Science.gov

Sample records for methylcellulose

  1. 21 CFR 172.874 - Hydroxypropyl methylcellulose.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.874 Hydroxypropyl methylcellulose. The food additive hydroxypropyl methylcellulose (CAS Reg. No. 9004...: (a) The additive complies with the definition and specifications prescribed in the National...

  2. 21 CFR 172.874 - Hydroxypropyl methylcellulose.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CONSUMPTION Multipurpose Additives § 172.874 Hydroxypropyl methylcellulose. The food additive hydroxypropyl... provide for such use if: (a) The additive complies with the definition and specifications prescribed in..., protective colloid, stabilizer, suspending agent, or thickener, in accordance with good...

  3. 21 CFR 172.874 - Hydroxypropyl methylcellulose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... CONSUMPTION Multipurpose Additives § 172.874 Hydroxypropyl methylcellulose. The food additive hydroxypropyl... provide for such use if: (a) The additive complies with the definition and specifications prescribed in..., protective colloid, stabilizer, suspending agent, or thickener, in accordance with good...

  4. 21 CFR 172.874 - Hydroxypropyl methylcellulose.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... CONSUMPTION Multipurpose Additives § 172.874 Hydroxypropyl methylcellulose. The food additive hydroxypropyl... provide for such use if: (a) The additive complies with the definition and specifications prescribed in..., protective colloid, stabilizer, suspending agent, or thickener, in accordance with good...

  5. 21 CFR 172.874 - Hydroxypropyl methylcellulose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CONSUMPTION Multipurpose Additives § 172.874 Hydroxypropyl methylcellulose. The food additive hydroxypropyl... provide for such use if: (a) The additive complies with the definition and specifications prescribed in..., protective colloid, stabilizer, suspending agent, or thickener, in accordance with good...

  6. Effect of hydroxypropyl methylcellulose on breadmaking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxypropyl methylcellulose (HPMC) is obtained by substitution of methyl and hydroxypropyl groups to the cellulose backbone. HPMC is widely used in food processing due to emulsifying, adhesive, and thickening properties. The supplementation of HPMC in breadmaking is known to have beneficial effe...

  7. Methylcellulose media for plaque assay of murine leukemia virus.

    PubMed

    Watanabe, T; Horikawa, Y; Sato, K; Saito, H

    1982-09-01

    When ecotropic murine leukemia virus was assayed by a methylcellulose-XC cell procedure, plaque titers showed less test-to-test variation, more uniform dose-response curves, and larger plaque sizes, as compared with results of the conventional liquid overlay-XC cell test system. This assay therefore seems to be reliable and useful for the titration of ecotropic murine leukemia virus.

  8. Effects of coating rectangular microscopic electrophoresis chamber with methylcellulose

    NASA Technical Reports Server (NTRS)

    Plank, L. D.

    1985-01-01

    One of the biggest problems in obtaining high accuracy in microscopic electrophoresis is the parabolic flow of liquid in the chamber due to electroosmotic backflow during application of the electric field. In chambers with glass walls the source of polarization leading to electroosmosis is the negative charge of the silicare and other ions that form the wall structure. It was found by Hjerten, who used a rotating 3.0 mm capillary tube for free zone electrophoresis, that precisely neutralizing this charge was extremely difficult, but if a neutral polymer matrix (formaldehyde fixed methylcellulose) was formed over the glass (quartz) wall the double layer was displaced and the viscosity at the shear plane increased so that electroosmotic flow could be eliminated. Experiments were designed to determine the reliability with which methylcellulose coating of the Zeiss Cytopherometer chamber reduced electroosmotic backflow and the effect of coating on the accuracy of cell electrophoretic mobility (EPN) determinations. Fixed rat erythrocytes (RBC) were used as test particles.

  9. Plaque assay of bluegill virus using a methylcellulose overlay.

    PubMed

    Robin, J; Larivière-Durand, C; Berthiaume, L

    1982-12-01

    The EFDL strain of Bluegill virus (BGV) has been titrated in BF-2 cells by the plaque method using 1% methylcellulose overlay. Visible plaques, formed 7 days postinfection, ranged in diameter from 0.5 to 1 mm. Dose-response experiments indicated that a single particle initiated the formation of a plaque. The titration of BGV by this new plaque method provided an accurate technique for the determination of virus concentration.

  10. Size-exclusion chromatography of ultrahigh molecular weight methylcellulose ethers and hydroxypropyl methylcellulose ethers for reliable molecular weight distribution characterization.

    PubMed

    Li, Yongfu; Shen, Hongwei; Lyons, John W; Sammler, Robert L; Brackhagen, Meinolf; Meunier, David M

    2016-03-15

    Size-exclusion chromatography (SEC) coupled with multi-angle laser light scattering (MALLS) and differential refractive index (DRI) detectors was employed for determination of the molecular weight distributions (MWD) of methylcellulose ethers (MC) and hydroxypropyl methylcellulose ethers (HPMC) having weight-average molecular weights (Mw) ranging from 20 to more than 1,000kg/mol. In comparison to previous work involving right-angle light scattering (RALS) and a viscometer for MWD characterization of MC and HPMC, MALLS yields more reliable molecular weight for materials having weight-average molecular weights (Mw) exceeding about 300kg/mol. A non-ideal SEC separation was observed for cellulose ethers with Mw>800kg/mol, and was manifested by upward divergence of logM vs. elution volume (EV) at larger elution volume at typical SEC flow rate such as 1.0mL/min. As such, the number-average molecular weight (Mn) determined for the sample was erroneously large and polydispersity (Mw/Mn) was erroneously small. This non-ideality resulting in the late elution of high molecular weight chains could be due to the elongation of polymer chains when experimental conditions yield Deborah numbers (De) exceeding 0.5. Non-idealities were eliminated when sufficiently low flow rates were used. Thus, using carefully selected experimental conditions, SEC coupled with MALLS and DRI can provide reliable MWD characterization of MC and HPMC covering the entire ranges of compositions and molecular weights of commercial interest. PMID:26794765

  11. Size-exclusion chromatography of ultrahigh molecular weight methylcellulose ethers and hydroxypropyl methylcellulose ethers for reliable molecular weight distribution characterization.

    PubMed

    Li, Yongfu; Shen, Hongwei; Lyons, John W; Sammler, Robert L; Brackhagen, Meinolf; Meunier, David M

    2016-03-15

    Size-exclusion chromatography (SEC) coupled with multi-angle laser light scattering (MALLS) and differential refractive index (DRI) detectors was employed for determination of the molecular weight distributions (MWD) of methylcellulose ethers (MC) and hydroxypropyl methylcellulose ethers (HPMC) having weight-average molecular weights (Mw) ranging from 20 to more than 1,000kg/mol. In comparison to previous work involving right-angle light scattering (RALS) and a viscometer for MWD characterization of MC and HPMC, MALLS yields more reliable molecular weight for materials having weight-average molecular weights (Mw) exceeding about 300kg/mol. A non-ideal SEC separation was observed for cellulose ethers with Mw>800kg/mol, and was manifested by upward divergence of logM vs. elution volume (EV) at larger elution volume at typical SEC flow rate such as 1.0mL/min. As such, the number-average molecular weight (Mn) determined for the sample was erroneously large and polydispersity (Mw/Mn) was erroneously small. This non-ideality resulting in the late elution of high molecular weight chains could be due to the elongation of polymer chains when experimental conditions yield Deborah numbers (De) exceeding 0.5. Non-idealities were eliminated when sufficiently low flow rates were used. Thus, using carefully selected experimental conditions, SEC coupled with MALLS and DRI can provide reliable MWD characterization of MC and HPMC covering the entire ranges of compositions and molecular weights of commercial interest.

  12. Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chitosan/tripolyphosphate nanoparticles were prepared and incorporated in hydroxypropyl methylcellulose (HPMC) films. FT-IR and transmission electron microscopy (TEM) analyses of the nanoparticles, mechanical properties, water vapor permeability, thermal stability, scanning electron microscopy (SEM...

  13. The characterization of hydroxypropyl methylcellulose through the analysis of its substituents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The methyl and hydroxypropyl substituents in hydroxypropyl methylcellulose (HPMC) affect the resulting gel properties. These substituents in five HPMC gels were characterized using Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, small-amplitude oscillatory shear measurements, a...

  14. Dietary hydroxypropyl methylcellulose increases excretion of saturated and trans fats by hamsters fed fast food diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hypocholesterolemic and hypoglycemic effects of hydroxypropyl methylcellulose (HPMC), a semisynthetic nonfermentable soluble dietary fiber, are well established. However, effects of HPMC on dietary saturated fatty acids and trans fatty acids are largely unknown. This study investigated the eff...

  15. Optical and thermal studies of starch/methylcellulose blends

    NASA Astrophysics Data System (ADS)

    Ragab, H. S.; Abd El-Kader, M. F. H.

    2013-02-01

    Starch and methylcellulose (MC) homopolymers and their blends were prepared using a casting technique. The samples were investigated by infrared (Fourier transform infrared (IR)), ultraviolet/visible (UV/VIS), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Significant changes in IR spectra of blend samples were observed, which indicated the occurrence of an intermolecular interactions between starch and MC. UV/VIS analyses revealed that the values of the optical band gap decreased with increasing MC content in blend samples. The positions of the investigated samples on the chromaticity diagram and the color parameters, such as L*, U*, V*, C*, hue and Ye, reflected the presence of a high color gradient and were composition dependent. A single glass transition temperature for each poly-blend sample was observed, which supported the existence of compatibility in such a system. The kinetic thermodynamic parameters, such as activation energy, enthalpy, entropy and Gibbs free energy, were evaluated from thermogravimetric analysis data using the Coats-Redfern relation.

  16. Radiation crosslinking of methylcellulose and hydroxyethylcellulose in concentrated aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wach, Radoslaw A.; Mitomo, Hiroshi; Nagasawa, Naotsugu; Yoshii, Fumio

    2003-12-01

    The effects of ionizing radiation on aqueous solutions of cellulose ethers, methylcellulose (MC) and hydroxyethylcellulose (HEC) were investigated. The well-established knowledge states that cellulose and its derivatives belong to degrading type of polymers. However, in our study intermolecular crosslinking initiated by gamma rays or electron beam leaded to the formation of insoluble gel. This is an opposite effect of irradiation to the degradation. Paste-like form of the initial specimen, i.e. concentration 20-30%, when water plasticizes the bulk of polymer; and a high dose rate were favorable for hydrogel formation. Gel fraction up to 60% and 70% was obtained from solutions of HEC and MC, respectively. Produced hydrogels swell markedly in aqueous media by imbibing and holding the solvent. Radiation parameters of irradiation, such as yields of degradation and crosslinking and the gelation dose, were evaluated by sol-gel analysis on the basis of Charlesby-Rosiak equation. Despite of the crosslinked structure, obtained hydrogels can be included into the group of biodegradable materials. They undergo decomposition by the action of cellulase enzyme or microorganisms from compost.

  17. Physicochemical properties of methylcellulose and dodecyltrimethylammonium bromide in aqueous medium.

    PubMed

    Villetti, Marcos A; Bica, Clara I D; Garcia, Irene T S; Pereira, Fabiano V; Ziembowicz, Francieli I; Kloster, Carmen L; Giacomelli, Cristiano

    2011-05-19

    Interactions between uncharged polymers and cationic surfactants are considered weaker than interactions with the anionic analogues. This work describes the binding occurring between methylcellulose (MC) and the cationic surfactant DTAB in aqueous medium. In the absence of salt, MC-DTAB exhibits a maximum in hydrodynamic radius, R(h,slow), with the increase in the surfactant concentration. Otherwise, in presence of salt the MC-DTAB system shows only a linear increase of R(h,slow). CAC is lower than the CMC, which is taken as an evidence of binding between the cationic surfactant and neutral polymer that induces the aggregation process. Static light scattering, rheology and micro-DSC results highlight the hydrophobic MC-DTAB association. Salt-out and the salt-in effects were observed in presence of DTAB, with a clear transition at concentration values close to the CMC, as judged from rheological and micro DSC measurements. Indeed, DTAB affects both the pattern of the sol-gel transition and the gel strength.

  18. Structure and phase behavior of aqueous methylcellulose solutions

    NASA Astrophysics Data System (ADS)

    McAllister, John; Schmidt, Peter; Lodge, Timothy; Bates, Frank

    2015-03-01

    Cellulose ethers (CE) constitute a multi-billion dollar industry, and have found end uses in a broad array of applications from construction materials, food products, personal care products, and pharmaceuticals for more than 80 years. Methylcellulose (MC, with the trade name METHOCEL™) is a CE in which there is a partial substitution of -OH groups with -OCH3 groups. This results in a polymer that is water-soluble at low temperatures, and aqueous solutions of MC display gelation and phase separation at higher temperatures. The nature of MC gelation has been debated for many years, and this project has made significant advances in the understanding of the solution properties of CEs. We have characterized a fibrillar structure of MC gels by cryogenic transmission electron microscopy (cryo-TEM) and small angle neutron scattering (SANS). Using light scattering, turbidity measurements, and dynamic mechanical spectroscopy (DMS) we report that MC microphase separates by nucleation and growth of fibril aggregates, and is a different process from LCST phase separation.

  19. Solution blow spun Poly(lactic acid)/Hydroxypropyl methylcellulose nanofibers with antimicrobial properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poly(lactic acid) (PLA) nanofibers containing hydroxypropyl methylcellulose (HPMC) and tetracycline hydrochloride (THC) were solution blow spun from two different solvents, chloroform/acetone (CA, 80:20 v/v) and 2,2,2-triflouroethanol (TFE). The diameter distribution, chemical, thermal, thermal stab...

  20. The application of conductivity measurements for preliminary assessments of chlorhexidine and lidocaine hydrochloride release from methylcellulose gel at various temperatures.

    PubMed

    Musial, Witold; Kokol, Vanja; Voncina, Bojana

    2009-01-01

    For the evaluation of conductivity measurements in the control and monitoring of release process, high number of conductivity measurements was performed. The measurements were done for the compositions of chlorhexidine with methylcellulose, and lidocaine hydrochloride with methylcellulose. Chlorhexidine, a very slightly soluble substance is released from the methylcellulose bead in the amounts ca. 30%-70%, and it depends of temperature of the release process. The lidocaine hydrochloride at the same time is released from methylcellulose formulation in 70-100%. The conductivity in the donor compartment at the start point, and in the acceptor compartment at the termination point, reflect the released amounts of the drug. This study confirms the possibility of application of conductivity measurements for the preliminary assessments of the kinetics of release of soluble and practically insoluble substances from the nonionic polymeric matrix.

  1. Nanoparticle suspensions enclosed in methylcellulose: a new approach for quantifying nanoparticles in transmission electron microscopy.

    PubMed

    Hacker, Christian; Asadi, Jalal; Pliotas, Christos; Ferguson, Sophie; Sherry, Lee; Marius, Phedra; Tello, Javier; Jackson, David; Naismith, James; Lucocq, John Milton

    2016-05-04

    Nanoparticles are of increasing importance in biomedicine but quantification is problematic because current methods depend on indirect measurements at low resolution. Here we describe a new high-resolution method for measuring and quantifying nanoparticles in suspension. It involves premixing nanoparticles in a hydrophilic support medium (methylcellulose) before introducing heavy metal stains for visualization in small air-dried droplets by transmission electron microscopy (TEM). The use of methylcellulose avoids artifacts of conventional negative stain-TEM by (1) restricting interactions between the nanoparticles, (2) inhibiting binding to the specimen support films and (3) reducing compression after drying. Methylcellulose embedment provides effective electron imaging of liposomes, nanodiscs and viruses as well as comprehensive visualization of nanoparticle populations in droplets of known size. These qualities facilitate unbiased sampling, rapid size measurement and estimation of nanoparticle numbers by means of ratio counting using a colloidal gold calibrant. Specimen preparation and quantification take minutes and require a few microliters of sample using only basic laboratory equipment and a standard TEM.

  2. Nanoparticle suspensions enclosed in methylcellulose: a new approach for quantifying nanoparticles in transmission electron microscopy

    PubMed Central

    Hacker, Christian; Asadi, Jalal; Pliotas, Christos; Ferguson, Sophie; Sherry, Lee; Marius, Phedra; Tello, Javier; Jackson, David; Naismith, James; Lucocq, John Milton

    2016-01-01

    Nanoparticles are of increasing importance in biomedicine but quantification is problematic because current methods depend on indirect measurements at low resolution. Here we describe a new high-resolution method for measuring and quantifying nanoparticles in suspension. It involves premixing nanoparticles in a hydrophilic support medium (methylcellulose) before introducing heavy metal stains for visualization in small air-dried droplets by transmission electron microscopy (TEM). The use of methylcellulose avoids artifacts of conventional negative stain-TEM by (1) restricting interactions between the nanoparticles, (2) inhibiting binding to the specimen support films and (3) reducing compression after drying. Methylcellulose embedment provides effective electron imaging of liposomes, nanodiscs and viruses as well as comprehensive visualization of nanoparticle populations in droplets of known size. These qualities facilitate unbiased sampling, rapid size measurement and estimation of nanoparticle numbers by means of ratio counting using a colloidal gold calibrant. Specimen preparation and quantification take minutes and require a few microliters of sample using only basic laboratory equipment and a standard TEM. PMID:27141843

  3. Nanoparticle suspensions enclosed in methylcellulose: a new approach for quantifying nanoparticles in transmission electron microscopy.

    PubMed

    Hacker, Christian; Asadi, Jalal; Pliotas, Christos; Ferguson, Sophie; Sherry, Lee; Marius, Phedra; Tello, Javier; Jackson, David; Naismith, James; Lucocq, John Milton

    2016-01-01

    Nanoparticles are of increasing importance in biomedicine but quantification is problematic because current methods depend on indirect measurements at low resolution. Here we describe a new high-resolution method for measuring and quantifying nanoparticles in suspension. It involves premixing nanoparticles in a hydrophilic support medium (methylcellulose) before introducing heavy metal stains for visualization in small air-dried droplets by transmission electron microscopy (TEM). The use of methylcellulose avoids artifacts of conventional negative stain-TEM by (1) restricting interactions between the nanoparticles, (2) inhibiting binding to the specimen support films and (3) reducing compression after drying. Methylcellulose embedment provides effective electron imaging of liposomes, nanodiscs and viruses as well as comprehensive visualization of nanoparticle populations in droplets of known size. These qualities facilitate unbiased sampling, rapid size measurement and estimation of nanoparticle numbers by means of ratio counting using a colloidal gold calibrant. Specimen preparation and quantification take minutes and require a few microliters of sample using only basic laboratory equipment and a standard TEM. PMID:27141843

  4. Organic/inorganic hybrid synaptic transistors gated by proton conducting methylcellulose films

    NASA Astrophysics Data System (ADS)

    Wan, Chang Jin; Zhu, Li Qiang; Wan, Xiang; Shi, Yi; Wan, Qing

    2016-01-01

    The idea of building a brain-inspired cognitive system has been around for several decades. Recently, electric-double-layer transistors gated by ion conducting electrolytes were reported as the promising candidates for synaptic electronics and neuromorphic system. In this letter, indium-zinc-oxide transistors gated by proton conducting methylcellulose electrolyte films were experimentally demonstrated with synaptic plasticity including paired-pulse facilitation and spatiotemporal-correlated dynamic logic. More importantly, a model based on proton-related electric-double-layer modulation and stretched-exponential decay function was proposed, and the theoretical results are in good agreement with the experimentally measured synaptic behaviors.

  5. Biochemical effects of gum arabic, gum tragacanth, methylcellulose and carboxymethylcellulose-Na in rat heart and liver.

    PubMed

    Bachmann, E; Weber, E; Post, M; Zbinden, G

    1978-01-01

    Repeated oral administration of commonly used suspending media, gum arabic, gum tragacanth, methylcellulose, and carboxymethylcellulose-Na to rats caused uncoupling of oxidative phosphorylation in liver and heart mitochondria and partial inhibition of mixed function oxidases of liver endoplasmic reticulum, as measured by 2-biphenylhydroxylation and 4-biphenylhydroxylation. There were considerable differences between the compounds with regard to potency and reversibility of these effects. Only methylcellulose at a concentration of 0.5% did not alter mitochondrial function and mixed function oxidases. It is recommended as suspending medium for the use in pharmacological and toxicological experiments.

  6. A Coarse Grained Model for Methylcellulose: Spontaneous Ring Formation at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Huang, Wenjun; Larson, Ronald

    Methylcellulose (MC) is widely used as food additives and pharma applications, where its thermo-reversible gelation behavior plays an important role. To date the gelation mechanism is not well understood, and therefore attracts great research interest. In this study, we adopted coarse-grained (CG) molecular dynamics simulations to model the MC chains, including the homopolymers and random copolymers that models commercial METHOCEL A, in an implicit water environment, where each MC monomer modeled with a single bead. The simulations are carried using a LAMMPS program. We parameterized our CG model using the radial distribution functions from atomistic simulations of short MC oligomers, extrapolating the results to long chains. We used dissociation free energy to validate our CG model against the atomistic model. The CG model captured the effects of monomer substitution type and temperature from the atomistic simulations. We applied this CG model to simulate single chains up to 1000 monomers long and obtained persistence lengths that are close to those determined from experiment. We observed the chain collapse transition for random copolymer at 600 monomers long at 50C. The chain collapsed into a stable ring structure with outer diameter around 14nm, which appears to be a precursor to the fibril structure observed in the methylcellulose gel observed by Lodge et al. in the recent studies. Our CG model can be extended to other MC derivatives for studying the interaction between these polymers and small molecules, such as hydrophobic drugs.

  7. Hypocholesterolemic effects of hydroxypropyl methylcellulose are mediated by altered gene expression in hepatic bile and cholesterol pathways of male hamsters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxypropyl methylcellulose (HPMC), a semi-synthetic non-fermentable soluble dietary fiber (SDF) modulates plasma lipoprotein profiles and hepatic lipid levels. HPMC is not absorbed by the body but its presence in the intestinal lumen increases fecal fat, sterol, and bile acid excretion and decrea...

  8. Removal of paraquat pesticide from aqueous solutions using a novel adsorbent material based on polyacrylamide and methylcellulose hydrogels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research studied the characteristics of poly(acrylamide) and methylcellulose (PAAm-MC) hydrogels as a novel adsorbent material for removal of pesticide paraquat, from aqueous solution, with potential applications in curbing environmental risk from such herbicides. PAAm-MC hydrogels with differe...

  9. Development of crosslinked methylcellulose hydrogels for soft tissue augmentation using an ammonium persulfate-ascorbic acid redox system.

    PubMed

    Gold, Gittel T; Varma, Devika M; Taub, Peter J; Nicoll, Steven B

    2015-12-10

    Hydrogels composed of methylcellulose are candidate materials for soft tissue reconstruction. Although photocrosslinked methylcellulose hydrogels have shown promise for such applications, gels crosslinked using reduction-oxidation (redox) initiators may be more clinically viable. In this study, methylcellulose modified with functional methacrylate groups was polymerized using an ammonium persulfate (APS)-ascorbic acid (AA) redox initiation system to produce injectable hydrogels with tunable properties. By varying macromer concentration from 2% to 4% (w/v), the equilibrium moduli of the hydrogels ranged from 1.47 ± 0.33 to 5.31 ± 0.71 kPa, on par with human adipose tissue. Gelation time was found to conform to the ISO standard for injectable materials. Cellulase treatment resulted in complete degradation of the hydrogels within 24h, providing a reversible corrective feature. Co-culture with human dermal fibroblasts confirmed the cytocompatibility of the gels based on DNA measurements and Live/Dead imaging. Taken together, this evidence indicates that APS-AA redox-polymerized methylcellulose hydrogels possess properties beneficial for use as soft tissue fillers.

  10. Methylcellulose during cryopreservation of ventral mesencephalic tissue fragments fails to improve survival and function of cell suspension grafts.

    PubMed

    Sautter, J; Strecker, S; Kupsch, A; Oertel, W H

    1996-02-01

    Cryopreservation may allow long-term storage of fetal ventral mesencephalon (VM) for transplantation in patients suffering from Parkinson's disease (PD). We investigated whether the polymer methylcellulose protects fetal rat VM during cryopreservation in liquid nitrogen and improves survival and function of this tissue as intrastriatal suspension grafts in the 6-hydroxydopamine (6-OHDA) rat model. VM tissue fragments (E14-E15) were either immediately dissociated and grafted as a cell suspension (FRESH) or cryopreserved under controlled conditions for 7 days in a conventional cryoprotective medium (CRYO) or a medium containing 0.1% methylcellulose (mCRYO) and then dissociated and grafted. Rats from the cryo-groups showed only limited behavioral compensation in contrast to complete compensation observed in rats from the FRESH group. Cryopreservation of fetal rat VM decreased the viability of cell suspensions in vitro to about 70%, survival of grafted tyrosine hydroxylase-immunoreactive (TH-IR) neurons to 11% and 20%, and transplant volume to 8% and 17% (mCRYO and CRYO, respectively, compared to FRESH). The addition of 0.1% methylcellulose to tissue fragments during freezing did neither improve in vitro viability nor survival of TH-IR neurons nor behavioral compensation when compared to the control CRYO group. These results suggest that methylcellulose failed to improve survival of cryopreserved dopaminergic ventral mesencephalic neurons.

  11. Miniaturization of cellulose fibers and effect of addition on the mechanical and barrier properties of hydroxypropyl methylcellulose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellulose fibers were miniaturized by microfluidics technology and incorporated in hydroxypropyl methylcellulose (HPMC) films to study the effect of the addition of such fibers on the mechanical and barrier properties of HPMC films suitable for food packaging applications. The particle size of the f...

  12. Development of crosslinked methylcellulose hydrogels for soft tissue augmentation using an ammonium persulfate-ascorbic acid redox system.

    PubMed

    Gold, Gittel T; Varma, Devika M; Taub, Peter J; Nicoll, Steven B

    2015-12-10

    Hydrogels composed of methylcellulose are candidate materials for soft tissue reconstruction. Although photocrosslinked methylcellulose hydrogels have shown promise for such applications, gels crosslinked using reduction-oxidation (redox) initiators may be more clinically viable. In this study, methylcellulose modified with functional methacrylate groups was polymerized using an ammonium persulfate (APS)-ascorbic acid (AA) redox initiation system to produce injectable hydrogels with tunable properties. By varying macromer concentration from 2% to 4% (w/v), the equilibrium moduli of the hydrogels ranged from 1.47 ± 0.33 to 5.31 ± 0.71 kPa, on par with human adipose tissue. Gelation time was found to conform to the ISO standard for injectable materials. Cellulase treatment resulted in complete degradation of the hydrogels within 24h, providing a reversible corrective feature. Co-culture with human dermal fibroblasts confirmed the cytocompatibility of the gels based on DNA measurements and Live/Dead imaging. Taken together, this evidence indicates that APS-AA redox-polymerized methylcellulose hydrogels possess properties beneficial for use as soft tissue fillers. PMID:26428151

  13. Relationship between morphologies and mechanical properties of hydroxypropyl methylcellulose/hydroxypropyl starch blends.

    PubMed

    Wang, Yanfei; Zhang, Liang; Liu, Hongsheng; Yu, Long; Simon, George P; Zhang, Nuozi; Chen, Ling

    2016-11-20

    Edible films from the blending hydroxypropyl methylcellulose (HPMC) with hydroxypropyl starch (HPS) have been developed. This work focuses on the relationship between morphologies and mechanical properties of such systems. To aid understanding of blend morphology, a new technique used to identify the two phases through dying of the HPS by iodine has been developed, which provided a simple and convenient way to clearly distinguish between HPMC and HPS phases. It was found that the blend system is immiscible and there is phase transition point depending on blending ratio and solution concentration. The lower transparency point of the blend and phase transition reign of HPMC from continuous phase to separated phase correspond with the variation of tensile modulus. The modulus and elongation decreased with increased solution concentration, which is correlatable with the morphologies present, where it was found that the HPMC gradually changed from a continuous phase to a distinct phase. PMID:27561503

  14. Stability of ingested methylcellulose in the rat determined by polymer molar mass measurements by light scattering.

    PubMed

    Yokoyama, Wallace H; Knuckles, Benny E; Davis, Paul A; Daggy, Bruce P

    2002-12-18

    Methylcellulose (MC) is ingested by humans in food and pharmaceutical formulations. The functional properties of MC like those of other linear polymers depend primarily on polymer length or molar mass for largely linear polymers. Although many studies in animals and humans have shown complete excretion of MC, in vitro human fecal fermentation studies indicate that MC can be degraded and presumably lose some of its functionality. In this study, MC polymer distribution in the feces from rats fed a diet containing 8% methylcellulose were compared to the fed MC. The water-soluble polymers in the feces were separated by a size exclusion chromatography (SEC) and the polymer distributions determined by multiple angle laser light scattering (MALLS). Detection of the fluorescent MC-calcofluor complex was used to confirm the identity of the eluting MC peak. All dietary MC was recovered in the feces. There is a small shift (P < 0.06) in the weight-averaged molecular weight of polymer distribution of MC extracted from the feces to 2.71 +/- 0.15 x 10(5) g/mol from 3.15 +/- 0.02 x 10(5) g/mol in the standard. There is also an increase in the polydispersity from 1.21 in the standard to 1.8 in the fecal extract. The distribution of the substituted methoxylated glucose monomers by gas chromatography also confirms the stability of MC fed to rats. The amount of actual hydrolysis is estimated to be about 0.1 glycosidic linkage/molecule. MC is not easily determined by standard dietary fiber methods, and SEC with MALLS and/or fluorescence may be a useful alternative.

  15. Biopolymer-based supramolecular micelles from β-cyclodextrin and methylcellulose.

    PubMed

    Du, Jiaojiao; Guo, Xin; Tu, Jiaxing; Xiao, Longqiang; Jia, Xiangxiang; Liao, Liqiong; Liu, Lijian

    2012-09-01

    Supramolecular polymer micelles (SMPMs) were constructed from natural and natural-derived polymers: β-cyclodextrin (β-CD)/maleic anhydride modified β-cyclodextrin (MAh-β-CD) and methylcellulose (MC) in aqueous solution by one-pot self-assembly procedure, in which, β-CD and MAh-β-CD inclusion complexes were used as the hydrophilic shell and the free MC as the core. The shapes of the SMPMs were regular spheres with diameters of 25±5 nm. The critical micelle concentrations, calculated from steady-state fluorescence emission spectra, were around 15.13 and 20.89 mg/L for MC/β-CD and MC/MAh-β-CD SMPMs, respectively. The in vitro drug release behaviors of the micelles were studied using prednisone acetate as a model drug, and the results showed that the MC/MAh-β-CD micelle had a drug-enrichment core and excellent drug released behaviors with a sustaining release time of 700 h.

  16. Gelatin/hydroxypropyl methylcellulose matrices - Polymer interactions approach for oral disintegrating films.

    PubMed

    Tedesco, Marcela P; Monaco-Lourenço, Carla A; Carvalho, Rosemary A

    2016-12-01

    Oral disintegrating film represents an optimal alternative for delivery system of active compounds. The choice of film-forming polymer is the first step in the development of oral disintegrating films and the knowledge of molecular interactions in this matrix is fundamental to advance in this area. Therefore, this study aimed to characterize gelatin and hydroxypropyl methylcellulose (HPMC) films and their blends as matrices of oral disintegrating films. The films were produced by casting technique and were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, mechanical properties, contact angle, time disintegration and bioadhesive strength. Differential scanning calorimetry showed that enthalpy of fusion and melting temperatures of the blends films were lower than those of the gelatin film, which may be associated with the lack of intra-chain interactions also observed in the Fourier transform infrared spectra. In blends, a less compact cross-section structure was observed in scanning electron microscopy images compared with isolated polymer films. The addition of HPMC increased the elongation, hydrophilicity and in vitro bioadhesive force and decreased in vitro disintegration time, important properties in the development of oral disintegrating films. Although the mixture of the polymers showed no synergistic behavior, this study may contribute to the development of new applications for polymeric matrices in the pharmaceutical industry. PMID:27612760

  17. Antimicrobial and Antioxidant Activity of Chitosan/Hydroxypropyl Methylcellulose Film-Forming Hydrosols Hydrolyzed by Cellulase.

    PubMed

    Zimoch-Korzycka, Anna; Bobak, Łukasz; Jarmoluk, Andrzej

    2016-01-01

    The aim of this study was to evaluate the impact of cellulase (C) on the biological activity of chitosan/hydroxypropyl methylcellulose (CH/HPMC) film-forming hydrosols. The hydrolytic activity of cellulase in two concentrations (0.05% and 0.1%) was verified by determination of the progress of polysaccharide hydrolysis, based on viscosity measurement and reducing sugar-ends assay. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging effect, the ferric reducing antioxidant power (FRAP), and microbial reduction of Pseudomonas fluorescens, Yersinia enterocolitica, Bacillus cereus, and Staphylococcus aureus were studied. During the first 3 h of reaction, relative reducing sugar concentration increased progressively, and viscosity decreased rapidly. With increasing amount of enzyme from 0.05% to 0.1%, the reducing sugar concentration increased, and the viscosity decreased significantly. The scavenging effect of film-forming solutions was improved from 7.6% at time 0 and without enzyme to 52.1% for 0.1% cellulase after 20 h of reaction. A significant effect of cellulase addition and reaction time on antioxidant power of the tested film-forming solutions was also reported. Film-forming hydrosols with cellulase exhibited a bacteriostatic effect on all tested bacteria, causing a total reduction.

  18. Studies on methylcellulose/pectin/montmorillonite nanocomposite films and their application possibilities.

    PubMed

    Saha, Nayan Ranjan; Sarkar, Gunjan; Roy, Indranil; Rana, Dipak; Bhattacharyya, Amartya; Adhikari, Arpita; Mukhopadhyay, Asis; Chattopadhyay, Dipankar

    2016-01-20

    Films based on methylcellulose (MC) and pectin (PEC) of different ratios were prepared. MC/PEC (90:10) (MP10) gave the best results in terms of mechanical properties. Sodium montmorillonite (MMT) (1, 3 and 5 wt%) was incorporated in the MP10 matrix. The resulting films were characterized by X-ray diffraction and transmission electron microscopy, and it was found that nanocomposites were intercalated in nature. Mechanical studies established that addition of 3 wt% MMT gave best results in terms of mechanical properties. However, thermo-gravimetric and dynamic mechanical analysis proved that decomposition and glass transition temperature increased with increasing MMT concentration from 1 to 5 wt%. It was also observed that moisture absorption and water vapor permeability studies gave best result in the case of 3 wt% MMT. Optical clarity of the nanocomposite films was not much affected with loading of MMT. In vitro drug release studies showed that MC/PEC/MMT based films can be used for controlled transdermal drug delivery applications. PMID:26572465

  19. Injectable and Thermosensitive Soluble Extracellular Matrix and Methylcellulose Hydrogels for Stem Cell Delivery in Skin Wounds.

    PubMed

    Kim, Eun Ji; Choi, Ji Suk; Kim, Jun Sung; Choi, Young Chan; Cho, Yong Woo

    2016-01-11

    Extracellular matrix (ECM) provides structural support and biochemical cues for tissue development and regeneration. Here we report a thermosensitive hydrogel composed of soluble ECM (sECM) and methylcellulose (MC) for injectable stem cell delivery. The sECM was prepared by denaturing solid ECM extracted from human adipose tissue and then blended with a MC solution. At low temperatures, the sECM-MC solution displayed a viscous solution state in which the loss modulus (G″) was predominant over the storage modulus (G'). With increasing temperature, G' increased dramatically and eventually exceeded G″ around 34 °C, characteristic of the transition from a liquid-like state to an elastic gel-like state. After a single injection of the stem cell-embedded hydrogel in full thickness cutaneous wound, the wound healed rapidly through re-epithelialization and neovascularization with minimum scar formation. The overall results suggest that in-situ-forming sECM-MC hydrogels are a promising injectable vehicle for stem cell delivery and tissue regeneration.

  20. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.

    PubMed

    Xu, Y; Wang, C; Tam, K C; Li, L

    2004-02-01

    The effects of various salts on the sol-gel transition of aqueous methylcellulose (MC) solutions have been studied systematically by means of a micro differential scanning calorimeter. It was found that the heating process was endothermic while the cooling process was exothermic for both MC solutions with and without salts. The addition of salts did not change the patterns of gelation and degelation of MC. However, the salts could shift the sol-gel transition and the gel-sol transition to lower or higher temperatures from a pure MC solution, depending on the salt type. These opposite effects were termed the salt-assisted and salt-suppressed sol-gel transitions. Either the salt-assisted transition or the salt-suppressed sol-gel transition was a function of salt concentration. In addition, each salt was found to have its own concentration limit for producing a stable aqueous solution of MC at a given concentration of MC, which was related to the anionic charge density of the salt. Cations were proved to have weaker effects than anions. The "salt-out strength", defined as the salt effect per mole of anion, was obtained for each anion studied. The thermodynamic mechanisms involved in the salt-assisted and salt-suppressed sol-gel transitions are discussed.

  1. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    NASA Astrophysics Data System (ADS)

    Lee, Wonjae; Park, Jon

    2016-07-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues.

  2. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.

    PubMed

    Xu, Y; Wang, C; Tam, K C; Li, L

    2004-02-01

    The effects of various salts on the sol-gel transition of aqueous methylcellulose (MC) solutions have been studied systematically by means of a micro differential scanning calorimeter. It was found that the heating process was endothermic while the cooling process was exothermic for both MC solutions with and without salts. The addition of salts did not change the patterns of gelation and degelation of MC. However, the salts could shift the sol-gel transition and the gel-sol transition to lower or higher temperatures from a pure MC solution, depending on the salt type. These opposite effects were termed the salt-assisted and salt-suppressed sol-gel transitions. Either the salt-assisted transition or the salt-suppressed sol-gel transition was a function of salt concentration. In addition, each salt was found to have its own concentration limit for producing a stable aqueous solution of MC at a given concentration of MC, which was related to the anionic charge density of the salt. Cations were proved to have weaker effects than anions. The "salt-out strength", defined as the salt effect per mole of anion, was obtained for each anion studied. The thermodynamic mechanisms involved in the salt-assisted and salt-suppressed sol-gel transitions are discussed. PMID:15773087

  3. Fluorescence study on the aggregation of collagen molecules in acid solution influenced by hydroxypropyl methylcellulose.

    PubMed

    Ding, Cuicui; Zhang, Min; Li, Guoying

    2016-01-20

    The effect of hydroxypropyl methylcellulose (HPMC) on the aggregation of collagen molecules with collagen concentrations of 0.25, 0.5 and 1.0mg/mL was studied by fluorescence techniques. On one hand, both the synchronous fluorescence spectra and fluorescence emission spectra showed that there was no change in the fluorescence intensity of collagen intrinsic fluorescence when 30% HPMC was added, while it decreased obviously when HPMC content ≥ 50%. From the two-dimensional fluorescence correlation analysis, it was indicated that collagen molecules in 0.25 and 0.5mg/mL collagen solutions were more sensitive to HPMC than those in 1.0mg/mL collagen solution. On the other hand, the pyrene fluorescence and the fluorescence anisotropy measurements indicated that HPMC inhibited the collagen aggregation for 0.25 and 0.5mg/mL collagen, but promoted it for 1.0mg/mL collagen. The atomic force microscopy images further confirmed the effect of HPMC on collagen with different initial states.

  4. Synthesis of surfactant-free hydroxypropyl methylcellulose nanogels for controlled release of insulin.

    PubMed

    Zhao, Di; Shi, Xiaodi; Liu, Tianqun; Lu, Xihua; Qiu, Gao; Shea, Kenneth J

    2016-10-20

    A facile controlled-release nanogels delivery system has been developed by using hydroxypropyl methylcellulose (HPMC) hybrid nanogels as encapsulation shell materials, which were synthesized by surfactant-free polymerization in aqueous solution. The effects of reaction time and cross-linker concentration on the size of the nanogels have been studied. The results showed that in a certain range, the particle size decreased with increasing reaction time and increasing concentration of cross-linker. Meanwhile, at the feeding ratio 0.05/1 of HPMC/methacrylic acid (MAA), the LCST of prepared nanogels at pH=6 was close to the body temperature, which can be used as sustained insulin delivery system. Besides, the HPMC nanogels loaded with insulin had a high drug loading of 21.3% and a high entrapment efficiency of 95.7%. The release behavior of the insulin nanogels can be adjusted by pH and temperature which will have potential applications in controlled release delivery system. PMID:27474648

  5. Influence of hydroxypropyl methylcellulose edible coating on fresh-keeping and storability of tomato.

    PubMed

    Zhuang, Rong-yu; Huang, Yao-wen

    2003-01-01

    The effect of application of cellulose-based edible coating, hydroxypropyl methylcellulose (HPMC) to mature-green tomatoes on the firmness and color was investigated. Tomatoes were stored at 20 degrees C for up to 18 days. Firmness decreased as storage time increased in all treatments. However, application of HPMC edible coating delayed softening of tomatoes during 18 days of storage at 20 degrees C. At days 7, 13 and 18, the firmness of tomatoes coated with HPMC was significantly (P < or = 0.05) greater than the firmness of uncoated tomatoes. The study also confirmed that HPMC coatings could significantly (P < or = 0.05) delay the changes in color of tomatoes stored at 20 degrees C. The ripening of tomatoes from the pink stage to the red stage was successfully retarded. HPMC coating could extend the shelf life of fresh tomatoes. The retardation of the rate of loss of firmness could reduce the economic loss that would result from spoilage by mechanical injury during transportation of tomatoes.

  6. Co-processing of hydroxypropyl methylcellulose (HPMC) for improved aqueous dispersibility.

    PubMed

    Sharma, Payal; Modi, Sameer R; Bansal, Arvind K

    2015-05-15

    Hydroxypropyl methylcellulose (HPMC), a widely employed film coating polymer, exhibits poor dispersibility in an aqueous medium. Rapid hydration leading to swelling and coherent gel formation is reported to be responsible for this problem. Present study focuses on the use of spray drying based approach for co-processing of HPMC to improve its dispersibility. Dispersion behavior of native HPMC showed formation of large lumps that did not dissolve completely for 40min. However, HPMC co-processed with lactose and sodium chloride exhibited improvement in dispersibility with complete dissolution attained within 20min. Mechanistic insights into improved dispersibility were obtained using contact angle studies, confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM) and scanning TEM (STEM) studies. Co-processed products exhibited higher immersional wetting as determined by sessile drop contact angle technique, which indicated spontaneous incursion of water. CLSM study revealed highly swollen and erodible gel in co-processed products. Novel application of TEM and STEM techniques was developed to understand the nature of mixing achieved during co-processing. Overall the improvement in dispersibility of co-processed products was predominantly due to the alteration in sub-particulate level properties during co-processing. The effect of excipients on the film properties of HPMC, like tensile strength and hygroscopicity, was also assessed. This study provides the comprehensive understanding of role of co-processing on improvement of dispersion behavior of HPMC and helps in the selection of suitable excipients for the same.

  7. Development and evaluation of wound healing hydrogels based on a quinolone, hydroxypropyl methylcellulose and biodegradable microfibres.

    PubMed

    Agubata, Chukwuma O; Okereke, Chiadikaobi; Nzekwe, Ifeanyi T; Onoja, Remigius I; Obitte, Nicholas C

    2016-06-30

    Ofloxacin is a synthetic antibiotic of the fluoroquinolone class, with activity against gram-positive and gram-negative bacteria. Wound healing involves a complex interaction of cells and processes which can be improved using appropriate wound- dressing materials. The aim of the present study was to develop and evaluate wound healing hydrogels containing hydroxypropyl methylcellulose (HPMC), ofloxacin and biodegradable microfibres from surgical sutures. The hydrogels were formulated by air-drying mixtures of dilute dispersions of micronized sutures (polyglycolic acid, Vicryl® and catgut), ofloxacin and HPMC gel. The prepared hydrogels were evaluated for gel fraction, swelling capacity, breaking elongation, particle size and morphology, and chemical interactions. Furthermore, in vivo wound healing activities were studied in rats using excision wound model and histological examination. The percentage gel fraction was ≥50% in all the batches, the percentage swelling ratio was within the range of 531.8-1700% and the percentage breaking elongation was found to be in the range of 70-120%. The chemical interaction studies using Fourier Transform Infra Red (FTIR) spectroscopy showed that there was no interaction between the drug and excipients used. Ofloxacin-loaded hydrogels containing dilute microfibres of the sutures showed 95% wound size reduction after fourteen days. These formulations also caused high collagen deposition after twenty one days of wounding, with minimal scar formation. Ofloxacin hydrogels containing HPMC and micronized suture fibres can be applied for effective wound healing. PMID:27094907

  8. Antimicrobial and Antioxidant Activity of Chitosan/Hydroxypropyl Methylcellulose Film-Forming Hydrosols Hydrolyzed by Cellulase

    PubMed Central

    Zimoch-Korzycka, Anna; Bobak, Łukasz; Jarmoluk, Andrzej

    2016-01-01

    The aim of this study was to evaluate the impact of cellulase (C) on the biological activity of chitosan/hydroxypropyl methylcellulose (CH/HPMC) film-forming hydrosols. The hydrolytic activity of cellulase in two concentrations (0.05% and 0.1%) was verified by determination of the progress of polysaccharide hydrolysis, based on viscosity measurement and reducing sugar-ends assay. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging effect, the ferric reducing antioxidant power (FRAP), and microbial reduction of Pseudomonas fluorescens, Yersinia enterocolitica, Bacillus cereus, and Staphylococcus aureus were studied. During the first 3 h of reaction, relative reducing sugar concentration increased progressively, and viscosity decreased rapidly. With increasing amount of enzyme from 0.05% to 0.1%, the reducing sugar concentration increased, and the viscosity decreased significantly. The scavenging effect of film-forming solutions was improved from 7.6% at time 0 and without enzyme to 52.1% for 0.1% cellulase after 20 h of reaction. A significant effect of cellulase addition and reaction time on antioxidant power of the tested film-forming solutions was also reported. Film-forming hydrosols with cellulase exhibited a bacteriostatic effect on all tested bacteria, causing a total reduction. PMID:27608008

  9. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds.

    PubMed

    Lee, Wonjae; Park, Jon

    2016-01-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues. PMID:27381562

  10. Antimicrobial and Antioxidant Activity of Chitosan/Hydroxypropyl Methylcellulose Film-Forming Hydrosols Hydrolyzed by Cellulase.

    PubMed

    Zimoch-Korzycka, Anna; Bobak, Łukasz; Jarmoluk, Andrzej

    2016-01-01

    The aim of this study was to evaluate the impact of cellulase (C) on the biological activity of chitosan/hydroxypropyl methylcellulose (CH/HPMC) film-forming hydrosols. The hydrolytic activity of cellulase in two concentrations (0.05% and 0.1%) was verified by determination of the progress of polysaccharide hydrolysis, based on viscosity measurement and reducing sugar-ends assay. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging effect, the ferric reducing antioxidant power (FRAP), and microbial reduction of Pseudomonas fluorescens, Yersinia enterocolitica, Bacillus cereus, and Staphylococcus aureus were studied. During the first 3 h of reaction, relative reducing sugar concentration increased progressively, and viscosity decreased rapidly. With increasing amount of enzyme from 0.05% to 0.1%, the reducing sugar concentration increased, and the viscosity decreased significantly. The scavenging effect of film-forming solutions was improved from 7.6% at time 0 and without enzyme to 52.1% for 0.1% cellulase after 20 h of reaction. A significant effect of cellulase addition and reaction time on antioxidant power of the tested film-forming solutions was also reported. Film-forming hydrosols with cellulase exhibited a bacteriostatic effect on all tested bacteria, causing a total reduction. PMID:27608008

  11. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    PubMed Central

    Lee, Wonjae; Park, Jon

    2016-01-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues. PMID:27381562

  12. Photochromic Properties of Tungsten Oxide/Methylcellulose Composite Film Containing Dispersing Agents.

    PubMed

    Yamazaki, Suzuko; Ishida, Hiroki; Shimizu, Dai; Adachi, Kenta

    2015-12-01

    Tungsten oxide-based photochromic films which changed reversibly in air between colorless- transparent in the dark and dark blue under UV irradiation were prepared by using methylcellulose as a film matrix and polyols such as ethylene glycol (EG), propylene glycol (PG), and glycerin (Gly) as dispersing agents. Influence of the dispersing agents and water in the films on the photochromic behavior was systematically studied. Under UV irradiation, absorption bands around 640 and 980 nm increased and the coloring rate was the following order: Gly > EG > PG. An increase in the amounts of dispersing agents or water accelerated the coloring rate. By increasing the water content of the film, a new absorption peak appeared at ca. 775 nm and the Raman spectra indicated a shift of W-O-W stretching vibration to lower wavenumber which was due to the formation of hydrogen bonding. All absorption spectra were fit by three Lorentz functions, whose bands were ascribed to various packing of WO6 octahedra. After the light was turned off, the formation of W(5+) was stopped and bleaching occurred by the reaction with O2 in air to recover its original transparent state. We anticipate that the biodegradable photochromic films developed in this study can be applied in recyclable display medium and especially in detachable films for glass windows whose light transmission properties are changed by sunlight, i.e., for usage as an alternative of smart windows without applying voltage. PMID:26552031

  13. Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering.

    PubMed

    Kanimozhi, K; Khaleel Basha, S; Sugantha Kumari, V

    2016-04-01

    Biomimetic porous scaffold chitosan/poly(vinyl alcohol) CS/PVA containing various amounts of methylcellulose (MC) (25%, 50% and 75%) incorporated in CS/PVA blend was successfully produced by a freeze drying method in the present study. The composite porous scaffold membranes were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), swelling degree, porosity, degradation of films in Hank's solution and the mechanical properties. Besides these characterizations, the antibacterial activity of the prepared scaffolds was tested, toward the bacterial species Staphylococcus aureus (S.aureus) and Escherichia coli (E.coli). FTIR, XRD and DSC demonstrated that there was strong intermolecular hydrogen bonding between the molecules of CS/PVA and MC. The crystalline microstructure of the scaffold membranes was not well developed. SEM images showed that the morphology and diameter of the scaffolds were mainly affected by the weight ratio of MC. By increasing the MC content in the hybrid scaffolds, their swelling capacity and porosity increased. The mechanical properties of these scaffolds in dry and swollen state were greatly improved with high swelling ratio. The elasticity of films was also significantly improved by the incorporation of MC, and the scaffolds could also bear a relative high tensile strength. These findings suggested that the developed scaffold possess the prerequisites and can be used as a scaffold for tissue engineering. PMID:26838875

  14. Affinity-based release of chondroitinase ABC from a modified methylcellulose hydrogel.

    PubMed

    Pakulska, Malgosia M; Vulic, Katarina; Shoichet, Molly S

    2013-10-10

    Chondroitinase ABC (ChABC) is a promising therapeutic for spinal cord injury as it can degrade the glial scar that is detrimental to regrowth and repair. However, the sustained delivery of bioactive ChABC is a challenge requiring highly invasive methods such as intra-spinal injections, insertion of intrathecal catheters, or implantation of delivery vehicles directly into the tissue. ChABC is thermally unstable, further complicating its delivery. Moreover, there are no commercial antibodies available for its detection. To achieve controlled release, we designed an affinity-based system that sustained the release of bioactive ChABC for at least 7days. ChABC was recombinantly expressed as a fusion protein with Src homology domain 3 (SH3) with an N-terminal histidine (HIS) tag and a C-terminal FLAG tag (ChABC-SH3). Protein purification was achieved using a nickel affinity column and, for the first time, direct quantification of ChABC down to 0.1nM was attained using an in-house HIS/FLAG double tag ELISA. The release of active ChABC-SH3 was sustained from a methylcellulose hydrogel covalently modified with an SH3 binding peptide. The rate of release was tunable by varying either the binding strength of the SH3-protein/SH3-peptide pair or the SH3-peptide to SH3-protein ratio. This innovative system has the potential to be used as a platform technology for the release and detection of other proteins that can be expressed using a similar construct.

  15. Structure and properties of aqueous methylcellulose gels by small-angle neutron scattering.

    PubMed

    Chatterjee, Tirtha; Nakatani, Alan I; Adden, Roland; Brackhagen, Meinolf; Redwine, David; Shen, Hongwei; Li, Yongfu; Wilson, Tricia; Sammler, Robert L

    2012-10-01

    Cold, semidilute, aqueous solutions of methylcellulose (MC) are known to undergo thermoreversible gelation when warmed. This study focuses on two MC materials with much different gelation performance (gel temperature and hot gel modulus) even though they have similar metrics of their coarse-grained chemical structure (degree-of-methylether substitution and molecular weight distribution). Small-angle neutron scattering (SANS) experiments were conducted to probe the structure of the aqueous MC materials at pre- and postgel temperatures. One material (MC1, higher gel temperature) exhibited a single almost temperature-insensitive gel characteristic length scale (ζ(c) = 1090 ± 50 Å) at postgelation temperatures. This length scale is thought to be the gel blob size between network junctions. It also coincides with the length scale between entanglement sites measured with rheology studies at pregel temperatures. The other material (MC2, lower gel temperature) exhibited two distinct length scales at all temperatures. The larger length scale decreased as temperature increased. Its value (ζ(c1) = 1046 ± 19 Å) at the lowest pregel temperature was indistinguishable from that measured for MC1, and reached a limiting value (ζ(c1) = 450 ± 19 Å) at high temperature. The smaller length scale (ζ(c2) = 120 to 240 Å) increased slightly as temperature increased, but remained on the order of the chain persistence length (130 Å) measured at pregel temperatures. The smaller blob size (ζ(c1)) of MC2 suggests a higher bond energy or a stiffer connectivity between network junctions. Moreover, the number density of these blobs, at the same reduced temperature with respect to the gel temperature, is orders of magnitude higher for the MC2 gels. Presumably, the smaller gel length scale and higher number density lead to higher hot gel modulus for the low gel temperature material.

  16. Affinity-based release of chondroitinase ABC from a modified methylcellulose hydrogel.

    PubMed

    Pakulska, Malgosia M; Vulic, Katarina; Shoichet, Molly S

    2013-10-10

    Chondroitinase ABC (ChABC) is a promising therapeutic for spinal cord injury as it can degrade the glial scar that is detrimental to regrowth and repair. However, the sustained delivery of bioactive ChABC is a challenge requiring highly invasive methods such as intra-spinal injections, insertion of intrathecal catheters, or implantation of delivery vehicles directly into the tissue. ChABC is thermally unstable, further complicating its delivery. Moreover, there are no commercial antibodies available for its detection. To achieve controlled release, we designed an affinity-based system that sustained the release of bioactive ChABC for at least 7days. ChABC was recombinantly expressed as a fusion protein with Src homology domain 3 (SH3) with an N-terminal histidine (HIS) tag and a C-terminal FLAG tag (ChABC-SH3). Protein purification was achieved using a nickel affinity column and, for the first time, direct quantification of ChABC down to 0.1nM was attained using an in-house HIS/FLAG double tag ELISA. The release of active ChABC-SH3 was sustained from a methylcellulose hydrogel covalently modified with an SH3 binding peptide. The rate of release was tunable by varying either the binding strength of the SH3-protein/SH3-peptide pair or the SH3-peptide to SH3-protein ratio. This innovative system has the potential to be used as a platform technology for the release and detection of other proteins that can be expressed using a similar construct. PMID:23831055

  17. Human Adipose Tissue Derived Extracellular Matrix and Methylcellulose Hydrogels Augments and Regenerates the Paralyzed Vocal Fold

    PubMed Central

    Kim, Eun Na; Sung, Myung Whun; Kwon, Tack-Kyun; Cho, Yong Woo; Kwon, Seong Keun

    2016-01-01

    Vocal fold paralysis results from various etiologies and can induce voice changes, swallowing complications, and issues with aspiration. Vocal fold paralysis is typically managed using injection laryngoplasty with fat or synthetic polymers. Injection with autologous fat has shown excellent biocompatibility. However, it has several disadvantages such as unpredictable resorption rate, morbidities associated with liposuction procedure which has to be done in operating room under general anesthesia. Human adipose-derived extracellular matrix (ECM) grafts have been reported to form new adipose tissue and have greater biostability than autologous fat graft. Here, we present an injectable hydrogel that is constructed from adipose tissue derived soluble extracellular matrix (sECM) and methylcellulose (MC) for use in vocal fold augmentation. Human sECM derived from adipose tissue was extracted using two major steps—ECM was isolated from human adipose tissue and was subsequently solubilized. Injectable sECM/MC hydrogels were prepared by blending of sECM and MC. Sustained vocal fold augmentation and symmetric vocal fold vibration were accomplished by the sECM/MC hydrogel in paralyzed vocal fold which were confirmed by laryngoscope, histology and a high-speed imaging system. There were increased number of collagen fibers and fatty granules at the injection site without significant inflammation or fibrosis. Overall, these results indicate that the sECM/MC hydrogel can enhance vocal function in paralyzed vocal folds without early resorption and has potential as a promising material for injection laryngoplasty for stable vocal fold augmentation which can overcome the shortcomings of autologous fat such as unpredictable duration and morbidity associated with the fat harvest. PMID:27768757

  18. Miscibility of Itraconazole-Hydroxypropyl Methylcellulose Blends: Insights with High Resolution Analytical Methodologies.

    PubMed

    Purohit, Hitesh S; Taylor, Lynne S

    2015-12-01

    Drug-polymer miscibility is considered to be a prerequisite to achieve an optimally performing amorphous solid dispersion (ASD). Unfortunately, it can be challenging to evaluate drug-polymer miscibility experimentally. The aim of this study was to investigate the miscibility of ASDs of itraconazole (ITZ) and hydroxypropyl methylcellulose (HPMC) using a variety of analytical approaches. The phase behavior of ITZ-HPMC films prepared by solvent evaporation was studied before and after heating. Conventional methodology for miscibility determination, that is, differential scanning calorimetry (DSC), was used in conjunction with emerging analytical techniques, such as fluorescence spectroscopy, fluorescence imaging, and atomic force microscopy coupled with nanoscale infrared spectroscopy and nanothermal analysis (AFM-nanoIR-nanoTA). DSC results showed a single glass transition event for systems with 10% to 50% drug loading, suggesting that the ASDs were miscible, whereas phase separation was observed for all of the films based on the other techniques. The AFM-coupled techniques indicated that the phase separation occurred at the submicron scale. When the films were heated, it was observed that the ASD components underwent mixing. The results provide new insights into the phase behavior of itraconazole-HPMC dispersions and suggest that the emerging analytical techniques discussed herein are promising for the characterization of miscibility and microstructure in drug-polymer systems. The observed differences in the phase behavior in films prepared by solvent evaporation before and after heating also have implications for processing routes and suggest that spray drying/solvent evaporation and hot melt extrusion/melt mixing can result in ASDs with varying extent of miscibility between the drug and the polymer.

  19. Modeling Anisotropic Self-Assembly of Isotropic Objects: from Hairy Nanoparticles to Methylcellulose Fibrils

    NASA Astrophysics Data System (ADS)

    Ginzburg, Valeriy

    Spontaneous symmetry breaking and formation of anisotropic structures from apparently isotropic building blocks is an exciting and not fully understood topic. I will discuss two examples of such self-assembly. The first example is related to the assembly of ``hairy'' nanoparticles in homopolymer matrices. The particles can assemble into long strings (they can also form other morphologies, as well) even though the shape of each particle and the distribution of ligands on the particle surface is spherically symmetric. Using the approach developed by Thompson, Ginzburg, Matsen, and Balazs, we show that presence of other particles can re-distribute the ligands and effectively ``polarize'' the particle-particle interaction, giving rise to the formation of 1d particle strings. In the second example, we consider aqueous solutions of methylcellulose (MC) polymers. It has been shown recently that at high temperature, the polymers form high-aspect ratio ``fibrils'' with diameter ~15 nm and length in the hundreds on nanometers. Using coarse-grained Molecular Dynamics (CG-MD), we propose that the ``fibrils'' are result of one-dimensional self-assembly of single molecule ``rings''. Each MC polymer chain is forced into a ring because of the balance between internal chain rigidity (favoring more expanded configuration) and unfavorable polymer-water interactions (favoring more collapsed conformation). We also develop a theory predicting rheology and phase behavior of aqueous MC, and validate it against experimental data. Both examples show that anisotropic self-assembly can show up in unexpected places, and various theoretical tools are needed to successfully model it. Funded by The Dow Chemical Company through Grant 223278AF. Collaborators: R. L. Sammler (Dow), W. Huang and R. Larson (U. of Michigan).

  20. In vitro viability of external eye microbial flora in hydroxy-propyl-methylcellulose.

    PubMed

    Mastropasqua, L; Piccolomini, R; Carpineto, P; Ciancaglini, M; Falconio, G; Di Bonaventura, G; Costagliola, C; Gallenga, P E

    1999-01-01

    The aim of this study was to verify the in vitro influence of various dilutions of a viscoelastic substance containing 2% hydroxy-propyl-methylcellulose (HPMC) on the viability of some microbial strains representative of the normal flora of the external eye. Pure reference strain cultures of Candida albicans, Pseudomonas aeruginosa, Propionibacterium acnes, Staphylococcus aureus, Staphylococcus epidermidis and a fresh clinical isolate of Proteus mirabilis were selected for this study. Serial twofold dilutions of 2% HPMC, prepared so as to obtain a final concentration ranging from 50 to 0.78% of the product in sterile saline solution (0.85% NaCl), were taken out with a pipette that delivered 1.0 ml per tube. One hundred microliters of the abovementioned microbial inocula, used for the evaluation of the positive control of the test organism, were dispensed into each tube. After 24 h of incubation, 100 microl of samples were taken from each tube and plated into the specific medium for the growth of the test organism. After 24-48 h of incubation, these agar plates were examined and the colony-forming-unit count of each test organism was compared to the corresponding total colony count, acting as a positive control, in order to determine the quantitative variation of the test organism grown in the presence of the viscoelastic compounds. C. albicans and P. aeruginosa showed a statistically significant increase in growth with HPMC dilutions varying from 1:2 to 1:16. P. acnes and P. mirabilis growth was significantly reduced by all dilutions except for the 1:128 one. S. epidermidis growth was also significantly reduced in the presence of HPMC dilutions varying from 1:2 to 1:64. S. aureus growth was not significantly influenced. The viability of P. aeruginosa in HPMC dilutions needs to be carefully considered because of the ability of this organism to induce endophthalmitis, and the possibility that during cataract surgery, a small amount of HPMC may be left in the eye

  1. In vitro viability of external eye microbial flora in hydroxy-propyl-methylcellulose.

    PubMed

    Mastropasqua, L; Piccolomini, R; Carpineto, P; Ciancaglini, M; Falconio, G; Di Bonaventura, G; Costagliola, C; Gallenga, P E

    1999-01-01

    The aim of this study was to verify the in vitro influence of various dilutions of a viscoelastic substance containing 2% hydroxy-propyl-methylcellulose (HPMC) on the viability of some microbial strains representative of the normal flora of the external eye. Pure reference strain cultures of Candida albicans, Pseudomonas aeruginosa, Propionibacterium acnes, Staphylococcus aureus, Staphylococcus epidermidis and a fresh clinical isolate of Proteus mirabilis were selected for this study. Serial twofold dilutions of 2% HPMC, prepared so as to obtain a final concentration ranging from 50 to 0.78% of the product in sterile saline solution (0.85% NaCl), were taken out with a pipette that delivered 1.0 ml per tube. One hundred microliters of the abovementioned microbial inocula, used for the evaluation of the positive control of the test organism, were dispensed into each tube. After 24 h of incubation, 100 microl of samples were taken from each tube and plated into the specific medium for the growth of the test organism. After 24-48 h of incubation, these agar plates were examined and the colony-forming-unit count of each test organism was compared to the corresponding total colony count, acting as a positive control, in order to determine the quantitative variation of the test organism grown in the presence of the viscoelastic compounds. C. albicans and P. aeruginosa showed a statistically significant increase in growth with HPMC dilutions varying from 1:2 to 1:16. P. acnes and P. mirabilis growth was significantly reduced by all dilutions except for the 1:128 one. S. epidermidis growth was also significantly reduced in the presence of HPMC dilutions varying from 1:2 to 1:64. S. aureus growth was not significantly influenced. The viability of P. aeruginosa in HPMC dilutions needs to be carefully considered because of the ability of this organism to induce endophthalmitis, and the possibility that during cataract surgery, a small amount of HPMC may be left in the eye

  2. Physical and sensory properties of all-barley and all-oat breads with additional hydroxypropyl methylcellulose (HPMC) ß-glucan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxypropyl methylcellulose (HPMC) is a substituted cellulose that reduces serum cholesterol at modest intake levels. HPMC has also been used for decades in gluten-free breads at a level to optimize loaf volume. Because consumers resist the consumption of whole wheat breads, we evaluated the sen...

  3. Edible films from methylcellulose and nanoemulsions of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils as shelf life extenders for sliced bread.

    PubMed

    Otoni, Caio G; Pontes, Silvania F O; Medeiros, Eber A A; Soares, Nilda de F F

    2014-06-01

    Consumers are increasingly demanding foods with lower synthetic preservatives. Plant essential oils are natural compounds with remarkable antimicrobial properties and may be incorporated as emulsions into water-soluble polymers to form antimicrobial films. Coarse emulsions (diameters of 1.3-1.9 μm) and nanoemulsions (diameters of 180-250 nm) of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils were produced through low-speed mixing and ultrasonication, respectively. Methylcellulose was added for film-forming purposes. Both essential oils reduced the rigidity and increased the extensibility of the methylcellulose films, effects that were even more pronounced for nanodroplets. Both essential oils lessened the counts of yeasts and molds in sliced bread during 15 days, and droplet size reduction provided a further improvement in antimicrobial properties. Due to increased bioavailability, less preservative content might be used and still deliver the same antimicrobial efficiency if encapsulated in smaller particles.

  4. Edible films from methylcellulose and nanoemulsions of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils as shelf life extenders for sliced bread.

    PubMed

    Otoni, Caio G; Pontes, Silvania F O; Medeiros, Eber A A; Soares, Nilda de F F

    2014-06-01

    Consumers are increasingly demanding foods with lower synthetic preservatives. Plant essential oils are natural compounds with remarkable antimicrobial properties and may be incorporated as emulsions into water-soluble polymers to form antimicrobial films. Coarse emulsions (diameters of 1.3-1.9 μm) and nanoemulsions (diameters of 180-250 nm) of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils were produced through low-speed mixing and ultrasonication, respectively. Methylcellulose was added for film-forming purposes. Both essential oils reduced the rigidity and increased the extensibility of the methylcellulose films, effects that were even more pronounced for nanodroplets. Both essential oils lessened the counts of yeasts and molds in sliced bread during 15 days, and droplet size reduction provided a further improvement in antimicrobial properties. Due to increased bioavailability, less preservative content might be used and still deliver the same antimicrobial efficiency if encapsulated in smaller particles. PMID:24815228

  5. In Situ Observations of Thermoreversible Gelation and Phase Separation of Agarose and Methylcellulose Solutions under High Pressure.

    PubMed

    Kometani, Noritsugu; Tanabe, Masahiro; Su, Lei; Yang, Kun; Nishinari, Katsuyoshi

    2015-06-01

    Thermoreversible sol-gel transitions of agarose and methylcellulose (MC) aqueous solutions on isobaric cooling or heating under high pressure up to 400 MPa have been investigated by in situ observations of optical transmittance and falling-ball experiments. For agarose, which undergoes the gelation on cooling, the application of pressure caused a gradual rise in the cloud-point temperature over the whole pressure range examined, which is almost consistent with the pressure dependence of gelling temperature estimated by falling-ball experiments, suggesting that agarose gel is stabilized by compression and that the gelation occurs nearly in parallel with phase separation under ambient and high-pressure conditions. For MC, which undergoes the gelation on heating, the cloud-point temperature showed a slight rise with an initial elevation of pressure up to ∼150 MPa, whereas it showed a marked depression above 200 MPa. In contrast, the gelling temperature of MC, which is nearly identical to the cloud-point temperature at ambient pressure, showed a monotonous rise with increasing pressure up to 350 MPa, which means that MC undergoes phase separation prior to gelation on heating under high pressure above 200 MPa. Similar results were obtained for the melting process of MC gel on cooling. The unique behavior of the sol-gel transition of MC under high pressure has been interpreted in terms of the destruction of hydrophobic hydration by compression.

  6. Effects of ultrasound treatment on lipid self-association and properties of methylcellulose/stearic acid blending films.

    PubMed

    Zhong, Tian; Huang, Ran; Sui, Siyao; Lian, Zixuan; Sun, Xiuxiu; Wan, Ajun; Li, Huili

    2015-10-20

    The effects of ultrasound treatment (UT) on the properties of methylcellulose (MC)/stearic acid (SA) blending films were studied. Film-forming emulsions were prepared with different UT conditions and characterized with respect to viscosity. The lipid aggregation and distribution in the blending dispersions were studied by the micrographs of Transmission Electron Microscopy (TEM). The micrographs of both surface and cross-section of the films were observed by scanning electron microscope (SEM) and the tensile strength (TS), elongation at break (E), water vapor permeability (WVP) and contact angles of the resulting films were determined as well. The intensification of the UT condition led to a decrease of viscosity of the MC-SA blending emulsions, a more homogeneous lipid distribution and a denser internal microstructure of the resulting films. UT exposure affected the mechanical, moisture barrier and surface hydrophobic properties. The optimal values of both TS and E was obtained from the sample treated for 10min and 180W power, while the sample treated for 10min and 270W presented the lowest value of WVP. However, an excessive exposure of UT led to a decrease of the mechanical and moisture barrier performance. By observing and analyzing the SEM graphs and the contact angles of the film surfaces, it was found that UT within the appropriate bounds had a notably positive effect on improving the surface hydrophobic property of the MC-SA blending films.

  7. Inhibition mechanism of hydroxypropyl methylcellulose acetate succinate on drug crystallization in gastrointestinal fluid and drug permeability from a supersaturated solution.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Kataoka, Makoto; Yamashita, Shinji; Yamamoto, Keiji; Moribe, Kunikazu

    2014-10-01

    The effects of drug-crystallization inhibitor in bile acid/lipid micelles solution on drug permeation was evaluated during the drug crystallization process. Hydroxypropyl methylcellulose acetate succinate (HPMC-AS) was used as a drug-crystallization inhibitor, which efficiently suppressed dexamethasone (DEX) crystallization in a gastrointestinal fluid model containing sodium taurocholate (NaTC) and egg-phosphatidylcholine (egg-PC). Changes of molecular state of supersaturated DEX during the DEX crystallization process was monitored in real time using proton nuclear magnetic resonance (1H NMR). It revealed that DEX distribution to bulk water and micellar phases formed by NaTC and egg-PC was not changed during the DEX crystallization process even in the presence of HPMC-AS. DEX permeation during DEX crystallization was evaluated using dissolution/permeability system. The combination of crystallization inhibition by HPMC-AS and micellar encapsulation by NaTC and egg-PC led to considerably higher DEX concentrations and improvement of DEX permeation at the beginning of the DEX crystallization process. Crystallization inhibition by HPMC-AS can efficiently work even in the micellar solution, where NaTC/egg-PC micelles encapsulates some DEX. It was concluded that a crystallization inhibitor contributed to improvement of permeation of a poorly water-soluble drug in gastrointestinal fluid.

  8. Competitive adsorption between sugar beet pectin (SBP) and hydroxypropyl methylcellulose (HPMC) at the oil/water interface.

    PubMed

    Li, Xiangyang; Al-Assaf, Saphwan; Fang, Yapeng; Phillips, Glyn O

    2013-01-16

    The emulsification performance, stability and competitive adsorption of two natural food emulsifiers, sugar beet pectin (SBP) and hydroxypropyl methylcellulose (HPMC) have been investigated. Both can reduce the surface tension and emulsify oil in water. However, due to their different structure and conformation they operate via different mechanisms. Using 15% middle chain triglycerides (MCTs) oil, the amounts of SBP and HPMC adsorbed in emulsions made with these individually and in mixtures were determined. The interfacial concentration (Γ) for SBP stabilized emulsion was ∼1.25mg/m(2) and for HPMC 3.5mg/m(2). The higher adsorption of HPMC was due to multilayer adsorption, whereas SBP adsorbed as a monolayer. Competitive adsorption between SBP and HPMC was also investigated. When the HPMC concentration approached that of adsorbed SBP, the effect of HPMC became dominant and at 1.5wt.% controlled the behavior of the mixed emulsions, which were then almost independent of SBP. The minor role of SBP was mainly to decrease the proportion of large droplets in the emulsion. A model to describe the competitive adsorption between SBP and HPMC is proposed.

  9. A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel.

    PubMed

    Liu, Wenguang; Zhang, Bingqi; Lu, William W; Li, Xiaowei; Zhu, Dunwan; De Yao, Kang; Wang, Qin; Zhao, Chengru; Wang, Chuandong

    2004-07-01

    Poly(N-isopropylacrylamide) (PNIPAAm) was grafted to methylcellulose (MC) with various feeding ratios using ammonium persulfate and N,N,N',N'-tetramethyl ethylene diamine as an initiator. FTIR results confirm the formation of PNIPAAm-g-MC copolymers. The temperature responsiveness of copolymer gels was investigated by turbidimetry, dynamic contact angle (DCA), differential scanning calorimetry and dynamic mechanical analysis (DMA). The results indicate that PNIPAAm-g-MC hydrogels are strongly temperature responsive. At lower contents of MC, the lower critical solution temperature (LCST) is decreased, whereas further increasing MC contents raises the LCSTs. It is observed that the phase transition of the hydrogels occurs reversibly within 1 min, and near body temperature, a rigid gel can be generated in a certain range of MC content. What is more, the incorporation of MC prevents the syneresis of copolymer hydrogel. DMA measurement reveals that the storage moduli (E') of the gels increase upon increasing MC contents, and moreover the values of E' go up markedly above LCST. The copolymer hydrogels hold a promise as a blood vessel barrier by tuning gelation temperature, gelation time and mechanical strength.

  10. Gelatin-hydroxypropyl methylcellulose water-in-water emulsions as a new bio-based packaging material.

    PubMed

    Esteghlal, Sara; Niakosari, Mehrdad; Hosseini, Seyed Mohammad Hashem; Mesbahi, Gholam Reza; Yousefi, Gholam Hossein

    2016-05-01

    Gelatin and hydroxypropyl methylcellulose (HPMC) are two incompatible and immiscible biopolymers which cannot form homogeneous composite films using usual methods. In this study, to prevent phase separation, gelatin-HPMC water-in-water (W/W) emulsion was utilized to from transparent composite films by entrapment the HPMC dispersed droplets in gelatin continuous network. The physicochemical and mechanical properties of emulsion-based films containing different amounts (5-30%) of dispersed phase were determined and compared with those of individual polymer-based films. Incorporating HPMC into W/W emulsion-based films had no significant effect on the tensile strength. The flexibility of composite films decreased at HPMC concentrations below 20%. The depletion layer at the droplets interface reduced the diffusion of water vapor molecules because of its hydrophobic nature, so the water vapor permeability remained constant. Increasing the HPMC content in the emulsion films increased the swelling and decreased the transparency. The entrapment of HPMC in continuous gelatin phase decreased its solubility. Therefore, W/W emulsions are capable of holding two incompatible polymers alongside each other within a homogeneous film network without weakening the physical properties. PMID:26808017

  11. Injectable thermo-responsive hydrogel composed of xanthan gum and methylcellulose double networks with shear-thinning property.

    PubMed

    Liu, Zhijia; Yao, Ping

    2015-11-01

    Injectable hydrogel precursor solution was prepared by physical blend of xanthan gum (XG) and methylcellulose (MC) in aqueous solution. Due to the formation of XG network composed of XG double helical strand structure, XG/MC blend was a high viscous solution with good shear-thinning property at room temperature. When the temperature was changed from 23 to 37 °C, thermo-responsive MC network formed, which caused XG/MC blend solution to gelate. The gelation time and storage modulus of the blend can be tuned by XG and/or MC concentrations. Both in vitro and in vivo investigations revealed that the blend solution immediately recovered its high viscosity and rapidly formed hydrogel at body temperature after injection using a syringe. In vivo biocompatibility and biodegradability of the hydrogel were validated by implantation of the hydrogel in rats. In vitro investigation demonstrated that XG/MC blend is a promising injectable hydrogel material for long-term drug delivery.

  12. Optimization and Evaluation of a Chitosan/Hydroxypropyl Methylcellulose Hydrogel Containing Toluidine Blue O for Antimicrobial Photodynamic Inactivation.

    PubMed

    Chen, Chueh-Pin; Hsieh, Chien-Ming; Tsai, Tsuimin; Yang, Jen-Chang; Chen, Chin-Tin

    2015-09-01

    Photodynamic inactivation (PDI) combined with chitosan has been shown as a promising antimicrobial approach. The purpose of this study was to develop a chitosan hydrogel containing hydroxypropyl methylcellulose (HPMC), chitosan and toluidine blue O (TBO) to improve the bactericidal efficacy for topical application in clinics. The PDI efficacy of hydrogel was examined in vitro against the biofilms of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa). Confocal scanning laser microscopy (CSLM) was performed to investigate the penetration level of TBO into viable S. aureus biofilms. Incorporation of HMPC could increase the physicochemical properties of chitosan hydrogel including the hardness, viscosity as well as bioadhesion; however, higher HMPC concentration also resulted in reduced antimicrobial effect. CSLM analysis further demonstrated that higher HPMC concentration constrained TBO diffusion into the biofilm. The incubation of biofilm and hydrogel was further performed at an angle of 90 degrees. After light irradiation, compared to the mixture of TBO and chitosan, the hydrogel treated sample showed increased PDI efficacy indicated that incorporation of HPMC did improve antimicrobial effect. Finally, the bactericidal efficacy could be significantly augmented by prolonged retention of hydrogel in the biofilm as well as in the animal model of rat skin burn wounds after light irradiation.

  13. Supplementation of hydroxypropyl methylcellulose into yeast leavened all-whole grain barley bread potentiates cholesterol-lowering effect.

    PubMed

    Kim, Hyunsook; Turowski, Maciej; Anderson, W H Kerr; Young, Scott A; Kim, Yookyung; Yokoyama, Wallace

    2011-07-27

    We investigated in Syrian Golden hamsters the biological impact and its underlying mechanism of single whole grain breads supplemented with 2-3% hydroxypropyl methylcellulose (HPMC), a semisynthetic viscous soluble dietary fiber (SDF) as a substitute for gluten. Hamsters were fed high-fat diets supplemented with 48-65% (w/w) differently ground, freeze-dried single grain breads including whole grain wheat, barley, barley supplemented with HPMC, debranned oat, and oat supplemented with HPMC which were compared to a diet containing microcrystalline cellulose (control). All single grain breads significantly lowered plasma LDL-cholesterol concentrations compared to the control. Enrichment with HPMC further lowered plasma and hepatic cholesterol concentrations. Despite the reduced molecular weight of naturally occurring soluble (1--->3),(1--->4)-β-d-glucan (β-glucan) caused by the bread-making process, whole grain barley breads downregulated hepatic expression of CYP7A1 and HMG-CoAR genes that are responsible for bile acid and cholesterol synthesis, suggesting a possible role of bioactive compounds such as short-chain fatty acids and phenolic compounds from barley bread. Barley bread enriched with HPMC downregulated expression of ABCG5 gene. Taken together, it appears that distinctive modulation of synthesis and excretion of hepatic cholesterol and bile acid contributes to the cholesterol-lowering properties of whole grain barley breads and breads enriched with HPMC. These data suggests that alternative whole grain breads supplemented with HPMC may provide consumers with a staple food that can assist in cholesterol management.

  14. Effects of coformers on phase transformation and release profiles of carbamazepine cocrystals in hydroxypropyl methylcellulose based matrix tablets.

    PubMed

    Qiu, Shi; Li, Mingzhong

    2015-02-01

    The aim of this study was to investigate the effects of coformers on phase transformation and release profiles of carbamazepine (CBZ) cocrystals in hydroxypropyl methylcellulose (HPMC) based matrix tablets. It has been found that selection of different coformers of saccharin (SAC) and cinnamic acid (CIN) can affect the stability of CBZ cocrystals in solution, resulting in significant differences in the apparent solubility of CBZ. The dissolution advantage of CBZ-SAC cocrystals can only be shown for a short period during dissolution because of the fast conversion to its dihydrate form (DH). HPMC can partially inhibit the crystallisation of CBZ DH during dissolution of CBZ-SAC cocrystal. However, the increased viscosity of HPMC dissolution medium reduced the dissolution rate of CBZ-SAC cocrystals. Therefore the CBZ-SAC cocrystal formulation did not show any significant advantage in CBZ release rate. In contrast the improved CBZ dissolution rate of CBZ-CIN cocrystal can be realised in both solution and formulation due to its high stability. In conclusion, exploring and understanding the mechanisms of the phase transformation of pharmaceutical cocrystals in aqueous medium for selection of lead cocrystals is the key for success of product development.

  15. Optimization and Evaluation of a Chitosan/Hydroxypropyl Methylcellulose Hydrogel Containing Toluidine Blue O for Antimicrobial Photodynamic Inactivation

    PubMed Central

    Chen, Chueh-Pin; Hsieh, Chien-Ming; Tsai, Tsuimin; Yang, Jen-Chang; Chen, Chin-Tin

    2015-01-01

    Photodynamic inactivation (PDI) combined with chitosan has been shown as a promising antimicrobial approach. The purpose of this study was to develop a chitosan hydrogel containing hydroxypropyl methylcellulose (HPMC), chitosan and toluidine blue O (TBO) to improve the bactericidal efficacy for topical application in clinics. The PDI efficacy of hydrogel was examined in vitro against the biofilms of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa). Confocal scanning laser microscopy (CSLM) was performed to investigate the penetration level of TBO into viable S. aureus biofilms. Incorporation of HMPC could increase the physicochemical properties of chitosan hydrogel including the hardness, viscosity as well as bioadhesion; however, higher HMPC concentration also resulted in reduced antimicrobial effect. CSLM analysis further demonstrated that higher HPMC concentration constrained TBO diffusion into the biofilm. The incubation of biofilm and hydrogel was further performed at an angle of 90 degrees. After light irradiation, compared to the mixture of TBO and chitosan, the hydrogel treated sample showed increased PDI efficacy indicated that incorporation of HPMC did improve antimicrobial effect. Finally, the bactericidal efficacy could be significantly augmented by prolonged retention of hydrogel in the biofilm as well as in the animal model of rat skin burn wounds after light irradiation. PMID:26340623

  16. Factorial designed 5-fluorouracil-loaded microsponges and calcium pectinate beads plugged in hydroxypropyl methylcellulose capsules for colorectal cancer

    PubMed Central

    Gupta, Ankita; Tiwari, Gaurav; Tiwari, Ruchi; Srivastava, Rishabh

    2015-01-01

    Introduction: The work was aimed to develop an enteric-coated hydroxypropyl methylcellulose (HPMC) capsules (ECHC) plugged with 5-fluorouracil (5-FU)-loaded microsponges in combination with calcium pectinate beads. Materials and Methods: The modified quasi-emulsion solvent diffusion method was used to prepare microsponges. A 32 factorial design was employed to study the formulation and the effects of independent variables (volume of organic solvent and Eudragit-RS100 content) on dependent variables (particle size, %entrapment efficiency, and %cumulative drug release). The optimized microsponge (F4) was characterized by scanning electron microscopy, powder X-ray diffraction, and thermogravimetric analysis. F4 was plugged along with the calcium pectinate beads in HPMC capsules coated with enteric polymer Eudragit-L100 (Ed-L100) and/or Eudragit-S100 (Ed-S100) in different proportions. An in vitro release study of ECHC was performed in simulated gastric fluid for 2 h, followed by simulated intestinal fluid for next 6 h and then in simulated colonic fluid (in the presence and absence of pectinase enzyme for further 16 h). The optimized formulation was subjected to in vivo roentgenographic and pharmacokinetic studies in New Zealand white rabbits to analyze the in vivo behavior of the developed colon-targeted capsules. Results: Drug release was retarded on coating with Ed-S100 in comparison to a blend of Ed-S100:Ed-L100 coating. The percentage of 5-FU released at the end of 24 h from ECHC3 was 97.83 ± 0.12% in the presence of pectinase whereas in the control study, it was 40.08 ± 0.02%. Conclusion: Thus, enteric-coated HPMC capsules plugged with 5-FU-loaded microsponges and calcium pectinate beads proved to be a promising dosage form for colon targeting. PMID:26682194

  17. Inhibitory effect of hydroxypropyl methylcellulose acetate succinate on drug recrystallization from a supersaturated solution assessed using nuclear magnetic resonance measurements.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu

    2013-10-01

    We examined the inhibitory effect of hydroxypropyl methylcellulose acetate succinate (HPMC-AS) on drug recrystallization from a supersaturated solution using carbamazepine (CBZ) and phenytoin (PHT) as model drugs. HPMC-AS HF grade (HF) inhibited the recrystallization of CBZ more strongly than that by HPMC-AS LF grade (LF). 1D-1H NMR measurements showed that the molecular mobility of CBZ was clearly suppressed in the HF solution compared to that in the LF solution. Interaction between CBZ and HF in a supersaturated solution was directly detected using nuclear Overhauser effect spectroscopy (NOESY). The cross-peak intensity obtained using NOESY of HF protons with CBZ aromatic protons was greater than that with the amide proton, which indicated that CBZ had hydrophobic interactions with HF in a supersaturated solution. In contrast, no interaction was observed between CBZ and LF in the LF solution. Saturation transfer difference NMR measurement was used to determine the interaction sites between CBZ and HF. Strong interaction with CBZ was observed with the acetyl substituent of HPMC-AS although the interaction with the succinoyl substituent was quite small. The acetyl groups played an important role in the hydrophobic interaction between HF and CBZ. In addition, HF appeared to be more hydrophobic than LF because of the smaller ratio of the succinoyl substituent. This might be responsible for the strong hydrophobic interaction between HF and CBZ. The intermolecular interactions between CBZ and HPMC-AS shown by using NMR spectroscopy clearly explained the strength of inhibition of HPMC-AS on drug recrystallization.

  18. Safety and efficacy of a novel injectable filler in the treatment of nasolabial folds: polymethylmethacrylate and cross-linked dextran in hydroxypropyl methylcellulose.

    PubMed

    Lee, Young Bok; Song, Eun Jong; Kim, Sang Seok; Kim, Jin Wou; Yu, Dong Soo

    2014-08-01

    Nasolabial folds are a sign of aging and increasing number of people want filler injections in their nasolabial folds to look younger. Various dermal fillers are used for the correction of nasolabial folds. Recently, a novel injectible filler, polymethylmethacrylate (PMMA) and cross-linked dextran in hydroxypropyl methylcellulose, was introduced for facial contouring. This study was designed as a six-month, prospective, single-blinded, and open-label study in two centers located in Korea. Nineteen Korean patients received the novel filler injections on both nasolabial folds. At Weeks 4, 12, and 24, the efficacy and safety of the dermal filler were evaluated by blinded-investigators using clinical photographs. The mean Wrinkle Severity Rating Scale revealed significant decrease after dermal filler injections at each study visit. The decreased Wrinkle Severity Rating Scale was maintained for 6 months (p < 0.0001). The Global Aesthetic Improvement score showed an improvement greater than 2 in 95% of the per-proto col population 24 weeks after the injections. All patients (100%) experienced an improvement of their nasolabial folds at Week 24. There were no complications related to the novel filler injection. The novel dermal filler, PMMA, and cross-linked dextran in hydroxylpropyl methylcellulose, can be another safe and effective treatment option in the treatment of nasolabial folds.

  19. Intracellular adenosine 5'-triphosphate, adenosine 5'-diphosphate, and adenosine 5'-monophosphate detection by short-end injection capillary electrophoresis using methylcellulose as the effective electroosmostic flow suppressor.

    PubMed

    Zinellu, Angelo; Sotgia, Salvatore; Pasciu, Valeria; Madeddu, Manuela; Leoni, Giovanni Giuseppe; Naitana, Salvatore; Deiana, Luca; Carru, Ciriaco

    2008-07-01

    We present a new rapid CE method to measure adenine nucleotides adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in cells. The short-end injection mode allows a decrease in the analysis time by injecting samples at the outlet end of a silica capillary closest to the detection window, reducing the migration distance. Moreover, the use of methylcellulose (MC) as run buffer additive to suppress EOF permits to further reduce the migration times of analytes. Thus, when a capillary with an effective length of 10.2 cm was used with a 60 mmol/L sodium acetate buffer pH 3.80 in the presence of 0.01% of MC, the migration time of analytes were 1.35 min for ATP, 1.85 min for ADP, and 4.64 min for AMP. These conditions gave a good reproducibility for intra- and interassay (CV <4 and 8%, respectively) and all the procedure demonstrated an excellent analytical recovery (from 98.3 to 99 %). The method suitability was proved both on red blood cells and in spermatozoa. We compared our proposed method to a spectrophotometric assay, by measuring ATP levels in 40 spermatozoa samples. The obtained data were analyzed by the Passing and Bablok regression and Bland-Altman test. PMID:18551716

  20. A study on the impact of hydroxypropyl methylcellulose on the viscosity of PEG melt suspensions using surface plots and principal component analysis.

    PubMed

    Oh, Ching Mien; Heng, Paul Wan Sia; Chan, Lai Wah

    2015-04-01

    An understanding of the rheological behaviour of polymer melt suspensions is crucial in pharmaceutical manufacturing, especially when processed by spray congealing or melt extruding. However, a detailed comparison of the viscosities at each and every temperature and concentration between the various grades of adjuvants in the formulation will be tedious and time-consuming. Therefore, the statistical method, principal component analysis (PCA), was explored in this study. The composite formulations comprising polyethylene glycol (PEG) 3350 and hydroxypropyl methylcellulose (HPMC) of ten different grades (K100 LV, K4M, K15M, K100M, E15 LV, E50 LV, E4M, F50 LV, F4M and Methocel VLV) at various concentrations were prepared and their viscosities at different temperatures determined. Surface plots showed that concentration of HPMC had a greater effect on the viscosity compared to temperature. Particle size and size distribution of HPMC played an important role in the viscosity of melt suspensions. Smaller particles led to a greater viscosity than larger particles. PCA was used to evaluate formulations of different viscosities. The complex viscosity profiles of the various formulations containing HPMC were successfully classified into three clusters of low, moderate and high viscosity. Formulations within each group showed similar viscosities despite differences in grade or concentration of HPMC. Formulations in the low viscosity cluster were found to be sprayable. PCA was able to differentiate the complex viscosity profiles of different formulations containing HPMC in an efficient and time-saving manner and provided an excellent visualisation of the data.

  1. Influence of Hydroxypropyl Methylcellulose on Metronidazole Crystallinity in Spray-Congealed Polyethylene Glycol Microparticles and Its Impact with Various Additives on Metronidazole Release.

    PubMed

    Oh, Ching Mien; Heng, Paul Wan Sia; Chan, Lai Wah

    2015-12-01

    The purpose of this study was to investigate the effect of a hydrophilic polymer, hydroxypropyl methylcellulose (HPMC), on the crystallinity and drug release of metronidazole (MNZ) in spray-congealed polyethylene glycol (PEG) microparticles and to further modify the drug release using other additives in the formulation. HPMC has been used in many pharmaceutical formulations and processes but to date, it has not been employed as an additive in spray congealing. Crystallinity of a drug is especially important to the development of pharmaceutical products as active pharmaceutical ingredients (APIs) are mostly crystalline in nature. A combination of X-ray diffractometry, differential scanning calorimetry, Raman spectroscopy and Fourier transform-infrared spectroscopy (FT-IR) spectroscopy was employed to investigate the degree of crystallinity and possible solid-state structure of MNZ in the microparticles. The microparticles with HPMC were generally spherical. Spray congealing decreased MNZ crystallinity, and the presence of HPMC reduced the drug crystallinity further. The reduction in MNZ crystallinity was dependent on the concentration of HPMC. Smaller HPMC particles also resulted in a greater percentage reduction in MNZ crystallinity. Appreciable modification to MNZ release could be obtained with HPMC. However, this was largely attributed to the role of HPMC in forming a diffusion barrier. Further modification of drug release from spray-congealed PEG-HPMC microparticles was achieved with the addition of 5% w/w dicalcium phosphate but not with magnesium stearate, methyl cellulose, polyvinylpyrrolidone, silicon dioxide and sodium oleate/citric acid. Dicalcium phosphate facilitated formation of the diffusion barrier.

  2. The influence of hydroxypropyl methylcellulose (HPMC) molecular weight, concentration and effect of food on in vivo erosion behavior of HPMC matrix tablets.

    PubMed

    Jain, Arun Kumar; Söderlind, Erik; Viridén, Anna; Schug, Barbara; Abrahamsson, Bertil; Knopke, Christian; Tajarobi, Farhad; Blume, Henning; Anschütz, Maria; Welinder, Anette; Richardson, Sara; Nagel, Stefan; Abrahmsén-Alami, Susanna; Weitschies, Werner

    2014-08-10

    Four different hydrophilic matrix formulations based on hydroxypropyl methylcellulose (HPMC) were investigated for erosion properties in vivo. Three formulations contained a fixed amount of HPMC (40%) with varying proportions of two HPMC grades with different molecular weights (Methocel K100LV and K4M), and a fourth formulation contained a lower amount of the HPMC of lower molecular weight (20%). The effect of food on the in vivo erosion behavior was investigated on two formulations containing different contents of the same HPMC grade. The in vivo erosion behavior and gastrointestinal transit were investigated using magnetic marker monitoring (MMM). The in vitro and in vivo erosion-time profiles show that the erosion was strongly dependent on the composition of the formulation. The formulations containing a larger proportion of high molecular weight HPMC or higher content of HPMC exhibit relatively slower erosion rate and vice versa. In vivo erosion rates were significantly higher under postprandial administration as compared to fasted state administration. No rapid disintegration of any of the formulations (i.e. formulation failure that can potentially cause dose dumping) was observed.

  3. Improvement of the mechanical and barrier properties of methylcellulose-based films by treatment with HEMA and silane monomers under gamma radiation

    NASA Astrophysics Data System (ADS)

    Khan, Ruhul A.; Dussault, Dominic; Salmieri, Stephane; Safrany, Agnes; Lacroix, Monique

    2012-08-01

    Methylcellulose (MC)-based films were prepared by casting from its 1% aqueous solution containing 0.5% vegetable oil, 0.25% glycerol and 0.025% Tween®-80. Puncture strength (PS), puncture deformation (PD) and water vapor permeability (WVP) of the films were found to be 147 N/mm, 3.46 mm, and 6.34 g mm/m2 day kPa, respectively. The monomer, 2-hydroxyethyl methacrylate (HEMA) (0.1-1%, w/w) was incorporated into the MC-based solution and films were prepared by casting. Films were then exposed to gamma radiation (5-25 kGy) and it revealed that 1% HEMA containing films showed the highest PS values (282 N/mm at 10 kGy). Silane monomer (3-aminopropyl tri-ethoxy silane) (0.1-1%, w/w) was also added into the MC-based films and were found to improve the strength of the films significantly. In comparison between HEMA and silane treatment onto MC-based films, it was observed that silane performed better strength and barrier properties. Surface morphology of the monomer treated films was examined by scanning electron microscopy and suggested better appearance than MC-based film.

  4. Antifungal activity of food additives in vitro and as ingredients of hydroxypropyl methylcellulose-lipid edible coatings against Botrytis cinerea and Alternaria alternata on cherry tomato fruit.

    PubMed

    Fagundes, Cristiane; Pérez-Gago, María B; Monteiro, Alcilene R; Palou, Lluís

    2013-09-16

    The antifungal activity of food additives or 'generally recognized as safe' (GRAS) compounds was tested in vitro against Botrytis cinerea and Alternaria alternata. Radial mycelial growth of each pathogen was measured in PDA Petri dishes amended with food preservatives at 0.2, 1.0, or 2.0% (v/v) after 3, 5, and 7 days of incubation at 25 °C. Selected additives and concentrations were tested as antifungal ingredients of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings. The curative activity of stable coatings was tested in in vivo experiments. Cherry tomatoes were artificially inoculated with the pathogens, coated by immersion about 24 h later, and incubated at 20 °C and 90% RH. Disease incidence and severity (lesion diameter) were determined after 6, 10, and 15 days of incubation and the 'area under the disease progress stairs' (AUDPS) was calculated. In general, HPMC-lipid antifungal coatings controlled black spot caused by A. alternata more effectively than gray mold caused by B. cinerea. Overall, the best results for reduction of gray mold on cherry tomato fruit were obtained with coatings containing 2.0% of potassium carbonate, ammonium phosphate, potassium bicarbonate, or ammonium carbonate, while 2.0% sodium methylparaben, sodium ethylparaben, and sodium propylparaben were the best ingredients for coatings against black rot.

  5. Antifungal activity of food additives in vitro and as ingredients of hydroxypropyl methylcellulose-lipid edible coatings against Botrytis cinerea and Alternaria alternata on cherry tomato fruit.

    PubMed

    Fagundes, Cristiane; Pérez-Gago, María B; Monteiro, Alcilene R; Palou, Lluís

    2013-09-16

    The antifungal activity of food additives or 'generally recognized as safe' (GRAS) compounds was tested in vitro against Botrytis cinerea and Alternaria alternata. Radial mycelial growth of each pathogen was measured in PDA Petri dishes amended with food preservatives at 0.2, 1.0, or 2.0% (v/v) after 3, 5, and 7 days of incubation at 25 °C. Selected additives and concentrations were tested as antifungal ingredients of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings. The curative activity of stable coatings was tested in in vivo experiments. Cherry tomatoes were artificially inoculated with the pathogens, coated by immersion about 24 h later, and incubated at 20 °C and 90% RH. Disease incidence and severity (lesion diameter) were determined after 6, 10, and 15 days of incubation and the 'area under the disease progress stairs' (AUDPS) was calculated. In general, HPMC-lipid antifungal coatings controlled black spot caused by A. alternata more effectively than gray mold caused by B. cinerea. Overall, the best results for reduction of gray mold on cherry tomato fruit were obtained with coatings containing 2.0% of potassium carbonate, ammonium phosphate, potassium bicarbonate, or ammonium carbonate, while 2.0% sodium methylparaben, sodium ethylparaben, and sodium propylparaben were the best ingredients for coatings against black rot. PMID:24026010

  6. Evaluating food additives as antifungal agents against Monilinia fructicola in vitro and in hydroxypropyl methylcellulose-lipid composite edible coatings for plums.

    PubMed

    Karaca, Hakan; Pérez-Gago, María B; Taberner, Verònica; Palou, Lluís

    2014-06-01

    Common food preservative agents were evaluated in in vitro tests for their antifungal activity against Monilinia fructicola, the most economically important pathogen causing postharvest disease of stone fruits. Radial mycelial growth was measured in Petri dishes of PDA amended with three different concentrations of the agents (0.01-0.2%, v/v) after 7 days of incubation at 25 °C. Thirteen out of fifteen agents tested completely inhibited the radial growth of the fungus at various concentrations. Among them, ammonium carbonate, ammonium bicarbonate and sodium bicarbonate were the most effective while sodium acetate and sodium formate were the least effective. The effective agents and concentrations were tested as ingredients of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings against brown rot disease on plums previously inoculated with M. fructicola (curative activity). 'Friar' and 'Larry Ann' plums were inoculated with the pathogen, coated with stable edible coatings about 24h later, and incubated at 20 °C and 90% RH. Disease incidence (%) and severity (lesion diameter) were determined after 4, 6, and 8 days of incubation and the 'area under the disease progress stairs' (AUDPS) was calculated. Coatings containing bicarbonates and parabens significantly reduced brown rot incidence in plums, but potassium sorbate, used at 1.0% in the coating formulation, was the most effective agent with a reduction rate of 28.6%. All the tested coatings reduced disease severity to some extent, but coatings containing 0.1% sodium methylparaben or sodium ethylparaben or 0.2% ammonium carbonate or ammonium bicarbonate were superior to the rest, with reduction rates of 45-50%. Overall, the results showed that most of the agents tested in this study had significant antimicrobial activity against M. fructicola and the application of selected antifungal edible coatings is a promising alternative for the control of postharvest brown rot in plums.

  7. Evaluating food additives as antifungal agents against Monilinia fructicola in vitro and in hydroxypropyl methylcellulose-lipid composite edible coatings for plums.

    PubMed

    Karaca, Hakan; Pérez-Gago, María B; Taberner, Verònica; Palou, Lluís

    2014-06-01

    Common food preservative agents were evaluated in in vitro tests for their antifungal activity against Monilinia fructicola, the most economically important pathogen causing postharvest disease of stone fruits. Radial mycelial growth was measured in Petri dishes of PDA amended with three different concentrations of the agents (0.01-0.2%, v/v) after 7 days of incubation at 25 °C. Thirteen out of fifteen agents tested completely inhibited the radial growth of the fungus at various concentrations. Among them, ammonium carbonate, ammonium bicarbonate and sodium bicarbonate were the most effective while sodium acetate and sodium formate were the least effective. The effective agents and concentrations were tested as ingredients of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings against brown rot disease on plums previously inoculated with M. fructicola (curative activity). 'Friar' and 'Larry Ann' plums were inoculated with the pathogen, coated with stable edible coatings about 24h later, and incubated at 20 °C and 90% RH. Disease incidence (%) and severity (lesion diameter) were determined after 4, 6, and 8 days of incubation and the 'area under the disease progress stairs' (AUDPS) was calculated. Coatings containing bicarbonates and parabens significantly reduced brown rot incidence in plums, but potassium sorbate, used at 1.0% in the coating formulation, was the most effective agent with a reduction rate of 28.6%. All the tested coatings reduced disease severity to some extent, but coatings containing 0.1% sodium methylparaben or sodium ethylparaben or 0.2% ammonium carbonate or ammonium bicarbonate were superior to the rest, with reduction rates of 45-50%. Overall, the results showed that most of the agents tested in this study had significant antimicrobial activity against M. fructicola and the application of selected antifungal edible coatings is a promising alternative for the control of postharvest brown rot in plums. PMID:24742996

  8. Swelling of hydroxypropyl methylcellulose matrix tablets. 2. Mechanistic study of the influence of formulation variables on matrix performance and drug release.

    PubMed

    Gao, P; Skoug, J W; Nixon, P R; Ju, T R; Stemm, N L; Sung, K C

    1996-07-01

    We characterized the effect of hydroxypropyl methylcellulose (HPMC)/lactose ratio and HPMC viscosity grade (molecular weight) on solute release and swelling of matrix tablets. We used a semiquantitative optical imaging method to monitor the swelling of matrices with HPMC content from 20% to 80% (w/w) and four viscosity grades. Several aspects of the swelling process common to all formulations were revealed: (i) swelling is anisotropic with a preferential expansion in the axial direction, (ii) swelling is isotropic with respect to the gel layer thickness and composition in both axial and radial directions, (iii) the gel layer develops in three stages, and (iv) water penetration is Fickian in nature and essentially constant for all formulations. We monitored simultaneously drug, lactose, and HPMC release. Lactose and drug release rates were superimposed, indicating a similar diffusional release mechanism and no interaction with HPMC. The strong dependence of HPMC release on viscosity grade is explained on the basis of the concept of polymer disentanglement concentration. We analyzed drug release rates using a model for a reservoir-type release system that incorporates swelling kinetics. HPMC/lactose ratio modulates drug release rate by altering drug diffusivity, a function of gel composition. In contrast, HPMC viscosity grade impacts matrix dissolution and gel layer thickness development below a critical molecular weight. For slowly dissolving matrices containing high viscosity grade (> 4000 cps) HPMC, similar drug release rates are observed mainly due to the same drug diffusivity as a result of the identical gel composition and thickness. For fast dissolving matrices (< or = 100 cps) swelling inhomogeneity is proposed as being responsible for a higher apparent drug diffusivity and release rate. PMID:8818998

  9. SYNTHESIS AND IN VITRO CHARACTERIZATION OF HYDROXYPROPYL METHYLCELLULOSE-GRAFT-POLY (ACRYLIC ACID/2-ACRYLAMIDO-2-METHYL-1-PROPANESULFONIC ACID) POLYMERIC NETWORK FOR CONTROLLED RELEASE OF CAPTOPRIL.

    PubMed

    Furqan Muhammad, Iqbal; Mahmood, Ahmad; Aysha, Rashid

    2016-01-01

    A super-absorbent hydrogel was developed by crosslinking of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and acrylic acid with hydroxypropyl methylcellulose (HPMC) for controlled release drug delivery of captopril, a well known antihypertensive drug. Acrylic acid and AMPS were polymerized and crosslinked with HPMC by free radical polymerization, a widely used chemical crosslinking method. N,N'-methylenebisacrylamide (MBA) and potassium persulfate (KPS) were added as cross-linker and initiator, respectively. The hydrogel formulation was loaded with captopril (as model drug). The concentration of captopril was monitored at 205 nm using UV spectrophotometer. Equilibrium swelling ratio was determined at pH 2, 4.5 and 7.4 to evaluate the pH responsiveness of the formed hydrogel. The super-absorbent hydrogels were evaluated by FTIR, SEM, XRD, and thermal analysis (DSC and TGA). The formation of new copolymeric network was determined by FTIR, XRD, TGA and DSC analysis. The hydrogel formulations with acrylic acid and AMPS ratio of 4: 1 and lower amounts of crosslinker had shown maximum swelling. Moreover, higher release rate of captopril was observed at pH 7.4 than at pH 2, because of more swelling capacity of copolymer with increasing pH of the aqueous medium. The present research work confirms the development of a stable hydrogel comprising of HPMC with acrylic acid and AMPS. The prepared hydrogels exhibited pH sensitive behav-ior. This superabsorbent composite prepared could be a successful drug carrier for treating hypertension. PMID:27008813

  10. Preparation and characterization of gatifloxacin-loaded sodium alginate hydrogel membranes supplemented with hydroxypropyl methylcellulose and hydroxypropyl cellulose polymers for wound dressing

    PubMed Central

    Prabu, Durai; Majdalawieh, Amin F.; Abu-Yousef, Imad A.; Inbasekaran, Kadambari; Balasubramaniam, Tharani; Nallaperumal, Narayanan; Gunasekar, Conjeevaram J.

    2016-01-01

    Introduction: The aim of this study is to evaluate gatifloxacin-loaded sodium alginate hydrogel membranes, supplemented with glycerol (a plasticizer), glutaraldehyde (a cross-linking agent), and hydroxypropyl methylcellulose (HPMC) or hydroxypropyl cellulose (HPC) polymers, as potential wound dressing materials based on their physicochemical properties and the sustain-release phenomenon. Materials and Methods: The physicochemical properties of the prepared hydrogel membranes were evaluated by several methods including Fourier transform infrared and differential scanning calorimetry. Different techniques were used to assess the swelling behavior, tensile strength and elongation, % moisture absorption, % moisture loss, water vapor transmission rate (WVTR), and microbial penetration for the hydrogel membranes. In vitro gatifloxacin release from the hydrogel membranes was examined using the United States Pharmacopeia XXIII dissolution apparatus. Four kinetics models (zero-order, first-order, Higuchi equation, and Korsmeyer-Peppas equation) were applied to study drug release kinetics. Results: The addition of glycerol, glutaraldehyde, HPMC, and HPC polymers resulted in a considerable increase in the tensile strength and flexibility/elasticity of the hydrogel membranes. WVTR results suggest that hydrated hydrogel membranes can facilitate water vapor transfer. None of the hydrogel membranes supported microbial growth. HPMC-treated and HPC-treated hydrogel membranes allow slow, but sustained, release of gatifloxacin for 48 h. Drug release kinetics revealed that both diffusion and dissolution play an important role in gatifloxacin release. Conclusions: Given their physicochemical properties and gatifloxacin release pattern, HPMC-treated and HPC-treated hydrogel membranes exhibit effective and sustained drug release. Furthermore, HPMC-treated and HPC-treated hydrogel membranes possess physiochemical properties that make them effective and safe wound dressing materials. PMID

  11. Curative and preventive activity of hydroxypropyl methylcellulose-lipid edible composite coatings containing antifungal food additives to control citrus postharvest green and blue molds.

    PubMed

    Valencia-Chamorro, Silvia A; Pérez-Gago, María B; Del Río, Miguel A; Palou, Lluís

    2009-04-01

    Edible composite coatings based on hydroxypropyl methylcellulose (HPMC), lipid components (beeswax and shellac), and food preservatives with antifungal properties were evaluated in vivo on clementine mandarins cv. Clemenules, hybrid mandarins cv. Ortanique, and oranges cv. Valencia. Their curative and preventive activity against citrus postharvest green (GM) and blue molds (BM), caused by Penicillium digitatum (PD) or Penicillium italicum (PI), respectively, were determined. Fruits were artificially inoculated before or after the application of the coatings and incubated up to 7 days at 20 degrees C. Selected food preservatives included mineral salts, organic acid salts, parabens, and 2-deoxy-d-glucose. Inoculated but uncoated fruits were used as controls. For curative activity, HPMC-lipid edible composite coatings containing sodium benzoate (SB) were most effective in reducing the incidence and severity of GM on clementine mandarins cv. Clemenules (86 and 90%, respectively). On this cultivar, the reduction in GM incidence by the SB-based coating was twice that of potassium sorbate (PS)-based coating. On mandarins cv. Ortanique, PS- and SB-based coatings reduced the incidence of GM and BM by more than 40 and 21%, respectively. However, the HPMC-lipid coating containing a mixture of PS and sodium propionate (PS + SP) exhibited a synergistic effect in the reduction of the incidence of GM (78%) and BM (67%). Coatings with parabens modestly reduced disease incidence and severity. On oranges cv. Valencia, coatings with food preservatives better controlled BM than GM. Coatings containing SB + PS and SB + SP reduced the incidence and severity of BM by 85% and 95%, respectively. PS- and SB- based coatings controlled GM more effectively than coatings formulated with other food preservatives. In every cultivar, fruit coated before inoculation did not show any incidence or severity reduction of both GM and BM (preventive activity). In every test, the antifungal action of the

  12. Effect of antifungal hydroxypropyl methylcellulose-lipid edible composite coatings on Penicillium decay development and postharvest quality of cold-stored "Ortanique" mandarins.

    PubMed

    Valencia-Chamorro, Silvia A; Pérez-Gago, María B; Del Río, Miguel A; Palou, Lluís

    2010-10-01

    Edible composite coatings based on hydroxypropyl methylcellulose (HPMC), hydrophobic components (beeswax and shellac), and food preservatives with antifungal properties were evaluated on "Ortanique" mandarins during long-term cold storage. Selected food preservatives included potassium sorbate (PS), sodium benzoate (SB), sodium propionate (SP), and their mixtures. Intact mandarins or mandarins artificially inoculated with the pathogens Penicillium digitatum and Penicillium italicum, the causal agents of citrus postharvest green (GM) and blue (BM) molds, respectively, were coated and stored up to 8 wk at 5 °C + 1 wk of shelf-life at 20 °C. HPMC-lipid coatings containing food preservatives controlled better GM than BM on Ortanique mandarins. SB- and SB + SP-based coatings reduced the incidence of GM by about 35% after 4 wk at 5 °C. Among all coatings, only the SB-based coating reduced the incidence of GM (about 16%) after 6 wk at 5 °C. All coatings significantly reduced disease severity of both GM and BM after 6 wk at 5 °C. Analytical and sensory fruit quality was evaluated on intact mandarins. All coatings, especially the SB + SP-based coatings, were effective to control weight loss and maintain the firmness of coated mandarins. Internal gas concentration, juice ethanol and acetaldehyde content, sensory flavor, off-flavor, and fruit appearance were not adversely affected by the application of the antifungal coatings. Further studies should focus on the modification of some physical characteristics of the coatings to improve the gloss and visual aspect of treated mandarins. PMID:21535515

  13. Spatio-temporal morphology changes in and quenching effects on the 2D spreading dynamics of cell colonies in both plain and methylcellulose-containing culture media.

    PubMed

    Muzzio, N E; Pasquale, M A; Huergo, M A C; Bolzán, A E; González, P H; Arvia, A J

    2016-06-01

    To deal with complex systems, microscopic and global approaches become of particular interest. Our previous results from the dynamics of large cell colonies indicated that their 2D front roughness dynamics is compatible with the standard Kardar-Parisi-Zhang (KPZ) or the quenched KPZ equations either in plain or methylcellulose (MC)-containing gel culture media, respectively. In both cases, the influence of a non-uniform distribution of the colony constituents was significant. These results encouraged us to investigate the overall dynamics of those systems considering the morphology and size, the duplication rate, and the motility of single cells. For this purpose, colonies with different cell populations (N) exhibiting quasi-circular and quasi-linear growth fronts in plain and MC-containing culture media are investigated. For small N, the average radial front velocity and its change with time depend on MC concentration. MC in the medium interferes with cell mitosis, contributes to the local enlargement of cells, and increases the distribution of spatio-temporal cell density heterogeneities. Colony spreading in MC-containing media proceeds under two main quenching effects, I and II; the former mainly depending on the culture medium composition and structure and the latter caused by the distribution of enlarged local cell domains. For large N, colony spreading occurs at constant velocity. The characteristics of cell motility, assessed by measuring their trajectories and the corresponding velocity field, reflect the effect of enlarged, slow-moving cells and the structure of the medium. Local average cell size distribution and individual cell motility data from plain and MC-containing media are qualitatively consistent with the predictions of both the extended cellular Potts models and the observed transition of the front roughness dynamics from a standard KPZ to a quenched KPZ. In this case, quenching effects I and II cooperate and give rise to the quenched

  14. Treatment of chronic suppurative otitis media with ofloxacin in hydroxypropyl methylcellulose ear drops: a clinical/bacteriological study in a rural area of Malawi.

    PubMed

    van Hasselt, Piet; van Kregten, Eric

    2002-03-15

    Chronic suppurative otitis media in young children is a major problem in Africa, with socio-economic consequences at a later age. Common treatment regimens with antibiotics are expensive and often not practically feasible. Therefore, a project was started to develop a low-cost and effective treatment in a rural area of Malawi by studying the clinical efficacy of an inexpensive application regimen of ofloxacin (0.075%) in hydroxypropyl methylcellulose (1.5%) ear drops. In earlier studies with this treatment regimen, it was possible to cure approximately 70% of ears. The aim of this study was to find out whether the bacteriological spectrum cultured from wet ears before and after treatment, and patterns of resistance to antibiotics, played a role in the percentage of cures. Patients with long-standing chronic suppurative otitis media were clinically assessed and treated with suction cleaning and instillation of ear drops on days 1, 3, 7 and 10. Bacterial swabs were taken for culture and sensitivity tests for ofloxacin were on days 1 and 10 from the ears that were still discharging. After 21 weeks, the ears were assessed again clinically. Clinical cure was considered to be complete cessation of otorrhea. Ninety of 104 tested patients (124 ears) completed the study. About 73% of the ears had become dry by day 10. This dropped to 42% after 21 weeks. Before treatment, most ears (91%) harbored fecal bacteria, Proteus mirabilis (74%) and enterococci (60%) being the most frequently isolated microbes. The second group of frequently cultured bacteria were water bacteria e.g. Pseudomonas species and other non-fermenters (69%), whereas the classical otitis media pathogens were detected only in 15% of ears. Before treatment, 9.7% of strains were resistant to ofloxacin, most (30/35) of which were cultured from ears that were eventually cured. After treatment, fecal and water bacteria were still the most frequently found, with 36% new strains and an overall sensitivity to

  15. Sensitive determination of aspirin and its metabolites in plasma by LC-UV using on-line solid-phase extraction with methylcellulose-immobilized anion-exchange restricted access media.

    PubMed

    Yamamoto, Eiichi; Takakuwa, Susumu; Kato, Takashi; Asakawa, Naoki

    2007-02-01

    We describe a sensitive determination of aspirin (ASA) and its three metabolites (salicylic acid [SA], 2,3-dihydroxybenzoic acid [2,3-DHBA], and 2,5-dihydroxybenzoic acid [gentisic acid (GA)]) in rat plasma. Analysis was carried out by on-line solid-phase extraction (SPE) using a methylcellulose-immobilized-strong anion-exchanger (MC-SAX), followed by liquid chromatography (LC) coupled with UV detection. The lower limits of quantitation for ASA and SA were 60 ng/mL in 100 microL of plasma, respectively. This method was validated with respect to intra- and inter-day precision, accuracy, and linearity up to concentrations of 20,000 ng/mL for ASA, SA, 2,3-DHBA and gentisic acid, respectively. The method was successfully applied to an analysis of the pharmacokinetics of ASA and SA in rats. PMID:16959551

  16. The use of kinetic N-order model in description of active substance release from various drug forms. Part 2. Analysis of paracetamol and sodium diclofenac release from methylcellulose.

    PubMed

    Marciniak, Dominik M; Dryś, Andrzej; Pluta, Janusz; Kubis, Aleksander A

    2008-01-01

    The first part of the monograph presented the premises and equations which are the basis for the proposed mathematical n-order model. This non-linear physical model obeying the laws of chemical kinetics was used to describe the processes of active substance release from drug form. The possibilities of its application in the mathematical description and detailed analysis of the kinetics of paracetamol and sodium diclofenac release from various viscosity gels based on methylcellulose were investigated. Moreover, the effect of temperature on the release profiles of the above-mentioned active substances from investigated formulations was analyzed. On the basis of a series of performed experiments and detailed comparative statistical analysis of the estimators of two parameters characterizing n-order model: release rate constant K and order coefficient of the release process N, it was demonstrated that the active substance release rate from formulations with uncontrolled release is correlated with actual order of the process. Also, the proposed n-order model was compared with models obeying the laws of chemical kinetics: 0-order model, 1-order model and with diffusion Higuchi "square root of time" model, and the comparison demonstrated superiority of the n-order model over standard models. A non-linear statistical analysis was performed by means of computer software Statistica Pl. v. 7.1 manufactured by StatSoft Polska and Mathematica v. 5.0 manufactured by Wolfram Research.

  17. A pilot study of poly(N-isopropylacrylamide)-g-polyethylene glycol and poly(N-isopropylacrylamide)-g-methylcellulose branched copolymers as injectable scaffolds for local delivery of neurotrophins and cellular transplants into the injured spinal cord

    PubMed Central

    Conova, Lauren; Vernengo, Jennifer; Jin, Ying; Himes, B. Timothy; Neuhuber, Birgit; Fischer, Itzhak; Lowman, Anthony

    2016-01-01

    Object The authors investigated the feasibility of using injectable hydrogels, based on poly(N-isopropylacrylamide) (PNIPAAm), lightly crosslinked with polyethylene glycol (PEG) or methylcellulose (MC), to serve as injectable scaffolds for local delivery of neurotrophins and cellular transplants into the injured spinal cord. The primary aims of this work were to assess the biocompatibility of the scaffolds by evaluating graft cell survival and the host tissue immune response. The scaffolds were also evaluated for their ability to promote axonal growth through the action of released brain-derived neurotrophic factor (BDNF). Methods The in vivo performance of PNIPAAm-g-PEG and PNIPAAm-g-MC was evaluated using a rodent model of spinal cord injury (SCI). The hydrogels were injected as viscous liquids into the injury site and formed space-filling hydrogels. The host immune response and biocompatibility of the scaffolds were evaluated at 2 weeks by histological and fluorescent immunohistochemical analysis. Commercially available matrices were used as a control and examined for comparison. Results Experiments showed that the scaffolds did not contribute to an injury-related inflammatory response. PNIPAAm-g-PEG was also shown to be an effective vehicle for delivery of cellular transplants and supported graft survival. Additionally, PNIPAAm-g-PEG and PNIPAAm-g-MC are permissive to axonal growth and can serve as injectable scaffolds for local delivery of BDNF. Conclusions Based on the results, the authors suggest that these copolymers are feasible injectable scaffolds for cell grafting into the injured spinal cord and for delivery of therapeutic factors. PMID:21888482

  18. Development and validation of a cost-effective, efficient, and robust liquid chromatographic method for the simultaneous determination of the acetyl and succinoyl content in hydroxypropyl methylcellulose acetate succinate polymer.

    PubMed

    Chen, Raymond; Sekulic, Sonja; Zelesky, Todd

    2002-01-01

    A reversed-phase liquid chromatographic method was developed and validated for the determination of the content of free acetic acid, free succinic acid, acetyl substituents, and succinoyl substituents in hydroxypropyl methylcellulose acetate succinate (HPMCAS; Chemical Abstracts Service Registry No. 71138-97-1) polymer. This single new method gave accurate and precise measurement of both acetyl and succinoyl substituents, which had previously required 3 Japanese Pharmaceutical Excipients (JPE) methods to accomplish. Consequently, analysis time and turnaround time are decreased significantly. Furthermore, this method can also separate and determine the free acetic and succinic acids in HPMCAS polymer, a task that the corresponding JPE method cannot achieve. The values for accuracy (average recovery from 12 standard samples) were 99.9% for acetic acid and 99.8% for succinic acid. The values for injection precision (relative standard deviation [RSD]) were 0.11% for acetic acid and 0.28% for succinic acid. The values for intermediate precision (RSD) were 1.25% for determination of the acetyl content at the 8.78% (w/w) level and 1.33% for determination of the succinoyl content at the 10.9% (w/w) level. The values for intermediate precision (RSD) were 5.98% for determination of free acetic acid at the 0.12% (w/w) level and 5.13% for determination of free succinic acid at the 0.029% (w/w) level. The method was proven to be robust with respect to variation in the pH of the mobile phase, the concentration of potassium dihydrogen phosphate, and the flow rate. The method is well suited for quality control in today's fast-paced pharmaceutical laboratories.

  19. Rheological properties of reversible thermo-setting in situ gelling solutions with the methylcellulose-polyethylene glycol-citric acid ternary system (2): Effects of various water-soluble polymers and salts on the gelling temperature.

    PubMed

    Shimokawa, Ken-ichi; Saegusa, Katsuhiko; Ishii, Fumiyoshi

    2009-11-01

    The influences of various salts and water-soluble polymers on the phase transition temperature of thermo-setting gels prepared by combining methylcellulose (MC)-sodium citrate (SC)-polyethylene glycol (PEG) at appropriate ratios (the MC-SC-PEG system) were investigated. Concerning cations, comparison of the phase transition temperature between SC and tripotassium citrate (PC) showed a rapid increase in the viscosity of SC between 20 degrees C and 25 degrees C and an increase in the viscosity of PC between 30 degrees C and 35 degrees C. Concerning the valency of anions, comparisons among SC, disodium tartrate dihydrate (ST), disodium maleate hemihydrates (SM), and sodium sulfate (SS) showed a rapid increase in the viscosity of trivalent SC between 20 degrees C and 25 degrees C and changes in the viscosity of the three bivalent sodium salts (ST, SM, and SS) at > or =30 degrees C. Thus the phase transition temperature decreased with an increase in the valency of anions. Subsequently, the influences of various water-soluble polymers on the gelling temperature were compared. Using polyvinylpyrrolidone (PVP) instead of PEG, the gelling temperature decreased with an increase in the PVP concentration even without the addition of SC. Unlike PVP, the addition of xanthan gum as a viscosity-increasing polysaccharide did not reduce the gelling temperature irrespective of its concentration. Temperature-associated changes in viscosity were observed at a fixed SC concentration with changes in the concentration of PVP or PEG. The gel phase transition temperature increased from 46 degrees C to 50 degrees C in gels not containing PVP or PEG. The viscosity did not differ between the addition of PVP or PEG at a low concentration and its absence. However, the viscosity clearly changed after the addition of each agent at a high concentration.

  20. Formulation and Evaluation of Hydroxypropyl Methylcellulose-based Controlled Release Matrix Tablets for Theophylline

    PubMed Central

    Sekharan, T. Raja; Palanichamy, S.; Tamilvanan, S.; Shanmuganathan, S.; Thirupathi, A. Thanga

    2011-01-01

    The objectives of the study were to formulate hydroxypropyl methyl cellulose-based controlled release matrix tablets for theophylline with varying drug:polymer ratios (1:1 and 1:2) and differing tablet hardness (5, 6 and 7 kg/cm2), and to evaluate the tablet's physico-chemical properties such as hardness, uniformity of weight, friability, drug content and in vitro drug release. Initially, granules were made by wet granulation technique and evaluated for angle of repose, bulk density, tapped density, bulkiness, compressibility index and hausner ratio. The results indicate good flow property of the granules and thus, the evaluated tablet physical properties were within the acceptable limits. The FT-IR study for the F-6 formulation showed that there was no interaction between the drug and the polymer. In vitro release studies were performed using Disso-2000 (paddle method) in 900 ml of pH 7.4 at 50 rpm. The result indicated that at high drug:polymer ratio (1:2) and hardness value 7 kg/cm2, prolonged drug release was observed than the low drug: polymer ratio (1:1) and hardness values (5 and 6 kg/cm2). The release kinetics was found to follow korsmeyers-peppas model and the mechanism of drug release was by non-fickian or anomalous diffusion. The F-6 formulation was chosen for stability studies. F-6 formulation was stable when it was kept at different temperatures for a period of 6 months. PMID:22707833

  1. Effect of solvent state and isothermal conditions on gelation of methylcellulose hydrogels.

    PubMed

    Joshi, Sunil C; Liang, C M; Lam, Y C

    2008-01-01

    In this study, thermal behavior of aqueous solutions of methyl cellulose (MC) at a constant temperature of 50 degrees C was analyzed. Various samples were studied for two consecutive heating-cooling cycles. The experiments with the solutions prepared using cold de-ionized (DI) water showed that the rate of gelation was higher for higher MC concentrations. However, the rate was slower during the first heating-cooling cycle than during the second cycle. The possible reasons behind such observations are discussed. Various MC solutions prepared using hot DI water were studied for understanding the role of the solvent state in the isothermal gelation process. The gelation of these MC solutions started at a lower MC concentration and resulted in a higher gelation rate. The gelation mechanism responsible for such effects is explored and presented. Finally, a gel-indexing method is proposed to provide a quantitative measure of the gelation state of all the MC gels.

  2. Properties of starch-hydroxypropyl methylcellulose based films obtained by compression molding.

    PubMed

    Ortega-Toro, Rodrigo; Jiménez, Alberto; Talens, Pau; Chiralt, Amparo

    2014-08-30

    Corn starch-glycerol (1:0.3) films, containing or not citric acid (1g/100g starch) and HPMC (10 and 20g/100g starch), are obtained by compression molding. The microstructure of the films, the thermal behavior, the X-ray diffraction spectra and the physical properties (mechanical, barrier and optical) were analyzed after 1 and 5 storage weeks at 25°C and 53% relative humidity. The bonded citric acid and film solubility were also determined. Starch-HPMC blend films showed a dispersed phase of HPMC in a continuous, starch-rich phase with lower glass transition than HPMC-free films. The addition of citric acid also provoked a decrease in glass transition in line with the partial hydrolysis of starch chains. Both components implied a decrease in the water vapour permeability while the oxygen permeability slightly increased. Although citric acid only provoked a small hardening effect in the films, it greatly decreased their extensibility (weak cross-linking effect), which seems to increase during film storage. Starch crystallization during storage was inhibited by both citric acid and HPMC.

  3. Physical properties of emulsion-based hydroxypropyl methylcellulose films: effect of their microstructure.

    PubMed

    Zúñiga, R N; Skurtys, O; Osorio, F; Aguilera, J M; Pedreschi, F

    2012-10-01

    The initial characteristics of emulsions and the rearrangement of the oil droplets in the film matrix during film drying, which defines its microstructure, has an important role in the physical properties of the emulsion-based films. The objective of this work was to study the effect of the microstructure (two droplet size distributions) and stability (with or without surfactant) of HPMC oil-in-water emulsions over physical properties of HPMC emulsion-based edible films. HPMC was used to prepare sunflower oil-in-water emulsions containing 0.3 or 1.0% (w/w) of oil with or without SDS, as surfactant, using an ultrasonic homogenizer. Microstructure, rheological properties and stability of emulsions (creaming) were measured. In addition, microstructure, coalescence of oil droplets, surface free energy, optical and mechanical properties and water vapor transfer of HPMC films were evaluated. Image analysis did not show differences among droplet size distributions of emulsions prepared at different oil contents; however, by using SDS the droplet size distributions were shifted to lower values. Volume mean diameters were 3.79 and 3.77 μm for emulsions containing 0.3 and 1.0% without surfactant, respectively, and 2.72 and 2.71 μm for emulsions with SDS. Emulsions formulated with 1.0% of oil presented higher stability, with almost no change during 5 and 3 days of storage, for emulsions with and without SDS, respectively. Internal and surface microstructure of emulsion-based films was influenced by the degree of coalescence and creaming of the oil droplets. No effect of microstructure over the surface free energy of films was found. The incorporation of oil impaired the optical properties of films due to light scattering of light. Addition of oil and SDS decreased the stress at break of the emulsion-based films. The replace of HPMC by oil and SDS produce a lower "amount" of network structure in the films, leading to a weakening of their structure. The oil content and SDS addition had an effect over the microstructure and physical properties of HPMC-based emulsions which lead to different microstructures during film formation. The way that oil droplets were structured into the film had an enormous influence over the physical properties of HPMC films.

  4. In vitro digestibility of highly concentrated methylcellulose O/W emulsions: rheological and structural changes.

    PubMed

    Espert, María; Salvador, Ana; Sanz, Teresa

    2016-09-14

    The changes in structure during the digestion of highly concentrated methyl cellulose (MC) O/W emulsions and of hydrated MC were investigated. The effect of human saliva and in vitro stomach digestion was attributed to a dilution effect, rather than to pH or pepsin activity. After in vitro intestine incubation, a decrease in viscoelasticity and an increase in fat globule size were observed. The fat released after the digestion of the MC emulsion was 49.8% of the initial fat, indicating the existence of a big physical impediment. In comparison with an O/W whey protein emulsion with fat content equal to the fat released during the MC emulsion digestion, a 12% reduction in free fatty acid formation was found, which indicates that the decrease in fat bioaccessibility in the MC emulsion should be attributed not only to a physical effect against fat release but also to a further impediment related to the fat digestion process. Fat released quantification informs about the physical retention of fat in the emulsion matrix structure. Enzymes may not act if fat is not released and solubilized. Free fatty acid quantification is the real indicator of fat digestion, but contrary to the total fat released, it is affected by a wide variety of enzymatic factors, which should be considered for the correct comparison of systems of different properties, for example systems where the amount of fat release during the digestion may be different or initially unknown. PMID:27529606

  5. Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use.

    PubMed

    Bourges, Xavier; Weiss, Pierre; Daculsi, Guy; Legeay, Gilbert

    2002-12-01

    Synthesis of grafting silane on a hydro soluble cellulose ether (HPMC) was described. In alkaline medium, this derivate is under gel form. With a decrease of the pH, a self-hardening occurs due to the silanol condensation. For potential biomedical use, we described the silated-HPMC synthesis, the gel behavior after steam sterilization and the parameters of the silanol condensation i.e. pH, silane percentage and temperature. Minimum kinetic of the condensation was observed for pH between 5.5 and 6.5. So temperature catalyzed the reaction and the self-hardening speed was increased by silane percentage. PMID:12509115

  6. Biopolymeric antimicrobial films: study of the influence of hydroxypropyl methylcellulose, tapioca starch and glycerol contents on physical properties.

    PubMed

    Espinel Villacrés, Ricardo A; Flores, Silvia K; Gerschenson, Lía N

    2014-03-01

    Mixture design methodology was applied to study the effect of different levels of tapioca starch (TS), hydroxypropyl methylcelullose (HPMC), and glycerol (Gly) on the physical properties of biopolymeric films supporting potassium sorbate (KS; 0.3% w/w) with the goal of contributing to the development of materials for preventing food surface contamination. Mechanical properties, water vapour permeability (WVP), solubility in water (S) and colour attributes were evaluated on the films. HPMC addition produced an increase of elastic modulus (Ec), stress at break (σb) and S. It also decreased the yellow index (YI) values and the strain at break (εb). The study was deepened using the formulation containing 2.67 g/100g of TS, 0.67 g/100g of HPMC, 1.67 g/100g Gly and 0.3g/100g KS, observing that it behaved as an effective antimicrobial barrier against Zygosaccharomyces bailii external contamination. Microstructural analysis allowed us to conclude that HPMC incorporation to a TS network decreased roughness of the films and it also increased permeability to oxygen (PO2). PMID:24433893

  7. STUDYING THE IMPACT OF FORMULATION AND PROCESSING PARAMETERS ON THE RELEASE CHARACTERISTICS FROM HYDROXYPROPYL METHYLCELLULOSE MATRIX TABLETS OF DICLOFENAC.

    PubMed

    Elzayat, Ehab M; Abdel-Rahman, Ali A; Ahmed, Sayed M; Alanazi, Fars K; Habib, Walid A; Sakr, Adel

    2016-01-01

    Hydrophilic matrices, especially HPMC based, are widely used to provide sustained delivery where drug release occurs mainly by diffusion. A 3(2) full factorial design was used to develop and evaluate HPMC matrix tablet for sustained delivery of diclofenac. The influences of polymer concentration/viscosity, diluent type/ratio, drug load/solubility, compression force and pH change on drug release were investigated. Ten tablet formulations were prepared using wet granulation. HPMC K15M (10-30% w/w) was used as the polymer forming matrix. The release kinetics, compatibility studies, lot reproducibility and effect on storage were discussed. Increasing polymer concentration and compression force showed antagonistic effect on release rate. Mannitol tends to increase release rate more than lactose. Reversing diluent ratio between lactose and MCC did not affect drug release. Changing pH resulted in burst release whereas drug solubility is pH independent. F1 showed similar release to Voltaren SR and followed Higuchi model. Drug and polymer were compatible to each other. The formulation is stable at long and intermediate conditions with a significant increase in release rate at accelerated conditions due to water uptake and polymer swelling. The developed formulation was successful for a sustained delivery of diclofenac.

  8. STUDYING THE IMPACT OF FORMULATION AND PROCESSING PARAMETERS ON THE RELEASE CHARACTERISTICS FROM HYDROXYPROPYL METHYLCELLULOSE MATRIX TABLETS OF DICLOFENAC.

    PubMed

    Elzayat, Ehab M; Abdel-Rahman, Ali A; Ahmed, Sayed M; Alanazi, Fars K; Habib, Walid A; Sakr, Adel

    2016-01-01

    Hydrophilic matrices, especially HPMC based, are widely used to provide sustained delivery where drug release occurs mainly by diffusion. A 3(2) full factorial design was used to develop and evaluate HPMC matrix tablet for sustained delivery of diclofenac. The influences of polymer concentration/viscosity, diluent type/ratio, drug load/solubility, compression force and pH change on drug release were investigated. Ten tablet formulations were prepared using wet granulation. HPMC K15M (10-30% w/w) was used as the polymer forming matrix. The release kinetics, compatibility studies, lot reproducibility and effect on storage were discussed. Increasing polymer concentration and compression force showed antagonistic effect on release rate. Mannitol tends to increase release rate more than lactose. Reversing diluent ratio between lactose and MCC did not affect drug release. Changing pH resulted in burst release whereas drug solubility is pH independent. F1 showed similar release to Voltaren SR and followed Higuchi model. Drug and polymer were compatible to each other. The formulation is stable at long and intermediate conditions with a significant increase in release rate at accelerated conditions due to water uptake and polymer swelling. The developed formulation was successful for a sustained delivery of diclofenac. PMID:27180437

  9. Physical properties of emulsion-based hydroxypropyl methylcellulose/whey protein isolate (HPMC/WPI) edible films.

    PubMed

    Rubilar, Javiera F; Zúñiga, Rommy N; Osorio, Fernando; Pedreschi, Franco

    2015-06-01

    The objective of this research was to study the effect of the film microstructure of oil-in-water emulsions stabilized by hydroxypropyl methyl cellulose/whey protein isolate (HPMC/WPI) with or without sodium dodecyl sulfate (SDS) over physical properties of HPMC/WPI emulsion-based films. The films were prepared with different HPMC/WPI-oil-SDS combinations (%w/w for 100g of dispersion): HPMC; WPI; HPMC/1WPI-0.5-SDS; HPMC/1WPI-1; HPMC/2WPI-0.5; HPMC/2WPI-1-SDS. Physical properties of films were evaluated. The results showed no statistical differences (p>0.05) between the thicknesses of EFs (0.156 ± 0.004 mm). The effect of oil content and incorporation of SDS showed the inverse trend for WI and ΔE, the increasing order of change, for WI and ΔE, among the formulation evaluated was: HPMC/1WPI-1>HPMC/2WPI-0.5>HPMC/2WPI-1.0-SDS≈HPMC/1WPI-0.5-SDS≈WPI>HPMC for WI and HPMC/1WPI-0.5-SDS>HPMC/2WPI-1.0-SDS>HPMC/2WPI-0.5>HPMC/1WPI-1 for ΔE, respectively. The addition of oil and SDS decreased the TS and EB, because oil addition into EF induces the development of structural discontinuities, producing an EF with less chain mobility, and consequently, with less flexibility and resistance to fracture.

  10. 21 CFR 201.319 - Water-soluble gums, hydrophilic gums, and hydrophilic mucilloids (including, but not limited to...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... gum, kelp, methylcellulose, plantago seed (psyllium), polycarbophil tragacanth, and xanthan gum) as... gum, kelp, methylcellulose, plantago seed (psyllium), polycarbophil tragacanth, and xanthan gum) as..., methylcellulose, plantago seed (psyllium), polycarbophil, tragacanth, and xanthan gum. Esophageal obstruction...

  11. 21 CFR 201.319 - Water-soluble gums, hydrophilic gums, and hydrophilic mucilloids (including, but not limited to...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... gum, kelp, methylcellulose, plantago seed (psyllium), polycarbophil tragacanth, and xanthan gum) as... gum, kelp, methylcellulose, plantago seed (psyllium), polycarbophil tragacanth, and xanthan gum) as..., methylcellulose, plantago seed (psyllium), polycarbophil, tragacanth, and xanthan gum. Esophageal obstruction...

  12. 21 CFR 201.319 - Water-soluble gums, hydrophilic gums, and hydrophilic mucilloids (including, but not limited to...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... gum, kelp, methylcellulose, plantago seed (psyllium), polycarbophil tragacanth, and xanthan gum) as... gum, kelp, methylcellulose, plantago seed (psyllium), polycarbophil tragacanth, and xanthan gum) as..., methylcellulose, plantago seed (psyllium), polycarbophil, tragacanth, and xanthan gum. Esophageal obstruction...

  13. Formulation and in vitro evaluation of floating tablets of hydroxypropyl methylcellulose and polyethylene oxide using ranitidine hydrochloride as a model drug

    PubMed Central

    Gharti, KP; Thapa, P; Budhathoki, U; Bhargava, A

    2012-01-01

    The present study was carried out with an objective of preparation and in vitro evaluation of floating tablets of hydroxypropyl methyl cellulose (HPMC) and polyethylene oxide (PEO) using ranitidine hydrochloride as a model drug. The floating tablets were based on effervescent approach using sodium bicarbonate a gas generating agent. The tablets were prepared by dry granulation method. The effect of polymers concentration and viscosity grades of HPMC on drug release profile was evaluated. The effect of sodium bicarbonate and stearic acid on drug release profile and floating properties were also investigated. The result of in vitro dissolution study showed that the drug release profile could be sustained by increasing the concentration of HPMC K15MCR and Polyox WSR303. The formulation containing HPMC K15MCR and Polyox WSR303 at the concentration of 13.88% showed 91.2% drug release at the end of 24 hours. Changing the viscosity grade of HPMC from K15MCR to K100MCR had no significant effect on drug release profile. Sodium bicarbonate and stearic acid in combination showed no significant effect on drug release profile. The formulations containing sodium bicarbonate 20 mg per tablet showed desired buoyancy (floating lag time of about 2 minutes and total floating time of >24 hours). The present study shows that polymers like HPMC K15MCR and Polyox WSR303 in combination with sodium bicarbonate as a gas generating agent can be used to develop sustained release floating tablets of ranitidine hydrochloride. PMID:23493037

  14. Effect of some additives on the properties of phenazopyridine hydrochloride granules and their corresponding tablets.

    PubMed

    el-Sabbagh, H M; Meshali, M; Ghanem, A; Abdel-Aleem, H

    1984-06-01

    The effect of the diluents, lactose and calcium carbonate and of the binders, syrup, gelatin, methylcellulose and Eudragit E on the physical properties of phenazopyridine hydrochloride (PNHCl) granules was evaluated. A correlation existed between the granules' physical properties and those of their compressed tablets. With regard to drug release, lactose-syrup 30% was the best of all diluent-binder combinations, followed by lactose-methylcellulose 4%. Also lactose was found to be superior to calcium carbonate in drug release when gelatin and methylcellulose were used as binders. Eudragit E was the best binder with calcium carbonate in this respect. On the other hand, the bioavailability of PNHCl in humans was the same when lactose was used with either gelatin, syrup or methylcellulose, but higher than that obtained with a combination of calcium carbonate and Eudragit E 15%.

  15. Improved assay for quantitating adherence of ruminal bacteria to cellulose.

    PubMed Central

    Rasmussen, M A; White, B A; Hespell, R B

    1989-01-01

    A quantitative technique suitable for the determination of adherence of ruminal bacteria to cellulose was developed. This technique employs adherence of cells to cellulose disks and alleviates the problem of nonspecific cell entrapment within cellulose particles. By using this technique, it was demonstrated that the adherence of Ruminococcus flavefaciens FD1 to cellulose was inhibited by formaldehyde, methylcellulose, and carboxymethyl cellulose. Adherence was unaffected by acid hydrolysates of methylcellulose, glucose, and cellobiose. PMID:2782879

  16. Development and In vitro Evaluation of Mucoadhesive Buccal Films of Nebivolol

    PubMed Central

    Mane, P. P.; Bushetti, S. S.; Keshavshetti, G. G.

    2014-01-01

    Nebivolol, a cardioselective β-blocker undergoes extensive metabolism in the liver after its oral administration resulting in low bioavailability. Oral administration of nebivolol also causes gastrointestinal disturbances characterised by stomach ache. To overcome these short comings, mucoadhesive buccal films of nebivolol were prepared using different concentrations of hydroxypropyl methylcellulose and hydroxyl ethylcellulose in the ratios of 2:1, 4:1 and 6:1 and hydroxypropyl methylcellulose and methylcellulose in the ratio of 2:2, 4:3 and 6:4 by solvent casting technique. All the prepared films were found to be smooth, elegant and uniform in thickness and weight. Among the three polymer combinations used, 6:4 (BFN6) showed increased in vitro residence time, which appeared to be mainly due to mucoadhesive nature of hydroxylpropyl methylcellulose and methylcellulose. Evaluation of the films showed uniform dispersion of the drug throughout the formulation (96.21±0.71 to 97.02±0.12%). In vitro drug release studies showed better results at the end of 8 h. The release profile of all the formulations was subjected to kinetic analyses, which suggested that the drug was released by diffusion mechanism following super case-II transport. PMID:24843191

  17. Conductivity study and fourier transform infrared (FTIR) characterization of methyl cellulose solid polymer electrolyte with sodium iodide conducting ion

    SciTech Connect

    Abiddin, Jamal Farghali Bin Zainal; Ahmad, Azizah Hanom

    2015-08-28

    Sodium ion (Na{sup +}) based solid polymer electrolyte (SPE) has been prepared using solution cast technique with distilled water as solvent and Methylcellulose (MC) as a polymer host. Methylcellulose polymer was chosen as the polymer host due to the abundance of lone pair electrons in the carbonyl and C-O-C constituents, which in turn provide multiple hopping sites for the Na{sup +} conducting ions. Variable compositions of sodium iodide (NaI) salt were prepared to investigate the optimum MC-NaI weight ratio. Results from Electrical Impedance Spectroscopy (EIS) technique show that pure methylcellulose has a low conductivity of 3.61 × 10{sup −11} S/cm.The conductivity increases as NaI content increases up to optimum NaIcomposition of 40 wt%, which yields an average conductivity of 2.70 × 10{sup −5} S/cm.

  18. Conductivity study and fourier transform infrared (FTIR) characterization of methyl cellulose solid polymer electrolyte with sodium iodide conducting ion

    NASA Astrophysics Data System (ADS)

    Abiddin, Jamal Farghali Bin Zainal; Ahmad, Azizah Hanom

    2015-08-01

    Sodium ion (Na+) based solid polymer electrolyte (SPE) has been prepared using solution cast technique with distilled water as solvent and Methylcellulose (MC) as a polymer host. Methylcellulose polymer was chosen as the polymer host due to the abundance of lone pair electrons in the carbonyl and C-O-C constituents, which in turn provide multiple hopping sites for the Na+ conducting ions. Variable compositions of sodium iodide (NaI) salt were prepared to investigate the optimum MC-NaI weight ratio. Results from Electrical Impedance Spectroscopy (EIS) technique show that pure methylcellulose has a low conductivity of 3.61 × 10-11 S/cm.The conductivity increases as NaI content increases up to optimum NaIcomposition of 40 wt%, which yields an average conductivity of 2.70 × 10-5 S/cm.

  19. Mucoadhesive Microspheres Containing Amoxicillin for Clearance of Helicobacter pylori

    PubMed Central

    Nagahara, Naoki; Akiyama, Yohko; Nakao, Masafumi; Tada, Mayumi; Kitano, Megumi; Ogawa, Yasuyuki

    1998-01-01

    In an effort to augment the anti-Helicobacter pylori effect of amoxicillin, mucoadhesive microspheres, which have the ability to reside in the gastrointestinal tract for an extended period, were prepared. The microspheres contained the antimicrobial agent and an adhesive polymer (carboxyvinyl polymer) powder dispersed in waxy hydrogenated castor oil. The percentage of amoxicillin remaining in the stomach both 2 and 4 h after oral administration of the mucoadhesive microspheres to Mongolian gerbils under fed conditions was about three times higher than that after administration in the form of a 0.5% methylcellulose suspension. The in vivo clearance of H. pylori following oral administration of the mucoadhesive microspheres and the 0.5% methylcellulose suspension to infected Mongolian gerbils was examined under fed conditions. The mucoadhesive microspheres and the 0.5% methylcellulose suspension both showed anti-H. pylori effects in this experimental model of infection, but the required dose of amoxicillin was effectively reduced by a factor of 10 when the mucoadhesive microspheres were used. In conclusion, the mucoadhesive microspheres more effectively cleared H. pylori from the gastrointestinal tract than the 0.5% methylcellulose suspension due to the prolonged gastrointestinal residence time resulting from mucoadhesion. A dosage form consisting of mucoadhesive microspheres containing an appropriate antimicrobial agent should be useful for the eradication of H. pylori. PMID:9756746

  20. HPMC supplementation reduces abdominal fat content, intestinal permeability, inflammation, and insulin resistance in diet-induced obese mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of hydroxypropyl methylcellulose (HPMC), a highly viscous non-fermentable soluble dietary fiber, were evaluated on adipose tissue inflammation and insulin resistance in diet induced obese (DIO) mice fed a high fat (HF) diet supplemented with either HPMC or insoluble fiber. DIO C57BL/6J m...

  1. Potential of Prolamins from Maize and Sorghum to Form Gluten-like Structures in Wheat-free Bread

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prolamins from maize (zeins) are known to form viscoelastic, extensible, cohesive dough when mixed together with starch and water above their glass transition temperature (Tg, approximately 28 °C). By adding hydroxypropyl methylcellulose (HPMC, a surface-active hydrocolloid) to this formulation, lea...

  2. Adiponectin in Hamster: Characterization and Functions in Soluble Dietary Fiber Mediated Lipid Homeostatis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aim: The hypocholesterolemic and hypoglycemic effects of various natural and semisynthetic dietary fibers have been studied in the past for their potential use in the prevention and improvement of metabolic syndrome. Among these dietary fibers, hydroxypropyl methylcellulose (HPMC) has been shown to...

  3. 21 CFR 182.1745 - Sodium carboxymethylcellu-lose.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium carboxymethylcellu-lose. 182.1745 Section... (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1745 Sodium carboxymethylcellu-lose. (a) Product. Sodium carboxy-methylcellulose is the sodium salt of carboxymethylcellulose...

  4. 21 CFR 182.1745 - Sodium carboxymethylcellu-lose.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium carboxymethylcellu-lose. 182.1745 Section... GRAS Food Substances § 182.1745 Sodium carboxymethylcellu-lose. (a) Product. Sodium carboxy-methylcellulose is the sodium salt of carboxymethylcellulose not less than 99.5 percent on a dry-weight...

  5. Formulation and Evaluation of Cefixime Trihydrate Matrix Tablets Using HPMC, Sodium CMC, Ethyl Cellulose

    PubMed Central

    Sirisolla, Janakidevi; Ramanamurthy, K. V.

    2015-01-01

    The objective of the present work is to design sustained release matrix tablets of cefixime trihydrate by incorporating drug in a matrix made up of release retardant polymers, which prolong drug release leading to minimization of the peak and valley effect in the plasma and provide patient convenience. The effect of combination of polymers on parameters like release pattern, release mechanism of the drug were studied. Total nine formulations each containing 200 mg of drug were prepared by direct compression method. The formulations F-1, F-2, F-3 were prepared with a 1:1 drug to polymer ratio using hydroxypropyl methylcellulose, carboxymethyl cellulose sodium and ethyl cellulose. F-4 was prepared with a 1:1 ratio of hydroxypropyl methylcellulose, carboxymethyl cellulose sodium, F-5 as prepared with a 1:1 ratio of hydroxypropyl methylcellulose and ethyl cellulose, F-6 was prepared with a 1:1 ratio of carboxymethyl cellulose sodium and ethyl cellulose, F-7, F-8, F-9 were prepared by using polymers hydroxypropyl methylcellulose, carboxymethyl cellulose sodium and ethyl cellulose in the ratios of 0.5:0.5:1, 0.5:1:0.5, and 1:0.5:0.5. Designed matrix tablets were evaluated for various pre-compression and post-compression parameters. Formulation F-5 showed 102.15 % release at the end of 12 h and it is selected as the best formulation. All Formulations followed zero order with non-Fickian diffusion method. PMID:26180278

  6. STRAIN COMPARISONS OF ATRAZINE-INDUCED PREGNANCY LOSS IN THE RAT

    EPA Science Inventory

    Atrazine was administered by gavage, in 1% methylcellulose, to F344, Sprague-Dawley (SD), and Long Evans (LE) rats at 0, 25, 50, 100, or 200 mg/kg/d on gestation days 6-10. The dams were allowed to deliver and litters were examined postnatally. The F344 strain was the most sens...

  7. Effect of different dispersants in compressive strength of carbon fiber cementitious composites

    NASA Astrophysics Data System (ADS)

    Lestari, Yulinda; Bahri, Saiful; Sugiarti, Eni; Ramadhan, Gilang; Akbar, Ari Yustisia; Martides, Erie; Khaerudini, Deni S.

    2013-09-01

    Carbon Fiber Cementitious Composites (CFCC) is one of the most important materials in smart concrete applications. CFCC should be able to have the piezoresistivity properties where its resistivity changes when there is applied a stress/strain. It must also have the compressive strength qualification. One of the important additives in carbon fiber cementitious composites is dispersant. Dispersion of carbon fiber is one of the key problems in fabricating piezoresistive carbon fiber cementitious composites. In this research, the uses of dispersants are methylcellulose, mixture of defoamer and methylcellulose and superplasticizer based polycarboxylate. The preparation of composite samples is similar as in the mortar technique according to the ASTM C 109/109M standard. The additives material are PAN type carbon fibers, methylcellulose, defoamer and superplasticizer (as water reducer and dispersant). The experimental testing conducts the compressive strength and resistivity at various curing time, i.e. 3, 7 and 28 days. The results obtained that the highest compressive strength value in is for the mortar using superplasticizer based polycarboxylate dispersant. This also shown that the distribution of carbon fiber with superplasticizer is more effective, since not reacting with the cementitious material which was different from the methylcellulose that creates the cement hydration reaction. The research also found that the CFCC require the proper water cement ratio otherwise the compressive strength becomes lower.

  8. Hypocholesterolemic effects of different bulk-forming hydrophilic fibers as adjuncts to dietary therapy in mild to moderate hypercholesterolemia.

    PubMed

    Anderson, J W; Floore, T L; Geil, P B; O'Neal, D S; Balm, T K

    1991-08-01

    Hypercholesterolemia is a significant risk factor for coronary heart disease, and the hypocholesterolemic effects of psyllium are well established. This placebo-controlled, parallel study compared psyllium with methylcellulose, calcium polycarbophil, and placebo as dietary adjuncts in treating mild to moderate hypercholesterolemia. Of 163 men and women recruited with serum cholesterol levels above 5.17 mmol/L (200 mg/dL), 105 completed 8 weeks of an American Heart Association step I diet and then augmented the diet with one of the fiber supplements for 8 additional weeks. Incremental differences from placebo for low-density lipoprotein cholesterol were -8.8% for psyllium, -3.2% for methylcellulose (not significant), and +8.7% for calcium polycarbophil; and for total cholesterol the differences were -4.3% for psyllium (not significant), -1.4% for methylcellulose (not significant), and +5.9% for calcium polycarbophil. Compliance was 94% to 96%, and only mild gastrointestinal side effects were observed. In managing mild to moderate hypercholesterolemia, methylcellulose and calcium polycarbophil provide little or no additional benefit, while psyllium significantly enhances the American Heart Association diet effects.

  9. HPMC supplementation reduces fatty liver, intestinal permeability, and insulin resistance with altered hepatic gene expression in diet-induced obese mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of hydroxypropyl methylcellulose (HPMC), a highly viscous nonfermentable soluble dietary fiber, were evaluated on global hepatic gene profiles, steatosis and insulin resistance in high-fat (HF) diet-induced obese (DIO) mice. DIO C57BL/6J mice were fed a HF diet supplemented with either ...

  10. Encapsulation and modified-release of thymol from oral microparticles as adjuvant or substitute to current medications.

    PubMed

    Rassu, G; Nieddu, M; Bosi, P; Trevisi, P; Colombo, M; Priori, D; Manconi, P; Giunchedi, P; Gavini, E; Boatto, G

    2014-10-15

    The aim of this study was to encapsulate, thymol, in natural polymers in order to obtain (i) taste masking effect and, then, enhancing its palatability and (ii) two formulations for systemic and local delivery of herbal drug as adjuvants or substitutes to current medications to prevent and treat several human and animal diseases. Microspheres based on methylcellulose or hydroxypropyl methylcellulose phthalate (HPMCP) were prepared by spray drying technique. Microparticles were in vitro characterized in terms of yield of production, drug content and encapsulation efficiency, particle size, morphology and drug release. Both formulations were in vivo orally administered and pharmacokinetic analysis was carried out. The polymers used affect the release and, then, the pharmacokinetic profile of thymol. Encapsulation into methylcellulose microspheres leads to short half/life but bioavailability remarkably increases compared to the free thymol. In contrast, enteric formulation based on HPMCP shows very limited systemic absorption. These formulations could be proposed as alternative or adjuvants for controlling pathogen infections in human or animal. In particular, methylcellulose microspheres can be used for thymol systemic administration at low doses and HPMCP particles for local treatment of intestinal infections. PMID:25442269

  11. 21 CFR 182.1745 - Sodium carboxymethylcellu-lose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium carboxymethylcellu-lose. 182.1745 Section... GRAS Food Substances § 182.1745 Sodium carboxymethylcellu-lose. (a) Product. Sodium carboxy-methylcellulose is the sodium salt of carboxymethylcellulose not less than 99.5 percent on a dry-weight...

  12. 21 CFR 182.1745 - Sodium carboxymethylcellu-lose.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium carboxymethylcellu-lose. 182.1745 Section... GRAS Food Substances § 182.1745 Sodium carboxymethylcellu-lose. (a) Product. Sodium carboxy-methylcellulose is the sodium salt of carboxymethylcellulose not less than 99.5 percent on a dry-weight...

  13. Factors affecting quality of batter-based gluten-free bread

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While wheat bread has been extensively studied, the quality basis for gluten-free bread remains controversial. Common gluten-free breads are prepared from soft batters, and in such systems, intact and damaged starch, pentosans, added hydrocolloids like xanthan gum and hydroxypropyl methylcellulose (...

  14. In vitro release, rheological, and stability studies of mefenamic acid coprecipitates in topical formulations.

    PubMed

    Ahmed, Tarek A; Ibrahim, Hany M; Ibrahim, Fathy; Samy, Ahmed M; Fetoh, Ehab; Nutan, Mohammad T H

    2011-10-01

    A suitable topical formulation of mefenamic acid was developed in order to eliminate the gastrointestinal disorders associated with its oral administration. Drug coprecipitates prepared with different polymers at various drug-to-polymer ratios improved drug solubility and dissolution compared to pure drug and physical mixtures. PVP polymers (ratio 1:4) produced the best results. Aqueous ionic cream, ointments of absorption and water soluble bases and gels of methylcellulose, carboxymethylcellulose sodium, HPMC, Carbopol® 934 and 940, and Pluronic® F127 bases containing 1-10% drug as coprecipitates of PVP polymers (1:4) were prepared. The highest drug release was achieved at 1% drug concentration from water soluble base and methylcellulose among cream/ointment and gel bases, respectively. Gels, in general yielded better release than creams/ointments. All tested medicated creams/ointments exhibited plastic flow while all gels conformed to pseudoplasticity. Most of them showed thixotropy, a desired property of topical preparations. Stability studies revealed that HPMC and methylcellulose had the smallest changes in drug content, viscosity, and pH among the formulations. Considering drug release, rheological properties, and stability, methylcellulose gel containing 1% drug as coprecipitates of PVP K90 was the best among the studied formulations, was promising for improving bioavailability of mefenamic acid and can be used in future studies.

  15. Fibril Formation and Phase Separation in Aqueous Cellulose Ethers

    NASA Astrophysics Data System (ADS)

    Maxwell, Amanda; Schmidt, Peter; McAllister, John; Lott, Joseph; Bates, Frank; Lodge, Timothy

    Aqueous solutions of many cellulose ethers are known to undergo thermoreversible gelation and phase separation upon heating to form turbid hydrogels, but the mechanism and resulting structures have not been well understood. Turbidity, light scattering and small-angle neutron scattering (SANS) are used to show that hydroxypropyl methylcellulose (HPMC) chains are dissolved in water below 50 °C and undergo phase separation at higher temperatures. At 70 °C, at sufficiently high concentrations in water, HPMC orders into fibrillar structures with a well-defined radius of 18 +/- 2 nm, as characterized by cryogenic transmission electron microscopy and SANS. The HPMC fibril structure is independent of concentration and heating rate. However, HPMC fibrils do not form a percolating network as readily as is seen in methylcellulose, resulting in a lower hot-gel modulus, as demonstrated by rheology.

  16. Effect of Mechanical Properties on the Release of Meloxicam from Poloxamer Gel Bases

    PubMed Central

    Inal, O.; Yapar, E. Alğin

    2013-01-01

    Thermoreversible gel of meloxicam, efficient for the treatment of joint diseases, was aimed to prepare for night application available for chronotherapy in this study. Poloxamer 407 and 188 polymers were used at 20-30% w/w as a vehicle in combination with different additives (polyvinylmethylether maleic anhydride copolymer, hydroxypropyl methylcellulose, polyethylene glycol 400, dimethyl sulfoxide, sodium chloride). Characterisation of prepared gels was evaluated by viscosity and texture analysis, and the effect of formulation variables on the gel formulations were evaluated by in vitro drug release and erosion studies. Between the investigated gel bases, Poloxamer 407-hydroxypropyl methylcellulose gel was found to be ideal due to its gel strength (1.560±0.0135 N), viscosity (312.3±2.06 cP) and release characteristics. These promising results could be encouraging for further studies to make it an alternative to commercial dosage forms. PMID:24591745

  17. Characterization of new eye drops with choline salicylate and assessment of their irritancy by in vitro short time exposure tests.

    PubMed

    Wroblewska, Katarzyna; Kucinska, Małgorzata; Murias, Marek; Lulek, Janina

    2015-09-01

    The aim of our study was to examine the irritation potential of new eye drops containing 2% choline salicylate (CS) as an active pharmaceutical ingredient (API) and various polymers increasing eye drop viscosity (hydroxyethylcellulose, hydroxypropyl methylcellulose, methylcellulose, polyvinyl alcohol, polyvinylpyrrolidone). The standard method for assessing the potential of irritating substances has been the Draize rabbit eye test. However the European Centre for Validation of Alternative Methods and the Coordinating Committee for Validation of Alternative Methods recommend, short time exposure (STE) in vitro tests as an alternative method for assessing eye irritation. The eye irritation potential was determined using cytotoxicity test methods for rabbit corneal cell line (SIRC) after 5 min exposure. The viability of cells was determined using two cytotoxicity assays: MTT and Neutral Red Uptake. According to the irritation rankings for the short time exposure test, all tested eye drops are classified as non-irritating (cell viability >70%).

  18. Characterization of new eye drops with choline salicylate and assessment of their irritancy by in vitro short time exposure tests.

    PubMed

    Wroblewska, Katarzyna; Kucinska, Małgorzata; Murias, Marek; Lulek, Janina

    2015-09-01

    The aim of our study was to examine the irritation potential of new eye drops containing 2% choline salicylate (CS) as an active pharmaceutical ingredient (API) and various polymers increasing eye drop viscosity (hydroxyethylcellulose, hydroxypropyl methylcellulose, methylcellulose, polyvinyl alcohol, polyvinylpyrrolidone). The standard method for assessing the potential of irritating substances has been the Draize rabbit eye test. However the European Centre for Validation of Alternative Methods and the Coordinating Committee for Validation of Alternative Methods recommend, short time exposure (STE) in vitro tests as an alternative method for assessing eye irritation. The eye irritation potential was determined using cytotoxicity test methods for rabbit corneal cell line (SIRC) after 5 min exposure. The viability of cells was determined using two cytotoxicity assays: MTT and Neutral Red Uptake. According to the irritation rankings for the short time exposure test, all tested eye drops are classified as non-irritating (cell viability >70%). PMID:27134543

  19. Development of polysaccharides-based edible coatings for citrus fruits: a layer-by-layer approach.

    PubMed

    Arnon, Hadar; Granit, Rina; Porat, Ron; Poverenov, Elena

    2015-01-01

    Biodegradable coatings for citrus fruits that would replace the currently used polyethylene-based waxes, are of great interest. Methylcellulose (MC), hydroxypropyl methylcellulose (HPMC), carboxymethyl cellulose (CMC) and chitosan (CH) coatings were examined on the most sensitive citrus fruit model: mandarins. Among the examined polysaccharides, CMC provided mandarins with the best firmness, lowest weight loss and satisfying gloss, while not affecting natural flavour and the respiration process. To enhance coating performance, glycerol, oleic acid and stearic acid were added; however, mandarin quality generally deteriorated with these additives. Then, a layer-by-layer (LBL) approach was applied. LbL coatings, based on a combination of two polysaccharides, CMC as an internal layer and chitosan as an external layer, gave the best performance. Different concentrations of chitosan were examined. The LbL coatings notably improved all quantified parameters of fruit quality, proving that polysaccharide-based edible coating may offer an alternative to synthetic waxes.

  20. Development of polysaccharides-based edible coatings for citrus fruits: a layer-by-layer approach.

    PubMed

    Arnon, Hadar; Granit, Rina; Porat, Ron; Poverenov, Elena

    2015-01-01

    Biodegradable coatings for citrus fruits that would replace the currently used polyethylene-based waxes, are of great interest. Methylcellulose (MC), hydroxypropyl methylcellulose (HPMC), carboxymethyl cellulose (CMC) and chitosan (CH) coatings were examined on the most sensitive citrus fruit model: mandarins. Among the examined polysaccharides, CMC provided mandarins with the best firmness, lowest weight loss and satisfying gloss, while not affecting natural flavour and the respiration process. To enhance coating performance, glycerol, oleic acid and stearic acid were added; however, mandarin quality generally deteriorated with these additives. Then, a layer-by-layer (LBL) approach was applied. LbL coatings, based on a combination of two polysaccharides, CMC as an internal layer and chitosan as an external layer, gave the best performance. Different concentrations of chitosan were examined. The LbL coatings notably improved all quantified parameters of fruit quality, proving that polysaccharide-based edible coating may offer an alternative to synthetic waxes. PMID:25053081

  1. Effect of alginate/carboxyl methyl cellulose composite coating incorporated with clove essential oil on the quality of silver carp fillet and Escherichia coli O157:H7 inhibition during refrigerated storage.

    PubMed

    Jalali, Nastaran; Ariiai, Peiman; Fattahi, Esmaeil

    2016-01-01

    The effects of alginate/carboxyl methylcellulose composite coating incorporated with clove essential oil on quality of silver carp fillet chilled storage (4 + 1 °C) were examined over a period of 16 days. The control samples (c), alginate/carboxyl methylcellulose coating (C-A), alginate/carboxyl methylcellulose composite coating incorporated with clove essential oil (with different concentration 1 and 1.5 %) (C-A + CEO1 % and C-A + CEO 15 % respectively) were analyzed by bacteriological (total viable counts (TVC) and total psychrotrophic counts (TPC)), biochemical (Peroxide value (PV), free fatty acid (FFA), total volatile base nitrogen (TVB-N), and pH) and sensory characteristics. Also, the efficacy of these treatments was investigated in control of the population of Eschershia coli O157:H7 inoculated in silver carp fillet. According to the obtained results, C-A + CEO 1.5 % showed lowest (p < 0.05) and acceptable biochemical, bacteriological and sensory characteristics attributes up to 16 days storage at 4 °C compared to the others. Also, this treated sample was acceptable even at the end of the 16-day storage and it could reduce the population of E. coli O157:H7 below the acceptable level (<2) from day 4 until the end of the storage period. The results indicate Alginate/carboxyl methylcellulose composite coating with clove essential oil might be recommended as a preservative in the meat products. PMID:26787996

  2. Structural, surface wettability and antibacterial properties of HPMC-ZnO nanocomposite

    SciTech Connect

    Rao, B. Lakshmeesha; Asha, S.; Madhukumar, R.; Latha, S.; Gowda, Mahadeva; Shetty, G. Rajesha; Sangappa; Chandra, K. Sharath; Naik, Prashantha

    2014-04-24

    The developed hydroxypropyl methylcellulose (HPMC)/Zinc oxide (ZnO) nanocomposite films were examined for structural property and surface wettability using X-ray diffraction and contact angle measurement. Antibacterial activity of these films was evaluated as a function of ZnO concentration. The microstructuralline parameters ( and (g in %)) decreased with increasing concentration of ZnO nanoparticles and there was increase in hydrophilicity. Addition of ZnO nanoparticles in films resulted in antimicrobial activity against tested microorganisms.

  3. The Aminosteroid Derivative RM-133 Shows In Vitro and In Vivo Antitumor Activity in Human Ovarian and Pancreatic Cancers

    PubMed Central

    Kenmogne, Lucie Carolle; Ayan, Diana; Roy, Jenny; Maltais, René; Poirier, Donald

    2015-01-01

    Ovarian and pancreatic cancers are two of the most aggressive and lethal cancers, whose management faces only limited therapeutic options. Typically, these tumors spread insidiously accompanied first with atypical symptoms, and usually shift to a drug resistance phenotype with the current pharmaceutical armamentarium. Thus, the development of new drugs acting via a different mechanism of action represents a clear priority. Herein, we are reporting for the first time that the aminosteroid derivative RM-133, developed in our laboratory, displays promising activity on two models of aggressive cancers, namely ovarian (OVCAR-3) and pancreatic (PANC-1) cancers. The IC50 value of RM-133 was 0.8 μM and 0.3 μM for OVCAR-3 and PANC-1 cell lines in culture, respectively. Based on pharmacokinetic studies on RM-133 using 11 different vehicles, we selected two main vehicles: aqueous 0.4% methylcellulose:ethanol (92:8) and sunflower oil:ethanol (92:8) for in vivo studies. Using subcutaneous injection of RM-133 with the methylcellulose-based vehicle, growth of PANC-1 tumors xenografted to nude mice was inhibited by 63%. Quite interestingly, RM-133 injected subcutaneously with the methylcellulose-based or sunflower-based vehicles reduced OVCAR-3 xenograft growth by 122% and 100%, respectively. After the end of RM-133 treatment using the methylcellulose-based vehicle, OVCAR-3 tumor growth inhibition was maintained for ≥ 1 week. RM-133 was also well tolerated in the whole animal, no apparent sign of toxicity having been detected in the xenograft studies. PMID:26660672

  4. Electrochemical cell

    DOEpatents

    Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai

    1994-01-01

    An electrochemical cell having an alkali metal negative electrode such as sodium and a positive electrode including Ni or transition metals, separated by a .beta." alumina electrolyte and NaAlCl.sub.4 or other compatible material. Various concentrations of a bromine, iodine and/or sulfur containing additive and pore formers are disclosed, which enhance cell capacity and power. The pore formers may be the ammonium salts of carbonic acid or a weak organic acid or oxamide or methylcellulose.

  5. Effect of Different Polymer Concentration on Drug Release Rate and Physicochemical Properties of Mucoadhesive Gastroretentive Tablets.

    PubMed

    Agarwal, Shweta; Murthy, R S R

    2015-01-01

    Mucoadhesive tablets have emerged as potential candidates for gastroretentive drug delivery providing controlled release along with prolonged gastric residence time. Gastroretentive mucoadhesive tablets could result in increased bioavailability due to prolonged gastric residence time. A hydrophilic matrix system was developed as mucoadhesion is achievable on appropriate wetting and swelling of the polymers used. The polymers were so chosen so as to provide a balance between swelling, mucoadhesion and drug release. The polymers chosen were hydroxypropyl methylcellulose K4M, chitosan, and Carbopol 934. The concentrations of these polymers used has a great impact on the physicochemical properties of the resulting formulation. The tablets were formulated using wet granulation method and tranexamic acid was used as the model drug. The prepared tablets were characterized for size, shape, appearance, hardness, friability, weight variation, swelling, mucoadhesion and in vitro drug release. Several batches of tablets were prepared by varying the ratio of hydroxypropyl methylcellulose K4M and Chitosan. The batches having a greater ratio of chitosan showed higher rate of swelling, greater erosion, less mucoadhesion and faster release rate of the drug whereas the batches having greater ratio of hydroxypropyl methylcellulose K4M showed lesser rate of swelling, less erosion, better mucoadhesion and a smaller drug release rate. The level of carbopol was kept constant in all the batches. PMID:26997698

  6. Cyclodextrin-based telmisartan ophthalmic suspension: Formulation development for water-insoluble drugs.

    PubMed

    Muankaew, Chutimon; Jansook, Phatsawee; Sigurđsson, Hákon Hrafn; Loftsson, Thorsteinn

    2016-06-30

    In this study, cyclodextrin-based aqueous eye drop suspension of the water insoluble drug telmisartan was developed. Formation of a drug/γ-cyclodextrin complex was enabled by preventing formation of a poorly water-soluble zwitterion using a volatile base that was removed upon drying of the complex powder. Hydroxypropyl methylcellulose was shown to have the overall best effect, stabilizing the complexes without hampering the drug release from the formulation. Two strategies for preparing cyclodextrin-based aqueous eye drop suspensions of telmisartan were investigated, one where hydroxypropyl methylcellulose was added to the medium during preparation of the drug/γ-cyclodextrin complex powder (ternary complex) and the other where hydroxypropyl methylcellulose was added to the complex powder after preparation of the complex (binary complex). The complexation was characterized by DSC, FT-IR and (1)H NMR and the eye drop suspensions formed were examined regarding their stability and in vitro mucoadhesion property. The ternary complex exhibited inferior mucoadhesive property compared to the binary complex. However, the ternary complex was more stable as no notable change in particle size and particle size distribution was observed during storage at 4°C over 6 months (p<0.05) with the mean particle size determined between 2.0 and 2.5μm. PMID:27139144

  7. Bimodal Gastroretentive Drug Delivery Systems of Lamotrigine: Formulation and Evaluation

    PubMed Central

    Poonuru, R. R.; Gonugunta, C. S. R

    2014-01-01

    Gastroretentive bimodal drug delivery systems of lamotrigine were developed using immediate release and extended release segments incorporated in a hydroxypropyl methylcellulose capsule and in vitro and in vivo evaluations were conducted. In vivo radiographic studies were carried out for the optimized formulation in healthy human volunteers with replacement of drug polymer complex by barium sulphate and the floating time was noted. Here the immediate release segment worked as loading dose and extended release segment as maintenance dose. The results of release studies of formulations with hydrophillic matrix to formulations with dual matrix hydroxypropyl methylcellulose acetate succinate shown that as the percentage of polymer increased, the release decreased. Selected formulation F2 having F-Melt has successfully released the drug within one hour and hydrophillic matrix composing polyethylene oxide with 5% hydroxypropyl methylcellulose acetate succinate showed a lag time of one hour and then extended its release up to 12th hour with 99.59% drug release following zero order kinetics with R2 value of 0.989. The Korsmeyer-Peppas equation showed the R2 value to be 0.941 and n value was 1.606 following non-Fickian diffusion pattern with supercase II relaxation mechanism. Here from extended release tablet the drug released slowly from the matrix while floating. PMID:25593380

  8. Mechanically Enhanced Liquid Interfaces at Human Body Temperature Using Thermosensitive Methylated Nanocrystalline Cellulose.

    PubMed

    Scheuble, N; Geue, T; Kuster, S; Adamcik, J; Mezzenga, R; Windhab, E J; Fischer, P

    2016-02-01

    The mechanical performance of materials at oil/water interfaces after consumption is a key factor affecting hydrophobic drug release. In this study, we methylated the surface of nanocrystalline cellulose (NCC) by mercerization and dimethyl sulfate exposure to produce thermosensitive biopolymers. These methylated NCC (metNCC) were used to investigate interfacial thermogelation at air/water and medium-chain triglyceride (MCT)/water interfaces at body temperature. In contrast to bulk fluid dynamics, elastic layers were formed at room temperature, and elasticity increased significantly at body temperature, which was measured by interfacial shear and dilatational rheology in situ. This unique phenomenon depends on solvent quality, temperature, and polymer concentration at interfaces. Thus, by adjusting the degree of hydrophobicity of metNCC, the interfacial elasticity and thermogelation of the interfaces could be varied. In general, these new materials (metNCC) formed more brittle interfacial layers compared to commercial methylcellulose (MC A15). Thermogelation of methylcellulose promotes attractive intermolecular forces, which were reflected in a change in self-assembly of metNCC at the interface. As a consequence, layer thickness and density increased as a function of temperature. These effects were measured by atomic force microscopy (AFM) images of the displaced interface and confirmed by neutron reflection. The substantial structural and mechanical change of methylcellulose interfaces at body temperature represents a controllable encapsulation parameter allowing optimization of lipid-based drug formulations.

  9. Effect of Different Polymer Concentration on Drug Release Rate and Physicochemical Properties of Mucoadhesive Gastroretentive Tablets

    PubMed Central

    Agarwal, Shweta; Murthy, R. S. R.

    2015-01-01

    Mucoadhesive tablets have emerged as potential candidates for gastroretentive drug delivery providing controlled release along with prolonged gastric residence time. Gastroretentive mucoadhesive tablets could result in increased bioavailability due to prolonged gastric residence time. A hydrophilic matrix system was developed as mucoadhesion is achievable on appropriate wetting and swelling of the polymers used. The polymers were so chosen so as to provide a balance between swelling, mucoadhesion and drug release. The polymers chosen were hydroxypropyl methylcellulose K4M, chitosan, and Carbopol 934. The concentrations of these polymers used has a great impact on the physicochemical properties of the resulting formulation. The tablets were formulated using wet granulation method and tranexamic acid was used as the model drug. The prepared tablets were characterized for size, shape, appearance, hardness, friability, weight variation, swelling, mucoadhesion and in vitro drug release. Several batches of tablets were prepared by varying the ratio of hydroxypropyl methylcellulose K4M and Chitosan. The batches having a greater ratio of chitosan showed higher rate of swelling, greater erosion, less mucoadhesion and faster release rate of the drug whereas the batches having greater ratio of hydroxypropyl methylcellulose K4M showed lesser rate of swelling, less erosion, better mucoadhesion and a smaller drug release rate. The level of carbopol was kept constant in all the batches. PMID:26997698

  10. Effect of additives on physicochemical properties in amorphous starch matrices.

    PubMed

    Liang, Jun; Wang, Simon; Ludescher, Richard D

    2015-03-15

    The effect of the addition of non-reducing sugars or methylcellulose on the matrix physical properties and rate of non-enzymatic browning (NBR) between exogenous glucose+lysine in a starch-based glassy matrix were studied, using the methods of luminescence and FTIR. Amorphous starch-based matrices were formulated by rapidly dehydrating potato starch gel mixed with additives at weight ratios of 7:93 (additive:starch). Data on the phosphorescence emission energy and lifetime from erythrosin B dispersed in the matrices indicated that sugars decreased starch matrix mobility in a Tg-dependent manner, except for trehalose that interacted with starch in a unique mode, while methylcellulose, the additive with the highest Tg, increased the molecular mobility. Using FTIR, we found that methylcellulose decreased the strength of hydrogen bond network and sugars enhanced the hydrogen bond strength in the order: trehalose>maltitol>sucrose. Comparing those changes with the rate of NBR between exogenous glucose+lysine, we suggest that NBR rates are primarily influenced by matrix mobility, which is modulated by the hydrogen bond network, and interactions among components. PMID:25308673

  11. Mechanically Enhanced Liquid Interfaces at Human Body Temperature Using Thermosensitive Methylated Nanocrystalline Cellulose.

    PubMed

    Scheuble, N; Geue, T; Kuster, S; Adamcik, J; Mezzenga, R; Windhab, E J; Fischer, P

    2016-02-01

    The mechanical performance of materials at oil/water interfaces after consumption is a key factor affecting hydrophobic drug release. In this study, we methylated the surface of nanocrystalline cellulose (NCC) by mercerization and dimethyl sulfate exposure to produce thermosensitive biopolymers. These methylated NCC (metNCC) were used to investigate interfacial thermogelation at air/water and medium-chain triglyceride (MCT)/water interfaces at body temperature. In contrast to bulk fluid dynamics, elastic layers were formed at room temperature, and elasticity increased significantly at body temperature, which was measured by interfacial shear and dilatational rheology in situ. This unique phenomenon depends on solvent quality, temperature, and polymer concentration at interfaces. Thus, by adjusting the degree of hydrophobicity of metNCC, the interfacial elasticity and thermogelation of the interfaces could be varied. In general, these new materials (metNCC) formed more brittle interfacial layers compared to commercial methylcellulose (MC A15). Thermogelation of methylcellulose promotes attractive intermolecular forces, which were reflected in a change in self-assembly of metNCC at the interface. As a consequence, layer thickness and density increased as a function of temperature. These effects were measured by atomic force microscopy (AFM) images of the displaced interface and confirmed by neutron reflection. The substantial structural and mechanical change of methylcellulose interfaces at body temperature represents a controllable encapsulation parameter allowing optimization of lipid-based drug formulations. PMID:26779953

  12. NTP toxicity studies of carisoprodol (CAS No. 78-44-4) administered by Gavage to F344/N rats and B6C3F1 mice.

    PubMed

    Chan, P C

    2000-08-01

    [carisoprodol structure: see text] Carisoprodol is a widely used skeletal muscle relaxant and analgesic and is available as a prescription drug. Comparative studies were conducted to determine the toxicity of carisoprodol administered in corn oil and in 0.5% methylcellulose by gavage. Carisoprodol plasma concentrations of rats and mice were measured at the end of the 13-week studies; single-dose plasma carisoprodol analyses were also performed. Genetic toxicity studies were conducted in Salmonella typhimurium, L5178Y mouse lymphoma cells, cultured Chinese hamster ovary cells, and peripheral blood erythrocytes of mice. Groups of 10 male and 10 female F344/N rats received 0, 100, 200, 400, 800, or 1,600 mg carisoprodol per kilogram body weight in corn oil by gavage or 0, 100, 200, 400, or 800 mg/kg carisoprodol in 0.5% methylcellulose by gavage for 13 weeks. Groups of 10 male and 10 female B6C3F1 mice received 0, 75, 150, 300, 600, or 1,200 mg/kg carisoprodol in corn oil by gavage or 0, 600, 1,200, or 1,600 mg/kg carisoprodol in 0.5% methylcellulose by gavage for 13 weeks. Among rats that received carisoprodol in corn oil, survival was similar to that of the vehicle controls. Survival of rats administered carisoprodol in 0.5% methylcellulose was also similar to that of the vehicle controls after adjustment for deaths (two males and one female in the 800 mg/kg group and two females in the 400 mg/kg group). The final mean body weight gain of males administered 1,600 mg/kg carisoprodol in corn oil was significantly less than that of the vehicle controls; the final mean body weights and body weight gains of female rats in the 800 and 1,600 mg/kg groups were significantly greater. In the carisoprodol in 0.5% methylcellulose study, males in the 200 mg/kg group and females in the 100 and 800 mg/kg groups had significantly greater mean body weights and body weight gains than did the vehicle controls. Clinical findings in rats administered carisoprodol in corn oil or in 0

  13. Adhesion of rice flour-based batter to chicken drumsticks evaluated by laser scanning confocal microscopy and texture analysis.

    PubMed

    Mukprasirt, A; Herald, T J; Boyle, D L; Rausch, K D

    2000-09-01

    The convenience and appeal of battered or breaded products have resulted in a sales increase of 100% since 1980. Because of the rapid growth of the Asian-American population and increasing consumption of rice and rice products, rice flour is a logical alternative for wheat flour in traditional batter formulation. The effects of ingredients used in rice flour-based batters on adhesion characteristic for deep-fat fried chicken drumsticks were studied by laser scanning confocal microscopy (LSCM) and texture analysis. Raw chicken drumsticks were predusted with egg albumin powder before dipping into batters prepared from combinations of rice flour, yellow corn flour, oxidized cornstarch, methylcellulose, or xanthan gum. The drumsticks were fried at 175+/-5 C until the internal temperature reached at least 71 C. For LSCM, samples were fixed overnight and were sectioned by vibratome (200 microm) before viewing. Batter adhesion was determined using an attachment specifically designed for chicken drumsticks. Microstructural analysis showed that batter formulated with a 50:50 mixture of rice and corn flours adhered better to drumsticks than batter with other rice flour ratios. Xanthan gum (0.2%) or methylcellulose (0.3%) alone had poor adhesion to chicken skin. However, when combined with other ingredients, xanthan gum increased the amount of batter pick-up before frying by increasing viscosity. Egg albumin significantly facilitated batter adhesion. The results from texture analysis supported the microstructural studies. As rice flour ratio increased from 50 to 70%, the binding force decreased. Rice flour showed potential as an alternative to wheat flour for batter formulas when the appropriate levels of oxidized starch, xanthan gum, and methylcellulose were included in the formulation.

  14. Plaquing procedure for infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Burke, J.A.; Mulcahy, D.

    1980-01-01

    A single overlay plaque assay was designed and evaluated for infectious hematopoietic necrosis virus. Epithelioma papillosum carpio cells were grown in normal atmosphere with tris(hydroxymethyl)aminomethane- or HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid)-buffered media. Plaques were larger and formed more quickly on 1- to 3-day-old cell monolayers than on older monolayers. Cell culture medium with a 10% addition of fetal calf serum (MEM 10) or without serum (MEM 0) were the most efficient virus diluents. Dilution with phosphate-buffered saline, saline, normal broth, or deionized water reduced plaque numbers. Variations in the pH (7.0 to 8.0) of a MEM 0 diluent did not affect plaque numbers. Increasing the volume of viral inoculum above 0.15 ml (15- by 60-mm plate) decreased plaquing efficiency. Significantly more plaques occurred under gum tragacanth and methylcellulose than under agar or agarose overlays. Varying the pH (6.8 to 7.4) of methylcellulose overlays did not significantly change plaque numbers. More plaques formed under the thicker overlays of both methylcellulose and gum tragacanth. Tris(hydroxymethyl)aminomethane and HEPES performed equally well, buffering either medium or overlay. Plaque numbers were reduced when cells were rinsed after virus adsorption or less than 1 h was allowed for adsorption. Variation in adsorption time between 60 and 180 min did not change plaque numbers. The mean plaque formation time was 7 days at 16 degrees C. The viral dose response was linear when the standardized assay was used.

  15. Effect of locally applied GM-CSF on oral mucositis after stem cell transplantation: a prospective placebo-controlled double-blind study.

    PubMed

    van der Lelie, H; Thomas, B L; van Oers, R H; Ek-Post, M; Sjamsoedin, S A; van Dijk-Overtoom, M L; Timmer, J G; von dem Borne, A E

    2001-03-01

    Oral mucositis is a frequent side effect of myeloablative chemo- and radiotherapy preceding stem cell transplantation. It causes pain, poor food intake, and is a port of entry for infection. We studied whether GM-CSF applied topically in the oral cavity can prevent or ameliorate this mucositis. In 36 consecutive patients undergoing a stem cell transplantation, we performed a double-blind placebo-controlled study of 300 micrograms GM-CSF in a 2% methylcellulose gel daily versus a 2% methylcellulose gel alone. Both were locally applied in the oral cavity. The primary end-point was mucositis as measured by the WHO toxicity scale for mucositis, oral assessment scale, and a subjective pain scale, all scored daily. The secondary end-points were need to give parenteral nutrition and morphine, incidence of fever and infections, and duration of neutropenia and hospitalization. No differences were found in the median subjective pain scores, WHO scores, and oral assessment scores between the placebo and the GM-CSF groups. In both groups, nine patients required morphine for pain control. Ten patients in the placebo group and 11 in the GM-CSF group received parenteral nutrition. Documented infections, use of broad-spectrum antibiotics, and number of days with fever were similar in the placebo and the GM-CSF groups. The duration of neutropenia below 0.5 x 10(9)/l (median 14.5 days in the placebo group versus 17 days in the GM-CSF group) and the duration of hospitalization (28.5 versus 29 days) was also not significantly different. We found no beneficial effect of 300 micrograms GM-CSF dissolved in a 2% methylcellulose gel applied locally for chemo- and radiotherapy-induced mucositis in patients undergoing a stem cell transplantation.

  16. The formation and characterization of hydrocortisone-loaded poly((+/-)-lactide) microspheres.

    PubMed

    Cavalier, M; Benoit, J P; Thies, C

    1986-04-01

    The solvent evaporation process has been used to form hydrocortisone-loaded microspheres from poly((+/-)-lactide) (PLA) and a lactide-glycolide copolymer (65/35). Methylene chloride was the casting solvent. Partially hydrolysed (88%) poly(vinyl alcohol) and methylcellulose were used as aqueous phase emulsifiers. Methylcellulose was preferred, because it gave stable emulsions as the amount of hydrocortisone being encapsulated increased whereas poly(vinyl alcohol) did not. With methylcellulose as the emulsifier, a broad size range of spherical microspheres containing up to 50% (w/w) hydrocortisone could be prepared. Thermal and X-ray analyses established that poly((+/-)-lactide) microspheres containing hydrocortisone retained thermal events characteristic of both materials. This is evidence that such microspheres contain, to some extent, crystalline hydrocortisone domains dispersed in a PLA matrix. But most of the encapsulated drug was molecularly dispersed in the PLA glass. The stability of hydrocortisone in microspheres was evaluated in different storage conditions: no degradation of drug was found. The release of hydrocortisone from 250-350 microns diameter microspheres into agitated 37 degrees C water (nitrogen atmosphere) was determined by HPLC analysis. The microspheres evaluated had initial hydrocortisone payloads of 12 to 47% (w/w). The rate of drug release increased as the initial drug payload carried by the microspheres increased. The release data are not adequately described by zero order, first order, or square-root-of-time release kinetics. Drug release from microspheres that contain 12% (w/w) hydrocortisone approached a plateau value well below the amount of drug actually carried by the microspheres. This is particularly true for hydrocortisone encapsulated in lactide-glycolide polymer. PMID:2872287

  17. Evaluation of thermal gelation behavior of different cellulose ether polymers by rheology

    NASA Astrophysics Data System (ADS)

    Balaghi, S.; Edelby, Y.; Senge, B.

    2014-05-01

    Hydroxypropylmethylcellulose (HPMC) and Methylcellulose (MC) are cellulose ethers which can be dispersed in water and used as thickeners, emulsifiers, binders, film formers, and water-retention agents due to their hydrophilic and hydrophobic characteristics. In this study, various types of HPMCs, in comparison with two types of MCs were examined. The formed gels of the different cellulose ethers showed specific and various structural formation and network properties. The degree of methylation (Meth.) and hydroxypropylation (HyPr.) affected drastically the heat-induced gelation of the examined cellulose ethers.

  18. A modified plaque method for arboviruses on plastic panels.

    PubMed

    Hronovský, V; Benda, R; Plaisner, V

    1975-04-01

    Autoclavable culture media containing an increased (10---15-fold)concentration of succinate buffer permit a comparitively long-term cultivation of cells in free gas exchange with the atmosphere. Based on them, an economical technique of plaque titration of arboviruses on plastic panels with methylcellulose overlay was developed. With seven arboviruses of three different groups and three cell lines (CV-1, PS and PK), the method proved sufficiently sensitive as compared with titrations in mice or tube cell cultures and suitable for plaque reduction tests.

  19. Injectable calcium hydroxylapatite microspheres (Radiesse).

    PubMed

    Ridenour, Brock; Kontis, Theda C

    2009-05-01

    Injectable calcium hydroxylapatite (Radiesse) received FDA approval in 2006 for the correction of facial lipoatrophy and moderate to severe facial wrinkles. This product consists of microspheres of a synthetic bone suspended in a methylcellulose gel matrix. Because the product is thicker than the hyaluronic acids, it is used for the correction of moderate to severe wrinkles, such as deep nasolabial folds. It is also used "off-label" to treat multiple areas of the face, nose, and hands. Radiesse is injected into the subdermal plane, and correction lasts approximately 1 year after injection.

  20. Electrochemical cell

    DOEpatents

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1994-08-23

    An electrochemical cell is described having an alkali metal negative electrode such as sodium and a positive electrode including Ni or transition metals, separated by a [beta] alumina electrolyte and NaAlCl[sub 4] or other compatible material. Various concentrations of a bromine, iodine and/or sulfur containing additive and pore formers are disclosed, which enhance cell capacity and power. The pore formers may be the ammonium salts of carbonic acid or a weak organic acid or oxamide or methylcellulose. 6 figs.

  1. Structure-property relation in HPMC polymer films plasticized with Sorbitol

    NASA Astrophysics Data System (ADS)

    Prakash, Y.; Somashekarappa, H.; Mahadevaiah, Somashekar, R.

    2013-06-01

    A correlation study on physical and mechanical properties of Hydroxy propyl-methylcellulose (HPMC) polymer films plasticized with different weight ratio of Sorbitol, prepared using solution casting method, was carried out using wide angle X-ray technique and universal testing machine. It is found that the crystallanity decreases as the concentration of Sorbitol increases up to a certain concentration and there afterwards increases. Measured Physical Properties like tensile strength decreases and elongation (%) increases indicating increase in the flexibility of the films. These observations confirm the correlation between microstructal parameters and mechanical properties of films. These films are suitable for packaging food products.

  2. Effect of BMITFSI to the electrical properties of methycelloluse/chitosan/NH4TF-based polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Arifin, N. A.; Khiar, A. S. A.

    2015-12-01

    Blended polymer electrolyte of methylcellulose (MC) / chitosan with ammonium triflate (NH4TF) were prepared with different weight percentage of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMITFSI) via solution casting technique. The film was characterized by impedance spectroscopy to measure its ionic conductivity. Samples with 45% of BMITFSI exhibit the highest conductivity of (3.98 +/- 2.84) x 10-4 Scm-1 at ambient. Dielectric data were analyzed by using complex permittivity and complex electrical modulus for the sample with highest conductivity. Dielectric data proves that the increase in conductivity is mainly due to the increase in number of charge carriers.

  3. PROCESS OF MAKING SHAPED FUEL FOR NUCLEAR REACTORS

    DOEpatents

    O'Leary, W.J.; Fisher, E.A.

    1964-02-11

    A process for making uranium dioxide fuel of great strength, density, and thermal conductivity by mixing it with 0.1 to 1% of a densifier oxide (tin, aluminum, zirconium, ferric, zinc, chromium, molybdenum, titanium, or niobium oxide) and with a plasticizer (0.5 to 3% of bentonite and 0.05 to 2% of methylcellulose, propylene glycol alginate, or ammonium alginate), compacting the mixture obtained, and sintering the bodies in an atmosphere of carbon monoxide or carbon dioxide, with or without hydrogen, or of a nitrogen-hydrogen mixture is described. (AEC)

  4. Prognostic value of in vitro bone marrow culture in refractory anaemia with excess of myeloblasts.

    PubMed

    Faille, A; Dresch, C; Poirier, O; Balitrand, N; Najean, Y

    1978-03-01

    Bone marrow from 17 patients with refractory anaemia with excess of myeloblasts (RAEM) was cultured in methylcellulose semi-solid medium. Compared with normal bone marrow, 3 patterns of growth occurred corresponding with different clinical stages of the condition. Patients whose bone marrow grew normal colonies and those who produced a predominance of microclusters had the longest life expectance, while those who produced a predominance of macroclusters had the shortest life expectancy with a high rate of acute leukaemic transformation. Colony culture appears to be a useful prognostic tool in the condition.

  5. Certain problems of space biotechnology

    NASA Technical Reports Server (NTRS)

    Gilyarov, V. N.

    1980-01-01

    Experiments in the field of biotechnology conducted by the USA Apollo and Skylab space probes are described, as well as the joint Soviet-American Apollo-Soyuz Test Project (ASTP). Experiments in electrophoretic separation in space of biological compounds in a liquid medium are detailed. Space processing of vaccines and separation of human and animal cells are described. Methyl-cellulose, a coating for use in electrophoresis was developed. Erythropoietin, which stimulates the formation of red blood corpuscles in bone marrow, was obtained in pure form.

  6. Control of electroosmosis in coated quartz capillaries

    NASA Technical Reports Server (NTRS)

    Herren, Blair J.; Van Alstine, James; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1987-01-01

    The effectiveness of various coatings for controlling the electroosmotic fluid flow that hinders electrophoretic processes is studied using analytical particle microelectrophoresis. The mobilities of 2-micron diameter glass and polystyrene latex spheres (exhibiting both negative and zero effective surface charge) were measured in 2-mm diameter quartz capillaries filled with NaCl solutions within the 3.5-7.8 pH range. It is found that capillary inner surface coatings using 5000 molecular weight (or higher) poly(ethylene glycol): significantly reduced electroosmosis within the selected pH range, were stable for long time periods, and appeared to be more effective than dextran, methylcellulose, or silane coatings.

  7. Design and In Vitro Evaluation of Compression-coated Pulsatile Release Tablets of Losartan Potassium

    PubMed Central

    Bajpai, M.; Singh, D. C. P.; Bhattacharya, A.; Singh, A.

    2012-01-01

    In majority of individuals blood pressure rises in the early morning hours, which lead to serious cardiovascular complications. Formulation of pulsatile system makes it possible to deliver drug at definite period of time when symptoms of the disease condition are most critical. The purpose of the present work was to develop pulsatile release tablet of losartan potassium for chronotherapy in hypertension. The prepared system consisted of a core tablet coated with versatile and safe hydrophilic cellulosic ethers such as, hydroxypropyl methylcellulose, hydroxypropyl cellulose and sodium carboxy methylcellulose to produce burst release after predetermined lag time. Various formulation factors were studied through series of test and in vitro dissolution study. It was found that core tablets containing superdisintegrant failed to produce burst drug release pattern while effervescent agent was able to do so. Results also reveal that coating composition and coating level affects lag time. Formulation containing effervescent agent in core and coated with 200 mg hydroxypropyl cellulose provide lag time of 4.5 h with 73% drug release in 6 h that followed a sigmoidal release pattern. These values were close to the desired objective of producing lag time of 5-6 h followed by fast drug release. This approach can thus provide a useful means for timed release of losartan and is helpful for patients with morning surge. PMID:23325989

  8. Effect of ionic and non-ionic polymer on the pH of lidocaine hydrochloride preparation assessed below and over human skin surface temperature.

    PubMed

    Musial, Witold; Kokol, Vanja; Voncina, Bojana

    2010-01-01

    Lidocaine is widely accepted local anesthetic, which is applied in the form of freely soluble hydrochloride salt. In this study we evaluated the pH of respective solutions of lidocaine hydrochloride with ionic polymer--polyacrylic acid or non-ionic polymer--methylcellulose, and compared to physiological skin conditions in the range between 22 degrees C and 41 degrees C. In microscopic observation of lidocaine hydrochloride preparations with polyacrylic acid the micro-sedimentation was revealed, however obtained mixture was opalescent, and homogenously dispersed in aqueous environment. The pH was maintained on the level not higher then 4,0 in the period of 12 hours for polyacrylic acid formulation, whereas in the case of preparation with methylcellulose, the pH increased from acceptable pH of ca. 4,5 to the level of above 6,0. The polyacrylic acid derivatives should be further studied as vehicles forming preparations with stable pH value during application on the skin, with more specific methods including pH microelectrodes, sufficient for assessments in small quantities of liquids of skin surface.

  9. The influence of different plasticizers and polymers on the mechanical and thermal properties, porosity and drug permeability of free shellac films.

    PubMed

    Qussi, Basel; Suess, Wolfgang G

    2006-04-01

    The effect of triethyl citrate (TEC) and different molecular weights and concentrations of polyethylene glycol (PEG), in addition to the effect of different water-soluble polymers and dispersions at different levels, hydroxypropyl methylcellulose (HPMC), methylcellulose (MC), carbomer 940, polyvinyl alcohol (PVA), ethyl cellulose (EC), on the mechanical and thermal properties, drug permeability, and porosity of free shellac films were investigated. Shellac films were cast from aqueous solutions, and their mechanical properties were studied by tensile test. Thermal analyses were performed using differential scanning calorimetry (DSC). The results showed that the addition of plasticizer caused a decrease in both elastic modulus and glass transition temperature (T(g)) and an increase in elongation at break of free shellac films. This effect was related to the concentrations of plasticizers. Different molecular weights of PEGs have different plasticization mechanisms.Moreover, the incorporation of different amounts of HPMC, MC, or carbomer in free shellac films caused an increase in the flexibility, decrease in T(g), and a marked increase in drug permeability of free shellac films, whereas the addition of PVA caused a decrease in flexibility and drug permeability and an increase in T(g). Addition of EC resulted in a slight decrease of the elasticity and a small decrease in drug permeability. However it does not show a considerable effect on the T(g). In addition, it was found that the drug permeability is directly related to the mechanical properties and T(g) of shellac films. PMID:16638678

  10. Statistical Modelling for Controlled Drug Delivery Systems and its Applications in HPMC based Hydrogels

    NASA Astrophysics Data System (ADS)

    Ghosal, Kajal; Chandra, Aniruddha

    2010-10-01

    Different concentrations of hydrophobically modified hydroxypropyl methylcellulose (HPMC, 60 M Grade) and conventional hydrophilic hydroxypropyl methylcellulose (50 cPs) were used to prepare four topical hydrogel formulations using a model non steroidal anti-inflammatory drug (NSAID) diclofenac potassium (DP). For all the formulations, suitability of different common empirical (zero-order, first-order, and Higuchi), semi-empirical (Ritger-Peppas and Peppas-Sahlin), and some new statistical (logistic, log-logistic, Weibull, Gumbel, and generalized extreme value distribution) models to describe the drug release profile were tested through non-linear least-square curve fitting. A general purpose mathematical analysis tool MATLAB is used for the purpose. Further, instead of the widely used transformed linear fit method, direct fitting was used in the paper to avoid any sort of truncation and transformation errors. The results revealed that the log-logistic distribution, among all the models that were investigated, was the best fit for hydrophobic formulations. For hydrophilic cases, the semi-empirical models and Weibull distribution worked best, although log-logistic also showed a close fit.

  11. Cytotoxicity of Different Excipients on RPMI 2650 Human Nasal Epithelial Cells.

    PubMed

    Horváth, Tamás; Bartos, Csilla; Bocsik, Alexandra; Kiss, Lóránd; Veszelka, Szilvia; Deli, Mária A; Újhelyi, Gabriella; Szabó-Révész, Piroska; Ambrus, Rita

    2016-01-01

    The nasal route receives a great deal of attention as a non-invasive method for the systemic administration of drugs. For nasal delivery, specific formulations containing excipients are used. Because of the sensitive respiratory mucosa, not only the active ingredients, but also additives need to be tested in appropriate models for toxicity. The aim of the study was to measure the cytotoxicity of six pharmaceutical excipients, which could help to reach larger residence time, better permeability, and increased solubility dissolution rate. The following excipients were investigated on RPMI 2650 human nasal septum tumor epithelial cells: β-d-mannitol, sodium hyaluronate, α and β-cyclodextrin, polyvinyl alcohol and methylcellulose. 3-(4,5-dimethyltiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye conversion assay and real-time impedance analysis were used to investigate cytotoxicity. No excipient showed toxicity at 0.3% (w/v) concentration or below while 1% concentration a significantly reduced metabolic activity was measured by MTT assay for methylcellulose and cyclodextrins. Using impedance measurements, only β-cyclodextrin (1%) was toxic to cells. Mannitol at 1% concentration had a barrier opening effect on epithelial cells, but caused no cellular damage. Based on the results, all additives at 0.3%, sodium hyaluronate and polyvinyl alcohol at 1% concentrations can be safely used for nasal formulations. PMID:27213303

  12. Development of bioactive coatings based on γ-irradiated proteins to preserve strawberries

    NASA Astrophysics Data System (ADS)

    Vu, K. D.; Hollingsworth, R. G.; Salmieri, S.; Takala, P. N.; Lacroix, M.

    2012-08-01

    Gamma irradiation was applied for creating cross-linked proteins to enhance the physicochemical properties of edible films made of calcium caseinate, whey protein isolate and glycerol. The characteristics of γ irradiated cross-linked proteins were analyzed by Fourier Transform Infrared spectroscopy. A second derivative spectra exhibited changes in band intensities that were correlated to an increase of β-sheet structure and a decrease of α-helix and unordered fractions of γ irradiated-cross-linked proteins as compared to the control without irradiation. Furthermore, on addition of methylcellulose to the irradiated protein matrix it was found that it has potential in enhancing the puncture strength and has no detrimental effect on water vapor permeability of protein based films. Finally, these film formulations were used as bioactive edible coatings containing natural antimicrobial agents (limonene and peppermint) to preserve the shelf life of fresh strawberries during storage. The bioactive coatings containing peppermint was found to be more efficient as preserving coatings than the formulations containing limonene. Irradiated proteins/methylcellulose/peppermint formulation had only 40% of decay at day 8 while it was 65% for the control.

  13. Formulation and optimization of mucoadhesive bilayer buccal tablets of atenolol using simplex design method

    PubMed Central

    Shirsand, SB; Suresh, Sarasija; Keshavshetti, GG; Swamy, PV; Reddy, P Vijay Prakash

    2012-01-01

    Introduction: In the present study, mucoadhesive buccal bilayer tablets of atenolol were fabricated with the objective of avoiding first pass metabolism and to improve its bioavailability with reduction in dosing frequency. Hence, the aim of this work was to design oral controlled release mucoadhesive tablets of atenolol and to optimize the drug release profile and bioadhesion. Materials and Methods: Bilayer buccal tablets of atenolol were prepared by direct compression method using simplex method of optimization to investigate the combined effect of hydroxypropyl methylcellulose 15 cps (X1), Carbopol (X2) and mannitol (X3); the in vitro drug release (Y1) and mucoadhesive strength (Y2) were taken as responses. The designed tablets were evaluated for various physical and biological parameters like drug content uniformity, in vitro drug release, short-term stability, and drug- excipient interactions (FTIR). Results: The formulation C containing hydroxypropyl methylcellulose 15 cps (10% w/w of matrix layer), Carbopol 934p (10% w/w of matrix layer) and mannitol (channeling agent, 40% w/w of matrix layer) was found to be promising. This formulation exhibited an in vitro drug release of 89.43% in 9 h along with satisfactory bioadhesion strength (7.20 g). Short-term stability studies on the promising formulation indicated that there are no significant changes in drug content and in vitro dissolution characteristics (P<0.05). IR spectroscopic studies indicated that there are no drug-excipient interactions. PMID:23071958

  14. Influence of physical aging on mechanical properties of polymer free films: the prediction of long-term aging effects on the water permeability and dissolution rate of polymer film-coated tablets.

    PubMed

    Guo, J H; Robertson, R E; Amidon, G L

    1991-12-01

    The effects of physical aging on the water permeation of cellulose acetate and ethylcellulose, the mechanical properties of ethylcellulose, and the dissolution property of hydroxypropyl methylcellulose phthalate were investigated. The water permeabilities of cellulose acetate and ethylcellulose and the dissolution rate of hydroxypropyl methylcellulose phthalate were found to decrease with physical aging time after being quenched from above the glass transition temperatures to sub-Tg temperatures. The gradual approach toward thermodynamic equilibrium during physical aging decreases the free volume of the polymers. This decrease in free volume is accompanied by a decrease in the transport mobility, with concomitant changes in those properties of the polymer that depend on it. The effects of long-term aging on the dissolution rate and water permeabilities of these polymers can be estimated from a linear double-logarithmic relationship between the mobility properties and physical aging time. The existence of the linear double-logarithmic relationship can be derived from the Williams-Landel-Ferry equation, the Doolittle equation, Struik's model, and Fujita's relationship between diffusion and free volume.

  15. In situ gelling, bioadhesive nasal inserts for extended drug delivery: in vitro characterization of a new nasal dosage form.

    PubMed

    Bertram, Ulrike; Bodmeier, Roland

    2006-01-01

    The purpose of this study was the preparation and characterization of sponge-like, in situ gelling inserts based on bioadhesive polymers. Hydrophilic polymers (carrageenan, Carbopol, chitosan, hydroxypropyl methylcellulose (HPMC) K15M and E5, sodium alginate, sodium carboxy methylcellulose (NaCMC), polyvinyl pyrrolidone (PVP) 90, xanthan gum) were dissolved with/without the model drug oxymetazoline HCl in demineralized water and lyophilized into small inserts. The drug release, water uptake, mechanical properties, X-ray diffraction and bioadhesion potential of the nasal inserts were investigated. A sponge-like structure of nasal inserts was formed with amorphous, but not with crystalline polymers during the freeze-drying process. The insert hardness increased with the glass transition temperature of the polymer (PVP25

  16. Polymers for use in controlled release systems: the effect of surfactants on their swelling properties.

    PubMed

    Vlachou, M; Hani, N; Efentakis, M; Tarantili, P A; Andreopoulos, A G

    2000-07-01

    The effect of an ampholytic surfactant on the swelling properties of polymeric materials was studied, using various swelling liquids. Tablets were prepared consisting of hydroxypropyl methylcellulose, poly(oxyethylene) and sodium alginate. Tego betain was the non-ionic surfactant used as an additive in a series of samples made of the above polymers. Those tablets were immersed in distilled water, phosphate buffer and 0.1 N HCl, and their weight uptake was recorded as a function of time, in order to assess the swelling process. Measurements of the contact angle of the above systems were also carried out for estimating their wetting properties. The results of this study showed a selectivity among polymers, surfactant and surrounding liquid. Clearly, an enhancement of the swelling capacity of hydroxypropyl methylcellulose tablets due to the surfactant was recorded. An unclear effect was observed in the case of poly(oxyethylene), whereas for sodium alginate, the dominant factor is its water solubility that controls swelling behaviour. PMID:10972160

  17. Multiple bidirectional alterations of phenotype and changes in proliferative potential during the in vitro and in vivo passage of clonal mast cell populations derived from mouse peritoneal mast cells

    SciTech Connect

    Kanakura, Y.; Thompson, H.; Nakano, T.; Yamamura, T.; Asai, H.; Kitamura, Y.; Metcalfe, D.D.; Galli, S.J.

    1988-09-01

    Mouse peritoneal mast cells (PMC) express a connective tissue-type mast cell (CTMC) phenotype, including reactivity with the heparin-binding fluorescent dye berberine sulfate and incorporation of (35S) sulfate predominantly into heparin proteoglycans. When PMC purified to greater than 99% purity were cultured in methylcellulose with IL-3 and IL-4, approximately 25% of the PMC formed colonies, all of which contained both berberine sulfate-positive and berberine sulfate-negative mast cells. When these mast cells were transferred to suspension culture, they generated populations that were 100% berberine sulfate-negative, a characteristic similar to that of mucosal mast cells (MMC), and that synthesized predominantly chondroitin sulfate (35S) proteoglycans. When ''MMC-like'' cultured mast cells derived from WBB6F1-+/+ PMC were injected into the peritoneal cavities of mast cell-deficient WBB6F1-W/Wv mice, the adoptively transferred mast cell population became 100% berberine sulfate-positive. In methylcellulose culture, these ''second generation PMC'' formed clonal colonies containing both berberine sulfate-positive and berberine sulfate-negative cells, but exhibited significantly less proliferative ability than did normal +/+ PMC. Thus, clonal mast cell populations initially derived from single PMC exhibited multiple and bidirectional alterations between CTMC-like and MMC-like phenotypes. However, this process was associated with a progressive diminution of the mast cells' proliferative ability.

  18. [In vitro evaluation of corneal damages after instillation of eye drops using rat debrided corneal epithelium: changes of corneal damage due to benzalkonium chloride by addition of thickening agents].

    PubMed

    Nagai, Noriaki; Ito, Yoshimasa; Okamoto, Norio; Shimomura, Yoshikazu

    2012-01-01

    Benzalkonium chloride (BAC) is known to cause corneal epithelial damage. In this study we investigated the effect of a BAC solution containing a thickening agent, which enhanced residence time in the eyes, on corneal wound healing using in vivo rat model debrided corneal epithelium. 0.5% or 1.0% methylcellulose (MC), carboxymethylcellulose (CMC) and hydroxypropyl-methylcellulose (HPMC) were used as the thickening agent. The levels of corneal wound healing of rat eyes injected with saline were alone approximately 45.0% at 12 h and 93.6% at 24 h after corneal epithelial abrasion, and healing was almost complete at 36 h. The healing rate in the rat eye treated just with MC, CMC and HPMC was higher than that in those injected with saline. In contrast to the treatment result using only this thickening agent, the healing rate in the eye treated with BAC was lower than that in those injected with saline: the corneal wounds in the BAC-treated eye showed approximately 20% healing at 12 h after abrasion. The injection of 0.02% BAC solution containing MC, CMC and HPMC more significantly delayed the healing than did the injection of 0.02% BAC alone. The results show that the in vivo evaluation method for corneal damage using rat debrided corneal epithelium reflects a toxic change depending upon residence time. These findings provide valuable safety and efficacy information for use in the design of eye drops.

  19. Prevention of the ingress of a known virulent bacterium into the root canal system by intracanal medications.

    PubMed

    Roach, R P; Hatton, J F; Gillespie, M J

    2001-11-01

    Contamination of the root canal system by persistent, enteric bacteria via leakage through interim restorations has been well documented. This in vitro study evaluated the ability of interappointment medications to prevent contamination of the root canal system by Enterococcus faecalis. Coronally unsealed, medicated tooth roots fixed in a closed system were contaminated daily with a standardized, aerobic, broth culture of E. faecalis. Four medications were evaluated (n = 15): group A, calcium hydroxide/methylcellulose paste; group B, camphorated parachlorophenol/calcium hydroxide paste; group C, 1% chlorhexidine/methylcellulose gel; and group D, calcium hydroxide points. The mean number of days to contamination as indicated by turbidity in the closed system was the following: group A, 37; group B, 46; group C, 16; group D, 5; and a positive control (no medication), 3. A one-way analysis of variance with a Scheffe post hoc test (p = 0.05) detected significant differences in effectiveness with A and B superior to C and D, and C superior to D. PMID:11716075

  20. Feasibility Investigation of Cellulose Polymers for Mucoadhesive Nasal Drug Delivery Applications.

    PubMed

    Hansen, Kellisa; Kim, Gwangseong; Desai, Kashappa-Goud H; Patel, Hiren; Olsen, Karl F; Curtis-Fisk, Jaime; Tocce, Elizabeth; Jordan, Susan; Schwendeman, Steven P

    2015-08-01

    The feasibility of various cellulose polymer derivatives, including methylcellulose (MC), hydroxypropyl methylcellulose (HPMC), sodium-carboxymethylcellulose (sodium-CMC), and cationic-hydroxyethylcellulose (cationic-HEC), for use as an excipient to enhance drug delivery in nasal spray formulations was investigated. Three main parameters for evaluating the polymers in nasal drug delivery applications include rheology, ciliary beat frequency (CBF), and permeation across nasal tissue. Reversible thermally induced viscosity enhancement was observed at near nasal physiological temperature when cellulose derivatives were combined with an additional excipient, poly(vinyl caprolactam)-poly(vinyl acetate)-poly(ethylene glycol) graft copolymer (PVCL-PVA-PEG). Cationic-HEC was shown to enhance acyclovir permeation across the nasal mucosa. None of the tested cellulosic polymers caused any adverse effects on porcine nasal tissues and cells, as assessed by alterations in CBF. Upon an increase in polymer concentration, a reduction in CBF was observed when ciliated cells were immersed in the polymer solution, and this decrease returned to baseline when the polymer was removed. While each cellulose derivative exhibited unique advantages for nasal drug delivery applications, none stood out on their own to improve more than one of the performance characteristics examined. Hence, these data may be useful for the development of new cellulose derivatives in nasal drug formulations.

  1. ISL1 cardiovascular progenitor cells for cardiac repair after myocardial infarction

    PubMed Central

    Zhuang, Zhen Wu; Huang, Yan; Mikush, Nicole; Suh, Carol; Bregasi, Alda; Wang, Lin; Chang, William; Krause, Diane S.; Young, Lawrence H.; Pober, Jordan S.

    2016-01-01

    Cardiovascular progenitor cells (CPCs) expressing the ISL1-LIM–homeodomain transcription factor contribute developmentally to cardiomyocytes in all 4 chambers of the heart. Here, we show that ISL1-CPCs can be applied to myocardial regeneration following injury. We used a rapid 3D methylcellulose approach to form murine and human ISL1-CPC spheroids that engrafted after myocardial infarction in murine hearts, where they differentiated into cardiomyocytes and endothelial cells, integrating into the myocardium and forming new blood vessels. ISL1-CPC spheroid–treated mice exhibited reduced infarct area and increased blood vessel formation compared with control animals. Moreover, left ventricular (LV) contractile function was significantly better in mice transplanted with ISL1-CPCs 4 weeks after injury than that in control animals. These results provide proof-of-concept of a cardiac repair strategy employing ISL1-CPCs that, based on our previous lineage-tracing studies, are committed to forming heart tissue, in combination with a robust methylcellulose spheroid–based delivery approach. PMID:27525311

  2. Keratinocytes derived from psoriatic plaques are resistant to apoptosis compared with normal skin.

    PubMed Central

    Wrone-Smith, T.; Mitra, R. S.; Thompson, C. B.; Jasty, R.; Castle, V. P.; Nickoloff, B. J.

    1997-01-01

    Previously we observed that hyperplastic epidermal keratinocytes characteristic of psoriasis had abundant amounts of the cell survival protein Bcl-xL; however, whether this overexpression correlated with enhanced survival was unclear because the majority of epidermal cells possess nuclei that are positively labeled by an assay typically regarded as indicative of cells undergoing apoptosis (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) staining). To clarify this apparent discrepancy, we explored the propensity of keratinocytes derived from psoriatic plaques to undergo apoptosis and also determined the reliability of TUNEL staining as an indicator of apoptosis in keratinocytes in vitro and in vivo. First, a keratinocyte cell line, HaCat, was examined before and after being suspended in semisolid medium (methylcellulose) using flow cytometry to detect TUNEL-positive cells, and the percentage of positive cells was correlated to the presence or absence of double-stranded DNA fragmentation using pulsed field gel electrophoresis. After 18 hours in methylcellulose suspension, apoptosis was detected in HaCat cells when at least 5% of the cell population was undergoing programmed cell death. Second, we examined 23 clinical specimens of skin (13 from psoriatic patients and 10 from healthy control subjects) and observed that no double-stranded DNA fragmentation was present in any of the freshly isolated keratinocytes from either normal or psoriatic patients. Keratinocytes from 9 of 12 normal skin samples underwent double-stranded DNA fragmentation after being in methylcellulose for 18 to 24 hours, which contrasts with keratinocytes from lesions of psoriasis where only 1 of 13 of the skin samples had these changes. Third, two-color immunofluorescence staining of psoriatic plaques revealed that numerous TUNEL-positive keratinocytes were also positive for proliferating cell nuclear antigen and Ki-67 antigens and that by flow cytometry TUNEL

  3. In Vitro Colony Assays for Characterizing Tri-potent Progenitor Cells Isolated from the Adult Murine Pancreas.

    PubMed

    Tremblay, Jacob R; LeBon, Jeanne M; Luo, Angela; Quijano, Janine C; Wedeken, Lena; Jou, Kevin; Riggs, Arthur D; Tirrell, David A; Ku, H Teresa

    2016-01-01

    Stem and progenitor cells from the adult pancreas could be a potential source of therapeutic beta-like cells for treating patients with type 1 diabetes. However, it is still unknown whether stem and progenitor cells exist in the adult pancreas. Research strategies using cre-lox lineage-tracing in adult mice have yielded results that either support or refute the idea that beta cells can be generated from the ducts, the presumed location where adult pancreatic progenitors may reside. These in vivo cre-lox lineage-tracing methods, however, cannot answer the questions of self-renewal and multi-lineage differentiation-two criteria necessary to define a stem cell. To begin addressing this technical gap, we devised 3-dimensional colony assays for pancreatic progenitors. Soon after our initial publication, other laboratories independently developed a similar, but not identical, method called the organoid assay. Compared to the organoid assay, our method employs methylcellulose, which forms viscous solutions that allow the inclusion of extracellular matrix proteins at low concentrations. The methylcellulose-containing assays permit easier detection and analyses of progenitor cells at the single-cell level, which are critical when progenitors constitute a small sub-population, as is the case for many adult organ stem cells. Together, results from several laboratories demonstrate in vitro self-renewal and multi-lineage differentiation of pancreatic progenitor-like cells from mice. The current protocols describe two methylcellulose-based colony assays to characterize mouse pancreatic progenitors; one contains a commercial preparation of murine extracellular matrix proteins and the other an artificial extracellular matrix protein known as a laminin hydrogel. The techniques shown here are 1) dissociation of the pancreas and sorting of CD133(+)Sox9/EGFP(+) ductal cells from adult mice, 2) single cell manipulation of the sorted cells, 3) single colony analyses using microfluidic q

  4. Gluten-free sorghum bread improved by sourdough fermentation: biochemical, rheological, and microstructural background.

    PubMed

    Schober, Tilman J; Bean, Scott R; Boyle, Daniel L

    2007-06-27

    This study was conducted to improve the quality and theoretical understanding of gluten-free sorghum bread. The addition of 2% hydroxypropyl methylcellulose improved bread based on 105% water, 70% sorghum flour, and 30% potato starch. Nevertheless, a flat top and tendency toward a hole in the crumb remained. Sourdough fermentation of the total sorghum flour eliminated these problems. Size-exclusion high-performance liquid chromatography demonstrated that during sourdough fermentation, proteins from the dough liquid were degraded to peptides smaller than kafirin monomers (<19 kDa). Laser scanning confocal microscopy showed aggregated protein in bread crumb without sourdough fermentation, whereas with sourdough fermentation, only small isolated patches of protein bodies embedded in matrix protein remained. In oscillatory temperature sweeps, sourdough fermentation caused a significantly higher resistance to deformation (|G*|) after gelatinization of the above batter relative to batters without sourdough. Results suggest that a strong starch gel, without interference of aggregated protein, is desirable for this type of bread.

  5. Injectable, thermo-reversible and complex coacervate combination gels for protein drug delivery.

    PubMed

    Jin, Kwang-Mi; Kim, Yong-Hee

    2008-05-01

    Injectable and thermo-reversible physical combination gels were formed in aqueous solution by preparing complex coacervate with two oppositely charged biomacromolecules that composed of negatively charged chondroitin 6-sulfate and positively charged high molecular weight gelatin type A and co-formulating with a negative, thermo-sensitive polysaccharide, methylcellulose containing a salting-out salt, ammonium sulfate. The combination of complex coacervation and a thermo-reversible gel demonstrated synergistic effects on the complex coacervate formation the release rates of model proteins and in situ gel depot formation. Gels indicated sustained release patterns of the protein over 25 days with minimal initial bursts. Optimized novel in situ gel depot systems containing dual advantages of complex coacervation and temperature responsiveness demonstrated a potential for efficient protein drug delivery in terms of high protein loading, sustained protein release, ease of administration, an aqueous environment without toxic organic solvents, and a simple fabrication method.

  6. Gelation behavior of in situ forming gels based on HPMC and biphasic calcium phosphate nanoparticles.

    PubMed

    Marefat Seyedlar, Roghayyeh; Nodehi, Azizollah; Atai, Mohammad; Imani, Mohammad

    2014-01-01

    In this study, in situ forming gels are prepared using biphasic calcium phosphate (BCP) as filler and hydroxypropyl methylcellulose (HPMC) as a matrix exhibiting temperature-sensitive behavior. BCP was composed of β-tricalcium phosphate (β-TCP) with plate-like morphology and nano-sized hyadroxyapatite (HAp). Gel permeation chromatography (GPC) and rheological results showed that low molecular weight HPMC had lower gelation temperature. Effects of BCP content and HAp/β-TCP ratio on rheological behavior of the gels were investigated. According to the results, all samples showed a pseudoplastic behavior and their viscosity increased with increasing mineral phase, especially β-tricalcium phosphate. In order to investigate interaction mechanisms between the mineral phase and polymer and also the effects of ion release, particle size, hydrophobisity, and hydrophilisity, hydrophobic and hydrophilic silica with different particle sizes were also utilized. Results showed that factors affecting the hydrophobisity and hydrophilisity of solution may influence the rheological properties.

  7. The powder flow and compact mechanical properties of two recently developed matrix-forming polymers.

    PubMed

    Hancock, B C; Carlson, G T; Ladipo, D D; Langdon, B A; Mullarney, M P

    2001-09-01

    The powder flow and compact mechanical properties of two recently developed matrix-forming polymers were determined. The polymers are cross-linked high-amylose starch (Contramid) and poly(acrylic acid) (Carbopol EX507), and their properties were compared with those of two established matrix-forming polymers, hydroxypropyl methylcellulose (Methocel K100LV) and hydroxypropyl cellulose (Klucel EXF). The particle morphology, size distribution and true density of the four materials were quite different and they exhibited measurable performance differences with respect to powder flow, compact ductility, compact elasticity and compact tensile strength. Recommendations for formulating solid dosage forms with each of these excipients were made, based on a consideration of their physical properties and their anticipated processing performance.

  8. Disinfection by-products and ecotoxicity of ballast water after oxidative treatment--results and experiences from seven years of full-scale testing of ballast water management systems.

    PubMed

    Delacroix, Stephanie; Vogelsang, Christian; Tobiesen, August; Liltved, Helge

    2013-08-15

    Since 2005, five different ballast water management systems (BWMSs) based on chlorination treatment have been tested by Norwegian Institute for Water Research (NIVA) according to guidelines from the International Maritime Organization (IMO). 25% and >50% of all the tested discharge samples exhibited acute and chronic toxic effects on algae, respectively. In most cases this toxicity was plausibly caused by a high free residual oxidant (FRO) level (>0.08 mg Cl/l). Of the 22 disinfection by-products (DBPs) that were identified in treated water at discharge, four compounds were at times found at concentrations that may pose a risk to the local aquatic environment. However, there seemed to be no clear indication that the measured DBP concentrations contributed to the observed algal toxicity. The addition of methylcellulose instead of lignin in the test water to comply with IMO requirements seemed to limit the formation of DBP.

  9. Developing dissolution testing methodologies for extended-release oral dosage forms with supersaturating properties. Case example: Solid dispersion matrix of indomethacin.

    PubMed

    Tajiri, Tomokazu; Morita, Shigeaki; Sakamoto, Ryosaku; Mimura, Hisahi; Ozaki, Yukihiro; Reppas, Christos; Kitamura, Satoshi

    2015-07-25

    The objective of this study was to develop an in vitro dissolution test method with discrimination ability for an extended-release solid dispersion matrix of a lipophilic drug using the United States Pharmacopeia (USP) Apparatus 4, flow-through cell apparatus. In the open-loop configuration, the sink condition was maintained by manipulating the flow rate of the dissolution medium. To evaluate the testing conditions, the drug release mechanism from an extended-release solid dispersion matrix containing hydrophobic and hydrophilic polymers was investigated. As the hydroxypropyl methylcellulose (HPMC) maintained concentrations of indomethacin higher than the solubility in a dissolution medium, the release of HPMC into the dissolution medium was also quantified using size-exclusion chromatography. We concluded that the USP Apparatus 4 is suitable for application to an in vitro dissolution method for orally administered extended-release solid dispersion matrix formulations containing poorly water-soluble drugs. PMID:26022889

  10. Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications.

    PubMed

    López de Dicastillo, Carol; Rodríguez, Francisco; Guarda, Abel; Galotto, Maria José

    2016-01-20

    Development of antioxidant and antimicrobial active food packaging materials based on biodegradable polymer and natural plant extracts has numerous advantages as reduction of synthetic additives into the food, reduction of plastic waste, and food protection against microorganisms and oxidation reactions. In this way, active films based on methylcellulose (MC) and maqui (Aristotelia chilensis) berry fruit extract, as a source of antioxidants agents, were studied. On the other hand, due to the high water affinity of MC, this polymer was firstly cross-linked with glutaraldehyde (GA) at different concentrations. The results showed that the addition of GA decreased water solubility, swelling, water vapor permeability of MC films, and the release of antioxidant substances from the active materials increased with the concentration of GA. Natural extract and active cross-linked films were characterized in order to obtain the optimal formulation with the highest antioxidant activity and the best physical properties for latter active food packaging application.

  11. Compressive Strength, Chloride Permeability, and Freeze-Thaw Resistance of MWNT Concretes under Different Chemical Treatments

    PubMed Central

    Wang, Xingang; Wang, Yao; Xi, Yunping

    2014-01-01

    This study investigated compressive strength, chloride penetration, and freeze-thaw resistance of multiwalled carbon nanotube (MWNT) concrete. More than 100 cylindrical specimens were used to assess test variables during sensitivity observations, including water-cement ratios (0.75, 0.5, and 0.4) and exposure to chemical agents (including gum arabic, propanol, ethanol, sodium polyacrylate, methylcellulose, sodium dodecyl sulfate, and silane). To determine the adequate sonication time for MWNT dispersal in water, the compressive strengths of MWNT concrete cylinders were measured after sonication times ranging from 2 to 24 minutes. The results demonstrated that the addition of MWNT can increase the compressive strength of concrete by up to 108%. However, without chemical treatment, MWNT concretes tend to have poor freeze-thaw resistance. Among the different chemical treatments, MWNT concrete treated with sodium polyacrylate has the best compressive strength, chloride resistance, and freeze-thaw durability. PMID:25140336

  12. Flexible and printable paper-based strain sensors for wearable and large-area green electronics.

    PubMed

    Liao, Xinqin; Zhang, Zheng; Liao, Qingliang; Liang, Qijie; Ou, Yang; Xu, Minxuan; Li, Minghua; Zhang, Guangjie; Zhang, Yue

    2016-07-14

    Paper-based (PB) green electronics is an emerging and potentially game-changing technology due to ease of recycling/disposal, the economics of manufacture and the applicability to flexible electronics. Herein, new-type printable PB strain sensors (PPBSSs) from graphite glue (graphite powder and methylcellulose) have been fabricated. The graphite glue is exposed to thermal annealing to produce surface micro/nano cracks, which are very sensitive to compressive or tensile strain. The devices exhibit a gauge factor of 804.9, response time of 19.6 ms and strain resolution of 0.038%, all performance indicators attaining and even surpassing most of the recently reported strain sensors. Due to the distinctive sensing properties, flexibility and robustness, the PPBSSs are suitable for monitoring of diverse conditions such as structural strain, vibrational motion, human muscular movements and visual control.

  13. Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates.

    PubMed

    Battegay, M; Cooper, S; Althage, A; Bänziger, J; Hengartner, H; Zinkernagel, R M

    1991-06-01

    Titers of lymphocytic choriomeningitis virus (LCMV) were determined on adherent fibroblast cell lines in 24- or 96-well plates. After absorption of virus by cells and 48 h incubation under a methylcellulose overlay, cell monolayers were fixed with 4% formaldehyde in phosphate-buffered saline, permeabilized by incubation in 0.5% Triton X-100 in balanced salt solution and then stained with a monoclonal rat anti-LCMV and a peroxidase-labeled second stage antibody. The sensitivity of the assay is within a factor of 2-4 of conventional plaquing methods. The method also detects poorly or non-plaquing LCMV isolates, and therefore drastically reduces the need for titration of LCMV in mice. The method is quicker (2-3 days), as compared to conventional methods (4-6 days) and less expensive in terms of work and materials.

  14. Evaluation of the physico-chemical properties of a new polysaccharide gum from Prosopis africana.

    PubMed

    Adikwu, M U; Ezeabasili, S I; Esimone, C O

    2001-01-01

    The gum obtained from the ripe seeds of Prosopis africana was processed to compendial standard for plant gums and characterised. Toxicological studies of the polysaccharide on mice showed the material to be safe. The material hydrates slowly in aqueous media to form a colloidal dispersion. Swelling studies on the gum shows that the gum has a higher swelling capacity than methylcellulose. Rheological studies showed that the material is more viscous than tragacanth gum at equivalent concentrations. Acid hydrolysis and thin layer chromatography of the resulting hydrolysates showed that the gum contains glucose, fructose, galactose and xylose as the monosaccharide components. Microbial tests showed the gum to contain 8.26 x 10(4) viable cells per gram when freshly prepared. Other properties of the gum evaluated includes; melting or charring temperature, optical properties, true density, ash values, element content as well as its reactions with lead subacetate solution and 0.02 M iodine.

  15. High loading fragrance encapsulation based on a polymer-blend: preparation and release behavior.

    PubMed

    Sansukcharearnpon, Aurapan; Wanichwecharungruang, Supason; Leepipatpaiboon, Natchanun; Kerdcharoen, Teerakiat; Arayachukeat, Sunatda

    2010-05-31

    The six fragrances, camphor, citronellal, eucalyptol, limonene, menthol and 4-tert-butylcyclohexyl acetate, which represent different chemical functionalities, were encapsulated with a polymer-blend of ethylcellulose (EC), hydroxypropyl methylcellulose (HPMC) and poly(vinyl alcohol) (PV(OH)) using solvent displacement (ethanol displaced by water). The process gave >or=40% fragrance loading capacity with >or=80% encapsulation efficiency at the fragrance to polymer weight ratio of 1:1 and at initial polymer concentrations of 2000-16,000 ppm and the obtained fragrance-encapsulated spheres showed hydrodynamic diameters of less than 450 nm. The release profile of the encapsulated fragrances, evaluated by both thermal gravimetric and electronic nose techniques, indicated different release characteristics amongst the six encapsulated fragrances. Limonene showed the fastest release with essentially no retention by the nanoparticles, while eucalyptol and menthol showed the slowest release.

  16. Compressive strength, chloride permeability, and freeze-thaw resistance of MWNT concretes under different chemical treatments.

    PubMed

    Wang, Xingang; Rhee, Inkyu; Wang, Yao; Xi, Yunping

    2014-01-01

    This study investigated compressive strength, chloride penetration, and freeze-thaw resistance of multiwalled carbon nanotube (MWNT) concrete. More than 100 cylindrical specimens were used to assess test variables during sensitivity observations, including water-cement ratios (0.75, 0.5, and 0.4) and exposure to chemical agents (including gum arabic, propanol, ethanol, sodium polyacrylate, methylcellulose, sodium dodecyl sulfate, and silane). To determine the adequate sonication time for MWNT dispersal in water, the compressive strengths of MWNT concrete cylinders were measured after sonication times ranging from 2 to 24 minutes. The results demonstrated that the addition of MWNT can increase the compressive strength of concrete by up to 108%. However, without chemical treatment, MWNT concretes tend to have poor freeze-thaw resistance. Among the different chemical treatments, MWNT concrete treated with sodium polyacrylate has the best compressive strength, chloride resistance, and freeze-thaw durability.

  17. Effect of formulation parameters on the drug release and floating properties of gastric floating two-layer tablets with acetylsalicylic acid.

    PubMed

    Hasçiçek, Canan; Yüksel-Tilkan, Günseli; Türkmen, Berna; Ozdemir, Nurten

    2011-09-01

    Floating dosage forms of acetylsalicylic acid, used for its antithrombotic effect, were developed to prolong gastric residence time and increase bioavailability. In the two-layer tablet formulation, hydroxypropyl methylcellulose (HPMC) of high viscosity and an effervescent mixture of citric acid and sodium bicarbonate formed the floating layer. The release layer contained the drug, direct tableting agent and different types of matrix-forming polymers such as HPMC of low viscosity, sodium carboxymethylcellulose and chitosan. Tablets were prepared using a direct compression technique. The effect of formulation variables on physicochemical and floating properties and the drug release from tablets were investigated. Floating ability was dependent on the amount of effervescent agent and gel-forming polymer of the floating layer. Drug release was prolonged to 8 hours by changing the type and viscosity of the matrix-forming polymer in the drug-loading layer and all formulations showed a diffusion release mechanisms.

  18. Parts per Million Powder X-ray Diffraction.

    PubMed

    Newman, Justin A; Schmitt, Paul D; Toth, Scott J; Deng, Fengyuan; Zhang, Shijie; Simpson, Garth J

    2015-11-01

    Here we demonstrate the use of second harmonic generation (SHG) microscopy-guided synchrotron powder X-ray diffraction (PXRD) for the detection of trace crystalline active pharmaceutical ingredients in a common polymer blend. The combined instrument is capable of detecting 100 ppm crystalline ritonavir in an amorphous hydroxypropyl methylcellulose matrix with a high signal-to-noise ratio (>5000). The high spatial resolution afforded by SHG microscopy allows for the use of a minibeam collimator to reduce the total volume of material probed by synchrotron PXRD. The reduction in probed volume results in reduced background from amorphous material. The ability to detect low crystalline loading has the potential to improve measurements in the formulation pipeline for pharmaceutical solid dispersions, for which even trace quantities of crystalline active ingredients can negatively impact the stability and bioavailability of the final drug product.

  19. Electrophoresis experiment for space

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.

    1976-01-01

    The Apollo 16 electrophoresis experiment was analyzed, demonstrating that the separation of the two different-size monodisperse latexes did indeed take place, but that the separation was obscured by the pronounced electroosmotic flow of the liquid medium. The results of this experiment, however, were dramatic since it is impossible to carry out a similar separation on earth. It can be stated unequivocally from this experiment that any electrophoretic separation will be enhanced under microgravity conditions. The only question is the degree of this enhancement, which can be expected to vary from one experimental technique to another. The low-electroosmotic-mobility coating (Z6040-MC) developed under this program was found to be suitable for a free-fluid electrophoretic separation such as the experiment designed for the ASTP flight. The problem with this coating, however, is that its permanency is limited because of the slow desorption of the methylcellulose from the coated surface.

  20. Effect of gamma irradiation on HPMC/ZnO nanocomposite films

    SciTech Connect

    Rao, B. Lakshmeesha; Asha, S.; Madhukumar, R.; Latha, S.; Gowda, Mahadeva; Shivananda, C. S.; Harish, K. V.; Sangappa; Shetty, G. Rajesha

    2015-06-24

    The present work looks into the structural and mechanical properties modification in ZnO nanoparticle incorporated Hydroxypropyl methylcellulose (HPMC) polymer films, induced by gamma irradiation. The irradiation process was performed in gamma chamber at room temperature by use of Cobalt-60 source (Average energy of 1.25MeV) at different doses: 0, 50, 100, 150 and 200 kGy respectively. The changes in structural parameters and mechanical properties in pure and gamma irradiated HPMC/ZnO nanocomposite films have been studied using X-ray scattering (XRD) data and universal testing machine (UTM). It is found that gamma irradiation decreases the structural parameters and improves the mechanical properties of nanocomposite films.

  1. Detection of pharmaceutical crystals in polymer particles by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Ricarte, Ralm; Hillmyer, Marc; Lodge, Timothy

    2015-03-01

    The use of solid dispersions, blends of an active pharmaceutical ingredient (API) and a polymer excipient, may significantly enhance the dissolution performance of a poorly water soluble drug. However, the polymer's role in inhibiting API crystallization within the solid dispersion is not well understood. One of the main challenges in elucidating this mechanism is the difficulty of detecting small amounts of API crystals (less than 5 volume percent) within the polymer matrix. In this work, we explore the use of transmission electron microscopy (TEM) to characterize the crystallinity of griseofulvin (GF) in hydroxypropyl methylcellulose acetate succinate (HPMCAS) solid dispersions. Using both real-space images and electron diffraction patterns from TEM, GF crystals in the HPMCAS matrix were unambiguously identified with nanometer resolution and with a crystal detection sensitivity superior to both wide-angle X-ray scattering and differential scanning calorimetry. TEM shows great potential for characterizing even trace API crystallinity in solid polymeric dispersions.

  2. Developing dissolution testing methodologies for extended-release oral dosage forms with supersaturating properties. Case example: Solid dispersion matrix of indomethacin.

    PubMed

    Tajiri, Tomokazu; Morita, Shigeaki; Sakamoto, Ryosaku; Mimura, Hisahi; Ozaki, Yukihiro; Reppas, Christos; Kitamura, Satoshi

    2015-07-25

    The objective of this study was to develop an in vitro dissolution test method with discrimination ability for an extended-release solid dispersion matrix of a lipophilic drug using the United States Pharmacopeia (USP) Apparatus 4, flow-through cell apparatus. In the open-loop configuration, the sink condition was maintained by manipulating the flow rate of the dissolution medium. To evaluate the testing conditions, the drug release mechanism from an extended-release solid dispersion matrix containing hydrophobic and hydrophilic polymers was investigated. As the hydroxypropyl methylcellulose (HPMC) maintained concentrations of indomethacin higher than the solubility in a dissolution medium, the release of HPMC into the dissolution medium was also quantified using size-exclusion chromatography. We concluded that the USP Apparatus 4 is suitable for application to an in vitro dissolution method for orally administered extended-release solid dispersion matrix formulations containing poorly water-soluble drugs.

  3. Fabrication and Evaluation of Bi-layer Tablet Containing Conventional Paracetamol and Modified Release Diclofenac Sodium

    PubMed Central

    Gohel, M. C.; Parikh, R. K.; Nagori, S. A.; Jethwa, B. A.

    2010-01-01

    The objectives of present investigation were to achieve immediate release of paracetamol and tailored release of diclofenac sodium from bi-layer tablets. A 23 full factorial design was adopted using the amount of polyethylene glycol, microcrystalline cellulose and crospovidone as independent variables for fabricating paracetamol tablets. Diclofenac sodium tablets were prepared using hydroxypropyl methylcellulose as a matrixing agent. The results of analysis of variance showed that the friability of paracetamol was distinctly influenced by the formulation variables. The in vitro drug release behaviour of diclofenac tablets was compared with a marketed formulation. The optimized formulations of paracetamol and diclofenac sodium were used for manufacturing of bi-layer tablets. The bi-layer tablets showed immediate release of paracetamol and modified release of diclofenac. PMID:20838522

  4. Shear and extensional properties of kefiran.

    PubMed

    Piermaría, Judith; Bengoechea, Carlos; Abraham, Analía Graciela; Guerrero, Antonio

    2016-11-01

    Kefiran is a neutral polysaccharide constituted by glucose and galactose produced by Lactobacillus kefiranofaciens. It is included into kefir grains and has several health promoting properties. In the present work, shear and extensional properties of different kefiran aqueous dispersions (0.5, 1 and 2% wt.) were assessed and compared to other neutral gums commonly used in food, cosmetic and pharmaceutics industries (methylcellulose, locust bean gum and guar gum). Kefiran showed shear flow characteristics similar to that displayed by other representative neutral gums, although it always yielded lower viscosities at a given concentration. For each gum system it was possible to find a correlation between dynamic and steady shear properties by a master curve including both the apparent and complex viscosities. When studying extensional properties of selected gums at 2% wt. by means of a capillary break-up rheometer, kefiran solutions did not show important extensional properties, displaying a behaviour close the Newtonian. PMID:27516254

  5. Baking loss of bread with special emphasis on increasing water holding capacity.

    PubMed

    Kotoki, D; Deka, S C

    2010-01-01

    Potato flour (PF), hydroxypropyl methylcellulose (HPMC) and honey were used as baking agents and their effects on baking loss and sensory quality were studied. PF at 1, 2 and 4% levels decreased baking loss followed by HPMC and honey. Water absorption was substantially high with the HPMC (70.8-80.8%) and PF (61.7-71.7%) compared to honey and normal standard bread. PF incorporation increased shelf-life (6-7 days) as compared to HPMC and honey. HPMC incorporated bread had higher moisture content (36.8-38.0%) followed by PF (34.5-35.8%) and honey (34.7%). The ash content was in the order of PF (1%) > honey (4%) > PF (2%) > normal bread > HPMC (0.5 g) > PF (4%) > HPMC (1 g) > HPMC (1.5 g). PF incorporated bread had sensorily highest acceptance followed by HPMC and honey.

  6. Genotoxicity of processed food items and ready-to-eat snacks in Finland.

    PubMed

    Omoruyi, Iyekhoetin Matthew; Pohjanvirta, Raimo

    2014-11-01

    Processed foods are an insufficiently characterized source of chemical mutagens for consumers. Here, we evaluated the genotoxicity of selected food products in Finland. Mutagenicity was determined by the standard plate incorporation assay followed by methylcellulose overlay and treat-and-wash assays, using the Salmonella strains TA 100 and 98 with and without metabolic activation. Generally, the mutagenic activity of food samples was low, but exhibited lot-wise variation. Cold cuts of cold-smoked beef, grilled turkey, and smoked chicken (a single batch of each) were mutagenic in all three assays with the TA 100 strain with and without metabolic activation, indicating the mutagenic effect was not secondary to histidine release from the food products. However, none of the food extracts showing mutagenic potential induced DNA damage in vitro using the Comet Assay. Our findings imply that in Finland today, there are still products the production methods of which should be refined to reduce the potential risk of mutagenicity to consumers.

  7. Edible oleogels based on water soluble food polymers: preparation, characterization and potential application.

    PubMed

    Patel, Ashok R; Cludts, Nick; Sintang, Mohd Dona Bin; Lesaffer, Ans; Dewettinck, Koen

    2014-11-01

    Oil structuring using food-approved polymers is an emerging strategy and holds significant promise in the area of food and nutrition. In the current study, edible oleogels (containing >97 wt% of sunflower oil) were prepared using a combination of water soluble food polymers (methylcellulose and xanthan gum) and further evaluated for potential application as a shortening alternative. Microstructure studies (including cryo-SEM) and rheology measurements were conducted to gain more insights into the properties of these new types of oleogels. In addition, the functionality of oleogel as a shortening alternative was studied in terms of batter properties and the texture analysis of cakes and compared to the reference batches made using either oil, commercial shortening or cake margarine. Interestingly, while the batter properties (air incorporation, rheology and microstructure) of the oleogel batch were more close to the oil batch, the textural properties of cakes were significantly better than oil and resembled more to the cakes prepared using shortening and margarine.

  8. Shear and extensional properties of kefiran.

    PubMed

    Piermaría, Judith; Bengoechea, Carlos; Abraham, Analía Graciela; Guerrero, Antonio

    2016-11-01

    Kefiran is a neutral polysaccharide constituted by glucose and galactose produced by Lactobacillus kefiranofaciens. It is included into kefir grains and has several health promoting properties. In the present work, shear and extensional properties of different kefiran aqueous dispersions (0.5, 1 and 2% wt.) were assessed and compared to other neutral gums commonly used in food, cosmetic and pharmaceutics industries (methylcellulose, locust bean gum and guar gum). Kefiran showed shear flow characteristics similar to that displayed by other representative neutral gums, although it always yielded lower viscosities at a given concentration. For each gum system it was possible to find a correlation between dynamic and steady shear properties by a master curve including both the apparent and complex viscosities. When studying extensional properties of selected gums at 2% wt. by means of a capillary break-up rheometer, kefiran solutions did not show important extensional properties, displaying a behaviour close the Newtonian.

  9. Synthetic polymer-layer silicate clay composites

    SciTech Connect

    Carrado, K.A.; Elder, D.L.; Thiyagarajan, P.

    1995-07-01

    Synthetic hectorites were hydrothermally crystallized with direct incorporation of water-soluble polyvinyl alcohol (PVA), a cationic polymer poly(dimethyl diallyl ammonium chloride) (PDDA), and two cellulosic polymers: hydroxypropyl methylcellulose (HPMC) and hydroxyethyl cellulose (HEC). The molecular weight of polyvinyl alcohols had little effect on the success of hydrothermal hectorite synthesis, d-spacing, or amount of polymer incorporated; the basal spacings range from 19.5 {angstrom} to 20.8 {angstrom} and the percent of polymer incorporated ranges from 20.4 wt% to 23.0 wt%. Synthetic PDDA-hectorite displays the lowest d-spacing at 15.8 {angstrom}, and less cationic PDDA is incorporated into hectorite (7.8 wt% organic) than the other neutral polymers (17.8-23.0 wt% organic). The basal spacing for synthetic HPMC-hectorite is the largest at 25.2 {angstrom}. Small angle neutron scattering was used to further examine the PVA-clay systems.

  10. Preparation and characterization of methacrylate hydrogels for zeta potential control

    NASA Technical Reports Server (NTRS)

    Gregonis, D. E.; Ma, S. M.; Vanwagenen, R.; Andrade, J. D.

    1976-01-01

    A technique based on the measurement of streaming potentials has been developed to evaluate the effects of hydrophilic coatings on electroosmotic flow. The apparatus and procedure are described as well as some results concerning the electrokinetic potential of glass capillaries as a function of ionic strength, pH, and temperature. The effect that turbulence and entrance flow conditions have on accurate streaming potential measurements is discussed. Various silane adhesion promoters exhibited only a slight decrease in streaming potential. A coating utilizing a glycidoxy silane base upon which methylcellulose is applied affords a six-fold decrease over uncoated tubes. Hydrophilic methacrylate gels show similar streaming potential behavior, independent of the water content of the gel. By introduction of positive or negative groups into the hydrophilic methacrylate gels, a range of streaming potential values are obtained having absolute positive or negative signs.

  11. Amyloid peptides derived from CsgA and FapC modify the viscoelastic properties of biofilm model matrices.

    PubMed

    Lembré, Pierre; Di Martino, Patrick; Vendrely, Charlotte

    2014-01-01

    The bacterial biofilm is a complex environment of cells, which secrete a matrix made of various components, mainly polysaccharides and proteins. An understanding of the precise role of these components in the stability and dynamics of biofilm architecture would be a great advantage for the improvement of anti-biofilm strategies. Here, artificial biofilm matrices made of polysaccharides and auto-assembled peptides were designed, and the influence of bacterial amyloid proteins on the mechanical properties of the biofilm matrix was studied. The model polysaccharides methylcellulose and alginate and peptides derived from the amyloid proteins curli and FapC found in biofilms of Enterobacteriaceae and Pseudomonas, respectively, were used. Rheological measurements showed that the amyloid peptides do not prevent the gelation of the polysaccharides but influence deformation of the matrices under shear stress and modify the gel elastic response. Hence the secretion of amyloids could be for the biofilm a way of adapting to environmental changes. PMID:24592895

  12. Growth of erythroid burst-forming units (BFU-E) in cultures of canine bone marrow and peripheral blood cells: effect of serum from irradiated dogs

    SciTech Connect

    Kreja, L.; Baltschukat, K.; Nothdurft, W.

    1988-08-01

    Erythroid burst-forming units (BFU-E) from canine bone marrow and peripheral blood could be grown in methylcellulose in the presence of an appropriate batch of fetal calf serum (FCS), transferrin, and erythropoietin (Epo). However, improved colony formation (size and number of bursts) was obtained when serum from total body irradiated dogs was present in the culture. This serum, obtained from dogs at day 9 after total body irradiation with a dose of 3.9 Gy, reduced markedly the Epo requirement of BFU-E. Furthermore, it allowed the omission of FCS from the culture medium if cholesterol and bovine serum albumin (BSA) were used as FCS substitutes. BFU-E concentrations were found to be rather different in the peripheral blood and in bone marrow samples from different sites (i.e., iliac crest, sternum, and humerus) of normal beagles. The studies further show that canine bone marrow BFU-E can be cryopreserved in liquid nitrogen.

  13. A Hyaluronan-Based Injectable Hydrogel Improves the Survival and Integration of Stem Cell Progeny following Transplantation

    PubMed Central

    Ballios, Brian G.; Cooke, Michael J.; Donaldson, Laura; Coles, Brenda L.K.; Morshead, Cindi M.; van der Kooy, Derek; Shoichet, Molly S.

    2015-01-01

    Summary The utility of stem cells and their progeny in adult transplantation models has been limited by poor survival and integration. We designed an injectable and bioresorbable hydrogel blend of hyaluronan and methylcellulose (HAMC) and tested it with two cell types in two animal models, thereby gaining an understanding of its general applicability for enhanced cell distribution, survival, integration, and functional repair relative to conventional cell delivery in saline. HAMC improves cell survival and integration of retinal stem cell (RSC)-derived rods in the retina. The pro-survival mechanism of HAMC is ascribed to the interaction of the CD44 receptor with HA. Transient disruption of the retinal outer limiting membrane, combined with HAMC delivery, results in significantly improved rod survival and visual function. HAMC also improves the distribution, viability, and functional repair of neural stem and progenitor cells (NSCs). The HAMC delivery system improves cell transplantation efficacy in two CNS models, suggesting broad applicability. PMID:25981414

  14. Development and evaluation of sustained release tablet of betahistine hydrochloride using ion exchange resin tulsion t344.

    PubMed

    Wagh, Vijay D; Pawar, Nilesh

    2012-01-01

    An attempt was made to sustain the release of Betahistine hydrochloride by complexation technique using strong cation-exchange resin, Tulsion T344. The drug loading onto ion-exchange resin was optimized for mixing time, activation, effect of pH, swelling time, ratio of drug : resin, and temperature. The resinate was evaluated for micromeritic properties and characterized using XRPD and IR. For resinate sustained release tablets were formulated using hydoxypropyl methylcellulose K100M. The tablets were evaluated for hardness, thickness, friability, drug content, weight variation, and in vitro drug release. Tablets thus formulated (Batch T-3) provided sustained release of drug over a period of 12 h. The release of Betahistine HCl from resinate controls the diffusion of drug molecules through the polymeric material into aqueous medium. Results showed that Betahistine HCl was formulated into a sustained dosage form as an alternative to the conventional tablet. PMID:22779010

  15. Detection of telomerase activity using microchip electrophoresis.

    PubMed

    Karasawa, Koji; Arakawa, Hidetoshi

    2015-07-01

    Telomerase participates in malignant transformation or immortalization of cells and thus has attracted attention as an anticancer drug target and diagnostic tumor marker. The telomeric repeat amplification protocol (TRAP) and improved TRAP methods (TRAP-fluorescence, TRAP-hybridization, etc.) are widely used forms of this telomerase assay. However, these approaches generally employ acrylamide gel electrophoresis after amplification of telomeric repeats by polymerase chain reaction (PCR), making these TRAP methods time consuming and technically demanding. In this study we developed a novel telomerase assay using microchip electrophoresis for rapid and highly sensitive detection of telomerase activity in cancer cells. The mixed gel of 0.8% hydroxypropyl methylcellulose (HPMC) and 0.3% polyethylene oxide (PEO) with SYBR Gold (fluorescent reagent) was used for microchip electrophoresis. As a result, the product amplified by a telomerase-positive cell could be measured in one cell per assay and detected with high reproducibility (CV=0.67%) in the short time of 100s.

  16. Preparation and evaluation of gastroretentive floating tablets of acyclovir.

    PubMed

    Garg, Rajeev; Gupta, G D

    2009-10-01

    The present study performed by preparation and evaluation of floating tablets of Acyclovir as model drug for prolongation of gastric residence time. Floating effervescent tablets were formulated by various materials like hydroxypropyl methylcellulose K 4M, K 15M, psyllium husk, swelling agent as crospovidone and microcrystalline cellulose and gas generating agent like sodium bicarbonate and citric acid and evaluated for floating properties, swelling characteristics and in vitro drug release studies. Floating noneffervescent tablets were prepared by polypropylene foam powder and different matrix forming polymers like HPMC K 4M, Carbopol 934P, xanthan gum and sodium alginate. In vitro drug release studies were performed and drug release kinetics evaluated using the linear regression method was found to follow both the Higuchi and the Korsmeyer and Peppas equation. The drug release mechanism was found fickian type in most of the formulations.

  17. Synthesis, characterization and optical studies of highly luminescent ZnS nanoparticles associated with hypromellose matrix as a green and novel stabilizer.

    PubMed

    Tiwari, Ashish; Khan, S A; Kher, R S; Dhoble, S J

    2014-09-01

    ZnS nanoparticles stabilized by a carbohydrate-based matrix, hypromellose (hydroxypropyl methylcellulose) were prepared via a wet chemical method. The nanocomposite was characterized by X-ray diffraction, transmission electon microscopy and Fourier transform infrared spectroscopy. X-Ray diffraction patterns revealed a zinc blende structure. Thermogravimetric analysis suggested that polymer attached to the surface decomposes at 700 °C. Absorption measurements were carried out and calculation of the diameter polydispersity index (DPI) suggests the formation of monodisperse nanoparticles. The optical properties of the as-prepared samples were studied by UV/vis spectroscopy and steady-state photoluminescence (PL) spectroscopy. The PL studies indicate the applicability of these nanoparticles as biocompatible sensors or luminescence markers in future.

  18. A novel once daily microparticulate dosage form comprising lansoprazole to prevent nocturnal acid breakthrough in the case of gastro-esophageal reflux disease: preparation, pharmacokinetic and pharmacodynamic evaluation.

    PubMed

    Alai, Milind; Lin, Wen Jen

    2013-01-01

    The objective of this study was to formulate and evaluate the lansoprazole (LPZ)-loaded microparticles to prevent nocturnal acid breakthrough in the case of gastro-esophageal reflux disease (GERD). The microparticulate delivery system was prepared by solvent evaporation method using Eudragit RS100 as a matrix polymer followed by enteric coated with Eudragit S100 and hydroxypropyl methylcellulose phthalate HP55 using spray drying method. The enteric coated microparticles were stable in gastric pH condition. In vivo pharmacokinetic and pharmacodynamic studies in male Wistar rats demonstrated that enteric coated microparticles sustained release of LPZ and promoted ulcer healing activity. In other words, the microparticulate dosage form provided effective drug concentration for a longer period as compared to conventional extended release dosage form, and showed sufficient anti-acid secretion activity to treat acid related disorders including the enrichment of nocturnal acid breakthrough event based on a once daily administration.

  19. Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion☆

    PubMed Central

    Yonekura, Lina; Sun, Han; Soukoulis, Christos; Fisk, Ian

    2014-01-01

    We evaluated sodium alginate, chitosan and hydroxypropyl methylcellulose (HPMC) as co-encapsulants for spray dried Lactobacillus acidophilus NCIMB 701748 by assessing their impact on cell viability and physicochemical properties of the dried powders, viability over 35 days of storage at 25 °C and survival after simulated digestion. Fibres were added to a control carrier medium containing whey protein concentrate, d-glucose and maltodextrin. Sodium alginate and HPMC did not affect cell viability but chitosan reduced viable counts in spray dried powders, as compared to the control. Although chitosan caused large losses of viability during spray-drying, these losses were counteracted by the excellent storage stability compared to control, sodium alginate and HPMC, and the overall effect became positive after the 35-day storage. Chitosan also improved survival rates in simulated GI conditions, however no single fibre could improve L. acidophilus NCIMB 701748 viability in all steps from production through storage and digestion. PMID:24748900

  20. Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications.

    PubMed

    López de Dicastillo, Carol; Rodríguez, Francisco; Guarda, Abel; Galotto, Maria José

    2016-01-20

    Development of antioxidant and antimicrobial active food packaging materials based on biodegradable polymer and natural plant extracts has numerous advantages as reduction of synthetic additives into the food, reduction of plastic waste, and food protection against microorganisms and oxidation reactions. In this way, active films based on methylcellulose (MC) and maqui (Aristotelia chilensis) berry fruit extract, as a source of antioxidants agents, were studied. On the other hand, due to the high water affinity of MC, this polymer was firstly cross-linked with glutaraldehyde (GA) at different concentrations. The results showed that the addition of GA decreased water solubility, swelling, water vapor permeability of MC films, and the release of antioxidant substances from the active materials increased with the concentration of GA. Natural extract and active cross-linked films were characterized in order to obtain the optimal formulation with the highest antioxidant activity and the best physical properties for latter active food packaging application. PMID:26572446

  1. Development of local injectable dental gel: the influence of certain additives on physicochemical properties of glycerylmonooleate-based formulations.

    PubMed

    Okonogi, S; Khongkhunthain, S; Bunyaratavej, P; Thusaphorn, T; Umpriwan, R

    2004-04-01

    The current research study is based on the design and development of a sol-gel biodegradable controlled-release formulation for use in the treatment of periodontal diseases. Glycerylmonooleate (GMO) was used as a main composition in the gel base. The influence of various additives, e.g., glycerylmonostearate (GMS), methylcellulose (MC), surfactants, and triglycerides, in GMO formulations on rheologic and swelling properties and release characteristics was described. It was demonstrated that the surfactants and triglycerides affected rheologic behavior, whereas GMS and MC influenced both rheologic and swelling properties of the bases. The release study revealed that drug released from the gel bases depended on the square root of time. The kinetics can be explained by the Higuchi's diffusion theory. Some polyols could enhance drug release from the gel. The stability results suggested that the dental gels obtained should be kept in the low temperature range.

  2. Microwave assisted synthesis of acrylamide grafted locust bean gum and its application in drug delivery.

    PubMed

    Kaity, Santanu; Isaac, Jinu; Kumar, P Mahesh; Bose, Anirbandeep; Wong, Tin Wui; Ghosh, Animesh

    2013-10-15

    Acrylamide grafted copolymer of locust bean gum was prepared by microwave irradiation using ceric ammonium nitrate as redox initiator. The grafting process was optimized in terms of irradiation time, amount of initiator and acrylamide by using constant amount of native locust bean gum. The grafted gum was characterized by Fourier transform infrared spectroscopy (FT-IR), (13)C nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), X-ray diffraction study (XRD), differential scanning calorimetry (DSC), elemental analysis, contact angle, viscosity, molecular weight, swelling and biodegradability studies. The grafted gum was found to be biodegradable and non-toxic. It was further used to prepare controlled-release matrix tablet of buflomedil hydrochloride. The in vitro release profile of the tablet showed the rate controlling property of acrylamide grafted locust bean gum was similar to that of hydroxypropyl methylcellulose (HPMC-K15M).

  3. Long-term Stability of Zonisamide, Amitriptyline, and Glycopyrrolate in Extemporaneously Prepared Liquid-dosage Forms at Two Temperatures.

    PubMed

    Nahata, Milap C

    2016-01-01

    The lack of commercially available liquid dosage forms for pediatric patients prompted this study. The objectives of our study were to determine the stability of zonisamide, amitriptyline, and glycopyrrolate in extemporaneously prepared oral suspensions in plastic prescription bottles. One group of suspensions was prepared in OraPlus:OraSweet (1:1) for each drug and stored either under refrigeration (4°C) or at room temperature (25°C). A second group of suspensions were compounded in 1% methylcellulose:simple syrup at a 1:10 proportion for zonisamide, amitriptyline, and glycopyrrolate; these suspensions were stored at either under refrigeration (4°C) or at room temperature (25°C). The drug concentrations were measured by the stability-indicating high-performance liquid chromatographic methods. The mean concentration of zonisamide (10 mg/mL) remained above 95% of the original concentration for 91 days in each group of suspensions at both 4°C and 25°C. The mean concentration of amitriptyline (20 mg/mL) was above 95% for 91 days in the suspensions containing OraPlus/ OraSweet at both 4°C and 25°C. However, in the suspensions containing methylcellulose:simple syrup, the mean concentration of amitriptyline was about 95% for 42 days at 4°C and 28 days at 25°C. The mean concentration of glycopyrrolate (0.2 mg/mL) was above 95% in each group of suspensions during the 14-day study period. These data indicate that zonisamide, amitriptyline, and glycopyrrolate can be prepared extemporaneously as suspensions and stored in plastic prescription bottles for varying periods at 4°C and 25°C for use in pediatric patients. PMID:27323428

  4. Evaluation of Phosphorylated Psyllium Seed Polysaccharide as a Release Retardant.

    PubMed

    Rao, Monica R P; Warrier, Deepa U; Rao, Shivani H

    2015-01-01

    The aim of the present study was to modify psyllium seed polysaccharide and evaluate the modified polysaccharide as release retardant in tablets employing ciprofloxacin hydrochloride as model drug. Studies on polysaccharide from psyllium husk has been reported but no work has been reported on characterization and modification of the polysaccharide present in the psyllium (Plantago ovata) seed and the use of the modified polysaccharide as a release retardant in tablets. In this study, the seed gum was modified using sodium trimetaphosphate as crosslinking agent. Sustained release matrix tablets of ciprofloxacin hydrochloride were prepared by wet granulation using various drug-polymer ratios. The polymers investigated were psyllium polysaccharide, phosphorylated psyllium polysaccharide and widely used release retardant hydroxypropyl methylcellulose K100M. The tablets were evaluated for hardness, friability, drug content, swelling profile and in vitro dissolution studies. The matrix tablets containing 1:3 proportion of drug-phosphorylated psyllium polysaccharide was found to have higher hardness as compared to tablets containing 1:1 and 1:2 proportions. The results of swelling behavior in water showed that the tablets containing 1:3 drug:phosphorylated psyllium polysaccharide ratio had swelling comparable to that of tablets containing 1:3 drug:hydroxypropyl methylcellulose ratio. The in vitro dissolution studies shows that the dissolution rate was retarded from 98.41 to 37.6% in 6 h with increase in concentration of phosphorylated psyllium polysaccharide from 100 to 300 mg. Formulations containing psyllium polysaccharide showed complete drug release in 8 h whereas those formulated with phosphorylated psyllium polysaccharide exhibited extended drug release over the 12 h period. Drug release kinetic studies revealed that drug release followed Korsmeyer-Peppas model. PMID:26798177

  5. Tribo-electric charging and adhesion of cellulose ethers and their mixtures with flurbiprofen.

    PubMed

    Ghori, Muhammad U; Supuk, Enes; Conway, Barbara R

    2014-12-18

    The pervasiveness of tribo-electric charge during pharmaceutical processing can lead to the exacerbation of a range of problems including segregation, content heterogeneity and particle surface adhesion. The excipients, hydroxypropyl methylcellulose (HPMC) and methylcellulose (MC), are often used in drug delivery systems and so it is important to understand the impact of associated factors on their charging and adhesion mechanisms, however, little work has been reported in this area. Such phenomena become more prominent when excipients are introduced to a powder mixture alongside the active pharmaceutical ingredient(s) (APIs) with inter- and intra-particulate interactions giving rise to electrification and surface adhesion of powder particles. The aim of this study was to understand the impact of material attributes (particle size, hydroxypropyl (Hpo) to methoxyl (Meo) ratio and molecular size) on the charging and adhesion characteristics of cellulose ethers. Furthermore, a poorly compactible and highly electrostatically charged drug, flurbiprofen, was used to develop binary powder mixtures having different polymer to drug ratios and the relationship between tribo-electric charging and surface adhesion was studied. Charge was induced on powder particles and measured using a custom built device based on a shaking concept, consisting of a Faraday cup connected to an electrometer. The diversity in physicochemical properties has shown a significant impact on the tribo-electric charging and adhesion behaviour of MC and HPMC. Moreover, the adhesion and electrostatic charge of the API was significantly reduced when MC and HPMC were incorporated and tribo-electric charging showed a linear relationship (R(2)=0.81-0.98) with particle surface adhesion, however, other factors were also involved. It is anticipated that such a reduction in charge and particle surface adhesion would improve flow and compaction properties during processing.

  6. Lentivirus Gene Transfer in Murine Hematopoietic Progenitor Cells Is Compromised by a Delay in Proviral Integration and Results in Transduction Mosaicism and Heterogeneous Gene Expression in Progeny Cells

    PubMed Central

    Mikkola, Hanna; Woods, Niels-Bjarne; Sjögren, Marketa; Helgadottir, Hildur; Hamaguchi, Isao; Jacobsen, Sten-Eirik; Trono, Didier; Karlsson, Stefan

    2000-01-01

    Human immunodeficiency virus type 1-based lentivirus vectors containing the green fluorescent protein (GFP) gene were used to transduce murine Lin− c-kit+ Sca1+ primitive hematopoietic progenitor cells. Following transduction, the cells were plated into hematopoietic progenitor cell assays in methylcellulose and the colonies were scored for GFP positivity. After incubation for 20 h, lentivirus vectors transduced 27.3% ± 6.7% of the colonies derived from unstimulated target cells, but transduction was more efficient when the cells were supported with stem cell factor (SCF) alone (42.0% ± 5.5%) or SCF, interleukin-3 (IL-3), and IL-6 (53.3 ± 1.8%) during transduction. The, vesicular stomatitis virus glycoprotein-pseudotyped MGIN oncoretrovirus control vector required IL-3, IL-6, and SCF for significant transduction (39.3 ± 9.4%). Interestingly, only a portion of the progeny cells within the lentivirus-transduced methylcellulose colonies expressed GFP, in contrast to the homogeneous expression in oncoretrovirus-transduced colonies. Secondary plating of the primary GFP+ lentivirus vector-transduced colonies revealed vector PCR+ GFP+ (42%), vector PCR− GFP− (46%), and vector PCR+ GFP− (13%) secondary colonies, indicating true genetic mosaicism with respect to the viral genome in the progeny cells. The degree of vector mosaicism in individual colonies could be reduced by extending the culture time after transduction and before plating into the clonal progenitor cell assay, indicating a delay in the lentiviral integration process. Furthermore, supplementation with exogenous deoxynucleoside triphosphates during transduction decreased mosaicism within the colonies. Although cytokine stimulation during transduction correlates with higher transduction efficiency, rapid cell division after transduction may result in loss of the viral genome in the progeny cells. Therefore, optimal transduction may require activation without promoting intense cell proliferation prior

  7. Evaluation of Phosphorylated Psyllium Seed Polysaccharide as a Release Retardant

    PubMed Central

    Rao, Monica R. P.; Warrier, Deepa U.; Rao, Shivani H.

    2015-01-01

    The aim of the present study was to modify psyllium seed polysaccharide and evaluate the modified polysaccharide as release retardant in tablets employing ciprofloxacin hydrochloride as model drug. Studies on polysaccharide from psyllium husk has been reported but no work has been reported on characterization and modification of the polysaccharide present in the psyllium (Plantago ovata) seed and the use of the modified polysaccharide as a release retardant in tablets. In this study, the seed gum was modified using sodium trimetaphosphate as crosslinking agent. Sustained release matrix tablets of ciprofloxacin hydrochloride were prepared by wet granulation using various drug-polymer ratios. The polymers investigated were psyllium polysaccharide, phosphorylated psyllium polysaccharide and widely used release retardant hydroxypropyl methylcellulose K100M. The tablets were evaluated for hardness, friability, drug content, swelling profile and in vitro dissolution studies. The matrix tablets containing 1:3 proportion of drug-phosphorylated psyllium polysaccharide was found to have higher hardness as compared to tablets containing 1:1 and 1:2 proportions. The results of swelling behavior in water showed that the tablets containing 1:3 drug:phosphorylated psyllium polysaccharide ratio had swelling comparable to that of tablets containing 1:3 drug:hydroxypropyl methylcellulose ratio. The in vitro dissolution studies shows that the dissolution rate was retarded from 98.41 to 37.6% in 6 h with increase in concentration of phosphorylated psyllium polysaccharide from 100 to 300 mg. Formulations containing psyllium polysaccharide showed complete drug release in 8 h whereas those formulated with phosphorylated psyllium polysaccharide exhibited extended drug release over the 12 h period. Drug release kinetic studies revealed that drug release followed Korsmeyer-Peppas model. PMID:26798177

  8. Flexible and printable paper-based strain sensors for wearable and large-area green electronics

    NASA Astrophysics Data System (ADS)

    Liao, Xinqin; Zhang, Zheng; Liao, Qingliang; Liang, Qijie; Ou, Yang; Xu, Minxuan; Li, Minghua; Zhang, Guangjie; Zhang, Yue

    2016-06-01

    Paper-based (PB) green electronics is an emerging and potentially game-changing technology due to ease of recycling/disposal, the economics of manufacture and the applicability to flexible electronics. Herein, new-type printable PB strain sensors (PPBSSs) from graphite glue (graphite powder and methylcellulose) have been fabricated. The graphite glue is exposed to thermal annealing to produce surface micro/nano cracks, which are very sensitive to compressive or tensile strain. The devices exhibit a gauge factor of 804.9, response time of 19.6 ms and strain resolution of 0.038%, all performance indicators attaining and even surpassing most of the recently reported strain sensors. Due to the distinctive sensing properties, flexibility and robustness, the PPBSSs are suitable for monitoring of diverse conditions such as structural strain, vibrational motion, human muscular movements and visual control.Paper-based (PB) green electronics is an emerging and potentially game-changing technology due to ease of recycling/disposal, the economics of manufacture and the applicability to flexible electronics. Herein, new-type printable PB strain sensors (PPBSSs) from graphite glue (graphite powder and methylcellulose) have been fabricated. The graphite glue is exposed to thermal annealing to produce surface micro/nano cracks, which are very sensitive to compressive or tensile strain. The devices exhibit a gauge factor of 804.9, response time of 19.6 ms and strain resolution of 0.038%, all performance indicators attaining and even surpassing most of the recently reported strain sensors. Due to the distinctive sensing properties, flexibility and robustness, the PPBSSs are suitable for monitoring of diverse conditions such as structural strain, vibrational motion, human muscular movements and visual control. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02172g

  9. Detailed stability investigation of amorphous solid dispersions prepared by single-needle and high speed electrospinning.

    PubMed

    Démuth, B; Farkas, A; Pataki, H; Balogh, A; Szabó, B; Borbás, E; Sóti, P L; Vigh, T; Kiserdei, É; Farkas, B; Mensch, J; Verreck, G; Van Assche, I; Marosi, G; Nagy, Z K

    2016-02-10

    In this research the long-term stability (one year) of amorphous solid dispersions (ASDs) prepared by high speed electrospinning was investigated at 25 °C/60% relative humidity (RH) (closed conditions) and 40 °C/75% RH (open conditions). Single needle electrospinning and film casting were applied as reference technologies. Itraconazole (ITR) was used as the model API in 40% concentration and the ASDs consisted of either one of the following polymers as a comparison: polyvinylpyrrolidone-vinyl acetate 6:4 copolymer (no hydrogen bonds between API and polymer) and hydroxypropyl methylcellulose (possible hydrogen bonds between oxo or tertiary nitrogen function of API and hydroxyl moiety of polymer). DSC, XRPD and dissolution characteristics of samples at 0, 3 and 12 months were investigated. In addition, Raman maps of certain electrospun ASDs were assessed to investigate crystallinity. A new chemometric method, based on Multivariate Curve Resolution-Alternating Least Squares algorithm, was developed to calculate the spectrum of amorphous ITR in the matrices and to determine the crystalline/amorphous ratio of aged samples. As it was expected ITR in single needle electrospun SDs was totally amorphous at the beginning, in addition hydroxypropyl methylcellulose could keep ITR in this form at 40 °C/75% RH up to one year due to the hydrogen bonds and high glass transition temperature of the SD. In polyvinylpyrrolidone-vinyl acetate matrix ITR remained amorphous at 25 °C/60% RH throughout one year. Materials prepared by scaled-up, high throughput version of electrospinning, which is compatible with pharmaceutical industry, also gained the same quality. Therefore these ASDs are industrially applicable and with an appropriate downstream process it would be possible to bring them to the market. PMID:26705153

  10. Effects of PMMA and Cross-Linked Dextran Filler for Soft Tissue Augmentation in Rats

    PubMed Central

    Huh, Jung-Bo; Kim, Joo-Hyun; Kim, Soyun; Lee, So-Hyoun; Shim, Kyung Mi; Kim, Se Eun; Kang, Seong Soo; Jeong, Chang-Mo

    2015-01-01

    This study was conducted for evaluation of the ability to maintain efficacy and biocompatibility of cross-linked dextran in hydroxypropyl methylcellulose (DiHM) and cross-linked dextran mixed with PMMA in hydroxypropyl methylcellulose (PDiHM), compared with hyaluronic acid (HA) filler. Saline and HA solution was administered in the negative and positive control groups, and DiHM and PDiHM were administered in the test groups (n = 10 in each group). The site of cranial subcutaneous injection was the mid-point of the interpupillary line, and the site of intraoral submucosal injection was the ridge crest 2 mm below the cervical line of the mandibular left incisor. Before and immediately after filler injection, intraoral photos and lateral cephalometric radiographs were taken for analysis and comparison of the effect of the filler on the injection sites. The filler injected areas were converted into sequential size changes (%) of the baseline. Histomorphologic examination was performed after 12 weeks. The smallest value in the filler injected area was observed during the experimental period in the normal saline group (p < 0.001), which was almost absorbed at 4 weeks (7.19% ± 12.72%). The HA group exhibited a steady decrease in sequential size and showed a lower value than the DiHM and PDiHM groups (saline < HA < DHiM, PDHiM, p < 0.001). DiHM and PDiHM tended to increase for the first 4 weeks and later decreased until 12 weeks. In this study on DiHM and PDiHM, there was no histological abnormality in cranial skin and oral mucosa. DiHM and PDiHM filler materials with injection system provide an excellent alternative surgical method for use in oral and craniofacial fields. PMID:26633376

  11. Effects of PMMA and Cross-Linked Dextran Filler for Soft Tissue Augmentation in Rats.

    PubMed

    Huh, Jung-Bo; Kim, Joo-Hyun; Kim, Soyun; Lee, So-Hyoun; Shim, Kyung Mi; Kim, Se Eun; Kang, Seong Soo; Jeong, Chang-Mo

    2015-12-01

    This study was conducted for evaluation of the ability to maintain efficacy and biocompatibility of cross-linked dextran in hydroxypropyl methylcellulose (DiHM) and cross-linked dextran mixed with PMMA in hydroxypropyl methylcellulose (PDiHM), compared with hyaluronic acid (HA) filler. Saline and HA solution was administered in the negative and positive control groups, and DiHM and PDiHM were administered in the test groups (n = 10 in each group). The site of cranial subcutaneous injection was the mid-point of the interpupillary line, and the site of intraoral submucosal injection was the ridge crest 2 mm below the cervical line of the mandibular left incisor. Before and immediately after filler injection, intraoral photos and lateral cephalometric radiographs were taken for analysis and comparison of the effect of the filler on the injection sites. The filler injected areas were converted into sequential size changes (%) of the baseline. Histomorphologic examination was performed after 12 weeks. The smallest value in the filler injected area was observed during the experimental period in the normal saline group (p < 0.001), which was almost absorbed at 4 weeks (7.19% ± 12.72%). The HA group exhibited a steady decrease in sequential size and showed a lower value than the DiHM and PDiHM groups (saline < HA < DHiM, PDHiM, p < 0.001). DiHM and PDiHM tended to increase for the first 4 weeks and later decreased until 12 weeks. In this study on DiHM and PDiHM, there was no histological abnormality in cranial skin and oral mucosa. DiHM and PDiHM filler materials with injection system provide an excellent alternative surgical method for use in oral and craniofacial fields.

  12. Modulation of distal colonic epithelial barrier function by dietary fibre in normal rats

    PubMed Central

    Mariadason, J; Catto-Smith, A; Gibson, P

    1999-01-01

    BACKGROUND—Dietary fibre influences the turnover and differentiation of the colonic epithelium, but its effects on barrier function are unknown. 
AIMS—To determine whether altering the type and amount of fibre in the diet affects paracellular permeability of intestinal epithelium, and to identify the mechanisms of action. 
METHODS—Rats were fed isoenergetic low fibre diets with or without supplements of wheat bran (10%) or methylcellulose (10%), for four weeks. Paracellular permeability was determined by measurement of conductance and 51Cr-EDTA flux across tissue mounted in Ussing chambers. Faecal short chain fatty acid (SCFA) concentrations were assessed by gas chromatography, epithelial kinetics stathmokinetically, and mucosal brush border hydrolase activities spectrophotometrically. 
RESULTS—Body weight was similar across the dietary groups. Conductance and 51Cr-EDTA flux were approximately 25% higher in animals fed no fibre, compared with those fed wheat bran or methylcellulose in the distal colon, but not in the caecum or jejunum. Histologically, there was no evidence of epithelial injury or erosion associated with any diet. The fibres exerted different spectra of effects on luminal SCFA concentrations and pH, and on mucosal indexes, but both bulked the faeces, were trophic to the epithelium, and stimulated expression of a marker of epithelial differentiation. 
CONCLUSIONS—Both a fermentable and a non-fermentable fibre reduce paracellular permeability specifically in the distal colon, possibly by promoting epithelial cell differentiation. The mechanisms by which the two fibres exert their effects are likely to be different. 

 Keywords: colon; differentiation; epithelium; fibre; paracellular permeability; proliferation PMID:10026327

  13. Detailed stability investigation of amorphous solid dispersions prepared by single-needle and high speed electrospinning.

    PubMed

    Démuth, B; Farkas, A; Pataki, H; Balogh, A; Szabó, B; Borbás, E; Sóti, P L; Vigh, T; Kiserdei, É; Farkas, B; Mensch, J; Verreck, G; Van Assche, I; Marosi, G; Nagy, Z K

    2016-02-10

    In this research the long-term stability (one year) of amorphous solid dispersions (ASDs) prepared by high speed electrospinning was investigated at 25 °C/60% relative humidity (RH) (closed conditions) and 40 °C/75% RH (open conditions). Single needle electrospinning and film casting were applied as reference technologies. Itraconazole (ITR) was used as the model API in 40% concentration and the ASDs consisted of either one of the following polymers as a comparison: polyvinylpyrrolidone-vinyl acetate 6:4 copolymer (no hydrogen bonds between API and polymer) and hydroxypropyl methylcellulose (possible hydrogen bonds between oxo or tertiary nitrogen function of API and hydroxyl moiety of polymer). DSC, XRPD and dissolution characteristics of samples at 0, 3 and 12 months were investigated. In addition, Raman maps of certain electrospun ASDs were assessed to investigate crystallinity. A new chemometric method, based on Multivariate Curve Resolution-Alternating Least Squares algorithm, was developed to calculate the spectrum of amorphous ITR in the matrices and to determine the crystalline/amorphous ratio of aged samples. As it was expected ITR in single needle electrospun SDs was totally amorphous at the beginning, in addition hydroxypropyl methylcellulose could keep ITR in this form at 40 °C/75% RH up to one year due to the hydrogen bonds and high glass transition temperature of the SD. In polyvinylpyrrolidone-vinyl acetate matrix ITR remained amorphous at 25 °C/60% RH throughout one year. Materials prepared by scaled-up, high throughput version of electrospinning, which is compatible with pharmaceutical industry, also gained the same quality. Therefore these ASDs are industrially applicable and with an appropriate downstream process it would be possible to bring them to the market.

  14. Characterization of Four Type IV Pilin Homologues in Stigmatella aurantiaca DSM17044 by Heterologous Expression in Myxococcus xanthus

    PubMed Central

    Pan, Hongwei; Zhou, Xiuwen; Liu, Xin; Luo, Ningning; Hu, Wei; Li, Yuezhong

    2013-01-01

    As prokaryotic models for multicellular development, Stigmatellaaurantiaca and Myxococcus xanthus share many similarities in terms of social behaviors, such as gliding motility. Our current understanding of myxobacterial grouped-cell motilities comes mainly from the research on M. xanthus, which shows that filamentous type IV pili (TFP), composed of type IV pilin (also called PilA protein) subunits, are the key apparatus for social motility (S-motility). However, little is known about the pilin protein in S. aurantiaca. We cloned and sequenced four genes (pilASa1~4) from S. aurantiaca DSM17044 that are homologous to pilAMx (pilA gene in M. xanthus DK1622). The homology and similarities among PilASa proteins and other myxobacterial homologues were systematically analyzed. To determine their potential biological functions, the four pilASa genes were expressed in M. xanthus DK10410 (ΔpilAMx), which did not restore S-motility on soft agar or EPS production to host cells. After further analysis of the motile behaviors in a methylcellulose solution, the M. xanthus strains were categorized into three types. YL6101, carrying pilASa1, and YL6104, carrying pilASa4, produced stable but unretractable surface pili; YL6102, carrying pilASa2, produced stable surface pili and exhibited reduced TFP-dependent motility in methylcellulose; YL6103, carrying pilASa3, produced unstable surface pili. Based on these findings, we propose that pilASa2 might be responsible for the type IV pilin production involved in group motility in S. aurantiaca DSM17044. After examining the developmental processes, it was suggested that the expression of PilASa4 protein might have positive effects on the fruiting body formation of M. xanthus DK10410 cells. Moreover, the formation of fruiting body in M. xanthus cells with stable exogenous TFPSa were compensated by mixing them with S. aurantiaca DSM17044 cells. Our results shed some light on the features and functions of type IV pilin homologues in S

  15. Percutaneous penetration kinetics of lidocaine and prilocaine in two local anesthetic formulations assessed by in vivo microdialysis in pigs.

    PubMed

    Wei, Huilin; Chen, Yun; Xu, Lanfang; Zheng, Jiarun

    2007-04-01

    The aim of this study was to characterize and compare the percutaneous penetration kinetics of lidocaine (L) and prilocaine (P) in two local anesthetic formulations by in vivo microdialysis coupled with HPLC. The microdialysis system for studying lidocaine and prilocaine was calibrated by a no-net-flux method in vitro and retrodialysis method in vivo, respectively. A dosage of 0.2 g/cm2 of an in-house P-L formulation (2.5% lidocaine and 2.5% prilocaine, methylcellulose-based) and commercially available Eutectic Mixture of Local Anesthesia (EMLA, 2.5% lidocaine and 2.5% prilocaine, carbopol-based) was separately but symmetrically applied in the dorsal region of pigs. Saline (0.9%, w/v) was perfused into the linear microdialysis probe at a flow rate of 1.5 microl/min. Dialysate was collected upon topical application up to 6 h at 20-min intervals and assessed by HPLC. The results demonstrated the area under the concentration-time curve (AUC(0-6 h)) of lidocaine and prilocaine in EMLA was 71.95+/-23.36 microg h/ml and 38.01+/-14.8 microg h/ml, respectively, in comparison to 167.11+/-56.12 microg h/ml and 87.02+/-30.38 microg h/ml in the P-L formulation. The maximal concentrations (Cmax) of lidocaine and prilocaine in the dermis were 29.2+/-9.08 microg/ml and 16.54+/-5.31 microg/ml in EMLA and 80.93+/-17.98 microg/ml and 43.69+/-12.87 microg/ml in the P-L formulation, respectively. This study indicates a well-calibrated microdialysis system can provide vital real-time information on percutaneous drug delivery and specifically a methylcellulose-based P-L formulation can increase percutaneous absorption of both lidocaine and prilocaine in pigs compared to carbopol-based EMLA.

  16. Corrosion control of cement-matrix and aluminum-matrix composites

    NASA Astrophysics Data System (ADS)

    Hou, Jiangyuan

    Corrosion control of composite materials, particularly aluminum-matrix and cement-matrix composites, was addressed by surface treatment, composite formulation and cathodic protection. Surface treatment methods studied include anodization in the case of aluminum-matrix composites and oxidation treatment (using water) in the case of steel rebar for reinforcing concrete. The effects of reinforcement species (aluminum nitride (AIN) versus silicon carbide (SiC) particles) in the aluminum-matrix composites and of admixtures (carbon fibers, silica fume, latex and methylcellulose) in concrete on the corrosion resistance of composites were addressed. Moreover, the effect of admixtures in concrete and of admixtures in mortar overlay (as anode on concrete) on the efficiency of cathodic protection of steel reinforced concrete was studied. For SiC particle filled aluminum, anodization was performed successfully in an acid electrolyte, as for most aluminum alloys. However, for AlN particle filled aluminum, anodization needs to be performed in an alkaline (0.7 N NaOH) electrolyte instead. The concentration of NaOH in the electrolyte was critical. It was found that both silica fume and latex improved the corrosion resistance of rebar in concrete in both Ca(OH)sb2 and NaCl solutions, mainly because these admixtures decreased the water absorptivity. Silica fume was more effective than latex. Methylcellulose improved the corrosion resistance of rebar in concrete a little in Ca(OH)sb2 solution. Carbon fibers decreased the corrosion resistance of rebar in concrete, but this effect could be made up for by either silica fume or latex, such that silica fume was more effective than latex. Surface treatment in the form of water immersion for two days was found to improve the corrosion resistance of rebar in concrete. This treatment resulted in a thin uniform layer of black iron oxide (containing Fesp{2+}) on the entire rebar surface except on the cross-sectional surface. Prior to the

  17. Genome-Wide DNA Methylation as an Epigenetic Consequence of Epstein-Barr Virus Infection of Immortalized Keratinocytes

    PubMed Central

    Birdwell, Christine E.; Queen, Krista J.; Kilgore, Phillip C. S. R.; Rollyson, Phoebe; Trutschl, Marjan; Cvek, Urska

    2014-01-01

    ABSTRACT The oral cavity is a persistent reservoir for Epstein-Barr virus (EBV) with lifelong infection of resident epithelial and B cells. Infection of these cell types results in distinct EBV gene expression patterns regulated by epigenetic modifications involving DNA methylation and chromatin structure. Regulation of EBV gene expression relies on viral manipulation of the host epigenetic machinery that may result in long-lasting host epigenetic reprogramming. To identify epigenetic events following EBV infection, a transient infection model was established to map epigenetic changes in telomerase-immortalized oral keratinocytes. EBV-infected oral keratinocytes exhibited a predominantly latent viral gene expression program with some lytic or abortive replication. Calcium and methylcellulose-induced differentiation was delayed in EBV-positive clones and in clones that lost EBV compared to uninfected controls, indicating a functional consequence of EBV epigenetic modifications. Analysis of global cellular DNA methylation identified over 13,000 differentially methylated CpG residues in cells exposed to EBV compared to uninfected controls, with CpG island hypermethylation observed at several cellular genes. Although the vast majority of the DNA methylation changes were silent, 65 cellular genes that acquired CpG methylation showed altered transcript levels. Genes with increased transcript levels frequently acquired DNA methylation within the gene body while those with decreased transcript levels acquired DNA methylation near the transcription start site. Treatment with the DNA methyltransferase inhibitor, decitabine, restored expression of some hypermethylated genes in EBV-infected and EBV-negative transiently infected clones. Overall, these observations suggested that EBV infection of keratinocytes leaves a lasting epigenetic imprint that can enhance the tumorigenic phenotype of infected cells. IMPORTANCE Here, we show that EBV infection of oral keratinocytes led to

  18. Formulation, Pharmacokinetic, and Efficacy Studies of Mannosylated Self-Emulsifying Solid Dispersions of Noscapine

    PubMed Central

    Andey, Terrick; Patel, Apurva; Marepally, Srujan; Chougule, Mahavir; Spencer, Shawn D.; Rishi, Arun K.; Singh, Mandip

    2016-01-01

    Purpose To formulate hydroxypropyl methylcellulose-stabilized self-emulsifying solid dispersible carriers of noscapine to enhance oral bioavailability. Methods Formulation of noscapine (Nos) self-emulsifying solid dispersible microparticles (SESDs) was afforded by emulsification using an optimized formula of Labrafil M1944, Tween-80, and Labrasol followed by spray-drying with hydroxypropyl methylcellulose (HPMC), with and without mannosamine (Mann-Nos_SESDs and Nos_SESDs respectively); self-microemulsifying liquid dispersions (SMEDDs) with and without mannosamine (Mann-Nos_SMEDDs and Nos_SMEDDs respectively) were also prepared. SMEDDs and SESDs were characterized for size, polydispersity, surface charge, entrapment efficiency, in vitro permeability, in vitro release kinetics, and oral pharmacokinetics in Sprague-Dawley rats (10 mg/kg p.o). The antitumor efficacy of Mann-Nos_SESDs on the basis of chemosensitization to cisplatin (2.0 mg/kg, IV) was investigated in a chemorefractory lung tumor Nu/Nu mouse model up to a maximal oral dose of 300 mg/kg. Results The oil/surfactant/co-surfactant mixture of Labrafil M1944, Tween-80, and Labrasol optimized at weight ratios of 62.8:9.30:27.90% produced stable self-microemulsifying dispersions (SMEDDs) at a SMEDD to water ratio of 1–3:7–9 parts by weight. SMEDDs had hydrodynamic diameters between 231 and 246 nm; surface charges ranged from -16.50 to -18.7 mV; and entrapment efficiencies were between 32 and 35%. SESDs ranged in size between 5.84 and 6.60 μm with surface charges from -10.62 to -12.40 mV and entrapment efficiencies of 30.96±4.66 and 32.05±3.72% (Nos_SESDs and Mann-Nos_SESDs respectively). Mann-Nos_SESDs exhibited saturating uptake across Caco-2 monolayers (Papp = 4.94±0.18 × 10−6 cm/s), with controlled release of 50% of Nos in 6 hr at pH 6.8 following Higuchi kinetics. Mann-Nos_ SESDs was 40% more bioavailable compared to Nos_SESDs; and was effective in sensitizing H1650 SP cells to Cisplatin in vitro

  19. Use of Propranolol-Magnesium Aluminium Silicate Intercalated Complexes as Drug Reservoirs in Polymeric Matrix Tablets

    PubMed Central

    Pongjanyakul, T.; Rojtanatanya, S.

    2012-01-01

    The objective of the present study was to investigate the use of propranolol–magnesium aluminium silicate intercalated complexes as drug reservoirs in hydroxypropylmethylcellulose tablets. The matrix tablets containing the complexes were prepared and characterised with respect to propranolol release and were subsequently compared with those loading propranolol or a propranolol–magnesium aluminium silicate physical mixture. Additionally, the effects of varying viscosity grades of hydroxypropyl methylcellulose, compression pressures and calcium acetate incorporation on the drug release characteristics of the complex-loaded tablets were also examined. The results showed that the complex-loaded tablets have higher tablet hardness than those containing propranolol or a physical mixture. The drug release from the complex-loaded tablets followed a zero-order release kinetic, whereas an anomalous transport was found in the propranolol or physical mixture tablets. The drug release rate of the complex tablet significantly decreased with increasing hydroxypropylmethylcellulose viscosity grade. Increase in the compression pressure caused a decrease in the drug release rate of the tablets. Furthermore, the incorporation of calcium ions could accelerate propranolol release, particularly in acidic medium, because calcium ions could be exchanged with propranolol molecules intercalated in the silicate layers of magnesium aluminium silicate. These findings suggest that propranolol-magnesium aluminium silicate intercalated complexes show strong potential for use as drug reservoirs in matrix tablets intended for modifying drug release. PMID:23626384

  20. Development and evaluation of diltiazem hydrochloride controlled-release pellets by fluid bed coating process

    PubMed Central

    Prasad, Mikkilineni Bhanu; Vidyadhara, Suryadevara; Sasidhar, Reddyvalam Lankapalli C.; Balakrishna, Talamanchi; Trilochani, Pavuluri

    2013-01-01

    The aim of the present study was to develop controlled-release pellets of diltiazem HCl with ethyl cellulose and hydroxylpropyl methylcellulose phthalate as the release rate retarding polymers by fluid bed coating technique. The prepared pellets were evaluated for drug content, particle size, subjected to Scanning Electron Microscopy (SEM) and Differential Scanning Calori metry (DSC), and evaluated for in vitro release. Stability studies were carried out on the optimized formulations for a period of 3 months. The drug content was in the range of 97%-101%. The mean particle size of the drug-loaded pellets was in the range 700-785 μm. The drug release rate decreased as the concentration of ethyl cellulose increased in the pellet formulations. Among the prepared formulations, FDL10 and FDL11 showed 80% drug release in 16 h, matching with USP dissolution test 6 for diltiazem HCl extended-release capsules. SEM photographs confirmed that the prepared formulations were spherical in nature with a smooth surface. The compatibility between drug and polymers in the drug-loaded pellets was confirmed by DSC studies. Stability studies indicated that the pellets were stable. PMID:23833750

  1. An atomic force microscopy investigation of bioadhesive polymer adsorption onto human buccal cells.

    PubMed

    Patel, D; Smith, J R; Smith, A W; Grist, N; Barnett, P; Smart, J D

    2000-05-10

    Atomic force microscopy (AFM) was used to examine the buccal cell surface in order to image the presence of adsorbed bioadhesive polymers identified from previous work. Isotonic saline solution (5 ml) containing either polycarbophil (pH 7.6), chitosan (pH 4.5) or hydroxypropyl methylcellulose (pH 7.6) (0.5% w/v) was exposed to freshly collected buccal cells (ca. 48x10(4) cells/test) for 15 min at 30 degrees C. The cells were then rinsed with a small volume of double distilled water, allowed to air-dry on a freshy cleaved mica surface and imaged using contact mode AFM. Untreated cells showed relatively smooth surface characteristics, with many small 'crater-like' pits and indentations spread over cell surfaces. Cells that had been treated with all the investigated polymers appeared to have lost the crater and indentation characteristic and gained a higher surface roughness. These results suggest that polymer chains had adsorbed onto the cell surfaces. Quantitative image analysis of cell topography showed significant increases (P<0.05) in arithmetic roughness average (R(a)) for all the investigated polymer treated cells surfaces with respect to untreated control specimens. The changes in surface topography indicate the presence of adsorbed polymer, confirming previous work. This study demonstrates the suitability of AFM as a powerful and sensitive technique for detecting and imaging bioadhesive polymers present on mucosal cell surfaces. PMID:10867257

  2. [Modern polymers in matrix tablets technology].

    PubMed

    Zimmer, Łukasz; Kasperek, Regina; Poleszak, Ewa

    2014-01-01

    Matrix tablets are the most popular method of oral drug administration, and polymeric materials have been used broadly in matrix formulations to modify and modulate drug release rate. The main goal of the system is to extend drug release profiles to maintain a constant in vivo plasma drug concentration and a consistent pharmacological effect. Polymeric matrix tablets offer a great potential as oral controlled drug delivery systems. Cellulose derivatives, like hydroxypropyl methylcellulose (HPMC) are often used as matrix formers. However, also other types of polymers can be used for this purpose including: Kollidon SR, acrylic acid polymers such as Eudragits and Carbopols. Nevertheless, polymers of natural origin like: carragens, chitosan and alginates widely used in the food and cosmetics industry are now coming to the fore of pharmaceutical research and are used in matrix tablets technology. Modern polymers allow to obtain matrix tablets by 3D printing, which enables to develop new formulation types. In this paper, the polymers used in matrix tablets technology and examples of their applications were described.

  3. Design and evaluation of gastroretentive levofloxacin floating mini-tablets-in-capsule system for eradication of Helicobacter pylori.

    PubMed

    El-Zahaby, Sally A; Kassem, Abeer A; El-Kamel, Amal H

    2014-12-01

    Gastroretentive levofloxacin (LVF) floating mini-tablets for the eradication of Helicobacter pylori (H. pylori) were prepared using the matrix forming polymer hydroxypropyl methylcellulose (HPMC K100M), alone or with Carbopol 940P in different ratios by wet granulation technique. Buoyancy of mini-tablets was achieved by an addition of an effervescent mixture consisting of sodium bicarbonate and anhydrous citric acid to some formulations. The prepared mini-tablets were evaluated for weight variation, thickness, friability, hardness, drug content, in vitro buoyancy, water uptake and in vitro release. The optimized formula was subjected to further studies: FT-IR, DSC analysis and in vivo examination in healthy volunteers. The prepared mini-tablets exhibited satisfactory physicochemical characteristics. Incorporation of gas-generating agent improved the floating parameters. HPMC K100M mini-tablet formulation (F1) offered the best controlled drug release (>8 h) along with floating lag time <1 s and total floating time >24 h. The obtained DSC thermograms and FT-IR charts indicated that there is no positive evidence for the interaction between LVF and ingredients of the optimized formula. The in vivo test confirmed the success of the optimized formula F1 in being retained in the stomach of the volunteers for more than 4 h. LVF floating mini-tablets based on HPMC K100M is a promising formulation for eradication of H. pylori. PMID:25561871

  4. Roller compaction of hydrophilic extended release tablets-combined effects of processing variables and drug/matrix former particle size.

    PubMed

    Heiman, Johanna; Tajarobi, Farhad; Gururajan, Bindhumadhavan; Juppo, Anne; Abrahmsén-Alami, Susanna

    2015-04-01

    The present study shows that roller compaction (RC) can successfully be used as a granulation method to prepare hydroxypropyl methylcellulose (HPMC)-based extended release matrix tablets containing a high drug load, both for materials deforming mainly by fragmentation (paracetamol) as for those having mainly plastic deformation (ibuprofen). The combined effect of RC process variables and composition on the manufacturability of HPMC tablets was investigated. Standard wet granulation grade HPMC was compared with a larger particle size direct compressible HPMC grade. Higher roll pressure was found to result in larger paracetamol granules and narrower granule particle size distributions, especially for formulations containing smaller size HPMC. However, for ibuprofen, no clear effect of roll pressure was observed. High roll pressure also resulted in denser ribbon and less bypass fines during RC. Loss of compactibility was observed for granules compared to powder blends, which was found to be related to differences in granule porosity and morphology. Using the large-sized HPMC grade did in some cases result in lower tensile strength tablets but had the advantage to improve the powder flow into the roller compactor. This work also indicates that when the HPMC level lies near the percolation threshold, significant changes can occur in the drug release rate due to changes in other factors (raw material characteristics and processing). PMID:25273028

  5. Laminated sponges as challenging solid hydrophilic matrices for the buccal delivery of carvedilol microemulsion systems: Development and proof of concept via mucoadhesion and pharmacokinetic assessments in healthy human volunteers.

    PubMed

    Abd-Elbary, Ahmed; Makky, Amna M A; Tadros, Mina Ibrahim; Alaa-Eldin, Ahmed Adel

    2016-01-20

    Carvedilol (CVD) suffers from low absolute bioavailability (25%) due to its limited aqueous solubility and hepatic first-pass metabolism. Hydroxypropyl methylcellulose (HPMC) laminated buccal sponges loaded with CVD microemulsions (CVD-ME) were exploited to surmount such limitations. Six pseudoternary-phase diagrams were constructed using Capmul® MCM C8/Capmul® PG8, Tween® 80, propylene glycol and water. Six CVD-ME systems (0.625% w/v) were incorporated into HPMC core sponges backed with Ethocel® layers. The sponges were preliminary evaluated via FT-IR, DSC and XRD. The surface pH, morphology and in vitro drug release studies were evaluated. In vivo mucoadhesion and absorption studies of the best achieved laminated sponges (F4) were assessed in healthy volunteers. CVD-ME systems displayed nano-spherical clear droplets. The sponges showed interconnecting porous matrices through which CVD was dispersed in amorphous state. No intermolecular interaction was detected between CVD and HPMC. The surface pH values were almost neutral. The sponges loaded with CVD-ME systems showed more sustained-release profiles than those loaded with CVD-powder. Compared to Dilatrend® tablets, the significantly (P<0.05) higher bioavailability (1.5 folds), delayed Tmax and prolonged MRT(0-∞) unraveled the dual-potential of F4 sponges for water-insoluble drugs, like CVD, in improving drug oral bioavailability and in controlling drug release kinetics via buccal mucosa. PMID:26546947

  6. Detection of telomerase activity using microchip electrophoresis.

    PubMed

    Karasawa, Koji; Arakawa, Hidetoshi

    2015-07-01

    Telomerase participates in malignant transformation or immortalization of cells and thus has attracted attention as an anticancer drug target and diagnostic tumor marker. The telomeric repeat amplification protocol (TRAP) and improved TRAP methods (TRAP-fluorescence, TRAP-hybridization, etc.) are widely used forms of this telomerase assay. However, these approaches generally employ acrylamide gel electrophoresis after amplification of telomeric repeats by polymerase chain reaction (PCR), making these TRAP methods time consuming and technically demanding. In this study we developed a novel telomerase assay using microchip electrophoresis for rapid and highly sensitive detection of telomerase activity in cancer cells. The mixed gel of 0.8% hydroxypropyl methylcellulose (HPMC) and 0.3% polyethylene oxide (PEO) with SYBR Gold (fluorescent reagent) was used for microchip electrophoresis. As a result, the product amplified by a telomerase-positive cell could be measured in one cell per assay and detected with high reproducibility (CV=0.67%) in the short time of 100s. PMID:25980765

  7. Interplay between type IV pili activity and exopolysaccharides secretion controls motility patterns in single cells of Myxococcus xanthus

    PubMed Central

    Hu, Wei; Gibiansky, Maxsim L.; Wang, Jing; Wang, Chuandong; Lux, Renate; Li, Yuezhong; Wong, Gerard C. L.; Shi, Wenyuan

    2016-01-01

    Myxococcus xanthus performs coordinated social motility of cell groups through the extension and retraction of type IV pili (TFP) on solid surfaces, which requires both TFP and exopolysaccharides (EPS). By submerging cells in a liquid medium containing 1% methylcellulose, M. xanthus TFP-driven motility was induced in isolated cells and independently of EPS. We measured and analyzed the movements of cells using community tracking algorithms, which combine single-cell resolution with statistics from large sample populations. Cells without significant multi-cellular social interactions have surprisingly complex behaviors: EPS− cells exhibited a pronounced increase in the tendency to stand vertically and moved with qualitatively different characteristics than other cells. A decrease in the EPS secretion of cells correlates with a higher instantaneous velocity, but with lower directional persistence in trajectories. Moreover, EPS− cells do not adhere to the surface as strongly as wild-type and EPS overproducing cells, and display a greater tendency to have large deviations between the direction of movement and the cell axis, with cell velocity showing only minimal dependence on the direction of movement. The emerging picture is that EPS does not simply provide rheological resistance to a single mechanism but rather that the availability of EPS impacts motility pattern. PMID:26821939

  8. Interactions between light and vitreous fluid substitutes.

    PubMed

    Azzolini, C; Docchio, F; Brancato, R; Trabucchi, G

    1992-10-01

    To determine the interactions between light and vitreous fluid substitutes, we studied the absorption and fluorescence properties of the following fluids that are commonly used in vitreoretinal surgery: Ringer's solution, balanced salt citrate-buffered solution, balanced salt bicarbonate-buffered solution, hydroxypropyl methylcellulose ophthalmic solution, hyaluronate sodium, perfluorocarbons, silicone oil, and fluorosilicone oil. The absorption spectra for all the fluids peaked in the UV-C (reference range <280 nm) and UV-B (reference range from 315 to 280 nm) regions of the spectrum, with little or no absorption in the visible region of the spectrum (from 400 to 700 nm). Emission of almost all of the fluids occurred mainly in the 300- to 360-nm region, with fairly low-quantum efficiency. The limited light absorption properties of the fluids calls for caution during transpupillary and intraocular laser photocoagulation to avoid excessive retinal damage, mainly when the laser power is increased during treatment. Transmission of incoherent light (environmental and ophthalmic artificial light) through highly transparent vitreous fluid substitutes may lead in time to dangerous light exposure, particularly in aphakic eyes. The emitted fluorescence in these fluids generates a minimal risk of long-term damage.

  9. Development of a Robust Method for Simultaneous Quantification of Polymer (HPMC) and Surfactant (Dodecyl β-D-Maltoside) in Nanosuspensions.

    PubMed

    Patel, Salin Gupta; Bummer, Paul M

    2016-10-01

    This report describes the development of a chromatographic method for the simultaneous quantification of a polymer, hydroxypropyl methylcellulose (HPMC), and a surfactant, dodecyl β-D-maltoside (DM), that are commonly used in the physical stabilization of pharmaceutical formulations such as nanosuspensions and solid dispersions. These excipients are often challenging to quantify due to the lack of chromophores. A reverse phase size exclusion chromatography (SEC) with evaporative light scattering detector (ELSD) technique was utilized to develop an accurate and robust assay for the simultaneous quantification of HPMC and DM in a nanosuspension formulation. The statistical design of experiments was used to determine the influence of critical ELSD variables including temperature, pressure, and gain on accuracy, precision, and sensitivity of the assay. A robust design space was identified where it was determined that an increase in the temperature of the drift tube and gain of the instrument increased the accuracy and precision of the assay and a decrease in the nebulizer pressure value increased the sensitivity of the assay. In the optimized design space, response data showed that the assay could quantify HPMC and DM simultaneously with good accuracy, precision, and reproducibility. Overall, SEC-ELSD proved to be a powerful technique for the simultaneous quantification of HPMC and DM. This technique can be used to quantify the amount of HPMC and DM in nanosuspensions, which is critical to understanding their effects on the physical stability of nanosuspensions.

  10. Roller compaction of hydrophilic extended release tablets-combined effects of processing variables and drug/matrix former particle size.

    PubMed

    Heiman, Johanna; Tajarobi, Farhad; Gururajan, Bindhumadhavan; Juppo, Anne; Abrahmsén-Alami, Susanna

    2015-04-01

    The present study shows that roller compaction (RC) can successfully be used as a granulation method to prepare hydroxypropyl methylcellulose (HPMC)-based extended release matrix tablets containing a high drug load, both for materials deforming mainly by fragmentation (paracetamol) as for those having mainly plastic deformation (ibuprofen). The combined effect of RC process variables and composition on the manufacturability of HPMC tablets was investigated. Standard wet granulation grade HPMC was compared with a larger particle size direct compressible HPMC grade. Higher roll pressure was found to result in larger paracetamol granules and narrower granule particle size distributions, especially for formulations containing smaller size HPMC. However, for ibuprofen, no clear effect of roll pressure was observed. High roll pressure also resulted in denser ribbon and less bypass fines during RC. Loss of compactibility was observed for granules compared to powder blends, which was found to be related to differences in granule porosity and morphology. Using the large-sized HPMC grade did in some cases result in lower tensile strength tablets but had the advantage to improve the powder flow into the roller compactor. This work also indicates that when the HPMC level lies near the percolation threshold, significant changes can occur in the drug release rate due to changes in other factors (raw material characteristics and processing).

  11. Continuous manufacturing of extended release tablets via powder mixing and direct compression.

    PubMed

    Ervasti, Tuomas; Simonaho, Simo-Pekka; Ketolainen, Jarkko; Forsberg, Peter; Fransson, Magnus; Wikström, Håkan; Folestad, Staffan; Lakio, Satu; Tajarobi, Pirjo; Abrahmsén-Alami, Susanna

    2015-11-10

    The aim of the current work was to explore continuous dry powder mixing and direct compression for manufacturing of extended release (ER) matrix tablets. The study was span out with a challenging formulation design comprising ibuprofen compositions with varying particle size and a relatively low amount of the matrix former hydroxypropyl methylcellulose (HPMC). Standard grade HPMC (CR) was compared to a recently developed direct compressible grade (DC2). The work demonstrate that ER tablets with desired quality attributes could be manufactured via integrated continuous mixing and direct compression. The most robust tablet quality (weight, assay, tensile strength) was obtained using high mixer speed and large particle size ibuprofen and HPMC DC2 due to good powder flow. At low mixer speed it was more difficult to achieve high quality low dose tablets. Notably, with HPMC DC2 the processing conditions had a significant effect on drug release. Longer processing time and/or faster mixer speed was needed to achieve robust release with compositions containing DC2 compared with those containing CR. This work confirms the importance of balancing process parameters and material properties to find consistent product quality. Also, adaptive control is proven a pivotal means for control of continuous manufacturing systems.

  12. Optimizing novel implant formulations for the prolonged release of biopharmaceuticals using in vitro and in vivo imaging techniques.

    PubMed

    Beyer, Susanne; Xie, Li; Schmidt, Mike; de Bruin, Natasja; Ashtikar, Mukul; Rüschenbaum, Sabrina; Lange, Christian M; Vogel, Vitali; Mäntele, Werner; Parnham, Michael J; Wacker, Matthias G

    2016-08-10

    As a rapidly growing class of therapeutics, biopharmaceuticals have conquered the global market. Despite the great potential from a therapeutic perspective, such formulations often require frequent injections due to their short half-life. Aiming to establish a parenteral dosage form with prolonged release properties, a biodegradable implant was developed, based on a combination of nanoencapsulation of protein-heparin complexes, creation of a slow release matrix by freeze-drying, and compression using hyaluronan and methylcellulose. In order to investigate this novel delivery system, formulations containing IFN-β-1a and trypsinogen as model proteins were developed. No degradation of the proteins was observed at any stage of the formulation processing. The potential of the delivery system was evaluated in vivo and in vitro after fluorescence-labeling of the biopharmaceuticals. An optimized agarose gel was utilized as in vitro release medium to simulate the subcutaneous environment in a biorelevant manner. In addition, the formulations were administered to female SJL mice and release was innovatively tracked by fluorescence imaging, setting up an in vitro-in vivo correlation. A prolonged time of residence of approximately 12days was observed for the selected formulation design.

  13. Effects of temperature-responsive hydrogel on viscosity of denture adhesives.

    PubMed

    Zhao, Huizi; Akiba, Norihisa; Tanimoto, Hiroyuki; Yoshizaki, Taro; Yalikun, Kaidiliya; Minakuchi, Shunsuke

    2016-01-01

    The cream type of denture adhesives after use cannot be easily removed from oral mucosa and have the potential risk to change the oral flora. The effects of the temperature-responsive hydrogel Pluronic F-127 (PF) on the complex viscosity of denture adhesives were evaluated. Carboxy methylcellulose (CMC) mass fractions (1, 2, 3 and 4%) were added to 20 and 25% PF hydrogels. Complex viscosity was measured over a temperature cycle (40→10→40°C) and fixed temperature points (23 and 37°C). Adhesive strength tests were performed with 2 resin plates at 23 and 37°C. One commercial cream-type denture adhesive, New Poligrip® (NP), was evaluated as a control. Complex viscosity values for PF20% groups at 23°C were lower than those for NP at 37°C. Adhesive strength of PF20% with CMC2%, was higher at 23°C when compared to NP at 37°C, which suggests that PF20%CMC2% is an effective adhesive and is easily removed after mouth rinsing.

  14. Foam granulation: new developments in pharmaceutical solid oral dosage forms using twin screw extrusion machinery.

    PubMed

    Thompson, M R; Weatherley, S; Pukadyil, R N; Sheskey, P J

    2012-07-01

    This paper investigates foam granulation in a twin screw extruder as a new continuous wet granulation technique for pharmaceutical powder drug formulations. Foamed aqueous binder has a reportedly lower soak-to-spread ratio than drop or spray liquid addition in batch granulation. This work demonstrates a twin screw extruder configuration for foam granulation and subsequently compares the new approach against liquid injection in the granulation of α-lactose monohydrate with a methylcellulose binder. Trials were conducted at high powder output rates (20-40 kg/h) and high screw speeds (220-320 RPM) with two screw configurations. Process stability improved with the new technique allowing granulation with less binder. The extruded mass maintained a low exit temperature, being insensitive to operating conditions unlike the liquid injection approach, where temperatures rose significantly as flow rate increased. The particle size distribution by foam granulation reflected a more uniformly wetted mass with larger granule growth noted even for conditions where dry powder exited by liquid injection. Other factors were found similar between the two binder delivery methods such as consumed mechanical energy, as well as fracture strength and compressibility of produced granules.

  15. Clinical use of the 193-nm excimer laser in the treatment of corneal scars.

    PubMed

    Sher, N A; Bowers, R A; Zabel, R W; Frantz, J M; Eiferman, R A; Brown, D C; Rowsey, J J; Parker, P; Chen, V; Lindstrom, R L

    1991-04-01

    Phototherapeutic keratectomy using a 193-nm excimer laser was performed at four centers on 33 sighted patients with corneal opacity and/or irregular astigmatism. Pathologic conditions included anterior stromal and superficial scarring from postinfectious and posttraumatic causes, including inactive herpes simplex virus, anterior corneal dystrophies, recurrent erosions, granular dystrophy, and band keratopathy. Most patients received peribulbar anesthesia and underwent removal of the epithelium prior to laser ablation. A majority of patients had a reduction in the amount of corneal scarring and approximately half had improved visual acuity. No intraocular reaction or changes in endothelial counts were seen, and some patients avoided the need for penetrating keratoplasty. Reepithelialization usually occurred within 4 or 5 days and we noted no significant scarring secondary to use of the laser. It was difficult to eliminate preexisting irregular astigmatism despite the use of surface modulators, such as methylcellulose. A hyperopic shift secondary to corneal flattening was encountered in approximately 50% of the patients. A combination of myopic ablation, followed immediately by a secondary hyperopic steepening, may minimize this refractive change. The 193-nm excimer laser is an effective new tool in the treatment of selected patients with superficial corneal opacity from a variety of conditions. PMID:2012547

  16. Nerve growth factor promotes human hemopoietic colony growth and differentiation

    SciTech Connect

    Matsuda, H.; Coughlin, M.D.; Bienenstock, J.; Denburg, J.A. )

    1988-09-01

    Nerve growth factor (NGF) is a neurotropic polypeptide necessary for the survival and growth of some central neurons, as well as sensory afferent and sympathetic neurons. Much is now known of the structural and functional characteristics of NGF, whose gene has recently been clones. Since it is synthesized in largest amounts by the male mouse submandibular gland, its role exclusively in nerve growth is questionable. These experiments indicate that NGF causes a significant stimulation of granulocyte colonies grown from human peripheral blood in standard hemopoietic methylcellulose assays. Further, NGF appears to act in a relatively selective fashion to induce the differentiation of eosinophils and basophils/mast cells. Depletion experiments show that the NGF effect may be T-cell dependent and that NGF augments the colony-stimulating effect of supernatants from the leukemic T-cell (Mo) line. The hemopoietic activity of NGF is blocked by {sup 125}I-polyclonal and monoclonal antibodies to NGF. The authors conclude that NGF may indirectly act as a local growth factor in tissues other than those of the nervous system by causing T cells to synthesize or secrete molecules with colony-stimulating activity. In view of the synthesis of NGF in tissue injury, the involvement of basophils/mast cells and eosinophils in allergic and other inflammatory processes, and the association of mast cells with fibrosis and tissue repair, they postulate that NGF plays an important biological role in a variety of repair processes.

  17. Intravenous Administration of Cilostazol Nanoparticles Ameliorates Acute Ischemic Stroke in a Cerebral Ischemia/Reperfusion-Induced Injury Model.

    PubMed

    Nagai, Noriaki; Yoshioka, Chiaki; Ito, Yoshimasa; Funakami, Yoshinori; Nishikawa, Hiroyuki; Kawabata, Atsufumi

    2015-01-01

    It was reported that cilostazol (CLZ) suppressed disruption of the microvasculature in ischemic areas. In this study, we have designed novel injection formulations containing CLZ nanoparticles using 0.5% methylcellulose, 0.2% docusate sodium salt, and mill methods (CLZnano dispersion; particle size 81 ± 59 nm, mean ± S.D.), and investigated their toxicity and usefulness in a cerebral ischemia/reperfusion-induced injury model (MCAO/reperfusion mice). The pharmacokinetics of injections of CLZnano dispersions is similar to that of CLZ solutions prepared with 2-hydroxypropyl-β-cyclodextrin, and no changes in the rate of hemolysis of rabbit red blood cells, a model of cell injury, were observed with CLZnano dispersions. In addition, the intravenous injection of 0.6 mg/kg CLZnano dispersions does not affect the blood pressure and blood flow, and the 0.6 mg/kg CLZnano dispersions ameliorate neurological deficits and ischemic stroke in MCAO/reperfusion mice. It is possible that the CLZnano dispersions will provide effective therapy for ischemic stroke patients, and that injection preparations of lipophilic drugs containing drug nanoparticles expand their therapeutic usage. PMID:26690139

  18. Formulation and in vitro evaluation of a fast-disintegrating/sustained dual release bucoadhesive bilayer tablet of captopril for treatment of hypertension crises

    PubMed Central

    Abbasi, Sahar; Yousefi, Gholamhossein; Ansari, Ali Asghar; Mohammadi-Samani, Soliman

    2016-01-01

    Hypertension crisis is one of the main health problems and its effective treatment is of high importance. For this purpose, fast-disintegrating and sustained release formulations of captopril, as a drug of choice, were prepared using conventional mucoadhesive polymers hydroxypropyl methylcellulose (HPMC), sodium carboxymethyl cellulose (Na-CMC), hydroxypropyl cellulose (HPC), Carbopol 934 (CP934) and sodium alginate (Na-alg). The optimum sustained release formulations were selected based on mean dissolution time (MDT). The swellability and mucoadhesive properties of selected formulations were assessed and compared. A direct relationship between swelling and release rates/adhesiveness of sustained release formulations was observed. The results showed that formulations containing combination of CP934 and cellulose-based polymers had the highest swellability, sustainability and adhesion strength. These formulations prolonged drug release up to 8 h showing good fitness to Korsemeyer-Peppas model. Moreover, the adopted fast-disintegrating tablet could release up to 100% of drug within 3 min in oral pH. Finally, a dual fast-disintegrating/sustained release bucoadhesive bilayer tablet consisting of optimized formulations was prepared releasing 30% of the drug initially within 15 min and the remaining up to 8 h which could be considered as an appropriate formulation for the treatment of hypertension crises. PMID:27651807

  19. Desktop 3D printing of controlled release pharmaceutical bilayer tablets.

    PubMed

    Khaled, Shaban A; Burley, Jonathan C; Alexander, Morgan R; Roberts, Clive J

    2014-01-30

    Three dimensional (3D) printing was used as a novel medicine formulation technique for production of viable tablets capable of satisfying regulatory tests and matching the release of standard commercial tablets. Hydroxypropyl methylcellulose (HPMC 2208) (Methocel™ K100M Premium) and poly(acrylic acid) (PAA) (Carbopol(®) 974P NF) were used as a hydrophilic matrix for a sustained release (SR) layer. Hypromellose(®) (HPMC 2910) was used as a binder while microcrystalline cellulose (MCC) (Pharmacel(®) 102) and sodium starch glycolate (SSG) (Primojel(®)) were used as disintegrants for an immediate release (IR) layer. Commercial guaifenesin bi-layer tablets (GBT) were used as a model drug (Mucinex(®)) for this study. There was a favourable comparison of release of the active guaifenesin from the printed hydrophilic matrix compared with the commercially available GBT. The printed formulations were also evaluated for physical and mechanical properties such as weight variation, friability, hardness and thickness as a comparison to the commercial tablet and were within acceptable range as defined by the international standards stated in the United States Pharmacopoeia (USP). All formulations (standard tablets and 3D printed tablets) showed Korsmeyer-Peppas n values between 0.27 and 0.44 which indicates Fickian diffusion drug release through a hydrated HPMC gel layer. PMID:24280018

  20. Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes

    PubMed Central

    Chung, Wan-Ho; Kim, Sang-Ho; Kim, Hak-Sung

    2016-01-01

    In this work, silver nanowire inks with hydroxypropyl methylcellulose (HPMC) binders were coated on polyethylene terephthalate (PET) substrates and welded via flash white light and ultraviolet C (UV-C) irradiation to produce highly conductive transparent electrodes. The coated silver nanowire films were firmly welded and embedded into PET substrate successfully at room temperature and under ambient conditions using an in-house flash white light welding system and UV-C irradiation. The effects of light irradiation conditions (light energy, irradiation time, pulse duration, and pulse number) on the silver nanowire networks were studied and optimized. Bending fatigue tests were also conducted to characterize the reliability of the welded transparent conductive silver nanowire films. The surfaces of the welded silver nanowire films were analyzed via scanning electron microscopy (SEM), while the transmittance of the structures was measured using a spectrophotometer. From the results, a highly conductive and transparent silver nanowire film with excellent reliability could be achieved at room temperature under ambient conditions via the combined flash white light and UV-C irradiation welding process. PMID:27553755

  1. Formulation, optimization and in vitro-in vivo evaluation of febuxostat nanosuspension.

    PubMed

    Ahuja, Bhupesh K; Jena, Sunil K; Paidi, Sharan K; Bagri, Surbhi; Suresh, Sarasija

    2015-01-30

    The purpose of the present study was to develop febuxostat nanosuspension and investigate its effect on febuxostat solubility, dissolution rate and oral bioavailability. The wet media milling technique was adopted with a combination of hydroxypropyl methylcellulose (HPMC E3) and d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) as surface stabilizers for the generation of nanocrystals. Rotatable central composite design (CCD) was selected for nanosuspension optimization. The critical parameters were bead volume, milling time, polymer and surfactant concentrations; whereas particle size, polydispersity index (PDI) and zeta potential were taken as responses. The presence of crystallinity was confirmed by differential scanning calorimetry and powder X-ray diffraction. Scanning electron microscopy and transmission electron microscopy revealed small and uniform plate like morphology. A significant increase was observed in saturation solubility and dissolution rate of the optimized nanosuspension in all the pH conditions tested. Oral bioavailability of FXT and optimized FNC was evaluated in SD rats. The nanosuspension exhibited enhanced Cmax (26.48±2.71 vs. 19.85±2.96μg/mL) and AUC0-∞ (222.29±9.81 vs. 100.32±9.36μgh/mL) with a 221.6% increase in relative bioavailability. Thus, FNC is a viable approach to enhance the bioavailability of FXT, a BCS Class II drug.

  2. Pharmaceutical and pharmacokinetic evaluation of a novel fast dissolving film formulation of flupentixol dihydrochloride.

    PubMed

    Abdelbary, Ahmed; Bendas, Ehab R; Ramadan, Afaf A; Mostafa, Dalia A

    2014-12-01

    The objective of the present study was to develop fast dissolving oral film of the antipsychotic drug, flupentixol dihydrochloride, to enhance its bioavailability, optimize its therapeutic effect when used to treat depression with anxiety, and increase the convenience and compliance by the mentally ill, developmentally disable, elderly, and pediatric patients. Six formulae were prepared with different concentrations of water-soluble polymers vis. hydroxypropyl methylcellulose (HPMC E5) and carboxymethyl cellulose (CMC) by solvent casting technique. The prepared films were subjected to characterization for folding endurance, weight variations, thickness, disintegration time, drug release pattern, and drug content. Physical compatibility between the drug and excipients was guaranteed in the selected formulation (2% HPMC) by means of differential scanning calorimetry analysis and Fourier-transform infrared spectroscopy. This formulation revealed high stability after testing according to the International Conference on Harmonisation guidelines. In vivo studies based on single phase parallel design were carried out for the optimized formulation in healthy human volunteers. The concentration of flupentixol dihydrochloride in plasma samples was analyzed by a developed validated LC-MS/MS assay method and the pharmacokinetic parameters of the established formulation were compared with the commercially available oral tablets. Faster rate of absorption of flupentixol could be obtained from the oral film formulation and the relative bioavailability was found to be 151.06% compared to the marketed product. PMID:25142820

  3. In vitro and in vivo evaluation of amorphous solid dispersions generated by different bench-scale processes, using griseofulvin as a model compound.

    PubMed

    Chiang, Po-Chang; Cui, Yong; Ran, Yingqing; Lubach, Joe; Chou, Kang-Jye; Bao, Linda; Jia, Wei; La, Hank; Hau, Jonathan; Sambrone, Amy; Qin, Ann; Deng, Yuzhong; Wong, Harvey

    2013-04-01

    Drug polymer-based amorphous solid dispersions (ASD) are widely used in the pharmaceutical industry to improve bioavailability for poorly water-soluble compounds. Spray-drying is the most common process involved in the manufacturing of ASD material. However, spray-drying involves a high investment of material quantity and time. Lower investment manufacturing processes such as fast evaporation and freeze-drying (lyophilization) have been developed to manufacture ASD at the bench level. The general belief is that the overall performance of ASD material is thermodynamically driven and should be independent of the manufacturing process. However, no formal comparison has been made to assess the in vivo performance of material generated by different processes. This study compares the in vitro and in vivo properties of ASD material generated by fast evaporation, lyophilization, and spray-drying methods using griseofulvin as a model compound and hydroxypropyl methylcellulose acetate succinate as the polymer matrix. Our data suggest that despite minor differences in the formulation release properties and stability of the ASD materials, the overall exposure is comparable between the three manufacturing processes under the conditions examined. These results suggest that fast evaporation and lyophilization may be suitable to generate ASD material for oral evaluation. However, caution should be exercised since the general applicability of the present findings will need to be further evaluated. PMID:23456436

  4. Influence of cellulose derivative and ethylene glycol on optimization of lornoxicam transdermal formulation.

    PubMed

    Shahzad, Yasser; Khan, Qalandar; Hussain, Talib; Shah, Syed Nisar Hussain

    2013-10-01

    Lornoxicam containing topically applied lotions were formulated and optimized with the aim to deliver it transdermally. The formulated lotions were evaluated for pH, viscosity and in vitro permeation studies through silicone membrane using Franz diffusion cells. Data were fitted to linear, quadratic and cubic models and best fit model was selected to investigate the influence of variables, namely hydroxypropyl methylcellulose (HPMC) and ethylene glycol (EG) on permeation of lornoxicam from topically applied lotion formulations. The best fit quadratic model revealed that low level of HPMC and intermediate level of EG in the formulation was optimum for enhancing the drug flux across silicone membrane. FT-IR analysis confirmed absence of drug-polymer interactions. Selected optimized lotion formulation was then subjected to accelerated stability testing, sensatory perception testing and in vitro permeation across rabbit skin. The drug flux from the optimized lotion across rabbit skin was significantly better that that from the control formulation. Furthermore, sensatory perception test rated a higher acceptability while lotion was stable over stability testing period. Therefore, use of Box-Wilson statistical design successfully elaborated the influence of formulation variables on permeation of lornoxicam form topical formulations, thus, helped in optimization of the lotion formulation.

  5. Design and characterization of submicron formulation for a poorly soluble drug: the effect of Vitamin E TPGS and other solubilizers on skin permeability enhancement.

    PubMed

    Ghosh, Indrajit; Michniak-Kohn, Bozena

    2012-09-15

    In transdermal drug delivery systems (TDDS), it is a challenge to achieve stable and prolonged high permeation rates across the skin since the concentrations of the drug dissolved in the matrix have to be high in order to maintain zero order release kinetics. Several attempts have been reported to improve the permeability of poorly soluble drug compounds using supersaturated systems, however, due to thermodynamic challenges, there was a high tendency for the drug to nucleate immediately after formulating or even during storage. The present study focuses on the efficiency of drug crystals at the submicron/nano range in presence of different solubilizers to improve the permeation rate. Effect of several solubilizers, e.g. Pluronic F-127, Vitamin E TPGS, propylene glycol were studied on the submicron suspension systems of ibuprofen as a model drug. Various stabilizers such as hydroxylpropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) were examined to evaluate their crystal inhibitory effects on particle growth of the drug compound at submicron range. The overall permeation enhancement process through the skin seems to be influenced by the presence of solubilizers and also the presence of submicron drug crystal. The most promising stable formulation was developed with Vitamin E TPGS+HPMC submicron suspension, which produced higher permeation rate compared to other vehicles.

  6. In vitro release kinetics and bioavailability of gastroretentive cinnarizine hydrochloride tablet.

    PubMed

    Nagarwal, Ramesh C; Ridhurkar, Devendra N; Pandit, J K

    2010-03-01

    An oral sustained release dosage form of cinnarizine HCl (CNZ) based on gastric floating matrix tablets was studied. The release of CNZ from different floating matrix formulations containing four viscosity grades of hydroxypropyl methylcellulose, sodium alginate or polyethylene oxide, and gas-forming agent (sodium bicarbonate or calcium carbonate) was studied in simulated gastric fluid (pH 1.2). CNZ release data from the matrix tablets were analyzed kinetically using Higuchi, Peppas, Weibull, and Vergnaud models. From water uptake, matrix erosion studies, and drug release data, the overall release mechanism can be explained as a result of rapid hydration of polymer on the surface of the floating tablet and formation of a gel layer surrounding the matrix that controls water penetration into its center. On the basis of in vitro release data, batch HP1 (CNZ, HPMC-K100LV, SBC, LTS, and MgS) was subjected to bioavailability studies in rabbits and was compared with CNZ suspension. It was concluded that the greater bioavailability of HP1 was due to its longer retention in the gastric environment of the test animal. Batch no. HP1 of floating tablet in rabbits demonstrated that the floating tablet CNZ could be a 24-h sustained release formulation. PMID:20182827

  7. Application of three-dimensional culture systems to study mammalian spermatogenesis, with an emphasis on the rhesus monkey (Macaca mulatta)

    PubMed Central

    Huleihel, Mahmoud; Nourashrafeddin, Seyedmehdi; Plant, Tony M

    2015-01-01

    In vitro culture of spermatogonial stem cells (SSCs) has generally been performed using two-dimensional (2D) culture systems; however, such cultures have not led to the development of complete spermatogenesis. It seems that 2D systems do not replicate optimal conditions of the seminiferous tubules (including those generated by the SSC niche) and necessary for spermatogenesis. Recently, one of our laboratories has been able to induce proliferation and differentiation of mouse testicular germ cells to meiotic and postmeiotic stages including generation of sperm in a 3D soft agar culture system (SACS) and a 3D methylcellulose culture system (MCS). It was suggested that SACS and MCS form a special 3D microenvironment that mimics germ cell niche formation in the seminiferous tubules, and thus permits mouse spermatogenesis in vitro. In this review, we (1) provide a brief overview of the differences in spermatogenesis in rodents and primates, (2) summarize data related to attempts to generate sperm in vitro, (3) report for the first time formation of colonies/clusters of cells and differentiation of meiotic (expression of CREM-1) and postmeiotic (expression of acrosin) germ cells from undifferentiated spermatogonia isolated from the testis of prepubertal rhesus monkeys and cultured in SACS and MCS, and (4) indicate research needed to optimize 3D systems for in vitro primate spermatogenesis and for possible future application to man. PMID:26067870

  8. Molecular mobility in glassy dispersions.

    PubMed

    Mehta, Mehak; McKenna, Gregory B; Suryanarayanan, Raj

    2016-05-28

    Dielectric spectroscopy was used to characterize the structural relaxation in pharmaceutical dispersions containing nifedipine (NIF) and either poly(vinyl) pyrrolidone (PVP) or hydroxypropyl methylcellulose acetate succinate (HPMCAS). The shape of the dielectric response (permittivity versus log time) curve was observed to be independent of temperature. Thus, for the pure NIF as well as the dispersions, the validity of the time-temperature superposition principle was established. Furthermore, though the shape of the full dielectric response varied with polymer concentration, the regime related to the α- or structural relaxation was found to superimpose for the dispersions, though not with the response of the NIF itself. Hence, there is a limited time-temperature-concentration superposition for these systems as well. Therefore, in this polymer concentration range, calculation of long relaxation times in these glass-forming systems becomes possible. We found that strong drug-polymer hydrogen bonding interactions improved the physical stability (i.e., delayed crystallization) by reducing the molecular mobility. The strength of hydrogen bonding, structural relaxation time, and crystallization followed the order: NIF-PV P>NIF-HPMCAS>NIF. With an increase in polymer concentration, the relaxation times were longer indicating a decrease in molecular mobility. The temperature dependence of relaxation time, in other words fragility, was independent of polymer concentration. This is the first application of the superposition principle to characterize structural relaxation in glassy pharmaceutical dispersions.

  9. The effect of HPMCAS functional groups on drug crystallization from the supersaturated state and dissolution improvement.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu

    2014-04-10

    The inhibitory effect on drug crystallization in aqueous solution was evaluated using various forms of hydroxypropyl methylcellulose acetate succinate (HPMCAS). HPMCAS suppressed crystallization of carbamazepine (CBZ), nifedipine (NIF), mefenamic acid, and dexamethasone. The inhibition of drug crystallization mainly derived from molecular level hydrophobic interactions between the drug and HPMCAS. HPMCAS with a lower succinoyl substituent ratio strongly suppressed drug crystallization. The inhibition of crystallization was affected by pH, with the CBZ crystallization being inhibited at a higher pH due to the hydrophilization of HPMCAS derived from succinoyl ionization. The molecular mobility of CBZ in an HPMCAS solution was evaluated by 1D-(1)H NMR and relaxation time measurements. CBZ mobility was strongly suppressed in the HPMCAS solutions where strong inhibitory effects on CBZ crystallization were observed. The mobility suppression of CBZ in the HPMCAS solution was derived from intermolecular interactions between CBZ and HPMCAS leading to an inhibition of crystallization. The effect of HPMCAS on the drug dissolution rate was evaluated using an NIF/HPMCAS solid dispersion. The dissolution rate of NIF was increased when HPMCAS with a higher succinoyl substituent ratio was used.

  10. Low dose of methyltestosterone in ovariectomised rats improves baroreflex sensitivity without geno- and cytotoxicity.

    PubMed

    Terra, Denise G; de Lima, Ewelyne M; do Nascimento, Andrews M; Brasil, Girlandia A; Filete, Placielle F; Kalil, Ieda C; Lenz, Dominik; Endringer, Denise C; Bissoli, Nazaré S; de Andrade, Tadeu U

    2016-08-01

    This study evaluated the effects of the isolated use of a low dose of methyltestosterone (MT) on cardiovascular reflexes and hormonal levels and its geno- and cytotoxic safety in ovariectomized rats. Female Wistar rats were divided into four groups (n = 6), respectively: SHAM (received vehicle methylcellulose 0.5%), SHAM + MT (received MT 0.05 mg/kg), OVX (received vehicle), and OVX + MT (received MT). Twenty-one days after ovariectomy, treatment was given orally daily for 28 days. The Bezold-Jarisch reflex (BJR) was analyzed by measuring the bradycardic and hypotensive responses elicited by phenylbiguanide (PBG) administration. The baroreflex sensitivity (BRS) was evaluated by phenylephrine and sodium nitroprussite. Myocyte hypertrophy was determined by morphometric analysis of H&E stained slides. Biochemical data were analyzed, as well as micronucleus assay. MT improved BRS and increased testosterone values, but did not change estradiol in the OVX group. MT did not promote changes in mean arterial pressure, heart rate, BJR, serum concentrations of troponin I, weight and histopathology of the heart. MT was able to restore the BRS in OVX rats. The geno- and cytotoxic safety of the MT was demonstrated by the absence of an increase in the micronucleus (PCEMN) or change in the ratio between normochromatic erythrocytes and polychromatic erythrocytes (NCE/PCE). PMID:27148800

  11. Design of curcumin loaded cellulose nanoparticles for prostate cancer.

    PubMed

    Yallapu, Murali Mohan; Dobberpuhl, Mitch Ray; Maher, Diane Michele; Jaggi, Meena; Chauhan, Subhash Chand

    2012-01-01

    Prostate cancer (PC) is the most frequently diagnosed disease in men in the United States. Curcumin (CUR), a natural diphenol, has shown potent anti-cancer efficacy in various types of cancers. However, suboptimal pharmacokinetics and poor bioavailability limit its effective use in cancer therapeutics. Several successful CUR nanoformulations have recently been reported which improve upon these features; however, there is no personalized safe nanoformulation for prostate cancer. This study contributes two important scientific aspects of prostate cancer therapeutics. The first objective was to investigate the comparative cellular uptake and cytotoxicity evaluation of β-cyclodextrin (CD), hydroxypropyl methylcellulose (cellulose), poly(lactic-co-glycolic acid) (PLGA), magnetic nanoparticles (MNP), and dendrimer based CUR nanoformulations in prostate cancer cells. Curcumin loaded cellulose nanoparticles (cellulose-CUR) formulation exhibited the highest cellular uptake and caused maximum ultrastructural changes related to apoptosis (presence of vacuoles) in prostate cancer cells. Secondly, the anti-cancer potential of the cellulose-CUR formulation was evaluated in cell culture models using cell proliferation, colony formation and apoptosis (7-AAD staining) assays. In these assays, the cellulose-CUR formulation showed improved anti-cancer efficacy compared to free curcumin. Our study shows, for the first time, the feasibility of cellulose-CUR formulation and its potential use in prostate cancer therapy.

  12. Benznidazole Extended-Release Tablets for Improved Treatment of Chagas Disease: Preclinical Pharmacokinetic Study

    PubMed Central

    Campos, Michel Leandro; Rosa, Talita Atanazio; Padilha, Elias Carvalho; Alzate, Alejandro Henao; Rolim, Larissa Araújo; Rolim-Neto, Pedro José

    2016-01-01

    Benznidazole (BNZ) is the first-line drug for the treatment of Chagas disease. The drug is available in the form of immediate-release tablets for 100-mg (adult) and 12.5-mg (pediatric) doses. The drug is administered two or three times daily for 60 days. The high frequency of daily administrations and the long period of treatment are factors that significantly contribute to the abandonment of therapy, affecting therapeutic success. Accordingly, this study aimed to evaluate the preclinical pharmacokinetics of BNZ administered as extended-release tablets (200-mg dose) formulated with different types of polymers (hydroxypropyl methylcellulose K4M and K100M), compared to the tablets currently available. The studies were conducted with rabbits, and BNZ quantification was performed in plasma and urine by ultraperformance liquid chromatography methods previously validated. The bioavailability of BNZ was adequate in the administration of extended-release tablets; however, with the administration of the pediatric tablet, the bioavailability was lower than with other tablets, which showed that the clinical use of this formulation should be monitored. The pharmacokinetic parameters demonstrated that the extended-release tablets prolonged drug release from the pharmaceutical matrix and provided an increase in the maintenance of the drug concentration in vivo, which would allow the frequency of administration to be reduced. Thus, a relative bioavailability study in humans will be planned for implementation of a new product for the treatment of Chagas disease. PMID:26883698

  13. Statistical Design of Experiments on Fabrication of Bilayer Tablet of Narrow Absorption Window Drug: Development and In vitro characterisation.

    PubMed

    Jivani, R R; Patel, C N; Jivani, N P

    2012-07-01

    The current study involves the fabrication of oral bioadhesive bilayer matrices of narrow absorption window drug baclofen and the optimisation of their in vitro drug release and characterisation. Statistical design of experiments, a computer-aided optimisation technique, was used to identify critical factors, their interactions and ideal process conditions that accomplish the targeted response(s). A central composite design was employed to systematically optimise the drug delivery containing a polymer, filler and compression force. The values of ratio of different grades of hydroxypropyl methylcellulose, microcrystalline cellulose and compression force were varied to be fitted in design. Drug release at 1 h (Q1), 4 h (Q4), 8 h (Q8), 12 h (Q12), and hardness were taken as responses. Tablets were prepared by direct compression methods. The compressed tablets were evaluated for their hardness, weight variation, friability, content uniformity and diameter. Counter plots were drawn and optimum formulation was selected by desirability function. The formulations were checked for their ex vivo mucoadhesion. The experimental value of Q1, Q4, Q8, Q12 and hardness for check-point batch was found to be 31.64, 45.82, 73.27, 98.95% and 4.4 kg/cm(2), respectively. The release profile indicates Highuchi kinetics (Fickian transport) mechanism. The results of the statistical analysis of the data demonstrated significant interactions amongst the formulation variables, and the desirability function was demonstrated to be a powerful tool to predict the optimal formulation for the bilayer tablet.

  14. Enhanced bioavailability of buspirone from reservoir-based transdermal therapeutic system, optimization of formulation employing Box-Behnken statistical design.

    PubMed

    Gannu, Ramesh; Palem, Chinna Reddy; Yamsani, Shravan Kumar; Yamsani, Vamshi Vishnu; Yamsani, Madhusudan Rao

    2010-06-01

    The purpose of the present study was to develop and optimize reservoir-based transdermal therapeutic system (TTS) for buspirone (BUSP), a low bioavailable drug. A three-factor, three-level Box-Behnken design was employed to optimize the TTS. Hydroxypropyl methylcellulose, D: -limonene and propylene glycol were varied as independent variables; cumulative amount permeated across rat abdominal skin in 24 h, flux and lag time were selected as dependent variables. Mathematical equations and response surface plots were used to relate the dependent and independent variables. The statistical validity of polynomials was established, and optimized formulation factors were selected by feasibility and grid search. Validation of the optimization study with seven confirmatory runs indicated high degree of prognostic ability of response surface methodology. BUSP-OPT (optimized formulation) showed a flux 104.6 microg cm(-2) h(-1), which could meet target flux. The bioavailability studies in rabbits showed that about 2.65 times improvement (p < 0.05) in bioavailability, after transdermal administration of BUSP-OPT compared to oral solution. The ex vivo-in vivo correlation was found to have biphasic pattern and followed type A correlation. Reservoir-based TTS for BUSP was developed and optimized using Box-Behnken statistical design and could provide an effective treatment in the management of anxiety.

  15. Development of long-acting bioadhesive vaginal gels of oxybutynin: formulation, in vitro and in vivo evaluations.

    PubMed

    Tuğcu-Demiröz, Fatmanur; Acartürk, Füsun; Erdoğan, Deniz

    2013-11-30

    Overactive bladder (OAB) and vaginal dryness are common problems after menopause. Oxybutynin (OXY) is an antimuscarinic agent that has been available for more than 30 years in the treatment of OAB patients. The aim of the work reported in this paper was to develop long acting mucoadhesive gel formulations of OXY and to investigate their effects on blood levels compared to those of oral OXY immediate release tablets, in rabbits. Mucoadhesive gels were prepared with chitosan, hydroxypropyl methylcellulose (HPMC K100M) and Poloxamer 407 (Pluronic F 127). The physicopharmaceutical properties of gels were evaluated. The gel formulation which was prepared with HPMC K100M, exhibited the highest viscosity, the greatest adhesiveness, cohesiveness and mucoadhesion values. The formulation which was prepared from HPMC K100M showed suitable permeation characteristics across the vaginal mucosa. Comparative bioavailability studies were carried out on rabbits with vaginal HPMC gel, vaginal chitosan gel, vaginal OXY solution and commercially available oral Üropan tablets. It was concluded that the highest AUC and relative bioavailability values were obtained for the bioadhesive vaginal gel formulation prepared with HPMC K100M. Therefore, the mucoadhesive vaginal gels of OXY can be a promising and innovative alternative therapeutic system for the treatment of OAB. It can be safely used in cases of overactive bladder and as well as vaginal dryness after menopause.

  16. Bringing comfort to the masses: a novel evaluation of comfort agent solution properties.

    PubMed

    White, Charles J; Thomas, Calvin R; Byrne, Mark E

    2014-04-01

    Ocular comfort agents are molecules that relieve ocular discomfort by augmenting characteristics of the tear film to stabilize and retain tear volume and lubricate the ocular surface. While a number of clinical comparisons between ocular comfort agent solutions are available, very little work has been done correlating the properties of specific comfort agents (species, molecular weight, and water retention) and solution properties (concentration, viscosity, zero shear viscosity, and surface tension) to the performance and effectiveness of comfort agent solutions. In this work, comfort-promoting properties related strongly to comfort agent concentration and molecular weight, the first objective demonstration of this relationship across diverse comfort agent species and molecular weights. The comfort agents with the greatest comfort property contributions (independent of specific molecular weight and concentration considerations) were hyaluronic acid (HA), hydroxypropyl methylcellulose (HPMC), and carboxymethylcellulose (CMC), respectively. The observed, empirical relationships between comfort property contribution and comfort agent species, solution properties, comfort agent molecular weight, and solution concentration was used to develop novel comfort agent index values. The comfort agent index values provided much insight and understanding into the results of experimental studies and/or clinical trials and offer potential resolution to numerous conflicting reports within the literature by accounting for the difference in comfort agent performance due to molecular weight and concentration of comfort agents. The index values provide the first objective, experimental validation and explanation of numerous general trends suggested by clinical data.

  17. Enhanced physical stabilization of fenofibrate nanosuspensions via wet co-milling with a superdisintegrant and an adsorbing polymer.

    PubMed

    Azad, Mohammad; Afolabi, Afolawemi; Bhakay, Anagha; Leonardi, Jonathan; Davé, Rajesh; Bilgili, Ecevit

    2015-08-01

    Drug nanoparticles in suspensions can form aggregates leading to physical instability, which is traditionally mitigated using soluble polymers and surfactants. The aim of this paper was to explore common superdisintegrants, i.e., sodium starch glycolate (SSG), croscarmellose sodium (CCS), and crospovidone (CP), as novel class of dispersants for enhanced stabilization of fenofibrate (FNB), a model BCS Class II drug, suspensions. FNB was wet-milled with superdisintegrants along with hydroxypropyl methylcellulose (HPMC), a soluble adsorbing polymer, in a stirred media mill. For comparison, FNB was also milled in the presence of HPMC and/or SDS (sodium dodecyl sulfate) without superdisintegrants. Laser diffraction, scanning electron microscopy, viscometry, differential scanning calorimetry, and powder X-ray diffraction were used to characterize the suspensions. The results show that 2% HPMC along with 1% SSG or 1% CCS mitigated the aggregation of FNB nanoparticles significantly similar to the use of either 5% HPMC or 1% HPMC-0.075% SDS, whereas CP was not effective due to its low swelling capacity. CCS/SSG enhanced steric-kinetic stabilization of the FNB suspensions owing to their high swelling capacity, viscosity enhancement, and physical barrier action. Overall, this study provides a mechanistic basis for a novel method of formulating surfactant-free drug nanosuspensions with co-milled superdisintegrants. PMID:26079832

  18. Nanoscale Concentration Quantification of Pharmaceutical Actives in Amorphous Polymer Matrices by Electron Energy-Loss Spectroscopy.

    PubMed

    Ricarte, Ralm G; Lodge, Timothy P; Hillmyer, Marc A

    2016-07-26

    We demonstrated the use of electron energy-loss spectroscopy (EELS) to evaluate the composition of phenytoin:hydroxypropyl methylcellulose acetate succinate (HPMCAS) spin-coated solid dispersions (SDs). To overcome the inability of bright-field and high-angle annular dark-field TEM imaging to distinguish between glassy drug and polymer, we used the π-π* transition peak in the EELS spectrum to detect phenytoin within the HPMCAS matrix of the SD. The concentration of phenytoin within SDs of 10, 25, and 50 wt % drug loading was quantified by a multiple least-squares analysis. Evaluating the concentration of 50 different regions in each SD, we determined that phenytoin and HPMCAS are intimately mixed at a length scale of 200 nm, even for drug loadings up to 50 wt %. At length scales below 100 nm, the variance of the measured phenytoin concentration increases; we speculate that this increase is due to statistical fluctuations in local concentration and chemical changes induced by electron irradiation. We also performed EELS analysis of an annealed 25 wt % phenytoin SD and showed that the technique can resolve concentration differences between regions that are less than 50 nm apart. Our findings indicate that EELS is a useful tool for quantifying, with high accuracy and sub-100 nm spatial resolution, the composition of many pharmaceutical and soft matter systems. PMID:27419264

  19. Enteric-coated capsule containing β-galactosidase-loaded polylactic acid nanocapsules: enzyme stability and milk lactose hydrolysis under simulated gastrointestinal conditions.

    PubMed

    He, Hongjun; Zhang, Xueting; Sheng, Yan

    2014-11-01

    In order to protect peroral β-galactosidase from being degraded and hydrolyse milk lactose efficiently in the environments of gastrointestinal tract, a double-capsule delivery system composed of enteric-coated capsule and polylactic acid (PLA) nanocapsules (NCs) was developed for encapsulation of β-galactosidase. β-galactosidase-loaded PLA NCs in the size range of 100-200 nm were prepared by a modified w1/o/w2 technique. During the encapsulation process, dichloromethane/ethyl acetate (1 : 1, v/v) as the solvent composition, high-pressure homogenisation (150 bar, 3 min) as the second emulsification method and polyvinyl alcohol or Poloxamer 188 as a stabiliser in the inner phase could efficiently improve the activity retention of β-galactosidase (>90%). Subsequently, the prepared NCs were freeze-dried and filled in a hydroxypropyl methylcellulose phthalate (HP55)-coated capsule. In vitro results revealed that the HP55-coated capsule remained intact in the simulated gastric fluid and efficiently protected the nested β-galactosidase from acidic denaturation. Under the simulated intestinal condition, the enteric coating dissolved rapidly and released the β-galactosidase-loaded PLA NCs, which exhibited greater stability against enzymatic degradation and higher hydrolysis ratio (∼100%) towards milk lactose than the free β-galactosidase. These results suggest that this double-capsule delivery system represents promising candidate for efficient lactose hydrolysis in the gastrointestinal tract.

  20. Development and characterization of in situ oral gel of spiramycin.

    PubMed

    Sharma, Avinash; Sharma, Jyoti; Kaur, Rupinder; Saini, Vinay

    2014-01-01

    The present investigation deals with the optimization, formulation, and characterization of oral in situ gel of spiramycin. Sodium alginate and hydroxypropyl methylcellulose were used as cross-linking and viscosifying agents, respectively. Sodium bicarbonate was used as a floating agent. In preformulation studies, the melting point, pH, and partition coefficient were found to be 133 °C, 9.5, and 0.193, respectively. The drug had retention time at around 2.65 minutes in high performance liquid chromatography (HPLC). During compatibility studies of drug with all polymers, we observed that there were no changes in the FTIR spectra of a mixture of drug and polymers. All the formulations showed good pourability. Floating time and total floating time were ~30 sec and >12 hours, respectively. During in vitro drug release studies, the drug was released from the formulation around 80-100% for 12-16 hrs. In TEM analysis, we found that the drug molecules were well entrapped in the polymer and the drug was released slowly for up to 12 hrs. In these studies, we found that the concentration of sodium alginate and HPMC had significant influence on floating lag time, gelling capacity, and cumulative percentage drug release. During antimicrobial studies, we found that the formulation containing spiramycin showed good zone of inhibition against different microbial strains (Staphylococcus aureus and Escherichia coli). PMID:25050376

  1. Novel jojoba oil-based emulsion gel formulations for clotrimazole delivery.

    PubMed

    Shahin, Mostafa; Hady, Seham Abdel; Hammad, Mohammed; Mortada, Nahed

    2011-03-01

    Jojoba oil-based emulgel formulations were prepared using different concentrations of various gelling agents, such as hydroxypropyl methylcellulose (HPMC) and Carbopol 934 P and combination of both. The prepared emulgels were physically evaluated for their stability after temperature cycle test, centrifugation and long-term shelf storage for 1 year at room temperature. The in vitro release at 37 °C was studied to define the effect of the concentration and type of the gelling agent. A comparison between the formulated emulgels and two commercially available products, Candistan® and Canesten® creams, was carried out to judge their efficacy and stability. The prepared emulgels exhibited non-Newtonian shear thinning behavior with little or no thixotropy. Four emulgels showed excellent stability as they demonstrated consistent rheological model under different treatment conditions. The in vitro release test showed variation in the extent of percent drug released. The drug release from the commercial preparation was lower than some of the prepared emulgel formulae. One formula containing combination of the two gelling agents (HPMC and Carbopol 934 P), showed excellent stability and high extent of clotrimazole release was microbiologically evaluated against Candida albicans using cylinder and plate method. The selected formula showed superior antimycotic activity compared to the commercially available formulation. Further in vivo animal studies for the obtained stable formula is recommended. PMID:21225383

  2. Formulation, physicochemical characterization, and in vitro study of chitosan/HPMC blends-based herbal blended patches.

    PubMed

    Suksaeree, Jirapornchai; Monton, Chaowalit; Madaka, Fameera; Chusut, Tun; Saingam, Worawan; Pichayakorn, Wiwat; Boonme, Prapaporn

    2015-02-01

    The current work prepared chitosan/hydroxypropyl methylcellulose (HPMC) blends and studied the possibility of chitosan/HPMC blended patches for Zingiber cassumunar Roxb. The blended patches without/with crude Z. cassumunar oil were prepared by homogeneously mixing the 3.5% w/v of chitosan solution and 20% w/v of HPMC solution, and glycerine was used as plasticizer. Then, they were poured into Petri dish and produced the blended patches in hot air oven at 70 ± 2°C. The blended patches were tested and evaluated by the physicochemical properties: moisture uptake, swelling ratio, erosion, porosity, Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction, and photographed the surface and cross-section morphology under SEM technique. Herbal blended patches were studied by the in vitro release and skin permeation of active compound D. The blended patches could absorb the moisture and became hydrated patches that occurred during the swelling of blended patches. They were eroded and increased by the number of porous channels to pass through out for active compound D. In addition, the blended patches indicated the compatibility of the blended ingredients and homogeneous smooth and compact. The blended patches made from chitosan/HPMC blends provide a controlled release and skin permeation behavior of compound D. Thus, the blended patches could be suitably used for herbal medicine application.

  3. Viscosity-mediated negative food effect on oral absorption of poorly-permeable drugs with an absorption window in the proximal intestine: In vitro experimental simulation and computational verification.

    PubMed

    Cvijić, Sandra; Parojčić, Jelena; Langguth, Peter

    2014-09-30

    Concomitant food intake can diminish oral absorption of drugs with limited permeability and an absorption window in the proximal intestine, due to viscosity-mediated decrease in dosage form disintegration time and drug dissolution rate. Three poorly-permeable drugs (atenolol, metformin hydrochloride, and furosemide) exhibiting negative food effect, and one highly-soluble and highly-permeable (metoprolol tartrate), serving as a negative control, were selected for the study. In vitro and in silico tools were used to evaluate the influence of media viscosity on drug bioperformance under fasted and fed conditions. The obtained results demonstrated that increased medium viscosity in the presence of food is one of the key factors limiting oral absorption of drugs with limited permeability and absorption restricted to the upper parts of the intestine, while having negligible effect on pharmacokinetic profile of drugs with pH- and site-independent absorption. Dissolution medium pH 4.6 with the addition of hydroxypropyl methylcellulose was suggested to simulate postprandial gastric conditions for drugs whose solubility under these conditions is not the limiting factor for drug absorption. In addition, drug formulation was found to be an interfering factor in relation to the impact of medium viscosity on the rate and extent of drug absorption.

  4. Influence of neutron activation factors on matrix tablets for site specific delivery to the colon.

    PubMed

    Ahrabi, S F; Heinämäki, J; Sande, S A; Graffner, C

    2000-05-01

    The impact of the neutron activation procedure, i.e. incorporation of samarium oxide (Sm(2)O(3)) and neutron irradiation, on the compression properties (including the crushing strength) and in vitro dissolution of potential colonic delivery systems based on matrix tablets of amidated pectin (Am.P) or two types of hydroxypropyl methylcellulose (HPMC) was investigated. The neutron activation factors did not influence the compression properties of the tablets. Replacement of magnesium stearate with samarium stearate in directly compressed Am.P tablets to achieve both radiolabelling and lubrication resulted in a greater extent of concentration-dependent reduction of the crushing strength. Dissolution tests demonstrated that irradiation increased the release of the model drug ropivacaine from the tablets. The extent of this increase was unexpectedly low considering the previously observed degradation of the polymer expressed as an irradiation-induced viscosity reduction in solutions prepared from the polymers. Delayed-release coating with Eudragit L 100 protected the HPMC tablets against the release-increasing effect of irradiation until the late phases of release. Sm(2)O(3) retarded the release to a varying extent depending on particle characteristics. Incorporation of Sm(2)O(3) in the coating layer did not influence the release. However, one-third of the radioactivity leached from the coating within 60 min in 0.1 M HCl. PMID:10767600

  5. Synthesis and characterization of novel bactericidal Cu/HPMC BNCs using chemical reduction method for food packaging.

    PubMed

    Ebrahimiasl, Saeideh; Rajabpour, Ataollah

    2015-09-01

    In this research copper nanoparticles (Cu NPs) were incorporated in the biodegradable hydroxypropyl methylcellulose (HPMC) matrix using the simple and low cost chemical reduction method for application as food packaging material. The properties of Cu/HPMC bionanocomposites (BNCs) were studied as a function of the CuSO4 concentration. Surface morphology of the film was investigated by scanning electron microscopy. Mechanical analysis and water vapor barrier properties of HPMC/Cu nanocomposites were analyzed. It was observed that mechanical and water vapor barrier properties of the films were improved by the concentration of CuSO4. The antibacterial activity of HPMC/Cu thin films were evaluated based on the diameter of inhibition zone in a disk diffusion test against Gram positive bacteria, ie, Streptococus A., S. epidermidis, S.aureus , B.cereus and Gram negative bacteria, ie, E. coli, E. faecalis, Salmonella, P. aeruginosa using Mueller Hinton agar at different concentration of CuSO4. The results revealed a greater bactericidal effectiveness for nanocomposite films containing 5 % of CuSO4. Packages prepared from HPMC/Cu nanocomposite films were used for meat packaging. The films were filled with meat and then stored at 4 °C. Microbial stability of the meat was evaluated after 3, 7, 10 and 15 days of storage. The results showed that microbial growth rate significantly reduced as a result of using this nanocomposite packaging material.

  6. Newly Developed Topical Cefotaxime Sodium Hydrogels: Antibacterial Activity and In Vivo Evaluation

    PubMed Central

    Zakaria, Azza S.; Afifi, Samar A.; Elkhodairy, Kadria A.

    2016-01-01

    In an attempt to reach better treatment of skin infections, gel formulations containing Cefotaxime (CTX) were prepared. The gel was formulated using Carbopol 934 (C934), Hydroxypropyl Methylcellulose 4000 (HPMC 4000), Carboxymethylcellulose Sodium (Na CMC), Pectin (PEC), Xanthan Gum (XG), or Guar Gum (GG). Thirteen different formulas were prepared and characterized physically in terms of color, syneresis, spreadability, pH, drug content, and rheological properties. Drug-excipients compatibility studies were confirmed by FTIR and then in vitro drug release study was conducted. In vitro and in vivo antibacterial activities of CTX were studied against wound pathogens such as, Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa), using either pure drug or Fucidin® cream as control. F13 provides better spreadability compared to F1 (XG) or F11 (HPMC). Moreover, the release of the drug from hydrogel F13 containing C934 was slower and sustained for 8 h. Stability study revealed that, upon storage, there were no significant changes in pH, drug content, and viscosity of the gels. Also, F13 showed the larger inhibition zone and highest antibacterial activity among other formulations. Histological analysis demonstrated that after single treatment with F13 gel formulation, a noticeable reduction in microbial bioburden occurred in case of both Gram positive and Gram negative bacterial isolates. PMID:27314033

  7. Drug release kinetics from tablet matrices based upon ethylcellulose ether-derivatives: a comparison between different formulations.

    PubMed

    Khan, Gul Majid; Meidan, Victor M

    2007-06-01

    The present study involved the preparation of ibuprofen-containing controlled release tablets formulated from either the established granular product, Ethocel Standard Premium, or the novel finely-milled product, Ethocel Standard FP Premium. The tablets were prepared by either direct compression or wet granulation. The aim was to explore the influence of different parameters on the kinetics and mechanisms of ibuprofen release from the tablets. These parameters were; polymer particle size, polymer molecular weight, drug : polymer ratio, preparation methodology and partial replacement of lactose with the coexcipient-hydroxypropyl methylcellulose (HPMC). The derived drug release data were analyzed with reference to various established mathematical models while the f2-metric technique was used in order to determine profile equivalency. It was found that drug release was mostly modulated by several interactive factors apparently exhibiting crosstalk. Nevertheless, it was possible to identify some simple rules. Incorporation of Ethocel FP polymers and application of the wet granulation technique facilitated greater efficiency in controlling ibuprofen release behavior from the matrices. Furthermore, drug release profiles could be modulated by partial substitution of the primary excipient with HPMC. Polymer concentrations and particle sizes, rather than viscosity grade, were found to be decisive factors in controlling drug release rates. PMID:17613027

  8. Newly Developed Topical Cefotaxime Sodium Hydrogels: Antibacterial Activity and In Vivo Evaluation.

    PubMed

    Zakaria, Azza S; Afifi, Samar A; Elkhodairy, Kadria A

    2016-01-01

    In an attempt to reach better treatment of skin infections, gel formulations containing Cefotaxime (CTX) were prepared. The gel was formulated using Carbopol 934 (C934), Hydroxypropyl Methylcellulose 4000 (HPMC 4000), Carboxymethylcellulose Sodium (Na CMC), Pectin (PEC), Xanthan Gum (XG), or Guar Gum (GG). Thirteen different formulas were prepared and characterized physically in terms of color, syneresis, spreadability, pH, drug content, and rheological properties. Drug-excipients compatibility studies were confirmed by FTIR and then in vitro drug release study was conducted. In vitro and in vivo antibacterial activities of CTX were studied against wound pathogens such as, Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa), using either pure drug or Fucidin® cream as control. F13 provides better spreadability compared to F1 (XG) or F11 (HPMC). Moreover, the release of the drug from hydrogel F13 containing C934 was slower and sustained for 8 h. Stability study revealed that, upon storage, there were no significant changes in pH, drug content, and viscosity of the gels. Also, F13 showed the larger inhibition zone and highest antibacterial activity among other formulations. Histological analysis demonstrated that after single treatment with F13 gel formulation, a noticeable reduction in microbial bioburden occurred in case of both Gram positive and Gram negative bacterial isolates.

  9. Scintigraphic evaluation of colon targeting pectin-HPMC tablets in healthy volunteers.

    PubMed

    Hodges, L A; Connolly, S M; Band, J; O'Mahony, B; Ugurlu, T; Turkoglu, M; Wilson, C G; Stevens, H N E

    2009-03-31

    The in vivo evaluation of colon-targeting tablets was conducted in six healthy male volunteers. A pectin-hydroxypropyl methylcellulose coating was compressed onto core tablets labelled with 4MBq (99m)Tc-DTPA. The tablets released in the colon in all subjects; three in the ascending colon (AC) and three in the transverse colon (TC). Tablets that released in the TC had reached the AC before or just after food (Group A). The other three tablets released immediately upon AC entry at least 1.5h post-meal (Group B). Release onset for Group B was earlier than Group A (343min vs 448min). Group B tablets exhibited a clear residence period at the ileocaecal junction (ICJ) which was not observed in Group A. Prolonged residence at the ICJ is assumed to have increased hydration of the hydrogel layer surrounding the core tablet. Forces applied as the tablets progressed through the ICJ may have disrupted the hydrogel layer sufficiently to initiate radiolabel release. Conversely, Group A tablets moved rapidly through the AC to the TC, possibly minimising contact times with water pockets. Inadequate prior hydration of the hydrogel layer preventing access of pectinolytic enzymes and reduced fluid availability in the TC may have retarded tablet disintegration and radiolabel diffusion.

  10. Effects of Three Different Fibrates on Intrahepatic Cholestasis Experimentally Induced in Rats

    PubMed Central

    El-Sisi, Alaa; Hegazy, Sahar

    2013-01-01

    Background. Activation of PPARα modulates cholesterol metabolism and suppresses bile acid synthesis. This study aims to evaluate the effect of PPARα agonists, fenofibrate, bezafibrate, and gemfibrozil, on acute cholestasis induced by ethinylestradiol (EE) plus chlorpromazine (CPZ) in rats. Method. 100 male albino rats (150–200 gm) were divided randomly into 10 equal groups. Control group received 1% methylcellulose vehicle; disease group received CPZ plus EE for 5 consecutive days; four groups received either ursodeoxycholic acid, fenofibrate, bezafibrate, or gemfibrozil for 7 days; 2 days before EE + CPZ, three other groups received one of the three fibrates after GW6471, a selective PPARα antagonist in addition to EE + CPZ. The final group received GW6471 alone. Results. The three fibrates showed marked reduction (P < 0.05) in serum levels of ALP, GGT, ALT, AST, total bile acids, bilirubin, TNFα, and IL-1β and in hepatic malondialdehyde level as well as a significant increase in bile flow rate (P < 0.05) in addition to improvements in histopathological parameters compared to diseased group. In groups which received GW6471, these effects were completely abolished with fenofibrate and partially blocked with bezafibrate and gemfibrozil. Conclusion. Short-term administration of fibrates to EE/CPZ-induced intrahepatic cholestatic rats exerted beneficial effects on hepatocellular damage and apoptosis. Fenofibrate anticholestatic effect was solely PPARα dependent while other mechanisms played part in bezafibrate and gemfibrozil actions. PMID:23997763

  11. Comparative studies for ciprofloxacin hydrochloride pre-formed gels and thermally triggered (in situ) gels: in vitro and in vivo appraisal using a bacterial keratitis model in rabbits.

    PubMed

    Abdelkader, Hamdy; Mansour, Heba F

    2015-06-01

    This article reports on comparative in vitro characterization and in vivo evaluation of pre-formed cellulose-based gels, methylcellulose (MC) and carboxymethylcellulose sodium (CMC) and in situ gel-forming Pluronic F127 (PL) for ocular delivery of ciprofloxacin hydrochloride (Cipro) by using a bacterial keratitis model and histological corneal examination. Drug-polymer interactions were studied employing thermal analysis. Further, different concentrations (1-3% w/w or 10-30% w/w) of gels depending on the nature of the polymer used were prepared, characterized for clarity, pH, rheology and in vitro release. Selected gel formulations were evaluated for ocular delivery to Staphylococcus aureus-infected rabbit corneas; and ocular toxicity through histological examination of the cornea. The results demonstrated no Cipro-polymers physicochemical interactions and pseudoplastic flow for all gels used at 35 °C. Both polymer concentrations and drug solubility in the gels are dominantly the rate-determining factors for in vitro drug release. The corneal healing rate for all gel-based formulations was significantly faster (p < 0.05) than that for Cipro solution-treated rabbits. PL-based gel induced significant swelling/edema of the corneal stroma, compared with MC- and CMC-based gels. In conclusion, cellulose-based polymers have superior ocular tolerability/dramatically less irritant; and superior efficacy with more convenient administration compared with PL and Cipro solution, respectively.

  12. Astringency reduction in red wine by whey proteins.

    PubMed

    Jauregi, Paula; Olatujoye, Jumoke B; Cabezudo, Ignacio; Frazier, Richard A; Gordon, Michael H

    2016-05-15

    Whey is a by-product of cheese manufacturing and therefore investigating new applications of whey proteins will contribute towards the valorisation of whey and hence waste reduction. This study shows for the first time a detailed comparison of the effectiveness of gelatin and β-lactoglobulin (β-LG) as fining agents. Gelatin was more reactive than whey proteins to tannic acid as shown by both the astringency method (with ovalbumin as a precipitant) and the tannins determination method (with methylcellulose as a precipitant). The two proteins showed similar selectivity for polyphenols but β-LG did not remove as much catechin. The fining agent was removed completely or to a trace level after centrifugation followed by filtration which minimises its potential allergenicity. In addition, improved understanding of protein-tannin interactions was obtained by fluorescence, size measurement and isothermal titration calorimetry (ITC). Overall this study demonstrates that whey proteins have the potential of reducing astringency in red wine and can find a place in enology.

  13. Human adipose CD34+ CD90+ stem cells and collagen scaffold constructs grafted in vivo fabricate loose connective and adipose tissues.

    PubMed

    Ferraro, Giuseppe A; De Francesco, Francesco; Nicoletti, Gianfranco; Paino, Francesca; Desiderio, Vincenzo; Tirino, Virginia; D'Andrea, Francesco

    2013-05-01

    Stem cell based therapies for the repair and regeneration of various tissues are of great interest for a high number of diseases. Adult stem cells, instead, are more available, abundant and harvested with minimally invasive procedures. In particular, mesenchymal stem cells (MSCs) are multi-potent progenitors, able to differentiate into bone, cartilage, and adipose tissues. Human adult adipose tissue seems to be the most abundant source of MSCs and, due to its easy accessibility; it is able to give a considerable amount of stem cells. In this study, we selected MSCs co-expressing CD34 and CD90 from adipose tissue. This stem cell population displayed higher proliferative capacity than CD34(-) CD90(-) cells and was able to differentiate in vitro into adipocytes (PPARγ(+) and adiponectin(+)) and endothelial cells (CD31(+) VEGF(+) Flk1(+)). In addition, in methylcellulose without VEGF, it formed a vascular network. The aim of this study was to investigate differentiation potential of human adipose CD34(+) /CD90(+) stem cells loaded onto commercial collagen sponges already used in clinical practice (Gingistat) both in vitro and in vivo. The results of this study clearly demonstrate that human adult adipose and loose connective tissues can be obtained in vivo, highlighting that CD34(+) /CD90 ASCs are extremely useful for regenerative medicine.

  14. A novel multivariate approach using science-based calibration for direct coating thickness determination in real-time NIR process monitoring.

    PubMed

    Möltgen, C-V; Herdling, T; Reich, G

    2013-11-01

    This study demonstrates an approach, using science-based calibration (SBC), for direct coating thickness determination on heart-shaped tablets in real-time. Near-Infrared (NIR) spectra were collected during four full industrial pan coating operations. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film up to a film thickness of 28 μm. The application of SBC permits the calibration of the NIR spectral data without using costly determined reference values. This is due to the fact that SBC combines classical methods to estimate the coating signal and statistical methods for the noise estimation. The approach enabled the use of NIR for the measurement of the film thickness increase from around 8 to 28 μm of four independent batches in real-time. The developed model provided a spectroscopic limit of detection for the coating thickness of 0.64 ± 0.03 μm root-mean square (RMS). In the commonly used statistical methods for calibration, such as Partial Least Squares (PLS), sufficiently varying reference values are needed for calibration. For thin non-functional coatings this is a challenge because the quality of the model depends on the accuracy of the selected calibration standards. The obvious and simple approach of SBC eliminates many of the problems associated with the conventional statistical methods and offers an alternative for multivariate calibration.

  15. Fast drying of biocompatible polymer films loaded with poorly water-soluble drug nano-particles via low temperature forced convection.

    PubMed

    Susarla, Ramana; Sievens-Figueroa, Lucas; Bhakay, Anagha; Shen, Yueyang; Jerez-Rozo, Jackeline I; Engen, William; Khusid, Boris; Bilgili, Ecevit; Romañach, Rodolfo J; Morris, Kenneth R; Michniak-Kohn, Bozena; Davé, Rajesh N

    2013-10-15

    Fast drying of nano-drug particle laden strip-films formed using water-soluble biocompatible polymers via forced convection is investigated in order to form films having uniform drug distribution and fast dissolution. Films were produced by casting and drying a mixture of poorly water soluble griseofulvin (GF) nanosuspensions produced via media milling with aqueous hydroxypropyl methylcellulose (HPMC E15LV) solutions containing glycerin as a plasticizer. The effects of convective drying parameters, temperature and air velocity, and film-precursor viscosity on film properties were investigated. Two major drying regimes, a constant rate period as a function of the drying conditions, followed by a single slower falling rate period, were observed. Films dried in an hour or less without any irreversible aggregation of GF nanoparticles with low residual water content. Near-infrared chemical imaging (NIR-CI) and the content uniformity analysis indicated a better drug particle distribution when higher viscosity film-precursors were used. Powder X-ray diffraction showed that the GF in the films retained crystallinity and the polymorphic form. USP IV dissolution tests showed immediate release (~20 min) of GF. Overall, the films fabricated from polymer-based suspensions at higher viscosity dried at different conditions exhibited similar mechanical properties, improved drug content uniformity, and achieved fast drug dissolution.

  16. Polymer strip films as a robust, surfactant-free platform for delivery of BCS Class II drug nanoparticles.

    PubMed

    Krull, Scott M; Susarla, Ramana; Afolabi, Afolawemi; Li, Meng; Ying, Ye; Iqbal, Zafar; Bilgili, Ecevit; Davé, Rajesh N

    2015-07-15

    The robustness of the polymer strip film platform to successfully deliver a variety of BCS Class II drug nanoparticles without the need for surfactant while retaining positive characteristics such as nanoparticle redispersibility and fast dissolution is demonstrated. Fenofibrate (FNB), griseofulvin (GF), naproxen (NPX), phenylbutazone (PB), and azodicarbonamide (AZD) were considered as model poorly water-soluble drugs. Their aqueous nanosuspensions, produced via wet stirred media milling, were mixed with hydroxypropyl methylcellulose solution containing glycerin as plasticizer, followed by casting and drying to form films. For the purpose of comparison, sodium dodecyl sulfate (SDS) was used as surfactant, but was found to be unnecessary for achieving fast dissolution (t80 between 18 and 28 min) for all five drugs. Interestingly, SDS was required for the full recovery of nanoparticles for PB, yet lack of it did not impact the dissolution. Interactions between drug and polymer were investigated with FTIR spectroscopy whereas drug crystallinity within the film was investigated via Raman spectroscopy. Films for all drugs, even for very small samples, exhibited excellent content uniformity (RSD <4%) regardless of use of surfactant. Overall, these results demonstrate the novelty and robustness of the polymer strip film platform for fast release of poorly water-soluble drugs without requiring any surfactants.

  17. Electrodeless electrohydrodynamic drop-on-demand encapsulation of drugs into porous polymer films for fabrication of personalized dosage units.

    PubMed

    Elele, Ezinwa; Shen, Yueyang; Susarla, Ramana; Khusid, Boris; Keyvan, Golshid; Michniak-Kohn, Bozena

    2012-07-01

    Noncontact drop-on-demand (DOD) dosing is a promising strategy for manufacturing of personalized dosage units. However, current DOD methods developed for printing chemically and thermally stable, low-viscosity inks are of limited use for pharmaceuticals due to fundamentally different functional requirements. To overcome their deficiency, we developed a novel electrohydrodynamic (EHD) DOD (Appl, Phys, Lett. 97, 233501, 2010) that operates on fluids of up to 30 Pa·s in viscosity over a wide range of droplet sizes and provides a precise control over the droplet volume. We now evaluate the EHD DOD as a method for fabrication of dosage units by printing drug solutions on porous polymer films prepared by freeze-drying. Experiments were carried out on ibuprofen and griseofulvin, as model poorly water-soluble drugs, polyethylene glycol 400, as a drug carrier, and hydroxypropyl methylcellulose films. The similarities between drug release profiles from different dosage units were assessed by model-independent difference, f(1) , and similarity, f(2) , factors. The results presented show that EHD DOD offers a powerful tool for the evolving field of small-scale pharmaceutical technologies for tailoring medicines to individual patient's needs by printing a vast array of predefined amounts of therapeutics arranged in a specific pattern on a porous film.

  18. Multiple-unit tablet of probiotic bacteria for improved storage stability, acid tolerability, and in vivo intestinal protective effect

    PubMed Central

    Park, Hee Jun; Lee, Ga Hyeon; Jun, Joonho; Son, Miwon; Kang, Myung Joo

    2016-01-01

    The aim of this study was to formulate probiotics-loaded pellets in a tablet form to improve storage stability, acid tolerability, and in vivo intestinal protective effect. Bacteria-loaded pellets primarily prepared with hydroxypropyl methylcellulose acetate succinate were compressed into tablets with highly compressible excipients and optimized for flow properties, hardness, and disintegration time. The optimized probiotic tablet consisted of enteric-coated pellets (335 mg), microcrystalline cellulose (Avicel PH102, 37.5 mg), and porous calcium silicate (25 mg) and allowed whole survival of living bacteria during the compaction process with sufficient tablet hardness (13 kp) and disintegration time (14 minutes). The multiple-unit tablet showed remarkably higher storage stability under ambient conditions (25°C/60% relative humidity) over 6 months and resistance to acidic medium compared to uncoated strains or pellets. Repeated intake of this multiple-unit tablet significantly lowered plasma level of endotoxin, a pathogenic material, compared to repeated intake of bare probiotics or marketed products in rats. These results, therefore, suggest that the multiple-unit tablet is advantageous to better bacterial viability and gain the beneficial effects on the gut flora, including the improvement of intestinal barrier function. PMID:27103789

  19. The importance of binder moisture content in Metformin HCL high-dose formulations prepared by moist aqueous granulation (MAG)

    PubMed Central

    Takasaki, Hiroshi; Yonemochi, Etsuo; Ito, Masanori; Wada, Koichi; Terada, Katsuhide

    2015-01-01

    The aim of this study was to evaluate binders to improve the flowability of granulates and compactibility of Metformin HCL (Met) using the moist aqueous granulation (MAG) process. The effect of the binder moisture content on granulate and tablet quality was also evaluated. Vinylpyrrolidone–vinyl acetate copolymer (Kollidon VA64 fine: VA64), polyvidone (Povidone K12: PVP), hydroxypropyl cellulose (HPC SSL SF: HPC) and hydroxypropyl methylcellulose (Methocel E5 LV: HPMC) were evaluated as binders. These granulates, except for HPMC, had a lower yield pressure than Met active pharmaceutical ingredient (API). HPMC Met was not sufficiently granulated with low water volume. No problems were observed with the VA64 Met granulates during the tableting process. However, HPC Met granulates had a bowl-forming tendency, and PVP Met granulates had the tendency to stick during the tableting process. These bowl-forming and sticking tendencies may have been due to the low moisture absorbency of HPC and the high volume of bound water of PVP, respectively. VA64 Met granulates had the highest ambient moisture content (bulk water, bound water) and moisture absorbency. It was concluded that the type of binder used for the Met MAG process has an impact on granulate flow and compactibility, as well as moisture absorbency and maintenance of moisture balance. PMID:26779418

  20. Novel jojoba oil-based emulsion gel formulations for clotrimazole delivery.

    PubMed

    Shahin, Mostafa; Hady, Seham Abdel; Hammad, Mohammed; Mortada, Nahed

    2011-03-01

    Jojoba oil-based emulgel formulations were prepared using different concentrations of various gelling agents, such as hydroxypropyl methylcellulose (HPMC) and Carbopol 934 P and combination of both. The prepared emulgels were physically evaluated for their stability after temperature cycle test, centrifugation and long-term shelf storage for 1 year at room temperature. The in vitro release at 37 °C was studied to define the effect of the concentration and type of the gelling agent. A comparison between the formulated emulgels and two commercially available products, Candistan® and Canesten® creams, was carried out to judge their efficacy and stability. The prepared emulgels exhibited non-Newtonian shear thinning behavior with little or no thixotropy. Four emulgels showed excellent stability as they demonstrated consistent rheological model under different treatment conditions. The in vitro release test showed variation in the extent of percent drug released. The drug release from the commercial preparation was lower than some of the prepared emulgel formulae. One formula containing combination of the two gelling agents (HPMC and Carbopol 934 P), showed excellent stability and high extent of clotrimazole release was microbiologically evaluated against Candida albicans using cylinder and plate method. The selected formula showed superior antimycotic activity compared to the commercially available formulation. Further in vivo animal studies for the obtained stable formula is recommended.

  1. Compatibility of a protein topical gel with wound dressings.

    PubMed

    Ji, Junyan A; Borisov, Oleg; Ingham, Erika; Ling, Victor; Wang, Y John

    2009-02-01

    The compatibility between several dressing materials and a recombinant human vascular endothelial growth factor (rhVEGF) topical methylcellulose gel formulation was investigated. The dressings being studied were Adaptic, Non-stick Dressing, Conformant 2, Opsite and Tegapore. The criteria to select a compatible dressing include protein stability, absence of leachables from the dressing, and ability to retain gel on wound. An LC-MS method with sample treatment using cellulase was developed to determine protein oxidation in gel formulations. Results showed that rhVEGF was significantly oxidized by Adaptic dressing in 24 h. Protein oxidation was likely due to the peroxides, as determined by FOX assay, released into the protein solution from the dressing. Furthermore, Adaptic dressing caused protein adsorption loss, formation of high MW protein adducts, and released leachables as determined by RP-HPLC, LC-MS, and SEC. No protein oxidation or loss was observed after exposure to the other four alternative dressings. However, unknown leachables were detected in the presence of Opsite and Non-stick Dressing. The pore sizes of the Conformant 2 and Non-stick dressings were too large to hold the topical gel within the wound area, making them unsuitable for patient use. No rhVEGF bioactivity loss was observed in the presence of Tegapore. In conclusion, Tegapore was considered suitable for the rhVEGF topical gel.

  2. Fractal analysis of extra-embryonic vessels of chick embryos under the effect of glucosamine and chondroitin sulfates.

    PubMed

    de Souza Lins Borba, Fernanda Katharine; Felix, Giovanni Loos Queiroz; Costa, Edbhergue Ventura Lola; Silva, Lisie; Dias, Paulo Fernando; de Albuquerque Nogueira, Romildo

    2016-05-01

    Like heparan sulfate proteoglycans, some monosaccharides and glycosaminoglycans, such as sulfated glucosamine (GS) and chondroitin (CS), integrate the vascular extracellular matrix and may influence vascular endothelial cell growth. To assess the effects of these substances on blood vessel formation, we used the chick yolk sac membrane (YSM) model and fractal geometry quantification, which provided an objective in vivo method for testing potential agents that promote vasculogenesis and angiogenesis. An image processing method was developed to evaluate YSM capillary vessels after they were implanted in a methylcellulose disk of GS or CS at a concentration between 0.001-0.1mg/disk (performed on 2-day old embryos). This method resulted in a binary image of the microvascular network (white vessels on a black background). Fractal box-counting (DBC) and information (DINF) dimensions were used to quantify the activity of GS and CS in vasculogenesis and angiogenesis. YSM treated with GS (0.001-0.1mg) and CS (0.03-0.1mg) showed an increase in fractal dimensions that corresponded to vitelline vessel growth compared to the control group (vehicle), with GS displaying higher fractal dimension values. PMID:26873109

  3. Embedding in a collagen gel stabilizes the polarity of epithelial cells in thyroid follicles in suspension culture.

    PubMed

    Garbi, C; Nitsch, L; Wollman, S H

    1984-04-01

    Separated thyroid follicles are stable in suspension culture in Coon's modified Ham's F12 medium containing 0.5% calf serum. They resemble follicles in vivo except for the absence of a basal lamina. However, the epithelial cells reverse polarity and the follicles invert when the serum concentration is raised to 5%. A number of substances, especially components of extracellular matrix, were added to the medium to ascertain if they could stabilize the follicles against inversion in 5% serum. Cellular and plasma fibronectin, gelatin, heat-denatured collagen, methylcellulose and laminin did not stabilize. The addition to the medium of as little as 50 micrograms/ml of acid-soluble collagen prepared from calf skin or rat tail tendons resulted in the formation of small clouds of gel. Follicles embedded within the gel were stabilized. Follicles in the same dish but not embedded in the gel inverted. Stabilization was not specific for collagen, since follicles embedded in a plasma clot were also stabilized. A gel was not sufficient for stabilization, since embedding in an agarose gel did not stabilize. Ultrastructural studies indicate that adherence to a limited number of gelled fibers of collagen covering only a small fraction of the basal plasma membrane may be sufficient to stabilize and that a basal lamina formed in the presence of laminin but without added collagen does not stabilize.

  4. Nanosizing of poorly water soluble compounds using rotation/revolution mixer.

    PubMed

    Takatsuka, Takayuki; Endo, Tomoko; Jianguo, Yao; Yuminoki, Kayo; Hashimoto, Naofumi

    2009-10-01

    In this study, nanoparticles of various poorly water soluble compounds were prepared by wet milling that was carried out using a rotation/revolution mixer and zirconia balls. To be compared with Beads mill, rotation/revolution mixer has superior in very quick process (5 min) and needs very few amounts of zirconia balls (2.4 g) for pulverizing drugs to nanometer range. Phenytoin, indomethacin, nifedipine, danazol, and naproxen were selected as the standard poorly water soluble compounds. Various parameters of the rotation/revolution mixer were studied to decide the optimal pulverization conditions for the production of nanoparticles of the abovementioned compounds. The rotation/revolution speed, shape of the mixing vessel, amount of zirconia balls, and volume of the vehicle (methylcellulose solution) mainly affected the pulverization of the compounds. Using the mixer, phenytoin could be pulverized to nanoparticles within a few minutes. The particle size was confirmed by using a scanning electron microscope and a particle size analyzer. The crystallinity of the pulverized phenytoin particles was confirmed by X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). It was observed that the pulverized phenytoin particles retained their crystallinity, and amorphous phenytoin was not detected. Particles of other poorly water soluble compounds were also reduced to the nanometer range by using this method. PMID:19801859

  5. Itraconazole solid dispersion prepared by a supercritical fluid technique: preparation, in vitro characterization, and bioavailability in beagle dogs

    PubMed Central

    Yin, Xuezhi; Daintree, Linda Sharon; Ding, Sheng; Ledger, Daniel Mark; Wang, Bing; Zhao, Wenwen; Qi, Jianping; Wu, Wei

    2015-01-01

    This research aimed to develop a supercritical fluid (SCF) technique for preparing a particulate form of itraconazole (ITZ) with good dissolution and bioavailability characteristics. The ITZ particulate solid dispersion was formulated with hydroxypropyl methylcellulose, Pluronic F-127, and L-ascorbic acid. Aggregated particles showed porous structure when examined by scanning electron microscopy. Powder X-ray diffraction and Fourier transform infrared spectra indicated an interaction between ITZ and excipients and showed that ITZ existed in an amorphous state in the composite solid dispersion particles. The solid dispersion obtained by the SCF process improved the dissolution of ITZ in media of pH 1.0, pH 4.5, and pH 6.8, compared with a commercial product (Sporanox®), which could be ascribed to the porous aggregated particle shape and amorphous solid state of ITZ. While the solid dispersion did not show a statistical improvement (P=0.50) in terms of oral bioavailability of ITZ compared with Sporanox®, the Cmax (the maximum plasma concentration of ITZ in a pharmacokinetic curve) of ITZ was raised significantly (P=0.03) after oral administration. Thus, the SCF process has been shown to be an efficient, single step process to form ITZ-containing solid dispersion particles with good dissolution and oral bioavailability characteristics. PMID:26060397

  6. Analysis of results of ASTP experiment in electrophoresis

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.; Krumrine, P. H.

    1977-01-01

    The Apollo-Soyuz Test Project (ASTP) included an electrophoretic separation experiment of biological cells. The nature separation results of aldehyde-fixed rabbit, human and horse red blood cells, which were taken in the form of photographs taken at three-minute intervals, are the subject of this report. The electrophoretic separation was successful in that fractionation according to mobility did occur and was found in the sliced samples. Photographic evidence indicates that the low electroosmotic methylcellulose coating was successful in reducing the electroosmosis to a near zero value. Also, the flight film shows that the bands migrated down the column as theory would predict, producing two bands of high cell concentration separated and surrounded by regions of lower cell concentration. However, most likely some clumping of cells occurred to cause the trailing band to be larger than expected from theory. Overall, the experiment was a success in demonstrating a static electrophoresis separation under microgravity conditions with a resolution not possible on earth.

  7. Fractal analysis of extra-embryonic vessels of chick embryos under the effect of glucosamine and chondroitin sulfates.

    PubMed

    de Souza Lins Borba, Fernanda Katharine; Felix, Giovanni Loos Queiroz; Costa, Edbhergue Ventura Lola; Silva, Lisie; Dias, Paulo Fernando; de Albuquerque Nogueira, Romildo

    2016-05-01

    Like heparan sulfate proteoglycans, some monosaccharides and glycosaminoglycans, such as sulfated glucosamine (GS) and chondroitin (CS), integrate the vascular extracellular matrix and may influence vascular endothelial cell growth. To assess the effects of these substances on blood vessel formation, we used the chick yolk sac membrane (YSM) model and fractal geometry quantification, which provided an objective in vivo method for testing potential agents that promote vasculogenesis and angiogenesis. An image processing method was developed to evaluate YSM capillary vessels after they were implanted in a methylcellulose disk of GS or CS at a concentration between 0.001-0.1mg/disk (performed on 2-day old embryos). This method resulted in a binary image of the microvascular network (white vessels on a black background). Fractal box-counting (DBC) and information (DINF) dimensions were used to quantify the activity of GS and CS in vasculogenesis and angiogenesis. YSM treated with GS (0.001-0.1mg) and CS (0.03-0.1mg) showed an increase in fractal dimensions that corresponded to vitelline vessel growth compared to the control group (vehicle), with GS displaying higher fractal dimension values.

  8. In vitro and in vivo evaluation of an in situ forming gel system for sustained delivery of Florfenicol.

    PubMed

    Yu, Z-G; Geng, Z-X; Liu, T-F; Jiang, F

    2015-06-01

    The objective of this study was to develop an injectable in situ forming gel system based on Poloxamer for sustained release of Florfenicol (FFC). The formulations were prepared containing certain amounts of Poloxamer 407 (P407) and Poloxamer 188 (P188) alone or with hydroxylpropyl methylcellulose (HPMC), sodium carboxymethyl cellulose (CMC-Na), or polyvinyl pyrrolidone (PVP) as polymer additives. The optimal formulation was chosen according to in vitro parameters (gelation temperature, gelation time, pH value, viscosity, and in vitro release). Then the FFC in vivo pharmacokinetic character of the optimal formulation was investigated in dogs with a single dose of 50 mg/kg b.w. under s.c. injection. In vitro release studies, all formulations containing polymer additives had prolonged release time and decreased initial burst to some extent. The optimal formulation containing 0.15% HPMC showed a best sustained release profile for about 128 h with the lowest initial burst in vitro (<40% in 24 h). In vivo, the 20% FFC in situ forming gel provided prolonged drug release time within the therapeutic range for about 100 h, with stable plasma levels and elimination half-life (t1/2λz ) nine times higher than the control formulation. In conclusion, in situ forming gel is an attractive alternative for FFC sustained release system.

  9. Flotability and flotation separation of polymer materials modulated by wetting agents.

    PubMed

    Wang, Hui; Wang, Chong-qing; Fu, Jian-gang; Gu, Guo-hua

    2014-02-01

    The surface free energy, surface tension and contact angles were performed to investigate the properties of wetting agents. Adsorption of wetting agents changes wetting behavior of polymer resins. Flotability of polymer materials modulated by wetting agents was studied, and wetting agents change significantly flotability of polymer materials. The flotability decreases with increasing the concentration of wetting agents, and the wetting ability is lignin sulfonate (LS)>tannic acid (TA)>methylcellulose (MC)>triton X-100 (TX-100) (from strong to weak). There is significant difference in the flotability between polymer resins and plastics due to the presence of additives in the plastics. Flotation separation of two-component and multicomponent plastics was conducted based on the flotability modulated by wetting agents. The two-component mixtures can be efficiently separated using proper wetting agent through simple flotation flowsheet. The multicomponent plastic mixtures can be separated efficiently through multi-stage flotation using TA and LS as wetting agents, and the purity of separated component was above 94%, and the recovery was more than 93%.

  10. Stimuli-responsive lipid nanotubes in gel formulations for the delivery of doxorubicin.

    PubMed

    Ilbasmis-Tamer, Sibel; Unsal, Hande; Tugcu-Demiroz, Fatmanur; Kalaycioglu, Gokce Dicle; Degim, Ismail Tuncer; Aydogan, Nihal

    2016-07-01

    Lipid nanotubes (LNTs) are one of the most advantageous structures for drug delivery and targeting. LNTs formed by a specially designed molecule called AQUA (AQ-NH-(CH2)10COOH (AQ: anthraquinone group) is used for drug delivery, and doxorubicin (DOX) is the drug selected. DOX and AQUA have some similarities in their molecular structures, so a significant amount of DOX can be loaded to LNTs. The AQUA LNTs are pH responsive, and drug loading increased almost linearly by increasing the pH, reaching a maximum value (96%) at pH 9.0. In terms of drug release, lower pHs are preferred. Drug-loaded LNTs are also mixed with four different gels (chitosan, alginate, hydroxypropyl methylcellulose and polycarbophil) to use the advantages of these gels. The drug release efficiency is studied using a Franz diffusion cell in which sheep colon membranes and dialysis membranes are utilized. The amount of released DOX from the chitosan gel formulations was quite high. Sodium alginate gels had lower release and slower diffusion of DOX. The cytotoxic effect of DOX-loaded AQUA LNTs has also been determined on cell cultures. Our new lipid nanotubes are a non-toxic, effective, biodegradable, biocompatible, stable and promising system for drug delivery and can be used for colonic administration of DOX for the treatment of colorectal cancer (CRC).

  11. Desktop 3D printing of controlled release pharmaceutical bilayer tablets.

    PubMed

    Khaled, Shaban A; Burley, Jonathan C; Alexander, Morgan R; Roberts, Clive J

    2014-01-30

    Three dimensional (3D) printing was used as a novel medicine formulation technique for production of viable tablets capable of satisfying regulatory tests and matching the release of standard commercial tablets. Hydroxypropyl methylcellulose (HPMC 2208) (Methocel™ K100M Premium) and poly(acrylic acid) (PAA) (Carbopol(®) 974P NF) were used as a hydrophilic matrix for a sustained release (SR) layer. Hypromellose(®) (HPMC 2910) was used as a binder while microcrystalline cellulose (MCC) (Pharmacel(®) 102) and sodium starch glycolate (SSG) (Primojel(®)) were used as disintegrants for an immediate release (IR) layer. Commercial guaifenesin bi-layer tablets (GBT) were used as a model drug (Mucinex(®)) for this study. There was a favourable comparison of release of the active guaifenesin from the printed hydrophilic matrix compared with the commercially available GBT. The printed formulations were also evaluated for physical and mechanical properties such as weight variation, friability, hardness and thickness as a comparison to the commercial tablet and were within acceptable range as defined by the international standards stated in the United States Pharmacopoeia (USP). All formulations (standard tablets and 3D printed tablets) showed Korsmeyer-Peppas n values between 0.27 and 0.44 which indicates Fickian diffusion drug release through a hydrated HPMC gel layer.

  12. Effects of combined treatments of irradiation and antimicrobial coatings on reduction of food pathogens in broccoli florets

    NASA Astrophysics Data System (ADS)

    Takala, P. N.; Salmieri, S.; Vu, K. D.; Lacroix, M.

    2011-12-01

    The effect of combined treatment of antimicrobial coatings and γ-radiation on reduction of food pathogens such as Listeria monocytogenes, Escherichia coli, and Salmonella Typhimurium was evaluated in broccoli florets. Broccoli florets were inoculated with pathogenic bacteria at 10 6 CFU/g. Inoculated florets were then coated with methylcellulose-based coating containing various mixtures of antimicrobial agents: organic acids (OAs) plus lactic acid bacteria metabolites (LABs), OA plus citrus extract (CE), OA plus CE plus spice mixture (SM), and OA plus rosemary extract (RE). Coated florets were irradiated with various doses (0-3.3 kGy), and microbial analyses were used to calculate the D10 value and radiosensitive relative. The coating containing OA plus CE was the most effective formulation for increasing the sensitization of Escherichia coli by 2.4 times as compared to the control without the antimicrobial coating. For Salmonella Typhimurium, coating containing OA plus LAB was the most effective formulation, increasing radiosensitivity by 2.4 times as well. All antimicrobial coatings had almost the same effect of increasing the sensitivity of Listeria monocytogenes (from 1.31 to 1.45 times) to γ-irradiation.

  13. Design and in vivo evaluation of oxycodone once-a-day controlled-release tablets

    PubMed Central

    Kim, Ju-Young; Lee, Sung-Hoon; Park, Chun-Woong; Rhee, Yun-Seok; Kim, Dong-Wook; Park, Junsang; Lee, Moonseok; Seo, Jeong-Woong; Park, Eun-Seok

    2015-01-01

    The aim of present study was to design oxycodone once-a-day controlled-release (CR) tablets and to perform in vitro/in vivo characterizations. Release profiles to achieve desired plasma concentration versus time curves were established by using simulation software and reported pharmacokinetic parameters of the drug. Hydroxypropyl methylcellulose (HPMC) 100,000 mPa·s was used as a release modifier because the polymer was found to be resistant to changes in conditions of the release study, including rotation speed of paddle and ion strength. The burst release of the drug from the CR tablets could be suppressed by applying an additional HPMC layer as a physical barrier. Finally, the oxycodone once-a-day tablet was comprised of two layers, an inert HPMC layer and a CR layer containing drug and HPMC. Commercial products, either 10 mg bis in die (bid [twice a day]) or once-a-day CR tablets (20 mg) were administered to healthy volunteers, and calculated pharmacokinetic parameters indicated bioequivalence of the two different treatments. The findings of the present study emphasize the potential of oxycodone once-a-day CR tablets for improved patient compliance, safety, and efficacy, which could help researchers to develop new CR dosage forms of oxycodone. PMID:25678774

  14. Modelling drug degradation in a spray dried polymer dispersion using a modified Arrhenius equation.

    PubMed

    Patterson, Adele; Ferreira, Ana P; Banks, Elizabeth; Skeene, Kirsty; Clarke, Graham; Nicholson, Sarah; Rawlinson-Malone, Clare

    2015-01-15

    The Pharmaceutical industry is increasingly utilizing amorphous technologies to overcome solubility challenges. A common approach is the use of drug in polymer dispersions to prevent recrystallization of the amorphous drug. Understanding the factors affecting chemical and physical degradation of the drug within these complex systems, e.g., temperature and relative humidity, is an important step in the selection of a lead formulation, and development of appropriate packaging/storage control strategies. The Arrhenius equation has been used as the basis of a number of models to predict the chemical stability of formulated product. In this work, we investigate the increase in chemical degradation seen for one particular spray dried dispersion formulation using hydroxypropyl methylcellulose acetate succinate (HPMC-AS). Samples, prepared using polymers with different substitution levels, were placed on storage for 6 months under a range of different temperature and relative humidity conditions and the degradant level monitored using high-performance liquid chromatography (HPLC). While the data clearly illustrates the impact of temperature and relative humidity on the degradant levels detected, it also highlighted that these terms do not account for all the variability in the data. An extension of the Arrhenius equation to include a term for the polymer chemistry, specifically the degree of succinoyl substitution on the polymer backbone, was shown to improve the fit of the model to the data.

  15. Solvent mediated microstructures and release behavior of insulin from pH-sensitive nanoparticles.

    PubMed

    Wu, Zhi Min; Guo, Xin Dong; Zhang, Li Juan; Jiang, Wei; Ling, Li; Qian, Yu; Chen, Yun

    2012-06-01

    The insulin loaded nanoparticles composed of poly (lactic-co-glycolic acid) (PLGA) and hydroxypropyl methylcellulose phthalate (HP55) were prepared via the emulsions solvent diffusion method with two different solvents, namely, DMSO and acetone/water. The microstructures of the nanoparticles were studied by the solubility parameters theory, DSC, FTIR, and the nitrogen adsorption technique. Phase-separated PLGA domains were observed from the nanoparticles prepared with both types of solvents. Mesopores were observed from the nanoparticles prepared with DMSO as the solvent and almost did not exist with acetone/water. An in vitro drug release study showed that the pH-sensitivity of nanoparticles was not only attributed to the pH-dependent dissolubility of HP55 but also to the internal microstructure. The formation of mesopores accelerated the release of insulin, leading to no obvious pH-sensitivity of the nanoparticles prepared with DMSO. However, for the nanoparticles prepared with acetone/water, the release of insulin was pH-dependent. The results demonstrated that solvents played an important role in affecting the microstructures of nanoparticles, which influenced markedly the insulin release behavior.

  16. Modifying release characteristics from 3D printed drug-eluting products.

    PubMed

    Boetker, Johan; Water, Jorrit Jeroen; Aho, Johanna; Arnfast, Lærke; Bohr, Adam; Rantanen, Jukka

    2016-07-30

    This work describes an approach to modify the release of active compound from a 3D printed model drug product geometry intended for flexible dosing and precision medication. The production of novel polylactic acid and hydroxypropyl methylcellulose based feed materials containing nitrofurantoin for 3D printing purposes is demonstrated. Nitrofurantoin, Metolose® and polylactic acid were successfully co-extruded with up to 40% Metolose® content, and subsequently 3D printed into model disk geometries (ø10mm, h=2mm). Thermal analysis with differential scanning calorimetry and solid phase identification with Raman spectroscopy showed that nitrofurantoin remained in its original solid form during both hot-melt extrusion and subsequent 3D printing. Rheological measurements of the different compositions showed that the flow properties were sensitive to the amount of undissolved particles present in the formulation. Release of nitrofurantoin from the disks was dependent on Metolose® loading, with higher accumulated release observed for higher Metolose® loads. This work shows the potential of custom-made, drug loaded feed materials for 3D printing of precision drug products with tailored drug release characteristics.

  17. A Cationic Peptide, TAT-Cd0, Inhibits Herpes Simplex Virus Type 1 Ocular Infection In Vivo

    PubMed Central

    Jose, Gilbert G.; Larsen, Inna V.; Gauger, Joshua; Carballo, Erica; Stern, Rebecca; Brummel, Rachel; Brandt, Curtis R.

    2013-01-01

    Purpose. To test the in vivo activity of a peptide derived from the protein transducing domain of the human immunodeficiency virus (HIV) Tat protein, TAT-Cd0, in a murine herpes simplex type 1 (HSV-1) keratitis model. Methods. The efficacy of TAT-Cd0 was assessed in a postinfection treatment model with different concentrations (1 mg/mL, 0.1 mg/mL, 0.01 mg/mL) of the peptide in one of four delivery vehicles: artificial tears, PBS, methylcellulose, and aquaphor cream. Treatment began within 4 or 24 hours postinfection. Viral titers in the tear film were determined by plaque assay. Results. TAT-Cd0 reduced the severity of keratitis in all of the delivery vehicles tested when treatment started, 4 hours postinfection. Peptide in the tears or PBS delivery vehicle had the most significant reduction in disease severity and delayed the onset of vascularization and stromal keratitis. The percentage of mice presenting with disease was also significantly reduced and viral titers were reduced by 1 log at 24 hours postinfection in mice treated with 1 mg/mL TAT-Cd0, suggesting that inhibiting replication early is sufficient to achieve clinical effects. Lower concentrations were not effective and delaying treatment by 24 hours was also not effective. Conclusions. This study shows that TAT-Cd0 is an effective antiviral against HSV-1 strain KOS when applied shortly postinfection and that aqueous-based formulations are more suitable. PMID:23341013

  18. Improved anti-melanoma effect of a transdermal mitoxantrone ethosome gel.

    PubMed

    Yu, Xiang; Du, Lina; Li, Yu; Fu, Guiying; Jin, Yiguang

    2015-07-01

    Melanomas are malignant tumors characterized by early metastasis, rapid development, poor prognosis and high mortality. A highly effective and convenient method is necessary for long-term treatment of melanomas. Mitoxantrone (MTO) was topically applied for melanoma therapy using an MTO ethosome gel. Firstly, an ethosome was prepared from MTO, phospholipids, ethanol and water followed by addition of hydroxypropyl methylcellulose to obtain an ethosome gel. The ethosome was characterized. The cytotoxicity on B16 melanoma cells was evaluated on an electrical cell-substrate impedance sensing system with a novel modified chip. In vivo anti-melanoma effect of the ethosome gel was explored. Immunohistochemical and flow cytometric investigations were done. The MTO ethosomes had the size of 78nm and the zeta potential of -55mV. The ethosomes were flexible vesicles and showed much higher in vitro permeability across the rat skin than MTO aqueous solutions. The ethosomes had significant cytotoxicity and higher in vivo anti-melanoma effect than MTO solutions. The calreticulin membrane translocation of B16 cells was improved by the MTO ethosomes and the cell uptake of MTO was confirmed. The MTO ethosome gel is a promising transdermal delivery system for melanoma therapy with the advantages of non-invasion and no significant side effects.

  19. Molecular mobility in glassy dispersions

    NASA Astrophysics Data System (ADS)

    Mehta, Mehak; McKenna, Gregory B.; Suryanarayanan, Raj

    2016-05-01

    Dielectric spectroscopy was used to characterize the structural relaxation in pharmaceutical dispersions containing nifedipine (NIF) and either poly(vinyl) pyrrolidone (PVP) or hydroxypropyl methylcellulose acetate succinate (HPMCAS). The shape of the dielectric response (permittivity versus log time) curve was observed to be independent of temperature. Thus, for the pure NIF as well as the dispersions, the validity of the time-temperature superposition principle was established. Furthermore, though the shape of the full dielectric response varied with polymer concentration, the regime related to the α- or structural relaxation was found to superimpose for the dispersions, though not with the response of the NIF itself. Hence, there is a limited time-temperature-concentration superposition for these systems as well. Therefore, in this polymer concentration range, calculation of long relaxation times in these glass-forming systems becomes possible. We found that strong drug-polymer hydrogen bonding interactions improved the physical stability (i.e., delayed crystallization) by reducing the molecular mobility. The strength of hydrogen bonding, structural relaxation time, and crystallization followed the order: NIF-PV P>NIF-HPMCAS>NIF. With an increase in polymer concentration, the relaxation times were longer indicating a decrease in molecular mobility. The temperature dependence of relaxation time, in other words fragility, was independent of polymer concentration. This is the first application of the superposition principle to characterize structural relaxation in glassy pharmaceutical dispersions.

  20. Multimodality noninvasive imaging for assessing therapeutic effects of exogenously transplanted cell aggregates capable of angiogenesis on acute myocardial infarction.

    PubMed

    Huang, Chieh-Cheng; Wei, Hao-Ji; Lin, Kun-Ju; Lin, Wei-Wen; Wang, Ching-Wen; Pan, Wen-Yu; Hwang, Shiaw-Min; Chang, Yen; Sung, Hsing-Wen

    2015-12-01

    Although the induction of neovascularization by cell-based approaches has demonstrated substantial potential in treating myocardial infarction (MI), the process of cell-mediated angiogenesis and its correlation with therapeutic mechanisms of cardiac repair remain elusive. In this work, three-dimensional (3D) aggregates of human umbilical vein endothelial cells (HUVECs) and cord-blood mesenchymal stem cells (cbMSCs) are constructed using a methylcellulose hydrogel system. By maximizing cell-cell and cell-ECM communications and establishing a hypoxic microenvironment in their inner cores, these cell aggregates are capable of forming widespread tubular networks together with the angiogenic marker αvβ3 integrin; they secret multiple pro-angiogenic, pro-survival, and mobilizing factors when grown on Matrigel. The aggregates of HUVECs/cbMSCs are exogenously engrafted into the peri-infarct zones of rats with MI via direct local injection. Multimodality noninvasive imaging techniques, including positron emission tomography, single photon emission computed tomography, and echocardiography, are employed to monitor serially the beneficial effects of cell therapy on angiogenesis, blood perfusion, and global/regional ventricular function, respectively. The myocardial perfusion is correlated with ventricular contractility, demonstrating that the recovery of blood perfusion helps to restore regional cardiac function, leading to the improvement in global ventricular performance. These experimental data reveal the efficacy of the exogenous transplantation of 3D cell aggregates after MI and elucidate the mechanism of cell-mediated therapeutic angiogenesis for cardiac repair.

  1. Dissolution of tablet-in-tablet formulations studied with ATR-FTIR spectroscopic imaging.

    PubMed

    Wray, Patrick S; Clarke, Graham S; Kazarian, Sergei G

    2013-03-12

    This work uses ATR-FTIR spectroscopic imaging to study the dissolution of delayed release and pH resistant compressed coating pharmaceutical tablets. Tablets with an inner core and outer shell were constructed using a custom designed compaction cell. The core of the delayed release tablets consisted of hydroxypropyl methylcellulose (HPMC) and caffeine. The shell consisted of microcrystalline cellulose (MCC) and glucose. The core of the pH resistant formulations was an ibuprofen and PEG melt and the shell was constructed from HPMC and a basic buffer. UV/vis spectroscopy was used to monitor the lag-time of drug release and visible optical video imaging was used as a complementary imaging technique with a larger field of view. Two delayed release mechanisms were established. For tablets with soluble shell sections, lag-time was dependent upon rapid shell dissolution. For tablets with less soluble shells, the lag-time was controlled by the rate of dissolution medium ingress through the shell and the subsequent expansion of the wet HPMC core. The pH resistant formulations prevented crystallization of the ibuprofen in the core during dissolution despite an acidic dissolution medium. FTIR imaging produced important information about the physical and chemical processes occurring at the interface between tablet sections during dissolution. PMID:23291036

  2. Characterization of oral disintegrating film containing donepezil for Alzheimer disease.

    PubMed

    Liew, Kai Bin; Tan, Yvonne Tze Fung; Peh, Kok Khiang

    2012-03-01

    The aim of this study was to develop a taste-masked oral disintegrating film (ODF) containing donepezil, with fast disintegration time and suitable mechanical strength, for the treatment of Alzheimer's disease. Hydroxypropyl methylcellulose, corn starch, polyethylene glycol, lactose monohydrate and crosspovidone served as the hydrophilic polymeric bases of the ODF. The uniformity, in vitro disintegration time, drug release and the folding endurance of the ODF were examined. The in vitro results showed that 80% of donepezil hydrochloride was released within 5 minutes with mean disintegration time of 44 seconds. The result of the film flexibility test showed that the number of folding time to crack the film was 40 times, an indication of sufficient mechanical property for patient use. A single-dose, fasting, four-period, eight-treatment, double-blind study involving 16 healthy adult volunteers was performed to evaluate the in situ disintegration time and palatability of ODF. Five parameters, namely taste, aftertaste, mouthfeel, ease of handling and acceptance were evaluated. The mean in situ disintegration time of ODF was 49 seconds. ODF containing 7 mg of sucralose were more superior than saccharin and aspartame in terms of taste, aftertaste, mouthfeel and acceptance. Furthermore, the ODF was stable for at least 6 months when stored at 40°C and 75% relative humidity.

  3. Preparation and characterization of a gastric floating dosage form of capecitabine.

    PubMed

    Taghizadeh Davoudi, Ehsan; Ibrahim Noordin, Mohamed; Kadivar, Ali; Kamalidehghan, Behnam; Farjam, Abdoreza Soleimani; Akbari Javar, Hamid

    2013-01-01

    Gastrointestinal disturbances, such as nausea and vomiting, are considered amongst the main adverse effects associated with oral anticancer drugs due to their fast release in the gastrointestinal tract (GIT). Sustained release formulations with proper release profiles can overcome some side effects of conventional formulations. The current study was designed to prepare sustained release tablets of Capecitabine, which is approved by the Food and Drug Administration (FDA) for the treatment of advanced breast cancer, using hydroxypropyl methylcellulose (HPMC), carbomer934P, sodium alginate, and sodium bicarbonate. Tablets were prepared using the wet granulation method and characterized such that floating lag time, total floating time, hardness, friability, drug content, weight uniformity, and in vitro drug release were investigated. The sustained release tablets showed good hardness and passed the friability test. The tablets' floating lag time was determined to be 30-200 seconds, and it floated more than 24 hours and released the drug for 24 hours. Then, the stability test was done and compared with the initial samples. In conclusion, by adjusting the right ratios of the excipients including release-retarding gel-forming polymers like HPMC K4M, Na alginate, carbomer934P, and sodium bicarbonate, sustained release Capecitabine floating tablet was formulated.

  4. Improved oral absorption of tacrolimus by a solid dispersion with hypromellose and sodium lauryl sulfate.

    PubMed

    Jung, Hyuck Jun; Ahn, Hye In; Park, Ji Yeon; Ho, Myoung Jin; Lee, Dae Ro; Cho, Ha Ra; Park, Jun Seo; Choi, Yong Seok; Kang, Myung Joo

    2016-02-01

    A novel surfactant-incorporated hydroxypropyl methylcellulose (HPMC) solid dispersion (SD) system was constructed in order to facilitate the release rate and oral absorption of tacrolimus (FK506), a poorly water-soluble immunosuppressant. Several emulsifiers including sodium lauryl sulfate (SLS), as drug release promotors, were employed with HPMC to fabricate SD using the solvent wetting method. The solid state characteristics using differential scanning calorimetry and X-ray powder diffraction, revealed that FK506 was molecularly distributed within all dispersions in amorphous form. The dissolution rates of FK506 in SLS-incorporated SDs were much higher than those in SDs prepared with HPMC alone, and even with stearoyl polyoxyl-32 glycerides or tocopheryl polyethylene glycol 1000 succinate. In particular, the greatest dissolution enhancement was obtained from the SD consisting of the drug, HPMC, and SLS in a weight ratio of 1:1:3, providing a 50-fold higher drug concentration within 15 min, compared with HPMC SD. In vivo absorption study in rats demonstrates that the optimized formula remarkably increased the oral absorption of FK506, providing about 4.0-fold greater bioavailability (p<0.05) compared with the marketed product (Prograf®, Astellas Pharma). These data suggest that a novel SLS/HPMC SD may be an advantageous dosage form of FK506, boosting the dissolution and absorption in gastrointestinal tract.

  5. Stability of dry coated solid dosage forms.

    PubMed

    Kablitz, Caroline Désirée; Urbanetz, Nora Anne

    2009-01-01

    The dry coating process was evaluated in terms of storage stability investigating drug release and agglomeration tendency of the different coated oral dosage forms; hydroxypropyl methylcellulose acetate succinate (HPMCAS) was used with triethylcitrate (TEC) as plasticizer and acetylated monoglyceride (Myvacet) as wetting agent. Talc or colloidal silicon dioxide (Aerosil) was used as anti-tacking agents. In contrast to coating formulations consisting of HPMCAS and Myvacet all formulations containing TEC showed enteric resistance and no agglomeration tendency after preparation. After storage at 10% RH +/- 5% enteric resistance is increased slightly. This increase is more pronounced at 60% RH +/- 5%. The formulations without anti-tacking agents showed higher drug releases after 12 and 24 months due to the damage of the film's integrity during sample preparation caused by the high tackiness of the film. Tackiness is not affected by storing if samples are stored at low relative humidity. At high relative humidity tackiness increases upon storage especially for formulations without anti-tacking agents. The sieving results of the agglomeration measurements after storage can be confirmed by ring shear measurements performed immediately after preparation and approved to be a tool, which is able to predict the agglomeration during storage. PMID:19883250

  6. Transmucosal delivery of metformin- a comprehensive study.

    PubMed

    Sushma, M; Raju, Y Prasanna; Sundaresan, C R; Vandana, K R; Kumar, N Vijay; Chowdary, V Harini

    2014-01-01

    Discovered in the 1920s, the biguanide metformin hydrochloride is still the first line drug in the management of Type 2 diabetes mellitus. Metformin hydrochloride is absorbed slowly and incompletely from the gastrointestinal tract. The present research work was undertaken with the aim of developing a fast dissolving film of metformin hydrochloride, suitable for oral trans mucosal administration. Fast dissolving films allow rapid drug dissolution in the oral cavity, ensuring bypass of first pass metabolism resulting in rapid absorption. Films of metformin were prepared by solvent casting method using Hydroxypropyl methylcellulose K15 (HPMC). Six formulations (F1-F6) of metformin hydrochloride were prepared and evaluated for their physical characteristics such as tackiness, thickness, tensile strength, elongation, weight variation, folding endurance, drug content and surface pH. The compatibility of the drug with HPMC was confirmed by FTIR studies. The formulations were subjected to disintegration, in-vitro drug release and the optimised formulation was evaluated for pharmacodynamic studies in diabetic rats. Among the formulations (F1-F6) F4 was found to be the best formulation which contained Hydroxypropyl methyl cellulose K15 at weight ratios of 1:4 and showed excellent film forming characteristics such as disintegration time at 42 sec and percentage drug release of 94.2% within 5 minutes. Pharmacodynamic assessment in diabetes induced rats demonstrated that the fast dissolving films of metformin had a quicker onset of action compared to conventional formulation. PMID:23848354

  7. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling.

    PubMed

    Melocchi, Alice; Parietti, Federico; Maroni, Alessandra; Foppoli, Anastasia; Gazzaniga, Andrea; Zema, Lucia

    2016-07-25

    Fused deposition modeling (FDM) is a 3D printing technique based on the deposition of successive layers of thermoplastic materials following their softening/melting. Such a technique holds huge potential for the manufacturing of pharmaceutical products and is currently under extensive investigation. Challenges in this field are mainly related to the paucity of adequate filaments composed of pharmaceutical grade materials, which are needed for feeding the FDM equipment. Accordingly, a number of polymers of common use in pharmaceutical formulation were evaluated as starting materials for fabrication via hot melt extrusion of filaments suitable for FDM processes. By using a twin-screw extruder, filaments based on insoluble (ethylcellulose, Eudragit(®) RL), promptly soluble (polyethylene oxide, Kollicoat(®) IR), enteric soluble (Eudragit(®) L, hydroxypropyl methylcellulose acetate succinate) and swellable/erodible (hydrophilic cellulose derivatives, polyvinyl alcohol, Soluplus(®)) polymers were successfully produced, and the possibility of employing them for printing 600μm thick disks was demonstrated. The behavior of disks as barriers when in contact with aqueous fluids was shown consistent with the functional application of the relevant polymeric components. The produced filaments were thus considered potentially suitable for printing capsules and coating layers for immediate or modified release, and, when loaded with active ingredients, any type of dosage forms.

  8. Quantification of hemoglobin variants by capillary isoelectric focusing.

    PubMed

    Hempe, J M; Craver, R D

    1994-12-01

    Capillary isoelectric focusing (cIEF) was used to identify and quantify major and minor hemoglobin (Hb) variants. Whole blood (approximately 10 microL required) hemolysate was analyzed with a commercial instrument equipped with a 50 microns (i.d.) x 27 cm coated capillary filled with 20 g/L ampholytes (pH 6-8) in 4 g/L methylcellulose (MC). Cathode and anode solutions were 20 mol/L NaOH and 100 mol/L H3PO4 in MC, respectively. Samples (approximately 40 nL) were applied via autosampler by low-pressure injection, focused for 3 min at 30 kV, and mobilized by simultaneous voltage and low pressure past the detector, where absorbance at 415 nm was analyzed by an automated data acquisition system. Blood from subjects with sickle cell trait, Hb S/C disease, and various beta-thalassemias were analyzed by cIEF in < 15 min. cIEF was used to separate Hb S from Hb D-Los Angeles. Assay precision determined with commercial controls gave CV < 2% for Hb A and S, and 1-11% for minor Hb variants A2, F, and A1c. Results obtained by cIEF for patients' samples agreed well with values determined by conventional assays (r2 > 0.95). The results demonstrate that cIEF is a rapid, sensitive, high-resolution automated method for routine quantitative clinical analysis of Hb variants.

  9. Modelling drug degradation in a spray dried polymer dispersion using a modified Arrhenius equation.

    PubMed

    Patterson, Adele; Ferreira, Ana P; Banks, Elizabeth; Skeene, Kirsty; Clarke, Graham; Nicholson, Sarah; Rawlinson-Malone, Clare

    2015-01-15

    The Pharmaceutical industry is increasingly utilizing amorphous technologies to overcome solubility challenges. A common approach is the use of drug in polymer dispersions to prevent recrystallization of the amorphous drug. Understanding the factors affecting chemical and physical degradation of the drug within these complex systems, e.g., temperature and relative humidity, is an important step in the selection of a lead formulation, and development of appropriate packaging/storage control strategies. The Arrhenius equation has been used as the basis of a number of models to predict the chemical stability of formulated product. In this work, we investigate the increase in chemical degradation seen for one particular spray dried dispersion formulation using hydroxypropyl methylcellulose acetate succinate (HPMC-AS). Samples, prepared using polymers with different substitution levels, were placed on storage for 6 months under a range of different temperature and relative humidity conditions and the degradant level monitored using high-performance liquid chromatography (HPLC). While the data clearly illustrates the impact of temperature and relative humidity on the degradant levels detected, it also highlighted that these terms do not account for all the variability in the data. An extension of the Arrhenius equation to include a term for the polymer chemistry, specifically the degree of succinoyl substitution on the polymer backbone, was shown to improve the fit of the model to the data. PMID:25450477

  10. Benznidazole Extended-Release Tablets for Improved Treatment of Chagas Disease: Preclinical Pharmacokinetic Study.

    PubMed

    Davanço, Marcelo Gomes; Campos, Michel Leandro; Rosa, Talita Atanazio; Padilha, Elias Carvalho; Alzate, Alejandro Henao; Rolim, Larissa Araújo; Rolim-Neto, Pedro José; Peccinini, Rosângela Gonçalves

    2016-04-01

    Benznidazole (BNZ) is the first-line drug for the treatment of Chagas disease. The drug is available in the form of immediate-release tablets for 100-mg (adult) and 12.5-mg (pediatric) doses. The drug is administered two or three times daily for 60 days. The high frequency of daily administrations and the long period of treatment are factors that significantly contribute to the abandonment of therapy, affecting therapeutic success. Accordingly, this study aimed to evaluate the preclinical pharmacokinetics of BNZ administered as extended-release tablets (200-mg dose) formulated with different types of polymers (hydroxypropyl methylcellulose K4M and K100M), compared to the tablets currently available. The studies were conducted with rabbits, and BNZ quantification was performed in plasma and urine by ultraperformance liquid chromatography methods previously validated. The bioavailability of BNZ was adequate in the administration of extended-release tablets; however, with the administration of the pediatric tablet, the bioavailability was lower than with other tablets, which showed that the clinical use of this formulation should be monitored. The pharmacokinetic parameters demonstrated that the extended-release tablets prolonged drug release from the pharmaceutical matrix and provided an increase in the maintenance of the drug concentrationin vivo, which would allow the frequency of administration to be reduced. Thus, a relative bioavailability study in humans will be planned for implementation of a new product for the treatment of Chagas disease. PMID:26883698

  11. Design, Development and Optimization of S (-) Atenolol Floating Sustained Release Matrix Tablets Using Surface Response Methodology

    PubMed Central

    Gunjal, P. T.; Shinde, M. B.; Gharge, V. S.; Pimple, S. V.; Gurjar, M. K.; Shah, M. N.

    2015-01-01

    The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 32 full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:26798171

  12. Evaluation of transdermal iontophoresis of enoxacin from polymer formulations: in vitro skin permeation and in vivo microdialysis using Wistar rat as an animal model.

    PubMed

    Fang, J Y; Hsu, L R; Huang, Y B; Tsai, Y H

    1999-04-15

    Polymers were used in vehicles to form hydrogel matrices in this study to evaluate the in vitro permeation and in vivo microdialysis of enoxacin. The highest transdermal delivery determined by area under flux-time curve (AUC) and intracutaneous enoxacin concentration were observed in methylcellulose (MC) and polyvinylpyrrolidone (PVP) hydrogels, respectively. To avoid the pH shift in vehicles during iontophoresis, buffer species were added to formulations to increase the buffer capacity. As expected, the permeability of enoxacin of anodal iontophoresis was larger than that of cathodal iontophoresis. Combination of benzalkonium chloride, a cationic surfactant as an enhancer, and iontophoresis exerted an enhancing effect for anionic enoxacin at pH 10.0. However, no effect or a negative effect was detected for cationic enoxacin in deionized water or pH 5.0 buffer, due to the shielding of the negative charge in the skin. The skin residue of enoxacin was slightly increased after the incorporation of Azone in PVP hydrogel. The result of in vivo microdialysis was in accordance with that of in vitro study. The effect of Azone on the intracutaneous enoxacin was more significant for in vivo microdialysis than in the in vitro study indicating the clinical feasibility of Azone for iontophoretic delivery. Microdialysis can be considered as a useful technique to investigate the pharmacokinetics of transdermal iontophoresis in vivo.

  13. Stability of indomethacin with relevance to the release from amorphous solid dispersions studied with ATR-FTIR spectroscopic imaging.

    PubMed

    Ewing, Andrew V; Clarke, Graham S; Kazarian, Sergei G

    2014-08-18

    This work presents the use of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and spectroscopic imaging to study the stability and dissolution behaviour of amorphous solid dispersions (ASDs). ASDs are employed to improve the bioavailability of drugs which are poorly soluble in aqueous solutions. Selecting the appropriate polymeric excipients for use in pharmaceutical tablets is crucial to control drug stability and subsequent release. In this study, indomethacin was used as a model poorly-aqueous soluble drug since the amorphous-form has improved dissolution properties over its crystalline forms. ASDs of indomethacin/polyethylene glycol (PEG) and indomethacin/hydroxypropyl methylcellulose (HPMC) in a 1:3 wt ratio were compared. Firstly, ATR-FTIR spectroscopy was employed to monitor the stability of indomethacin in the ASDs over 96 h. While the indomethacin/HPMC ASD showed the ability to maintain the amorphous indomethacin form for longer periods of time, ATR-FTIR spectra revealed that indomethacin in the drug/PEG ASD crystallised to the stable γ-form, via the α-form. Secondly, ATR-FTIR spectroscopic imaging was used to study the dissolution of ASD tablets in a phosphate buffer (pH 7.5). Crystallisation of amorphous indomethacin was characterised in the spectra collected during the dissolution of the indomethacin/PEG ASD which consequently hindered release into the surrounding solution. In contrast, release of amorphous indomethacin was more effective from HPMC.

  14. Endogenously elevated bilirubin modulates kidney function and protects from circulating oxidative stress in a rat model of adenine-induced kidney failure

    PubMed Central

    Boon, Ai-Ching; Lam, Alfred K.; Gopalan, Vinod; Benzie, Iris F.; Briskey, David; Coombes, Jeff S.; Fassett, Robert G.; Bulmer, Andrew C.

    2015-01-01

    Mildly elevated bilirubin is associated with a reduction in the presence and progression of chronic kidney disease and related mortality, which may be attributed to bilirubin’s antioxidant properties. This study investigated whether endogenously elevated bilirubin would protect against adenine-induced kidney damage in male hyperbilirubinaemic Gunn rats and littermate controls. Animals were orally administered adenine or methylcellulose solvent (vehicle) daily for 10 days and were then monitored for 28 days. Serum and urine were assessed throughout the protocol for parameters of kidney function and antioxidant/oxidative stress status and kidneys were harvested for histological examination upon completion of the study. Adenine-treated animals experienced weight-loss, polyuria and polydipsia; however, these effects were significantly attenuated in adenine-treated Gunn rats. No difference in the presence of dihydroadenine crystals, lymphocytic infiltration and fibrosis were noted in Gunn rat kidneys versus controls. However, plasma protein carbonyl and F2-isoprostane concentrations were significantly decreased in Gunn rats versus controls, with no change in urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine or kidney tissue F2-isoprostane concentrations. These data indicated that endogenously elevated bilirubin specifically protects from systemic oxidative stress in the vascular compartment. These data may help to clarify the protective relationship between bilirubin, kidney function and cardiovascular mortality in clinical investigations. PMID:26498893

  15. Characterization of hemopoietic stem cell chimerism in antibody-facilitated bone marrow chimeras

    SciTech Connect

    Francescutti, L.H.; Gambel, P.; Wegmann, T.G.

    1985-07-01

    The authors have previously described a model for bone marrow transplantation that involves preparation of the host with monoclonal antibody against class I or class II antigens instead of irradiation or cytotoxic drugs. This allows engraftment and subsequent repopulation of the host by donor tissue. They have previously reported on chimerism in the peripheral blood of P1----(P1 X P2)F1 animals. In this report, the authors describe the examination of the bone marrow and spleen stem cell chimerism of these antibody-facilitated (AF) chimeras, by determining, with an isozyme assay, the phenotype of methylcellulose colonies grown from stem cells. They have found a correlation between peripheral blood chimerism and the stem cell constitution of both spleen and bone marrow. The peripheral blood chimerism also correlates with the level of chimerism in macrophages derived from peritoneal exudate cells. These findings indicate that assaying the peripheral blood of such chimeras provides an excellent indication of the degree of chimerism at the stem cell level and stands in sharp contrast to the level of chimerism in certain lymphoid compartments.

  16. Microchip Immunoaffinity Electrophoresis of Antibody-Thymidine Kinase 1 Complex

    PubMed Central

    Pagaduan, Jayson V.; Ramsden, Madison; O’Neill, Kim; Woolley, Adam T.

    2015-01-01

    Thymidine kinase-1 (TK1) is an important cancer biomarker whose serum levels are elevated in early cancer development. We developed a microchip electrophoresis immunoaffinity assay to measure recombinant purified TK1 (pTK1) using an antibody that binds to human TK1. We fabricated poly(methyl methacrylate) microfluidic devices to test the feasibility of detecting antibody (Ab)-pTK1 immune complexes as a step towards TK1 analysis in clinical serum samples. We were able to separate immune complexes from unbound antibodies using 0.5X phosphate buffer saline (pH 7.4) containing 0.01% Tween-20, with 1% w/v methylcellulose that acts as a dynamic surface coating and sieving matrix. Separation of the antibody and Ab-pTK1 complex was observed within a 5 mm effective separation length. This method of detecting pTK1 is easy to perform, requires only a 10 μL sample volume, and takes just 1 minute for separation. PMID:25486911

  17. Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes.

    PubMed

    Chung, Wan-Ho; Kim, Sang-Ho; Kim, Hak-Sung

    2016-01-01

    In this work, silver nanowire inks with hydroxypropyl methylcellulose (HPMC) binders were coated on polyethylene terephthalate (PET) substrates and welded via flash white light and ultraviolet C (UV-C) irradiation to produce highly conductive transparent electrodes. The coated silver nanowire films were firmly welded and embedded into PET substrate successfully at room temperature and under ambient conditions using an in-house flash white light welding system and UV-C irradiation. The effects of light irradiation conditions (light energy, irradiation time, pulse duration, and pulse number) on the silver nanowire networks were studied and optimized. Bending fatigue tests were also conducted to characterize the reliability of the welded transparent conductive silver nanowire films. The surfaces of the welded silver nanowire films were analyzed via scanning electron microscopy (SEM), while the transmittance of the structures was measured using a spectrophotometer. From the results, a highly conductive and transparent silver nanowire film with excellent reliability could be achieved at room temperature under ambient conditions via the combined flash white light and UV-C irradiation welding process. PMID:27553755

  18. Co-solvent evaporation method for enhancement of solubility and dissolution rate of poorly aqueous soluble drug simvastatin: in vitro-in vivo evaluation.

    PubMed

    Pandya, Priyanka; Gattani, Surendra; Jain, Pankaj; Khirwal, Lokesh; Surana, Sanjay

    2008-01-01

    A number of synthesized chemical molecules suffer from low aqueous solubility problems. Enhancement of aqueous solubility, dissolution rate, and bioavailability of drug is a very challenging task in drug development. In the present study, solubility and dissolution of poorly aqueous soluble drug simvastatin (SIM) was enhanced using hydrophilic, low viscosity grade polymer hydroxypropyl methylcellulose (HPMC K(3)LV). The co-solvent evaporation method was developed for efficient encapsulation of hydrophobic drug in polymer micelles of HPMC K(3)LV. Spray drying and rotaevaporation method were applied for solvent evaporation. Co-solvent-evaporated mixture in solid state was determined by differential scanning calorimetry (DSC), X-ray diffraction studies (XRD), scanning electron microscopy, and Fourier-transform infrared spectroscopy. In vitro-in vivo studies were performed on co-solvent-evaporated mixture and compared with SIM. In vivo study was conducted on healthy albino rats (Wister strain), and formulations were administered by oral route. Results of the study show the conversion of crystalline form of SIM into amorphous form. The dissolution rate was remarkably increased in co-solvent-evaporated mixtures compared to SIM. co-solvent-evaporated mixtures showed better reduction in total cholesterol and triglyceride levels than the SIM. The low-viscosity grade HPMC acts as a surfactant, which enhances the wetting of drug and thus improves the solubility of drug. The co-solvent evaporation method provides good encapsulation efficiency and produces amorphous form of SIM, which gave better solubility and dissolution than the crystalline SIM.

  19. Dissolution enhancement of chlorzoxazone using cogrinding technique

    PubMed Central

    Raval, Mihir K.; Patel, Jaydeep M.; Parikh, Rajesh K.; Sheth, Navin R.

    2015-01-01

    Purpose: The aim of the present work was to improve rate of dissolution and processing parameters of BCS class II drug, chlorzoxazone using cogrinding technique in the presence of different excipients as a carrier. Materials and Methods: The drug was coground with various carriers like polyethylene glycol (PEG 4000), hydroxypropyl methylcellulose (HPMC) E50LV, polyvinylpyrrolidone (PVP)K30, Kaolin and Neusilin US2 using ball mill, where only PEG 4000 improved dissolution rate of drug by bringing amorphization in 1:3 ratio. The coground mixture after 3 and 6 h was evaluated for various analytical, physicochemical and mechanical parameters. Results: The analysis showed conversion of Chlorzoxazone from its crystalline to amorphization form upon grinding with PEG 4000. Coground mixture as well as its directly compressed tablet showed 2.5-fold increment in the dissolution rate compared with pure drug. Directly compressible tablets prepared from pure drug required a large quantity of microcrystalline cellulose (MCC) during compression. The coground mixture and formulation was found stable in nature even after storage (40°C/75% relative humidity). Conclusions: Cogrinding can be successfully utilized to improve the rate of dissolution of poorly water soluble drugs and hence bioavailability. PMID:26682195

  20. Stability of dry coated solid dosage forms.

    PubMed

    Kablitz, Caroline Désirée; Urbanetz, Nora Anne

    2009-01-01

    The dry coating process was evaluated in terms of storage stability investigating drug release and agglomeration tendency of the different coated oral dosage forms; hydroxypropyl methylcellulose acetate succinate (HPMCAS) was used with triethylcitrate (TEC) as plasticizer and acetylated monoglyceride (Myvacet) as wetting agent. Talc or colloidal silicon dioxide (Aerosil) was used as anti-tacking agents. In contrast to coating formulations consisting of HPMCAS and Myvacet all formulations containing TEC showed enteric resistance and no agglomeration tendency after preparation. After storage at 10% RH +/- 5% enteric resistance is increased slightly. This increase is more pronounced at 60% RH +/- 5%. The formulations without anti-tacking agents showed higher drug releases after 12 and 24 months due to the damage of the film's integrity during sample preparation caused by the high tackiness of the film. Tackiness is not affected by storing if samples are stored at low relative humidity. At high relative humidity tackiness increases upon storage especially for formulations without anti-tacking agents. The sieving results of the agglomeration measurements after storage can be confirmed by ring shear measurements performed immediately after preparation and approved to be a tool, which is able to predict the agglomeration during storage.

  1. Transmucosal delivery of metformin- a comprehensive study.

    PubMed

    Sushma, M; Raju, Y Prasanna; Sundaresan, C R; Vandana, K R; Kumar, N Vijay; Chowdary, V Harini

    2014-01-01

    Discovered in the 1920s, the biguanide metformin hydrochloride is still the first line drug in the management of Type 2 diabetes mellitus. Metformin hydrochloride is absorbed slowly and incompletely from the gastrointestinal tract. The present research work was undertaken with the aim of developing a fast dissolving film of metformin hydrochloride, suitable for oral trans mucosal administration. Fast dissolving films allow rapid drug dissolution in the oral cavity, ensuring bypass of first pass metabolism resulting in rapid absorption. Films of metformin were prepared by solvent casting method using Hydroxypropyl methylcellulose K15 (HPMC). Six formulations (F1-F6) of metformin hydrochloride were prepared and evaluated for their physical characteristics such as tackiness, thickness, tensile strength, elongation, weight variation, folding endurance, drug content and surface pH. The compatibility of the drug with HPMC was confirmed by FTIR studies. The formulations were subjected to disintegration, in-vitro drug release and the optimised formulation was evaluated for pharmacodynamic studies in diabetic rats. Among the formulations (F1-F6) F4 was found to be the best formulation which contained Hydroxypropyl methyl cellulose K15 at weight ratios of 1:4 and showed excellent film forming characteristics such as disintegration time at 42 sec and percentage drug release of 94.2% within 5 minutes. Pharmacodynamic assessment in diabetes induced rats demonstrated that the fast dissolving films of metformin had a quicker onset of action compared to conventional formulation.

  2. Continuous manufacturing of extended release tablets via powder mixing and direct compression.

    PubMed

    Ervasti, Tuomas; Simonaho, Simo-Pekka; Ketolainen, Jarkko; Forsberg, Peter; Fransson, Magnus; Wikström, Håkan; Folestad, Staffan; Lakio, Satu; Tajarobi, Pirjo; Abrahmsén-Alami, Susanna

    2015-11-10

    The aim of the current work was to explore continuous dry powder mixing and direct compression for manufacturing of extended release (ER) matrix tablets. The study was span out with a challenging formulation design comprising ibuprofen compositions with varying particle size and a relatively low amount of the matrix former hydroxypropyl methylcellulose (HPMC). Standard grade HPMC (CR) was compared to a recently developed direct compressible grade (DC2). The work demonstrate that ER tablets with desired quality attributes could be manufactured via integrated continuous mixing and direct compression. The most robust tablet quality (weight, assay, tensile strength) was obtained using high mixer speed and large particle size ibuprofen and HPMC DC2 due to good powder flow. At low mixer speed it was more difficult to achieve high quality low dose tablets. Notably, with HPMC DC2 the processing conditions had a significant effect on drug release. Longer processing time and/or faster mixer speed was needed to achieve robust release with compositions containing DC2 compared with those containing CR. This work confirms the importance of balancing process parameters and material properties to find consistent product quality. Also, adaptive control is proven a pivotal means for control of continuous manufacturing systems. PMID:26320548

  3. Effect of powder substrate on foaml drainage and collapse: implications to foam granulation.

    PubMed

    Koo, Otilia M Y; Ji, Jiangning; Li, Jinjiang

    2012-04-01

    Foam granulation is a relatively newer wet granulation process whereby foamed binder solutions are added to powders in a mixer. It is essential to understand the effect of powder substrate on foam drainage and half-life, which are relevant to nucleation and agglomeration during foam granulation. Hydroxypropyl methylcellulose (HPMC) and hydroxypropyl cellulose (HPC) foams were characterized. Anhydrous lactose and stearic acid were selected as model soluble and insoluble substrates, respectively. The effect of these substrates on foam stability was measured by foam drainage and collapse time and microscopic observations. Both HPMC and HPC foams were similar in foam quality and foam density. Lactose destabilized both HPMC and HPC foams and foam drainage and collapse times were reduced two to four times in the presence of lactose. On the contrary, stearic acid did not significantly change foam drainage and collapse times. Microscopically, lactose exhibited rapid wetting within 15 s upon contacting the HPMC and HPC foam beds, whereas stearic acid remained unwetted even after 8 min and collapse of the foam beds. Substrate solubility can influence foam-substrate interaction. On the basis of this, we suggest potential mechanisms of nucleation and agglomeration of soluble and insoluble substrates during foam granulation. PMID:22234920

  4. Measurement of drug agglomerates in powder blending simulation samples by near infrared chemical imaging.

    PubMed

    Li, Weiyong; Woldu, Abraham; Kelly, Richard; McCool, Jim; Bruce, Rick; Rasmussen, Henrik; Cunningham, John; Winstead, Denita

    2008-02-28

    This research note describes a powder blending simulation study conducted using 20-mL scintillation vials and a bench-top rotating mixer on a scale of 2g for each sample. In order to investigate the impact of mean particle size and size distribution on blending behavior of an active pharmaceutical ingredient (API), the drug substance was separated into sieve fractions using the US standard sieves of 60, 80, 100, 200, and 325mesh. Each of the fractions was mixed with two excipients (hydroxypropyl methylcellulose and microcrystalline cellulose) for up to 20min. Then the blending samples were analyzed by a near infrared chemical imaging (NIR-CI) system. The NIR-CI system was able to measure API particles/domains (agglomerates) at 0.001mm(2) and above within a 11.2mmx9.0mm field of view. It was found that blends prepared with larger API particles (60-200 mesh) contain agglomerated API domains > or =0.1mm(2). The blends prepared with finer API particles (< or =325 mesh) show the characteristics of a randomized mixing. This simple and effective method can be used for evaluation of blending behavior for APIs in formulation development. PMID:17951017

  5. Enhanced dissolution of oxcarbazepine microcrystals using a static mixer process.

    PubMed

    Douroumis, D; Fahr, A

    2007-10-01

    The purpose of this study was to form micronized powders of Oxcarbazepine (OXC), a poorly water-soluble drug, using a static mixer technique to enhance the dissolution rate. Controlled precipitation was achieved injecting the organic OXC solution rapidly into an aqueous methylcellulose (MC) protective solution by means of a static mixer thus providing turbulent and homogeneous mixing. Furthermore, a factorial design was implemented for data analysis. The physicochemical properties of the freeze-dried dispersions were evaluated by differential scanning calorimetry (DSC), infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Drug microcrystals showed a narrow size distribution with approximately 2 microm mean particle size and high drug loading. DSC and FTIR studies revealed that the drug remained in crystalline state and no drug-polymer interaction occurred. The dissolution studies showed enhanced dissolution of OXC microcrystals compared to the pure drug. The static mixer technique was proved capable for micro-sized polymeric particles. This is an inexpensive, less time consuming and fully scalable process for development of poorly soluble drugs. PMID:17588726

  6. Nanosizing of poorly water soluble compounds using rotation/revolution mixer.

    PubMed

    Takatsuka, Takayuki; Endo, Tomoko; Jianguo, Yao; Yuminoki, Kayo; Hashimoto, Naofumi

    2009-10-01

    In this study, nanoparticles of various poorly water soluble compounds were prepared by wet milling that was carried out using a rotation/revolution mixer and zirconia balls. To be compared with Beads mill, rotation/revolution mixer has superior in very quick process (5 min) and needs very few amounts of zirconia balls (2.4 g) for pulverizing drugs to nanometer range. Phenytoin, indomethacin, nifedipine, danazol, and naproxen were selected as the standard poorly water soluble compounds. Various parameters of the rotation/revolution mixer were studied to decide the optimal pulverization conditions for the production of nanoparticles of the abovementioned compounds. The rotation/revolution speed, shape of the mixing vessel, amount of zirconia balls, and volume of the vehicle (methylcellulose solution) mainly affected the pulverization of the compounds. Using the mixer, phenytoin could be pulverized to nanoparticles within a few minutes. The particle size was confirmed by using a scanning electron microscope and a particle size analyzer. The crystallinity of the pulverized phenytoin particles was confirmed by X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). It was observed that the pulverized phenytoin particles retained their crystallinity, and amorphous phenytoin was not detected. Particles of other poorly water soluble compounds were also reduced to the nanometer range by using this method.

  7. Nano-pulverization of poorly water soluble compounds with low melting points by a rotation/revolution pulverizer.

    PubMed

    Yuminoki, K; Takeda, M; Kitamura, K; Numata, S; Kimura, K; Takatsuka, T; Hashimoto, N

    2012-08-01

    We report a method for pulverizing poorly water soluble compounds with low melting points to nanoparticles without producing an amorphous phase using a rotation/revolution pulverizer. Fenofibrate, flurbiprofen, and probucol were used as crystalline model compounds. They were suspended in a methylcellulose aqueous solution and pulverized with zirconia balls by the rotation/revolution pulverizer. Beeswax, an amorphous compound, was also examined to investigate whether nano-pulverization of a compound with a low melting point was possible. Beeswax was suspended in ethyl alcohol cooled with liquid nitrogen and pulverized with zirconia balls by the rotation/revolution pulverizer. By optimizing the pulverization parameters, nanoparticles (D50 < 0.15 microm) of the crystalline compounds were obtained with narrow particle size distributions at a rotation/revolution speed of 1000 rpm and a rotation/revolution ratio of 1.0 when the vessel was 0 degrees C. Amorphous fenofibrate and flurbiprofen were not detected by differential scanning calorimetry or powder X-ray diffraction, whereas small amounts of amorphous probucol were detected. Beeswax was pulverized to nanoparticles (D50 = 0.14 microm) with ethyl alcohol cooled with liquid nitrogen. Fine nanoparticles of these poorly water soluble compounds with low melting points were obtained by controlling the rotation/revolution speed and reducing the vessel temperature.

  8. Floating Matrix Dosage Form for Propranolol Hydrochloride Based on Gas Formation Technique: Development and In Vitro Evaluation

    PubMed Central

    Chaturvedi, Kiran; Umadevi, S.; Vaghani, Subhash

    2010-01-01

    Gastroretentive tablets of propranolol hydrochloride were developed by direct compression method using citric acid and sodium bicarbonate as the effervescent base. Hydroxypropyl methylcellulose; HPMC K15M was used to prepare the floating tablets to retard the drug release for 12h in stomach. Na-carboxymethyl cellulose (NaCMC) or carbopol 934P was added to alter the drug release profile or the dimensional stability of the formulation. Dicalcium phosphate (DCP) was used as filler. Formulations were evaluated for floating lag time, duration of floating, dimensional stability, drug content and in vitro drug release profile. The formulations were found to have floating lag time less than 1min. It was found that the dimensional stability of the formulations increase with increasing concentration of the swelling agent. The release mechanism of propranolol hydrochloride from floating tablets was evaluated on the basis of Peppas and Higuchi model. The ‘n’ value of the formulations ranged from 0.5201 to 0.7367 (0.5

  9. Simultaneous probing of swelling, erosion and dissolution by NMR-microimaging--effect of solubility of additives on HPMC matrix tablets.

    PubMed

    Tajarobi, Farhad; Abrahmsén-Alami, Susanna; Carlsson, Anders S; Larsson, Anette

    2009-05-12

    Extensive studies of extended release tablets based on hydrophilic polymers have illuminated several aspects linked to their functionality. However, in some respects key factors affecting the mechanisms of release are yet unexplored. In the present study, a novel NMR-microimaging method has been used to study the influence of the solubility of additives in extended release hydroxypropyl methylcellulose (HPMC) matrix tablets. During the course of the tablet dissolution the movement of the swelling and erosion fronts were studied simultaneously to the release of both polymer and additives. Moreover, the focused beam reflectance measurement (FBRM) technology was for the first time assessed for both release and dissolution rate studies of poorly soluble particles. The studied formulations comprised solely HPMC, 40% HPMC and 60% mannitol (Cs=240 mg/ml) and 40% HPMC and 60% dicalcium phosphate (DCP) (Cs=0.05 mg/ml). The dissolution rate of the tablets was highest for the HPMC/mannitol formulation, followed by HPMC/DCP and plain HPMC tablet. A contrasting order was found regarding the degree and kinetics of swelling. The results were interpreted in light of how the mass transport in the gel layer is influenced by the solubility of additives. A mechanistic model, considering osmotic pressure gradient and the effective diffusion of the dissolution medium in the gel is proposed.

  10. Floating matrix dosage form for propranolol hydrochloride based on gas formation technique: development and in vitro evaluation.

    PubMed

    Chaturvedi, Kiran; Umadevi, S; Vaghani, Subhash

    2010-01-01

    Gastroretentive tablets of propranolol hydrochloride were developed by direct compression method using citric acid and sodium bicarbonate as the effervescent base. Hydroxypropyl methylcellulose; HPMC K15M was used to prepare the floating tablets to retard the drug release for 12h in stomach. Na-carboxymethyl cellulose (NaCMC) or carbopol 934P was added to alter the drug release profile or the dimensional stability of the formulation. Dicalcium phosphate (DCP) was used as filler. Formulations were evaluated for floating lag time, duration of floating, dimensional stability, drug content and in vitro drug release profile. The formulations were found to have floating lag time less than 1min. It was found that the dimensional stability of the formulations increase with increasing concentration of the swelling agent. The release mechanism of propranolol hydrochloride from floating tablets was evaluated on the basis of Peppas and Higuchi model. The ânâ value of the formulations ranged from 0.5201 to 0.7367 (0.5

  11. Multilayer laminar co-extrudate as a novel controlled release dosage form.

    PubMed

    Müllers, Katrin C; Wahl, Martin A; Pinto, João F

    2013-07-16

    Design of a new dosage form manufactured by laminar extrusion for oral administration of drugs. Different mixtures of materials (microcrystalline cellulose [MCC], hydroxypropyl methylcellulose [HPMC], lactose [LAC], dicalcium phosphate [DCP], coumarin [COU], propranolol hydrochloride [PRO], water [W]) were prepared prior to laminar extrusion. Mono, bi and tri layer extrudates were manufactured and evaluated for extrudability, drying, water uptake and swelling ability and in vitro characterization of the drug release. Good quality extrudates were manufactured with higher HPMC molecular weight and fraction in formulation at an extrusion rate of 400 mm/min and slow drying (forced air stream), otherwise surface roughness, thickness in-homogeneity, bending and shark skin were present in the extrudates. Swelling of extrudates was dependent on HPMC fraction and molecular weight (60% up to 90% weight gain for low and high polymer chains, respectively) and the presence of either MCC or DCP. The release of drug was dependent on its solubility (PRO>COU), the fraction of HPMC (low>high fractions), the type of diluent (DCP>MCC) and number of layers (1>2>3 layers). By designing the number and type of layers, dosage forms with well-defined release-kinetics can be tailored. The study has shown the ability of the technology of extrusion to manufacture a controlled release dosage form in a continuous fashion.

  12. Effects of Commonly Used Excipients on the Expression of CYP3A4 in Colon and Liver Cells

    PubMed Central

    Tompkins, Leslie; Lynch, Caitlin; Haidar, Sam; Polli, James; Wang, Hongbing

    2013-01-01

    Purpose The objective of this investigation was to assess whether common pharmaceutical excipients regulate the expression of drug-metabolizing enzymes in human colon and liver cells. Methods Nineteen commonly used excipients were evaluated using a panel of experiments including cell-based human PXR activation assays, real-time RT-PCR assays for CYP3A4 mRNA expression, and immunoblot analysis of CYP3A4 protein expression in immortalized human liver cells (HepG2 and Fa2N4), human primary hepatocytes, and the intestinal LS174T cell models. Results No excipient activated human PXR or practically induced CYP3A4. However, three excipients (polysorbate 80, pregelatinized starch, and hydroxypropyl methylcellulose) tended to decrease mRNA and protein expression across experimental models. Conclusion This study represents the first investigation of the potential role of excipients in the expression of drug-metabolizing enzymes. Findings imply that some excipients may hold potential for excipient-drug interactions by repression of CYP3A4 expression. PMID:20503067

  13. Production of dosage forms for oral drug delivery by laminar extrusion of wet masses.

    PubMed

    Müllers, Katrin C; Wahl, Martin A; Pinto, João F

    2013-08-01

    Laminar extrusion of wet masses was studied as a novel technology for the production of dosage forms for oral drug delivery. Extrusion was carried out with a ram extruder. Formulations contained either microcrystalline cellulose (MCC) or dicalcium phosphate (DCP) as diluent, hydroxypropyl methylcellulose (HPMC), lactose, and water. Extrudates were characterized for their tensile strength, Young's modulus of elasticity, water absorption, gel forming capacity, and release of two model drugs, coumarin (COU) and propranolol hydrochloride (PRO). Cohesive extrudates could be produced with both filling materials (MCC and DCP) when HPMC was included as a binder at low amounts (3.3-4.5% w/w dry weight). Employing more HPMC, the elasticity of the wet masses increased which resulted in distinct surface defects. For MCC, the maximum HPMC amount that could be included in the formulations (15% w/w dry weight) did not affect the mechanical properties or decrease the drug release significantly. For DCP extrudates, the maximally effective HPMC amount was 30% (w/w dry weight) with influence on both the mechanical properties and drug release. This study suggests that laminar extrusion of wet masses is a feasible technique for the production of dosage forms for oral drug delivery.

  14. Chemical, dissolution stability and microscopic evaluation of suspensions of ibuprofen and sustained release ibuprofen-wax microspheres.

    PubMed

    Adeyeye, C M; Price, J C

    1997-01-01

    Chemical stability studies of suspensions of ibuprofen powder and ibuprofen-wax microspheres were performed using an accelerated stability protocol with a modified high performance liquid chromatography (HPLC) procedure. The variables considered were pH, suspending agents and temperature. The study showed little or no chemical degradation in the different suspending agents after storage for three months. Dissolution stability was examined in suspensions of ibuprofen microspheres made from an optimized formulation with 17% drug loading. The storage temperature were 23, 37 and 45 degrees C. Other variables for the dissolution stability studies were suspending agents, wax types, suspending medium pH and microsphere size. Suspensions of ceresine wax microspheres stored at 37 degrees C showed faster drug release than room temperature storage, but suspensions stored at 45 degrees C showed an opposite effect. Microspheres suspended in syrup and stored at 37 degrees C had faster dissolution rates than microspheres suspended in methylcellulose at the same temperature, possibly as a result of an interaction between the syrup and the microsphere constituents. Suspensions of microcrystalline wax microspheres had better dissolution stability than microspheres made from ceresine wax. Higher suspending medium pH resulted in faster release of drug from the suspended microspheres, but particle size did not significantly affect the dissolution stability.

  15. A novel solubilization technique for poorly soluble drugs through the integration of nanocrystal and cocrystal technologies.

    PubMed

    Karashima, Masatoshi; Kimoto, Kouya; Yamamoto, Katsuhiko; Kojima, Takashi; Ikeda, Yukihiro

    2016-10-01

    The aim of the present study was to develop a novel solubilization technique consisting of a nano-cocrystal suspension by integrating cocrystal and nanocrystal formulation technologies to maximize solubilization over current solubilizing technologies. Monodisperse carbamazepine-saccharin, indomethacin-saccharin, and furosemide-caffeine nano-cocrystal suspensions, as well as a furosemide-cytosine nano-salt suspension, were successfully prepared with particle sizes of less than 300nm by wet milling with the stabilizers hydroxypropyl methylcellulose and sodium dodecyl sulfate. Interestingly, the properties of resultant nano-cocrystal suspensions were dramatically changed depending on the physicochemical and structural properties of the cocrystals. In the formulation optimization, the concentration and ratio of the stabilizers also influenced the zeta potentials and particles sizes of the resultant nano-cocrystal suspensions. Raman spectroscopic analysis revealed that the crystalline structures of the cocrystals were maintained in the nanosuspensions, and were physically stable for at least one month. Furthermore, their dissolution profiles were significantly improved over current solubilization-enabling technologies, nanocrystals, and cocrystals. In the present study, we demonstrated that nano-cocrystal formulations can be a new promising option for solubilization techniques to improve the absorption of poorly soluble drugs, and can expand the development potential of poorly soluble candidates in the pharmaceutical industry. PMID:27393561

  16. Regulation of heme metabolism in normal and sideroblastic bone marrow cells in culture

    SciTech Connect

    Ibraham, N.G.; Lutton, J.D.; Hoffman, R.; Levere, R.D.

    1985-05-01

    Heme metabolism was examined in developing in vitro erythroid colonies (CFUE) and in bone marrow samples taken directly from four normal donors and four patients with sideroblastic anemia. Maximum activities of delta-aminolevulinic acid synthase (ALAS), ALA dehydratase (ALAD), and /sup 14/C-ALA incorporation into heme were achieved in normal marrow CFUE after 8 days of culture, whereas heme oxygenase progressively decreased to low levels of activity during the same period. Assays on nucleated bone marrow cells taken directly from patients revealed that ALAS activity was considerably reduced in idiopathic sideroblastic anemia (IASA) and X-linked sideroblastic anemia (X-SA) bone marrow specimens, whereas the activity increased more than twofold (normal levels) when cells were assayed from 8-day CFUE. In all cases, ALAD activity appeared to be within normal levels. Measurement of heme synthesis revealed that normal levels of /sup 14/C-ALA incorporation into heme were achieved in IASA cells but were reduced in X-SA cells. In marked contrast to levels in normal cells, heme oxygenase was found to be significantly elevated (two- to fourfold) in bone marrow cells taken directly from patients with IASA and X-SA. Results from this study demonstrate that IASA and X-SA bone marrow cells have disturbances in ALAS and heme metabolism, and that erythropoiesis (CFUE) can be restored to normal levels when cells are cultured in methylcellulose.

  17. In vitro/in vivo evaluation of HPMC/alginate based extended-release matrix tablets of cefpodoxime proxetil.

    PubMed

    Mujtaba, Ali; Kohli, Kanchan

    2016-08-01

    The purpose of this research was to assessment of antimicrobial activity and in vitro/in vivo evaluation of cefpodoxime proxetil extended-release (ER) tablet for once daily administration. The tablets were prepared using combination of biodegradable polysaccharides including hydroxypropyl methylcellulose and sodium alginate as matrix material to achieve pH-independent ER release. The tablets were found within the permissible limits for various physicochemical parameters. The in vitro drug release showed that the drug was released over a period of 24h in a sustained release manner. The drug release followed Higuchi kinetics as these plots showed the highest linearity (R(2)=0.9833), but a close relationship was also observed with zero-order kinetics (R(2)=0.9088) and the drug release mechanism was found to be of anomalous or non-Fickian type. Further, in vitro drug release was assessed by antimicrobial assay and it revealed that drug release through 24h periods was above the MIC. In vivo investigation in rabbits showed ER pharmacokinetic profile of cefpodoxime from the matrix tablets. A good correlation of drug absorption in vivo and drug release in vitro (R(2)=0.9785) was observed. These results suggested that the investigated CFP matrix tablets have a potential for extended-release dosage forms. PMID:27155235

  18. Formulation and evaluation of mucoadhesive tablets containing eugenol for the treatment of periodontal diseases.

    PubMed

    Jadhav, Bhimrao K; Khandelwal, Kishanchandra R; Ketkar, Anant R; Pisal, Sambhaji S

    2004-02-01

    Eugenol is the principle chemical constituent of clove oil and has been used to cure dental problems for ages. Eugenol is an integral part of the dentist's kit due to its analgesic, local anesthetic, anti-inflammatory, and antibacterial effects. It is used in the form of a paste or mixture as dental cement, filler, and restorative material. This study reports the development and evaluation of controlled-release mucoadhesive tablets for gingival application, containing eugenol, which are prepared by taking carbopol 934 P and Hydroxypropyl methylcellulose (HPMC) K4M in the ratio of 1:2, 1:1, and 2:1. Incorporation of eugenol (10 mg) in a mucoadhesive formulation provides controlled release for a period of 8 hours, which is advantageous over conventional use. In vitro mucoadhesion measured as detachment force in grams and the formulations show good correlation in vivo. The release study indicates that increase in carbopol increases the release rate of eugenol from the formulation whereas HPMC retards it. Increased in vitro bioadhesion is related to HPMC content of the formulation. The release kinetics of eugenol in vitro correlates with the in vivo results. This indicates the increased potential of eugenol as antibacterial, local analgesic, and anaesthetic treatment. PMID:15089054

  19. Strain comparisons of atrazine-induced pregnancy loss in the rat.

    PubMed

    Narotsky, M G; Best, D S; Guidici, D L; Cooper, R L

    2001-01-01

    Atrazine was administered by gavage, in 1% methylcellulose, to F344 Sprague-Dawley (SD), and Long Evans (LE) rats at 0, 25, 50, 100, or 200 mg/kg/day on gestation days 6 through 10. The dams were allowed to deliver and litters were examined postnatally. The F344 strain was the most sensitive to atrazine's effects on pregnancy, showing full-litter resorption (FLR) at >/=50 mg/kg. In surviving F344 litters, prenatal loss was increased at 200 mg/kg. In SD and LE rats, FLR occurred only at 200 mg/kg. Delayed parturition was seen at >/=100 mg/kg in F344 and SD rats. Regarding maternal toxicity, the SD dams were the most sensitive, with weight loss at >/=25 mg/kg. When 200 mg/kg was administered to F344 rats on days 11 through 15 (after the LH-dependent period of pregnancy), no FLR was seen. These findings suggest that atrazine-induced FLR is maternally mediated, and consistent with loss of LH support of the corpora lutea.

  20. Topical Lyogel Containing Corticosteroid Decreases IgE Expression and Enhances the Therapeutic Efficacy Against Atopic Eczema.

    PubMed

    Ng, Shiow-Fern; Anuwi, Nurul-Asmaa; Tengku-Ahmad, Tengku-Noraisyah

    2015-06-01

    Hydrocortisone cream intended for atopic eczema often produces unwanted side effects after long-term use. These side effects are essentially due to repeated percutaneous administration of the medication for skin dermatitis, as atopic eczema is a relapsing disorder. Hence, there is a need to develop a new hydrocortisone formulation that will deliver the drug more effectively and require a reduced dosing frequency; therefore, the side effects could be minimized. In this study, a hydroxypropyl methylcellulose (HPMC) lyogel system based on 80% organic and 20% aqueous solvents containing 1% hydrocortisone was formulated. The hydrocortisone lyogel physicochemical characteristics, rheological properties, stability profile, and in vitro Franz cell drug release properties, as well as the in vivo therapeutic efficacies and dermal irritancy in Balb/c mice were investigated. The HPMC lyogel appeared clear and soft and was easy to rub on the skin. The lyogel also showed a higher drug release profile compared with commercial hydrocortisone cream. Similar to the cream, HPMC lyogels exhibited pseudoplastic behavior. From the mouse model, the hydrocortisone lyogel showed higher inflammatory suppressive effects than the cream. However, it did not reduce the transepidermal water loss as effectively as the control did. The dermal irritancy testing revealed that the hydrocortisone lyogel caused minimal irritation. In conclusion, HPMC lyogel is a promising vehicle to deliver hydrocortisone topically, as it showed a higher drug release in vitro as well as enhanced therapeutic efficacy in resolving eczematous inflammatory reaction compared with commercial cream.

  1. Inhibitory effect of gels loaded with a low concentration of antibiotics against biofilm formation by Enterococcus faecalis and Porphyromonas gingivalis.

    PubMed

    A Algarni, Amnah; H Yassen, Ghaeth; L Gregory, Richard

    2015-09-01

    We explored longitudinally the inhibitory effect of gels loaded with 1 mg/mL modified triple antibiotic paste (MTAP) or double antibiotic paste (DAP) against biofilm formation by Enterococcus faecalis and Porphyromonas gingivalis. Methylcellulose-based antibiotic gels of MTAP (ciprofloxacin, metronidazole and clindamycin) and DAP (ciprofloxacin and metronidazole) were prepared at a concentration of 1 mg/mL. Individually cultured E. faecalis and P. gingivalis bacterial suspensions were treated with MTAP, DAP, or placebo (vehicle only) gels at different dilutions and allowed to grow in 96-well microtiter plates. Untreated bacterial suspensions served as a negative control. Crystal violet assays were used to evaluate biofilm formation after 48 h. The ability of the gels to inhibit biofilm formation was determined immediately, and at 1 month and 3 months after the gels had been prepared. Data were analyzed using a mixed-model ANOVA. The MTAP and DAP gels significantly reduced biofilm formation by both bacterial species at all time points, regardless of the tested dilution. No-significant differences in biofilm-inhibitory effects between MTAP and DAP gels were observed at the majority of the tested dilutions through various time points. Gels loaded with 1 mg/mL MTAP and DAP demonstrated a significant antibiofilm effect against E.faecalis and P. gingivalis. PMID:26369485

  2. Management of Constipation in Older Adults.

    PubMed

    Mounsey, Anne; Raleigh, Meghan; Wilson, Anthony

    2015-09-15

    Chronic constipation is common in adults older than 60 years, and symptoms occur in up to 50% of nursing home residents. Primary constipation is also referred to as functional constipation. Secondary constipation is associated with chronic disease processes, medication use, and psychosocial issues. Fecal impaction should be treated with mineral oil or warm water enemas. Most patients are initially treated with lifestyle modifications, such as scheduled toileting after meals, increased fluid intake, and increased dietary fiber intake. Additional fiber intake in the form of polycarbophil, methylcellulose, or psyllium may improve symptoms. Fiber intake should be slowly increased over several weeks to decrease adverse effects. The next step in the treatment of constipation is the use of an osmotic laxative, such as polyethylene glycol, followed by a stool softener, such as docusate sodium, and then stimulant laxatives. Long-term use of magnesium-based laxatives should be avoided because of potential toxicity. If symptoms do not improve, a trial of linaclotide or lubiprostone may be appropriate, or the patient may be referred for further diagnostic evaluation. Peripherally acting mu-opioid antagonists are effective for opioid-induced constipation but are expensive.

  3. Pharmacokinetics and Antiinflammatory Effect of a Novel Gel System Containing Ketoprofen Solid Nanoparticles.

    PubMed

    Nagai, Noriaki; Iwamae, Aya; Tanimoto, Shion; Yoshioka, Chiaki; Ito, Yoshimasa

    2015-01-01

    We previously reported that dermal application using nanoparticles improves skin penetration. In this study, we prepared novel topical formulations containing ketoprofen (KET) solid nanoparticles (KETnano gel ointment) and investigated the antiinflammatory effect of the KET nanoparticle formulations on rheumatoid arthritis using adjuvant-induced arthritis (AA) rats. The KETnano gel ointment was prepared using a bead mill method and additives including methylcellulose and Carbopol 934; the mean particle size of the KET nanoparticles was 83 nm. In the in vitro skin penetration experiment, the penetration rate (Jc) and penetration coefficient through the skin (Kp) values of the KETnano gel ointment were significantly higher than those of gel ointment containing KET microparticles (KETmicro gel ointment; mean particle size 7.7 µm). On the other hand, in the in vivo percutaneous absorption experiment, the apparent absorption rate constant (ka) and the areas under the KET concentration-time curve values in the skin of rats receiving the KETnano gel ointment were significantly higher than those of rats receiving the KETmicro gel ointment, and the amounts of KET in the skin tissues of rats receiving the KETnano gel ointment were also significantly higher than those of rats receiving the KETmicro gel ointment. In addition, the application of the KETnano gel ointment attenuated the enhancement of paw edema of the hind feet of AA rats more than the application of the KETmicro gel ointment. Our findings suggest that a topical drug delivery system using nanoparticles could lead to expansion in the therapeutic use of KET.

  4. Improved anti-melanoma effect of a transdermal mitoxantrone ethosome gel.

    PubMed

    Yu, Xiang; Du, Lina; Li, Yu; Fu, Guiying; Jin, Yiguang

    2015-07-01

    Melanomas are malignant tumors characterized by early metastasis, rapid development, poor prognosis and high mortality. A highly effective and convenient method is necessary for long-term treatment of melanomas. Mitoxantrone (MTO) was topically applied for melanoma therapy using an MTO ethosome gel. Firstly, an ethosome was prepared from MTO, phospholipids, ethanol and water followed by addition of hydroxypropyl methylcellulose to obtain an ethosome gel. The ethosome was characterized. The cytotoxicity on B16 melanoma cells was evaluated on an electrical cell-substrate impedance sensing system with a novel modified chip. In vivo anti-melanoma effect of the ethosome gel was explored. Immunohistochemical and flow cytometric investigations were done. The MTO ethosomes had the size of 78nm and the zeta potential of -55mV. The ethosomes were flexible vesicles and showed much higher in vitro permeability across the rat skin than MTO aqueous solutions. The ethosomes had significant cytotoxicity and higher in vivo anti-melanoma effect than MTO solutions. The calreticulin membrane translocation of B16 cells was improved by the MTO ethosomes and the cell uptake of MTO was confirmed. The MTO ethosome gel is a promising transdermal delivery system for melanoma therapy with the advantages of non-invasion and no significant side effects. PMID:26211575

  5. Determination of ephedrine and pseudoephedrine by field-amplified sample injection capillary electrophoresis.

    PubMed

    Deng, Dongli; Deng, Hao; Zhang, Lichun; Su, Yingying

    2014-04-01

    A simple and rapid capillary electrophoresis method was developed for the separation and determination of ephedrine (E) and pseudoephedrine (PE) in a buffer solution containing 80 mM of NaH2PO4 (pH 3.0), 15 mM of β-cyclodextrin and 0.3% of hydroxypropyl methylcellulose. The field-amplified sample injection (FASI) technique was applied to the online concentration of the alkaloids. With FASI in the presence of a low conductivity solvent plug (water), an approximately 1,000-fold improvement in sensitivity was achieved without any loss of separation efficiency when compared to conventional sample injection. Under these optimized conditions, a baseline separation of the two analytes was achieved within 16 min and the detection limits for E and PE were 0.7 and 0.6 µg/L, respectively. Without expensive instruments or labeling of the compounds, the limits of detection for E and PE obtained by the proposed method are comparable with (or even lower than) those obtained by capillary electrophoresis laser-induced fluorescence, liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. The method was validated in terms of precision, linearity and accuracy, and successfully applied for the determination of the two alkaloids in Ephedra herbs.

  6. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations Part II: CP kinetics and relaxation analysis.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Excipients used in the solid drug formulations differ in their NMR relaxation and (13)C cross-polarization (CP) kinetics parameters. Therefore, experimental parameters like contact time of cross-polarization and repetition time have a major impact on the registered solid state NMR spectra and in consequence on the results of the NMR analysis. In this work the CP kinetics and relaxation of the most common pharmaceutical excipients: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. The studied excipients differ significantly in their optimum repetition time (from 5 s to 1200 s) and T(1ρ)(I) parameters (from 2 ms to 73 ms). The practical use of those differences in the excipients composition analysis was demonstrated on the example of commercially available tablets containing indapamide as an API. The information presented in this article will help to choose the correct acquisition parameters and also will save the time and effort needed for their optimization in the NMR analysis of the solid drug formulations.

  7. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: Chemical shifts assignment.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations.

  8. Production of dosage forms for oral drug delivery by laminar extrusion of wet masses.

    PubMed

    Müllers, Katrin C; Wahl, Martin A; Pinto, João F

    2013-08-01

    Laminar extrusion of wet masses was studied as a novel technology for the production of dosage forms for oral drug delivery. Extrusion was carried out with a ram extruder. Formulations contained either microcrystalline cellulose (MCC) or dicalcium phosphate (DCP) as diluent, hydroxypropyl methylcellulose (HPMC), lactose, and water. Extrudates were characterized for their tensile strength, Young's modulus of elasticity, water absorption, gel forming capacity, and release of two model drugs, coumarin (COU) and propranolol hydrochloride (PRO). Cohesive extrudates could be produced with both filling materials (MCC and DCP) when HPMC was included as a binder at low amounts (3.3-4.5% w/w dry weight). Employing more HPMC, the elasticity of the wet masses increased which resulted in distinct surface defects. For MCC, the maximum HPMC amount that could be included in the formulations (15% w/w dry weight) did not affect the mechanical properties or decrease the drug release significantly. For DCP extrudates, the maximally effective HPMC amount was 30% (w/w dry weight) with influence on both the mechanical properties and drug release. This study suggests that laminar extrusion of wet masses is a feasible technique for the production of dosage forms for oral drug delivery. PMID:23403012

  9. The effect of sucrose and salts in combination on the drug release behaviour of an HPMC matrix.

    PubMed

    Williams, Hywel D; Ward, Robert; Hardy, Ian J; Melia, Colin D

    2010-11-01

    Previous work has shown how high concentrations of sugars can accelerate drug release from hydroxypropyl methylcellulose (HPMC) matrices by suppressing polymer hydration. This study investigates the effects of combining sugar and salts, using sucrose, sodium chloride and trisodium citrate, soluble ingredients commonly found in foods. A factorial study showed that each solute suppressed HPMC solution sol-gel transition temperature (a sensitive measure of molecular hydration) independently, and their effects reflected their rank order in the Hofmeister series. In mixtures, the effects were purely additive, with no evidence of antagonism or synergy. In dissolution tests, both salts significantly reduced the threshold sugar concentration required to elicit an acceleration of drug release, and when used in combination, 0.15 M sodium chloride with 0.015 M trisodium citrate reduced the threshold sucrose concentration from 0.7 M to 0.35-0.4 M, a reduction of almost 50%. The results show that food salts can significantly reduce the concentration required for sugar effects on HPMC matrices, and this may be a factor to consider when interpreting their in vivo behaviour in the fed state.

  10. Development of the novel coating formulations for skin vaccination using stainless steel microneedle.

    PubMed

    Kim, Seong-Jin; Shin, Ju-Hyung; Noh, Jin-Yong; Song, Chang-Seon; Kim, Yeu-Chun

    2016-10-01

    This study focused on the development of novel coating formulations for stainless steel microneedles against influenza A virus. With in vitro studies, various viscosity enhancers and stabilizers were screened based on the hemagglutination activity of the vaccine, which was coated and dried onto a stainless steel chip at room temperature for 1 day. Following the long-term storage test, the hemagglutination activity and particle size of the vaccine, which was formulated with conventional or methylcellulose or hydroxyethyl cellulose and dried onto the microneedle, were monitored. Next, to evaluate the in vivo immunogenicity and protection effect of each dried vaccine formulation, mice were immunized by the antigen-coated microneedle, which had either the conventional or the proposed formulation. Two novel formulations were chosen in the preliminary screening, and in further evaluations, they exhibited a 20 % higher HA activity during storage for 3 months, and no aggregation was observed during storage after drying. In a mouse model, the microneedle with the novel formulation elicited a higher level of IgG and IgG2a was more prevalent in the IgG isotype profile. In addition, mice immunized with the HEC-coated microneedle survived with small weight loss (>90 %) against lethal challenge infection. Overall, the novel formulation hydroxyethyl cellulose preserved significantly higher HA activity during the production and storage of the microneedle as well as improved the in vivo immunogenicity of the vaccine. PMID:27519363

  11. Combined use of crystalline sodium salt and polymeric precipitation inhibitors to improve pharmacokinetic profile of ibuprofen through supersaturation.

    PubMed

    Terebetski, Jenna L; Cummings, John J; Fauty, Scott E; Michniak-Kohn, Bozena

    2014-10-01

    To maximize the pharmacological effect of a pain reliever such as ibuprofen, early onset of action is critical. Unfortunately, the acidic nature of ibuprofen minimizes the amount of drug that can be solubilized under gastric conditions and would be available for immediate absorption upon entry into the intestine. Although the sodium salt of ibuprofen has higher solubility, rapid conversion from the salt to the poorly soluble free acid phase occurs under gastric conditions. Therefore, the combination of the highly soluble sodium salt form of ibuprofen with polymers was evaluated as an approach to prolong supersaturation of ibuprofen during the disproportionation of the salt. Binary combinations of ibuprofen sodium with polymers resulted in the identification of several formulations that demonstrated high degrees and extended durations of supersaturation during in vitro dissolution experiments. These formulations included HPMC, polyvinyl pyrrolidone-vinyl acetate copolymer (PVP-VA64), methylcellulose (MC), and hydroxypropyl cellulose (HPC). The in vitro supersaturation observed with these ibuprofen-polymer formulations translated to an increase in Cmax and an earlier Tmax for the PVP-VA64, MC, and HPC formulations relative to ibuprofen only controls when administered orally to rats under fasted conditions. Based on these observations, combining ibuprofen sodium with polymers such as PVP-VA64, MC, or HPC is a viable formulation approach to prolong supersaturation in the stomach and enable an optimized pharmacokinetic profile in vivo where rapid onset of action is desired.

  12. Drug release kinetics from tablet matrices based upon ethylcellulose ether-derivatives: a comparison between different formulations.

    PubMed

    Khan, Gul Majid; Meidan, Victor M

    2007-06-01

    The present study involved the preparation of ibuprofen-containing controlled release tablets formulated from either the established granular product, Ethocel Standard Premium, or the novel finely-milled product, Ethocel Standard FP Premium. The tablets were prepared by either direct compression or wet granulation. The aim was to explore the influence of different parameters on the kinetics and mechanisms of ibuprofen release from the tablets. These parameters were; polymer particle size, polymer molecular weight, drug : polymer ratio, preparation methodology and partial replacement of lactose with the coexcipient-hydroxypropyl methylcellulose (HPMC). The derived drug release data were analyzed with reference to various established mathematical models while the f2-metric technique was used in order to determine profile equivalency. It was found that drug release was mostly modulated by several interactive factors apparently exhibiting crosstalk. Nevertheless, it was possible to identify some simple rules. Incorporation of Ethocel FP polymers and application of the wet granulation technique facilitated greater efficiency in controlling ibuprofen release behavior from the matrices. Furthermore, drug release profiles could be modulated by partial substitution of the primary excipient with HPMC. Polymer concentrations and particle sizes, rather than viscosity grade, were found to be decisive factors in controlling drug release rates.

  13. Modifying release characteristics from 3D printed drug-eluting products.

    PubMed

    Boetker, Johan; Water, Jorrit Jeroen; Aho, Johanna; Arnfast, Lærke; Bohr, Adam; Rantanen, Jukka

    2016-07-30

    This work describes an approach to modify the release of active compound from a 3D printed model drug product geometry intended for flexible dosing and precision medication. The production of novel polylactic acid and hydroxypropyl methylcellulose based feed materials containing nitrofurantoin for 3D printing purposes is demonstrated. Nitrofurantoin, Metolose® and polylactic acid were successfully co-extruded with up to 40% Metolose® content, and subsequently 3D printed into model disk geometries (ø10mm, h=2mm). Thermal analysis with differential scanning calorimetry and solid phase identification with Raman spectroscopy showed that nitrofurantoin remained in its original solid form during both hot-melt extrusion and subsequent 3D printing. Rheological measurements of the different compositions showed that the flow properties were sensitive to the amount of undissolved particles present in the formulation. Release of nitrofurantoin from the disks was dependent on Metolose® loading, with higher accumulated release observed for higher Metolose® loads. This work shows the potential of custom-made, drug loaded feed materials for 3D printing of precision drug products with tailored drug release characteristics. PMID:26987609

  14. Leflunomide biodegradable microspheres intended for intra-articular administration: Development, anti-inflammatory activity and histopathological studies.

    PubMed

    El-Setouhy, Doaa Ahmed; Abdelmalak, Nevine Shawky; Anis, Shady E; Louis, Dina

    2015-11-30

    Leflunomide, the disease-modifying anti-rheumatic drug was formulated as microspheres for prolonged drug release in the form of intraarticular injection. Eight formulations were developed using three biodegradable PDLG polymers (lactide/glycolide copolymer) and polycaprolactone (PLC) at two drug:polymer ratios (1:2 and 1:4). Solvent evaporation method was employed using polyvinyl alcohol or hydropxypropyl methylcellulose as stabilizers. Formulations were assessed for encapsulation efficiency, yield, particle size, release pattern and SEM. F6 (PDLG 5010), with appropriate particle size and prolonged drug release, was chosen for in-vivo studies using arthritis induced rats, which were intrarticularly injected with F6 or took oral Avara(®). Nuclear factor-kappa B measurements and histopathologic studies were conducted. There was significant reduction of inflammation caused by both F6 and oral Avara(®). Histopathologic studies showed minimal infiltration by chronic inflammatory cells and no angiogenesis in F6 compared to Avara(®). Results also revealed biocompatibility of the polymer used.

  15. Preparation and characterization of TAM-loaded HPMC/PAN composite fibers for improving drug-release profiles.

    PubMed

    Shen, Xiaxia; Yu, Dengguang; Zhang, Xiaofei; Branford-White, Christopher; Zhu, Limin

    2011-01-01

    The present paper reports the preparation and characterization of composite hydroxypropyl methylcellulose/polyacrylonitrile (HPMC/PAN)-medicated fibers via a wet spinning technique. Tamoxifen (TAM) was selected as a model drug. Numerous analyses were conducted to characterize the mechanical, structure and morphology properties of the composite fibers. The drug content and in vitro dissolution behavior were also investigated. SEM images showed that the TAM-loaded HPMC/PAN composite fibers had a finger-like outer skin and a porous structure. FT-IR spectra demonstrated that there was a good compatibility between polymer and drug. Results from X-ray diffraction and DSC suggested that most of the incorporated TAM was evenly distributed in the fiber matrix in an amorphous state, except for a minority that aggregated on the surface of fibers. The drug content in the fibers was lower than that in the spinning solution and about 10% of TAM was lost during spinning process. In vitro dissolution results indicated that, compared to TAM-PAN fibers, HPMC/PAN composite systems had weaker initial burst release effects and more drug-loading. The combination of hydrophilic polymer HPMC with PAN could improve the performance of polymer matrix composite fibers in regulating the drug-release profiles.

  16. Design, Development and Optimization of S (-) Atenolol Floating Sustained Release Matrix Tablets Using Surface Response Methodology.

    PubMed

    Gunjal, P T; Shinde, M B; Gharge, V S; Pimple, S V; Gurjar, M K; Shah, M N

    2015-01-01

    The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 3(2) full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:26798171

  17. Evaluation of water uptake and mechanical properties of blended polymer films for preparing gas-generated multiple-unit floating drug delivery systems.

    PubMed

    Chen, Ying-Chen; Lee, Lin-Wen; Ho, Hsiu-O; Sha, Chen; Sheu, Ming-Thau

    2012-10-01

    Among various strategies of gastroretentive drug delivery systems (DDSs) developed to prolong the gastric residence time and to increase the overall bioavailability, effervescent multiple-unit floating DDSs (muFDDSs) were studied here. These systems consist of drug (losartan)- and effervescent (sodium bicarbonate)-containing pellets coated with a blended polymeric membrane, which was a mixture of gastrointestinal tract (GIT)-soluble and GIT-insoluble polymers. The addition of GIT-soluble polymers, such as hydroxypropyl methylcellulose, polyethylene glycol (PEG) 6000, PEG 600, and Kollicoat® IR, greatly increased the water uptake ability of the GIT-insoluble polymers (Eudragit® NE, RS, and RL; Surelease®; and Kollicoat® SR) and caused them to immediately initiate the effervescent reaction and float, but the hydrated films should also be impermeable to the generated CO(2) to maintain floatation and sufficiently flexible to withstand the pressure of carbon dioxide to avoid rupturing. The study demonstrated that the water uptake ability and mechanical properties could be applied as screening tools during the development of effervescent muFDDSs. The optimized system of SRT(5)P600(5) (i.e., a mixture of 5% Kollicoat® SR and 5% PEG 600) with a 20% coating level began to completely float within 15 min and maintained its buoyancy over a period of 12 h with a sustained-release effect. PMID:22833214

  18. N-acetylglucosamine increases symptoms and fungal burden in a murine model of oral candidiasis.

    PubMed

    Ishijima, Sanae A; Hayama, Kazumi; Takahashi, Miki; Holmes, Ann R; Cannon, Richard D; Abe, Shigeru

    2012-04-01

    The amino sugar N-acetylglucosamine (GlcNAc) is an in vitro inducer of the hyphal mode of growth of the opportunistic pathogen Candida albicans. The development of hyphae by C. albicans is considered to contribute to the pathogenesis of mucosal oral candidiasis. GlcNAc is also a commonly used nutritional supplement for the self-treatment of conditions such as arthritis. To date, no study has investigated whether ingestion of GlcNAc has an effect on the in vivo growth of C. albicans or the pathogenesis of a C. albicans infection. Using a murine model of oral candidiasis, we have found that administration of GlcNAc, but not glucose, increased oral symptoms of candidiasis and fungal burden. Groups of mice were given GlcNAc in either water or in a viscous carrier, i.e., 1% methylcellulose. There was a dose-dependent relationship between GlcNAc concentration and the severity of oral symptoms. Mice given the highest dose of GlcNAc, 45.2 mM, also showed a significant increase in fungal burden, and increased histological evidence of infection compared to controls given water alone. We propose that ingestion of GlcNAc, as a nutritional supplement, may have an impact on oral health in people susceptible to oral candidiasis.

  19. Porous networks derived from synthetic polymer-clay complexes

    SciTech Connect

    Carrado, K.A.; Thiyagarajan, P.; Elder, D.L.

    1995-05-12

    Synthetic hectorites were hydrothermally crystallized with direct incorporation of a cationic polymer poly(dimethyl diallyl ammonium chloride) (PDDA), and two neutral cellulosic polymers hydroxypropyl methylcellulose (HPMC) and hydroxyethyl cellulose (HEC). Synthetic PDDA-hectorite displays the lowest d-spacing at 15.8 {Angstrom} along with less polymer incorporation (7.8 wt % organic) than the neutral polymers (18--22 wt % organic). Thermal analysis and small angle neutron scattering were used to further examine the polymer-clay systems. Clay platelets of the largest size and best stacking order occur when cationic PDDA polymer is used. PDDA also enhances these properties over the crystallites prepared for a control mineral, where no polymer is used. HEC acts to aggregate the silica, leaving less to react to form clay. The clay platelets which result from HEC are small, not stacked to a large degree, and oriented randomly. Neutral HPMC acts more like cationic PDDA in that larger clay platelets are allowed to form. The extended microstructure of the clay network remains undisturbed after polymer is removed by calcination. When no polymer is used, the synthetic hectorite has a N{sub 2} BET surface area of 200 M{sup 2}/gm, even after calcination. This increases by 20--50% for the synthetic polymer-hectorites after the polymer is removed by calcination.

  20. Thin-coating as an alternative approach to improve flow properties of ibuprofen powder.

    PubMed

    Genina, Natalja; Räikkönen, Heikki; Ehlers, Henrik; Heinämäki, Jyrki; Veski, Peep; Yliruusi, Jouko

    2010-03-15

    In the present study, thin-coating as a potential method for improving flow properties of cohesive ibuprofen powder was introduced. Briefly, the technique was based on the successive deposition of ultrasound-assisted fine polymer mist onto the surface of the powdered active pharmaceutical ingredient (API), producing individual particles with a hydrophilic thin-coat. A 0.15% m/V aqueous solution of hydroxypropyl methylcellulose (HPMC) was used. Particle size and surface analysis revealed a decrease in the cohesiveness of ibuprofen powder and an increase in the homogeneity of particle surfaces as a result of polymer treatment. Superficial changes caused a substantial improvement on the flowing characteristics of coated substance over uncoated. The enhancement in flow rate proceeded as the uniformity of the HPMC layer increased. In conclusion, the proposed technique is a simple and effective method that can be used as a continuous process to modify API particle surface properties, which in turn improve the handling of poorly flowable powder.

  1. Effects of recombinant human GM-CSF on proliferation of clonogenic cells in acute myeloblastic leukemia.

    PubMed

    Griffin, J D; Young, D; Herrmann, F; Wiper, D; Wagner, K; Sabbath, K D

    1986-05-01

    Proliferation of acute myeloblastic leukemia (AML) cells in vitro is limited in most cases to a small subset of blasts that have several properties of stem cells. These leukemic colony-forming cells (AML-CFU) generally require addition of exogenous growth factors for proliferation in agar or methylcellulose. These factors can be supplied by media conditioned by phytohemagglutinin-stimulated normal leukocytes or by CSF-secreting tumor cell lines. However, the exact factor or factors required for stimulation of AML-CFU growth have not been defined. We compared the AML-CFU stimulatory activity of a human recombinant GM-CSF with that of GCT-CM, Mo-CM, and the PHA-leukocyte feeder system in 15 cases of AML. In each of the 12 cases that required exogenous growth factors for maximum AML-CFU growth, recombinant GM-CSF could replace either GM-CSF or Mo-CM, and could partially replace the PHA-leukocyte feeder system. These results indicate that this GM-CSF is a growth promoter of AML-CFU in these culture systems.

  2. Caffeine ingestion and isokinetic strength.

    PubMed Central

    Bond, V; Gresham, K; McRae, J; Tearney, R J

    1986-01-01

    The purpose of this study was to investigate the effects of caffeine on maximum voluntary contractions of the dominant knee extension and flexion muscles in 12 male intercollegiate track sprinters. Caffeine (5 mg.kg-1) and placebo (225 mg methylcellulose) gelatin capsules were administered orally in randomly assigned order. Muscle function was measured isokinetically by a Cybex II dynamometer interfaced with a data reduction computer. Six repetitions maximum of the extensors and flexors were performed at three sequential ordered speeds (30 degrees, 150 degrees and 300 degrees s-1) with a one-minute rest between varying velocities. Peake torque and power were than assessed after treatment conditions, as well as a fatigue index calculated from a series of 60 repetitions maximum ato 150 degrees s-1. Results of the 2 X 3 ANOVA and paired t-test indicated no difference in measures of peak torque and power at the varying contracting velocities and fatigue index after caffeine ingestion. These findings indicate the ingestion of caffeine in a small dose exerts no ergogenic effect on muscle function under anaerobic conditions. PMID:3779343

  3. Comparison of Gavage, Water Bottle, and a High-Moisture Diet Bolus as Dosing Methods for Quantitative D-xylose Administration to B6D2F1 (Mus musculus) Mice

    NASA Technical Reports Server (NTRS)

    Zimmer, J. Paul; Lewis, Sherry M.; Moyer, Jerry L.

    1993-01-01

    Gavage, water bottle, and diet incorporation are 3 dosing methods used orally to administer test compounds to rodents. These 3 methods were compared in mice to determine which represented the most quantitative delivery system. For dietary incorporation, a high-moisture bolus form of NIH-31 rodent meal was developed using hydroxypropyl methylcellulose as an autoclave-stable binding agent. A high-moisture bolus were selected to increase the acceptability of the dosed diet and to promote quantitative consumption through reduced wastage. The test compound used was D-xylose, a pentose sugar that may be quantitatively detected, colorimetrically, in urine following oral dosing. Six male and 6 female B6D2FI mice were placed in metabolism cages and dosed with a known quantity of D-xylose by each of the 3 methods. Urine was collected before and after each method of administration and analysed for total D-xylose; the per cent recovery was based upon the amount of D-xylose consumed. Quantitative consumption was apparently greatest for water bottle dosing with an average recovery of 56.0% of the original D-xylose dose. High-moisture bolus incorporation ranked second with 50.0% D-xylose recovery, and gavage was third with 41.0% D-xylose recovery.

  4. Development and characterization of an orodispersible film containing drug nanoparticles.

    PubMed

    Shen, Bao-de; Shen, Cheng-ying; Yuan, Xu-dong; Bai, Jin-xia; Lv, Qing-yuan; Xu, He; Dai, Ling; Yu, Chao; Han, Jin; Yuan, Hai-long

    2013-11-01

    In this study, a novel orodispersible film (ODF) containing drug nanoparticles was developed with the goal of transforming drug nanosuspensions into a solid dosage form and enhancing oral bioavailability of drugs with poor water solubility. Nanosuspensions were prepared by high pressure homogenization and then transformed into ODF containing drug nanoparticles by mixing with hydroxypropyl methylcellulose solution containing microcrystalline cellulose, low substituted hydroxypropylcellulose and PEG-400 followed by film casting and drying. Herpetrione, a novel and potent antiviral agent with poor water solubility that extracted from Herpetospermum caudigerum, was chosen as a model drug and studied systematically. The uniformity of dosage units of the preparation was acceptable according to the criteria of Japanese Pharmacopoeia 15. The ODF was disintegrated in water within 30s with reconstituted nanosuspensions particle size of 280 ± 11 nm, which was similar to that of drug nanosuspensions, indicating a good redispersibility of the fast dissolving film. Result of X-ray diffraction showed that HPE in the ODF was in the amorphous state. In the in vitro dissolution test, the ODF containing HPE nanoparticles showed an increased dissolution velocity markedly. In the pharmacokinetics study in rats, compared to HPE coarse suspensions, the ODF containing HPE nanoparticles exhibited significant increase in AUC0-24h, Cmax and decrease in Tmax, MRT. The result revealed that the ODF containing drug nanoparticles may provide a potential opportunity in transforming drug nanosuspensions into a solid dosage form as well as enhancing the dissolution rate and oral bioavailability of poorly water-soluble drugs. PMID:24103635

  5. Control-release microcapsule of famotidine loaded biomimetic synthesized mesoporous silica nanoparticles: Controlled release effect and enhanced stomach adhesion in vitro.

    PubMed

    Li, Jing; Wang, Hongyu; Yang, Baixue; Xu, Lu; Zheng, Nan; Chen, Hongtao; Li, Sanming

    2016-01-01

    In the present work, control-release microcapsule of famotidine (FMT) loaded biomimetic synthesized mesoporous silica nanoparticles (B-MSNs) was developed, and controlled release effect and stomach adhesion of this formulation in vitro were mainly investigated. B-MSN was previously synthesized and it was amorphous mesoporous nanoparticles with helical channels. Cytotoxicity of B-MSN was studied using human breast cancer cells (MCF-7) and the result indicated that cytotoxicity of B-MSN can be neglected. After loading FMT into B-MSN, specific surface area, pore volume and pore diameter of B-MSN were obviously reduced. In vitro dissolution test showed that B-MSN had the ability to slow down FMT release for 15 min. In order to prolong controlled release effect and remained the advantage of B-MSN (improve drug stability due to its rigid silica framework), the combined application of control-release microcapsule (using cellulose and hydroxypropyl methylcellulose K15M as excipients) with B-MSN was designed. It was obvious that newly designed formulation significantly controlled FMT release with Fickian diffusion mechanism and showed enhanced stomach adhesion in vitro, which has significant value in widening the application of B-MSN in formulation design.

  6. Low dose of methyltestosterone in ovariectomised rats improves baroreflex sensitivity without geno- and cytotoxicity.

    PubMed

    Terra, Denise G; de Lima, Ewelyne M; do Nascimento, Andrews M; Brasil, Girlandia A; Filete, Placielle F; Kalil, Ieda C; Lenz, Dominik; Endringer, Denise C; Bissoli, Nazaré S; de Andrade, Tadeu U

    2016-08-01

    This study evaluated the effects of the isolated use of a low dose of methyltestosterone (MT) on cardiovascular reflexes and hormonal levels and its geno- and cytotoxic safety in ovariectomized rats. Female Wistar rats were divided into four groups (n = 6), respectively: SHAM (received vehicle methylcellulose 0.5%), SHAM + MT (received MT 0.05 mg/kg), OVX (received vehicle), and OVX + MT (received MT). Twenty-one days after ovariectomy, treatment was given orally daily for 28 days. The Bezold-Jarisch reflex (BJR) was analyzed by measuring the bradycardic and hypotensive responses elicited by phenylbiguanide (PBG) administration. The baroreflex sensitivity (BRS) was evaluated by phenylephrine and sodium nitroprussite. Myocyte hypertrophy was determined by morphometric analysis of H&E stained slides. Biochemical data were analyzed, as well as micronucleus assay. MT improved BRS and increased testosterone values, but did not change estradiol in the OVX group. MT did not promote changes in mean arterial pressure, heart rate, BJR, serum concentrations of troponin I, weight and histopathology of the heart. MT was able to restore the BRS in OVX rats. The geno- and cytotoxic safety of the MT was demonstrated by the absence of an increase in the micronucleus (PCEMN) or change in the ratio between normochromatic erythrocytes and polychromatic erythrocytes (NCE/PCE).

  7. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling.

    PubMed

    Melocchi, Alice; Parietti, Federico; Maroni, Alessandra; Foppoli, Anastasia; Gazzaniga, Andrea; Zema, Lucia

    2016-07-25

    Fused deposition modeling (FDM) is a 3D printing technique based on the deposition of successive layers of thermoplastic materials following their softening/melting. Such a technique holds huge potential for the manufacturing of pharmaceutical products and is currently under extensive investigation. Challenges in this field are mainly related to the paucity of adequate filaments composed of pharmaceutical grade materials, which are needed for feeding the FDM equipment. Accordingly, a number of polymers of common use in pharmaceutical formulation were evaluated as starting materials for fabrication via hot melt extrusion of filaments suitable for FDM processes. By using a twin-screw extruder, filaments based on insoluble (ethylcellulose, Eudragit(®) RL), promptly soluble (polyethylene oxide, Kollicoat(®) IR), enteric soluble (Eudragit(®) L, hydroxypropyl methylcellulose acetate succinate) and swellable/erodible (hydrophilic cellulose derivatives, polyvinyl alcohol, Soluplus(®)) polymers were successfully produced, and the possibility of employing them for printing 600μm thick disks was demonstrated. The behavior of disks as barriers when in contact with aqueous fluids was shown consistent with the functional application of the relevant polymeric components. The produced filaments were thus considered potentially suitable for printing capsules and coating layers for immediate or modified release, and, when loaded with active ingredients, any type of dosage forms. PMID:27215535

  8. Isolation of Murine Embryonic Hemogenic Endothelial Cells

    PubMed Central

    Marcelo, Kathrina L.; Hirschi, Karen K.

    2016-01-01

    The specification of hemogenic endothelial cells from embryonic vascular endothelium occurs during brief developmental periods within distinct tissues, and is necessary for the emergence of definitive HSPC from the murine extra embryonic yolk sac, placenta, umbilical vessels, and the embryonic aorta-gonad-mesonephros (AGM) region. The transient nature and small size of this cell population renders its reproducible isolation for careful quantification and experimental applications technically difficult. We have established a fluorescence-activated cell sorting (FACS)-based protocol for simultaneous isolation of hemogenic endothelial cells and HSPC during their peak generation times in the yolk sac and AGM. We demonstrate methods for dissection of yolk sac and AGM tissues from mouse embryos, and we present optimized tissue digestion and antibody conjugation conditions for maximal cell survival prior to identification and retrieval via FACS. Representative FACS analysis plots are shown that identify the hemogenic endothelial cell and HSPC phenotypes, and describe a methylcellulose-based assay for evaluating their blood forming potential on a clonal level. PMID:27341393

  9. Multimodality noninvasive imaging for assessing therapeutic effects of exogenously transplanted cell aggregates capable of angiogenesis on acute myocardial infarction.

    PubMed

    Huang, Chieh-Cheng; Wei, Hao-Ji; Lin, Kun-Ju; Lin, Wei-Wen; Wang, Ching-Wen; Pan, Wen-Yu; Hwang, Shiaw-Min; Chang, Yen; Sung, Hsing-Wen

    2015-12-01

    Although the induction of neovascularization by cell-based approaches has demonstrated substantial potential in treating myocardial infarction (MI), the process of cell-mediated angiogenesis and its correlation with therapeutic mechanisms of cardiac repair remain elusive. In this work, three-dimensional (3D) aggregates of human umbilical vein endothelial cells (HUVECs) and cord-blood mesenchymal stem cells (cbMSCs) are constructed using a methylcellulose hydrogel system. By maximizing cell-cell and cell-ECM communications and establishing a hypoxic microenvironment in their inner cores, these cell aggregates are capable of forming widespread tubular networks together with the angiogenic marker αvβ3 integrin; they secret multiple pro-angiogenic, pro-survival, and mobilizing factors when grown on Matrigel. The aggregates of HUVECs/cbMSCs are exogenously engrafted into the peri-infarct zones of rats with MI via direct local injection. Multimodality noninvasive imaging techniques, including positron emission tomography, single photon emission computed tomography, and echocardiography, are employed to monitor serially the beneficial effects of cell therapy on angiogenesis, blood perfusion, and global/regional ventricular function, respectively. The myocardial perfusion is correlated with ventricular contractility, demonstrating that the recovery of blood perfusion helps to restore regional cardiac function, leading to the improvement in global ventricular performance. These experimental data reveal the efficacy of the exogenous transplantation of 3D cell aggregates after MI and elucidate the mechanism of cell-mediated therapeutic angiogenesis for cardiac repair. PMID:26386627

  10. Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes

    NASA Astrophysics Data System (ADS)

    Chung, Wan-Ho; Kim, Sang-Ho; Kim, Hak-Sung

    2016-08-01

    In this work, silver nanowire inks with hydroxypropyl methylcellulose (HPMC) binders were coated on polyethylene terephthalate (PET) substrates and welded via flash white light and ultraviolet C (UV-C) irradiation to produce highly conductive transparent electrodes. The coated silver nanowire films were firmly welded and embedded into PET substrate successfully at room temperature and under ambient conditions using an in-house flash white light welding system and UV-C irradiation. The effects of light irradiation conditions (light energy, irradiation time, pulse duration, and pulse number) on the silver nanowire networks were studied and optimized. Bending fatigue tests were also conducted to characterize the reliability of the welded transparent conductive silver nanowire films. The surfaces of the welded silver nanowire films were analyzed via scanning electron microscopy (SEM), while the transmittance of the structures was measured using a spectrophotometer. From the results, a highly conductive and transparent silver nanowire film with excellent reliability could be achieved at room temperature under ambient conditions via the combined flash white light and UV-C irradiation welding process.

  11. Natural Micronized Progesterone Sustained Release (SR) and Luteal Phase: Role Redefined!!

    PubMed Central

    Malik, Sonia

    2016-01-01

    Role of progesterone in reproductive medicine is evolving with its suggested clinical role for the hormonal and nonhormonal actions in reproductive medicine. The main function of progesterone is to induce ‘secretory’ changes in endometrium that is further complimented by its immunomodulatory and anti-inflammatory actions. It positively modulates PIBF, NK cells and HOXA 10 genes for better implantation. MHRA recommends Serum Progesterone levels ≥14ng/ml in the mid-luteal phase for supporting pregnancy adequately. Oral Natural Micronized Progesterone SR formulation represents a therapeutic advance in this direction offering ‘therapeutic compliance’ with oral formulation while avoiding the local side effects related to long-term patient compliance in reproductive disorders. The formulation offers round the clock efficiency and efficacy with single dose administration thereby improving patient convenience and compliance. This formulation has been marketed globally since 1986 utilizing the well validated drug delivery system involving Methylcellulose base. The clinical utility of this formulation is further suggested especially in various conditions related with luteal phase insufficiency and Bad obstetric history (BOH) or luteal phase support in ART. The level of evidence has been quite robust with several clinical studies including Prescription Event Monitoring and Investigator initiated studies supporting the clinical role of oral NMP SR formulation especially in ‘Real world’ clinic settings for Luteal phase insufficiency that may be physiological or iatrogenic. PMID:27042538

  12. Preparation and characterization of emulsified solid dispersions containing docetaxel.

    PubMed

    Chen, Ying; Shi, Qiongzhi; Chen, Zhiyu; Zheng, Jianling; Xu, Hengjun; Li, Jiazhi; Liu, Hong

    2011-11-01

    An emulsified solid dispersion of docetaxel was prepared and characterized in vitro. In contrast to conventional solid dispersions, emulsifying pharmaceutical excipients and hydroxypropyl methylcellulose (HPMC) as a supersaturation promoter were introduced into the PEG6000-based solid dispersion to further improve its solubilizing capability. The solubility, dissolution in vitro and stability of the prepared emulsified solid dispersions were studied taking into consideration of the effects of different emulsifying excipients, preparation methods and the media. Results of the emulsified solid dispersion of docetaxel showed that the solubility and dissolution at 2 h were 34.2- and 12.7-fold higher than the crude powder. The type of emulsifying excipient used had a significant influence on the dissolution of the emulsified solid dispersion. The dissolution of the emulsified solid dispersion prepared by the solvent-melting method or the solvent method was higher than the melting method. There were no apparent differences among the dissolution media utilized. The status of the drug in the emulsified solid dispersion was observed in an amorphous or a molecular dispersion state by differential thermal analysis and powder Xray diffraction. In conclusion, the incorporation of emulsifying pharmaceutical excipients and HPMC with polymers into a solid dispersion could be a new and useful tool to greatly increase the solubility and dissolution of poorly water-soluble drugs.

  13. Astringency reduction in red wine by whey proteins.

    PubMed

    Jauregi, Paula; Olatujoye, Jumoke B; Cabezudo, Ignacio; Frazier, Richard A; Gordon, Michael H

    2016-05-15

    Whey is a by-product of cheese manufacturing and therefore investigating new applications of whey proteins will contribute towards the valorisation of whey and hence waste reduction. This study shows for the first time a detailed comparison of the effectiveness of gelatin and β-lactoglobulin (β-LG) as fining agents. Gelatin was more reactive than whey proteins to tannic acid as shown by both the astringency method (with ovalbumin as a precipitant) and the tannins determination method (with methylcellulose as a precipitant). The two proteins showed similar selectivity for polyphenols but β-LG did not remove as much catechin. The fining agent was removed completely or to a trace level after centrifugation followed by filtration which minimises its potential allergenicity. In addition, improved understanding of protein-tannin interactions was obtained by fluorescence, size measurement and isothermal titration calorimetry (ITC). Overall this study demonstrates that whey proteins have the potential of reducing astringency in red wine and can find a place in enology. PMID:26776007

  14. Micro-mechanical properties of drying material bridges of pharmaceutical excipients.

    PubMed

    Farber, Leon; Tardos, Gabriel I; Michaels, James N

    2005-12-01

    This work is part of a larger research effort to elucidate the properties and morphology of pharmaceutical granules produced by wet-granulation. In this work, we measure forces exerted by the drying interparticle bridges. The bridges were formed from aqueous solutions of common pharmaceutical excipients both non-polymeric (lactose, mannitol) and polymeric (hydroxypropyl cellulose (HPC), hydroxypropyl methylcellulose (HPMC), polyvinylpyrrolidone (povidone) (PVP)). We also study the morphology, microstructure and crystalline structure of solidifying bridges. We find that the solidifying behavior and final properties of bridges differ dramatically, depending on the composition of the solution. Bridges containing only lactose or mannitol tend to expand upon solidification, pushing the ends of the bridge apart; in contrast, pure HPC, HPMC, or PVP bridges tend to contract. Bridges crystallized from solution of the pure non-polymeric excipients are polycrystalline, brittle, and have low strength; bridges from the polymeric excipients are amorphous, strong and tough. When the polymeric and non-polymeric excipients are used together, behavior closer to either one or the other extreme takes place. This depends on the relative amount of polymer in the bridge. It was also found that the different polymers impart different behavior on the bridge. The observed differences in solidification behavior have important implications for granule formation, drying and ultimate bridge and granule properties; these are discussed at some length in the paper. PMID:16274947

  15. Development of the ambroxol gels for enhanced transdermal delivery.

    PubMed

    Cho, Cheong-Weon; Choi, Jun-Shik; Shin, Sang-Chul

    2008-03-01

    Ambroxol is an expectoration improver and mucolytic agent that has been used to treat acute and chronic disorders. However, ambroxol needs to be administered percutaneously in order to avoid systemic adverse effects, such as headache, drowsiness, dizziness, and insomnia, which can occur after oral administration. The aim of this study was to develop a gel preparation containing a permeation enhancer to enhance the delivery of ambroxol. The ambroxol gels were prepared using hydroxypropyl methylcellulose (HPMC) and poloxamer 407. The release characteristics of the drug from the gels were examined according to the receptor medium, drug concentration, and temperature. The rate of drug permeation into the skin was enhanced by incorporating various enhancers such as the ethylene glycols, the propylene glycols, the glycerides, the non-ionic surfactants, and the fatty acids into the gels. The permeation study through mouse skin was examined at 37 C. The rate of drug release increased with increasing drug concentration and temperature. Among the enhancers used, propylene glycol mono caprylate showed the best enhancing effects. The estimated activation energy of release (Ea), which was calculated from the slope of a log P versus 1000/T plot, was 14.80, 14.22, 13.91, and 12.46 kcal/mol for ambroxol loading doses of 2, 3, 4, and 5%, respectively. The results of this study show that the gel preparation of ambroxol containing a permeation enhancer could be developed for the enhanced transdermal delivery of ambroxol.

  16. Expectancy effect: impact of pill administration on cognitive performance in healthy seniors.

    PubMed

    Oken, Barry S; Flegal, Kristin; Zajdel, Daniel; Kishiyama, Shirley; Haas, Mitchell; Peters, Dawn

    2008-01-01

    Expectancy or placebo effects on cognitive function have not been well studied. To determine the effect of taking pills on cognitive function, 40 participants were randomly assigned to a pill or no-pill condition. Healthy seniors who took a 2-week supply of methylcellulose pills, which they were told was an experimental cognitive enhancer, were compared to seniors not taking any pills. There were 2 primary outcome measures defined prior to the study-Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Word List delayed recall and Stroop color word task time-as well as 7 other cognitive outcome measures. There was a significant effect of pill taking on the 2 primary outcome measures. There was also an effect of pill taking on choice reaction time and Word List immediate recall but not on the other 5 secondary cognitive outcome measures. In an exploratory analysis of potential predictors of the expectancy effect, perceived stress and self-efficacy but not personality traits interacted with the pill-taking effect on cognitive function. Further characterizing and understanding this observed expectancy effect is important to maximize cognitive health and improve clinical trial design.

  17. Characterization of nanoscale spatial distribution of small molecules in amorphous polymer matrices

    NASA Astrophysics Data System (ADS)

    Ricarte, Ralm; Hillmyer, Marc; Lodge, Timothy

    Hydroxypropyl methylcellulose acetate succinate (HPMCAS) can significantly enhance the efficacy of active pharmaceutical ingredients (APIs). Yet, the interactions between species in HPMCAS-API blends are not understood. Elucidating these interactions is difficult because the spatial distributions of HPMCAS and API in the blends are ambiguous; the polymer and drug may be molecularly mixed or the species may form phase separated domains. As these phase separated domains may be less than 100 nm in size, traditional characterization techniques may not accurately evaluate the spatial distribution. To address this challenge, we explore the use of electron energy-loss spectroscopy (EELS) for detecting the model API phenytoin in an HPMCAS-phenytoin blend. Using EELS, we directly measured with high accuracy and precision the phenytoin concentrations in several blends. We present evidence that suggests phase separation occurs in blends that have a phenytoin loading of approximately 50 wt percent. Finally, we demonstrate that this technique achieves a sub-100 nm spatial resolution and can detect several other APIs.

  18. Microchip immunoaffinity electrophoresis of antibody-thymidine kinase 1 complex.

    PubMed

    Pagaduan, Jayson V; Ramsden, Madison; O'Neill, Kim; Woolley, Adam T

    2015-03-01

    Thymidine kinase 1 (TK1) is an important cancer biomarker whose serum levels are elevated in early cancer development. We developed a microchip electrophoresis immunoaffinity assay to measure recombinant purified TK1 (pTK1) using an antibody (Ab) that binds to human TK1. We fabricated PMMA microfluidic devices to test the feasibility of detecting Ab-pTK1 immune complexes as a step toward TK1 analysis in clinical serum samples. We were able to separate immune complexes from unbound Abs using 0.5× PBS (pH 7.4) containing 0.01% Tween-20, with 1% w/v methylcellulose that acts as a dynamic surface coating and sieving matrix. Separation of the Ab and Ab-pTK1 complex was observed within a 5 mm effective separation length. This method of detecting pTK1 is easy to perform, requires only a 10 μL sample volume, and takes just 1 min for separation.

  19. A hydrogel composite system for sustained epi-cortical delivery of Cyclosporin A to the brain for treatment of stroke.

    PubMed

    Caicco, Matthew J; Cooke, Michael J; Wang, Yuanfei; Tuladhar, Anup; Morshead, Cindi M; Shoichet, Molly S

    2013-03-28

    Stimulation of endogenous neural stem/progenitor cells (NSPCs) with therapeutic factors holds potential for the treatment of stroke. Cyclosporin A (CsA) is a particularly promising candidate molecule because it has been shown to act as a survival factor for these cells over a period of weeks both in vitro and in vivo; however, systemically-delivered CsA compromises the entire immune system, necessitating sustained localized delivery. Herein we describe a local delivery strategy for CsA using an epi-cortical hydrogel of hyaluronan-methylcellulose (HAMC) as the drug reservoir. Three methods of incorporating the drug into the hydrogel (solubilized, particulate, and poly(lactic-co-glycolic) acid (PLGA) microsphere-encapsulated) resulted in tunable release, spanning a period of hours to weeks. Importantly, PLGA-encapsulated CsA released from the hydrogel had equivalent bioactivity to fresh drug as measured by the neurosphere assay. Moreover, when CsA was released from the PLGA/HAMC composite that was injected on the cortex of adult mice, CsA was detected in the NSPC niche at a constant concentration for at least 24days post-implant. Thus this hydrogel composite system may be promising for the treatment of stroke. PMID:23306024

  20. The importance of binder moisture content in Metformin HCL high-dose formulations prepared by moist aqueous granulation (MAG).

    PubMed

    Takasaki, Hiroshi; Yonemochi, Etsuo; Ito, Masanori; Wada, Koichi; Terada, Katsuhide

    2015-01-01

    The aim of this study was to evaluate binders to improve the flowability of granulates and compactibility of Metformin HCL (Met) using the moist aqueous granulation (MAG) process. The effect of the binder moisture content on granulate and tablet quality was also evaluated. Vinylpyrrolidone-vinyl acetate copolymer (Kollidon VA64 fine: VA64), polyvidone (Povidone K12: PVP), hydroxypropyl cellulose (HPC SSL SF: HPC) and hydroxypropyl methylcellulose (Methocel E5 LV: HPMC) were evaluated as binders. These granulates, except for HPMC, had a lower yield pressure than Met active pharmaceutical ingredient (API). HPMC Met was not sufficiently granulated with low water volume. No problems were observed with the VA64 Met granulates during the tableting process. However, HPC Met granulates had a bowl-forming tendency, and PVP Met granulates had the tendency to stick during the tableting process. These bowl-forming and sticking tendencies may have been due to the low moisture absorbency of HPC and the high volume of bound water of PVP, respectively. VA64 Met granulates had the highest ambient moisture content (bulk water, bound water) and moisture absorbency. It was concluded that the type of binder used for the Met MAG process has an impact on granulate flow and compactibility, as well as moisture absorbency and maintenance of moisture balance. PMID:26779418

  1. Instantaneous enteric nano-encapsulation of omeprazole: pharmaceutical and pharmacological evaluation.

    PubMed

    Bendas, Ehab R; Abdelbary, Aly A

    2014-07-01

    Recently, great attention has been paid to nanocapsules. The interest of these structures is due to their promising applications as drug delivery systems. The objective of this study was to develop novel enteric coating technique based on instantaneous encapsulation of the acid-labile drug, omeprazole in innovative enteric nanocapsules. Omeprazole enteric nanocapsules were formulated by varying the type and amount of the enteric polymer. The particle size (PS), polydispersity index (PDI), zeta potential (ZP) and encapsulation efficiency (EE) values of the prepared enteric nanocapsules were determined. A full 2(1)×3(1) factorial design was used for planning and analysis of the experimental trials to select the optimized formulation. The highest desirability value was 0.7463 for formula E3 (containing 200mg hydroxypropyl methylcellulose phthalate (HPMCP)). The stability of omeprazole was reflected by the absence of the exothermal peak when the drug was encapsulated as detected by differential scanning calorimetry (DSC) thermograms. In vitro drug release study confirmed the USP specifications required to meet the key formulation characteristics of gastro-resistance. In vivo pharmacological assessment showed that the optimized nanocapsules were able to protect rat stomach against ulcer formation compared to the aqueous suspension of the drug which showed less significant protection.

  2. Effects of different emulsifier types, fat contents, and gum types on retardation of staling of microwave-baked cakes.

    PubMed

    Seyhun, Nadide; Sumnu, Gülüm; Sahin, Serpil

    2003-08-01

    The effects of different types of emulsifiers, gums, and fat contents on the retardation of staling of microwave-baked cakes were investigated. First, different types of emulsifiers (DATEM, Lecigran, and Purawave) at three different fat contents (50%, 25%, and 0%) were added to cake formulations to retard staling of microwave-baked cakes. Then, three types of gums (guar gum, xanthan gum, and methylcellulose) were added to the optimum formulations chosen. As a control, cakes formulated without any emulsifier or gum addition and baked in an conventional oven at 175 degrees C for 25 min was used. Weight loss, firmness, soluble starch and amylose content of the cakes were used as the indicators of staling criteria. Cakes were baked in a microwave oven for 1.5 min at 100% power. Variation of staling parameters during storage of cakes followed zero-order kinetics. Use of emulsifiers and gums helped to retard staling of microwave-baked cakes. Fat content was found to be a significant factor in affecting variation of firmness and weight loss of the cakes during storage. DATEM and Purawave were the most effective emulsifier types. Using gums in combination with emulsifiers gave better moisture retention and softer cakes than using gums alone.

  3. Thymol nanospheres as an effective anti-bacterial agent.

    PubMed

    Wattanasatcha, Anna; Rengpipat, Sirirat; Wanichwecharungruang, Supason

    2012-09-15

    Among thymol, carvacrol, citronellal, eugenol and terpinen-4-ol, thymol showed the highest antibacterial activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Thymol was then encapsulated into water dispersible submicron sized ethylcellulose/methylcellulose spheres, attaining the relatively high thymol loading level of 43.53% (weight of encapsulated thymol to weight of the thymol-loaded spheres). When tested against the same three bacterial strains, the encapsulated thymol gave comparable minimal inhibition concentration (MIC) and minimal bactericidal concentration (MBC) values to the unencapsulated compound while mostly showing lower MIC and MBC values than the conventionally used preservative, methyl-p-hydroxybenzoate (methylparaben). The use of encapsulated thymol at 0.078, 0.156 and 0.625 mg ml(-1) (0.52, 1.04 and 4.16 mmol(-1), respectively) in cosmetic lotion formulations provided total suppression of viable E. coli, S. aureus and P. aeruginosa growth (all initially seeded at 10(5) cfu ml(-1)), respectively, over the three month test period, whereas unencapsulated thymol showed effective suppression for only 2-4 weeks. Effective bacterial suppression by encapsulated thymol was also observed when used in cream and aqueous gel cosmetic formulations.

  4. Dynamic scaling analysis of two-dimensional cell colony fronts in a gel medium: A biological system approaching a quenched Kardar-Parisi-Zhang universality

    NASA Astrophysics Data System (ADS)

    Huergo, M. A. C.; Muzzio, N. E.; Pasquale, M. A.; González, P. H. Pedro; Bolzán, A. E.; Arvia, A. J.

    2014-08-01

    The interfacial two-dimensional spreading dynamics of quasilinear Vero cell colony fronts in methylcellulose (MC)-containing culture medium, under a constant average front displacement velocity regime, was investigated. Under comparable experimental conditions, the average colony front displacement velocity becomes lower than that reported for a standard culture medium. Initially, the presence of MC in the medium hinders both the colony spreading, due to a gradual change in the average size and shape of cells and their distribution in the colony, and the cell motility in the gelled medium. Furthermore, at longer culture times enlarged cells appear at random in the border region of the colony. These cells behave as obstacles (pinning sites) for the displacement of smaller cells towards the colony front. The dynamic scaling analysis of rough fronts yields the set of exponents α =0.63±0.04,β =0.75±0.05, and z =0.84±0.05, which is close to that expected for a quenched Kardar-Parisi-Zhang model.

  5. Artocarpus heterophyllus seeds inhibits sexual competence but not fertility of male rats.

    PubMed

    Ratnasooriya, W D; Jayakody, J R A C

    2002-03-01

    According to Ayurvedic literature of Sri Lanka, roasted seeds of Artocarpus heterophyllus Lam. (Family: Moraceae) has aphrodisiac activity. However, some reproductively active young men in rural areas of Sri Lanka claim that consumption of these seeds few hours prior to coitus disrupts sexual function. Because of these two conflicting claims, it was thought useful to scientifically investigate the effects of A. heterophyllus seeds on male sexual function and fertility. This was done using a seed suspension in 1% methylcellulose (SS) in rats. In a sexual behaviour study using receptive female rats, an oral administration of 500 mg/kg dose of SS markedly inhibited libido, sexual arousal, sexual vigour and sexual performance within 2 hr. Further, the treatment induced a mild erectile dysfunction. These antimasculine effects on sexual function was not evident 6 hr post treatment indicating rapid onset and offset of action. Further, these actions on the sexual behaviour was not due to general toxicity, liver toxicity, stress or reduction in blood testosterone level but due to marked sedative activity. In a mating study, SS failed to alter ejaculating competence and fertility. These results suggest that A. heterophyllous seeds do not have aphrodisiac action, at least, in rats.

  6. Design and Evaluation of Ocular Controlled Delivery System for Diclofenac Sodium

    PubMed Central

    Jafariazar, Zahra; Jamalinia, Nasim; Ghorbani-Bidkorbeh, Fatemeh; Mortazavi, Seyed Alireza

    2015-01-01

    Diclofenac sodium as ophthalmic dosage form is used for the treatment of the pain, swelling and redness of patients’ eyes recovering from cataract surgery; however, it faces the bioavailability limitation of eye drops due to effective protective mechanisms and corneal barrier functions in the eyes. Therefore, this investigation was aimed to develop ocular film formulations to achieve controlled drug release. Drug films were prepared using polymers, namely hydroxypropyl methylcellulose (HPMC) and polyvinyl pyrrolidone (PVP), Eudragit RL PO, and Eudragit RS PO by solvent casting method considering parameters such as drug: polymer ratio, different polymer combinations as well as plasticizer effect. Ocular films were evaluated for various physicochemical parameters such as physical characters, film thickness, uniformity of weight, drug content, swelling index, mucoadhesion time and in-vitro release study. Ocular films complied with all physicochemical parameters underwent in-vitro release study. Finally, the film formulation with HPMC: Eudragit RS PO 1:1 ratio, Drug: Polymer ratio 1:45 and glycerin as plasticizer showed controlled and prolonged release following the zero order and non-Fickian transport. PMID:26185502

  7. Artocarpus heterophyllus seeds inhibits sexual competence but not fertility of male rats.

    PubMed

    Ratnasooriya, W D; Jayakody, J R A C

    2002-03-01

    According to Ayurvedic literature of Sri Lanka, roasted seeds of Artocarpus heterophyllus Lam. (Family: Moraceae) has aphrodisiac activity. However, some reproductively active young men in rural areas of Sri Lanka claim that consumption of these seeds few hours prior to coitus disrupts sexual function. Because of these two conflicting claims, it was thought useful to scientifically investigate the effects of A. heterophyllus seeds on male sexual function and fertility. This was done using a seed suspension in 1% methylcellulose (SS) in rats. In a sexual behaviour study using receptive female rats, an oral administration of 500 mg/kg dose of SS markedly inhibited libido, sexual arousal, sexual vigour and sexual performance within 2 hr. Further, the treatment induced a mild erectile dysfunction. These antimasculine effects on sexual function was not evident 6 hr post treatment indicating rapid onset and offset of action. Further, these actions on the sexual behaviour was not due to general toxicity, liver toxicity, stress or reduction in blood testosterone level but due to marked sedative activity. In a mating study, SS failed to alter ejaculating competence and fertility. These results suggest that A. heterophyllous seeds do not have aphrodisiac action, at least, in rats. PMID:12635700

  8. Preparation and evaluation of gastroretentive floating tablets of Silymarin.

    PubMed

    Garg, Rajeev; Gupta, Ghanshyam Das

    2009-06-01

    The present study performed by preparation and evaluation of floating tablets of Silymarin as model drug for prolongation of gastric residence time. Floating effervescent tablets were formulated by various materials like hydroxypropyl methylcellulose (HPMC) K 4M, K 15M, psyllium husk, swelling agent as crospovidone and microcrystalline cellulose and gas generating agent like sodium bicarbonate and citric acid and evaluated for floating properties, swelling characteristics and in vitro drug release studies. Floating noneffervescent tablets were prepared by polypropylene foam powder and different matrix forming polymers like HPMC K 4M, Carbopol 934P, xanthan gum and sodium alginate. In vitro drug release studies were performed and drug release kinetics evaluated using the linear regression method was found to follow both the Higuchi and the Korsemeyer and Peppas equation. The drug release mechanism was found fickian type in most of the formulations. The developed floating tablets of Silymarin may be used in clinic for prolonged drug release for at least 24 h, thereby improving the bioavailability and patient compliance.

  9. Floating matrix tablets based on low density foam powder: effects of formulation and processing parameters on drug release.

    PubMed

    Streubel, A; Siepmann, J; Bodmeier, R

    2003-01-01

    The aim of this study was to develop and physicochemically characterize single unit, floating controlled drug delivery systems consisting of (i). polypropylene foam powder, (ii). matrix-forming polymer(s), (iii). drug, and (iv). filler (optional). The highly porous foam powder provided low density and, thus, excellent in vitro floating behavior of the tablets. All foam powder-containing tablets remained floating for at least 8 h in 0.1 N HCl at 37 degrees C. Different types of matrix-forming polymers were studied: hydroxypropyl methylcellulose (HPMC), polyacrylates, sodium alginate, corn starch, carrageenan, gum guar and gum arabic. The tablets eroded upon contact with the release medium, and the relative importance of drug diffusion, polymer swelling and tablet erosion for the resulting release patterns varied significantly with the type of matrix former. The release rate could effectively be modified by varying the "matrix-forming polymer/foam powder" ratio, the initial drug loading, the tablet geometry (radius and height), the type of matrix-forming polymer, the use of polymer blends and the addition of water-soluble or water-insoluble fillers (such as lactose or microcrystalline cellulose). The floating behavior of the low density drug delivery systems could successfully be combined with accurate control of the drug release patterns.

  10. Effect of substrates on naproxen-polyvinylpyrrolidone solid dispersions formed via the drop printing technique.

    PubMed

    Hsu, Hsin-Yun; Toth, Scott J; Simpson, Garth J; Taylor, Lynne S; Harris, Michael T

    2013-02-01

    Solid dispersions have been used to improve the bioavailability of poorly water-soluble drugs. However, drug solid-state phase, compositional uniformity, and scale-up problems are issues that need to be addressed. To allow for highly controllable products, the drop printing (DP) technique can provide precise dosages and predictable compositional uniformity of active pharmaceutical ingredients in two-/three-dimensional structures when integrated with edible substrates. With different preparation conditions, DP was conducted to fabricate naproxen (NAP)-polyvinylpyrrolidone solid dispersions with chitosan and hydroxypropyl methylcellulose films as the substrate. Scanning electron microscopy, X-ray diffraction, second harmonic generation microscopy, and atomic force microscopy analyses were performed to characterize the microstructure and spatial distribution of NAP in the solid dispersions. The results identified that composition, temperature, and substrate type all had an impact on morphology and crystallization of samples. The surface energy approach was combined with classical nucleation theory to evaluate the affinity between the nucleus of NAP and substrates. Finally, the collective results of the drug were correlated to the release profile of NAP within each sample.

  11. Achieving a robust drug release from extended release tablets using an integrated continuous mixing and direct compression line.

    PubMed

    Lakio, Satu; Tajarobi, Pirjo; Wikström, Håkan; Fransson, Magnus; Arnehed, Johan; Ervasti, Tuomas; Simonaho, Simo-Pekka; Ketolainen, Jarkko; Folestad, Staffan; Abrahmsén-Alami, Susanna

    2016-09-10

    In the present work the viability of integrated continuous mixing and compression processes for manufacturing of extended release (ER) matrix tablets was investigated in terms of dissolution behavior. The purpose was also to evaluate the combined effect of processing variables and compositional variables on the release robustness. The continuous process was provoked by a challenging formulation design, including variable powder characteristics and compositions of high and low amount of poorly soluble and poorly flowing drug substance (ibuprofen). Additionally a relatively low amount of two different ER matrix former grades (standard granulation grade CR and direct compression grade DC2 of hydroxypropyl methylcellulose, HPMC) was used to challenge the system. Robust ibuprofen release was obtained faster when HPMC CR was used. However, robust release was also achieved when using HPMC DC2 at high ibuprofen content, even though it took slightly longer time to reach the steady state of the process. Due to its poor flow properties, HPMC CR would be very challenging to use in traditional direct compression. The results showed that by using continuous processing it is possible to manufacture and achieve robust performance of compositions that would not be possible with traditional batch processing due to for instance poorly flowability. PMID:27469074

  12. Newly Developed Topical Cefotaxime Sodium Hydrogels: Antibacterial Activity and In Vivo Evaluation.

    PubMed

    Zakaria, Azza S; Afifi, Samar A; Elkhodairy, Kadria A

    2016-01-01

    In an attempt to reach better treatment of skin infections, gel formulations containing Cefotaxime (CTX) were prepared. The gel was formulated using Carbopol 934 (C934), Hydroxypropyl Methylcellulose 4000 (HPMC 4000), Carboxymethylcellulose Sodium (Na CMC), Pectin (PEC), Xanthan Gum (XG), or Guar Gum (GG). Thirteen different formulas were prepared and characterized physically in terms of color, syneresis, spreadability, pH, drug content, and rheological properties. Drug-excipients compatibility studies were confirmed by FTIR and then in vitro drug release study was conducted. In vitro and in vivo antibacterial activities of CTX were studied against wound pathogens such as, Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa), using either pure drug or Fucidin® cream as control. F13 provides better spreadability compared to F1 (XG) or F11 (HPMC). Moreover, the release of the drug from hydrogel F13 containing C934 was slower and sustained for 8 h. Stability study revealed that, upon storage, there were no significant changes in pH, drug content, and viscosity of the gels. Also, F13 showed the larger inhibition zone and highest antibacterial activity among other formulations. Histological analysis demonstrated that after single treatment with F13 gel formulation, a noticeable reduction in microbial bioburden occurred in case of both Gram positive and Gram negative bacterial isolates. PMID:27314033

  13. Formulation, physicochemical characterization, and in vitro study of chitosan/HPMC blends-based herbal blended patches.

    PubMed

    Suksaeree, Jirapornchai; Monton, Chaowalit; Madaka, Fameera; Chusut, Tun; Saingam, Worawan; Pichayakorn, Wiwat; Boonme, Prapaporn

    2015-02-01

    The current work prepared chitosan/hydroxypropyl methylcellulose (HPMC) blends and studied the possibility of chitosan/HPMC blended patches for Zingiber cassumunar Roxb. The blended patches without/with crude Z. cassumunar oil were prepared by homogeneously mixing the 3.5% w/v of chitosan solution and 20% w/v of HPMC solution, and glycerine was used as plasticizer. Then, they were poured into Petri dish and produced the blended patches in hot air oven at 70 ± 2°C. The blended patches were tested and evaluated by the physicochemical properties: moisture uptake, swelling ratio, erosion, porosity, Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction, and photographed the surface and cross-section morphology under SEM technique. Herbal blended patches were studied by the in vitro release and skin permeation of active compound D. The blended patches could absorb the moisture and became hydrated patches that occurred during the swelling of blended patches. They were eroded and increased by the number of porous channels to pass through out for active compound D. In addition, the blended patches indicated the compatibility of the blended ingredients and homogeneous smooth and compact. The blended patches made from chitosan/HPMC blends provide a controlled release and skin permeation behavior of compound D. Thus, the blended patches could be suitably used for herbal medicine application. PMID:25233803

  14. Antioxidant capacity and light-aging study of HPMC films functionalized with natural plant extract.

    PubMed

    Akhtar, Muhammad Javeed; Jacquot, Muriel; Jasniewski, Jordane; Jacquot, Charlotte; Imran, Muhammad; Jamshidian, Majid; Paris, Cédric; Desobry, Stéphane

    2012-08-01

    The aims of this work were to functionalize edible hydroxypropyl methylcellulose (HPMC) films with natural coloring biomolecules having antioxidant capacity and to study their photo-aging stability in the films. HPMC films containing a natural red color compound (NRC) at the level of 1, 2, 3 or 4% (v/v) were prepared by a casting method. A slight degradation of films color was observed after 20 days of continuous light exposure. The antioxidant activity of NRC incorporated films was stable during different steps of film formation and 20 days of dark storage. On the other hand, antioxidant activity of samples stored under light was significantly affected after 20 days. FTIR (Fourier Transformed Infrared) spectroscopy was used to characterize the new phenolic polymeric structures and to study the photo-degradation of films. The results showed a good polymerization phenomenon between NRC and HPMC in polymer matrix giving a natural color to the films. NRC showed an ability to protect pure HPMC films against photo-degradation. This phenomenon was directly proportional to the concentration of NRC.

  15. Poly(ethylene glycol) modification enhances penetration of fibroblast growth factor 2 to injured spinal cord tissue from an intrathecal delivery system.

    PubMed

    Kang, Catherine E; Tator, Charles H; Shoichet, Molly S

    2010-05-21

    There is no effective treatment for spinal cord injury and clinical drug delivery techniques are limited by the blood-spinal cord barrier. Our lab has developed an injectable drug delivery system consisting of a biopolymer blend of hyaluronan and methylcellulose (HAMC) that can sustain drug release for up to 24h in the intrathecal space. Fibroblast growth factor 2 (FGF2) has great potential for treatment of spinal cord injury due to its angiogenic and trophic effects, but previous studies showed no penetration into spinal cord tissue when delivered locally. Conjugation to poly(ethylene glycol) (PEG) is known to improve penetration of proteins into tissue by reducing clearance and providing immunogenic shielding. We investigated conjugation of PEG to FGF2 and compared its distribution relative to unmodified FGF2 in injured spinal cord tissue when delivered intrathecally from HAMC. Importantly, PEG conjugation nearly doubled the concentration of FGF2 in the injured spinal cord when delivered locally and, contrary to previous reports, we show that some FGF2 penetrated into the injured spinal cord using a more sensitive detection technique. Our results suggest that PEGylation of FGF2 enhanced tissue penetration by reducing its rate of elimination.

  16. Formulation and in vitro evaluation of a fast-disintegrating/sustained dual release bucoadhesive bilayer tablet of captopril for treatment of hypertension crises.

    PubMed

    Abbasi, Sahar; Yousefi, Gholamhossein; Ansari, Ali Asghar; Mohammadi-Samani, Soliman

    2016-07-01

    Hypertension crisis is one of the main health problems and its effective treatment is of high importance. For this purpose, fast-disintegrating and sustained release formulations of captopril, as a drug of choice, were prepared using conventional mucoadhesive polymers hydroxypropyl methylcellulose (HPMC), sodium carboxymethyl cellulose (Na-CMC), hydroxypropyl cellulose (HPC), Carbopol 934 (CP934) and sodium alginate (Na-alg). The optimum sustained release formulations were selected based on mean dissolution time (MDT). The swellability and mucoadhesive properties of selected formulations were assessed and compared. A direct relationship between swelling and release rates/adhesiveness of sustained release formulations was observed. The results showed that formulations containing combination of CP934 and cellulose-based polymers had the highest swellability, sustainability and adhesion strength. These formulations prolonged drug release up to 8 h showing good fitness to Korsemeyer-Peppas model. Moreover, the adopted fast-disintegrating tablet could release up to 100% of drug within 3 min in oral pH. Finally, a dual fast-disintegrating/sustained release bucoadhesive bilayer tablet consisting of optimized formulations was prepared releasing 30% of the drug initially within 15 min and the remaining up to 8 h which could be considered as an appropriate formulation for the treatment of hypertension crises. PMID:27651807

  17. Crystallization of progesterone polymorphs using polymer-induced heteronucleation (PIHn) method.

    PubMed

    Araya-Sibaja, Andrea Mariela; Soldi, Valdir; Campos, Carlos Eduardo Maduro; Cardoso, Simone Gonçalves; Cuffini, Silvia Lucia

    2015-05-01

    Progesterone is a natural hormone steroid used in humans for several treatments and in livestock for artificial insemination, which exhibits two polymorphic forms at ambient conditions: form 1 and form 2. Form 2 is metastable and more soluble than form 1; however, it is not suitable to use as powder raw material because it transforms into form 1 by the effects of grinding. A polymorphic screening of progesterone based on polymer-induced heteronucleation method was performed as an alternative to prepare the metastable form. Polyvinyl alcohol, hydroxypropyl methylcellulose (HPMC), dextran, gelatin, polyisoprene (PI) and acrylonitrile-butadiene (NBR) copolymer were used. Crystals were prepared from 0.5, 10 and 40 mg/mL solutions in acetone at room temperature by solvent evaporation. The samples were characterized by X-ray powder diffraction, differential scanning calorimetry (DSC), scanning electron microcopy and attenuated total reflectance infrared Fourier transform spectroscopy. Form 1 was nucleated from 40 mg/mL solutions on the six polymers and from 10 mg/mL solutions on PI and NBR. The mixture of form 1 and form 2 was obtained from 10 mg/mL solution on HPMC, dextran and gelatin and from 0.5 mg/mL solution crystallizations. Therefore, the polymeric devices, which crystallized the metastable and more soluble polymorph (2) of progesterone, would be a promissory alternative for the pharmaceutical applications. PMID:24758712

  18. Compounding slow-release capsules: a comprehensive review and an Excel spreadsheet for faster calculations of excipients.

    PubMed

    Zur, Eyal

    2013-01-01

    Compounding pharmacists throughout the world are compounding a special type of capsule called "slow-release." This type of capsule is a compounding pharmacy application of the commercial hydrophilic matrix tablets. It is a relatively simple system that allows formulating a robust, reliable, and consistent drug system based on 30% w/w to 40% w/w of specific types of hydroxypropyl methylcellulose. The main purpose of these capsules is to attenuate the drug release when there is a clinical need and no commercial medication exists. Five in vitro trials verified and proved this kind of preparation can be compounded by specialized pharmacists achieving substantial attenuation of drug release that resembles the pharmacokinetic profiles of commercial slow-release medications. An in-depth explanation of the mechanism of action of the slow-release capsules is provided. Since the pharmaceutical calculations needed to compound this preparation are time consuming, a suggestion of a faster way to perform these calculations by using a special Excel spreadsheet is provided. The article demonstrates a special table with a comparison between the specifications, results, and conclusions of the five in vitro trials that evaluated the pharmacokinetic rates of compounded slow-release capsules. The regulatory aspect of compounding slow-release capsules is also discussed.

  19. Protective colloids and polylactic acid co-affecting the polymorphic crystal forms and crystallinity of indomethacin encapsulated in microspheres.

    PubMed

    Lin, S Y; Chen, K S; Teng, H H

    1999-01-01

    The co-effect of protective colloids and polylactic acid (PLA) on the polymorphic crystal forms and crystallinity of indomethacin (IMC) in IMC-loaded PLA microspheres was investigated with differential scanning calorimetry, infrared spectroscopy and x-ray diffractometry, to evaluate the polymorphic crystal forms and crystallinity of IMC encapsulated in PLA microspheres. The surfactant, sodium dodecyl sulphate (SDS), was also used as a dispersing agent. The results indicate that the polymorphism and crystallinity of IMC encapsulated in IMC-loaded PLA microspheres was dependent on the type of protective colloid and PLA used. The amorphous state and alpha-form of IMC were found in the IMC-loaded PLA microspheres prepared using polysaccharide (pectin or beta-cyclodextrin) as a protective colloid or SDS as a dispersing agent. However, the amorphous and methylene chloride solvate of IMC seemed to exist in the IMC-loaded PLA microspheres prepared with the proteins (gelatin or albumin), synthetic cellulose derivative (methyl cellulose or hydroxylpropyl methylcellulose) or the synthetic nonionic polymer (polyvinyl alcohol, polyvinyl pyrrolidone or biosoluble polymer) as a protective colloid. PLA was found to express a certain crystallinity in microspheres and not be affected by the protective colloids, but it played a more important role in influencing the crystallization of IMC during microencapsulation than the protective colloids. No interaction occurred in the physical mixture of IMC and PLA, nor in the IMC-loaded PLA microspheres.

  20. Investigation of the effects of hydroalcoholic solutions on textural and rheological properties of various controlled release grades of hypromellose.

    PubMed

    Missaghi, Shahrzad; Fegely, Kurt A; Rajabi-Siahboomi, Ali R

    2009-01-01

    Hypromellose (hydroxypropyl methylcellulose, HPMC) matrices are widely used in the formulation of sustained release dosage forms. The integrity and performance of an HPMC matrix formulation depends on rapid hydration and gel formation upon ingestion. Due to the recent alert issued by the Food and Drug Administration regarding the potential negative influence of alcoholic beverages on extended release (ER) formulations, several researchers have evaluated the potential influence of hydroalcoholic media on drug release from ER dosage forms. It has been reported that HPMC matrix formulations do not show "dose dumping" in hydroalcoholic media. The purpose of this study was a fundamental investigation on the effect of hydroalcoholic solutions (0-40% v/v ethanol) on textural and rheological properties of different viscosity grades of neat HPMC, as the functional ingredient within a hydrophilic matrix. In general, hydroalcoholic solutions had little effect on gel formation and mechanical properties of hydrated compacts, while the rheological behavior of HPMC showed dependency on the ethanol content of such solutions. PMID:19148758

  1. Competition of thermodynamic and dynamic factors during formation of multicomponent particles via spray drying.

    PubMed

    Kawakami, Kohsaku; Hasegawa, Yusuke; Deguchi, Kenzo; Ohki, Shinobu; Shimizu, Tadashi; Yoshihashi, Yasuo; Yonemochi, Etsuo; Terada, Katsuhide

    2013-02-01

    As psicose cannot be spray dried because of its low glass transition temperature (T(g)), additives have been used to manufacture spray-dried particles. Its thermodynamic miscibility with each additive was evaluated by thermal analysis and C solid-state nuclear magnetic resonance. Aspartame was miscible with psicose at all ratios, and spray-dried particles were obtained when T(g) of the mixture was higher than the outlet temperature of the spray dryer, where 30 wt % of psicose was loaded. poly(vinylpyrrolidone) and cluster dextrin were partially miscible with psicose, with a maximum loading of 40 wt %. When polymeric excipients were used, their mixing behavior with psicose was affected by the dynamic factor during the spray drying, that is, enhanced phase separation due to the molecular-weight difference. The T(g) value of the polymer-rich phases, which were likely to form shell layers on the surfaces, played an important role in determining availability of the spray-dried particles. Hydroxypropyl methylcellulose (HPMC) offered a very effective loading capacity of 80 wt %, due to distinct phase separation to form shell phase with a very high T(g). Because molecular weight of HPMC was the smallest among the polymeric excipients, the thermodynamic miscibility seemed to affect the dynamic phase separation. These results provide useful information for preparing multicomponent spray-dried particles.

  2. Composite alginate hydrogel microparticulate delivery system of zidovudine hydrochloride based on counter ion induced aggregation

    PubMed Central

    Roy, Harekrishna; Rao, P. Venkateswar; Panda, Sanjay Kumar; Biswal, Asim Kumar; Parida, Kirti Ranjan; Dash, Jharana

    2014-01-01

    Aim: The present study deals with preparation of zidovudine loaded microparticle by counter ion induced aggregation method. During this study effect of polyacrylates and hypromellose polymers on release study were investigated. Materials and Methods: The ion induced aggregated alginate based microparticles were characterized for surface morphology, particle size analysis, drug entrapment study, in-vitro study, Fourier-transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC) study. Results and Discussion: The result showed Eudragit RL-100 (ERL) based formulations had smoother surface as well as their mean particle sizes were found greater compared with Eudragit RS-100 (ERS) microparticles. Furthermore, drug entrapments were found to be more in ERL formulae as compared with ERS. RL3 released 101.05% drug over a period of 8th h and followed Higuchi profile and Fickian diffusion. Moreover, data obtained illustrated that, higher amount of quaternary ammonium group, alkali value, and glass transition temperature may be possible reason for improving permeability of ERL based formulations. It was also noticed, hyroxypropyl methylcellulose (HPMC) K4M premium grade polymer sustained drug release more than HPMC K15M. In addition, drug-excipient interaction study was carried out by FTIR and DSC study. PMID:25298940

  3. Bioengineered sequential growth factor delivery stimulates brain tissue regeneration after stroke.

    PubMed

    Wang, Yuanfei; Cooke, Michael J; Sachewsky, Nadia; Morshead, Cindi M; Shoichet, Molly S

    2013-11-28

    Stroke is a leading cause of disability with no effective regenerative treatment. One promising strategy for achieving tissue repair involves the stimulation of endogenous neural stem/progenitor cells through sequential delivery of epidermal growth factor (EGF) followed by erythropoietin (EPO). Yet currently available delivery strategies such as intracerebroventricular (ICV) infusion cause significant tissue damage. We designed a novel delivery system that circumvents the blood brain barrier and directly releases growth factors to the brain. Sequential release of the two growth factors is a key in eliciting tissue repair. To control release, we encapsulate pegylated EGF (EGF-PEG) in poly(lactic-co-glycolic acid) (PLGA) nanoparticles and EPO in biphasic microparticles comprised of a PLGA core and a poly(sebacic acid) coating. EGF-PEG and EPO polymeric particles are dispersed in a hyaluronan methylcellulose (HAMC) hydrogel which spatially confines the particles and attenuates the inflammatory response of brain tissue. Our composite-mediated, sequential delivery of EGF-PEG and EPO leads to tissue repair in a mouse stroke model and minimizes damage compared to ICV infusion. PMID:23933523

  4. Polymer incorporation method affects the physical stability of amorphous indomethacin in aqueous suspension.

    PubMed

    Surwase, S A; Itkonen, L; Aaltonen, J; Saville, D; Rades, T; Peltonen, L; Strachan, C J

    2015-10-01

    This study reports the potential of different polymers and polymer incorporation methods to inhibit crystallisation and maintain supersaturation of amorphous indomethacin (IND) in aqueous suspensions during storage. Three different polymers (poly(vinyl pyrrolidone) (PVP), hydroxypropyl methylcellulose (HPMC) and Soluplus® (SP)) were used and included in the suspensions either as a solid dispersion (SD) with IND or dissolved in the suspension medium prior to the addition of amorphous IND. The total concentrations of both IND and the polymer in the suspensions were kept the same for both methods of polymer incorporation. All the polymers (with both incorporation methods) inhibited crystallisation of the amorphous IND. The SDs were better than the predissolved polymer solutions at inhibiting crystallisation. The SDs were also better at maintaining drug supersaturation. SP showed a higher IND crystallisation inhibition and supersaturation potential than the other polymers. However, this depended on the method of addition. IND in SD with SP did not crystallise, nor did the SD generate any drug supersaturation, whereas IND in the corresponding predissolved SP solution crystallised (into the recently characterised η polymorphic form of the drug) but also led to a more than 20-fold higher IND solution concentration than that observed for crystalline IND. The ranking of the polymers with respect to crystallisation inhibition potential in SDs was SP≫PVP>HPMC. Overall, this study showed that both polymer type and polymer incorporation method strongly impact amorphous form stability and drug supersaturation in aqueous suspensions. PMID:26092472

  5. PBPK Model for Atrazine and Its Chlorotriazine Metabolites in Rat and Human

    PubMed Central

    Campbell, Jerry L.; Andersen, Melvin E.; Hinderliter, Paul M.; Yi, Kun Don; Pastoor, Timothy P.; Breckenridge, Charles B.; Clewell, Harvey J.

    2016-01-01

    The previously-published physiologically based pharmacokinetic model for atrazine (ATZ), deisopropylatrazine (DIA), deethylatrazine (DEA), and diaminochlorotriazine (DACT), which collectively comprise the total chlorotriazines (TCT) as represented in this study, was modified to allow for scaling to humans. Changes included replacing the fixed dose-dependent oral uptake rates with a method that represented delayed absorption observed in rats administered ATZ as a bolus dose suspended in a methylcellulose vehicle. Rate constants for metabolism of ATZ to DIA and DEA, followed by metabolism of DIA and DEA to DACT were predicted using a compartmental model describing the metabolism of the chlorotriazines by rat and human hepatocytes in vitro. Overall, the model successfully predicted both the 4-day plasma time-course data in rats administered ATZ by bolus dose (3, 10, and 50 mg/kg/day) or in the diet (30, 100, or 500 ppm). Simulated continuous daily exposure of a 55-kg adult female to ATZ at a dose of 1.0 µg/kg/day resulted in steady-state urinary concentrations of 0.6, 1.4, 2.5, and 6.0 µg/L for DEA, DIA, DACT, and TCT, respectively. The TCT (ATZ + DEA + DIA + DACT) human urinary biomonitoring equivalent concentration following continuous exposure to ATZ at the chronic point of departure (POD = 1.8 mg/kg/day) was 360.6 μg/L. PMID:26794140

  6. Adsorption of pharmaceutical excipients onto microcrystals of siramesine hydrochloride: effects on physicochemical properties.

    PubMed

    Zimmermann, Anne; Millqvist-Fureby, Anna; Elema, Michiel Ringkjøbing; Hansen, Tue; Müllertz, Anette; Hovgaard, Lars

    2009-01-01

    A common challenge in the development of new drug substances is poor dissolution characteristics caused by low aqueous solubility. In this study, microcrystals with optimized physicochemical properties were prepared by precipitation in the presence of excipients, which adsorbed to the particle surface and altered particle size, morphology, and dissolution rate. The poorly water-soluble drug siramesine hydrochloride was precipitated by the antisolvent method in the presence of each of various polymeric and surface active excipients. Powder dissolution studies of six of the resulting particle systems showed a significant increase in percent dissolved after 15 min compared to the starting material. A quantitative determination of the amount of excipient adsorbed to the surface of the drug particles proved that only a very small amount of excipient was needed to exert a marked effect on particle properties. The adsorbed amount of excipient constituted less than 1.4% (w/w) of the total particle weight, and thus powders of very high drug loads were obtained. Sodium lauryl sulphate (SLS), hydroxypropyl methylcellulose (HPMC), and hydroxypropyl cellulose (HPC), which exhibited the greatest degree of adsorption, also had the greatest effect on the physicochemical properties of the particles. X-ray Photoelectron Spectroscopy (XPS) analysis of the surface composition and scanning electron microscopy studies on particle morphology suggested that the excipients adsorbed to specific faces of the crystals.

  7. Long-term evaluation of the degradation behavior of three apatite-forming calcium phosphate cements.

    PubMed

    An, Jie; Liao, Hongbing; Kucko, Nathan W; Herber, Ralf-Peter; Wolke, Joop G C; van den Beucken, Jeroen J J P; Jansen, John A; Leeuwenburgh, Sander C G

    2016-05-01

    Calcium phosphate cements (CPCs) are injectable bone substitutes with a long clinical history because of their biocompatibility and osteoconductivity. Nevertheless, their cohesion upon injection into perfused bone defects as well as their long-term degradation behavior remain major clinical challenges. Therefore, the long-term degradation behavior of two types of α-tricalcium phosphate-based, apatite-forming CPCs was compared to a commercially available apatite-forming cement, that is HydroSet™ . Carboxyl methylcellulose (CMC) was used as cohesion promotor to improve handling properties of the two experimental cements, whereas poly (d, l-lactic-co-glycolic) acid (PLGA) microparticles were added to introduce macroporosity and stimulate CPC degradation. All three CPCs were injected into defects drilled into rabbit femoral condyles and explanted after 4, 12, or 26 weeks, after which the bone response was assessed both qualitatively and quantitatively. CPCs without PLGA microparticles degraded only at the periphery of the implants, while the residual CPC volume was close to 90%. On the contrary, bone ingrowth was observed not only at the periphery of the CPC, but also throughout the center of the implants after 26 weeks of implantation for the PLGA-containing CPCs with a residual CPC volume of approximately 55%. In conclusion, it was shown that CPC containing CMC and PLGA was able to induce partial degradation of apatite-forming CPCs and concomitant replacement by bone tissue. PMID:26743230

  8. Systematic investigation of the cavi-precipitation process for the production of ibuprofen nanocrystals.

    PubMed

    Sinha, Biswadip; Müller, Rainer H; Möschwitzer, Jan P

    2013-12-31

    Cavi-precipitation process is a combinative particle size reduction technology based on solvent-anti-solvent precipitation coupled high pressure homogenization (HPH). The cavi-precipitation can be used for the efficient production of drug nanocrystals (NC) with improved dissolution rate leading to better bioavailability. The work presented here demonstrates the advantage of cavi-precipitation process over the standard HPH processes and standard combination process (decoupled process) where precipitation is performed outside the homogenizer. The model compound ibuprofen (IBP) was solubilized in isopropanol (IPA) to constitute the solvent phase and mixed with the anti-solvent phase (0.1% (w/v) hydroxypropyl methylcellulose with 0.2% (w/v) sodium dodecyl sulphate) at different ratios to carry out the precipitation step. IBP-IPA-Water composition was selected from ternary diagram for a highly supersaturated zone to obtain smaller size particles. The mean particle size [d(0.5)] obtained by this process (300nm) was much smaller when compared to that obtained from the decoupled process (1.5μm). Optimization of the solvent-anti-solvent ratio and drug concentration was necessary to achieve a smaller particle size. PXRD and DSC results revealed that the solid state properties of the original IBP and the prepared NC samples by cavi-precipitation samples were similar.

  9. Interleukin 3 promotes erythroid burst formation in serum-free cultures without detectable erythropoietin

    SciTech Connect

    Goodman, J.W.; Hall, E.A.; Miller, K.L.; Shinpock, S.G.

    1985-05-01

    Erythroid burst-forming units (BFU-E) from mouse bone marrow were grown for 7 days in agar or serum-free methylcellulose cultures in the presence or absence of erythropoietin (Ep) and/or interleukin 3 (IL-3). It was found that IL-3, even in the absence of serum and detectable Ep, was able to stimulate the full development of many erythroid bursts. This IL-3 effect was cell-dose dependent and did not appear to correlate with Ep dose. Spontaneous bursts and those stimulated by Ep only were rare and when seen were very small relative to those produced by IL-3 or IL-3 plus Ep. When addition of IL-3 or Ep to 7-day cultures was delayed, IL-3 but not Ep was shown to maintain BFU-E. No evidence was found by radioimmunoassay that Ep was produced or released in 7-day, serum-free cultures of bone marrow nor was Ep activity detected in culture media except those to which it had been added deliberately.

  10. Stimulation of proliferation, differentiation, and function of human cells by primate interleukin 3

    SciTech Connect

    Lopez, A.F.; To, L.B.; Yang, Y.C.; Gamble, J.R.; Shannon, M.F.; Burns, G.F.; Dyson, P.G.; Juttner, C.A.; Clark, S.; Vadas, M.A.

    1987-05-01

    Cloned gibbon interleukin 3 (gIL-3) was found to stimulate the proliferation and differentiation of human bone marrow cells to produce day-14 granulocyte, macrophage, granulocyte-macrophage, and eosinophil colonies in semisolid agar. In the presence of normal human plasma, gIL-3 stimulated megakaryocytes. In methylcellulose cultures, it stimulated erythroid colonies in the presence, but not in the absence, of erythropoietin. When mature human leukocytes were used, gIL-3 stimulated the function of purified mature eosinophils as measured by the capacity to kill /sup 51/Cr-labeled antibody-coated target cells, to produce superoxide anions, and to phagocytize opsonized yeast particles in a manner similar to recombinant human granulocyte-macrophage colony-stimulating factor. In contrast, gIL-3 did not significantly stimulate any of the neutrophil functions tested, whereas human recombinant granulocyte-macrophage colony-stimulating factor was active in these assay. Among cytokines that are active on human hematopoietic cells, gIL-3 thus has a distinct set of functions and may predict the range of actions of the human molecule.

  11. Encapsulation and Delivery of Crystalline Hydrophobic Nutraceuticals using Nanoemulsions: Factors Affecting Polymethoxyflavone Solubility.

    PubMed

    Li, Yan; Xiao, Hang; McClements, David Julian

    2012-12-01

    Polymethoxyflavones (PMF) isolated from citrus peel have potent anti-cancer activity, however their utilization as functional ingredients in foods is currently limited because of their high melting point and poor water-solubility. The influence of oil type and concentration, hydrophilic polymer addition, and simulated intestinal conditions on PMF (5-hydroxytangeretin) solubility in solutions and nanoemulsions was examined. The saturation concentration of PMF in water was relatively low (0.93 µM), but could be increased appreciably by adding certain hydrophilic polymers: polyethylene glycol (PEG) and β-cyclodextrin (CD) were ineffective at increasing solubility, but poly(vinyl alcohol) (PVA) and hydroxypropyl methylcellulose (HPMC) greatly enhanced solubility (e.g., > 6 µM for 0.5 % polymer). PMF was more soluble in medium chain triglycerides (MCT, 6.1 mM) than long chain triglycerides (LCT, 4.2 mM). The encapsulation efficiency of PMF in oil-in-water nanoemulsions was higher when MCT was used as the oil phase rather than LCT, and could be increased by increasing the oil droplet content. The solubility of PMF in simulated small intestinal fluids was increased by solubilization in bile micelles and mixed micelles formed during lipid digestion. These results have important implications for the development of functional foods fortified with bioactive hydrophobic components aimed at improving human health and wellness. PMID:23646037

  12. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations Part II: CP kinetics and relaxation analysis.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Excipients used in the solid drug formulations differ in their NMR relaxation and (13)C cross-polarization (CP) kinetics parameters. Therefore, experimental parameters like contact time of cross-polarization and repetition time have a major impact on the registered solid state NMR spectra and in consequence on the results of the NMR analysis. In this work the CP kinetics and relaxation of the most common pharmaceutical excipients: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. The studied excipients differ significantly in their optimum repetition time (from 5 s to 1200 s) and T(1ρ)(I) parameters (from 2 ms to 73 ms). The practical use of those differences in the excipients composition analysis was demonstrated on the example of commercially available tablets containing indapamide as an API. The information presented in this article will help to choose the correct acquisition parameters and also will save the time and effort needed for their optimization in the NMR analysis of the solid drug formulations. PMID:26836362

  13. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: Chemical shifts assignment.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations. PMID:26845204

  14. Multiple-unit tablet of probiotic bacteria for improved storage stability, acid tolerability, and in vivo intestinal protective effect.

    PubMed

    Park, Hee Jun; Lee, Ga Hyeon; Jun, Joonho; Son, Miwon; Kang, Myung Joo

    2016-01-01

    The aim of this study was to formulate probiotics-loaded pellets in a tablet form to improve storage stability, acid tolerability, and in vivo intestinal protective effect. Bacteria-loaded pellets primarily prepared with hydroxypropyl methylcellulose acetate succinate were compressed into tablets with highly compressible excipients and optimized for flow properties, hardness, and disintegration time. The optimized probiotic tablet consisted of enteric-coated pellets (335 mg), microcrystalline cellulose (Avicel PH102, 37.5 mg), and porous calcium silicate (25 mg) and allowed whole survival of living bacteria during the compaction process with sufficient tablet hardness (13 kp) and disintegration time (14 minutes). The multiple-unit tablet showed remarkably higher storage stability under ambient conditions (25°C/60% relative humidity) over 6 months and resistance to acidic medium compared to uncoated strains or pellets. Repeated intake of this multiple-unit tablet significantly lowered plasma level of endotoxin, a pathogenic material, compared to repeated intake of bare probiotics or marketed products in rats. These results, therefore, suggest that the multiple-unit tablet is advantageous to better bacterial viability and gain the beneficial effects on the gut flora, including the improvement of intestinal barrier function. PMID:27103789

  15. Formulation and in vitro evaluation of a fast-disintegrating/sustained dual release bucoadhesive bilayer tablet of captopril for treatment of hypertension crises

    PubMed Central

    Abbasi, Sahar; Yousefi, Gholamhossein; Ansari, Ali Asghar; Mohammadi-Samani, Soliman

    2016-01-01

    Hypertension crisis is one of the main health problems and its effective treatment is of high importance. For this purpose, fast-disintegrating and sustained release formulations of captopril, as a drug of choice, were prepared using conventional mucoadhesive polymers hydroxypropyl methylcellulose (HPMC), sodium carboxymethyl cellulose (Na-CMC), hydroxypropyl cellulose (HPC), Carbopol 934 (CP934) and sodium alginate (Na-alg). The optimum sustained release formulations were selected based on mean dissolution time (MDT). The swellability and mucoadhesive properties of selected formulations were assessed and compared. A direct relationship between swelling and release rates/adhesiveness of sustained release formulations was observed. The results showed that formulations containing combination of CP934 and cellulose-based polymers had the highest swellability, sustainability and adhesion strength. These formulations prolonged drug release up to 8 h showing good fitness to Korsemeyer-Peppas model. Moreover, the adopted fast-disintegrating tablet could release up to 100% of drug within 3 min in oral pH. Finally, a dual fast-disintegrating/sustained release bucoadhesive bilayer tablet consisting of optimized formulations was prepared releasing 30% of the drug initially within 15 min and the remaining up to 8 h which could be considered as an appropriate formulation for the treatment of hypertension crises.

  16. Matrix effects in nilotinib formulations with pH-responsive polymer produced by carbon dioxide-mediated precipitation.

    PubMed

    Colombo, Stefano; Brisander, Magnus; Haglöf, Jakob; Sjövall, Peter; Andersson, Per; Østergaard, Jesper; Malmsten, Martin

    2015-10-15

    Factors determining the pH-controlled dissolution kinetics of nilotinib formulations with the pH-titrable polymer hydroxypropyl methylcellulose phthalate, obtained by carbon dioxide-mediated precipitation, were mechanistically examined in acid and neutral environment. The matrix effect, modulating the drug dissolution, was characterized with a battery of physicochemical methodologies, including ToF-SIMS for surface composition, SAXS/WAXS and modulated DSC for crystallization characterization, and simultaneous UV-imaging and Raman spectroscopy for monitoring the dissolution process in detail. The hybrid particle formulations investigated consisted of amorphous nilotinib embedded in a polymer matrix in single continuous phase, displaying extended retained amorphicity also under wet conditions. It was demonstrated by Raman and FTIR spectroscopy that the efficient drug dispersion and amorphization in the polymer matrix were mediated by hydrogen bonding between the drug and the phthalate groups on the polymer. Simultaneous Raman and UV-imaging studies of the effect of drug load on the swelling and dissolution of the polymer matrix revealed that high nilotinib load prevented matrix swelling on passage from acid to neutral pH, thereby preventing re-precipitation and re-crystallization of incorporated nilotinib. These findings provide a mechanistic foundation of formulation development of nilotinib and other protein kinase inhibitors, which are now witnessing an intense therapeutic and industrial attention due to the difficulty in formulating these compounds so that efficient oral bioavailability is reached.

  17. Formulation and evaluation of gastroretentive controlled release tablets of alfuzosin hydrochloride.

    PubMed

    Rudraswamy-Math, Nijaguni Revansiddayya; Gupta, Vankdari Rama-Mohan

    2015-11-01

    Alfuzosin hydrochloride is a novel drug used in the treatment of urinary incontinency. The purpose of this research was to develop controlled release floating matrix formulations of Alfuzosin HCl. Floating matrix tablets of Alfuzosin HCl were prepared using hydroxypropyl methylcellulose (HPMC), Polyethylene oxide (PEO), Carbopol 971P NF polymer (Direct compressible) and Blend of Polyvinyl Acetate and Povidone 30 (80:19:1(0.8% sodium laury sulfate and 0.2% silica)). Combination of citric acid and sodium bicarbonate were also used as gas forming agent. Matrix formulations were prepared by direct compression method and evaluated for floating, in vitro drug release profile and swelling characteristics. The mechanism of drug release was found to follow non-Fickian or anomalous type. The data obtained from the invitro release studies demonstrated that the floating matrix tablets containing HPMC 100K CR (controlled-release) and carbopol along with sodium CMC were found to sustain the release of drug over a period of 12 hours. Formulations containing 25% PEO 303WSR was also capable of sustaining delivery the release of Alfuzosin HCl. PMID:26639508

  18. Synthesis of cellulose-based superabsorbent hydrogels by high-energy irradiation in the presence of crosslinking agent

    NASA Astrophysics Data System (ADS)

    Fekete, Tamás; Borsa, Judit; Takács, Erzsébet; Wojnárovits, László

    2016-01-01

    Superabsorbent hydrogels were prepared from aqueous solutions of four cellulose derivatives (carboxymethylcellulose Na-salt - CMC, methylcellulose - MC, hydroxyethylcellulose - HEC and hydroxypropylcellulose - HPC) by gamma irradiation initiated crosslinking. CMC was used for the majority of the measurements. N,N'-methylene-bis-acrylamide (MBA) crosslinking agent was used to modify the gel properties. The crosslink density increased with the MBA concentration, leading to an improved gel fraction and lower water uptake. The crosslinking efficiency was the highest up to 1 w/wpolymer% MBA concentration. Very high MBA content (10 w/wpolymer%) led to a heterogeneous gel structure. Gelation also occurred under milder conditions in the presence of MBA: good gel properties were achieved at significantly lower doses and solute concentrations as compared to crosslinker-free solutions. The time required to reach maximum water uptake increased with the degree of swelling in equilibrium. Swelling properties of CMC gels with lower water uptake showed lower sensitivity to the ionic strength of the solvent.

  19. Intravenous Administration of Cilostazol Nanoparticles Ameliorates Acute Ischemic Stroke in a Cerebral Ischemia/Reperfusion-Induced Injury Model

    PubMed Central

    Nagai, Noriaki; Yoshioka, Chiaki; Ito, Yoshimasa; Funakami, Yoshinori; Nishikawa, Hiroyuki; Kawabata, Atsufumi

    2015-01-01

    It was reported that cilostazol (CLZ) suppressed disruption of the microvasculature in ischemic areas. In this study, we have designed novel injection formulations containing CLZ nanoparticles using 0.5% methylcellulose, 0.2% docusate sodium salt, and mill methods (CLZnano dispersion; particle size 81 ± 59 nm, mean ± S.D.), and investigated their toxicity and usefulness in a cerebral ischemia/reperfusion-induced injury model (MCAO/reperfusion mice). The pharmacokinetics of injections of CLZnano dispersions is similar to that of CLZ solutions prepared with 2-hydroxypropyl-β-cyclodextrin, and no changes in the rate of hemolysis of rabbit red blood cells, a model of cell injury, were observed with CLZnano dispersions. In addition, the intravenous injection of 0.6 mg/kg CLZnano dispersions does not affect the blood pressure and blood flow, and the 0.6 mg/kg CLZnano dispersions ameliorate neurological deficits and ischemic stroke in MCAO/reperfusion mice. It is possible that the CLZnano dispersions will provide effective therapy for ischemic stroke patients, and that injection preparations of lipophilic drugs containing drug nanoparticles expand their therapeutic usage. PMID:26690139

  20. Fabrication and evaluation of valsartan–polymer– surfactant composite nanoparticles by using the supercritical antisolvent process

    PubMed Central

    Kim, Min-Soo; Baek, In-hwan

    2014-01-01

    The aim of this study was to fabricate valsartan composite nanoparticles by using the supercritical antisolvent (SAS) process, and to evaluate the correlation between in vitro dissolution and in vivo pharmacokinetic parameters for the poorly water-soluble drug valsartan. Spherical composite nanoparticles with a mean size smaller than 400 nm, which contained valsartan, were successfully fabricated by using the SAS process. X-ray diffraction and thermal analyses indicated that valsartan was present in an amorphous form within the composite nanoparticles. The in vitro dissolution and oral bioavailability of valsartan were dramatically enhanced by the composite nanoparticles. Valsartan–hydroxypropyl methylcellulose–poloxamer 407 nanoparticles exhibited faster drug release (up to 90% within 10 minutes under all dissolution conditions) and higher oral bioavailability than the raw material, with an approximately 7.2-fold higher maximum plasma concentration. In addition, there was a positive linear correlation between the pharmacokinetic parameters and the in vitro dissolution efficiency. Therefore, the preparation of composite nanoparticles with valsartan–hydroxypropyl methylcellulose and poloxamer 407 by using the SAS process could be an effective formulation strategy for the development of a new dosage form of valsartan with high oral bioavailability. PMID:25404856

  1. Effect of methanol extract of Basella alba L. (Basellaceae) on the fecundity and testosterone level in male rats exposed to flutamide in utero.

    PubMed

    Nantia, E A; Manfo, P F T; Beboy, N E; Travert, C; Carreau, S; Monsees, T K; Moundipa, P F

    2012-02-01

    We evaluated the effect of the methanol extract of Basella alba (MEBa) on testosterone level and fecundity/fertility in male rats exposed in utero to flutamide - an androgen receptor antagonist. For this purpose, 1.5- and 2.5 -month-old male rats exposed in utero to flutamide were treated with the MEBa (1 mg kg(-1) ) for 2 and 1 month respectively. Five days before the end of treatment, rats were housed with females to assess their fecundity/fertility. Thereafter, rats were sacrificed and blood collected for the quantification of testosterone. Flutamide-exposed male rats showed a decrease in their ano-genital distance (AGD, P < 0.05) and were infertile. In normal (methylcellulose-exposed) animals, MEBa provoked an increase in testosterone level in 1.5- (P < 0.008) and 2.5 -month-old rats (P < 0.01) concomitantly with the improvement in their fecundity by 25%. In flutamide-exposed male rats, MEBa increased testosterone level in 1.5 -month-old rats (P < 0.001) without any effect on their fecundity; while in 2.5- month-old rats, MEBa did not affect the testosterone level but improved fecundity (by 25%) and fertility (P < 0.001). This study demonstrated the positive effect of MEBa to enhance fecundity/fertility in normal male rats and in rats exposed to the antiandrogen flutamide during their foetal life.

  2. The presence of the Rb c-box peptide in the cytoplasm inhibits p210bcr-abl transforming function.

    PubMed

    Guo, X Y; Balague, C; Wang, T; Randhawa, G; Yuan, Z; Bachier, C; Greenberger, J; Arlinghaus, R; Kufe, D; Deisseroth, A B

    1999-02-25

    In order to test if the carboxyl terminal polypeptide of the Retinoblastoma (Rb) tumor suppressor protein, could be used to suppress the growth factor-independent growth phenotype of p210bcr-abl positive myeloid cells, we introduced a truncated form of the 3' end of the Rb cDNA encoding its last 173 amino acid residues (Rb C-box) which localize into the cytoplasm where the p210bcr-abl transforming protein is found, into myeloid cells (32D) which depends on the p210bcr-abl protein for IL3 growth factor-independent growth (32D-p210). The expression of the plasmid vectors carrying the Rb C-box cDNAs was shown to inhibit the abl tyrosine specific protein kinase activity of the p210(bcr-abl) oncoprotein and to suppress the IL3-independent growth phenotype of the 32D-p210 cells. The Rb C-box polypeptides did not suppress the growth of the untransfected 32D parental cell line in methylcellulose in the presence of IL3-conditioned medium. These results suggest that the cytoplasmic localization of the p210(bcr-abl) allows it to escape the effect of intranuclear proteins such as Rb which negatively regulate the p145(c-abl) kinase. PMID:10102629

  3. The in vitro and in vivo effects of a fast-dissolving mucoadhesive bi-layered strip as topical anesthetics.

    PubMed

    Roh, Jiyeon; Han, Mira; Kim, Kyoung-Nam; Kim, Kwang-Mahn

    2016-01-01

    To overcome pain on injection, the dentist can apply a topical anesthetic spray. Despite the convenience, it is not easy to apply it locally. So, we developed an oral mucoadhesive bi-layer film containing an anesthetic. We used polyvinylpyrrolidone (PVP)/hydroxypropyl methylcellulose (HPMC) and HPMC-only layer as the drug-containing layer and ethyl cellulose (EC) as the backing layer. The lidocaine released was tested in vitro together with the adhesion time and cytotoxicity of the film. Mucosa permeability was tested in vivo. Statistical analysis was performed, with p at 0.05 taken to be significant. The lidocaine was released significantly faster in the PVP/HPMC than HPMC-only group and 80% of the drug was released within 1 min (p<0.05) and they attached at least 3 h. The test groups showed no toxicity and the drug effectively permeated the mucosa (p<0.05). We suggest this new mucoadhesive anesthetic may reduce dental phobia. PMID:27477225

  4. Radiosensitivity of human clonogenic myeloma cells and normal bone marrow precursors: Effect of different dose rates and fractionation

    SciTech Connect

    Glueck, S.; Van Dyk, J.; Messner, H.A. )

    1994-03-01

    Evaluation of radiation dose rate and fractionation effects on clonogenic myeloma cells was carried out. The radiosensitivity of clonogenic myeloma cells was evaluated for seven human myeloma cell lines. The lines were maintained in liquid suspension culture. Following radiation, cells were plated in semisolid medium using methylcellulose as viscous support. Radiation doses up to 12 Gy were delivered at dose rates of 0.05 and 0.5 Gy/min by a [sup 60]Co source. Each total dose was administered either as a single dose or in multiple fractions of 2 Gy. The data were analyzed according to the linear quadratic and multi target model of irradiation. Clonogenic progenitors of the seven myeloma cell lines differed in their radiosensitivity as measured by multiple parameters. The differences were mainly observed at low dose. The most effective cytoreduction was seen when radiation was administered in a single fraction at high dose rate. The cytoreductive effect on clonogenic myeloma cells was compared for clinically practiced total body irradiation (TBI) schedules delivered either in a single or in multiple fractions without causing significant pulmonary toxicity. The administration of 12 Gy delivered in six fractions of 2 Gy resulted in a superior reduction of clonogenic cells compared to a single fraction of 5 Gy. The preparation of bone marrow transplant recipients with multiple myeloma using fractionated radiation with a total dose of 12 Gy appears to afford better ablation than a single dose of 5 Gy while maintaining a low incidence of pulmonary toxicity. 20 refs., 4 figs., 4 tabs.

  5. A Role for Androgens in Epithelial Proliferation and Formation of Glands in the Mouse Uterus

    PubMed Central

    Simitsidellis, Ioannis; Gibson, Douglas A.; Cousins, Fiona L.; Esnal-Zufiaurre, Arantza

    2016-01-01

    The endometrium consists of stromal and epithelial compartments (luminal and glandular) with distinct functions in the regulation of uterine homeostasis. Ovarian sex steroids, namely 17β-estradiol and progesterone, play essential roles in modulating uterine cell proliferation, stromal-epithelial cross-talk and differentiation in preparation for pregnancy. The effect of androgens on uterine function remains poorly understood. The current study investigated the effect of the non-aromatizable androgen dihydrotestosterone (DHT) on mouse endometrial function. Ovx female mice were given a single sc injection (short treatment) or 7 daily injections (long treatment) of vehicle alone (5% ethanol, 0.4% methylcellulose) or vehicle with the addition of 0.2 mg DHT (n=8/group) and a single injection of bromodeoxyuridine 2 hours prior to tissue recovery. Treatment with DHT increased uterine weight, the area of the endometrial compartment and immunoexpression of the androgen receptor in the luminal and glandular epithelium. Treatment-dependent proliferation of epithelial cells was identified by immunostaining for MKi67 and bromodeoxyuridine. Real-time PCR identified significant DHT-dependent changes in the concentrations of mRNAs encoded by genes implicated in the regulation of the cell cycle (Wee1, Ccnd1, Rb1) and stromal-epithelial interactions (Wnt4, Wnt5a, Wnt7a, Cdh1, Vcl, Igf1, Prl8, Prlr) as well as a striking effect on the number of endometrial glands. This study has revealed a novel role for androgens in regulating uterine function with an effect on the glandular compartment of the endometrium. This previously unrecognized role for androgens has implications for our understanding of the role of androgens in regulation of endometrial function and fertility in women. PMID:26963473

  6. Development of a zero-order sustained-release tablet containing mesalazine and budesonide intended to treat the distal gastrointestinal tract in inflammatory bowel disease.

    PubMed

    Gareb, Bahez; Eissens, Anko C; Kosterink, Jos G W; Frijlink, Hendrik W

    2016-06-01

    Ulcerative colitis (UC) and Crohn's disease (CD) are diseases affecting the gastrointestinal tract. Treatment depends on the severity of the disease, site of inflammation, and patient's response. The aim of this study was to develop a zero-order sustained-release tablet containing both the anti-inflammatory drugs mesalazine and budesonide as a new treatment option for ileo-colonic CD and UC. Tablets were attained by wet granulation with hydroxypropyl methylcellulose and direct compression. Our newly developed tablet core was coated with different ColoPulse® coating thicknesses and the mesalazine and budesonide release profiles were investigated in a 600-min gastrointestinal simulation system (GISS) experiment, together with commercially available MMX®-mesalazine and MMX®-budesonide. Lag-time, release rate (k0), completeness of release, and zero-order correlation coefficient (R(2)0) could be manipulated by varying ColoPulse® coating thickness. Our newly developed combination preparation (C[4.92]) complied with all conducted European Pharmacopoeia tests as well as an accelerated 6-month stability test and had a lag-time of 250min (simulated ileum targeted), a linear release profile (mesalazine R(2)0=0.9002; budesonide R(2)0=0.9481), and drug release of 100% mesalazine and 77% budesonide. Like C[4.92], MMX®-mesalazine had a linear (R(2)0=0.9883) and complete release profile (96%). However, C[4.92] lag-time was longer (250 vs. 210min), assuring simulated ileum specificity. Remarkably, MMX®-budesonide lag-time was 480min and release was only 7% with a linear character (R(2)0=0.9906). The in vitro results suggest that MMX®-budesonide effectiveness may be improved if budesonide release in the aqueous phase would be increased and that C[4.92] is a potential, new treatment option for ileo-colonic CD and UC. PMID:27000751

  7. Additive CAD/CAM process for dental prostheses.

    PubMed

    Silva, Nelson R F A; Witek, Lukasz; Coelho, Paulo G; Thompson, Van P; Rekow, Elizabeth D; Smay, Jim

    2011-02-01

    This article describes the evolution of a computer-aided design/computer-aided manufacturing (CAD/CAM) process where ceramic paste is deposited in a layer-by-layer sequence using a computer numerical control machine to build up core and fixed partial denture (FPD) structures (robocasting). Al(2)O(3) (alumina) or ZrO(2) (Y-TZP) are blended into a 0.8% aqueous solution of ammonium polyacrylate in a ratio of approximately 1:1 solid:liquid. A viscosifying agent, hydroxypropyl methylcellulose, is added to a concentration of 1% in the liquid phase, and then a counter polyelectrolyte is added to gel the slurry. There are two methods for robocasting crown structures (cores or FPD framework). One is for the core to be printed using zirconia ink without support materials, in which the stereolithography (STL) file is inverted (occlusal surface resting on a flat substrate) and built. The second method uses a fugitive material composed of carbon black codeposited with the ceramic material. During the sintering process, the carbon black is removed. There are two key challenges to successful printing of ceramic crowns by the robocasting technique. First is the development of suitable materials for printing, and second is the design of printing patterns for assembly of the complex geometry required for a dental restoration. Robocasting has room for improvement. Current development involves enhancing the automation of nozzle alignment for accurate support material deposition and better fidelity of the occlusal surface. An accompanying effort involves calculation of optimal support structures to yield the best geometric results and minimal material usage.

  8. Evaluation of a Nanoemulsion Formulation Strategy for Oral Bioavailability Enhancement of Danazol in Rats and Dogs

    PubMed Central

    Devalapally, Harikrishna; Silchenko, Svitlana; Zhou, Feng; McDade, Jessica; Goloverda, Galina; Owen, Albert; Hidalgo, Ismael J.

    2013-01-01

    The objective of this study was to determine whether nanoemulsion formulations constitute a viable strategy to improve the oral bioavailability of danazol, a compound whose poor aqueous solubility limits its oral bioavailability. Danazol-containing oil-in-water nanoemulsions (NE) with and without co-surfactants stearylamine (SA) and deoxycholic acid (DCA) were prepared and characterized. Nanoemulsion droplets size ranging from 238 to 344 nm and with surface charges of −24.8 mV (NE), −26.5 mV (NE-DCA), and +27.8 mV (NE-SA) were reproducibly obtained. Oral bioavailability of danazol in nanoemulsions was compared with other vehicles such as, PEG400, 1% methylcellulose in water (1% MC), Labrafil, and a Labrafil/Tween 80 (9:1) mixture, after intragastric administration to rats and after oral administration of NE-SA, a Labrafil solution, or a Danocrine® tablet to dogs. The absolute bioavailability of danazol was 0.6% (PEG400), 1.2% (1% MC), 6.0% (Labrafil), 7.5% (Labrafil/Tween80), 8.1% (NE-DCA), 14.8% (NE), and 17.4% (NE-SA) in rats, and 0.24% (Danocrine), 6.2% (Labrafil), and 58.7% (NE-SA) in dogs. Overall, danazol bioavailability in any nanoemulsion was higher than any other formulation. Danazol bioavailability from NE and NE-SA was 1.8 to 2.2-fold higher than NE-DCA nanoemulsion and could be due to significant difference in droplet size. PMID:23878097

  9. Role of different biodegradable polymers on the permeability of ciprofloxacin

    PubMed Central

    Chakraborti, Chandra Kanti; Sahoo, Subhashree; Behera, Pradipta Kumar

    2014-01-01

    Since permeability across biological membranes is a key factor in the absorption and distribution of drugs, drug permeation characteristics of three oral suspensions of ciprofloxacin were designed and compared. The three suspensions of ciprofloxacin were prepared by taking biodegradable polymers such as carbopol 934, carbopol 940, and hydroxypropyl methylcellulose (HPMC). The permeability study was performed by using a Franz diffusion cell through both synthetic cellulose acetate membrane and excised goat gastrointestinal membranes in acidic as well as alkaline pH. To know the permeability of drug from control/formulations through different membranes in acidic/alkaline pH, cumulative percentage drug permeation, apparent permeability (Papp), flux, and enhancement ratio (ER) were calculated. Considering Papp and flux values of all formulations, it is evident that formulation containing HPMC was the most beneficial for improving permeation and diffusivity of ciprofloxacin even after 16 h. Hence, this preparation may be considered as the most suitable formulation to obtain prolonged release action of the drug. The ER values of all formulations, through excised goat intestinal mucosal membrane in alkaline pH, were higher than those formulations through goat stomach mucosal membrane in acidic pH. Enhancement ratio values of those formulations indicate that the permeability of the drug was more enhanced by the polymers in the intestinal part, leading to more bioavailability and prolonged action in that portion of the gastrointestinal tract. It may also be concluded from our results that HPMC containing formulation was the best suspension, which may show effective controlled release action. Even carbopol containing formulations might also produce controlled release action. PMID:25126536

  10. Effect of different polymers on in vitro and ex vivo permeability of Ofloxacin from its mucoadhesive suspensions

    PubMed Central

    Chakraborti, Chandra Kanti; Sahoo, Subhashree; Behera, Pradipta Kumar

    2014-01-01

    Considering the importance of drug permeation from formulations, in vitro and ex vivo drug permeation characteristics of three oral mucoadhesive suspensions of Ofloxacin were designed and compared. Three suspensions of Ofloxacin were prepared by taking two grades of Carbopol polymer such as Carbopol 934 (C934) and Carbopol 940 (C940); and Hydroxypropyl methylcellulose. The permeability study was performed by using a Franz diffusion cell through both synthetic cellulose acetate membrane and excised goat gastrointestinal membranes in acidic as well as alkaline pH. To know the permeability of the drug from control/formulations through different membranes in acidic/alkaline pH, cumulative percentage drug permeation, apparent permeability (Papp) and flux (J) were calculated. In addition, enhancement ratio (ER) of each formulation was also determined. From our results, it is evident that formulation containing C940 was the best suspension considering Papp and J values of all formulations. Moreover, it was the most beneficial formulation for improving permeation and diffusivity of Ofloxacin even after 16 h. Hence, this suspension was probably the most suitable formulation to obtain prolonged release action of the drug. The ER values of all formulations through the excised goat intestinal mucus membrane in alkaline pH were higher than those formulations through the goat stomach mucosal membrane in acidic pH. ER values of those formulations indicate that the permeability of the drug was more enhanced by the polymers in the intestinal part, leading to more bioavailability and prolonged action in that portion of the gastrointestinal tract. It may also be concluded from our results that in addition to formulation containing C940, other formulations may also show effective controlled release action. PMID:25972741

  11. Drug release from hydrophilic matrices. 1. New scaling laws for predicting polymer and drug release based on the polymer disentanglement concentration and the diffusion layer.

    PubMed

    Ju, R T; Nixon, P R; Patel, M V

    1995-12-01

    Two scaling laws for predicting polymer and drug release profiles from hydrophilic matrices were developed. They were developed on the basis of the diffusion layer and the polymer disentanglement concentration, rho p,dis, the critical polymer concentration below which polymer chains detach off a gelled matrix that is undergoing simultaneous swelling and dissolution. The relation between rho p,dis and molecular weight, M1 for (hydroxypropyl)methylcellulose (HPMC) in water was established as rho p,dis (g/mL) varies M-0.8. This power-law relationship for rho p,dis, along with the diffusion layer adjacent to the gelled matrix, leads to the scaling law of mp(t)/mp(infinity) varies Meq-1.15, where mp(t)/mp(infinity) is the fractional HPMC release. The scaling law explains the observation that polymer and drug release rates decreased sharply with M at low M and approach limiting values at high M. Experimentally, mp(t)/mp(infinity) was found to scale with Meq as mp(t)/mp(infinity) varies Meq-0.93, where Meq is the equivalent matrix molecular weight. Moreover, fractional drug release, md(t)/md(infinity), followed Meq as md(t)/md(infinity) varies Meq-0.48. These two scaling laws imply that, if the release profiles are known for one composition, release profiles for other compositions can be predicted. The above two power laws lead to two master curves for mp(t)/mp(infinity) and md(t)/md(infinity), suggesting that the release mechanism for soluble drugs from HPMC matrices is independent of matrix compositions, presumably via a diffusion-controlled process. Limitations of the power laws are discussed. PMID:8748329

  12. In Vivo Assessment of Phage and Linezolid Based Implant Coatings for Treatment of Methicillin Resistant S. aureus (MRSA) Mediated Orthopaedic Device Related Infections.

    PubMed

    Kaur, Sandeep; Harjai, Kusum; Chhibber, Sanjay

    2016-01-01

    Staphylococcus comprises up to two-thirds of all pathogens in orthopaedic implant infections with two species respectively Staphylococcus aureus and Staphylococcus epidermidis, being the predominate etiological agents isolated. Further, with the emergence of methicillin-resistant S. aureus (MRSA), treatment of S. aureus implant infections has become more difficult, thus representing a devastating complication. Use of local delivery system consisting of S.aureus specific phage along with linezolid (incorporated in biopolymer) allowing gradual release of the two agents at the implant site represents a new, still unexplored treatment option (against orthopaedic implant infections) that has been studied in an animal model of prosthetic joint infection. Naked wire, hydroxypropyl methylcellulose (HPMC) coated wire and phage and /or linezolid coated K-wire were surgically implanted into the intra-medullary canal of mouse femur bone of respective groups followed by inoculation of S.aureus ATCC 43300(MRSA). Mice implanted with K-wire coated with both the agents i.e phage as well as linezolid (dual coated wires) showed maximum reduction in bacterial adherence, associated inflammation of the joint as well as faster resumption of locomotion and motor function of the limb. Also, all the coating treatments showed no emergence of resistant mutants. Use of dual coated implants incorporating lytic phage (capable of self-multiplication) as well as linezolid presents an attractive and aggressive early approach in preventing as well as treating implant associated infections caused by methicillin resistant S. aureus strains as assessed in a murine model of experimental joint infection. PMID:27333300

  13. Development and In Vivo Evaluation of a Novel Histatin-5 Bioadhesive Hydrogel Formulation against Oral Candidiasis

    PubMed Central

    Kong, Eric F.; Tsui, Christina; Boyce, Heather; Ibrahim, Ahmed; Hoag, Stephen W.; Karlsson, Amy J.; Meiller, Timothy F.

    2015-01-01

    Oral candidiasis (OC), caused by the fungal pathogen Candida albicans, is the most common opportunistic infection in HIV+ individuals and other immunocompromised populations. The dramatic increase in resistance to common antifungals has emphasized the importance of identifying unconventional therapeutic options. Antimicrobial peptides have emerged as promising candidates for therapeutic intervention due to their broad antimicrobial properties and lack of toxicity. Histatin-5 (Hst-5) specifically has exhibited potent anticandidal activity indicating its potential as an antifungal agent. To that end, the goal of this study was to design a biocompatible hydrogel delivery system for Hst-5 application. The bioadhesive hydroxypropyl methylcellulose (HPMC) hydrogel formulation was developed for topical oral application against OC. The new formulation was evaluated in vitro for gel viscosity, Hst-5 release rate from the gel, and killing potency and, more importantly, was tested in vivo in our mouse model of OC. The findings demonstrated a controlled sustained release of Hst-5 from the polymer and rapid killing ability. Based on viable C. albicans counts recovered from tongues of treated and untreated mice, three daily applications of the formulation beginning 1 day postinfection with C. albicans were effective in protection against development of OC. Interestingly, in some cases, Hst-5 was able to clear existing lesions as well as associated tissue inflammation. These findings were confirmed by histopathology analysis of tongue tissue. Coupled with the lack of toxicity as well as anti-inflammatory and wound-healing properties of Hst-5, the findings from this study support the progression and commercial feasibility of using this compound as a novel therapeutic agent. PMID:26596951

  14. In vitro characterization of a novel polymeric system for preparation of amorphous solid drug dispersions.

    PubMed

    Mahmoudi, Zahra N; Upadhye, Sampada B; Ferrizzi, David; Rajabi-Siahboomi, Ali R

    2014-07-01

    Preparation of amorphous solid dispersions using polymers is a commonly used formulation strategy for enhancing the solubility of poorly water-soluble drugs. However, often a single polymer may not bring about a significant enhancement in solubility or amorphous stability of a poorly water-soluble drug. This study describes application of a unique and novel binary polymeric blend in preparation of solid dispersions. The objective of this study was to investigate amorphous solid dispersions of glipizide, a BCS class II model drug, in a binary polymeric system of polyvinyl acetate phthalate (PVAP) and hypromellose (hydroxypropyl methylcellulose, HPMC). The solid dispersions were prepared using two different solvent methods: rotary evaporation (rotavap) and fluid bed drug layering on sugar spheres. The performance and physical stability of the dispersions were evaluated with non-sink dissolution testing, powder X-ray diffraction (PXRD), and modulated differential scanning calorimetry (mDSC). PXRD analysis demonstrated an amorphous state for glipizide, and mDSC showed no evidence of phase separation. Non-sink dissolution testing in pH 7.5 phosphate buffer indicated more than twofold increase in apparent solubility of the drug with PVAP-HPMC system. The glipizide solid dispersions demonstrated a high glass transition temperature (Tg) and acceptable chemical and physical stability during the stability period irrespective of the manufacturing process. In conclusion, the polymeric blend of PVAP-HPMC offers a unique formulation approach for developing amorphous solid dispersions with the flexibility towards the use of these polymers in different ratios and combined quantities depending on drug properties. PMID:24789531

  15. Evaluation of the composition of the binder bridges in matrix granules prepared with a small-scale high-shear granulator.

    PubMed

    Bajdik, János; Baki, Gabriella; Szent-Királlyi, Zsuzsanna; Knop, Klaus; Kleinebudde, Peter; Pintye-Hódi, Klára

    2008-11-01

    The aim of this work was to evaluate the binder bridges which can form in hydrophilic matrix granules prepared with a small-scale high-shear granulator. Matrices contained hydroxypropyl methylcellulose (HPMC) as a matrix-forming agent, together with lactose monohydrate and microcrystalline cellulose as filler. Water was used as granulating liquid. A 2(4) full factorial design was used to evaluate the effects of the operational parameters (impeller speed, chopper speed, dosing speed and wet massing time) on the granulation process. The temperature of the sample increased relevantly during the preparation in the small-scale apparatus. The same setup induced different temperature increases for different amounts of powder. This alteration enhances the solubility of lactose and decreases that of HPMC, and thus the quantities of the dissolved components can vary. Accordingly, changes in composition of the binder bridge can occur. Since exact determination of the dissolution of these materials during granulation is difficult, the consequences of the changes in solubility were examined. Differential scanning calorimetry (DSC), thermomechanical analysis (TMA) and X-ray diffraction (XRD) measurements were made to evaluate the films prepared from liquids with different ratios of soluble materials. The DSC and XRD measurements confirmed that the lactose lost its crystalline state in the film. The TMA tests revealed that increase of the quantity of lactose in the film decreased the glass transition temperature of the film; this may be attributed to the interaction of the additives. At a lactose content of 37.5%, a second glass transition appeared. This phenomenon may be indicative of a separate amorphous lactose phase. PMID:18774256

  16. Design, Formulation and Evaluation of an Oral Gel from Punica Granatum Flower Extract for the Treatment of Recurrent Aphthous Stomatitis

    PubMed Central

    Aslani, Abolfazl; Zolfaghari, Behzad; Davoodvandi, Fatemeh

    2016-01-01

    Purpose: Recurrent aphthous stomatitis is a disease with unknown etiology that’s mostly treated symptomatically and has no definite cure. Pomegranate (Punica granatum) flowers have been used as medicinal herb that due to its antimicrobial, antioxidant, anti-inflammatory, analgesic and healing effects, has been useful in treatment of oral aphthous. Therefore, we decided to formulate a mucoadhesive gel with pomegranate flower extract to reduce the need for corticosteroid therapy in patients. Methods: Pomegranate flowers are extracted by percolation method. Several formulations with different amounts of carbomer 934, sodium carboxymethylcellulose (SCMC) and hydroxypropyl methylcellulose K4M were prepared and the condensed extract was dispersed in polyethyleneglycol (PEG) 400 and added to gel bases. Then the formulations underwent macroscopic and microscopic studies. The formulations that passed these tests successfully were studied through assay tests using spectrophotometry in 765 nm, drug release from mucoadhesive gel using cell diffusion method, viscosity test, mucoadhesion test and accelerated stability test. Results: The phenolic content of pomegranate flower dried extract was found to be 212.3±1.4 mg/g in dried extract. The F4–F6 formulations contains carbomer 934, SCMC, pomegranate flower extract, PEG 400, potassium sorbate and purified water passed all above tests. Conclusion: The F4 formulation had higher viscosity and mucoadhesion values due to its higher carbomer 934 and SCMC content. Since F4, F5 and F6 had no significant variation in drug release, the F4 formulation was chosen as the superior formulation because of proper appearance and uniformity, acceptable viscosity, mucoadhesion and stability in different temperatures. PMID:27766223

  17. Drug release-modulating mechanism of hydrophilic hydroxypropylmethylcellulose matrix tablets: distribution of atoms and carrier and texture analysis.

    PubMed

    Park, Jun-Bom; Lim, Jisung; Kang, Chin-Yang; Lee, Beom-Jin

    2013-12-01

    Although release profiles of drug from hydrophilic matrices have been well recognized, the visual distribution of hydroxypropylmethylcellulose (HPMC) and atoms inside of internal structures of hydrophilic HPMC matrices has not been characterized. In this paper, drug release mechanism from HPMC matrix tablet was investigated based on the release behaviors of HPMC, physical properties of gelled HPMC tablet and atomic distributions of formulation components using diverse instruments. A matrix tablet consisting of hydroxypropyl methylcellulose (HPMC 6, 4,000 and 100,000 mPa·s), chlorpheniramine maleate (CPM) as a model and fumed silicon dioxide (Aerosil(®) 200) was prepared via direct compression. The distribution of atoms and HPMC imaging were characterized using scanning electron microscope (SEM)/ energy-dispersive X-ray spectroscopy (EDX), and near-infrared (NIR) analysis, respectively as a function of time. A texture analyzer was also used to characterize the thickness and maintenance of gel layer of HPMC matrix tablet. The HPMC matrix tablets showed Higuchi release kinetics with no lag time against the square root of time. High viscosity grades of HPMC gave retarded release rate because of the greater swelling and gel thickness as characterized by texture analyzer. According to the NIR imaging, low-viscosity-grade HPMC (6 mPa·s) quickly leached out onto the surface of the tablet, while the high-viscosity-grade HPMC (4000 mPa·s) formed much thicker gel layer around the tablet and maintained longer via slow erosion, resulting in retarded drug release. The atomic distribution of the drug (chlorine, carbon, oxygen), HPMC (carbon, oxygen) and silicon dioxide (silica, oxygen) and NIR imaging of HPMC corresponded with the dissolution behaviors of drug as a function of time. The use of imaging and texture analyses could be applicable to explain the release- modulating mechanism of hydrophilic HPMC matrix tablets. PMID:23855499

  18. Formulation and evaluation of fast dissolving films of levocitirizine di hydrochloride

    PubMed Central

    Prabhu, Prabhakara; Malli, Ravi; Koland, Marina; Vijaynarayana, K; D’Souza, Ullas; Harish, NM; Shastry, CS; Charyulu, RN

    2011-01-01

    Introduction: Levocetirizine dihydrochloride is an orally active, third-generation non-sedative antihistamine used in the symptomatic relief of seasonal and perennial allergic rhinitis. The present work aimed at preparing quick release films of levocetirizine with the purpose of developing a dosage form for a very quick onset of action, which is beneficial in managing severe conditions of allergies, aiding in the enhancement of bioavailability, and is very convenient for administration, without the problem of swallowing and using water. Materials and Methods: The films of levocetirizine dihydrochloride were prepared by using polymers such as hydroxypropyl methylcellulose (HPMC) and polyvinyl alcohol (PVA), as either single polymer or in combination of two, by a solvent casting method. They were evaluated for physical characteristics such as uniformity of weight, thickness, folding endurance, drug content uniformity, surface pH, percentage elongation, and tensile strength, and gave satisfactory results. The formulations were subjected to disintegration, in vitro drug release tests, and in vivo studies on rats. Results: A marked increase in the dissolution rate was exhibited by fast-dissolving films of levocetirizine dihydrochloride containing HPMC as a polymer, when compared to conventional tablets. The haloperidol-induced catalepsy, milk-induced leukocytosis, and nasal provocation in vivo studies in rats proved that the fast-dissolving films of levocetirizine dihydrochloride produced a faster onset of action compared to the conventional tablets. Conclusions: Fast dissolving films of levocetirizine dihydrochloride can be considered suitable for clinical use in the treatment of allergic rhinitis and other conditions of allergies, where a quicker onset of action for a dosage form is desirable along with the convenience of administration. PMID:23071928

  19. Atomistic simulation study of surfactant and polymer interactions on the surface of a fenofibrate crystal.

    PubMed

    Zhu, Wusheng; Romanski, Francis S; Meng, Xiangxin; Mitra, Somenath; Tomassone, M Silvina

    2011-04-18

    It is currently of great interest to the pharmaceutical industry to control the size and agglomeration of nano- and micro-particles for the enhancement of drug delivery. Typically, surfactants and polymers are used as additives to interact with and stabilize the growing crystal surface, thus controlling size and agglomeration; however, selection is traditionally done empirically or using heuristics. The objective of this study was to use molecular dynamic simulations to investigate and predict additive interactions, and thus, evaluate the stabilization potential of individual and multiple additives on the surface of the model drug fenofibrate. Non-ionic surfactant Tween 80, anionic surfactant sodium dodecyl sulfate (SDS), and polymers hydroxypropyl methylcellulose (HPMC) and Pullulan were evaluated individually on three distinct crystal surfaces [(001), (010), (100)], as well as in surfactant-polymer combinations. HPMC was determined to have the strongest interaction with the surfaces of the fenofibrate crystal, and therefore, was predicted to be the most effective individual additive. A mixture of HPMC with SDS was determined to be the most effective mixture of additives, and more effective than HPMC alone, indicating a synergistic effect. The predictions of mixed additives indicated a relative order of effectiveness as follows: HPMC-SDS>HPMC-Tween 80>Pullulan-Tween 80>Pullulan-SDS. The simulations were subsequently validated by an anti-solvent crystallization of fenofibrate where it was found that HPMC individually, and a mixture of HPMC-SDS, produced the smallest and most stable crystals, as measured by laser diffraction; this, in combination with measurements of the crystal growth rate in the presence and absence of additives confirmed the results of the simulations.

  20. In situ molecular elucidation of drug supersaturation achieved by nano-sizing and amorphization of poorly water-soluble drug.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu

    2015-09-18

    Quantitative evaluation of drug supersaturation and nanoparticle formation was conducted using in situ evaluation techniques, including nuclear magnetic resonance (NMR) spectroscopy. We prepared a ternary complex of carbamazepine (CBZ) with hydroxypropyl methylcellulose (HPMC) and sodium dodecyl sulfate (SDS) to improve the drug concentration. Different preparation methods, including grinding and spray drying, were performed to prepare the ternary component products, ground mixture (GM) and spray-dried sample (SD), respectively. Although CBZ was completely amorphized in the ternary SD, CBZ was partially amorphized with the remaining CBZ crystals in the ternary GM. Aqueous dispersion of the ternary GM formed nanoparticles of around 150 nm, originating from the CBZ crystals in the ternary GM. In contrast, the ternary SD formed transparent solutions without a precipitate. The molecular-level evaluation using NMR measurements revealed that approximately half a dose of CBZ in the ternary GM dispersion was present as nanoparticles; however, CBZ in the ternary SD was completely dissolved in the aqueous solution. The characteristic difference between the solid states, followed by different preparation methods, induced different solution characteristics in the ternary GM and SD. The permeation study, using a dialysis membrane, showed that the CBZ concentration dissolved in the bulk water phase rapidly reduced in the ternary SD dispersion compared to the ternary GM dispersion; this demonstrated the advantage of ternary GM dispersion in the maintenance of CBZ supersaturation. Long-term maintenance of a supersaturated state of CBZ observed in the ternary GM dispersion rather than in the ternary SD dispersion was achieved by the inhibition of CBZ crystallization owing to the existence of CBZ nanoparticles in the ternary GM dispersion. Nanoparticle formation, combined with drug amorphization, could be a promising approach to improve drug concentrations. The detailed elucidation

  1. Characterization of the Murine Myeloid Precursor Cell Line MuMac-E8

    PubMed Central

    Fricke, Stephan; Riemschneider, Sina; Kohlschmidt, Janine; Hilger, Nadja; Fueldner, Christiane; Knauer, Jens; Sack, Ulrich; Emmrich, Frank; Lehmann, Jörg

    2014-01-01

    Starting point for the present work was the assumption that the cell line MuMac-E8 represents a murine cell population with stem cell properties. Preliminary studies already pointed to the expression of stem-cell associated markers and a self-regenerative potential of the cells. The cell line MuMac-E8 should be examined for their differential stage within stem cell hierarchy. MuMac-E8 cells were derived from a chimeric mouse model of arthritis. It could be shown that MuMac-E8 cells express mRNA of some genes associated with pluripotent stem cells (Nanog, Nucleostemin), of genes for hematopoietic markers (EPCR, Sca-1, CD11b, CD45), for the mesenchymal marker CD105 and of genes for the neural markers Pax-6 and Ezrin. In methylcellulose and May-Grünwald-Giemsa staining, hematopoietic colonies were obtained but the hematopoietic system of lethally irradiated mice could not be rescued. Osteogenic differentiation was not detectable. Thus, it became evident that MuMac-E8 represents not a stem cell line. However, MuMac-E8 cells expressed several myeloid surface markers (i.e. CD11b, F4/80, CD14, CD64), showed phagocytosis and is capable of producing nitric oxide. Thus, this cell line seems to be arrested an advanced stage of myeloid differentiation. Adherence data measured by impedance-based real-time cell analysis together with cell morphology data suggested that MuMac-E8 represents a new macrophage precursor cell line exhibiting weak adherence. This cell line is suitable as an in-vitro model for testing of macrophage functions. Moreover, it might be also useful for differentiation or reprogramming studies. PMID:25546418

  2. Characterization of the murine myeloid precursor cell line MuMac-E8.

    PubMed

    Fricke, Stephan; Pfefferkorn, Cathleen; Wolf, Doris; Riemschneider, Sina; Kohlschmidt, Janine; Hilger, Nadja; Fueldner, Christiane; Knauer, Jens; Sack, Ulrich; Emmrich, Frank; Lehmann, Jörg

    2014-01-01

    Starting point for the present work was the assumption that the cell line MuMac-E8 represents a murine cell population with stem cell properties. Preliminary studies already pointed to the expression of stem-cell associated markers and a self-regenerative potential of the cells. The cell line MuMac-E8 should be examined for their differential stage within stem cell hierarchy. MuMac-E8 cells were derived from a chimeric mouse model of arthritis. It could be shown that MuMac-E8 cells express mRNA of some genes associated with pluripotent stem cells (Nanog, Nucleostemin), of genes for hematopoietic markers (EPCR, Sca-1, CD11b, CD45), for the mesenchymal marker CD105 and of genes for the neural markers Pax-6 and Ezrin. In methylcellulose and May-Grünwald-Giemsa staining, hematopoietic colonies were obtained but the hematopoietic system of lethally irradiated mice could not be rescued. Osteogenic differentiation was not detectable. Thus, it became evident that MuMac-E8 represents not a stem cell line. However, MuMac-E8 cells expressed several myeloid surface markers (i.e. CD11b, F4/80, CD14, CD64), showed phagocytosis and is capable of producing nitric oxide. Thus, this cell line seems to be arrested an advanced stage of myeloid differentiation. Adherence data measured by impedance-based real-time cell analysis together with cell morphology data suggested that MuMac-E8 represents a new macrophage precursor cell line exhibiting weak adherence. This cell line is suitable as an in-vitro model for testing of macrophage functions. Moreover, it might be also useful for differentiation or reprogramming studies.

  3. Application of Solid-State NMR Relaxometry for Characterization and Formulation Optimization of Grinding-Induced Drug Nanoparticle.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu

    2016-03-01

    The formation mechanism of drug nanoparticles was investigated using solid-state nuclear magnetic resonance (NMR) techniques for the efficient discovery of an optimized nanoparticle formulation. The cogrinding of nifedipine (NIF) with polymers, including hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP), and sodium dodecyl sulfate (SDS) was performed to prepare the NIF nanoparticle formulations. Then, solid-state NMR relaxometry was used for the nanometer-order characterization of NIF in the polymer matrix. Solid-state NMR measurements revealed that the crystal size of NIF was reduced to several tens of nanometers with amorphization of NIF by cogrinding with HPMC and SDS for 100 min. Similarly, the size of the NIF crystal was reduced to less than 90 nm in the 40 min ground mixture of NIF/PVP/SDS. Furthermore, 100 min grinding of NIF/PVP/SDS induced amorphization of almost all the NIF crystals followed by nanosizing. The hydrogen bond between NIF and PVP led to the efficient amorphization of NIF in the NIF/PVP/SDS system compared with NIF/HPMC/SDS system. The efficient nanosizing of the NIF crystal in the solid state, revealed by the solid-state NMR relaxation time measurements, enabled the formation of large amounts of NIF nanoparticles in water followed by the polymer dissolution. In contrast, excess amorphization of the NIF crystals failed to efficiently prepare the NIF nanoparticles. The solid-state characterization of the crystalline NIF revealed good correlation with the NIF nanoparticles formation during aqueous dispersion. Furthermore, the solid-state NMR measurements including relaxometry successfully elucidated the nanometer-order dispersion state of NIF in polymer matrix, leading to the discovery of optimized conditions for the preparation of suitable drug nanoparticles.

  4. Effect of HPMC - E15 LV premium polymer on release profile and compression characteristics of chitosan/ pectin colon targeted mesalamine matrix tablets and in vitro study on effect of pH impact on the drug release profile.

    PubMed

    Newton, A M J; Lakshmanan, Prabakaran

    2014-04-01

    The study was designed to investigate the in vitro dissolution profile and compression characteristics of colon targeted matrix tablets prepared with HPMC E15 LV in combination with pectin and Chitosan. The matrix tablets were subjected to two dissolution models in various simulated fluids such as pH 1.2, 6, 6.8, 7.2, 5.5. The fluctuations in colonic pH conditions during IBD (inflammatory bowel disease) and the nature of less fluid content in the colon may limit the expected drug release in the polysaccharide-based matrices when used alone. The Hydrophilic hydroxyl propyl methylcellulose ether premium polymer (HPMC E15 LV) of low viscosity grade was used in the formulation design, which made an excellent modification in physical and compression characteristics of the granules. The release studies indicated that the prepared matrices could control the drug release until the dosage form reaches the colon and the addition HPMC E15 LV showed the desirable changes in the dissolution profile by its hydrophilic nature since the colon is known for its less fluid content. The hydrophilic HPMC E15 LV allowed the colonic fluids to enter into the matrix and confirmed the drug release at the target site from a poorly water soluble polymer such as Chitosan and also from water soluble Pectin. The dramatic changes occurred in the drug release profile and physicochemical characteristics of the Pectin, Chitosan matrix tablets when a premium polymer HPMC E15 LV added in the formulation design in the optimized concentration. Various drug release mechanisms used for the examination of drug release characteristics. Drug release followed the combined mechanism of diffusion, erosion, swelling and polymer entanglement. In recent decade, IBD attracts many patents in novel treatment methods by using novel drug delivery systems.

  5. Radiation grafting on natural films

    NASA Astrophysics Data System (ADS)

    Lacroix, M.; Khan, R.; Senna, M.; Sharmin, N.; Salmieri, S.; Safrany, A.

    2014-01-01

    Different methods of polymer grafting using gamma irradiation are reported in the present study for the preparation of newly functionalized biodegradable films, and some important properties related to their mechanical and barrier properties are described. Biodegradable films composed of zein and poly(vinyl alcohol) (PVA) were gamma-irradiated in presence of different ratios of acrylic acid (AAc) monomer for compatibilization purpose. Resulting grafted films (zein/PVA-g-AAc) had their puncture strength (PS=37-40 N mm-1) and puncture deformation (PD=6.5-9.8 mm) improved for 30% and 50% PVA in blend, with 5% AAc under 20 kGy. Methylcellulose (MC)-based films were irradiated in the presence of 2-hydroxyethyl methacrylate (HEMA) or silane, in order to determine the effect of monomer grafting on the mechanical properties of films. It was found that grafted films (MC-g-HEMA and MC-g-silane) using 35% monomer performed higher mechanical properties with PS values of 282-296 N mm-1 and PD of 5.0-5.5 mm under 10 kGy. Compatibilized polycaprolactone (PCL)/chitosan composites were developed via grafting silane in chitosan films. Resulting trilayer grafted composite film (PCL/chitosan-g-silane/PCL) presented superior tensile strength (TS=22 MPa) via possible improvement of interfacial adhesion (PCL/chitosan) when using 25% silane under 10 kGy. Finally, MC-based films containing crystalline nanocellulose (CNC) as a filling agent were prepared and irradiated in presence of trimethylolpropane trimethacrylate (TMPTMA) as a grafted plasticizer. Grafted films (MC-g-TMPTMA) presented superior mechanical properties with a TS of 47.9 MPa and a tensile modulus (TM) of 1792 MPa, possibly due to high yield formation of radicals to promote TMPTMA grafting during irradiation. The addition of CNC led to an additional improvement of the barrier properties, with a significant 25% reduction of water vapor permeability (WVP) of grafted films.

  6. In vitro myelotoxic effects of cypermethrin and mancozeb on human hematopoietic progenitor cells.

    PubMed

    Mandarapu, Rajesh; Prakhya, Balakrishna Murthy

    2015-01-01

    In the past two decades, hematologic and immunologic disorders in humans have been increasingly reported as a result of pesticide exposures. Therefore, safety assessment is required to assess the effects on hematopoiesis and thus on the immune system in addition to routine toxicity evaluation. Currently, the data available on effects of pesticides on hematopoiesis in humans is limited. In the study here, cypermethrin and mancozeb were evaluated for their possible effects on hematopoiesis in vitro. Hematopoietic stem or progenitor cells from human cord blood were isolated and then exposed for 14 days to cypermethrin or mancozeb at non-cytotoxic doses (0.9-16 µM), and the effect on hematopoiesis screened via a methylcellulose-based clonogenic assay. Results indicated there were significant concentration-related decreases in clonogenic potentials of erythroid and granulocyte-macrophage colony formation. The inhibitory concentration (IC50) value with erythroid progenitors for cypermethrin was 8.7 [± 0.2 µM; mean [± SE]) and for mancozeb 6.2 [± 0.2] µM. Similarly, IC50 values with granulocyte-macrophage progenitors for cypermethrin and mancozeb were 19.2 [± 1.0] and 8.1 [± 0.2] µM, respectively. These data suggest that erythroid progenitors are perhaps more sensitive to these pesticides. Still, further studies are needed to understand the functional significance of these in vitro findings. For now, these data, albeit preliminary, emphasize the need to include an expanded battery of tests to understand effects on immune parameters in pre-clinical safety studies with pesticides. This study also emphasizes the utility of human cord blood in assessing potential effects on hematopoiesis in vitro. PMID:24499300

  7. Identification of a population of cells with hematopoietic stem cell properties in mouse aorta-gonad-mesonephros cultures

    SciTech Connect

    Nobuhisa, Ikuo; Ohtsu, Naoki; Okada, Seiji; Nakagata, Naomi; Taga, Tetsuya . E-mail: taga@kaiju.medic.kumamoto-u.ac.jp

    2007-03-10

    The aorta-gonad-mesonephros (AGM) region is a primary source of definitive hematopoietic cells in the midgestation mouse embryo. In cultures of dispersed AGM regions, adherent cells containing endothelial cells are observed first, and then non-adherent hematopoietic cells are produced. Here we report on the characterization of hematopoietic cells that emerge in the AGM culture. Based on the expression profiles of CD45 and c-Kit, we defined three cell populations: CD45{sup low} c-Kit{sup +} cells that had the ability to form hematopoietic cell colonies in methylcellulose media and in co-cultures with stromal cells; CD45{sup low} c-Kit{sup -} cells that showed a granulocyte morphology; CD45{sup high} c-Kit{sup low/-} that exhibited a macrophage morphology. In co-cultures of OP9 stromal cells and freshly prepared AGM cultures, CD45{sup low} c-Kit{sup +} cells from the AGM culture had the abilities to reproduce CD45{sup low} c-Kit{sup +} cells and differentiate into CD45{sup low} c-Kit{sup -} and CD45{sup high} c-Kit{sup low/-} cells, whereas CD45{sup low} c-Kit{sup -} and CD45{sup high} c-Kit{sup low/-} did not produce CD45{sup low} c-Kit{sup +} cells. Furthermore, CD45{sup low} c-Kit{sup +} cells displayed a long-term repopulating activity in adult hematopoietic tissue when transplanted into the liver of irradiated newborn mice. These results indicate that CD45{sup low} c-Kit{sup +} cells from the AGM culture have the potential to reconstitute multi-lineage hematopoietic cells.

  8. In vitro and in vivo evaluation of topical formulations of spantide II.

    PubMed

    Kikwai, Loice; Babu, R Jayachandra; Prado, Renata; Kolot, Alexandra; Armstrong, Cheryl A; Ansel, John C; Singh, Mandip

    2005-01-01

    The purpose of this study was to develop and evaluate topical formulations of Spantide II, a neurokinin-1 receptor (NK-1R) antagonist, for the treatment of inflammatory skin disorders. Spantide II lotion and gel was formulated with and without n-methyl-2-pyrrolidone (NMP) as a penetration enhancer. The release of Spantide II from gels was evaluated using microporous polyethylene and polypropylene membranes in a Franz Diffusion cell setup. In vitro percutaneous absorption of Spantide II from lotion and gel formulations was evaluated using the above setup by replacing the membranes with hairless rat skin. The in vivo anti-inflammatory activity of Spantide II formulations was evaluated in an allergic contact dermatitis (ACD) mouse model. Among different gels studied, PF127 gel showed highest (70-fold) release of Spantide II compared with hydroxypropyl methylcellulose (HPMC) and hydroxypropyl cellulose (HPC) gels. Lotion and gel formulations with or without NMP showed no detectable levels of Spantide II in the receiver compartment of the Franz diffusion cell until 24 hours. However, Spantide II showed significant retention in epidermis and dermis from lotion and gel formulations at 24 hours. The dermal levels increased approximately 3.5- and 2-fold when the lotion and gel formulations contained NMP as compared with the formulation with no NMP (P < .05). The in vivo studies indicated that Spantide II formulations with NMP were effective in significantly reducing ACD response, similar to dexamethasone (0.5 mM). In conclusion, Spantide II was stable as a topical formulation and delivered to target skin tissue (epidermis and dermis) for the treatment of ACD. In addition this study supports the role of cutaneous neurosensory system in modulating inflammatory responses in the skin.

  9. Human Cardiac Progenitor Spheroids Exhibit Enhanced Engraftment Potential

    PubMed Central

    Colangelo, Donato; Gregoletto, Luca; Reano, Simone; Pietronave, Stefano; Merlin, Simone; Talmon, Maria; Novelli, Eugenio; Diena, Marco; Nicoletti, Carmine; Musarò, Antonio; Filigheddu, Nicoletta; Follenzi, Antonia; Prat, Maria

    2015-01-01

    A major obstacle to an effective myocardium stem cell therapy has always been the delivery and survival of implanted stem cells in the heart. Better engraftment can be achieved if cells are administered as cell aggregates, which maintain their extra-cellular matrix (ECM). We have generated spheroid aggregates in less than 24 h by seeding human cardiac progenitor cells (hCPCs) onto methylcellulose hydrogel-coated microwells. Cells within spheroids maintained the expression of stemness/mesenchymal and ECM markers, growth factors and their cognate receptors, cardiac commitment factors, and metalloproteases, as detected by immunofluorescence, q-RT-PCR and immunoarray, and expressed a higher, but regulated, telomerase activity. Compared to cells in monolayers, 3D spheroids secreted also bFGF and showed MMP2 activity. When spheroids were seeded on culture plates, the cells quickly migrated, displaying an increased wound healing ability with or without pharmacological modulation, and reached confluence at a higher rate than cells from conventional monolayers. When spheroids were injected in the heart wall of healthy mice, some cells migrated from the spheroids, engrafted, and remained detectable for at least 1 week after transplantation, while, when the same amount of cells was injected as suspension, no cells were detectable three days after injection. Cells from spheroids displayed the same engraftment capability when they were injected in cardiotoxin-injured myocardium. Our study shows that spherical in vivo ready-to-implant scaffold-less aggregates of hCPCs able to engraft also in the hostile environment of an injured myocardium can be produced with an economic, easy and fast protocol. PMID:26375957

  10. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    SciTech Connect

    Jozaki, K.; Kuriu, A.; Hirota, S.; Onoue, H.; Ebi, Y.; Adachi, S.; Ma, J.Y.; Tarui, S.; Kitamura, Y. )

    1991-03-01

    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of (3H)thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3) and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of (3H)thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity.

  11. Production and Characterization of Highly Thermostable β-Glucosidase during the Biodegradation of Methyl Cellulose by Fusarium oxysporum

    PubMed Central

    Olajuyigbe, Folasade M.; Nlekerem, Chidinma M.; Ogunyewo, Olusola A.

    2016-01-01

    Production of β-glucosidase from Fusarium oxysporum was investigated during degradation of some cellulosic substrates (Avicel, α-cellulose, carboxymethyl cellulose (CMC), and methylcellulose). Optimized production of β-glucosidase using the cellulosic substrate that supported highest yield of enzyme was examined over 192 h fermentation period and varied pH of 3.0–11.0. The β-glucosidase produced was characterized for its suitability for industrial application. Methyl cellulose supported the highest yield of β-glucosidase (177.5 U/mg) at pH 6.0 and 30°C at 96 h of fermentation with liberation of 2.121 μmol/mL glucose. The crude enzyme had optimum activity at pH 5.0 and 70°C. The enzyme was stable over broad pH range of 4.0–7.0 with relative residual activity above 60% after 180 min of incubation. β-glucosidase demonstrated high thermostability with 83% of its original activity retained at 70°C after 180 min of incubation. The activity of β-glucosidase was enhanced by Mn2+ and Fe2+ with relative activities of 167.67% and 205.56%, respectively, at 5 mM and 360% and 315%, respectively, at 10 mM. The properties shown by β-glucosidase suggest suitability of the enzyme for industrial applications in the improvement of hydrolysis of cellulosic compounds into fermentable sugars that can be used in energy generation and biofuel production. PMID:26977320

  12. In vitro quantitative ((1))H and ((19))F nuclear magnetic resonance spectroscopy and imaging studies of fluvastatin™ in Lescol® XL tablets in a USP-IV dissolution cell.

    PubMed

    Zhang, Qilei; Gladden, Lynn; Avalle, Paolo; Mantle, Michael

    2011-12-20

    Swellable polymeric matrices are key systems in the controlled drug release area. Currently, the vast majority of research is still focused on polymer swelling dynamics. This study represents the first quantitative multi-nuclear (((1))H and ((19))F) fast magnetic resonance imaging study of the complete dissolution process of a commercial (Lescol® XL) tablet, whose formulation is based on the hydroxypropyl methylcellulose (HPMC) polymer under in vitro conditions in a standard USP-IV (United States Pharmacopeia apparatus IV) flow-through cell that is incorporated into high field superconducting magnetic resonance spectrometer. Quantitative RARE ((1))H magnetic resonance imaging (MRI) and ((19))F nuclear magnetic resonance (NMR) spectroscopy and imaging methods have been used to give information on: (i) dissolution media uptake and hydrodynamics; (ii) active pharmaceutical ingredient (API) mobilisation and dissolution; (iii) matrix swelling and dissolution and (iv) media activity within the swelling matrix. In order to better reflect the in vivo conditions, the bio-relevant media Simulated Gastric Fluid (SGF) and Fasted State Simulated Intestinal Fluid (FaSSIF) were used. A newly developed quantitative ultra-fast MRI technique was applied and the results clearly show the transport dynamics of media penetration and hydrodynamics along with the polymer swelling processes. The drug dissolution and mobility inside the gel matrix was characterised, in parallel to the ((1))H measurements, by ((19))F NMR spectroscopy and MRI, and the drug release profile in the bulk solution was recorded offline by UV spectrometer. We found that NMR spectroscopy and 1D-MRI can be uniquely used to monitor the drug dissolution/mobilisation process within the gel layer, and the results from ((19))F NMR spectra indicate that in the gel layer, the physical mobility of the drug changes from "dissolved immobilised drug" to "dissolved mobilised drug".

  13. Practical method for preparing nanosuspension formulations for toxicology studies in the discovery stage: formulation optimization and in vitro/in vivo evaluation of nanosized poorly water-soluble compounds.

    PubMed

    Komasaka, Takao; Fujimura, Hisako; Tagawa, Toshiaki; Sugiyama, Akio; Kitano, Yasunori

    2014-01-01

    The present study aimed to develop a practical method for preparing nanosuspension formulations of poorly water-soluble compounds for enhancing oral absorption in toxicology studies in the discovery stage. To obtain a suitable nanosuspension formulation for the intended purpose, formulations were optimized with a focus on the following characteristics: i) containing a high drug concentration, ii) consisting of commonly used excipient types in proper quantities for toxicology studies, iii) having long-term stability, and iv) having versatility for use with diverse compounds. Test compounds were milled with various excipients by wet media milling methods using a mixer mill (10 mg/batch) and a rotation/revolution mixer (0.5 g/batch). As a result, 100 mg/mL nanosuspensions of all 11 test compounds could be prepared with an optimized dispersing agent, 0.5% hydroxypropyl methylcellulose (HPMC) (3 cP)-0.5% Tween 80. Notably, it was found that the molecular weight of HPMC influenced not only particle size but also the stability of nanosuspensions and they were stable for 4 weeks at 5°C. The nanosuspensions increased in vitro dissolution rates and provided 3.9 and 3.0 times higher Cmax and 4.4 and 1.6 times higher area under the concentration-time curve from 0-24 h (AUC0-24 h) in rats (oral dose of 300 mg/kg) for cilostazol and danazol, respectively. In conclusion, applying a wet media milling method with the combination of HPMC of a small molecular weight and Tween 80 as a dispersing agent, nanosuspensions can be practically prepared and conveniently utilized for enhancing the oral absorption of poorly water-soluble compounds in toxicology studies in the discovery stage.

  14. Ion Beam Analysis Of Silicon-Based Surfaces And Correlation With Surface Energy Measurements

    NASA Astrophysics Data System (ADS)

    Xing, Qian; Herbots, N.; Hart, M.; Bradley, J. D.; Wilkens, B. J.; Sell, D. A.; Sell, Clive H.; Kwong, Henry Mark; Culbertson, R. J.; Whaley, S. D.

    2011-06-01

    The water affinity of Si-based surfaces is quantified by contact angle measurement and surface free energy to explain hydrophobic or hydrophilic behavior of silicone, silicates, and silicon surfaces. Surface defects such as dangling bonds, surface free energy including Lewis acid-base and Lifshitz-van der Waals components are discussed. Water nucleation and condensation is further explained by surface topography. Tapping mode atomic force microscopy (TMAFM) provides statistical analysis of the topography of these Si-based surfaces. The correlation of the above two characteristics describes the behavior of water condensation at Si-based surfaces. Surface root mean square roughness increasing from several Å to several nm is found to provide nucleation sites that expedite water condensation visibly for silica and silicone. Hydrophilic surfaces have a condensation pattern that forms puddles of water while hydrophobic surfaces form water beads. Polymer adsorption on these surfaces alters the water affinity as well as the surface topography, and therefore controls condensation on Si-based surfaces including silicone intraocular lens (IOL). The polymer film is characterized by Rutherford backscattering spectrometry (RBS) in conjunction with 4.265 MeV 12C(α, α)12C, 3.045 MeV 16O(α,α)16O nuclear resonance scattering (NRS), and 2.8 MeV elastic recoil detection (ERD) of hydrogen for high resolution composition and areal density measurements. The areal density of hydroxypropyl methylcellulose (HPMC) film ranges from 1018 atom/cm2 to 1019 atom/cm2 gives the silica or silicone surface a roughness of several Å and a wavelength of 0.16±0.02 μm, and prevents fogging by forming a complete wetting layer during water condensation.

  15. A Role for Androgens in Epithelial Proliferation and Formation of Glands in the Mouse Uterus.

    PubMed

    Simitsidellis, Ioannis; Gibson, Douglas A; Cousins, Fiona L; Esnal-Zufiaurre, Arantza; Saunders, Philippa T K

    2016-05-01

    The endometrium consists of stromal and epithelial compartments (luminal and glandular) with distinct functions in the regulation of uterine homeostasis. Ovarian sex steroids, namely 17β-estradiol and progesterone, play essential roles in modulating uterine cell proliferation, stromal-epithelial cross-talk and differentiation in preparation for pregnancy. The effect of androgens on uterine function remains poorly understood. The current study investigated the effect of the non-aromatizable androgen dihydrotestosterone (DHT) on mouse endometrial function. Ovx female mice were given a single sc injection (short treatment) or 7 daily injections (long treatment) of vehicle alone (5% ethanol, 0.4% methylcellulose) or vehicle with the addition of 0.2 mg DHT (n=8/group) and a single injection of bromodeoxyuridine 2 hours prior to tissue recovery. Treatment with DHT increased uterine weight, the area of the endometrial compartment and immunoexpression of the androgen receptor in the luminal and glandular epithelium. Treatment-dependent proliferation of epithelial cells was identified by immunostaining for MKi67 and bromodeoxyuridine. Real-time PCR identified significant DHT-dependent changes in the concentrations of mRNAs encoded by genes implicated in the regulation of the cell cycle (Wee1, Ccnd1, Rb1) and stromal-epithelial interactions (Wnt4, Wnt5a, Wnt7a, Cdh1, Vcl, Igf1, Prl8, Prlr) as well as a striking effect on the number of endometrial glands. This study has revealed a novel role for androgens in regulating uterine function with an effect on the glandular compartment of the endometrium. This previously unrecognized role for androgens has implications for our understanding of the role of androgens in regulation of endometrial function and fertility in women. PMID:26963473

  16. Growth and differentiation of circulating hemopoietic stem cells with atomic bomb irradiation-induced chromosome abnormalities

    SciTech Connect

    Amenomori, T.; Honda, T.; Otake, M.; Tomonaga, M.; Ichimaru, M.

    1988-11-01

    The effects of atomic bomb irradiation on hemopoietic stem cells were studied cytogenetically using single colonies derived from hemopoietic progenitor cells. The subjects studied were 21 healthy atomic bomb survivors (10 males and 11 females) in the high dose exposure group (100+ rad) with a known high incidence (10% or more) of radiation-induced chromosome abnormalities in their peripheral blood lymphocytes (stimulated with phytohemagglutinin), and 11 nonexposed healthy controls (5 males and 6 females). Colony formation by circulating granulocyte-macrophage (GM-CFC) and erythroid (BFU-E) progenitor cells was made by the methylcellulose method using peripheral blood mononuclear cells. Chromosome specimens were prepared from single colonies by our micromethod. The total number of colonies analyzed in the exposed group was 131 for GM-CFC and 75 for BFU-E. Chromosome abnormalities were observed in 15 (11.5%) and 9 (12.0%) colonies, respectively. In the control group, the total number of colonies analyzed was 61 for GM-CFC and 41 for BFU-E. None of these colonies showed chromosome abnormalities. The difference in incidence of chromosome abnormalities was highly significant by an exact test; p = 0.003 for GM-CFC and 0.017 for BFU-E. The karyotypes of chromosome abnormalities obtained from the colonies in the exposed group were mostly translocations, but deletion and marker chromosomes were also observed. In two individuals, such karyotypic abnormalities as observed in the peripheral lymphocytes were also seen in the myeloid progenitor cells. This finding suggests that atomic bomb irradiation produced a chromosome aberration on multipotent hemopoietic stem cells common to myeloid and lymphoid lineages.

  17. Preparation and clinical evaluation of nano-transferosomes for treatment of erectile dysfunction

    PubMed Central

    Ali, Maha Fadel M; Salem, Heba F; Abdelmohsen, Hany F; Attia, Sameh K

    2015-01-01

    Objective The goal of the present study was to formulate topical nanocarriers of the low-cost vasodilator, papaverine hydrochloride (PH), as an alternative to the painful penile injections. The injections are used for both diagnosis and treatment of erectile dysfunction. Transdermal nano-transferosome (T), the ultraflexible nanoliposome, was used as a nanocarrier to enhance the penetration of the papaverine to the penis. Methods Different nano formulas were prepared and characterized for their encapsulation efficiency, particle size, zeta potential, and cumulative drug release. The formula acquired the best characteristics was incorporated into 2% (w/v) hydroxypropyl methylcellulose hydrogel base. The gel containing transferosomal papaverine hydrochloride (PH) and that containing free PH were clinically compared using color flow Doppler measurements. Results The results revealed that transferosome 3 (T3) had the highest entrapment efficiency approaching 72%, low particle size of 220 nm, and zeta potential of −33.4 mV. The formula released 73% of its initial drug content within 2 hours. The clinical evaluation showed the increase in the cavernous artery diameter from 0.53 mm to 0.78 mm and the increase in the peak systolic flow velocity from 5.95 cm/second to 12.2 cm/second, both of which were found to be significant at P<0.05. Conclusion It is evident from the study that the transferosomes can be used as a carrier of papaverine hydrochloride for both diagnosis and treatment of the erectile dysfunction. This new strategy could be used successfully in the treatment of erectile dysfunction and in male impotency. PMID:25995616

  18. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: I. Impact of plasticizer on film properties and dissolution.

    PubMed

    Krull, Scott M; Patel, Hardik V; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2016-09-20

    Recent studies have demonstrated polymer films to be a promising platform for delivery of poorly water-soluble drug particles. However, the impact of critical material attributes, for example plasticizer, on the properties of and drug release from such films has yet to be investigated. In response, this study focuses on the impact of plasticizer and plasticizer concentration on properties and dissolution rate of polymer films loaded with poorly water-soluble drug nanoparticles. Glycerin, triacetin, and polyethylene glycol were selected as film plasticizers. Griseofulvin was used as a model Biopharmaceutics Classification System class II drug and hydroxypropyl methylcellulose was used as a film-forming polymer. Griseofulvin nanoparticles were prepared via wet stirred media milling in aqueous suspension. A depression in film glass transition temperature was observed with increasing plasticizer concentration, along with a decrease in film tensile strength and an increase in film elongation, as is typical of plasticizers. However, the type and amount of plasticizer necessary to produce strong yet flexible films had no significant impact on the dissolution rate of the films, suggesting that film mechanical properties can be effectively manipulated with minimal impact on drug release. Griseofulvin nanoparticles were successfully recovered upon redispersion in water regardless of plasticizer or content, even after up to 6months' storage at 40°C and 75% relative humidity, which contributed to similar consistency in dissolution rate after 6months' storage for all films. Good content uniformity (<4% R.S.D. for very small film sample size) was also maintained across all film formulations.

  19. A Novel Approach to Flurbiprofen Pulsatile Colonic Release: Formulation and Pharmacokinetics of Double-Compression-Coated Mini-Tablets.

    PubMed

    Vemula, Sateesh Kumar

    2015-12-01

    A significant plan is executed in the present study to study the effect of double-compression coating on flurbiprofen core mini-tablets to achieve the pulsatile colonic delivery to deliver the drug at a specific time as per the patho-physiological need of the disease that results in improved therapeutic efficacy. In this study, pulsatile double-compression-coated tablets were prepared based on time-controlled hydroxypropyl methylcellulose K100M inner compression coat and pH-sensitive Eudragit S100 outer compression coat. Then, the tablets were evaluated for both physical evaluation and drug-release studies, and to prove these results, in vivo pharmacokinetic studies in human volunteers were conducted. From the in vitro drug-release studies, F6 tablets were considered as the best formulation, which retarded the drug release in the stomach and small intestine (3.42 ± 0.12% in 5 h) and progressively released to the colon (99.78 ± 0.74% in 24 h). The release process followed zero-order release kinetics, and from the stability studies, similarity factor between dissolution data before and after storage was found to be 88.86. From the pharmacokinetic evaluation, core mini-tablets producing peak plasma concentration (C max) was 14,677.51 ± 12.16 ng/ml at 3 h T max and pulsatile colonic tablets showed C max = 12,374.67 ± 16.72 ng/ml at 12 h T max. The area under the curve for the mini and pulsatile tablets was 41,238.52 and 72,369.24 ng-h/ml, and the mean resident time was 3.43 and 10.61 h, respectively. In conclusion, development of double-compression-coated tablets is a promising way to achieve the pulsatile colonic release of flurbiprofen.

  20. Development of orodispersible polymer films with focus on the solid state characterization of crystalline loperamide.

    PubMed

    Woertz, Christina; Kleinebudde, Peter

    2015-08-01

    The formulation of active pharmaceutical ingredients (API) as orodispersible films is gaining interest among novel oral drug delivery systems due to their small size, enhanced flexibility and improved patient compliance. The aim of this work was the preparation and characterization of orodispersible films containing loperamide hydrochloride (LPH) as model drug. As loperamide hydrochloride is poorly soluble in water it was used in crystalline form with a loading of 2mg/6cm(2) film. Hydroxypropyl methylcellulose (HPMC) and different types of hydroxypropyl cellulose (HPC) in different concentrations were used as film forming polymers whereas arabic gum, xanthan gum and tragacanth served as thickening agents. Films were characterized with respect to the content uniformity, morphology, thermal behavior and crystallinity. Suspensions were investigated regarding their viscosity using a rotational rheometer and the crystal structure of the Active Pharmaceutical Ingredient (API) was analyzed using polarized light microscopy. The development of flexible, non-brittle and homogeneous films of LPH was feasible. Two polymorphic forms of LPH appeared in the film formulations dependent on the utilized polymer. While in presence of HPMC the original polymorphic form I remained stable in suspension and films, the polymorphic form II occurred in presence of HPC. Both polymorphic forms were prepared separately and a solid state characterization was performed. Polymorph I showed isometric crystals whereas polymorph II showed needle shaped crystals. Tragacanth was able to prevent the transformation to polymorph II, if it was dissolved first before HPC. When HPC was added first to the suspension, the conversion to form II occurred irreversibly also after further addition of tragacanth.

  1. Improving adhesion of seasonings to crackers with hydrocolloid solutions.

    PubMed

    Armstrong, Matthew E; Barringer, Sheryl A

    2013-11-01

    Food powders were applied on crackers that had been coated using water, oil, emulsion, sucrose, or hydrocolloid solutions. The hydrocolloids that were used include gellan gum, kappa-carrageenan, methylcellulose, gum karaya, gum tragacanth, gum arabic, guar gum, modified starch, and maltodextrin. Solutions of similar hydrophobicity to the powder gave the greatest adhesion. NaCl, barbecue (BBQ), ranch, and sour cream & onion (SC&O) seasoning showed greatest adhesion with water, cheese powder with an emulsion of 12.5% to 25% oil, and cocoa powder with oil. For NaCl, BBQ, ranch, and SC&O seasoning, hydrocolloids improved the adhesion over using water alone, with gellan gum providing the greatest adhesion. Hydrocolloid structural differences, including the presence or absence of branching, substitution of sugar units, and molecular weight affect water binding and thickening of the hydrocolloid spray that seemed to be significant factors affecting adhesion of powders to the target surface. For cheese powder, hydrocolloids were capable of replacing the oil within an emulsion while improving or maintaining the same level of adhesion, with gum arabic providing the greatest adhesion. For cocoa powder, hydrocolloid solutions were ineffective adhesives due to differences in hydrophilicity that result in insolubility. The effect of hydrocolloid concentration on adhesion was dependent both on the hydrocolloid type and the concentration that is sprayable, with 0.5% being the optimum concentration for most gums. Adhesion using sucrose solutions was determined by particle size and relative hydrophobicity. Increasing sucrose concentration decreased adhesion of smaller particles, but increased adhesion of larger particles. Adhesion of NaCl significantly increased with decreasing NaCl size using oil, water, and sucrose solutions.

  2. Obtainment of pellets using the standardized liquid extract of Brosimum gaudichaudii Trécul (Moraceae)

    PubMed Central

    Filho, Omar Paulino Silva; Oliveira, Leandra Almeida Ribeiro; Martins, Frederico Severino; Borges, Leonardo Luiz; de Freitas, Osvaldo; da Conceição, Edemilson Cardoso

    2015-01-01

    Background: The standardized liquid extract of Brosimum gaudichaudii Trécul is an alternative for the treatment of vitiligo. There is a shortage of solid oral dosage forms developed from standardized extracts of this plant specie. Objective: This study is aimed to obtain pellets with a standardized liquid extract of B. gaudichaudii. Results: The standardized liquid extract of B. gaudichaudii was obtained through maceration and percolation with a 55% ethanol-water solution (v/v). Pellets were obtained through a mixture of extract of 500 g of B. gaudichaudii standardized extract, 500 g of microcrystalline cellulose PH101 and 10 g of hydroxypropyl methylcellulose K100. The pellets obtained presented a homogeneity yield of 92%, aspect ratio of 1.16 ± 0.65, shape fator eR of 0.35 ± 0.09 and Feret diammeter of 0.87 ± 0.27. These pellets were coated with a suspension composed of titanium dioxide, aluminum red lacquer, ethyl cellulose, talc and magnesium stearate. Before the photostability test, the uncoated pellets showed psoralen content equal to 0.13 ± 0.01% and to the 5-MOP was 1.40 ± 0.27%. After exposure to one level (3 J.cm-2) of UVB irradiation the uncoated pellets presented a degradation of 2.16% of psoralen and 8.1% of 5-MOP. After exposure to three levels (10, 20 and 30 J.cm-2) of UVA irradiation the uncoated pellets exhibited photodegradation of 9.78, 17.64, 24.21% of psoralen and 18.95, 23.68, 28.48% for 5-MOP. The coated pellets where unaffected after photostability test. Conclusion: Pellets were obtained with the standardized liquid extract of B. gaudichaudii and coating is a technological alternative to ensure the stability of the formula. PMID:25709229

  3. Ram spermatozoa migrating through artificial mucus in vitro have reduced mitochondrial membrane potential but retain their viability.

    PubMed

    Martínez-Rodríguez, Carmen; Alvarez, Mercedes; López-Urueña, Elena; Gomes-Alves, Susana; Anel-López, Luis; Chamorro, Cesar A; Anel, Luis; de Paz, Paulino

    2015-06-01

    Sperm motility in vitro is one of the most common predictors of fertility in male screening. We propose that a mucus-penetration assay can isolate a cellular subpopulation critical to reproductive success. To this end, a device was designed with three modules (sample, test and collection) and its conditions of use evaluated (length of mucus, incubation time, mucus medium, sperm concentration and position in relation to the horizontal). The number of spermatozoa migrating and the viability and acrosomal status of the spermatozoa not migrating were calculated. The second objective was to evaluate the qualitative parameters of the spermatozoa migrating in 1.6% polyacrylamide for 30min. The number of spermatozoa migrating and the sperm motility, viability and the acrosomal and mitochondrial status of three sperm populations (fresh, not migrating and migrating) were determined. A higher number of migrating spermatozoa were observed after 60min of incubation, but this situation adversely affected sperm quality. The methylcellulose-based test showed a significantly lower number of migrating spermatozoa than the polyacrylamide test. The position at an angle of 45° resulted in a higher number of migrating spermatozoa in the polyacrylamide-based test. The sperm counts for three consecutive assays indicated an acceptable repeatability of the method. The viability and acrosomal status of the migrating spermatozoa showed no significant changes with regard to the control when the device was placed at 45°, whereas these parameters showed lower values at 0°. The percentage of high mitochondrial membrane potential spermatozoa was significantly reduced in the population of migrating spermatozoa.

  4. Pulp-capping with recombinant human insulin-like growth factor I (rhIGF-I) in rat molars.

    PubMed

    Lovschall, H; Fejerskov, O; Flyvbjerg, A

    2001-08-01

    The aim of this study was to explore pulp healing and reparative dentinogenesis following pulp-capping by using recombinant human insulin-like growth factor I (rhIGF-I). Exposures were made through the mesial pulp horn in first upper molars in two-month-old Wistar rats. The pulp was covered with one dose of sterile 4% methylcellulose gel containing either 400 ng rhIGF-I or saline in contralateral controls. The exposure site was closed with sterile Teflon membrane, and the cavity was filled with IRM cement. Additional molars were capped with Dycal as controls. After 3, 7, or 28 days, animals were anesthetized and fixed by intravascular glutaraldehyde perfusion. Molars were decalcified and processed for histological analysis and cut with membrane and residual methacrylate from IRM in situ. Only specimens with acceptable pulp sealing according to blinded microscopy control were included. On day 3, identical inflammatory responses in the upper pulp were observed in molars with rhIGF-I gel or control gel. On day 7, granulation tissue ingrowth had partly replaced inflammatory infiltration in both groups. After 28 days, complete dentin bridging and tubular dentin formation were observed more frequently and closer to the test substance containing rhIGF-I. The reparative dentin response to capping with rhIGF-I was similar to that after the use of Dycal. In conclusion, microscopic control of membrane sealing in situ gives valid information on the more subtle pulp effects of growth factors. The observations suggest that pulp-capping of rat molars by means of rhIGF-I enhances reparative dentinogenesis in comparison with vehicle controls. PMID:12640754

  5. A Neutral Thermostable β-1,4-Glucanase from Humicola insolens Y1 with Potential for Applications in Various Industries

    PubMed Central

    Zhang, Wei; Huang, Huoqing; Shi, Pengjun; Luo, Huiying; Liu, Bo; Zhang, Yuhong; Zhang, Zhifang; Fan, Yunliu; Yao, Bin

    2015-01-01

    We cloned a new glycoside hydrolase family 6 gene, Hicel6C, from the thermophilic fungus Humicola insolens Y1 and expressed it in Pichia pastoris. Using barley β-glucan as a substrate, recombinant HiCel6C protein exhibited neutral pH (6.5) and high temperature (70°C) optima. Distinct from most reported acidic fungal endo-β-1,4-glucanases, HiCel6C was alkali-tolerant, retaining greater than 98.0, 61.2, and 27.6% of peak activity at pH 8.0, 9.0, and 10.0, respectively, and exhibited good stability over a wide pH range (pH 5.0−11.0) and at temperatures up to 60°C. The Km and Vmax values of HiCel6C for barley β-glucan were 1.29 mg/mL and 752 μmol/min·mg, respectively. HiCel6C was strictly specific for the β-1,4-glucoside linkage exhibiting activity toward barley β-glucan, lichenan, and carboxy methylcellulose sodium salt (CMC-Na), but not toward laminarin (1,3-β-glucan). HiCel6C cleaved the internal glycosidic linkages of cellooligosaccharides randomly and thus represents an endo-cleaving enzyme. The predominant product of polysaccharide hydrolysis by HiCel6C was cellobiose, suggesting that it functions by an endo-processive mechanism. The favorable properties of HiCel6C make it a good candidate for basic research and for applications in the textile and brewing industries. PMID:25909505

  6. Direct visualisation and kinetic analysis of normal and nemaline myopathy actin polymerisation using total internal reflection microscopy.

    PubMed

    Feng, Juan-Juan; Ushakov, Dmitry S; Ferenczi, Michael A; Laing, Nigel G; Nowak, Kristen J; Marston, Steven B

    2009-01-01

    Actin filaments were formed by elongation of pre-formed nuclei (short crosslinked actin-HMM complexes) that were attached to a microscope cover glass. By using TIRF illumination we could see actin filaments at high contrast despite the presence of 150 nM TRITC-phalloidin in the solution. Actin filaments showed rapid bending and translational movements due to Brownian motion but the presence of the methylcellulose polymer network constrained lateral movement away from the surface. Both the length and the number of filaments increased with time. Some filaments did not change length at all and some filaments joined up end-to-end (annealing). We did not see any decrease in filament length or filament breakage. For quantitative analysis of polymerisation time course we measured the contour length of all the filaments in a frame at a series of time points and also tracked the length of individual filaments over time. Elongation rate was the same measured by both methods (0.23 microm/min at 0.1 microM actin) and was up to 10 times faster than previously published measurements. The annealed filament population reached 30% of the total after 40 min. Polymerisation rate increased linearly with actin concentration. K(on) was 2.07 microm min(-1) microM(-1) (equivalent to 34.5 monomers s(-1) microM(-1)) and critical concentration was less than 20 nM. This technique was used to study polymerisation of a mutant actin (D286G) from a transgenic mouse model. D286G actin elongated at a 40% lower rate than non-transgenic actin.

  7. In vitro myelotoxic effects of cypermethrin and mancozeb on human hematopoietic progenitor cells.

    PubMed

    Mandarapu, Rajesh; Prakhya, Balakrishna Murthy

    2015-01-01

    In the past two decades, hematologic and immunologic disorders in humans have been increasingly reported as a result of pesticide exposures. Therefore, safety assessment is required to assess the effects on hematopoiesis and thus on the immune system in addition to routine toxicity evaluation. Currently, the data available on effects of pesticides on hematopoiesis in humans is limited. In the study here, cypermethrin and mancozeb were evaluated for their possible effects on hematopoiesis in vitro. Hematopoietic stem or progenitor cells from human cord blood were isolated and then exposed for 14 days to cypermethrin or mancozeb at non-cytotoxic doses (0.9-16 µM), and the effect on hematopoiesis screened via a methylcellulose-based clonogenic assay. Results indicated there were significant concentration-related decreases in clonogenic potentials of erythroid and granulocyte-macrophage colony formation. The inhibitory concentration (IC50) value with erythroid progenitors for cypermethrin was 8.7 [± 0.2 µM; mean [± SE]) and for mancozeb 6.2 [± 0.2] µM. Similarly, IC50 values with granulocyte-macrophage progenitors for cypermethrin and mancozeb were 19.2 [± 1.0] and 8.1 [± 0.2] µM, respectively. These data suggest that erythroid progenitors are perhaps more sensitive to these pesticides. Still, further studies are needed to understand the functional significance of these in vitro findings. For now, these data, albeit preliminary, emphasize the need to include an expanded battery of tests to understand effects on immune parameters in pre-clinical safety studies with pesticides. This study also emphasizes the utility of human cord blood in assessing potential effects on hematopoiesis in vitro.

  8. Role for chondroitin sulfate glycosaminoglycan in NEDD9-mediated breast cancer cell growth.

    PubMed

    Iida, Joji; Dorchak, Jesse; Clancy, Rebecca; Slavik, Juliana; Ellsworth, Rachel; Katagiri, Yasuhiro; Pugacheva, Elena N; van Kuppevelt, Toin H; Mural, Richard J; Cutler, Mary Lou; Shriver, Craig D

    2015-01-15

    There are lines of evidence demonstrating that NEDD9 (Cas-L, HEF-1) plays a key role in the development, progression, and metastasis of breast cancer cells. We previously reported that NEDD9 plays a critical role for promoting migration and growth of MDA-MB-231. In order to further characterize the mechanisms of NEDD9-mediated cancer migration and growth, stable cells overexpressing NEDD9 were generated using HCC38 as a parental cell line which expresses low level of endogenous NEDD9. Microarray studies demonstrated that core proteins of CD44 and Serglycin were markedly upregulated in HCC38(NEDD9) cells compared to HCC38(Vector) cells, while those of Syndecan-1, Syndecan-2, and Versican were downregulated in HCC38(NEDD9). Importantly, enzymes generating chondroitin sulfate glycosaminoglycans (CS) such as CHST11, CHST15, and CSGALNACT1 were upregulated in HCC38(NEDD9) compared to HCC38(Vector). Immunofluorescence studies using specific antibody, GD3G7, confirmed the enhanced expression of CS-E subunit in HCC38(NEDD9). Immunoprecipitation and western blotting analysis demonstrated that CS-E was attached to CD44 core protein. We demonstrated that removing CS by chondroitinase ABC significantly inhibited anchorage-independent colony formation of HCC38(NEDD9) in methylcellulose. Importantly, the fact that GD3G7 significantly inhibited colony formation of HCC38(NEDD9) cells suggests that CS-E subunit plays a key role in this process. Furthermore, treatment of HCC38(NEDD9) cells with chondroitinase ABC or GD3G7 significantly inhibited mammosphere formation. Exogenous addition of CS-E enhanced colony formation and mammosphere formation of HCC38 parental and HCC38(Vector) cells. These results suggest that NEDD9 regulates the synthesis and expression of tumor associated glycocalyx structures including CS-E, which plays a key role in promoting and regulating breast cancer progression and metastasis and possibly stem cell phenotypes.

  9. Oral buccoadhesive films of ondansetron: Development and evaluation

    PubMed Central

    Kumria, Rachna; Gupta, Vishant; Bansal, Sanjay; Wadhwa, Jyoti; Nair, Anroop B

    2013-01-01

    Introduction: Difficulty or inability in swallowing tablets/capsules during or after chemotherapy is common due to chemotherapy induced nausea and vomiting in patients. Buccoadhesive films of ondansetron hydrochloride were prepared for the prevention and treatment of chemotherapy-induced emesis. Films of varying polymeric composition were prepared in order to facilitate initial as well as prolonged drug release that could take care of acute as well as delayed emesis. Materials and Methods: Mucoadhesive films were prepared using polymers such as hydroxypropyl methylcellulose (HPMC) E5, HPMC K100, and Eudragit® NE 30 D. The effect of concentration of these polymers on physical properties and drug release were studied. All the films were prepared by solvent casting method. In another part of the study, the effect of drug concentration on physical and mucoadhesive properties of film were assessed, keeping the polymer concentration fixed. Results: Films containing HPMC showed good mucoadhesion. Increasing the concentration of Eudragit® NE 30 D in the films retarded drug release and increased residence time, however, reduced mucoadhesion. At a fixed polymer concentration and ratio, films prepared using an increased drug content showed an increased mucoadhesion. Conclusion: Films prepared using HPMC E5 (1000 mg), HPMC K100 (500 mg), and Eudragit® NE 30 D (750 mg) provided initial rapid followed by sustained drug release over a period of 6 h. Given the promising results, the study concluded that the developed buccal films have the potential to release ondansetron required for chemotherapy induced acute and delayed emesis. PMID:24015383

  10. Combinatorial treatment of tart cherry extract and essential fatty acids reduces cognitive impairments and inflammation in the mu-p75 saporin-induced mouse model of Alzheimer's disease.

    PubMed

    Matchynski, Jessica J; Lowrance, Steven A; Pappas, Colleen; Rossignol, Julien; Puckett, Nicole; Sandstrom, Michael; Dunbar, Gary L

    2013-04-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects more than five million Americans and is characterized by a progressive loss of memory, loss of cholinergic neurons in the basal forebrain, formation of amyloid plaques and neurofibrillary tangles, and an increase in oxidative stress. Recent studies indicate that dietary supplements of antioxidants and omega-3 and omega-6 fatty acids may reduce the cognitive deficits in AD patients. The current study tested a combinatorial treatment of antioxidants from tart cherry extract and essential fatty acids from Nordic fish and emu oils for reducing cognitive deficits in the mu-p75 saporin (SAP)-induced mouse model of AD. Mice were given daily gavage treatments of Cerise(®) Total-Body-Rhythm™ (TBR; containing tart cherry extract, Nordic fish oil, and refined emu oil) or vehicle (methylcellulose) for 2 weeks before intracerebroventricular injections of the cholinergic toxin, mu-p75 SAP, or phosphate-buffered saline. The TBR treatments continued for an additional 17 days, when the mice were tested on a battery of cognitive and motor tasks. Results indicate that TBR decreased the SAP-induced cognitive deficits assessed by the object-recognition, place-recognition, and Morris-water-maze tasks. Histological examination of the brain tissue indicated that TBR protected against SAP-induced inflammatory response and loss of cholinergic neurons in the area around the medial septum. These findings indicate that TBR has the potential to serve as an adjunctive treatment which may help reduce the severity of cognitive deficits in disorders involving cholinergic deficits, such as AD. PMID:23566055

  11. Drug release-modulating mechanism of hydrophilic hydroxypropylmethylcellulose matrix tablets: distribution of atoms and carrier and texture analysis.

    PubMed

    Park, Jun-Bom; Lim, Jisung; Kang, Chin-Yang; Lee, Beom-Jin

    2013-12-01

    Although release profiles of drug from hydrophilic matrices have been well recognized, the visual distribution of hydroxypropylmethylcellulose (HPMC) and atoms inside of internal structures of hydrophilic HPMC matrices has not been characterized. In this paper, drug release mechanism from HPMC matrix tablet was investigated based on the release behaviors of HPMC, physical properties of gelled HPMC tablet and atomic distributions of formulation components using diverse instruments. A matrix tablet consisting of hydroxypropyl methylcellulose (HPMC 6, 4,000 and 100,000 mPa·s), chlorpheniramine maleate (CPM) as a model and fumed silicon dioxide (Aerosil(®) 200) was prepared via direct compression. The distribution of atoms and HPMC imaging were characterized using scanning electron microscope (SEM)/ energy-dispersive X-ray spectroscopy (EDX), and near-infrared (NIR) analysis, respectively as a function of time. A texture analyzer was also used to characterize the thickness and maintenance of gel layer of HPMC matrix tablet. The HPMC matrix tablets showed Higuchi release kinetics with no lag time against the square root of time. High viscosity grades of HPMC gave retarded release rate because of the greater swelling and gel thickness as characterized by texture analyzer. According to the NIR imaging, low-viscosity-grade HPMC (6 mPa·s) quickly leached out onto the surface of the tablet, while the high-viscosity-grade HPMC (4000 mPa·s) formed much thicker gel layer around the tablet and maintained longer via slow erosion, resulting in retarded drug release. The atomic distribution of the drug (chlorine, carbon, oxygen), HPMC (carbon, oxygen) and silicon dioxide (silica, oxygen) and NIR imaging of HPMC corresponded with the dissolution behaviors of drug as a function of time. The use of imaging and texture analyses could be applicable to explain the release- modulating mechanism of hydrophilic HPMC matrix tablets.

  12. In Vivo Assessment of Phage and Linezolid Based Implant Coatings for Treatment of Methicillin Resistant S. aureus (MRSA) Mediated Orthopaedic Device Related Infections

    PubMed Central

    Kaur, Sandeep; Harjai, Kusum; Chhibber, Sanjay

    2016-01-01

    Staphylococcus comprises up to two-thirds of all pathogens in orthopaedic implant infections with two species respectively Staphylococcus aureus and Staphylococcus epidermidis, being the predominate etiological agents isolated. Further, with the emergence of methicillin-resistant S. aureus (MRSA), treatment of S. aureus implant infections has become more difficult, thus representing a devastating complication. Use of local delivery system consisting of S.aureus specific phage along with linezolid (incorporated in biopolymer) allowing gradual release of the two agents at the implant site represents a new, still unexplored treatment option (against orthopaedic implant infections) that has been studied in an animal model of prosthetic joint infection. Naked wire, hydroxypropyl methylcellulose (HPMC) coated wire and phage and /or linezolid coated K-wire were surgically implanted into the intra-medullary canal of mouse femur bone of respective groups followed by inoculation of S.aureus ATCC 43300(MRSA). Mice implanted with K-wire coated with both the agents i.e phage as well as linezolid (dual coated wires) showed maximum reduction in bacterial adherence, associated inflammation of the joint as well as faster resumption of locomotion and motor function of the limb. Also, all the coating treatments showed no emergence of resistant mutants. Use of dual coated implants incorporating lytic phage (capable of self-multiplication) as well as linezolid presents an attractive and aggressive early approach in preventing as well as treating implant associated infections caused by methicillin resistant S. aureus strains as assessed in a murine model of experimental joint infection. PMID:27333300

  13. Controlled release from triple layer, donut-shaped tablets with enteric polymers.

    PubMed

    Kim, Cherng-ju

    2005-10-22

    The purpose of this research was to evaluate triple layer, donut-shaped tablets (TLDSTs) for extended release dosage forms. TLDSTs were prepared by layering 3 powders sequentially after pressing them with a punch. The core tablet consisted of enteric polymers, mainly hydroxypropyl methylcellulose acetate succinate, and the bottom and top layers were made of a water-insoluble polymer, ethyl cellulose. Drug release kinetics were dependent on the pH of the dissolution medium and the drug properties, such as solubility, salt forms of weak acid and weak base drugs, and drug loading. At a 10% drug loading level, all drugs, regardless of their type or solubility, yielded the same release profiles within an acceptable level of experimental error. As drug loading increased from 10% to 30%, the drug release rate of neutral drugs increased for all except sulfathiazole, which retained the same kinetics as at 10% loading. HCl salts of weak base drugs had much slower release rates than did those of neutral drugs (eg, theophylline) as drug loading increased. The release of labetalol HCl retarded as drug loading increased from 10% to 30%. On the other hand, Na salts of weak acid drugs had much higher release rates than did those of neutral drugs (eg, theophylline). Drug release kinetics were governed by the ionization/erosion process with slight drug diffusion, observing no perfect straight line. A mathematical expression for drug release kinetics (erosion-controlled system) of TLDSTs is presented. In summary, a TLDST is a good design to obtain zero-order or nearly zero-order release kinetics for a wide range of drug solubilities.

  14. Suppression of haematopoiesis by IgG autoantibodies from patients with systemic lupus erythematosus (SLE).

    PubMed Central

    Liu, H; Ozaki, K; Matsuzaki, Y; Abe, M; Kosaka, M; Saito, S

    1995-01-01

    The inhibiting activity of serum on haematopoiesis has been described in patients with SLE. To explore further the features of serum inhibitor, we first examined the suppression of granulocytic and erythroid colony formation in vitro by serum from patients with SLE using methylcellulose culture. The potent inhibiting activity was demonstrated in six of 20 patients. All of these six patients were associated with leukocytopenia and/or anaemia. Five of 10 sera from patients with active SLE suppressed the colony formation of both burst-forming units of erythrocyte (BFU-E) and colony-forming units of granulocyte/macrophage (CFU-GM), and one serum suppressed BFU-E only. IgG fraction isolated from sera with inhibiting activity suppressed colony formation without complement involvement. The elimination of monocytes and lymphocytes from target mononuclear cells did not affect the suppression by the IgG fractions. The suppressive effect was completely eliminated after incubation of the IgG fractions with progenitor-enriched mononuclear cells. Flow cytometric analysis showed these IgG bound to CD34+ haematopoietic progenitor cells, but not to CD33+ cells. These data suggest that (i) the inhibitor of colony formation in serum was observed in IgG fraction; (ii) its suppressive effect on colony formation was mediated by neither monocytes and lymphocytes nor complements; and (iii) IgG fraction could bind to primitive haematopoietic progenitor cells and suppress the growth of these cells. Thus, IgG autoantibodies to primitive haematopoietic progenitor cells are demonstrated to be present in the sera of a significant proportion of active SLE patients with anaemia and leukocytopenia and to suppress the progenitor cell growth. PMID:7539726

  15. Pharmacological activation of the pyruvate dehydrogenase complex reduces statin-mediated upregulation of FOXO gene targets and protects against statin myopathy in rodents.

    PubMed

    Mallinson, Joanne E; Constantin-Teodosiu, Dumitru; Glaves, Philip D; Martin, Elizabeth A; Davies, Wendy J; Westwood, F Russell; Sidaway, James E; Greenhaff, Paul L

    2012-12-15

    We previously reported that statin myopathy is associated with impaired carbohydrate (CHO) oxidation in fast-twitch rodent skeletal muscle, which we hypothesised occurred as a result of forkhead box protein O1 (FOXO1) mediated upregulation of pyruvate dehydrogenase kinase-4 (PDK4) gene transcription. Upregulation of FOXO gene targets known to regulate proteasomal and lysosomal muscle protein breakdown was also evident. We hypothesised that increasing CHO oxidation in vivo, using the pyruvate dehydrogenase complex (PDC) activator, dichloroacetate (DCA), would blunt activation of FOXO gene targets and reduce statin myopathy. Female Wistar Hanover rats were dosed daily for 12 days (oral gavage) with either vehicle (control, 0.5% w/v hydroxypropyl-methylcellulose 0.1% w/v polysorbate-80; n = 9), 88 mg( )kg(-1) day(-1) simvastatin (n = 8), 88 mg( )kg(-1) day(-1) simvastatin + 30 mg kg(-1) day(-1) DCA (n = 9) or 88 mg kg(-1) day(-1) simvastatin + 40 mg kg(-1) day(-1) DCA (n = 9). Compared with control, simvastatin reduced body mass gain and food intake, increased muscle fibre necrosis, plasma creatine kinase levels, muscle PDK4, muscle atrophy F-box (MAFbx) and cathepsin-L mRNA expression, increased PDK4 protein expression, and proteasome and cathepsin-L activity, and reduced muscle PDC activity. Simvastatin with DCA maintained body mass gain and food intake, abrogated the myopathy, decreased muscle PDK4 mRNA and protein, MAFbx and cathepsin-L mRNA, increased activity of PDC and reduced proteasome activity compared with simvastatin. PDC activation abolished statin myopathy in rodent skeletal muscle, which occurred at least in part via inhibition of FOXO-mediated transcription of genes regulating muscle CHO utilisation and protein breakdown.

  16. Investigation of Thermal and Viscoelastic Properties of Polymers Relevant to Hot Melt Extrusion, IV: Affinisol™ HPMC HME Polymers.

    PubMed

    Gupta, Simerdeep Singh; Solanki, Nayan; Serajuddin, Abu T M

    2016-02-01

    Most cellulosic polymers cannot be used as carriers for preparing solid dispersion of drugs by hot melt extrusion (HME) due to their high melt viscosity and thermal degradation at high processing temperatures. Three HME-grade hydroxypropyl methylcelluloses, namely Affinisol™ HPMC HME 15 cP, Affinisol™ HPMC HME 100 cP, and Affinisol™ HPMC HME 4 M, have recently been introduced by The Dow Chemical Co. to enable the preparation of solid dispersion at lower and more acceptable processing temperatures. In the present investigation, physicochemical properties of the new polymers relevant to HME were determined and compared with that of Kollidon(®) VA 64. Powder X-ray diffraction (PXRD), modulated differential scanning calorimetry (mDSC), thermogravimetric analysis (TGA), moisture sorption, rheology, and torque analysis by melt extrusion were applied. PXRD and mDSC showed that the Affinisol™ polymers were amorphous in nature. According to TGA, the onset of degradation for all polymers was >220°C. The Affinisol™ polymers exhibited less hygroscopicity than Kollidon(®) VA 64 and another HPMC polymer, Methocel™ K100LV. The complex viscosity profiles of the Affinisol™ polymers as a function of temperature were similar. The viscosity of the Affinisol™ polymers was highly sensitive to the shear rate applied, and unlike Kollidon(®) VA 64, the viscosity decreased drastically when the angular frequency was increased. Because of the very high shear rate encountered during melt extrusion, Affinisol™ polymers showed capability of being extruded at larger windows of processing temperatures as compared to that of Kollidon(®) VA 64. PMID:26511936

  17. Insertional activation of myb by F-MuLV in SCID mice induces myeloid leukemia.

    PubMed

    Haeri, Mehran; Li, Youjun; Li, Yanmei; Li, Qi; Spaner, David E; Ben-David, Yaacov

    2013-07-01

    Identification of retrovirus integration sites is a powerful method to identify cancer-related genes. This approach led to the discovery of the Friend murine leukemia virus (F-MuLV) integration site-1 (fli-1). Viral insertion at the fli-1 locus induces erythroleukemia in susceptible strains of mice. Our recent data demonstrated that, F-MuLV-infected SCID mice, in contrast to wt CB17 controls, developed a non‑erythroleukemic leukemia without viral integration at the fli-1 locus. Using ligation-mediated polymerase chain reaction (LM-PCR) approach we identified a total of 15 viral integration sites in F-MuLV-infected SCID mice. One of the identified insertion sites was located about 62 kb upstream of the myeloblastosis (myb) gene. While integration within or surrounding the myb gene has been reported before for murine leukemia viruses, the location of the viral integration site identified in F-MuLV‑infected SCID mice is novel and has never been reported. Using PCR analysis we showed that viral integration at the myb locus occurs with a frequency of 35% and therefore is considered as a common integration site. Integration of F-MuLV in this locus resulted in upregulation of the MYB protein. Flow cytometry analysis and methylcellulose culture of leukemic cells isolated from tumors with viral integration close to the myb indicated tumors of myeloid origin. Our findings indicate that, in contrast to wt CB17 mice, F-MuLV-infected SCID mice display viral integration within myeloid specific gene loci that result in the development of myelogenous leukemia.

  18. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. III. Critical use of thermodynamic parameters of activation for modeling the water penetration and drug release processes.

    PubMed

    Ferrero, Carmen; Massuelle, Danielle; Jeannerat, Damien; Doelker, Eric

    2013-09-10

    The two main purposes of this work were: (i) to critically consider the use of thermodynamic parameters of activation for elucidating the drug release mechanism from hydroxypropyl methylcellulose (HPMC) matrices, and (ii) to examine the effect of neutral (pH 6) and acidic (pH 2) media on the release mechanism. For this, caffeine was chosen as model drug and various processes were investigated for the effect of temperature and pH: caffeine diffusion in solution and HPMC gels, and drug release from and water penetration into the HPMC tablets. Generally, the kinetics of the processes was not significantly affected by pH. As for the temperature dependence, the activation energy (E(a)) values calculated from caffeine diffusivities were in the range of Fickian transport (20-40 kJ mol⁻¹). Regarding caffeine release from HPMC matrices, fitting the profiles using the Korsmeyer-Peppas model would indicate anomalous transport. However, the low apparent E(a) values obtained were not compatible with a swelling-controlled mechanism and can be assigned to the dimensional change of the system during drug release. Unexpectedly, negative apparent E(a) values were calculated for the water uptake process, which can be ascribed to the exothermic dissolution of water into the initially dry HPMC, the expansion of the matrix and the polymer dissolution. Taking these contributions into account, the true E(a) would fall into the range valid for Fickian diffusion. Consequently, a relaxation-controlled release mechanism can be dismissed. The apparent anomalous drug release from HPMC matrices results from a coupled Fickian diffusion-erosion mechanism, both at pH 6 and 2. PMID:23727289

  19. Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers.

    PubMed

    Bortolin, Adriel; Aouada, Fauze A; Mattoso, Luiz H C; Ribeiro, Caue

    2013-08-01

    In this work, we synthesized a novel series of hydrogels composed of polyacrylamide (PAAm), methylcellulose (MC), and calcic montmorillonite (MMt) appropriate for the controlled release of fertilizers, where the components presented a synergistic effect, giving very high fertilizer loading in their structure. The synthesized hydrogel was characterized in relation to morphological, hydrophilic, spectroscopic, structural, thermal, and kinetic properties. After those characterizations, the application potential was verified through sorption and desorption studies of a nitrogenated fertilizer, urea (CO(NH2)2). The swelling degree results showed that the clay loading considerably reduces the water absorption capability; however, the hydrolysis process favored the urea adsorption in the hydrogel nanocomposites, increasing the load content according to the increase of the clay mass. The FTIR spectra indicated that there was incorporation of the clay with the polymeric matrix of the hydrogel and that incorporation increased the water absorption speed (indicated by the kinetic constant k). By an X-ray diffraction technique, good nanodispersion (intercalation) and exfoliation of the clay platelets in the hydrogel matrix were observed. Furthermore, the presence of the montmorillonite in the hydrogel caused the system to liberate the nutrient in a more controlled manner than that with the neat hydrogel in different pH ranges. In conclusion, excellent results were obtained for the controlled desorption of urea, highlighting the hydrolyzed hydrogels containing 50% calcic montmorillonite. This system presented the best desorption results, releasing larger amounts of nutrient and almost 200 times slower than pure urea, i.e., without hydrogel. The total values of nutrients present in the system show that this material is potentially viable for application in agriculture as a nutrient carrier vehicle. PMID:23822729

  20. Effects of rifampicin, dexamethasone, St. John's Wort and Thyroxine on maternal and foetal expression of Abcb1 and organ distribution of talinolol in pregnant rats.

    PubMed

    Saljé, Karen; Lederer, Kirstin; Oswald, Stefan; Dazert, Eike; Warzok, Rolf; Siegmund, Werner

    2012-08-01

    It is well accepted that ABCB1 plays a critical role in absorption, distribution and elimination of many xenobiotics and drugs. Only little is known about the regulation and function of ABCB1 during pregnancy. Thus, the aim of this study is to investigate maternal, placental and foetal Abcb1 expression and function in pregnant rats after induction with rifampicin, dexamethasone, St. John's wort (SJW) or thyroxine. Wistar rats were orally treated with rifampicin (250 mg/kg), SJW (1.0 g/kg), thyroxine (9 μg/kg), dexamethasone (1 mg/kg) or 0.5% methylcellulose suspension (control) for 9 days during late pregnancy (each N = 5). Afterwards, organ mRNA expression and protein content of Abcb1a were determined. Tissue concentrations of the ABCB1 probe drug talinolol were measured after repeated administration of the drug (100 mg/kg, 9 days) and after induction with oral rifampicin (250 mg/kg, 9 days, N = 5). Abcb1 expression was substantially lower in foetal than in maternal organs. Abcb1 was significantly induced by SJW in the maternal jejunum and placenta, by dexamethasone in foetal brain and liver and by thyroxine in the placenta and maternal and foetal brain. Rifampicin induced Abcb1 in all maternal and foetal organs. However, organ distribution of talinolol was not influenced by comedication of rifampicin. In conclusion, maternal and foetal Abcb1 organ expression in pregnant rats is inducible by nuclear receptor agonists. Although rifampicin regulates maternal and foetal Abcb1 expression, organ distribution of talinolol remains unchanged most likely caused by the known inhibitory effect of rifampicin on Abcb1 function.