2-pentanol will be markers of occupational exposure to 2-methylpentane and 3-methylpentane, respectively. Also, 2-methylpentane-2,4-diol might be a marker of exposure to 2-methylpentane. PMID:8535496
Analysis of Fecal DNA Methylation to Detect Gastrointestinal Neoplasia
Tanaka, Noriaki; Cullings, Harry M.; Sun, Dong-Sheng; Sasamoto, Hiromi; Uchida, Takuyuki; Koi, Minoru; Nishida, Naoshi; Naomoto, Yoshio; Boland, C. Richard; Matsubara, Nagahide; Goel, Ajay
2009-01-01
Background The development of noninvasive screening tests is important to reduce mortality from gastrointestinal neoplasia. We sought to develop such a test by analysis of DNA methylation from exfoliated cancer cells in feces. Methods We first analyzed methylation of the RASSF2 and SFRP2 gene promoters from 788 primary gastric and colorectal tissue specimens to determine whether methylation patterns could act as stage-dependent biomarkers of gastrointestinal tumorigenesis. Next, we developed a novel strategy that uses single-step modification of DNA with sodium bisulfite and fluorescence polymerase chain reaction methodology to measure aberrant methylation in fecal DNA. Methylation of the RASSF2 and SFRP2 promoters was analyzed in 296 fecal samples obtained from a variety of patients, including 21 with gastric tumors, 152 with colorectal tumors, and 10 with non-neoplastic or inflammatory lesions in the gastrointestinal lumen. Results Analysis of DNA from tissues showed presence of extensive methylation in both gene promoters exclusively in advanced gastric and colorectal tumors. The assay successfully identified one or more methylated markers in fecal DNA from 57.1% of patients with gastric cancer, 75.0% of patients with colorectal cancer, and 44.4% of patients with advanced colorectal adenomas, but only 10.6% of subjects without neoplastic or active diseases (difference, gastric cancer vs undiseased = 46.5%, 95% confidence interval (CI) = 24.6% to 68.4%, P < .001; difference, colorectal cancer vs undiseased = 64.4%, 95% CI = 53.5% to 75.2%, P < .001; difference, colorectal adenoma vs undiseased = 33.8%, 95% CI = 14.2% to 53.4%, P < .001). Conclusions Methylation of the RASSF2 and SFRP2 promoters in fecal DNA is associated with the presence of gastrointestinal tumors relative to non-neoplastic conditions. Our novel fecal DNA methylation assay provides a possible means to noninvasively screen not only for colorectal tumors but also for gastric tumors. PMID:19700653
Aberrant EPHB4 gene methylation and childhood acute lymphoblastic leukemia
Li, Yuhua; Wang, Huihui; Chen, Xiaowen; Mai, Huirong; Li, Changgang; Wen, Feiqiu
2017-01-01
The present study aimed to investigate the association between aberrant DNA methylation of the promoter region of the ephrin type-B receptor 4 (EPHB4) gene and the development of childhood acute lymphoblastic leukemia (ALL). Bisulfite sequencing polymerase chain reaction (BSP) was performed to determine the methylation density of cytosine-guanine pair islands in the promoter region of EPHB4, in bone marrow samples from 40 children with ALL. The mRNA and protein expression levels of EPHB4 were detected using reverse transcription-quantitative polymerase chain reaction and western blot analysis. A total of 10 children with idiopathic thrombocytopenic purpura (ITP) were recruited as controls. The results revealed that the average methylation density of the bone marrow samples from the patients with ALL was significantly higher, compared with the patients with ITP (P=0.046). The relative mRNA expression levels of EPHB4 in the patients with ITP (25.08±4.03) and the patients with ALL without methylation (12.33±2.16) were significantly higher, compared with that observed in the patients with ALL with methylation (6.48±2.73; P<0.01). Pearson analysis revealed a significant negative linear correlation between EPHB4 gene methylation and its expression levels (r=−0.957; P<0.01). Western blot analysis indicated that EPHB4 protein expression levels were low in the methylated ALL samples. An evaluation of the two-year disease-free survival (DFS) of the patients with ALL was performed, which revealed that the patients with unmethylated ALL exhibited a significantly higher two-year DFS rate, as compared with patients with methylated ALL (P=0.036). These results suggest that the methylation of the EPHB4 gene is prevalent in childhood ALL and may result in expressional inactivation, which consequently promotes ALL pathogenesis and is associated with an unfavorable prognosis. Therefore, the EPHB4 gene may function as a potential tumor suppressor in childhood ALL. PMID:29085439
GLINT: a user-friendly toolset for the analysis of high-throughput DNA-methylation array data.
Rahmani, Elior; Yedidim, Reut; Shenhav, Liat; Schweiger, Regev; Weissbrod, Omer; Zaitlen, Noah; Halperin, Eran
2017-06-15
GLINT is a user-friendly command-line toolset for fast analysis of genome-wide DNA methylation data generated using the Illumina human methylation arrays. GLINT, which does not require any programming proficiency, allows an easy execution of Epigenome-Wide Association Study analysis pipeline under different models while accounting for known confounders in methylation data. GLINT is a command-line software, freely available at https://github.com/cozygene/glint/releases . It requires Python 2.7 and several freely available Python packages. Further information and documentation as well as a quick start tutorial are available at http://glint-epigenetics.readthedocs.io . elior.rahmani@gmail.com or ehalperin@cs.ucla.edu. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Sasheva, Pavlina; Grossniklaus, Ueli
2017-01-01
Over the last years, it has become increasingly clear that environmental influences can affect the epigenomic landscape and that some epigenetic variants can have heritable, phenotypic effects. While there are a variety of methods to perform genome-wide analyses of DNA methylation in model organisms, this is still a challenging task for non-model organisms without a reference genome. Differentially methylated region-representational difference analysis (DMR-RDA) is a sensitive and powerful PCR-based technique that isolates DNA fragments that are differentially methylated between two otherwise identical genomes. The technique does not require special equipment and is independent of prior knowledge about the genome. It is even applicable to genomes that have high complexity and a large size, being the method of choice for the analysis of plant non-model systems.
USDA-ARS?s Scientific Manuscript database
Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS), and the enrichment-based techniques methylat...
USDA-ARS?s Scientific Manuscript database
To evaluate the effect of infertility and intracytoplasmic sperm injection (ICSI) on DNA methylation of offspring. Microarray analysis of DNA methylation in archived neonatal bloodspots of in vitro fertilization (IVF)/ICSI-conceived children compared with controls born to fertile and infertile paren...
Swineford, D.M.; Belisle, A.A.
1989-01-01
A method was developed for the simultaneous extraction of trifluralin, methyl paraoxon, methyl parathion, fenvalerate, and 2,4-D dimethylamine salt in pond water using a solid-phase C18 column. After elution from the C18 column, the eluate was analyzed on a capillary gas chromatograph equipped with an electron-capture or flame photometric detector.
DRME: Count-based differential RNA methylation analysis at small sample size scenario.
Liu, Lian; Zhang, Shao-Wu; Gao, Fan; Zhang, Yixin; Huang, Yufei; Chen, Runsheng; Meng, Jia
2016-04-15
Differential methylation, which concerns difference in the degree of epigenetic regulation via methylation between two conditions, has been formulated as a beta or beta-binomial distribution to address the within-group biological variability in sequencing data. However, a beta or beta-binomial model is usually difficult to infer at small sample size scenario with discrete reads count in sequencing data. On the other hand, as an emerging research field, RNA methylation has drawn more and more attention recently, and the differential analysis of RNA methylation is significantly different from that of DNA methylation due to the impact of transcriptional regulation. We developed DRME to better address the differential RNA methylation problem. The proposed model can effectively describe within-group biological variability at small sample size scenario and handles the impact of transcriptional regulation on RNA methylation. We tested the newly developed DRME algorithm on simulated and 4 MeRIP-Seq case-control studies and compared it with Fisher's exact test. It is in principle widely applicable to several other RNA-related data types as well, including RNA Bisulfite sequencing and PAR-CLIP. The code together with an MeRIP-Seq dataset is available online (https://github.com/lzcyzm/DRME) for evaluation and reproduction of the figures shown in this article. Copyright © 2016 Elsevier Inc. All rights reserved.
Association between promoter hypermethylation of the DACT2 gene and tumor stages in breast cancer.
Marusa Borgonio-Cuadra, Veronica; Miranda-Duarte, Antonio; Rojas-Toledo, Xochitl; Garcia-Hernandez, Normand; Alfredo Sierra-Ramirez, Jose; Cardenas-Garcia, Maura; Elena Hernandez-Caballero, Marta
2018-01-01
Aberrant methylation of CpG islands in the promoter is a hallmark of cancer, leading to transcriptional silencing of tumor suppressor genes. The aim of this work was to evaluate the promoter methylation status of the DACT2 gene in breast cancer (BC) tissue and to analyze its possible effect on tumor type or grade. CpG island from the DACT2 promoter in region -240 to -14 from transcriptional start site (TSS) were obtained. Through the use of sodium bisulfite DNA conversion analysis, followed by detection with MSP (methylation specific PCR), we analyzed 79 BC and 15 adjacent healthy samples. T he c ases a nalyzed w ere i n s tage I ( 2.5%), I I (38%), or III (59.5%). The most frequent tumor type was invasive ductal carcinoma (71.4%). Methylation analysis comparing tumor tissues with adjacent non-cancerous tissues showed statistical significance. Methylation was observed in 32.9% (26/79) of the samples; no methylation was found in adjacent healthy tissue. DACT2 methylation was associated with tumor stage I-II (p=0.03) and stage III (p=0.004). An association was found of DACT2 promoter methylation with advanced tumor stages. This gene has been suggested as a potential biomarker, however, more investigation is required to validate this function.
Wang, Yihan; Zhang, Jingyu; Xiao, Xingjun; Liu, Hongbo; Wang, Fang; Li, Song; Wen, Yanhua; Wei, Yanjun; Su, Jianzhong; Zhang, Yunming; Zhang, Yan
2016-03-07
As one of the most widely studied epigenetic modifications, DNA methylation has an important influence on human traits and cancers. Dynamic variations in DNA methylation have been reported in malignant neoplasm and aging; however, the mechanisms remain poorly understood. By constructing an age-associated and cancer-related weighted network (ACWN) based on the correlation of the methylation level and the protein-protein interaction, we found that DNA methylation changes associated with age were closely related to the occurrence of cancer. Additional analysis of 102 module genes mined from the ACWN revealed discrimination based on two main patterns. One pattern involved methylation levels that increased with aging and were higher in cancer patients compared with normal controls (HH pattern). The other pattern involved methylation levels that decreased with aging and were lower in cancer compared with normal (LL pattern). Upon incorporation with gene expression levels, 25 genes were filtered based on negative regulation by DNA methylation. These genes were regarded as potential cancer risk markers that were influenced by age in the process of carcinogenesis. Our results will facilitate further studies regarding the impact of the epigenetic effects of aging on diseases and will aid in the development of tailored cancer preventive strategies.
Wang, Yihan; Zhang, Jingyu; Xiao, Xingjun; Liu, Hongbo; Wang, Fang; Li, Song; Wen, Yanhua; Wei, Yanjun; Su, Jianzhong; Zhang, Yunming; Zhang, Yan
2016-01-01
As one of the most widely studied epigenetic modifications, DNA methylation has an important influence on human traits and cancers. Dynamic variations in DNA methylation have been reported in malignant neoplasm and aging; however, the mechanisms remain poorly understood. By constructing an age-associated and cancer-related weighted network (ACWN) based on the correlation of the methylation level and the protein-protein interaction, we found that DNA methylation changes associated with age were closely related to the occurrence of cancer. Additional analysis of 102 module genes mined from the ACWN revealed discrimination based on two main patterns. One pattern involved methylation levels that increased with aging and were higher in cancer patients compared with normal controls (HH pattern). The other pattern involved methylation levels that decreased with aging and were lower in cancer compared with normal (LL pattern). Upon incorporation with gene expression levels, 25 genes were filtered based on negative regulation by DNA methylation. These genes were regarded as potential cancer risk markers that were influenced by age in the process of carcinogenesis. Our results will facilitate further studies regarding the impact of the epigenetic effects of aging on diseases and will aid in the development of tailored cancer preventive strategies. PMID:26949191
Lien, Tonje G; Borgan, Ørnulf; Reppe, Sjur; Gautvik, Kaare; Glad, Ingrid Kristine
2018-03-07
Using high-dimensional penalized regression we studied genome-wide DNA-methylation in bone biopsies of 80 postmenopausal women in relation to their bone mineral density (BMD). The women showed BMD varying from severely osteoporotic to normal. Global gene expression data from the same individuals was available, and since DNA-methylation often affects gene expression, the overall aim of this paper was to include both of these omics data sets into an integrated analysis. The classical penalized regression uses one penalty, but we incorporated individual penalties for each of the DNA-methylation sites. These individual penalties were guided by the strength of association between DNA-methylations and gene transcript levels. DNA-methylations that were highly associated to one or more transcripts got lower penalties and were therefore favored compared to DNA-methylations showing less association to expression. Because of the complex pathways and interactions among genes, we investigated both the association between DNA-methylations and their corresponding cis gene, as well as the association between DNA-methylations and trans-located genes. Two integrating penalized methods were used: first, an adaptive group-regularized ridge regression, and secondly, variable selection was performed through a modified version of the weighted lasso. When information from gene expressions was integrated, predictive performance was considerably improved, in terms of predictive mean square error, compared to classical penalized regression without data integration. We found a 14.7% improvement in the ridge regression case and a 17% improvement for the lasso case. Our version of the weighted lasso with data integration found a list of 22 interesting methylation sites. Several corresponded to genes that are known to be important in bone formation. Using BMD as response and these 22 methylation sites as covariates, least square regression analyses resulted in R 2 =0.726, comparable to an average R 2 =0.438 for 10000 randomly selected groups of DNA-methylations with group size 22. Two recent types of penalized regression methods were adapted to integrate DNA-methylation and their association to gene expression in the analysis of bone mineral density. In both cases predictions clearly benefit from including the additional information on gene expressions.
Boireau, A; Bordier, F; Dubédat, P; Doble, A
1995-07-28
The effects of riluzole and lamotrigine, two agents which interfere with the release of glutamate (GLU), and MK-801, a blocker of N-methyl-D-aspartate (NMDA) receptors, were compared in the model of methamphetamine-induced depletion of dopamine (DA) levels in mice. Repeated injections with methamphetamine (4 x 5 mg/kg i.p.) markedly decreased levels of DA, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels. When mice were treated with riluzole (2 x 10 mg/kg p.o.), no protection was observed against the decrease in DA and the two metabolites. Lamotrigine (2 x 10 mg/kg p.o.) was also inactive. Treatment with MK-801 (2 x 2.5 mg/kg i.p.) antagonized the decrease in DA, DOPAC and HVA levels induced by the neurotoxin. Thus, unlike an NMDA blocker, drugs that interfere with GLU release did not antagonize the methamphetamine-induced DA neurotoxicity in mice. The consequences of this inactivity are discussed in terms of the reliability of this model to test new drugs with putative efficacy in the treatment of Parkinson's disease.
Malherbe, C; Hutchinson, I B; Ingley, R; Boom, A; Carr, A S; Edwards, H; Vertruyen, B; Gilbert, B; Eppe, G
2017-11-01
In 2020, the ESA ExoMars and NASA Mars 2020 missions will be launched to Mars to search for evidence of past and present life. In preparation for these missions, terrestrial analog samples of rock formations on Mars are studied in detail in order to optimize the scientific information that the analytical instrumentation will return. Desert varnishes are thin mineral coatings found on rocks in arid and semi-arid environments on Earth that are recognized as analog samples. During the formation of desert varnishes (which takes many hundreds of years), organic matter is incorporated, and microorganisms may also play an active role in the formation process. During this study, four complementary analytical techniques proposed for Mars missions (X-ray diffraction [XRD], Raman spectroscopy, elemental analysis, and pyrolysis-gas chromatography-mass spectrometry [Py-GC-MS]) were used to interrogate samples of desert varnish and describe their capacity to sustain life under extreme scenarios. For the first time, both the geochemistry and the organic compounds associated with desert varnish are described with the use of identical sets of samples. XRD and Raman spectroscopy measurements were used to nondestructively interrogate the mineralogy of the samples. In addition, the use of Raman spectroscopy instruments enabled the detection of β-carotene, a highly Raman-active biomarker. The content and the nature of the organic material in the samples were further investigated with elemental analysis and methylated Py-GC-MS, and a bacterial origin was determined to be likely. In the context of planetary exploration, we describe the habitable nature of desert varnish based on the biogeochemical composition of the samples. Possible interference of the geological substrate on the detectability of pyrolysis products is also suggested. Key Words: Desert varnish-Habitability-Raman spectroscopy-Py-GC-MS-XRD-ExoMars-Planetary science. Astrobiology 17, 1123-1137.
Jha, Virendra Kumar; Wydoski, Duane S.
2003-01-01
A method for the isolation of 20 parent organophosphate pesticides and 5 pesticide degradates from bottom-sediment samples is described. The compound O-ethyl-O-methyl-S-proplyphosphorothioate is reported as an estimated concentration because of variable performance. In this method, the sediment samples are centrifuged to remove excess waster mixed with anhydrous sodium sulfate and Soxhlet extracted overnight with dichloromethane (93 percent) and methanol (7 percent). The extract is concentrated and then filtered through a 0.2-micrometer polytetrafluoroethylene membrane syringe filter. An aliquot of the sample extract is quantitatively injected onto two polystyrene-divinylbenzene gel-permeation chromatographic columns connected in series. The compounds are eluted with dichloromethane and a fraction is collected for analysis, with some coextracted interferences, including elemental sulfur, separated and discarded. The aliquot is concentrated and solvent exchanged to ethyl acetate. The extract is analyzed by dual capillary-column gas chromatography with flame photometric detection. Single-operator method detection limits in sodium sulfate matrix samples ranged from 0.81 to 2 micrograms per kilogram. Method performance was validated by spiking all compounds into three different solid matrices (sodium sulfate, bed sediment from Clear Creek, and bed sediment from Evergreen Lake) at three different concentrations. Eight replicates were analyzed at each concentration in each matrix. Mean recoveries of method compounds spiked in Clear Creek samples ranged from 43 to 110 percent, and those in Evergreen Lake samples ranged from 62 to 118 percent for all pesticides. Mean recoveries of method compounds spiked in reagent sodium sulfate samples ranged from 41 to 101 percent for all pesticides. The only exception was O-ethyl-O-methyl-S-propylphosphorothioate, which had an average recovery of 35 percent, and, thus, sample concentration is reported as estimated ('E' remark code).
47 CFR 74.793 - Digital low power TV and TV translator station protection of broadcast stations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... this section, interference prediction analysis is based on the interference thresholds (D/U signal.... Predictions of interference to co-channel DTV broadcast, digital Class A TV, digital LPTV and digital TV....” Predictions of interference to co-channel TV broadcast, Class A TV, LPTV and TV translator stations will be...
47 CFR 74.793 - Digital low power TV and TV translator station protection of broadcast stations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... this section, interference prediction analysis is based on the interference thresholds (D/U signal.... Predictions of interference to co-channel DTV broadcast, digital Class A TV, digital LPTV and digital TV....” Predictions of interference to co-channel TV broadcast, Class A TV, LPTV and TV translator stations will be...
47 CFR 74.793 - Digital low power TV and TV translator station protection of broadcast stations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... this section, interference prediction analysis is based on the interference thresholds (D/U signal.... Predictions of interference to co-channel DTV broadcast, digital Class A TV, digital LPTV and digital TV....” Predictions of interference to co-channel TV broadcast, Class A TV, LPTV and TV translator stations will be...
47 CFR 74.793 - Digital low power TV and TV translator station protection of broadcast stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... this section, interference prediction analysis is based on the interference thresholds (D/U signal.... Predictions of interference to co-channel DTV broadcast, digital Class A TV, digital LPTV and digital TV....” Predictions of interference to co-channel TV broadcast, Class A TV, LPTV and TV translator stations will be...
[Applications of DNA methylation markers in forensic medicine].
Zhao, Gui-sen; Yang, Qing-en
2005-02-01
DNA methylation is a post-replication modification that is predominantly found in cytosines of the dinucleotide sequence CpG. Epigenetic information is stored in the distribution of the modified base 5-methylcytosine. DNA methylation profiles represent a more chemically and biologically stable source of molecular diagnostic information than RNA or most proteins. Recent advances attest to the great promise of DNA methylation markers as powerful future tools in the clinic. In the past decade, DNA methylation analysis has been revolutionized by two technological advances--bisulphite modification of DNA and methylation-specific polymerase chain reaction (MSP). The methylation pattern of human genome is space-time specific, sex-specific, parent-of-origin specific and disease specific, providing us an alternative way to solve forensic problems.
Methylated bases in mycoplasmal DNA.
Razin, A; Razin, S
1980-01-01
The DNAs of four Mycoplasma and one Acholeplasma species were found to contain methylated bases. All of the five species contained 6-methyladenine (m6Ade), the methylated base characteristic of prokaryotic DNA. The extent of methylation of adenine residues in the mycoplasmal DNA ranged from 0.2% in Mycoplasma capricolum to about 2% in Mycoplasma arginini and Mycoplasma hyorhinis with intermediate methylation values for Mycoplasma orale and Acholeplasma laidlawii DNAs. About 5.8% of the cytosine residues in M. hyorhinis DNA were methylated also. Analysis of cell culture DNA for the presence of m6Ade as a means for detection of contamination by mycoplasmas, and the phylogenetic implications of the finding of methylated bases in mycoplasmal DNAs are discussed. PMID:7433124
Leakey, Tatiana I; Zielinski, Jerzy; Siegfried, Rachel N; Siegel, Eric R; Fan, Chun-Yang; Cooney, Craig A
2008-06-01
DNA methylation at cytosines is a widely studied epigenetic modification. Methylation is commonly detected using bisulfite modification of DNA followed by PCR and additional techniques such as restriction digestion or sequencing. These additional techniques are either laborious, require specialized equipment, or are not quantitative. Here we describe a simple algorithm that yields quantitative results from analysis of conventional four-dye-trace sequencing. We call this method Mquant and we compare it with the established laboratory method of combined bisulfite restriction assay (COBRA). This analysis of sequencing electropherograms provides a simple, easily applied method to quantify DNA methylation at specific CpG sites.
Pusceddu, Irene; Herrmann, Markus; Kirsch, Susanne H; Werner, Christian; Hübner, Ulrich; Bodis, Marion; Laufs, Ulrich; Wagenpfeil, Stefan; Geisel, Jürgen; Herrmann, Wolfgang
2016-08-01
Deficiencies of folate, vitamins B12 and D are common age-related conditions. Vitamin B12 and folate are necessary for DNA methylation. Telomeres appear to be regulated by DNA methylation. Here, we study the effect of B vitamins supplementation on telomere length and global DNA methylation in a prospective study. In total, 60 elderly subjects were supplemented for 1 year with either vitamin B12, B6, folate, vitamin D and calcium (group A n = 31) or only vitamin D and calcium (group B n = 29). LINE-1 methylation, relative telomere length (T/S), vitamin B12, folate, homocysteine (tHcy) , 5-methyltetrahydrofolate (5-methylTHF), S-adenosylhomocysteine (SAH), S-adenosylmethionine (SAM), cystathionine and vitamin D were quantified before and after supplementation. At baseline, tHcy was high, vitamin D was low, and T/S did not differ between groups A and B. Vitamin supplementation increased LINE-1 methylation in group A at site 317 but reduced LINE-1 methylation in group B at site 327. There was no correlation between T/S and LINE-1 methylation at baseline. Multiple backward regression analysis revealed baseline tHcy and 5-methylTHF are significant predictors of T/S. After supplementation in group B but not in group A, LINE-1 methylation correlated inversely with T/S, and LINE-1 methylation variation was an independent predictor of T/S variation. B vitamins decreased tHcy significantly in group A. Multiple backward regression analysis showed 5-methylTHF in group A and tHcy in group B were significant predictors for LINE-1 methylation. At baseline, the lower LINE-1 methylation observed in subjects with 5-methylTHF >10 nmol/l was in agreement with a reduced methyl group transfer due to a lower SAM formation. In group B, an increase in telomere length was correlated with lower LINE-1 methylation. Subjects with hyperhomocysteinemia >12 µmol/L had compared to those with normal tHcy a reduced LINE-1 methylation accompanied by a higher SAM and SAH (that inhibits demethylation of SAM) as well as lower 5-methylTHF. Additionally, subjects with tHcy > 12 µmol/L had longer telomeres when compared with subjects having tHcy < 12 µmol/L. The results suggest a possible effect of B vitamins for telomere biology in blood cells. Suboptimal B vitamins status and hyperhomocysteinemia are associated with altered DNA methylation and telomere length. These data have to be confirmed in future studies.
Unraveling Cell Processes: Interference Imaging Interwoven with Data Analysis
Brazhe, A. R.; Pavlov, A. N.; Erokhova, L. A.; Yusipovich, A. I.; Maksimov, G. V.; Mosekilde, E.; Sosnovtseva, O. V.
2006-01-01
The paper presents results on the application of interference microscopy and wavelet-analysis for cell visualization and studies of cell dynamics. We demonstrate that interference imaging of erythrocytes can reveal reorganization of the cytoskeleton and inhomogenity in the distribution of hemoglobin, and that interference imaging of neurons can show intracellular compartmentalization and submembrane structures. We investigate temporal and spatial variations of the refractive index for different cell types: isolated neurons, mast cells and erythrocytes. We show that the refractive dynamical properties differ from cell type to cell type and depend on the cellular compartment. Our results suggest that low frequency variations (0.1–0.6 Hz) result from plasma membrane processes and that higher frequency variations (20–26 Hz) are related to the movement of vesicles. Using double-wavelet analysis, we study the modulation of the 1 Hz rhythm in neurons and reveal its changes under depolarization and hyperpolarization of the plasma membrane. We conclude that interference microscopy combined with wavelet analysis is a useful technique for non-invasive cell studies, cell visualization, and investigation of plasma membrane properties. PMID:19669463
Bhardwaj, Jyoti; Mahajan, Monika; Yadav, Sudesh Kumar
2013-08-01
DNA methylation is known as an epigenetic modification that affects gene expression in plants. Variation in CpG methylation behavior was studied in two natural horse gram (Macrotyloma uniflorum [Lam.] Verdc.) genotypes, HPKC2 (drought-sensitive) and HPK4 (drought-tolerant). The methylation pattern in both genotypes was studied through methylation-sensitive amplified polymorphism. The results revealed that methylation was higher in HPKC2 (10.1%) than in HPK4 (8.6%). Sequencing demonstrated sequence homology with the DRE binding factor (cbf1), the POZ/BTB protein, and the Ty1-copia retrotransposon among some of the polymorphic fragments showing alteration in methylation behavior. Differences in DNA methylation patterns could explain the differential drought tolerance and the epigenetic signature of these two horse gram genotypes.
Khulan, B; Manning, J R; Dunbar, D R; Seckl, J R; Raikkonen, K; Eriksson, J G; Drake, A J
2014-09-23
Early-life stress (ELS) is known to be associated with an increased risk of neuropsychiatric and cardiometabolic disease in later life. One of the potential mechanisms underpinning this is through effects on the epigenome, particularly changes in DNA methylation. Using a well-phenotyped cohort of 83 men from the Helsinki Birth Cohort Study, who experienced ELS in the form of separation from their parents during childhood, and a group of 83 matched controls, we performed a genome-wide analysis of DNA methylation in peripheral blood. We found no differences in DNA methylation between men who were separated from their families and non-separated men; however, we did identify differences in DNA methylation in association with the development of at least mild depressive symptoms over the subsequent 5-10 years. Notably, hypomethylation was identified at a number of genes with roles in brain development and/or function in association with depressive symptoms. Pathway analysis revealed an enrichment of DNA methylation changes in pathways associated with development and morphogenesis, DNA and transcription factor binding and programmed cell death. Our results support the concept that DNA methylation differences may be important in the pathogenesis of psychiatric disease.
Chen, Feng; Huang, Tao; Ren, Yu; Wei, Junjun; Lou, Zhongguan; Wang, Xue; Fan, Xiaoxiao; Chen, Yirun; Weng, Guobin; Yao, Xuping
2016-08-30
Methylation of the tumor suppressor gene H-cadherin (CDH13) has been reported in many cancers. However, the clinical effect of the CDH13 methylation status of patients with bladder cancer remains to be clarified. A systematic literature search was performed to identify eligible studies in the PubMed, Embase, EBSCO, CKNI and Wanfang databases. The pooled odds ratio (OR) and the corresponding 95 % confidence interval (95 % CI) was calculated and summarized. Nine eligible studies were included in the present meta-analysis consisting of a total of 1017 bladder cancer patients and 265 non-tumor controls. A significant association was found between CDH13 methylation levels and bladder cancer (OR = 21.71, P < 0.001). The results of subgroup analyses based on sample type suggested that CDH13 methylation was significantly associated with bladder cancer risk in both the tissue and the urine (OR = 53.94, P < 0.001; OR = 7.71, P < 0.001; respectively). A subgroup analysis based on ethnic population showed that the OR value of methylated CDH13 was higher in Asians than in Caucasians (OR = 35.18, P < 0.001; OR = 8.86, P < 0.001; respectively). The relationships between CDH13 methylation and clinicopathological features were also analyzed. A significant association was not observed between CDH13 methylation status and gender (P = 0.053). Our results revealed that CDH13 methylation was significantly associated with high-grade bladder cancer, multiple bladder cancer and muscle invasive bladder cancer (OR = 2.22, P < 0.001; OR = 1.45, P = 0.032; OR = 3.42, P < 0.001; respectively). Our study indicates that CDH13 methylation may play an important role in the carcinogenesis, development and progression of bladder cancer. In addition, CDH13 methylation has the potential to be a useful biomarker for bladder cancer screening in urine samples and to be a prognostic biomarker in the clinic.
Bilichak, Andriy; Ilnystkyy, Yaroslav; Hollunder, Jens; Kovalchuk, Igor
2012-01-01
Plants are able to acclimate to new growth conditions on a relatively short time-scale. Recently, we showed that the progeny of plants exposed to various abiotic stresses exhibited changes in genome stability, methylation patterns and stress tolerance. Here, we performed a more detailed analysis of methylation patterns in the progeny of Arabidopsis thaliana (Arabidopsis) plants exposed to 25 and 75 mM sodium chloride. We found that the majority of gene promoters exhibiting changes in methylation were hypermethylated, and this group was overrepresented by regulators of the chromatin structure. The analysis of DNA methylation at gene bodies showed that hypermethylation in the progeny of stressed plants was primarily due to changes in the 5′ and 3′ ends as well as in exons rather than introns. All but one hypermethylated gene tested had lower gene expression. The analysis of histone modifications in the promoters and coding sequences showed that hypermethylation and lower gene expression correlated with the enrichment of H3K9me2 and depletion of H3K9ac histones. Thus, our work demonstrated a high degree of correlation between changes in DNA methylation, histone modifications and gene expression in the progeny of salt-stressed plants. PMID:22291972
Seidl, Sonja; Ackermann, Jutta; Kaufmann, Hannes; Keck, Andrea; Nösslinger, Thomas; Zielinski, Christoph C; Drach, Johannes; Zöchbauer-Müller, Sabine
2004-06-15
Silencing of tumor suppressor genes (TSG) by aberrant methylation (referred to as methylation) contributes to the pathogenesis of various human malignancies. However, little is known about the methylation of known and putative TSGs in monoclonal gammopathies. Thus, the authors investigated the methylation frequencies of 10 genes in patients with monoclonal gammopathies. The methylation patterns of the genes p16(INK4a) (p16), tissue inhibitor of metalloproteinase 3 (TIMP3), p15(INK4b) (p15), E-cadherin (ECAD), death-associated protein kinase (DAPK), p73, RAS-association domain family 1A (RASSF1A), p14, O(6)-methylguanine DNA methyltransferase (MGMT), and retinoid acid receptor beta2 (RARbeta) were determined in patients with monoclonal gammopathy of undetermined significance (MGUS; n = 29), smoldering multiple myeloma (SMM; n = 5), multiple myeloma (MM; n = 113), or plasma cell leukemia (PCL; n = 7) by methylation-specific polymerase chain reaction analysis. Methylation frequencies for p16, TIMP3, p15, ECAD, DAPK, p73, RASSF1A, p14, MGMT, and RARbeta were as follows: 28%, 35%, 10%, 0%, 17%, 21%, 14%, 14%, 7%, and 0%, respectively, in patients with MGUS and 36%, 29%, 27%, 27%, 22%, 15%, 15%, 9%, 4%, and 0%, respectively, in patients with MM. Methylation of at least 1 of these genes was detected in 79% of patients with MGUS and in 80% of patients with MM. Although methylation of ECAD was not detected in patients with MGUS, it was observed frequently in patients with MM and with even greater frequency in patients with PCL. It is noteworthy that an association was found between ECAD methylation and poor prognostic markers in patients with MM. Methylation of certain genes can be detected frequently in patients with monoclonal gammopathies. The current data suggest that methylation of ECAD is a marker of disease progression in patients with MM and PCL. Copyright 2004 American Cancer Society.
Miller-Delaney, Suzanne F.C.; Bryan, Kenneth; Das, Sudipto; McKiernan, Ross C.; Bray, Isabella M.; Reynolds, James P.; Gwinn, Ryder; Stallings, Raymond L.
2015-01-01
Temporal lobe epilepsy is associated with large-scale, wide-ranging changes in gene expression in the hippocampus. Epigenetic changes to DNA are attractive mechanisms to explain the sustained hyperexcitability of chronic epilepsy. Here, through methylation analysis of all annotated C-phosphate-G islands and promoter regions in the human genome, we report a pilot study of the methylation profiles of temporal lobe epilepsy with or without hippocampal sclerosis. Furthermore, by comparative analysis of expression and promoter methylation, we identify methylation sensitive non-coding RNA in human temporal lobe epilepsy. A total of 146 protein-coding genes exhibited altered DNA methylation in temporal lobe epilepsy hippocampus (n = 9) when compared to control (n = 5), with 81.5% of the promoters of these genes displaying hypermethylation. Unique methylation profiles were evident in temporal lobe epilepsy with or without hippocampal sclerosis, in addition to a common methylation profile regardless of pathology grade. Gene ontology terms associated with development, neuron remodelling and neuron maturation were over-represented in the methylation profile of Watson Grade 1 samples (mild hippocampal sclerosis). In addition to genes associated with neuronal, neurotransmitter/synaptic transmission and cell death functions, differential hypermethylation of genes associated with transcriptional regulation was evident in temporal lobe epilepsy, but overall few genes previously associated with epilepsy were among the differentially methylated. Finally, a panel of 13, methylation-sensitive microRNA were identified in temporal lobe epilepsy including MIR27A, miR-193a-5p (MIR193A) and miR-876-3p (MIR876), and the differential methylation of long non-coding RNA documented for the first time. The present study therefore reports select, genome-wide DNA methylation changes in human temporal lobe epilepsy that may contribute to the molecular architecture of the epileptic brain. PMID:25552301
Tan, Ming-pu
2010-01-01
Water stress is known to alter cytosine methylation, which generally represses transcription. However, little is known about the role of methylation alteration in maize under osmotic stress. Here, methylation-sensitive amplified polymorphism (MSAP) was used to screen PEG- or NaCl-induced methylation alteration in maize seedlings. The sequences of 25 differentially amplified fragments relevant to stress were successfully obtained. Two stress-specific fragments from leaves, LP166 and LPS911, shown to be homologous to retrotransposon Gag-Pol protein genes, suggested that osmotic stress-induced methylation of retrotransposons. Three MSAP fragments, representing drought-induced or salt-induced methylation in leaves, were homologous to a maize aluminum-induced transporter. Besides these, heat shock protein HSP82, Poly [ADP-ribose] polymerase 2, Lipoxygenase, casein kinase (CK2), and dehydration-responsive element-binding (DREB) factor were also homologs of MSAP sequences from salt-treated roots. One MSAP fragment amplified from salt-treated roots, designated RS39, was homologous to the first intron of maize protein phosphatase 2C (zmPP2C), whereas - LS103, absent from salt-treated leaves, was homologous to maize glutathione S-transferases (zmGST). Expression analysis showed that salt-induced intron methylation of root zmPP2C significantly downregulated its expression, while salt-induced demethylation of leaf zmGST weakly upregulated its expression. The results suggested that salinity-induced methylation downregulated zmPP2C expression, a negative regulator of the stress response, while salinity-induced demethylation upregulated zmGST expression, a positive effecter of the stress response. Altered methylation, in response to stress, might also be involved in stress acclimation. Copyright 2009 Elsevier Masson SAS. All rights reserved.
Jin, Fei; Li, Xiao; Wang, Zuoguang; Liu, Ya; Liu, Jielin; Sun, Dongdong; Jin, Yongxin; Wang, Shiqi; Wen, Shaojun; Wei, Yongxiang
2018-06-07
Mitofusin 2 (Mfn2), a gene that negatively regulates the proliferation of vascular smooth muscle cells (VSMCs), is expressed at low levels in the VSMCs of hypertensive patients. DNA methylation can inhibit gene expression. The purpose of this study was to investigate the relationship between Mfn2 methylation and essential hypertension (EH). After bioinformatics analysis, five EH patients and five normal control (NC) subjects were selected for methylation chip screening. Then, bisulfite DNA sequencing was used to analyze the methylation status of differentially methylated fragments of Mfn2 in 40 EH patients and 36 NC subjects. Mfn2 mRNA expression in the blood was detected by RT-qPCR. There were three CpG islands in the full length Mfn2 DNA sequence and some transcription factor binding sites in these regions, including Sp1, Ap2, GATA box, NF-κB, etc. The chip screening showed that only the third CpG island had a significantly high degree of methylation. Subsequent verification experiments found that the EH group had a significantly lower C base rate of methylation than the NC group (2.5% vs. 44.44%, P < 0.0001), but a similar CpG methylation rate (P > 0.05). RT-qPCR detection showed that the level of Mfn2 mRNA expression was significantly lower in the EH group than in the NC group (P = 0.013). Further association analysis showed that the level of Mfn2 methylation was associated with systolic blood pressure and diastolic blood pressure (r = -0.902, r = -0.713, respectively) but not the other indexes. The DNA methylation level of Mfn2 was significantly lower in hypertensive patients than in control subjects, which may be an independent risk factor for EH.
Rochtus, Anne; Martin-Trujillo, Alejandro; Izzi, Benedetta; Elli, Francesca; Garin, Intza; Linglart, Agnes; Mantovani, Giovanna; Perez de Nanclares, Guiomar; Thiele, Suzanne; Decallonne, Brigitte; Van Geet, Chris; Monk, David; Freson, Kathleen
2016-01-01
Pseudohypoparathyroidism (PHP) is caused by (epi)genetic defects in the imprinted GNAS cluster. Current classification of PHP patients is hampered by clinical and molecular diagnostic overlaps. The European Consortium for the study of PHP designed a genome-wide methylation study to improve molecular diagnosis. The HumanMethylation 450K BeadChip was used to analyze genome-wide methylation in 24 PHP patients with parathyroid hormone resistance and 20 age- and gender-matched controls. Patients were previously diagnosed with GNAS-specific differentially methylated regions (DMRs) and include 6 patients with known STX16 deletion (PHP(Δstx16)) and 18 without deletion (PHP(neg)). The array demonstrated that PHP patients do not show DNA methylation differences at the whole-genome level. Unsupervised clustering of GNAS-specific DMRs divides PHP(Δstx16) versus PHP(neg) patients. Interestingly, in contrast to the notion that all PHP patients share methylation defects in the A/B DMR while only PHP(Δstx16) patients have normal NESP, GNAS-AS1 and XL methylation, we found a novel DMR (named GNAS-AS2) in the GNAS-AS1 region that is significantly different in both PHP(Δstx16) and PHP(neg), as validated by Sequenom EpiTYPER in a larger PHP cohort. The analysis of 58 DMRs revealed that 8/18 PHP(neg) and 1/6 PHP(Δstx16) patients have multi-locus methylation defects. Validation was performed for FANCC and SVOPL DMRs. This is the first genome-wide methylation study for PHP patients that confirmed that GNAS is the most significant DMR, and the presence of STX16 deletion divides PHP patients in two groups. Moreover, a novel GNAS-AS2 DMR affects all PHP patients, and PHP patients seem sensitive to multi-locus methylation defects.
Meller, Sebastian; Zipfel, Lisa; Gevensleben, Heidrun; Dietrich, Jörn; Ellinger, Jörg; Majores, Michael; Stein, Johannes; Sailer, Verena; Jung, Maria; Kristiansen, Glen; Dietrich, Dimo
2016-12-01
Molecular biomarkers may facilitate the distinction between aggressive and clinically insignificant prostate cancer (PCa), thereby potentially aiding individualized treatment. We analyzed cysteine dioxygenase 1 (CDO1) promoter methylation and mRNA expression in order to evaluate its potential as prognostic biomarker. CDO1 methylation and mRNA expression were determined in cell lines and formalin-fixed paraffin-embedded prostatectomy specimens from a first cohort of 300 PCa patients using methylation-specific qPCR and qRT-PCR. Univariate and multivariate Cox proportional hazards and Kaplan-Meier analyses were performed to evaluate biochemical recurrence (BCR)-free survival. Results were confirmed in an independent second cohort comprising 498 PCa cases. Methylation and mRNA expression data from the second cohort were generated by The Cancer Genome Atlas (TCGA) Research Network by means of Infinium HumanMethylation450 BeadChip and RNASeq. CDO1 was hypermethylated in PCa compared to normal adjacent tissues and benign prostatic hyperplasia (P < 0.001) and was associated with reduced gene expression (ρ = -0.91, P = 0.005). Using two different methodologies for methylation quantification, high CDO1 methylation as continuous variable was associated with BCR in univariate analysis (first cohort: HR = 1.02, P = 0.002, 95% CI [1.01-1.03]; second cohort: HR = 1.02, P = 0.032, 95% CI [1.00-1.03]) but failed to reach statistical significance in multivariate analysis. CDO1 promoter methylation is involved in gene regulation and is a potential prognostic biomarker for BCR-free survival in PCa patients following radical prostatectomy. Further studies are needed to validate CDO1 methylation assays and to evaluate the clinical utility of CDO1 methylation for the management of PCa.
Characterization of tumor cells and stem cells by differential nuclear methylation imaging
NASA Astrophysics Data System (ADS)
Tajbakhsh, Jian; Wawrowsky, Kolja A.; Gertych, Arkadiusz; Bar-Nur, Ori; Vishnevsky, Eugene; Lindsley, Erik H.; Farkas, Daniel L.
2008-02-01
DNA methylation plays a key role in cellular differentiation. Aberrant global methylation patterns are associated with several cancer types, as a result of changes in long-term activation status of up to 50% of genes, including oncogenes and tumor-suppressor genes, which are regulated by methylation and demethylation of promoter region CpG dinucleotides (CpG islands). Furthermore, DNA methylation also occurs in nonisland CpG sites (> 95% of the genome), present once per 80 dinucleotides on average. Nuclear DNA methylation increases during the course of cellular differentiation while cancer cells usually show a net loss in methylation. Given the large dynamic range in DNA methylation load, the methylation pattern of a cell can provide a valuable distinction as to its status during differentiation versus the disease state. By applying immunofluorescence, confocal microscopy and 3D image analysis we assessed the potential of differential nuclear distribution of methylated DNA to be utilized as a biomarker to characterize cells during development and when diseased. There are two major fields that may immediately benefit from this development: (1) the search for factors that contribute to pluripotency and cell fate in human embryonic stem cell expansion and differentiation, and (2) the characterization of tumor cells with regard to their heterogeneity in molecular composition and behavior. We performed topological analysis of the distribution of methylated CpG-sites (MeC) versus heterochromatin. This innovative approach revealed significant differences in colocalization patterns of MeC and heterochromatin-derived signals between undifferentiated and differentiated human embryonic stem cells, as well as untreated AtT20 mouse pituitary tumor cells compared to a subpopulation of these cells treated with 5-azacytidine for 48 hours.
Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines
Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J
2016-01-01
Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours’ biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription–quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes. PMID:29263807
Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines.
Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J
2016-01-01
Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours' biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription-quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes.
Forensic discrimination of vaginal epithelia by DNA methylation analysis through pyrosequencing.
Antunes, Joana; Silva, Deborah S B S; Balamurugan, Kuppareddi; Duncan, George; Alho, Clarice S; McCord, Bruce
2016-10-01
The accurate identification of body fluids from crime scenes can aid in the discrimination between criminal and innocent intent. This research aimed to determine if the levels of DNA methylation in the locus PFN3A could be used to discriminate vaginal epithelia from other body fluids. In this work we bisulfite-modified and amplified DNA samples from blood, saliva, semen, and vaginal epithelia using primers for PFN3A. Through pyrosequencing we were able to show that vaginal epithelia present distinct methylation levels when compared to other body fluids. Mixtures of different body fluids present methylation values that correlate with single-source body fluid samples and the primers for PFN3A are specific for primates. This report successfully demonstrated that the analysis of methylation in the PFN3A locus can be used for vaginal epithelia discrimination in forensic samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of biodiesel by high performance liquid chromatography using refractive index detector.
Syed, Mahin Basha
2017-01-01
High-performance liquid chromatography (HPLC) was used for the determination of compounds occurring during the production of biodiesel from karanja and jatropha oil. Methanol was used for fast monitoring of conversion of karanja and jatropha oil triacylglycerols to fatty acid methyl esters and for quantitation of residual triacylglycerols (TGs), in the final biodiesel product. The individual sample compounds were identified using HPLC. Analysis of fatty acid methyl esters (FAMES) in blends of biodiesel by HPLC using a refractive index and a UV detector at 238 nm. Individual triacylglycerols, diacylglycerols, monoacylglycerols and methyl esters of oleic, linoleic and linolenic acids and free fatty acids were separated within 40 min. Hence HPLC was found to be best for the analysis of biodiesel. Analysis of biodiesel by HPLC using RID detector. Estimation of amount of FAMES in biodiesel. Individual triacylglycerols, diacylglycerols, monoacylglycerols and methyl esters of oleic, linoleic and linolenic acids and free fatty acids were separated within 40 min.
Nakagawa, Hitoshi; Nagasaka, Takeshi; Cullings, Harry M; Notohara, Kenji; Hoshijima, Naoko; Young, Joanne; Lynch, Henry T; Tanaka, Noriaki; Matsubara, Nagahide
2009-06-01
It is sometimes difficult to diagnose Lynch syndrome by the simple but strict clinical criteria, or even by the definitive genetic testing for causative germline mutation of mismatch repair genes. Thus, some practical and efficient screening strategy to select highly possible Lynch syndrome patients is exceedingly desirable. We performed a comprehensive study to evaluate the methylation status of whole MLH1 promoter region by direct bisulfite sequencing of the entire MLH1 promoter regions on Lynch and non-Lynch colorectal cancers (CRCs). Then, we established a convenient assay to detect methylation in key CpG islands responsible for the silencing of MLH1 expression. We studied the methylation status of MLH1 as well as the CpG island methylator phenotype (CIMP) and immunohistochemical analysis of mismatch repair proteins on 16 cases of Lynch CRC and 19 cases of sporadic CRCs with high-frequency microsatellite instability (MSI-H). Sensitivity to detect Lynch syndrome by MLH1 (CCAAT) methylation was 88% and the specificity was 84%. Positive likelihood ratio (PLR) was 5.5 and negative likelihood ratio (NLR) was 0.15. Sensitivity by mutational analysis of BRAF was 100%, specificity was 84%, PLR was 6.3 and NLR was zero. By CIMP analysis; sensitivity was 88%, specificity was 79%, PLR was 4.2, and NLR was 0.16. BRAF mutation or MLH1 methylation analysis combined with MSI testing could be a good alternative to screen Lynch syndrome patients in a cost effective manner. Although the assay for CIMP status also showed acceptable sensitivity and specificity, it may not be practical because of its rather complicated assay.
Kong, Ling-Ying; Du, Wei; Wang, Li; Yang, Zhi; Zhang, Hong-Sheng
2015-01-01
DNA methylation has been proposed as a potential biomarker for cervical cancer detection. This study aimed to evaluate the diagnostic role of paired boxed gene 1 (PAX1) methylation for cervical cancer screening in Asians. Eligible studies were retrieved by searching the electronic databases, and the quality of the enrolled studies was assessed via the quality assessment for studies of diagnostic accuracy (QUADAS) tool. The bivariate meta-analysis model was employed to generate the summary receiver operator characteristic (SROC) curve using Stata 12.0 software. Cochran's Q test and I2 statistics were applied to assess heterogeneity among studies. Publication bias was evaluated by the Deeks' funnel plot asymmetry test. A total of 9 articles containing 15 individual studies were included. The SROC analysis showed that single PAX1 methylation allowed for the discrimination between cancer/high-grade squamous intraepithelial lesion (HSIL) patients and normal individuals with a sensitivity (95% confidence interval) of 0.80 (0.70 - 0.87) and specificity of 0.89 (0.86 - 0.92), corresponding to an area under curve (AUC) of 0.92. Notably, our subgroup analysis suggested that combing parallel testing of PAX1 methylation and HPV DNA (AUC, sensitivity, and specificity of 0.90, 0.82, and 0.84, respectively) seemed to harbor higher accuracy than single HPV DNA testing (AUC, sensitivity, and specificity of 0.81, 0.86, and 0.67, respectively). PAX1 methylation hallmarks a potential diagnostic value for cervical cancer screening in Asians, and parallel testing of PAX1 methylation and HPV in cervical scrapings confers an improved accuracy than single HPV DNA testing.
Kamstra, Jorke H; Sales, Liana Bastos; Aleström, Peter; Legler, Juliette
2017-01-01
Exposure to environmental stressors during development may lead to latent and transgenerational adverse health effects. To understand the role of DNA methylation in these effects, we used zebrafish as a vertebrate model to investigate heritable changes in DNA methylation following chemical-induced stress during early development. We exposed zebrafish embryos to non-embryotoxic concentrations of the biologically active phthalate metabolite mono(2-ethylhexyl) phthalate (MEHP, 30 µM) and the DNA methyltransferase 1 inhibitor 5-azacytidine (5AC, 10 µM). Direct, latent and transgenerational effects on DNA methylation were assessed using global, genome-wide and locus-specific DNA methylation analyses. Following direct exposure in zebrafish embryos from 0 to 6 days post-fertilization, genome-wide analysis revealed a multitude of differentially methylated regions, strongly enriched at conserved non-genic elements for both compounds. Pathways involved in adipogenesis were enriched with the putative obesogenic compound MEHP. Exposure to 5AC resulted in enrichment of pathways involved in embryonic development and transgenerational effects on larval body length. Locus-specific methylation analysis of 10 differentially methylated sites revealed six of these loci differentially methylated in sperm sampled from adult zebrafish exposed during development to 5AC, and in first and second generation larvae. With MEHP, consistent changes were found at 2 specific loci in first and second generation larvae. Our results suggest a functional role for DNA methylation on cis-regulatory conserved elements following developmental exposure to compounds. Effects on these regions are potentially transferred to subsequent generations.
Huang, Rui-Lan; Gu, Fei; Kirma, Nameer B; Ruan, Jianhua; Chen, Chun-Liang; Wang, Hui-Chen; Liao, Yu-Ping; Chang, Cheng-Chang; Yu, Mu-Hsien; Pilrose, Jay M; Thompson, Ian M; Huang, Hsuan-Cheng; Huang, Tim Hui-Ming; Lai, Hung-Cheng; Nephew, Kenneth P
2013-06-01
Women with advanced stage ovarian cancer (OC) have a five-year survival rate of less than 25%. OC progression is associated with accumulation of epigenetic alterations and aberrant DNA methylation in gene promoters acts as an inactivating "hit" during OC initiation and progression. Abnormal DNA methylation in OC has been used to predict disease outcome and therapy response. To globally examine DNA methylation in OC, we used next-generation sequencing technology, MethylCap-sequencing, to screen 75 malignant and 26 normal or benign ovarian tissues. Differential DNA methylation regions (DMRs) were identified, and the Kaplan-Meier method and Cox proportional hazard model were used to correlate methylation with clinical endpoints. Functional role of specific genes identified by MethylCap-sequencing was examined in in vitro assays. We identified 577 DMRs that distinguished (p < 0.001) malignant from non-malignant ovarian tissues; of these, 63 DMRs correlated (p < 0.001) with poor progression free survival (PFS). Concordant hypermethylation and corresponding gene silencing of sonic hedgehog pathway members ZIC1 and ZIC4 in OC tumors was confirmed in a panel of OC cell lines, and ZIC1 and ZIC4 repression correlated with increased proliferation, migration and invasion. ZIC1 promoter hypermethylation correlated (p < 0.01) with poor PFS. In summary, we identified functional DNA methylation biomarkers significantly associated with clinical outcome in OC and suggest our comprehensive methylome analysis has significant translational potential for guiding the design of future clinical investigations targeting the OC epigenome. Methylation of ZIC1, a putative tumor suppressor, may be a novel determinant of OC outcome.
Crujeiras, A. B.; Diaz-Lagares, A.; Sandoval, J.; Milagro, F. I.; Navas-Carretero, S.; Carreira, M. C.; Gomez, A.; Hervas, D.; Monteiro, M. P.; Casanueva, F. F.; Esteller, M.; Martinez, J. A.
2017-01-01
The characterization of the epigenetic changes within the obesity-related adipose tissue will provide new insights to understand this metabolic disorder, but adipose tissue is not easy to sample in population-based studies. We aimed to evaluate the capacity of circulating leukocytes to reflect the adipose tissue-specific DNA methylation status of obesity susceptibility. DNA samples isolated from subcutaneous adipose tissue and circulating leukocytes were hybridized in the Infinium HumanMethylation 450 BeadChip. Data were compared between samples from obese (n = 45) and non-obese (n = 8–10) patients by Wilcoxon-rank test, unadjusted for cell type distributions. A global hypomethylation of the differentially methylated CpG sites (DMCpGs) was observed in the obese subcutaneous adipose tissue and leukocytes. The overlap analysis yielded a number of genes mapped by the common DMCpGs that were identified to reflect the obesity state in the leukocytes. Specifically, the methylation levels of FGFRL1, NCAPH2, PNKD and SMAD3 exhibited excellent and statistically significant efficiencies in the discrimination of obesity from non-obesity status (AUC > 0.80; p < 0.05) and a great correlation between both tissues. Therefore, the current study provided new and valuable DNA methylation biomarkers of obesity-related adipose tissue pathogenesis through peripheral blood analysis, an easily accessible and minimally invasive biological material instead of adipose tissue. PMID:28211912
Ambrosone, Christine B.; Young, Allyson C.; Sucheston, Lara E.; Wang, Dan; Li, Yan; Liu, Song; Tang, Li; Hu, Quang; Freudenheim, Jo L.; Shields, Peter G.; Morrison, Carl D.; Demissie, Kitaw; Higgins, Michael J.
2014-01-01
American women of African ancestry (AA) are more likely than European-Americans (EA) to be diagnosed with aggressive, estrogen receptor (ER) negative breast tumors; mechanisms underlying these disparities are poorly understood. We conducted a genome wide (450K loci) methylation analysis to determine if there were differences in DNA methylation patterns between tumors from AA and EA women and if these differences were similar for both ER positive and ER negative breast cancer. Methylation levels at CpG loci within CpG islands (CGI)s and CGI-shores were significantly higher in tumors (n=138) than in reduction mammoplasty samples (n=124). In hierarchical cluster analysis, there was separation between tumor and normal samples, and in tumors, there was delineation by ER status, but not by ancestry. However, differential methylation analysis identified 157 CpG loci with a mean β value difference of at least 0.17 between races, with almost twice as many differences in ER-negative tumors compared to ER-positive cancers. This first genome-wide methylation study to address disparities indicates that there are likely differing etiologic pathways for the development of ER negative breast cancer between AA and EA women. Further investigation of the genes most differentially methylated by race in ER negative tumors can guide new approaches for cancer prevention and targeted therapies, and elucidate the biologic basis of breast cancer disparities. PMID:24368439
Tsai, Pei-I; Chen, Chih-Yu; Huang, Shu-Wei; Yang, Kuo-Yi; Lin, Tzu-Hung; Chen, San-Yuan; Sun, Jui-Sheng
2018-05-04
The interference screw is a widely used fixation device in the anterior cruciate ligament (ACL) reconstruction surgeries. Despite the generally satisfactory results, problems of using interference screws were reported. By using additive manufacturing (AM) technology, we developed an innovative titanium alloy (Ti 6 Al 4 V) interference screw with rough surface and inter-connected porous structure designs to improve the bone-tendon fixation. An innovative Ti 6 Al 4 V interference screws were manufactured by AM technology. In vitro mechanical tests were performed to validate its mechanical properties. Twenty-seven New Zealand white rabbits were randomly divided into control and AM screw groups for biomechanical analyses and histological analysis at 4, 8 and 12 weeks postoperatively; while micro-CT analysis was performed at 12 weeks postoperatively. The biomechanical tests showed that the ultimate failure load in the AM interference screw group was significantly higher than that in the control group at all tested periods. These results were also compatible with the findings of micro-CT and histological analyses. In micro-CT analysis, the bone-screw gap was larger in the control group; while for the additive manufactured screw, the screw and bone growth was in close contact. In histological study, the bone-screw gaps were wider in the control group and were almost invisible in the AM screw group. The innovative AM interference screws with surface roughness and inter-connected porous architectures demonstrated better bone-tendon-implant integration, and resulted in stronger biomechanical characteristics when compared to traditional screws. These advantages can be transferred to future interference screw designs to improve their clinical performance. The AM interference screw could improve graft fixation and eventually result in better biomechanical performance of the bone-tendon-screw construct. The innovative AM interference screws can be transferred to future interference screw designs to improve the performance of implants. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Saget, B M; Shevell, D E; Walker, G C
1995-03-01
The ada gene of Escherichia coli K-12 encodes the 39-kDa Ada protein, which consists of two domains joined by a hinge region that is sensitive to proteolytic cleavage in vitro. The amino-terminal domain has a DNA methyltransferase activity that repairs the S-diastereoisomer of methylphosphotriesters while the carboxyl-terminal domain has a DNA methyltransferase activity that repairs O6-methylguanine and O4-methylthymine lesions. Transfer of a methyl group to Cys-69 by repair of a methylphosphotriester lesion converts Ada into a transcriptional activator of the ada and alkA genes. Activation of ada, but not alkA, requires elements contained within the carboxyl-terminal domain of Ada. In addition, physiologically relevant concentrations of the unmethylated form of Ada specifically inhibit methylated Ada-promoted ada transcription both in vitro and in vivo and it has been suggested that this phenomenon plays a pivotal role in the down-regulation of the adaptive response. A set of site-directed mutations were generated within the hinge region, changing the lysine residue at position 178 to leucine, valine, glycine, tyrosine, arginine, cysteine, proline, and serine. All eight mutant proteins have deficiencies in their ability to activate ada transcription in the presence or absence of a methylating agent but are proficient in alkA activation. AdaK178P (lysine 178 changed to proline) is completely defective for the transcriptional activation function of ada while it is completely proficient for transcriptional activation of alkA. In addition, AdaK178P possesses both classes of DNA repair activities both in vitro and in vivo. Transcriptional activation of ada does not occur if both the amino- and carboxyl-terminal domains are produced separately within the same cell. The mutation at position 178 might interfere with activation of ada transcription by changing a critical contact with RNA polymerase, by causing a conformational change of Ada, or by interfering with the communication of conformational information between the amino- and the carboxyl-terminal domains. These results indicate that the hinge region of Ada is important for ada but not alkA transcription and further support the notion that the mechanism(s) by which Ada activates ada transcription differs from that by which it activates transcription at alkA.
Taguchi, Y-H
2018-05-08
Even though coexistence of multiple phenotypes sharing the same genomic background is interesting, it remains incompletely understood. Epigenomic profiles may represent key factors, with unknown contributions to the development of multiple phenotypes, and social-insect castes are a good model for elucidation of the underlying mechanisms. Nonetheless, previous studies have failed to identify genes associated with aberrant gene expression and methylation profiles because of the lack of suitable methodology that can address this problem properly. A recently proposed principal component analysis (PCA)-based and tensor decomposition (TD)-based unsupervised feature extraction (FE) can solve this problem because these two approaches can deal with gene expression and methylation profiles even when a small number of samples is available. PCA-based and TD-based unsupervised FE methods were applied to the analysis of gene expression and methylation profiles in the brains of two social insects, Polistes canadensis and Dinoponera quadriceps. Genes associated with differential expression and methylation between castes were identified, and analysis of enrichment of Gene Ontology terms confirmed reliability of the obtained sets of genes from the biological standpoint. Biologically relevant genes, shown to be associated with significant differential gene expression and methylation between castes, were identified here for the first time. The identification of these genes may help understand the mechanisms underlying epigenetic control of development of multiple phenotypes under the same genomic conditions.
Report on the Infinium 450k methylation array analysis workshop: April 20, 2012 UCL, London, UK.
Morris, Tiffany; Lowe, Robert
2012-08-01
A new platform for DNA methylome analysis is Illumina's Infinium HumanMethylation450. This technology is an extension of the previous HumanMethylation27 BeadChip and allows the methylation status of 12 samples per chip and 4 to 8 chips (total of 48 to 96 samples) to be assessed simultaneously for more than 480,000 cytosines across the genome. The platform incorporates two different probe types using different assay designs (InfiniumI and InfiniumII). Although this has allowed the assessment of more CpG sites, it has also introduced technical variation between the two probe types, which has complicated the analysis process. Many groups are working on normalization methods and analysis pipelines while many others are struggling to make sense of their new data sets. This motivated the organization of a meeting held at University College London that focused solely on the analysis methods and problems related to this new platform. The meeting was attended by 125 computational and bench scientists from 11 countries. There were 10 speakers, a small poster session and a discussion session.
Chan, H L; Lin, J L; Huang, H H; Wu, C P
1997-09-01
A new technique for interference-term suppression in Wigner-Ville distribution (WVD) is proposed for the signal with 1/f spectrum shape. The spectral characteristic of the signal is altered by f alpha filtering before time-frequency analysis and compensated after analysis. With the utilization of the proposed technique in smoothed pseudo Wigner-Ville distribution, an excellent suppression of interference component can be achieved.
Sun, Zhifu; Cunningham, Julie; Slager, Susan; Kocher, Jean-Pierre
2015-01-01
Bisulfite treatment-based methylation microarray (mainly Illumina 450K Infinium array) and next-generation sequencing (reduced representation bisulfite sequencing, Agilent SureSelect Human Methyl-Seq, NimbleGen SeqCap Epi CpGiant or whole-genome bisulfite sequencing) are commonly used for base resolution DNA methylome research. Although multiple tools and methods have been developed and used for the data preprocessing and analysis, confusions remains for these platforms including how and whether the 450k array should be normalized; which platform should be used to better fit researchers’ needs; and which statistical models would be more appropriate for differential methylation analysis. This review presents the commonly used platforms and compares the pros and cons of each in methylome profiling. We then discuss approaches to study design, data normalization, bias correction and model selection for differentially methylated individual CpGs and regions. PMID:26366945
Busch, Robert; Qiu, Weiliang; Lasky-Su, Jessica; Morrow, Jarrett; Criner, Gerard; DeMeo, Dawn
2016-11-05
Chronic obstructive pulmonary disease (COPD) is the third-leading cause of death worldwide. Identifying COPD-associated DNA methylation marks in African-Americans may contribute to our understanding of racial disparities in COPD susceptibility. We determined differentially methylated genes and co-methylation network modules associated with COPD in African-Americans recruited during exacerbations of COPD and smoking controls from the Pennsylvania Study of Chronic Obstructive Pulmonary Exacerbations (PA-SCOPE) cohort. We assessed DNA methylation from whole blood samples in 362 African-American smokers in the PA-SCOPE cohort using the Illumina Infinium HumanMethylation27 BeadChip Array. Final analysis included 19302 CpG probes annotated to the nearest gene transcript after quality control. We tested methylation associations with COPD case-control status using mixed linear models. Weighted gene comethylation networks were constructed using weighted gene coexpression network analysis (WGCNA) and network modules were analyzed for association with COPD. There were five differentially methylated CpG probes significantly associated with COPD among African-Americans at an FDR less than 5 %, and seven additional probes that approached significance at an FDR less than 10 %. The top ranked gene association was MAML1, which has been shown to affect NOTCH-dependent angiogenesis in murine lung. Network modeling yielded the "yellow" and "blue" comethylation modules which were significantly associated with COPD (p-value 4 × 10 -10 and 4 × 10 -9 , respectively). The yellow module was enriched for gene sets related to inflammatory pathways known to be relevant to COPD. The blue module contained the top ranked genes in the concurrent differential methylation analysis (FXYD1/LGI4, gene significance p-value 1.2 × 10 -26 ; MAML1, p-value 2.0 × 10 -26 ; CD72, p-value 2.1 × 10 -25 ; and LPO, p-value 7.2 × 10 -25 ), and was significantly associated with lung development processes in Gene Ontology gene-set enrichment analysis. We identified 12 differentially methylated CpG sites associated with COPD that mapped to biologically plausible genes. Network module comethylation patterns have identified candidate genes that may be contributing to racial differences in COPD susceptibility and severity. COPD-associated comethylation modules contained genes previously associated with lung disease and inflammation and recapitulated known COPD-associated genes. The genes implicated by differential methylation and WGCNA analysis may provide mechanistic targets contributing to COPD susceptibility, exacerbations, and outcomes among African-Americans. Trial Registration: NCT00774176 , Registry: ClinicalTrials.gov, URL: www.clinicaltrials.gov , Date of Enrollment of First Participant: June 2004, Date Registered: 04 January 2008 (retrospectively registered).
Gunes, S; Agarwal, A; Henkel, R; Mahmutoglu, A M; Sharma, R; Esteves, S C; Aljowair, A; Emirzeoglu, D; Alkhani, A; Pelegrini, L; Joumah, A; Sabanegh, E
2018-04-01
MLH1 and MSH2 are important genes for DNA mismatch repair and crossing over during meiosis and are implicated in male infertility. Therefore, the methylation patterns of the DNA mismatch repair genes MLH1 and MSH2 in oligozoospermic males were investigated. Ten oligozoospermic patients and 29 normozoospermic donors were analysed. Methylation profiles of the MLH1 and MSH2 promotors were analysed. In addition, sperm motility and seminal reactive oxygen species (ROS) were recorded. Receiver operating characteristic (ROC) analysis was conducted to determine the accuracy of the DNA methylation status of MLH1 and MSH2 to distinguish between oligozoospermic and normozoospermic men. In oligozoospermic men, MLH1 was significantly (p = .0013) more methylated compared to normozoospermic men. Additionally, there was a significant positive association (r = .384; p = .0159) between seminal ROS levels and MLH1 methylation. Contrary, no association between MSH2 methylation and oligozoospermia was found. ROC curve analysis for methylation status of MLH1 was significant (p = .0275) with an area under the curve of 61.1%, a sensitivity of 22.2% and a specificity of 100.0%. This pilot study indicates oligozoospermic patients have more methylation of MLH1 than normozoospermic patients. Whether hypermethylation of the MLH1 promoter plays a role in repairing relevant mismatches of sperm DNA strands in idiopathic oligozoospermia warrants further investigation. © 2017 Blackwell Verlag GmbH.
Correlation between ZBED6 Gene Upstream CpG Island methylation and mRNA expression in cattle.
Huang, Yong-Zhen; Zhang, Zi-Jing; He, Hua; Cao, Xiu-Kai; Song, Cheng-Chuang; Liu, Kun-Peng; Lan, Xian-Yong; Lei, Chu-Zhao; Qi, Xing-Lei; Bai, Yue-Yu; Chen, Hong
2017-04-03
DNA methylation is essential for the regulation of gene expression and important roles in muscle development. To assess the extent of epigenetic modifications and gene expression on the differentially methylated region (DMR) in ZBED6, we simultaneously examined DNA methylation and expression in six tissues from two different developmental stages (fetal bovine and adult bovine). The DNA methylation pattern was compared using bisulfite sequencing polymerase chain reaction (BSP) and combined bisulfite restriction analysis (COBRA). The result of quantitative real-time PCR (qPCR) analysis showed that ZBED6 has a broad tissue distribution and is highly expressed in adult bovine (P < 0.05 or P < 0.01). The DNA methylation level was significantly different in liver, lung and spleen between the two cattle groups (P < 0.05 or P < 0.01). The adult bovine group exhibited a significantly higher mRNA level and lower DNA methylation level than the fetal bovine group in liver, lung, and spleen. No significant association was detected between DNA methylation level and muscle, heart, and kidney at two different stages. In this study, the statistical analyses indicated that DNA methylation patterns are associated with mRNA level in some tissues, these results may be a useful parameter to investigate muscle developmental in cattle and as a model for studies in other species, potentially contributing to an improvement of growth performance selection in beef cattle breeding program.
Huang, Qing; Huang, Jun-Fu; Zhang, Bo; Baum, Larry; Fu, Wei-Ling
2012-03-01
Aberrant hypermethylation of CpG islands (CGIs) in hMLH1 promoter regions has been well known to play an important role in the tumorigenesis of human sporadic colorectal carcinoma (SCRC). In this study, bisulfite sequencing was performed to analyze the methylation variable positions (MVPs) profiles of hMLH1 promoter CGIs in 30 clinical SCRC patients, and further analysis was carried out to evaluate the associations between the CGI methylation and the clinicopathological features in SCRC. Among the 2 CGIs in the hMLH1 promoter, that is, CGI-I and CGI-II, 20% (6/30) and 13% (4/30) of the patients had methylated CGI-I and CGI-II, respectively. Suppressed expression of hMLH1was significantly correlated with methylation of CGI-I but not CGI-II. Further analysis of the MVP profiles of CGI-I showed that most of the MVPs were hypermethylated and others were poorly methylated or unmethylated. The profiles could be classified into at least 4 groups based on the methylation status of 3 MVPs at positions 21 to 23 in CGI-I. All 6 patients with methylated CGI-I belonged to group I. This result suggests that the above 3 MVPs in CGI-I should be a targeted region to further analyze the epigenetic features of hMLH1 in human SCRC. Our results further suggest that MVP profiling is useful for identifying the aberrantly methylated CGIs associated with suppressed gene expression.
Benton, Miles C; Johnstone, Alice; Eccles, David; Harmon, Brennan; Hayes, Mark T; Lea, Rod A; Griffiths, Lyn; Hoffman, Eric P; Stubbs, Richard S; Macartney-Coxson, Donia
2015-01-22
Environmental factors can influence obesity by epigenetic mechanisms. Adipose tissue plays a key role in obesity-related metabolic dysfunction, and gastric bypass provides a model to investigate obesity and weight loss in humans. Here, we investigate DNA methylation in adipose tissue from obese women before and after gastric bypass and significant weight loss. In total, 485,577 CpG sites were profiled in matched, before and after weight loss, subcutaneous and omental adipose tissue. A paired analysis revealed significant differential methylation in omental and subcutaneous adipose tissue. A greater proportion of CpGs are hypermethylated before weight loss and increased methylation is observed in the 3' untranslated region and gene bodies relative to promoter regions. Differential methylation is found within genes associated with obesity, epigenetic regulation and development, such as CETP, FOXP2, HDAC4, DNMT3B, KCNQ1 and HOX clusters. We identify robust correlations between changes in methylation and clinical trait, including associations between fasting glucose and HDAC4, SLC37A3 and DENND1C in subcutaneous adipose. Genes investigated with differential promoter methylation all show significantly different levels of mRNA before and after gastric bypass. This is the first study reporting global DNA methylation profiling of adipose tissue before and after gastric bypass and associated weight loss. It provides a strong basis for future work and offers additional evidence for the role of DNA methylation of adipose tissue in obesity.
Methylation pattern of fish lymphocystis disease virus DNA.
Wagner, H; Simon, D; Werner, E; Gelderblom, H; Darai, C; Flügel, R M
1985-03-01
The content and distribution of 5-methylcytosine in DNA from fish lymphocystis disease virus was analyzed by high-pressure liquid chromatography, nearest-neighbor analysis, and with restriction endonucleases. We found that 22% of all C residues were methylated, including methylation of the following dinucleotide sequences: CpG to 75%, CpC to ca. 1%, and CpA to 2 to 5%. Comparison of relative digestion of viral DNA with MspI and HpaII indicated that CCGG sequences were almost completely methylated at the inner C. The degree of methylation of GCGC was much lower. The methylation pattern of fish lymphocystis disease virus DNA differed from that of the host cell DNA.
Methylation pattern of fish lymphocystis disease virus DNA.
Wagner, H; Simon, D; Werner, E; Gelderblom, H; Darai, C; Flügel, R M
1985-01-01
The content and distribution of 5-methylcytosine in DNA from fish lymphocystis disease virus was analyzed by high-pressure liquid chromatography, nearest-neighbor analysis, and with restriction endonucleases. We found that 22% of all C residues were methylated, including methylation of the following dinucleotide sequences: CpG to 75%, CpC to ca. 1%, and CpA to 2 to 5%. Comparison of relative digestion of viral DNA with MspI and HpaII indicated that CCGG sequences were almost completely methylated at the inner C. The degree of methylation of GCGC was much lower. The methylation pattern of fish lymphocystis disease virus DNA differed from that of the host cell DNA. Images PMID:3973962
Landau, Dan A; Clement, Kendell; Ziller, Michael J; Boyle, Patrick; Fan, Jean; Gu, Hongcang; Stevenson, Kristen; Sougnez, Carrie; Wang, Lili; Li, Shuqiang; Kotliar, Dylan; Zhang, Wandi; Ghandi, Mahmoud; Garraway, Levi; Fernandes, Stacey M; Livak, Kenneth J; Gabriel, Stacey; Gnirke, Andreas; Lander, Eric S; Brown, Jennifer R; Neuberg, Donna; Kharchenko, Peter V; Hacohen, Nir; Getz, Gad; Meissner, Alexander; Wu, Catherine J
2014-12-08
Intratumoral heterogeneity plays a critical role in tumor evolution. To define the contribution of DNA methylation to heterogeneity within tumors, we performed genome-scale bisulfite sequencing of 104 primary chronic lymphocytic leukemias (CLLs). Compared with 26 normal B cell samples, CLLs consistently displayed higher intrasample variability of DNA methylation patterns across the genome, which appears to arise from stochastically disordered methylation in malignant cells. Transcriptome analysis of bulk and single CLL cells revealed that methylation disorder was linked to low-level expression. Disordered methylation was further associated with adverse clinical outcome. We therefore propose that disordered methylation plays a similar role to that of genetic instability, enhancing the ability of cancer cells to search for superior evolutionary trajectories. Copyright © 2014 Elsevier Inc. All rights reserved.
Landau, Dan A.; Clement, Kendell; Ziller, Michael J.; Boyle, Patrick; Fan, Jean; Gu, Hongcang; Stevenson, Kristen; Sougnez, Carrie; Wang, Lili; Li, Shuqiang; Kotliar, Dylan; Zhang, Wandi; Ghandi, Mahmoud; Garraway, Levi; Fernandes, Stacey M.; Livak, Kenneth J.; Gabriel, Stacey; Gnirke, Andreas; Lander, Eric S.; Brown, Jennifer R.; Neuberg, Donna; Kharchenko, Peter V.; Hacohen, Nir; Getz, Gad; Meissner, Alexander; Wu, Catherine J.
2014-01-01
SUMMARY Intra-tumoral heterogeneity plays a critical role in tumor evolution. To define the contribution of DNA methylation to heterogeneity within tumors, we performed genome-scale bisulfite sequencing of 104 primary chronic lymphocytic leukemias (CLL). Compared to 26 normal B cell samples, CLLs consistently displayed higher intra-sample variability of DNA methylation patterns across the genome, which appears to arise from stochastically disordered methylation in malignant cells. Transcriptome analysis of bulk and single CLL cells revealed that methylation disorder was linked to low-level expression. Disordered methylation was further associated with adverse clinical outcome. We therefore propose that disordered methylation plays a similar role to genetic instability, enhancing the ability of cancer cells to search for superior evolutionary trajectories. PMID:25490447
Methods of DNA methylation analysis.
USDA-ARS?s Scientific Manuscript database
The purpose of this review was to provide guidance for investigators who are new to the field of DNA methylation analysis. Epigenetics is the study of mitotically heritable alterations in gene expression potential that are not mediated by changes in DNA sequence. Recently, it has become clear that n...
Sigalotti, Luca; Fratta, Elisabetta; Bidoli, Ettore; Covre, Alessia; Parisi, Giulia; Colizzi, Francesca; Coral, Sandra; Massarut, Samuele; Kirkwood, John M; Maio, Michele
2011-05-26
The prognosis of cutaneous melanoma (CM) differs for patients with identical clinico-pathological stage, and no molecular markers discriminating the prognosis of stage III individuals have been established. Genome-wide alterations in DNA methylation are a common event in cancer. This study aimed to define the prognostic value of genomic DNA methylation levels in stage III CM patients. Overall level of genomic DNA methylation was measured using bisulfite pyrosequencing at three CpG sites (CpG1, CpG2, CpG3) of the Long Interspersed Nucleotide Element-1 (LINE-1) sequences in short-term CM cultures from 42 stage IIIC patients. The impact of LINE-1 methylation on overall survival (OS) was assessed using Cox regression and Kaplan-Meier analysis. Hypomethylation (i.e., methylation below median) at CpG2 and CpG3 sites significantly associated with improved prognosis of CM, CpG3 showing the strongest association. Patients with hypomethylated CpG3 had increased OS (P = 0.01, log-rank = 6.39) by Kaplan-Meyer analysis. Median OS of patients with hypomethylated or hypermethylated CpG3 were 31.9 and 11.5 months, respectively. The 5 year OS for patients with hypomethylated CpG3 was 48% compared to 7% for patients with hypermethylated sequences. Among the variables examined by Cox regression analysis, LINE-1 methylation at CpG2 and CpG3 was the only predictor of OS (Hazard Ratio = 2.63, for hypermethylated CpG3; 95% Confidence Interval: 1.21-5.69; P = 0.01). LINE-1 methylation is identified as a molecular marker of prognosis for CM patients in stage IIIC. Evaluation of LINE-1 promises to represent a key tool for driving the most appropriate clinical management of stage III CM patients.
Zimmermann, Michael T; Oberg, Ann L; Grill, Diane E; Ovsyannikova, Inna G; Haralambieva, Iana H; Kennedy, Richard B; Poland, Gregory A
2016-01-01
Failure to achieve a protected state after influenza vaccination is poorly understood but occurs commonly among aged populations experiencing greater immunosenescence. In order to better understand immune response in the elderly, we studied epigenetic and transcriptomic profiles and humoral immune response outcomes in 50-74 year old healthy participants. Associations between DNA methylation and gene expression reveal a system-wide regulation of immune-relevant functions, likely playing a role in regulating a participant's propensity to respond to vaccination. Our findings show that sites of methylation regulation associated with humoral response to vaccination impact known cellular differentiation signaling and antigen presentation pathways. We performed our analysis using per-site and regionally average methylation levels, in addition to continuous or dichotomized outcome measures. The genes and molecular functions implicated by each analysis were compared, highlighting different aspects of the biologic mechanisms of immune response affected by differential methylation. Both cis-acting (within the gene or promoter) and trans-acting (enhancers and transcription factor binding sites) sites show significant associations with measures of humoral immunity. Specifically, we identified a group of CpGs that, when coordinately hypo-methylated, are associated with lower humoral immune response, and methylated with higher response. Additionally, CpGs that individually predict humoral immune responses are enriched for polycomb-group and FOXP2 transcription factor binding sites. The most robust associations implicate differential methylation affecting gene expression levels of genes with known roles in immunity (e.g. HLA-B and HLA-DQB2) and immunosenescence. We believe our data and analysis strategy highlight new and interesting epigenetic trends affecting humoral response to vaccination against influenza; one of the most common and impactful viral pathogens.
Robles, Ana I.; Arai, Eri; Mathé, Ewy A.; Okayama, Hirokazu; Schetter, Aaron J.; Brown, Derek; Petersen, David; Bowman, Elise D.; Noro, Rintaro; Welsh, Judith A.; Edelman, Daniel C.; Stevenson, Holly S.; Wang, Yonghong; Tsuchiya, Naoto; Kohno, Takashi; Skaug, Vidar; Mollerup, Steen; Haugen, Aage; Meltzer, Paul S.; Yokota, Jun; Kanai, Yae
2015-01-01
Introduction Up to 30% Stage I lung cancer patients suffer recurrence within 5 years of curative surgery. We sought to improve existing protein-coding gene and microRNA expression prognostic classifiers by incorporating epigenetic biomarkers. Methods Genome-wide screening of DNA methylation and pyrosequencing analysis of HOXA9 promoter methylation were performed in two independently collected cohorts of Stage I lung adenocarcinoma. The prognostic value of HOXA9 promoter methylation alone and in combination with mRNA and miRNA biomarkers was assessed by Cox regression and Kaplan-Meier survival analysis in both cohorts. Results Promoters of genes marked by Polycomb in Embryonic Stem Cells were methylated de novo in tumors and identified patients with poor prognosis. The HOXA9 locus was methylated de novo in Stage I tumors (P < 0.0005). High HOXA9 promoter methylation was associated with worse cancer-specific survival (Hazard Ratio [HR], 2.6; P = 0.02) and recurrence-free survival (HR, 3.0; P = 0.01), and identified high-risk patients in stratified analysis of Stage IA and IB. Four protein-coding gene (XPO1, BRCA1, HIF1α, DLC1), miR-21 expression and HOXA9 promoter methylation were each independently associated with outcome (HR, 2.8; P = 0.002; HR, 2.3; P = 0.01; and HR, 2.4; P = 0.005, respectively), and, when combined, identified high-risk, therapy naïve, Stage I patients (HR, 10.2; P = 3x10−5). All associations were confirmed in two independently collected cohorts. Conclusion A prognostic classifier comprising three types of genomic and epigenomic data may help guide the postoperative management of Stage I lung cancer patients at high risk of recurrence. PMID:26134223
Sun, Hokeun; Wang, Shuang
2013-05-30
The matched case-control designs are commonly used to control for potential confounding factors in genetic epidemiology studies especially epigenetic studies with DNA methylation. Compared with unmatched case-control studies with high-dimensional genomic or epigenetic data, there have been few variable selection methods for matched sets. In an earlier paper, we proposed the penalized logistic regression model for the analysis of unmatched DNA methylation data using a network-based penalty. However, for popularly applied matched designs in epigenetic studies that compare DNA methylation between tumor and adjacent non-tumor tissues or between pre-treatment and post-treatment conditions, applying ordinary logistic regression ignoring matching is known to bring serious bias in estimation. In this paper, we developed a penalized conditional logistic model using the network-based penalty that encourages a grouping effect of (1) linked Cytosine-phosphate-Guanine (CpG) sites within a gene or (2) linked genes within a genetic pathway for analysis of matched DNA methylation data. In our simulation studies, we demonstrated the superiority of using conditional logistic model over unconditional logistic model in high-dimensional variable selection problems for matched case-control data. We further investigated the benefits of utilizing biological group or graph information for matched case-control data. We applied the proposed method to a genome-wide DNA methylation study on hepatocellular carcinoma (HCC) where we investigated the DNA methylation levels of tumor and adjacent non-tumor tissues from HCC patients by using the Illumina Infinium HumanMethylation27 Beadchip. Several new CpG sites and genes known to be related to HCC were identified but were missed by the standard method in the original paper. Copyright © 2012 John Wiley & Sons, Ltd.
Basu, Baidehi; Chakraborty, Joyeeta; Chandra, Aditi; Katarkar, Atul; Baldevbhai, Jadav Ritesh Kumar; Dhar Chowdhury, Debjit; Ray, Jay Gopal; Chaudhuri, Keya; Chatterjee, Raghunath
2017-01-01
Oral squamous cell carcinoma (OSCC) is one of the common malignancies in Southeast Asia. Epigenetic changes, mainly the altered DNA methylation, have been implicated in many cancers. Considering the varied environmental and genotoxic exposures among the Indian population, we conducted a genome-wide DNA methylation study on paired tumor and adjacent normal tissues of ten well-differentiated OSCC patients and validated in an additional 53 well-differentiated OSCC and adjacent normal samples. Genome-wide DNA methylation analysis identified several novel differentially methylated regions associated with OSCC. Hypermethylation is primarily enriched in the CpG-rich regions, while hypomethylation is mainly in the open sea. Distinct epigenetic drifts for hypo- and hypermethylation across CpG islands suggested independent mechanisms of hypo- and hypermethylation in OSCC development. Aberrant DNA methylation in the promoter regions are concomitant with gene expression. Hypomethylation of immune genes reflect the lymphocyte infiltration into the tumor microenvironment. Comparison of methylome data with 312 TCGA HNSCC samples identified a unique set of hypomethylated promoters among the OSCC patients in India. Pathway analysis of unique hypomethylated promoters indicated that the OSCC patients in India induce an anti-tumor T cell response, with mobilization of T lymphocytes in the neoplastic environment. Survival analysis of these epigenetically regulated immune genes suggested their prominent role in OSCC progression. Our study identified a unique set of hypomethylated regions, enriched in the promoters of immune response genes, and indicated the presence of a strong immune component in the tumor microenvironment. These methylation changes may serve as potential molecular markers to define risk and to monitor the prognosis of OSCC patients in India.
Effects of bisphosphonate treatment on DNA methylation in osteonecrosis of the jaw.
Polidoro, Silvia; Broccoletti, Roberto; Campanella, Gianluca; Di Gaetano, Cornelia; Menegatti, Elisa; Scoletta, Matteo; Lerda, Ennio; Matullo, Giuseppe; Vineis, Paolo; Berardi, Daniela; Scully, Crispian; Arduino, Paolo G
2013-10-09
Bisphosphonates are used in the treatment of hypocalcaemia, mainly in cancer and osteoporosis. Some patients experience adverse events, such as BP-related osteonecrosis of the jaw (BRONJ). DNA methylation plays a key role in gene regulation in many tissues, but its involvement in bone homeostasis is not well characterized, and no information is available regarding altered methylation in BRONJ. Using the Illumina Infinium HumanMethylation27 BeadChip assay, we performed an epigenome-wide association study in peripheral blood samples from 68 patients treated with nitrogenous BP, including 35 with BRONJ. Analysis of the estimated cumulative BP exposure distribution indicated that the exposure of the case group to BP was slightly higher than that of the control group; more severely affected cases (i.e., with BRONJ in both mandible and maxilla) were significantly more exposed to BP than were those with BRONJ only in the mandible or maxilla (one-sided Wilcoxon rank sum test, p=0.002). Logistic regression analysis confirmed the positive association between cumulative bisphosphonates exposure and risk of BRONJ (OR 1.015 per mg of cumulative exposure, 95% CI 1.004-1.032, p=0.036). Although no statistically significant differences were observed between case and control groups, methylation levels of probes mapping on three genes, ERCC8, LEPREL1 and SDC2, were strongly associated with cumulative BP exposure levels (p<1.31E-007). Enrichment analysis, combining differentially methylated genes with genes involved in the mevalonate pathway, showed that BP treatment can affect the methylation pattern of genes involved in extracellular matrix organization and inflammatory responses, leading to more frequent adverse effects such as BRONJ. Differences in DNA methylation induced by BP treatment could be involved in the pathogenesis of the bone lesion. Copyright © 2013 Elsevier B.V. All rights reserved.
Jiang, Tao; Kaal, Joeri; Liang, Jian; Zhang, Yaoling; Wei, Shiqiang; Wang, Dingyong; Green, Nelson W
2017-12-15
Soil-derived dissolved organic matter (DOM) has a major influence in biogeochemical processes related to contaminant dynamics and greenhouse gas emissions, due to its reactivity and its bridging role between the soil and aquatic systems. Within the Three Gorges Reservoir (TGR, China) area, an extensive water-fluctuation zone periodically submerges the surrounding soils. Here we report a characterization study of soil-derived DOM across the TGR areas, using elemental and optical analysis, infrared spectroscopy (FTIR), pyrolysis-GC-MS (Py-GC-MS) and thermally assisted hydrolysis and methylation (THM-GC-MS). The results showed that the soil DOM from the TGR area is a mixture of "allochthonous" (i.e., plant-derived/terrigenous) and "autochthonous" (i.e., microbial) origins. The terrigenous DOM is composed primarily of phenolic and aliphatic structures from lignin and aliphatic biopolymers (i.e. cutin, suberin), respectively. Multivariate statistics differentiated between two fractions of the microbial DOM, i.e. chitin-derived, perhaps from fungi and arthropods in soil, and protein-derived, partially sourced from algal or aquatic organisms. Molecular proxies of source and degradation state were in good agreement with optical parameters such as SUVA 254 , the fluorescence index (FI) and the humification index (HIX). The combined use of elemental analysis, fluorescence spectroscopy, and Py-GC-MS provides rigorous and detailed DOM characterization, whereas THM-GC-MS is useful for more precise but qualitative identification of the different phenolic (cinnamyl, p-hydroxyphenyl, guaiacyl, syringyl and tannin-derived) and aliphatic materials. With the multi-methodological approach used in this study, FTIR was the least informative, in part, because of the interference of inorganic matter in the soil DOM samples. The soil DOM from the TGR's water fluctuation zone exhibited considerable compositional diversity, mainly related to the balance between DOM source (microbial- or plant-derived), local vegetation and anthropogenic activities (e.g., agriculture). Finally, the relationship between DOM composition and its potential reactivity with substances of environmental concerns in the TGR area are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
An elastic analysis of stresses in a uniaxially loaded sheet containing an interference-fit bolt
NASA Technical Reports Server (NTRS)
Crews, J. H., Jr.
1972-01-01
The stresses in a sheet with an interference-fit bolt have been calculated for two sheet-bolt interface conditions: a frictionless interface and a fixed (no-slip) interface. The stress distributions were calculated for various combinations of sheet and bolt moduli. The results show that for repeated loading the local stress range is significantly smaller if an interference bolt is used instead of a loosely fitting one. This reduction in local stress range is more pronounced when the ratio of bolt modulus to sheet modulus is large. The analysis also indicates that currently used standard values of interference cause yielding in the sheet.
Mechanics of the tapered interference fit in dental implants.
Bozkaya, Dinçer; Müftü, Sinan
2003-11-01
In evaluation of the long-term success of a dental implant, the reliability and the stability of the implant-abutment interface plays a great role. Tapered interference fits provide a reliable connection method between the abutment and the implant. In this work, the mechanics of the tapered interference fits were analyzed using a closed-form formula and the finite element (FE) method. An analytical solution, which is used to predict the contact pressure in a straight interference, was modified to predict the contact pressure in the tapered implant-abutment interface. Elastic-plastic FE analysis was used to simulate the implant and abutment material behavior. The validity and the applicability of the analytical solution were investigated by comparisons with the FE model for a range of problem parameters. It was shown that the analytical solution could be used to determine the pull-out force and loosening-torque with 5-10% error. Detailed analysis of the stress distribution due to tapered interference fit, in a commercially available, abutment-implant system was carried out. This analysis shows that plastic deformation in the implant limits the increase in the pull-out force that would have been otherwise predicted by higher interference values.
Communication: Finding destructive interference features in molecular transport junctions.
Reuter, Matthew G; Hansen, Thorsten
2014-11-14
Associating molecular structure with quantum interference features in electrode-molecule-electrode transport junctions has been difficult because existing guidelines for understanding interferences only apply to conjugated hydrocarbons. Herein we use linear algebra and the Landauer-Büttiker theory for electron transport to derive a general rule for predicting the existence and locations of interference features. Our analysis illustrates that interferences can be directly determined from the molecular Hamiltonian and the molecule-electrode couplings, and we demonstrate its utility with several examples.
Kester, H C; Benen, J A; Visser, J; Warren, M E; Orlando, R; Bergmann, C; Magaud, D; Anker, D; Doutheau, A
2000-03-01
The substrate specificity and the mode of action of Aspergillus niger pectin methylesterase (PME) was determined using both fully methyl-esterified oligogalacturonates with degrees of polymerization (DP) 2-6 and chemically synthesized monomethyl trigalacturonates. The enzymic activity on the different substrates and a preliminary characterization of the reaction products were performed by using high-performance anion-exchange chromatography at neutral pH. Electrospray ionization tandem MS (ESI-MS/MS) was used to localize the methyl esters on the (18)O-labelled reaction products during the course of the enzymic reaction. A. niger PME is able to hydrolyse the methyl esters of fully methyl-esterified oligogalacturonates with DP 2, and preferentially hydrolyses the methyl esters located on the internal galacturonate residues, followed by hydrolysis of the methyl esters towards the reducing end. This PME is unable to hydrolyse the methyl ester of the galacturonate moiety at the non-reducing end.
Microbial mercury methylation in Antarctic sea ice.
Gionfriddo, Caitlin M; Tate, Michael T; Wick, Ryan R; Schultz, Mark B; Zemla, Adam; Thelen, Michael P; Schofield, Robyn; Krabbenhoft, David P; Holt, Kathryn E; Moreau, John W
2016-08-01
Atmospheric deposition of mercury onto sea ice and circumpolar sea water provides mercury for microbial methylation, and contributes to the bioaccumulation of the potent neurotoxin methylmercury in the marine food web. Little is known about the abiotic and biotic controls on microbial mercury methylation in polar marine systems. However, mercury methylation is known to occur alongside photochemical and microbial mercury reduction and subsequent volatilization. Here, we combine mercury speciation measurements of total and methylated mercury with metagenomic analysis of whole-community microbial DNA from Antarctic snow, brine, sea ice and sea water to elucidate potential microbially mediated mercury methylation and volatilization pathways in polar marine environments. Our results identify the marine microaerophilic bacterium Nitrospina as a potential mercury methylator within sea ice. Anaerobic bacteria known to methylate mercury were notably absent from sea-ice metagenomes. We propose that Antarctic sea ice can harbour a microbial source of methylmercury in the Southern Ocean.
Xu, Ke; Zhang, Xinyu; Wang, Zuoheng; Hu, Ying; Sinha, Rajita
2018-01-01
Chronic stress has a significant impact on obesity. However, how stress influences obesity remains unclear. We conducted an epigenome-wide DNA methylation association analysis of obesity (N=510) and examined whether cumulative stress influenced the DNA methylation on body weight. We identified 20 CpG sites associated with body mass index at the false discovery rate q<0.05, including a novel site, cg18181703, in suppressor of cytokine signaling 3 (SOCS3) gene (coefficient β=-0.0022, FDR q=4.94×10 -5 ). The interaction between cg18181703 and cumulative adverse life stress contributed to variations in body weight (p=0.002). Individuals with at least five major life events and lower methylation of cg1818703 showed a 1.38-fold higher risk of being obese (95%CI: 1.17-1.76). Our findings suggest that aberrant in DNA methylation is associated with body weight and that methylation of SOCS3 moderates the effect of cumulative stress on obesity. Copyright © 2016 Elsevier B.V. All rights reserved.
Chang, Mengqi; Lv, Hongyi; Zhang, Weilong; Ma, Chunhui; He, Xue; Zhao, Shunli; Zhang, Zhi-Wei; Zeng, Yi-Xin; Song, Shuhui; Niu, Yamei; Tong, Wei-Min
2017-09-01
N 6 -methyladenosine (m 6 A) is the most abundant epitranscriptomic mark found on mRNA and has important roles in various physiological processes. Despite the relatively high m 6 A levels in the brain, its potential functions in the brain remain largely unexplored. We performed a transcriptome-wide methylation analysis using the mouse brain to depict its region-specific methylation profile. RNA methylation levels in mouse cerebellum are generally higher than those in the cerebral cortex. Heterogeneity of RNA methylation exists across different brain regions and different types of neural cells including the mRNAs to be methylated, their methylation levels and methylation site selection. Common and region-specific methylation have different preferences for methylation site selection and thereby different impacts on their biological functions. In addition, high methylation levels of fragile X mental retardation protein (FMRP) target mRNAs suggest that m 6 A methylation is likely to be used for selective recognition of target mRNAs by FMRP in the synapse. Overall, we provide a region-specific map of RNA m 6 A methylation and characterize the distinct features of specific and common methylation in mouse cerebellum and cerebral cortex. Our results imply that RNA m 6 A methylation is a newly identified element in the region-specific gene regulatory network in the mouse brain. © 2017 The Authors.
1982-10-28
form a non- soluble complex. After filtering and burning the non-pure molybdenum trioxide is weighed. Ammonia water is used to dissolve the molybdenum...niobium and tantalum should use the methyl alcohol distillation - curcumin absorption luminosity 66 method for determination. II. The Methyl Alcohol...Distillation - Curcumin Absorption Luminosity Method 1. Summary of Method In a phosphorus sulfate medium, boron and methyl alcohol produce methyl borate
A robust internal control for high-precision DNA methylation analyses by droplet digital PCR.
Pharo, Heidi D; Andresen, Kim; Berg, Kaja C G; Lothe, Ragnhild A; Jeanmougin, Marine; Lind, Guro E
2018-01-01
Droplet digital PCR (ddPCR) allows absolute quantification of nucleic acids and has potential for improved non-invasive detection of DNA methylation. For increased precision of the methylation analysis, we aimed to develop a robust internal control for use in methylation-specific ddPCR. Two control design approaches were tested: (a) targeting a genomic region shared across members of a gene family and (b) combining multiple assays targeting different pericentromeric loci on different chromosomes. Through analyses of 34 colorectal cancer cell lines, the performance of the control assay candidates was optimized and evaluated, both individually and in various combinations, using the QX200™ droplet digital PCR platform (Bio-Rad). The best-performing control was tested in combination with assays targeting methylated CDO1 , SEPT9 , and VIM . A 4Plex panel consisting of EPHA3 , KBTBD4 , PLEKHF1 , and SYT10 was identified as the best-performing control. The use of the 4Plex for normalization reduced the variability in methylation values, corrected for differences in template amount, and diminished the effect of chromosomal aberrations. Positive Droplet Calling (PoDCall), an R-based algorithm for standardized threshold determination, was developed, ensuring consistency of the ddPCR results. Implementation of a robust internal control, i.e., the 4Plex, and an algorithm for automated threshold determination, PoDCall, in methylation-specific ddPCR increase the precision of DNA methylation analysis.
Role of MLH1 methylation in esophageal cancer carcinogenesis and its clinical significance.
Li, Jinyun; Ye, Dong; Wang, Lei; Peng, Yingying; Li, Qun; Deng, Hongxia; Zhou, Chongchang
2018-01-01
The mutL homolog-1 ( MLH1 ) is a DNA mismatch repair gene and has been reported to be frequently methylated in numerous cancers. However, the association between MLH1 methylation and esophageal cancer (EC), as well as its clinical significance, remains unclear. Hence, we conducted a systematic meta-analysis based on 19 articles (including 1384 ECs, 345 premalignant lesions, and 1244 healthy controls). Our analysis revealed that the frequency of MLH1 methylation was significantly elevated during EC carcinogenesis. In addition, we observed that MLH1 promoter methylation was associated with age (odds ratio [OR]=1.79; 95% CI =1.20-2.66), advanced tumor grade (OR=3.7; 95% CI =2.37-5.77), lymph node metastasis (OR=2.65; 95% CI =1.81-3.88), distant metastasis (OR=7.60; 95% CI =1.23-47.19), advanced clinical stage (OR=4.46; 95% CI =2.88-6.91), and poor prognosis in EC patients (hazard ratio =1.64, 95% CI =1.00-2.69). The pooled sensitivity, specificity, and area under the curve of MLH1 methylation in EC patients versus healthy individuals were 0.15, 0.99, and 0.77, respectively. Our findings indicate that MLH1 methylation is involved in the carcinogenesis, progression, and metastasis of EC. Moreover, methylated MLH1 could be a potential diagnostic and prognostic biomarker for EC.
Shigeyasu, Kunitoshi; Nagasaka, Takeshi; Mori, Yoshiko; Yokomichi, Naosuke; Kawai, Takashi; Fuji, Tomokazu; Kimura, Keisuke; Umeda, Yuzo; Kagawa, Shunsuke; Goel, Ajay; Fujiwara, Toshiyoshi
2015-01-01
Background To improve the outcome of patients suffering from gastric cancer, a better understanding of underlying genetic and epigenetic events in this malignancy is required. Although CpG island methylator phenotype (CIMP) and microsatellite instability (MSI) have been shown to play pivotal roles in gastric cancer pathogenesis, the clinical significance of these events on survival outcomes in patients with gastric cancer remains unknown. Methods This study included a patient cohort with pathologically confirmed gastric cancer who had surgical resections. A cohort of 68 gastric cancers was analyzed. CIMP and MSI statuses were determined by analyzing promoter CpG island methylation status of 28 genes/loci, and genomic instability at 10 microsatellite markers, respectively. A Cox’s proportional hazards model was performed for multivariate analysis including age, stage, tumor differentiation, KRAS mutation status, and combined CIMP/MLH1 methylation status in relation to overall survival (OS). Results By multivariate analysis, longer OS was significantly correlated with lower pathologic stage (P = 0.0088), better tumor differentiation (P = 0.0267) and CIMP-high and MLH1 3' methylated status (P = 0.0312). Stratification of CIMP status with regards to MLH1 methylation status further enabled prediction of gastric cancer prognosis. Conclusions CIMP and/or MLH1 methylation status may have a potential to be prognostic biomarkers for patients with gastric cancer. PMID:26121593
Role of MLH1 methylation in esophageal cancer carcinogenesis and its clinical significance
Li, Jinyun; Ye, Dong; Wang, Lei; Peng, Yingying; Li, Qun; Deng, Hongxia
2018-01-01
The mutL homolog-1 (MLH1) is a DNA mismatch repair gene and has been reported to be frequently methylated in numerous cancers. However, the association between MLH1 methylation and esophageal cancer (EC), as well as its clinical significance, remains unclear. Hence, we conducted a systematic meta-analysis based on 19 articles (including 1384 ECs, 345 premalignant lesions, and 1244 healthy controls). Our analysis revealed that the frequency of MLH1 methylation was significantly elevated during EC carcinogenesis. In addition, we observed that MLH1 promoter methylation was associated with age (odds ratio [OR]=1.79; 95% CI =1.20–2.66), advanced tumor grade (OR=3.7; 95% CI =2.37–5.77), lymph node metastasis (OR=2.65; 95% CI =1.81–3.88), distant metastasis (OR=7.60; 95% CI =1.23–47.19), advanced clinical stage (OR=4.46; 95% CI =2.88–6.91), and poor prognosis in EC patients (hazard ratio =1.64, 95% CI =1.00–2.69). The pooled sensitivity, specificity, and area under the curve of MLH1 methylation in EC patients versus healthy individuals were 0.15, 0.99, and 0.77, respectively. Our findings indicate that MLH1 methylation is involved in the carcinogenesis, progression, and metastasis of EC. Moreover, methylated MLH1 could be a potential diagnostic and prognostic biomarker for EC. PMID:29440913
Kelly, Richard D. W.; Mahmud, Arsalan; McKenzie, Matthew; Trounce, Ian A.; St John, Justin C.
2012-01-01
DNA methylation is an essential mechanism controlling gene expression during differentiation and development. We investigated the epigenetic regulation of the nuclear-encoded, mitochondrial DNA (mtDNA) polymerase γ catalytic subunit (PolgA) by examining the methylation status of a CpG island within exon 2 of PolgA. Bisulphite sequencing identified low methylation levels (<10%) within exon 2 of mouse oocytes, blastocysts and embryonic stem cells (ESCs), while somatic tissues contained significantly higher levels (>40%). In contrast, induced pluripotent stem (iPS) cells and somatic nuclear transfer ESCs were hypermethylated (>20%), indicating abnormal epigenetic reprogramming. Real time PCR analysis of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) immunoprecipitated DNA suggests active DNA methylation and demethylation within exon 2 of PolgA. Moreover, neural differentiation of ESCs promoted de novo methylation and demethylation at the exon 2 locus. Regression analysis demonstrates that cell-specific PolgA expression levels were negatively correlated with DNA methylation within exon 2 and mtDNA copy number. Finally, using chromatin immunoprecipitation (ChIP) against RNA polymerase II (RNApII) phosphorylated on serine 2, we show increased DNA methylation levels are associated with reduced RNApII transcriptional elongation. This is the first study linking nuclear DNA epigenetic regulation with mtDNA regulation during differentiation and cell specialization. PMID:22941637
DNA methylation pattern of apoptosis-related genes in ameloblastoma.
Costa, Sfs; Pereira, N B; Pereira, Kma; Campos, K; de Castro, W H; Diniz, M G; Gomes, C C; Gomez, R S
2017-09-01
DNA methylation is an important mechanism of gene control expression, and it has been poorly addressed in odontogenic tumours. On this basis, we aimed to assess the methylation pattern of 22 apoptosis-related genes in solid ameloblastomas. Ameloblastoma fresh samples (n = 10) and dental follicles (n = 8) were included in the study. The percentage fraction of methylated and unmethylated DNA promoter of 22 apoptosis-related genes was determined using enzymatic restriction digestion and quantitative real-time PCR (qPCR) array. The relative expressions of the genes that showed the most discrepant methylation profile between tumours and controls were analysed by reverse-transcription quantitative PCR (RT-qPCR). Lower methylation percentages of TNFRSF25 (47.2%) and BCL2L11 (33.2%) were observed in ameloblastomas compared with dental follicles (79.3% and 59.5%, respectively). The RT-qPCR analysis showed increased expression of BCL2L11 in ameloblastomas compared with dental follicles, in agreement with the methylation analysis results, while there was no difference between the expression levels of TNFRSF25 between both groups. On the basis of our results, the transcription of the apoptosis-related gene BCL2L11 is possibly regulated by promoter DNA methylation in ameloblastoma. The biological significance of this finding in ameloblastoma pathobiology remains to be clarified. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
-HPLC determination of acidic d-amino acids and their N-methyl derivatives in biological tissues
Tsesarskaia, Mara; Galindo, Erika; Szókán, Gyula; Fisher, George
2015-01-01
d-aspartate (d-Asp) and N-methyl-d-aspartate (NMDA) occur in the neuroendocrine systems of vertebrates and invertebrates where they play a role in hormone release and synthesis, neurotransmission, and memory and learning. N-methyl-d-glutamate (NMDG) has also been detected in marine bivalves. Several methods have been used to detect these amino acids, but they require pretreatment of tissue samples with o-phthaldialdehyde (OPA) to remove primary amino acids which interfere with the detection of NMDA and NMDG. We report here a one step derivatization procedure with the chiral reagent N-α-(5-fluoro-2,4-dinitrophenyl)-(d or l)-valine amide, FDNP-Val-NH2, a close analog of Marfey’s reagent but with better resolution and higher molar absorptivity. The diastereomers formed are separated by HPLC on an ODS-Hypersil column eluted with TFA/water – TFA/MeCN. UV absorption at 340 nm permits detection levels as low as 5–10 picomoles. D-Asp, NMDA and NMDG peaks are not obscured by other primary or secondary amino acids; hence pretreatment of tissues with OPA is not required. This method is highly reliable and fast (less than 40 minutes HPLC run). Using this method, we have detected D-Asp, NMDA and NMDG in several biological tissues (octopus brain, optical lobe, and bucchal mass; foot and mantle of the mollusk Scapharca broughtonii), confirming the results of other researchers. PMID:19277955
Gerber, Esther; Hemmerlin, Andréa; Hartmann, Michael; Heintz, Dimitri; Hartmann, Marie-Andrée; Mutterer, Jérôme; Rodríguez-Concepción, Manuel; Boronat, Albert; Van Dorsselaer, Alain; Rohmer, Michel; Crowell, Dring N; Bach, Thomas J
2009-01-01
Protein farnesylation and geranylgeranylation are important posttranslational modifications in eukaryotic cells. We visualized in transformed Nicotiana tabacum Bright Yellow-2 (BY-2) cells the geranylgeranylation and plasma membrane localization of GFP-BD-CVIL, which consists of green fluorescent protein (GFP) fused to the C-terminal polybasic domain (BD) and CVIL isoprenylation motif from the Oryza sativa calmodulin, CaM61. Treatment with fosmidomycin (Fos) or oxoclomazone (OC), inhibitors of the plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, caused mislocalization of the protein to the nucleus, whereas treatment with mevinolin, an inhibitor of the cytosolic mevalonate pathway, did not. The nuclear localization of GFP-BD-CVIL in the presence of MEP pathway inhibitors was completely reversed by all-trans-geranylgeraniol (GGol). Furthermore, 1-deoxy-d-xylulose (DX) reversed the effects of OC, but not Fos, consistent with the hypothesis that OC blocks 1-deoxy-d-xylulose 5-phosphate synthesis, whereas Fos inhibits its conversion to 2-C-methyl-d-erythritol 4-phosphate. By contrast, GGol and DX did not rescue the nuclear mislocalization of GFP-BD-CVIL in the presence of a protein geranylgeranyltransferase type 1 inhibitor. Thus, the MEP pathway has an essential role in geranylgeranyl diphosphate (GGPP) biosynthesis and protein geranylgeranylation in BY-2 cells. GFP-BD-CVIL is a versatile tool for identifying pharmaceuticals and herbicides that interfere either with GGPP biosynthesis or with protein geranylgeranylation.
Hong, Tae-Kyun; Perumalsamy, Haribalan; Jang, Kyoung-Hwa; Na, Eun-Shik; Ahn, Young-Joon
2018-02-01
Bradysia procera is a serious insect pest of Panax ginseng plants. This study was conducted to determine the toxicity and mechanism of action of three phenylpropanoids, three terpenoids, and a ketone from Syzygium aromaticum bud methanol extract and hydrodistillate against third-instar larvae and eggs of B. procera. In a filter-paper mortality bioassay, methyl salicylate (LC 50 , 5.26μg/cm 2 ) was the most toxic compound, followed by 2-nonanone, eugenol, and eugenyl acetate (8.77-15.40μg/cm 2 ). These compounds were significantly less toxic than either thiamethoxam, clothianidin, or cypermethrin. Egg hatching was inhibited by 97, 85, and 40% at 11.7μg/cm 2 of methyl salicylate, 2-nonanone, and eugenol, respectively. The egg-hatching inhibition of these insecticides was between 90 and 94% at 0.09μg/cm 2 . These constituents were consistently more toxic in closed versus open containers, indicating that toxicity was achieved mainly through the action of vapor. The mechanism of larvicidal action of methyl salicylate, eugenol, and eugenyl acetate might be primarily due to interference with the octopaminergic system. 2-Heptyl acetate and 2-nonanone might act on both acetylcholinesterase and the octopaminergic receptor. 2-Heptanone might act primarily on acetylcholinesterase. Further studies will warrant possible applications of S. aromaticum bud-derived products as potential larvicides and ovicides for the control of B. procera. Copyright © 2018. Published by Elsevier Inc.
Ludgate, Jackie L; Wright, James; Stockwell, Peter A; Morison, Ian M; Eccles, Michael R; Chatterjee, Aniruddha
2017-08-31
Formalin fixed paraffin embedded (FFPE) tumor samples are a major source of DNA from patients in cancer research. However, FFPE is a challenging material to work with due to macromolecular fragmentation and nucleic acid crosslinking. FFPE tissue particularly possesses challenges for methylation analysis and for preparing sequencing-based libraries relying on bisulfite conversion. Successful bisulfite conversion is a key requirement for sequencing-based methylation analysis. Here we describe a complete and streamlined workflow for preparing next generation sequencing libraries for methylation analysis from FFPE tissues. This includes, counting cells from FFPE blocks and extracting DNA from FFPE slides, testing bisulfite conversion efficiency with a polymerase chain reaction (PCR) based test, preparing reduced representation bisulfite sequencing libraries and massively parallel sequencing. The main features and advantages of this protocol are: An optimized method for extracting good quality DNA from FFPE tissues. An efficient bisulfite conversion and next generation sequencing library preparation protocol that uses 50 ng DNA from FFPE tissue. Incorporation of a PCR-based test to assess bisulfite conversion efficiency prior to sequencing. We provide a complete workflow and an integrated protocol for performing DNA methylation analysis at the genome-scale and we believe this will facilitate clinical epigenetic research that involves the use of FFPE tissue.
A tag-based approach for high-throughput analysis of CCWGG methylation.
Denisova, Oksana V; Chernov, Andrei V; Koledachkina, Tatyana Y; Matvienko, Nicholas I
2007-10-15
Non-CpG methylation occurring in the context of CNG sequences is found in plants at a large number of genomic loci. However, there is still little information available about non-CpG methylation in mammals. Efficient methods that would allow detection of scarcely localized methylated sites in small quantities of DNA are required to elucidate the biological role of non-CpG methylation in both plants and animals. In this study, we tested a new whole genome approach to identify sites of CCWGG methylation (W is A or T), a particular case of CNG methylation, in genomic DNA. This technique is based on digestion of DNAs with methylation-sensitive restriction endonucleases EcoRII-C and AjnI. Short DNAs flanking methylated CCWGG sites (tags) are selectively purified and assembled in tandem arrays of up to nine tags. This allows high-throughput sequencing of tags, identification of flanking regions, and their exact positions in the genome. In this study, we tested specificity and efficiency of the approach.
Microsphere-Based Multiplex Analysis of DNA Methylation in Acute Myeloid Leukemia
Wertheim, Gerald B.W.; Smith, Catherine; Figueroa, Maria E.; Kalos, Michael; Bagg, Adam; Carroll, Martin; Master, Stephen R.
2015-01-01
Aberrant regulation of DNA methylation is characteristic of cancer cells and clearly influences phenotypes of various malignancies. Despite clear correlations between DNA methylation and patient outcome, tests that directly measure multiple-locus DNA methylation are typically expensive and technically challenging. Previous studies have demonstrated that the prognosis of patients with acute myeloid leukemia can be predicted by the DNA methylation pattern of 18 loci. We have developed a novel strategy, termed microsphere HpaII tiny fragment enrichment by ligation-mediated PCR (MELP), to simultaneously analyze the DNA methylation pattern at these loci using methylation-specific DNA digestion, fluorescently labeled microspheres, and branched DNA hybridization. The method uses techniques that are inexpensive and easily performed in a molecular laboratory. MELP accurately reflects the methylation levels at each locus analyzed and segregates patients with acute myeloid leukemia into prognostic subgroups. Our results demonstrate the usefulness of MELP as a platform for simultaneous evaluation of DNA methylation of multiple loci. PMID:24373919
Mass Spectrometry Based Ultrasensitive DNA Methylation Profiling Using Target Fragmentation Assay.
Lin, Xiang-Cheng; Zhang, Ting; Liu, Lan; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui
2016-01-19
Efficient tools for profiling DNA methylation in specific genes are essential for epigenetics and clinical diagnostics. Current DNA methylation profiling techniques have been limited by inconvenient implementation, requirements of specific reagents, and inferior accuracy in quantifying methylation degree. We develop a novel mass spectrometry method, target fragmentation assay (TFA), which enable to profile methylation in specific sequences. This method combines selective capture of DNA target from restricted cleavage of genomic DNA using magnetic separation with MS detection of the nonenzymatic hydrolysates of target DNA. This method is shown to be highly sensitive with a detection limit as low as 0.056 amol, allowing direct profiling of methylation using genome DNA without preamplification. Moreover, this method offers a unique advantage in accurately determining DNA methylation level. The clinical applicability was demonstrated by DNA methylation analysis using prostate tissue samples, implying the potential of this method as a useful tool for DNA methylation profiling in early detection of related diseases.
Zebrafish embryos as a screen for DNA methylation modifications after compound exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouwmeester, Manon C.; Ruiter, Sander; Lommelaars, Tobias
Modified epigenetic programming early in life is proposed to underlie the development of an adverse adult phenotype, known as the Developmental Origins of Health and Disease (DOHaD) concept. Several environmental contaminants have been implicated as modifying factors of the developing epigenome. This underlines the need to investigate this newly recognized toxicological risk and systematically screen for the epigenome modifying potential of compounds. In this study, we examined the applicability of the zebrafish embryo as a screening model for DNA methylation modifications. Embryos were exposed from 0 to 72 h post fertilization (hpf) to bisphenol-A (BPA), diethylstilbestrol, 17α-ethynylestradiol, nickel, cadmium, tributyltin,more » arsenite, perfluoroctanoic acid, valproic acid, flusilazole, 5-azacytidine (5AC) in subtoxic concentrations. Both global and site-specific methylation was examined. Global methylation was only affected by 5AC. Genome wide locus-specific analysis was performed for BPA exposed embryos using Digital Restriction Enzyme Analysis of Methylation (DREAM), which showed minimal wide scale effects on the genome, whereas potential informative markers were not confirmed by pyrosequencing. Site-specific methylation was examined in the promoter regions of three selected genes vasa, vtg1 and cyp19a2, of which vasa (ddx4) was the most responsive. This analysis distinguished estrogenic compounds from metals by direction and sensitivity of the effect compared to embryotoxicity. In conclusion, the zebrafish embryo is a potential screening tool to examine DNA methylation modifications after xenobiotic exposure. The next step is to examine the adult phenotype of exposed embryos and to analyze molecular mechanisms that potentially link epigenetic effects and altered phenotypes, to support the DOHaD hypothesis. - Highlights: • Compound induced effects on DNA methylation in zebrafish embryos • Global methylation not an informative biomarker • Minimal genome wide site specific changes as detected with DREAM • Compound/class specific effects suggested by pyrosequence of specific targets • Zebrafish embryo may be a screening model for epigenetic effects.« less
Kim, Nam-Soo; Im, Min-Ji; Nkongolo, Kabwe
2016-08-01
Red maple (Acer rubum), a common deciduous tree species in Northern Ontario, has shown resistance to soil metal contamination. Previous reports have indicated that this plant does not accumulate metals in its tissue. However, low level of nickel and copper corresponding to the bioavailable levels in contaminated soils in Northern Ontario causes severe physiological damages. No differentiation between metal-contaminated and uncontaminated populations has been reported based on genetic analyses. The main objective of this study was to assess whether DNA methylation is involved in A. rubrum adaptation to soil metal contamination. Global cytosine and methylation-sensitive amplified polymorphism (MSAP) analyses were carried out in A. rubrum populations from metal-contaminated and uncontaminated sites. The global modified cytosine ratios in genomic DNA revealed a significant decrease in cytosine methylation in genotypes from a metal-contaminated site compared to uncontaminated populations. Other genotypes from a different metal-contaminated site within the same region appear to be recalcitrant to metal-induced DNA alterations even ≥30 years of tree life exposure to nickel and copper. MSAP analysis showed a high level of polymorphisms in both uncontaminated (77%) and metal-contaminated (72%) populations. Overall, 205 CCGG loci were identified in which 127 were methylated in either outer or inner cytosine. No differentiation among populations was established based on several genetic parameters tested. The variations for nonmethylated and methylated loci were compared by analysis of molecular variance (AMOVA). For methylated loci, molecular variance among and within populations was 1.5% and 13.2%, respectively. These values were low (0.6% for among populations and 5.8% for within populations) for unmethylated loci. Metal contamination is seen to affect methylation of cytosine residues in CCGG motifs in the A. rubrum populations that were analyzed.
Kuramata, Masato; Abe, Tadashi; Kawasaki, Akira; Ebana, Kaworu; Shibaya, Taeko; Yano, Masahiro; Ishikawa, Satoru
2018-04-24
The authors of article "Genetic diversity of arsenic accumulation in rice and QTL analysis of methylated arsenic in rice grains" (Kuramata et al. 2013) would like to note that the original version of the article online unfortunately contains the following errors.
Marconi, Gianpiero; Pace, Roberta; Traini, Alessandra; Raggi, Lorenzo; Lutts, Stanley; Chiusano, Marialuisa; Guiducci, Marcello; Falcinelli, Mario; Benincasa, Paolo; Albertini, Emidio
2013-01-01
Excessive soil salinity is a major ecological and agronomical problem, the adverse effects of which are becoming a serious issue in regions where saline water is used for irrigation. Plants can employ regulatory strategies, such as DNA methylation, to enable relatively rapid adaptation to new conditions. In this regard, cytosine methylation might play an integral role in the regulation of gene expression at both the transcriptional and post-transcriptional levels. Rapeseed, which is the most important oilseed crop in Europe, is classified as being tolerant of salinity, although cultivars can vary substantially in their levels of tolerance. In this study, the Methylation Sensitive Amplified Polymorphism (MSAP) approach was used to assess the extent of cytosine methylation under salinity stress in salinity-tolerant (Exagone) and salinity-sensitive (Toccata) rapeseed cultivars. Our data show that salinity affected the level of DNA methylation. In particular methylation decreased in Exagone and increased in Toccata. Nineteen DNA fragments showing polymorphisms related to differences in methylation were sequenced. In particular, two of these were highly similar to genes involved in stress responses (Lacerata and trehalose-6-phosphatase synthase S4) and were chosen to further characterization. Bisulfite sequencing and quantitative RT-PCR analysis of selected MSAP loci showed that cytosine methylation changes under salinity as well as gene expression varied. In particular, our data show that salinity stress influences the expression of the two stress-related genes. Moreover, we quantified the level of trehalose in Exagone shoots and found that it was correlated to TPS4 expression and, therefore, to DNA methylation. In conclusion, we found that salinity could induce genome-wide changes in DNA methylation status, and that these changes, when averaged across different genotypes and developmental stages, accounted for 16.8% of the total site-specific methylation differences in the rapeseed genome, as detected by MSAP analysis. PMID:24086583
Morales, Eva; Vilahur, Nadia; Salas, Lucas A; Motta, Valeria; Fernandez, Mariana F; Murcia, Mario; Llop, Sabrina; Tardon, Adonina; Fernandez-Tardon, Guillermo; Santa-Marina, Loreto; Gallastegui, Mara; Bollati, Valentina; Estivill, Xavier; Olea, Nicolas; Sunyer, Jordi; Bustamante, Mariona
2016-10-01
We conducted an epigenome-wide association study (EWAS) of DNA methylation in placenta in relation to maternal tobacco smoking during pregnancy and examined whether smoking-induced changes lead to low birthweight. DNA methylation in placenta was measured using the Illumina HumanMethylation450 BeadChip in 179 participants from the INfancia y Medio Ambiente (INMA) birth cohort. Methylation levels across 431 311 CpGs were tested for differential methylation between smokers and non-smokers in pregnancy. We took forward three top-ranking loci for further validation and replication by bisulfite pyrosequencing using data of 248 additional participants of the INMA cohort. We examined the association of methylation at smoking-associated loci with birthweight by applying a mediation analysis and a two-sample Mendelian randomization approach. Fifty CpGs were differentially methylated in placenta between smokers and non-smokers during pregnancy [false discovery rate (FDR) < 0.05]. We validated and replicated differential methylation at three top-ranking loci: cg27402634 located between LINC00086 and LEKR1, a gene previously related to birthweight in genome-wide association studies; cg20340720 (WBP1L); and cg25585967 and cg12294026 (TRIO). Dose-response relationships with maternal urine cotinine concentration during pregnancy were confirmed. Differential methylation at cg27402634 explained up to 36% of the lower birthweight in the offspring of smokers (Sobel P-value < 0.05). A two-sample Mendelian randomization analysis provided evidence that decreases in methylation levels at cg27402634 lead to decreases in birthweight. We identified novel loci differentially methylated in placenta in relation to maternal smoking during pregnancy. Adverse effects of maternal smoking on birthweight of the offspring may be mediated by alterations in the placental methylome. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.
Genome-wide analysis of day/night DNA methylation differences in Populus nigra.
Ding, Chang-Jun; Liang, Li-Xiong; Diao, Shu; Su, Xiao-Hua; Zhang, Bing-Yu
2018-01-01
DNA methylation is an important mechanism of epigenetic modification. Methylation changes during stress responses and developmental processes have been well studied; however, their role in plant adaptation to the day/night cycle is poorly understood. In this study, we detected global methylation patterns in leaves of the black poplar Populus nigra 'N46' at 8:00 and 24:00 by methylated DNA immunoprecipitation sequencing (MeDIP-seq). We found 10,027 and 10,242 genes to be methylated in the 8:00 and 24:00 samples, respectively. The methylated genes appeared to be involved in multiple biological processes, molecular functions, and cellular components, suggesting important roles for DNA methylation in poplar cells. Comparing the 8:00 and 24:00 samples, only 440 differentially methylated regions (DMRs) overlapped with genic regions, including 193 hyper- and 247 hypo-methylated DMRs, and may influence the expression of 137 downstream genes. Most hyper-methylated genes were associated with transferase activity, kinase activity, and phosphotransferase activity, whereas most hypo-methylated genes were associated with protein binding, ATP binding, and adenyl ribonucleotide binding, suggesting that different biological processes were activated during the day and night. Our results indicated that methylated genes were prevalent in the poplar genome, but that only a few of these participated in diurnal gene expression regulation.
Dong, Yuying; Wang, Jie; Dong, Fusheng; Wang, Xu; Zhang, Yinghuai
2012-07-01
To evaluate relationships between the alteration of p16 gene and the clinical status and prognosis of the patients with squamous cell carcinoma of the buccal mucosa. Thirty buccal cancers were included in the analysis. Deletion analysis was performed by PCR. Point mutation analysis was used by PCR-SSCP and direct sequencing. Methylation-specific PCR methods were adopted for the evaluation of p16 methylation. The correlation between alteration of p16 gene and clinicopathological factors buccal cancer was evaluated by Fisher's exact test. Kaplan-Meier and Cox regression were used to investigate the relationship between p16 alteration and survival time. The frequency of p16 alteration was 63.3% in buccal carcinomas. P16 deletion was associated significantly with tumor size (P = 0.01). P16 point mutation was associated significantly with differentiation (P = 0.006). P16 methylation was associated significantly with nodes metastasis (P = 0.027). The overall survival rate of 30 buccal carcinomas was 53.3%. The Log-rank test (P = 0.021) and univariate Cox regression analysis (P = 0.030) revealed that p16 methylation was significantly associated with the overall survival rate. Multivariate analysis showed that p16 deletion, p16 mutation, and p16 methylation were not statistically significant. The alterations of p16 gene may play a major role in malignancy and development and metastases of buccal carcinoma and may be an excellent marker of aggressive clinical behavior. P16 methylation has a prognostic value in buccal carcinoma but not an independent prognosis factor. P16 point mutation and p16 deletion have not prognostic significance in buccal carcinoma. © 2012 John Wiley & Sons A/S.
Genetic Control of Methyl Halide Production in Arabidopsis
NASA Astrophysics Data System (ADS)
Rhew, R. C.; Ostergaard, L.; Saltzman, E. S.; Yanofsky, M. F.
2003-12-01
Methyl chloride and methyl bromide are the primary carriers of natural chlorine and bromine to the stratosphere where they catalyze the destruction of ozone, whereas methyl iodide influences aerosol formation and ozone loss in the troposphere. Methyl bromide is also an agricultural fumigant whose use is scheduled to be phased out by international agreement. Despite the economic and environmental importance of these methyl halides, their natural sources and biological production mechanisms are poorly understood. Currently identified sources include oceans, biomass burning, industrial and agricultural use, fuel combustion, salt marshes, wetlands, rice paddies, certain terrestrial plants and fungi, and abiotic processes. We demonstrate that the model plant Arabidopsis thaliana produces and emits methyl halides and that the enzyme primarily responsible for the production is encoded by the HARMLESS TO OZONE LAYER (HOL) gene located on chromosome II. In mutant plants that have a disruption of the HOL gene, methyl halide production is largely eliminated. A phylogenetic analysis using the HOL gene suggests that the ability to produce methyl halides is widespread among vascular plants. This approach provides a genetic basis for understanding and predicting patterns of methyl halide production by plants.
Effects of orbital and spin current interference in E1 and M2 nuclear excitations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncharova, N. G., E-mail: n.g.goncharova@gmail.com
The interference of contributions from the orbital and spin currents to the E1 and M2 resonances is investigated. The results of the current interference analysis within the shell model are compared with the experimental data.
Remote sensing frequency sharing studies, tasks 1, 2, 5, and 6
NASA Technical Reports Server (NTRS)
Boyd, Douglas; Tillotson, Tom
1986-01-01
The following tasks are discussed: adjacent and harmonic band analysis; analysis of impact of sensor resolution on interference; development of performance criteria, interference criteria, sharing criteria, and coordination criteria; and spectrum engineering for NASA microwave sensor projects.
Xu, Min; Xu, Guiping; Yang, Yang
2016-01-01
Understanding how the nature of interference might influence the recruitments of the neural systems is considered as the key to understanding cognitive control. Although, interference processing in the emotional domain has recently attracted great interest, the question of whether there are separable neural patterns for emotional and non-emotional interference processing remains open. Here, we performed an activation likelihood estimation meta-analysis of 78 neuroimaging experiments, and examined common and distinct neural systems for emotional and non-emotional interference processing. We examined brain activation in three domains of interference processing: emotional verbal interference in the face-word conflict task, non-emotional verbal interference in the color-word Stroop task, and non-emotional spatial interference in the Simon, SRC and Flanker tasks. Our results show that the dorsal anterior cingulate cortex (ACC) was recruited for both emotional and non-emotional interference. In addition, the right anterior insula, presupplementary motor area (pre-SMA), and right inferior frontal gyrus (IFG) were activated by interference processing across both emotional and non-emotional domains. In light of these results, we propose that the anterior insular cortex may serve to integrate information from different dimensions and work together with the dorsal ACC to detect and monitor conflicts, whereas pre-SMA and right IFG may be recruited to inhibit inappropriate responses. In contrast, the dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex (PPC) showed different degrees of activation and distinct lateralization patterns for different processing domains, which suggests that these regions may implement cognitive control based on the specific task requirements. PMID:27895564
Detection of Catechol by Potentiometric-Flow Injection Analysis in the Presence of Interferents
ERIC Educational Resources Information Center
Lunsford, Suzanne K.; Widera, Justyna; Zhang, Hong
2007-01-01
This article describes an undergraduate analytical chemistry experiment developed to teach instrumental lab skills while incorporating common interferents encountered in the real-world analysis of catechol. The lab technique incorporates potentiometric-flow injection analysis on a dibenzo-18-crown-6 dual platinum electrode to detect catechol in…
NASA Astrophysics Data System (ADS)
Zhang, Xuanni; Zhang, Chunmin
2013-01-01
A polarization interference imaging spectrometer based on Savart polariscope was presented. Its optical throughput was analyzed by Jones calculus. The throughput expression was given, and clearly showed that the optical throughput mainly depended on the intensity of incident light, transmissivity, refractive index and the layout of optical system. The simulation and analysis gave the optimum layout in view of both optical throughput and interference fringe visibility, and verified that the layout of our former design was optimum. The simulation showed that a small deviation from the optimum layout influenced interference fringe visibility little for the optimum one, but influenced severely for others, so a small deviation is admissible in the optimum, and this can mitigate the manufacture difficulty. These results pave the way for further research and engineering design.
Toghill, Bradley J; Saratzis, Athanasios; Freeman, Peter J; Sylvius, Nicolas; Bown, Matthew J
2018-01-01
Abdominal aortic aneurysm (AAA) is a deadly cardiovascular disease characterised by the gradual, irreversible dilation of the abdominal aorta. AAA is a complex genetic disease but little is known about the role of epigenetics. Our objective was to determine if global DNA methylation and CpG-specific methylation at known AAA risk loci is associated with AAA, and the functional effects of methylation changes. We assessed global methylation in peripheral blood mononuclear cell DNA from 92 individuals with AAA and 93 controls using enzyme-linked immunosorbent assays, identifying hyper-methylation in those with large AAA and a positive linear association with AAA diameter ( P < 0.0001, R 2 = 0.3175).We then determined CpG methylation status of regulatory regions in genes located at AAA risk loci identified in genome-wide association studies, using bisulphite next-generation sequencing (NGS) in vascular smooth muscle cells (VSMCs) taken from aortic tissues of 44 individuals (24 AAAs and 20 controls). In IL6R , 2 CpGs were hyper-methylated ( P = 0.0145); in ERG , 13 CpGs were hyper-methylated ( P = 0.0005); in SERPINB9 , 6 CpGs were hypo-methylated ( P = 0.0037) and 1 CpG was hyper-methylated ( P = 0.0098); and in SMYD2 , 4 CpGs were hypo-methylated ( P = 0.0012).RT-qPCR was performed for each differentially methylated gene on mRNA from the same VSMCs and compared with methylation. This analysis revealed downregulation of SMYD2 and SERPINB9 in AAA, and a direct linear relationship between SMYD2 promoter methylation and SMYD2 expression ( P = 0.038). Furthermore, downregulation of SMYD2 at the site of aneurysm in the aortic wall was further corroborated in 6 of the same samples used for methylation and gene expression analysis with immunohistochemistry. This study is the first to assess DNA methylation in VSMCs from individuals with AAA using NGS, and provides further evidence there is an epigenetic basis to AAA. Our study shows that methylation status of the SMYD2 promoter may be linked with decreased SMYD2 expression in disease pathobiology. In support of our work, downregulated SMYD2 has previously been associated with adverse cardiovascular physiology and inflammation, which are both hallmarks of AAA. The identification of such adverse epigenetic modifications could potentially contribute towards the development of epigenetic treatment strategies in the future.
NASA Astrophysics Data System (ADS)
Li, Siping; He, Feng; Wen, Haishen; Li, Jifang; Si, Yufeng; Liu, Mingyuan; He, Huiwen; Huang, Zhengju
2017-04-01
Increasingly arisen environmental constraints may contribute to heritable phenotypic variation including methylation changes, which can help the animals with development, growth and survival. In this study, we assessed the DNA methylation levels in three tissues (gonad, kidney and gill) of half smooth tongue sole under the salinity stress. The methylation-sensitive amplification polymorphism (MSAP) technique was applied to illustrate the regulation of epigenetic mechanism in environmental stimuli. Fish were subjected to 15 salinity treatment for 7 and 60 days, respectively. A total of 11259 fragments were amplified with 8 pairs of selective primers. The levels of methylated DNA in different tissues of females and males without salinity stress were analyzed, which were 32.76% and 47.32% in gonad; 38.13% and 37.69% in kidney; 37.58% and 34.96% in gill, respectively. In addition, the significant difference was observed in gonad between females and males, indicating that discrepant regulation in gonadal development and differentiation may involve sex-related genes. Further analysis showed that total and hemi-methylation were significantly decreased under 15 salinity for 7 days, probably resulting in up-regulating salt-tolerance genes expression to adjust salt changing. With the adjustment for 60 days, total and hemi-methylation prominently went back to its normal levels to obtain equilibrium. Particularly, full methylation levels were steady along with salinity stress to maintain the stability of gene expression. Additionally, the data showed that gonads in females and gills in males were superior in adaptability. As a result, DNA methylation regulates tissue- specific epiloci, and may respond to salinity stress by regulating gene expression to maintain animal survival and activity.
Walton, Esther; Hass, Johanna; Liu, Jingyu; Roffman, Joshua L; Bernardoni, Fabio; Roessner, Veit; Kirsch, Matthias; Schackert, Gabriele; Calhoun, Vince; Ehrlich, Stefan
2016-03-01
Given the difficulty of procuring human brain tissue, a key question in molecular psychiatry concerns the extent to which epigenetic signatures measured in more accessible tissues such as blood can serve as a surrogate marker for the brain. Here, we aimed (1) to investigate the blood-brain correspondence of DNA methylation using a within-subject design and (2) to identify changes in DNA methylation of brain-related biological pathways in schizophrenia.We obtained paired blood and temporal lobe biopsy samples simultaneously from 12 epilepsy patients during neurosurgical treatment. Using the Infinium 450K methylation array we calculated similarity of blood and brain DNA methylation for each individual separately. We applied our findings by performing gene set enrichment analyses (GSEA) of peripheral blood DNA methylation data (Infinium 27K) of 111 schizophrenia patients and 122 healthy controls and included only Cytosine-phosphate-Guanine (CpG) sites that were significantly correlated across tissues.Only 7.9% of CpG sites showed a statistically significant, large correlation between blood and brain tissue, a proportion that although small was significantly greater than predicted by chance. GSEA analysis of schizophrenia data revealed altered methylation profiles in pathways related to precursor metabolites and signaling peptides.Our findings indicate that most DNA methylation markers in peripheral blood do not reliably predict brain DNA methylation status. However, a subset of peripheral data may proxy methylation status of brain tissue. Restricting the analysis to these markers can identify meaningful epigenetic differences in schizophrenia and potentially other brain disorders. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Kobuke, Kazuhiro; Oki, Kenji; Gomez-Sanchez, Celso E; Ohno, Haruya; Itcho, Kiyotaka; Yoshii, Yoko; Yoneda, Masayasu; Hattori, Noboru
2018-03-01
Aldosterone production is stimulated by activation of calcium signaling in aldosterone-producing adenomas (APAs), and epigenetic factors such as DNA methylation may be associated with the expression of genes involved in aldosterone regulation. Our aim was to investigate the DNA methylation of genes related to calcium signaling cascades in APAs and the association of mutations in genes linked to APAs with DNA methylation levels. Nonfunctioning adrenocortical adenoma (n = 12) and APA (n = 35) samples were analyzed. The KCNJ5 T158A mutation was introduced into human adrenocortical cell lines (HAC15 cells) using lentiviral delivery. DNA methylation array analysis was conducted using adrenal tumor samples and HAC15 cells. The Purkinje cell protein 4 (PCP4) gene was one of the most hypomethylated in APAs. DNA methylation levels in two sites of PCP4 showed a significant inverse correlation with messenger RNA expression in adrenal tumors. Bioinformatics and multiple regression analysis revealed that CCAAT/enhancer binding protein alpha (CEBPA) may bind to the methylation site of the PCP4 promoter. According to chromatin immunoprecipitation assay, CEBPA was bound to the PCP4 hypomethylated region by chromatin immunoprecipitation assay. There were no significant differences in PCP4 methylation levels among APA genotypes. Moreover, KCNJ5 T158A did not influence PCP4 methylation levels in HAC15 cells. We showed that the PCP4 promoter was one of the most hypomethylated in APAs and that PCP4 transcription may be associated with demethylation as well as with CEBPA in APAs. KCNJ5 mutations known to result in aldosterone overproduction were not related to PCP4 methylation in either clinical or in vitro studies.
Galamb, Orsolya; Kalmár, Alexandra; Péterfia, Bálint; Csabai, István; Bodor, András; Ribli, Dezső; Krenács, Tibor; Patai, Árpád V; Wichmann, Barnabás; Barták, Barbara Kinga; Tóth, Kinga; Valcz, Gábor; Spisák, Sándor; Tulassay, Zsolt; Molnár, Béla
2016-08-02
The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2'-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, β-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis.
Aslibekyan, Stella; Dashti, Hassan S.; Tanaka, Toshiko; Sha, Jin; Ferrucci, Luigi; Zhi, Degui; Bandinelli, Stefania; Borecki, Ingrid B.; Absher, Devin M.; Arnett, Donna K.; Ordovas, Jose M.
2015-01-01
Sunlight exposure has been shown to alter DNA methylation patterns across several human cell-types, including T-lymphocytes. Since epigenetic changes establish gene expression profiles, changes in DNA methylation induced by sunlight exposure warrant investigation. The purpose of this study was to assess the effects of sunlight exposure on CD4+ T-cell methylation patterns on an epigenome-wide scale in a North American population of European origin (n = 991). In addition, we investigated the genetic contribution to epigenetic variation (methylQTL). We used linear regression to test the associations between methylation scores at 461 281 cytosine-phosphate-guanine (CpG) sites and sunlight exposure, followed by a genome-wide association analysis (methylQTL) to test for associations between methylation at the top CpG locus and common genetic variants, assuming an additive genetic model. We observed an epigenome-wide significant association between sunlight exposure and methylation status at cg26930596 (p = 9.2 × 10−8), a CpG site located in protein kinase C zeta (PRKCZ), a gene previously shown to be entrained by light. MethylQTL analysis resulted in significant associations between cg26930596 and two intergenic single nucleotide polymorphisms on chromosome 3, rs4574216 (p = 1.5 × 10−10) and rs4405858 (p = 1.9 × 10−9). These common genetic variants reside downstream of WWTR1, a transcriptional co-activator of PRKCZ. Associations observed in the North American population, however, did not replicate in an independent Mediterranean cohort. Our preliminary results support the role of sunlight exposure in epigenetic processes, and lay the groundwork for future studies of the molecular link between sunlight and physiologic processes such as tumorigenesis and metabolism. PMID:25075435
Aslibekyan, Stella; Dashti, Hassan S; Tanaka, Toshiko; Sha, Jin; Ferrucci, Luigi; Zhi, Degui; Bandinelli, Stefania; Borecki, Ingrid B; Absher, Devin M; Arnett, Donna K; Ordovas, Jose M
2014-11-01
Sunlight exposure has been shown to alter DNA methylation patterns across several human cell-types, including T-lymphocytes. Since epigenetic changes establish gene expression profiles, changes in DNA methylation induced by sunlight exposure warrant investigation. The purpose of this study was to assess the effects of sunlight exposure on CD4+ T-cell methylation patterns on an epigenome-wide scale in a North American population of European origin (n=991). In addition, we investigated the genetic contribution to epigenetic variation (methylQTL). We used linear regression to test the associations between methylation scores at 461,281 cytosine-phosphate-guanine (CpG) sites and sunlight exposure, followed by a genome-wide association analysis (methylQTL) to test for associations between methylation at the top CpG locus and common genetic variants, assuming an additive genetic model. We observed an epigenome-wide significant association between sunlight exposure and methylation status at cg26930596 (p=9.2×10(-8)), a CpG site located in protein kinase C zeta (PRKCZ), a gene previously shown to be entrained by light. MethylQTL analysis resulted in significant associations between cg26930596 and two intergenic single nucleotide polymorphisms on chromosome 3, rs4574216 (p=1.5×10(-10)) and rs4405858 (p=1.9×10(-9)). These common genetic variants reside downstream of WWTR1, a transcriptional co-activator of PRKCZ. Associations observed in the North American population, however, did not replicate in an independent Mediterranean cohort. Our preliminary results support the role of sunlight exposure in epigenetic processes, and lay the groundwork for future studies of the molecular link between sunlight and physiologic processes such as tumorigenesis and metabolism.
Bobola, Michael S.; Alnoor, Mohammad; Chen, John Y.-S.; Kolstoe, Douglas D.; Silbergeld, Daniel L.; Rostomily, Robert C.; Blank, A.; Chamberlain, Marc C.; Silber, John R.
2014-01-01
Background CpG methylation in the O6-methylguanine-DNA methyltransferase (MGMT) promoter is associated with better outcome following alkylating agent chemotherapy in glioblastoma (GBM) and anaplastic glioma (AG). To what extent improved response reflects low or absent MGMT activity in glioma tissue has not been unequivocally assessed. This information is central to developing anti-resistance therapies. Methods We examined the relationship of MGMT activity in 91 GBMs and 84 AGs with progression-free survival (PFS) following alkylator therapy and with promoter methylation status determined by methylation-specific PCR (MSP). Results Cox regression analysis revealed that GBMs with high activity had a significantly greater risk for progression in dichotomous (P ≤ 0.001) and continuous (P ≤ 0.003) models, an association observed for different alkylator regimens, including concurrent chemo-radiation with temozolomide. Analysis of MGMT promoter methylation status in 47 of the GBMs revealed that methylated tumors had significantly lower activity (P ≤ 0.005) and longer PFS (P ≤ 0.036) compared to unmethylated tumors, despite overlapping activities. PFS was also significantly greater in methylated vs. unmethylated GBMs with comparable activity (P ≤ 0.005), and among unmethylated tumors with less than median activity (P ≤ 0.026), suggesting that mechanisms in addition to MGMT promote alkylator resistance. Similar associations of MGMT activity with PFS and promoter methylation status were observed for AGs. Conclusions Our results provide strong support for the hypotheses that MGMT activity promotes alkylator resistance and reflects promoter methylation status in malignant gliomas. General significance MGMT activity is an attractive target for anti-resistance therapy regardless of methylation status. PMID:25558448
Novel methylation panel for the early detection of colorectal tumors in stool DNA.
Azuara, Daniel; Rodriguez-Moranta, Francisco; de Oca, Javier; Soriano-Izquierdo, Antonio; Mora, Josefina; Guardiola, Jordi; Biondo, Sebastiano; Blanco, Ignacio; Peinado, Miguel Angel; Moreno, Victor; Esteller, Manel; Capellá, Gabriel
2010-07-01
Previous studies showed that the assessment of promoter hypermethylation of a limited number of genes in tumor biopsies may identify the majority of colorectal tumors. This study aimed to assess the clinical usefulness of a panel of methylation biomarkers in stool DNA in the identification of colorectal tumors, using methylation-specific melting curve analysis (MS-MCA), a technique that simultaneously analyzes all cytosine-phosphate-guanine (CpG) residues within a promoter. The promoter methylation status of 4 tumor-related genes (RARB2, p16INK4a, MGMT, and APC) was analyzed in DNA stool samples and corresponding tissues in an initial set of 12 patients with newly diagnosed primary colorectal carcinomas and 20 patients with newly diagnosed colorectal adenomas, using methylation-specific polymerase chain reaction. Results were replicated in a set of 82 patients (20 healthy subjects, 16 patients with inflammatory bowel disease (IBD), 20 patients with adenomas, and 26 patients with carcinomas), using MS-MCA analyses. In the initial set, >or= 1 positive methylation marker was detected in the stools of 9 of 12 patients (75%) with carcinomas and 12 of 20 patients (60%) with adenomas, with no false-positive results. Stool analyses missed 7 methylated lesions (25%). In the replication set, stool DNA testing detected 16 of 26 carcinomas (62%) and 8 of 20 adenomas (40%). The MS-MCAs missed 14 methylated tumors (37%). No aberrant methylation was evident in healthy subjects, but the RARB2 marker was positive in 2 of 15 stool samples (13%) of patients with IBD. Analysis via MS-MCA of a panel of methylation markers in stool DNA may offer a good alternative in the early, noninvasive detection of colorectal tumors.
Ruiz-García, Leonor; Cabezas, Jose Antonio; de María, Nuria; Cervera, María-Teresa
2010-01-01
Different molecular techniques have been developed to study either the global level of methylated cytosines or methylation at specific gene sequences. One of them is a modification of the Amplified Fragment Length Polymorphism (AFLP) technique that has been used to study methylation of anonymous CCGG sequences in different fungi, plant and animal species. The main variation of this technique is based on the use of isoschizomers with different methylation sensitivity (such as HpaII and MspI) as a frequent cutter restriction enzyme. For each sample, AFLP analysis is performed using both EcoRI/HpaII and EcoRI/MspI digested samples. Comparative analysis between EcoRI/HpaII and EcoRI/MspI fragment patterns allows the identification of two types of polymorphisms: (1) "Methylation-insensitive polymorphisms" that show common EcoRI/HpaII and EcoRI/MspI patterns but are detected as polymorphic amplified fragments among samples; and (2) "Methylation-sensitive polymorphisms" that are associated with amplified fragments differing in their presence or absence or in their intensity between EcoRI/HpaII and EcoRI/MspI patterns. This chapter describes a detailed protocol of this technique and discusses modifications that can be applied to adjust the technology to different species of interest.
Domingos, Patrícia Luciana Batista; Souza, Marcela Gonçalves; Guimarães, Talita Antunes; Santos, Eliane Sobrinho; Farias, Lucyana Conceição; de Carvalho Fraga, Carlos Alberto; Jones, Kimberly Marie; Santos, Sérgio Henrique Souza; de Paula, Alfredo Maurício Batista; Guimarães, André Luiz Sena
2017-05-01
The purpose of the current study is to investigate the association between E-cadherin methylation status, hypoxia and OSCC. HaCat and SCC9 cell lines were submitted to hypoxic treatment, followed by methylation profile analysis (MS-PCR) and analysis of the expression of mRNA gene E-cadherin (RT-PCR). Study group samples comprise individuals affected by potentially malignant lesions Potential Malignant Oral Lesion (PMOL, n=18) and oral squamous cell carcinoma (OSCC, n=28). The control group oral mucosa (OM, n=15) of patients with an oral mucocele. Cell migration ability was evaluated a scratch wound assay in SCC9 and HaCat cell lines RESULTS: E-cadherin mRNA expression in the cell lines SCC9 and HaCat was significantly reduced under hypoxia, regardless of the methylation profile, when compared to the control group. No differences in methylation profile of the E-cadherin were observed among the groups OM, PMOL and OSCC. HaCat and SCC9 presented increases in cell migration rates under hypoxia. The current study demonstrates that hypoxia reduces E-cadherin expression and increase cell migration, regardless of the methylation profile. Additionally, no differences in E-cadherin methylation patterns were observed among OM, PMOL and OSCC. Copyright © 2017 Elsevier GmbH. All rights reserved.
Valavanis, Ioannis; Pilalis, Eleftherios; Georgiadis, Panagiotis; Kyrtopoulos, Soterios; Chatziioannou, Aristotelis
2015-01-01
DNA methylation profiling exploits microarray technologies, thus yielding a wealth of high-volume data. Here, an intelligent framework is applied, encompassing epidemiological genome-scale DNA methylation data produced from the Illumina’s Infinium Human Methylation 450K Bead Chip platform, in an effort to correlate interesting methylation patterns with cancer predisposition and, in particular, breast cancer and B-cell lymphoma. Feature selection and classification are employed in order to select, from an initial set of ~480,000 methylation measurements at CpG sites, predictive cancer epigenetic biomarkers and assess their classification power for discriminating healthy versus cancer related classes. Feature selection exploits evolutionary algorithms or a graph-theoretic methodology which makes use of the semantics information included in the Gene Ontology (GO) tree. The selected features, corresponding to methylation of CpG sites, attained moderate-to-high classification accuracies when imported to a series of classifiers evaluated by resampling or blindfold validation. The semantics-driven selection revealed sets of CpG sites performing similarly with evolutionary selection in the classification tasks. However, gene enrichment and pathway analysis showed that it additionally provides more descriptive sets of GO terms and KEGG pathways regarding the cancer phenotypes studied here. Results support the expediency of this methodology regarding its application in epidemiological studies. PMID:27600245
Zhao, Jie-hong; Zhang, Ji-shun; Wang, Yi; Wang, Ren-gang; Wu, Chun; Fan, Long-jiang; Ren, Xue-liang
2011-11-01
DNA methylation plays an important role in the epigenetic regulation of gene expression during plant growth, development, and polyploidization. However, there is still no distinct evidence in tobacco regarding the distribution of the methylation pattern and whether it contributes to qualitative characteristics. We studied the levels and patterns of methylation polymorphism at CCGG sites in 48 accessions of allotetraploid flue-cured tobacco, Nicotiana tabacum, using a methylation-sensitive amplified polymorphism (MSAP) technique. The results showed that methylation existed at a high level among tobacco accessions, among which 49.3% sites were methylated and 69.9% allelic sites were polymorphic. A cluster analysis revealed distinct patterns of geography-specific groups. In addition, three polymorphic sites significantly related to tobacco mosaic virus (TMV) resistance were explored. This suggests that tobacco breeders should pay more attention to epigenetic traits.
Shima, Kaori; Nosho, Katsuhiko; Baba, Yoshifumi; Cantor, Mami; Meyerhardt, Jeffrey A; Giovannucci, Edward L; Fuchs, Charles S; Ogino, Shuji
2011-03-01
A cyclin-dependent kinase inhibitor CDKN2A (p16/Ink4a) is a tumor suppressor and upregulated in cellular senescence. CDKN2A promoter methylation and gene silencing are associated with the CpG island methylator phenotype (CIMP) in colon cancer. However, prognostic significance of CDKN2A methylation or loss of CDKN2A (p16) expression independent of CIMP status remains uncertain. Using a database of 902 colorectal cancers in 2 independent cohort studies (the Nurses' Health Study and the Health Professionals Follow-up Study), we quantified CDKN2A promoter methylation and detected hypermethylation in 269 tumors (30%). By immunohistochemistry, we detected loss of CDKN2A (p16) expression in 25% (200/804) of tumors. We analyzed for LINE-1 hypomethylation and hypermethylation at 7 CIMP-specific CpG islands (CACNA1G, CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1); microsatellite instability (MSI); KRAS, BRAF and PIK3CA mutations; and expression of TP53 (p53), CTNNB1 (β-catenin), CDKN1A (p21), CDKN1B (p27), CCND1 (cyclin D1), FASN (fatty acid synthase) and PTGS2 (cyclooxygenase-2). CDKN2A promoter methylation and loss of CDKN2A (p16) were associated with shorter overall survival in univariate Cox regression analysis [hazard ratio (HR): 1.36, 95% CI: 1.10-1.66, p = 0.0036 for CDKN2A methylation; HR: 1.30, 95% CI: 1.03-1.63, p = 0.026 for CDKN2A (p16) loss] but not in multivariate analysis that adjusted for clinical and tumor variables, including CIMP, MSI and LINE-1 methylation. Neither CDKN2A promoter methylation nor loss of CDKN2A (p16) was associated with colorectal cancer-specific mortality in uni- or multivariate analysis. Despite its well-established role in carcinogenesis, CDKN2A (p16) promoter methylation or loss of expression in colorectal cancer is not independently associated with patient prognosis. Copyright © 2010 UICC.
In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse
Morselli, Marco; Pastor, William A; Montanini, Barbara; Nee, Kevin; Ferrari, Roberto; Fu, Kai; Bonora, Giancarlo; Rubbi, Liudmilla; Clark, Amander T; Ottonello, Simone; Jacobsen, Steven E; Pellegrini, Matteo
2015-01-01
Methylation of cytosines (5meC) is a widespread heritable DNA modification. During mammalian development, two global demethylation events are followed by waves of de novo DNA methylation. In vivo mechanisms of DNA methylation establishment are largely uncharacterized. Here, we use Saccharomyces cerevisiae as a system lacking DNA methylation to define the chromatin features influencing the activity of the murine DNMT3B. Our data demonstrate that DNMT3B and H3K4 methylation are mutually exclusive and that DNMT3B is co-localized with H3K36 methylated regions. In support of this observation, DNA methylation analysis in yeast strains without Set1 and Set2 shows an increase of relative 5meC levels at the transcription start site and a decrease in the gene-body, respectively. We extend our observation to the murine male germline, where H3K4me3 is strongly anti-correlated while H3K36me3 correlates with accelerated DNA methylation. These results show the importance of H3K36 methylation for gene-body DNA methylation in vivo. DOI: http://dx.doi.org/10.7554/eLife.06205.001 PMID:25848745
Alterations in DNA methylation have been proposed as a mechanism for the complex toxicological effects of arsenic. In this study, whole genome DNA methylation and gene expression changes were evaluated in lungs from female mice exposed for 90 days to 50 ppm arsenate (As) in drink...
Wen, Yanhua; Wei, Yanjun; Zhang, Shumei; Li, Song; Liu, Hongbo; Wang, Fang; Zhao, Yue; Zhang, Dongwei; Zhang, Yan
2017-05-01
Tumour heterogeneity describes the coexistence of divergent tumour cell clones within tumours, which is often caused by underlying epigenetic changes. DNA methylation is commonly regarded as a significant regulator that differs across cells and tissues. In this study, we comprehensively reviewed research progress on estimating of tumour heterogeneity. Bioinformatics-based analysis of DNA methylation has revealed the evolutionary relationships between breast cancer cell lines and tissues. Further analysis of the DNA methylation profiles in 33 breast cancer-related cell lines identified cell line-specific methylation patterns. Next, we reviewed the computational methods in inferring clonal evolution of tumours from different perspectives and then proposed a deconvolution strategy for modelling cell subclonal populations dynamics in breast cancer tissues based on DNA methylation. Further analysis of simulated cancer tissues and real cell lines revealed that this approach exhibits satisfactory performance and relative stability in estimating the composition and proportions of cellular subpopulations. The application of this strategy to breast cancer individuals of the Cancer Genome Atlas's identified different cellular subpopulations with distinct molecular phenotypes. Moreover, the current and potential future applications of this deconvolution strategy to clinical breast cancer research are discussed, and emphasis was placed on the DNA methylation-based recognition of intra-tumour heterogeneity. The wide use of these methods for estimating heterogeneity to further clinical cohorts will improve our understanding of neoplastic progression and the design of therapeutic interventions for treating breast cancer and other malignancies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
On the presence and role of human gene-body DNA methylation
Jjingo, Daudi; Conley, Andrew B.; Yi, Soojin V.; Lunyak, Victoria V.; Jordan, I. King
2012-01-01
DNA methylation of promoter sequences is a repressive epigenetic mark that down-regulates gene expression. However, DNA methylation is more prevalent within gene-bodies than seen for promoters, and gene-body methylation has been observed to be positively correlated with gene expression levels. This paradox remains unexplained, and accordingly the role of DNA methylation in gene-bodies is poorly understood. We addressed the presence and role of human gene-body DNA methylation using a meta-analysis of human genome-wide methylation, expression and chromatin data sets. Methylation is associated with transcribed regions as genic sequences have higher levels of methylation than intergenic or promoter sequences. We also find that the relationship between gene-body DNA methylation and expression levels is non-monotonic and bell-shaped. Mid-level expressed genes have the highest levels of gene-body methylation, whereas the most lowly and highly expressed sets of genes both have low levels of methylation. While gene-body methylation can be seen to efficiently repress the initiation of intragenic transcription, the vast majority of methylated sites within genes are not associated with intragenic promoters. In fact, highly expressed genes initiate the most intragenic transcription, which is inconsistent with the previously held notion that gene-body methylation serves to repress spurious intragenic transcription to allow for efficient transcriptional elongation. These observations lead us to propose a model to explain the presence of human gene-body methylation. This model holds that the repression of intragenic transcription by gene-body methylation is largely epiphenomenal, and suggests that gene-body methylation levels are predominantly shaped via the accessibility of the DNA to methylating enzyme complexes. PMID:22577155
Belshaw, Nigel J; Elliott, Giles O; Williams, Elizabeth A; Bradburn, David M; Mills, Sarah J; Mathers, John C; Johnson, Ian T
2004-09-01
Hypermethylation of cytosine residues in the CpG islands of tumor suppressor genes is a key mechanism of colorectal carcinogenesis. Detection and quantification of CpG island methylation in human DNA isolated from stools might provide a novel strategy for the detection and investigation of colorectal neoplasia. To explore the feasibility of this approach, colorectal biopsies and fecal samples were obtained from 32 patients attending for colonoscopy or surgery, who were found to have adenomatous polyps, colorectal cancer, or no evidence of neoplasia. A further 18 fecal samples were obtained from healthy volunteers, with no bowel symptoms. Isolated DNA was modified with sodium bisulfite and analyzed by methylation-specific PCR and combined bisulfite restriction analysis for CpG island methylation of ESR1, MGMT, HPP1, p16(INK4a), APC, and MLH1. CpG island methylation was readily detectable in both mucosal and fecal DNA with methylation-specific PCR. Using combined bisulfite restriction analysis, it was established that, in volunteers from whom biopsies were available, the levels of methylation at two CpG sites within ESR1 assayed using fecal DNA were significantly correlated with methylation in DNA from colorectal mucosa. Thus, noninvasive techniques can be used to obtain quantitative information about the level of CpG island methylation in human colorectal mucosa. The methods described here could be applied to a much expanded range of genes and may be valuable both for screening purposes and to provide greater insight into the functional consequences of epigenetic changes in the colorectal mucosa of free-living individuals.
Methylation profile analysis of DNA repair genes in hepatocellular carcinoma with MS-MLPA.
Ozer, Ozge; Bilezikci, Banu; Aktas, Sema; Sahin, Feride I
2013-12-01
Hepatocellular carcinoma (HCC) is one of the rare tumors with well-defined risk factors. The multifactorial etiology of HCC can be explained by its complex molecular pathogenesis. In the current study, the methylation status of 7 genes involved in DNA repair mechanisms, namely MLH1, PMS2, MSH6, MSH2, MGMT, MSH3, and MLH3, was investigated in tumor samples from HCC patients, using the methylation-specific-multiplex ligated probe amplification method and the results were correlated with available clinical findings. The most common etiological factor in these cases was the presence of hepatitis B alone (47.2%). Among the 56 cases that were studied, promoter methylation was detected in at least one of the genes in 27 (48.2%) cases, only in 1 gene in 13 (23.2%) cases, and in >1 gene in 14 (25%) cases. Of the 7 genes investigated, methylation was most frequently observed in MSH3, in 14 (25%) cases. Methylation of at least 1 gene was significantly more frequent in patients with single tumors than multifocal tumors. There were significant differences regarding hepatitis B status, Child Class, tumor number, grade, and TNM stage in cases where PMS2 methylation was detected. Our results suggest that methylation of genes involved in mismatch repair may be responsible in the pathogenesis of HCC, and evaluating changes in multiple genes in these pathways simultaneously would be more informative. Despite being a robust and relatively inexpensive method, the methylation-specific-multiplex ligated probe amplification assay could be more extensively applied with improvements in the currently intricate data analysis component.
Changes in DNA methylation induced by multi-walled carbon nanotube exposure in the workplace.
Ghosh, Manosij; Öner, Deniz; Poels, Katrien; Tabish, Ali M; Vlaanderen, Jelle; Pronk, Anjoeka; Kuijpers, Eelco; Lan, Qing; Vermeulen, Roel; Bekaert, Bram; Hoet, Peter Hm; Godderis, Lode
This study was designed to assess the epigenetic alterations in blood cells, induced by occupational exposure to multi-wall carbon nanotubes (MWCNT). The study population comprised of MWCNT-exposed workers (n=24) and unexposed controls (n=43) from the same workplace. We measured global DNA methylation/hydroxymethylation levels on the 5th cytosine residues using a validated liquid chromatography tandem-mass spectrometry (LC-MS/MS) method. Sequence-specific methylation of LINE1 retrotransposable element 1 (L1RE1) elements, and promoter regions of functionally important genes associated with epigenetic regulation [DNA methyltransferase-1 (DNMT1) and histone deacetylase 4 (HDAC4)], DNA damage/repair and cell cycle pathways [nuclear protein, coactivator of histone transcription/ATM serine/threonine kinase (NPAT/ATM)], and a potential transforming growth factor beta (TGF-β) repressor [SKI proto-oncogene (SKI)] were studied using bisulfite pyrosequencing. Analysis of global DNA methylation levels and hydroxymethylation did not reveal significant difference between the MWCNT-exposed and control groups. No significant changes in Cytosine-phosphate-Guanine (CpG) site methylation were observed for the LINE1 (L1RE1) elements. Further analysis of gene-specific DNA methylation showed a significant change in methylation for DNMT1, ATM, SKI, and HDAC4 promoter CpGs in MWCNT-exposed workers. Since DNA methylation plays an important role in silencing/regulation of the genes, and many of these genes have been associated with occupational and smoking-induced diseases and cancer (risk), aberrant methylation of these genes might have a potential effect in MWCNT-exposed workers.