Science.gov

Sample records for methylcellulose

  1. 21 CFR 172.874 - Hydroxypropyl methylcellulose.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.874 Hydroxypropyl methylcellulose. The food additive hydroxypropyl methylcellulose (CAS Reg. No. 9004...: (a) The additive complies with the definition and specifications prescribed in the National Formulary...

  2. Physical Structure of Methylcellulose Hydrogels

    NASA Astrophysics Data System (ADS)

    Lott, Joseph; McAllister, John; Arvidson, Sara; Bates, Frank; Lodge, Timothy

    2012-02-01

    Methylcellulose (MC) is a chemically modified polysaccharide in which there is a partial substitution of hydroxyl groups with methoxy moieties. This results in a polymer that is water soluble at low temperatures and displays lower critical solution temperature (LCST) phase behavior at elevated temperatures. As such, aqueous solutions of MC have long been employed and studied due to their ability to form gels as temperature is increased. Currently, there is no consensus on the detailed mechanism of the gelation process, so a precise determination of the physical structure present in these materials may lead the way to new mechanistic understanding. Transmission electron microscopy (TEM) performed under cryogenic conditions is a powerful tool for the study of hydrogels as it allows direct imaging of the network while preserving the structure in the gel. Cryo-TEM investigations suggest that the hydrogel is composed of fibril-like aggregates comprising multiple polymer chains. Small-angle neutron scattering (SANS) provides a complimentary method to establish the detailed structure of the hydrogel network. We will report the effects of molecular weight, concentration, and temperature on the resultant physical structures within the gel.

  3. 21 CFR 172.874 - Hydroxypropyl methylcellulose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.874 Hydroxypropyl methylcellulose. The food additive hydroxypropyl... provide for such use if: (a) The additive complies with the definition and specifications prescribed in...

  4. Effect of hydroxypropyl methylcellulose on breadmaking

    USDA-ARS?s Scientific Manuscript database

    Hydroxypropyl methylcellulose (HPMC) is obtained by substitution of methyl and hydroxypropyl groups to the cellulose backbone. HPMC is widely used in food processing due to emulsifying, adhesive, and thickening properties. The supplementation of HPMC in breadmaking is known to have beneficial effe...

  5. 21 CFR 182.1480 - Methylcellulose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methylcellulose. 182.1480 Section 182.1480 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances §...

  6. Properties of Novel Hydroxypropyl Methylcellulose Films Containing Chitosan Nanoparticles

    USDA-ARS?s Scientific Manuscript database

    In this work, chitosan nanoparticles were prepared and incorporated in hydroxypropyl methylcellulose (HPMC) films under different conditions. Mechanical properties, water vapor and oxygen permeability, water solubility and scanning and transmission electron microscopy (SEM and TEM) results were ana...

  7. Hydroxypropyl methylcellulose substituent analysis and rheological properties.

    PubMed

    Akinosho, Hannah; Hawkins, Samantha; Wicker, Louise

    2013-10-15

    The methyl and hydroxypropyl substituents in hydroxypropyl methylcellulose (HPMC) affect the resulting gel properties. These substituents in five HPMC gels were characterized using Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, small-amplitude oscillatory shear measurements, and differential scanning calorimetry (DSC). In FT-IR spectra, the most intense peak appeared at 1053 cm(-1), denoting the presence of the glucose ring. The ratio of peak intensities at 1452 cm(-1), which represents -C-H absorptions, and at 1053 cm(-1) (I1452/I1053) and percent methylation from gas chromatography exhibited a linear association (r(2)=0.6296). The broadening of the Raman spectra indicated that the relative crystallinity of HPMC decreases with increasing hydroxypropyl contents. DSC showed no linear relationship between the percent hydroxypropylation in HPMC and the percentage of free water in an HPMC gel. Small-amplitude oscillatory shear measurements revealed that the formation of an entanglements networks and/or weak gel depends on substituent contents.

  8. Determination of methylcellulose and hydroxypropyl methylcellulose food gums in food and food products: collaborative study.

    PubMed

    Harfmann, Robert G; Deshmukh, Balasaheb K; Conklin, Jerry; Turowski, Maciej; Lynch, Stephanie

    2007-01-01

    A collaborative study was performed to determine the reproducibility of a method for the determination of methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC) in food. These widely used food gums possess unusual solubility characteristics and cannot accurately be determined by existing dietary fiber methods. The new method uses the enzyme-digestion procedure of AOAC Official Method 991.43. Digestate solutions must be refrigerated to fully hydrate MC or HPMC. The chilled solutions are filtered and analyzed by size-exclusion liquid chromatography. Collaborating laboratories received 28 samples containing MC or HPMC in the range of 0-100%. The sample set included blind duplicates of 5 food matrixes (bread, milk, fish, potato, and powdered juice drink). Cochran and Grubbs tests were used to eliminate outliers. For food samples containing MC, values for within-laboratory precision, repeatability relative standard deviation (RSDr), ranged from 4.2 to 16%, and values for among-laboratories precision, reproducibility relative standard deviation (RSDR), ranged from 11 to 20%. For HPMC samples, RSDr values ranged from 6.4 to 27%, and RSDR values ranged from 17 to 39%. Recoveries of MC and HPMC from the food matrixes ranged from 78 to 101%. These results show acceptable precision and reproducibility for the determination of MC and HPMC, for which no Official AOAC Methods exist. It is recommended that this method be adopted as AOAC Official First Action.

  9. Agarose and methylcellulose hydrogel blends for nerve regeneration applications

    NASA Astrophysics Data System (ADS)

    Martin, Benton C.; Minner, Eric J.; Wiseman, Sherri L.; Klank, Rebecca L.; Gilbert, Ryan J.

    2008-06-01

    Trauma sustained to the central nervous system is a debilitating problem for thousands of people worldwide. Neuronal regeneration within the central nervous system is hindered by several factors, making a multi-faceted approach necessary. Two factors contributing to injury are the irregular geometry of injured sites and the absence of tissue to hold potential nerve guides and drug therapies. Biocompatible hydrogels, injectable at room temperature, that rapidly solidify at physiological temperatures (37 °C) are beneficial materials that could hold nerve guidance channels in place and be loaded with therapeutic agents to aid wound healing. Our studies have shown that thermoreversible methylcellulose can be combined with agarose to create hydrogel blends that accommodate these properties. Three separate novel hydrogel blends were created by mixing methylcellulose with one of the three different agaroses. Gelation time tests show that the blends solidify at a faster rate than base methylcellulose at 37 °C. Rheological data showed that the elastic modulus of the hydrogel blends rapidly increases at 37 °C. Culturing experiments reveal that the morphology of dissociated dorsal root ganglion neurons was not altered when the hydrogels were placed onto the cells. The different blends were further assessed using dissolution tests, pore size evaluations using scanning electron microscopy and measuring the force required for injection. This research demonstrates that blends of agarose and methylcellulose solidify much more quickly than plain methylcellulose, while solidifying at physiological temperatures where agarose cannot. These hydrogel blends, which solidify at physiological temperatures naturally, do not require ultraviolet light or synthetic chemical cross linkers to facilitate solidification. Thus, these hydrogel blends have potential use in delivering therapeutics and holding scaffolding in place within the nervous system.

  10. Effects of coating rectangular microscopic electrophoresis chamber with methylcellulose

    NASA Technical Reports Server (NTRS)

    Plank, L. D.

    1985-01-01

    One of the biggest problems in obtaining high accuracy in microscopic electrophoresis is the parabolic flow of liquid in the chamber due to electroosmotic backflow during application of the electric field. In chambers with glass walls the source of polarization leading to electroosmosis is the negative charge of the silicare and other ions that form the wall structure. It was found by Hjerten, who used a rotating 3.0 mm capillary tube for free zone electrophoresis, that precisely neutralizing this charge was extremely difficult, but if a neutral polymer matrix (formaldehyde fixed methylcellulose) was formed over the glass (quartz) wall the double layer was displaced and the viscosity at the shear plane increased so that electroosmotic flow could be eliminated. Experiments were designed to determine the reliability with which methylcellulose coating of the Zeiss Cytopherometer chamber reduced electroosmotic backflow and the effect of coating on the accuracy of cell electrophoretic mobility (EPN) determinations. Fixed rat erythrocytes (RBC) were used as test particles.

  11. TiO2/methylcellulose nanocomposite films for photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Rosu, M. C.; Suciu, R. C.; Dreve, S. V.; Silipas, T. D.; Bratu, I.; Indrea, E.

    2012-02-01

    TiO2/methylcellulose (MeC) nanocomposite films were obtained by wet-chemical techniques using MeC and/or additives (acetylacetone, polyethylene glycol and Triton X-100). Thin films were obtained by spin-coating the colloidal suspensions on conductive indium tin oxide (ITO) glass, followed by a heat-treatment. The effect of MeC and additives on TiO2 nanoparticles dispersion was investigated by FTIR microscopy and X-ray diffraction (for structural and morphological properties), UV-VIS absorption spectroscopy and spectrofluorimetry (for optoelectronic properties) and wet technique adhesion test (for mechanical integrity). The composite film with methylcellulose and additives has good integrity and better adhesion to ITO substrate, without losing its photocatalytic activity. The results of these experiments showed that such nanocomposite films are interesting candidate for applications in the field of photocatalytic degradation of organic pollutants.

  12. Antihyperglycemic and Antioxidative Effects of Hydroxyethyl Methylcellulose (HEMC) and Hydroxypropyl Methylcellulose (HPMC) in Mice Fed with a High Fat Diet

    PubMed Central

    Ban, Su Jeong; Rico, Catherine W.; Um, In Chul; Kang, Mi Young

    2012-01-01

    The effect of dietary feeding of hydroxyethyl methylcellulose (HEMC) and hydroxypropyl methylcellulose (HPMC) on the glucose metabolism and antioxidative status in mice under high fat diet conditions was investigated. The mice were randomly divided and given experimental diets for six weeks: normal control (NC group), high fat (HF group), and high fat supplemented with either HEMC (HF+HEMC group) or HPMC (HF+HPMC group). At the end of the experimental period, the HF group exhibited markedly higher blood glucose and insulin levels as well as a higher erythrocyte lipid peroxidation rate relative to the control group. However, diet supplementation of HEMC and HPMC was found to counteract the high fat-induced hyperglycemia and oxidative stress via regulation of antioxidant and hepatic glucose-regulating enzyme activities. These findings illustrate that HEMC and HPMC were similarly effective in improving the glucose metabolism and antioxidant defense system in high fat-fed mice and they may be beneficial as functional biomaterials in the development of therapeutic agents against high fat dietinduced hyperglycemia and oxidative stress. PMID:22489179

  13. Antihyperglycemic and antioxidative effects of Hydroxyethyl Methylcellulose (HEMC) and Hydroxypropyl Methylcellulose (HPMC) in mice fed with a high fat diet.

    PubMed

    Ban, Su Jeong; Rico, Catherine W; Um, In Chul; Kang, Mi Young

    2012-01-01

    The effect of dietary feeding of hydroxyethyl methylcellulose (HEMC) and hydroxypropyl methylcellulose (HPMC) on the glucose metabolism and antioxidative status in mice under high fat diet conditions was investigated. The mice were randomly divided and given experimental diets for six weeks: normal control (NC group), high fat (HF group), and high fat supplemented with either HEMC (HF+HEMC group) or HPMC (HF+HPMC group). At the end of the experimental period, the HF group exhibited markedly higher blood glucose and insulin levels as well as a higher erythrocyte lipid peroxidation rate relative to the control group. However, diet supplementation of HEMC and HPMC was found to counteract the high fat-induced hyperglycemia and oxidative stress via regulation of antioxidant and hepatic glucose-regulating enzyme activities. These findings illustrate that HEMC and HPMC were similarly effective in improving the glucose metabolism and antioxidant defense system in high fat-fed mice and they may be beneficial as functional biomaterials in the development of therapeutic agents against high fat dietinduced hyperglycemia and oxidative stress.

  14. Body heat responsive gelation of methylcellulose formulation containing betaine.

    PubMed

    Shirata, Yoshiaki; Wakasa, Asami; Miura, Kiyoshi; Nakamura, Hironori; Matsumoto, Yoshinobu; Miyada, Tomihiro

    2017-09-01

    We examined a methylcellulose (MC) formulation that gels at body temperature for enteral alimentation. Betaine was found to have a lowering effect on the gelation temperature of the MC solution. The thermal gelation temperature of a body heat-responsive (BHR) gelling MC formulation, consisting of 2% MC, 15% glucose, 1.2% sodium citrate, and 3.5% betaine mixture, was approximately 32 °C, indicating that it could gel in response to body heat. Glucose release from the BHR gels was delayed at 37 °C in an in vitro study. In rats, oral administration of BHR gelling MC formulation delayed an increase in blood glucose and appearance of (13)CO2 in expired air in a (13)C-acetate breath test in comparison with the control. These results suggested that the BHR gelling MC formulation was gelled in the stomach and delayed gastric emptying after oral administration and glucose in the gels was absorbed slowly.

  15. Radiation effects on hydroxypropyl methylcellulose phthalate in aqueous system

    NASA Astrophysics Data System (ADS)

    Xu, Ling; Yue, Zhiying; Wang, Min; Zhai, Maolin; Yoshii, Fumio; Seko, Noriaki; Peng, Jing; Wei, Genshuan; Li, Jiuqiang

    2007-12-01

    A water-insoluble cellulose derivative, hydroxypropyl methylcellulose phthalate (HPMCP) hydrogels, was converted to Na type to form hydrogel in paste-like status by radiation crosslinking. Mechanism for radiation crosslinking of cellulose-derivatives in paste-like status was discussed. Crosslinkers, i.e. methyl N, N-bis-acrylamide (MBA) or ethyleneglycol dimethacrylate (EGDMA) has been used to decrease gelation dose (Dg) of synthesis HPMCP hydrogels and improve its mechanical properties. HPMCP-MBA hydrogels were found to be more rigid and HPMCP-EGDMA hydrogels were more flexible. Swelling degree of HPMCP hydrogel in many kinds of salt solutions followed Hofmeister series, which is ubiquitous in polyelectrolyte hydrogel. Specific reswelling was observed in concentrated KF solution, implying a very strong F - binding ability of benzyl group. The comprehensive results obtained in this study will be utilized on the design of HPMCP-based controlled release system.

  16. Innovative composite films of chitosan, methylcellulose, and nanoparticles.

    PubMed

    Mura, Stefania; Corrias, Francesco; Stara, Giuseppe; Piccinini, Massimo; Secchi, Nicola; Marongiu, Daniela; Innocenzi, Plinio; Irudayaraj, Joseph; Greppi, Gian F

    2011-09-01

    Plastic is readily available and inexpensive, so it is becoming the main material for packaging. Unfortunately plastics do not biodegrade and, if reduced in small pieces, contaminate soil and waterways. In the present work, natural films composed of chitosan, methylcellulose, and silica (SiO(2)) nanoparticles (NPs) were developed as new packaging materials. The effect of the incorporation of NPs into the polymeric film matrix was evaluated. An excellent improvement of the mechanical properties was obtained for nanostructured films with a composition of CH:MC 50:50 and NPs 1% w/v that make these materials able to replace plastics and derivatives, reducing environmental pollution. © 2011 Institute of Food Technologists®

  17. The nonfermentable dietary fiber hydroxypropyl methylcellulose modulates intestinal microbiota

    PubMed Central

    Cox, Laura M.; Cho, Ilseung; Young, Scott A.; Anderson, W. H. Kerr; Waters, Bartholomew J.; Hung, Shao-Ching; Gao, Zhan; Mahana, Douglas; Bihan, Monika; Alekseyenko, Alexander V.; Methé, Barbara A.; Blaser, Martin J.

    2013-01-01

    Diet influences host metabolism and intestinal microbiota; however, detailed understanding of this tripartite interaction is limited. To determine whether the nonfermentable fiber hydroxypropyl methylcellulose (HPMC) could alter the intestinal microbiota and whether such changes correlated with metabolic improvements, C57B/L6 mice were normalized to a high-fat diet (HFD), then either maintained on HFD (control), or switched to HFD supplemented with 10% HPMC, or a low-fat diet (LFD). Compared to control treatment, both LFD and HPMC reduced weight gain (11.8 and 5.7 g, respectively), plasma cholesterol (23.1 and 19.6%), and liver triglycerides (73.1 and 44.6%), and, as revealed by 454-pyrosequencing of the microbial 16S rRNA gene, decreased microbial α-diversity and differentially altered intestinal microbiota. Both LFD and HPMC increased intestinal Erysipelotrichaceae (7.3- and 12.4-fold) and decreased Lachnospiraceae (2.0- and 2.7-fold), while only HPMC increased Peptostreptococcaceae (3.4-fold) and decreased Ruminococcaceae (2.7-fold). Specific microorganisms were directly linked with weight change and metabolic parameters in HPMC and HFD mice, but not in LFD mice, indicating that the intestinal microbiota may play differing roles during the two dietary modulations. This work indicates that HPMC is a potential prebiotic fiber that influences intestinal microbiota and improves host metabolism.—Cox, L. M., Cho, I., Young, S. A., Kerr Anderson, W. H., Waters, B. J., Hung, S.-C., Gao, Z., Mahana, D., Bihan, M., Alekseyenko, A. V., Methé, B. A., Blaser, M. J. The nonfermentable dietary fiber hydroxypropyl methylcellulose modulates intestinal microbiota. PMID:23154883

  18. Development of controlled release captopril granules coated with ethylcellulose and methylcellulose by fluid bed dryer.

    PubMed

    Stulzer, Hellen Karine; Silva, Marcos Antonio Segatto; Fernandes, Daniel; Assreuy, Jamil

    2008-01-01

    Captopril granules of controlled release with different polymers as ethylcellulose, ethyl/methylcellulose, and immediate release with polyvinylpyrrolidone (PVP) were developed by fluid bed dryer technique. The formulations were analyzed by scanning electron microscopy, X-ray powder diffraction, and dissolution profiles. To compare the formulations an in vivo setting rat blood pressure assay was performed, using angiotensin I as a vasoconstrictor agent. The scanning electron microscopy of granules showed differences in morphology, and X-ray powder diffraction technique presented some modification in crystalline structure of captopril in granules coated with PVP and ethyl/methylcellulose. The dissolution profile of granules coated with ethylcellulose showed a median time release of 4 hr whereas for granules coated with ethyl/methylcellulose, this time was 3.5 hr. The blockage of angiotensin I-induced hypertensive effect lasted 8 hr in granules coated with PVP and of more than 12 hr in the granules coated with ethylcellulose and ethyl/methylcellulose.

  19. Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles

    USDA-ARS?s Scientific Manuscript database

    Chitosan/tripolyphosphate nanoparticles were prepared and incorporated in hydroxypropyl methylcellulose (HPMC) films. FT-IR and transmission electron microscopy (TEM) analyses of the nanoparticles, mechanical properties, water vapor permeability, thermal stability, scanning electron microscopy (SEM...

  20. The characterization of hydroxypropyl methylcellulose through the analysis of its substituents

    USDA-ARS?s Scientific Manuscript database

    The methyl and hydroxypropyl substituents in hydroxypropyl methylcellulose (HPMC) affect the resulting gel properties. These substituents in five HPMC gels were characterized using Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, small-amplitude oscillatory shear measurements, a...

  1. Dietary hydroxypropyl methylcellulose increases excretion of saturated and trans fats by hamsters fed fast food diets

    USDA-ARS?s Scientific Manuscript database

    The hypocholesterolemic and hypoglycemic effects of hydroxypropyl methylcellulose (HPMC), a semisynthetic nonfermentable soluble dietary fiber, are well established. However, effects of HPMC on dietary saturated fatty acids and trans fatty acids are largely unknown. This study investigated the eff...

  2. Size-exclusion chromatography of ultrahigh molecular weight methylcellulose ethers and hydroxypropyl methylcellulose ethers for reliable molecular weight distribution characterization.

    PubMed

    Li, Yongfu; Shen, Hongwei; Lyons, John W; Sammler, Robert L; Brackhagen, Meinolf; Meunier, David M

    2016-03-15

    Size-exclusion chromatography (SEC) coupled with multi-angle laser light scattering (MALLS) and differential refractive index (DRI) detectors was employed for determination of the molecular weight distributions (MWD) of methylcellulose ethers (MC) and hydroxypropyl methylcellulose ethers (HPMC) having weight-average molecular weights (Mw) ranging from 20 to more than 1,000kg/mol. In comparison to previous work involving right-angle light scattering (RALS) and a viscometer for MWD characterization of MC and HPMC, MALLS yields more reliable molecular weight for materials having weight-average molecular weights (Mw) exceeding about 300kg/mol. A non-ideal SEC separation was observed for cellulose ethers with Mw>800kg/mol, and was manifested by upward divergence of logM vs. elution volume (EV) at larger elution volume at typical SEC flow rate such as 1.0mL/min. As such, the number-average molecular weight (Mn) determined for the sample was erroneously large and polydispersity (Mw/Mn) was erroneously small. This non-ideality resulting in the late elution of high molecular weight chains could be due to the elongation of polymer chains when experimental conditions yield Deborah numbers (De) exceeding 0.5. Non-idealities were eliminated when sufficiently low flow rates were used. Thus, using carefully selected experimental conditions, SEC coupled with MALLS and DRI can provide reliable MWD characterization of MC and HPMC covering the entire ranges of compositions and molecular weights of commercial interest. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Radiation crosslinking of methylcellulose and hydroxyethylcellulose in concentrated aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wach, Radoslaw A.; Mitomo, Hiroshi; Nagasawa, Naotsugu; Yoshii, Fumio

    2003-12-01

    The effects of ionizing radiation on aqueous solutions of cellulose ethers, methylcellulose (MC) and hydroxyethylcellulose (HEC) were investigated. The well-established knowledge states that cellulose and its derivatives belong to degrading type of polymers. However, in our study intermolecular crosslinking initiated by gamma rays or electron beam leaded to the formation of insoluble gel. This is an opposite effect of irradiation to the degradation. Paste-like form of the initial specimen, i.e. concentration 20-30%, when water plasticizes the bulk of polymer; and a high dose rate were favorable for hydrogel formation. Gel fraction up to 60% and 70% was obtained from solutions of HEC and MC, respectively. Produced hydrogels swell markedly in aqueous media by imbibing and holding the solvent. Radiation parameters of irradiation, such as yields of degradation and crosslinking and the gelation dose, were evaluated by sol-gel analysis on the basis of Charlesby-Rosiak equation. Despite of the crosslinked structure, obtained hydrogels can be included into the group of biodegradable materials. They undergo decomposition by the action of cellulase enzyme or microorganisms from compost.

  4. The nonfermentable dietary fiber hydroxypropyl methylcellulose modulates intestinal microbiota.

    PubMed

    Cox, Laura M; Cho, Ilseung; Young, Scott A; Anderson, W H Kerr; Waters, Bartholomew J; Hung, Shao-Ching; Gao, Zhan; Mahana, Douglas; Bihan, Monika; Alekseyenko, Alexander V; Methé, Barbara A; Blaser, Martin J

    2013-02-01

    Diet influences host metabolism and intestinal microbiota; however, detailed understanding of this tripartite interaction is limited. To determine whether the nonfermentable fiber hydroxypropyl methylcellulose (HPMC) could alter the intestinal microbiota and whether such changes correlated with metabolic improvements, C57B/L6 mice were normalized to a high-fat diet (HFD), then either maintained on HFD (control), or switched to HFD supplemented with 10% HPMC, or a low-fat diet (LFD). Compared to control treatment, both LFD and HPMC reduced weight gain (11.8 and 5.7 g, respectively), plasma cholesterol (23.1 and 19.6%), and liver triglycerides (73.1 and 44.6%), and, as revealed by 454-pyrosequencing of the microbial 16S rRNA gene, decreased microbial α-diversity and differentially altered intestinal microbiota. Both LFD and HPMC increased intestinal Erysipelotrichaceae (7.3- and 12.4-fold) and decreased Lachnospiraceae (2.0- and 2.7-fold), while only HPMC increased Peptostreptococcaceae (3.4-fold) and decreased Ruminococcaceae (2.7-fold). Specific microorganisms were directly linked with weight change and metabolic parameters in HPMC and HFD mice, but not in LFD mice, indicating that the intestinal microbiota may play differing roles during the two dietary modulations. This work indicates that HPMC is a potential prebiotic fiber that influences intestinal microbiota and improves host metabolism.

  5. Effect of hydroxypropyl methylcellulose on collagen fibril formation in vitro.

    PubMed

    Ding, Cuicui; Zhang, Min; Tian, Huilin; Li, Guoying

    2013-01-01

    Collagen and hydroxypropyl methylcellulose (HPMC) were mixed to obtain blends and the effect of HPMC on collagen self-assembly was studied. As deduced from atomic force microscopy (AFM), the amount of nuclei in collagen-HPMC solutions was changed with the addition of HPMC. Under physiological conditions, the kinetics curves of fibril formation showed that the turbidity of blends at 313 nm was higher than that of native collagen. More HPMC was involved in the hydrogel network for blends with higher HPMC/collagen. However, both the thermal stability and the storage moduli of hydrogels, which was evaluated by UV and rheological measurements respectively, reached the maximum just when HPMC/collagen=0.25. Furthermore, it was showed by AFM that denser fibrils with smaller diameter would be obtained as HPMC/collagen<0.25, while more addition of HPMC (HPMC/collagen>0.25) would bring about fibrils with larger diameter. However, HPMC did not significantly affect the characteristic D-periods of the fibrils for all blends.

  6. Structure and phase behavior of aqueous methylcellulose solutions

    NASA Astrophysics Data System (ADS)

    McAllister, John; Schmidt, Peter; Lodge, Timothy; Bates, Frank

    2015-03-01

    Cellulose ethers (CE) constitute a multi-billion dollar industry, and have found end uses in a broad array of applications from construction materials, food products, personal care products, and pharmaceuticals for more than 80 years. Methylcellulose (MC, with the trade name METHOCEL™) is a CE in which there is a partial substitution of -OH groups with -OCH3 groups. This results in a polymer that is water-soluble at low temperatures, and aqueous solutions of MC display gelation and phase separation at higher temperatures. The nature of MC gelation has been debated for many years, and this project has made significant advances in the understanding of the solution properties of CEs. We have characterized a fibrillar structure of MC gels by cryogenic transmission electron microscopy (cryo-TEM) and small angle neutron scattering (SANS). Using light scattering, turbidity measurements, and dynamic mechanical spectroscopy (DMS) we report that MC microphase separates by nucleation and growth of fibril aggregates, and is a different process from LCST phase separation.

  7. Primary dermal and eye irritability tests of hydrophobically modified hydroxypropyl methylcellulose in rabbits.

    PubMed

    Obara, S; Muto, H; Kokubo, H; Ichikawa, N; Kawanabe, M; Tanaka, O

    1992-02-01

    Primary dermal and eye irritation tests of hydrophobically modified hydroxypropyl methylcellulose (HM-HPMC, hydroxypropyl methylcellulose modified with stearylglycidylether), a new cellulose derivative used as a thickener for topical pharmaceuticals and cosmetics, were conducted in rabbits. A dispersion of HM-HPMC (3%) was applied to intact and abraded skins and reactions were observed. A very slight erythema was observed in both skins and this polymer was categorized as a "mild irritant". In the eye irritation test, with a dispersion of the same concentration, it was categorized as "marginal" in unrinsed eyes and "negative" in rinsed eyes.

  8. In situ observation of heat- and pressure-induced gelation of methylcellulose by fluorescence measurement.

    PubMed

    Su, L; Wang, Z; Yang, K; Minamikawa, Y; Kometani, N; Nishinari, K

    2014-03-01

    In situ observation of heat- and pressure-induced gelation of methylcellulose (MC) aqueous solution has been studied by using dynamic viscoelastic and fluorescence measurements. The storage modulus G' decreased gradually first on heating, and then leveled off in the temperature range from 25 °C to 75 °C. Methylcellulose solutions were subjected to pressures up to 450 MPa by using a high pressure cell. It was indicated that the microviscosity showed a dramatic change in the vicinity of the phase transition point. The T vs. P phase diagram of methylcellulose aqueous solution was constructed, and it indicated that the melting point was an increasing function of pressure. In situ microscopic observation of pressure-induced gelation of methylcellulose aqueous solution was also performed with a microscope, and it could be seen that gel phase of the sample disappeared and sol formed gradually. Pressure-released study by fluorescence measurement also showed that the phase transition of MC solution was reversible. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. The effect of methylcellulose on metronidazole release from polyacrylic acid hydrogels.

    PubMed

    Musial, Witold

    2007-08-01

    Topical treatment of acne rosacea, a chronic condition characterized by recurrent course for many years, is primarily based on metronidazole preparations. The aim of this study was to evaluate the effect of various acrylic acid polymers, in composition with methylcellulose on metronidazole release rate from hydrogels proposed for the treatment of acne rosacea. Viscosity and release studies using "Paddle over Disk" system with semipermeable membrane of MWCO 3500 were performed. Compositions of Carbopol 971P and methylcellulose revealed an increase in viscosity with increasing concentration of methylcellulose in the range of 17200-26166 mPa.s. In all the examined formulations, the release process was characterized by a two-stage course. Among bipolymeric formulations, the highest first-stage release rate of 9.18 x 10(-3) min(-1) was determined for the gel consisting of 2.00% Carbopol 980NF with 1.00% methylcellulose. The second-stage release rates ranged between 2.88 x 10(-3) and 8.00 x 10(-3) min(-1). Two-stage release course can thus be attributed to metronidazole distribution into two compartments of hydrogel matrix. Proposed gels, with similar rheological properties, may be used for ex vivo and in vivo studies to obtain a suitable drug activity of metronidazole in the treatment of acne rosacea.

  10. Solution blow spun Poly(lactic acid)/Hydroxypropyl methylcellulose nanofibers with antimicrobial properties

    USDA-ARS?s Scientific Manuscript database

    Poly(lactic acid) (PLA) nanofibers containing hydroxypropyl methylcellulose (HPMC) and tetracycline hydrochloride (THC) were solution blow spun from two different solvents, chloroform/acetone (CA, 80:20 v/v) and 2,2,2-triflouroethanol (TFE). The diameter distribution, chemical, thermal, thermal stab...

  11. [Effect of methylcellulose on protein hydrolysis by pepsin in butter cream].

    PubMed

    Katrich, A Ia

    1977-01-01

    The digestiveability of proteins with pepsin in butter creames, where the source of nutrients formed condensed milk, was studied. It was made certain that in specimens containing a greater proportion of butter the proteins were less susceptible to be assailed. When some of the butter is replaced with methylcellulose for the purpose of reducing the calorific value of the cream there was observed an accelerated proteolysis by comparison with both the traditional specimens and those containing the same amount of fat as the test samples. In the test conditions the slowing down of the fat proteins hydrolysis was not associated with inactivation of pepsin. The cited data support the expediency of using methylcellulose in the confectionary industry.

  12. Studies on single-dose toxicity of hydrophobically modified hydroxypropyl methylcellulose in rats.

    PubMed

    Obara, S; Muto, H; Kokubo, H; Ichikawa, N; Kawanabe, M; Tanaka, O

    1992-02-01

    Single-dose toxicological studies of hydrophobically modified hydroxypropyl methylcellulose (HM-HPMC, hydroxypropyl methylcellulose modified with stearylglycidylether) were conducted. A dispersion of HM-HPMC was administered to rats orally or by dermal application at doses up to 900 mg/kg. After the oral administration, the mean body weight of the 900 mg/kg group on the first day after administration was slightly but significantly lower (P less than 0.05) than that of the control group, and one rat had loose stools at 30 min. after the administration. No other abnormalities were noted. In the case of dermal application, no abnormalities were observed. No rats died, and no abnormalities in their organs were found by either route. In conclusion, there was no observed toxicity of HM-HMPC after oral or dermal administration at single dose up to 900 mg/kg under the conditions of these studies.

  13. Nanoparticle suspensions enclosed in methylcellulose: a new approach for quantifying nanoparticles in transmission electron microscopy.

    PubMed

    Hacker, Christian; Asadi, Jalal; Pliotas, Christos; Ferguson, Sophie; Sherry, Lee; Marius, Phedra; Tello, Javier; Jackson, David; Naismith, James; Lucocq, John Milton

    2016-05-04

    Nanoparticles are of increasing importance in biomedicine but quantification is problematic because current methods depend on indirect measurements at low resolution. Here we describe a new high-resolution method for measuring and quantifying nanoparticles in suspension. It involves premixing nanoparticles in a hydrophilic support medium (methylcellulose) before introducing heavy metal stains for visualization in small air-dried droplets by transmission electron microscopy (TEM). The use of methylcellulose avoids artifacts of conventional negative stain-TEM by (1) restricting interactions between the nanoparticles, (2) inhibiting binding to the specimen support films and (3) reducing compression after drying. Methylcellulose embedment provides effective electron imaging of liposomes, nanodiscs and viruses as well as comprehensive visualization of nanoparticle populations in droplets of known size. These qualities facilitate unbiased sampling, rapid size measurement and estimation of nanoparticle numbers by means of ratio counting using a colloidal gold calibrant. Specimen preparation and quantification take minutes and require a few microliters of sample using only basic laboratory equipment and a standard TEM.

  14. Methylcellulose-Directed Synthesis of Nanocrystalline Zeolite NaA with High CO2 Uptake

    PubMed Central

    Shakarova, Dilshod; Ojuva, Arto; Bergström, Lennart; Akhtar, Farid

    2014-01-01

    Zeolite NaA nanocrystals with a narrow particle size distribution were prepared by template-free hydrothermal synthesis in thermo-reversible methylcellulose gels. The effects of the amount of methylcellulose, crystallization time and hydrothermal treatment temperature on the crystallinity and particle size distribution of the zeolite NaA nanocrystals were investigated. We found that the thermogelation of methylcellulose in the alkaline Na2O-SiO2-Al2O3-H2O system played an important role in controlling the particle size. The synthesized zeolite nanocrystals are highly crystalline, as demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) shows that the nanocrystals can also display a well-defined facetted morphology. Gas adsorption studies on the synthesized nanocrystalline zeolite NaA showed that nanocrystals with a size of 100 nm displayed a high CO2 uptake capacity (4.9 mmol/g at 293 K at 100 kPa) and a relatively rapid uptake rate compared to commercially available, micron-sized particles. Low-cost nanosized zeolite adsorbents with a high and rapid uptake are important for large scale gas separation processes, e.g., carbon capture from flue gas. PMID:28788141

  15. Nanoparticle suspensions enclosed in methylcellulose: a new approach for quantifying nanoparticles in transmission electron microscopy

    PubMed Central

    Hacker, Christian; Asadi, Jalal; Pliotas, Christos; Ferguson, Sophie; Sherry, Lee; Marius, Phedra; Tello, Javier; Jackson, David; Naismith, James; Lucocq, John Milton

    2016-01-01

    Nanoparticles are of increasing importance in biomedicine but quantification is problematic because current methods depend on indirect measurements at low resolution. Here we describe a new high-resolution method for measuring and quantifying nanoparticles in suspension. It involves premixing nanoparticles in a hydrophilic support medium (methylcellulose) before introducing heavy metal stains for visualization in small air-dried droplets by transmission electron microscopy (TEM). The use of methylcellulose avoids artifacts of conventional negative stain-TEM by (1) restricting interactions between the nanoparticles, (2) inhibiting binding to the specimen support films and (3) reducing compression after drying. Methylcellulose embedment provides effective electron imaging of liposomes, nanodiscs and viruses as well as comprehensive visualization of nanoparticle populations in droplets of known size. These qualities facilitate unbiased sampling, rapid size measurement and estimation of nanoparticle numbers by means of ratio counting using a colloidal gold calibrant. Specimen preparation and quantification take minutes and require a few microliters of sample using only basic laboratory equipment and a standard TEM. PMID:27141843

  16. Effects of ultrasound time on the properties of methylcellulose-montmorillonite films

    NASA Astrophysics Data System (ADS)

    Jokar, Akbar; Azizi, Mohamad Hossyn; Esfehani, Zohre Hamidi; Abbasi, Solyman

    2017-02-01

    Methylcellulose-montmorillonite films were prepared via solvent casting method. The effects of different ultrasound times (0, 15, 30, 45, 60, and 75 min) on the properties of methylcellulose-montmorillonite films were evaluated. Fourier transform infrared and X-ray diffraction were applied to investigate and prove the effects of ultrasound time. The films were characterized by mechanical properties, opacity, water vapor permeability, yellowness index, and color. Ultrasound time significantly affected the characteristics of the films, except for elongation. Maximum tensile strength, opacity, YI, and b* as well as minimum L* and water vapor permeability were related to 60 min. The results from X-ray diffraction and Fourier transform infrared verified the effects of sonication time on the films properties, especially for 60 min. The Fourier transform infrared spectrum related to 60 min had more new and sharper peaks. The maximum compactness and strength of methylcellulose-montmorillonite films and the highest X-ray diffraction peak were also attributed to 60 min. Using ultrasound radiation for the production of such films is strongly recommended. To obtain the best quality and reach the required properties, considering the aim of the films, optimization of sonication time is mandatory.

  17. Therapeutic effects of cinnamaldehyde and potentiation of its efficacy in combination with methylcellulose on murine oral candidiasis.

    PubMed

    Taguchi, Yuuki; Hayama, Kazumi; Okada, Masashi; Sagawa, Takehito; Arai, Ryo; Abe, Shigeru

    2011-01-01

    We examined the therapeutic effects of cinnamaldehyde and the potentiation of those effects with cassia and cinnamaldehyde when combined with the food additive methylcellulose against murine oral candidiasis. When 19.5mg/ml of cinnamaldehyde was administered in the oral cavity of Candida infected mice, the oral symptoms were improved. Furthermore, when either a cassia or a cinnamaldehyde preparation in combination with methylcellulose was administered to oral candidiasis-inflicted mice, the therapeutic effects of cassia or cinnamaldehyde potentiated. Methylcellulose itself did not affect the oral symptoms or the viable number of C. albicans cells. GC/MS analysis showed that the dose of cinnamaldehyde remaining in the tongue tissue of mice treated with the cinnamaldehyde-methylcellulose mixture was higher than that in mice administered cinnamaldehyde alone, and also showed that cinnamaldehyde was not detected in the blood of any of the tested mice. These findings suggested that the combination of cassia or cinnamaldehyde and methylcellulose may be a useful prophylactic or therapeutic tool against oral candidiasis.

  18. Organic/inorganic hybrid synaptic transistors gated by proton conducting methylcellulose films

    NASA Astrophysics Data System (ADS)

    Wan, Chang Jin; Zhu, Li Qiang; Wan, Xiang; Shi, Yi; Wan, Qing

    2016-01-01

    The idea of building a brain-inspired cognitive system has been around for several decades. Recently, electric-double-layer transistors gated by ion conducting electrolytes were reported as the promising candidates for synaptic electronics and neuromorphic system. In this letter, indium-zinc-oxide transistors gated by proton conducting methylcellulose electrolyte films were experimentally demonstrated with synaptic plasticity including paired-pulse facilitation and spatiotemporal-correlated dynamic logic. More importantly, a model based on proton-related electric-double-layer modulation and stretched-exponential decay function was proposed, and the theoretical results are in good agreement with the experimentally measured synaptic behaviors.

  19. Organic/inorganic hybrid synaptic transistors gated by proton conducting methylcellulose films

    SciTech Connect

    Wan, Chang Jin; Wan, Qing E-mail: yshi@nju.edu.cn; Zhu, Li Qiang; Wan, Xiang; Shi, Yi E-mail: yshi@nju.edu.cn

    2016-01-25

    The idea of building a brain-inspired cognitive system has been around for several decades. Recently, electric-double-layer transistors gated by ion conducting electrolytes were reported as the promising candidates for synaptic electronics and neuromorphic system. In this letter, indium-zinc-oxide transistors gated by proton conducting methylcellulose electrolyte films were experimentally demonstrated with synaptic plasticity including paired-pulse facilitation and spatiotemporal-correlated dynamic logic. More importantly, a model based on proton-related electric-double-layer modulation and stretched-exponential decay function was proposed, and the theoretical results are in good agreement with the experimentally measured synaptic behaviors.

  20. Skin sensitization and photosensitization studies of hydrophobically modified hydroxypropyl methylcellulose in guinea pigs.

    PubMed

    Obara, S; Maruyama, K; Ichikawa, N; Tanaka, O; Ohtsuka, M; Kawanabe, M; Niikura, Y; Tennichi, M; Suzuki, A; Hoshino, N; Ohwada, K

    1998-07-01

    Skin sensitization and photosensitization tests of hydrophobically modified hydroxypropyl methylcellulose (HM-HPMC), a new cellulose derivative used as a thickener for topical pharmaceuticals, were conducted using guinea pigs. An aqueous dispersion of HM-HPMC (3 w/v %) was applied in the tests. Skin reaction was not observed in any animal in the HM-HPMC-treated group or control group. In the photosensitization test, no skin reaction was found in any animal in the test-preparation group or the control group. It was concluded that HM-HPMC dispersion does not exhibit skin sensitizing or photosensitizing activity under the condition of this test.

  1. A Coarse Grained Model for Methylcellulose: Spontaneous Ring Formation at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Huang, Wenjun; Larson, Ronald

    Methylcellulose (MC) is widely used as food additives and pharma applications, where its thermo-reversible gelation behavior plays an important role. To date the gelation mechanism is not well understood, and therefore attracts great research interest. In this study, we adopted coarse-grained (CG) molecular dynamics simulations to model the MC chains, including the homopolymers and random copolymers that models commercial METHOCEL A, in an implicit water environment, where each MC monomer modeled with a single bead. The simulations are carried using a LAMMPS program. We parameterized our CG model using the radial distribution functions from atomistic simulations of short MC oligomers, extrapolating the results to long chains. We used dissociation free energy to validate our CG model against the atomistic model. The CG model captured the effects of monomer substitution type and temperature from the atomistic simulations. We applied this CG model to simulate single chains up to 1000 monomers long and obtained persistence lengths that are close to those determined from experiment. We observed the chain collapse transition for random copolymer at 600 monomers long at 50C. The chain collapsed into a stable ring structure with outer diameter around 14nm, which appears to be a precursor to the fibril structure observed in the methylcellulose gel observed by Lodge et al. in the recent studies. Our CG model can be extended to other MC derivatives for studying the interaction between these polymers and small molecules, such as hydrophobic drugs.

  2. Evaluation of Release Retarding Property of Gum Damar and Gum Copal in Combination with Hydroxypropyl Methylcellulose

    PubMed Central

    Fulbandhe, V. M.; Jobanputra, C. R.; Wadher, K. J.; Umekar, M. J.; Bhoyar, G. S.

    2012-01-01

    The formulations consisting of a hydrophilic and hydrophobic material were investigated for effect on drug-release pattern from the matrices. Gum damar and gum copal being water-insoluble were used to study the efficiency of combined matrices to sustain the release of drug. Hydroxypropyl methylcellulose K100M and diclofenac sodium were used as the hydrophilic material and model drug, respectively. The influence of concentration of hydroxypropyl methylcellulose on drug release pattern of hydrophobic material was determined. The optimum ratio of drug: polymer was found to be 1:1. The hydrophobic:hydrophilic polymer ratio of 75:25 was found to have a similar release pattern as that of marketed formulation. At this ratio, the initial burst-release that occurred in individual hydrophobic matrices was lowered to a great extent. The release of drug was found to follow Higuchi's equation as the concentration of hydrophobic material was increased. The formulations were compared with marketed formulation Voveran SR, and a correlation was drawn accordingly. PMID:23440630

  3. Evaluation of release retarding property of gum damar and gum copal in combination with hydroxypropyl methylcellulose.

    PubMed

    Fulbandhe, V M; Jobanputra, C R; Wadher, K J; Umekar, M J; Bhoyar, G S

    2012-05-01

    The formulations consisting of a hydrophilic and hydrophobic material were investigated for effect on drug-release pattern from the matrices. Gum damar and gum copal being water-insoluble were used to study the efficiency of combined matrices to sustain the release of drug. Hydroxypropyl methylcellulose K100M and diclofenac sodium were used as the hydrophilic material and model drug, respectively. The influence of concentration of hydroxypropyl methylcellulose on drug release pattern of hydrophobic material was determined. The optimum ratio of drug: polymer was found to be 1:1. The hydrophobic:hydrophilic polymer ratio of 75:25 was found to have a similar release pattern as that of marketed formulation. At this ratio, the initial burst-release that occurred in individual hydrophobic matrices was lowered to a great extent. The release of drug was found to follow Higuchi's equation as the concentration of hydrophobic material was increased. The formulations were compared with marketed formulation Voveran SR, and a correlation was drawn accordingly.

  4. Association of Lactobacillus crispatus with fructo-oligosaccharides and ascorbic acid in hydroxypropyl methylcellulose vaginal insert.

    PubMed

    Vitali, Beatrice; Abruzzo, Angela; Parolin, Carola; Palomino, Rogers Alberto Ñahui; Dalena, Francesco; Bigucci, Federica; Cerchiara, Teresa; Luppi, Barbara

    2016-01-20

    The aim of this work was to develop a synbiotic vaginal insert containing the probiotic strain Lactobacillus crispatus BC5, the prebiotic substrate fructo-oligosaccharide and the antioxidant agent ascorbic acid, for the prophylaxis and therapy of vaginal infections. Mucoadhesive in situ gelling vaginal inserts based on hydroxypropyl methylcellulose were prepared by freeze-drying, stored at +2-8 °C for 90 days and characterized in terms of technological and functional properties. Complete survival of L. crispatus BC5 was found immediately after insert preparation (96.08%) as well as after 90 days of storage (95.82%) in the vaginal inserts containing fructo-oligosaccharide, ascorbic acid and skimmed milk. Synbiotic inserts showed improved mucoadhesion ability (from three- to five-fold) with respect to a standard formulation based on hydroxypropyl methylcellulose alone. Moreover, inserts allowed to modulate lactobacilli release in virtue of the different amounts of fructo-oligosaccharide. Finally, antimicrobial activity was exerted by L. crispatus BC5 released from the vaginal formulation.

  5. Miniaturization of cellulose fibers and effect of addition on the mechanical and barrier properties of hydroxypropyl methylcellulose

    USDA-ARS?s Scientific Manuscript database

    Cellulose fibers were miniaturized by microfluidics technology and incorporated in hydroxypropyl methylcellulose (HPMC) films to study the effect of the addition of such fibers on the mechanical and barrier properties of HPMC films suitable for food packaging applications. The particle size of the f...

  6. Hypocholesterolemic effects of hydroxypropyl methylcellulose are mediated by altered gene expression in hepatic bile and cholesterol pathways of male hamsters

    USDA-ARS?s Scientific Manuscript database

    Hydroxypropyl methylcellulose (HPMC), a semi-synthetic non-fermentable soluble dietary fiber (SDF) modulates plasma lipoprotein profiles and hepatic lipid levels. HPMC is not absorbed by the body but its presence in the intestinal lumen increases fecal fat, sterol, and bile acid excretion and decrea...

  7. Histology of a novel injectable filler (polymethylmethacrylate and cross-linked dextran in hydroxypropyl methylcellulose) in a rat model.

    PubMed

    Lee, Young Bok; Park, Sae Mi; Song, Eun Jong; Park, Jun-Gyu; Cho, Kyoung-Oh; Kim, Jin Wou; Yu, Dong Soo

    2014-08-01

    A novel injectable filler of polymethylmethacrylate (PMMA) and cross-linked dextran in hydroxypropyl methylcellulose was introduced in the commercial filler market. For soft tissue augmentation, safety and biocompatibility should be evaluated and the stability at the implantation site should be assessed using histologic evaluation. In order to evaluate the biocompatibility of the novel soft tissue filler, PMMA and cross-linked dextran in hydroxypropyl methylcellulose was subdermally injected into the skin of Sprague-Dawley Rats. Histologic evaluation was performed at 13 weeks and 12 months after the injection. Inflammatory cell infiltration, neovascularization, and fibrosis were scored according to defined grading systems. The mean score of the histologic evaluation was 5.7 and 3.9 at 13 weeks and 12 months, respectively. At 12 months after injection, the PMMA and cross-linked dextran in hydroxypropyl methylcellulose appeared to be kept in place through fine fibrous capsules. The mixture of PMMA and cross-linked dextran in hydroxypropyl methylcellulose can be safely applied for soft tissue augmentation with longevity of greater than 12 months.

  8. Development of crosslinked methylcellulose hydrogels for soft tissue augmentation using an ammonium persulfate-ascorbic acid redox system.

    PubMed

    Gold, Gittel T; Varma, Devika M; Taub, Peter J; Nicoll, Steven B

    2015-12-10

    Hydrogels composed of methylcellulose are candidate materials for soft tissue reconstruction. Although photocrosslinked methylcellulose hydrogels have shown promise for such applications, gels crosslinked using reduction-oxidation (redox) initiators may be more clinically viable. In this study, methylcellulose modified with functional methacrylate groups was polymerized using an ammonium persulfate (APS)-ascorbic acid (AA) redox initiation system to produce injectable hydrogels with tunable properties. By varying macromer concentration from 2% to 4% (w/v), the equilibrium moduli of the hydrogels ranged from 1.47 ± 0.33 to 5.31 ± 0.71 kPa, on par with human adipose tissue. Gelation time was found to conform to the ISO standard for injectable materials. Cellulase treatment resulted in complete degradation of the hydrogels within 24h, providing a reversible corrective feature. Co-culture with human dermal fibroblasts confirmed the cytocompatibility of the gels based on DNA measurements and Live/Dead imaging. Taken together, this evidence indicates that APS-AA redox-polymerized methylcellulose hydrogels possess properties beneficial for use as soft tissue fillers.

  9. Removal of paraquat pesticide from aqueous solutions using a novel adsorbent material based on polyacrylamide and methylcellulose hydrogels

    USDA-ARS?s Scientific Manuscript database

    This research studied the characteristics of poly(acrylamide) and methylcellulose (PAAm-MC) hydrogels as a novel adsorbent material for removal of pesticide paraquat, from aqueous solution, with potential applications in curbing environmental risk from such herbicides. PAAm-MC hydrogels with differe...

  10. Interaction between hydroxypropyl methylcellulose and biphasic calcium phosphate after steam sterilisation: capillary gas chromatography studies

    PubMed Central

    Bourges, Xavier; Schmitt, Michel; Amouriq, Yves; Daculsi, Guy; Legeay, Gilbert; Weiss, Pierre

    2001-01-01

    The purpose of this study was to check the chemical stability of an injectable bone substitute (IBS) composed of a 50/50 w/w mixture of a 2.92% hydroxypropyl methylcellulose (HPMC) solution in deionised water containing biphasic calcium phosphate (BCP) granules (60% hydroxyapatite/40% β-tricalcium phosphate w/w). After separation of the organic and mineral phases, capillary gas chromatography (GC) was used to study the possible modification of HPMC due to the contact with BCP granules following steam sterilisation and 32 days of storage at room temperature. HPMC was extracted from IBS in aqueous medium, and a dialytic method was then use to extract calcium phosphate salts from HPMC. The percentage of HPMC extracted from BCP was 98.5% ± 0.5% as measured by a UV method. GC showed no chemical modifications after steam sterilisation and storage. PMID:11556737

  11. Large-amplitude oscillatory shear of methylcellulose solutions through the sol-gel transition

    NASA Astrophysics Data System (ADS)

    McAllister, John W.; Lott, Joseph R.; Bates, Frank S.; Lodge, Tim P.

    2013-03-01

    Methylcellulose (MC) is a chemically modified polysaccharide that is partially substituted by methoxy groups. Aqueous MC solutions undergo gelation and phase separation (LCST) upon heating, which is attributed to the assembly of molecules into fibrillar structures noted by cryo TEM images and small angle neutron scattering. The transition from a strain-softening solution to a strain hardening gel upon heating has been probed using large-amplitude oscillatory shear (LAOS). In addition to strain hardening, MC solutions exhibit positive normal stresses (pressing the plates of the rheometer apart) while MC gels exhibit negative normal stresses (contracting the plates together) at stresses larger than 10 Pa. Nonlinear rheological responses are a useful probe to monitor structure-property relationships as MC transitions from a solution to a gel.

  12. The shear dependence of the methylcellulose gelation phenomena in aqueous solution and in ceramic paste.

    PubMed

    Knarr, Matthias; Bayer, Roland

    2014-10-13

    The gelation temperature of methylcellulose (MC) in aqueous solutions as well as in aqueous ceramic paste depends on the applied shear. Rheological investigations in oscillation vs. shear mode show lower gelation temperature at low shear rates as for the corresponding angular frequencies. Above a critical shear rate the gelation temperature is shifted to higher temperatures. The paste extrusion process uses MC as a plasticizer and runs under high shear conditions. When extruding close to the gelation temperature of the MC in the paste, crack formation and other defects can occur. The upwards shift of the gelation temperature with increasing applied shear gives a larger temperature window during the extrusion process. The understanding of the shear influence on the gelation temperature is important to design the optimal process conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. [Mechanisms of hydroxypropyl methylcellulose for the precipitation inhibitor of supersaturatable self-emulsifying drug delivery systems].

    PubMed

    Xiao, Lu; Yi, Tao

    2013-05-01

    Hydroxypropyl methylcellulose (HPMC) propels self-emulsifying drug delivery systems (SEDDS) to achieve the supersaturated state in gastrointestinal tract, which possesses important significance to enhance oral absorption for poorly water-soluble drugs. This study investigated capacities and mechanisms of HPMC with different viscosities (K4M, K15M and K100M) to inhibit drug precipitation of SEDDS in the simulated gastrointestinal tract environment in vitro. The results showed that HPMC inhibited drug precipitation during the dispersion of SEDDS under gastric conditions by inhibiting the formation of crystal nucleus and the growth of crystals. HPMC had evident effects on the rate of SEDDS lipolysis and benefited the distribution of drug molecules across into the aqueous phase and the decrease of drug sediment. The mechanisms were related to the formed network of HPMC and its viscosities and molecular weight. These results offered a reference for selecting appropriate type of HPMC as the precipitation inhibitor of supersaturatable SEDDS.

  14. Characterization of ethylcellulose and hydroxypropyl methylcellulose thin films deposited by matrix-assisted pulsed laser evaporation

    NASA Astrophysics Data System (ADS)

    Palla-Papavlu, A.; Rusen, L.; Dinca, V.; Filipescu, M.; Lippert, T.; Dinescu, M.

    2014-05-01

    In this study is reported the deposition of hydroxypropyl methylcellulose (HPMC) and ethylcellulose (EC) by matrix-assisted pulsed laser evaporation (MAPLE). Both HPMC and EC were deposited on silicon substrates using a Nd:YAG laser (266 nm, 5 ns laser pulse and 10 Hz repetition rate) and then characterized by atomic force microscopy and Fourier transform infrared spectroscopy. It was found that for laser fluences up to 450 mJ/cm2 the structure of the deposited HPMC and EC polymer in the thin film resembles to the bulk. Morphological investigations reveal island features on the surface of the EC thin films, and pores onto the HPMC polymer films. The obtained results indicate that MAPLE may be an alternative technique for the fabrication of new systems with desired drug release profile.

  15. Interplay between gelation and phase separation in aqueous solutions of methylcellulose and hydroxypropylmethylcellulose.

    PubMed

    Fairclough, J Patrick A; Yu, Hao; Kelly, Oscar; Ryan, Anthony J; Sammler, Robert L; Radler, Michael

    2012-07-17

    Thermally induced gelation in aqueous solutions of methylcellulose (MC) and hydroxypropylmethylcellulose (HPMC) has been studied by rheological, optical microscopy, and turbidimetry measurements. The structural and mechanical properties of these hydrogels are dominated by the interplay between phase separation and gelation. In MC solutions, phase separation takes place almost simultaneously with gelation. An increase in the storage modulus is coupled to the appearance of a bicontinuous structure upon heating. However, a thermal gap exists between phase separation and gelation in the case of HPMC solutions. The storage modulus shows a dramatic decrease during phase separation and then rises in the subsequent gelation. A macroporous structure forms in the gels via "viscoelastic phase separation" linked to "double phase separation".

  16. Correlation between the FT-IR characteristics and metoprolol tartrate release of methylcellulose-based patches.

    PubMed

    Papp, József; Horgos, József; Szente, Virág; Zelkó, Romána

    2010-06-15

    The aim of the present study was to investigate how the drug release and FT-IR characteristics of metolose patches were influenced by the changes of Metolose SM 4000 (methylcellulose) and Metolose 90SH 100.000SR (hypromellose) proportions. FT-IR spectroscopy measurements were performed in parallel with the metoprolol tartrate release study to track the effect of the composition on the drug release. The metoprolol tartrate release profile of the patches was evaluated by Weibull distribution. Linear relationship was found with good correlation between the logarithm of time interval necessary to release 63.2% of metoprolol tartrate (tau(d) values) and the peak area measured within the characteristic FT-IR wavenumbers of patches. The application of FT-IR measurements can be recommended as a rapid, non-destructive screening method during the in-process control of patches.

  17. Effects of Topical 1% Sodium Hyaluronate and Hydroxypropyl Methylcellulose in Treatment of Corneal Epithelial Defects

    PubMed Central

    SHAHRAKI, Kourosh; HOSSEINI, Seyed-Rafi; AMINI FARD, Atefeh; SHADEMAN, Hashem; SHAHRAKI, Kianoush; SALARI, Amir Masood; AMINI FARD, Mohammad-Naeim

    2016-01-01

    We aimed to compare the therapeutic effects of topical 1% sodium hyaluronate (Healon) or hydroxypropyl methylcellulose (HPMC) for the treatment of alkali-induced epithelial corneal defects. An alkali burn was produced in 30 corneas of 30 New Zealand White rabbits, using a 7.5-mm-diameter trephine. The rabbits were randomly divided into three groups. Four times a day, one group was treated with 1% sodium hyaluronate, one with HPMC, and one (the control group) with physiologic saline. During the treatment period, the size of the epithelial defect was observed every day, up to day 17, using a slit-lamp biomicroscope (with fluorescein). Sodium hyaluronate significantly accelerated the wound healing process compared with saline and increased the healing rate to an even greater extent compared with HPMC. Sodium hyaluronate, but not HPMC, is an effective wound-healing adjuvant for alkali-induced corneal epithelial defects.

  18. A repeated-dose dermal toxicity study of hydrophobically modified hydroxypropyl methylcellulose in rats.

    PubMed

    Obara, S; Muto, H; Ichikawa, N; Tanaka, O; Otsuka, M; Kawanabe, M; Ishii, H; Niikura, Y; Komatsu, M

    1997-08-01

    A six-month repeated-dose dermal toxicity study followed by a 30-day recovery test of hydrophobically modified hydroxypropyl methylcellulose (HM-HPMC), a new cellulose derivative used as a thickener for topical pharmaceuticals, was conducted using rats. Aqueous paste of HM-HPMC was applied to the skin of rats once daily at dose levels up to 60 mg/kg/day, which was the highest dose that could be administered. Items checked included general signs, urinalysis, hematology, ophthalmology, and histopathology. One rat died during the administration period owing to a malignant tumor in the hemopoietic system, which was not attributed to the test substance. Statistically significant differences were found in some test results, but those were not dose-dependent and were considered to be incidental or spontaneous. It was concluded that the test substance was not toxic upon chronic dermal administration at dose levels up to 60 mg/kg/day.

  19. Application of extremely low viscosity methylcellulose (MC) for pellet film coating.

    PubMed

    Kokubo, H; Obara, S; Nishiyama, Y

    1998-11-01

    Pellet film coating has very limited applicability compared with tablet film coating, because of the problem of sticking during fluidized bed operation. We have prepared an extremely low viscosity methylcellulose (MC) (4 mPa.s), and examined its solution and film properties and its suitability for pellet film coating. MC lost its adhesiveness at a relatively high moisture content and pellet film coating could be achieved without agglomeration of the pellets within a reasonable operating time. The coated pellets were covered with a continuous film of MC, and drug release from the coated pellets was as rapid as that from the core. These findings suggest that MC (4 mPa.s) is applicable for pellet film coating in an aqueous system.

  20. Activity of glucose oxidase immobilized onto Fe3+ attached hydroxypropyl methylcellulose films.

    PubMed

    Sözügeçer, Sevgi; Bayramgil, Nursel Pekel

    2013-01-01

    Hydroxypropyl methylcellulose (HMPC) insoluble films were prepared by (60)Co-γ irradiation of 10% (w/w) aqueous solutions of hydroxypropyl methylcellulose. The adsorption of Fe(3+) onto HPMC films was studied in the range of pH 3.0-7.0. The effect of initial concentrations of Fe(3+) solutions on adsorption capacity was studied in the range of 100-1000 ppm. Maximum adsorption capacity was found as 250 mg Fe(3+)/g dry HPMC film at pH 5.0. The structure and the morphology of Fe(3+)-attached HPMC film were evaluated by using FTIR/ATR and SEM-EDX methods. Glucose oxidase (GOX) immobilization on both pristine HPMC and maximum Fe(3+)-attached HPMC film was investigated in aqueous solutions containing different amount of GOX and at different pHs. Maximum GOX adsorption capacity was found as 500 mg/g Fe(3+)-attached HPMC film. Residual activity of GOX on pristine HPMC and Fe(3+)-attached HPMC films was investigated with changing pH. While maximum residual GOX activity was observed at pH 6.0 for free enzyme, it was obtained by HPMC and Fe(3+)-attached HPMC at pH 7.0. GOX desorption studies were achieved by using pH 6.0 buffer (I=0.02 M) and 0.1 M EDTA solutions. The long-term stability and activity studies of GOX, which is immobilized onto Fe(3+)-attached HPMC films are still under our investigation.

  1. Design and in vitro evaluation of zidovudine oral controlled release tablets prepared using hydroxypropyl methylcellulose.

    PubMed

    Ravi, Punna Rao; Ganga, Sindhura; Saha, Ranendra Narayan

    2008-04-01

    Oral controlled release matrix tablets of zidovudine were prepared using different proportions and different viscosity grades of hydroxypropyl methylcellulose. The effect of various formulation factors like polymer proportion, polymer viscosity and compression force on the in vitro release of drug were studied. In vitro release studies were carried out using United States Pharmacopeia (USP) type 1 apparatus (basket method) in 900 ml of pH 6.8 phosphate buffer at 100 rpm. The release kinetics were analyzed using Zero-order model equation, Higuchi's square-root equation and Ritger-Peppas' empirical equation. Compatibility of drug with various formulations excipients used was studied. In vitro release studies revealed that the release rate decreased with increase in polymer proportion and viscosity grade. Increase in compression force was found to decrease the rate of drug release. Matrix tablets containing 10% hydroxypropyl methylcellulose (HPMC) 4000 cps were found to show a good initial drug release of 21% in the first hour and extended the release upto 16 h. Matrix tablets containing 20% HPMC 4000 cps and 10% HPMC 15000 cps showed a first hour release of 18% and extended the release upto 20 h. Mathematical analysis of the release kinetics indicated that the nature of drug release from the matrix tablets followed non-Fickian or anomalous release. No incompatibility was observed between the drug and excipients used in the formulation of matrix tablets. The developed controlled release matrix tablets of zidovudine, with good initial release (17-25% in first hour) and which extend the release upto 16-20 h, can overcome the disadvantages of conventional tablets of zidovudine.

  2. A thermoreversible double gel: characterization of a methylcellulose and kappa-carrageenan mixed system in water by SAXS, DSC and rheology.

    PubMed

    Tomsic, Matija; Prossnigg, Florian; Glatter, Otto

    2008-06-01

    Sol-gel and gel-sol thermal transition of methylcellulose/water, kappa-carrageenan/water and methylcellulose/kappa-carrageenan/water mixtures was investigated utilizing small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC) and oscillatory rheological experiments in temperature regime from 20 to 80 degrees C. Methylcellulose (E461) and kappa-carrageenan (E407) are well-known additives used for gelation in various nutrition and other products. The formulation and characterization of a mixed thermoreversible methylcellulose/kappa-carrageenan/water gel with very interesting double thermal transition gel-sol-gel upon heating was possible. This specific thermal behavior provides a liquid state of the system between the low-temperature and high-temperature gel-state and at the same time allows for the easy temperature tuning of the system's state. As such this system is suggested to be further tested as potential carrier for various functional colloidal systems.

  3. Effects of silica fume, latex, methylcellulose, and carbon fibers on the thermal conductivity and specific heat of cement paste

    SciTech Connect

    Fu, X.; Chung, D.D.L.

    1997-12-01

    Due to their poor conductivity, latex (20--30% by weight of cement), methylcellulose (0.4--0.8% by weight of cement), and silica fume (15% by weight of cement) decreased the thermal conductivity of cement paste by up to 46%. In addition, these admixtures increased the specific heat of cement paste by up to 10%. The thermal conductivity decreased and the specific heat increased with increasing latex or methylcellulose content. Short carbon fibers (0.5--1.0% by weight of cement) either did not change or decreased the thermal conductivity of cement paste, such that the thermal conductivity decreased with increasing fiber content due to the increase in air void content. The fibers increased the specific heat due to the contribution of the fiber-matrix interface to vibration.

  4. Novel methylcellulose-immobilized cation-exchange precolumn for on-line enrichment of cationic drugs in plasma.

    PubMed

    Yamamoto, Eiichi; Sakaguchi, Takahisa; Kajima, Takashi; Mano, Nariyasu; Asakawa, Naoki

    2004-08-05

    We developed a novel methylcellulose-immobilized strong cation-exchange (MC-SCX) precolumn for direct analysis of drugs in plasma. MC-SCX consists of silica gel with a methylcellulose outer-surface and a 2-(4-sulfophenyl) ethyl phase inner-surface. The MC-SCX precolumn was evaluated by direct analysis using pyridoxine, atenolol and sulpiride spiked in plasma, using a column-switching HPLC system. Each drug was retained and enriched on MC-SCX using an acidic mobile phase, which resulted in good linearity, sufficient reproducibility, intra- and inter day precision, and accuracy in analytical ion-pair LC with trifluoroacetic acid. The analytical methods for model drugs were applied to pharmacokinetics of atenolol and sulpiride in rats.

  5. Effects of Methylcellulose on Cellulolytic Bacteria Attachment and Rice Straw Degradation in the In vitro Rumen Fermentation

    PubMed Central

    Sung, Ha Guyn; Kim, Min Ji; Upadhaya, Santi Devi; Ha, Jong K.; Lee, Sung Sill

    2013-01-01

    An in vitro experiment was conducted to evaluate the effect of methylcellulose on the attachment of major cellulolytic bacteria on rice straw and its digestibility. Rice straw was incubated with ruminal mixture with or without 0.1% methylcellulose (MC). The attachment of F. succinogenes, R. flavefaciens and R. albus populations on rice straw was measured using real-time PCR with specific primer sets. Methylcellulose at the level of 0.1% decreased the attachment of all three major cellulolytic bacteria. In particular, MC treatment reduced (p<0.05) attachment of F. succinogenes on rice straw after 10 min of incubation while a significant reduction (p<0.05) in attachment was not observed until 4 h incubation in the case of R. flavefaciens and R. albus. This result indicated F. succinogenes responded to MC more sensitively and earlier than R. flavefaciens and R. albus. Dry matter digestibility of rice straw was subsequently inhibited by 0.1% MC, and there was a significant difference between control and MC treatment (p<0.05). Incubated cultures containing MC had higher pH and lower gas production than controls. Current data clearly indicated that the attachment of F. succinogenes, R. flavefaciens and R. albus on rice straw was inhibited by MC, which apparently reduced rice straw digestion. PMID:25049909

  6. Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication.

    PubMed

    Altomare, Lina; Cochis, Andrea; Carletta, Andrea; Rimondini, Lia; Farè, Silvia

    2016-05-01

    Methylcellulose (MC), a water-soluble polymer derived from cellulose, was investigated as a possible temporary substrate having thermo-responsive properties favorable for cell culturing. MC-based hydrogels were prepared by a dispersion technique, mixing MC powder (2, 4, 6, 8, 10, 12 % w/v) with selected salts (sodium sulphate, Na2SO4), sodium phosphate, calcium chloride, or phosphate buffered saline, to evaluate the influence of different compositions on the thermo-responsive behavior. The inversion test was used to determine the gelation temperatures of the different hydrogel compositions; thermo-mechanical properties and thermo-reversibility of the MC hydrogels were investigated by rheological analysis. Gelation temperatures and rheological behavior depended on the MC concentration and type and concentration of salt used in hydrogel preparation. In vitro cytotoxicity tests, performed using L929 mouse fibroblasts, showed no toxic release from all the tested hydrogels. Among the investigated compositions, the hydrogel composed of 8 % w/v MC with 0.05 M Na2SO4 had a thermo-reversibility temperature at 37 °C. For that reason, this formulation was thus considered to verify the possibility of inducing in vitro spontaneous detachment of cells previously seeded on the hydrogel surface. A continuous cell layer (cell sheet) was allowed to grow and then detached from the hydrogel surface without the use of enzymes, thanks to the thermo-responsive behavior of the MC hydrogel. Immunofluorescence observation confirmed that the detached cell sheet was composed of closely interacting cells.

  7. Antimicrobial and Antioxidant Activity of Chitosan/Hydroxypropyl Methylcellulose Film-Forming Hydrosols Hydrolyzed by Cellulase

    PubMed Central

    Zimoch-Korzycka, Anna; Bobak, Łukasz; Jarmoluk, Andrzej

    2016-01-01

    The aim of this study was to evaluate the impact of cellulase (C) on the biological activity of chitosan/hydroxypropyl methylcellulose (CH/HPMC) film-forming hydrosols. The hydrolytic activity of cellulase in two concentrations (0.05% and 0.1%) was verified by determination of the progress of polysaccharide hydrolysis, based on viscosity measurement and reducing sugar-ends assay. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging effect, the ferric reducing antioxidant power (FRAP), and microbial reduction of Pseudomonas fluorescens, Yersinia enterocolitica, Bacillus cereus, and Staphylococcus aureus were studied. During the first 3 h of reaction, relative reducing sugar concentration increased progressively, and viscosity decreased rapidly. With increasing amount of enzyme from 0.05% to 0.1%, the reducing sugar concentration increased, and the viscosity decreased significantly. The scavenging effect of film-forming solutions was improved from 7.6% at time 0 and without enzyme to 52.1% for 0.1% cellulase after 20 h of reaction. A significant effect of cellulase addition and reaction time on antioxidant power of the tested film-forming solutions was also reported. Film-forming hydrosols with cellulase exhibited a bacteriostatic effect on all tested bacteria, causing a total reduction. PMID:27608008

  8. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    PubMed Central

    Lee, Wonjae; Park, Jon

    2016-01-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues. PMID:27381562

  9. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds.

    PubMed

    Lee, Wonjae; Park, Jon

    2016-07-06

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues.

  10. Effect of hydroxypropyl methylcellulose and hydrogenated castor oil on naproxen release from sustained-release tablets.

    PubMed

    Amaral, M H; Lobo, J M; Ferreira, D C

    2001-04-09

    The effect of the concentration of hydrophilic (hydroxypropyl methylcellulose [HPMC]) and hydrophobic (hydrogenated castor oil [HCO]) products, fillers (lactose and dibasic calcium phosphate), and buffers (sodium bicarbonate, calcium carbonate, and sodium citrate) on naproxen release rate was studied. Matrix tablets were prepared by double compression, and in vitro dissolution tests were performed. The dissolution results showed that an increased amount of HPMC or hydrogenated castor oil resulted in reduced drug release. The inclusion of buffers in the HPMC matrix tablets enhanced naproxen release. For HCO tablets, only sodium bicarbonate enhanced naproxen release. The presence of lactose on HPMC matrix tablets did not show a significantly different result from that obtained with the formulation containing dibasic calcium phosphate as a filler. However, for the tablets containing HCO, the presence of lactose significantly enhanced the naproxen release rate. The matrix-forming materials in this study were suitable for use in sustained-release tablets containing naproxen. The drug release can be modulated by adding suitable amounts of diluents and buffers.

  11. Estimation of the critical quality attributes for hydroxypropyl methylcellulose with near-infrared spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Guo, Qingli; Nie, Lei; Li, Lian; Zang, Hengchang

    2017-04-01

    With the implementation of quality by design (QbD), critical attributes of raw material (drug substance and excipients) are of significantly importance in pharmaceutical manufacturing process. It is desirable for the quality control of critical material attributes (CMAs) of excipients to ensure the quality of end product. This paper explored the feasibility of an at-line method for the quantitative analysis of hydroxypropoxy group in hydroxypropyl methylcellulose (HPMC) with near infrared spectroscopy (NIRS). Hydroxypropoxy group content can be seen as a CMA of HPMC for quality control. The partial least squares (PLS) model was built with 61 samples including 47 samples as calibration set, 14 samples as validation set by sample set partitioning based on joint x-y distances (SPXY) method. Multiplicative scattering correction (MSC) combined with Savitzkye-Golay (SG) smoothing with first derivative was used as the appropriate pretreatment method. Three variable selection methods including interval partial least-squares (iPLS), competitive adaptive reweighted Sampling (CARS), and the combination of the two methods (iPLS-CARS) were performed for optimizing the model. The results indicated that NIRS could predict rapidly and effectively the content of hydroxypropoxy group in HPMC. NIRS could be a potential method for the quality control of CMAs.

  12. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    NASA Astrophysics Data System (ADS)

    Lee, Wonjae; Park, Jon

    2016-07-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues.

  13. Sol-Gel Behavior of Hydroxypropyl Methylcellulose (HPMC) in Ionic Media Including Drug Release

    PubMed Central

    Joshi, Sunil C.

    2011-01-01

    Sol-gel transformations in HPMC (hydroxypropyl methylcellulose) are being increasingly studied because of their role in bio-related applications. The thermo-reversible behavior of HPMC is particularly affected by its properties and concentration in solvent media, nature of additives, and the thermal environment it is exposed to. This article contains investigations on the effects of salt additives in Hofmeister series on the HPMC gelation. Various findings regarding gelation with salt ions as well as with the ionic and non-ionic surfactants are presented. The gel formation in physiological salt fluids such as simulated gastric and intestine fluids is also examined with the interest in oral drug delivery systems. The processes of swelling, dissolution and dispersion of HPMC tablets in simulated bio-fluids are explored and the release of a drug from the tablet affected by such processes is studied. Explanations are provided based on the chemical structure and the molecular binding/association of HPMC in a media. The test results at the body or near-body temperature conditions helped in understanding the progress of the gelation process within the human body environment. The detailed interpretation of various molecule level interactions unfolded the sol-gel mechanisms and the influence of a few other factors. The obtained test data and the established mathematical models are expected to serve as a guide in customizing applications of HPMC hydrogels. PMID:28824113

  14. Aggregation and network formation in aqueous methylcellulose near the sol-gel transition

    NASA Astrophysics Data System (ADS)

    Arvidson, Sara; McAllister, John; Lott, Joseph; Bates, Frank; Lodge, Timothy

    2012-02-01

    Methylcellulose (MC) is a semi-flexible polymer which can be soluble in water at low temperatures, depending on the average number of methyoxyl groups on each repeat unit. Upon heating, soluble MCs pass through a lower critical solution temperature (LCST) and undergo thermoreversible gelation, which is well described by Winter-Chambon critical gelation theory. The relaxation exponent (n) exhibits a smooth variation with concentration, approaching n = 1 at low concentration and n = 0.5 high concentration. We selected a set of commercial MC for materials with similar degrees of substitution, but known for their significant variations in gelation temperature in water. MCs which gel at higher temperatures also exhibit a plateau in elastic modulus at low frequencies, which indicates two relevant length scales coexist just below the gel point. Scattering experiments (static, dynamic, and small angle x-ray and neutron) are compared to rheological measurements to reveal the MC chain structures and aggregation associated with phase separation and gelation and enable a mechanistic understanding of these phenomena.

  15. Preparation and Characterization of Hydroxypropyl Methylcellulose/Polycarbophil Mucoadhesive Blend Films Using a Mixture Design Approach.

    PubMed

    Kraisit, Pakorn; Limmatvapirat, Sontaya; Nunthanid, Jurairat; Sriamornsak, Pornsak; Luangtana-Anan, Manee

    2017-03-01

    The objectives of this study were to prepare the hydroxypropyl methylcellulose (HPMC)/polycarbophil (PC) mucoadhesive blend film and to investigate the main and interaction effect of HPMC and PC mixtures on the physicochemical and mechanical properties of blend films using a simplex lattice mixture design approach. The cubic and quadratic models were selected to analyze mucoadhesive properties in terms of work of adhesion and maximum detachment force, respectively. It was shown that HPMC/PC blend film had higher mucoadhesive properties than pure HPMC film. The suitable models for analyzing swelling index of blend films at various times were assessed. The puncture strength, % elongation and hydrophilicity of films were also examined. The pure HPMC film displayed more homogeneous and smoother structures compared with the blend film, as observed by scanning electron microscope and atomic force microscopy. Intermolecular hydrogen bonding between HPMC and PC was detected using Fourier transform infrared and X-ray diffraction. Therefore, the blend film shows high potential for use as a buccal delivery system.

  16. Photochromic Properties of Tungsten Oxide/Methylcellulose Composite Film Containing Dispersing Agents.

    PubMed

    Yamazaki, Suzuko; Ishida, Hiroki; Shimizu, Dai; Adachi, Kenta

    2015-12-02

    Tungsten oxide-based photochromic films which changed reversibly in air between colorless- transparent in the dark and dark blue under UV irradiation were prepared by using methylcellulose as a film matrix and polyols such as ethylene glycol (EG), propylene glycol (PG), and glycerin (Gly) as dispersing agents. Influence of the dispersing agents and water in the films on the photochromic behavior was systematically studied. Under UV irradiation, absorption bands around 640 and 980 nm increased and the coloring rate was the following order: Gly > EG > PG. An increase in the amounts of dispersing agents or water accelerated the coloring rate. By increasing the water content of the film, a new absorption peak appeared at ca. 775 nm and the Raman spectra indicated a shift of W-O-W stretching vibration to lower wavenumber which was due to the formation of hydrogen bonding. All absorption spectra were fit by three Lorentz functions, whose bands were ascribed to various packing of WO6 octahedra. After the light was turned off, the formation of W(5+) was stopped and bleaching occurred by the reaction with O2 in air to recover its original transparent state. We anticipate that the biodegradable photochromic films developed in this study can be applied in recyclable display medium and especially in detachable films for glass windows whose light transmission properties are changed by sunlight, i.e., for usage as an alternative of smart windows without applying voltage.

  17. Synergistic effect of salt mixture on the gelation temperature and morphology of methylcellulose hydrogel.

    PubMed

    Bain, Mrinal Kanti; Bhowmick, Biplab; Maity, Dipanwita; Mondal, Dibyendu; Mollick, Md Masud Rahaman; Rana, Dipak; Chattopadhyay, Dipankar

    2012-12-01

    Gelation temperature of methylcellulose (MC) can be altered by adding different additives. Pure MC showed sol-gel transition at 60°C. Sodium citrate and sodium tartrate were used alone and in combination to see the effect of individual salt and combination of salts on the gelation temperature of MC. The gelation temperature of all the binary and ternary combinations of MC and salts were measured with different methods such as test tube tilting method (TTM), UV-vis spectroscopy, viscometry, and by rheometer and also the morphology of gels were characterized with the help of environmental scanning electron microscopy (ESEM). It was observed that when 0.1 M sodium citrate (NaC) and 0.1 M sodium tartrate (NaT) were used separately, the gelation temperature of MC was reduced up to 44°C and 47°C respectively but when mixture of NaC and NaT (0.1 (M) NaC and 0.1 (M) (NaT)) were used the gelation temperature was further reduced to 36°C. It was clear from ESEM images that when NaC and NaT were used separately the formation of network was not distinguishable. But, well-connected network structure was observed when a mixture 0.1 M NaC and 0.1 M NaT was used.

  18. Development and evaluation of wound healing hydrogels based on a quinolone, hydroxypropyl methylcellulose and biodegradable microfibres.

    PubMed

    Agubata, Chukwuma O; Okereke, Chiadikaobi; Nzekwe, Ifeanyi T; Onoja, Remigius I; Obitte, Nicholas C

    2016-06-30

    Ofloxacin is a synthetic antibiotic of the fluoroquinolone class, with activity against gram-positive and gram-negative bacteria. Wound healing involves a complex interaction of cells and processes which can be improved using appropriate wound- dressing materials. The aim of the present study was to develop and evaluate wound healing hydrogels containing hydroxypropyl methylcellulose (HPMC), ofloxacin and biodegradable microfibres from surgical sutures. The hydrogels were formulated by air-drying mixtures of dilute dispersions of micronized sutures (polyglycolic acid, Vicryl® and catgut), ofloxacin and HPMC gel. The prepared hydrogels were evaluated for gel fraction, swelling capacity, breaking elongation, particle size and morphology, and chemical interactions. Furthermore, in vivo wound healing activities were studied in rats using excision wound model and histological examination. The percentage gel fraction was ≥50% in all the batches, the percentage swelling ratio was within the range of 531.8-1700% and the percentage breaking elongation was found to be in the range of 70-120%. The chemical interaction studies using Fourier Transform Infra Red (FTIR) spectroscopy showed that there was no interaction between the drug and excipients used. Ofloxacin-loaded hydrogels containing dilute microfibres of the sutures showed 95% wound size reduction after fourteen days. These formulations also caused high collagen deposition after twenty one days of wounding, with minimal scar formation. Ofloxacin hydrogels containing HPMC and micronized suture fibres can be applied for effective wound healing. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Fluorescence study on the aggregation of collagen molecules in acid solution influenced by hydroxypropyl methylcellulose.

    PubMed

    Ding, Cuicui; Zhang, Min; Li, Guoying

    2016-01-20

    The effect of hydroxypropyl methylcellulose (HPMC) on the aggregation of collagen molecules with collagen concentrations of 0.25, 0.5 and 1.0mg/mL was studied by fluorescence techniques. On one hand, both the synchronous fluorescence spectra and fluorescence emission spectra showed that there was no change in the fluorescence intensity of collagen intrinsic fluorescence when 30% HPMC was added, while it decreased obviously when HPMC content ≥ 50%. From the two-dimensional fluorescence correlation analysis, it was indicated that collagen molecules in 0.25 and 0.5mg/mL collagen solutions were more sensitive to HPMC than those in 1.0mg/mL collagen solution. On the other hand, the pyrene fluorescence and the fluorescence anisotropy measurements indicated that HPMC inhibited the collagen aggregation for 0.25 and 0.5mg/mL collagen, but promoted it for 1.0mg/mL collagen. The atomic force microscopy images further confirmed the effect of HPMC on collagen with different initial states.

  20. Effect of plasticizer on drug crystallinity of hydroxypropyl methylcellulose matrix film.

    PubMed

    Panda, Brajabihari; Parihar, Aditi Singh; Mallick, Subrata

    2014-06-01

    Effect of different hydrophilic plasticizers on drug crystallinity of hydroxypropyl methylcellulose (HPMC) matrix film was studied. HPMC films containing telmisartan using different plasticizers were prepared by casting method. Drug crystallinity in the films was examined using polarized light microscopy (PLM), scanning electron microscopy (SEM), and x-ray diffractometry (XRD) to describe their phase behavior/solid state miscibility/crystal growth and drug-polymer-plasticizer interaction. HPMC and plasticizer were compatible with the drug and no phase separation was observed upon solvent evaporation. Plasticized-HPMC contributed a major role in the significant inhibition of crystal growth of the drug in the film. The triethanolamine film produced a relatively smooth surface in comparison to the other films in the submicron level. The films have not shown any significant changes even after exposure to stress (40°C/75% RH, 6 w). Triethanolamine as plasticizer brought about amorphization of telmisartan to the maximum extent in the film which is technologically more advantageous than the others owing to its anticipated better bioavailability.

  1. Physical stability and enthalpy relaxation of drug-hydroxypropyl methylcellulose phthalate solvent change co-precipitates.

    PubMed

    Sertsou, Gabriel; Butler, James; Hempenstall, John; Rades, Thomas

    2003-01-01

    The poorly water-soluble drug GWX was co-precipitated with hydroxypropyl methylcellulose phthalate (HPMCP) using a solvent change method. The two co-precipitate formulations made, with drug-HPMCP ratios of 2:8 and 5:5, were analysed using modulated temperature differential scanning calorimetry. They were found to consist of completely amorphous solid solution and a mixture of amorphous solid solution, crystalline drug and amorphous drug, respectively. Stability with respect to crystallization of the two co-precipitates and pure amorphous drug made by quench cooling was compared by storing preparations at 25 degrees C and 40 degrees C, under vacuum over P(2)O(5), and at 75% relative humidity (r.h.). Humidity (75% r.h. compared with dry) had a larger influence on crystallization of the amorphous drug than temperature (25 degrees C compared with 40 degrees C). The solid solution phase in co-precipitates had a relatively higher stability than amorphous drug alone, with respect to crystallization, in presence of the plasticizer water, and crystalline drug. These findings were partly explained by evidence of decreased molecular mobility in the amorphous solid solution with respect to amorphous drug alone, using enthalpy relaxation measurements. At an ageing temperature of 65 degrees C, the calculated half-life for enthalpy relaxation of the 2:8 drug-HPMCP ratio coprecipitate was about 6 orders of magnitude greater than that of amorphous drug alone, indicating a large difference in relative molecular mobility.

  2. Reviewing the use of ethylcellulose, methylcellulose and hypromellose in microencapsulation. Part 3: Applications for microcapsules.

    PubMed

    Rogers, True L; Wallick, Dave

    2012-05-01

    This three-part review has been developed following the evaluation of literature where ethylcellulose, methylcellulose, or hypromellose was used to make microcapsules. Parts 1 and 2 of the review are published in separate papers. Part 1 covers the various materials used to formulate microcapsules, and Part 2 covers the various techniques used to make microcapsules. In the current paper, Part 3 covers the end-use applications for which microcapsules are used. Examples of applications to be covered include modified release, improved efficacy and safety, multiparticulate compression, improved processability and stability, and taste- and odor-masking. It is hoped that formulators can use Part 3 to understand the various end-use applications of microcapsules made from these encapsulating polymers. SciFinder was utilized to perform the literature search. SciFinder leverages literature databases, such as Chemical Abstracts Service Registry and Medline. A total of 379 references were identified during the review. The need for a three-part review reflects the extensive amount of literature identified concerning these three encapsulating polymers.

  3. Developing hydroxypropyl methylcellulose/hydroxypropyl starch blends for use as capsule materials.

    PubMed

    Zhang, Liang; Wang, Yanfei; Liu, Hongsheng; Yu, Long; Liu, Xingxun; Chen, Ling; Zhang, Nouzi

    2013-10-15

    Blends of hydroxypropyl methylcellulose (HPMC) with up to 70% hydroxypropyl starch (HPS) were developed for use as hard capsule materials. Polyethylene glycol (PEG) was used as both a plasticizer and a compatibilizer in the blends. In order to prepare hard capsules for pharmaceutical application using the well-established method of dipping stainless steel mold pins into solution then drying at certain temperature, equilibrated solutions with higher solids concentration (20%) were investigated and developed. The solutions, films and capsules of the different HPMC/HPS blends were characterized by viscosity, transparency, tensile testing, water contact angle, SEM, as well as FTIR. The results showed that the blend system is immiscible but compatible in certain degree, especially after adding PEG. The hydroxypropylene groups grafted onto both cellulose and starch improved the compatibility between the HPMC and the modified starch. The higher viscosity of starch at lower temperature improved the viscosity balance of the system, which enlarged the operation window for the dipping-drying technique. The PEG increased the transparency and toughness of the various blends. By optimizing temperature and incubation time to control viscosity, capsules of various blends were successfully developed.

  4. Co-processing of hydroxypropyl methylcellulose (HPMC) for improved aqueous dispersibility.

    PubMed

    Sharma, Payal; Modi, Sameer R; Bansal, Arvind K

    2015-05-15

    Hydroxypropyl methylcellulose (HPMC), a widely employed film coating polymer, exhibits poor dispersibility in an aqueous medium. Rapid hydration leading to swelling and coherent gel formation is reported to be responsible for this problem. Present study focuses on the use of spray drying based approach for co-processing of HPMC to improve its dispersibility. Dispersion behavior of native HPMC showed formation of large lumps that did not dissolve completely for 40min. However, HPMC co-processed with lactose and sodium chloride exhibited improvement in dispersibility with complete dissolution attained within 20min. Mechanistic insights into improved dispersibility were obtained using contact angle studies, confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM) and scanning TEM (STEM) studies. Co-processed products exhibited higher immersional wetting as determined by sessile drop contact angle technique, which indicated spontaneous incursion of water. CLSM study revealed highly swollen and erodible gel in co-processed products. Novel application of TEM and STEM techniques was developed to understand the nature of mixing achieved during co-processing. Overall the improvement in dispersibility of co-processed products was predominantly due to the alteration in sub-particulate level properties during co-processing. The effect of excipients on the film properties of HPMC, like tensile strength and hygroscopicity, was also assessed. This study provides the comprehensive understanding of role of co-processing on improvement of dispersion behavior of HPMC and helps in the selection of suitable excipients for the same.

  5. Characterization and antimicrobial properties of food packaging methylcellulose films containing stem extract of Ginja cherry.

    PubMed

    Campos, Débora; Piccirillo, Clara; Pullar, Robert C; Castro, Paula Ml; Pintado, Maria M E

    2014-08-01

    Food contamination and spoilage is a problem causing growing concern. To avoid it, the use of food packaging with appropriate characteristics is essential; ideally, the packaging should protect food from external contamination and exhibit antibacterial properties. With this aim, methylcellulose (MC) films containing natural extracts from the stems of Ginja cherry, an agricultural by-product, were developed and characterized. The antibacterial activity of films was screened by the disc diffusion method and quantified using the viable cell count assay. The films inhibited the growth of both Gram-positive and Gram-negative strains (Listeria innocua, methicillin-sensitive Staphylococcus aureus, methicillin-resistant S. aureus, Salmonella Enteritidis, Escherichia coli). For the films with lower extract content, effectiveness against the microorganisms depended on the inoculum concentration. Scanning electron microscope images of the films showed that those containing the extracts had a smooth and continuous structure. UV-visible spectroscopy showed that these materials do not transmit light in the UV. This study shows that MC films containing agricultural by-products, in this case Ginja cherry stem extract, could be used to prevent food contamination by relevant bacterial strains and degradation by UV light. Using such materials in food packaging, the shelf life of food products could be extended while utilizing an otherwise wasted by-product. © 2013 Society of Chemical Industry.

  6. Injectable redox-polymerized methylcellulose hydrogels as potential soft tissue filler materials.

    PubMed

    Gold, Gittel T; Varma, Devika M; Harbottle, David; Gupta, Michelle S; Stalling, Simone S; Taub, Peter J; Nicoll, Steven B

    2014-12-01

    There is a significant clinical need for long-lasting, injectable materials for soft tissue reconstruction. Methylcellulose (MC) is an FDA-approved polysaccharide derivative of cellulose that is inexpensive, renewable, and biocompatible, and may serve as an alternative to existing synthetic and natural fillers. In this study, MC was modified with functional methacrylate groups and polymerized using a redox-initiation system to produce hydrogels with tunable properties. By varying the percent methacrylation and macromer concentration, the equilibrium moduli of the hydrogels were found to range between 1.29 ± 0.46 and 12.8 ± 2.94 kPa, on par with human adipose tissue, and also displayed an inverse relationship to the swelling properties. Rheological analyses determined gelation onset and completion to be in accordance with the ISO standard for injectable materials. Cellulase enzymatic treatment resulted in complete degradation of the hydrogels by 48 h, presenting the possibility of minimally invasive removal of the materials in the event of malposition or host reaction. In addition, co-culture experiments with human dermal fibroblasts showed the gels to be cytocompatible based on DNA measurements and Live/Dead staining. Taken together, these redox-polymerized MC hydrogels may be of use for a wide range of clinical indications requiring soft tissue augmentation.

  7. Prolonged-release hydroxypropyl methylcellulose matrix tablets of furosemide for administration to dogs.

    PubMed

    Smal, J; Marvola, M; Liljequist, C; Happonen, I

    1996-12-01

    Furosemide is a problematic drug in a prolonged-release product because its absorption is site specific, taking place mainly in the upper parts of the alimentary tract. The aim of the study reported here was to develop prolonged-release furosemide formulations for dogs. The type of preparation selected was a hydroxypropyl methylcellulose (HPMC) matrix tablet. Evaluation was based on dissolution studies, on in vivo disintegration studies in the canine stomach and on bioavailability studies in Beagle dogs. The variables tested were the viscosity grade of the polymer, the amount of polymer and presence or absence of an alkaline compound (potassium carbonate) in the formulation. When potassium carbonate was included, furosemide was absorbed so slowly that drug administration once daily would give plateau drug plasma concentrations, even though the elimination half-life of furosemide is only about one hour. In vitro dissolution tests gave a wrong indication of the in vivo behaviour of the products. Thus, in vivo studies are important from the very beginning in the development of new drug products for dogs.

  8. Estimation of the critical quality attributes for hydroxypropyl methylcellulose with near-infrared spectroscopy and chemometrics.

    PubMed

    Guo, Qingli; Nie, Lei; Li, Lian; Zang, Hengchang

    2017-04-15

    With the implementation of quality by design (QbD), critical attributes of raw material (drug substance and excipients) are of significantly importance in pharmaceutical manufacturing process. It is desirable for the quality control of critical material attributes (CMAs) of excipients to ensure the quality of end product. This paper explored the feasibility of an at-line method for the quantitative analysis of hydroxypropoxy group in hydroxypropyl methylcellulose (HPMC) with near infrared spectroscopy (NIRS). Hydroxypropoxy group content can be seen as a CMA of HPMC for quality control. The partial least squares (PLS) model was built with 61 samples including 47 samples as calibration set, 14 samples as validation set by sample set partitioning based on joint x-y distances (SPXY) method. Multiplicative scattering correction (MSC) combined with Savitzkye-Golay (SG) smoothing with first derivative was used as the appropriate pretreatment method. Three variable selection methods including interval partial least-squares (iPLS), competitive adaptive reweighted Sampling (CARS), and the combination of the two methods (iPLS-CARS) were performed for optimizing the model. The results indicated that NIRS could predict rapidly and effectively the content of hydroxypropoxy group in HPMC. NIRS could be a potential method for the quality control of CMAs. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Hildebrand solubility parameter to predict drug release from hydroxypropyl methylcellulose gels.

    PubMed

    Bustamante, P; Navarro-Lupión, J; Peña, M A; Escalera, B

    2011-07-29

    An equation including the Hildebrand solubility parameter δ of the drugs is used for the first time to model drug release from hydroxypropyl methylcellulose (HPMC) gels: l nM = -21.578 + 2.102 δ-0.037 δ(2)+0.48 ln t + 1.028 ln C(i) (r(2) = 0.94 for a total of 286 cases). The experimentally determined release data of six drugs having different polarity (caffeine, theophylline, paracetamol, salicylic acid, naproxen and diclofenac) at several initial concentrations C(i) were included in the equation. In general, the amount of drug delivered is linear at the first 5-6h of the release profiles and the zero order constants K(o) increase as the solubility parameter of the drugs become larger. The Peppas exponential law M/M(∞) = Kt(n) is applicable to larger fractional release, until 67-87% (48-51 h) for the less polar drugs (diclofenac and naproxen, lower δ values) and more than 80% (26-28 h) for the more polar drugs (higher δ values, theophylline, salicylic acid, caffeine and paracetamol). The Peppas release rate (lnK) shows a parabolic relationship with the drug solubility parameter. The diffusional exponent n varies between 0.40 and 0.58 indicating that drug release is mainly controlled by diffusion. An extended form of the Peppas equation is also tested for each drug including all the initial concentrations: lnM = a + b ln t + c ln C(i) (r(2) = 0.88-0.94). The logarithm of the octanol-water partition coefficients can also be used in combination with the drug concentrations. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. HPMC (hydroxypropyl methylcellulose) as a fat replacer improves the physical properties of low-fat tofu.

    PubMed

    Shin, Woo-Kyoung; Wicker, Louise; Kim, Yookyung

    2017-08-01

    The effect of the addition of hydroxypropyl methylcellulose (HPMC) on the textural properties of low-fat tofu was investigated. Three fat levels (240, 100 and 30 g kg(-1) ) were used to make tofu, which were identified as C (full-fat tofu), L1 and L2. HPMC (5 g kg(-1) ) was added to soymilk to prepare control and low-fat tofu, designated as CH, L1H and L2H. Soymilk with a lower fat level had a lower viscosity: 143 (C), 100 (L1) and 42 (L2) cP. The addition of HPMC increased the viscosity of all types of soymilk, particularly in L2H (107 cP). With fat reduction, tofu syneresis increased from 19% (C) to 29% (L2), although syneresis of L2H recovered to 19%, which is similar to high-fat control tofu. Decreased fat resulted in a lower firmness in L2 (0.67 N) compared to control (0.78 N). Firmness increased to 1.08 N in L2H tofu, whereas the firmness of CH tofu was 0.63 N. All types of tofu showed a denser, well-connected and cross-linking structure when HPMC was added, especially in L2H tofu. HPMC improved the texture of the low-fat tofu by creating a harder texture and reducing syneresis. HPMC is an effective fat replacer for lower fat soymilk. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Human Adipose Tissue Derived Extracellular Matrix and Methylcellulose Hydrogels Augments and Regenerates the Paralyzed Vocal Fold

    PubMed Central

    Kim, Eun Na; Sung, Myung Whun; Kwon, Tack-Kyun; Cho, Yong Woo; Kwon, Seong Keun

    2016-01-01

    Vocal fold paralysis results from various etiologies and can induce voice changes, swallowing complications, and issues with aspiration. Vocal fold paralysis is typically managed using injection laryngoplasty with fat or synthetic polymers. Injection with autologous fat has shown excellent biocompatibility. However, it has several disadvantages such as unpredictable resorption rate, morbidities associated with liposuction procedure which has to be done in operating room under general anesthesia. Human adipose-derived extracellular matrix (ECM) grafts have been reported to form new adipose tissue and have greater biostability than autologous fat graft. Here, we present an injectable hydrogel that is constructed from adipose tissue derived soluble extracellular matrix (sECM) and methylcellulose (MC) for use in vocal fold augmentation. Human sECM derived from adipose tissue was extracted using two major steps—ECM was isolated from human adipose tissue and was subsequently solubilized. Injectable sECM/MC hydrogels were prepared by blending of sECM and MC. Sustained vocal fold augmentation and symmetric vocal fold vibration were accomplished by the sECM/MC hydrogel in paralyzed vocal fold which were confirmed by laryngoscope, histology and a high-speed imaging system. There were increased number of collagen fibers and fatty granules at the injection site without significant inflammation or fibrosis. Overall, these results indicate that the sECM/MC hydrogel can enhance vocal function in paralyzed vocal folds without early resorption and has potential as a promising material for injection laryngoplasty for stable vocal fold augmentation which can overcome the shortcomings of autologous fat such as unpredictable duration and morbidity associated with the fat harvest. PMID:27768757

  12. Internally self-assembled thermoreversible gelling emulsions: ISAsomes in methylcellulose, kappa-carrageenan, and mixed hydrogels.

    PubMed

    Tomsic, Matija; Guillot, Samuel; Sagalowicz, Laurent; Leser, Martin E; Glatter, Otto

    2009-08-18

    Self-assembled thermo-gelling emulsions were developed by blending internally self-assembled particles (ISAsomes) with thermoreversible polysaccharide hydrogels of methylcellulose (MC), kappa-carrageenan (KC), and their 1:1 mixture. In this way, the hierarchical structure of ISAsome samples was successfully promoted. The gelified polymer network corresponds to the highest level of the hierarchical structure and as such represents the capturing matrix for the medium structural level, i.e., dispersed emulsion particles, which are further internally structured as the lowest level of structure. Utilizing small-angle X-ray scattering, differential scanning calorimetry, dynamic light scattering, and oscillatory rheological experiments in the temperature regime from 20 to 70 degrees C, we were able to show that the ISAsomes stay practically intact during such embedment into a hydrogel matrix retaining its internal self-assembled structure and its functionality. The characteristic sol-gel and gel-sol transition temperatures of the ISAsome-loaded hydrogel samples showed a slight shift in comparison to the unloaded hydrogel samples. Furthermore, we found that MC is actually able to stabilize the ISAsomes at higher temperatures (tests were conducted up to 90 degrees C). Gels made from MC and KC show quite different features in terms of rheology and differential scanning calorimetry. However, the most interesting results were obtained for the ISAsome-loaded MC-KC (1:1) gelifying system, which behaves as a low- and high-temperature gel with a narrow intermediate temperature window where it is a sol. This specific thermal behavior allows for easy temperature tuning of the system's aggregate state as well as the internal self-assembled structure. As such, this system is suggested to be further tested as the potential media for a temperature-controlled burst/sustained release media of various hydrophilic, hydrophobic, or amphiphilic guest functional molecules.

  13. Chitosan-Hydroxypropyl Methylcellulose Matrices as Carriers for Hydrodynamically Balanced Capsules of Moxifloxacin HCl.

    PubMed

    Verma, Anurag; Dubey, Juhi; Verma, Navneet; Nayak, Amit Kumar

    2017-01-01

    In recent years, gastroretentive, hydrodynamically balanced system (HBS) for stomach-specific floating sustained drug release has gained a lot of importance in improving absorption of drugs especially those absorbed from stomach and small intestine. The objective of the current investigation is to evaluate chitosan-hydroxypropyl methylcellulose (HPMC) based on polymeric matrices as a carrier for single-unit capsules based on HBS for stomach- specific floating sustained drug release using moxifloxacin HCl (MX) as a model drug. Various HBS capsules of MX were prepared by physical blending of MX with chitosan (low or medium molecular mass) or HPMC (K4M or K15M) or chitosan-HPMC combinations in varying proportions followed by encapsulation into size 0 capsules made of hard gelatin. The in vitro buoyancy and drug release in 0.1 N HCl (pH 1.2) were evaluated. HBS capsules based on chitosan (low and medium molecular weight and their combination) as polymer matrix failed to float on 0.1 N HCl (pH 1.2). Whereas, formulations containing HPMC (K4M or K15M) or their mixture with chitosan, remained buoyant and released MX over 9 h in the acidic dissolution medium following zero-order kinetics. HPMC (K4M, K15M, blend of K4M and K15M) or their mixture with low/medium molecular mass chitosan may constitute excellent carrier systems for the stomach-specific sustained delivery of MX over a longer period. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Hydrophobic switching nature of methylcellulose ultra-thin films: thickness and annealing effects.

    PubMed

    Innis-Samson, Vallerie Ann; Sakurai, Kenji

    2011-11-02

    We have studied the thermosensitive property of methylcellulose (MC) thin films supported on Si substrate by static sessile drop contact angle measurements, and their surface properties and thin film structure by x-ray reflectivity (XRR) and atomic force microscopy (AFM) techniques. From the static sessile drop contact angle measurements, the MC thin films showed the characteristic hydrophilic-to-hydrophobic transition at ∼70 °C, which is the lower critical solution temperature of the bulk solution volume phase separation transition. For films with thickness d ≤ R(g), the onset of such a transition is affected by the film thickness while very thick films, d ≫ R(g), yielded higher contact angles. Annealing the MC thin films with thicknesses ∼200 Å (near the radius of gyration, R(g), of the polymer) below the bulk glass transition temperature (T(g) ∼ 195 ° C) would not change the hydrophobic switch nature of the film but annealing 'at' and above the bulk T(g) would change its surface property. From surface topography images by AFM, there were no significant changes in either the roughness or the film texture before and after annealing. With XRR data, we were able to determine that such changes in the surface properties are highly correlated to the film thickness changes after the annealing process. This study, we believe, is the first to examine the thermal annealing affects on the thermal response function of a thermoresponsive polymer and is important for researching how to tailor the hydrophobic switching property of MC thin films for future sensing applications.

  15. Effects of Methylcellulose on Fibrolytic Bacterial Detachment and In vitro Degradation of Rice Straw.

    PubMed

    Kim, Min Ji; Sung, Ha Guyn; Upadhaya, Santi Devi; Ha, Jong K; Lee, Sung Sill

    2013-10-01

    Two in vitro experiments were conducted to evaluate the effect of methylcellulose (MC) on i) bacterial detachment from rice straw as well as ii) inhibition of bacterial attachment and fiber digestibility. To evaluate the effect of MC on fibrolytic bacterial detachment (Exp 1), in vitro bacterial cultures with 0.1% (w/v) MC solution were compared with cultures without MC after 8 h incubation. The effect of MC on inhibition of bacterial attachment was determined by comparing with real-time PCR the populations of F. succinogenes, R. flavefaciens and R. albus established on rice straw pre-treated with 0.1% MC with those on untreated straw after incubation for 0, 6 and 12 h (Exp 2). The major fibrolytic bacterial attachment on rice straw showed significantly lower populations with either the addition of MC to the culture or pre-treated rice straw compared to controls (p<0.05). Also, the digestibility of rice straw with MC was significantly lower compared with control (p<0.05). The F. succinogenes population did not show detachment from rice straw, but showed an inhibition of attachment and proliferation on rice straw in accordance with a decrease of fiber digestion. The detachments of Ruminococcus species co-existed preventing the proliferations with subsequent reduction of fiber degradation by MC during the incubation. Their detachments were induced from stable colonization as well as the initial adhesion on rice straw by MC in in vitro ruminal fermentation. Furthermore, the detachment of R. albus was more sensitive to MC than was R. flavefaciens. These results showed the certain evidence that attachment of major fibrolytic bacteria had an effect on fiber digestion in the rumen, and each of fibrolytic bacteria, F. succinogenes, R. flavefaciens and R. albus had a specific mechanism of attachment and detachment to fiber.

  16. Effects of Methylcellulose on Fibrolytic Bacterial Detachment and In vitro Degradation of Rice Straw

    PubMed Central

    Kim, Min Ji; Sung, Ha Guyn; Upadhaya, Santi Devi; Ha, Jong K.; Lee, Sung Sill

    2013-01-01

    Two in vitro experiments were conducted to evaluate the effect of methylcellulose (MC) on i) bacterial detachment from rice straw as well as ii) inhibition of bacterial attachment and fiber digestibility. To evaluate the effect of MC on fibrolytic bacterial detachment (Exp 1), in vitro bacterial cultures with 0.1% (w/v) MC solution were compared with cultures without MC after 8 h incubation. The effect of MC on inhibition of bacterial attachment was determined by comparing with real-time PCR the populations of F. succinogenes, R. flavefaciens and R. albus established on rice straw pre-treated with 0.1% MC with those on untreated straw after incubation for 0, 6 and 12 h (Exp 2). The major fibrolytic bacterial attachment on rice straw showed significantly lower populations with either the addition of MC to the culture or pre-treated rice straw compared to controls (p<0.05). Also, the digestibility of rice straw with MC was significantly lower compared with control (p<0.05). The F. succinogenes population did not show detachment from rice straw, but showed an inhibition of attachment and proliferation on rice straw in accordance with a decrease of fiber digestion. The detachments of Ruminococcus species co-existed preventing the proliferations with subsequent reduction of fiber degradation by MC during the incubation. Their detachments were induced from stable colonization as well as the initial adhesion on rice straw by MC in in vitro ruminal fermentation. Furthermore, the detachment of R. albus was more sensitive to MC than was R. flavefaciens. These results showed the certain evidence that attachment of major fibrolytic bacteria had an effect on fiber digestion in the rumen, and each of fibrolytic bacteria, F. succinogenes, R. flavefaciens and R. albus had a specific mechanism of attachment and detachment to fiber. PMID:25049729

  17. Modeling Anisotropic Self-Assembly of Isotropic Objects: from Hairy Nanoparticles to Methylcellulose Fibrils

    NASA Astrophysics Data System (ADS)

    Ginzburg, Valeriy

    Spontaneous symmetry breaking and formation of anisotropic structures from apparently isotropic building blocks is an exciting and not fully understood topic. I will discuss two examples of such self-assembly. The first example is related to the assembly of ``hairy'' nanoparticles in homopolymer matrices. The particles can assemble into long strings (they can also form other morphologies, as well) even though the shape of each particle and the distribution of ligands on the particle surface is spherically symmetric. Using the approach developed by Thompson, Ginzburg, Matsen, and Balazs, we show that presence of other particles can re-distribute the ligands and effectively ``polarize'' the particle-particle interaction, giving rise to the formation of 1d particle strings. In the second example, we consider aqueous solutions of methylcellulose (MC) polymers. It has been shown recently that at high temperature, the polymers form high-aspect ratio ``fibrils'' with diameter ~15 nm and length in the hundreds on nanometers. Using coarse-grained Molecular Dynamics (CG-MD), we propose that the ``fibrils'' are result of one-dimensional self-assembly of single molecule ``rings''. Each MC polymer chain is forced into a ring because of the balance between internal chain rigidity (favoring more expanded configuration) and unfavorable polymer-water interactions (favoring more collapsed conformation). We also develop a theory predicting rheology and phase behavior of aqueous MC, and validate it against experimental data. Both examples show that anisotropic self-assembly can show up in unexpected places, and various theoretical tools are needed to successfully model it. Funded by The Dow Chemical Company through Grant 223278AF. Collaborators: R. L. Sammler (Dow), W. Huang and R. Larson (U. of Michigan).

  18. Miscibility of Itraconazole-Hydroxypropyl Methylcellulose Blends: Insights with High Resolution Analytical Methodologies.

    PubMed

    Purohit, Hitesh S; Taylor, Lynne S

    2015-12-07

    Drug-polymer miscibility is considered to be a prerequisite to achieve an optimally performing amorphous solid dispersion (ASD). Unfortunately, it can be challenging to evaluate drug-polymer miscibility experimentally. The aim of this study was to investigate the miscibility of ASDs of itraconazole (ITZ) and hydroxypropyl methylcellulose (HPMC) using a variety of analytical approaches. The phase behavior of ITZ-HPMC films prepared by solvent evaporation was studied before and after heating. Conventional methodology for miscibility determination, that is, differential scanning calorimetry (DSC), was used in conjunction with emerging analytical techniques, such as fluorescence spectroscopy, fluorescence imaging, and atomic force microscopy coupled with nanoscale infrared spectroscopy and nanothermal analysis (AFM-nanoIR-nanoTA). DSC results showed a single glass transition event for systems with 10% to 50% drug loading, suggesting that the ASDs were miscible, whereas phase separation was observed for all of the films based on the other techniques. The AFM-coupled techniques indicated that the phase separation occurred at the submicron scale. When the films were heated, it was observed that the ASD components underwent mixing. The results provide new insights into the phase behavior of itraconazole-HPMC dispersions and suggest that the emerging analytical techniques discussed herein are promising for the characterization of miscibility and microstructure in drug-polymer systems. The observed differences in the phase behavior in films prepared by solvent evaporation before and after heating also have implications for processing routes and suggest that spray drying/solvent evaporation and hot melt extrusion/melt mixing can result in ASDs with varying extent of miscibility between the drug and the polymer.

  19. Hydroxypropylmethylcellulose and methylcellulose consumption reduce postprandial insulinemia in overweight and obese men and women.

    PubMed

    Maki, Kevin C; Carson, Michael L; Miller, Marvin P; Turowski, Maciej; Bell, Marjorie; Wilder, Donna M; Rains, Tia M; Reeves, Matthew S

    2008-02-01

    Hydroxypropylmethylcellulose (HPMC) and methylcellulose (MC) are modified cellulose dietary fibers that generate viscous solutions in the gastrointestinal (GI) tract. This study assessed the effects of high viscosity (HV) HPMC, ultra-HV (UHV) HPMC, and medium viscosity MC on postprandial glucose and insulin responses in overweight and obese men and women (n = 50). After overnight fasts, subjects consumed 5 breakfast meals containing 75 g carbohydrate, each of which contained 1 of the following: 1 g HV-HPMC, 2 g HV-HPMC, 2 g UHV-HPMC, 4 g medium-viscosity MC or control (2 g cellulose). Test sequence was randomized and double-blind, except the MC test, which was last and single-blind (46 subjects completed all 5 tests). Glucose and insulin responses were determined pre-meal and for 120 min postprandially. Median (interquartile limits) peak glucose concentration was lower (P = 0.001) after the meal containing 2.0 g UHV-HPMC (7.1, 6.3-8.2 mmol/L) compared with the control meal (7.7, 6.6-8.7 mmol/L). The control did not differ from the other conditions for peak glucose or for any of the HPMC/MC conditions for glucose incremental areas under the curves (IAUC). Peak insulin was reduced (P < 0.05) for all HPMC/MC conditions compared with control. Insulin IAUC was lower than control (P < 0.001) after meals containing 2 g HV-HPMC, 2 g UHV-HPMC, and 4 g MC. GI symptoms did not differ among treatments. These findings indicate that HV-HPMC (1 and 2 g), UHV-HPMC (2 g), and MC (4 g) consumption reduced postprandial insulin excursions consistent with delayed glucose absorption.

  20. Structure and properties of aqueous methylcellulose gels by small-angle neutron scattering.

    PubMed

    Chatterjee, Tirtha; Nakatani, Alan I; Adden, Roland; Brackhagen, Meinolf; Redwine, David; Shen, Hongwei; Li, Yongfu; Wilson, Tricia; Sammler, Robert L

    2012-10-08

    Cold, semidilute, aqueous solutions of methylcellulose (MC) are known to undergo thermoreversible gelation when warmed. This study focuses on two MC materials with much different gelation performance (gel temperature and hot gel modulus) even though they have similar metrics of their coarse-grained chemical structure (degree-of-methylether substitution and molecular weight distribution). Small-angle neutron scattering (SANS) experiments were conducted to probe the structure of the aqueous MC materials at pre- and postgel temperatures. One material (MC1, higher gel temperature) exhibited a single almost temperature-insensitive gel characteristic length scale (ζ(c) = 1090 ± 50 Å) at postgelation temperatures. This length scale is thought to be the gel blob size between network junctions. It also coincides with the length scale between entanglement sites measured with rheology studies at pregel temperatures. The other material (MC2, lower gel temperature) exhibited two distinct length scales at all temperatures. The larger length scale decreased as temperature increased. Its value (ζ(c1) = 1046 ± 19 Å) at the lowest pregel temperature was indistinguishable from that measured for MC1, and reached a limiting value (ζ(c1) = 450 ± 19 Å) at high temperature. The smaller length scale (ζ(c2) = 120 to 240 Å) increased slightly as temperature increased, but remained on the order of the chain persistence length (130 Å) measured at pregel temperatures. The smaller blob size (ζ(c1)) of MC2 suggests a higher bond energy or a stiffer connectivity between network junctions. Moreover, the number density of these blobs, at the same reduced temperature with respect to the gel temperature, is orders of magnitude higher for the MC2 gels. Presumably, the smaller gel length scale and higher number density lead to higher hot gel modulus for the low gel temperature material.

  1. Temperature effect on water desorption from methylcellulose films studied by thermal FT-IR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Shan-Yang; Wang, Shun-Li; Wei, Yen-Shan; Li, Mei-Jane

    2007-02-01

    Temperature-induced desorption behavior of water from methylcellulose (MC) film was investigated by a novel microscopic Fourier transform infrared (FT-IR) spectroscopy equipped with thermal analyzer (thermal FT-IR microscopic system) and thermogravimetric analysis (TGA). The result indicates that the weight loss of water from MC film was markedly correlated to the IR spectral changes of OH stretching (3000-3800 cm -1) and bending (1649 cm -1) modes of water molecules. The shift of OH stretching mode from 3461 to 3481 cm -1 was accompanied with the water loss from MC film induced by temperature effect. Two stages of water desorption from MC film were proposed: the first stage within the 35-65 °C had a dramatic IR peak shift from 3461 to 3477 cm -1 and accompanied with a largest weight loss of water from MC film, which might be mainly due to the desorption of free water with minor weakly hydrogen-bonded water; the second stage beyond 65 °C would be desorption of moderately hydrogen-bonded bound water, due to the gradual IR spectral shift from 3477 to 3481 cm -1 and a slower weight loss of water from MC film. The changes in peak area ratio of 1649 cm -1/1374 cm -1 with the temperature also confirmed the IR spectral peak shift of the OH stretching mode via the water loss from MC film. The temperature-dependent dissociation of intermolecular and intramolecular hydrogen bonds within water molecules and/or between water/MC interaction might be responsible for the desorption kinetics of water from MC film.

  2. Hydrophobic switching nature of methylcellulose ultra-thin films: thickness and annealing effects

    NASA Astrophysics Data System (ADS)

    Innis-Samson, Vallerie Ann; Sakurai, Kenji

    2011-11-01

    We have studied the thermosensitive property of methylcellulose (MC) thin films supported on Si substrate by static sessile drop contact angle measurements, and their surface properties and thin film structure by x-ray reflectivity (XRR) and atomic force microscopy (AFM) techniques. From the static sessile drop contact angle measurements, the MC thin films showed the characteristic hydrophilic-to-hydrophobic transition at ˜70 °C, which is the lower critical solution temperature of the bulk solution volume phase separation transition. For films with thickness d ≤ Rg, the onset of such a transition is affected by the film thickness while very thick films, d ≫ Rg, yielded higher contact angles. Annealing the MC thin films with thicknesses ˜200 Å (near the radius of gyration, Rg, of the polymer) below the bulk glass transition temperature (Tg ˜ 195 ° C) would not change the hydrophobic switch nature of the film but annealing ‘at’ and above the bulk Tg would change its surface property. From surface topography images by AFM, there were no significant changes in either the roughness or the film texture before and after annealing. With XRR data, we were able to determine that such changes in the surface properties are highly correlated to the film thickness changes after the annealing process. This study, we believe, is the first to examine the thermal annealing affects on the thermal response function of a thermoresponsive polymer and is important for researching how to tailor the hydrophobic switching property of MC thin films for future sensing applications.

  3. Effect of methylcellulose on the formation and drug release behavior of silk fibroin hydrogel.

    PubMed

    Park, Cho Hee; Jeong, Lim; Cho, Donghwan; Kwon, Oh Hyeong; Park, Won Ho

    2013-10-15

    In this study, methylcellulose (MC) was used to control the gelation time of silk fibroin (SF) aqueous solution. The gelation time was measured using a Vibro Viscometer at 50 °C. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and a texture meter were used to investigate the effect of MC on the hydrogelation of SF solution. SF/MC hydrogels could be formed by the addition of MC, although their gelation time was increased with MC content. To examine the conformational change of SF/MC hydrogels, time-resolved FT-IR spectra were obtained at constant temperature using a custom-made IR chamber. From FT-IR spectra focused on the amide I peak position, the transition of SF molecules in SF/MC solution from a random coil to a β-sheet structure was inhibited in the presence of MC molecules. In addition, the drug release of SF/MC hydrogels loaded with 5-aminosalicylic acid was studied in 2-dimensional (2-D) and 3-dimensional (3-D) conditions in vitro. The drug release behavior of SF or SF/MC hydrogels was measured using UV-Vis spectroscopy. The release rate of 5-aminosalicylic acid in SF/MC hydrogel was lower than that of SF hydrogel, which may be closely associated with the hydrophilic interaction between MC and 5-aminosalicylic acid. This approach to controlling the sol-gel transition and the drug release of SF hydrogels by the addition of MC will be useful in the design and tailoring of novel materials for biomedical applications.

  4. Dietary hydroxypropyl methylcellulose increases excretion of saturated and trans fats by hamsters fed fast food diets.

    PubMed

    Yokoyama, Wallace; Anderson, William H K; Albers, David R; Hong, Yun-Jeong; Langhorst, Marsha L; Hung, Shao-Ching; Lin, Jiann-Tsyh; Young, Scott A

    2011-10-26

    In animal studies, hydroxypropyl methylcellulose (HPMC) intake results in increased fecal fat excretion; however, the effects on dietary saturated fatty acids (SATs) and trans-fatty acids (TRANS) remain unknown. This study investigated the effect of HPMC on digestion and absorption of lipids in male Golden Syrian hamsters fed either freeze-dried ground pizza (PZ), pound cake (PC), or hamburger and fries (BF) supplemented with dietary fiber from either HPMC or microcrystalline cellulose (MCC) for 3 weeks. We observed greater excretion of SATs and TRANS by both diets supplemented with HPMC or MCC as compared to the feed. SAT, TRANS, and unsaturated fatty acids (UNSAT) contents of feces of the PZ diet supplemented with HPMC were 5-8 times higher than diets supplemented with MCC and tended to be higher in the PC- and BF-HPMC supplemented diets as well. We also observed significant increases in fecal excretion of bile acids (2.6-3-fold; P < 0.05), sterols (1.1-1.5-fold; P < 0.05), and unsaturated fatty acids (UNSAT, 1.7-4.5-fold; P < 0.05). The animal body weight gain was inversely correlated with the excretion of fecal lipid concentrations of bile acids (r = -0.56; P < 0.005), sterols (r = -0.48; P < 0.005), SAT (r = -0.69; P < 0.005), UNSAT (r = -0.67; P < 0.005), and TRANS (r = -0.62; P < 0.005). Therefore, HPMC may be facilitating fat excretion in a biased manner with preferential fecal excretion of both TRANS and SAT in hamsters fed fast food diets.

  5. Pharmacokinetics of an orally administered methylcellulose formulation of gallium maltolate in neonatal foals.

    PubMed

    Chaffin, M K; Fajt, V; Martens, R J; Arnold, C E; Cohen, N D; O'Conor, M; Taylor, R J; Bernstein, L R

    2010-08-01

    Gallium is a trivalent semi-metal with anti-microbial effects because of its incorporation into crucial iron-dependent reproductive enzyme systems. Gallium maltolate (GaM) provides significant gallium bioavailability to people and mice following oral administration and to neonatal foals following intragastric administration. To study the prophylactic and therapeutic effects of GaM against Rhodococcus equi pneumonia in foals, we developed a methylcellulose formulation of GaM (GaM-MCF) for oral administration to neonatal foals. Normal neonatal foals were studied. Six foals received 20 mg/kg and another six foals received 40 mg/kg of GaM-MCF orally. Serial serum samples were collected and serum gallium concentrations were determined using inductively coupled plasma mass spectroscopy. Gallium was rapidly absorbed (T(max) of 4 h), and a mean C(max) of 0.90 or 1.8 microg/mL was achieved in foals receiving 20 or 40 mg/kg respectively. Marked variability existed in C(max) among foals: only half of the foals receiving 20 mg/kg attained serum concentrations of >0.7 microg/mL, a level suggested to be therapeutic against R. equi by previous studies. Mean elimination half-life was 32.8 or 32.4 h for foals receiving 20 or 40 mg/kg respectively. The results of this study suggest that at least 30 mg/kg orally every 24 h should be considered in future pharmacodynamic and efficacy studies.

  6. Chitosan-assisted buffer layer incorporated with hydroxypropyl methylcellulose-coated silver nanowires for paper-based sensors

    NASA Astrophysics Data System (ADS)

    Xu, Duohua; Qiu, Jingshen; Wang, Yucheng; Yan, Jiajun; Liu, Gui-Shi; Yang, Bo-Ru

    2017-06-01

    Fabricating flexible sensors on paper is intriguing. Here, we exploited chitosan as a buffer layer to facilitate the fabrication of silver nanowire (AgNW) networks and flexible devices on commercial paper. We found that the AgNW networks exhibited uniform distribution, smooth surface, and strong adhesion. The enhanced adhesion of AgNWs was attributed to the intermolecular hydrogen bonding between chitosan and hydroxypropyl methylcellulose (HPMC), which can be tailored by tuning the pH of the chitosan aqueous solution. This facile fabrication method utilizing biodegradable polymers and cost-effective AgNW ink holds great promise for portable, wearable, and disposable paper-based electronics.

  7. Incubation of boar spermatozoa in viscous media by addition of methylcellulose improves sperm quality and penetration rates during in vitro fertilization.

    PubMed

    González-Abreu, David; García-Martínez, Soledad; Fernández-Espín, Vanesa; Romar, Raquel; Gadea, Joaquín

    2017-04-01

    This work was designed to study whether viscous media can improve the in vitro sperm functionality in pigs by using methylcellulose as a thickener. Viscosity of porcine oviductal fluid (POF) was compared with culture medium (Tyrode's) supplemented with methylcellulose (MET 0, 0.5 and 1% w/v). Spermatozoa were incubated in the different media (0, 1 and 2 h) and sperm motion parameters, lipid membrane disorder, plasma membrane integrity and reactive oxygen species (ROS) formation were assessed. Fertilization results were assessed i) preincubating spermatozoa in the viscous media followed by gamete coculture in a non-viscous medium; and ii) gamete coculture in the viscous media. Viscosity of POF from early luteal phase was higher than late follicular phase. Medium without methylcellulose presented constant viscosity with increased shear rate, while viscosity of the POF and media with methylcellulose was reduced by increased shear rates. Methylcellulose improved sperm linearity, straightness and the proportion of fast-linear spermatozoa. Moreover, methylcellulose increased the rate of viable spermatozoa with intact acrosome and low lipid disorder, reducing the ROS generation. Preincubation in viscous media increased the penetration rate and the mean number of spermatozoa bound to the zona pellucida (both with 0.5 and 1% MET) and reduced monospermy with 1% MET. On the other hand fertilization in the viscous media reduced penetration rate and increased monospermy. The efficiency of the IVF system was not improved with the use of viscous media. The results show the relevance of increasing viscosity thus making the in vitro media more comparable to physiological conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Preparation and properties of a novel thermo-sensitive hydrogel based on chitosan/hydroxypropyl methylcellulose/glycerol.

    PubMed

    Wang, Tao; Chen, Liman; Shen, Tingting; Wu, Dayang

    2016-12-01

    Chitosan-based thermosensitive hydrogels are known as injectable in situ gelling thermosensitive polymer solutions which are suitable for biomaterials. In this study, a novel thermosensitive hydrogel gelling under physiological conditions was prepared using chitosan together with hydroxypropyl methylcellulose and glycerol. Hydroxypropyl methylcellulose is to facilitate the thermogelation through large amounts of hydrophobic interactions. Glycerol in heavy concentration destroys the polymer water sheaths promoting the formation of the hydrophobic regions, and lowering the phase transition temperature. The thermosensitive hydrogels showed a physiological pH ranging from 6.8 to 6.9 and gelation time within 15min at 37°C. The prepared hydrogels were characterized by FT-IR, XRD, SEM, and rheological studies, mechanical studies and contact angle studies. The properties of degradability, cytotoxicity and protein release behaviors of the hydrogels were investigated. The results indicate this thermosensitive hydrogel possess good fluidity, thermosensitivity and biodegradability, as well as low-cytotoxicity and controlled release, showing the potential use in biomedical applications.

  9. Thermodynamic Insights into the Binding of Mono- and Dicationic Imidazolium Surfactant Ionic Liquids with Methylcellulose in the Diluted Regime.

    PubMed

    Ziembowicz, Francieli Isa; Bender, Caroline Raquel; Frizzo, Clarissa Piccinin; Martins, Marcos Antonio Pinto; de Souza, Thiane Deprá; Kloster, Carmen Luisa; Santos Garcia, Irene Teresinha; Villetti, Marcos Antonio

    2017-08-25

    Alkylimidazolium salts are an important class of ionic liquids (ILs) due to their self-assembly capacity when in solution and due to their potential applications in chemistry and materials science. Therefore, detailed knowledge of the physicochemical properties of this class of ILs and their mixtures with natural polymers is highly desired. This work describes the interactions between a homologous series of mono- (CnMIMBr) and dicationic imidazolium (Cn(MIM)2Br2) ILs with cellulose ethers in aqueous medium. The effects of the alkyl chain length (n = 10, 12, 14, and 16), type, and concentration range of ILs (below and above their cmc) on the binding to methylcellulose (MC) were evaluated. The thermodynamic parameters showed that the interactions are favored by the increase of the IL hydrocarbon chain length, and that the binding of monocationic ILs to MC is driven by entropy. The monocationic ILs bind more effectively on the methoxyl group of MC when compared to dicationic ILs, and this outcome may be rationalized by considering the structural difference between the conventional (CnMIMBr) and the bolaform (Cn(MIM)2Br2) surfactant ILs. The C16MIMBr interacts more strongly with hydroxypropylcellulose when compared to methylcellulose, indicating that the strength of the interaction also depends on the hydrophobicity of the cellulose ethers. Our findings highlight that several parameters should be taken into account when designing new complex formulations.

  10. Physical and sensory properties of all-barley and all-oat breads with additional hydroxypropyl methylcellulose (HPMC) ß-glucan

    USDA-ARS?s Scientific Manuscript database

    Hydroxypropyl methylcellulose (HPMC) is a substituted cellulose that reduces serum cholesterol at modest intake levels. HPMC has also been used for decades in gluten-free breads at a level to optimize loaf volume. Because consumers resist the consumption of whole wheat breads, we evaluated the sen...

  11. Physicochemical and morphological properties of poly (acrylamide) and methylcellulose hydrogels: rffects of monomer, crosslinker and polysaccharide compositions, polymer engineering and science

    USDA-ARS?s Scientific Manuscript database

    This paper describes the physicochemical (mechanical and swelling) and morphological characterization of poly (acrylamide) and methylcellulose (PAAm-MC) hydrogels synthesized with different formulations by the free radical polymerization method. The structure-property relationship of the PAAm-MC hyd...

  12. A methylcellulose microculture assay for the in vitro assessment of drug toxicity on granulocyte/macrophage progenitors (CFU-GM).

    PubMed

    Pessina, Augusto; Croera, Cristina; Bayo, Maria; Malerba, Ilaria; Passardi, Laura; Cavicchini, Loredana; Neri, Maria G; Gribaldo, Laura

    2004-03-01

    In a recent prevalidation study, the use of a methylcellulose colony-forming unit-granulocyte/macrophage (CFU-GM) macroassay for two independent in vitro tests (human and murine cell based) was suggested for quantifying the potential haematotoxicity of xenobiotics. In this paper, we describe the transfer of the macroassay to a 96-well plate microassay, in which the linearity of the response was studied (both in terms of CFU-GM and optical density [OD] versus the number of cells cultured), and the inhibitory concentration (IC) values for doxorubicin, 5-fluorouracil and taxol were determined and compared with those obtained by using the original macroassay. Fresh murine bone marrow and human umbilical cord blood mononuclear cells were used as a source of myeloid progenitors. The cells were cultured in methylcellulose containing granulocyte/macrophage-colony-stimulating factor, and in the presence of increasing drug concentrations. The cloning capacity of the progenitors was measured both as the number of colonies counted manually (CFU-GM), and as OD evaluated with an automated plate reader in an MTT test. Our results show that, in the microassay, up to 20 colonies/well could be easily counted, and that this range (20 to zero) gave a regression line from which IC values were calculated, which were very close to those obtained by using the macroassay (where the range of colony numbers was from 100 to zero). The test did not give good results when the OD (instead of the colony count) was used as the endpoint, because, although a high coefficient of determination was obtained, the OD values ranged from 0.6 to zero and the IC values determined were not comparable to those obtained by manual counts. The use of the microassay dramatically reduces the quantity of methylcellulose needed, and permits hundreds of cultures to be processed in the same experiment, contributing to significant reductions in both the work involved and the cost. A further important benefit is a

  13. Durability and synergistic effects of KI on the acid corrosion inhibition of mild steel by hydroxypropyl methylcellulose.

    PubMed

    Arukalam, I O

    2014-11-04

    The performance of hydroxypropyl methylcellulose (HPMC) as safe corrosion inhibitor for mild steel in aerated 0.5M H2SO4 solution was appraised by weight loss, impedance and polarization measurements. Results indicate that HPMC functions as a good inhibitor in the studied environment and inhibition efficiency increased with increasing concentration of inhibitor and temperature. Time-dependent effect of the inhibition efficiency reveals that inhibition efficiency increased with time up to the fourth day after which it waned, but improved on addition of KI. The synergism parameter evaluated confirmed the synergistic effect of KI and HPMC. Impedance results clearly show that HPMC inhibited the corrosion reaction via adsorption onto the metal/solution interface following Freundlich adsorption isotherm. Polarization results indicate that HPMC acts as a mixed-type inhibitor with predominant cathodic effect. Theoretical study using density functional theory was employed to establish the correlation between the structure (molecular and electronic) and the inhibition efficiency.

  14. Edible films from methylcellulose and nanoemulsions of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils as shelf life extenders for sliced bread.

    PubMed

    Otoni, Caio G; Pontes, Silvania F O; Medeiros, Eber A A; Soares, Nilda de F F

    2014-06-04

    Consumers are increasingly demanding foods with lower synthetic preservatives. Plant essential oils are natural compounds with remarkable antimicrobial properties and may be incorporated as emulsions into water-soluble polymers to form antimicrobial films. Coarse emulsions (diameters of 1.3-1.9 μm) and nanoemulsions (diameters of 180-250 nm) of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils were produced through low-speed mixing and ultrasonication, respectively. Methylcellulose was added for film-forming purposes. Both essential oils reduced the rigidity and increased the extensibility of the methylcellulose films, effects that were even more pronounced for nanodroplets. Both essential oils lessened the counts of yeasts and molds in sliced bread during 15 days, and droplet size reduction provided a further improvement in antimicrobial properties. Due to increased bioavailability, less preservative content might be used and still deliver the same antimicrobial efficiency if encapsulated in smaller particles.

  15. Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel.

    PubMed

    Cochis, A; Grad, S; Stoddart, M J; Farè, S; Altomare, L; Azzimonti, B; Alini, M; Rimondini, L

    2017-03-23

    Autologous chondrocyte implantation for cartilage repair represents a challenge because strongly limited by chondrocytes' poor expansion capacity in vitro. Mesenchymal stem cells (MSCs) can differentiate into chondrocytes, while mechanical loading has been proposed as alternative strategy to induce chondrogenesis excluding the use of exogenous factors. Moreover, MSC supporting material selection is fundamental to allow for an active interaction with cells. Here, we tested a novel thermo-reversible hydrogel composed of 8% w/v methylcellulose (MC) in a 0.05 M Na2SO4 solution. MC hydrogel was obtained by dispersion technique and its thermo-reversibility, mechanical properties, degradation and swelling were investigated, demonstrating a solution-gelation transition between 34 and 37 °C and a low bulk degradation (<20%) after 1 month. The lack of any hydrogel-derived immunoreaction was demonstrated in vivo by mice subcutaneous implantation. To induce in vitro chondrogenesis, MSCs were seeded into MC solution retained within a porous polyurethane (PU) matrix. PU-MC composites were subjected to a combination of compression and shear forces for 21 days in a custom made bioreactor. Mechanical stimulation led to a significant increase in chondrogenic gene expression, while histological analysis detected sulphated glycosaminoglycans and collagen II only in loaded specimens, confirming MC hydrogel suitability to support load induced MSCs chondrogenesis.

  16. Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: Structure and drug release correlation.

    PubMed

    Zhang, Jiaxiang; Yang, Weiwei; Vo, Anh Q; Feng, Xin; Ye, Xingyou; Kim, Dong Wuk; Repka, Michael A

    2017-12-01

    The objective of this study was to develop a new approach for fabrication of zero order release of active pharmaceutical ingredients (APIs) using hot-melt extrusion (HME) and 3D printing technology to generate tablets with specific 3D structures. By correlating the geometry of the 3D printed tablets with their dissolution and drug release rates, mathematical models that have been developed to describe drug release mechanisms were also studied. Acetaminophen was used as a model drug, and Benecel™ hydroxypropyl methylcellulose (HPMC) E5 and Soluplus(®) were used to formulate nine fuse depositional 3D-printed tablets with different inner core fill densities and outside shell thicknesses. This work reports the successful fabrication of solid-dispersion filaments with an API dispersed in HPMC based matrix via HME technology, and the production of zero order controlled release tablets with different 3D structures (tablets #3, 5, 6, and 9) using a 3D printer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Supplementation of hydroxypropyl methylcellulose into yeast leavened all-whole grain barley bread potentiates cholesterol-lowering effect.

    PubMed

    Kim, Hyunsook; Turowski, Maciej; Anderson, W H Kerr; Young, Scott A; Kim, Yookyung; Yokoyama, Wallace

    2011-07-27

    We investigated in Syrian Golden hamsters the biological impact and its underlying mechanism of single whole grain breads supplemented with 2-3% hydroxypropyl methylcellulose (HPMC), a semisynthetic viscous soluble dietary fiber (SDF) as a substitute for gluten. Hamsters were fed high-fat diets supplemented with 48-65% (w/w) differently ground, freeze-dried single grain breads including whole grain wheat, barley, barley supplemented with HPMC, debranned oat, and oat supplemented with HPMC which were compared to a diet containing microcrystalline cellulose (control). All single grain breads significantly lowered plasma LDL-cholesterol concentrations compared to the control. Enrichment with HPMC further lowered plasma and hepatic cholesterol concentrations. Despite the reduced molecular weight of naturally occurring soluble (1--->3),(1--->4)-β-d-glucan (β-glucan) caused by the bread-making process, whole grain barley breads downregulated hepatic expression of CYP7A1 and HMG-CoAR genes that are responsible for bile acid and cholesterol synthesis, suggesting a possible role of bioactive compounds such as short-chain fatty acids and phenolic compounds from barley bread. Barley bread enriched with HPMC downregulated expression of ABCG5 gene. Taken together, it appears that distinctive modulation of synthesis and excretion of hepatic cholesterol and bile acid contributes to the cholesterol-lowering properties of whole grain barley breads and breads enriched with HPMC. These data suggests that alternative whole grain breads supplemented with HPMC may provide consumers with a staple food that can assist in cholesterol management.

  18. Optimization and Evaluation of a Chitosan/Hydroxypropyl Methylcellulose Hydrogel Containing Toluidine Blue O for Antimicrobial Photodynamic Inactivation

    PubMed Central

    Chen, Chueh-Pin; Hsieh, Chien-Ming; Tsai, Tsuimin; Yang, Jen-Chang; Chen, Chin-Tin

    2015-01-01

    Photodynamic inactivation (PDI) combined with chitosan has been shown as a promising antimicrobial approach. The purpose of this study was to develop a chitosan hydrogel containing hydroxypropyl methylcellulose (HPMC), chitosan and toluidine blue O (TBO) to improve the bactericidal efficacy for topical application in clinics. The PDI efficacy of hydrogel was examined in vitro against the biofilms of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa). Confocal scanning laser microscopy (CSLM) was performed to investigate the penetration level of TBO into viable S. aureus biofilms. Incorporation of HMPC could increase the physicochemical properties of chitosan hydrogel including the hardness, viscosity as well as bioadhesion; however, higher HMPC concentration also resulted in reduced antimicrobial effect. CSLM analysis further demonstrated that higher HPMC concentration constrained TBO diffusion into the biofilm. The incubation of biofilm and hydrogel was further performed at an angle of 90 degrees. After light irradiation, compared to the mixture of TBO and chitosan, the hydrogel treated sample showed increased PDI efficacy indicated that incorporation of HPMC did improve antimicrobial effect. Finally, the bactericidal efficacy could be significantly augmented by prolonged retention of hydrogel in the biofilm as well as in the animal model of rat skin burn wounds after light irradiation. PMID:26340623

  19. In Situ Observations of Thermoreversible Gelation and Phase Separation of Agarose and Methylcellulose Solutions under High Pressure.

    PubMed

    Kometani, Noritsugu; Tanabe, Masahiro; Su, Lei; Yang, Kun; Nishinari, Katsuyoshi

    2015-06-04

    Thermoreversible sol-gel transitions of agarose and methylcellulose (MC) aqueous solutions on isobaric cooling or heating under high pressure up to 400 MPa have been investigated by in situ observations of optical transmittance and falling-ball experiments. For agarose, which undergoes the gelation on cooling, the application of pressure caused a gradual rise in the cloud-point temperature over the whole pressure range examined, which is almost consistent with the pressure dependence of gelling temperature estimated by falling-ball experiments, suggesting that agarose gel is stabilized by compression and that the gelation occurs nearly in parallel with phase separation under ambient and high-pressure conditions. For MC, which undergoes the gelation on heating, the cloud-point temperature showed a slight rise with an initial elevation of pressure up to ∼150 MPa, whereas it showed a marked depression above 200 MPa. In contrast, the gelling temperature of MC, which is nearly identical to the cloud-point temperature at ambient pressure, showed a monotonous rise with increasing pressure up to 350 MPa, which means that MC undergoes phase separation prior to gelation on heating under high pressure above 200 MPa. Similar results were obtained for the melting process of MC gel on cooling. The unique behavior of the sol-gel transition of MC under high pressure has been interpreted in terms of the destruction of hydrophobic hydration by compression.

  20. Effects of ultrasound treatment on lipid self-association and properties of methylcellulose/stearic acid blending films.

    PubMed

    Zhong, Tian; Huang, Ran; Sui, Siyao; Lian, Zixuan; Sun, Xiuxiu; Wan, Ajun; Li, Huili

    2015-10-20

    The effects of ultrasound treatment (UT) on the properties of methylcellulose (MC)/stearic acid (SA) blending films were studied. Film-forming emulsions were prepared with different UT conditions and characterized with respect to viscosity. The lipid aggregation and distribution in the blending dispersions were studied by the micrographs of Transmission Electron Microscopy (TEM). The micrographs of both surface and cross-section of the films were observed by scanning electron microscope (SEM) and the tensile strength (TS), elongation at break (E), water vapor permeability (WVP) and contact angles of the resulting films were determined as well. The intensification of the UT condition led to a decrease of viscosity of the MC-SA blending emulsions, a more homogeneous lipid distribution and a denser internal microstructure of the resulting films. UT exposure affected the mechanical, moisture barrier and surface hydrophobic properties. The optimal values of both TS and E was obtained from the sample treated for 10min and 180W power, while the sample treated for 10min and 270W presented the lowest value of WVP. However, an excessive exposure of UT led to a decrease of the mechanical and moisture barrier performance. By observing and analyzing the SEM graphs and the contact angles of the film surfaces, it was found that UT within the appropriate bounds had a notably positive effect on improving the surface hydrophobic property of the MC-SA blending films. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effects of coformers on phase transformation and release profiles of carbamazepine cocrystals in hydroxypropyl methylcellulose based matrix tablets.

    PubMed

    Qiu, Shi; Li, Mingzhong

    2015-02-01

    The aim of this study was to investigate the effects of coformers on phase transformation and release profiles of carbamazepine (CBZ) cocrystals in hydroxypropyl methylcellulose (HPMC) based matrix tablets. It has been found that selection of different coformers of saccharin (SAC) and cinnamic acid (CIN) can affect the stability of CBZ cocrystals in solution, resulting in significant differences in the apparent solubility of CBZ. The dissolution advantage of CBZ-SAC cocrystals can only be shown for a short period during dissolution because of the fast conversion to its dihydrate form (DH). HPMC can partially inhibit the crystallisation of CBZ DH during dissolution of CBZ-SAC cocrystal. However, the increased viscosity of HPMC dissolution medium reduced the dissolution rate of CBZ-SAC cocrystals. Therefore the CBZ-SAC cocrystal formulation did not show any significant advantage in CBZ release rate. In contrast the improved CBZ dissolution rate of CBZ-CIN cocrystal can be realised in both solution and formulation due to its high stability. In conclusion, exploring and understanding the mechanisms of the phase transformation of pharmaceutical cocrystals in aqueous medium for selection of lead cocrystals is the key for success of product development.

  2. The influence of substituted phenols on the sol:gel transition of hydroxypropyl methylcellulose (HPMC) aqueous solutions.

    PubMed

    Banks, Simon R; Pygall, Samuel R; Bajwa, Gurjit S; Doughty, Stephen W; Timmins, Peter; Melia, Colin D

    2014-01-30

    The influence of the physicochemical parameters of substituted aromatic molecules on the phase transition from sol to gel of hydroxypropyl methylcellulose (HPMC) has been investigated using a homologous series of substituted phenols. Using a turbimetric methodology, concentration dependent suppression of phase transition temperature of HPMC was observed for phenol and its derivatives, including methyl-, nitro- and chloro-substituted molecules. Although no strong direct relationship between single molecular physicochemical properties of the phenolic compounds (such as pKa, LogP and other molecular descriptors) and ΔCPT was found for the compounds tested, a successful prediction of behaviour could be obtained by using a combination of parameters. This suggested that the interaction mechanism between HPMC and the substituted aromatic moiety is a complex summation of the different molecular physicochemical properties. Identification of these potentially deleterious chemical moieties may be of value in a pharmaceutical context when considering preformulation of drug structures containing them. An incompatibility between drug and polymer may be indicative of deleterious effects resulting from formulation with hydrophilic matrix dosage forms containing cellulose ethers such as HPMC.

  3. The effect of cores and coating dispersion composition on the mechanical and adhesion properties of hydroxypropyl methylcellulose films.

    PubMed

    Banovec, M; Planinsek, O; Vrecer, F

    2014-08-01

    The influence of different additives on the mechanical properties of hydroxypropyl methylcellulose (HPMC) free films was studied using tensile testing. Free films were prepared using the cast method and sliced into bands, and their tensile strength and maximal elongation at break was measured. The results showed that the addition of PEG 400 and polysorbate 80 into the coating formulation had the most influence on the films' mechanical properties compared to the HPMC film used as a control. Tablet cores composed of microcrystalline cellulose and lactose with and without Mg stearate and compressed at three different compression forces were tested for wettability with coating formulations containing PEG 400 and polysorbate 80. For formulations with no Mg stearate added, the contact angle decreased with increasing core hardness and it also coincided with greater adhesion force of the coating. The addition of Mg stearate in the core led to reduced adhesion of the film coating with PEG 400, whereas the influence on the adhesion force of the film coating containing polysorbate 80 was negligible. The results also show that the adhesion force, regardless of the tablet core formulation, is highest at medium core hardness.

  4. A novel injectable, cohesive and toughened Si-HPMC (silanized-hydroxypropyl methylcellulose) composite calcium phosphate cement for bone substitution.

    PubMed

    Liu, Weizhen; Zhang, Jingtao; Rethore, Gildas; Khairoun, Khalid; Pilet, Paul; Tancret, Franck; Bouler, Jean-Michel; Weiss, Pierre

    2014-07-01

    This study reports on the incorporation of the self-setting polysaccharide derivative hydrogel (silanized-hydroxypropyl methylcellulose, Si-HPMC) into the formulation of calcium phosphate cements (CPCs) to develop a novel injectable material for bone substitution. The effects of Si-HPMC on the handling properties (injectability, cohesion and setting time) and mechanical properties (Young's modulus, fracture toughness, flexural and compressive strength) of CPCs were systematically studied. It was found that Si-HPMC could endow composite CPC pastes with an appealing rheological behavior at the early stage of setting, promoting its application in open bone cavities. Moreover, Si-HPMC gave the composite CPC good injectability and cohesion, and reduced the setting time. Si-HPMC increased the porosity of CPCs after hardening, especially the macroporosity as a result of entrapped air bubbles; however, it improved, rather than compromised, the mechanical properties of composite CPCs, which demonstrates a strong toughening and strengthening effect. In view of the above, the Si-HPMC composite CPC may be particularly promising as bone substitute material for clinic application.

  5. Characterization of physicochemical properties of hydroxypropyl methylcellulose (HPMC) type 2208 and their influence on prolonged drug release from matrix tablets.

    PubMed

    Devjak Novak, S; Šporar, E; Baumgartner, S; Vrečer, F

    2012-07-01

    The key physicochemical properties of functional excipients should be identified, and the influence of their variability on the properties of the final dosage form should be evaluated during the development phase. Excipients produced by different manufacturers and/or by different manufacturing processes should have comparable properties. Hydroxypropyl methylcellulose (HPMC) with a high molecular weight is a functional excipient often used in solid matrix systems with prolonged release of active pharmaceutical ingredients (API). This study investigates whether HPMC manufactured by two manufacturers using different chemical procedures differs in particle-size distribution, particle shape, particle morphology, chemical composition, and dissolution of diclofenac sodium as a model drug. NIR spectroscopy was introduced and calibration models were developed to detect physical differences among HPMC batches from two different origins. The physical differences between HPMC samples were additionally confirmed with scanning electron microscopy (SEM), gas chromatography (GC) measurements, and dissolution testing of hydrophilic matrix tablets. Our results prove that, even if HPMC polymers manufactured from two different sources comply with the pharmacopeial specification, they significantly differ in physicochemical properties and thus influence the properties of the formulated dosage forms.

  6. Gelatin-hydroxypropyl methylcellulose water-in-water emulsions as a new bio-based packaging material.

    PubMed

    Esteghlal, Sara; Niakosari, Mehrdad; Hosseini, Seyed Mohammad Hashem; Mesbahi, Gholam Reza; Yousefi, Gholam Hossein

    2016-05-01

    Gelatin and hydroxypropyl methylcellulose (HPMC) are two incompatible and immiscible biopolymers which cannot form homogeneous composite films using usual methods. In this study, to prevent phase separation, gelatin-HPMC water-in-water (W/W) emulsion was utilized to from transparent composite films by entrapment the HPMC dispersed droplets in gelatin continuous network. The physicochemical and mechanical properties of emulsion-based films containing different amounts (5-30%) of dispersed phase were determined and compared with those of individual polymer-based films. Incorporating HPMC into W/W emulsion-based films had no significant effect on the tensile strength. The flexibility of composite films decreased at HPMC concentrations below 20%. The depletion layer at the droplets interface reduced the diffusion of water vapor molecules because of its hydrophobic nature, so the water vapor permeability remained constant. Increasing the HPMC content in the emulsion films increased the swelling and decreased the transparency. The entrapment of HPMC in continuous gelatin phase decreased its solubility. Therefore, W/W emulsions are capable of holding two incompatible polymers alongside each other within a homogeneous film network without weakening the physical properties.

  7. Reviewing the use of ethylcellulose, methylcellulose and hypromellose in microencapsulation. Part 2: Techniques used to make microcapsules.

    PubMed

    Rogers, True L; Wallick, Dave

    2011-11-01

    This three-part review has been developed following the evaluation of literature where ethylcellulose, methylcellulose or hypromellose was used to make microcapsules. Parts 1 and 3 of the review are published as separate papers. Part 1 covers the various materials used to formulate microcapsules, and Part 3 covers the various end-use applications for microcapsules. In the current paper, Part 2 covers the techniques used to make microcapsules. Examples of techniques to be covered include temperature-induced phase separation, emulsion solvent evaporation, solvent evaporation, film coating, nonsolvent addition and spray drying. It is hoped that formulators can use Part 2 to understand how to formulate microcapsules using these encapsulating polymers. SciFinder was utilized to perform the literature search. SciFinder leverages literature databases, such as Chemical Abstracts Service Registry and Medline. A total of 379 references were identified during the review. The need for a three-part review reflects the extensive amount of literature identified concerning these three encapsulating polymers.

  8. Reviewing the use of ethylcellulose, methylcellulose and hypromellose in microencapsulation. Part 1: materials used to formulate microcapsules.

    PubMed

    Rogers, True L; Wallick, Dave

    2012-02-01

    This review highlights references where ethylcellulose, methylcellulose and hypromellose were used to make microcapsules. The review has been divided into three parts. This first part discusses various materials used to formulate microcapsules, such as the three encapsulating polymers as well as protective colloids, plasticizers and surfactants. The second part covers the various techniques used to make microcapsules, such as temperature-induced phase separation, emulsion solvent evaporation, solvent evaporation, film coating, and others. The third part covers the various applications for which microcapsules are used, such as modified release, improved efficacy and safety, taste- and odor-masking, and others. It is hoped that formulators can use Part 1 as a guide to the literature documenting formulation of microcapsules made from these encapsulating polymers. SciFinder was utilized to identify the pertinent literature. SciFinder leverages literature databases, such as Chemical Abstracts Service Registry and Medline. A total of 379 references were identified during the review. The need for a three-part review reflects the extensive amount of literature identified concerning these three encapsulating polymers.

  9. Extended release of high molecular weight hydroxypropyl methylcellulose from molecularly imprinted, extended wear silicone hydrogel contact lenses.

    PubMed

    White, Charles J; McBride, Matthew K; Pate, Kayla M; Tieppo, Arianna; Byrne, Mark E

    2011-08-01

    Symptoms of contact lenses induced dry eye (CLIDE) are typically treated through application of macromolecular re-wetting agents via eye drops. Therapeutic soft contact lenses can be formulated to alleviate CLIDE symptoms by slowly releasing comfort agent from the lens. In this paper, we present an extended wear silicone hydrogel contact lens with extended, controllable release of 120 kDa hydroxypropyl methylcellulose (HPMC) using a molecular imprinting strategy. A commercial silicone hydrogel lens was tailored to release approximately 1000 μg of HPMC over a period of up to 60 days in a constant manner at a rate of 16 μg/day under physiological flowrates, releasing over the entire range of continuous wear. Release rates could be significantly varied by the imprinting effect and functional monomer to template ratio (M/T) with M/T values 0, 0.2, 2.8, 3.4 corresponding to HPMC release durations of 10, 13, 23, and 53 days, respectively. Lenses had high optical quality and adequate mechanical properties for contact lens use. This work highlights the potential of imprinting in the design and engineering of silicone hydrogel lenses to release macromolecules for the duration of wear, which may lead to decreased CLIDE symptoms and more comfortable contact lenses.

  10. Competitive adsorption between sugar beet pectin (SBP) and hydroxypropyl methylcellulose (HPMC) at the oil/water interface.

    PubMed

    Li, Xiangyang; Al-Assaf, Saphwan; Fang, Yapeng; Phillips, Glyn O

    2013-01-16

    The emulsification performance, stability and competitive adsorption of two natural food emulsifiers, sugar beet pectin (SBP) and hydroxypropyl methylcellulose (HPMC) have been investigated. Both can reduce the surface tension and emulsify oil in water. However, due to their different structure and conformation they operate via different mechanisms. Using 15% middle chain triglycerides (MCTs) oil, the amounts of SBP and HPMC adsorbed in emulsions made with these individually and in mixtures were determined. The interfacial concentration (Γ) for SBP stabilized emulsion was ∼1.25mg/m(2) and for HPMC 3.5mg/m(2). The higher adsorption of HPMC was due to multilayer adsorption, whereas SBP adsorbed as a monolayer. Competitive adsorption between SBP and HPMC was also investigated. When the HPMC concentration approached that of adsorbed SBP, the effect of HPMC became dominant and at 1.5wt.% controlled the behavior of the mixed emulsions, which were then almost independent of SBP. The minor role of SBP was mainly to decrease the proportion of large droplets in the emulsion. A model to describe the competitive adsorption between SBP and HPMC is proposed.

  11. Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel

    PubMed Central

    Cochis, A.; Grad, S.; Stoddart, M. J.; Farè, S.; Altomare, L.; Azzimonti, B.; Alini, M.; Rimondini, L.

    2017-01-01

    Autologous chondrocyte implantation for cartilage repair represents a challenge because strongly limited by chondrocytes’ poor expansion capacity in vitro. Mesenchymal stem cells (MSCs) can differentiate into chondrocytes, while mechanical loading has been proposed as alternative strategy to induce chondrogenesis excluding the use of exogenous factors. Moreover, MSC supporting material selection is fundamental to allow for an active interaction with cells. Here, we tested a novel thermo-reversible hydrogel composed of 8% w/v methylcellulose (MC) in a 0.05 M Na2SO4 solution. MC hydrogel was obtained by dispersion technique and its thermo-reversibility, mechanical properties, degradation and swelling were investigated, demonstrating a solution-gelation transition between 34 and 37 °C and a low bulk degradation (<20%) after 1 month. The lack of any hydrogel-derived immunoreaction was demonstrated in vivo by mice subcutaneous implantation. To induce in vitro chondrogenesis, MSCs were seeded into MC solution retained within a porous polyurethane (PU) matrix. PU-MC composites were subjected to a combination of compression and shear forces for 21 days in a custom made bioreactor. Mechanical stimulation led to a significant increase in chondrogenic gene expression, while histological analysis detected sulphated glycosaminoglycans and collagen II only in loaded specimens, confirming MC hydrogel suitability to support load induced MSCs chondrogenesis. PMID:28332587

  12. In Vitro and In Vivo Modeling of Hydroxypropyl Methylcellulose (HPMC) Matrix Tablet Erosion Under Fasting and Postprandial Status.

    PubMed

    Guiastrennec, Benjamin; Söderlind, Erik; Richardson, Sara; Peric, Alexandra; Bergstrand, Martin

    2017-04-01

    To develop a model linking in vitro and in vivo erosion of extended release tablets under fasting and postprandial status. A nonlinear mixed-effects model was developed from the in vitro erosion profiles of four hydroxypropyl methylcellulose (HPMC) matrix tablets studied under a range of experimental conditions. The model was used to predict in vivo erosion of the HPMC matrix tablets in different locations of the gastrointestinal tract, determined by magnetic marker monitoring. In each gastrointestinal segment the pH was set to physiological values and mechanical stress was estimated in USP2 apparatus rotation speed equivalent. Erosion was best described by a Michaelis-Menten type model. The maximal HPMC release rate (VMAX) was affected by pH, mechanical stress, HPMC and calcium hydrogen phosphate content. The amount of HPMC left at which the release rate is half of VMAX depended on pH and calcium hydrogen phosphate. Mechanical stress was estimated for stomach (39.5 rpm), proximal (93.3 rpm) and distal (31.1 rpm) small intestine and colon (9.99 rpm). The in silico model accurately predicted the erosion profiles of HPMC matrix tablets under fasting and postprandial status and can be used to facilitate future development of extended release tablets.

  13. Pharmacokinetic and milk penetration of a difloxacin long-acting poloxamer gel formulation with carboxy-methylcellulose in lactating goats.

    PubMed

    Escudero, Elisa; Marín, Pedro; Cárceles, Carlos M; Ramírez, María J; Fernández-Varón, Emilio

    2011-04-01

    The single-dose disposition kinetics of difloxacin were determined in clinically normal lactating goats (n=6) after subcutaneous administration of a long-acting poloxamer 407 gel formulation with carboxy-methylcellulose (P407-CMC). Difloxacin concentrations were determined by high performance liquid chromatography with fluorescence detection. The concentration-time data were analysed by non-compartmental kinetic methods. Plasma and milk elimination half-lives after P407-CMC dosing were 35.19 h and 33.93 h, respectively. With this formulation, difloxacin achieved maximum plasma concentrations of 2.67±0.34 mg/L at 2.92±1.20 h and maximum milk concentrations of 2.31±0.35 mg/L at 4.00±0.00 h. The area under the curve (AUC) ratio AUC(milk)/AUC(plasma) was 0.89 after P407-CMC administration. It was concluded that a 15 mg/kg dose of difloxacin within P407-CMC would be effective against mastitis pathogens with a minimum inhibitory concentration (MIC)≤0.12 mg/L.

  14. Inhibition mechanism of hydroxypropyl methylcellulose acetate succinate on drug crystallization in gastrointestinal fluid and drug permeability from a supersaturated solution.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Kataoka, Makoto; Yamashita, Shinji; Yamamoto, Keiji; Moribe, Kunikazu

    2014-10-01

    The effects of drug-crystallization inhibitor in bile acid/lipid micelles solution on drug permeation was evaluated during the drug crystallization process. Hydroxypropyl methylcellulose acetate succinate (HPMC-AS) was used as a drug-crystallization inhibitor, which efficiently suppressed dexamethasone (DEX) crystallization in a gastrointestinal fluid model containing sodium taurocholate (NaTC) and egg-phosphatidylcholine (egg-PC). Changes of molecular state of supersaturated DEX during the DEX crystallization process was monitored in real time using proton nuclear magnetic resonance (1H NMR). It revealed that DEX distribution to bulk water and micellar phases formed by NaTC and egg-PC was not changed during the DEX crystallization process even in the presence of HPMC-AS. DEX permeation during DEX crystallization was evaluated using dissolution/permeability system. The combination of crystallization inhibition by HPMC-AS and micellar encapsulation by NaTC and egg-PC led to considerably higher DEX concentrations and improvement of DEX permeation at the beginning of the DEX crystallization process. Crystallization inhibition by HPMC-AS can efficiently work even in the micellar solution, where NaTC/egg-PC micelles encapsulates some DEX. It was concluded that a crystallization inhibitor contributed to improvement of permeation of a poorly water-soluble drug in gastrointestinal fluid. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A three-month repeated oral administration study of a low viscosity grade of hydroxypropyl methylcellulose in rats.

    PubMed

    Obara, S; Muto, H; Shigeno, H; Yoshida, A; Nagaya, J; Hirata, M; Furukawa, M; Sunaga, M

    1999-02-01

    The toxicity of the lowest viscosity grade of hydroxypropyl methylcellulose (HPMC) that is currently commercially available was investigated by means of a three-month repeated oral administration study in male and female Crj:CD (SD) IGS rats at doses of 505, 1,020 and 2,100 mg/kg/day. Body weights of males and females in the 2,100 mg/kg group were lower than those of the control group on and after day 28 of administration, but the differences were not statistically significant. The degree of suppression of body weight gain in males was higher than that in females. This tendency was similar to the results in other toxicity studies of HPMC that have been reported. Males in the 2,100 mg/kg group showed a tendency (not significant) for decreased food consumption and urine volume. Examinations of general signs, hematology, blood chemistry, ophthalmology, absolute and relative organ weights, autopsy and histopathology revealed only a few, apparently coincidental, statistically significant differences from the control, and no evidence of any dose-dependent changes was found. It was concluded that the lowest viscosity grade of HPMC showed extremely low toxicity under the conditions of this study, as has been found for higher viscosity grades.

  16. Preparation and performance of hydroxypropyl methylcellulose esters of substituted succinates for in vitro supersaturation of a crystalline hydrophobic drug.

    PubMed

    Yin, Ligeng; Hillmyer, Marc A

    2014-01-06

    We prepared hydroxypropyl methylcellulose (HPMC) esters of substituted succinates and examined their performance for improving the aqueous solubility of crystalline hydrophobic drugs in spray-dried dispersions (SDDs). From one HPMC, we synthesized five HPMC esters using various monosubstituted succinic anhydrides. These HPMC esters along with a commercial HPMC acetate succinate (HPMCAS) were spray-dried from solutions with phenytoin. The SDDs with different matrices at 10 wt % loading had very similar bulk properties with a minimal amount of detectable crystalline phenytoin as revealed by scanning electron microscopy (SEM), powder X-ray diffraction (powder XRD), and differential scanning calorimetry (DSC). In solution, while the SDD with HPMCAS was very effective at achieving high levels of phenytoin supersaturation initially, it was not competent at maintaining such supersaturation due to the rapid crystallization of the dissolved phenytoin. Alternatively, SDDs with several synthesized HPMC esters of substituted succinates not only achieved rather high initial supersaturation but also maintained high concentrations for extended time (i.e., 1.5 h and longer). Such maintenance was largely ascribed to the inhibition of phenytoin nucleation. Structure-property relationships were established, and the most successful systems contained a high degree of substitution and a combination of a thioether with neighboring weak electron-withdrawing groups in the substituted succinic anhydrides. The effective maintenance of supersaturated solutions was only found in SDDs with rather low drug loadings, which indicates the significance of sufficiently high concentrations of polymer additives in the dissolution media.

  17. Injectable thermo-responsive hydrogel composed of xanthan gum and methylcellulose double networks with shear-thinning property.

    PubMed

    Liu, Zhijia; Yao, Ping

    2015-11-05

    Injectable hydrogel precursor solution was prepared by physical blend of xanthan gum (XG) and methylcellulose (MC) in aqueous solution. Due to the formation of XG network composed of XG double helical strand structure, XG/MC blend was a high viscous solution with good shear-thinning property at room temperature. When the temperature was changed from 23 to 37 °C, thermo-responsive MC network formed, which caused XG/MC blend solution to gelate. The gelation time and storage modulus of the blend can be tuned by XG and/or MC concentrations. Both in vitro and in vivo investigations revealed that the blend solution immediately recovered its high viscosity and rapidly formed hydrogel at body temperature after injection using a syringe. In vivo biocompatibility and biodegradability of the hydrogel were validated by implantation of the hydrogel in rats. In vitro investigation demonstrated that XG/MC blend is a promising injectable hydrogel material for long-term drug delivery.

  18. Optimization and Evaluation of a Chitosan/Hydroxypropyl Methylcellulose Hydrogel Containing Toluidine Blue O for Antimicrobial Photodynamic Inactivation.

    PubMed

    Chen, Chueh-Pin; Hsieh, Chien-Ming; Tsai, Tsuimin; Yang, Jen-Chang; Chen, Chin-Tin

    2015-09-01

    Photodynamic inactivation (PDI) combined with chitosan has been shown as a promising antimicrobial approach. The purpose of this study was to develop a chitosan hydrogel containing hydroxypropyl methylcellulose (HPMC), chitosan and toluidine blue O (TBO) to improve the bactericidal efficacy for topical application in clinics. The PDI efficacy of hydrogel was examined in vitro against the biofilms of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa). Confocal scanning laser microscopy (CSLM) was performed to investigate the penetration level of TBO into viable S. aureus biofilms. Incorporation of HMPC could increase the physicochemical properties of chitosan hydrogel including the hardness, viscosity as well as bioadhesion; however, higher HMPC concentration also resulted in reduced antimicrobial effect. CSLM analysis further demonstrated that higher HPMC concentration constrained TBO diffusion into the biofilm. The incubation of biofilm and hydrogel was further performed at an angle of 90 degrees. After light irradiation, compared to the mixture of TBO and chitosan, the hydrogel treated sample showed increased PDI efficacy indicated that incorporation of HPMC did improve antimicrobial effect. Finally, the bactericidal efficacy could be significantly augmented by prolonged retention of hydrogel in the biofilm as well as in the animal model of rat skin burn wounds after light irradiation.

  19. Factors affecting drug release from hydroxypropyl methylcellulose matrix systems in the light of classical and percolation theories.

    PubMed

    Caraballo, Isidoro

    2010-11-01

    Hydroxypropyl methylcellulose (HPMC) is a versatile polymer widely used in the preparation of pharmaceutical dosage forms. The behavior of this polymer is a key factor in designing a variety of controlled release systems, especially hydrophilic matrices in which HPMC can be the only substance responsible for controlling the release rate of the drug. A new approach, proposed in 2004, based on percolation theory to explain the influence of the main formulation factors on drug release from HPMC matrices has been analyzed, paying attention to the advantages with respect to previous theories. The influence of especially important factors such as polymer concentration and particle size is now much better known thanks to these new theories. To formulate a HPMC matrix, the system must be above the polymer's critical point, that is, allowing HPMC to act as outer phase. In this way, a coherent gel layer will be obtained because the first moment and the drug release will be controlled by this layer. Furthermore, knowing the critical points allows the vicinity of these points to be avoided, which are regions of high variability. In this way, robust dosage forms can be obtained.

  20. Thermoresponsive poly(N-isopropylacrylamide)-g-methylcellulose hydrogel as a three-dimensional extracellular matrix for cartilage-engineered applications.

    PubMed

    Sá-Lima, Helena; Tuzlakoglu, Kadriye; Mano, João F; Reis, Rui L

    2011-09-15

    Recent advances in tissue engineering and regenerative medicine fields can offer alternative solutions to the existing techniques for cartilage repair. In this context, a variety of materials has been proposed, and the injectable hydrogels are among the most promising alternatives. The aim of this work is to explore the ability of poly(N-isopropylacrylamide)-g-methylcellulose (PNIPAAm-g-MC) thermoreversible hydrogel as a three-dimensional support for cell encapsulation toward the regeneration of articular cartilage through a tissue engineering approach. The PNIPAAm-g-MC copolymer was effectively obtained using ammonium-persulfate and N,N,N',N'-tetramethylethylenediamine as initiator as confirmed by Fourier transform infrared spectroscopy and (1) H NMR results. The copolymer showed to be temperature responsive, becoming a gel at temperatures above its lower critical solution temperature (~ 32 °C) while turning into a liquid below it. Results obtained from the MTS test showed that extracts of the hydrogel were clearly noncytotoxic to L929 fibroblast cells. ATDC5 cells, a murine chondrogenic cell line, were used as the in vitro model for this study; they were encapsulated at high cell density within the hydrogel and cultured for up to 28 days. PNIPAAm-g-MC did not affect the cell viability and proliferation, as indicated by both MTS and DNA assays. The results also revealed an increase in synthesis of glycosoaminoglycans within culture time measured by the dimethylmethylene blue quantification assay. These results suggest the viability of using PNIPAAm-g-MC thermoresponsive hydrogel as a three-dimensional scaffold for cartilage tissue engineering using minimal-invasive strategies. Copyright © 2011 Wiley Periodicals, Inc.

  1. A methylcellulose and collagen based temperature responsive hydrogel promotes encapsulated stem cell viability and proliferation in vitro.

    PubMed

    Payne, Christina; Dolan, Eimear B; O'Sullivan, Janice; Cryan, Sally-Ann; Kelly, Helena M

    2017-02-01

    With the number of stem cell-based therapies emerging on the increase, the need for novel and efficient delivery technologies to enable therapies to remain in damaged tissue and exert their therapeutic benefit for extended periods, has become a key requirement for their translation. Hydrogels, and in particular, thermoresponsive hydrogels, have the potential to act as such delivery systems. Thermoresponsive hydrogels, which are polymer solutions that transform into a gel upon a temperature increase, have a number of applications in the biomedical field due to their tendency to maintain a liquid state at room temperature, thereby enabling minimally invasive administration and a subsequent ability to form a robust gel upon heating to physiological temperature. However, various hurdles must be overcome to increase the clinical translation of hydrogels as a stem cell delivery system, with barriers including their low tensile strength and their inadequate support of cell viability and attachment. In order to address these issues, a methylcellulose based hydrogel was formulated in combination with collagen and beta glycerophosphate, and key development issues such as injectability and sterilisation processes were examined. The polymer solution underwent thermogelation at ~36 °C as determined by rheological analysis, and when gelled, was sufficiently robust to resist significant disintegration in the presence of phosphate buffered saline (PBS) while concomitantly allowing for diffusion of methylene blue dye solution into the gel. We demonstrate that human mesenchymal stem cells (hMSCs) encapsulated within the gel remained viable and showed raised levels of dsDNA at increasing time points, an indication of cell proliferation. Mechanical testing showed the "injectability", i.e. force required for delivery of the polymer solution through devices such as a syringe, needle or catheter. Sterilisation of the freeze-dried polymer wafer via gamma irradiation showed no adverse

  2. Inhibitory effect of hydroxypropyl methylcellulose acetate succinate on drug recrystallization from a supersaturated solution assessed using nuclear magnetic resonance measurements.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu

    2013-10-07

    We examined the inhibitory effect of hydroxypropyl methylcellulose acetate succinate (HPMC-AS) on drug recrystallization from a supersaturated solution using carbamazepine (CBZ) and phenytoin (PHT) as model drugs. HPMC-AS HF grade (HF) inhibited the recrystallization of CBZ more strongly than that by HPMC-AS LF grade (LF). 1D-1H NMR measurements showed that the molecular mobility of CBZ was clearly suppressed in the HF solution compared to that in the LF solution. Interaction between CBZ and HF in a supersaturated solution was directly detected using nuclear Overhauser effect spectroscopy (NOESY). The cross-peak intensity obtained using NOESY of HF protons with CBZ aromatic protons was greater than that with the amide proton, which indicated that CBZ had hydrophobic interactions with HF in a supersaturated solution. In contrast, no interaction was observed between CBZ and LF in the LF solution. Saturation transfer difference NMR measurement was used to determine the interaction sites between CBZ and HF. Strong interaction with CBZ was observed with the acetyl substituent of HPMC-AS although the interaction with the succinoyl substituent was quite small. The acetyl groups played an important role in the hydrophobic interaction between HF and CBZ. In addition, HF appeared to be more hydrophobic than LF because of the smaller ratio of the succinoyl substituent. This might be responsible for the strong hydrophobic interaction between HF and CBZ. The intermolecular interactions between CBZ and HPMC-AS shown by using NMR spectroscopy clearly explained the strength of inhibition of HPMC-AS on drug recrystallization.

  3. A paediatric case of sideroblastic anaemia. Ultrastructural studies of erythroblasts cultured from marrow BFU-E in a methylcellulose micromethod.

    PubMed

    Claustres, M; Vannereau, H; Bellet, H; Margueritte, G; Sultan, C

    1986-10-01

    We examined the morphological and functional characteristics of erythroblasts derived from marrow erythroid progenitor cells grown in a methylcellulose microculture, which were taken from a female child with rare atypical sideroblastic anaemia (SA) partially responsive to pyridoxine. Colony formation was within the normal range in three successive cultures (median values: 82.25 CFU-E and 16.4 BFU-E derived colonies/6.6 X 10(4) cells) compared to growth by normal cells (65-315 CFU-E and 9-40 BFU-E). We evaluated in vitro differentiation by biochemical microassay of a cytosol enzyme involved in the haem pathway: uroporphyrinogen I synthase (UROS). The UROS values in the erythroid colonies from SA marrow were at the lowere end of the normal range (median values: 6.7 +/- 0.3 and 14.4 +/- 3.8 pmol uroporphyrinogen/h in CFU-E and BFU-E-derived colonies respectively versus 17.4 +/- 7.3 and 25 +/- 7.2 pmol/h in CFU-E and BFU-E colonies from normal subjects. Ultrastructural examination of the SA erythroblasts from non-cultured bone marrow or derived from cultured BFU-E revealed the characteristic deposition of iron in mitochondria around the nucleus of most cells (ringed sideroblasts). However, the majority of cultured cells had marked dyserythropoietic features, with a large number of bilobulated or trilobulated erythroblasts, multiple cytoplasmic vacuoles, numerous abnormalities of the nucleus, and excessive membrane material beneath the plasma membrane, all features difficult to observe in non-cultured marrows.

  4. Investigating the ability of nanoparticle-loaded hydroxypropyl methylcellulose and xanthan gum gels to enhance drug penetration into the skin.

    PubMed

    Cai, X J; Mesquida, P; Jones, S A

    2016-11-20

    Nanoparticle-loaded topical formulations can disrupt drug aggregation through controlled drug-nanoparticle interactions to enhance topical drug delivery. However, the complex relationship between the drug, nanoparticle and formulation vehicle requires further understanding. The aim of this study was to use nanoparticle-loaded hydroxypropyl methylcellulose (HPMC) and xanthan gum gels to probe how the drug, nanoparticle and formulation vehicle interactions influenced the delivery of an aggregated drug into the skin. Tetracaine was chosen as a model drug. It was loaded into HPMC and xanthan gum gels, and it was presented to porcine skin using infinite and finite dosing protocols. Gel infinite doses showed no important differences in tetracaine skin permeation rate, but HPMC gel finite doses delivered the drug more efficiently (46.99±7.96μg/cm(2)/h) compared to the xanthan gum (1.16±0.14μg/cm(2)/h). Finite doses of the nanoparticle-loaded HPMC gel generated a 10-fold increase in drug flux (109.95±28.63μg/cm(2)/h) compared to the equivalent xanthan gum system (14.19±2.27μg/cm(2)/h). Rheology measurements suggested that the differences in the gels ability to administer the drug into the skin were not a consequence of gel-nanoparticle interactions rather, they were a consequence of the dehydration mediated diffusional restriction imparted on the drug by xanthan gum compared to the viscosity independent interactions of HPMC with the drug.

  5. Investigating effects of hydroxypropyl methylcellulose (HPMC) molecular weight grades on lag time of press-coated ethylcellulose tablets.

    PubMed

    Patadia, Riddhish; Vora, Chintan; Mittal, Karan; Mashru, Rajashree

    2016-11-01

    The research undertaken exemplifies the effects of hydroxypropyl methylcellulose (HPMC) molecular weight (MW) grades of on lag time of press-coated ethylcellulose (EC) tablets. The formulation comprised an immediate release core (containing prednisone as a model drug) surrounded by compression coating with variegated EC-HPMC blends. Five selected HPMC grades (E5, E15, E50, K100LV and K4M) were explored at three different concentrations (10% w/w, 20% w/w and 30% w/w in outer coat) to understand their effects on lag time and drug release. In vitro drug release testing demonstrated that, with increase in concentration of E5 and E15, up to 30% w/w, the mean lag time decreased progressively; whereas with remaining grades, the mean lag time initially decreased up to 20% w/w level and thereafter increased for 30% w/w level. Importantly, with increase in HPMC concentration in the outer coat, the variability in lag time (%RSD; n = 6) was decreased for each of E5, E15 and E50, whereas increased for K100LV and K4M. In general, the variability in lag time was increased with increase in HPMC MW at studied concentration levels. Markedly, tablets with 30% w/w K4M in outer coat exhibited slight premature release (before the rupture of outer coat) along with high variability in lag time. Overall, the study concluded that low MW HPMCs (E5, E15 and E50) were found rather efficient than higher MW HPMCs for developing robust EC-based press-coated pulsatile release formulations where precise lag time followed by sharp burst release is desired.

  6. Factorial designed 5-fluorouracil-loaded microsponges and calcium pectinate beads plugged in hydroxypropyl methylcellulose capsules for colorectal cancer

    PubMed Central

    Gupta, Ankita; Tiwari, Gaurav; Tiwari, Ruchi; Srivastava, Rishabh

    2015-01-01

    Introduction: The work was aimed to develop an enteric-coated hydroxypropyl methylcellulose (HPMC) capsules (ECHC) plugged with 5-fluorouracil (5-FU)-loaded microsponges in combination with calcium pectinate beads. Materials and Methods: The modified quasi-emulsion solvent diffusion method was used to prepare microsponges. A 32 factorial design was employed to study the formulation and the effects of independent variables (volume of organic solvent and Eudragit-RS100 content) on dependent variables (particle size, %entrapment efficiency, and %cumulative drug release). The optimized microsponge (F4) was characterized by scanning electron microscopy, powder X-ray diffraction, and thermogravimetric analysis. F4 was plugged along with the calcium pectinate beads in HPMC capsules coated with enteric polymer Eudragit-L100 (Ed-L100) and/or Eudragit-S100 (Ed-S100) in different proportions. An in vitro release study of ECHC was performed in simulated gastric fluid for 2 h, followed by simulated intestinal fluid for next 6 h and then in simulated colonic fluid (in the presence and absence of pectinase enzyme for further 16 h). The optimized formulation was subjected to in vivo roentgenographic and pharmacokinetic studies in New Zealand white rabbits to analyze the in vivo behavior of the developed colon-targeted capsules. Results: Drug release was retarded on coating with Ed-S100 in comparison to a blend of Ed-S100:Ed-L100 coating. The percentage of 5-FU released at the end of 24 h from ECHC3 was 97.83 ± 0.12% in the presence of pectinase whereas in the control study, it was 40.08 ± 0.02%. Conclusion: Thus, enteric-coated HPMC capsules plugged with 5-FU-loaded microsponges and calcium pectinate beads proved to be a promising dosage form for colon targeting. PMID:26682194

  7. Hydroxypropyl methylcellulose based cephalexin extended release tablets: influence of tablet formulation, hardness and storage on in vitro release kinetics.

    PubMed

    Saravanan, Muniyandy; Sri Nataraj, Kalakonda; Ganesh, Kettavarampalayam Swaminath

    2003-08-01

    The object of this study was to develop hydroxypropyl methylcellulose (HPMC) based cephalexin extended release tablet, which can release the drug for six hours in predetermined rate. Twenty-one batches of cephalexin tablets were prepared by changing various physical and chemical parameters, in order to get required theoretical release profile. The influences of HPMC, microcrystalline cellulose powder (MCCP), granulation technique, wetting agent and tablet hardness on cephalexin release from HPMC based extended release tablets were studied. The formulated tablets were also characterized by physical and chemical parameters. The dissolution results showed that a higher amount of HPMC in tablet composition resulted in reduced drug release. Addition of MCCP resulted in faster drug release. Tablets prepared by dry granulation was released the drug slowly than the same prepared with a wet granulation technique. Addition of wetting agent in the tablets prepared with dry granulation technique showed slower release. An increase in tablet hardness resulted in faster drug release. Tablets prepared with a wet granulation technique and having a composition of 9.3% w/w HPMC with a hardness of 10-12 kg/cm(2) gave predicted release for 6 h. The in vitro release data was well fit in to Higuchi and Korsmeyer-Peppas model. Physical and chemical parameters of all formulated tablets were within acceptable limits. One batch among formulated twenty-one batches was successful and showed required theoretical release. The effect of storage on in vitro release and physicochemical parameters of successful batch was studied and was found to be in acceptable limits.

  8. Comprehensive investigation of hydroxypropyl methylcellulose, propylene glycol, polysorbate 80, and hydroxypropyl-beta-cyclodextrin for use in general toxicology studies.

    PubMed

    Thackaberry, Evan A; Kopytek, Stephen; Sherratt, Phillip; Trouba, Kevin; McIntyre, Barry

    2010-10-01

    This study was conducted to assess the safety and tolerability of the alternative formulation vehicles polysorbate 80 (PS80), propylene glycol (PG), and hydroxypropyl-beta-cyclodextrin (HPβCD) in general toxicology studies in the mouse, rat, dog, and monkey. Twenty (20) mg/kg of hydroxypropyl methylcellulose (MC, control), 10 mg/kg PS80, 1000 mg/kg PG, 500 mg/kg HPβCD, or 1000 mg/kg HPβCD were administered by oral gavage to mice, rats, dogs, and cynomolgus monkeys for approximately 90 days. The effects of these formulations on clinical observations, body weight and food consumption parameters, clinical pathology, and histopathology were evaluated across all species. The suitability of formulations containing up to 20 mg/kg MC, 10 mg/kg PS80, and 1000 mg/kg PG for use in preclinical safety studies was confirmed by a lack of effects on all parameters examined. However, formulations containing HPβCD produced elevated transaminase (aspartate and alanine aminotransferase) levels in rats and mice and fecal changes (loose and soft stool) in large animals. Although the etiology and toxicological significance of the transaminase elevations in rats and mice is uncertain, this finding could represent a significant liability for a preclinical formulation because of the critical importance of these biomarkers in the risk assessment of novel therapeutic agents. Based on these data, PS80 and PG are considered to be practical alternatives to MC in preclinical toxicology studies. However, formulations containing HPβCD should be used with caution because of the elevations in rodent transaminase levels.

  9. Preparation of magnetite-chitosan/methylcellulose nanospheres by entrapment and adsorption techniques for targeting the anti-cancer drug 5-fluorouracil.

    PubMed

    Şanlı, Oya; Kahraman, Aslı; Kondolot Solak, Ebru; Olukman, Merve

    2016-05-01

    In this work, we have formulated novel nanospheres that could be used in the controlled release of the anticancer drug, 5-fluorouracil (5-FU). The nanospheres are composed of magnetite, containing chitosan (CS) and methylcellulose (MC). The drug entrapment was achieved through the encapsulation and adsorption processes. The effects of the preparation conditions, such as magnetite content, CS/MC ratio, crosslinking concentration, exposure time to glutaraldehyde (GA), and the drug/polymer ratio were investigated for both processes. The 5-FU release was found to follow the Fickian mechanism, and the Langmuir isotherm for the nanospheres was achieved through encapsulation and adsorption processes, respectively.

  10. Safety and efficacy of a novel injectable filler in the treatment of nasolabial folds: polymethylmethacrylate and cross-linked dextran in hydroxypropyl methylcellulose.

    PubMed

    Lee, Young Bok; Song, Eun Jong; Kim, Sang Seok; Kim, Jin Wou; Yu, Dong Soo

    2014-08-01

    Nasolabial folds are a sign of aging and increasing number of people want filler injections in their nasolabial folds to look younger. Various dermal fillers are used for the correction of nasolabial folds. Recently, a novel injectible filler, polymethylmethacrylate (PMMA) and cross-linked dextran in hydroxypropyl methylcellulose, was introduced for facial contouring. This study was designed as a six-month, prospective, single-blinded, and open-label study in two centers located in Korea. Nineteen Korean patients received the novel filler injections on both nasolabial folds. At Weeks 4, 12, and 24, the efficacy and safety of the dermal filler were evaluated by blinded-investigators using clinical photographs. The mean Wrinkle Severity Rating Scale revealed significant decrease after dermal filler injections at each study visit. The decreased Wrinkle Severity Rating Scale was maintained for 6 months (p < 0.0001). The Global Aesthetic Improvement score showed an improvement greater than 2 in 95% of the per-proto col population 24 weeks after the injections. All patients (100%) experienced an improvement of their nasolabial folds at Week 24. There were no complications related to the novel filler injection. The novel dermal filler, PMMA, and cross-linked dextran in hydroxylpropyl methylcellulose, can be another safe and effective treatment option in the treatment of nasolabial folds.

  11. Hydroxypropyl methylcellulose, a viscous soluble fiber, reduces insulin resistance and decreases fatty liver in Zucker Diabetic Fatty rats.

    PubMed

    Brockman, David A; Chen, Xiaoli; Gallaher, Daniel D

    2012-11-12

    Diets producing a high glycemic response result in exaggerated insulin secretion which induces hepatic lipogenesis, contributing to development of insulin resistance and fatty liver. Viscous dietary fibers blunt the postprandial rise in blood glucose, however their effect on type 2 diabetes and obesity are not entirely known. This study examined the effect of chronic consumption of the viscous, non-fermentable dietary fiber, hydroxypropyl methylcellulose (HPMC), on glucose control, insulin resistance and liver lipids in an obese diabetic rat model. Three groups of Zucker Diabetic Fatty (ZDF) rats were fed diets containing either 5% non-viscous cellulose (control), low viscosity HPMC (LV-HPMC) or high viscosity HPMC (HV- HPMC) for six weeks. Zucker lean littermates consuming cellulose served as a negative control. Markers of glucose control, including oral glucose tolerance test, glycated hemoglobin and urinary glucose, were measured as well as adiposity and the accumulation of liver lipids. The HPMC diets increased the viscosity of the small intestinal contents and reduced the postprandial rise in blood glucose. The food efficiency ratio was greater with HPMC feeding compared to the obese control and urinary excretion of glucose and ketone bodies was reduced. The two HPMC groups had lower glycated hemoglobin and kidney weights and a reduced area under the curve during a glucose tolerance test, indicating improved glucose control. Epididymal fat pad weight as percent of body weight was reduced in the HV-HPMC group compared to the obese control group. The HV-HPMC group also had lower concentrations of liver lipid and cholesterol and reduced liver weight. However, HV-HPMC feeding did not affect hepatic gene expression of SREBP-1c or FAS. Muscle concentration of acylcarnitines, a lipid intermediate in fatty acid β-oxidation, was not different between the HPMC groups and obese control, suggesting no change in muscle fatty acid oxidation by HPMC. Consumption of the

  12. Physical and sensory properties of all-barley and all-oat breads with additional hydroxypropyl methylcellulose (HPMC) β-glucan.

    PubMed

    Kim, Yookyung; Yokoyama, Wallace H

    2011-01-26

    Hydroxypropyl methylcellulose (HPMC) is a substituted cellulose that reduces serum cholesterol at modest intake levels. HPMC has also been used for decades in gluten-free breads at a level to optimize loaf volume. Because consumers resist the consumption of whole wheat breads, the sensory and physical properties of all oat and barley breads incorporating HPMC were evaluated. Oat and barley also contain β-glucan, a glucose polymer similar to HPMC that also lowers cholesterol. The textural and sensory properties of the breads were determined by instrumental and chemical methods and sensory panels. HPMC increased the loaf volume of the breads by up to 2 times and decreased hardness immediately after baking and after up to 3 days of storage. Barley bread with HPMC was rated the highest in overall acceptability by sensory panelists compared to oat and wheat breads with or without HPMC.

  13. Antifungal activity of food additives in vitro and as ingredients of hydroxypropyl methylcellulose-lipid edible coatings against Botrytis cinerea and Alternaria alternata on cherry tomato fruit.

    PubMed

    Fagundes, Cristiane; Pérez-Gago, María B; Monteiro, Alcilene R; Palou, Lluís

    2013-09-16

    The antifungal activity of food additives or 'generally recognized as safe' (GRAS) compounds was tested in vitro against Botrytis cinerea and Alternaria alternata. Radial mycelial growth of each pathogen was measured in PDA Petri dishes amended with food preservatives at 0.2, 1.0, or 2.0% (v/v) after 3, 5, and 7 days of incubation at 25 °C. Selected additives and concentrations were tested as antifungal ingredients of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings. The curative activity of stable coatings was tested in in vivo experiments. Cherry tomatoes were artificially inoculated with the pathogens, coated by immersion about 24 h later, and incubated at 20 °C and 90% RH. Disease incidence and severity (lesion diameter) were determined after 6, 10, and 15 days of incubation and the 'area under the disease progress stairs' (AUDPS) was calculated. In general, HPMC-lipid antifungal coatings controlled black spot caused by A. alternata more effectively than gray mold caused by B. cinerea. Overall, the best results for reduction of gray mold on cherry tomato fruit were obtained with coatings containing 2.0% of potassium carbonate, ammonium phosphate, potassium bicarbonate, or ammonium carbonate, while 2.0% sodium methylparaben, sodium ethylparaben, and sodium propylparaben were the best ingredients for coatings against black rot. © 2013 Elsevier B.V. All rights reserved.

  14. Influence of Hydroxypropyl Methylcellulose on Metronidazole Crystallinity in Spray-Congealed Polyethylene Glycol Microparticles and Its Impact with Various Additives on Metronidazole Release.

    PubMed

    Oh, Ching Mien; Heng, Paul Wan Sia; Chan, Lai Wah

    2015-12-01

    The purpose of this study was to investigate the effect of a hydrophilic polymer, hydroxypropyl methylcellulose (HPMC), on the crystallinity and drug release of metronidazole (MNZ) in spray-congealed polyethylene glycol (PEG) microparticles and to further modify the drug release using other additives in the formulation. HPMC has been used in many pharmaceutical formulations and processes but to date, it has not been employed as an additive in spray congealing. Crystallinity of a drug is especially important to the development of pharmaceutical products as active pharmaceutical ingredients (APIs) are mostly crystalline in nature. A combination of X-ray diffractometry, differential scanning calorimetry, Raman spectroscopy and Fourier transform-infrared spectroscopy (FT-IR) spectroscopy was employed to investigate the degree of crystallinity and possible solid-state structure of MNZ in the microparticles. The microparticles with HPMC were generally spherical. Spray congealing decreased MNZ crystallinity, and the presence of HPMC reduced the drug crystallinity further. The reduction in MNZ crystallinity was dependent on the concentration of HPMC. Smaller HPMC particles also resulted in a greater percentage reduction in MNZ crystallinity. Appreciable modification to MNZ release could be obtained with HPMC. However, this was largely attributed to the role of HPMC in forming a diffusion barrier. Further modification of drug release from spray-congealed PEG-HPMC microparticles was achieved with the addition of 5% w/w dicalcium phosphate but not with magnesium stearate, methyl cellulose, polyvinylpyrrolidone, silicon dioxide and sodium oleate/citric acid. Dicalcium phosphate facilitated formation of the diffusion barrier.

  15. Thermo-reversible injectable gel based on enzymatically-chopped low molecular weight methylcellulose for exenatide and FGF 21 delivery to treat types 1 and 2 diabetes.

    PubMed

    Kim, Jang Kyoung; Yoo, Changhun; Cha, Yong-Hoon; Kim, Yong-Hee

    2014-11-28

    Diabetes is the fastest growing metabolic disease that fails to utilize glucose properly due to insulin deficiency or insulin resistance. Although several limited studies demonstrated non-invasive means of protein delivery, major hurdles for commercial success such as short half-life, enzymatic degradation and low bioavailability still remain to overcome. Methylcellulose (MC), a hydrophobically-modified cellulose derivative, forms temperature reversible gel in aqueous solution. However, as the gelling temperature of MC is higher than body temperature, it should be lowered to below body temperature for practical clinical application. In order to decrease gelling temperature and increase bio-compatibility and bio-elimination of MC, the molecular weight of MC was decreased using enzymatic degradation method and confirmed by gel permeation chromatography. Bio-elimination of low molecular weight (LMw) MC was confirmed with non-invasive live image and ex vivo experiment. The exenatide and FGF 21 were physically loaded 100% into LMwMC-based thermo-reversible gel and slowly released from gel with no initial bursts. Exenatide-loaded LMwMC gel showed reduction of blood glucose level for a week in type 1 diabetic animal model. FGF 21-loaded LMwMC gel reduced glucose level to normal condition and maintained over 10 days in type 2 diabetic animal model. LMwMC-based thermo-reversible and injectable hydrogel provides a strong potential to be efficient protein drug delivery system for the treatment of type 1 and type 2 diabetes.

  16. Effect of plasticizer type and amount on hydroxypropyl methylcellulose-beeswax edible film properties and postharvest quality of coated plums (cv. Angeleno).

    PubMed

    Navarro-Tarazaga, Maria Ll; Sothornvit, Rungsinee; Pérez-Gago, María B

    2008-10-22

    The effect of the composition of hydroxypropyl methylcellulose (HPMC)-beeswax (BW) edible coatings on stand-alone film properties and on postharvest quality of coated 'Angeleno' plums was studied. Glycerol (G) and mannitol (M) were tested as plasticizers at two different plasticizer/HPMC ratios (100:1 and 300:1 molar basis). BW content was 20 or 40% (dry basis). An increase in G content increased film flexibility and vapor permeability (WVP), whereas an increase in M content enhanced film brittleness without affecting WVP. An increase in BW content reduced film flexibility and reduced WVP of only G-plasticized films. Coatings reduced plum softening and bleeding, but were not effective in reducing plum weight loss. At low plasticizer content, coatings reduced texture loss effectively. Low BW also lowered plum bleeding. Plasticizer type affected only ethanol and acetaldehyde contents without affecting the remaining quality parameters. Therefore, HPMC-BW coatings have the potential to extend the shelf life of plums. However, this effect depends on coating composition. Differences between coating and film performance indicate that data from stand-alone films may be used as a preliminary screening, but coating performance should be analyzed on coated fruit.

  17. Effect of solid content and composition of hydroxypropyl methylcellulose-lipid edible coatings on physico-chemical and nutritional quality of 'Oronules' mandarins.

    PubMed

    Contreras-Oliva, Adriana; Rojas-Argudo, Cristina; Pérez-Gago, Maria B

    2012-03-15

    Citrus fruit represent an important source of vitamin C, as well as other bioactive compounds. Edible coatings have the potential to extend shelf life of citrus by providing a semi-permeable barrier to water and gases, which depends on coating composition, solid content (SC), and cultivar. However, little is known about the effect of coatings on citrus nutritional quality. This work studies the effect of coating composition and SC of hydroxypropyl methylcellulose (HPMC)-beeswax (BW)-shellac coatings on the physico-chemical, sensory and nutritional quality of 'Oronules' mandarins. Coatings prepared at the same lipid content differed in the BW:shellac ratio (1:3 and 3:1) and SC of the formulations (40 and 80 g kg⁻¹). The coating with 1:3 BW:shellac ratio and 80 g kg⁻¹ SC was the most effective controlling weight loss, although it was less effective than the commercial wax tested. Increasing SC had a greater effect than the BW:shellac ratio in fruit internal atmosphere and sensory quality, with the presence of off-flavour when coatings were applied at 80 g kg⁻¹ SC. Nutritional quality was not affected by the application of the different treatments. HPMC-lipid coatings have the potential to extend shelf life of 'Oronules' mandarins. However, care should be taken controlling formulation SC to avoid the build-up of off-flavour. Copyright © 2011 Society of Chemical Industry.

  18. Microphase Separation and Gelation of Methylcellulose in the Presence of Gallic Acid and NaCl as an In Situ Gel-Forming Drug Delivery System.

    PubMed

    Sangfai, Tanatchaporn; Tantishaiyakul, Vimon; Hirun, Namon; Li, Lin

    2017-04-01

    Novel hydrogels of methylcellulose (MC) with gallic acid (GA) and NaCl were developed for an in situ gel-forming delivery system. Plain MC and GA/NaCl/MC were characterized using micro-differential scanning calorimetry (micro-DSC), rheological and turbidity methods. The gelation temperatures of MC were reduced to body temperature with adding GA/NaCl. GA and NaCl caused slightly different effects on the gelation/degelation temperatures during heating/cooling, respectively, based on the different sensitivities of these three techniques. The gelation mechanism was investigated by UV spectrophotometry, and the hydrophobic interaction between the aromatic ring of GA and MC was verified. The NaCl/MC hydrogel had smaller micropores than GA/MC and MC, indicating a greater cross-linked density. Doxycycline (DX) was loaded into the systems and demonstrated a synergistic effect of DX/GA. Both GA and DX exhibited a sustained release. The hydrogel of GA/4NaCl/MC could be potentially used for the in situ delivery of DX for deep wound healing.

  19. Inhibition of Penicillium digitatum and Penicillium italicum by hydroxypropyl methylcellulose-lipid edible composite films containing food additives with antifungal properties.

    PubMed

    Valencia-Chamorro, Silvia A; Palou, Lluís; del Río, Miguel A; Pérez-Gago, María B

    2008-12-10

    New hydroxypropyl methylcellulose (HPMC)-lipid edible composite films containing low-toxicity chemicals with antifungal properties were developed. Tested chemicals were mainly salts of organic acids, salts of parabens, and mineral salts, classified as food additives or generally recognized as safe (GRAS) compounds. Selected films containing food preservatives were used for in vitro evaluation (disk diameter test) of their antifungal activity against Penicillium digitatum (PD) and Penicillium italicum (PI), the most important postharvest pathogens of fresh citrus fruit. Mechanical properties and oxygen (OP) and water vapor permeabilities (WVP) of selected films were also determined. Film disks containing parabens and their mixtures inhibited PD and PI to a higher extent than the other chemicals tested. Among all organic acid salts tested, potassium sorbate (PS) and sodium benzoate (SB) were the most effective salts in controlling both PD and PI. The use of mixtures of parabens or organic acid salts did not provide an additive or synergistic effect for mold inhibition when compared to the use of single chemicals. Barrier and mechanical properties of films were affected by the addition of food preservatives. Results showed that HPMC-lipid films containing an appropriate food additive should promise as potential commercial antifungal edible coatings for fresh citrus fruit.

  20. Improvement of the mechanical and barrier properties of methylcellulose-based films by treatment with HEMA and silane monomers under gamma radiation

    NASA Astrophysics Data System (ADS)

    Khan, Ruhul A.; Dussault, Dominic; Salmieri, Stephane; Safrany, Agnes; Lacroix, Monique

    2012-08-01

    Methylcellulose (MC)-based films were prepared by casting from its 1% aqueous solution containing 0.5% vegetable oil, 0.25% glycerol and 0.025% Tween®-80. Puncture strength (PS), puncture deformation (PD) and water vapor permeability (WVP) of the films were found to be 147 N/mm, 3.46 mm, and 6.34 g mm/m2 day kPa, respectively. The monomer, 2-hydroxyethyl methacrylate (HEMA) (0.1-1%, w/w) was incorporated into the MC-based solution and films were prepared by casting. Films were then exposed to gamma radiation (5-25 kGy) and it revealed that 1% HEMA containing films showed the highest PS values (282 N/mm at 10 kGy). Silane monomer (3-aminopropyl tri-ethoxy silane) (0.1-1%, w/w) was also added into the MC-based films and were found to improve the strength of the films significantly. In comparison between HEMA and silane treatment onto MC-based films, it was observed that silane performed better strength and barrier properties. Surface morphology of the monomer treated films was examined by scanning electron microscopy and suggested better appearance than MC-based film.

  1. Altered hepatic gene expression profiles associated with improved fatty liver, insulin resistance, and intestinal permeability after hydroxypropyl methylcellulose (HPMC) supplementation in diet-induced obese mice.

    PubMed

    Kim, Hyunsook; Bartley, Glenn E; Young, Scott A; Seo, Kun-Ho; Yokoyama, Wallace

    2013-07-03

    The effect of hydroxypropyl methylcellulose (HPMC) on hepatic gene expression was analyzed by exon microarray and real-time PCR from livers of diet-induced obese (DIO) mice fed a high-fat (HF) diet supplemented with either 6% HPMC or 6% microcrystalline cellulose (MCC). HPMC-fed mice exhibited significantly reduced body weight gain (55% lower compared to MCC), liver weight (13%), plasma LDL-cholesterol concentration (45%), and HF diet-increased intestinal permeability (48%). HPMC significantly reduced areas under the curve for 2 h insulin and glucose responses, indicating enhanced insulin sensitivity and glucose metabolism. HPMC up-regulated hepatic genes related to fatty acid oxidation, cholesterol and bile acid synthesis, and cellular activation of glucocorticoid (bile acid recycling) and down-regulated genes related to oxidative stress, triglyceride synthesis, and polyunsaturated fatty acid elongation. In conclusion, HPMC consumption ameliorates the effects of a HF diet on intestinal permeability, insulin resistance, hepatic lipid accumulation, glucocorticoid-related bile acid recycling, oxidative stress, and weight gain in DIO mice.

  2. Molecular mobility of lyophilized poly(vinylpyrrolidone) and methylcellulose as determined by the laboratory and rotating frame spin-lattice relaxation times of 1H and 13C.

    PubMed

    Yoshioka, Sumie; Aso, Yukio; Kojima, Shigeo

    2003-11-01

    Laboratory- and rotating- frame spin-lattice relaxation times (T(1) and T(1rho)) of (1)H and (13)C in lyophilized poly(vinylpyrrolidone) (PVP) and methylcellulose (MC) are determined to examine feasibility of using T(1) and T(1rho) as a measure of molecular motions on large time scales related to the storage stability of lyophilized formulations. The T(1rho) of proton and carbon was found to reflect the mobility of PVP and MC backbones, indicating that it is useful as a measure of large-time-scale molecular motions. In contrast to the T(1rho), the T(1) of proton measured in the same temperature range reflected the mobility of PVP and MC side chains. The T(1) of proton may be useful as a measure of local molecular motions on a smaller-time-scale, although the measurement is interfered by moisture under some conditions. The temperature dependence of T(1) and T(1rho) indicated that methylene in the MC molecule had much higher mobility than that in the dextran molecule, also indicated that methylene in the PVP side chain had a higher mobility than that in the MC side chain.

  3. The influence of hydroxypropyl methylcellulose (HPMC) molecular weight, concentration and effect of food on in vivo erosion behavior of HPMC matrix tablets.

    PubMed

    Jain, Arun Kumar; Söderlind, Erik; Viridén, Anna; Schug, Barbara; Abrahamsson, Bertil; Knopke, Christian; Tajarobi, Farhad; Blume, Henning; Anschütz, Maria; Welinder, Anette; Richardson, Sara; Nagel, Stefan; Abrahmsén-Alami, Susanna; Weitschies, Werner

    2014-08-10

    Four different hydrophilic matrix formulations based on hydroxypropyl methylcellulose (HPMC) were investigated for erosion properties in vivo. Three formulations contained a fixed amount of HPMC (40%) with varying proportions of two HPMC grades with different molecular weights (Methocel K100LV and K4M), and a fourth formulation contained a lower amount of the HPMC of lower molecular weight (20%). The effect of food on the in vivo erosion behavior was investigated on two formulations containing different contents of the same HPMC grade. The in vivo erosion behavior and gastrointestinal transit were investigated using magnetic marker monitoring (MMM). The in vitro and in vivo erosion-time profiles show that the erosion was strongly dependent on the composition of the formulation. The formulations containing a larger proportion of high molecular weight HPMC or higher content of HPMC exhibit relatively slower erosion rate and vice versa. In vivo erosion rates were significantly higher under postprandial administration as compared to fasted state administration. No rapid disintegration of any of the formulations (i.e. formulation failure that can potentially cause dose dumping) was observed.

  4. A study on the impact of hydroxypropyl methylcellulose on the viscosity of PEG melt suspensions using surface plots and principal component analysis.

    PubMed

    Oh, Ching Mien; Heng, Paul Wan Sia; Chan, Lai Wah

    2015-04-01

    An understanding of the rheological behaviour of polymer melt suspensions is crucial in pharmaceutical manufacturing, especially when processed by spray congealing or melt extruding. However, a detailed comparison of the viscosities at each and every temperature and concentration between the various grades of adjuvants in the formulation will be tedious and time-consuming. Therefore, the statistical method, principal component analysis (PCA), was explored in this study. The composite formulations comprising polyethylene glycol (PEG) 3350 and hydroxypropyl methylcellulose (HPMC) of ten different grades (K100 LV, K4M, K15M, K100M, E15 LV, E50 LV, E4M, F50 LV, F4M and Methocel VLV) at various concentrations were prepared and their viscosities at different temperatures determined. Surface plots showed that concentration of HPMC had a greater effect on the viscosity compared to temperature. Particle size and size distribution of HPMC played an important role in the viscosity of melt suspensions. Smaller particles led to a greater viscosity than larger particles. PCA was used to evaluate formulations of different viscosities. The complex viscosity profiles of the various formulations containing HPMC were successfully classified into three clusters of low, moderate and high viscosity. Formulations within each group showed similar viscosities despite differences in grade or concentration of HPMC. Formulations in the low viscosity cluster were found to be sprayable. PCA was able to differentiate the complex viscosity profiles of different formulations containing HPMC in an efficient and time-saving manner and provided an excellent visualisation of the data.

  5. Curative and preventive activity of hydroxypropyl methylcellulose-lipid edible composite coatings containing antifungal food additives to control citrus postharvest green and blue molds.

    PubMed

    Valencia-Chamorro, Silvia A; Pérez-Gago, María B; Del Río, Miguel A; Palou, Lluís

    2009-04-08

    Edible composite coatings based on hydroxypropyl methylcellulose (HPMC), lipid components (beeswax and shellac), and food preservatives with antifungal properties were evaluated in vivo on clementine mandarins cv. Clemenules, hybrid mandarins cv. Ortanique, and oranges cv. Valencia. Their curative and preventive activity against citrus postharvest green (GM) and blue molds (BM), caused by Penicillium digitatum (PD) or Penicillium italicum (PI), respectively, were determined. Fruits were artificially inoculated before or after the application of the coatings and incubated up to 7 days at 20 degrees C. Selected food preservatives included mineral salts, organic acid salts, parabens, and 2-deoxy-d-glucose. Inoculated but uncoated fruits were used as controls. For curative activity, HPMC-lipid edible composite coatings containing sodium benzoate (SB) were most effective in reducing the incidence and severity of GM on clementine mandarins cv. Clemenules (86 and 90%, respectively). On this cultivar, the reduction in GM incidence by the SB-based coating was twice that of potassium sorbate (PS)-based coating. On mandarins cv. Ortanique, PS- and SB-based coatings reduced the incidence of GM and BM by more than 40 and 21%, respectively. However, the HPMC-lipid coating containing a mixture of PS and sodium propionate (PS + SP) exhibited a synergistic effect in the reduction of the incidence of GM (78%) and BM (67%). Coatings with parabens modestly reduced disease incidence and severity. On oranges cv. Valencia, coatings with food preservatives better controlled BM than GM. Coatings containing SB + PS and SB + SP reduced the incidence and severity of BM by 85% and 95%, respectively. PS- and SB- based coatings controlled GM more effectively than coatings formulated with other food preservatives. In every cultivar, fruit coated before inoculation did not show any incidence or severity reduction of both GM and BM (preventive activity). In every test, the antifungal action of the

  6. Effect of antifungal hydroxypropyl methylcellulose-lipid edible composite coatings on Penicillium decay development and postharvest quality of cold-stored "Ortanique" mandarins.

    PubMed

    Valencia-Chamorro, Silvia A; Pérez-Gago, María B; Del Río, Miguel A; Palou, Lluís

    2010-10-01

    Edible composite coatings based on hydroxypropyl methylcellulose (HPMC), hydrophobic components (beeswax and shellac), and food preservatives with antifungal properties were evaluated on "Ortanique" mandarins during long-term cold storage. Selected food preservatives included potassium sorbate (PS), sodium benzoate (SB), sodium propionate (SP), and their mixtures. Intact mandarins or mandarins artificially inoculated with the pathogens Penicillium digitatum and Penicillium italicum, the causal agents of citrus postharvest green (GM) and blue (BM) molds, respectively, were coated and stored up to 8 wk at 5 °C + 1 wk of shelf-life at 20 °C. HPMC-lipid coatings containing food preservatives controlled better GM than BM on Ortanique mandarins. SB- and SB + SP-based coatings reduced the incidence of GM by about 35% after 4 wk at 5 °C. Among all coatings, only the SB-based coating reduced the incidence of GM (about 16%) after 6 wk at 5 °C. All coatings significantly reduced disease severity of both GM and BM after 6 wk at 5 °C. Analytical and sensory fruit quality was evaluated on intact mandarins. All coatings, especially the SB + SP-based coatings, were effective to control weight loss and maintain the firmness of coated mandarins. Internal gas concentration, juice ethanol and acetaldehyde content, sensory flavor, off-flavor, and fruit appearance were not adversely affected by the application of the antifungal coatings. Further studies should focus on the modification of some physical characteristics of the coatings to improve the gloss and visual aspect of treated mandarins.

  7. Preparation and characterization of gatifloxacin-loaded sodium alginate hydrogel membranes supplemented with hydroxypropyl methylcellulose and hydroxypropyl cellulose polymers for wound dressing

    PubMed Central

    Prabu, Durai; Majdalawieh, Amin F.; Abu-Yousef, Imad A.; Inbasekaran, Kadambari; Balasubramaniam, Tharani; Nallaperumal, Narayanan; Gunasekar, Conjeevaram J.

    2016-01-01

    Introduction: The aim of this study is to evaluate gatifloxacin-loaded sodium alginate hydrogel membranes, supplemented with glycerol (a plasticizer), glutaraldehyde (a cross-linking agent), and hydroxypropyl methylcellulose (HPMC) or hydroxypropyl cellulose (HPC) polymers, as potential wound dressing materials based on their physicochemical properties and the sustain-release phenomenon. Materials and Methods: The physicochemical properties of the prepared hydrogel membranes were evaluated by several methods including Fourier transform infrared and differential scanning calorimetry. Different techniques were used to assess the swelling behavior, tensile strength and elongation, % moisture absorption, % moisture loss, water vapor transmission rate (WVTR), and microbial penetration for the hydrogel membranes. In vitro gatifloxacin release from the hydrogel membranes was examined using the United States Pharmacopeia XXIII dissolution apparatus. Four kinetics models (zero-order, first-order, Higuchi equation, and Korsmeyer-Peppas equation) were applied to study drug release kinetics. Results: The addition of glycerol, glutaraldehyde, HPMC, and HPC polymers resulted in a considerable increase in the tensile strength and flexibility/elasticity of the hydrogel membranes. WVTR results suggest that hydrated hydrogel membranes can facilitate water vapor transfer. None of the hydrogel membranes supported microbial growth. HPMC-treated and HPC-treated hydrogel membranes allow slow, but sustained, release of gatifloxacin for 48 h. Drug release kinetics revealed that both diffusion and dissolution play an important role in gatifloxacin release. Conclusions: Given their physicochemical properties and gatifloxacin release pattern, HPMC-treated and HPC-treated hydrogel membranes exhibit effective and sustained drug release. Furthermore, HPMC-treated and HPC-treated hydrogel membranes possess physiochemical properties that make them effective and safe wound dressing materials. PMID

  8. Three-dimensional plotting of a cell-laden alginate/methylcellulose blend: towards biofabrication of tissue engineering constructs with clinically relevant dimensions.

    PubMed

    Schütz, Kathleen; Placht, Anna-Maria; Paul, Birgit; Brüggemeier, Sophie; Gelinsky, Michael; Lode, Anja

    2015-07-22

    Biofabrication of tissue engineering constructs with tailored architecture and organized cell placement using rapid prototyping technologies is a major research focus in the field of regenerative therapies. This study describes a novel alginate-based material suitable for both cell embedding and fabrication of three-dimensional (3D) structures with predefined geometry by 3D plotting. The favourable printing properties of the material were achieved by using a simple strategy: addition of methylcellulose (MC) to a 3% alginate solution resulted in a strongly enhanced viscosity, which enabled accurate and easy deposition without high technical efforts. After scaffold plotting, the alginate chains were crosslinked with Ca(2+) ; MC did not contribute to the gelation and was released from the scaffolds during the following cultivation. The resulting constructs are characterized by high elasticity and stability, as well as an enhanced microporosity caused by the transient presence of MC. The suitability of the alginate/MC blend for cell embedding was evaluated by direct incorporation of mesenchymal stem cells during scaffold fabrication. The embedded cells showed high viability after 3 weeks of cultivation, which was similar to those of cells within pure alginate scaffolds which served as control. Maintenance of the differentiation potential of embedded cells, as an important requirement for the generation of functional tissue engineering constructs, was proven for adipogenic differentiation as a model for soft tissue formation. In conclusion, the temporary integration of MC in to a low-concentrated alginate solution allowed the generation of scaffolds with dimensions in the range of centimetres without loss of the positive properties of low-concentrated alginate hydrogels with regard to cell embedding. Copyright © 2015 John Wiley & Sons, Ltd.

  9. An injectable bone substitute composed of beta-tricalcium phosphate granules, methylcellulose and hyaluronic acid inhibits connective tissue influx into its implantation bed in vivo.

    PubMed

    Ghanaati, S; Barbeck, M; Hilbig, U; Hoffmann, C; Unger, R E; Sader, R A; Peters, F; Kirkpatrick, C J

    2011-11-01

    In this study, the in vivo tissue reaction to a new triphasic and injectable paste-like bone-substitute material composed of beta-tricalcium phosphate (β-TCP), methylcellulose and hyaluronic acid was analyzed. Using a subcutaneous implantation model, the interaction of these materials and the peri-implant tissue reaction were tested in Wistar rats for up to 60 days by means of established histological methods, including histomorphometrical analysis. The study focused on tissue integration, classification of the cellular inflammatory response and the degradation of the material. Groups composed of animals injected only with β-TCP granules, sham-operated animals and animals injected with saline were used as controls. After implantation, the triphasic bone-substitute material was present as a bulk-like structure with an inner and outer core. Over a period of 60 days, the material underwent continuous degradation from the periphery towards the core. The implantation bed of the β-TCP granule control group was invaded by phagocytes and formed a poorly vascularized connective tissue soon after implantation. This inflammatory response continued throughout the study period and filled the implantation bed. Significantly, the combination of the three biocompatible materials into one injectable paste-like bone-substitute material enabled modification of the tissue reaction to the implant and resulted in a longer in vivo lifetime than that of β-TCP granules alone. In addition, this combination increased the vascularization of the implantation bed, which is essential for successful tissue regeneration. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Reactive template synthesis of nitrogen-doped graphene-like carbon nanosheets derived from hydroxypropyl methylcellulose and dicyandiamide as efficient oxygen reduction electrocatalysts

    NASA Astrophysics Data System (ADS)

    Hu, Chun; Zhou, Yao; Ma, Ruguang; Liu, Qian; Wang, Jiacheng

    2017-03-01

    Oxygen reduction reaction (ORR) plays a dominant role in proton exchange membrane fuel cells (PEMFCs). Thus, the design and preparation of efficient ORR electrocatalysts is of high importance. In this work, we successfully prepared a series of nitrogen-doped graphene-like carbon nanosheets (NCNSs) with large pore volumes of up to 1.244 cm3 g-1 and high level of N dopants (5.3-6.8 at%) via a one-step, in-situ reactive template strategy by co-pyrolysis of hydroxypropyl methylcellulose (HPMC) and dicyandiamide (DICY) as the precursors at 1000 °C. The DICY-derived graphitic carbon nitride (g-C3N4) nanosheets could act as the hard template for the confined growth of 2D carbon nanosheets, and the further increase in the pyrolysis temperature could directly remove off the g-C3N4 template by complete decomposition and simultaneously dope N atoms within the carbon nanosheets. The pyridinic and graphitic nitrogen groups are dominant among various N functional groups in the NCNSs. The NCNS_1:10 prepared with the HPMC/DICY mass ratio of 1/10 can be used as the metal-free ORR electrocatalysts with optimal activity (onset potential: -0.1 V vs. SCE; limiting current density: 4.8 mA cm-2) in O2-saturated 0.1 M KOH electrolyte among the NCNSs. Moreover, the NCNS_1:10 demonstrates a dominant four-electron reduction process, as well as excellent long-term operation stability and outstanding methanol crossover resistance. The excellent ORR activity of the NCNS_1:10 should be mainly owing to high contents of pyridinic and graphitic N dopants, large pore volume, hierarchical structures, and microstructural defects.

  11. Evaluating food additives as antifungal agents against Monilinia fructicola in vitro and in hydroxypropyl methylcellulose-lipid composite edible coatings for plums.

    PubMed

    Karaca, Hakan; Pérez-Gago, María B; Taberner, Verònica; Palou, Lluís

    2014-06-02

    Common food preservative agents were evaluated in in vitro tests for their antifungal activity against Monilinia fructicola, the most economically important pathogen causing postharvest disease of stone fruits. Radial mycelial growth was measured in Petri dishes of PDA amended with three different concentrations of the agents (0.01-0.2%, v/v) after 7 days of incubation at 25 °C. Thirteen out of fifteen agents tested completely inhibited the radial growth of the fungus at various concentrations. Among them, ammonium carbonate, ammonium bicarbonate and sodium bicarbonate were the most effective while sodium acetate and sodium formate were the least effective. The effective agents and concentrations were tested as ingredients of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings against brown rot disease on plums previously inoculated with M. fructicola (curative activity). 'Friar' and 'Larry Ann' plums were inoculated with the pathogen, coated with stable edible coatings about 24h later, and incubated at 20 °C and 90% RH. Disease incidence (%) and severity (lesion diameter) were determined after 4, 6, and 8 days of incubation and the 'area under the disease progress stairs' (AUDPS) was calculated. Coatings containing bicarbonates and parabens significantly reduced brown rot incidence in plums, but potassium sorbate, used at 1.0% in the coating formulation, was the most effective agent with a reduction rate of 28.6%. All the tested coatings reduced disease severity to some extent, but coatings containing 0.1% sodium methylparaben or sodium ethylparaben or 0.2% ammonium carbonate or ammonium bicarbonate were superior to the rest, with reduction rates of 45-50%. Overall, the results showed that most of the agents tested in this study had significant antimicrobial activity against M. fructicola and the application of selected antifungal edible coatings is a promising alternative for the control of postharvest brown rot in plums.

  12. Assessment of hydroxypropyl methylcellulose, propylene glycol, polysorbate 80, and hydroxypropyl-β-cyclodextrin for use in developmental and reproductive toxicology studies.

    PubMed

    Enright, Brian P; McIntyre, Barry S; Thackaberry, Evan A; Treinen, Kimberley A; Kopytek, Stephan J

    2010-12-01

    A series of studies were conducted to assess Polysorbate 80 (PS80), Propylene Glycol (PG), and Hydroxypropyl-β-Cyclodextrin (HPβCD), when compared with Hydroxypropyl Methylcellulose (MC) in developmental and reproductive toxicology (DART) studies. In the rat fertility study, 20 mg/kg MC, 10 mg/kg PS80, 1,000 mg/kg PG, 500 mg/kg HPβCD or 1,000 mg/kg HPβCD were administered orally before/during mating, and on gestation Day (GD) 0-7, followed by an assessment of embryonic development on GD 14. In the rat and rabbit teratology studies, the doses of MC, PS80, PG, and HPβCD were the same as those in the fertility study. In these teratology studies, pregnant females were dosed during the period of organogenesis, followed by an assessment of fetal external, visceral, and skeletal development. In the rat fertility and rat teratology studies, PS80, PG, and HPβCD did not exhibit toxicity, when compared with MC. Similarly, in the rabbit teratology study, there was no PS80 or PG-related toxicity, when compared with MC. However, individual rabbits in the 500 and 1,000 mg/kg HPβCD groups exhibited maternal toxicity, which included stool findings, decreased food consumption, and body weight gain. Furthermore, one rabbit each in the 500 and 1,000 mg/kg HPβCD groups exhibited evidence of abortion, which was considered secondary to maternal toxicity. Although HPβCD was not well tolerated in rabbits at doses of 500 and 1,000 mg/kg, PS80 and PG were comparable to MC and should be considered for use in developmental and reproductive toxicology studies. © 2010 Wiley-Liss, Inc.

  13. SYNTHESIS AND IN VITRO CHARACTERIZATION OF HYDROXYPROPYL METHYLCELLULOSE-GRAFT-POLY (ACRYLIC ACID/2-ACRYLAMIDO-2-METHYL-1-PROPANESULFONIC ACID) POLYMERIC NETWORK FOR CONTROLLED RELEASE OF CAPTOPRIL.

    PubMed

    Furqan Muhammad, Iqbal; Mahmood, Ahmad; Aysha, Rashid

    2016-01-01

    A super-absorbent hydrogel was developed by crosslinking of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and acrylic acid with hydroxypropyl methylcellulose (HPMC) for controlled release drug delivery of captopril, a well known antihypertensive drug. Acrylic acid and AMPS were polymerized and crosslinked with HPMC by free radical polymerization, a widely used chemical crosslinking method. N,N'-methylenebisacrylamide (MBA) and potassium persulfate (KPS) were added as cross-linker and initiator, respectively. The hydrogel formulation was loaded with captopril (as model drug). The concentration of captopril was monitored at 205 nm using UV spectrophotometer. Equilibrium swelling ratio was determined at pH 2, 4.5 and 7.4 to evaluate the pH responsiveness of the formed hydrogel. The super-absorbent hydrogels were evaluated by FTIR, SEM, XRD, and thermal analysis (DSC and TGA). The formation of new copolymeric network was determined by FTIR, XRD, TGA and DSC analysis. The hydrogel formulations with acrylic acid and AMPS ratio of 4: 1 and lower amounts of crosslinker had shown maximum swelling. Moreover, higher release rate of captopril was observed at pH 7.4 than at pH 2, because of more swelling capacity of copolymer with increasing pH of the aqueous medium. The present research work confirms the development of a stable hydrogel comprising of HPMC with acrylic acid and AMPS. The prepared hydrogels exhibited pH sensitive behav-ior. This superabsorbent composite prepared could be a successful drug carrier for treating hypertension.

  14. Treatment of chronic suppurative otitis media with ofloxacin in hydroxypropyl methylcellulose ear drops: a clinical/bacteriological study in a rural area of Malawi.

    PubMed

    van Hasselt, Piet; van Kregten, Eric

    2002-03-15

    Chronic suppurative otitis media in young children is a major problem in Africa, with socio-economic consequences at a later age. Common treatment regimens with antibiotics are expensive and often not practically feasible. Therefore, a project was started to develop a low-cost and effective treatment in a rural area of Malawi by studying the clinical efficacy of an inexpensive application regimen of ofloxacin (0.075%) in hydroxypropyl methylcellulose (1.5%) ear drops. In earlier studies with this treatment regimen, it was possible to cure approximately 70% of ears. The aim of this study was to find out whether the bacteriological spectrum cultured from wet ears before and after treatment, and patterns of resistance to antibiotics, played a role in the percentage of cures. Patients with long-standing chronic suppurative otitis media were clinically assessed and treated with suction cleaning and instillation of ear drops on days 1, 3, 7 and 10. Bacterial swabs were taken for culture and sensitivity tests for ofloxacin were on days 1 and 10 from the ears that were still discharging. After 21 weeks, the ears were assessed again clinically. Clinical cure was considered to be complete cessation of otorrhea. Ninety of 104 tested patients (124 ears) completed the study. About 73% of the ears had become dry by day 10. This dropped to 42% after 21 weeks. Before treatment, most ears (91%) harbored fecal bacteria, Proteus mirabilis (74%) and enterococci (60%) being the most frequently isolated microbes. The second group of frequently cultured bacteria were water bacteria e.g. Pseudomonas species and other non-fermenters (69%), whereas the classical otitis media pathogens were detected only in 15% of ears. Before treatment, 9.7% of strains were resistant to ofloxacin, most (30/35) of which were cultured from ears that were eventually cured. After treatment, fecal and water bacteria were still the most frequently found, with 36% new strains and an overall sensitivity to

  15. Effect of meat enhancement solutions with hydroxypropyl methylcellulose and konjac flour on texture and quality attributes of pale, soft, and exudative pork.

    PubMed

    Booren, B L; Castell-Perez, M E; Miller, R K

    2017-10-01

    The objective of this study was to determine whether addition of hydrocolloids, buffer ingredients, salt, and sodium phosphate improve the color, texture, and pH of normal and pale, soft, and exudative (PSE) meat. Specific solutions include potassium bicarbonate (KHCO), ammonium bicarbonate (NHHCO), hydroxypropyl methylcellulose (HPMC), and konjac flour (KF). Three studies were carried out. First, the stability and viscoelastic properties of the different solutions was determined. Second, fresh normal (pH 5.6-5.9) and PSE (pHu < 5.4) Longissimus dorsi muscles were ground and assigned a treatment solution: control (fresh normal), water, NaCl/SP, KHCO, NHHCO, KF, HPMC, KHCO/KF, KHCO/KF/NaCl/SP (sodium phosphate), NHHCO/HPMC, and NHHCO/HPMC/NaCl/SP. Third, treatment solutions with suitable viscoelastic properties and stability, were added, homogenized, stuffed into tubes, and cooked to an internal temperature of 75C to form gels, and torsion and texture profile analysis performed. The PSE treated samples containing bicarbonate/hydrocolloid treatments had similar hardness-first bite, hardness-second bite, and gumminess values to the normal-control samples while the NHHCO treated samples had air pockets in the cooked gel. Third, consumers (n = 92) evaluated control and PSE beef/pork frankfurters produced with the following treatments: KHCO, KHCO/HPMC, and KHCO/KF. Treatment had no effect (p > .05) on overall like/dislike of flavor, but PSE frankfurters were preferred (p < .05) to the controls. The use of KHCO with hydrocolloids, salt and SP improved the color, pH and texture properties of PSE ground pork; further research to examine the effectiveness in whole PSE pork muscle systems is needed. Meat processors could use KHCO with HPMC or KF as ingredients to improve color, texture, and pH of PSE meat. The reduction of variation between PSE and normal pork muscle would improve pork quality and add value to PSE meat products. © 2016 Wiley Periodicals, Inc.

  16. Spatio-temporal morphology changes in and quenching effects on the 2D spreading dynamics of cell colonies in both plain and methylcellulose-containing culture media.

    PubMed

    Muzzio, N E; Pasquale, M A; Huergo, M A C; Bolzán, A E; González, P H; Arvia, A J

    2016-06-01

    To deal with complex systems, microscopic and global approaches become of particular interest. Our previous results from the dynamics of large cell colonies indicated that their 2D front roughness dynamics is compatible with the standard Kardar-Parisi-Zhang (KPZ) or the quenched KPZ equations either in plain or methylcellulose (MC)-containing gel culture media, respectively. In both cases, the influence of a non-uniform distribution of the colony constituents was significant. These results encouraged us to investigate the overall dynamics of those systems considering the morphology and size, the duplication rate, and the motility of single cells. For this purpose, colonies with different cell populations (N) exhibiting quasi-circular and quasi-linear growth fronts in plain and MC-containing culture media are investigated. For small N, the average radial front velocity and its change with time depend on MC concentration. MC in the medium interferes with cell mitosis, contributes to the local enlargement of cells, and increases the distribution of spatio-temporal cell density heterogeneities. Colony spreading in MC-containing media proceeds under two main quenching effects, I and II; the former mainly depending on the culture medium composition and structure and the latter caused by the distribution of enlarged local cell domains. For large N, colony spreading occurs at constant velocity. The characteristics of cell motility, assessed by measuring their trajectories and the corresponding velocity field, reflect the effect of enlarged, slow-moving cells and the structure of the medium. Local average cell size distribution and individual cell motility data from plain and MC-containing media are qualitatively consistent with the predictions of both the extended cellular Potts models and the observed transition of the front roughness dynamics from a standard KPZ to a quenched KPZ. In this case, quenching effects I and II cooperate and give rise to the quenched

  17. Matrix tablets: the effect of hydroxypropyl methylcellulose/anhydrous dibasic calcium phosphate ratio on the release rate of a water-soluble drug through the gastrointestinal tract I. In vitro tests.

    PubMed

    Mamani, Pseidy L; Ruiz-Caro, Roberto; Veiga, María D

    2012-12-01

    Different hydroxypropyl methylcellulose (HPMC)/anhydrous dibasic calcium phosphate (ADCP) matrix tablets have been developed aiming to evaluate the influence of both components ratio in the control release of a water-soluble drug (theophylline). In order to characterise the matrix tablets, swelling, buoyancy and dissolution studies have been carried out in different aqueous media (demineralised water, progressive pH medium, simulated gastric fluid, simulated intestinal fluid and simulated colonic fluid). The HPMC/ADCP ratio has turned out to be the determinant in the matrix behaviour: the HPMC characteristic swelling behaviour was modulated, in some cases, by the ADCP characteristic acidic dissolution. When the HPMC/ADCP ratio was ≥0.69, buoyancy, continuous swelling and low theophylline dissolution rate from the matrices (H1, H2 and H3) were observed in all dissolution media. Consequently, these formulations could be adequate as gastro-retentive drug delivery systems. Additionally, HPMC/ADCP ratio ≤0.11 (H5 and H6) induces a pH-dependent drug release which could be applied to design control drug release enteric formulations (with a suitable enteric coating). Finally, a HPMC/ADCP ratio between 0.11 and 0.69 (H4) yield a gastrointestinal controlled drug release, due to its time-dependent buoyancy (7 h) and a total drug delivery in 17 h in simulated colonic fluid.

  18. Magnetic solid-phase extraction based on methylcellulose coated-Fe3O4-SiO2-phenyl for HPLC-DAD analysis of sildenafil and its metabolite in biological samples.

    PubMed

    Tang, Minqiong; Wang, Qing; Jiang, Ming; Xu, Li; Shi, Zhi-Guo; Zhang, Ting; Liu, Yan

    2014-12-01

    In the present study, magnetic nanoparticles (MNPs) with phenyl functionalized core and a hydrophilic methylcellulose coating were synthesized. The functionalized MNPs showed excellent dispersibility in aqueous solution and they were applied to magnetic solid phase extraction (MSPE) of sildenafil and its metabolite, desmethyl sildenafil, from human urine and plasma samples followed by high performance liquid chromatographic analysis. The factors that may influence the extraction, including the amount of MNPs, pH and salt concentration of sample solution, extraction and desorption time, and the volume of desorption solvent, were investigated in detail. Under the optimum MSPE conditions, the developed method showed satisfactory reproducibility with intra-day and inter-day relative standard deviations less than 8.2% and low limits of detection of 0.41-0.96 ng mL(-1) from urine and plasma samples. The proposed material possessed good water compatibility and demonstrated excellent applicability for biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Effect of 0.3% Hydroxypropyl Methylcellulose/Dextran Versus 0.18% Sodium Hyaluronate in the Treatment of Ocular Surface Disease in Glaucoma Patients: A Randomized, Double-Blind, and Controlled Study

    PubMed Central

    Ruangvaravate, Ngamkae; Tesavibul, Nattaporn; Thewthong, Maneerat

    2015-01-01

    Abstract Purpose: To compare the efficacy and safety of 0.3% hydroxypropyl methylcellulose/dextran (HPMC/dextran) and 0.18% sodium hyaluronate (SH) in the treatment of ocular surface disease in patients using antiglaucoma drugs containing preservatives. Methods: This was a double-blind, randomized, parallel-group study in 70 glaucoma patients with Ocular Surface Disease Index (OSDI) score greater than 20 points and/or presence of ocular signs. Patients were randomized to receive either preservative-free 0.3% HPMC/dextran (n=35) or preservative-free 0.18% SH (n=35). Treatment was 1 drop in each eye, 4 times a day. Data were collected at baseline, at day 7 and day 28. Results: The groups were homogeneous at baseline. At day 28, both treatments showed significant improvements (P<0.05) in the mean OSDI score, lid skin and lid margin inflammation, conjunctival injection, and expressibility of meibomian glands, corneal staining score, fluorescein tear breakup time (FBUT), and Schirmer I test. However, the mean OSDI score, lid margin inflammation and conjunctival injection showed significant improvements (P<0.05) in the SH group at days 7 and 28, compared to the HPMC/dextran group. FBUT and the Schirmer I test also showed significant improvements (P<0.05) in the SH group compared to the HPMC/dextran group, at day 28. No adverse reactions were observed in either group. Conclusions: Preservative-free artificial tear, 0.3% HPMC/dextran, and 0.18% SH, caused a significant relief of the ocular surface disease in glaucoma patients. However, 0.18% SH led to a greater improvement in ocular signs and symptoms than 0.3% HPMC/dextran. PMID:26090941

  20. Rheological properties of reversible thermo-setting in situ gelling solutions with the methylcellulose-polyethylene glycol-citric acid ternary system (2): Effects of various water-soluble polymers and salts on the gelling temperature.

    PubMed

    Shimokawa, Ken-ichi; Saegusa, Katsuhiko; Ishii, Fumiyoshi

    2009-11-01

    The influences of various salts and water-soluble polymers on the phase transition temperature of thermo-setting gels prepared by combining methylcellulose (MC)-sodium citrate (SC)-polyethylene glycol (PEG) at appropriate ratios (the MC-SC-PEG system) were investigated. Concerning cations, comparison of the phase transition temperature between SC and tripotassium citrate (PC) showed a rapid increase in the viscosity of SC between 20 degrees C and 25 degrees C and an increase in the viscosity of PC between 30 degrees C and 35 degrees C. Concerning the valency of anions, comparisons among SC, disodium tartrate dihydrate (ST), disodium maleate hemihydrates (SM), and sodium sulfate (SS) showed a rapid increase in the viscosity of trivalent SC between 20 degrees C and 25 degrees C and changes in the viscosity of the three bivalent sodium salts (ST, SM, and SS) at > or =30 degrees C. Thus the phase transition temperature decreased with an increase in the valency of anions. Subsequently, the influences of various water-soluble polymers on the gelling temperature were compared. Using polyvinylpyrrolidone (PVP) instead of PEG, the gelling temperature decreased with an increase in the PVP concentration even without the addition of SC. Unlike PVP, the addition of xanthan gum as a viscosity-increasing polysaccharide did not reduce the gelling temperature irrespective of its concentration. Temperature-associated changes in viscosity were observed at a fixed SC concentration with changes in the concentration of PVP or PEG. The gel phase transition temperature increased from 46 degrees C to 50 degrees C in gels not containing PVP or PEG. The viscosity did not differ between the addition of PVP or PEG at a low concentration and its absence. However, the viscosity clearly changed after the addition of each agent at a high concentration.

  1. Pharmacokinetic and pharmacodynamic evaluation of the anti-cataract effect of eye drops containing disulfiram and low-substituted methylcellulose using ICR/f rats as a hereditary cataract model.

    PubMed

    Nagai, Noriaki; Ito, Yoshimasa; Takeuchi, Noriko

    2012-01-01

    We attempted to develop anti-cataract eye drops using disulfiram (DSF) and low-substituted methylcellulose (MC), and evaluated their anti-cataract effect in terms of the lens opacification vs. age-profile curves using a one-exponential equation. The eye drops were prepared using 0.5% DSF and 2% MC (DSF eye drops), and ICR/f rats, a recessive-type hereditary cataractous strain, were used as the experimental model. Gelation of DSF eye drops containing MC was first observed at about 35°C, close to body temperature. In in vivo transcorneal penetration experiments using rabbit corneas, only diethyldithiocarbamate (DDC) was detected in the aqueous humor, while DSF was not detected. The DDC penetration level of DSF eye drops containing MC was approximately 1.3-fold higher than that of DSF eye drops. The opacification rate constant (k) of ICR/f rat instilled with DSF eye drops with or without MC was lower, and the initial time of opacification (τ) was longer than those of ICR/f rats instilled with saline. Furthermore, the k of ICR/f rats instilled with DSF eye drops with MC was lower than that of ICR/f rats instilled with DSF eye drops without MC. In conclusion, the analysis of kinetic parameters including k and τ using a one-exponential equation provided useful information for clarifying the anti-cataract effect of eye drops. ICR/f rats instilled with DSF eye drops using a low-substituted MC-based drug delivery system demonstrated a delay in cataract development, probably resulting from an increase in the retention of DSF eye drops on the cornea.

  2. Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use.

    PubMed

    Bourges, Xavier; Weiss, Pierre; Daculsi, Guy; Legeay, Gilbert

    2002-12-02

    Synthesis of grafting silane on a hydro soluble cellulose ether (HPMC) was described. In alkaline medium, this derivate is under gel form. With a decrease of the pH, a self-hardening occurs due to the silanol condensation. For potential biomedical use, we described the silated-HPMC synthesis, the gel behavior after steam sterilization and the parameters of the silanol condensation i.e. pH, silane percentage and temperature. Minimum kinetic of the condensation was observed for pH between 5.5 and 6.5. So temperature catalyzed the reaction and the self-hardening speed was increased by silane percentage.

  3. Effect of solvent state and isothermal conditions on gelation of methylcellulose hydrogels.

    PubMed

    Joshi, Sunil C; Liang, C M; Lam, Y C

    2008-01-01

    In this study, thermal behavior of aqueous solutions of methyl cellulose (MC) at a constant temperature of 50 degrees C was analyzed. Various samples were studied for two consecutive heating-cooling cycles. The experiments with the solutions prepared using cold de-ionized (DI) water showed that the rate of gelation was higher for higher MC concentrations. However, the rate was slower during the first heating-cooling cycle than during the second cycle. The possible reasons behind such observations are discussed. Various MC solutions prepared using hot DI water were studied for understanding the role of the solvent state in the isothermal gelation process. The gelation of these MC solutions started at a lower MC concentration and resulted in a higher gelation rate. The gelation mechanism responsible for such effects is explored and presented. Finally, a gel-indexing method is proposed to provide a quantitative measure of the gelation state of all the MC gels.

  4. Phase behavior of concentrated hydroxypropyl methylcellulose solution in the presence of mono and divalent salt.

    PubMed

    Almeida, Nalinda; Rakesh, Leela; Zhao, Jin

    2014-01-01

    Thermo reversible sol-gel transitions of hydroxypropylmethylcellulose (HPMC) are critical for many pharmaceutical, cosmetic, and food applications. This study examined the effects of salt (NaCl and CaCl₂) on the viscoelastic properties of concentrated low molecular weight HPMC solutions and found that the gelation temperature decreased linearly as a function of salt concentrations, independent of valency of cations and the mole concentration of anions. Thermal analysis showed that the depression of melting temperature can be fitted for both NaCl and CaCl₂ as a function of the total number of ions by a single linear curve, which was consistent with the melting point depression of pure water by NaCl and CaCl₂, but with a higher linear slope.

  5. Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film.

    PubMed

    Ding, Cuicui; Zhang, Min; Li, Guoying

    2015-03-30

    This study aimed to prepare and characterize the collagen/HPMC blend film (1/1). Thermogravimetric analysis and differential scanning calorimetry were used to investigate the thermal properties of the film. Both thermal decomposition temperature and denaturation temperature of the blend film were higher than those of the collagen film due to the intermolecular hydrogen bonding interaction between collagen and HPMC, which was demonstrated by Fourier transform infrared spectroscopy. Additionally, the morphologies, mechanical properties and hydrophilicity of films were examined. The blend film exhibited a more homogeneous and compact structure compared with that of the collagen film, as observed from scanning electron microscopy and atomic force microscopy. The tensile strength, ultimate elongation and hydrophilicity of the blend film were superior to those of the pure collagen film. Furthermore, the introduction of polyethylene glycol 1500 had almost no influence on the thermal properties of the blend film but obviously improved its stretch-ability and smoothness.

  6. Formulation and Evaluation of Hydroxypropyl Methylcellulose-based Controlled Release Matrix Tablets for Theophylline

    PubMed Central

    Sekharan, T. Raja; Palanichamy, S.; Tamilvanan, S.; Shanmuganathan, S.; Thirupathi, A. Thanga

    2011-01-01

    The objectives of the study were to formulate hydroxypropyl methyl cellulose-based controlled release matrix tablets for theophylline with varying drug:polymer ratios (1:1 and 1:2) and differing tablet hardness (5, 6 and 7 kg/cm2), and to evaluate the tablet's physico-chemical properties such as hardness, uniformity of weight, friability, drug content and in vitro drug release. Initially, granules were made by wet granulation technique and evaluated for angle of repose, bulk density, tapped density, bulkiness, compressibility index and hausner ratio. The results indicate good flow property of the granules and thus, the evaluated tablet physical properties were within the acceptable limits. The FT-IR study for the F-6 formulation showed that there was no interaction between the drug and the polymer. In vitro release studies were performed using Disso-2000 (paddle method) in 900 ml of pH 7.4 at 50 rpm. The result indicated that at high drug:polymer ratio (1:2) and hardness value 7 kg/cm2, prolonged drug release was observed than the low drug: polymer ratio (1:1) and hardness values (5 and 6 kg/cm2). The release kinetics was found to follow korsmeyers-peppas model and the mechanism of drug release was by non-fickian or anomalous diffusion. The F-6 formulation was chosen for stability studies. F-6 formulation was stable when it was kept at different temperatures for a period of 6 months. PMID:22707833

  7. Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles.

    PubMed

    Bilbao-Sáinz, Cristina; Avena-Bustillos, Roberto J; Wood, Delilah F; Williams, Tina G; McHugh, Tara H

    2010-03-24

    It has been stated that hydroxypropyl methyl cellulose (HPMC) based films have promising applications in the food industry because of their environmental appeal, low cost, flexibility and transparency. Nevertheless, their mechanical and moisture barrier properties should be improved. The aim of this work was to enhance these properties by reinforcing the films with microcrystalline cellulose (MCC) at the nano scale level. Three sizes of MCC nanoparticles were incorporated into HPMC edible films at different concentrations. Identical MCC nanoparticles were lipid coated (LC) prior to casting into HPMC/LC-MCC composite films. The films were examined for mechanical and moisture barrier properties verifying how the addition of cellulose nanoparticles affected the water affinities (water adsorption/desorption isotherms) and the diffusion coefficients. The expected reinforcing effect of the MCC was observed: HPMC/MCC and HPMC/LC-MCC films showed up to 53% and 48% increase, respectively, in tensile strength values in comparison with unfilled HPMC films. Furthermore, addition of unmodified MCC nanoparticles reduced the moisture permeability up to 40% and use of LC-MCC reduced this value up to 50%. Water vapor permeability was mainly influenced by the differences in water solubility of different composite films since, in spite of the increase in water diffusivity values with the incorporation of MCC to HPMC films, better moisture barrier properties were achieved for HPMC/MCC and HPMC/LC-MCC composite films than for HPMC films.

  8. [Biocompatibility and pharmacokinetics of hydroxypropyl methylcellulose (HPMC) in the anterior chamber of the rabbit eye].

    PubMed

    Ehrich, W; Höh, H; Kreiner, C F

    1990-06-01

    The biocompatibility and pharmacokinetics of hydroxypropylmethylcellulose (HPMC) 2% (Adatocel) and Tylose 2% (MH 1000) were investigated. A modified anterior chamber implantation test on the rabbit eye is suitable for testing both the biocompatibility and the pharmacokinetics of visco-surgical substances. Both substances were well tolerated. From the fourth day onward, HPMC was no longer detectable in the anterior chamber by infrared spectroscopy.

  9. Fatty acid effect on hydroxypropyl methylcellulose-beeswax edible film properties and postharvest quality of coated 'Ortanique' mandarins.

    PubMed

    Navarro-Tarazaga, María Ll; Del Río, Miguel A; Krochta, John M; Pérez-Gago, Maria B

    2008-11-26

    The objective of this work was to investigate the effect of fatty acid (FA) type and content on mechanical properties, water vapor permeability and oxygen permeability of hydroxypropyl methycellulose (HPMC)-beeswax (BW) stand-alone edible films. The effect of these films formed as coatings on the postharvest quality of 'Ortanique' mandarins was also studied. Selected FAs were stearic acid (SA), palmitic acid (PA), and oleic acid (OA), using BW/FA ratios of 1:0.5 and 1:0.2 (w/w). HPMCBW coatings reduced weight and firmness loss of 'Ortanique' mandarins, without compromising flavor quality compared to uncoated mandarins. Coatings containing OA provided the best weight loss control at both concentrations tested; however, when the BW/OA ratio was 1:0.5, the coatings increased fruit internal CO2, ethanol, and acetaldehyde contents of 'Ortanique' mandarins, therefore reducing flavor compared to the rest of the coatings studied. Although barrier and mechanical properties might be used to understand coating performance, differences observed between film oxygen permeability and coating permeability indicate that permeance should be measured on the coated fruit.

  10. Biopolymeric antimicrobial films: study of the influence of hydroxypropyl methylcellulose, tapioca starch and glycerol contents on physical properties.

    PubMed

    Espinel Villacrés, Ricardo A; Flores, Silvia K; Gerschenson, Lía N

    2014-03-01

    Mixture design methodology was applied to study the effect of different levels of tapioca starch (TS), hydroxypropyl methylcelullose (HPMC), and glycerol (Gly) on the physical properties of biopolymeric films supporting potassium sorbate (KS; 0.3% w/w) with the goal of contributing to the development of materials for preventing food surface contamination. Mechanical properties, water vapour permeability (WVP), solubility in water (S) and colour attributes were evaluated on the films. HPMC addition produced an increase of elastic modulus (Ec), stress at break (σb) and S. It also decreased the yellow index (YI) values and the strain at break (εb). The study was deepened using the formulation containing 2.67 g/100g of TS, 0.67 g/100g of HPMC, 1.67 g/100g Gly and 0.3g/100g KS, observing that it behaved as an effective antimicrobial barrier against Zygosaccharomyces bailii external contamination. Microstructural analysis allowed us to conclude that HPMC incorporation to a TS network decreased roughness of the films and it also increased permeability to oxygen (PO2).

  11. Hydroxypropyl methylcellulose mediated precipitation inhibition of sirolimus: from a screening campaign to a proof-of-concept human study.

    PubMed

    Petruševska, Marija; Homar, Miha; Petek, Boštjan; Resman, Aleksander; Kocjan, Darko; Urleb, Uroš; Peternel, Luka

    2013-06-03

    The aim of this study was to develop a sirolimus (BCS class II drug substance) solid oral dosage form containing a precipitation inhibitor, which would result in an improved sirolimus absorption in humans compared to the formulation containing nanosized sirolimus without a precipitation inhibitor, i.e., Rapamune. The selection of the precipitation inhibitor was based on the results of a screening campaign that identified two "hit" excipients: HPMC 603 (i.e., Pharmacoat 603) and Poloxamer 407. However, in a confirmatory precipitation inhibitor study using biorelevant media (Fa/FeSSIF) HPMC 603 more effectively inhibited sirolimus precipitation than Poloxamer 407. In the PAMPA assay, HPMC 603, but not Poloxamer 407, significantly increased the flux of the sirolimus across the membrane lipid layer. Additionally, a differential scanning calorimetry (DSC) and an infrared (IR) spectroscopy study revealed that interactions between the sirolimus and HPMC 603 were developed that could lead to the observed precipitation inhibition effect. Based on the above data, two formulations with HPMC 603-coated sirolimus particles were developed, namely, formulation A (d (0.5) = 0.21 μm) and formulation B (d (0.5) = 1.7 μm). A human pharmacokinetic study outlined that significantly higher AUC and Cmax were obtained for formulations A and B in comparison to Rapamune. This result could be attributed to the HPMC 603 (Pharmacoat 603) mediated sirolimus precipitation inhibition resulting in improved sirolimus absorption from the gastrointestinal tract in humans.

  12. STUDYING THE IMPACT OF FORMULATION AND PROCESSING PARAMETERS ON THE RELEASE CHARACTERISTICS FROM HYDROXYPROPYL METHYLCELLULOSE MATRIX TABLETS OF DICLOFENAC.

    PubMed

    Elzayat, Ehab M; Abdel-Rahman, Ali A; Ahmed, Sayed M; Alanazi, Fars K; Habib, Walid A; Sakr, Adel

    2016-01-01

    Hydrophilic matrices, especially HPMC based, are widely used to provide sustained delivery where drug release occurs mainly by diffusion. A 3(2) full factorial design was used to develop and evaluate HPMC matrix tablet for sustained delivery of diclofenac. The influences of polymer concentration/viscosity, diluent type/ratio, drug load/solubility, compression force and pH change on drug release were investigated. Ten tablet formulations were prepared using wet granulation. HPMC K15M (10-30% w/w) was used as the polymer forming matrix. The release kinetics, compatibility studies, lot reproducibility and effect on storage were discussed. Increasing polymer concentration and compression force showed antagonistic effect on release rate. Mannitol tends to increase release rate more than lactose. Reversing diluent ratio between lactose and MCC did not affect drug release. Changing pH resulted in burst release whereas drug solubility is pH independent. F1 showed similar release to Voltaren SR and followed Higuchi model. Drug and polymer were compatible to each other. The formulation is stable at long and intermediate conditions with a significant increase in release rate at accelerated conditions due to water uptake and polymer swelling. The developed formulation was successful for a sustained delivery of diclofenac.

  13. Effects of plasticizers and surfactants on the film forming properties of hydroxypropyl methylcellulose for the coating of diclofenac sodium tablets

    PubMed Central

    Roy, Amitava; Ghosh, Amitava; Datta, Supriya; Das, Sujit; Mohanraj, P.; Deb, Jyotirmoy; Bhanoji Rao, M.E.

    2009-01-01

    Hydroxy propyl methyl cellulose (HPMC) 5cPs, an aqueous soluble polymer was employed for coating diclofenac sodium (DFS) tablets 25 mg for protecting the integrity of the drug yet rendering the drug to release at a faster rate on contact with the gastric environment. Proper optimization for the aqueous based film coating formulation was undertaken primarily employing plasticizers like polyethylene glycol (PEG) 400 and propylene glycol (PG). The defect free selected formulations were further subjected for studying the effects of surfactants like sodium lauryl sulphate (SLS) and Tween-80 along with the plasticizers. The quality of the aqueous film coats or the plasticizer efficiency in case of PEG-400 is in the order 1.5 > 0.5 > 1.0% and for PG 1 > 4 > 3% which can be stated on the basis of less incidence of major coat defects like chipping, cracking, orange peel, roughness, blistering, blooming, picking. The quality of aqueous film coat or the surfactant efficiency in case of SLS + PEG-400 is in the order 0.3 < 0.5 < 0.1% and SLS + PG is in the order 0.5 < 0.1 < 0.3%. In case of Tween-80 + PEG-400 the order is 0.3 < 0.5 < 0.1% and Tween-80 + PG is in the order 0.3 < 0.1 < 0.5%. Elegant film formation can be stated from fewer incidences of coat defects. The obtained coated tablets eventually satisfied all the normal physical parameters like thickness, weights, and weight gain, drug content, crushing strength, percent friability, disintegration time, dissolution profile and possible drug–polymer interactions. ANOVA was undertaken followed by Dunnet multiple comparison for the dissolution profile considering uncoated as the standard. The difference was considered significant at p ⩽ 0.01. PMID:23964166

  14. Physical properties of emulsion-based hydroxypropyl methylcellulose/whey protein isolate (HPMC/WPI) edible films.

    PubMed

    Rubilar, Javiera F; Zúñiga, Rommy N; Osorio, Fernando; Pedreschi, Franco

    2015-06-05

    The objective of this research was to study the effect of the film microstructure of oil-in-water emulsions stabilized by hydroxypropyl methyl cellulose/whey protein isolate (HPMC/WPI) with or without sodium dodecyl sulfate (SDS) over physical properties of HPMC/WPI emulsion-based films. The films were prepared with different HPMC/WPI-oil-SDS combinations (%w/w for 100g of dispersion): HPMC; WPI; HPMC/1WPI-0.5-SDS; HPMC/1WPI-1; HPMC/2WPI-0.5; HPMC/2WPI-1-SDS. Physical properties of films were evaluated. The results showed no statistical differences (p>0.05) between the thicknesses of EFs (0.156 ± 0.004 mm). The effect of oil content and incorporation of SDS showed the inverse trend for WI and ΔE, the increasing order of change, for WI and ΔE, among the formulation evaluated was: HPMC/1WPI-1>HPMC/2WPI-0.5>HPMC/2WPI-1.0-SDS≈HPMC/1WPI-0.5-SDS≈WPI>HPMC for WI and HPMC/1WPI-0.5-SDS>HPMC/2WPI-1.0-SDS>HPMC/2WPI-0.5>HPMC/1WPI-1 for ΔE, respectively. The addition of oil and SDS decreased the TS and EB, because oil addition into EF induces the development of structural discontinuities, producing an EF with less chain mobility, and consequently, with less flexibility and resistance to fracture.

  15. Formulation and in vitro evaluation of floating tablets of hydroxypropyl methylcellulose and polyethylene oxide using ranitidine hydrochloride as a model drug

    PubMed Central

    Gharti, KP; Thapa, P; Budhathoki, U; Bhargava, A

    2012-01-01

    The present study was carried out with an objective of preparation and in vitro evaluation of floating tablets of hydroxypropyl methyl cellulose (HPMC) and polyethylene oxide (PEO) using ranitidine hydrochloride as a model drug. The floating tablets were based on effervescent approach using sodium bicarbonate a gas generating agent. The tablets were prepared by dry granulation method. The effect of polymers concentration and viscosity grades of HPMC on drug release profile was evaluated. The effect of sodium bicarbonate and stearic acid on drug release profile and floating properties were also investigated. The result of in vitro dissolution study showed that the drug release profile could be sustained by increasing the concentration of HPMC K15MCR and Polyox WSR303. The formulation containing HPMC K15MCR and Polyox WSR303 at the concentration of 13.88% showed 91.2% drug release at the end of 24 hours. Changing the viscosity grade of HPMC from K15MCR to K100MCR had no significant effect on drug release profile. Sodium bicarbonate and stearic acid in combination showed no significant effect on drug release profile. The formulations containing sodium bicarbonate 20 mg per tablet showed desired buoyancy (floating lag time of about 2 minutes and total floating time of >24 hours). The present study shows that polymers like HPMC K15MCR and Polyox WSR303 in combination with sodium bicarbonate as a gas generating agent can be used to develop sustained release floating tablets of ranitidine hydrochloride. PMID:23493037

  16. Evaluation of Methylcellulose and Dimethyl Sulfoxide as the Cryoprotectants in a Serum-Free Freezing Media for Cryopreservation of Adipose-Derived Adult Stem Cells

    PubMed Central

    2010-01-01

    Developing effective techniques for the cryopreservation of human adipose-derived adult stem cells (ASCs) could increase the usefulness of these cells in tissue engineering and regenerative medicine. To this end, we investigated the post-freeze/thaw viability and apoptotic behavior of Passage 1 (P1) adult stem cells (ASCs) in 11 different media: (i) the traditional media containing Dulbecco’s modified Eagle’s medium (DMEM) with 80% fetal calf serum (FCS) and 10% dimethyl sulfoxide (DMSO), (ii) DMEM with 80% human serum (HS) and 10% DMSO, (iii) DMEM with 1% methyl cellulose (MC) and 10% of either HS or FCS or DMSO, and (iv) DMEM with 0%, 2%, 4%, 6%, 8%, or 10% DMSO. Approximately 1 mL (106 cells/mL) of P1 ASCs were frozen overnight in a −80°C freezer and stored in liquid nitrogen for 2 weeks before being rapidly thawed in a 37°C water bath (1–2 min of agitation), resuspended in culture media, and seeded in separate wells of a 6-well plate for a 24-h incubation period at 37°C. After 24 h, the thawed samples were analyzed by bright-field microscopy and flow cytometry. The results suggest that the absence of DMSO (and the presence of MC) significantly increases the fraction of apoptotic and/or necrotic ASCs. However, the percentage of viable cells obtained with 2% DMSO and DMEM was comparable with that obtained in freezing media with 10% DMSO and 80% serum (HS or FCS), that is, ∼84% ± 5% and ∼84% ± 8%, respectively. Adipogenic and osteogenic differentiation behavior of the frozen thawed cells was also assessed using histochemical staining. Our results suggest that post-thaw ASC viability, adipogenic and osteogenic differentiability can be maintained even when they are frozen in the absence of serum but with a minimal concentration of 2% DMSO in DMEM. PMID:19788372

  17. An in-use comparison of chlorhexidine gluconate 4% w/v, glycol-poly-siloxane plus methylcellulose and a liquid soap in a special care baby unit.

    PubMed

    Webster, J; Faoagali, J L

    1989-08-01

    The effectiveness and harshness of three hand-wash agents, chlorhexidine gluconate 4%, glycol-poly-siloxane gel and a bland liquid soap were studied in-use in a Special Care Baby Unit (SCBU). Each product was used for consecutive 2-week periods by the same groups of 8 health care workers among the 56 in the SCBU. The first group had normal skin, the second had 'sensitive skin' and the third group were known MRSA nasal carriers. Blood agar and methicillin mannitol salt agar were inoculated before and after hand washing and differences in colony counts calculated. Nursing activities before washing were graded from clean to dirty on an eight-point scale and correlated with before-wash colony counts. Product acceptability was assessed with a self-reporting questionnaire. Chlorhexidine was the most effective product in reducing skin microflora but users preferred to wash with the gel preparation. The sensitive-skin group achieved the best effects from washing, irrespective of the product used. Nasal carriers of MRSA recorded the lowest reduction levels of methicillin-resistant organisms but achieved the same reduction levels as the normal-skin group for other microflora. No relationship could be established between the pre-wash activity and the pre-wash colony count. The weekly MRSA colonization rate in neonates on the SCBU remained unaffected by any of the products tested.

  18. Impact of Eudragit EPO and hydroxypropyl methylcellulose on drug release rate, supersaturation, precipitation outcome and redissolution rate of indomethacin amorphous solid dispersions.

    PubMed

    Xie, Tian; Gao, Wei; Taylor, Lynne S

    2017-10-05

    The purpose of this work was to evaluate the impact of polymer(s) on the dissolution rate, supersaturation and precipitation of indomethacin amorphous solid dispersions (ASD), and to understand the link between precipitate characteristics and redissolution kinetics. The crystalline and amorphous solubilities of indomethacin were determined in the absence and presence of hydroxypropylmethyl cellulose (HPMC) and/or Eudragit (®) EPO to establish relevant phase boundaries. At acidic pH, HPMC could maintain supersaturation of the drug by effectively inhibiting solution crystallization while EPO increased both the crystalline and amorphous solubility of the drug, but did not inhibit crystallization. The HPMC dispersion dissolved relatively slowly without undergoing crystallization while the supersaturation generated by rapid dissolution of the EPO ASD was short-lived due to crystallization. The crystals thus generated underwent rapid redissolution upon pH increase, dissolving faster than the reference crystalline material, and at a comparable rate to the amorphous HPMC dispersion. A ternary dispersion containing both EPO and HPMC dissolved rapidly, generating an apparent drug concentration that exceeded the amorphous solubility of indomethacin, leading to the formation of a new nanosized droplet phase. These nanodroplets dissolved virtually immediately when the pH was increased. In conclusion, the concentration-time profiles achieved from indomethacin ASD dissolution are a complex interplay of drug release rate, precipitation kinetics and outcome, and precipitate redissolution rate, whereby each of these processes is highly dependent on the polymer(s) employed in the formulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. CFU-Mk content of immunoselected CD34+ peripheral blood progenitor cells, evaluated with an adapted serum-free methylcellulose assay, is predictive of platelet lineage reconstitution in children with solid tumors.

    PubMed

    Boiret, N; Kanold, J; Fouassier, M; Bons, J M; Halle, P; Rapatel, C; Berger, J; Pireyre, P; Blanzat, V; Travade, P; Bonhomme, J; Demeocq, F; Berger, M G

    2000-08-01

    Immunoselected CD34+ peripheral blood progenitor cell (PBPC) transplantation is now frequently used to support autologous hematopoiesis after myeloablative therapy, its feasability having been proved by several groups. However, we and others observed delayed platelet recovery. We hypothesized that immunoselection processing might induce selective loss of megakaryocyte progenitors, or a decrease in their proliferation. We used a colony-forming units megakaryocyte (CFU-Mk) assay to evaluate these consequences and predict platelet recovery in patients. In CD34+ PBPCs from 10 children with solid tumors, we observed no selective loss in CFU-Mk numbers during immunoselection processing and no impairment of clonogenicity. The CFU-Mk yield (59.2 +/- 11.3%) was at least similar to the CD34+ yield (44.2 +/- 3.8%). We assessed the predictive value of CFU-Mk numbers infused for recovery of platelet lineage. We found an inverse correlation between the time taken to reach a platelet count greater than 50 x 10(9)/L and only the CFU-Mk dose (r = -0.71; p = 0.022) among the different type of progenitors, including colony-forming units granulocyte-macrophage (CFU-GM), burst-forming units erythrocyte (BFU-E) and colony-forming units-mixed (CFU-Mix). These findings suggest that CFU-Mk number could be used as sole predictive functional parameter for platelet reconstitution in children after immunoselection of CD34+ cells, in particular for low CD34+ cell dose, and thus as an indicator for initial quality of hematopoietic cells before in vitro expansion.

  20. Acute Oral and Intraperitoneal Toxicity Study of WR242511 and WR269410 in Rats

    DTIC Science & Technology

    1993-07-14

    survivors were also necropsied. The acute oral LD50 of WR242511 tartrate in male rats, administered in 1% Methylcellulose/O.4% Tween 80 by gavage, was...administered orally. The acute oral LDS0 of WR269410 in male rats, administered in 1% Methylcellulose/O.4% Tween 80 by gavage, was approximately four-fold...formulations in 0.1% Methylcellulose/O.4% Tween 80 at high enough concentrations to produce lethality, WR269410 was administered intraperitoneally as a

  1. Effect of polymer admixtures to cement on the bond strength and electrical contact resistivity between steel fiber and cement

    SciTech Connect

    Fu, X.; Chung, D.D.L.

    1996-02-01

    The addition of methylcellulose (0.4% by weight of cement) or latex (20% by weight of cement) to cement paste gave similarly significant increases of the shear bond strength between stainless steel fiber and cement paste, in spite of the low concentration of methylcellulose compared to latex. The methylcellulose addition did not affect the contact electrical resistivity between fiber and cement, whereas the latex addition increased this resistivity. Hence, for low cost and low contact resistivity, methylcellulose is preferred to latex. For a given cement paste composition, the bond strength increased linearly with the contact resistivity.

  2. Preclinical Toxicology of New Drugs.

    DTIC Science & Technology

    1986-04-04

    WR238605,Succinate in Beagle Dogs WR238605,Succinate was suspended in a methylcellulose/ Tween 80 vehicle, and doses of the resulting suspension administered...Toxicity Study of WR238605,Succinate in Fischer 344 Rats U Suspension of WR238605,Succinate in a methylcellulose/ Tween 80 vehicle were administered

  3. Effect of thermal gelation on dissolution from coated tablets.

    PubMed

    Schwartz, J B; Alvino, T P

    1976-04-01

    Tablets with a methylcellulose coating were found to exhibit lower dissolution profiles than those coated with a hydroxypropyl methylcellulose coating at 37 degrees, and the cause was investigated. The differences are attributed to thermal gelation of the methylcellulose at temperatures near 37 degrees, which creates a barrier to the dissolution process and essentially changes the dissolution mechanism. This mechanism is substantiated by the fact that at temperatures below the gel point and at increased agitation, the effect disappears. The retarded dissolution effect is not peculiar to the drug involved.

  4. Improved assay for quantitating adherence of ruminal bacteria to cellulose.

    PubMed Central

    Rasmussen, M A; White, B A; Hespell, R B

    1989-01-01

    A quantitative technique suitable for the determination of adherence of ruminal bacteria to cellulose was developed. This technique employs adherence of cells to cellulose disks and alleviates the problem of nonspecific cell entrapment within cellulose particles. By using this technique, it was demonstrated that the adherence of Ruminococcus flavefaciens FD1 to cellulose was inhibited by formaldehyde, methylcellulose, and carboxymethyl cellulose. Adherence was unaffected by acid hydrolysates of methylcellulose, glucose, and cellobiose. PMID:2782879

  5. Effect of Various Polymers Concentrations on Physicochemical Properties of Floating Microspheres

    PubMed Central

    Jagtap, Y. M.; Bhujbal, R. K.; Ranade, A. N.; Ranpise, N. S.

    2012-01-01

    Floating microspheres have emerged as a potential candidate for gastroretentive drug delivery system. For developing a desired intragastric floatation system employing these microspheres, it is necessary to select an appropriate balance between buoyancy and drug releasing rate. These properties mainly depend on the polymers used in the formulation of the microspheres. Hence it is necessory to study the effect of these polymer concentrations on the various physicochemical properties of the microspheres. Floating microspheres were prepared by emulsion solvent evaporation technique utilising different polymers such as ethyl cellulose, Eudragit® RS and Eudragit® RL by dissolving them in a mixture of dichloromethane and methanol. Release modifiers studied were hydroxypropyl methylcellulose K4M, hydroxypropyl methylcellulose E50 LV and Eudragit® EPO. Prepared microspheres were analysed for particle size, surface morphology, entrapment efficiency, buoyancy, differential scanning calorimetry and in-vitro drug release. Ethyl cellulose and Eudragit® EPO resulted microspheres with high percentage yield, excellent spherical shape but had very less buoyancies with a high cumulative drug release. Ethyl cellulose microspheres prepared using hydroxypropyl methylcellulose K4M showed more sustained drug release and high buoyancies than that of the microspheres formulated with the hydroxypropyl methylcellulose E50 LV. Amongst these hydroxypropyl methylcellulose E50 LV showed good balance between buoyancy and the drug release. PMID:23798776

  6. Conductivity study and fourier transform infrared (FTIR) characterization of methyl cellulose solid polymer electrolyte with sodium iodide conducting ion

    SciTech Connect

    Abiddin, Jamal Farghali Bin Zainal; Ahmad, Azizah Hanom

    2015-08-28

    Sodium ion (Na{sup +}) based solid polymer electrolyte (SPE) has been prepared using solution cast technique with distilled water as solvent and Methylcellulose (MC) as a polymer host. Methylcellulose polymer was chosen as the polymer host due to the abundance of lone pair electrons in the carbonyl and C-O-C constituents, which in turn provide multiple hopping sites for the Na{sup +} conducting ions. Variable compositions of sodium iodide (NaI) salt were prepared to investigate the optimum MC-NaI weight ratio. Results from Electrical Impedance Spectroscopy (EIS) technique show that pure methylcellulose has a low conductivity of 3.61 × 10{sup −11} S/cm.The conductivity increases as NaI content increases up to optimum NaIcomposition of 40 wt%, which yields an average conductivity of 2.70 × 10{sup −5} S/cm.

  7. Techniques for the preservation of enucleated animal eyes in surgical training.

    PubMed

    Muñoz-Rodriguez, P; Peña-Cuesta, R; Garcia-Cosio, J F; Quiroz-Mercado, H

    1990-11-01

    The main problem with using enucleated animal eyes in surgical training is that they remain fresh for such a short time. We describe a simple technique to preserve them by replacing the aqueous humor and part of the vitreous with another substance. We used 18 eyes of nine dogs (nine for the study and nine as controls), and three substances (2% methylcellulose, silicone oil, and gelatin). The methylcellulose group had the best results (including long-lasting mydriasis), preserving the eyes in which it was used in optimal surgical condition for up to 8 days, twice as long as the eyes in the control group (P less than .005).

  8. Preclinical Toxicology of New Drugs

    DTIC Science & Technology

    1988-07-31

    v/v) Tween 80 were conducted in Fischer 344 rats. The dose ranges encom- passed 66 mg/kg to 1400 mg/kg. G-8740-1400 Acute (LOSO) Intraperitoneal...1% (w/v) methylcellulose/O.4% (v/v) Tween 80 were conducted in Fischer 344 rats. The dose ranges encom- passed 0 mg/kg (vehicle control) to 320 mg/kg...suspended in a vehicle of 1% (w/v) methylcellulose/O.4% (v/v) Tween 80 were conducted in B6C3F1 mice. The dose range encompassed 62.5 mg/kg to 1000 mg

  9. Effect of different dispersants in compressive strength of carbon fiber cementitious composites

    NASA Astrophysics Data System (ADS)

    Lestari, Yulinda; Bahri, Saiful; Sugiarti, Eni; Ramadhan, Gilang; Akbar, Ari Yustisia; Martides, Erie; Khaerudini, Deni S.

    2013-09-01

    Carbon Fiber Cementitious Composites (CFCC) is one of the most important materials in smart concrete applications. CFCC should be able to have the piezoresistivity properties where its resistivity changes when there is applied a stress/strain. It must also have the compressive strength qualification. One of the important additives in carbon fiber cementitious composites is dispersant. Dispersion of carbon fiber is one of the key problems in fabricating piezoresistive carbon fiber cementitious composites. In this research, the uses of dispersants are methylcellulose, mixture of defoamer and methylcellulose and superplasticizer based polycarboxylate. The preparation of composite samples is similar as in the mortar technique according to the ASTM C 109/109M standard. The additives material are PAN type carbon fibers, methylcellulose, defoamer and superplasticizer (as water reducer and dispersant). The experimental testing conducts the compressive strength and resistivity at various curing time, i.e. 3, 7 and 28 days. The results obtained that the highest compressive strength value in is for the mortar using superplasticizer based polycarboxylate dispersant. This also shown that the distribution of carbon fiber with superplasticizer is more effective, since not reacting with the cementitious material which was different from the methylcellulose that creates the cement hydration reaction. The research also found that the CFCC require the proper water cement ratio otherwise the compressive strength becomes lower.

  10. 21 CFR 524.960 - Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Dogs: 1 to 2 drops per eye, every 6 hours. (ii) Preparation without hydroxyproply methylcellulose. Dogs and cats: 2 to 3 drops per eye, every 4 hours. (2) Indications for use. Treatment of the inflammation, edema, and secondary bacterial infections associated with topical ophthalmological conditions of the...

  11. 21 CFR 524.960 - Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Dogs: 1 to 2 drops per eye, every 6 hours. (ii) Preparation without hydroxyproply methylcellulose. Dogs and cats: 2 to 3 drops per eye, every 4 hours. (2) Indications for use. Treatment of the inflammation, edema, and secondary bacterial infections associated with topical ophthalmological conditions of the...

  12. In vitro release, rheological, and stability studies of mefenamic acid coprecipitates in topical formulations.

    PubMed

    Ahmed, Tarek A; Ibrahim, Hany M; Ibrahim, Fathy; Samy, Ahmed M; Fetoh, Ehab; Nutan, Mohammad T H

    2011-10-01

    A suitable topical formulation of mefenamic acid was developed in order to eliminate the gastrointestinal disorders associated with its oral administration. Drug coprecipitates prepared with different polymers at various drug-to-polymer ratios improved drug solubility and dissolution compared to pure drug and physical mixtures. PVP polymers (ratio 1:4) produced the best results. Aqueous ionic cream, ointments of absorption and water soluble bases and gels of methylcellulose, carboxymethylcellulose sodium, HPMC, Carbopol® 934 and 940, and Pluronic® F127 bases containing 1-10% drug as coprecipitates of PVP polymers (1:4) were prepared. The highest drug release was achieved at 1% drug concentration from water soluble base and methylcellulose among cream/ointment and gel bases, respectively. Gels, in general yielded better release than creams/ointments. All tested medicated creams/ointments exhibited plastic flow while all gels conformed to pseudoplasticity. Most of them showed thixotropy, a desired property of topical preparations. Stability studies revealed that HPMC and methylcellulose had the smallest changes in drug content, viscosity, and pH among the formulations. Considering drug release, rheological properties, and stability, methylcellulose gel containing 1% drug as coprecipitates of PVP K90 was the best among the studied formulations, was promising for improving bioavailability of mefenamic acid and can be used in future studies.

  13. Adiponectin in Hamster: Characterization and Functions in Soluble Dietary Fiber Mediated Lipid Homeostatis

    USDA-ARS?s Scientific Manuscript database

    Aim: The hypocholesterolemic and hypoglycemic effects of various natural and semisynthetic dietary fibers have been studied in the past for their potential use in the prevention and improvement of metabolic syndrome. Among these dietary fibers, hydroxypropyl methylcellulose (HPMC) has been shown to...

  14. Potential of Prolamins from Maize and Sorghum to Form Gluten-like Structures in Wheat-free Bread

    USDA-ARS?s Scientific Manuscript database

    Prolamins from maize (zeins) are known to form viscoelastic, extensible, cohesive dough when mixed together with starch and water above their glass transition temperature (Tg, approximately 28 °C). By adding hydroxypropyl methylcellulose (HPMC, a surface-active hydrocolloid) to this formulation, lea...

  15. Factors affecting quality of batter-based gluten-free bread

    USDA-ARS?s Scientific Manuscript database

    While wheat bread has been extensively studied, the quality basis for gluten-free bread remains controversial. Common gluten-free breads are prepared from soft batters, and in such systems, intact and damaged starch, pentosans, added hydrocolloids like xanthan gum and hydroxypropyl methylcellulose (...

  16. 21 CFR 182.1745 - Sodium carboxymethylcellu-lose.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium carboxymethylcellu-lose. 182.1745 Section... GRAS Food Substances § 182.1745 Sodium carboxymethylcellu-lose. (a) Product. Sodium carboxy-methylcellulose is the sodium salt of carboxymethylcellulose not less than 99.5 percent on a dry-weight...

  17. 21 CFR 182.1745 - Sodium carboxymethylcellu-lose.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium carboxymethylcellu-lose. 182.1745 Section... (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1745 Sodium carboxymethylcellu-lose. (a) Product. Sodium carboxy-methylcellulose is the sodium salt of carboxymethylcellulose...

  18. HPMC supplementation reduces fatty liver, intestinal permeability, and insulin resistance with altered hepatic gene expression in diet-induced obese mice

    USDA-ARS?s Scientific Manuscript database

    The effects of hydroxypropyl methylcellulose (HPMC), a highly viscous nonfermentable soluble dietary fiber, were evaluated on global hepatic gene profiles, steatosis and insulin resistance in high-fat (HF) diet-induced obese (DIO) mice. DIO C57BL/6J mice were fed a HF diet supplemented with either ...

  19. Encapsulation and modified-release of thymol from oral microparticles as adjuvant or substitute to current medications.

    PubMed

    Rassu, G; Nieddu, M; Bosi, P; Trevisi, P; Colombo, M; Priori, D; Manconi, P; Giunchedi, P; Gavini, E; Boatto, G

    2014-10-15

    The aim of this study was to encapsulate, thymol, in natural polymers in order to obtain (i) taste masking effect and, then, enhancing its palatability and (ii) two formulations for systemic and local delivery of herbal drug as adjuvants or substitutes to current medications to prevent and treat several human and animal diseases. Microspheres based on methylcellulose or hydroxypropyl methylcellulose phthalate (HPMCP) were prepared by spray drying technique. Microparticles were in vitro characterized in terms of yield of production, drug content and encapsulation efficiency, particle size, morphology and drug release. Both formulations were in vivo orally administered and pharmacokinetic analysis was carried out. The polymers used affect the release and, then, the pharmacokinetic profile of thymol. Encapsulation into methylcellulose microspheres leads to short half/life but bioavailability remarkably increases compared to the free thymol. In contrast, enteric formulation based on HPMCP shows very limited systemic absorption. These formulations could be proposed as alternative or adjuvants for controlling pathogen infections in human or animal. In particular, methylcellulose microspheres can be used for thymol systemic administration at low doses and HPMCP particles for local treatment of intestinal infections. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. The influence of binder film thickness on the mechanical properties of binder films in tension.

    PubMed

    Ononokpono, O E; Spring, M S

    1988-02-01

    The physicomechanical properties of films of different thicknesses, made from methylcellulose and gelatinized maize starch, have been studied in tension. There was a linear relation between film thickness and tensile strength, toughness, elastic resilence and elongation at fracture. Young's modulus increased with decreasing film thickness particularly with films with a thickness of less than 15 micron.

  1. Removal of surface lipids improves the functionality of commercial zein in viscoelastic zein-starch dough for gluten-free breadmaking

    USDA-ARS?s Scientific Manuscript database

    Maize prolamin (zein), together with starch, hydroxypropyl methylcellulose, sugar, salt, yeast and water can form wheat-like cohesive, extensible, viscoelastic dough when mixed above room temperature (e.g. 40 °C). This dough is capable of holding gas. However, it is excessively extensible, and when ...

  2. HPMC supplementation reduces abdominal fat content, intestinal permeability, inflammation, and insulin resistance in diet-induced obese mice

    USDA-ARS?s Scientific Manuscript database

    The effects of hydroxypropyl methylcellulose (HPMC), a highly viscous non-fermentable soluble dietary fiber, were evaluated on adipose tissue inflammation and insulin resistance in diet induced obese (DIO) mice fed a high fat (HF) diet supplemented with either HPMC or insoluble fiber. DIO C57BL/6J m...

  3. Improving the tensile properties of carbon fiber reinforced cement by ozone treatment of the fiber

    SciTech Connect

    Fu, X.; Lu, W.; Chung, D.D.L.

    1996-10-01

    The tensile strength, modulus and ductility of carbon fiber reinforced cement paste were increased by ozone treatment of the fibers prior to using the fibers. Increases were observed whether or not the paste contained methylcellulose/silica fume/latex. The ozone treatment involved exposure to O{sub 3} gas (0.3 vol.%, in air) for 10 min at 160 C.

  4. The Effect of Chemotherapeutic Agents on Immune Reactions.

    DTIC Science & Technology

    1982-08-01

    Tween - 80 in saline. The drugs were first . ... p. p-𔃾 dissolved in methylcellulose- Tween - 80 mixture and then diluted to the exact concentration with...Control mice received 0.4 ml solvent (methyl- cellulose- Tween - 80 in saline). Drugs were injected one day before or one day after the antigei for the

  5. 21 CFR 182.1745 - Sodium carboxymethylcellu-lose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium carboxymethylcellu-lose. 182.1745 Section... GRAS Food Substances § 182.1745 Sodium carboxymethylcellu-lose. (a) Product. Sodium carboxy-methylcellulose is the sodium salt of carboxymethylcellulose not less than 99.5 percent on a dry-weight...

  6. 21 CFR 182.1745 - Sodium carboxymethylcellu-lose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium carboxymethylcellu-lose. 182.1745 Section... GRAS Food Substances § 182.1745 Sodium carboxymethylcellu-lose. (a) Product. Sodium carboxy-methylcellulose is the sodium salt of carboxymethylcellulose not less than 99.5 percent on a dry-weight...

  7. The in vitro dissolution of theophylline from different types of hard shell capsules.

    PubMed

    Podczeck, Fridrun; Jones, Brian E

    2002-10-01

    The in vitro dissolution of theophylline from two-piece hard shell capsules has been investigated using different types of capsule shells (gelatin, gelatin/polyethylene glycol, hydroxypropyl methylcellulose), different formulations, different capsule fill weights, and different tamping forces. Analysis of variance confirmed that the formulation and the capsule shell materials were the most important factors influencing drug dissolution. The maximum extent of drug dissolution was significantly increased when hydroxypropyl methylcellulose (HPMC) capsules were used. The mean dissolution time (MDT) was significantly reduced, indicating a faster dissolution rate of the drug from HPMC capsules. The addition of microfine cellulose to the formulations as filler reduced the MDT in all cases, whereas the addition of lactose monohydrate did not enhance drug dissolution. The study confirmed that a change from gelatin hard shell capsules to gelatin/PEG or HPMC hard shell capsules should not pose problems with respect to drug absorption or bioavailability.

  8. Fibril Formation and Phase Separation in Aqueous Cellulose Ethers

    NASA Astrophysics Data System (ADS)

    Maxwell, Amanda; Schmidt, Peter; McAllister, John; Lott, Joseph; Bates, Frank; Lodge, Timothy

    Aqueous solutions of many cellulose ethers are known to undergo thermoreversible gelation and phase separation upon heating to form turbid hydrogels, but the mechanism and resulting structures have not been well understood. Turbidity, light scattering and small-angle neutron scattering (SANS) are used to show that hydroxypropyl methylcellulose (HPMC) chains are dissolved in water below 50 °C and undergo phase separation at higher temperatures. At 70 °C, at sufficiently high concentrations in water, HPMC orders into fibrillar structures with a well-defined radius of 18 +/- 2 nm, as characterized by cryogenic transmission electron microscopy and SANS. The HPMC fibril structure is independent of concentration and heating rate. However, HPMC fibrils do not form a percolating network as readily as is seen in methylcellulose, resulting in a lower hot-gel modulus, as demonstrated by rheology.

  9. Insulin availability from mucoadhesive tablets.

    PubMed

    Pluta, J; Haznar, D; Suszka-Switek, A; Ryszka, F

    2008-09-01

    The widespread implementation of peptides as drugs encounters numerous obstacles, the main being invasive and inconvenient parenteral administration. Oral transmucosal administration is one of the possible alternatives, valuable for its noninvasiveness and easy accessibility. The aim of our study was to determine the implementation possibilities of mucoadhesive tablets prepared on a methylcellulose and sodium alginate basis with an addition of absorption-modifying hyaluronic acid, as carriers for peptides destined for oral transmucosal administration. Two series of 50 mg tablets containing 5mg of insulin were prepared for the study. The first series contained methylcellulose, hyaluronic acid and mannitol, while the second series' formulation included sodium alginate, hyaluronic acid and mannitol. Carried out study confirmed that insulin administration in the form of mucoadhesive tablets lowers blood glucose levels in rabbits. Better effects were reached in vivo in the case of MC-based tablets, for which stronger and longer glycemia lowering was achieved.

  10. Stress crack resistance of some pigmented and unpigmented tablet film coating systems.

    PubMed

    Okhamafe, A O; York, P

    1985-07-01

    Stress crack resistance parameters--tensile strength: Young's modulus ratio, relative surface energy, and toughness index--have been examined for unpigmented free films of hydroxypropyl methylcellulose containing polyvinyl alcohol, and polyethylene glycols 400 and 1000, as well as similar film systems pigmented with either talc or titanium dioxide. Incorporation of either polyvinyl alcohol or polyethylene glycols 400 and 1000 in hydroxypropyl methylcellulose film coatings eliminated the incidence of edge splitting in the coated tablets. Increase in pigment concentration generally led to a decrease in the crack resistance of pigmented films. There was a relation between the stress crack resistance of pigmented free films and the incidence of edge splitting of corresponding film coatings applied to aspirin tablets--generally, the higher the crack resistance the lower the incidence of edge splitting. A similar relationship applied to the unpigmented films only when the tensile strength: Young's modulus ratio was considered.

  11. Development of cellulose derivatives as novel enteric coating agents soluble at pH 3.5-4.5 and higher.

    PubMed

    Kokubo, H; Obara, S; Minemura, K; Tanaka, T

    1997-08-01

    Hydroxypropyl methylcellulose (HPMC) was selected as a base polymer to develop novel enteric coating agents for acid protection which can dissolve at pH around 4, and was modified with trimellitic acid or maleic acid at various degrees of substitution. These carboxylic acids have higher dissociation constants and higher solubility in water than the carboxylic acids of existing enteric coating polymers. The synthesized polymers were micronized and dispersed in aqueous medium to determine their pKa values by potentiometric titration. The pH of dissolution and the water vapor permeability of the cast films prepared from organic solutions were also evaluated. Hydroxypropyl methylcellulose trimellitate (HPMCT) showed good acid resistance, and the pH at which it dissolves can be controlled in the range of pH 3.5 to 4.5 by varying the content of trimellityl groups and the methoxyl substitution of the base polymer.

  12. Systematic identification of thermal degradation products of HPMCP during hot melt extrusion process.

    PubMed

    Karandikar, Hrushikesh; Ambardekar, Rohan; Kelly, Adrian; Gough, Tim; Paradkar, Anant

    2015-01-01

    A systematic identification of the degradation products of hydroxypropyl methylcellulose phthalate (HPMCP) during hot melt extrusion (HME) has been performed. A reverse phase HPLC method was developed for the extrudates of both hydroxypropyl methylcellulose acetate succinate (HPMCAS) and HPMCP polymers to quantify their thermal hydrolytic products: acetic acid (AA), succinic acid (SA) for HPMCAS and phthalic acid (PA) for HPMCP, without hydrolysing the polymers in strong alkaline solutions. The polymers were extruded in the temperature range of 160-190 °C at different screw rotation speeds and hydrolytic impurities were analysed. Investigation of extruded HPMCP showed an additional thermal degradation product, who is structural elucidation revealed to be phthalic anhydride (PAH). Moreover, two environmental analytical impurities, dimethyl phthalate and methyl benzoate formed in situ were recorded on GC-MS and their origin was found to be associated with PAH derivatization. Using the experimental data gathered during this study, a degradation mechanism for HPMCP is proposed.

  13. Multi-unit floating alginate system: effect of additives on ciprofloxacin release.

    PubMed

    Srinatha, A; Pandit, Jayanta K

    2008-09-01

    In an attempt to fabricate floating beads of ciprofloxacin, drugloaded alginate beads were prepared by simultaneous external and internal gelation. The effect of blending of alginate with gellan, hydroxypropyl methylcellulose, starch, and chitosan on the bead properties were evaluated. Beads were spherical with incorporation efficiency in the range of 52.81 +/- 2.64 to 78.95 +/- 1.92%. Beads exhibited buoyancy over a period of 7-24 hr based on the formulation variables. In vitro release of ciprofloxacin from the alginate beads in simulated gastric fluid (SGF) (0.1 N HCl, pH 1.2), was influenced significantly (p < 0.001) by the properties and concentration of additives. Among the polymers incorporated into alginate beads. Hydroxy propyl methylcellulose (HPMC) provided an extended release over 7 hr. The drug release predominately followed Higuchi's square root model.

  14. The Aminosteroid Derivative RM-133 Shows In Vitro and In Vivo Antitumor Activity in Human Ovarian and Pancreatic Cancers

    PubMed Central

    Kenmogne, Lucie Carolle; Ayan, Diana; Roy, Jenny; Maltais, René; Poirier, Donald

    2015-01-01

    Ovarian and pancreatic cancers are two of the most aggressive and lethal cancers, whose management faces only limited therapeutic options. Typically, these tumors spread insidiously accompanied first with atypical symptoms, and usually shift to a drug resistance phenotype with the current pharmaceutical armamentarium. Thus, the development of new drugs acting via a different mechanism of action represents a clear priority. Herein, we are reporting for the first time that the aminosteroid derivative RM-133, developed in our laboratory, displays promising activity on two models of aggressive cancers, namely ovarian (OVCAR-3) and pancreatic (PANC-1) cancers. The IC50 value of RM-133 was 0.8 μM and 0.3 μM for OVCAR-3 and PANC-1 cell lines in culture, respectively. Based on pharmacokinetic studies on RM-133 using 11 different vehicles, we selected two main vehicles: aqueous 0.4% methylcellulose:ethanol (92:8) and sunflower oil:ethanol (92:8) for in vivo studies. Using subcutaneous injection of RM-133 with the methylcellulose-based vehicle, growth of PANC-1 tumors xenografted to nude mice was inhibited by 63%. Quite interestingly, RM-133 injected subcutaneously with the methylcellulose-based or sunflower-based vehicles reduced OVCAR-3 xenograft growth by 122% and 100%, respectively. After the end of RM-133 treatment using the methylcellulose-based vehicle, OVCAR-3 tumor growth inhibition was maintained for ≥ 1 week. RM-133 was also well tolerated in the whole animal, no apparent sign of toxicity having been detected in the xenograft studies. PMID:26660672

  15. Inhibition of Listeria monocytogenes on the surface of individually packaged hot dogs with a packaging film coating containing nisin.

    PubMed

    Franklin, Nathan B; Cooksey, Kay D; Getty, Kelly J K

    2004-03-01

    The objective of this study was to determine the effectiveness of packaging films coated with a methylcellulose/hydroxypropyl methylcellulose-based solution containing 10,000, 7,500, 2,500, or 156.3 IU/ml nisin for controlling Listeria monocytogenes on the surfaces of vacuum-packaged hot dogs. Barrier film coated with a methylcellulose/hydroxypropyl methylcellulose-based solution containing nisin or no nisin (control) was heat sealed to form individual pouches. Hot dogs were placed in control and nisin-containing pouches and inoculated with a five-strain L. monocytogenes cocktail (approximately 5 log CFU per package), vacuum sealed, and stored for intervals of 2 h and 7, 15, 21, 28, and 60 d at 4 degrees C. After storage, hot dogs and packages were rinsed with 0.1% peptone water. Diluent was spiral plated on modified oxford agar and tryptic soy agar and incubated to obtain counts (CFU per package). L. monocytogenes counts on hot dogs packaged in films coated with 156.3 IU/ml nisin decreased slightly (approximately 0.5-log reduction) through day 15 of refrigerated storage but was statistically the same (P > 0.05) as hot dogs packaged in films without nisin after 60 d of storage. Packaging films coated with a cellulose-based solution containing 10,000 and 7,500 IU/ml nisin significantly decreased (P < 0.05) L. monocytogenes populations on the surface of hot dogs by greater than 2 log CFU per package throughout the 60-d study. Similar results were observed for hot dogs packaged in films coated with 2,500 IU/ml nisin; however, L. monocytogenes populations were observed to be approximately 4 log CFU per package after 60 d of refrigerated storage from plate counts on tryptic soy and modified oxford agars.

  16. Gel-forming METKAxAE system for selective water shutoff and enhanced oil recovery from Permocarbonic deposit in Usinskoye oilfield

    NASA Astrophysics Data System (ADS)

    Altunina, L. K.; Stasyeva, L. A.; Kozlov, V. V.; Kuvshinov, V. A.

    2015-10-01

    Presented are the results on the study of a gel-forming METKA® system. The kinetics of gelation and rheological properties have been investigated in the system "methylcellulose-aqueous phase" in the temperature range of 20-250°C. The efficiency of applying the gel-forming METKA® system at filtration through water-saturated models and in the process of residual oil after-washing from two parallel columns with different permeability have been estimated.

  17. A preparative suspension culture system permitting quantitation of anchorage-independent growth by direct radiolabeling of cellular DNA.

    PubMed

    Assoian, R K; Boardman, L A; Drosinos, S

    1989-02-15

    We have developed a hybrid methylcellulose/agar suspension culture system which permits long-term colony formation of transformed mesenchymal cells. In contrast to traditional agar suspensions, our system allows for recovery of cells and direct biochemical analysis of anchorage-independent growth. The ability to readily radiolabel cellular macromolecules in these preparative cultures permits a quantitative and objective analysis of colony formation by incorporation of [3H]thymidine into newly synthesized DNA.

  18. Optimization and characterization of gastroretentive floating drug delivery system using Box-Behnken design.

    PubMed

    Rapolu, Kishore; Sanka, Krishna; Vemula, Praveen Kumar; Aatipamula, Vinaydas; Mohd, Abdul Bari; Diwan, Prakash V

    2013-12-01

    One among many strategies to prolong gastric residence time and improve local effect of the metronidazole in stomach to eradicate Helicobacter pylori in the treatment of peptic ulcer was floating drug delivery system particularly effervescent gastroretentive tablets. The objective of this study was to prepare and evaluate, effervescent floating drug delivery system of a model drug, metronidazole. Effervescent floating drug delivery tablets were prepared by wet granulation method. A three-factor, three levels Box-Behnken design was adopted for the optimization. The selected independent variables were amount of hydroxypropyl methylcellulose K 15M (X1), sodium carboxy methylcellulose (X2) and NaHCO3 (X3). The dependent variables were floating lag time (YFLT), cumulative percentage of metronidazole released at 6th h (Y6) and cumulative percentage of metronidazole released at 12th h (Y12). Physical properties, drug content, in vitro floating lag time, total floating time and drug release behavior were assessed. YFLT range was found to be from 1.02 to 12.07 min. The ranges of other responses, Y6 and Y12 were 25.72 ± 2.85 to 77.14 ± 3.42 % and 65.47 ± 1.25 to 99.65 ± 2.28 %, respectively. Stability studies revealed that no significant change in in vitro floating lag time, total floating time and drug release behavior before and after storage. It can be concluded that a combination of hydroxypropyl methylcellulose K 15M, sodium carboxy methylcellulose and NaHCO3 can be used to increase the gastric residence time of the dosage form to improve local effect of metronidazole.

  19. Electrochemical cell

    DOEpatents

    Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai

    1994-01-01

    An electrochemical cell having an alkali metal negative electrode such as sodium and a positive electrode including Ni or transition metals, separated by a .beta." alumina electrolyte and NaAlCl.sub.4 or other compatible material. Various concentrations of a bromine, iodine and/or sulfur containing additive and pore formers are disclosed, which enhance cell capacity and power. The pore formers may be the ammonium salts of carbonic acid or a weak organic acid or oxamide or methylcellulose.

  20. Of the milk sugars, galactose, but not prebiotic galacto-oligosaccharide, improves insulin sensitivity in male Sprague-Dawley rats.

    PubMed

    Stahel, Priska; Kim, Julie J; Xiao, Changting; Cant, John P

    2017-01-01

    Consumption of dairy products reduces risk of type 2 diabetes. Milk proteins and fats exhibit anti-diabetic properties but milk sugars have been studied little in this context. Galactose from milk lactose is readily converted to glycogen in the liver but its effects on insulin sensitivity have not been assessed. Prebiotic oligosaccharides from milk alter gut microbiota and can thereby influence host metabolism. Our objective was to assess the effect on insulin sensitivity of dietary galactose compared to glucose and fructose, and fermentable galacto-oligosaccharides compared to non-fermentable methylcellulose. Diets containing 15% of dry matter from glucose, fructose, galactose, galacto-oligosaccharides, or methylcellulose were fed to 36 rats per diet for 9 weeks. Hyperinsulinemic-euglycemic clamps with [3-3H]glucose infusion and a steady-state 2-[1-14C]deoxyglucose bolus injection were used to assess insulin sensitivity and glucose uptake indices. Tissue was collected in fed, fasted and fasted, insulin-stimulated states. Galactose increased glucose infusion rate during the clamp by 53% and decreased endogenous glucose production by 57% compared to glucose and fructose. Fed-state hepatic glycogen content was greater with galactose compared to glucose and fructose, consistent with a potentiation of the insulin effect on glycogen synthase by dephosphorylation. Galactose decreased the fecal Firmicutes:Bacteroidetes ratio while galacto-oligosaccharides increased abundance of fecal Bifidobacterium spp. 481-fold compared to methylcellulose, and also increased abundance of Lactobacillus spp. and Bacteroidetes. Galacto-oligosaccharides did not affect glucose infusion rate or endogenous glucose production during basal or clamp periods compared to methylcellulose. Galactose at 15% of daily intake improved hepatic insulin sensitivity in rats compared to glucose and fructose. Galactose caused an increase in fed-state hepatic glycogen content and a favourable shift in gut

  1. Corneal contact times of ophthalmic vehicles. Evaluation by microscintigraphy.

    PubMed

    Trueblood, J H; Rossomondo, R M; Wilson, L A; Carlton, W H

    1975-02-01

    Lacrimal microscintigraphy, in conjunction with a recently developed computer system, was used to evaluate the corneal contact time of three ophthalmic vehicles in 18 humans. The percentage of a radioactively labeled vehicle remaining over the cornea after 90 seconds was 2.9% plus and minus 2.2% for saline, 4.3% plus and minus 2.4% for polyvinyl alcohol, and 8.8% plus and minus 4.1% for hydroxypropyl methylcellulose.

  2. Structural, surface wettability and antibacterial properties of HPMC-ZnO nanocomposite

    NASA Astrophysics Data System (ADS)

    Rao, B. Lakshmeesha; Asha, S.; Madhukumar, R.; Latha, S.; Gowda, Mahadeva; Shetty, G. Rajesha; Chandra, K. Sharath; Naik, Prashantha; Sangappa

    2014-04-01

    The developed hydroxypropyl methylcellulose (HPMC)/Zinc oxide (ZnO) nanocomposite films were examined for structural property and surface wettability using X-ray diffraction and contact angle measurement. Antibacterial activity of these films was evaluated as a function of ZnO concentration. The microstructuralline parameters ( and (g in %)) decreased with increasing concentration of ZnO nanoparticles and there was increase in hydrophilicity. Addition of ZnO nanoparticles in films resulted in antimicrobial activity against tested microorganisms.

  3. Effect of alginate/carboxyl methyl cellulose composite coating incorporated with clove essential oil on the quality of silver carp fillet and Escherichia coli O157:H7 inhibition during refrigerated storage.

    PubMed

    Jalali, Nastaran; Ariiai, Peiman; Fattahi, Esmaeil

    2016-01-01

    The effects of alginate/carboxyl methylcellulose composite coating incorporated with clove essential oil on quality of silver carp fillet chilled storage (4 + 1 °C) were examined over a period of 16 days. The control samples (c), alginate/carboxyl methylcellulose coating (C-A), alginate/carboxyl methylcellulose composite coating incorporated with clove essential oil (with different concentration 1 and 1.5 %) (C-A + CEO1 % and C-A + CEO 15 % respectively) were analyzed by bacteriological (total viable counts (TVC) and total psychrotrophic counts (TPC)), biochemical (Peroxide value (PV), free fatty acid (FFA), total volatile base nitrogen (TVB-N), and pH) and sensory characteristics. Also, the efficacy of these treatments was investigated in control of the population of Eschershia coli O157:H7 inoculated in silver carp fillet. According to the obtained results, C-A + CEO 1.5 % showed lowest (p < 0.05) and acceptable biochemical, bacteriological and sensory characteristics attributes up to 16 days storage at 4 °C compared to the others. Also, this treated sample was acceptable even at the end of the 16-day storage and it could reduce the population of E. coli O157:H7 below the acceptable level (<2) from day 4 until the end of the storage period. The results indicate Alginate/carboxyl methylcellulose composite coating with clove essential oil might be recommended as a preservative in the meat products.

  4. Clinical evaluation of sodium flouride chewable tablets in dental caries.

    PubMed

    Maddi, S S; Tandon, S; Aithal, K S

    1999-01-01

    Chewable tablets containing low dosage flouride content were prepared using two varities of celluloses and their in vitro parameters were evaluated. An eighteen month clinical trial revealed that both these formulations were effective in controlling the caries. However, ethyl cellulose is proved to be superior to methylcellulose as a controlled release matrix material in controlling caries. Thus this study recommends ethylcellulose matrix tablets containing low flouride content is an efficacious and cost effective drug device in controlling dental caries.

  5. Of the milk sugars, galactose, but not prebiotic galacto-oligosaccharide, improves insulin sensitivity in male Sprague-Dawley rats

    PubMed Central

    Kim, Julie J.; Xiao, Changting; Cant, John P.

    2017-01-01

    Background Consumption of dairy products reduces risk of type 2 diabetes. Milk proteins and fats exhibit anti-diabetic properties but milk sugars have been studied little in this context. Galactose from milk lactose is readily converted to glycogen in the liver but its effects on insulin sensitivity have not been assessed. Prebiotic oligosaccharides from milk alter gut microbiota and can thereby influence host metabolism. Our objective was to assess the effect on insulin sensitivity of dietary galactose compared to glucose and fructose, and fermentable galacto-oligosaccharides compared to non-fermentable methylcellulose. Methods Diets containing 15% of dry matter from glucose, fructose, galactose, galacto-oligosaccharides, or methylcellulose were fed to 36 rats per diet for 9 weeks. Hyperinsulinemic-euglycemic clamps with [3-3H]glucose infusion and a steady-state 2-[1-14C]deoxyglucose bolus injection were used to assess insulin sensitivity and glucose uptake indices. Tissue was collected in fed, fasted and fasted, insulin-stimulated states. Results Galactose increased glucose infusion rate during the clamp by 53% and decreased endogenous glucose production by 57% compared to glucose and fructose. Fed-state hepatic glycogen content was greater with galactose compared to glucose and fructose, consistent with a potentiation of the insulin effect on glycogen synthase by dephosphorylation. Galactose decreased the fecal Firmicutes:Bacteroidetes ratio while galacto-oligosaccharides increased abundance of fecal Bifidobacterium spp. 481-fold compared to methylcellulose, and also increased abundance of Lactobacillus spp. and Bacteroidetes. Galacto-oligosaccharides did not affect glucose infusion rate or endogenous glucose production during basal or clamp periods compared to methylcellulose. Conclusions Galactose at 15% of daily intake improved hepatic insulin sensitivity in rats compared to glucose and fructose. Galactose caused an increase in fed-state hepatic glycogen

  6. Clinical evaluation of sodium fluoride chewable tablets in dental caries.

    PubMed

    Aithal, K S; Udupa, D N; Tandon, S

    1996-01-01

    Chewable tablets containing low dosage fluoride content were prepared using two varieties of celluloses and their in vitro parameters were evaluated. An eighteen month clinical trial revealed that both these formulations were effective in controlling the caries. However, ethyl cellulose is proved to be superior to methylcellulose as a controlled release matrix material in controlling caries. Thus this study recommends ethylcellulose matrix tablets containing low fluoride content is an efficacious and cost effective drug device in controlling dental caries.

  7. Structural, surface wettability and antibacterial properties of HPMC-ZnO nanocomposite

    SciTech Connect

    Rao, B. Lakshmeesha; Asha, S.; Madhukumar, R.; Latha, S.; Gowda, Mahadeva; Shetty, G. Rajesha; Sangappa; Chandra, K. Sharath; Naik, Prashantha

    2014-04-24

    The developed hydroxypropyl methylcellulose (HPMC)/Zinc oxide (ZnO) nanocomposite films were examined for structural property and surface wettability using X-ray diffraction and contact angle measurement. Antibacterial activity of these films was evaluated as a function of ZnO concentration. The microstructuralline parameters ( and (g in %)) decreased with increasing concentration of ZnO nanoparticles and there was increase in hydrophilicity. Addition of ZnO nanoparticles in films resulted in antimicrobial activity against tested microorganisms.

  8. Additive for the water circulating in civil and industrial heating plants

    SciTech Connect

    Pittaluga, P.

    1984-06-12

    This invention is relevant to a method for saving fuel in heating plants which utilize thermal energy obtained through combustion of fuel in a boiler and in which the heat transfer medium is circulating water, said method consisting of mixing the circulating water with aqueous solution or homogeneous dispersion of a salified polymeric substance selected from amongst polymers and copolymers of acrylic or methacrylic acid, carboxy-methylcellulose, alginates.

  9. Mechanically Enhanced Liquid Interfaces at Human Body Temperature Using Thermosensitive Methylated Nanocrystalline Cellulose.

    PubMed

    Scheuble, N; Geue, T; Kuster, S; Adamcik, J; Mezzenga, R; Windhab, E J; Fischer, P

    2016-02-09

    The mechanical performance of materials at oil/water interfaces after consumption is a key factor affecting hydrophobic drug release. In this study, we methylated the surface of nanocrystalline cellulose (NCC) by mercerization and dimethyl sulfate exposure to produce thermosensitive biopolymers. These methylated NCC (metNCC) were used to investigate interfacial thermogelation at air/water and medium-chain triglyceride (MCT)/water interfaces at body temperature. In contrast to bulk fluid dynamics, elastic layers were formed at room temperature, and elasticity increased significantly at body temperature, which was measured by interfacial shear and dilatational rheology in situ. This unique phenomenon depends on solvent quality, temperature, and polymer concentration at interfaces. Thus, by adjusting the degree of hydrophobicity of metNCC, the interfacial elasticity and thermogelation of the interfaces could be varied. In general, these new materials (metNCC) formed more brittle interfacial layers compared to commercial methylcellulose (MC A15). Thermogelation of methylcellulose promotes attractive intermolecular forces, which were reflected in a change in self-assembly of metNCC at the interface. As a consequence, layer thickness and density increased as a function of temperature. These effects were measured by atomic force microscopy (AFM) images of the displaced interface and confirmed by neutron reflection. The substantial structural and mechanical change of methylcellulose interfaces at body temperature represents a controllable encapsulation parameter allowing optimization of lipid-based drug formulations.

  10. Bimodal Gastroretentive Drug Delivery Systems of Lamotrigine: Formulation and Evaluation

    PubMed Central

    Poonuru, R. R.; Gonugunta, C. S. R

    2014-01-01

    Gastroretentive bimodal drug delivery systems of lamotrigine were developed using immediate release and extended release segments incorporated in a hydroxypropyl methylcellulose capsule and in vitro and in vivo evaluations were conducted. In vivo radiographic studies were carried out for the optimized formulation in healthy human volunteers with replacement of drug polymer complex by barium sulphate and the floating time was noted. Here the immediate release segment worked as loading dose and extended release segment as maintenance dose. The results of release studies of formulations with hydrophillic matrix to formulations with dual matrix hydroxypropyl methylcellulose acetate succinate shown that as the percentage of polymer increased, the release decreased. Selected formulation F2 having F-Melt has successfully released the drug within one hour and hydrophillic matrix composing polyethylene oxide with 5% hydroxypropyl methylcellulose acetate succinate showed a lag time of one hour and then extended its release up to 12th hour with 99.59% drug release following zero order kinetics with R2 value of 0.989. The Korsmeyer-Peppas equation showed the R2 value to be 0.941 and n value was 1.606 following non-Fickian diffusion pattern with supercase II relaxation mechanism. Here from extended release tablet the drug released slowly from the matrix while floating. PMID:25593380

  11. Effect of additives on physicochemical properties in amorphous starch matrices.

    PubMed

    Liang, Jun; Wang, Simon; Ludescher, Richard D

    2015-03-15

    The effect of the addition of non-reducing sugars or methylcellulose on the matrix physical properties and rate of non-enzymatic browning (NBR) between exogenous glucose+lysine in a starch-based glassy matrix were studied, using the methods of luminescence and FTIR. Amorphous starch-based matrices were formulated by rapidly dehydrating potato starch gel mixed with additives at weight ratios of 7:93 (additive:starch). Data on the phosphorescence emission energy and lifetime from erythrosin B dispersed in the matrices indicated that sugars decreased starch matrix mobility in a Tg-dependent manner, except for trehalose that interacted with starch in a unique mode, while methylcellulose, the additive with the highest Tg, increased the molecular mobility. Using FTIR, we found that methylcellulose decreased the strength of hydrogen bond network and sugars enhanced the hydrogen bond strength in the order: trehalose>maltitol>sucrose. Comparing those changes with the rate of NBR between exogenous glucose+lysine, we suggest that NBR rates are primarily influenced by matrix mobility, which is modulated by the hydrogen bond network, and interactions among components.

  12. Suitable coating material for microencapsulation of spray-dried fish oil.

    PubMed

    Tirgar, M; Jinap, S; Zaidul, I S M; Mirhosseini, H

    2015-07-01

    This study was conducted to screen the most suitable coating material for the production of microencapsulated fish oil powder using ternary blends of maltodextrin (15, 25 % w/w), Arabic gum (2.5, 7.5 % w/w), and methylcellulose (0.5, 1.5 % w/w). The physical properties of fish oil emulsion and encapsulated powders were evaluated. Arabic gum (5 % w/w) showed the most significant (p < 0.05) effect on the surface mean diameter of the droplets in the emulsion. Maltodextrin had the most significant (p < 0.05) effect on the centrifuge stability of the emulsion and the amount of surface oil of the powder at 15 and 20 % (w/w) respectively, whereas methylcellulose (0.5 % w/w) had the most significant (p < 0.05) effect on the width distribution of the droplets in the emulsion. The total optimal area leading to the formation of coating material with desirable physical properties was expected to be obtained by the combination of 16 % (w/w) maltodextrin, 6.5 % (w/w) Arabic gum, and 0.88 % (w/w) methylcellulose respectively.

  13. Effect of Different Polymer Concentration on Drug Release Rate and Physicochemical Properties of Mucoadhesive Gastroretentive Tablets.

    PubMed

    Agarwal, Shweta; Murthy, R S R

    2015-01-01

    Mucoadhesive tablets have emerged as potential candidates for gastroretentive drug delivery providing controlled release along with prolonged gastric residence time. Gastroretentive mucoadhesive tablets could result in increased bioavailability due to prolonged gastric residence time. A hydrophilic matrix system was developed as mucoadhesion is achievable on appropriate wetting and swelling of the polymers used. The polymers were so chosen so as to provide a balance between swelling, mucoadhesion and drug release. The polymers chosen were hydroxypropyl methylcellulose K4M, chitosan, and Carbopol 934. The concentrations of these polymers used has a great impact on the physicochemical properties of the resulting formulation. The tablets were formulated using wet granulation method and tranexamic acid was used as the model drug. The prepared tablets were characterized for size, shape, appearance, hardness, friability, weight variation, swelling, mucoadhesion and in vitro drug release. Several batches of tablets were prepared by varying the ratio of hydroxypropyl methylcellulose K4M and Chitosan. The batches having a greater ratio of chitosan showed higher rate of swelling, greater erosion, less mucoadhesion and faster release rate of the drug whereas the batches having greater ratio of hydroxypropyl methylcellulose K4M showed lesser rate of swelling, less erosion, better mucoadhesion and a smaller drug release rate. The level of carbopol was kept constant in all the batches.

  14. Effects of two combinations of triple antibiotic paste used in endodontic regeneration on root microhardness and chemical structure of radicular dentine.

    PubMed

    Prather, Blake T; Ehrlich, Ygal; Spolnik, Kenneth; Platt, Jeffrey A; Yassen, Ghaeth H

    2014-12-01

    We investigated the effects of triple antibiotic paste (TAP) and modified triple antibiotic paste (MTAP) concentrations on the microhardness and chemical structure of radicular dentine. Human root cylinders were instrumented and randomized into four treatment groups and an untreated control group. Two treatment groups received 1 g/mL TAP or MTAP, and the other two treatment groups received 1 mg/mL methylcellulose-based TAP or MTAP. Cylinders were stored at 100% relative humidity for 4 weeks. Each root cylinder was subjected to a microhardness test before and after treatment. Different sets of radicular dentine specimens were treated as mentioned previously, and were examined using attenuated total reflection Fourier transform infrared spectroscopy. All treatment groups showed significant reductions in microhardness of roots when compared to untreated control roots at 1,000 and/or 500 µm from the pulp-dentine interface. However, 1 mg/mL methylcellulose-based antibiotics caused significantly less reduction in microhardness when compared to 1 g/mL antibiotics. In addition, 1 g/mL TAP and DAP caused significantly lower phosphate/amide I ratios when compared to other groups. The use of 1 mg/mL methylcellulose-based TAP and MTAP may minimize the reduction in microhardness of roots compared with the currently used 1 g/mL concentration of these antibiotics.

  15. In vitro and in vivo adhesion testing of mucoadhesive drug delivery systems.

    PubMed

    Chary, R B; Vani, G; Rao, Y M

    1999-05-01

    Bioadhesive tablets were prepared by physical mixing of polymers and drug, then granulating and compressing into a tablet. The mucoadhesion was evaluated by shear stress measurement, detachment force measurement, and X-ray photography of the rabbit gastrointestinal tract. The strong interaction between the polymer and the mucous lining of the tissue helps increase contact time and permit localization. Polymers like hydroxypropyl methylcellulose K4M (HPMC K4M), hydroxypropyl methylcellulose 100 cps (HPMC 100 cps), carbopol-934, sodium carboxy methylcellulose (Na CMC), guar gum, and polyvinylpyrrolidone (PVP) were tested by shear stress measurement and detachment force measurement methods. HPMC K4M, showing maximum bioadhesion, was used in further studies. Adhesion was maximum between pH 5 and pH 6. Maximum adhesion was observed in the duodenum, followed by the jejunum and ileum. Barium sulfate (BaSO4) matrix tablets containing polymer and drug were subjected to X-ray studies in rabbits, and it was found that the tablet was mucoadhesive even after 8 hr. Enteric coating did not show any effect on mucoadhesion after passing from the stomach.

  16. [Concentration influence of some polymers on dermatological hydrogels pH].

    PubMed

    Musiał, Witold; Kubis, Aleksander

    2005-01-01

    For last two decades there is a lot interest in skin pH research, and pH influence on the skin barrier function. A wide range of hydrophilic polymers are applied worldwide for topical and transdermal preparation, influencing acid mantle of the skin. One of the determinants for feasibility of the polymer for dermatological application, and for proper drug release kinetics is the pH. The aim of the work was pH determination of some polyacrylic acid hydrogels and methylcellulose hydrogels in different concentrations. Carbopol 934 pH was 2.473 to 3.682 in concentrations between 0.1% and 2.0%. In the same concentrations carbopol 971 was in the range of 2.923 and 3.862, and carbopol 980 reached the values 2.638-3.763. pH of methylcellulose gels in the range 0.1%-2.0% was 5.136-7.265. Methylcellulose gels were at the higher physiological skin pH rate, and the polyacrylic gels ranged in rather acidic pH. Determined hydrogen ion concentration was a function of polymer concentration, also in the case of nonionic polymer concentration--similar to a logarythmic function. Stable polymer dispersion pH values were reached after determined time, following statistical consideration.

  17. Effect of Different Polymer Concentration on Drug Release Rate and Physicochemical Properties of Mucoadhesive Gastroretentive Tablets

    PubMed Central

    Agarwal, Shweta; Murthy, R. S. R.

    2015-01-01

    Mucoadhesive tablets have emerged as potential candidates for gastroretentive drug delivery providing controlled release along with prolonged gastric residence time. Gastroretentive mucoadhesive tablets could result in increased bioavailability due to prolonged gastric residence time. A hydrophilic matrix system was developed as mucoadhesion is achievable on appropriate wetting and swelling of the polymers used. The polymers were so chosen so as to provide a balance between swelling, mucoadhesion and drug release. The polymers chosen were hydroxypropyl methylcellulose K4M, chitosan, and Carbopol 934. The concentrations of these polymers used has a great impact on the physicochemical properties of the resulting formulation. The tablets were formulated using wet granulation method and tranexamic acid was used as the model drug. The prepared tablets were characterized for size, shape, appearance, hardness, friability, weight variation, swelling, mucoadhesion and in vitro drug release. Several batches of tablets were prepared by varying the ratio of hydroxypropyl methylcellulose K4M and Chitosan. The batches having a greater ratio of chitosan showed higher rate of swelling, greater erosion, less mucoadhesion and faster release rate of the drug whereas the batches having greater ratio of hydroxypropyl methylcellulose K4M showed lesser rate of swelling, less erosion, better mucoadhesion and a smaller drug release rate. The level of carbopol was kept constant in all the batches. PMID:26997698

  18. Plantago ovata husks-supplemented diet ameliorates metabolic alterations in obese Zucker rats through activation of AMP-activated protein kinase. Comparative study with other dietary fibers.

    PubMed

    Galisteo, Milagros; Morón, Rocío; Rivera, Leonor; Romero, Rosario; Anguera, Anna; Zarzuelo, Antonio

    2010-04-01

    Our aim was to compare the effects of intake of diets supplemented with different dietary fibers, namely cellulose, methylcellulose or Plantago ovata husks, (insoluble, soluble non-fermentable, and soluble fermentable fiber, respectively), on the abnormalities clustered in the metabolic syndrome. Adult obese Zucker rats were distributed in four groups which were fed respectively a standard, a cellulose-supplemented, a methylcellulose-supplemented or a P. ovata husks-supplemented diet, for ten weeks. Increased body weight, hyperlipidemia, hyperinsulinemia and hyperleptinemia, increased TNF-alpha and reduced adiponectin secretion by adipose tissue found in obese Zucker rats were significantly improved in obese rats fed the P. ovata husks-supplemented diet, together with a lower hepatic lipid content which parallels activation of the signaling pathway of AMP-protein kinase in the liver. The methylcellulose-supplemented diet reduced body weight, hyperlipidemia, circulating free fatty acids concentration and ameliorated adipose tissue secretion of adiponectin and TNF-alpha. Feeding with the cellulose-supplemented diet only reduced free fatty acids circulating levels. The soluble dietary fibers essayed are more beneficial than insoluble fiber in the treatment of metabolic syndrome, being the soluble and fermentable the more efficient to improve metabolic alterations. Fermentation products of P. ovata husks must play an important role in such effects. Copyright 2009 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  19. Plaquing procedure for infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Burke, J.A.; Mulcahy, D.

    1980-01-01

    A single overlay plaque assay was designed and evaluated for infectious hematopoietic necrosis virus. Epithelioma papillosum carpio cells were grown in normal atmosphere with tris(hydroxymethyl)aminomethane- or HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid)-buffered media. Plaques were larger and formed more quickly on 1- to 3-day-old cell monolayers than on older monolayers. Cell culture medium with a 10% addition of fetal calf serum (MEM 10) or without serum (MEM 0) were the most efficient virus diluents. Dilution with phosphate-buffered saline, saline, normal broth, or deionized water reduced plaque numbers. Variations in the pH (7.0 to 8.0) of a MEM 0 diluent did not affect plaque numbers. Increasing the volume of viral inoculum above 0.15 ml (15- by 60-mm plate) decreased plaquing efficiency. Significantly more plaques occurred under gum tragacanth and methylcellulose than under agar or agarose overlays. Varying the pH (6.8 to 7.4) of methylcellulose overlays did not significantly change plaque numbers. More plaques formed under the thicker overlays of both methylcellulose and gum tragacanth. Tris(hydroxymethyl)aminomethane and HEPES performed equally well, buffering either medium or overlay. Plaque numbers were reduced when cells were rinsed after virus adsorption or less than 1 h was allowed for adsorption. Variation in adsorption time between 60 and 180 min did not change plaque numbers. The mean plaque formation time was 7 days at 16 degrees C. The viral dose response was linear when the standardized assay was used.

  20. In situ Gel of Metoprolol Tartrate: Physicochemical Characterization, In vitro Diffusion and Histological Studies

    PubMed Central

    Khan, S.; Gajbhiye, C.; Singhavi, D. J.; Yeole, P.

    2012-01-01

    The purpose of the present investigation was to prepare an intranasal in situ gel with increased nasal residence time in order to improve bioavailability of metoprolol tartrate. The in situ gel systems containing carbopol, hydroxypropyl methylcellulose K4M and K15M in different concentrations were prepared. The samples were characterized for viscosity, rheological behavior, gelation behavior, gel strength, and mucoadhesion. The formulations F10 (0.4% w/v carbopol, 1% w/v hydroxylpropyl methylcellulose K15M) and F13 (0.3% w/v carbopol, 1% w/v hydroxypropyl methylcellulose K15M) showed gel strength of 40.33±0.47 and 43.00±1.41, respectively, and mucoadhesion strength 31.48±0.14×103 and 32.12±0.05×103 dyne/cm2, respectively. In vitro release profiles showed initial burst followed by slow release. F10 and F13 released 88.08±0.98 and 91.18±1.09% drug in 8 h. R2 value for F10 (0.9953) and F13 (0.9942) was maximum for Higuchi, showing mixed order kinetics while n value obtained on treatment with Korsemayer Pappas equation were near to 0.5, suggesting release by fickian diffusion mechanism. The nasal permeability of formulations F10 and F13 were found to be 0.057 and 0.063 cm/s, respectively. Histopathological examination revealed slight degeneration of nasal epithelium with increased vascularity by F10 but no inflammation by formulation F13. Thus, a pH triggered in situ gel system containing low concentration (0.3% w/v) of carbopol demonstrated sustained release of metoprolol tartrate without any destructive effect on the mucosa. PMID:23798784

  1. Effect of Antimicrobials Used in Regenerative Endodontic Procedures on 3-week-old Enterococcus faecalis Biofilm.

    PubMed

    Tagelsir, Azza; Yassen, Ghaeth H; Gomez, Grace F; Gregory, Richard L

    2016-02-01

    We evaluated the effect of various antimicrobials used in endodontic regeneration on a 3-week-old Enterococcus faecalis biofilm. E. faecalis biofilm was grown on standardized dentin samples for 3 weeks. Infected dentin samples were randomized into 8 experimental groups (n = 8) and treated with calcium hydroxide (Ca[OH]2), 500 mg/mL of double antibiotic paste (DAP, equal portions of metronidazole and ciprofloxacin), low dilutions of DAP (1 or 0.1 mg/mL loaded into a methylcellulose vehicle system), sterile saline, or placebo paste (only methylcellulose) for 7 days. The other experimental groups were treated with 1.5% sodium hypochlorite (NaOCl) or 2% chlorhexidine gluconate (CHX) solutions for 5 minutes. After the assigned treatments, the bacterial biofilms were detached from dentin, spiral plated, and quantified using an automated counting machine. Permutation tests followed by Sidak post hoc multiple comparisons were used for statistical analyses (α = 0.05). The infected dentin treated with 1.5% NaOCl or 500 mg/mL of DAP provided complete eradication of bacterial biofilm. Furthermore, the infected dentin treated with 2% CHX, Ca(OH)2, or 1 mg/mL of DAP had a comparable antibiofilm effect, but they were not able to completely eradicate bacterial biofilm. No significant difference in the antibiofilm effect was observed between 500 mg/mL of DAP, Ca(OH)2, 1.5% NaOCl, and 2% CHX. At least 1 mg/mL of DAP in a methylcellulose vehicle system is required to eliminate a substantial amount of E. faecalis biofilm. Furthermore, the antibiofilm effects of 1.5% NaOCl and 2% CHX irrigation solutions were comparable with that of 500 mg/mL of DAP and Ca(OH)2. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Adhesion of rice flour-based batter to chicken drumsticks evaluated by laser scanning confocal microscopy and texture analysis.

    PubMed

    Mukprasirt, A; Herald, T J; Boyle, D L; Rausch, K D

    2000-09-01

    The convenience and appeal of battered or breaded products have resulted in a sales increase of 100% since 1980. Because of the rapid growth of the Asian-American population and increasing consumption of rice and rice products, rice flour is a logical alternative for wheat flour in traditional batter formulation. The effects of ingredients used in rice flour-based batters on adhesion characteristic for deep-fat fried chicken drumsticks were studied by laser scanning confocal microscopy (LSCM) and texture analysis. Raw chicken drumsticks were predusted with egg albumin powder before dipping into batters prepared from combinations of rice flour, yellow corn flour, oxidized cornstarch, methylcellulose, or xanthan gum. The drumsticks were fried at 175+/-5 C until the internal temperature reached at least 71 C. For LSCM, samples were fixed overnight and were sectioned by vibratome (200 microm) before viewing. Batter adhesion was determined using an attachment specifically designed for chicken drumsticks. Microstructural analysis showed that batter formulated with a 50:50 mixture of rice and corn flours adhered better to drumsticks than batter with other rice flour ratios. Xanthan gum (0.2%) or methylcellulose (0.3%) alone had poor adhesion to chicken skin. However, when combined with other ingredients, xanthan gum increased the amount of batter pick-up before frying by increasing viscosity. Egg albumin significantly facilitated batter adhesion. The results from texture analysis supported the microstructural studies. As rice flour ratio increased from 50 to 70%, the binding force decreased. Rice flour showed potential as an alternative to wheat flour for batter formulas when the appropriate levels of oxidized starch, xanthan gum, and methylcellulose were included in the formulation.

  3. PROCESS OF MAKING SHAPED FUEL FOR NUCLEAR REACTORS

    DOEpatents

    O'Leary, W.J.; Fisher, E.A.

    1964-02-11

    A process for making uranium dioxide fuel of great strength, density, and thermal conductivity by mixing it with 0.1 to 1% of a densifier oxide (tin, aluminum, zirconium, ferric, zinc, chromium, molybdenum, titanium, or niobium oxide) and with a plasticizer (0.5 to 3% of bentonite and 0.05 to 2% of methylcellulose, propylene glycol alginate, or ammonium alginate), compacting the mixture obtained, and sintering the bodies in an atmosphere of carbon monoxide or carbon dioxide, with or without hydrogen, or of a nitrogen-hydrogen mixture is described. (AEC)

  4. Evaluation of thermal gelation behavior of different cellulose ether polymers by rheology

    NASA Astrophysics Data System (ADS)

    Balaghi, S.; Edelby, Y.; Senge, B.

    2014-05-01

    Hydroxypropylmethylcellulose (HPMC) and Methylcellulose (MC) are cellulose ethers which can be dispersed in water and used as thickeners, emulsifiers, binders, film formers, and water-retention agents due to their hydrophilic and hydrophobic characteristics. In this study, various types of HPMCs, in comparison with two types of MCs were examined. The formed gels of the different cellulose ethers showed specific and various structural formation and network properties. The degree of methylation (Meth.) and hydroxypropylation (HyPr.) affected drastically the heat-induced gelation of the examined cellulose ethers.

  5. [Pharmacological and cost effectiveness bases of the use of categel and categel S [correction of F] in urological practice].

    PubMed

    Loran, O B; Pushkar', D Iu; Avetisian, M M; Rasner, P I

    2001-01-01

    Preparations catedgel and catedgel S made in Austria (Montavit) was tried in Moscow hospital N 50. Categel is a sterile gel of methylcellulose with 2% lidocain and 0.05% chlorhexidine, catedgel S contains the same components but lidocain. Categel significantly reduces the risk of infectious-inflammatory complications after endourological manipulations, improves endoscopic diagnosis and makes some manipulations less painful. Comparative pharmacological cost-effect assessment of categel S and glycerine effects in prostatic transurethral resection. Categel was found 2.11 times more effective. It also improves quality of life of the patients. Categel can be recommended for wide use in urology.

  6. Resveratrol enhances the suppressive effects of arsenic trioxide on primitive leukemic progenitors.

    PubMed

    Wu, Edward J; Goussetis, Dennis J; Beauchamp, Elspeth; Kosciuczuk, Ewa M; Altman, Jessica K; Eklund, Elizabeth A; Platanias, Leonidas C

    2014-04-01

    Efforts to enhance the antileukemic properties of arsenic trioxide are clinically relevant and may lead to the development of new therapeutic approaches for the management of certain hematological malignancies. We provide evidence that concomitant treatment of acute myeloid leukemia (AML) cells or chronic myeloid leukemia (CML) cells with resveratrol potentiates arsenic trioxide-dependent induction of apoptosis. Importantly, clonogenic assays in methylcellulose demonstrate potent suppressive effects of the combination of these agents on primitive leukemic progenitors derived from patients with AML or CML. Taken together, these findings suggest that combinations of arsenic trioxide with resveratrol may provide an approach for targeting of early leukemic precursors and, possibly, leukemia initiating stem cells.

  7. Simple and accurate determination of sol-gel phase transition point using disk-type electromagnetically spinning viscosity measurement system

    NASA Astrophysics Data System (ADS)

    Hirano, Taichi; Sakai, Keiji

    2017-07-01

    We performed viscosity measurements with ultrahigh sensitivity by combining our original electromagnetically spinning technique and a newly developed floating disk probe. This system is, in principle, a torque-control-type viscometer with a noncontact function that can apply an arbitrary low torque, and therefore, enables us to clearly distinguish between liquids and solids from the viewpoint of the mechanical property of materials. In our measurements, we examined the difference in the thermoreversible sol-gel transition of a methylcellulose solution to determine the precise transition points, and successfully observed the hysteresis behavior of the gelation and solation processes.

  8. Certain problems of space biotechnology

    NASA Technical Reports Server (NTRS)

    Gilyarov, V. N.

    1980-01-01

    Experiments in the field of biotechnology conducted by the USA Apollo and Skylab space probes are described, as well as the joint Soviet-American Apollo-Soyuz Test Project (ASTP). Experiments in electrophoretic separation in space of biological compounds in a liquid medium are detailed. Space processing of vaccines and separation of human and animal cells are described. Methyl-cellulose, a coating for use in electrophoresis was developed. Erythropoietin, which stimulates the formation of red blood corpuscles in bone marrow, was obtained in pure form.

  9. Electrochemical cell

    DOEpatents

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1994-08-23

    An electrochemical cell is described having an alkali metal negative electrode such as sodium and a positive electrode including Ni or transition metals, separated by a [beta] alumina electrolyte and NaAlCl[sub 4] or other compatible material. Various concentrations of a bromine, iodine and/or sulfur containing additive and pore formers are disclosed, which enhance cell capacity and power. The pore formers may be the ammonium salts of carbonic acid or a weak organic acid or oxamide or methylcellulose. 6 figs.

  10. Improving the bond strength between steel rebar and concrete by ozone treatment of rebar and polymer addition to concrete

    SciTech Connect

    Fu, X.; Chung, D.D.L.

    1997-05-01

    Ozone treatment of steel rebar, together with latex addition (20% by weight of cement) to concrete, resulted in a 39% increase in the shear bond strength between rebar and concrete, compared to a 25% increase resulted from either ozone treatment alone or latex addition alone. Ozone treatment and latex addition resulted in similarly small increases in the contact electrical resistivity between rebar and concrete. Methylcellulose addition (0.4% by weight of cement) to concrete gave slightly less bond strength increase than the latex addition, but did not affect the contact resistivity.

  11. Effect of iontophoresis and permeation enhancers on the permeation of an acyclovir gel.

    PubMed

    Vaghani, Subhash S; Gurjar, Mitesh; Singh, Sachin; Sureja, Sunil; Koradia, Shailesh; Jivani, N P; Patel, M M

    2010-10-01

    The purpose of the present study was to explore the combined effect of chemical enhancers and iontophoresis on the in vitro permeation of acyclovir gel across porcine skin. Acyclovir gel was formulated using carbopol 940 and hydroxypropyl methylcellulose K4M (HPMC K4M). Effect of drug concentration on the delivery of acyclovir was examined. Increasing drug concentration of acyclovir enhanced its flux across the skin. Incorporation of permeation enhancers (menthol, n-methyl-2-pyrrolidone and polyethylene glycol 400) into the gel resulted in enhanced acyclovir permeation when combined with iontophoresis. Menthol showed the highest drug permeation and when combined with iontophoresis it significantly increased the acyclovir skin permeation.

  12. Preparation and Tribological Study of Biodegradable Lubrication Films on Si Substrate

    PubMed Central

    Shi, Shih-Chen; Huang, Teng-Feng; Wu, Jhen-Yu

    2015-01-01

    A novel method for preparing eco-biodegradable lubricant based on hydroxypropyl methylcellulose (HPMC) via hydration process is demonstrated. The smooth and homogeneous HPMC coating has a uniform thickness (~35 μm). It has been demonstrated that the preparation parameters play a critical role in controlling the lubricating behavior of the coating; in addition, excess HPMC and water concentration suppress the tribology properties. Nevertheless, a remarkable friction-reduction and anti-wear performance has been obtained. Impressively, the preparation parameter of 5% HPMC + 30 mL water significantly improves lubricant performance and durability. A simple approach for the water-degradability evaluation of HPMC is proposed. PMID:28788029

  13. Structure-property relation in HPMC polymer films plasticized with Sorbitol

    NASA Astrophysics Data System (ADS)

    Prakash, Y.; Somashekarappa, H.; Mahadevaiah, Somashekar, R.

    2013-06-01

    A correlation study on physical and mechanical properties of Hydroxy propyl-methylcellulose (HPMC) polymer films plasticized with different weight ratio of Sorbitol, prepared using solution casting method, was carried out using wide angle X-ray technique and universal testing machine. It is found that the crystallanity decreases as the concentration of Sorbitol increases up to a certain concentration and there afterwards increases. Measured Physical Properties like tensile strength decreases and elongation (%) increases indicating increase in the flexibility of the films. These observations confirm the correlation between microstructal parameters and mechanical properties of films. These films are suitable for packaging food products.

  14. Control of electroosmosis in coated quartz capillaries

    NASA Technical Reports Server (NTRS)

    Herren, Blair J.; Van Alstine, James; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1987-01-01

    The effectiveness of various coatings for controlling the electroosmotic fluid flow that hinders electrophoretic processes is studied using analytical particle microelectrophoresis. The mobilities of 2-micron diameter glass and polystyrene latex spheres (exhibiting both negative and zero effective surface charge) were measured in 2-mm diameter quartz capillaries filled with NaCl solutions within the 3.5-7.8 pH range. It is found that capillary inner surface coatings using 5000 molecular weight (or higher) poly(ethylene glycol): significantly reduced electroosmosis within the selected pH range, were stable for long time periods, and appeared to be more effective than dextran, methylcellulose, or silane coatings.

  15. Dry coating of soft gelatin capsules with HPMCAS.

    PubMed

    Cerea, Matteo; Foppoli, Anastasia; Maroni, Alessandra; Palugan, Luca; Zema, Lucia; Sangalli, Maria Edvige

    2008-11-01

    Dry coating is an innovative powder-layering technique that enables the formation of coatings on solid dosage forms with no need for using water or organic solvents. This technique envisages the distribution of polymer powder blends onto substrate cores and the concurrent or alternate nebulization of liquid plasticizers. In this work, a dry coating process based on hydroxypropyl methylcellulose acetate succinate (HPMCAS) was set up in a rotary fluid bed equipment to prepare enteric-coated soft gelatin capsules. Promising results were obtained in terms of process feasibility and product characteristics, thus suggesting the possibility of advantageous applications for the investigated technique when dealing with gelatin capsule substrates.

  16. Control of electroosmosis in coated quartz capillaries

    NASA Technical Reports Server (NTRS)

    Herren, Blair J.; Van Alstine, James; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1987-01-01

    The effectiveness of various coatings for controlling the electroosmotic fluid flow that hinders electrophoretic processes is studied using analytical particle microelectrophoresis. The mobilities of 2-micron diameter glass and polystyrene latex spheres (exhibiting both negative and zero effective surface charge) were measured in 2-mm diameter quartz capillaries filled with NaCl solutions within the 3.5-7.8 pH range. It is found that capillary inner surface coatings using 5000 molecular weight (or higher) poly(ethylene glycol): significantly reduced electroosmosis within the selected pH range, were stable for long time periods, and appeared to be more effective than dextran, methylcellulose, or silane coatings.

  17. [Industrial hygiene in the modern manufacture of synthetic detergents].

    PubMed

    Akinfieva, T A; Kuchma, V R; Lashnev, M P; Moiseev, Iu V; Strongina, O M

    1992-01-01

    Work conditions in the synthetic detergents production according to the new technology created by Sumitomo (Japan) were evaluated from hygienic point of view. The main unfavourable factor is the contamination of air by initial products (aerosols of sodium tripoli phosphate, carboxy methylcellulose, optic bleacher, enzymes et al.) and dust of the final product. Sulphur oxides appear in the air of the sulphating unit. Levels of noise and vibration are surpassed. At the same time the studied technology is more profitable than the current ones. Parameters of the cardiovascular, central nervous and neuromuscular systems do not indicate the physical and neuropsychic fatigue.

  18. Optimization of in vitro release of an anticonvulsant using nanocapsule-based thermogels.

    PubMed

    Esmaeili, Akbar; Singh, Sonia

    2017-03-01

    Controlling the release rate of anticonvulsant drugs can have a significant effect on the efficacy of these drugs and the safety with which they can be administered to patients. This study investigated in vitro release of the anticonvulsant ethosuximide from nanocapsule-based N,O-carboxymethyl chitosan and hyaluronan-methylcellulose hydrogels using two experimental designs: a one-factor-at-a-time method and an optimization method employing a Taguchi design. Using the first method, the release rate of the drug was significantly reduced compared with other delivery systems. With the second method, when the drug was blended into a hyaluronan-methylcellulose hydrogel the release rate was similarly reduced, with full release occurring after three days. Scanning electron microscopy, Fourier-transform infrared spectroscopy, and ultraviolet-visible spectrophotometry were used to study the drug encapsulation, and two mathematical models for evaluating encapsulation efficiency were developed. The results of this study show promise for use of nanoencapsulated thermoresponsive hydrogels in clinical delivery of anticonvulsants. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Design and In Vitro Evaluation of Compression-coated Pulsatile Release Tablets of Losartan Potassium

    PubMed Central

    Bajpai, M.; Singh, D. C. P.; Bhattacharya, A.; Singh, A.

    2012-01-01

    In majority of individuals blood pressure rises in the early morning hours, which lead to serious cardiovascular complications. Formulation of pulsatile system makes it possible to deliver drug at definite period of time when symptoms of the disease condition are most critical. The purpose of the present work was to develop pulsatile release tablet of losartan potassium for chronotherapy in hypertension. The prepared system consisted of a core tablet coated with versatile and safe hydrophilic cellulosic ethers such as, hydroxypropyl methylcellulose, hydroxypropyl cellulose and sodium carboxy methylcellulose to produce burst release after predetermined lag time. Various formulation factors were studied through series of test and in vitro dissolution study. It was found that core tablets containing superdisintegrant failed to produce burst drug release pattern while effervescent agent was able to do so. Results also reveal that coating composition and coating level affects lag time. Formulation containing effervescent agent in core and coated with 200 mg hydroxypropyl cellulose provide lag time of 4.5 h with 73% drug release in 6 h that followed a sigmoidal release pattern. These values were close to the desired objective of producing lag time of 5-6 h followed by fast drug release. This approach can thus provide a useful means for timed release of losartan and is helpful for patients with morning surge. PMID:23325989

  20. Application of mesoscale simulation to explore the aggregate morphology of pH-sensitive nanoparticles used as the oral drug delivery carriers under different conditions.

    PubMed

    Wang, Yan; Chen, Bo Zhi; Liu, Yue Jin; Wu, Zhi Min; Guo, Xin Dong

    2017-03-01

    The pH-sensitive nanoparticles are selected as the potentially promising oral protein and peptide drug carriers due to their excellent performance. With the poly (lactic-co-glycolic acid)/hydroxypropyl methylcellulose phthalate (PLGA/HP55) nanoparticle as a model nanoparticle, the structure-property relationship of nanoparticles with different conditions is investigated by dissipative particle dynamics (DPD) simulations in our work. In the oral drug delivery system, the poly (lactic-co-glycolic acid) (PLGA) is hydrophobic polymer, hydroxypropyl methylcellulose phthalate (HP55) is pH-sensitive enteric polymer which used to protect the nanoparticles through the stomach and polyvinyl alcohol (PVA) is hydrophilic polymer as the stabilizer. It can be seen from DPD simulations that all polymer molecules form spherical core-shell nanoparticles with stabilizer PVA molecules adsorbed on the outer surface of the PLGA/HP55 matrix at certain compositions. The DPD simulation study can provide microscopic insight into the formation and morphological changes of pH-sensitive nanoparticles which is useful for the design of new materials for high-efficacy oral drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Mutation of the endogenous p53 gene in cells transformed by HPV-16 E7 and EJ c-ras confers a growth advantage involving an autocrine mechanism.

    PubMed Central

    Peacock, J W; Benchimol, S

    1994-01-01

    Rat embryo fibroblasts transformed with the HPV-16 E7 gene and the activated c-H-ras gene fall into two distinct phenotypic classes. At high cell density, clones of one class form colonies in methylcellulose supplemented with low serum; at low cell density, these cells display responsiveness to mitogenic factors present in serum-free conditioned medium from rat embryo fibroblasts. In contrast, clones of the second class exhibit an absolute dependency on growth factors present in serum at all cell densities in the methylcellulose colony assay and fail to respond to conditioned medium. We find that the status of the endogenous p53 gene is tightly correlated with these two classes of clones. Clones of the first class contain missense mutations in the p53 gene and have lost the wild-type allele. Clones of the second class express wild-type p53 protein. The importance of mutant p53 expression in reducing the growth factor dependency of transformed clones was confirmed in a separate series of experiments in which rat embryo fibroblasts were transformed with three genes, E7 + ras + mutant p53. The growth behaviour of these triply transfected clones was similar to that of the E7 + ras clones expressing endogenous mutant p53. We demonstrate that the enhanced proliferation of E7 + ras clones expressing mutant p53 protein involves an autocrine mechanism. Images PMID:8131742

  2. Multiple bidirectional alterations of phenotype and changes in proliferative potential during the in vitro and in vivo passage of clonal mast cell populations derived from mouse peritoneal mast cells

    SciTech Connect

    Kanakura, Y.; Thompson, H.; Nakano, T.; Yamamura, T.; Asai, H.; Kitamura, Y.; Metcalfe, D.D.; Galli, S.J.

    1988-09-01

    Mouse peritoneal mast cells (PMC) express a connective tissue-type mast cell (CTMC) phenotype, including reactivity with the heparin-binding fluorescent dye berberine sulfate and incorporation of (35S) sulfate predominantly into heparin proteoglycans. When PMC purified to greater than 99% purity were cultured in methylcellulose with IL-3 and IL-4, approximately 25% of the PMC formed colonies, all of which contained both berberine sulfate-positive and berberine sulfate-negative mast cells. When these mast cells were transferred to suspension culture, they generated populations that were 100% berberine sulfate-negative, a characteristic similar to that of mucosal mast cells (MMC), and that synthesized predominantly chondroitin sulfate (35S) proteoglycans. When ''MMC-like'' cultured mast cells derived from WBB6F1-+/+ PMC were injected into the peritoneal cavities of mast cell-deficient WBB6F1-W/Wv mice, the adoptively transferred mast cell population became 100% berberine sulfate-positive. In methylcellulose culture, these ''second generation PMC'' formed clonal colonies containing both berberine sulfate-positive and berberine sulfate-negative cells, but exhibited significantly less proliferative ability than did normal +/+ PMC. Thus, clonal mast cell populations initially derived from single PMC exhibited multiple and bidirectional alterations between CTMC-like and MMC-like phenotypes. However, this process was associated with a progressive diminution of the mast cells' proliferative ability.

  3. Development of polysaccharides-based edible coatings for citrus fruits: a layer-by-layer approach.

    PubMed

    Arnon, Hadar; Granit, Rina; Porat, Ron; Poverenov, Elena

    2015-01-01

    Biodegradable coatings for citrus fruits that would replace the currently used polyethylene-based waxes, are of great interest. Methylcellulose (MC), hydroxypropyl methylcellulose (HPMC), carboxymethyl cellulose (CMC) and chitosan (CH) coatings were examined on the most sensitive citrus fruit model: mandarins. Among the examined polysaccharides, CMC provided mandarins with the best firmness, lowest weight loss and satisfying gloss, while not affecting natural flavour and the respiration process. To enhance coating performance, glycerol, oleic acid and stearic acid were added; however, mandarin quality generally deteriorated with these additives. Then, a layer-by-layer (LBL) approach was applied. LbL coatings, based on a combination of two polysaccharides, CMC as an internal layer and chitosan as an external layer, gave the best performance. Different concentrations of chitosan were examined. The LbL coatings notably improved all quantified parameters of fruit quality, proving that polysaccharide-based edible coating may offer an alternative to synthetic waxes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Assessment of mucoadhesion by a resonant mirror biosensor.

    PubMed

    Sigurdsson, Hakon H; Loftsson, Thorsteinn; Lehr, Claus-Michael

    2006-11-15

    The aim of this study was to add knowledge to the existing theories of mucoadhesion and to review mucoadhesive polymers based on their ability to form non-covalent bonds with mucus glycoprotein. Resonant mirror biosensor was used to study the candidate mucoadhesive polymers hydroxypropyl methylcellulose, carboxymethylcellulose, Carbopol, hyaluronate, alginate and chitosan. Bovine submaxillary mucin was chosen as substrate, representing the major glycosylated protein in mucus. For comparison, non-glycosylated bovine serum albumin was used as an alternative substrate. The results of this study reveal that there is a clear correlation between the ionization state of the polymer, which is dependent on the pH of the surrounding environment, and its binding behavior. Ionizable polymers need to be in their unionized state to be able to form non-covalent bonds with mucus glycoprotein. Acidic polymers display binding behavior only at pH around or lower than their corresponding pK(a) values and basic polymers vice versa. Chitosan was found to be the most mucoadhesive polymer. Unionizable polymers like hydroxypropyl methylcellulose did not display any affinity for mucus glycoprotein. Unionized amino- and carboxyl groups on polymers were found to be important structural feature of polymer for the formation of weak chemical bonds to mucus glycoproteins.

  5. Analysis of behavioral selection after sensory deprivation of legs in the cricket Gryllus bimaculatus.

    PubMed

    Kanou, Masamichi; Morita, Shinsuke; Matsuura, Tetsuya; Yamaguchi, Tsuneo

    2007-10-01

    An air puff stimulus evoked the swimming of an intact cricket, Gryllus bimaculatus, placed on a water surface. When only the forelegs were intact, swimming was initiated frequently, but flying was never initiated. On the other hand, flying was initiated when only the middle legs or hindlegs were intact. Therefore, the sensory inputs from the forelegs are important in the initiation of swimming and for the inhibition of flying when on the water surface. After bilateral ablation of the middle legs and hindlegs, the bilateral segments of the remaining forelegs were sequentially ablated from the distal area to the proximal area of the legs. After bilateral ablation of all tarsomeres, the relative occurrence of swimming decreased and that of flying increased. After the following ablation of the bilateral tibiae, most insects responded to an air puff stimulus by flying. Experiments performed after coating the leg surface with enamel resulted in almost the same behavioral change as that observed in the ablation experiments. These results suggest that the sensory receptors responsible for the initiation of swimming and the inhibition of flying are mainly located on the surface of the tibia and the tarsus of the forelegs. The behavioral change between swimming and walking was also studied using methylcellulose solutions of various viscosities. On the methylcellulose solution, the relative occurrence of walking in the crickets increased with an increase in the viscosity of the solution.

  6. Stable Aqueous Foams from Cellulose Nanocrystals and Methyl Cellulose.

    PubMed

    Hu, Zhen; Xu, Richard; Cranston, Emily D; Pelton, Robert H

    2016-12-12

    The addition of cellulose nanocrystals (CNC) greatly enhanced the properties of methylcellulose (MC) stabilized aqueous foams. CNC addition decreased air bubble size, initial foam densities and drainage rates. Mixtures of 2 wt % CNC + 0.5 wt % MC gave the lowest density foams. This composition sits near the onset of nematic phase formation and also near the overlap concentration of methylcellulose. More than 94% of the added CNC particles remained in the foam phase, not leaving with the draining water. We propose that the nanoscale CNC particles bind to the larger MC coils both in solution and with MC at the air/water interface, forming weak gels that stabilize air bubbles. Wet CNC-MC foams were sufficiently robust to withstand high temperature (70 °C for 6 h) polymerization of water-soluble monomers giving macroporous CNC composite hydrogels based on acrylamide (AM), 2-hydroxyethyl methacrylate (HEMA), or polyethylene glycol diacrylate (PEGDA). At high temperatures, the MC was present as a fibrillar gel phase reinforced by CNC particles, explaining the very high foam stability. Finally, our CNC-MC foams are based on commercially available forms of CNC and MC, already approved for many applications. This is a "shovel-ready" technology.

  7. Influence of hydrophilic polymers on the complexation of carbamazepine with hydroxypropyl-β-cyclodextrin.

    PubMed

    Medarević, Djordje; Kachrimanis, Kyriakos; Djurić, Zorica; Ibrić, Svetlana

    2015-10-12

    In this study binary carbamazepine-hydroxypropyl-β-cyclodextrin, as well as ternary carbamazepine-hydroxypropyl-β-cyclodextrin-hydrophilic polymer systems were used to improve dissolution rate of carbamazepine. It has been shown that addition of hydrophilic polymers (Soluplus® and two types of hydroxypropyl methylcellulose-Metolose® 90SH-100 and Metolose® 65SH-1500) significantly increased solubilization capacity of hydroxypropyl-β-cyclodextrin for carbamazepine. Evaluation of carbamazepine-hydroxypropyl-β-cyclodextrin-hydrophilic polymer interactions using molecular modeling techniques showed interactions between carbamazepine, which dissociates from inclusion complexes and hydroxypropyl methylcellulose that can prevent crystallization of dissolved carbamazepine. These results can contribute to better understanding of drug-cyclodextrin-hydrophilic polymer interactions which are still not well understood. After evaluation of carbamazepine solubilization with hydroxypropyl-β-cyclodextrin and hydrophilic polymers, both binary carbamazepine-hydroxypropyl-β-cyclodextrin and ternary carbamazepine-hydroxypropyl-β-cyclodextrin-hydrophilic polymer systems were prepared by spray drying. The results of solid state characterization methods showed amorphous nature of carbamazepine in all spray dried systems, which together with the results of molecular modeling techniques indicates inclusion complex formation. Carbamazepine dissolution rate was significantly improved from spray dried formulations compared to pure drug. Binary carbamazepine-hydroxypropyl-β-cyclodextrin and ternary carbamazepine-hydroxypropyl-β-cyclodextrin-Soluplus® systems exhibited the fastest carbamazepine release, wherein the entire amount of carbamazepine was released during first 5 min.

  8. Development and physical characterization of polymer-fish oil bigel (hydrogel/oleogel) system as a transdermal drug delivery vehicle.

    PubMed

    Rehman, Khurram; Mohd Amin, Mohd Cairul Iqbal; Zulfakar, Mohd Hanif

    2014-01-01

    Polymer-Fish oil bigel (hydrogel/oleogel colloidal mixture) was developed by using fish oil and natural (sodium alginate) and synthetic (hydroxypropyl methylcellulose) polymer for pharmaceutical purposes. The bigels were closely monitored and thermal, rheological and mechanical properties were compared with the conventional hydrogels for their potential use as an effective transdermal drug delivery vehicle. Stability of the fish oil fatty acids (especially eicosapentanoic acid, EPA and docosahexanoic acid, DHA) was determined by gas chromatography and the drug content (imiquimod) was assessed with liquid chromatography. Furthermore, in vitro permeation study was conducted to determine the capability of the fish oil-bigels as transdermal drug delivery vehicle. The bigels showed pseudoplastic rheological features, with excellent mechanical properties (adhesiveness, peak stress and hardness), which indicated their excellent spreadability for application on the skin. Bigels prepared with mixture of sodium alginate and fish oil (SB1 and SB2), and the bigels prepared with the mixture of hydroxypropyl methylcellulose and fish oil (HB1-HB3) showed high cumulative permeation and drug flux compared to hydrogels. Addition of fish oil proved to be beneficial in increasing the drug permeation and the results were statistically significant (p < 0.05, one-way Anova, SPSS 20.0). Thus, it can be concluded that bigel formulations could be used as an effective topical and transdermal drug delivery vehicle for pharmaceutical purposes.

  9. Influence of the aqueous film coating process on the properties and stability of tablets containing a moisture-labile drug.

    PubMed

    Ruotsalainen, Mirja; Heinämäki, Jyrki; Taipale, Krista; Yliruusi, Jouko

    2003-01-01

    The effects of an aqueous film coating process on the morphology and storage stability of hydroxypropyl methylcellulose-coated tablets containing a moisture-labile model drug (acetylsalicylic acid, ASA) were evaluated using an instrumented side-vented tablet pan coater. Coating parameters studied were inlet air absolute humidity 5 g/m3 and 12 g/m3, spraying air pressure 100 kPa and 500 kPa, pan air temperature 35 degrees C and 55 degrees C, and coating solution flow rate 2.2 g/min and 7.8 g/min. The surface roughness of the coatings was measured with a laser profilometer and the chemical hydrolysis of the model drug ASA with an UV-spectrophotometer. The film-coated tablets were stored at 25 degrees C/60% RH and 40 degrees C/75% RH for three months. The high absolute humidity of the inlet air increased the residual water content and surface roughness of the coated tablets. Using a lower coating solution flow rate, higher spraying air pressure and pan temperature the coatings were smooth and homogeneous. In both ambient and accelerated storage conditions, the roughness of the coatings and the hydrolysis of ASA increased, but this was independent of the film coating process. Uniform and smooth hydroxypropyl methylcellulose coatings can be achieved by improved control of process parameters related to the application of the coating solution and water evaporation of the tablet surface.

  10. Mechanical properties of some pigmented and unpigmented aqueous-based film coating formulations applied to aspirin tablets.

    PubMed

    Okhamafe, A O; York, P

    1986-06-01

    The Brinell hardness and Young's modulus of pigmented and unpigmented films of hydroxypropyl methylcellulose alone, and in combination with either polyethylene glycol 400 (plasticizer) or polyvinyl alcohol, which were applied to aspirin tablets, have been measured. Generally hardness and modulus data showed similar trends. The hardness and modulus of hydroxypropyl methylcellulose fell in the presence of polyethylene glycol 400 as a result of its plasticizing action. On the other hand, the hardness and modulus of the film former rose slightly when polyvinyl alcohol was initially incorporated, probably due to the crystalline phase of the additive, and then decreased when the level of the additive was further raised. Hardness and modulus were higher in films pigmented with talc than in those containing titanium dioxide because of the plate-like shape of talc and its greater interaction with the polymer systems. Some correlation was found between the Young's moduli of the applied films and those of the corresponding free films, with the moduli of the latter two 2-5 times greater. Ageing at 37 degrees C and 75% r.h. was found to cause a decrease in the mechanical properties of the unplasticized film coating systems probably as a result of decreased molecular order and enhanced polymer chain mobility.

  11. Relation between smoking and biomarkers of bone resorption associated with dental endosseous implants.

    PubMed

    Oates, Thomas W; Caraway, Damen; Jones, John

    2004-12-01

    The aim of this study was to determine the effects of smoking on pyridinoline concentrations in crevicular fluid collected from around dental implants. Samples of crevicular fluid were collected from 4 sites around each implant and tooth, if present, for a group of 16 patients using methylcellulose strips. Samples were collected from 104 implants and 49 teeth. Eight of the 16 patients were current smokers. Crevicular fluid samples were eluted from methylcellulose strips using phosphate-buffered saline containing 0.1% bovine serum albumin and centrifugation. Pyridinoline was quantified using a competitive enzyme immunoassay. Results showed that there were statistically insignificant differences between the amounts of pyridinoline (mean +/- standard deviation [SD]) around teeth of nonsmokers versus smokers (0.011 +/- 0.003 and 0.014 +/- 0.006 nmol/L, respectively). However, the mean (+/- SD) pyridinoline levels around the implants of nonsmokers (0.012 +/- 0.018 nmol/L) were significantly (P <0.01) less than that of smokers (0.030 +/- 0.006 nmol/L). These results demonstrate that pyridinoline levels are specifically elevated in the crevicular fluid associated with endosseous dental implants of smokers and suggest that smoking may affect implant success in part through alterations in the levels of bone resorption.

  12. Examination of thermo-gelation behavior of HPMC and HEMC aqueous solutions using rheology

    NASA Astrophysics Data System (ADS)

    Yoo, Young Jin; Um, In Chul

    2013-05-01

    In this study, the thermo-gelation behavior of hydroxypropyl methylcellulose (HPMC) and hydroxyethyl methylcellulose (HEMC) were examined by rheology. Temperature sweep shear viscosity measurements revealed a significant decrease in the shear viscosity of HPMC and HEMC at the aggregation temperature (Tagr), which depended on the substitution type (HPMC or HEMC) and degree of substitution. In the dynamic test, G' decreased slightly at Tagr and increased significantly at the gelation temperature (Tgel). The shear viscosity and shear storage modulus (G') can be utilized complementarily to examine Tagr and Tgel. Tagr could be detected clearly by the shear viscosity measurement but could not be observed in the G' measurement. On the other hand, Tgel could not be detected in the shear viscosity measurement although it can be clearly recognized in G' measurement. Conclusively, the two rheological measurements could be utilized complementarily in detection of Tagr and Tgel. In the meanwhile, HPMC with more hydrophobic residues (methoxy and hydroxypropyl residues) showed smaller Tagr and Tgel than HEMC, which has hydroxyethyl and methoxy groups. Tagr and Tgel decreased with increasing number of hydrophobic groups. Molecular weight almost did not affect Tagr and Tgel of HPMC solution.

  13. Controlling the optimum surfactants concentrations for dispersing carbon nanofibers in aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Bao-Min; Yuan, Zhang; Guo, Zhi-Qiang; Ma, Hai-Nan; Lai, Chuan Fook

    2013-12-01

    As a new nano-scale functional material, it is necessary to achieve a uniform distribution in the composites for gaining the CNFs' excellent reinforcing effect. In this paper, CNFs were purified by the method of high temperature annealing treatment. Six surfactants, methylcellulose (MC), hydroxypropyl methylcellulose (HPMC), sodium dodecyl sulfate (SDS), dodecylamine (DDA), N, N-dimethyl formamide (DMF) and cetyltrimethyl ammonium bromide (CTAB) were used individually and combinatorially in a certain concentration to disperse the CNFs in aqueous solution. To achieve a good dispersion of the CNFs, a method utilizing ultrasonic processing was employed. The CNFs treated by the method of high temperature annealing treatment were characterized by differential thermal analysis (DTA) and thermogravimetry analysis (TGA), and the ultrasonication-driven dispersion of CNFs in aqueous solutions were monitored by UVvis spectroscopy and transmission electron microscopy (TEM). The experiments reveal that the method of high temperature annealing treatment purified the CNFs and the maximum achievable dispersion of CNFs corresponds to the maximum UV absorbance of the solution. All results show that the surfactants mixture of MC and SDS in a certain concentration of 0.4 and 2.0 g/L has the maximum dispersion effect on CNFs in aqueous solution, the optimum concentration ratio of MC, SDS, and CNFs was 2: 10: 1.

  14. Solubility advantage of amorphous pharmaceuticals, part 3: Is maximum solubility advantage experimentally attainable and sustainable?

    PubMed

    Murdande, Sharad B; Pikal, Michael J; Shanker, Ravi M; Bogner, Robin H

    2011-10-01

    A method is described for screening compounds that inhibit crystallization in solution to enable more accurate measurement of amorphous drug solubility. Three polymers [polyvinylpyrrolidone, hydroxypropyl methylcellulose, and hydroxypropyl methylcellulose acetate succinate (HPMCAS)] were screened for their ability to inhibit the crystallization of neat amorphous drugs during measurement of solubility of the amorphous form in water. Among the polymers evaluated, HPMCAS was found to be most promising. The use of HPMCAS provided an "apparent solubility" of amorphous drugs that was closer to the theoretically calculated values. With danazol, agreement was essentially quantitative, and for griseofulvin and iopanoic acid, agreement was within a factor of two; these maximum concentrations were sustained for a period of 40-90 min. Dynamic light scattering of filtered samples (0.22 µ) revealed the presence of colloidal drug-polymer assemblies in solution (100-150 nm). The supernatant resulting from this centrifugation gradually decreased in concentration, but remained supersaturated with respect to crystalline drug for several hours. Thus, HPMCAS has been shown to be a useful additive in dissolution media to allow a more accurate determination of the solubility of fast crystallizing neat amorphous drugs, at least for the drugs studied, and it should also serve to retard crystallization in vivo and therefore, facilitate improved bioavailability. Copyright © 2011 Wiley-Liss, Inc.

  15. Development of bioactive coatings based on γ-irradiated proteins to preserve strawberries

    NASA Astrophysics Data System (ADS)

    Vu, K. D.; Hollingsworth, R. G.; Salmieri, S.; Takala, P. N.; Lacroix, M.

    2012-08-01

    Gamma irradiation was applied for creating cross-linked proteins to enhance the physicochemical properties of edible films made of calcium caseinate, whey protein isolate and glycerol. The characteristics of γ irradiated cross-linked proteins were analyzed by Fourier Transform Infrared spectroscopy. A second derivative spectra exhibited changes in band intensities that were correlated to an increase of β-sheet structure and a decrease of α-helix and unordered fractions of γ irradiated-cross-linked proteins as compared to the control without irradiation. Furthermore, on addition of methylcellulose to the irradiated protein matrix it was found that it has potential in enhancing the puncture strength and has no detrimental effect on water vapor permeability of protein based films. Finally, these film formulations were used as bioactive edible coatings containing natural antimicrobial agents (limonene and peppermint) to preserve the shelf life of fresh strawberries during storage. The bioactive coatings containing peppermint was found to be more efficient as preserving coatings than the formulations containing limonene. Irradiated proteins/methylcellulose/peppermint formulation had only 40% of decay at day 8 while it was 65% for the control.

  16. Improving flow properties of ibuprofen by fluidized bed particle thin-coating.

    PubMed

    Ehlers, Henrik; Räikkönen, Heikki; Antikainen, Osmo; Heinämäki, Jyrki; Yliruusi, Jouko

    2009-02-23

    The surfaces of ibuprofen particles (d(50) 42 microm) were modified by coating the particles with diluted aqueous hydroxypropyl methylcellulose (HPMC) solution in an instrumentated top-spray fluid bed granulator. The objective was to evaluate whether an extremely thin polymer coating could be an alternative to granulation in enhancing powder flow and processing properties. The studied variables were inlet air temperature and spray rate. The treated powders showed a clear improvement in flow rate as measured with a flow meter designed for powders with poor flow properties. The particle size was determined using optical microscopy and image analysis. The particle size, size distribution and circularity of the treated and untreated ibuprofen batches showed no difference from each other. Consequently, the improvement in flow properties can be attributed to the trace amounts of hydroxypropyl methylcellulose applied onto the particle surfaces. In conclusion, fluidized bed particle thin-coating (PTC) alters the surface of ibuprofen powder particles and improves the flow properties of ibuprofen powder with changes in neither particle size, size distribution nor morphology.

  17. Application of simplex lattice design and desirability function for the formulation development of mouth dissolving film of salbutamol sulphate.

    PubMed

    Gohel, Mukesh C; Parikh, Rajesh K; Aghara, Poonam Y; Nagori, Stavan A; Delvadia, Renish R; Dabhi, Mahesh R

    2009-10-01

    The aim of the present investigation was to prepare and optimize the formulation of mouth dissolving film of salbutamol sulphate by applying experimental design technique. The films were prepared using hydroxypropyl methylcellulose, polyvinyl pyrrolidone and polyvinyl alcohol by solvent evaporation technique. Simplex lattice design and desirability function were adopted for the preparation of film possessing desirable and optimized characteristics. Tensile strength, elastic modulus, percentage strain, load at yield, and percentage drug release were selected as dependent variables. Regression equations and contour plots were used to relate the dependent and independent variables. The concept of similarity factor S(d) was used to prove similarity of dissolution between distilled water and simulated saliva (pH = 6.8). The polymers greatly influenced the mechanical properties and % drug release from the film. From the computed value of desirability function, it was determined that the film containing hydroxypropyl methylcellulose and polyvinyl alcohol was the best batch. The experimental design serves to be a useful tool for the formulation development of mouth dissolving film.

  18. In vitro recovery of triamcinolone acetonide in microdialysis.

    PubMed

    Rojas, C; Nagaraja, N V; Derendorf, H

    2000-09-01

    The purpose of this study was to assess the factors affecting the calibration of the microdialysis probe for the in vitro recovery of triamcinolone acetonide (TA). Recoveries of TA were determined in microdialysis, retrodialysis, and no-net flux methods. Experiments were performed at room temperature or 37 degrees C while the reservoir medium was either stirred or unstirred. The effect of the viscosity of the medium on the recovery was studied using methylcellulose gel spiked with TA. Recovery was also calculated by the no-net-flux method in Ringer's solution and in plasma. Stirring the medium increased the recovery of TA by 30%. The recovery was higher at 37 degrees C under stirred or unstirred conditions and was same in either direction of dialysis. Increasing viscosity of the reservoir medium decreased the recovery (55% in Ringer's solution to 14% in 20% methylcellulose gel). Recovery from spiked plasma under stirred conditions was only 15% and this shift which was also seen in no-net-flux method was accounted for by the protein binding. Binding of TA, determined by ultrafiltration, was 20% in 5% gel and 81% in plasma. The recovery determined by the no-net-flux method was similar to the retrodialysis result. Stirring, temperature, viscosity and protein binding in the reservoir medium affected the in vitro recovery of TA.

  19. Pairwise polymer blends for oral drug delivery.

    PubMed

    Marks, Joyann A; Wegiel, Lindsay A; Taylor, Lynne S; Edgar, Kevin J

    2014-09-01

    Blends of polymers with complementary properties hold promise for addressing the diverse, demanding polymer performance requirements in amorphous solid dispersions (ASDs), but we lack comprehensive property understanding for blends of important ASD polymers. Herein, we prepare pairwise blends of commercially available polymers polyvinylpyrrolidone (PVP), the cationic acrylate copolymer Eudragit 100 (E100), hydroxypropyl methylcellulose acetate succinate (HPMCAS), carboxymethyl cellulose acetate butyrate (CMCAB), hydroxypropyl methylcellulose (HPMC), and the new derivative cellulose acetate adipate propionate (CAAdP). This study identifies miscible binary blends that may find use, for example, in ASDs for solubility and bioavailability enhancement of poorly water-soluble drugs. Differential scanning calorimetry, FTIR spectroscopy, and film clarity were used to determine blend miscibility. Several polymer combinations including HPMCAS/PVP, HPMC/CMCAB, and PVP/HPMC appear to be miscible in all proportions. In contrast, blends of E100/PVP and E100/HPMC showed a miscibility gap. Combinations of water-soluble and hydrophobic polymers like these may permit effective balancing of ASD performance criteria such as release rate and polymer-drug interaction to prevent nucleation and crystal growth of poorly soluble drugs. Miscible polymer combinations described herein will enable further study of their drug delivery capabilities, and provide a potentially valuable set of ASD formulation tools. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Clonal origin of human erythro-eosinophilic colonies in culture.

    PubMed

    Nakahata, T; Spicer, S S; Ogawa, M

    1982-04-01

    We have observed the presence of erythropoietic bursts containing eosinophils and their precursors in methylcellulose culture of human peripheral blood and marrow nucleated cells in the presence of erythropoietin and medium conditioned by phytohemagglutinin-stimulated leukocytes (PHA-LCM). It was possible to identify these bursts (colonies) in situ in methylcellulose culture on the basis of their unique red and black colors. Transmission electron microscopy revealed that the constituent erythroid and eosinophilic cells lay intermixed with each other, and through close intercellular connections formed compact colonies and bursts consisting of several sub-colonies. Differential counts of individual erythro-eosinophil colonies (EEo colonies) revealed only a small percentage of blast cells in most of the colonies. Replating experiments of single EEo colonies yielded only eosinophilic colonies and clusters and erythroid colonies. The clonal nature of the EEo colonies was documented by analysis of Y-chromatin-positive cells in individual EEo colonies derived from cocultures of male and female peripheral blood mononuclear cells. Comparison of conditioned media indicated that PHA-LCM is the best stimulator for EEo colonies. These studies suggest that the differentiation capabilities of the progenitors for EEo colonies are restricted to erythroid and eosinophilic differentiation.

  1. Dry coating: an innovative enteric coating method using a cellulose derivative.

    PubMed

    Obara, S; Maruyama, N; Nishiyama, Y; Kokubo, H

    1999-01-01

    A novel enteric coating method was developed. This method involves direct feeding of coating polymer powder and simultaneous spraying of plasticizing agent, without either organic solvent or water, using a centrifugal granulator, fluidized bed, or tablet-coating machine. For film formation, a curing step was then necessary; this involved spraying a small amount (3-8% of core weight) of water or hydroxypropyl methylcellulose solution, followed by heating. Hydroxypropyl methylcellulose acetate succinate was used as the enteric coating polymer, and a combination of triethyl citrate and acetylated monoglyceride was used for plasticization. The coated beads and tablets were evaluated for gastric resistance, intestinal disintegration, and stability, in comparison with beads and tablets from a conventional aqueous coating with the same enteric polymer. The new method required a higher coating amount for gastric resistance compared with the conventional coating, but the processing time was dramatically reduced. The results show that this dry coating method is applicable to the preparation of enteric-coated beads and tablets using commercially available lab-scale apparatus.

  2. Combining ibuprofen sodium with cellulosic polymers: a deep dive into mechanisms of prolonged supersaturation.

    PubMed

    Terebetski, Jenna L; Michniak-Kohn, Bozena

    2014-11-20

    The combination of a highly soluble salt form of a drug with a polymeric precipitation inhibitor has the potential to prolong drug supersaturation even following salt disproportionation. In this study, dissolution profiles of ibuprofen sodium in the presence of various cellulosic polymers, including hydroxypropyl methylcellulose (HPMC), methylcellulose (MC), and hydroxypropyl cellulose (HPC), were examined in order to assess degree and duration of supersaturation. In addition, the roles that the polymers played in altering drug solubility, media viscosity, physical form, and particle morphology were also assessed. A deep dive into the mechanisms of supersaturation revealed that intermolecular hydrogen bonding between ibuprofen and HPMC was driving supersaturation through nucleation inhibition and crystal growth modification. Polymer viscosity was proposed as the primary factor prolonging supersaturation of ibuprofen in the presence of MC, while mechanisms other than hydrogen bonding were likely to be attributed to supersaturation with the most hydrophobic polymer evaluated, HPC. Overall, the study suggested that induction of intermolecular interactions between ibuprofen and HPMC were more effective at inhibiting nucleation and maintaining prolonged supersaturation than physical modulation of solution properties, such as viscosity. Copyright © 2014. Published by Elsevier B.V.

  3. The cost-effectiveness of a novel soluble beta-glucan gel.

    PubMed

    Cutting, K F

    2017-05-02

    Wounds that have stalled healing are costly in terms of patient morbidity and increase in use of material and financial resources. A natural polymer beta-glucans has been incorporated into a methylcellulose gel to provide a topical gel designed to accelerate healing in wounds where it has stalled. Although the gel provides an environment conducive to moist wound healing the active agent, beta-glucans, activate the innate immune response. Using a Markov cohort simulation model, data were extrapolated from a double-blind randomised trial to evaluate the economic benefits of the soluble beta-glucan (SBG) gel in the treatment of diabetic foot ulcers (DFUs). Over an annual budget cycle, SBG gel is expected to heal 94% of wounds compared with 78% when given standard care. It also healed wounds more quickly, with the average expected healed weeks 34.4 in the SBG gel group, compared with 24.7 methylcellulose dressing group. In our model this leads to a cost saving over an annual budget cycle of £503 per patient. Note: healed weeks refers to the number of weeks when the wound has healed during the 12-week period and should not be confused with weeks to healing. The shorter healing time associated with the SBG gel treatment leads to a cost saving because fewer weeks of treatment are required to heal the wound, suggesting this is a promising new cost-effective option for the treatment of DFUs.

  4. Statistical Modelling for Controlled Drug Delivery Systems and its Applications in HPMC based Hydrogels

    NASA Astrophysics Data System (ADS)

    Ghosal, Kajal; Chandra, Aniruddha

    2010-10-01

    Different concentrations of hydrophobically modified hydroxypropyl methylcellulose (HPMC, 60 M Grade) and conventional hydrophilic hydroxypropyl methylcellulose (50 cPs) were used to prepare four topical hydrogel formulations using a model non steroidal anti-inflammatory drug (NSAID) diclofenac potassium (DP). For all the formulations, suitability of different common empirical (zero-order, first-order, and Higuchi), semi-empirical (Ritger-Peppas and Peppas-Sahlin), and some new statistical (logistic, log-logistic, Weibull, Gumbel, and generalized extreme value distribution) models to describe the drug release profile were tested through non-linear least-square curve fitting. A general purpose mathematical analysis tool MATLAB is used for the purpose. Further, instead of the widely used transformed linear fit method, direct fitting was used in the paper to avoid any sort of truncation and transformation errors. The results revealed that the log-logistic distribution, among all the models that were investigated, was the best fit for hydrophobic formulations. For hydrophilic cases, the semi-empirical models and Weibull distribution worked best, although log-logistic also showed a close fit.

  5. Albizia procera gum as an excipient for oral controlled release matrix tablet.

    PubMed

    Pachuau, Lalduhsanga; Mazumder, Bhaskar

    2012-09-01

    The purpose of this research was to develop and evaluate controlled release matrix tablets of paracetamol based on natural gum exudates of Albizia procera. Procera gum was characterized of its properties like compressibility index, angle of repose, viscosity and moisture content. The interaction between the gum and paracetamol was also studied through differential scanning calorimetry (DSC) and FTIR spectroscopy. Matrix tablets were then prepared by wet granulation method with different concentrations of procera gum and hydroxypropyl methylcellulose (HPMC) and evaluated for their physical properties like weight variation, hardness, friability and content uniformity. Dissolution study was conducted to characterize release mechanism from the matrix system and data were fitted to various kinetic models. The mechanism of drug release from both types of matrix tablets was found to be anomalous type. Results from various evaluations suggested that A. procera gum could be used as drug release retardant in controlled release matrix systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Effect of formulation parameters on the drug release and floating properties of gastric floating two-layer tablets with acetylsalicylic acid.

    PubMed

    Hasçiçek, Canan; Yüksel-Tilkan, Günseli; Türkmen, Berna; Ozdemir, Nurten

    2011-09-01

    Floating dosage forms of acetylsalicylic acid, used for its antithrombotic effect, were developed to prolong gastric residence time and increase bioavailability. In the two-layer tablet formulation, hydroxypropyl methylcellulose (HPMC) of high viscosity and an effervescent mixture of citric acid and sodium bicarbonate formed the floating layer. The release layer contained the drug, direct tableting agent and different types of matrix-forming polymers such as HPMC of low viscosity, sodium carboxymethylcellulose and chitosan. Tablets were prepared using a direct compression technique. The effect of formulation variables on physicochemical and floating properties and the drug release from tablets were investigated. Floating ability was dependent on the amount of effervescent agent and gel-forming polymer of the floating layer. Drug release was prolonged to 8 hours by changing the type and viscosity of the matrix-forming polymer in the drug-loading layer and all formulations showed a diffusion release mechanisms.

  7. Compressive Strength, Chloride Permeability, and Freeze-Thaw Resistance of MWNT Concretes under Different Chemical Treatments

    PubMed Central

    Wang, Xingang; Wang, Yao; Xi, Yunping

    2014-01-01

    This study investigated compressive strength, chloride penetration, and freeze-thaw resistance of multiwalled carbon nanotube (MWNT) concrete. More than 100 cylindrical specimens were used to assess test variables during sensitivity observations, including water-cement ratios (0.75, 0.5, and 0.4) and exposure to chemical agents (including gum arabic, propanol, ethanol, sodium polyacrylate, methylcellulose, sodium dodecyl sulfate, and silane). To determine the adequate sonication time for MWNT dispersal in water, the compressive strengths of MWNT concrete cylinders were measured after sonication times ranging from 2 to 24 minutes. The results demonstrated that the addition of MWNT can increase the compressive strength of concrete by up to 108%. However, without chemical treatment, MWNT concretes tend to have poor freeze-thaw resistance. Among the different chemical treatments, MWNT concrete treated with sodium polyacrylate has the best compressive strength, chloride resistance, and freeze-thaw durability. PMID:25140336

  8. Disinfection by-products and ecotoxicity of ballast water after oxidative treatment--results and experiences from seven years of full-scale testing of ballast water management systems.

    PubMed

    Delacroix, Stephanie; Vogelsang, Christian; Tobiesen, August; Liltved, Helge

    2013-08-15

    Since 2005, five different ballast water management systems (BWMSs) based on chlorination treatment have been tested by Norwegian Institute for Water Research (NIVA) according to guidelines from the International Maritime Organization (IMO). 25% and >50% of all the tested discharge samples exhibited acute and chronic toxic effects on algae, respectively. In most cases this toxicity was plausibly caused by a high free residual oxidant (FRO) level (>0.08 mg Cl/l). Of the 22 disinfection by-products (DBPs) that were identified in treated water at discharge, four compounds were at times found at concentrations that may pose a risk to the local aquatic environment. However, there seemed to be no clear indication that the measured DBP concentrations contributed to the observed algal toxicity. The addition of methylcellulose instead of lignin in the test water to comply with IMO requirements seemed to limit the formation of DBP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Evaluation of honey locust (Gleditsia triacanthos Linn.) gum as sustaining material in tablet dosage forms.

    PubMed

    Uner, Melike; Altinkurt, Turan

    2004-07-01

    In this study, honey locust gum (HLG) obtained from Gleditsia triacanthos (honey locust) beans was investigated as a hydrophilic matrix material in the tablets prepared at different concentrations (5% and 10%) by wet granulation method. Theophylline was chosen as a model drug. The matrix tablets containing hydroxyethylcellulose and hydroxypropyl methylcellulose as sustaining polymers at the same concentrations were prepared and a commercial sustained release (CSR) tablet containing 200 mg theophylline was examined for comparison of HLG performance. Physical analysis on CSR tablet, matrix tablets and their granules before compression were performed. According to the results obtained from dissolution studies in distilled water, pH 1.2 HCl buffer and pH 7.2 phosphate buffer, no significant difference was found between CSR tablet and the matrix tablet containing 10% HLG in each medium (P > 0.05) and these tablets showed zero-order kinetic model in all the mediums.

  10. Compressive strength, chloride permeability, and freeze-thaw resistance of MWNT concretes under different chemical treatments.

    PubMed

    Wang, Xingang; Rhee, Inkyu; Wang, Yao; Xi, Yunping

    2014-01-01

    This study investigated compressive strength, chloride penetration, and freeze-thaw resistance of multiwalled carbon nanotube (MWNT) concrete. More than 100 cylindrical specimens were used to assess test variables during sensitivity observations, including water-cement ratios (0.75, 0.5, and 0.4) and exposure to chemical agents (including gum arabic, propanol, ethanol, sodium polyacrylate, methylcellulose, sodium dodecyl sulfate, and silane). To determine the adequate sonication time for MWNT dispersal in water, the compressive strengths of MWNT concrete cylinders were measured after sonication times ranging from 2 to 24 minutes. The results demonstrated that the addition of MWNT can increase the compressive strength of concrete by up to 108%. However, without chemical treatment, MWNT concretes tend to have poor freeze-thaw resistance. Among the different chemical treatments, MWNT concrete treated with sodium polyacrylate has the best compressive strength, chloride resistance, and freeze-thaw durability.

  11. Developing dissolution testing methodologies for extended-release oral dosage forms with supersaturating properties. Case example: Solid dispersion matrix of indomethacin.

    PubMed

    Tajiri, Tomokazu; Morita, Shigeaki; Sakamoto, Ryosaku; Mimura, Hisahi; Ozaki, Yukihiro; Reppas, Christos; Kitamura, Satoshi

    2015-07-25

    The objective of this study was to develop an in vitro dissolution test method with discrimination ability for an extended-release solid dispersion matrix of a lipophilic drug using the United States Pharmacopeia (USP) Apparatus 4, flow-through cell apparatus. In the open-loop configuration, the sink condition was maintained by manipulating the flow rate of the dissolution medium. To evaluate the testing conditions, the drug release mechanism from an extended-release solid dispersion matrix containing hydrophobic and hydrophilic polymers was investigated. As the hydroxypropyl methylcellulose (HPMC) maintained concentrations of indomethacin higher than the solubility in a dissolution medium, the release of HPMC into the dissolution medium was also quantified using size-exclusion chromatography. We concluded that the USP Apparatus 4 is suitable for application to an in vitro dissolution method for orally administered extended-release solid dispersion matrix formulations containing poorly water-soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Preparation of delayed release tablet dosage forms by compression coating: effect of coating material on theophylline release.

    PubMed

    El-Malah, Yasser; Nazzal, Sami

    2010-06-01

    In this study, compression-coated tablets were prepared and examined by real-time swelling/erosion analysis and dissolution studies. Of the coating materials, PVP showed no swelling behavior and had no impact on theophylline release. Polyox(®) exhibited swelling behavior of an entangled polymer, which was reflected in its > 14-hour delayed-release profile. Hydroxypropyl methylcellulose (HPMC), which revealed the characteristics of a disentangled polymer, caused a 2-h delay in theophylline release. Based on preliminary texture analysis data, Polyox(®)/PVP blends were used as coating materials to manipulate the onset of drug release from the compression-coated tablets. Of the blends, at a 1:1 ratio, for example, resulted in a burst release after 10 h, which demonstrated the feasibility of preparing delayed release dosage forms by compression coating. Furthermore, it was feasible to predict the dissolution behavior of polymers from their swelling/erosion data, which were generated from texture analysis.

  13. Isoelectric focusing in a poly(dimethylsiloxane) microfluidic chip.

    PubMed

    Cui, Huanchun; Horiuchi, Keisuke; Dutta, Prashanta; Ivory, Cornelius F

    2005-03-01

    This paper reports the application of ampholyte-based isoelectric focusing in poly(dimethylsiloxane) (PDMS) using methylcellulose (MC) to reduce electroosmosis and peak drift. Although the characteristics of PDMS make it possible to fabricate microfluidic chips using soft lithography, unstable electroosmotic flow (EOF) and cathodic drift are significant problems when this medium is used. This paper demonstrates that EOF is greatly reduced in PDMS by applying a dynamic coat of MC to the channel walls and that higher concentrations of MC can be used to increase the viscosity of the electrode solutions in order to suppress pH gradient drift and reduce "compression"of the pH gradient. To illustrate the effect of MC on performance, several fluorescent proteins were focused in microchip channels 5 microm deep by 300 microm wide by 2 cm long in 3-10 min using broad-range ampholytes at electric field strengths ranging from 25 to 100 V/cm.

  14. Mucosa-plate for direct evaluation of mucoadhesion of drug carriers.

    PubMed

    Tachaprutinun, Amornset; Pan-In, Porntip; Wanichwecharungruang, Supason

    2013-01-30

    The method to prepare mucosa-plates, glass slides covalently coated with mucin, is demonstrated. The use of the plate to evaluate mucoadhesion of nanocarriers made from different four polymeric materials, N-succinylchitosan (NS-chitosan), alginate (ALG), ethylcellulose (EC), and a blend of EC and methylcellulose (EC/MC), was demonstrated. While different mucoadhesion of the four carriers could be detected using mucosa-plate, the conventional viscosity measurement could not differentiate their mucin-binding ability. ALG and NS-chitosan nanospheres showed the best attachment to the mucosa-plate compared to the EC/MC and EC spheres. Capsaicin, a model hydrophobic drug, was loaded into the carriers and the ability of the different polymeric carriers to retain capsaicin at the stomach tissue was compared using an ex vivo fresh porcine stomach assay. Ability to retain capsaicin at the stomach tissue correlated well with binding affinity toward the mucosa-plate and the loading capacity of the carriers.

  15. Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion.

    PubMed

    Yonekura, Lina; Sun, Han; Soukoulis, Christos; Fisk, Ian

    2014-01-01

    We evaluated sodium alginate, chitosan and hydroxypropyl methylcellulose (HPMC) as co-encapsulants for spray dried Lactobacillus acidophilus NCIMB 701748 by assessing their impact on cell viability and physicochemical properties of the dried powders, viability over 35 days of storage at 25 °C and survival after simulated digestion. Fibres were added to a control carrier medium containing whey protein concentrate, d-glucose and maltodextrin. Sodium alginate and HPMC did not affect cell viability but chitosan reduced viable counts in spray dried powders, as compared to the control. Although chitosan caused large losses of viability during spray-drying, these losses were counteracted by the excellent storage stability compared to control, sodium alginate and HPMC, and the overall effect became positive after the 35-day storage. Chitosan also improved survival rates in simulated GI conditions, however no single fibre could improve L. acidophilus NCIMB 701748 viability in all steps from production through storage and digestion.

  16. Effect of gamma irradiation on HPMC/ZnO nanocomposite films

    SciTech Connect

    Rao, B. Lakshmeesha; Asha, S.; Madhukumar, R.; Latha, S.; Gowda, Mahadeva; Shivananda, C. S.; Harish, K. V.; Sangappa; Shetty, G. Rajesha

    2015-06-24

    The present work looks into the structural and mechanical properties modification in ZnO nanoparticle incorporated Hydroxypropyl methylcellulose (HPMC) polymer films, induced by gamma irradiation. The irradiation process was performed in gamma chamber at room temperature by use of Cobalt-60 source (Average energy of 1.25MeV) at different doses: 0, 50, 100, 150 and 200 kGy respectively. The changes in structural parameters and mechanical properties in pure and gamma irradiated HPMC/ZnO nanocomposite films have been studied using X-ray scattering (XRD) data and universal testing machine (UTM). It is found that gamma irradiation decreases the structural parameters and improves the mechanical properties of nanocomposite films.

  17. Verapamil, but not probenecid, co-administration can convert desloratadine to a sedating antihistamine in mice.

    PubMed

    Katta, Anand; Dhananjeyan, Mugunthu; Bykowski, Crystal; Erhardt, Paul; Hacker, Miles; White, Donald B; Bachmann, Kenneth

    2007-01-01

    The possibility that non-sedating antihistamines could elicit sedation in mice due to drug-induced inhibition of brain PgP was evaluated by measuring the ability of desloratadine alone or in combination with verapamil to cause ataxia in mice. Also, the concentrations of desloratadine in plasma and in brain homogenates were measured by liquid chromatography-mass spectrometry. Relative to methylcellulose (control) treatment, verapamil plus desloratadine decreased rotarod performance of mice. Plasma concentrations of desloratadine appeared comparable in the mice treated with either desloratadine or verapamil plus desloratadine, however the rate of decline of desloratadine from brain tissue was slower in mice treated with verapamil plus desloratadine compared to mice treated with desloratadine only. These data suggest that inhibition of brain PgP can convert desloratadine to a sedating antihistamine in mice.

  18. Use of surface plasmon resonance to study the adsorption of detergents on poly(dimethylsiloxane) surfaces.

    PubMed

    Gaspar, Attila; Kecskemeti, Adam; Gomez, Frank A

    2013-04-01

    This paper demonstrates the use of surface plasmon resonance to study adsorption (either reversible or irreversible) of detergents on PDMS surfaces in real time. The surface plasmon resonance measurements can directly provide information about the adsorption/desorption processes of detergents on the surface revealing the durability of the adsorbed layer and the anticipated degree of the EOF. Hydroxypropyl methylcellulose very strongly adsorbs onto PDMS and can be considered both a semipermanent layer and stable semipermanent coating. Adsorbed SDS or CTAB layers were stable for several minutes upon rinsing the surface with solution not containing the detergent. It was shown that SDS coated onto PDMS in microchips has the potential to afford similar separations in PDMS as found in conventional fused silica capillaries. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A novel once daily microparticulate dosage form comprising lansoprazole to prevent nocturnal acid breakthrough in the case of gastro-esophageal reflux disease: preparation, pharmacokinetic and pharmacodynamic evaluation.

    PubMed

    Alai, Milind; Lin, Wen Jen

    2013-01-01

    The objective of this study was to formulate and evaluate the lansoprazole (LPZ)-loaded microparticles to prevent nocturnal acid breakthrough in the case of gastro-esophageal reflux disease (GERD). The microparticulate delivery system was prepared by solvent evaporation method using Eudragit RS100 as a matrix polymer followed by enteric coated with Eudragit S100 and hydroxypropyl methylcellulose phthalate HP55 using spray drying method. The enteric coated microparticles were stable in gastric pH condition. In vivo pharmacokinetic and pharmacodynamic studies in male Wistar rats demonstrated that enteric coated microparticles sustained release of LPZ and promoted ulcer healing activity. In other words, the microparticulate dosage form provided effective drug concentration for a longer period as compared to conventional extended release dosage form, and showed sufficient anti-acid secretion activity to treat acid related disorders including the enrichment of nocturnal acid breakthrough event based on a once daily administration.

  20. Preparation and in vitro-in vivo evaluation of acyclovir floating tablets

    PubMed Central

    Bahri-Najafi, Rahim; Mostafavi, Abolfazl; Tavakoli, Naser; Taymouri, Somayeh; Shahraki, Mohammad-Mehdi

    2017-01-01

    In the current study, floating dosage form containing acyclovir was developed to increase its oral bioavailability. Effervescent floating tablets containing 200 mg acyclovir were prepared by direct compression method with three different rate controlling polymers including Hydroxypropyl methylcellulose K4M, Carbapol 934, and Polyvinylpyrrolidone. Optimized formulation showed good floating properties and in vitro drug release characteristics with mean dissolution time and dissolution efficacy of about 4.76 h and 54.33%, respectively. X-ray radiography exhibited that the tablet would reside in the stomach for about 5 ± 0.7 h. After oral administration of floating tablet containing 200 mg acyclovir, the Cmax, Tmax, and AUC0–∞ of optimized gastroretentive formulation were found to be 551 ± 141 ng/mL, 2.75 ± 0.25 h and 3761 ± 909.6 ng/mL/h, respectively. PMID:28515765

  1. Preparation and in vitro-in vivo evaluation of acyclovir floating tablets.

    PubMed

    Bahri-Najafi, Rahim; Mostafavi, Abolfazl; Tavakoli, Naser; Taymouri, Somayeh; Shahraki, Mohammad-Mehdi

    2017-04-01

    In the current study, floating dosage form containing acyclovir was developed to increase its oral bioavailability. Effervescent floating tablets containing 200 mg acyclovir were prepared by direct compression method with three different rate controlling polymers including Hydroxypropyl methylcellulose K4M, Carbapol 934, and Polyvinylpyrrolidone. Optimized formulation showed good floating properties and in vitro drug release characteristics with mean dissolution time and dissolution efficacy of about 4.76 h and 54.33%, respectively. X-ray radiography exhibited that the tablet would reside in the stomach for about 5 ± 0.7 h. After oral administration of floating tablet containing 200 mg acyclovir, the Cmax, Tmax , and AUC0-∞ of optimized gastroretentive formulation were found to be 551 ± 141 ng/mL, 2.75 ± 0.25 h and 3761 ± 909.6 ng/mL/h, respectively.

  2. Growth of erythroid burst-forming units (BFU-E) in cultures of canine bone marrow and peripheral blood cells: effect of serum from irradiated dogs

    SciTech Connect

    Kreja, L.; Baltschukat, K.; Nothdurft, W.

    1988-08-01

    Erythroid burst-forming units (BFU-E) from canine bone marrow and peripheral blood could be grown in methylcellulose in the presence of an appropriate batch of fetal calf serum (FCS), transferrin, and erythropoietin (Epo). However, improved colony formation (size and number of bursts) was obtained when serum from total body irradiated dogs was present in the culture. This serum, obtained from dogs at day 9 after total body irradiation with a dose of 3.9 Gy, reduced markedly the Epo requirement of BFU-E. Furthermore, it allowed the omission of FCS from the culture medium if cholesterol and bovine serum albumin (BSA) were used as FCS substitutes. BFU-E concentrations were found to be rather different in the peripheral blood and in bone marrow samples from different sites (i.e., iliac crest, sternum, and humerus) of normal beagles. The studies further show that canine bone marrow BFU-E can be cryopreserved in liquid nitrogen.

  3. Controlling dispersion of graphene nanoplatelets in aqueous solution by ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Wang, Baomin; Jiang, Ruishuang; Song, Wanzeng; Liu, Hui

    2017-08-01

    The homogenous graphene nanoplatelets (GNP) suspension had been prepared through ultrasonic exfoliation in the presence of methylcellulose (MC) as dispersant. The influence of different sonication times on dispersing of aqueous GNP suspension was monitored by UV-Vis absorbance, sedimentation test, optical microscope and transmission electron microscope (TEM). The study of UV-Vis absorbance verifies that the minimum sonication time to break the 0.1 g/L concentration of bundled GNPs is 20 min; furthermore, the GNP suspension achieved the best dispersion, when sonication time increased up to 80 min. From optical microscope images of GNPs, the agglomeration of GNPs was broken by enough sonication energy, and the distribution of GNPs particles became more uniform. The dispersing mechanism had been discussed and simulated by HRTEM image. The bundled GNPs were exfoliated by cavitation effect of ultrasonic irradiation, meanwhile, the dispersant adsorbed on the surface of GNPs prevented re-entanglement by forming steric hindrance.

  4. [Development of technology of the enzyme preparation: procelan ointment].

    PubMed

    Puodziūniene, Gene; Vaiciuvenas, Vytautas; Janulis, Valdimaras; Steponavicius, Juozas

    2002-01-01

    When investigating the release of procelan from diphilic, hydrophobic and hydrophilic basis we determined that the best release of the active substance is from hydrophilic basis. The macrogolic base when compared with methylcellulosic one shows clearly expressed osmotic properties and therefore is more suitable as a base for ointments intended to treat suppurative wounds. This was confirmed by treatment of experimentally excited suppurative wounds on rabbits. Hydrophilic ointments containing lyophilized procelan powders from 4 per cent to 20 per cent were examined. The most remarkable therapeutic effect reached with the ointment of macrogolic base, optimal concentration of procelan being 10 per cent. The method of assay of procelan in the ointment was created. The created dosage form is stable for three years at room temperature.

  5. Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion☆

    PubMed Central

    Yonekura, Lina; Sun, Han; Soukoulis, Christos; Fisk, Ian

    2014-01-01

    We evaluated sodium alginate, chitosan and hydroxypropyl methylcellulose (HPMC) as co-encapsulants for spray dried Lactobacillus acidophilus NCIMB 701748 by assessing their impact on cell viability and physicochemical properties of the dried powders, viability over 35 days of storage at 25 °C and survival after simulated digestion. Fibres were added to a control carrier medium containing whey protein concentrate, d-glucose and maltodextrin. Sodium alginate and HPMC did not affect cell viability but chitosan reduced viable counts in spray dried powders, as compared to the control. Although chitosan caused large losses of viability during spray-drying, these losses were counteracted by the excellent storage stability compared to control, sodium alginate and HPMC, and the overall effect became positive after the 35-day storage. Chitosan also improved survival rates in simulated GI conditions, however no single fibre could improve L. acidophilus NCIMB 701748 viability in all steps from production through storage and digestion. PMID:24748900

  6. Formation and stabilisation of triclosan colloidal suspensions using supersaturated systems.

    PubMed

    Raghavan, S L; Schuessel, K; Davis, A; Hadgraft, J

    2003-08-11

    The aim of this paper is to prepare and stabilise, in situ, colloidal microsuspensions of triclosan using the polymer, hydroxypropyl methylcellulose (HPMC). The suspensions were prepared from supersaturated solutions of triclosan. The cosolvent technique was used to create supersaturation. Propylene glycol and water were used as the cosolvents. The triclosan particles had a large needle-shaped morphology, when grown in the absence of the polymer. Moreover, the particles grew rapidly to sizes greater than 5 micrometer over a period of 7h. When HPMC was added, the particle sizes were in the range 90-250 nm depending on the amount of polymer present in the solutions. The stability of the solutions was evaluated over a period of 40 days during which the particle sizes did not vary. The results were consistent with the mechanism proposed by Raghavan et al. [Int. J. Pharm. 212 (2001b) 213].

  7. Biopolymer Green Lubricant for Sustainable Manufacturing

    PubMed Central

    Shi, Shih-Chen; Lu, Fu-I

    2016-01-01

    We report on the preparation of a biopolymer thin film by hydroxypropyl methylcellulose (HPMC), which can be used as a dry green lubricant in sustainable manufacturing. The thin films were characterized through scanning electron microscopy, energy-dispersive spectroscopy, and Raman spectroscopy; the films showed desirable levels of thickness, controllability, and uniformity. Tribology tests also showed desirable tribological and antiwear behaviors, caused by the formation of transfer layers. Zebrafish embryo toxicity studies showed that HPMC has excellent solubility and biocompatibility, which may show outstanding potential for applications as a green lubricant. The results of the present study show that these techniques for biopolymer HPMC provide an ecologically responsible and convenient method for preparing functional thin films, which is particularly applicable to sustainable manufacturing. PMID:28773462

  8. Tribological Performance of Green Lubricant Enhanced by Sulfidation IF-MoS2

    PubMed Central

    Shi, Shih-Chen

    2016-01-01

    Biopolymers reinforced with nanoparticle (NP) additives are widely used in tribological applications. In this study, the effect of NP additives on the tribological properties of a green lubricant hydroxypropyl methylcellulose (HPMC) composite was investigated. The IF-MoS2 NPs were prepared using the newly developed gas phase sulfidation method to form a multilayered, polyhedral structure. The number of layers and crystallinity of IF-MoS2 increased with sulfidation time and temperature. The dispersity of NPs in the HPMC was investigated using Raman and EDS mapping and showed great uniformity. The use of NPs with HPMC enhanced the tribological performance of the composites as expected. The analysis of the worn surface shows that the friction behavior of the HPMC composite with added NPs is very sensitive to the NP structure. The wear mechanisms vary with NP structure and depend on their lubricating behaviors. PMID:28773976

  9. High loading fragrance encapsulation based on a polymer-blend: preparation and release behavior.

    PubMed

    Sansukcharearnpon, Aurapan; Wanichwecharungruang, Supason; Leepipatpaiboon, Natchanun; Kerdcharoen, Teerakiat; Arayachukeat, Sunatda

    2010-05-31

    The six fragrances, camphor, citronellal, eucalyptol, limonene, menthol and 4-tert-butylcyclohexyl acetate, which represent different chemical functionalities, were encapsulated with a polymer-blend of ethylcellulose (EC), hydroxypropyl methylcellulose (HPMC) and poly(vinyl alcohol) (PV(OH)) using solvent displacement (ethanol displaced by water). The process gave >or=40% fragrance loading capacity with >or=80% encapsulation efficiency at the fragrance to polymer weight ratio of 1:1 and at initial polymer concentrations of 2000-16,000 ppm and the obtained fragrance-encapsulated spheres showed hydrodynamic diameters of less than 450 nm. The release profile of the encapsulated fragrances, evaluated by both thermal gravimetric and electronic nose techniques, indicated different release characteristics amongst the six encapsulated fragrances. Limonene showed the fastest release with essentially no retention by the nanoparticles, while eucalyptol and menthol showed the slowest release.

  10. Formulation development and evaluation of fast dissolving film of telmisartan.

    PubMed

    Londhe, Vaishali Y; Umalkar, Kashmira B

    2012-03-01

    Hypertension is a major cause of concern not just in the elderly but also in the youngsters. An effort was made to formulate a fast dissolving film containing telmisartan which is used in the treatment of hypertension with a view to improve the onset of action, therapeutic efficacy, patient compliance and convenience. The major challenge in formulation of oral films of telmisatran is that it shows very less solubility in the pH range of 3-9. Various film forming agents and polyhydric alcohols were evaluated for optimizing composition of fast dissolving films. Fast dissolving films using hydroxypropyl methylcellulose, polyvinyl alcohol, glycerol, sorbitol, menthol and an alkalizer were formulated using solvent casting method. Optimized formulations were evaluated for their weight, thickness, folding endurance, appearance, tensile strength, disintegration time and dissolution profile.

  11. Roller compactor: The effect of mechanical properties of primary particles.

    PubMed

    Al-Asady, Riyadh B; Osborne, James D; Hounslow, Michael J; Salman, Agba D

    2015-12-30

    In this study, the nano-indentation hardness of a single primary particle was measured for six different materials; microcrystalline cellulose, hydroxypropyl methylcellulose, maltodextrin, lactose, sodium carbonate and calcium carbonate. This was linked to the properties of the ribbons produced by roller compactor at different hydraulic pressures in the range of 30-230 bar. The main investigated ribbon properties were strength, porosity and width. For the range of materials that were tested, it was found that the lower the nano-indentation hardness of the powder particles, the higher the strength, width and lower the ribbon porosity. This is because the applied pressure by the rollers was enough to plastically deform the particles and create bonds between them. A method was suggested to predict the workability of the powder in roller compactor by using the data of nano-indentation for three materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Synthesis, characterization and optical studies of highly luminescent ZnS nanoparticles associated with hypromellose matrix as a green and novel stabilizer.

    PubMed

    Tiwari, Ashish; Khan, S A; Kher, R S; Dhoble, S J

    2014-09-01

    ZnS nanoparticles stabilized by a carbohydrate-based matrix, hypromellose (hydroxypropyl methylcellulose) were prepared via a wet chemical method. The nanocomposite was characterized by X-ray diffraction, transmission electon microscopy and Fourier transform infrared spectroscopy. X-Ray diffraction patterns revealed a zinc blende structure. Thermogravimetric analysis suggested that polymer attached to the surface decomposes at 700 °C. Absorption measurements were carried out and calculation of the diameter polydispersity index (DPI) suggests the formation of monodisperse nanoparticles. The optical properties of the as-prepared samples were studied by UV/vis spectroscopy and steady-state photoluminescence (PL) spectroscopy. The PL studies indicate the applicability of these nanoparticles as biocompatible sensors or luminescence markers in future.

  13. Effect of gamma irradiation on HPMC/ZnO nanocomposite films

    NASA Astrophysics Data System (ADS)

    Rao, B. Lakshmeesha; Asha, S.; Madhukumar, R.; Latha, S.; Gowda, Mahadeva; Shetty, G. Rajesha; Shivananda, C. S.; Harish, K. V.; Sangappa

    2015-06-01

    The present work looks into the structural and mechanical properties modification in ZnO nanoparticle incorporated Hydroxypropyl methylcellulose (HPMC) polymer films, induced by gamma irradiation. The irradiation process was performed in gamma chamber at room temperature by use of Cobalt-60 source (Average energy of 1.25MeV) at different doses: 0, 50, 100, 150 and 200 kGy respectively. The changes in structural parameters and mechanical properties in pure and gamma irradiated HPMC/ZnO nanocomposite films have been studied using X-ray scattering (XRD) data and universal testing machine (UTM). It is found that gamma irradiation decreases the structural parameters and improves the mechanical properties of nanocomposite films.

  14. Effect of gamma irradiation on HPMC/ZnO nanocomposite films

    NASA Astrophysics Data System (ADS)

    Rao, B. L.; Sangappa, Y.

    2015-06-01

    The present work looks into the structural, chemical, mechanical, optical and thermal modification in ZnO nanoparticle incorporated hydroxypropyl methylcellulose (HPMC) polymer films, induced by gamma irradiation. The irradiation process was performed in a gamma chamber at room temperature using Cobalt-60 source (average energy of 1.25 MeV) at different doses: 0, 50, 100, 150 and 200 kGy. The modifications in structural, chemical, mechanical, optical and thermal properties, due to gamma irradiation in HPMC/ZnO nanocomposite films, have been studied using wide angle X-ray scattering (XRD), Fourier transform infrared spectroscopy, universal testing machine, ultraviolet-visible spectrophotometry and thermogravimetric analysis. It is found that gamma irradiation improves the mechanical and thermal properties of nanocomposite films.

  15. Detection of pharmaceutical crystals in polymer particles by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Ricarte, Ralm; Hillmyer, Marc; Lodge, Timothy

    2015-03-01

    The use of solid dispersions, blends of an active pharmaceutical ingredient (API) and a polymer excipient, may significantly enhance the dissolution performance of a poorly water soluble drug. However, the polymer's role in inhibiting API crystallization within the solid dispersion is not well understood. One of the main challenges in elucidating this mechanism is the difficulty of detecting small amounts of API crystals (less than 5 volume percent) within the polymer matrix. In this work, we explore the use of transmission electron microscopy (TEM) to characterize the crystallinity of griseofulvin (GF) in hydroxypropyl methylcellulose acetate succinate (HPMCAS) solid dispersions. Using both real-space images and electron diffraction patterns from TEM, GF crystals in the HPMCAS matrix were unambiguously identified with nanometer resolution and with a crystal detection sensitivity superior to both wide-angle X-ray scattering and differential scanning calorimetry. TEM shows great potential for characterizing even trace API crystallinity in solid polymeric dispersions.

  16. Influence of hydroxypropylmethylcellulose addition and homogenization conditions on properties and ageing of corn starch based films.

    PubMed

    Jiménez, Alberto; Fabra, María José; Talens, Pau; Chiralt, Amparo

    2012-06-20

    Edible films based on corn starch, hydroxypropyl methylcellulose (HPMC) and their mixtures were prepared by using two different procedures to homogenize the film forming dispersions (rotor-stator and rotor-stator plus microfluidizer). The influence of both HPMC-starch ratio and the homogenization method on the structural, optical, tensile and barrier properties of the films was analysed. The ageing of the films was also studied by characterizing them after 5 weeks' storage. Starch re-crystallization in newly prepared and stored films was analysed by means of X-ray diffraction. HPMC-corn starch films showed phase separation of polymers, which was enhanced when microfluidization was applied to the film forming dispersion. Nevertheless, HPMC addition inhibited starch re-crystallization during storage, giving rise to more flexible films at the end of the period. Water barrier properties of starch films were hardly affected by the addition of HPMC, although oxygen permeability increased due to its poorer oxygen barrier properties.

  17. Design and evaluation of San-huang dispersible tablet--an efficient delivery system for Traditional Chinese Medicine.

    PubMed

    Liu, Cuizhe; Liu, Xigang; Tong, Jiming; Chen, Dawei; Bi, Kaishun

    2009-01-01

    San-huang dispersible tablet (SHDT) was designed with a patented technology to enrich the active ingredients in rhubarb and with a wide selection of excipients in the new manufacturing procedure. The total rhubarb anthraquinones were first enriched in the extract by our patented technology. Eudragit L100, S100 and PEG-6000 were used to release a part of the total rhubarb anthraquinones at the colon to induce the cathartic effect of the anthraquinones by another patented technology. Microcrystalline Cellulose (MCC), low-substituted hydroxypropyl cellulose (L-HPC), sodium carboxymethyl starch (CMS-Na), and hydroxypropyl methylcellulose (HPMC) were used to ensure quick release of baicalin and berberine hydrochloride in the stomach. The dissolution of SHDT was evaluated by a method in 2005 Chinese Pharmacopoeia along with San-huang tablet (SHT), and the results demonstrated that the dissolution of baicalin and berberine hydrochloride more than double that of SHT and release of half of the rhubarb anthraquinones in colon.

  18. The influence of different polymers on viability of Bifidobacterium lactis 300b during encapsulation, freeze-drying and storage.

    PubMed

    Pop, Oana Lelia; Brandau, Thorsten; Schwinn, Jens; Vodnar, Dan Cristian; Socaciu, Carmen

    2015-07-01

    Seven different types of natural polymers namely hydroxypropyl methylcellulose (HPMC), sodium-carboxymethyl cellulose (Na-CMC), microcrystalline cellulose (MCC), starch BR-07, starch BR-08, dextrin and pullulan were used in order to develop the optimal formula for the entrapment of Bifidobacterium lactis 300B in Ca-alginate based granules. Laminar flow drip casting with Brace-Encapsulator was used in order to prepare the granules. The results showed that alginate/pullulan and alginate/HPMC formulation provide high protection for the bacterial strain used for encapsulation. These two formulations were further used to obtain freeze dried granules, for which the viability in time and at different temperatures was tested. The final results showed a higher viability than the level of the therapeutic minimum (>10(7) CFU/g) after 15 days of storage. Other parameters like entrapment efficiency, production rate, sphericity, flowability were also discussed.

  19. Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth.

    PubMed

    Ghosh, Indrajit; Bose, Sonali; Vippagunta, Radha; Harmon, Ferris

    2011-05-16

    The purpose of this study was to develop a nanosuspension of a poorly soluble drug by nanomilling process using wet media milling to achieve superior in vitro dissolution and high in vivo exposure in pharmacokinetic studies. A promising nanosuspension was developed with Vitamin E TPGS based formulation with particle size in the nano range. Although the formulation showed significant improvement during in vitro dissolution and in vivo plasma level, probably due to the strong hydrophobic interaction between Vitamin TPGS and the drug molecule, crystal growth was observed during stability studies. A systematic study was done with different combinations of solubilizer/stabilizer system in order to obtain a more stable nanosuspension. Hydroxypropyl methylcellulose (HPMC 3 cps) was found to stabilize the nanosuspension by better surface coverage due to stronger interaction with the drug as compared to other stabilizers used in this study.

  20. Synthetic polymer-layer silicate clay composites

    SciTech Connect

    Carrado, K.A.; Elder, D.L.; Thiyagarajan, P.

    1995-07-01

    Synthetic hectorites were hydrothermally crystallized with direct incorporation of water-soluble polyvinyl alcohol (PVA), a cationic polymer poly(dimethyl diallyl ammonium chloride) (PDDA), and two cellulosic polymers: hydroxypropyl methylcellulose (HPMC) and hydroxyethyl cellulose (HEC). The molecular weight of polyvinyl alcohols had little effect on the success of hydrothermal hectorite synthesis, d-spacing, or amount of polymer incorporated; the basal spacings range from 19.5 {angstrom} to 20.8 {angstrom} and the percent of polymer incorporated ranges from 20.4 wt% to 23.0 wt%. Synthetic PDDA-hectorite displays the lowest d-spacing at 15.8 {angstrom}, and less cationic PDDA is incorporated into hectorite (7.8 wt% organic) than the other neutral polymers (17.8-23.0 wt% organic). The basal spacing for synthetic HPMC-hectorite is the largest at 25.2 {angstrom}. Small angle neutron scattering was used to further examine the PVA-clay systems.

  1. Characterization of low viscosity polymer solutions for microchip electrophoresis of non-denatured proteins on plastic chips.

    PubMed

    Yasui, Takao; Reza Mohamadi, Mohamad; Kaji, Noritada; Okamoto, Yukihiro; Tokeshi, Manabu; Baba, Yoshinobu

    2011-12-01

    In this paper, we study characteristics of polymers (methylcellulose, hypromellose ((hydroxypropyl)methyl cellulose), poly(vinylpyrrolidone), and poly(vinyl alcohol)) with different chemical structures for microchip electrophoresis of non-denatured protein samples in a plastic microchip made of poly(methyl methacrylate) (PMMA). Coating efficiency of these polymers for controlling protein adsorption onto the channel surface of the plastic microchip, wettability of the PMMA surface, and electroosmotic flow in the PMMA microchannels in the presence of these polymers were compared. Also relative electrophoretic mobility of protein samples in solutions of these polymers was studied. We showed that when using low polymer concentrations (lower than the polymer entanglement point) where the sieving effect is substantially negligible, the interaction of the samples with the polymer affected the electrophoretic mobility of the samples. This effect can be used for achieving better resolution in microchip electrophoresis of protein samples.

  2. Prediction of the mechanical properties of zeolite pellets for aerospace molecular decontamination applications

    PubMed Central

    Rioland, Guillaume; Faye, Delphine; Patarin, Joël

    2016-01-01

    Zeolite pellets containing 5 wt % of binder (methylcellulose or sodium metasilicate) were formed with a hydraulic press. This paper describes a mathematical model to predict the mechanical properties (uniaxial and diametric compression) of these pellets for arbitrary dimensions (height and diameter) using a design of experiments (DOE) methodology. A second-degree polynomial equation including interactions was used to approximate the experimental results. This leads to an empirical model for the estimation of the mechanical properties of zeolite pellets with 5 wt % of binder. The model was verified by additional experimental tests including pellets of different dimensions created with different applied pressures. The optimum dimensions were found to be a diameter of 10–23 mm, a height of 1–3.5 mm and an applied pressure higher than 200 MPa. These pellets are promising for technological uses in molecular decontamination for aerospace-based applications. PMID:28144526

  3. Eudragit L/HPMCAS blend enteric-coated lansoprazole pellets: enhanced drug stability and oral bioavailability.

    PubMed

    Fang, Yu; Wang, Guozheng; Zhang, Rong; Liu, Zhihua; Liu, Zhenghua; Wu, Xiaohui; Cao, Deying

    2014-06-01

    The objectives of the present work were to use blends of Eudragit L and hydroxypropyl methylcellulose acetate succinate (HPMCAS) as enteric film coatings for lansoprazole (LSP) pellets. The enteric-coated pellets were prepared with a fluid-bed coater. The influence of the blend ratio, type of plasticizer, plasticizer level, coating level, and curing conditions on gastric stability in vitro drug release and drug stability was evaluated. Furthermore, the bioavailability of the blend-coated pellets in beagle dogs was also performed. The blend-coated pellets exhibited significant improvement of gastric stability and drug stability compared to the pure polymer-coated pellets. Moreover, the AUC values of blend-coated pellets were greater than that of the pure polymer-coated pellets. It was concluded that the using blends of Eudragit L and HPMCAS as enteric film coatings for LSP pellets improved the drug stability and oral bioavailability.

  4. Edible oleogels based on water soluble food polymers: preparation, characterization and potential application.

    PubMed

    Patel, Ashok R; Cludts, Nick; Sintang, Mohd Dona Bin; Lesaffer, Ans; Dewettinck, Koen

    2014-11-01

    Oil structuring using food-approved polymers is an emerging strategy and holds significant promise in the area of food and nutrition. In the current study, edible oleogels (containing >97 wt% of sunflower oil) were prepared using a combination of water soluble food polymers (methylcellulose and xanthan gum) and further evaluated for potential application as a shortening alternative. Microstructure studies (including cryo-SEM) and rheology measurements were conducted to gain more insights into the properties of these new types of oleogels. In addition, the functionality of oleogel as a shortening alternative was studied in terms of batter properties and the texture analysis of cakes and compared to the reference batches made using either oil, commercial shortening or cake margarine. Interestingly, while the batter properties (air incorporation, rheology and microstructure) of the oleogel batch were more close to the oil batch, the textural properties of cakes were significantly better than oil and resembled more to the cakes prepared using shortening and margarine.

  5. Prediction of the mechanical properties of zeolite pellets for aerospace molecular decontamination applications.

    PubMed

    Rioland, Guillaume; Dutournié, Patrick; Faye, Delphine; Daou, T Jean; Patarin, Joël

    2016-01-01

    Zeolite pellets containing 5 wt % of binder (methylcellulose or sodium metasilicate) were formed with a hydraulic press. This paper describes a mathematical model to predict the mechanical properties (uniaxial and diametric compression) of these pellets for arbitrary dimensions (height and diameter) using a design of experiments (DOE) methodology. A second-degree polynomial equation including interactions was used to approximate the experimental results. This leads to an empirical model for the estimation of the mechanical properties of zeolite pellets with 5 wt % of binder. The model was verified by additional experimental tests including pellets of different dimensions created with different applied pressures. The optimum dimensions were found to be a diameter of 10-23 mm, a height of 1-3.5 mm and an applied pressure higher than 200 MPa. These pellets are promising for technological uses in molecular decontamination for aerospace-based applications.

  6. Parts per Million Powder X-ray Diffraction

    DOE PAGES

    Newman, Justin A.; Schmitt, Paul D.; Toth, Scott J.; ...

    2015-10-14

    Here in this paper we demonstrate the use of second harmonic generation (SHG) microscopy-guided synchrotron powder X-ray diffraction (PXRD) for the detection of trace crystalline active pharmaceutical ingredients in a common polymer blend. The combined instrument is capable of detecting 100 ppm crystalline ritonavir in an amorphous hydroxypropyl methylcellulose matrix with a high signal-to-noise ratio (>5000). The high spatial resolution afforded by SHG microscopy allows for the use of a minibeam collimator to reduce the total volume of material probed by synchrotron PXRD. The reduction in probed volume results in reduced background from amorphous material. The ability to detect lowmore » crystalline loading has the potential to improve measurements in the formulation pipeline for pharmaceutical solid dispersions, for which even trace quantities of crystalline active ingredients can negatively impact the stability and bioavailability of the final drug product.« less

  7. Parts per Million Powder X-ray Diffraction

    SciTech Connect

    Newman, Justin A.; Schmitt, Paul D.; Toth, Scott J.; Deng, Fengyuan; Zhang, Shijie; Simpson, Garth J.

    2015-10-14

    Here in this paper we demonstrate the use of second harmonic generation (SHG) microscopy-guided synchrotron powder X-ray diffraction (PXRD) for the detection of trace crystalline active pharmaceutical ingredients in a common polymer blend. The combined instrument is capable of detecting 100 ppm crystalline ritonavir in an amorphous hydroxypropyl methylcellulose matrix with a high signal-to-noise ratio (>5000). The high spatial resolution afforded by SHG microscopy allows for the use of a minibeam collimator to reduce the total volume of material probed by synchrotron PXRD. The reduction in probed volume results in reduced background from amorphous material. The ability to detect low crystalline loading has the potential to improve measurements in the formulation pipeline for pharmaceutical solid dispersions, for which even trace quantities of crystalline active ingredients can negatively impact the stability and bioavailability of the final drug product.

  8. Oxidative treatment, dispersion effect, and simulation of multi-walled carbon nanotubes in aqueous solution

    NASA Astrophysics Data System (ADS)

    Song, Kai; Guo, Li-Quan; Chen, Hui

    2017-01-01

    In the present work, the multi-walled carbon nanotubes (MWCNTs) were modified by the treatment with concentrated nitric and sulfuric acid mixture (3: 1 vol/vol). The obtained material was characterized by X-ray diffraction (XRD). The effect of two surfactants, methylcellulose (MC) and cetyltrimethylammonium bromide (CTAB) on dispersing of MWCNTs in aqueous solution was monitored by UV-Vis spectroscopy and transmission electron microscopy (TEM). Also, the dispersing effect of the surfactants was simulated by three-dimensional Monte Carlo method. The results showed that the oxidative treatment leads to purification of the neat MWCNTs, and directly improved their dispersing. The mixture containing both MC and CTAB surfactants has better dispersing effect than individual surfactants. The optimum concentration ratio of MC, CTAB, and MWCNTs was 2: 3: 1. In the simulation model, MWCNTs were dispersed randomly. The simulation results may be helpful for the further research on mechanical and electrical properties of composites reinforced with MWCNTs.

  9. Liquisolid technology for dissolution rate enhancement or sustained release.

    PubMed

    Karmarkar, Amrit B; Gonjari, Indrajeet D; Hosmani, Avinash H

    2010-10-01

    Most of the drugs that have been invented are of BCS Class II. Therefore, dissolution rate enhancement is the key aspect for absorption of these drugs. Liquisolid technology is very efficient in the dissolution rate enhancement of these drugs. Moreover, use of other polymers such as Eudragit and hydroxypropyl methylcellulose in the liquisolid approach can cause sustained release of drugs. This review focuses on the formulation approaches of liquisolid tablets or compacts along with its fundamental principles. The review focuses on the developments in liquisolid technology from 1998 to 2009 with in vitro and in vivo performance of the dosage forms prepared using this technology. Benefits of this review include a concise evaluation of this technology by focusing on the scope of future developments to be done using this technique. Liquisolid technology, the next generation of powder solution technology, can be helpful for enhancing dissolution rates of poorly water-soluble drugs as well as effective at sustaining drug release.

  10. Formulation and in vitro-in vivo evaluation of buccoadhesive morphine sulfate tablets.

    PubMed

    Anlar, S; Capan, Y; Güven, O; Göğüş, A; Dalkara, T; Hincal, A A

    1994-02-01

    Buccoadhesive controlled-release systems for the delivery of morphine sulfate were prepared by compression of hydroxypropyl methylcellulose (HPMC) with carbomer (CP), which served as the bioactive adhesive compound. The release behavior of systems containing 30 mg of morphine sulfate and various amounts of the two polymers was found to be non-Fickian. The adhesion force was significantly affected by the mixing ratio of HPMC and CP in the tablet, and the weakest adhesion force was observed at a ratio of 1:1 (HPMC:CP). Interpolymer complex formation was confirmed between HPMC and CP in acidic medium by turbidity, viscosity, and FT-IR measurements. The amount absorbed (percentage of the drug loaded) of the controlled-release buccoadhesive tablets in six healthy volunteers and was 30 +/- 5%.

  11. Formulation Development and Evaluation of Fast Dissolving Film of Telmisartan

    PubMed Central

    Londhe, Vaishali Y.; Umalkar, Kashmira B.

    2012-01-01

    Hypertension is a major cause of concern not just in the elderly but also in the youngsters. An effort was made to formulate a fast dissolving film containing telmisartan which is used in the treatment of hypertension with a view to improve the onset of action, therapeutic efficacy, patient compliance and convenience. The major challenge in formulation of oral films of telmisatran is that it shows very less solubility in the pH range of 3–9. Various film forming agents and polyhydric alcohols were evaluated for optimizing composition of fast dissolving films. Fast dissolving films using hydroxypropyl methylcellulose, polyvinyl alcohol, glycerol, sorbitol, menthol and an alkalizer were formulated using solvent casting method. Optimized formulations were evaluated for their weight, thickness, folding endurance, appearance, tensile strength, disintegration time and dissolution profile. PMID:23325992

  12. Electrophoresis experiment for space

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.

    1976-01-01

    The Apollo 16 electrophoresis experiment was analyzed, demonstrating that the separation of the two different-size monodisperse latexes did indeed take place, but that the separation was obscured by the pronounced electroosmotic flow of the liquid medium. The results of this experiment, however, were dramatic since it is impossible to carry out a similar separation on earth. It can be stated unequivocally from this experiment that any electrophoretic separation will be enhanced under microgravity conditions. The only question is the degree of this enhancement, which can be expected to vary from one experimental technique to another. The low-electroosmotic-mobility coating (Z6040-MC) developed under this program was found to be suitable for a free-fluid electrophoretic separation such as the experiment designed for the ASTP flight. The problem with this coating, however, is that its permanency is limited because of the slow desorption of the methylcellulose from the coated surface.

  13. [Preparation of hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata and study on its in vitro release mechanism].

    PubMed

    Xu, Fang-Fang; Shi, Wei; Zhang, Hui; Guo, Qing-Ming; Wang Zhen-Zhong; Bi, Yu-An; Wang, Zhi-Min; Xiao, Wei

    2015-01-01

    In this study, hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata were prepared and the in vitro release behavior were also evaluated. The optimal prescription was achieved by studying the main factor of the type and amount of hydroxypropyl methylcellulose (HPMC) using single factor test and evaluating through cumulative release of three lactones. No burst drug release from the obtained matrix tablets was observed. Drug release sustained to 14 h. The release mechanism of three lactones from A. paniculata was accessed by zero-order, first-order, Higuchi and Peppas equation. The release behavior of total lactones from A. paniculata was better agreed with Higuchi model and the drug release from the tablets was controlled by degradation of the matrix. The preparation of hydrophilic matrix sustained release tablets of total lactones from A. paniculata with good performance of drug release was simple.

  14. Preparation and characterization of methacrylate hydrogels for zeta potential control

    NASA Technical Reports Server (NTRS)

    Gregonis, D. E.; Ma, S. M.; Vanwagenen, R.; Andrade, J. D.

    1976-01-01

    A technique based on the measurement of streaming potentials has been developed to evaluate the effects of hydrophilic coatings on electroosmotic flow. The apparatus and procedure are described as well as some results concerning the electrokinetic potential of glass capillaries as a function of ionic strength, pH, and temperature. The effect that turbulence and entrance flow conditions have on accurate streaming potential measurements is discussed. Various silane adhesion promoters exhibited only a slight decrease in streaming potential. A coating utilizing a glycidoxy silane base upon which methylcellulose is applied affords a six-fold decrease over uncoated tubes. Hydrophilic methacrylate gels show similar streaming potential behavior, independent of the water content of the gel. By introduction of positive or negative groups into the hydrophilic methacrylate gels, a range of streaming potential values are obtained having absolute positive or negative signs.

  15. Baking loss of bread with special emphasis on increasing water holding capacity.

    PubMed

    Kotoki, D; Deka, S C

    2010-01-01

    Potato flour (PF), hydroxypropyl methylcellulose (HPMC) and honey were used as baking agents and their effects on baking loss and sensory quality were studied. PF at 1, 2 and 4% levels decreased baking loss followed by HPMC and honey. Water absorption was substantially high with the HPMC (70.8-80.8%) and PF (61.7-71.7%) compared to honey and normal standard bread. PF incorporation increased shelf-life (6-7 days) as compared to HPMC and honey. HPMC incorporated bread had higher moisture content (36.8-38.0%) followed by PF (34.5-35.8%) and honey (34.7%). The ash content was in the order of PF (1%) > honey (4%) > PF (2%) > normal bread > HPMC (0.5 g) > PF (4%) > HPMC (1 g) > HPMC (1.5 g). PF incorporated bread had sensorily highest acceptance followed by HPMC and honey.

  16. Characterization of polyethylene glycol plasticized carboxymethyl cellulose-ammonium fluoride solid biopolymer electrolytes

    NASA Astrophysics Data System (ADS)

    Ramlli, M. A.; Maksud, M. A.; Isa, M. I. N.

    2017-03-01

    An attempt to increase the ionic conductivity of solid biopolymer electrolyte (SBE) from carboxyl methylcellulose (CMC) doped with 9 wt. % of ammonium fluoride (AF) has been made by the plasticizing with polyethylene glycol (PEG). Electrochemical Impedance Spectroscopy (EIS) was used to investigate the ionic conductivity of the CMC-AF-PEG SBEs. The study shows that the highest conductivity achieved is 6.62×10-7 S cm-1 at room temperature for SBE with 25 % wt. PEG. X-Ray Diffraction (XRD) study proved that the highest conductive SBE has the highest amorphous nature which contributes to the high conductivity of the SBE. The interaction of CMC and AF was enhanced by the addition of PEG at C-O band in the CMC.

  17. Flexible and printable paper-based strain sensors for wearable and large-area green electronics.

    PubMed

    Liao, Xinqin; Zhang, Zheng; Liao, Qingliang; Liang, Qijie; Ou, Yang; Xu, Minxuan; Li, Minghua; Zhang, Guangjie; Zhang, Yue

    2016-07-14

    Paper-based (PB) green electronics is an emerging and potentially game-changing technology due to ease of recycling/disposal, the economics of manufacture and the applicability to flexible electronics. Herein, new-type printable PB strain sensors (PPBSSs) from graphite glue (graphite powder and methylcellulose) have been fabricated. The graphite glue is exposed to thermal annealing to produce surface micro/nano cracks, which are very sensitive to compressive or tensile strain. The devices exhibit a gauge factor of 804.9, response time of 19.6 ms and strain resolution of 0.038%, all performance indicators attaining and even surpassing most of the recently reported strain sensors. Due to the distinctive sensing properties, flexibility and robustness, the PPBSSs are suitable for monitoring of diverse conditions such as structural strain, vibrational motion, human muscular movements and visual control.

  18. Oil-in-water emulsions stabilised by cellulose ethers: stability, structure and in vitro digestion.

    PubMed

    Borreani, Jennifer; Espert, María; Salvador, Ana; Sanz, Teresa; Quiles, Amparo; Hernando, Isabel

    2017-04-19

    The effect of cellulose ethers in oil-in-water emulsions on stability during storage and on texture, microstructure and lipid digestibility during in vitro gastrointestinal digestion was investigated. All the cellulose ether emulsions showed good physical and oxidative stability during storage. In particular, the methylcellulose with high methoxyl substituents (HMC) made it possible to obtain emulsions with high consistency which remained almost unchanged during gastric digestion, and thus could enhance fullness and satiety perceptions at gastric level. Moreover, the HMC emulsion slowed down lipid digestion to a greater extent than a conventional protein emulsion or the emulsions stabilised by the other cellulose ethers. Therefore, HMC emulsions could be used in weight management to increase satiation capacity and decrease lipid digestion.

  19. Shear and extensional properties of kefiran.

    PubMed

    Piermaría, Judith; Bengoechea, Carlos; Abraham, Analía Graciela; Guerrero, Antonio

    2016-11-05

    Kefiran is a neutral polysaccharide constituted by glucose and galactose produced by Lactobacillus kefiranofaciens. It is included into kefir grains and has several health promoting properties. In the present work, shear and extensional properties of different kefiran aqueous dispersions (0.5, 1 and 2% wt.) were assessed and compared to other neutral gums commonly used in food, cosmetic and pharmaceutics industries (methylcellulose, locust bean gum and guar gum). Kefiran showed shear flow characteristics similar to that displayed by other representative neutral gums, although it always yielded lower viscosities at a given concentration. For each gum system it was possible to find a correlation between dynamic and steady shear properties by a master curve including both the apparent and complex viscosities. When studying extensional properties of selected gums at 2% wt. by means of a capillary break-up rheometer, kefiran solutions did not show important extensional properties, displaying a behaviour close the Newtonian. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Enhancing and sustaining AMG 009 dissolution from a bilayer oral solid dosage form via microenvironmental pH modulation and supersaturation.

    PubMed

    Bi, Mingda; Kyad, Ali; Alvarez-Nunez, Fernando; Alvarez, Francisco

    2011-12-01

    Enhancing and sustaining AMG 009 dissolution from a matrix tablet via microenvironmental pH modulation and supersaturation, where poorly soluble acidic AMG 009 molecule was intimately mixed and compressed together with a basic pH modifier (e.g., sodium carbonate) and nucleation inhibitor hydroxypropyl methylcellulose K100 LV (HPMC K100 LV), was demonstrated previously. However, not all acidic or basic drugs are compatible with basic or acidic pH modifiers either chemically or physically. The objective of this study is to investigate whether similar dissolution enhancement of AMG 009 can be achieved from a bilayer dosage form, where AMG 009 and sodium carbonate are placed in a separate layer with or without the addition of HPMC K100 LV in each layer. Study results indicate that HPMC K100 LV-containing bilayer dosage forms gained similar dissolution enhancement as matrix dosage forms did. Bilayer dosage forms without HPMC K100 LV benefitted the least from dissolution enhancement.

  1. Microwave assisted synthesis of acrylamide grafted locust bean gum and its application in drug delivery.

    PubMed

    Kaity, Santanu; Isaac, Jinu; Kumar, P Mahesh; Bose, Anirbandeep; Wong, Tin Wui; Ghosh, Animesh

    2013-10-15

    Acrylamide grafted copolymer of locust bean gum was prepared by microwave irradiation using ceric ammonium nitrate as redox initiator. The grafting process was optimized in terms of irradiation time, amount of initiator and acrylamide by using constant amount of native locust bean gum. The grafted gum was characterized by Fourier transform infrared spectroscopy (FT-IR), (13)C nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), X-ray diffraction study (XRD), differential scanning calorimetry (DSC), elemental analysis, contact angle, viscosity, molecular weight, swelling and biodegradability studies. The grafted gum was found to be biodegradable and non-toxic. It was further used to prepare controlled-release matrix tablet of buflomedil hydrochloride. The in vitro release profile of the tablet showed the rate controlling property of acrylamide grafted locust bean gum was similar to that of hydroxypropyl methylcellulose (HPMC-K15M).

  2. Preparation of 3-D scaffolds in the SiO2-P2O5 system with tailored hierarchical meso-macroporosity.

    PubMed

    García, Ana; Izquierdo-Barba, Isabel; Colilla, Montserrat; de Laorden, Carlos López; Vallet-Regí, María

    2011-03-01

    Herein we report for the first time the synthesis of three-dimensional scaffolds in the binary system SiO2-P2O5 exhibiting different scales of porosity: (i) highly ordered mesopores with diameters of ca. 4 nm; (ii) macropores with diameters in the 30-80 μm range with interconnections of ca. 2-4 and 8-9 μm; and (iii) ultra-large macropores of ca. 400 μm. The hierarchical porosity of the resulting scaffolds makes them suitable for bone tissue engineering applications. The chemical nature and mesoporosity of these matrices would allow these scaffolds to act as local controlled delivery systems of biologically active molecules, such as certain drugs to treat bone pathologies. The synthetic method consists of the combination of a single-step sol-gel route in the presence of a surfactant as the mesostructure directing agent and a biomacromolecular polymer such as methylcellulose as the macrostructure template followed by rapid prototyping technique. An exhaustive study of the aging process as well as of the rheological properties of the slurry after methylcellulose addition has been carried out to obtain hierarchical meso-macroporosity. This study allows the establishment of the time period in which the slurry presents appropriate viscosity to be extruded during the rapid prototyping once the ink is prepared. The setting up of this manufacture process at the laboratory level is important from the industrial point of view when the large-scale production of scaffolds for bone tissue repair and regeneration is targeted. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Crystallization of amorphous solid dispersions of resveratrol during preparation and storage-Impact of different polymers.

    PubMed

    Wegiel, Lindsay A; Mauer, Lisa J; Edgar, Kevin J; Taylor, Lynne S

    2013-01-01

    The objective of this study was to investigate intermolecular interactions between resveratrol and polymers in amorphous blends and to study the potential correlations between compound-polymer interactions, manufacturability, and stability of the amorphous system to crystallization during storage. Polymers included two grades of poly (vinylpyrrolidone) (PVP), Eudragit E100 (E100), hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose acetate succinate (HPMCAS), carboxymethyl cellulose acetate butyrate, and poly (acrylic acid) (PAA). Amorphous blends ("solid dispersions") were prepared by dissolving both resveratrol and polymer in a solvent followed by rotary evaporation. Crystallinity was evaluated using X-ray powder diffraction and was studied as a function of time. Mid-infrared (IR) spectroscopy was used to investigate resveratrol-polymer interactions. Polymer influence on the crystallization behavior of resveratrol varied and could be correlated to the polymer structure, whereby polymers with good hydrogen bond acceptor groups performed better as crystallization inhibitors. Resveratrol-polymer hydrogen bonding interactions could be inferred from the IR spectra. Somewhat surprisingly, E100 and resveratrol showed evidence of an acid-base reaction, in addition to intermolecular hydrogen bonding interactions. PVP K29/32 appeared to form stronger hydrogen bond interactions with resveratrol relative to HPMC, HPMCAS, and PAA, consistent with acceptor group chemistry. Long-term stability of the systems against crystallization suggested that stability is linked to the type and strength of intermolecular interactions present. whereby resveratrol blended with E100 and PVP K29/32 showed the greatest stability to crystallization. In conclusion, amorphous resveratrol is unstable and difficult to form, requiring the assistance of a polymeric crystallization inhibitor to facilitate the formation of an amorphous solid dispersion. Polymers effective at inhibiting

  4. [Study of sustained-matrix tablets Ambroxol hydrochloride and potential impact of different fillers on the matrix tablet's scale-up].

    PubMed

    Wang, Meng-yuan; Yang, Ya-peng; Chang, Jun-biao; Guo, Min-tong

    2012-10-18

    To study the release profiles of Ambroxol hydrochloride in matrix tablets with different fillers and controlled release materials, and investigate the potential impact on different fillers on the matrix tablet's scale-up. Ambroxol hydrochloride was chosen as the model drug to make single-layer matrix tablets with different types of hydroxylpropyl methylcellulose as matrix material, and lactose or microcrystalline cellulose as the filler. In vitro dissolution test was used to evaluate the drug release performance of the matrix tablets made. Also ethyl cellulose was used to prepare double-layer matrix tablets to investigate how different kinds of hydroxypropyl methylcellulose (HPMC) and fillers would affect the drug release in double-layer matrix tablets. The drug release rate of single-layer tablets with lactose and HPMC decreased significantly with the increase of the level and viscosity of HPMC. However the release profile only slightly slowed down with the increase of the content and viscosity of HPMC for single-layer matrix tablets of microcrystalline cellulose (MCC). Compared with the single-layer tablets, the level and viscosity of HPMC had less impact on the drug release of the double-layer matrix tablets. The matrix tablet with lactose and HPMC has greater flexibility to design formulations with different drug release rate, however the introduction of other process parameters during the scale-up could lead the shifting of the drug release profile from small scale batches. The drug release profiles of matrix tablets with insoluble filler-MCC only change within a small range with the increase of the level and viscosity of HPMC. From the formulation design point of view, it could be necessary to select different type of controlled release polymers to meet the design requirement.

  5. Different cardiovascular protective effects of quercetin administered orally or intraperitoneally in spontaneously hypertensive rats.

    PubMed

    Galindo, P; González-Manzano, S; Zarzuelo, M J; Gómez-Guzmán, M; Quintela, A M; González-Paramás, A; Santos-Buelga, C; Pérez-Vizcaíno, F; Duarte, J; Jiménez, R

    2012-06-01

    We tested whether the administration procedure of quercetin affects its metabolite profile and antihypertensive activity. Spontaneously hypertensive rats (SHR) were randomly assigned to four experimental treatments: (1) 1 mL of 1% methylcellulose by oral gavage and 2% DMSO i.p. (control group); (2) 10 mg kg⁻¹ quercetin by oral gavage once daily and 2% DMSO i.p.; (3) 10 mg kg⁻¹ quercetin by oral gavage divided in two daily doses (5 + 5 at 12 h intervals) and 2% DMSO i.p.; (4) 1 mL of 1% methylcellulose by oral gavage and 10 mg kg⁻¹ quercetin i.p. injection. Rats were treated daily for 5 weeks. Single dose and two daily doses, in a long-term oral treatment were equally efficient, both restoring the impaired aortic endothelium-dependent vasodilatation and reducing mesenteric contractile response to phenylephrine, systolic blood pressure, heart rate, and heart and kidney hypertrophy. Attenuation of vascular NADPH oxidase-driven O₂⁻ production was also found in orally treated rats. Intraperitoneal administration reduced, to lesser extent than oral administration, the increased systolic blood pressure, being without effect to the endothelial dysfunction and vascular oxidative stress. In contrast, greater levels of metabolites were quantified following intraperitoneal compared to oral administration at any time point, except for higher plasma methylated quercetin aglycone in oral as compared to intraperitoneal administration at 2 but not at 8 h. In conclusion, oral quercetin was superior to intraperitoneal administration for the protection from cardiovascular complications in SHR. No differences were found between the oral administration as a single daily dose or divided into two daily doses.

  6. Stacking-cyclodextrin-microchip electrokinetic chromatographic determination of gabapentinoid drugs in pharmaceutical and biological matrices.

    PubMed

    Zeid, Abdallah M; Kaji, Noritada; Nasr, Jenny Jeehan M; Belal, Fathalla F; Baba, Yoshinobu; Walash, Mohamed I

    2017-06-23

    A facile, rapid, and highly sensitive microchip-based electrokinetic chromatographic method was developed for the simultaneous analysis of two gabapentinoid drugs, gabapentin (GPN) and pregabalin (PGN). Both drugs were first reacted with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) via nucleophilic substitution reactions to yield highly fluorescent products with λex/em 470/540nm. Analyses of both fluorescently labeled compounds were achieved within 200s in a poly(methyl methacrylate) (PMMA) microchip with a 30mm separation channel. Optimum separation was achieved using a borate buffer (pH 9.0) solution containing methylcellulose and β-cyclodextrin (β-CD) as buffer additives. Methylcellulose acted as a dynamic coating to prevent adsorption of the studied compounds on the inner surfaces of the microchannels, while β-CD acted as a pseudo-stationary phase to improve the separation efficiency between the labeled drugs with high resolution (Rs>7). The fluorescence intensities of the labeled drugs were measured using a light emitting diode-induced fluorescence detector at 540nm after excitation at 470nm. The sensitivity of the method was enhanced 14- and 17-fold for PGN and GPN, respectively by field-amplified stacking relative to traditional pinched injection so that it could quantify 10ngmL(-1) for both analytes, with a detection limit lower than 3ngmL(-1). The developed method was efficiently applied to analyze PGN and GPN in their pharmaceutical dosage forms and in biological fluids. The extraction recoveries of the studied drugs from plasma and urine samples were more than 89% with%RSD values lower than 6.2. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Evaluation of Phosphorylated Psyllium Seed Polysaccharide as a Release Retardant

    PubMed Central

    Rao, Monica R. P.; Warrier, Deepa U.; Rao, Shivani H.

    2015-01-01

    The aim of the present study was to modify psyllium seed polysaccharide and evaluate the modified polysaccharide as release retardant in tablets employing ciprofloxacin hydrochloride as model drug. Studies on polysaccharide from psyllium husk has been reported but no work has been reported on characterization and modification of the polysaccharide present in the psyllium (Plantago ovata) seed and the use of the modified polysaccharide as a release retardant in tablets. In this study, the seed gum was modified using sodium trimetaphosphate as crosslinking agent. Sustained release matrix tablets of ciprofloxacin hydrochloride were prepared by wet granulation using various drug-polymer ratios. The polymers investigated were psyllium polysaccharide, phosphorylated psyllium polysaccharide and widely used release retardant hydroxypropyl methylcellulose K100M. The tablets were evaluated for hardness, friability, drug content, swelling profile and in vitro dissolution studies. The matrix tablets containing 1:3 proportion of drug-phosphorylated psyllium polysaccharide was found to have higher hardness as compared to tablets containing 1:1 and 1:2 proportions. The results of swelling behavior in water showed that the tablets containing 1:3 drug:phosphorylated psyllium polysaccharide ratio had swelling comparable to that of tablets containing 1:3 drug:hydroxypropyl methylcellulose ratio. The in vitro dissolution studies shows that the dissolution rate was retarded from 98.41 to 37.6% in 6 h with increase in concentration of phosphorylated psyllium polysaccharide from 100 to 300 mg. Formulations containing psyllium polysaccharide showed complete drug release in 8 h whereas those formulated with phosphorylated psyllium polysaccharide exhibited extended drug release over the 12 h period. Drug release kinetic studies revealed that drug release followed Korsmeyer-Peppas model. PMID:26798177

  8. Route-dependent systemic and local immune effects following exposure to solutions prepared from titanium dioxide nanoparticles.

    PubMed

    Auttachoat, Wimolnut; McLoughlin, Colleen E; White, Kimber L; Smith, Matthew J

    2014-01-01

    Nanoparticle titanium dioxide (nano-TiO2) is a white pigment widely used in foods, sunscreens, and other cosmetic products. However, it remains unclear whether exposure to nano-TiO2 results in immunosuppressive effects or induces a contact hypersensitivity response. To address these data gaps, studies were conducted with the hypothesis that nano-TiO2 exposure could alter immune responses. After 28 days of oral gavage, nano-TiO2 (1.25-250 mg/kg in 0.5% methylcellulose) produced no significant effects on innate, humoral, or cell-mediated immune functions in female B6C3F1 mice. Furthermore, there were no effects on the weights of selected organs (spleen, thymus, liver, lung, and kidneys with adrenals). Following dermal exposure on the ears for 3 days, nano-TiO2 (2.5-10% w/v in 4:1 acetone:olive oil) did not affect auricular lymph node cell proliferation, although an irritancy response was observed following treatment with 5% and 10% nano-TiO2. Dermal sensitization (2.5-10%) on the back and subsequent challenge (10%) on the right ear with nano-TiO2 produced no significant effects on percentage ear swelling in the Mouse Ear Swelling Test (MEST). However, when nano-TiO2 was injected subcutaneously along the mid-line on top of the head at 125-250 mg/kg (in 0.5% methylcellulose), significant increases in auricular lymph node cell proliferation resulted. These results demonstrate that immune effects of nano-TiO2 exposure are route-of-exposure dependent, and they suggest that irritancy and/or potential hypersensitivity responses may occur following parenteral exposure or dermal administration of nano-TiO2 to compromised skin.

  9. Effects of PMMA and Cross-Linked Dextran Filler for Soft Tissue Augmentation in Rats.

    PubMed

    Huh, Jung-Bo; Kim, Joo-Hyun; Kim, Soyun; Lee, So-Hyoun; Shim, Kyung Mi; Kim, Se Eun; Kang, Seong Soo; Jeong, Chang-Mo

    2015-12-01

    This study was conducted for evaluation of the ability to maintain efficacy and biocompatibility of cross-linked dextran in hydroxypropyl methylcellulose (DiHM) and cross-linked dextran mixed with PMMA in hydroxypropyl methylcellulose (PDiHM), compared with hyaluronic acid (HA) filler. Saline and HA solution was administered in the negative and positive control groups, and DiHM and PDiHM were administered in the test groups (n = 10 in each group). The site of cranial subcutaneous injection was the mid-point of the interpupillary line, and the site of intraoral submucosal injection was the ridge crest 2 mm below the cervical line of the mandibular left incisor. Before and immediately after filler injection, intraoral photos and lateral cephalometric radiographs were taken for analysis and comparison of the effect of the filler on the injection sites. The filler injected areas were converted into sequential size changes (%) of the baseline. Histomorphologic examination was performed after 12 weeks. The smallest value in the filler injected area was observed during the experimental period in the normal saline group (p < 0.001), which was almost absorbed at 4 weeks (7.19% ± 12.72%). The HA group exhibited a steady decrease in sequential size and showed a lower value than the DiHM and PDiHM groups (saline < HA < DHiM, PDHiM, p < 0.001). DiHM and PDiHM tended to increase for the first 4 weeks and later decreased until 12 weeks. In this study on DiHM and PDiHM, there was no histological abnormality in cranial skin and oral mucosa. DiHM and PDiHM filler materials with injection system provide an excellent alternative surgical method for use in oral and craniofacial fields.

  10. Development of a one-step approach for the reconstruction of full thickness skin defects using minced split thickness skin grafts and biodegradable synthetic scaffolds as a dermal substitute.

    PubMed

    Sharma, Kavita; Bullock, Anthony; Ralston, David; MacNeil, Sheila

    2014-08-01

    Tissue engineering has progressed in delivering laboratory-expanded keratinocytes to the clinic; however the production of a suitable alternative to a skin graft, containing both epidermis and dermis still remains a challenge. To develop a one-step approach to wound reconstruction using finely minced split thickness skin and a biodegradable synthetic dermal substitute. This was explored in vitro using scalpel diced pieces of split thickness human skin combined with synthetic electrospun polylactide (PLA) scaffolds. To aid the spreading of tissue, 1% methylcellulose was used and platelet releasate was examined for its effect on cellular outgrowth from tissue explants. The outcome parameters included the metabolic activity of the migrating cells and their ability to produce collagen. Cell presence and migration on the scaffolds were assessed using fluorescence microscopy and SEM. Cells were identified as keratinocytes by immunostaining for pan-cytokeratin. Collagen deposition was quantified by using Sirius red. Skin cells migrated along the fibers of the scaffold and formed new collagen. 1% methylcellulose improved the tissue handling properties of the minced skin. Platelet releasate did not stimulate the migration of skin cells along scaffold fibers. Immunohistochemistry and SEM confirmed the presence of both epithelial and stromal cells in the new tissue. We describe the first key steps in the production of a skin substitute to be assembled in theatre eliminating the need for cell culture. Whilst further experiments are needed to develop this technique it can be a useful addition to armamentarium of the reconstructive surgeon. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  11. Effects of PMMA and Cross-Linked Dextran Filler for Soft Tissue Augmentation in Rats

    PubMed Central

    Huh, Jung-Bo; Kim, Joo-Hyun; Kim, Soyun; Lee, So-Hyoun; Shim, Kyung Mi; Kim, Se Eun; Kang, Seong Soo; Jeong, Chang-Mo

    2015-01-01

    This study was conducted for evaluation of the ability to maintain efficacy and biocompatibility of cross-linked dextran in hydroxypropyl methylcellulose (DiHM) and cross-linked dextran mixed with PMMA in hydroxypropyl methylcellulose (PDiHM), compared with hyaluronic acid (HA) filler. Saline and HA solution was administered in the negative and positive control groups, and DiHM and PDiHM were administered in the test groups (n = 10 in each group). The site of cranial subcutaneous injection was the mid-point of the interpupillary line, and the site of intraoral submucosal injection was the ridge crest 2 mm below the cervical line of the mandibular left incisor. Before and immediately after filler injection, intraoral photos and lateral cephalometric radiographs were taken for analysis and comparison of the effect of the filler on the injection sites. The filler injected areas were converted into sequential size changes (%) of the baseline. Histomorphologic examination was performed after 12 weeks. The smallest value in the filler injected area was observed during the experimental period in the normal saline group (p < 0.001), which was almost absorbed at 4 weeks (7.19% ± 12.72%). The HA group exhibited a steady decrease in sequential size and showed a lower value than the DiHM and PDiHM groups (saline < HA < DHiM, PDHiM, p < 0.001). DiHM and PDiHM tended to increase for the first 4 weeks and later decreased until 12 weeks. In this study on DiHM and PDiHM, there was no histological abnormality in cranial skin and oral mucosa. DiHM and PDiHM filler materials with injection system provide an excellent alternative surgical method for use in oral and craniofacial fields. PMID:26633376

  12. Flexible and printable paper-based strain sensors for wearable and large-area green electronics

    NASA Astrophysics Data System (ADS)

    Liao, Xinqin; Zhang, Zheng; Liao, Qingliang; Liang, Qijie; Ou, Yang; Xu, Minxuan; Li, Minghua; Zhang, Guangjie; Zhang, Yue

    2016-06-01

    Paper-based (PB) green electronics is an emerging and potentially game-changing technology due to ease of recycling/disposal, the economics of manufacture and the applicability to flexible electronics. Herein, new-type printable PB strain sensors (PPBSSs) from graphite glue (graphite powder and methylcellulose) have been fabricated. The graphite glue is exposed to thermal annealing to produce surface micro/nano cracks, which are very sensitive to compressive or tensile strain. The devices exhibit a gauge factor of 804.9, response time of 19.6 ms and strain resolution of 0.038%, all performance indicators attaining and even surpassing most of the recently reported strain sensors. Due to the distinctive sensing properties, flexibility and robustness, the PPBSSs are suitable for monitoring of diverse conditions such as structural strain, vibrational motion, human muscular movements and visual control.Paper-based (PB) green electronics is an emerging and potentially game-changing technology due to ease of recycling/disposal, the economics of manufacture and the applicability to flexible electronics. Herein, new-type printable PB strain sensors (PPBSSs) from graphite glue (graphite powder and methylcellulose) have been fabricated. The graphite glue is exposed to thermal annealing to produce surface micro/nano cracks, which are very sensitive to compressive or tensile strain. The devices exhibit a gauge factor of 804.9, response time of 19.6 ms and strain resolution of 0.038%, all performance indicators attaining and even surpassing most of the recently reported strain sensors. Due to the distinctive sensing properties, flexibility and robustness, the PPBSSs are suitable for monitoring of diverse conditions such as structural strain, vibrational motion, human muscular movements and visual control. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02172g

  13. Investigating the Correlation between Miscibility and Physical Stability of Amorphous Solid Dispersions Using Fluorescence-Based Techniques.

    PubMed

    Tian, Bin; Tang, Xing; Taylor, Lynne S

    2016-11-07

    The purpose of this study was to investigate the feasibility of using a fluorescence-based technique to evaluate drug-polymer miscibility and to probe the correlation between miscibility and physical stability of amorphous solid dispersions (ASDs). Indomethacin-hydroxypropyl methylcellulose (IDM-HPMC), indomethacin-hydroxypropyl methylcellulose acetate succinate, and indomethacin-polyvinylpyrrolidone (IDM-PVP) were used as model systems. The miscibility of the IDM-polymer systems was evaluated by fluorescence spectroscopy, fluorescence imaging, differential scanning calorimetry (DSC), and infrared (IR) spectroscopy. The physical stability of IDM-polymer ASDs stored at 40 °C was evaluated using fluorescence imaging and X-ray diffraction (XRD). The experimentally determined miscibility limit of IDM with the polymers was 50-60%, 20-30%, and 70-80% drug loading for HPMC, HPMCAS, and PVP, respectively. The X-ray results showed that for IDM-HPMC ASDs, samples with a drug loading of less than 50% were maintained in amorphous form during the study period, while samples with drug loadings higher than 50% crystallized within 15 days. For IDM-HPMCAS ASDs, samples with drug loading less than 30% remained amorphous, while samples with drug loadings higher than 30% crystallized within 10 days. IDM-PVP ASDs were found to be resistant to crystallization for all compositions. Thus, a good correlation was observed between phase separation and reduced physical stability, suggesting that miscibility is indeed an important ASDs characteristic. In addition, fluorescence-based techniques show promise in the evaluation of drug-polymer miscibility.

  14. Potential Use of Cyclodextrin Complexes for Enhanced Stability, Anti-inflammatory Efficacy, and Ocular Bioavailability of Loteprednol Etabonate.

    PubMed

    Soliman, Osama Abd El-Aazeem; Mohamed, Elham Abdel Monem; El-Dahan, Marwa Salah; Khatera, Nabil Abdullah Ali

    2017-05-01

    Loteprednol etabonate (LE) is a soft corticosteroid that maintains therapeutic activity with much reduced adverse effects. Yet, its ocular bioavailability is hindered by its poor aqueous solubility. Early attempts of LE complexation with cyclodextrins (CDs) did not involve the study of the effects of various complexation methods on the characteristics of the complexes formed. Formulation of complexes into different delivery systems as well in vitro and in vivo assessments has not been accomplished in the earlier studies. In this study, complexation of LE with each of hydroxypropyl-β-cyclodextrin (HP-β-CD) and β-cyclodextrin (β-CD) by kneading, freeze drying, and co-precipitation was attempted. These complexes were incorporated into gels, drops, and ocuserts using hydroxypropyl methylcellulose (HPMC), methylcellulose (MC), and sodium alginate (ALG). These formulae were examined with respect to drug content, pH, viscosity, in vitro release, and stability for 6 months. Kinetic analysis of release data was done. Selected formulations were assessed for their efficacy in the treatment of ocular allergic conjunctivitis and their ocular bioavailability in rabbits' eyes. All formulations exhibited accepted drug content, pH, and viscosity. The drug release was increased by complexation particularly with HP-β-CD in the order of ocuserts ≥ drops > gels, being the highest for HPMC preparations that also exhibited the greatest stability and anti-inflammatory activity especially in case of LE-HP-β-CD complexes. Ocuserts of co-precipitated LE-HP-β-CD using HPMC (5% w/w) and Carbopol 934P (0.1% w/w) provided a significantly enhanced stability (p < 0.05), ocular anti-inflammatory efficacy (p < 0.05), and ocular bioavailability (p < 0.0001), to be represented as a potential ocular delivery system of LE.

  15. Assessment of celecoxib poly(lactic-co-glycolic) acid nanoformulation on drug pharmacodynamics and pharmacokinetics in rats.

    PubMed

    Harirforoosh, S; West, K O; Murrell, D E; Denham, J W; Panus, P C; Hanley, G A

    2016-11-01

     Celecoxib (CEL) is a nonsteroidal anti-inflammatory drug (NSAID) showing selective cycloxygenase-2 inhibition. While effective as a pain reducer, CEL exerts some negative influence on renal and gastrointestinal parameters. This study examined CEL pharmacodynamics and pharmacokinetics following drug reformulation as a poly(lactic-co-glycolic) acid nanoparticle (NP). Rats were administered either vehicle (VEH) (methylcellulose solution), blank NP, 40 mg/kg CEL in methylcellulose, or an equivalent NP dose (CEL-NP). Plasma and urine (over 12 hrs) samples were collected prior to and post-treatment. The mean percent change from baseline of urine flow rate along with electrolyte concentrations in plasma and urine were assessed based on 100 g body weight. Using tissues collected 24 hrs post-treatment, gastrointestinal inflammation was estimated through duodenal and gastric prostaglandin E2 (PGE2) and duodenal myeloperoxidase (MPO) levels; while kidney tissue was examined for dilatation and necrosis. CEL concentration was assayed in renal tissue and plasma utilizing high-performance liquid chromatography. Although there were significant changes when comparing CEL and CEL-NP to VEH in plasma sodium concentration and potassium excretion rate, there was no significant variation between CEL and CEL-NP. There was a significant reduction of protective duodenal PGE2 in CEL compared to VEH (p = 0.0088) and CEL-NP (p = 0.02). In the CEL-NP formulation, t1/2, Cmax, AUC0-∞, and Vd/F increased significantly when compared to CEL. At the observed dosage and duration, CEL-NP may not affect CEL-associated electrolyte parameters in either plasma or urine; however, it does provide increased systemic exposure while potentially alleviating some gastrointestinal outcomes related to inflammation.

  16. Long-term Stability of Zonisamide, Amitriptyline, and Glycopyrrolate in Extemporaneously Prepared Liquid-dosage Forms at Two Temperatures.

    PubMed

    Nahata, Milap C

    2016-01-01

    The lack of commercially available liquid dosage forms for pediatric patients prompted this study. The objectives of our study were to determine the stability of zonisamide, amitriptyline, and glycopyrrolate in extemporaneously prepared oral suspensions in plastic prescription bottles. One group of suspensions was prepared in OraPlus:OraSweet (1:1) for each drug and stored either under refrigeration (4°C) or at room temperature (25°C). A second group of suspensions were compounded in 1% methylcellulose:simple syrup at a 1:10 proportion for zonisamide, amitriptyline, and glycopyrrolate; these suspensions were stored at either under refrigeration (4°C) or at room temperature (25°C). The drug concentrations were measured by the stability-indicating high-performance liquid chromatographic methods. The mean concentration of zonisamide (10 mg/mL) remained above 95% of the original concentration for 91 days in each group of suspensions at both 4°C and 25°C. The mean concentration of amitriptyline (20 mg/mL) was above 95% for 91 days in the suspensions containing OraPlus/ OraSweet at both 4°C and 25°C. However, in the suspensions containing methylcellulose:simple syrup, the mean concentration of amitriptyline was about 95% for 42 days at 4°C and 28 days at 25°C. The mean concentration of glycopyrrolate (0.2 mg/mL) was above 95% in each group of suspensions during the 14-day study period. These data indicate that zonisamide, amitriptyline, and glycopyrrolate can be prepared extemporaneously as suspensions and stored in plastic prescription bottles for varying periods at 4°C and 25°C for use in pediatric patients.

  17. Detailed stability investigation of amorphous solid dispersions prepared by single-needle and high speed electrospinning.

    PubMed

    Démuth, B; Farkas, A; Pataki, H; Balogh, A; Szabó, B; Borbás, E; Sóti, P L; Vigh, T; Kiserdei, É; Farkas, B; Mensch, J; Verreck, G; Van Assche, I; Marosi, G; Nagy, Z K

    2016-02-10

    In this research the long-term stability (one year) of amorphous solid dispersions (ASDs) prepared by high speed electrospinning was investigated at 25 °C/60% relative humidity (RH) (closed conditions) and 40 °C/75% RH (open conditions). Single needle electrospinning and film casting were applied as reference technologies. Itraconazole (ITR) was used as the model API in 40% concentration and the ASDs consisted of either one of the following polymers as a comparison: polyvinylpyrrolidone-vinyl acetate 6:4 copolymer (no hydrogen bonds between API and polymer) and hydroxypropyl methylcellulose (possible hydrogen bonds between oxo or tertiary nitrogen function of API and hydroxyl moiety of polymer). DSC, XRPD and dissolution characteristics of samples at 0, 3 and 12 months were investigated. In addition, Raman maps of certain electrospun ASDs were assessed to investigate crystallinity. A new chemometric method, based on Multivariate Curve Resolution-Alternating Least Squares algorithm, was developed to calculate the spectrum of amorphous ITR in the matrices and to determine the crystalline/amorphous ratio of aged samples. As it was expected ITR in single needle electrospun SDs was totally amorphous at the beginning, in addition hydroxypropyl methylcellulose could keep ITR in this form at 40 °C/75% RH up to one year due to the hydrogen bonds and high glass transition temperature of the SD. In polyvinylpyrrolidone-vinyl acetate matrix ITR remained amorphous at 25 °C/60% RH throughout one year. Materials prepared by scaled-up, high throughput version of electrospinning, which is compatible with pharmaceutical industry, also gained the same quality. Therefore these ASDs are industrially applicable and with an appropriate downstream process it would be possible to bring them to the market.

  18. Lentivirus Gene Transfer in Murine Hematopoietic Progenitor Cells Is Compromised by a Delay in Proviral Integration and Results in Transduction Mosaicism and Heterogeneous Gene Expression in Progeny Cells

    PubMed Central

    Mikkola, Hanna; Woods, Niels-Bjarne; Sjögren, Marketa; Helgadottir, Hildur; Hamaguchi, Isao; Jacobsen, Sten-Eirik; Trono, Didier; Karlsson, Stefan

    2000-01-01

    Human immunodeficiency virus type 1-based lentivirus vectors containing the green fluorescent protein (GFP) gene were used to transduce murine Lin− c-kit+ Sca1+ primitive hematopoietic progenitor cells. Following transduction, the cells were plated into hematopoietic progenitor cell assays in methylcellulose and the colonies were scored for GFP positivity. After incubation for 20 h, lentivirus vectors transduced 27.3% ± 6.7% of the colonies derived from unstimulated target cells, but transduction was more efficient when the cells were supported with stem cell factor (SCF) alone (42.0% ± 5.5%) or SCF, interleukin-3 (IL-3), and IL-6 (53.3 ± 1.8%) during transduction. The, vesicular stomatitis virus glycoprotein-pseudotyped MGIN oncoretrovirus control vector required IL-3, IL-6, and SCF for significant transduction (39.3 ± 9.4%). Interestingly, only a portion of the progeny cells within the lentivirus-transduced methylcellulose colonies expressed GFP, in contrast to the homogeneous expression in oncoretrovirus-transduced colonies. Secondary plating of the primary GFP+ lentivirus vector-transduced colonies revealed vector PCR+ GFP+ (42%), vector PCR− GFP− (46%), and vector PCR+ GFP− (13%) secondary colonies, indicating true genetic mosaicism with respect to the viral genome in the progeny cells. The degree of vector mosaicism in individual colonies could be reduced by extending the culture time after transduction and before plating into the clonal progenitor cell assay, indicating a delay in the lentiviral integration process. Furthermore, supplementation with exogenous deoxynucleoside triphosphates during transduction decreased mosaicism within the colonies. Although cytokine stimulation during transduction correlates with higher transduction efficiency, rapid cell division after transduction may result in loss of the viral genome in the progeny cells. Therefore, optimal transduction may require activation without promoting intense cell proliferation prior

  19. Rifaximin diminishes neutropenia following potentially lethal whole-body radiation.

    PubMed

    Jahraus, Christopher D; Schemera, Bettina; Rynders, Patricia; Ramos, Melissa; Powell, Charles; Faircloth, John; Brawner, William R

    2010-07-01

    Terrorist attacks involving radiological or nuclear weapons are a substantial geopolitical concern, given that large populations could be exposed to potentially lethal doses of radiation. Because of this, evaluating potential countermeasures against radiation-induced mortality is critical. Gut microflora are the most common source of systemic infection following exposure to lethal doses of whole-body radiation, suggesting that prophylactic antibiotic therapy may reduce mortality after radiation exposure. The chemical stability, easy administration and favorable tolerability profile of the non-systemic antibiotic, rifaximin, make it an ideal potential candidate for use as a countermeasure. This study evaluated the use of rifaximin as a countermeasure against low-to-intermediate-dose whole-body radiation in rodents. Female Wistar rats (8 weeks old) were irradiated with 550 cGy to the whole body and were evaluated for 30 d. Animals received methylcellulose, neomycin (179 mg/kg/d) or variably dosed rifaximin (150-2000 mg/kg/d) one hour after irradiation and daily throughout the study period. Clinical assessments (e.g. body weight) were made daily. On postirradiation day 30, blood samples were collected and a complete blood cell count was performed. Animals receiving high doses of rifaximin (i.e. 1000 or 2000 mg/kg/d) had a greater increase in weight from the day of irradiation to postirradiation day 30 compared with animals that received placebo or neomycin. For animals with an increase in average body weight from irradiation day within 80-110% of the group average, methylcellulose rendered an absolute neutrophil count (ANC) of 211, neomycin rendered an ANC of 334, rifaximin 300 mg/kg/d rendered an ANC of 582 and rifaximin 1000 mg/kg/d rendered an ANC of 854 (P = 0.05 for group comparison). Exposure to rifaximin after near-lethal whole-body radiation resulted in diminished levels of neutropenia.

  20. Long-term human hematopoiesis in the SCID-hu mouse

    PubMed Central

    1990-01-01

    Coimplantation of small fragments of human fetal thymus and fetal liver into immunodeficient SCID mice resulted in the formation of a unique structure (Thy/Liv). Thereafter, the SCID-hu mice showed reproducible and long-term reconstitution of human hematopoietic activity. For periods lasting 5-11 mo after transplantation, active T lymphopoiesis was observed inside the grafts and cells that were negative for T cell markers were found to have colony-forming units for granulocyte/macrophage (CFU-GM) and erythroid burst-forming unit (BFU- E) activity in the methylcellulose colony assay. In addition, structures similar to normal human bone marrow were observed inside the Thy/Liv grafts, consisting of blast cells, mature and immature forms of myelomonocytic cells, and megakaryocytes. These data indicate long-term maintenance, in vivo, of human progenitor cells for the T lymphoid, myelomonocytic, erythroid, and megakaryocytic lineages. The role of the implanted fetal liver fragments was analyzed using HLA-mismatched Thy/Liv implants. The HLA type of the liver donor was found on T cells and macrophages in the graft. In addition, cells grown in the methylcellulose colony assay and cells in a bone marrow-like structure, the "thymic isle," expressed the HLA type of the liver donor. Thus, the Thy/Liv implants provided a microenvironment in which to follow human hematopoietic progenitor cells for multiple lineages. The formation of the Thy/Liv structures also results in a continuous source of human T cells in the peripheral circulation of the SCID-hu mouse. Though present for 5-11 mo, these cells did not engage in a xenograft (graft- versus-host) reaction. This animal model, the first in which multilineage human hematopoietic activity is maintained for long periods of time, should be useful for the analysis of human hematopoiesis in vivo. PMID:2212942

  1. Preformulation and characterization of a lidocaine hydrochloride and dexamethasone sodium phosphate thermo-reversible and bioadhesive long-acting gel for intraperitoneal administration.

    PubMed

    Arbelaez-Camargo, Diana; Suñé-Negre, Josep Maria; Roig-Carreras, Manel; García-Montoya, Encarna; Pérez-Lozano, Pilar; Miñarro-Carmona, Montserrat; Ticó-Grau, Josep Ramon

    2016-02-10

    The search for new formulations of anaesthetic agents that allow a localized administration and provide a prolonged effect is of great interest in the multimodal management of postoperative pain. The pre-formulation and characterization of a lidocaine and dexamethasone thermosensitive and bioadhesive long-acting gel for intraperitoneal administration was done as a tool in the management of pain in abdominal surgeries. The pre-formulation process was conducted by a systematic variation of the concentration of the different polymers, until setting it, in a suitable concentration that allowed an adequate gelation temperature. The poloxamer 407 (P407) was used as the main polymer; hydroxypropyl methylcellulose (HPMC) as the bioadhesive agent and polyvinyl pyrrolidone (PVP) to adjust the gelation temperature and physicochemical properties. The formulations were characterized by gelation temperature, pH, viscosity at 25°C and 37°C, gelation time, density and osmolality. Gelation temperature was decreased when increasing the concentration of hydroxypropyl methylcellulose and poloxamer 407, this effect was also observed when adding lidocaine hydrochloride and dexamethasone sodium phosphate to the formulations. The gelation temperature did not have statistically significant relation with the PVP concentration (P-value of 0.6797), even though, there is a tendency in the gelation temperature by varying it. Between the developed formulations, the 12.5/3.3/0.4% (P407/HPMC/PVP) formulation presents an appropriate gelation temperature, a suitable viscosity for administration by syringe, an adequate and stable pH and osmolality to prevent tissue damage and a correct gelation time that allowed the formation of a prolonged release implant.

  2. Formulation, Pharmacokinetic, and Efficacy Studies of Mannosylated Self-Emulsifying Solid Dispersions of Noscapine

    PubMed Central

    Andey, Terrick; Patel, Apurva; Marepally, Srujan; Chougule, Mahavir; Spencer, Shawn D.; Rishi, Arun K.; Singh, Mandip

    2016-01-01

    Purpose To formulate hydroxypropyl methylcellulose-stabilized self-emulsifying solid dispersible carriers of noscapine to enhance oral bioavailability. Methods Formulation of noscapine (Nos) self-emulsifying solid dispersible microparticles (SESDs) was afforded by emulsification using an optimized formula of Labrafil M1944, Tween-80, and Labrasol followed by spray-drying with hydroxypropyl methylcellulose (HPMC), with and without mannosamine (Mann-Nos_SESDs and Nos_SESDs respectively); self-microemulsifying liquid dispersions (SMEDDs) with and without mannosamine (Mann-Nos_SMEDDs and Nos_SMEDDs respectively) were also prepared. SMEDDs and SESDs were characterized for size, polydispersity, surface charge, entrapment efficiency, in vitro permeability, in vitro release kinetics, and oral pharmacokinetics in Sprague-Dawley rats (10 mg/kg p.o). The antitumor efficacy of Mann-Nos_SESDs on the basis of chemosensitization to cisplatin (2.0 mg/kg, IV) was investigated in a chemorefractory lung tumor Nu/Nu mouse model up to a maximal oral dose of 300 mg/kg. Results The oil/surfactant/co-surfactant mixture of Labrafil M1944, Tween-80, and Labrasol optimized at weight ratios of 62.8:9.30:27.90% produced stable self-microemulsifying dispersions (SMEDDs) at a SMEDD to water ratio of 1–3:7–9 parts by weight. SMEDDs had hydrodynamic diameters between 231 and 246 nm; surface charges ranged from -16.50 to -18.7 mV; and entrapment efficiencies were between 32 and 35%. SESDs ranged in size between 5.84 and 6.60 μm with surface charges from -10.62 to -12.40 mV and entrapment efficiencies of 30.96±4.66 and 32.05±3.72% (Nos_SESDs and Mann-Nos_SESDs respectively). Mann-Nos_SESDs exhibited saturating uptake across Caco-2 monolayers (Papp = 4.94±0.18 × 10−6 cm/s), with controlled release of 50% of Nos in 6 hr at pH 6.8 following Higuchi kinetics. Mann-Nos_ SESDs was 40% more bioavailable compared to Nos_SESDs; and was effective in sensitizing H1650 SP cells to Cisplatin in vitro

  3. A simple method for isolating chicken egg yolk immunoglobulin using effective delipidation solution and ammonium sulfate.

    PubMed

    Tong, Chenyao; Geng, Fang; He, Zhenjiao; Cai, Zhaoxia; Ma, Meihu

    2015-01-01

    Chicken egg yolk immunoglobulin (IgY) is a superior alternative to mammalian immunoglobulin. However, the practical application of IgY in research, diagnostics, and functional food is limited due to complex or time-consuming purification procedures. The objective of this study was to develop a simple, safe, large-scale separation method for IgY from egg yolk. Egg yolk was diluted with 6-fold delipidation solutions made of different types (pectin, λ-carrageenan, carboxymethylcellulose, methylcellulose, and dextran sulfate) and concentrations (0.01, 0.05, 0.1, 0.15, and 0.2%) of polysaccharides, respectively. The yolk solution was adjusted to pH 5.0, and then kept overnight at 4°C before being centrifuged at 4°C. The resulting supernatant was added to 35% (w/v) (NH4)2SO4 and then centrifuged. The precipitant, which contained IgY, was dissolved in distilled water and then dialyzed. SDS-PAGE and Western blotting were utilized to conduct qualitative analysis of IgY; high-performance liquid chromatography (HPLC) was used for quantitative analysis. The immunoreactivity of IgY was measured by ELISA. The results showed that yield, purity, and immunoreactivity varied with types and concentrations of polysaccharides. The optimal isolation of IgY for pectin, λ-carrageenan, dextran sulfate, and carboxymethylcellulose was at the concentration of 0.1%; for methylcellulose, optimal isolation was at 0.15%. The best results were obtained in the presence of 0.1% pectin. In this condition, yield and purity can reach 8.36 mg/mL egg yolk and 83.3%, respectively, and the negative effect of IgY on immunoreactivity can be minimized. The procedure of isolation was simplified to 2 steps with a higher yield of IgY, avoiding energy- and time-consuming methods. Therefore, the isolation condition under study has a great potential for food industry production of IgY on a large scale. © 2014 Poultry Science Association Inc.

  4. An assessment of the ocular safety of inactive excipients following sub-tenon injection in rabbits.

    PubMed

    Younis, Husam S; Shawer, Mohannad; Palacio, Kimberly; Gukasyan, Hovhannes J; Stevens, Greg J; Evering, Winston

    2008-04-01

    This work characterized the safety and toleration of inactive excipients following sub-Tenon (ST) administration. Rabbits were anesthetized and eyes received an ST injection of the following test excipients: carboxy methylcellulose (CMC; low [90 kDa], mid [250 kDa], and high [700 kDa] molecular weight [MW], 0.25%-1.0% w/v), polysorbate 80 (0.02 and 0.2% w/v), polyethylene glycol 3350 (PEG; 0.2 and 1.0% w/v), poloxamer 188 (0.01 and 0.25% w/v), poloxamer 182 (2% w/v), benzyl alcohol (BA; 4% w/v), benzalkonium chloride (BAC; 0.02%, 0.04%, and 0.05% w/v), and methylcellulose (MC; 0.25% w/v). After a 1-week observation period for clinical signs of ocular tolerability, the animals were euthanized and eyes were collected for histologic examination. The ocular tolerability of the tested excipients were ranked as follows from the innocuous to most deleterious: saline approximately PEG (1% w/v) approximately polysorbate 80 (0.2% w/v) > CMC (0.25% w/v, 90 kDa) > MC (0.25% w/v) approximately poloxomer 188 (0.25% w/v) approximately sodium citrate (pH 9) BAC (0.05% w/v) > CMC (0.5% w/v, 700 kDa) > poloxomer 182 (2% w/v) > BA (4% w/v). Clinical signs of ocular irritation were limited to redness and chemosis observed with most test excipients. The BA excipient also produced corneal opacity. Microscopic findings included histiocytic infiltration (BAC, BA, CMC, MC, and poloxamer 188), heterophilic inflammation (BA, CMC, and poloxamer 182), and edema (BAC, BA, CMC, and poloxamer 182) in episcleral tissue. The severity of the clinical and hisopathologic effects increased with the concentration of the test excipients administered. This research has evaluated the safety profile of inactive excipients that may be used to formulate new chemical entities for the treatment of ocular disease following a ST injection.

  5. An enkephalinase inhibitor, SCH 32615, augments analgesia induced by surgery in mice.

    PubMed

    Jayaram, A; Singh, P; Carp, H M

    1995-05-01

    Stress-induced analgesia is a well recognized phenomenon in animals and humans in which endogenous opioids have been implicated. However, analgesia induced by surgical stress has not been reported. The purpose of this study was to determine whether surgery evokes analgesia and to examine the effect of SCH 32615, an inhibitor of one of the enzymes (enkephalinase) responsible for the degradation of enkephalins, on this analgesia, in mice. Analgesia was tested using the hot-plate test. Animals were tested before any procedure was done and then at hourly intervals thereafter. Under halothane anesthesia, the anterior abdominal wall was incised, and the abdominal aorta was compressed against the vertebral column for 1 s. This was repeated for a total of three times at 5-s intervals. At the end of the procedure, the following drug(s) were administered subcutaneously to different groups of animals: (1) no drugs, only surgery (n = 15); (2) 5 mg/kg naloxone (n = 15); (3) 150 mg/kg SCH 32615 (n = 14); (4) 150 mg/kg SCH 32615 plus 5 mg/kg naloxone (n = 15); and (5) SCH 32615 vehicle (0.9% methylcellulose; n = 13). Two more groups of animals were included as controls and were anesthetized, but no surgical procedure was performed. One control group (n = 13) received 0.9% methylcellulose and the other 150 mg/kg SCH 32615 (n = 12). Hot-plate latency was significantly longer after surgery (hot-plate latency at 4 h after surgery 29.3 +/- 3.2 (SE) s and at 5 h 30.7 +/- 5 s versus baseline 15.8 +/- 7 s; P < 0.05). Naloxone (5 mg/kg) inhibited this analgesic effect of surgery. SCH 32615 significantly enhanced this analgesia (percentage of maximal possible effect (%MPE) at 4 h 33.7 +/- 8.7%, at 5 h 27.5 +/- 4.7%, and at 6 h 23.2 +/- 4.7%; P < 0.05 compared to all other groups), and naloxone antagonized its effect. Anesthesia without surgery did not evoke subsequent analgesia, and SCH 32615 was not analgesic in the absence of antecedent surgery. Surgery activated endogenous analgesia

  6. Corrosion control of cement-matrix and aluminum-matrix composites

    NASA Astrophysics Data System (ADS)

    Hou, Jiangyuan

    Corrosion control of composite materials, particularly aluminum-matrix and cement-matrix composites, was addressed by surface treatment, composite formulation and cathodic protection. Surface treatment methods studied include anodization in the case of aluminum-matrix composites and oxidation treatment (using water) in the case of steel rebar for reinforcing concrete. The effects of reinforcement species (aluminum nitride (AIN) versus silicon carbide (SiC) particles) in the aluminum-matrix composites and of admixtures (carbon fibers, silica fume, latex and methylcellulose) in concrete on the corrosion resistance of composites were addressed. Moreover, the effect of admixtures in concrete and of admixtures in mortar overlay (as anode on concrete) on the efficiency of cathodic protection of steel reinforced concrete was studied. For SiC particle filled aluminum, anodization was performed successfully in an acid electrolyte, as for most aluminum alloys. However, for AlN particle filled aluminum, anodization needs to be performed in an alkaline (0.7 N NaOH) electrolyte instead. The concentration of NaOH in the electrolyte was critical. It was found that both silica fume and latex improved the corrosion resistance of rebar in concrete in both Ca(OH)sb2 and NaCl solutions, mainly because these admixtures decreased the water absorptivity. Silica fume was more effective than latex. Methylcellulose improved the corrosion resistance of rebar in concrete a little in Ca(OH)sb2 solution. Carbon fibers decreased the corrosion resistance of rebar in concrete, but this effect could be made up for by either silica fume or latex, such that silica fume was more effective than latex. Surface treatment in the form of water immersion for two days was found to improve the corrosion resistance of rebar in concrete. This treatment resulted in a thin uniform layer of black iron oxide (containing Fesp{2+}) on the entire rebar surface except on the cross-sectional surface. Prior to the

  7. A Test for Measuring Gustatory Function

    PubMed Central

    Smutzer, Gregory; Lam, Si; Hastings, Lloyd; Desai, Hetvi; Abarintos, Ray A.; Sobel, Marc; Sayed, Nabil

    2010-01-01

    Objectives The purpose of this study is to determine the usefulness of edible taste strips for measuring human gustatory function. Research Design The physical properties of edible taste strips were examined in order to determine their potential for delivering threshold and suprathreshold amounts of taste stimuli to the oral cavity. Taste strips were then assayed by fluorescence to analyze the uniformity and distribution of bitter tastant in the strips. Finally, taste recognition thresholds for sweet taste were examined in order to determine whether or not taste strips would produce recognition thresholds that were equal to or better than those obtained from aqueous tests. Methodology Edible strips were prepared from pullulan-hydroxypropyl methylcellulose solutions that were dried to a thin film. The maximal amount of a tastant that could be incorporated in a 2.54 × 2.54 cm taste strip was identified by including representative taste stimuli for each class of tastant (sweet, sour, salty, bitter, and umami) during strip formation. Distribution of the bitter tastant quinine hydrochloride in taste strips was assayed by fluorescence emission spectroscopy. The efficacy of taste strips for evaluating human gustatory function was examined by using a single series ascending method of limits protocol. Sucrose taste recognition threshold data from edible strips was then compared to results that were obtained from a standard “sip and spit” recognition threshold test. Results Edible films that formed from a pullulan-hydroxypropyl methylcellulose polymer mixture can be used to prepare clear, thin strips that have essentially no background taste and leave no physical presence after release of tastant. Edible taste strips could uniformly incorporate up to five percent of their composition as tastant. Taste recognition thresholds for sweet taste were over one order of magnitude lower with edible taste strips when compared to an aqueous taste test. Conclusion Edible taste

  8. Toxicology and carcinogenesis studies of alpha,beta-thujone (CAS No. 76231-76-0) in F344/N rats and B6C3F1 mice (gavage studies).

    PubMed

    2011-11-01

    α,β-Thujone is a component of the essential oils of some plants including wormwood, sage, and cedar. It is used in herbal medicines, food and flavoring, and notably as the principal ingredient of the liqueur absinthe. We studied the effects of α,β-thujone on male and female rats and mice to identify potential toxic or cancer-related hazards. We deposited solutions containing α,β-thujone in methylcellulose through a tube directly into the stomach to groups of 50 male and female rats and mice five days per week for two years. Exposed rats received either 12.5, 25, or 50 milligrams of α,β-thujone per kilogram of body weight, and mice received 3, 6, 12, or 25 mg/kg. Control animals received methylcellulose with no chemical added by the same method. At the end of the study, tissues from more than 40 sites were examined for every animal. All male and female rats receiving 50 mg/kg α,β-thujone died before the end of the study. All of those animals, and most receiving 25 mg/kg, experienced seizures. In male rats there was an increased incidence of cancers of the preputial gland and a slight increase in the incidence of pheochromocytomas of the adrenal gland. Nearly all male and female mice receiving 25 mg/kg α,β-thujone experienced seizures, and all of the female mice receiving 25 mg/kg died before the end of the study. No increases in cancers were observed in female rats or in male or female mice. We conclude that α,β-thujone caused cancers of the preputial gland in male rats, and an increase in adrenal gland tumors in male rats may have been related to α,β-thujone administration. There was no increase in cancer incidence in female rats or male or female mice. Seizures were seen in almost all rats and mice receiving the highest doses of α,β-thujone.

  9. Long‐term recovery of the human corneal endothelium after toxic injury by benzalkonium chloride

    PubMed Central

    Hughes, E H; Pretorius, M; Eleftheriadis, H; Liu, C S C

    2007-01-01

    Introduction The inadvertent intra‐ocular administration of benzalkonium chloride‐preserved hydroxypropyl methylcellulose during cataract surgery at another hospital in 1999 resulted in toxic corneal endothelial injury and profound postoperative corneal oedema as a result of endothelial decompensation. The long‐term effect of this adverse event was assessed. Methods All 19 patients were invited to return for examination including corneal endothelial specular microscopy and pachymetry seven years after the incident. Results were compared with data from one year after the incident. Results Five patients attended for examination, one had received a penetrating keratoplasty and was, therefore, excluded. Ten patients had died and four had moved out of the region and were unable to attend. All four study patients were pain free and achieved 6/12 or better. Mean central corneal thickness reduced by 13% from 652.6 μm at one year to 563.4 μm. Mean central corneal endothelial cell density (n  =  3) increased 28% from 663.7 cells/mm2 at one year to 835.7 cells/mm2 (p<0.05). Conclusions After toxic injury, corneal endothelial function may have a remarkable capacity for recovery even after the first postoperative year. The rise in central endothelial cell density may represent cell migration from less affected areas or cellular proliferation. Should this unfortunate event recur, clinicians may expect continued recovery beyond one year. PMID:17504856

  10. Transcorneal permeation of diclofenac as a function of temperature from film formulation in presence of triethanolamine and benzalkonium chloride.

    PubMed

    Mohapatra, Rajaram; Senapati, Sibananda; Sahoo, Chinmaya; Mallick, Subrata

    2014-11-01

    The objective of this report was to evaluate the transcorneal permeation of diclofenac potassium (DCP) as a function of temperature from hydroxypropyl methylcellulose (HPMC) matrix film containing triethanolamine (TEM) as plasticizer and benzalkonium chloride (BKC) as preservative. Activation energy (Ea), enthalpy (ΔH), entropy (ΔS) and free energy (ΔG) of permeation, diffusion and partition were evaluated to understand the underlying mechanism of permeation. Permeation improved with the presence of both the plasticizer and preservative compared to preservative alone. Further, increased amount of TEM in the film increased drug transport across the cornea. Decreased Ea value of the film supported the fact. Rise of temperature from 26 to 30, 34 and 40 °C increased permeation in all the films. Ocular residence of the film in vivo in the rabbit revealed that the film swelled by pronounced lachrymal fluid uptake and traces of hydrogel remained still at the end of 6 h of application. Absence of characteristic exothermic peak of the drug in the thermogram of film formulations indicated the molecular dispersion of drug in polymer matrix. Scanning electron microscopy indicated that the drug crystal size decreased with increasing concentration of TEM in presence of BKC due to effective wetting of drug particles by the polymer.

  11. Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope.

    PubMed

    Kaufmann, Anna; Mickoleit, Michaela; Weber, Michael; Huisken, Jan

    2012-09-01

    Light sheet microscopy techniques, such as selective plane illumination microscopy (SPIM), are ideally suited for time-lapse imaging of developmental processes lasting several hours to a few days. The success of this promising technology has mainly been limited by the lack of suitable techniques for mounting fragile samples. Embedding zebrafish embryos in agarose, which is common in conventional confocal microscopy, has resulted in severe growth defects and unreliable results. In this study, we systematically quantified the viability and mobility of zebrafish embryos mounted under more suitable conditions. We found that tubes made of fluorinated ethylene propylene (FEP) filled with low concentrations of agarose or methylcellulose provided an optimal balance between sufficient confinement of the living embryo in a physiological environment over 3 days and optical clarity suitable for fluorescence imaging. We also compared the effect of different concentrations of Tricaine on the development of zebrafish and provide guidelines for its optimal use depending on the application. Our results will make light sheet microscopy techniques applicable to more fields of developmental biology, in particular the multiview long-term imaging of zebrafish embryos and other small organisms. Furthermore, the refinement of sample preparation for in toto and in vivo imaging will promote other emerging optical imaging techniques, such as optical projection tomography (OPT).

  12. Effects of temperature-responsive hydrogel on viscosity of denture adhesives.

    PubMed

    Zhao, Huizi; Akiba, Norihisa; Tanimoto, Hiroyuki; Yoshizaki, Taro; Yalikun, Kaidiliya; Minakuchi, Shunsuke

    2016-01-01

    The cream type of denture adhesives after use cannot be easily removed from oral mucosa and have the potential risk to change the oral flora. The effects of the temperature-responsive hydrogel Pluronic F-127 (PF) on the complex viscosity of denture adhesives were evaluated. Carboxy methylcellulose (CMC) mass fractions (1, 2, 3 and 4%) were added to 20 and 25% PF hydrogels. Complex viscosity was measured over a temperature cycle (40→10→40°C) and fixed temperature points (23 and 37°C). Adhesive strength tests were performed with 2 resin plates at 23 and 37°C. One commercial cream-type denture adhesive, New Poligrip® (NP), was evaluated as a control. Complex viscosity values for PF20% groups at 23°C were lower than those for NP at 37°C. Adhesive strength of PF20% with CMC2%, was higher at 23°C when compared to NP at 37°C, which suggests that PF20%CMC2% is an effective adhesive and is easily removed after mouth rinsing.

  13. Effect on tomato plant and fruit of the application of biopolymer-oregano essential oil coatings.

    PubMed

    Perdones, Ángela; Tur, Núria; Chiralt, Amparo; Vargas, Maria

    2016-10-01

    Oregano essential oil (EO) was incorporated into film-forming dispersions (FFDs) based on biopolymers (chitosan and/or methylcellulose) at two different concentrations. The effect of the application of the FFDs was evaluated on tomato plants (cultivar Micro-Tom) at three different stages of development, and on pre-harvest and postharvest applications on tomato fruit. The application of the FFDs at '3 Leaves' stage caused phytotoxic problems, which were lethal when the EO was applied without biopolymers. Even though plant growth and development were delayed, the total biomass and the crop yield were not affected by biopolymer-EO treatments. When the FFDs were applied in the 'Fruit' stage the pre-harvest application of FFDs had no negative effects. All FFDs containing EO significantly reduced the respiration rate of tomato fruit and diminished weight loss during storage. Moreover, biopolymer-EO FFDs led to a decrease in the fungal decay of tomato fruit inoculated with Rhizopus stolonifer spores, as compared with non-treated tomato fruit and those coated with FFDs without EO. The application of biopolymer-oregano essential oil coatings has been proven to be an effective treatment to control R. stolonifer in tomato fruit. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Development of the loratadine gel for enhanced transdermal delivery.

    PubMed

    Song, Jae-Haeng; Shin, Sang-Chul

    2009-08-01

    The oral administration of loratadine, an antihistamine, can have a variety of adverse side effects, such as headache, fatigue, and nausea, because of the transient high blood concentration. To avoid these effects, loratadine can be administered using a transdermal drug delivery system. This study examined the effects of the drug concentration on drug release from prepared hydroxypropyl methylcellulose gels using a synthetic cellulose membrane at 37 degrees C. The drug concentrations tested were 0.1%, 0.2%, 0.3%, 0.4%, and 0.5% (w/w). The effect of temperature on drug release from the 0.3% loratadine gels was evaluated at 27 degrees C, 32 degrees C, 37 degrees C, and 42 degrees C. Various types of penetration enhancers, such as glycols, glycerides, propylene glycol derivatives, nonionic surfactants, and fatty acids, were incorporated in the gel formulation to increase the level of drug permeation. The rate of drug release increased with increasing drug concentration or temperature. The activation energy for the release of the drug was 5.714 kcal/mol for 0.3% loratadine gel. Among all the enhancers used in this study, polyoxyethylene 2-stearyl ether showed the best enhancing effect. The enhancement factor of the loratadine gel containing the polyoxyethylene 2-stearyl ether was 2.03 compared with that of the loratadine system containing no enhancer. These results suggest that the topical gel formulation of loratadine containing a penetration enhancer could be developed to enhance the penetration of loratadine.

  15. Formulation of controlled-release baclofen matrix tablets: influence of some hydrophilic polymers on the release rate and in vitro evaluation.

    PubMed

    Abdelkader, Hamdy; Abdalla, Ossama Youssef; Salem, Hesham

    2007-11-30

    This work aims at investigating different types and levels of hydrophilic matrixing agents, including methylcellulose (MC), sodium alginate (Alg), and sodium carboxymethylcellulose (CMC), in an attempt to formulate controlled-release matrix tablets containing 25 mg baclofen. The tablets were prepared by wet granulation. Prior to compression, the prepared granules were evaluated for flow and compression characteristics. In vitro, newly formulated controlled-release tablets were compared with standard commercial tablets (Lioresal and baclofen). The excipients used in this study did not alter physicochemical properties of the drug, as tested by the thermal analysis using differential scanning calorimetry. The flow and compression characteristics of the prepared granules significantly improved by virtue of granulation process. Also, the prepared matrix tablets showed good mechanical properties (hardness and friability). MC- and Alg-based tablet formulations showed high release-retarding efficiency, and good reproducibility and stability of the drug release profiles when stored for 6 months in ambient room conditions, suggesting that MC and Alg are good candidates for preparing modified-release baclofen tablet formulations.

  16. Effects of Commonly Used Excipients on the Expression of CYP3A4 in Colon and Liver Cells

    PubMed Central

    Tompkins, Leslie; Lynch, Caitlin; Haidar, Sam; Polli, James; Wang, Hongbing

    2013-01-01

    Purpose The objective of this investigation was to assess whether common pharmaceutical excipients regulate the expression of drug-metabolizing enzymes in human colon and liver cells. Methods Nineteen commonly used excipients were evaluated using a panel of experiments including cell-based human PXR activation assays, real-time RT-PCR assays for CYP3A4 mRNA expression, and immunoblot analysis of CYP3A4 protein expression in immortalized human liver cells (HepG2 and Fa2N4), human primary hepatocytes, and the intestinal LS174T cell models. Results No excipient activated human PXR or practically induced CYP3A4. However, three excipients (polysorbate 80, pregelatinized starch, and hydroxypropyl methylcellulose) tended to decrease mRNA and protein expression across experimental models. Conclusion This study represents the first investigation of the potential role of excipients in the expression of drug-metabolizing enzymes. Findings imply that some excipients may hold potential for excipient-drug interactions by repression of CYP3A4 expression. PMID:20503067

  17. Physicochemical characterization and mechanisms of release of theophylline from melt-extruded dosage forms based on a methacrylic acid copolymer.

    PubMed

    Young, Christopher R; Dietzsch, Caroline; Cerea, Matteo; Farrell, Thomas; Fegely, Kurt A; Rajabi-Siahboomi, Ali; McGinity, James W

    2005-09-14

    The purpose of the current study was to investigate the physicochemical properties of melt-extruded dosage forms based on Acryl-EZE and to determine the influence of gelling agents on the mechanisms and kinetics of drug release from thermally processed matrices. Acryl-EZE is a pre-mixed excipient blend based on a methacrylic acid copolymer that is optimized for film-coating applications. Powder blends containing theophylline, Acryl-EZE, triethyl citrate and an optional gelling agent, Methocel K4M Premium (hydroxypropyl methylcellulose, HPMC, hypromellose 2208) or Carbopol 974P (carbomer), were thermally processed using a Randcastle single-screw extruder. The physical and chemical stability of materials during processing was determined using thermal gravimetric analysis and HPLC. The mechanism of drug release was determined using the Korsmeyer-Peppas model and the hydration and erosion of tablets during the dissolution studies were investigated. The excipient blends were physically and chemically stable during processing, and the resulting dosage forms exhibited pH-dependent dissolution properties. Extrusion of blends containing HPMC or carbomer changed the mechanism and kinetics of drug release from the thermally processed dosage forms. At concentrations of 5% or below, carbomer was more effective than HPMC at extending the duration of theophylline release from matrix tablets. Furthermore, carbomer containing tablets were stable upon storage for 3 months at 40 degrees C/75% RH. Thus, hot-melt extrusion was an effective process for the preparation of controlled release matrix systems based on Acryl-EZE.

  18. Development and optimization of ketoconazole oral strips by means of continuous hot-melt extrusion processing.

    PubMed

    Maniruzzaman, Mohammed; Farias, Smirna; Slipper, Ian J; Boateng, Joshua S; Chowdhry, Babur Z; Nair, Arun; Douroumis, Dennis

    2016-07-01

    The aim of this study was to develop mucoadhesive oral strips using hot-melt extrusion as a continuous manufacturing process. Powder blends of ketoconazole, a water-insoluble drug - either hydroxypropyl methylcellulose (HPMC) or soluplus (SOL), sorbitol (SRB) and magnesium aluminometasilicate (MAS) were extruded to manufacture thin strips with 0.5-mm thickness. The presence of the inorganic metasilicate facilitated smooth processing of the extruded strips as it worked as an absorbent directly impacting on the extensive mixing of the drug/excipients inside the extruder barrel. The use of MAS also favoured the rapid hydration, swelling and eventual disintegration of the strips. Differential scanning calorimetry and transmission X-ray diffraction analysis revealed the existence of the amorphous drug within the extruded strips. Scanning electron microscopy and energy dispersive X-ray undertaken on the formulations showed a homogeneous drug distribution within the extruded strips. The strips produced via continuous hot-melt extrusion processing showed significantly faster release of ketoconazole compared to the bulk drug substance. © 2016 Royal Pharmaceutical Society.

  19. A critical examination of the mode of action of quinacrine in the reproductive tract in a 2-year rat cancer bioassay and its implications for human clinical use.

    PubMed

    Haseman, Joseph K; Growe, Roger G; Zeiger, Errol; McConnell, Ernest E; Luster, Michael I; Lippes, Jack

    2015-04-01

    A rat carcinogenicity bioassay (CaBio) of quinacrine was reanalyzed to investigate its mode of tumor induction. Quinacrine's effects in the rat uterus when administered as a slurry in methylcellulose were contrasted with the human clinical experience which uses a solid form of the drug, to determine the relevance of the tumors produced in the rat to safe clinical use of quinacrine for permanent contraception (QS). A review was performed of the study report, dose feasibility studies, and clinical evaluations of women who had undergone the QS procedure. The top three doses of quinacrine in the CaBio exceeded the maximum tolerated dose, and produced chronic damage, including inflammation, resulting in reproductive tract tumors. Chronic inflammation was significantly correlated with the tumors; there was no evidence of treatment-related tumors in animals without chronic inflammation or other reproductive system toxicity. Because such permanent uterine damage and chronic toxicity have not been observed in humans under therapeutic conditions, we conclude that this mode of action for tumor production will not occur at clinically relevant doses in women who choose quinacrine for permanent contraception.

  20. Effect of chirality on PVP/drug interaction within binary physical mixtures of ibuprofen, ketoprofen, and naproxen: a DSC study.

    PubMed

    Ivanov, Ivan T; Tsokeva, Zhivka

    2009-08-01

    We report on the thermal behavior of freshly prepared binary drug/polymer physical mixtures that contained ibuprofen, ketoprofen, or naproxen as a drug, and polyvinylpyrrolidone (PVP), hydroxyethylcellulose (HEC), or methylcellulose (MC) as excipient. At 6-10 degrees C/min heating rates the DSC detected a sharp, single endotherm that corresponds to the melting of drug. On heating physical mixtures of PVP and racemic ibuprofen or ketoprofen at lower heating rates, another endotherm was registered in front of the original one. To observe the additional endotherm, specific minimal values of the heating rate and of PVP weight fraction were needed; for ibuprofen and ketoprofen they were 1.5 and 2.0 degrees C/min, and 5 and 15% (w/w), respectively. At greater PVP weight fractions the top temperatures, T(mp), of both peaks were reduced almost linearly indicating strong solid-state interfacial reaction between the drug particles and PVP matrix. The additional endotherm was abolished at greater heating rates (2 degrees C/min for ibuprofen, 3 degrees C/min for ketoprofen), by replacing the racemate with respective S+-enantiomer and by replacing PVP with HEC and MC. Hence, the possible inclusion of enantioselective component within the PVP/drug interaction, responsible for the amorphization of physical mixture over storage, is assumed.

  1. Chitosan-incorporated different nanocomposite HPMC films for food preservation

    NASA Astrophysics Data System (ADS)

    Shanmuga Priya, D.; Suriyaprabha, R.; Yuvakkumar, R.; Rajendran, V.

    2014-02-01

    Chitosan nanoparticles were synthesized by cross-linking with sodium tripolyphosphate (TPP) using ionic gelation method and casted into hydroxypropyl methylcellulose (HPMC) films. XRD, FTIR, and UV-Vis spectra showed the corresponding phase, characteristic peaks of CS-TPP functional groups, and transmittance of the films, respectively. Oleic acid, TiO2, neem powder, and Ag of equal ratio were added as an additive to the optimized 1 wt% of chitosan-HPMC films and studied for its mechanical, solubility, thermal, structural, and antimicrobial property. The better physio-chemical and biological properties are achieved in the films incorporated with TiO2 and neem. The characterized films were directly tested for the preservation of grape and plums and for their decay index. Polyphenol oxidase and peroxidase activity of the preserved fruits showed that grape and plums remained unchanged, respectively, for 10 days and for 3 weeks. This study reveals that shelf life of the grape using TiO2- and neem-doped CS-HPMC films was extended up to 10 days with good sensory and textural qualities compared with other films.

  2. Molecular mobility in glassy dispersions.

    PubMed

    Mehta, Mehak; McKenna, Gregory B; Suryanarayanan, Raj

    2016-05-28

    Dielectric spectroscopy was used to characterize the structural relaxation in pharmaceutical dispersions containing nifedipine (NIF) and either poly(vinyl) pyrrolidone (PVP) or hydroxypropyl methylcellulose acetate succinate (HPMCAS). The shape of the dielectric response (permittivity versus log time) curve was observed to be independent of temperature. Thus, for the pure NIF as well as the dispersions, the validity of the time-temperature superposition principle was established. Furthermore, though the shape of the full dielectric response varied with polymer concentration, the regime related to the α- or structural relaxation was found to superimpose for the dispersions, though not with the response of the NIF itself. Hence, there is a limited time-temperature-concentration superposition for these systems as well. Therefore, in this polymer concentration range, calculation of long relaxation times in these glass-forming systems becomes possible. We found that strong drug-polymer hydrogen bonding interactions improved the physical stability (i.e., delayed crystallization) by reducing the molecular mobility. The strength of hydrogen bonding, structural relaxation time, and crystallization followed the order: NIF-PV P>NIF-HPMCAS>NIF. With an increase in polymer concentration, the relaxation times were longer indicating a decrease in molecular mobility. The temperature dependence of relaxation time, in other words fragility, was independent of polymer concentration. This is the first application of the superposition principle to characterize structural relaxation in glassy pharmaceutical dispersions.

  3. Quantitative Analysis of Chloramphenicol in Royal Jelly by Column-switching LC-MS/MS Using a Pretreatment Column with a Higher-pressure Capability.

    PubMed

    Kawano, Shin-ichi; Hayakawa, Yoshihiro; Hashi, Yuki; Lin, Jin-Ming

    2015-01-01

    An on-line pretreatment liquid chromatography-tandem mass spectrometry (LC-MS/MS) system was developed for the analysis of chloramphenicol (CAP) in royal jelly. A novel methylcellulose-immobilized restricted access media column with a higher-pressure capability of 60 MPa (MC-ODS HP) was developed for the effective removal of proteins and other compounds in the sample matrix. CAP in a sample solution was extracted in 2 min by the column-switching LC-MS/MS system. The system provides a minimum sample pretreatment along with highly sensitive and reproducible analysis. As a result, the limit of quantitation of CAP was 10 pg/mL (= 0.1 μg/kg royal jelly) and the linear dynamic range was between 10 and 10000 pg/mL (correlation coefficient greater than 0.999). The proposed method meets the requirements of regulations in EU (0.3 μg/kg). The inter-day precision and accuracy of CAP at 100 pg/mL over 3 days were 4.5 and 95.4%, respectively. Compared with the conventional method with a pressure of below 25 MPa, the peak separation in the MRM chromatogram was improved by using smaller particles (1.6 μm) for the analytical ODS column. The LC-MS/MS system with an MC-ODS HP expanded the applicability of the automated pretreatment.

  4. Optimization of the formation of embedded multicellular spheroids of MCF-7 cells: How to reliably produce a biomimetic 3D model.

    PubMed

    Zhang, Wenli; Li, Caibin; Baguley, Bruce C; Zhou, Fang; Zhou, Weisai; Shaw, John P; Wang, Zhen; Wu, Zimei; Liu, Jianping

    2016-12-15

    To obtain a multicellular MCF-7 spheroid model to mimic the three-dimensional (3D) of tumors, the microwell liquid overlay (A) and hanging-drop/agar (B) methods were first compared for their technical parameters. Then a method for embedding spheroids within collagen was optimized. For method A, centrifugation assisted cells form irregular aggregates but not spheroids. For method B, an extended sedimentation period of over 24 h for cell suspensions and increased viscosity of the culture medium using methylcellulose were necessary to harvest a dense and regular cell spheroid. When the number was less than 5000 cells/drop, embedded spheroids showed no tight cores and higher viability than the unembedded. However, above 5000 cells/drop, cellular viability of embedded spheroids was not significantly different from unembedded spheroids and cells invading through the collagen were in a sun-burst pattern with tight cores. Propidium Iodide staining indicated that spheroids had necrotic cores. The doxorubicin cytotoxicity demonstrated that spheroids were less susceptible to DOX than their monolayer cells. A reliable and reproducible method for embedding spheroids using the hanging-drop/agarose method within collagen is described herein. The cell culture model can be used to guide experimental manipulation of 3D cell cultures and to evaluate anticancer drug efficacy. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Scaling of hydrodynamics and swimming kinematics of shelled Antarctic sea butterfly

    NASA Astrophysics Data System (ADS)

    Adhikari, Deepak; Webster, Donald; Yen, Jeannette

    2016-11-01

    A portable tomographic PIV system was used to study fluid dynamics and kinematics of pteropods (aquatic snails nicknamed 'sea butterflies') in Antarctica. These pteropods (Limacina helicina antarctica) swim with a pair of parapodia (or "wings") via a unique flapping propulsion mechanism that incorporates similar techniques as observed in small flying insects. The swimming velocity is typically 14 - 30 mm/s for pteropod size ranging 1.5 - 5 mm, and the pteropod shell pitches forward-and-backward at 1.9 - 3 Hz. It has been shown that pitching motion of the shell effectively positions the parapodia such that they flap downwards during both power and recovery strokes. The non-dimensional variables characterizing the motion of swimming pteropods are flapping, translating, and pitching Reynolds numbers (i.e. Ref, ReU, and ReΩ) . We found that the relationship between these Reynolds numbers show an existence of a critical ReΩ, below which pteropods fail to swim successfully. We explore the importance of this critical ReΩ by changing the viscosity of the seawater using methylcellulose. At higher viscosity, our results indicate that pteropods do not swim with optimal propulsion efficiency. Finally, we examine the wake signature of swimming pteropod, consisting of a pair of vortex rings, in the modified viscosity environment.

  6. Floating matrix dosage form for dextromethorphan hydrobromide based on gas forming technique: in vitro and in vivo evaluation in healthy volunteers.

    PubMed

    Hu, Liandong; Li, Li; Yang, Xun; Liu, Wei; Yang, Jianxue; Jia, Yanhong; Shang, Chuang; Xu, Hongxin

    2011-01-18

    The objective of this study was to develop the dextromethorphan hydrobromide sustained-release (DMB-SR) tablets using floating technique to prolong the gastric residence time and compared their pharmacokinetic behavior with conventional sustained release tablets. DMB-SR floating tablets were prepared employing hydroxypropyl methylcellulose (HPMC) as hydrophilic gel material, sodium bicarbonate as gas-generating agent and hexadecanol as floating assistant agent. An orthogonal experiment design method was used to select the optimized formulation. The floating tablets were evaluated for uniformity of weight, hardness, friability, drug content, floating characteristics, in vitro release and in vivo bioavailability. The optimized tablets were prepared with HPMC K4M 25 mg, sodium bicarbonate 20 mg and hexadecanol 18 mg. The prepared tablets could float within 3 min and maintain for more than 24 h. The data of physical parameters were all lie within the limits. Drug release at 12 h was more than 85%. The comparative pharmacokinetic study was performed by administration of the DMB-SR floating tablets and conventional DMB-SR tablets. The area under curve of plasma concentration-time (AUC) of floating tablets was slightly higher than that of reference tablets, T(max) was prolonged apparently. The results showed the floating tablets are a feasible approach for the sustained-release preparation of drugs, which have limited absorption sites in the stomach.

  7. Design and evaluation of gastroretentive levofloxacin floating mini-tablets-in-capsule system for eradication of Helicobacter pylori.

    PubMed

    El-Zahaby, Sally A; Kassem, Abeer A; El-Kamel, Amal H

    2014-12-01

    Gastroretentive levofloxacin (LVF) floating mini-tablets for the eradication of Helicobacter pylori (H. pylori) were prepared using the matrix forming polymer hydroxypropyl methylcellulose (HPMC K100M), alone or with Carbopol 940P in different ratios by wet granulation technique. Buoyancy of mini-tablets was achieved by an addition of an effervescent mixture consisting of sodium bicarbonate and anhydrous citric acid to some formulations. The prepared mini-tablets were evaluated for weight variation, thickness, friability, hardness, drug content, in vitro buoyancy, water uptake and in vitro release. The optimized formula was subjected to further studies: FT-IR, DSC analysis and in vivo examination in healthy volunteers. The prepared mini-tablets exhibited satisfactory physicochemical characteristics. Incorporation of gas-generating agent improved the floating parameters. HPMC K100M mini-tablet formulation (F1) offered the best controlled drug release (>8 h) along with floating lag time <1 s and total floating time >24 h. The obtained DSC thermograms and FT-IR charts indicated that there is no positive evidence for the interaction between LVF and ingredients of the optimized formula. The in vivo test confirmed the success of the optimized formula F1 in being retained in the stomach of the volunteers for more than 4 h. LVF floating mini-tablets based on HPMC K100M is a promising formulation for eradication of H. pylori.

  8. A novel vaginal drug delivery system: anti-HIV bioadhesive film containing abacavir.

    PubMed

    Ghosal, Kajal; Ranjan, Alok; Bhowmik, Benoy Brata

    2014-07-01

    Women are very much susceptible for acquired immunodeficiency syndrome (AIDS) and other sexually transmitted diseases (STDs), mainly due to unprotected heterosexual vaginal intercourse and for some other social and economical disadvantages. Our aim was to formulate and optimize vaginal film of abacavir, a potent nucleoside reverse transcriptase inhibitor, for the treatment of AIDS and HIV. Abacavir films were prepared by solvent evaporation method using sodium alginate (Na-alginate) as the main polymer, Hydroxypropyl Methylcellulose E 15 (HPMC E 15) as the copolymer and glycerol as a humectant. Abacavir sulphate (ABC) was used here as a drug. Films were optimized for various physicochemical parameters such as tensile strength, % elongation at break, swelling capacity, drug content (mg/cm(2)), thickness, folding endurance, bioadhesion, pH, moisture content and SEM. Drug polymer interaction was studied by FTIR Spectra. The drug release study was accomplished in dissolution apparatus. In vivo study was also carried out. This newly formed film was one kind of sustain release type and can be considered as a novel drug carrier system for the treatment of AIDS and other STDs. It was suitable for local as well as systemic effect. The films showed good physicochemical property with good aesthetic appeal.

  9. Formulation and in vitro evaluation of a fast-disintegrating/sustained dual release bucoadhesive bilayer tablet of captopril for treatment of hypertension crises

    PubMed Central

    Abbasi, Sahar; Yousefi, Gholamhossein; Ansari, Ali Asghar; Mohammadi-Samani, Soliman

    2016-01-01

    Hypertension crisis is one of the main health problems and its effective treatment is of high importance. For this purpose, fast-disintegrating and sustained release formulations of captopril, as a drug of choice, were prepared using conventional mucoadhesive polymers hydroxypropyl methylcellulose (HPMC), sodium carboxymethyl cellulose (Na-CMC), hydroxypropyl cellulose (HPC), Carbopol 934 (CP934) and sodium alginate (Na-alg). The optimum sustained release formulations were selected based on mean dissolution time (MDT). The swellability and mucoadhesive properties of selected formulations were assessed and compared. A direct relationship between swelling and release rates/adhesiveness of sustained release formulations was observed. The results showed that formulations containing combination of CP934 and cellulose-based polymers had the highest swellability, sustainability and adhesion strength. These formulations prolonged drug release up to 8 h showing good fitness to Korsemeyer-Peppas model. Moreover, the adopted fast-disintegrating tablet could release up to 100% of drug within 3 min in oral pH. Finally, a dual fast-disintegrating/sustained release bucoadhesive bilayer tablet consisting of optimized formulations was prepared releasing 30% of the drug initially within 15 min and the remaining up to 8 h which could be considered as an appropriate formulation for the treatment of hypertension crises. PMID:27651807

  10. Optimization of retroviral gene transduction of mobilized primitive hematopoietic progenitors by using thrombopoietin, Flt3, and Kit ligands and RetroNectin culture.

    PubMed

    Murray, L; Luens, K; Tushinski, R; Jin, L; Burton, M; Chen, J; Forestell, S; Hill, B

    1999-07-20

    We have investigated the ability of several cytokine combinations to improve retrovirus-mediated transduction of human primitive hematopoietic progenitors (PHPs) from mobilized peripheral blood (MPB). Retroviral infection of CD34+ cells was performed by culture on fibronectin fragment CH-296 (RetroNectin, RN), using the truncated human nerve growth factor receptor (NGFR) as the transgene reporter. Transgene expression among progeny of PHPs was assayed by FACS analysis after long-term stromal culture (LTC). Transgene delivery to PHPs was assessed by PCR of individual stromal culture-derived methylcellulose colonies (LTC-CFCs). Compared with interleukin 3 (IL-3), IL-6, and leukemia inhibitory factor (LIF), the combination of thrombopoietin (TPO), Flt3 ligand (FL), and Kit ligand (KL) effected a 73-fold increase in NGFR expression among CD34+ cells (to 14%) and a 14-fold increase in NGFR expression among total cells (to 10%) after LTC. In addition, a 2.4-fold increase in neo gene marking of LTC-CFCs was observed. A preclinical study comparing the effect of high-speed centrifugation ("spinoculation") or culture on RN during exposure to retroviral particles in teflon cell culture bags showed no difference in the efficiency of transduction of PHPs between these two methods.

  11. Gadolinium-loaded gel scintillators for neutron and antineutrino detection

    SciTech Connect

    Riddle, Catherine Lynn; Akers, Douglas William; Demmer, Ricky Lynn; Paviet, Patricia Denise; Drigert, Mark William

    2016-11-29

    A gadolinium (Gd) loaded scintillation gel (Gd-ScintGel) compound allows for neutron and gamma-ray detection. The unique gel scintillator encompasses some of the best features of both liquid and solid scintillators, yet without many of the disadvantages associated therewith. Preferably, the gel scintillator is a water soluble Gd-DTPA compound and water soluble fluorophores such as: CdSe/ZnS (or ZnS) quantum dot (Q-dot) nanoparticles, coumarin derivatives 7-hydroxy-4-methylcoumarin, 7-hydroxy-4-methylcoumarin-3-acetic acid, 7-hydroxycoumarin-3-carboxylic acid, and Alexa Fluor 350 as well as a carbostyril compound, carbostyril 124 in a stable water-based gel, such as methylcellulose or polyacrylamide polymers. The Gd-loaded ScintGel allows for a homogenious distribution of the Gd-DTPA and the fluorophores, and yields clean fluorescent emission peaks. A moderator, such as deuterium or a water-based clear polymer, can be incorporated in the Gd-ScintGel. The gel scintillators can be used in compact detectors, including neutron and antineutrino detectors.

  12. Comparative studies for ciprofloxacin hydrochloride pre-formed gels and thermally triggered (in situ) gels: in vitro and in vivo appraisal using a bacterial keratitis model in rabbits.

    PubMed

    Abdelkader, Hamdy; Mansour, Heba F

    2015-06-01

    This article reports on comparative in vitro characterization and in vivo evaluation of pre-formed cellulose-based gels, methylcellulose (MC) and carboxymethylcellulose sodium (CMC) and in situ gel-forming Pluronic F127 (PL) for ocular delivery of ciprofloxacin hydrochloride (Cipro) by using a bacterial keratitis model and histological corneal examination. Drug-polymer interactions were studied employing thermal analysis. Further, different concentrations (1-3% w/w or 10-30% w/w) of gels depending on the nature of the polymer used were prepared, characterized for clarity, pH, rheology and in vitro release. Selected gel formulations were evaluated for ocular delivery to Staphylococcus aureus-infected rabbit corneas; and ocular toxicity through histological examination of the cornea. The results demonstrated no Cipro-polymers physicochemical interactions and pseudoplastic flow for all gels used at 35 °C. Both polymer concentrations and drug solubility in the gels are dominantly the rate-determining factors for in vitro drug release. The corneal healing rate for all gel-based formulations was significantly faster (p < 0.05) than that for Cipro solution-treated rabbits. PL-based gel induced significant swelling/edema of the corneal stroma, compared with MC- and CMC-based gels. In conclusion, cellulose-based polymers have superior ocular tolerability/dramatically less irritant; and superior efficacy with more convenient administration compared with PL and Cipro solution, respectively.

  13. Fractal analysis of extra-embryonic vessels of chick embryos under the effect of glucosamine and chondroitin sulfates.

    PubMed

    de Souza Lins Borba, Fernanda Katharine; Felix, Giovanni Loos Queiroz; Costa, Edbhergue Ventura Lola; Silva, Lisie; Dias, Paulo Fernando; de Albuquerque Nogueira, Romildo

    2016-05-01

    Like heparan sulfate proteoglycans, some monosaccharides and glycosaminoglycans, such as sulfated glucosamine (GS) and chondroitin (CS), integrate the vascular extracellular matrix and may influence vascular endothelial cell growth. To assess the effects of these substances on blood vessel formation, we used the chick yolk sac membrane (YSM) model and fractal geometry quantification, which provided an objective in vivo method for testing potential agents that promote vasculogenesis and angiogenesis. An image processing method was developed to evaluate YSM capillary vessels after they were implanted in a methylcellulose disk of GS or CS at a concentration between 0.001-0.1mg/disk (performed on 2-day old embryos). This method resulted in a binary image of the microvascular network (white vessels on a black background). Fractal box-counting (DBC) and information (DINF) dimensions were used to quantify the activity of GS and CS in vasculogenesis and angiogenesis. YSM treated with GS (0.001-0.1mg) and CS (0.03-0.1mg) showed an increase in fractal dimensions that corresponded to vitelline vessel growth compared to the control group (vehicle), with GS displaying higher fractal dimension values. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Design, Development and Optimization of S (-) Atenolol Floating Sustained Release Matrix Tablets Using Surface Response Methodology

    PubMed Central

    Gunjal, P. T.; Shinde, M. B.; Gharge, V. S.; Pimple, S. V.; Gurjar, M. K.; Shah, M. N.

    2015-01-01

    The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 32 full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:26798171

  15. CM Affi-Gel Blue chromatography of human urine: a simple one-step procedure for obtaining erythropoietin suitable for in vitro erythropoietic progenitor assays.

    PubMed

    Krystal, G; Eaves, C J; Eaves, A C

    1984-11-01

    A method for both concentrating and purifying human urinary erythropoietin (Ep) using CM Affi-Gel Blue is described. We have found that up to 40 litres of urine can be processed on a 1 litre gel bed of this material. This gives a 25-50-fold purification of Ep with an apparent Ep recovery in excess of 100%. The high recovery of Ep is probably due, in part, to the removal of inhibitors present in the initial urine. By selecting urine that contains high levels of Ep (greater than 0.5 units/ml), it is possible with this method routinely to obtain preparations with specific activities of 100-300 units of Ep per mg protein. Such preparations are noninhibitory when assayed in either short-term suspension cultures or in longer-term methylcellulose cultures at concentrations up to 5-10 units/ml. Similar tests with these same bioassay systems have shown that other non-Ep stimulating factors (i.e. erythroblast enhancing factor (EEF), granulocyte/macrophage colony stimulating factor (GM-CSF) and burst promoting activity (BPA) ) are also not present at detectable levels. In this study we also show that the loss of biological activity which often occurs when partially purified Ep preparations are stored in solution is markedly reduced in the presence of either 1% bovine serum albumin or 0.1% sodium dodecyl sulphate.

  16. A possible application of magnetic resonance imaging for pharmaceutical research.

    PubMed

    Kowalczuk, Joanna; Tritt-Goc, Jadwiga

    2011-03-18

    Magnetic resonance imaging (MRI) is a non-destructive and non-invasive method, the experiment can be conducted in situ and allows the studying of the sample and the different processes in vitro or in vivo. 1D, 2D or 3D imaging can be undertaken. MRI is nowadays most widely used in medicine as a clinical diagnostic tool, but has still seen limited application in the food and pharmaceutical sciences. The different imaging pulse sequences of MRI allow to image the processes that take place in a wide scale range from ms (dissolution of compact tablets) to hours (hydration of drug delivery systems) for mobile as well as for rigid spins, usually protons. The paper gives examples of MRI application of in vitro imaging of pharmaceutical dosage based on hydroxypropyl methylcellulose which have focused on water-penetration, diffusion, polymer swelling, and drug release, characterized with respect to other physical parameters such as pH and the molecular weight of polymer. Tetracycline hydrochloride was used as a model drug. NMR imaging of density distributions and fast kinetics of the dissolution behavior of compact tablets is presented for paracetamol tablets.

  17. Intravenous Administration of Cilostazol Nanoparticles Ameliorates Acute Ischemic Stroke in a Cerebral Ischemia/Reperfusion-Induced Injury Model

    PubMed Central

    Nagai, Noriaki; Yoshioka, Chiaki; Ito, Yoshimasa; Funakami, Yoshinori; Nishikawa, Hiroyuki; Kawabata, Atsufumi

    2015-01-01

    It was reported that cilostazol (CLZ) suppressed disruption of the microvasculature in ischemic areas. In this study, we have designed novel injection formulations containing CLZ nanoparticles using 0.5% methylcellulose, 0.2% docusate sodium salt, and mill methods (CLZnano dispersion; particle size 81 ± 59 nm, mean ± S.D.), and investigated their toxicity and usefulness in a cerebral ischemia/reperfusion-induced injury model (MCAO/reperfusion mice). The pharmacokinetics of injections of CLZnano dispersions is similar to that of CLZ solutions prepared with 2-hydroxypropyl-β-cyclodextrin, and no changes in the rate of hemolysis of rabbit red blood cells, a model of cell injury, were observed with CLZnano dispersions. In addition, the intravenous injection of 0.6 mg/kg CLZnano dispersions does not affect the blood pressure and blood flow, and the 0.6 mg/kg CLZnano dispersions ameliorate neurological deficits and ischemic stroke in MCAO/reperfusion mice. It is possible that the CLZnano dispersions will provide effective therapy for ischemic stroke patients, and that injection preparations of lipophilic drugs containing drug nanoparticles expand their therapeutic usage. PMID:26690139

  18. Thermal drift is enough to drive a single microtubule along its axis even in the absence of motor proteins.

    PubMed Central

    Nakata, T; Sato-Yoshitake, R; Okada, Y; Noda, Y; Hirokawa, N

    1993-01-01

    One-dimensional diffusion of microtubules (MTs), a back-and-forth motion of MTs due to thermal diffusion, was reported in dynein motility assay. The interaction between MTs and dynein that allows such motion was implicated in its importance in the force generating cycle of dynein ATPase cycle. However, it was not known whether the phenomenon is special to motor proteins. Here we show two independent examples of one-dimensional diffusion of MTs in the absence of motor proteins. Dynamin, a MT-activated GTPase, causes a nucleotide dependent back-and-forth movement of single MT up to 1 micron along the longitudinal axes, although the MT never showed unidirectional consistent movement. Quantitative analysis of the motion and its nucleotide condition indicates that the motion is due to a thermal driven diffusion, restricted to one dimension, under the weak interaction between MT and dynamin. However, specific protein-protein interaction is not essential for the motion, because similar back-and-forth movement of MT was achieved on coverslips coated with only 0.8% methylcellulose. Both cases demonstrate that thermal diffusion could provide a considerable sliding of MTs only if MTs are restricted on the surface appropriately. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:7906153

  19. Establishment and characterization of a new human bladder cancer cell line showing features of squamous and glandular differentiation.

    PubMed

    Russell, P J; Jelbart, M; Wills, E; Singh, S; Wass, J; Wotherspoon, J; Raghavan, D

    1988-01-15

    Tumour-cell heterogeneity has been studied in a continuous cell line, UCRU-BL-17CL, established from a xenografted human primary bladder carcinoma. The cell line, grown in vitro for more than 30 generations, reflects the pathology of both the xenograft from which it was derived and the original human tumour. It comprises mainly adenocarcinoma cells which secrete mucin in vitro, as well as squamous and transitional carcinoma cells. Features of both adenocarcinomatous and squamous differentiation have been observed within the same cell. The line expresses ABH blood group isoantigens, binds to peanut lectin and reacts with monoclonal antibodies (MAbs) raised against keratin and against normal and malignant epithelial cells. It also reacts with MAbs against ras p21 proteins and the epidermal growth factor receptor (EGFR). It shows high levels of lactic acid dehydrogenase isozyme 5, consistent with a high-grade tumour, forms colonies in methylcellulose and is tumorigenic in nude mice. The karyotype (human) shows many marker chromosomes, consistent with expression of EGF receptors and ras p21 proteins, and an 11:13 translocation. DNA content, as studied by flow cytometry, reveals a shift from tetraploid to near triploid. This line may provide a useful model for studies of the histogenesis of bladder cancer and the relationship between transitional-cell carcinoma and the other histological subtypes of this disease.

  20. Dynamic scaling analysis of two-dimensional cell colony fronts in a gel medium: A biological system approaching a quenched Kardar-Parisi-Zhang universality

    NASA Astrophysics Data System (ADS)

    Huergo, M. A. C.; Muzzio, N. E.; Pasquale, M. A.; González, P. H. Pedro; Bolzán, A. E.; Arvia, A. J.

    2014-08-01

    The interfacial two-dimensional spreading dynamics of quasilinear Vero cell colony fronts in methylcellulose (MC)-containing culture medium, under a constant average front displacement velocity regime, was investigated. Under comparable experimental conditions, the average colony front displacement velocity becomes lower than that reported for a standard culture medium. Initially, the presence of MC in the medium hinders both the colony spreading, due to a gradual change in the average size and shape of cells and their distribution in the colony, and the cell motility in the gelled medium. Furthermore, at longer culture times enlarged cells appear at random in the border region of the colony. These cells behave as obstacles (pinning sites) for the displacement of smaller cells towards the colony front. The dynamic scaling analysis of rough fronts yields the set of exponents α =0.63±0.04,β =0.75±0.05, and z =0.84±0.05, which is close to that expected for a quenched Kardar-Parisi-Zhang model.

  1. Thiomers: a new generation of mucoadhesive polymers.

    PubMed

    Bernkop-Schnürch, Andreas

    2005-11-03

    Thiolated polymers or designated thiomers are mucoadhesive basis polymers, which display thiol bearing side chains. Based on thiol/disulfide exchange reactions and/or a simple oxidation process disulfide bonds are formed between such polymers and cysteine-rich subdomains of mucus glycoproteins building up the mucus gel layer. Thiomers mimic therefore the natural mechanism of secreted mucus glycoproteins, which are also covalently anchored in the mucus layer by the formation of disulfide bonds-the bridging structure most commonly encountered in biological systems. So far the cationic thiomers chitosan-cysteine, chitosan-thiobutylamidine as well as chitosan-thioglycolic acid and the anionic thiomers poly(acylic acid)-cysteine, poly(acrylic acid)-cysteamine, carboxy-methylcellulose-cysteine and alginate-cysteine have been generated. Due to the immobilization of thiol groups on mucoadhesive basis polymers, their mucoadhesive properties are 2- up to 140-fold improved. The higher efficacy of this new generation of mucoadhesive polymers in comparison to the corresponding unmodified mucoadhesive basis polymers could be verified via various in vivo studies on various mucosal membranes in different animal species and in humans. The development of first commercial available products comprising thiomers is in progress. Within this review an overview of the mechanism of adhesion and the design of thiomers as well as delivery systems comprising thiomers and their in vivo performance is provided.

  2. Formulation and Evaluation of Omeprazole Tablets for Duodenal Ulcer

    PubMed Central

    Choudhury, A.; Das, S.; Bahadur, S.; Saha, S.; Roy, A.

    2010-01-01

    Omeprazole pellets containing mucoadhesive tablets were developed by direct punch method. Three mucoadhesive polymers namely hydroxypropylemethylcellulose K4M, sodium carboxy methylcellulose, carbopol-934P and ethyl cellulose were used for preparation of tablets which intended for prolong action may be due to the attachment with intestinal mucosa for relief from active duodenal ulcer. Mucoadhesive tablets were coated with respective polymer and coated with Eudragit L100 to fabricate enteric coated tablets. The prepared tablets were evaluated for different physical parameters and dissolution study were performed in three dissolution mediums like 0.1N hydrochloric acid for 2h, pH 6.5 and pH 7.8 phosphate buffer solution for 12hr. Sodium carboxymethylcellulose showed above 95% release within 10 h where as carbopol-934P showed slow release about 88% to 92% over a period of 12 h. having excellent mucoadhesive strength but ethyl cellulose containing tablets showed less than 65% release. The release mechanism of all formulation was diffusion controlled confirmed from Higuchi’s plot. Thus, the present study concluded that, carbopol-934P containing mucoadhesive tablets of omeprazole pellets can be used for local action in the ulcer disease as well as for oral controlled release drug delivery. PMID:21218061

  3. Design and Evaluation of Ocular Controlled Delivery System for Diclofenac Sodium

    PubMed Central

    Jafariazar, Zahra; Jamalinia, Nasim; Ghorbani-Bidkorbeh, Fatemeh; Mortazavi, Seyed Alireza

    2015-01-01

    Diclofenac sodium as ophthalmic dosage form is used for the treatment of the pain, swelling and redness of patients’ eyes recovering from cataract surgery; however, it faces the bioavailability limitation of eye drops due to effective protective mechanisms and corneal barrier functions in the eyes. Therefore, this investigation was aimed to develop ocular film formulations to achieve controlled drug release. Drug films were prepared using polymers, namely hydroxypropyl methylcellulose (HPMC) and polyvinyl pyrrolidone (PVP), Eudragit RL PO, and Eudragit RS PO by solvent casting method considering parameters such as drug: polymer ratio, different polymer combinations as well as plasticizer effect. Ocular films were evaluated for various physicochemical parameters such as physical characters, film thickness, uniformity of weight, drug content, swelling index, mucoadhesion time and in-vitro release study. Ocular films complied with all physicochemical parameters underwent in-vitro release study. Finally, the film formulation with HPMC: Eudragit RS PO 1:1 ratio, Drug: Polymer ratio 1:45 and glycerin as plasticizer showed controlled and prolonged release following the zero order and non-Fickian transport. PMID:26185502

  4. Natural Micronized Progesterone Sustained Release (SR) and Luteal Phase: Role Redefined!!

    PubMed Central

    Malik, Sonia

    2016-01-01

    Role of progesterone in reproductive medicine is evolving with its suggested clinical role for the hormonal and nonhormonal actions in reproductive medicine. The main function of progesterone is to induce ‘secretory’ changes in endometrium that is further complimented by its immunomodulatory and anti-inflammatory actions. It positively modulates PIBF, NK cells and HOXA 10 genes for better implantation. MHRA recommends Serum Progesterone levels ≥14ng/ml in the mid-luteal phase for supporting pregnancy adequately. Oral Natural Micronized Progesterone SR formulation represents a therapeutic advance in this direction offering ‘therapeutic compliance’ with oral formulation while avoiding the local side effects related to long-term patient compliance in reproductive disorders. The formulation offers round the clock efficiency and efficacy with single dose administration thereby improving patient convenience and compliance. This formulation has been marketed globally since 1986 utilizing the well validated drug delivery system involving Methylcellulose base. The clinical utility of this formulation is further suggested especially in various conditions related with luteal phase insufficiency and Bad obstetric history (BOH) or luteal phase support in ART. The level of evidence has been quite robust with several clinical studies including Prescription Event Monitoring and Investigator initiated studies supporting the clinical role of oral NMP SR formulation especially in ‘Real world’ clinic settings for Luteal phase insufficiency that may be physiological or iatrogenic. PMID:27042538

  5. Development and Characterization of In Situ Oral Gel of Spiramycin

    PubMed Central

    Sharma, Avinash; Sharma, Jyoti; Kaur, Rupinder; Saini, Vinay

    2014-01-01

    The present investigation deals with the optimization, formulation, and characterization of oral in situ gel of spiramycin. Sodium alginate and hydroxypropyl methylcellulose were used as cross-linking and viscosifying agents, respectively. Sodium bicarbonate was used as a floating agent. In preformulation studies, the melting point, pH, and partition coefficient were found to be 133°C, 9.5, and 0.193, respectively. The drug had retention time at around 2.65 minutes in high performance liquid chromatography (HPLC). During compatibility studies of drug with all polymers, we observed that there were no changes in the FTIR spectra of a mixture of drug and polymers. All the formulations showed good pourability. Floating time and total floating time were ~30 sec and >12 hours, respectively. During in vitro drug release studies, the drug was released from the formulation around 80–100% for 12–16 hrs. In TEM analysis, we found that the drug molecules were well entrapped in the polymer and the drug was released slowly for up to 12 hrs. In these studies, we found that the concentration of sodium alginate and HPMC had significant influence on floating lag time, gelling capacity, and cumulative percentage drug release. During antimicrobial studies, we found that the formulation containing spiramycin showed good zone of inhibition against different microbial strains (Staphylococcus aureus and Escherichia coli). PMID:25050376

  6. Design and in vivo evaluation of oxycodone once-a-day controlled-release tablets.

    PubMed

    Kim, Ju-Young; Lee, Sung-Hoon; Park, Chun-Woong; Rhee, Yun-Seok; Kim, Dong-Wook; Park, Junsang; Lee, Moonseok; Seo, Jeong-Woong; Park, Eun-Seok

    2015-01-01

    The aim of present study was to design oxycodone once-a-day controlled-release (CR) tablets and to perform in vitro/in vivo characterizations. Release profiles to achieve desired plasma concentration versus time curves were established by using simulation software and reported pharmacokinetic parameters of the drug. Hydroxypropyl methylcellulose (HPMC) 100,000 mPa·s was used as a release modifier because the polymer was found to be resistant to changes in conditions of the release study, including rotation speed of paddle and ion strength. The burst release of the drug from the CR tablets could be suppressed by applying an additional HPMC layer as a physical barrier. Finally, the oxycodone once-a-day tablet was comprised of two layers, an inert HPMC layer and a CR layer containing drug and HPMC. Commercial products, either 10 mg bis in die (bid [twice a day]) or once-a-day CR tablets (20 mg) were administered to healthy volunteers, and calculated pharmacokinetic parameters indicated bioequivalence of the two different treatments. The findings of the present study emphasize the potential of oxycodone once-a-day CR tablets for improved patient compliance, safety, and efficacy, which could help researchers to develop new CR dosage forms of oxycodone.

  7. Mucoadhesive in situ gel formulation for vaginal delivery of clotrimazole: formulation, preparation, and in vitro/in vivo evaluation.

    PubMed

    Rençber, Seda; Karavana, Sinem Yaprak; Şenyiğit, Zeynep Ay; Eraç, Bayri; Limoncu, Mine Hoşgör; Baloğlu, Esra

    2017-06-01

    The purpose of this study was to develop a suitable mucoadhesive in situ gel formulation of clotrimazole (CLO) for the treatment of vaginal candidiasis. For this aim, the mixture of poloxamer (PLX) 407 and 188 were used to prepare in situ gels. Hydroxypropyl methylcellulose (HPMC) K100M or E50 was added to in situ gels in 0.5% ratio to improve the mucoadhesive and mechanical properties of formulations and to prolong the residence time in vaginal cavity. After the preparation of mucoadhesive in situ gels; gelation temperature/time, viscosity, mechanical, mucoadhesive, syringeability, spreadibility and rheological properties, in vitro release behavior, and anticandidal activities were determined. Moreover vaginal retention of mucoadhesive in situ gels was investigated with in vivo distribution studies in rats. Based on the obtained results, it was found that gels prepared with 20% PLX 407, 10% PLX 188 and 0.5% HPMC K100M/E50 might be suitable for vaginal administration of CLO. In addition, the results of in vivo distribution studies showed that gel formulations remained on the vaginal mucosa even 24 h after application. In conclusion, the mucoadhesive in situ gels of CLO would be alternative candidate for treatment of vaginal candidiasis since it has suitable gel properties with good vaginal retention.

  8. Development of the ambroxol gels for enhanced transdermal delivery.

    PubMed

    Cho, Cheong-Weon; Choi, Jun-Shik; Shin, Sang-Chul

    2008-03-01

    Ambroxol is an expectoration improver and mucolytic agent that has been used to treat acute and chronic disorders. However, ambroxol needs to be administered percutaneously in order to avoid systemic adverse effects, such as headache, drowsiness, dizziness, and insomnia, which can occur after oral administration. The aim of this study was to develop a gel preparation containing a permeation enhancer to enhance the delivery of ambroxol. The ambroxol gels were prepared using hydroxypropyl methylcellulose (HPMC) and poloxamer 407. The release characteristics of the drug from the gels were examined according to the receptor medium, drug concentration, and temperature. The rate of drug permeation into the skin was enhanced by incorporating various enhancers such as the ethylene glycols, the propylene glycols, the glycerides, the non-ionic surfactants, and the fatty acids into the gels. The permeation study through mouse skin was examined at 37 C. The rate of drug release increased with increasing drug concentration and temperature. Among the enhancers used, propylene glycol mono caprylate showed the best enhancing effects. The estimated activation energy of release (Ea), which was calculated from the slope of a log P versus 1000/T plot, was 14.80, 14.22, 13.91, and 12.46 kcal/mol for ambroxol loading doses of 2, 3, 4, and 5%, respectively. The results of this study show that the gel preparation of ambroxol containing a permeation enhancer could be developed for the enhanced transdermal delivery of ambroxol.

  9. Combination Ointment Containing Solid Tranilast Nanoparticles and Dissolved Sericin Is Efficacious for Treating Skin Wound-Healing Deficits and Redness in Diabetic Rats.

    PubMed

    Nagai, Noriaki; Ogata, Fumihiko; Deguchi, Saori; Ueno, Akina; Kawasaki, Naohito; Ito, Yoshimasa

    2017-01-01

    We attempted to design a combination ointment containing solid tranilast nanoparticles and dissolved sericin as a wound-healing drug (TS-combination ointment), and evaluated its usefulness as therapy for wound-healing deficits in streptozotocin-induced diabetic rat (STZ rat) using kinetic analyses as an index. Solid tranilast nanoparticles were prepared by bead mill methods with low-substituted methylcellulose; the mean particle size of the tranilast nanoparticles was 70 nm. The ointment was designed to contain the tranilast nanoparticles plus sericin powder and/or Carbopol(®) 934. Skin wound healing in STZ rats begins significantly later than in normal rats. Although the skin wound healing rate in STZ rats treated with an ointment containing tranilast nanoparticles was lower than in STZ rats treated with vehicle, the ointment was effective in reducing redness. An ointment containing sericin enhanced the skin-healing rate, but the preventive effect on redness was weak. On the other hand, the combination of tranilast and sericin increased both the skin healing rate and reduction in redness. In conclusion, we have adapted kinetic analyses to skin wound healing in rats, and found these analyses to be useful as an index of wound healing ability by a wound-healing drug. In addition, we show that treatment with the TS-combination ointment enhances the skin wound healing rate and reduces redness. These findings provide information significant to the search for new wound-healing therapies and for the design of wound-healing drugs.

  10. Assessment of Photodynamic Inactivation against Periodontal Bacteria Mediated by a Chitosan Hydrogel in a 3D Gingival Model.

    PubMed

    Peng, Po-Chun; Hsieh, Chien-Ming; Chen, Chueh-Pin; Tsai, Tsuimin; Chen, Chin-Tin

    2016-11-01

    Chitosan hydrogels containing hydroxypropyl methylcellulose (HPMC) and toluidine blue O were prepared and assessed for their mucoadhesive property and antimicrobial efficacy of photodynamic inactivation (PDI). Increased HPMC content in the hydrogels resulted in increased mucoadhesiveness. Furthermore, we developed a simple In Vitro 3D gingival model resembling the oral periodontal pocket to culture the biofilms of Staphylococcus aureus (S. aureus), Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), and Porphyromonas gingivalis (P. gingivalis). The PDI efficacy of chitosan hydrogel was examined against periodontal biofilms cultured in this 3D gingival model. We found that the PDI effectiveness was limited due to leaving some of the innermost bacteria alive at the non-illuminated site. Using this 3D gingival model, we further optimized PDI procedures with various adjustments of light energy and irradiation sites. The PDI efficacy of the chitosan hydrogel against periodontal biofilms can significantly improve via four sides of irradiation. In conclusion, this study not only showed the clinical applicability of this chitosan hydrogel but also the importance of the light irradiation pattern in performing PDI for periodontal disease.

  11. Floating-mucoadhesive beads of clarithromycin for the treatment of Helicobacter pylori infection.

    PubMed

    Gattani, Surendra Ganeshlal; Savaliya, Pankaj Jayantilal; Belgamwar, Veena Shailendra

    2010-06-01

    An objective of the present study was to develop alginate/hydroxypropyl methylcellulose (HPMC) based floating-mucoadhesive beads of clarithromycin to provide prolonged contact time of antibiotic to treat stomach ulcer. Floating-mucoadhesive beads were prepared and characterized for in vitro performance followed by investigation of ex vivo study in albino-wistar rats. Beads were prepared by ionic gelation technique where calcium chloride used as gelating agent and incorporated liquid paraffin for floating of the beads. Prepared beads were evaluated extensively for particle size, drug entrapment; swelling and surface morphology by using scanning electron microscopy. X-ray radioimaging study in rabbits, in vitro mucoadhesion using rat stomach mucosal membrane and in vitro drug release studies were carried out. Ex vivo performance of alginate-HPMC beads were studied using albino rats in comparison to simple alginate-calcium beads. Alginate-HPMC beads may be suitable floating-muco-adhesive drug delivery system for delivering clarithromycin to treat stomach ulcers.

  12. Dry coating in a rotary fluid bed.

    PubMed

    Kablitz, Caroline Désirée; Harder, Kim; Urbanetz, Nora Anne

    2006-02-01

    A highly efficient dry coating process was developed to obtain an enteric film avoiding completely the use of organic solvents and water. Using hydroxypropyl methylcellulose acetate succinate (HPMCAS) an enteric coat should be obtained without adding talc as anti-tacking agent because of problems arising from microbiological contamination. Further on, a method was developed preparing isolated films in order to determine the glass transition temperature (T(g)) and the required process temperature. The process was conducted in the rotary fluid bed with a gravimetric powder feeder achieving an exact dosage in contrast to volumetric powder feeder. A three way nozzle was aligned tangential to the pellet bed movement feeding simultaneously powder and plasticizer into the rotary fluid bed. The determined coating efficiency of the talc-free formulation was high with 94% and storage stability regarding tacking could be achieved using colloidal silicium dioxide as top powder. The T(g) of the enteric coat could be determined analyzing the T(g) of isolated films obtained by coating celluloid spheres instead of pellets using the dry coating process in rotary fluid bed. The dry coating process has been demonstrated to be a serious alternative to conventional solvent or water based coating processes.

  13. Alignment of actin filament streams driven by myosin motors in crowded environments.

    PubMed

    Iwase, Takahiro; Sasaki, Yasuhiko; Hatori, Kuniyuki

    2017-07-25

    Cellular dynamics depend on cytoskeletal filaments and motor proteins. Collective movements of filaments driven by motor proteins are observed in the presence of dense filaments in in vitro systems. As multiple macromolecules exist within cells and the physiological ionic conditions affect their interactions, crowding might contribute to ordered cytoskeletal architecture because of collective behavior. Using an in vitro reconstituted system, we observed the emergence of stripe patterns resulting from collective actin filament streaming driven by myosin motors in the presence of the crowding agent, methylcellulose (MC). Although at high KCl concentrations (150mM), actin filaments tended to dissociate from a myosin-coated surface, 1% MC prevented this dissociation and enabled filament movement on myosin molecules. At concentrations of actin filaments above 0.2mg/mL, the moving filaments accumulated and progressively formed long, dense bands. The bands were spaced at about 10-μm intervals. Increasing the KCl concentration up to 300mM resulted in narrowing of the spacing between the aligned bands. On the other hand, low KCl concentrations (≤25mM) induced broad streams, where actin filaments exhibited bidirectional movement. These results suggest that crowded environments can promote spatial patterning of the actin cytoskeleton, depending on the intensity of the myosin driving force and filament velocity, both modulated by the ionic strength. The mutual contribution of packing and driving forces provides insight into cytoskeleton organization in living cells, in which various macromolecules mingle. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Fast drying of biocompatible polymer films loaded with poorly water-soluble drug nano-particles via low temperature forced convection.

    PubMed

    Susarla, Ramana; Sievens-Figueroa, Lucas; Bhakay, Anagha; Shen, Yueyang; Jerez-Rozo, Jackeline I; Engen, William; Khusid, Boris; Bilgili, Ecevit; Romañach, Rodolfo J; Morris, Kenneth R; Michniak-Kohn, Bozena; Davé, Rajesh N

    2013-10-15

    Fast drying of nano-drug particle laden strip-films formed using water-soluble biocompatible polymers via forced convection is investigated in order to form films having uniform drug distribution and fast dissolution. Films were produced by casting and drying a mixture of poorly water soluble griseofulvin (GF) nanosuspensions produced via media milling with aqueous hydroxypropyl methylcellulose (HPMC E15LV) solutions containing glycerin as a plasticizer. The effects of convective drying parameters, temperature and air velocity, and film-precursor viscosity on film properties were investigated. Two major drying regimes, a constant rate period as a function of the drying conditions, followed by a single slower falling rate period, were observed. Films dried in an hour or less without any irreversible aggregation of GF nanoparticles with low residual water content. Near-infrared chemical imaging (NIR-CI) and the content uniformity analysis indicated a better drug particle distribution when higher viscosity film-precursors were used. Powder X-ray diffraction showed that the GF in the films retained crystallinity and the polymorphic form. USP IV dissolution tests showed immediate release (~20 min) of GF. Overall, the films fabricated from polymer-based suspensions at higher viscosity dried at different conditions exhibited similar mechanical properties, improved drug content uniformity, and achieved fast drug dissolution. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Regulation of heme metabolism in normal and sideroblastic bone marrow cells in culture

    SciTech Connect

    Ibraham, N.G.; Lutton, J.D.; Hoffman, R.; Levere, R.D.

    1985-05-01

    Heme metabolism was examined in developing in vitro erythroid colonies (CFUE) and in bone marrow samples taken directly from four normal donors and four patients with sideroblastic anemia. Maximum activities of delta-aminolevulinic acid synthase (ALAS), ALA dehydratase (ALAD), and /sup 14/C-ALA incorporation into heme were achieved in normal marrow CFUE after 8 days of culture, whereas heme oxygenase progressively decreased to low levels of activity during the same period. Assays on nucleated bone marrow cells taken directly from patients revealed that ALAS activity was considerably reduced in idiopathic sideroblastic anemia (IASA) and X-linked sideroblastic anemia (X-SA) bone marrow specimens, whereas the activity increased more than twofold (normal levels) when cells were assayed from 8-day CFUE. In all cases, ALAD activity appeared to be within normal levels. Measurement of heme synthesis revealed that normal levels of /sup 14/C-ALA incorporation into heme were achieved in IASA cells but were reduced in X-SA cells. In marked contrast to levels in normal cells, heme oxygenase was found to be significantly elevated (two- to fourfold) in bone marrow cells taken directly from patients with IASA and X-SA. Results from this study demonstrate that IASA and X-SA bone marrow cells have disturbances in ALAS and heme metabolism, and that erythropoiesis (CFUE) can be restored to normal levels when cells are cultured in methylcellulose.

  16. A new method to determine the partial solubility parameters of polymers from intrinsic viscosity.

    PubMed

    Bustamante, Pilar; Navarro-Lupión, Javier; Escalera, Begoña

    2005-02-01

    A modification of the extended Hansen method, formerly used to determine the partial solubility parameters of drugs and non-polymeric excipients is tested with a polymer for the first time. The proposed method relates the logarithm of the intrinsic viscosities of the polymer in a series of solvents and solvent mixtures with the Hansen (three parameter model) and Karger (four parameter model) partial solubility parameters. The viscosity of diluted solutions of hydroxypropyl methylcellulose (HPMC) was determined in pure solvents and binary mixtures of varying polarity. The intrinsic viscosity was obtained from the common intercept of the Huggins and Kraemer relationships. The intrinsic viscosity tends to increase with increasing the solubility parameter of the medium. The results show that hydrogen bonding and polarity of the polymer largely determine polymer-solvent interactions. The models proposed provided reasonable partial and total solubility parameters for the polymer and enable one to quantitatively characterize, for the first time, the Lewis acid-base ability of a polymer thus, providing a more realistic picture of hydrogen bonding for solvent selection/compatibility and to predict drug-polymer interactions. Combination of the dispersion and polar parameters into a single non-specific solubility parameter was also tested. The results extend earlier findings and suggest that the models are quite versatile and may be applied to drugs, non-polymeric and polymeric excipients.

  17. Laminated sponges as challenging solid hydrophilic matrices for the buccal delivery of carvedilol microemulsion systems: Development and proof of concept via mucoadhesion and pharmacokinetic assessments in healthy human volunteers.

    PubMed

    Abd-Elbary, Ahmed; Makky, Amna M A; Tadros, Mina Ibrahim; Alaa-Eldin, Ahmed Adel

    2016-01-20

    Carvedilol (CVD) suffers from low absolute bioavailability (25%) due to its limited aqueous solubility and hepatic first-pass metabolism. Hydroxypropyl methylcellulose (HPMC) laminated buccal sponges loaded with CVD microemulsions (CVD-ME) were exploited to surmount such limitations. Six pseudoternary-phase diagrams were constructed using Capmul® MCM C8/Capmul® PG8, Tween® 80, propylene glycol and water. Six CVD-ME systems (0.625% w/v) were incorporated into HPMC core sponges backed with Ethocel® layers. The sponges were preliminary evaluated via FT-IR, DSC and XRD. The surface pH, morphology and in vitro drug release studies were evaluated. In vivo mucoadhesion and absorption studies of the best achieved laminated sponges (F4) were assessed in healthy volunteers. CVD-ME systems displayed nano-spherical clear droplets. The sponges showed interconnecting porous matrices through which CVD was dispersed in amorphous state. No intermolecular interaction was detected between CVD and HPMC. The surface pH values were almost neutral. The sponges loaded with CVD-ME systems showed more sustained-release profiles than those loaded with CVD-powder. Compared to Dilatrend® tablets, the significantly (P<0.05) higher bioavailability (1.5 folds), delayed Tmax and prolonged MRT(0-∞) unraveled the dual-potential of F4 sponges for water-insoluble drugs, like CVD, in improving drug oral bioavailability and in controlling drug release kinetics via buccal mucosa.

  18. Design and In Vitro/In Vivo Evaluation of Ultra-Thin Mucoadhesive Buccal Film Containing Fluticasone Propionate.

    PubMed

    Ammar, Hussein O; Ghorab, Mahmoud M; Mahmoud, Azza A; Shahin, Hend I

    2017-01-01

    Fluticasone propionate is a synthetic corticosteroid drug distinguished by its potent anti-inflammatory action with low systemic side effects in comparison to other corticosteroids making it a potential drug for local buccal delivery. The aim of the present study was to design mucoadhesive buccal film containing fluticasone that is aesthetically acceptable and could maintain local drug release for a sustained period to manage the sign and symptoms of severe erosive mouth lesions. Solvent casting technique was used in film preparation. Different polymeric blends were used either alone or in combination with mucoadhesive polymers, sodium carboxymethyl cellulose (SCMC), or Carbopol 971P at different concentrations. The physicochemical properties, in vitro mucoadhesion time as well as the drug release properties for all prepared formulations were determined. Selected formulations with adequate properties were further examined by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) and subjected to in vivo evaluation. Films containing hydroxypropyl methylcellulose (HPMC)/ethyl cellulose (EC) showed acceptable physicochemical properties, homogenous drug distribution, convenient mucoadhesion time, moderate swelling as well as sustained drug release up to 12 h. The biological performance of these formulations was assessed on healthy human volunteers and compared with a prepared mouthwash which showed enhanced pharmacokinetic parameters for the selected films in comparison to the mouthwash. The results revealed that the optimized formulation containing HPMC/EC and 10% SCMC could successfully achieve sustained drug release for 10 h which is considered promising for local treatment of severe mouth lesions.

  19. Multiple-unit tablet of probiotic bacteria for improved storage stability, acid tolerability, and in vivo intestinal protective effect

    PubMed Central

    Park, Hee Jun; Lee, Ga Hyeon; Jun, Joonho; Son, Miwon; Kang, Myung Joo

    2016-01-01

    The aim of this study was to formulate probiotics-loaded pellets in a tablet form to improve storage stability, acid tolerability, and in vivo intestinal protective effect. Bacteria-loaded pellets primarily prepared with hydroxypropyl methylcellulose acetate succinate were compressed into tablets with highly compressible excipients and optimized for flow properties, hardness, and disintegration time. The optimized probiotic tablet consisted of enteric-coated pellets (335 mg), microcrystalline cellulose (Avicel PH102, 37.5 mg), and porous calcium silicate (25 mg) and allowed whole survival of living bacteria during the compaction process with sufficient tablet hardness (13 kp) and disintegration time (14 minutes). The multiple-unit tablet showed remarkably higher storage stability under ambient conditions (25°C/60% relative humidity) over 6 months and resistance to acidic medium compared to uncoated strains or pellets. Repeated intake of this multiple-unit tablet significantly lowered plasma level of endotoxin, a pathogenic material, compared to repeated intake of bare probiotics or marketed products in rats. These results, therefore, suggest that the multiple-unit tablet is advantageous to better bacterial viability and gain the beneficial effects on the gut flora, including the improvement of intestinal barrier function. PMID:27103789

  20. Hydrophilic-hydrophobic polymer blend for modulation of crystalline changes and molecular interactions in solid dispersion.

    PubMed

    Van Ngo, Hai; Nguyen, Phuc Kien; Van Vo, Toi; Duan, Wei; Tran, Van-Thanh; Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh

    2016-11-20

    This research study aimed to develop a new strategy for using a polymer blend in solid dispersion (SD) for dissolution enhancement of poorly water-soluble drugs. SDs with different blends of hydrophilic-hydrophobic polymers (zein/hydroxypropyl methylcellulose - zein/HPMC) were prepared using spray drying to modulate the drug crystal and polymer-drug interactions in SDs. Physicochemical characterizations, including power X-ray diffraction and Fourier transform infrared spectroscopy, were performed to elucidate the roles of the blends in SDs. Although hydrophobic polymers played a key role in changing the model drug from a crystal to an amorphous state, the dissolution rate was limited due to the wetting property. Fortunately, the hydrophilic-hydrophobic blend not only reduced the drug crystallinity but also resulted in a hydrogen bonding interaction between the drugs and the polymer for a dissolution rate improvement. This work may contribute to a new generation of solid dispersion using a blend of hydrophilic-hydrophobic polymers for an effective dissolution enhancement of poorly water-soluble drugs.

  1. Effect of hydrophilic polymers on the wettability, static and dynamic, of solid substrate covered by confluent monolayer of air-damaged SIRC cells.

    PubMed

    Eftimov, Petar; Stefanova, Nadezhda; Lalchev, Zdravko; Georgiev, Georgi As

    2015-03-04

    The aim of this study was to evaluate the possible implementation of hydrophilic polymers as recovery agents in air-damaged corneal cells. The sessile bubble technique was implemented to measure the wetting properties of four selected polymers: hydroxyethyl cellulose (HEC), sodium chondroitin sulphate (SCS), hydroxypropyl-methylcellulose (HPMC) and poloxamer F127 (PO12), at equilibrium conditions and in the case of advancing and receding contact angle. For testing the wetting properties of the polymers, glass slides covered with a confluent monolayer of Statens Seruminstitut rabbit cornea (SIRC) cells were used. HEC showed best properties for a broad concentration range, as the polymer showed capability to maintain low values of the static (equilibrium) contact angle (average static contact angle - 36.07˚, compared to average static compact angles of HPMC - 38.44˚, PO12 - 38.92˚ and SCS - 37.85˚), i.e. better wettability. Sessile bubble technique provides quick, relatively simple and reliable approach for testing surface properties of the listed polymers. The nature of the surface damage produced by the exposition of SIRC cells was used as a plausible model of evaporative dry eye syndrome, and thus the results may have clinical implementation.

  2. Effects of 4-week administration of simvastatin in different doses on heart rate and blood pressure after metoprolol injection in normocholesterolaemic and normotensive rats.

    PubMed

    Owczarek, Jacek; Jasińska, Magdalena; Wejman, Irena; Kurczewska, Urszula; Orszulak-Michalak, Daria

    2012-02-29

    Statins and β1-adrenergic antagonists are well established in cardiovascular events therapy and prevention. The previous study showed that statins might impact on β-adrenergic signalling and blood pressure in a dose-dependent manner. The aim of the study was to evaluate the impact of 4-week administration of simvastatin given at different doses on the heart rate and blood pressure after injection of metoprolol in rats. The experiments were performed in normocholesterolaemic and normotensive Wistar rats. Rats received simvastatin in doses of 1, 10 and 20 mg/kg body weight (bw) for 4 weeks. The control group received 0.2% methylcellulose. For the further estimation of the heart rate and blood pressure, metoprolol at 5 mg/kg bw or 0.9% NaCl was injected intraperitoneally. Simvastatin at doses of 1, 10 and 20 mg/kg bw did not influence the heart rate or blood pressure as compared to the control group. Metoprolol injection statistically significantly decreased the heart rate (439.29±14.03 min(-1) vs. 374.41±13.32 min(-1); p<0.05). In rats receiving simvastatin during the 4-week period after metoprolol injection, heart rate and blood pressure (mean, systolic, diastolic) were similar as compared to the group receiving metoprolol alone. Simvastatin administration during a 4-week period in different doses did not influence the heart rate or blood pressure after metoprolol injection in normocholesterolaemic and normotensive rats.

  3. Defining the design space for freeze-dried orodispersible tablets with meloxicam.

    PubMed

    Iurian, Sonia; Tomuta, Ioan; Bogdan, Cătălina; Rus, Lucia; Tokes, Timea; Barbu-Tudoran, Lucian; Achim, Marcela; Moldovan, Mirela; Leucuta, Sorin

    2016-12-01

    This work focused on simultaneously investigating formulation variables and freeze-drying parameters when preparing orodispersible tablets with meloxicam (Mel), by a Quality by Design (QbD) approach. Methylcellulose (MC) was selected as a matrix forming agent and mannitol (Man) as cryoprotectant, both at two concentration levels. The freezing regime was also varied between fast and shelf-ramped, to find out how it affects the final products. The tablet formulations were characterized for their disintegration time, wetting properties, mechanical properties, morphology and in vitro dissolution. Response Surface Modeling completed the statistical analysis that assessed the effects of independent variables on the responses. All the responses showed good fitting to the chosen model. The increase in MC content determined a positive effect on disintegration time, wetting time, mechanical strength and a negative effect on Mel dissolution. High levels of Man-determined brittle products with low-absorption capacity and fast Mel dissolution. The freezing rate had an important effect on the structure of tablets: fast freezing determined slightly thicker pore walls with smooth surfaces, while shelf-ramped freezing led to a multiple-layer structure with increased hardness. Still, shelf-ramped freezing yielded higher Mel release, due to physical changes of the active substance during the freeze-drying process. From the generated design space, an optimal formulation was obtained and the results validated the experimental design. The QbD approach was an efficient manner of understanding formulation and process parameters at the freeze-dried orodispersible tablets preparation.

  4. Desktop 3D printing of controlled release pharmaceutical bilayer tablets.

    PubMed

    Khaled, Shaban A; Burley, Jonathan C; Alexander, Morgan R; Roberts, Clive J

    2014-01-30

    Three dimensional (3D) printing was used as a novel medicine formulation technique for production of viable tablets capable of satisfying regulatory tests and matching the release of standard commercial tablets. Hydroxypropyl methylcellulose (HPMC 2208) (Methocel™ K100M Premium) and poly(acrylic acid) (PAA) (Carbopol(®) 974P NF) were used as a hydrophilic matrix for a sustained release (SR) layer. Hypromellose(®) (HPMC 2910) was used as a binder while microcrystalline cellulose (MCC) (Pharmacel(®) 102) and sodium starch glycolate (SSG) (Primojel(®)) were used as disintegrants for an immediate release (IR) layer. Commercial guaifenesin bi-layer tablets (GBT) were used as a model drug (Mucinex(®)) for this study. There was a favourable comparison of release of the active guaifenesin from the printed hydrophilic matrix compared with the commercially available GBT. The printed formulations were also evaluated for physical and mechanical properties such as weight variation, friability, hardness and thickness as a comparison to the commercial tablet and were within acceptable range as defined by the international standards stated in the United States Pharmacopoeia (USP). All formulations (standard tablets and 3D printed tablets) showed Korsmeyer-Peppas n values between 0.27 and 0.44 which indicates Fickian diffusion drug release through a hydrated HPMC gel layer. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Effects of different emulsifier types, fat contents, and gum types on retardation of staling of microwave-baked cakes.

    PubMed

    Seyhun, Nadide; Sumnu, Gülüm; Sahin, Serpil

    2003-08-01

    The effects of different types of emulsifiers, gums, and fat contents on the retardation of staling of microwave-baked cakes were investigated. First, different types of emulsifiers (DATEM, Lecigran, and Purawave) at three different fat contents (50%, 25%, and 0%) were added to cake formulations to retard staling of microwave-baked cakes. Then, three types of gums (guar gum, xanthan gum, and methylcellulose) were added to the optimum formulations chosen. As a control, cakes formulated without any emulsifier or gum addition and baked in an conventional oven at 175 degrees C for 25 min was used. Weight loss, firmness, soluble starch and amylose content of the cakes were used as the indicators of staling criteria. Cakes were baked in a microwave oven for 1.5 min at 100% power. Variation of staling parameters during storage of cakes followed zero-order kinetics. Use of emulsifiers and gums helped to retard staling of microwave-baked cakes. Fat content was found to be a significant factor in affecting variation of firmness and weight loss of the cakes during storage. DATEM and Purawave were the most effective emulsifier types. Using gums in combination with emulsifiers gave better moisture retention and softer cakes than using gums alone.

  6. N-acetylglucosamine increases symptoms and fungal burden in a murine model of oral candidiasis.

    PubMed

    Ishijima, Sanae A; Hayama, Kazumi; Takahashi, Miki; Holmes, Ann R; Cannon, Richard D; Abe, Shigeru

    2012-04-01

    The amino sugar N-acetylglucosamine (GlcNAc) is an in vitro inducer of the hyphal mode of growth of the opportunistic pathogen Candida albicans. The development of hyphae by C. albicans is considered to contribute to the pathogenesis of mucosal oral candidiasis. GlcNAc is also a commonly used nutritional supplement for the self-treatment of conditions such as arthritis. To date, no study has investigated whether ingestion of GlcNAc has an effect on the in vivo growth of C. albicans or the pathogenesis of a C. albicans infection. Using a murine model of oral candidiasis, we have found that administration of GlcNAc, but not glucose, increased oral symptoms of candidiasis and fungal burden. Groups of mice were given GlcNAc in either water or in a viscous carrier, i.e., 1% methylcellulose. There was a dose-dependent relationship between GlcNAc concentration and the severity of oral symptoms. Mice given the highest dose of GlcNAc, 45.2 mM, also showed a significant increase in fungal burden, and increased histological evidence of infection compared to controls given water alone. We propose that ingestion of GlcNAc, as a nutritional supplement, may have an impact on oral health in people susceptible to oral candidiasis.

  7. Insights into Nano- and Micron-Scale Phase Separation in Amorphous Solid Dispersions Using Fluorescence-Based Techniques in Combination with Solid State Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Purohit, Hitesh S; Ormes, James D; Saboo, Sugandha; Su, Yongchao; Lamm, Matthew S; Mann, Amanda K P; Taylor, Lynne S

    2017-07-01

    Miscibility between the drug and the polymer in an amorphous solid dispersion (ASD) is considered to be one of the most important factors impacting the solid state stability and dissolution performance of the active pharmaceutical ingredient (API). The research described herein utilizes emerging fluorescence-based methodologies to probe (im)miscibility of itraconazole (ITZ)-hydroxypropyl methylcellulose (HPMC) ASDs. The ASDs were prepared by solvent evaporation with varying evaporation rates and were characterized by steady-state fluorescence spectroscopy, confocal imaging, differential scanning calorimetry (DSC), and solid state nuclear magnetic resonance (ssNMR) spectroscopy. The size of the phase separated domains for the ITZ-HPMC ASDs was affected by the solvent evaporation rate. Smaller domains (<10 nm) were observed in spray-dried ASDs, whereas larger domains (>30 nm) were found in ASDs prepared using slower evaporation rates. Confocal imaging provided visual confirmation of phase separation along with chemical specificity, achieved by selectively staining drug-rich and polymer-rich phases. ssNMR confirmed the results of fluorescence-based techniques and provided information on the size of phase separated domains. The fluorescence-based methodologies proved to be sensitive and rapid in detecting phase separation, even at the nanoscale, in the ITZ-HPMC ASDs. Fluorescence-based methods thus show promise for miscibility evaluation of spray-dried ASDs.

  8. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: Chemical shifts assignment.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Comparison of Gavage, Water Bottle, and a High-Moisture Diet Bolus as Dosing Methods for Quantitative D-xylose Administration to B6D2F1 (Mus musculus) Mice

    NASA Technical Reports Server (NTRS)

    Zimmer, J. Paul; Lewis, Sherry M.; Moyer, Jerry L.

    1993-01-01

    Gavage, water bottle, and diet incorporation are 3 dosing methods used orally to administer test compounds to rodents. These 3 methods were compared in mice to determine which represented the most quantitative delivery system. For dietary incorporation, a high-moisture bolus form of NIH-31 rodent meal was developed using hydroxypropyl methylcellulose as an autoclave-stable binding agent. A high-moisture bolus were selected to increase the acceptability of the dosed diet and to promote quantitative consumption through reduced wastage. The test compound used was D-xylose, a pentose sugar that may be quantitatively detected, colorimetrically, in urine following oral dosing. Six male and 6 female B6D2FI mice were placed in metabolism cages and dosed with a known quantity of D-xylose by each of the 3 methods. Urine was collected before and after each method of administration and analysed for total D-xylose; the per cent recovery was based upon the amount of D-xylose consumed. Quantitative consumption was apparently greatest for water bottle dosing with an average recovery of 56.0% of the original D-xylose dose. High-moisture bolus incorporation ranked second with 50.0% D-xylose recovery, and gavage was third with 41.0% D-xylose recovery.

  10. Detection of telomerase activity using microchip electrophoresis.

    PubMed

    Karasawa, Koji; Arakawa, Hidetoshi

    2015-07-01

    Telomerase participates in malignant transformation or immortalization of cells and thus has attracted attention as an anticancer drug target and diagnostic tumor marker. The telomeric repeat amplification protocol (TRAP) and improved TRAP methods (TRAP-fluorescence, TRAP-hybridization, etc.) are widely used forms of this telomerase assay. However, these approaches generally employ acrylamide gel electrophoresis after amplification of telomeric repeats by polymerase chain reaction (PCR), making these TRAP methods time consuming and technically demanding. In this study we developed a novel telomerase assay using microchip electrophoresis for rapid and highly sensitive detection of telomerase activity in cancer cells. The mixed gel of 0.8% hydroxypropyl methylcellulose (HPMC) and 0.3% polyethylene oxide (PEO) with SYBR Gold (fluorescent reagent) was used for microchip electrophoresis. As a result, the product amplified by a telomerase-positive cell could be measured in one cell per assay and detected with high reproducibility (CV=0.67%) in the short time of 100s. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Nanotransfersomes-loaded thermosensitive in situ gel as a rectal delivery system of tizanidine HCl: preparation, in vitro and in vivo performance.

    PubMed

    Moawad, Fatma A; Ali, Adel A; Salem, Heba F

    2017-11-01

    The purpose of the current study was to develop tizanidine HCl (TIZ; a myotonolytic agent used for treatment of spasticity) loaded nanotransfersomes intended for rectal administration, aiming to bypass the hepatic first-pass metabolism. TIZ-loaded nanotransfersomes were prepared by thin-film hydration method followed by characterization for various parameters including entrapment efficiency, vesicle diameter, in vitro release and ex vivo permeation studies. Transfersomal formulation composed of phosphatidylcholine and Tween 80 at a weight ratio of (85:15) gave a satisfactory results. It exhibited encapsulation efficiency of 52.39%, mean diameter of 150.33 nm, controlled drug release over 8 h and good permeation characteristics. Optimum formula was then incorporated into Pluronic-based thermoreversible gel using hydroxypropyl methylcellulose (HPMC) as a mucoadhesive polymer. Pharmacokinetic study was performed by rectal administration of transfersomes-loaded in situ gel to rabbits and compared with oral drug solution and rectal TIZ in situ gel. The pharmacokinetic study revealed that the transfersomal formulation successively enhanced the bioavailability of TIZ by about 2.18-fold and increased t1/2 to about 10 h as compared to oral solution. It can be concluded that encapsulation of TIZ into nanotransfersomes can achieve a dual purpose of prolonged TIZ release and enhanced bioavailability and so may be considered as a promising drug delivery system for the treatment of spasticity.

  12. Green Bioprinting: Extrusion-based fabrication of plant cell-laden biopolymer hydrogels scaffolds.

    PubMed

    Seidel, Julia; Ahlfeld, Tilman; Adolph, Max; Kümmritz, Sibylle; Steingroewer, Juliane; Krujatz, Felix; Bley, Thomas; Gelinsky, Michael; Lode, Anja

    2017-08-24

    Plant cell cultures produce active agents for pharmaceuticals, food and cosmetics. However, up to now process control for plant cell suspension cultures is challenging. A positive impact of cell immobilization, such as encapsulation in hydrogel beads, on secondary metabolites production has been reported for several plant species. The aim of this work was to develop a method for bioprinting of plant cells in order to allow fabrication of free-formed three-dimensional matrices with defined internal pore architecture for in depth characterization of immobilization conditions, cell agglomeration and interactions. By using extrusion-based 3D plotting of a basil cell-laden hydrogel blend consisting of alginate, agarose and methylcellulose (alg/aga/mc), we could demonstrate that bioprinting is applicable to plant cells. The majority of the cells survived plotting and crosslinking and the embedded cells showed high viability and metabolic activity during the investigated cultivation period of 20 days. Beside its compatibility with the plant cells, the novel alg/aga/mc blend allowed fabrication of defined 3D constructs with open macropores both in vertical and horizontal direction which were stable under culture conditions for several weeks. Thus, Green Bioprinting, an additive manufacturing technology processing live cells from the plant kingdom, is a promising new immobilization tool for plant cells that enables the development of new bioprocesses for secondary metabolites production as well as monitoring methods. © 2017 IOP Publishing Ltd.

  13. Understanding and managing the impact of HPMC variability on drug release from controlled release formulations.

    PubMed

    Zhou, Deliang; Law, Devalina; Reynolds, Judie; Davis, Lynn; Smith, Clifford; Torres, Jose L; Dave, Viraj; Gopinathan, Nishanth; Hernandez, Daniel T; Springman, Mary Kay; Zhou, Casey Chun

    2014-06-01

    The purpose of this study is to identify critical physicochemical properties of hydroxypxropyl methylcellulose (HPMC) that impact the dissolution of a controlled release tablet and develop a strategy to mitigate the HPMC lot-to-lot and vendor-to-vendor variability. A screening experiment was performed to evaluate the impacts of methoxy/hydroxypropyl substitutions, and viscosity on drug release. The chemical diversity of HPMC was explored by nuclear magnetic resonance (NMR), and the erosion rate of HPMC was investigated using various dissolution apparatuses. Statistical evaluation suggested that the hydroxypropyl content was the primary factor impacting the drug release. However, the statistical model prediction was not robust. NMR experiments suggested the existence of structural diversity of HPMC between lots and more significantly between vendors. Review of drug release from hydrophilic matrices indicated that erosion is a key aspect for both poorly soluble and soluble drugs. An erosion rate method was then developed, which enabled the establishment of a robust model and a meaningful HPMC specification. The study revealed that the overall substitution level is not the unique parameter that dictates its release-controlling properties. Fundamental principles of polymer chemistry and dissolution mechanisms are important in the development and manufacturing of hydrophilic matrices with consistent dissolution performance.

  14. Stimuli-responsive lipid nanotubes in gel formulations for the delivery of doxorubicin.

    PubMed

    Ilbasmis-Tamer, Sibel; Unsal, Hande; Tugcu-Demiroz, Fatmanur; Kalaycioglu, Gokce Dicle; Degim, Ismail Tuncer; Aydogan, Nihal

    2016-07-01

    Lipid nanotubes (LNTs) are one of the most advantageous structures for drug delivery and targeting. LNTs formed by a specially designed molecule called AQUA (AQ-NH-(CH2)10COOH (AQ: anthraquinone group) is used for drug delivery, and doxorubicin (DOX) is the drug selected. DOX and AQUA have some similarities in their molecular structures, so a significant amount of DOX can be loaded to LNTs. The AQUA LNTs are pH responsive, and drug loading increased almost linearly by increasing the pH, reaching a maximum value (96%) at pH 9.0. In terms of drug release, lower pHs are preferred. Drug-loaded LNTs are also mixed with four different gels (chitosan, alginate, hydroxypropyl methylcellulose and polycarbophil) to use the advantages of these gels. The drug release efficiency is studied using a Franz diffusion cell in which sheep colon membranes and dialysis membranes are utilized. The amount of released DOX from the chitosan gel formulations was quite high. Sodium alginate gels had lower release and slower diffusion of DOX. The cytotoxic effect of DOX-loaded AQUA LNTs has also been determined on cell cultures. Our new lipid nanotubes are a non-toxic, effective, biodegradable, biocompatible, stable and promising system for drug delivery and can be used for colonic administration of DOX for the treatment of colorectal cancer (CRC).

  15. Intramyocardial Delivery of Mesenchymal Stem Cell-Seeded Hydrogel Preserves Cardiac Function and Attenuates Ventricular Remodeling after Myocardial Infarction

    PubMed Central

    Mathieu, Eva; Lamirault, Guillaume; Toquet, Claire; Lhommet, Pierre; Rederstorff, Emilie; Sourice, Sophie; Biteau, Kevin; Hulin, Philippe; Forest, Virginie; Weiss, Pierre

    2012-01-01

    Background To improve the efficacy of bone marrow-derived mesenchymal stem cell (MSC) therapy targeted to infarcted myocardium, we investigated whether a self-setting silanized hydroxypropyl methylcellulose (Si-HPMC) hydrogel seeded with MSC (MSC+hydrogel) could preserve cardiac function and attenuate left ventricular (LV) remodeling during an 8-week follow-up study in a rat model of myocardial infarction (MI). Methodology/Principal Finding Si-HPMC hydrogel alone, MSC alone or MSC+hydrogel were injected into the myocardium immediately after coronary artery ligation in female Lewis rats. Animals in the MSC+hydrogel group showed an increase in cardiac function up to 28 days after MI and a mid-term prevention of cardiac function alteration at day 56. Histological analyses indicated that the injection of MSC+hydrogel induced a decrease in MI size and an increase in scar thickness and ultimately limited the transmural extent of MI. These findings show that intramyocardial injection of MSC+hydrogel induced short-term recovery of ventricular function and mid-term attenuation of remodeling after MI. Conclusion/Significance These beneficial effects may be related to the specific scaffolding properties of the Si-HPMC hydrogel that may provide the ability to support MSC injection and engraftment within myocardium. PMID:23284842

  16. Formulation and evaluation of enteric coated tablets of proton pump inhibitor.

    PubMed

    Nair, Anroop B; Gupta, Rachna; Kumria, Rachna; Jacob, Shery; Attimarad, Mahesh

    2010-09-01

    The present study was an attempt to formulate and evaluate enteric coated tablets for esomeprazole magnesium trihydrate. Different core tablets were prepared and formulation (F-1) was selected for further enteric coating, based on the disintegration time. Seal coating was applied to achieve 3% weight gain using opadry®. Enteric coating was carried out using different polymers like Eudragit L-30 D-55, hydroxy propyl methylcellulose phthalate, cellulose acetate phthalate and Acryl-EZE® to achieve 5% weight gain. Disintegration studies showed that the formulations failed in 0.1 N HCl media. Hence the quantity of enteric coating was increased to 8% w/w. In vitro analysis of the developed tablets was carried out. Results from disintegration time and dissolution rate studies indicate that all the esomeprazole enteric tablets prepared possess good integrity, desirable for enteric coated tablets. Among the polymers studied, the methacrylic polymers exhibited better dissolution rate than the cellulose polymers. Stability studies indicate that the prepared formulations were stable for a period of three months. This study concluded that enteric coated tablets of esomeprazole can be prepared using any of the enteric coating polymer studied using a minimal weight gain of 8%.

  17. Tough and Sustainable Graft Block Copolymer Thermoplastics

    SciTech Connect

    Zhang, Jiuyang; Li, Tuoqi; Mannion, Alexander M.; Schneiderman, Deborah K.; Hillmyer, Marc A.; Bates, Frank S.

    2016-03-15

    Fully sustainable poly[HPMC-g-(PMVL-b-PLLA)] graft block copolymer thermoplastics were prepared from hydroxypropyl methylcellulose (HPMC), β-methyl-δ-valerolactone (MVL), and l-lactide (LLA) using a facile two-step sequential addition approach. In these materials, rubbery PMVL functions as a bridge between the semirigid HPMC backbone and the hard PLLA end blocks. This specific arrangement facilitates PLLA crystallization, which induces microphase separation and physical cross-linking. By changing the backbone molar mass or side chain composition, these thermoplastic materials can be easily tailored to access either plastic or elastomeric behavior. Moreover, the graft block architecture can be utilized to overcome the processing limitations inherent to linear block polymers. Good control over molar mass and composition enables the deliberate design of HPMC-g-(PMVL-b-PLLA) samples that are incapable of microphase separation in the melt state. These materials are characterized by relatively low zero shear viscosities in the melt state, an indication of easy processability. The simple and scalable synthetic procedure, use of inexpensive and renewable precursors, and exceptional rheological and mechanical properties make HPMC-g-(PMVL-b-PLLA) polymers attractive for a broad range of applications.

  18. Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy.

    PubMed

    Li, Wei; Liu, Dongfei; Zhang, Hongbo; Correia, Alexandra; Mäkilä, Ermei; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2017-01-15

    Harsh conditions of the gastrointestinal tract hinder the oral delivery of many drugs. Developing oral drug delivery systems based on commercially available materials is becoming more challenging due to the demand for simultaneously delivering physicochemically different drugs for treating complex diseases. A novel architecture, namely nanotube-in-microsphere, was developed as a drug delivery platform by encapsulating halloysite nanotubes (HNTs) in a pH-responsive hydroxypropyl methylcellulose acetate succinate polymer using microfluidics. HNTs were selected as orally acceptable clay mineral and their lumen was enlarged by selective acid etching. Model drugs (atorvastatin and celecoxib) with different physicochemical properties and synergistic effect on colon cancer prevention and inhibition were simultaneously incorporated into the microspheres at a precise ratio, with atorvastatin and celecoxib being loaded in the HNTs and polymer matrix, respectively. The microspheres showed spherical shape, narrow particle size distribution and pH-responsive dissolution behavior. This nanotube/pH-responsive polymer composite protected the loaded drugs from premature release at pH⩽6.5, but allowed their fast release and enhanced the drug permeability, and the inhibition of colon cancer cell proliferation at pH 7.4. Overall, the nano-in-micro drug delivery composite fabricated by microfluidics is a promising and flexible platform for the delivery of multiple drugs for combination therapy.

  19. Electrical characteristics of various submucosal injection fluids for endoscopic mucosal resection.

    PubMed

    Park, Sanghoon; Chun, Hoon Jai; Kim, Chul Young; Kim, Ju Young; Jang, Jin Su; Kwon, Yong Dae; Kim, Doo Rang; Keum, Bora; Seo, Yeon Seok; Kim, Yong Sik; Jeen, Yoon Tae; Lee, Hong Sik; Um, Soon Ho; Lee, Sang Woo; Choi, Jae Hyun; Kim, Chang Duck; Ryu, Ho Sang; Chang, Jong Hyeon; Pak, James Jungho

    2008-06-01

    Submucosal fluid injection, prerequisite to endoscopic mucosal resection, necessitates detailed evaluation for proper selection. We aimed to compare height of gastric tissues after submucosal injection, and to verify electrical implications of injectants. Porcine stomach pieces were cut out, and eight solutions were used: normal saline, 0.5% sodium hyaluronate (SH), 0.25% SH, hydroxypropyl methylcellulose, 10% glycerin, fibrinogen, 1% sodium alginate (SA), and 2.5% SA. Elevated heights were measured after submucosal injection of the eight fluids, and electrical impedance was measured for fluids plus a reference solution (0.01 N KCl) with a potentiostat electroimpedance spectrometry and an insulation-tipped knife. Resistivity was calculated thereafter. Normal saline and 10% glycerin solution showed greater height diminution. Resistivity were in the range of 80-110 Omega cm, except for 309.7 Omega cm for fibrinogen. Higher resistivity may improve performance of electrosurgery, probably by strengthening impedance and heat dissipation. Further studies are required to back up this basic experiment for clinical application.

  20. In vitro CFU-E and BFU-E responses to androgen in bone marrow from children with primary hypoproliferative anaemia: a possible therapeutic assay.

    PubMed

    Claustres, M; Margueritte, G; Sultan, C

    1986-02-01

    The effects of natural and synthetic androgens on erythroid colony formation in children's bone marrow cultures were studied using a methylcellulose microculture assay. In an attempt to predict the clinical response to androgens in two children with Fanconi anaemia (FA) and two children with Diamond-Blackfan syndrome (DB), we tested the hormonal stimulation of testosterone, nortestosterone and etiocholanolone on CFU-E, BFU-E and uroporphyrinogen I synthase activity (UROS). We observed that colony formation and UROS activity were reduced when compared to values obtained with normal children's bone marrow cultures. The addition of steroids to the cultures significantly enhanced the numbers of CFU-E and BFU-E derived colonies and their UROS activity in marrow from patients with FA and one patient with DB. The strong depletion of marrow progenitor cells in the unresponsive marrow from child 4 with DB could explain the absence of hormonal response. Whereas the responsiveness to steroids varied according to the individual, the in vitro testing of erythroid differentiation in the presence of androgens theoretically may lead to an effective prediction of response to therapy in children with hypoplastic anaemia.

  1. Stimulatory effects of androgens on normal children's bone marrow in culture: effects on BFU-E, CFU-E, and uroporphyrinogen I synthase activity.

    PubMed

    Claustres, M; Sultan, C

    1986-01-01

    We studied the effect of natural and synthetic androgens on children's erythropoietic precursor cells in culture. Cultures of normal marrow were carried out according to a miniaturized methylcellulose method in the presence of erythropoietin. We then evaluated the effects of testosterone, nortestosterone, fluoxymesterone and etiocholanolone (10(-9)-10(-6) M) on erythroid colony-forming units (CFU-E) and burst-forming units (BFU-E). Androgen-induced growth of erythroid progenitors was quantified by directly scoring colonies and by a biochemical determination of the uroporphyrinogen I synthase activity (UROS). We observed a significant increase (p less than or equal to 0.05) in the number of CFU-E and BFU-E and in the UROS activity of derived colonies in the presence of androgens (10(-8) or 10(-7)M). This microculture assay could be useful not only to study the effect of androgens on erythroid progenitor cells in culture, but also to predict the best androgenic treatment of anemia in children and adults.

  2. Ion-activated In Situ Gelling Ophthalmic Delivery Systems of Azithromycin

    PubMed Central

    Vijaya, C.; Goud, K. Swetha

    2011-01-01

    Gelation of pectin caused by divalent cations especially calcium ions has been applied to develop an ophthalmic formulation of azithromycin in the present study. Rapid elimination of drug on instillation into cul de sac would be minimal with in situ gelling ophthalmic solution leading to increased precorneal contact time and prolonged drug delivery. In the formulation development studies pectin was used in different concentrations (1-5% w/v) and different proportions of the hydrocolloids hydroxypropyl methylcellulose and sodium carboxymethyl cellulose of different grades of viscosity were used. The primary criteria for formulation optimization were gelling capacity and rheological behaviour. In addition, formulations were evaluated for pH, and antimicrobial efficacy and drug release. The clarity, pH, gelation in simulated tear fluid and rheological properties of the optimized formulations were satisfactory. The formulations inhibited the growth of Staphylococcus aureus effectively in cup–plate method and were proved to be safe and non irritant on rabbit eyes. The results indicate that pectin based in situ gels can be successfully used to prolong the duration of action of azithromycin. PMID:23112394

  3. Flotability and flotation separation of polymer materials modulated by wetting agents.

    PubMed

    Wang, Hui; Wang, Chong-qing; Fu, Jian-gang; Gu, Guo-hua

    2014-02-01

    The surface free energy, surface tension and contact angles were performed to investigate the properties of wetting agents. Adsorption of wetting agents changes wetting behavior of polymer resins. Flotability of polymer materials modulated by wetting agents was studied, and wetting agents change significantly flotability of polymer materials. The flotability decreases with increasing the concentration of wetting agents, and the wetting ability is lignin sulfonate (LS)>tannic acid (TA)>methylcellulose (MC)>triton X-100 (TX-100) (from strong to weak). There is significant difference in the flotability between polymer resins and plastics due to the presence of additives in the plastics. Flotation separation of two-component and multicomponent plastics was conducted based on the flotability modulated by wetting agents. The two-component mixtures can be efficiently separated using proper wetting agent through simple flotation flowsheet. The multicomponent plastic mixtures can be separated efficiently through multi-stage flotation using TA and LS as wetting agents, and the purity of separated component was above 94%, and the recovery was more than 93%.

  4. Itraconazole solid dispersion prepared by a supercritical fluid technique: preparation, in vitro characterization, and bioavailability in beagle dogs

    PubMed Central

    Yin, Xuezhi; Daintree, Linda Sharon; Ding, Sheng; Ledger, Daniel Mark; Wang, Bing; Zhao, Wenwen; Qi, Jianping; Wu, Wei

    2015-01-01

    This research aimed to develop a supercritical fluid (SCF) technique for preparing a particulate form of itraconazole (ITZ) with good dissolution and bioavailability characteristics. The ITZ particulate solid dispersion was formulated with hydroxypropyl methylcellulose, Pluronic F-127, and L-ascorbic acid. Aggregated particles showed porous structure when examined by scanning electron microscopy. Powder X-ray diffraction and Fourier transform infrared spectra indicated an interaction between ITZ and excipients and showed that ITZ existed in an amorphous state in the composite solid dispersion particles. The solid dispersion obtained by the SCF process improved the dissolution of ITZ in media of pH 1.0, pH 4.5, and pH 6.8, compared with a commercial product (Sporanox®), which could be ascribed to the porous aggregated particle shape and amorphous solid state of ITZ. While the solid dispersion did not show a statistical improvement (P=0.50) in terms of oral bioavailability of ITZ compared with Sporanox®, the Cmax (the maximum plasma concentration of ITZ in a pharmacokinetic curve) of ITZ was raised significantly (P=0.03) after oral administration. Thus, the SCF process has been shown to be an efficient, single step process to form ITZ-containing solid dispersion particles with good dissolution and oral bioavailability characteristics. PMID:26060397

  5. Enhancement of curcumin oral absorption and pharmacokinetics of curcuminoids and curcumin metabolites in mice

    PubMed Central

    Zhongfa, Liu; Chiu, Ming; Wang, Jiang; Chen, Wei; Yen, Winston; Fan-Havard, Patty; Yee, Lisa D.; Chan, Kenneth K.

    2012-01-01

    Purpose Curcumin has shown a variety of biological activity for various human diseases including cancer in preclinical setting. Its poor oral bioavailability poses significant pharmacological barriers to its clinical application. Here, we established a practical nano-emulsion curcumin (NEC) containing up to 20% curcumin (w/w) and conducted the pharmacokinetics of curcuminoids and curcumin metabolites in mice. Methods This high loading NEC was formulated based on the high solubility of curcumin in polyethylene glycols (PEGs) and the synergistic enhancement of curcumin absorption by PEGs and Cremophor EL. The pharmacokinetics of curcuminoids and curcumin metabolites was characterized in mice using a LC–MS/MS method, and the pharmacokinetic parameters were determined using WinNonlin computer software. Results A tenfold increase in the AUC0→24h and more than 40-fold increase in the Cmax in mice were observed after an oral dose of NEC compared with suspension curcumin in 1% methylcellulose. The plasma pharmacokinetics of its two natural congeners, demethoxycurcumin and bisdemethoxycurcumin, and three metabolites, tetrahydrocurcumin (THC), curcumin-O-glucuronide, and curcumin-O-sulfate, was characterized for the first time in mice after an oral dose of NEC. Conclusion This oral absorption enhanced NEC may provide a practical formulation to conduct the correlative study of the PK of curcuminoids and their pharmacodynamics, e.g., hypomethylation activity in vivo. PMID:21968952

  6. Molecular mobility in glassy dispersions

    SciTech Connect

    Mehta, Mehak; McKenna, Gregory B.; Suryanarayanan, Raj

    2016-05-27

    Dielectric spectroscopy was used to characterize the structural relaxation in pharmaceutical dispersions containing nifedipine (NIF) and either poly(vinyl) pyrrolidone (PVP) or hydroxypropyl methylcellulose acetate succinate (HPMCAS). The shape of the dielectric response (permittivity versus log time) curve was observed to be independent of temperature. Thus, for the pure NIF as well as the dispersions, the validity of the time-temperature superposition principle was established. Furthermore, though the shape of the full dielectric response varied with polymer concentration, the regime related to the α- or structural relaxation was found to superimpose for the dispersions, though not with the response of the NIF itself. Hence, there is a limited time-temperature-concentration superposition for these systems as well. Therefore, in this polymer concentration range, calculation of long relaxation times in these glass-forming systems becomes possible. We found that strong drug-polymer hydrogen bonding interactions improved the physical stability (i.e., delayed crystallization) by reducing the molecular mobility. The strength of hydrogen bonding, structural relaxation time, and crystallization followed the order: NIF$-$PV P>NIF$-$HPMCAS>NIF. With an increase in polymer concentration, the relaxation times were longer indicating a decrease in molecular mobility. The temperature dependence of relaxation time, in other words fragility, was independent of polymer concentration. This is the first application of the superposition principle to characterize structural relaxation in glassy pharmaceutical dispersions.

  7. Oral Delivery of Probiotics in Poultry Using pH-Sensitive Tablets.

    PubMed

    Jiang, Tao; Li, Hui-Shan; Han, Geon Goo; Singh, Bijay; Kang, Sang-Kee; Bok, Jin-Duck; Kim, Dae-Duk; Hong, Zhong-Shan; Choi, Yun-Jaie; Cho, Chong-Su

    2017-04-28

    As alternatives to antibiotics in livestocks, probiotics have been used, although most of them in the form of liquid or semisolid formulations, which show low cell viability after oral administration. Therefore, suitable dry dosage forms should be developed for livestocks to protect probiotics against the low pH in the stomach such that the products have higher probiotics survivability. Here, in order to develop a dry dosage forms of probiotics for poultry, we used hydroxypropyl methylcellulose phthalate 55 (HPMCP 55) as a tablet-forming matrix to develop probiotics in a tablet form for poultry. Here, we made three different kinds of probiotics-loaded tablet under different compression forces and investigated their characteristics based on their survivability, morphology, disintegration time, and kinetics in simulated gastrointestinal fluid. The results indicated that the probiotics formulated in the tablets displayed higher survival rates in acidic gastric conditions than probiotics in solution. Rapid release of the probiotics from the tablets occurred in simulated intestinal fluid because of fast swelling of the tablets in neutral pH. As a matrix of tablet, HPMCP 55 provided good viability of probiotics after 6 months under refrigeration. Moreover, after oral administration of probiotics-loaded tablets to chicken, more viable probiotics were observed, than with solution type, through several digestive areas of chicken by the tablets.

  8. An approach to engineer paracetamol crystals by antisolvent crystallization technique in presence of various additives for direct compression.

    PubMed

    Kaialy, Waseem; Larhrib, Hassan; Chikwanha, Brian; Shojaee, Saeed; Nokhodchi, Ali

    2014-04-10

    Paracetamol is a popular over-the-counter analgesic and a challenging model drug due to its poor technological and biopharmaceutical properties such as flowability, compressibility, compactibility and wettability. This work was aimed to alter the crystal habit of paracetamol from elongated to polyhedral-angular via particle engineering whilst maintaining the stable polymorphic form (form I: monoclinic form). The engineered paracetamol crystals obtained in the present investigation showed better technological and biopharmaceutical properties in comparison to the commercial paracetamol. Engineered paracetamol crystals were obtained using antisolvent crystallization technique in the presence of various concentrations (0.1, 0.5 and 1%, w/w) of additives, namely, polyvinyl alcohol (PVA), Avicel PH 102 (microcrystalline cellulose), Brij 58, methylcellulose (MC) and polyethylene glycol having different molecular weights (PEGs 1500, 6000 and 8000). Paracetamols crystallized in the presence of Avicel (or physically mixed with Avicel), Brij 58 and PEG 6000 demonstrated the best compactibility over a range of compaction pressures. Brij-crystallized paracetamol provided the fastest dissolution rate among all the paracetamol batches. Paracetamols crystallized in the presence of PVA or Avicel, or physically mixed with Avicel demonstrated a reduced degree of crystallinity in comparison to the other paracetamols. This study showed that the type, the grade and the concentration of additives could influence the physical stability such as flow, crystallinity and polymorphic transformation of paracetamol, the technological and biopharmaceutical properties of paracetamol. Stable polymorphic form of paracetamol with optimal tableting characteristics can be achieved through particle engineering.

  9. Dissolution enhancement of chlorzoxazone using cogrinding technique

    PubMed Central

    Raval, Mihir K.; Patel, Jaydeep M.; Parikh, Rajesh K.; Sheth, Navin R.

    2015-01-01

    Purpose: The aim of the present work was to improve rate of dissolution and processing parameters of BCS class II drug, chlorzoxazone using cogrinding technique in the presence of different excipients as a carrier. Materials and Methods: The drug was coground with various carriers like polyethylene glycol (PEG 4000), hydroxypropyl methylcellulose (HPMC) E50LV, polyvinylpyrrolidone (PVP)K30, Kaolin and Neusilin US2 using ball mill, where only PEG 4000 improved dissolution rate of drug by bringing amorphization in 1:3 ratio. The coground mixture after 3 and 6 h was evaluated for various analytical, physicochemical and mechanical parameters. Results: The analysis showed conversion of Chlorzoxazone from its crystalline to amorphization form upon grinding with PEG 4000. Coground mixture as well as its directly compressed tablet showed 2.5-fold increment in the dissolution rate compared with pure drug. Directly compressible tablets prepared from pure drug required a large quantity of microcrystalline cellulose (MCC) during compression. The coground mixture and formulation was found stable in nature even after storage (40°C/75% relative humidity). Conclusions: Cogrinding can be successfully utilized to improve the rate of dissolution of poorly water soluble drugs and hence bioavailability. PMID:26682195

  10. Optimization of aceclofenac solid dispersion using Box-Behnken design: in-vitro and in-vivo evaluation.

    PubMed

    Maulvi, Furqan A; Thakkar, Vaishali T; Soni, Tejal G; Gandhi, Tejal R

    2014-01-01

    The study investigates the combined influence of three independent variables in preparation of aceclofenac ternary solid dispersion (SD) by kneading method. A 3-factor, 3-level Box-Behnken design was used. Independent variables selected were microcrystalline cellulose (Avicel 200 = X1), hydroxypropyl methylcellulose-5 cps (HPMC E-5 = X2), and ratio of drug to polymer mixture (X3). Fifteen batches were prepared and evaluated for angle of repose and percentage drug release at 5 minutes (Q5). The transformed values of variables were subjected to multiple regression analysis to establish a second-order polynomial equation. Contour plots were constructed to evaluate the effects of X1, X2 and X3 on Q5 and angle of repose. Model was validated for accurate prediction of Q5 and angle of repose (AR) by performing checkpoint analysis. The computer optimization process and contour plots predict the levels of independent variables as X1= +0.5, X2 = -1 and X3 = +0.35 for maximized response of Q5 with better flow property. The stability study during 6 months confirms that aceclofenac exhibits high stability in solid dispersion. In vivo studies indicate that optimized ternary solid dispersion provides rapid pharmacological responses in mice and rats compared to marketed formulation.

  11. Formulation and Evaluation of Controlled Release Floating Microballoons of Stavudine.

    PubMed

    Vidyadhara, Suryadevara; Sasidhar, Reddyvalam Lankapalli; Balakrishna, Talamanchi; Balaji, Boyapati; Amrutha, Ravi

    2015-01-01

    The aim of this study was to formulate and evaluate stavudine floating microballoons for controlled drug release. Initially, the drug-loaded low-density granular pellets were prepared with hydroxypropyl methylcellulose E5 grade and by using isopropyl alcohol as a granulating fluid. Further, the low-density granular pellets were subjected to microencapsulation by an emulsion evaporation technique using ethyl cellulose 7 cps and Eudragit S 100 as coating polymers and 1% w/v polyethylene glycol 400 as aqueous phase. The prepared microballoons were characterized for their particle size analysis, angle of repose, and compressibility index. The in vitro release studies were performed in 0.1 N HCl as medium. The prepared microballoons were free-flowing and spherical in shape. From all the formulations, F5E and F5F can be considered as promising controlled release floating microballoons of stavudine providing first-order release over a period of 12 hours, with a minimum floating lag time of 1 minute. It was found that the ratio of the drug & polymer, stirring speed, and concentration of surfactant were the most significant variables which influenced the size of the stavudine microballoons under the applied experimental conditions.

  12. Formulation and Evaluation of Controlled Release Floating Microballoons of Stavudine

    PubMed Central

    Vidyadhara, Suryadevara; Sasidhar, Reddyvalam Lankapalli; Balakrishna, Talamanchi; Balaji, Boyapati; Amrutha, Ravi

    2015-01-01

    The aim of this study was to formulate and evaluate stavudine floating microballoons for controlled drug release. Initially, the drug-loaded low-density granular pellets were prepared with hydroxypropyl methylcellulose E5 grade and by using isopropyl alcohol as a granulating fluid. Further, the low-density granular pellets were subjected to microencapsulation by an emulsion evaporation technique using ethyl cellulose 7 cps and Eudragit S 100 as coating polymers and 1% w/v polyethylene glycol 400 as aqueous phase. The prepared microballoons were characterized for their particle size analysis, angle of repose, and compressibility index. The in vitro release studies were performed in 0.1 N HCl as medium. The prepared microballoons were free-flowing and spherical in shape. From all the formulations, F5E and F5F can be considered as promising controlled release floating microballoons of stavudine providing first-order release over a period of 12 hours, with a minimum floating lag time of 1 minute. It was found that the ratio of the drug & polymer, stirring speed, and concentration of surfactant were the most significant variables which influenced the size of the stavudine microballoons under the applied experimental conditions. PMID:26839847

  13. In vitro release kinetics and bioavailability of gastroretentive cinnarizine hydrochloride tablet.

    PubMed

    Nagarwal, Ramesh C; Ridhurkar, Devendra N; Pandit, J K

    2010-03-01

    An oral sustained release dosage form of cinnarizine HCl (CNZ) based on gastric floating matrix tablets was studied. The release of CNZ from different floating matrix formulations containing four viscosity grades of hydroxypropyl methylcellulose, sodium alginate or polyethylene oxide, and gas-forming agent (sodium bicarbonate or calcium carbonate) was studied in simulated gastric fluid (pH 1.2). CNZ release data from the matrix tablets were analyzed kinetically using Higuchi, Peppas, Weibull, and Vergnaud models. From water uptake, matrix erosion studies, and drug release data, the overall release mechanism can be explained as a result of rapid hydration of polymer on the surface of the floating tablet and formation of a gel layer surrounding the matrix that controls water penetration into its center. On the basis of in vitro release data, batch HP1 (CNZ, HPMC-K100LV, SBC, LTS, and MgS) was subjected to bioavailability studies in rabbits and was compared with CNZ suspension. It was concluded that the greater bioavailability of HP1 was due to its longer retention in the gastric environment of the test animal. Batch no. HP1 of floating tablet in rabbits demonstrated that the floating tablet CNZ could be a 24-h sustained release formulation.

  14. Development and evaluation of in situ gel of pregabalin

    PubMed Central

    Madan, Jyotsana R; Adokar, Bhushan R; Dua, Kamal

    2015-01-01

    Aim and Background: Pregabalin (PRG), an analog of gamma-aminobutyric acid, reduces the release of many neurotransmitters, including glutamate, and noradrenaline. It is used for the treatment of epilepsy; simple and complex partial convulsion. The present research work aims to ensure a high drug absorption by retarding the advancement of PRG formulation through the gastrointestinal tract. The work aims to design a controlled release PRG formulation which is administered as liquid and further gels in the stomach and floats in gastric juice. Materials and Methods: In situ gelling formulations were prepared using sodium alginate, calcium chloride, sodium citrate, hydroxypropyl methylcellulose (HPMC) K100M, and sodium bicarbonate. The prepared formulations were evaluated for solution viscosity, drug content, in vitro gelling studies, gel strength, and in vitro drug release. The final formulation was optimized using a 32 full factorial design. Results: The formulation containing 2.5% w/v sodium alginate and 0.2% w/v calcium chloride were considered optimum since it showed minimum floating lag time (18 s), optimum viscosity (287.3 cps), and gel strength (4087.17 dyne/cm2). The optimized formulation follows Korsmeyer-Peppas kinetic model with n value 0.3767 representing Fickian diffusion mechanism of drug release. Conclusion: Floating in situ gelling system of PRG can be formulated using sodium alginate as a gelling polymer and calcium chloride as a complexing agent to control the drug release for about 12 h for the treatment of epilepsy. PMID:26682193

  15. Development of the novel coating formulations for skin vaccination using stainless steel microneedle.

    PubMed

    Kim, Seong-Jin; Shin, Ju-Hyung; Noh, Jin-Yong; Song, Chang-Seon; Kim, Yeu-Chun

    2016-10-01

    This study focused on the development of novel coating formulations for stainless steel microneedles against influenza A virus. With in vitro studies, various viscosity enhancers and stabilizers were screened based on the hemagglutination activity of the vaccine, which was coated and dried onto a stainless steel chip at room temperature for 1 day. Following the long-term storage test, the hemagglutination activity and particle size of the vaccine, which was formulated with conventional or methylcellulose or hydroxyethyl cellulose and dried onto the microneedle, were monitored. Next, to evaluate the in vivo immunogenicity and protection effect of each dried vaccine formulation, mice were immunized by the antigen-coated microneedle, which had either the conventional or the proposed formulation. Two novel formulations were chosen in the preliminary screening, and in further evaluations, they exhibited a 20 % higher HA activity during storage for 3 months, and no aggregation was observed during storage after drying. In a mouse model, the microneedle with the novel formulation elicited a higher level of IgG and IgG2a was more prevalent in the IgG isotype profile. In addition, mice immunized with the HEC-coated microneedle survived with small weight loss (>90 %) against lethal challenge infection. Overall, the novel formulation hydroxyethyl cellulose preserved significantly higher HA activity during the production and storage of the microneedle as well as improved the in vivo immunogenicity of the vaccine.

  16. Formulation, optimization and in vitro-in vivo evaluation of febuxostat nanosuspension.

    PubMed

    Ahuja, Bhupesh K; Jena, Sunil K; Paidi, Sharan K; Bagri, Surbhi; Suresh, Sarasija

    2015-01-30

    The purpose of the present study was to develop febuxostat nanosuspension and investigate its effect on febuxostat solubility, dissolution rate and oral bioavailability. The wet media milling technique was adopted with a combination of hydroxypropyl methylcellulose (HPMC E3) and d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) as surface stabilizers for the generation of nanocrystals. Rotatable central composite design (CCD) was selected for nanosuspension optimization. The critical parameters were bead volume, milling time, polymer and surfactant concentrations; whereas particle size, polydispersity index (PDI) and zeta potential were taken as responses. The presence of crystallinity was confirmed by differential scanning calorimetry and powder X-ray diffraction. Scanning electron microscopy and transmission electron microscopy revealed small and uniform plate like morphology. A significant increase was observed in saturation solubility and dissolution rate of the optimized nanosuspension in all the pH conditions tested. Oral bioavailability of FXT and optimized FNC was evaluated in SD rats. The nanosuspension exhibited enhanced Cmax (26.48±2.71 vs. 19.85±2.96μg/mL) and AUC0-∞ (222.29±9.81 vs. 100.32±9.36μgh/mL) with a 221.6% increase in relative bioavailability. Thus, FNC is a viable approach to enhance the bioavailability of FXT, a BCS Class II drug. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Sustained release carrier for adenosine triphosphate as signaling molecule.

    PubMed

    Wischke, Christian; Weigel, Judith; Bulavina, Larisa; Lendlein, Andreas

    2014-12-10

    Adenosine triphosphate (ATP) is a molecule with a fascinating variety of intracellular and extracellular biological functions that go far beyond energy metabolism. Due to its limited passive diffusion through biological membranes, controlled release systems may allow to interact with ATP-mediated extracellular processes. In this study, two release systems were explored to evaluate the capacity for either long-term or short-term release: (i) Poly[(rac-lactide)-co-glycolide] (PLGA) implant rods were capable of ATP release over days to weeks, depending on the PLGA molecular weight and end-group capping, but were also associated with partial hydrolytic degradation of ATP to ADP and AMP, but not adenosine. (ii) Thermosensitive methylcellulose hydrogels with a gelation occurring at body temperature allowed combining adjustable loading levels and the capacity for injection, with injection forces less than 50N even for small 27G needles. Finally, a first in vitro study illustrated purinergic-triggered response of primary murine microglia to ATP released from hydrogels, demonstrating the potential relevance for biomedical applications.

  18. Floating mucoadhesive alginate beads of amoxicillin trihydrate: A facile approach for H. pylori eradication.

    PubMed

    Dey, Sanjoy Kumar; De, Pintu Kumar; De, Arnab; Ojha, Souvik; De, Ronita; Mukhopadhyay, Asish Kumar; Samanta, Amalesh

    2016-08-01

    This study investigates the design of sunflower oil entrapped floating and mucoadhesive beads of amoxicillin trihydrate using sodium alginate and hydroxypropyl methylcellulose as matrix polymers and chitosan as coating polymer to localize the antibiotic at the stomach site against Helicobacter pylori. Beads prepared by ionotropic gellation technique were evaluated for different physicochemical, in-vitro and in-vivo properties. Beads of all batches were floated for >24h with a maximum lag time of 46.3±3.2s. Scanning electron microscopy revealed that the beads were spherical in shape with few oil filled channels distributed throughout the surfaces and small pocket structures inside the matrix confirming oil entrapment. Prepared beads showed good mucoadhesiveness of 75.7±3.0% to 85.0±5.5%. The drug release profile was best fitted to Higuchi model with non fickian driven mechanism. The optimized batch showed 100% Helicobacter pylori growth inhibition in 15h in in-vitro culture. Furthermore, X-ray study in rabbit stomach confirmed the gastric retention of optimized formulation. The results exhibited that formulated beads may be preferred to localize the antibiotic in the gastric region to allow more availability of antibiotic at gastric mucus layer acting on Helicobacter pylori, thereby improving the therapeutic efficacy.

  19. The importance of binder moisture content in Metformin HCL high-dose formulations prepared by moist aqueous granulation (MAG)

    PubMed Central

    Takasaki, Hiroshi; Yonemochi, Etsuo; Ito, Masanori; Wada, Koichi; Terada, Katsuhide

    2015-01-01

    The aim of this study was to evaluate binders to improve the flowability of granulates and compactibility of Metformin HCL (Met) using the moist aqueous granulation (MAG) process. The effect of the binder moisture content on granulate and tablet quality was also evaluated. Vinylpyrrolidone–vinyl acetate copolymer (Kollidon VA64 fine: VA64), polyvidone (Povidone K12: PVP), hydroxypropyl cellulose (HPC SSL SF: HPC) and hydroxypropyl methylcellulose (Methocel E5 LV: HPMC) were evaluated as binders. These granulates, except for HPMC, had a lower yield pressure than Met active pharmaceutical ingredient (API). HPMC Met was not sufficiently granulated with low water volume. No problems were observed with the VA64 Met granulates during the tableting process. However, HPC Met granulates had a bowl-forming tendency, and PVP Met granulates had the tendency to stick during the tableting process. These bowl-forming and sticking tendencies may have been due to the low moisture absorbency of HPC and the high volume of bound water of PVP, respectively. VA64 Met granulates had the highest ambient moisture content (bulk water, bound water) and moisture absorbency. It was concluded that the type of binder used for the Met MAG process has an impact on granulate flow and compactibility, as well as moisture absorbency and maintenance of moisture balance. PMID:26779418

  20. Investigation of the Mechanical Properties and Microstructure of Graphene Nanoplatelet-Cement Composite

    PubMed Central

    Wang, Baomin; Jiang, Ruishuang; Wu, Zhenlin

    2016-01-01

    In this work, graphene nanoplatelets (GNPs) were dispersed uniformly in aqueous solution using methylcellulose (MC) as a dispersing agent via ultrasonic processing. Homogenous GNP suspensions were incorporated into the cement matrix to investigate the effect of GNPs on the mechanical behavior of cement paste. The optimum concentration ratio of GNPs to MC was confirmed as 1:7 by ultraviolet visible spectroscopy (UV-Vis), and the optical microscope and transmission electron microscopy (TEM) images displayed remarkable dispersing performance. The GNP–cement composite exhibited better mechanical properties with the help of surface-modified GNPs. The flexural strength of cement paste increased up to 15%–24% with 0.05 wt % GNPs (by weight of cement). Meanwhile, the compressive strength of the GNP–cement composite increased up to 3%–8%. The X-ray diffraction (XRD) and thermal analysis (TG/DTG) demonstrated that the GNPs could accelerate the degree of hydration and increase the amount of hydration products, especially at an early age. Meanwhile, the lower porosity and finer pore size distribution of GNP–cement composite were detected by mercury intrusion porosimetry (MIP). In addition, scanning electron microscope (SEM) analysis showed the introduction of GNPs could impede the development of cracks and preserve the completeness of the matrix through the plicate morphology and tortuous behavior of GNPs. PMID:28335328

  1. The importance of binder moisture content in Metformin HCL high-dose formulations prepared by moist aqueous granulation (MAG).

    PubMed

    Takasaki, Hiroshi; Yonemochi, Etsuo; Ito, Masanori; Wada, Koichi; Terada, Katsuhide

    2015-01-01

    The aim of this study was to evaluate binders to improve the flowability of granulates and compactibility of Metformin HCL (Met) using the moist aqueous granulation (MAG) process. The effect of the binder moisture content on granulate and tablet quality was also evaluated. Vinylpyrrolidone-vinyl acetate copolymer (Kollidon VA64 fine: VA64), polyvidone (Povidone K12: PVP), hydroxypropyl cellulose (HPC SSL SF: HPC) and hydroxypropyl methylcellulose (Methocel E5 LV: HPMC) were evaluated as binders. These granulates, except for HPMC, had a lower yield pressure than Met active pharmaceutical ingredient (API). HPMC Met was not sufficiently granulated with low water volume. No problems were observed with the VA64 Met granulates during the tableting process. However, HPC Met granulates had a bowl-forming tendency, and PVP Met granulates had the tendency to stick during the tableting process. These bowl-forming and sticking tendencies may have been due to the low moisture absorbency of HPC and the high volume of bound water of PVP, respectively. VA64 Met granulates had the highest ambient moisture content (bulk water, bound water) and moisture absorbency. It was concluded that the type of binder used for the Met MAG process has an impact on granulate flow and compactibility, as well as moisture absorbency and maintenance of moisture balance.

  2. Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes

    PubMed Central

    Chung, Wan-Ho; Kim, Sang-Ho; Kim, Hak-Sung

    2016-01-01

    In this work, silver nanowire inks with hydroxypropyl methylcellulose (HPMC) binders were coated on polyethylene terephthalate (PET) substrates and welded via flash white light and ultraviolet C (UV-C) irradiation to produce highly conductive transparent electrodes. The coated silver nanowire films were firmly welded and embedded into PET substrate successfully at room temperature and under ambient conditions using an in-house flash white light welding system and UV-C irradiation. The effects of light irradiation conditions (light energy, irradiation time, pulse duration, and pulse number) on the silver nanowire networks were studied and optimized. Bending fatigue tests were also conducted to characterize the reliability of the welded transparent conductive silver nanowire films. The surfaces of the welded silver nanowire films were analyzed via scanning electron microscopy (SEM), while the transmittance of the structures was measured using a spectrophotometer. From the results, a highly conductive and transparent silver nanowire film with excellent reliability could be achieved at room temperature under ambient conditions via the combined flash white light and UV-C irradiation welding process. PMID:27553755

  3. Multiple-unit tablet of probiotic bacteria for improved storage stability, acid tolerability, and in vivo intestinal protective effect.

    PubMed

    Park, Hee Jun; Lee, Ga Hyeon; Jun, Joonho; Son, Miwon; Kang, Myung Joo

    2016-01-01

    The aim of this study was to formulate probiotics-loaded pellets in a tablet form to improve storage stability, acid tolerability, and in vivo intestinal protective effect. Bacteria-loaded pellets primarily prepared with hydroxypropyl methylcellulose acetate succinate were compressed into tablets with highly compressible excipients and optimized for flow properties, hardness, and disintegration time. The optimized probiotic tablet consisted of enteric-coated pellets (335 mg), microcrystalline cellulose (Avicel PH102, 37.5 mg), and porous calcium silicate (25 mg) and allowed whole survival of living bacteria during the compaction process with sufficient tablet hardness (13 kp) and disintegration time (14 minutes). The multiple-unit tablet showed remarkably higher storage stability under ambient conditions (25°C/60% relative humidity) over 6 months and resistance to acidic medium compared to uncoated strains or pellets. Repeated intake of this multiple-unit tablet significantly lowered plasma level of endotoxin, a pathogenic material, compared to repeated intake of bare probiotics or marketed products in rats. These results, therefore, suggest that the multiple-unit tablet is advantageous to better bacterial viability and gain the beneficial effects on the gut flora, including the improvement of intestinal barrier function.

  4. Influence of non-water-soluble placebo pellets of different sizes on the characteristics of orally disintegrating tablets manufactured by freeze-drying.

    PubMed

    Stange, Ulrike; Führling, Christian; Gieseler, Henning

    2013-06-01

    The present study describes the development of an orally disintegrating tablet containing a non-water-soluble drug delivery system. A model system was applied to evaluate the effect of different-sized particles on tablet characteristics. Cellets were incorporated into tablets prepared by freeze-drying from a 100 mg/mL mannitol or sucrose solution. Particle size distributions were 200-355 µm for Cellets 200 (C200) and 500-710 µm for Cellets 500 (C500). An examination of the tablets revealed that the particles could not be sufficiently embedded in mannitol because of its crystalline nature. The tablet hardness was also inadequate. In contrast, the hardness of sucrose tablets was increased by the addition of Cellets 500. Therefore, the sucrose-based formulation was studied further. Binders [hydroxyethylstarch, sodium alginate, methylcellulose (MC), and gelatin] were added in different concentrations, and tablets were made either with or without placebo pellets. A positive effect of the Cellets on the hardness of tablets was identified. Furthermore, disintegration time could be clearly reduced by Cellets for tablets made from 100 mg/mL sucrose with addition of 10 mg/mL MC, 20 or 40 mg/mL gelatin. The freeze-dried tablet index revealed that the formulations of sucrose with 50 mg/mL hydroxyethylstarch or 20 mg/mL gelatin were particularly advantageous.

  5. Characterization of nanoscale spatial distribution of small molecules in amorphous polymer matrices

    NASA Astrophysics Data System (ADS)

    Ricarte, Ralm; Hillmyer, Marc; Lodge, Timothy

    Hydroxypropyl methylcellulose acetate succinate (HPMCAS) can significantly enhance the efficacy of active pharmaceutical ingredients (APIs). Yet, the interactions between species in HPMCAS-API blends are not understood. Elucidating these interactions is difficult because the spatial distributions of HPMCAS and API in the blends are ambiguous; the polymer and drug may be molecularly mixed or the species may form phase separated domains. As these phase separated domains may be less than 100 nm in size, traditional characterization techniques may not accurately evaluate the spatial distribution. To address this challenge, we explore the use of electron energy-loss spectroscopy (EELS) for detecting the model API phenytoin in an HPMCAS-phenytoin blend. Using EELS, we directly measured with high accuracy and precision the phenytoin concentrations in several blends. We present evidence that suggests phase separation occurs in blends that have a phenytoin loading of approximately 50 wt percent. Finally, we demonstrate that this technique achieves a sub-100 nm spatial resolution and can detect several other APIs.

  6. Effects of combined treatments of irradiation and antimicrobial coatings on reduction of food pathogens in broccoli florets

    NASA Astrophysics Data System (ADS)

    Takala, P. N.; Salmieri, S.; Vu, K. D.; Lacroix, M.

    2011-12-01

    The effect of combined treatment of antimicrobial coatings and γ-radiation on reduction of food pathogens such as Listeria monocytogenes, Escherichia coli, and Salmonella Typhimurium was evaluated in broccoli florets. Broccoli florets were inoculated with pathogenic bacteria at 10 6 CFU/g. Inoculated florets were then coated with methylcellulose-based coating containing various mixtures of antimicrobial agents: organic acids (OAs) plus lactic acid bacteria metabolites (LABs), OA plus citrus extract (CE), OA plus CE plus spice mixture (SM), and OA plus rosemary extract (RE). Coated florets were irradiated with various doses (0-3.3 kGy), and microbial analyses were used to calculate the D10 value and radiosensitive relative. The coating containing OA plus CE was the most effective formulation for increasing the sensitization of Escherichia coli by 2.4 times as compared to the control without the antimicrobial coating. For Salmonella Typhimurium, coating containing OA plus LAB was the most effective formulation, increasing radiosensitivity by 2.4 times as well. All antimicrobial coatings had almost the same effect of increasing the sensitivity of Listeria monocytogenes (from 1.31 to 1.45 times) to γ-irradiation.

  7. Design and evaluation of gastroretentive levofloxacin floating mini-tablets-in-capsule system for eradication of Helicobacter pylori

    PubMed Central

    El-Zahaby, Sally A.; Kassem, Abeer A.; El-Kamel, Amal H.

    2014-01-01

    Gastroretentive levofloxacin (LVF) floating mini-tablets for the eradication of Helicobacter pylori (H. pylori) were prepared using the matrix forming polymer hydroxypropyl methylcellulose (HPMC K100M), alone or with Carbopol 940P in different ratios by wet granulation technique. Buoyancy of mini-tablets was achieved by an addition of an effervescent mixture consisting of sodium bicarbonate and anhydrous citric acid to some formulations. The prepared mini-tablets were evaluated for weight variation, thickness, friability, hardness, drug content, in vitro buoyancy, water uptake and in vitro release. The optimized formula was subjected to further studies: FT-IR, DSC analysis and in vivo examination in healthy volunteers. The prepared mini-tablets exhibited satisfactory physicochemical characteristics. Incorporation of gas-generating agent improved the floating parameters. HPMC K100M mini-tablet formulation (F1) offered the best controlled drug release (>8 h) along with floating lag time <1 s and total floating time >24 h. The obtained DSC thermograms and FT-IR charts indicated that there is no positive evidence for the interaction between LVF and ingredients of the optimized formula. The in vivo test confirmed the success of the optimized formula F1 in being retained in the stomach of the volunteers for more than 4 h. LVF floating mini-tablets based on HPMC K100M is a promising formulation for eradication of H. pylori. PMID:25561871

  8. Controlled release floating multiparticulates of metoprolol succinate by hot melt extrusion.

    PubMed

    Malode, Vilas N; Paradkar, Anant; Devarajan, Padma V

    2015-08-01

    We present hot melt extrusion (HME) for the design of floating multiparticulates. Metoprolol succinate was selected as the model drug. Our foremost objective was to optimize the components Eudragit(®) RS PO, polyethylene oxide (PEO) and hydroxypropyl methylcellulose (HPMC) to balance both buoyancy and controlled release. Gas generated by sodium bicarbonate in acidic medium was trapped in the polymer matrix to enable floating. Eudragit(®) RS PO and PEO with sodium bicarbonate resulted in multiparticulates which exhibited rapid flotation within 3 min but inadequate total floating time (TFT) of 3h. Addition of HPMC to the matrix did not affect floating lag time (FLT), moreover TFT increased to more than 12h with controlled release of metoprolol succinate. Floating multiparticulates exhibited t50% of 5.24h and t90% of 10.12h. XRD and DSC analysis revealed crystalline state of drug while FTIR suggested nonexistence of chemical interaction between the drug and the other excipients. The assay, FLT, TFT and the drug release of the multiparticulates were unchanged when stored at 40°C/75%RH for 3 months confirming stability. We present floating multiparticulates by HME which could be extrapolated to a range of other drugs. Our approach hence presents platform technology for floating multiparticulates. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A novel floating controlled release drug delivery system prepared by hot-melt extrusion.

    PubMed

    Vo, Anh Q; Feng, Xin; Morott, Joseph T; Pimparade, Manjeet B; Tiwari, Roshan V; Zhang, Feng; Repka, Michael A

    2016-01-01

    Floating dosage forms are an important formulation strategy for drugs with a narrow absorption window and low intestinal solubility, and for localized gastric treatment. Novel floating pellets were prepared using the hot-melt extrusion (HME) technology. Uniformly foamed strands were created by liquid injection pumping and screw configuration modification. The ammonio methacrylate copolymer (Eudragit® RSPO) foaming structure was formed by a liquid-vapor phase transition inside the strand upon die exiting resulting from the sudden decrease in external pressure, vaporizing the liquid ethanol and vacating the extruded material. This generated uniform vacuous regions in the extrudate. The pellets' internal structure was investigated using scanning electron microscopy (SEM). The formulation constituents' and processing parameters' effects on the drug release profiles, floating force, and the pellets' micromeritic properties were evaluated by design of experiments: all formulations showed zero lag time and excellent floating strength, indicating immediate-floating pellet formation. The pellets' drug release profiles were controlled by multiple independent variables at different time points (⩽ 24 h). Drug loading significantly affected drug release within the first hour, the hydroxypropyl methylcellulose (HPMC) content thereafter. Understanding the variables' effects on the formulations allows for the tailoring of this delivery system to obtain various drug release profiles. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Gastro-floating tablets of cephalexin: preparation and in vitro/in vivo evaluation.

    PubMed

    Yin, Lifang; Qin, Chao; Chen, Kaisheng; Zhu, Chunli; Cao, Hui; Zhou, Jianping; He, Wei; Zhang, Qiang

    2013-08-16

    Gastro-floating tablets of cephalexin were developed to prolong the residence time in major absorption sites. Gastro-floating tablets were prepared and optimized using hydroxypropyl methylcellulose (HPMC K100M) as matrix and sodium bicarbonate as a gas-forming agent. The properties of the tablets in terms of floating lag time, floating time and in vitro release were evaluated. Furthermore, in vivo pharmacokinetic study in fed and fasted beagle dogs was performed. The gastro-floating tablets had short floating lag time and exhibited a satisfactory sustained-release profile in vitro. Compared with conventional capsules, the gastro-floating tablets presented a sustained-release behavior with a relative bioavailability of 99.4%, while the reference sustained-release tablets gave a relative bioavailability of only 39.3%. Meanwhile, the food had significant effect on the pharmacokinetics of sustained-release tablets. It was concluded that the gastro-floating tablets had a sustained-release effect in vitro and in vivo, as well as desired pharmacokinetic properties in both fed and fasted conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Design, Development and Optimization of S (-) Atenolol Floating Sustained Release Matrix Tablets Using Surface Response Methodology.

    PubMed

    Gunjal, P T; Shinde, M B; Gharge, V S; Pimple, S V; Gurjar, M K; Shah, M N

    2015-01-01

    The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 3(2) full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.

  12. Design and in vitro/in vivo evaluation of sustained-release floating tablets of itopride hydrochloride.

    PubMed

    Ahmed, Sayed M; Ahmed Ali, Adel; Ali, Ahmed Ma; Hassan, Omiya A

    2016-01-01

    The aim of the present study was to improve the bioavailability of itopride (ITO) and sustain its action by formulating as a floating dosage form. Sustained-release floating tablets of ITO hydrochloride (HCl) were prepared by direct compression using different hydrocolloid polymers such as hydroxypropyl methylcellulose and ethylcellulose and/or methacrylic acid polymers Eudragit RSPM and Carbopol 934P. The floating property was achieved using an effervescent mixture of sodium bicarbonate and anhydrous citric acid (1:1 mol/mol). Hardness, friability, content uniformity, and dissolution rate of the prepared floating tablets were evaluated. The formulation F10 composed of 28.5% Eudragit RSPM, 3% NaHCO3, and 7% citric acid provided sustained drug release. In vitro results showed sustained release of F10 where the drug release percentage was 96.51%±1.75% after 24 hours (P=0.031). The pharmacokinetic results indicated that the area under the curve (AUC0-∞) of the prepared sustained-release floating tablets at infinity achieved 93.69 µg·h/mL compared to 49.89 µg·h/mL for the reference formulation (Ganaton(®)) and the relative bioavailability of the sustained-release formulation F10 increased to 187.80% (P=0.022). The prepared floating tablets of ITO HCl (F10) could be a promising drug delivery system with sustained-release action and enhanced drug bioavailability.

  13. Synthesis of cellulose-based superabsorbent hydrogels by high-energy irradiation in the presence of crosslinking agent

    NASA Astrophysics Data System (ADS)

    Fekete, Tamás; Borsa, Judit; Takács, Erzsébet; Wojnárovits, László

    2016-01-01

    Superabsorbent hydrogels were prepared from aqueous solutions of four cellulose derivatives (carboxymethylcellulose Na-salt - CMC, methylcellulose - MC, hydroxyethylcellulose - HEC and hydroxypropylcellulose - HPC) by gamma irradiation initiated crosslinking. CMC was used for the majority of the measurements. N,N'-methylene-bis-acrylamide (MBA) crosslinking agent was used to modify the gel properties. The crosslink density increased with the MBA concentration, leading to an improved gel fraction and lower water uptake. The crosslinking efficiency was the highest up to 1 w/wpolymer% MBA concentration. Very high MBA content (10 w/wpolymer%) led to a heterogeneous gel structure. Gelation also occurred under milder conditions in the presence of MBA: good gel properties were achieved at significantly lower doses and solute concentrations as compared to crosslinker-free solutions. The time required to reach maximum water uptake increased with the degree of swelling in equilibrium. Swelling properties of CMC gels with lower water uptake showed lower sensitivity to the ionic strength of the solvent.

  14. Competition of thermodynamic and dynamic factors during formation of multicomponent particles via spray drying.

    PubMed

    Kawakami, Kohsaku; Hasegawa, Yusuke; Deguchi, Kenzo; Ohki, Shinobu; Shimizu, Tadashi; Yoshihashi, Yasuo; Yonemochi, Etsuo; Terada, Katsuhide

    2013-02-01

    As psicose cannot be spray dried because of its low glass transition temperature (T(g)), additives have been used to manufacture spray-dried particles. Its thermodynamic miscibility with each additive was evaluated by thermal analysis and C solid-state nuclear magnetic resonance. Aspartame was miscible with psicose at all ratios, and spray-dried particles were obtained when T(g) of the mixture was higher than the outlet temperature of the spray dryer, where 30 wt % of psicose was loaded. poly(vinylpyrrolidone) and cluster dextrin were partially miscible with psicose, with a maximum loading of 40 wt %. When polymeric excipients were used, their mixing behavior with psicose was affected by the dynamic factor during the spray drying, that is, enhanced phase separation due to the molecular-weight difference. The T(g) value of the polymer-rich phases, which were likely to form shell layers on the surfaces, played an important role in determining availability of the spray-dried particles. Hydroxypropyl methylcellulose (HPMC) offered a very effective loading capacity of 80 wt %, due to distinct phase separation to form shell phase with a very high T(g). Because molecular weight of HPMC was the smallest among the polymeric excipients, the thermodynamic miscibility seemed to affect the dynamic phase separation. These results provide useful information for preparing multicomponent spray-dried particles.

  15. Scintigraphic evaluation of colon targeting pectin-HPMC tablets in healthy volunteers.

    PubMed

    Hodges, L A; Connolly, S M; Band, J; O'Mahony, B; Ugurlu, T; Turkoglu, M; Wilson, C G; Stevens, H N E

    2009-03-31

    The in vivo evaluation of colon-targeting tablets was conducted in six healthy male volunteers. A pectin-hydroxypropyl methylcellulose coating was compressed onto core tablets labelled with 4MBq (99m)Tc-DTPA. The tablets released in the colon in all subjects; three in the ascending colon (AC) and three in the transverse colon (TC). Tablets that released in the TC had reached the AC before or just after food (Group A). The other three tablets released immediately upon AC entry at least 1.5h post-meal (Group B). Release onset for Group B was earlier than Group A (343min vs 448min). Group B tablets exhibited a clear residence period at the ileocaecal junction (ICJ) which was not observed in Group A. Prolonged residence at the ICJ is assumed to have increased hydration of the hydrogel layer surrounding the core tablet. Forces applied as the tablets progressed through the ICJ may have disrupted the hydrogel layer sufficiently to initiate radiolabel release. Conversely, Group A tablets moved rapidly through the AC to the TC, possibly minimising contact times with water pockets. Inadequate prior hydration of the hydrogel layer preventing access of pectinolytic enzymes and reduced fluid availability in the TC may have retarded tablet disintegration and radiolabel diffusion.

  16. [Oral health care by utilizing food function].

    PubMed

    Taguchi, Yuuki

    2014-01-01

    We examined the effects of spices and herbs on Candida albicans to develop therapeutic tools against oral diseases such as oral candidiasis. C. albicans, a dimorphic fungus, is a component of the healthy human microbial flora. However, the excessive overgrowth of C. albicans causes oral candidiasis, and the symptoms, accompanied by severe inflammation, reduce the quality of life of elderly people. We found that spices such as clove (Syzygium aromaticum) and cassia (Cinnamomum aromaticum) exhibit inhibitory activity against Candida mycelial growth and show therapeutic efficacy in a murine oral candidiasis model. Our studies also demonstrated that the inhibitory activity of cinnamaldehyde was strengthened in parallel with a prolonged treatment time. Furthermore, when cinnamaldehyde in combination with methylcellulose was administered to the model mice, the therapeutic effect was potentiated. Here, we summarize up-to-date findings on how to use spices and herbs on a daily basis to improve or prevent oral problems such as oral candidiasis with the presentation of our recent data.

  17. Floating matrix dosage form for propranolol hydrochloride based on gas formation technique: development and in vitro evaluation.

    PubMed

    Chaturvedi, Kiran; Umadevi, S; Vaghani, Subhash

    2010-01-01

    Gastroretentive tablets of propranolol hydrochloride were developed by direct compression method using citric acid and sodium bicarbonate as the effervescent base. Hydroxypropyl methylcellulose; HPMC K15M was used to prepare the floating tablets to retard the drug release for 12h in stomach. Na-carboxymethyl cellulose (NaCMC) or carbopol 934P was added to alter the drug release profile or the dimensional stability of the formulation. Dicalcium phosphate (DCP) was used as filler. Formulations were evaluated for floating lag time, duration of floating, dimensional stability, drug content and in vitro drug release profile. The formulations were found to have floating lag time less than 1min. It was found that the dimensional stability of the formulations increase with increasing concentration of the swelling agent. The release mechanism of propranolol hydrochloride from floating tablets was evaluated on the basis of Peppas and Higuchi model. The ânâ value of the formulations ranged from 0.5201 to 0.7367 (0.5

  18. Formulations of zero-order, pH-dependent, sustained release matrix systems by ionotropic gelation of alginate-containing mixtures.

    PubMed

    Moroni, Antonio; Drefko, William; Thone, Gerard

    2011-02-01

    Matrix type, monolithic, dosage forms suitable for controlled release that exhibit pH-dependent behavior are considerably less common than similarly behaving multiparticulated, enterically coated dosage forms, although simpler and less expensive to make. Evaluate the properties of alginates and alginate-containing systems to produce pH-sensitive, monolithic, controlled release dosage forms that perform acceptably and determine their limits of application in regard with stability, pH and Ca(++) sensitivity, and appropriated rate of release. Mixtures of the ionic gum sodium alginate (Na Alg.) with other gel-forming gums such as propylene glycol alginate (PGA), xanthan, or hydroxypropyl methylcellulose have been evaluated for applicability in the manufacture of controlled release dosage forms with three drugs of different solubility and ionic character. Mixture have been compressed into tablets and tested under a variety of pHs to simulate transit through the GI tract, in the presence of Ca(++), and for stability. These mixtures have been able to sustain drug release for up to 12 hours with acceptable performance going from acidic to alkaline pHs to simulate travel through the GI tract and in the presence of Ca(++). Release rate has been adjusted by selecting a suitable Na Alg./other gum combination at an appropriated ratio. Mixtures of Na Alg. with a number of other gums have been demonstrated suitable to manufacture pH-sensitive, matrix-type solid dosage forms with release-controlling properties for up to 12 hours.

  19. Stimulation of proliferation, differentiation, and function of human cells by primate interleukin 3

    SciTech Connect

    Lopez, A.F.; To, L.B.; Yang, Y.C.; Gamble, J.R.; Shannon, M.F.; Burns, G.F.; Dyson, P.G.; Juttner, C.A.; Clark, S.; Vadas, M.A.

    1987-05-01

    Cloned gibbon interleukin 3 (gIL-3) was found to stimulate the proliferation and differentiation of human bone marrow cells to produce day-14 granulocyte, macrophage, granulocyte-macrophage, and eosinophil colonies in semisolid agar. In the presence of normal human plasma, gIL-3 stimulated megakaryocytes. In methylcellulose cultures, it stimulated erythroid colonies in the presence, but not in the absence, of erythropoietin. When mature human leukocytes were used, gIL-3 stimulated the function of purified mature eosinophils as measured by the capacity to kill /sup 51/Cr-labeled antibody-coated target cells, to produce superoxide anions, and to phagocytize opsonized yeast particles in a manner similar to recombinant human granulocyte-macrophage colony-stimulating factor. In contrast, gIL-3 did not significantly stimulate any of the neutrophil functions tested, whereas human recombinant granulocyte-macrophage colony-stimulating factor was active in these assay. Among cytokines that are active on human hematopoietic cells, gIL-3 thus has a distinct set of functions and may predict the range of actions of the human molecule.

  20. A novel automated alternating current biosusceptometry method to characterization of controlled-release magnetic floating tablets of metronidazole.

    PubMed

    Ferrari, Priscileila Colerato; dos Santos Grossklauss, Dany Bruno Borella; Alvarez, Matheus; Paixão, Fabiano Carlos; Andreis, Uilian; Crispim, Alexandre Giordano; de Castro, Ana Dóris; Evangelista, Raul Cesar; de Arruda Miranda, José Ricardo

    2014-08-01

    Alternating Current Biosusceptometry is a magnetically method used to characterize drug delivery systems. This work presents a system composed by an automated ACB sensor to acquire magnetic images of floating tablets. The purpose of this study was to use an automated Alternating Current Biosusceptometry (ACB) to characterize magnetic floating tablets for controlled drug delivery. Floating tablets were prepared with hydroxypropyl methylcellulose (HPMC) as hydrophilic gel material, sodium bicarbonate as gas-generating agent and ferrite as magnetic marker. ACB was used to characterize the floating lag time and the tablet hydration rate, by quantification of the magnetic images to magnetic area. Besides the buoyancy, the floating tablets were evaluated for weight uniformity, hardness, swelling and in vitro drug release. The optimized tablets were prepared with equal amounts of HPMC and ferrite, and began to float within 4 min, maintaining the flotation during more than 24 h. The data of all physical parameters lied within the pharmacopeial limits. Drug release at 24 h was about 40%. The ACB results showed that this study provided a new approach for in vitro investigation of controlled-release dosage forms. Moreover, using automated ACB will also be possible to test these parameters in humans allowing to establish an in vitro.in vivo correlation (IVIVC).