Science.gov

Sample records for methylene blue degradation

  1. Degradation of Methylene Blue Using Biologically Synthesized Silver Nanoparticles

    PubMed Central

    Vanaja, M.; Paulkumar, K.; Baburaja, M.; Rajeshkumar, S.; Gnanajobitha, G.; Malarkodi, C.; Sivakavinesan, M.; Annadurai, G.

    2014-01-01

    Nowadays plant mediated synthesis of nanoparticles has great interest and achievement due to its eco-benign and low time consuming properties. In this study silver nanoparticles were successfully synthesized by using Morinda tinctoria leaf extract under different pH. The aqueous leaf extract was added to silver nitrate solution; the color of the reaction medium was changed from pale yellow to brown and that indicates reduction of silver ions to silver nanoparticles. Thus synthesized silver nanoparticles were characterized by UV-Vis spectrophotometer. Dispersity and morphology was characterized by scanning electron microscope (SEM); crystalline nature and purity of synthesized silver nanoparticles were revealed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). FTIR spectrum was examined to identify the effective functional molecules responsible for the reduction and stabilization of silver nanoparticles synthesized by leaf extract. The photocatalytic activity of the synthesized silver nanoparticles was examined by degradation of methylene blue under sunlight irradiation. Green synthesized silver nanoparticles were effectively degrading the dye nearly 95% at 72 h of exposure time. PMID:24772055

  2. Effect of dimethyl sulfoxide addition on ultrasonic degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Shimakage, Kaho; Kobayashi, Daisuke; Naya, Masakazu; Matsumoto, Hideyuki; Shimada, Yuichiro; Otake, Katsuto; Shono, Atsushi

    2016-07-01

    The ultrasonic degradation of methylene blue was carried out in the absence and presence of dimethyl sulfoxide (DMSO) as a radical scavenger for various frequencies, and the effects of DMSO addition on the degradation rate constant estimated by assuming first-order kinetics were investigated. The degradation reaction rate decreased with DMSO addition, and hydroxyl radicals were observed to play important roles in the degradation of methylene blue. However, the degradation reaction did not stop with DMSO addition, and the degradation rate constant in the presence of DMSO was not affected by ultrasonic frequency.

  3. Synthesis of mesoporous TiO2-curcumin nanoparticles for photocatalytic degradation of methylene blue dye.

    PubMed

    Abou-Gamra, Z M; Ahmed, M A

    2016-07-01

    Herein, we demonstrate a facile route for synthesis a new photocatalyst based on TiO2-curcumin nanoparticles for photodegradation of methylene blue dye under UV and visible light irradiation. The photocatalyst was prepared by sol-gel method using chitosan as biodegradable polymer. The crystalline and the nanostructure were characteristic X-ray diffraction [XRD], adsorption-desorption isotherm and high resolution transmission electron microscopy [HRTEM]. However, the optical features of the samples were investigated by a UV-visible spectrophotometer. It is obvious to notice the removal of the majority of methylene blue dye on a pure titania surface via adsorption mechanism owing to the high surface area and to the organized mesoporous nature of the solid sample. Incorporation of curcumin on titania surface changes the removal direction from adsorption to the photocatalytic pathway. Various photocatalytic experiments were performed to investigate the influence of initial dye concentration, weight of catalyst, stirring and light intensity on the photocatalytic degradation of methylene blue as primary pollutant model. Chemical oxygen demand [COD] test confirms the complete degradation of methylene blue dye. The exceptional photocatalytic reactivity of titania-curcumin nanoparticles is referred to reduction in band gap energy and to the facility of electron transfer from II* curcumin energy level to titania conduction band which increases the concentration of reactive oxygen superoxide radicals which in turn prevents the electron-hole recombination. The effect of various scavengers on the methylene blue dye degradation was investigated using ethanol, ascorbic acid and methyl viologen. The results have pointed out that O2(-) and HO(.) are considered the main active species in the degradation process. A plausible pathway and mechanism for the photocatalytic degradation of methylene blue by titania-curcumin nanoparticles were illustrated.

  4. Synthesis of mesoporous TiO2-curcumin nanoparticles for photocatalytic degradation of methylene blue dye.

    PubMed

    Abou-Gamra, Z M; Ahmed, M A

    2016-07-01

    Herein, we demonstrate a facile route for synthesis a new photocatalyst based on TiO2-curcumin nanoparticles for photodegradation of methylene blue dye under UV and visible light irradiation. The photocatalyst was prepared by sol-gel method using chitosan as biodegradable polymer. The crystalline and the nanostructure were characteristic X-ray diffraction [XRD], adsorption-desorption isotherm and high resolution transmission electron microscopy [HRTEM]. However, the optical features of the samples were investigated by a UV-visible spectrophotometer. It is obvious to notice the removal of the majority of methylene blue dye on a pure titania surface via adsorption mechanism owing to the high surface area and to the organized mesoporous nature of the solid sample. Incorporation of curcumin on titania surface changes the removal direction from adsorption to the photocatalytic pathway. Various photocatalytic experiments were performed to investigate the influence of initial dye concentration, weight of catalyst, stirring and light intensity on the photocatalytic degradation of methylene blue as primary pollutant model. Chemical oxygen demand [COD] test confirms the complete degradation of methylene blue dye. The exceptional photocatalytic reactivity of titania-curcumin nanoparticles is referred to reduction in band gap energy and to the facility of electron transfer from II* curcumin energy level to titania conduction band which increases the concentration of reactive oxygen superoxide radicals which in turn prevents the electron-hole recombination. The effect of various scavengers on the methylene blue dye degradation was investigated using ethanol, ascorbic acid and methyl viologen. The results have pointed out that O2(-) and HO(.) are considered the main active species in the degradation process. A plausible pathway and mechanism for the photocatalytic degradation of methylene blue by titania-curcumin nanoparticles were illustrated. PMID:27107333

  5. Functional elastic hydrogel as recyclable membrane for the adsorption and degradation of methylene blue.

    PubMed

    Bao, Song; Wu, Dongbei; Wang, Qigang; Su, Teng

    2014-01-01

    Developing the application of high-strength hydrogels has gained much attention in the fields of medical, pharmacy, and pollutant removal due to their versatility and stimulus-responsive properties. In this presentation, a high-strength freestanding elastic hydrogel membrane was constructed by clay nanosheets, N, N-dimethylacrylamide and 2-acrylamide-2-methylpropanesulfonic acid for adsorption of methylene blue and heavy metal ions. The maximum values of elongation and Young's modulus for 0.5% AMPSNa hydrogel were 1901% and 949.4 kPa, respectively, much higher than those of traditional hydrogels. The adsorptions were confirmed to follow pseudo-second kinetic equation and Langmuir isotherm model fits the data well. The maximum adsorption capacity of hydrogel towards methylene blue was 434.8 mg g(-1). The hydrogel also exhibited higher separation selectivity to Pb(2+) than Cu(2+). The methylene blue adsorbed onto the hydrogel membrane can be photocatalytically degraded by Fenton agent and the hydrogel membrane could be recycled at least five times without obvious loss in mechanical properties. In conclusion, this presentation demonstrates a convenient strategy to prepare tough and elastic clay nanocomposite hydrogel, which can not only be applied as recyclable membrane for the photocatalytic degradation of organic dye, but also for the recovery of valuables. PMID:24586396

  6. Functional elastic hydrogel as recyclable membrane for the adsorption and degradation of methylene blue.

    PubMed

    Bao, Song; Wu, Dongbei; Wang, Qigang; Su, Teng

    2014-01-01

    Developing the application of high-strength hydrogels has gained much attention in the fields of medical, pharmacy, and pollutant removal due to their versatility and stimulus-responsive properties. In this presentation, a high-strength freestanding elastic hydrogel membrane was constructed by clay nanosheets, N, N-dimethylacrylamide and 2-acrylamide-2-methylpropanesulfonic acid for adsorption of methylene blue and heavy metal ions. The maximum values of elongation and Young's modulus for 0.5% AMPSNa hydrogel were 1901% and 949.4 kPa, respectively, much higher than those of traditional hydrogels. The adsorptions were confirmed to follow pseudo-second kinetic equation and Langmuir isotherm model fits the data well. The maximum adsorption capacity of hydrogel towards methylene blue was 434.8 mg g(-1). The hydrogel also exhibited higher separation selectivity to Pb(2+) than Cu(2+). The methylene blue adsorbed onto the hydrogel membrane can be photocatalytically degraded by Fenton agent and the hydrogel membrane could be recycled at least five times without obvious loss in mechanical properties. In conclusion, this presentation demonstrates a convenient strategy to prepare tough and elastic clay nanocomposite hydrogel, which can not only be applied as recyclable membrane for the photocatalytic degradation of organic dye, but also for the recovery of valuables.

  7. Functional Elastic Hydrogel as Recyclable Membrane for the Adsorption and Degradation of Methylene Blue

    PubMed Central

    Bao, Song; Wu, Dongbei; Wang, Qigang; Su, Teng

    2014-01-01

    Developing the application of high-strength hydrogels has gained much attention in the fields of medical, pharmacy, and pollutant removal due to their versatility and stimulus-responsive properties. In this presentation, a high-strength freestanding elastic hydrogel membrane was constructed by clay nanosheets, N, N-dimethylacrylamide and 2-acrylamide-2-methylpropanesulfonic acid for adsorption of methylene blue and heavy metal ions. The maximum values of elongation and Young’s modulus for 0.5% AMPSNa hydrogel were 1901% and 949.4 kPa, respectively, much higher than those of traditional hydrogels. The adsorptions were confirmed to follow pseudo-second kinetic equation and Langmuir isotherm model fits the data well. The maximum adsorption capacity of hydrogel towards methylene blue was 434.8 mg g−1. The hydrogel also exhibited higher separation selectivity to Pb2+ than Cu2+. The methylene blue adsorbed onto the hydrogel membrane can be photocatalytically degraded by Fenton agent and the hydrogel membrane could be recycled at least five times without obvious loss in mechanical properties. In conclusion, this presentation demonstrates a convenient strategy to prepare tough and elastic clay nanocomposite hydrogel, which can not only be applied as recyclable membrane for the photocatalytic degradation of organic dye, but also for the recovery of valuables. PMID:24586396

  8. Kinetics analysis for development of a rate constant estimation model for ultrasonic degradation reaction of methylene blue.

    PubMed

    Kobayashi, Daisuke; Honma, Chiemi; Matsumoto, Hideyuki; Takahashi, Tomoki; Kuroda, Chiaki; Otake, Katsuto; Shono, Atsushi

    2014-07-01

    Ultrasound has been used as an advanced oxidation method for wastewater treatment. Sonochemical degradation of organic compounds in aqueous solution occurs by pyrolysis and/or reaction with hydroxyl radicals. Moreover, kinetics of sonochemical degradation has been proposed. However, the effect of ultrasonic frequency on degradation rate has not been investigated. In our previous study, a simple model for estimating the apparent degradation rate of methylene blue was proposed. In this study, sonochemical degradation of methylene blue was performed at various frequencies. Apparent degradation rate constant was evaluated assuming that sonochemical degradation of methylene blue was a first-order reaction. Specifically, we focused on effects of ultrasonic frequency and power on rate constant, and the applicability of our proposed model was demonstrated. Using this approach, maximum sonochemical degradation rate was observed at 490 kHz, which agrees with a previous investigation into the effect of frequency on the sonochemical efficiency value evaluated by KI oxidation dosimetry. Degradation rate increased with ultrasonic power at every frequency. It was also observed that threshold power must be reached for the degradation reaction to progress. The initial methylene blue concentration and the apparent degradation rate constant have a relation of an inverse proportion. Our proposed model for estimating the apparent degradation rate constant using ultrasonic power and sonochemical efficiency value can apply to this study which extended the frequency and initial concentration range.

  9. Enhanced photocatalytic degradation of methylene blue by metal-modified silicon nanowires

    SciTech Connect

    Brahiti, N.; Hadjersi, T.; Menari, H.; Amirouche, S.; El Kechai, O.

    2015-02-15

    Highlights: • SiNWs modified with Pd, Au and Pt were used as photocatalysts to degrade MB. • Yield of photodegardation increases with UV irradiation time. • SiNWs modified with Pd nanoparticles show the best photocatalytic activity. • A degradation of 97% was obtained after 200 min of UV irradiation. - Abstract: Silicon nanowires (SiNWs) modified with Au, Pt and Pd nanoparticles were used as heterogeneous photocatalysts for the photodegradation of methylene blue in water under UV light irradiation. The modification of SiNWs was carried out by deposition of metal nanoparticles using the electroless metal deposition (EMD) technique. The effect of metal nanoparticles deposition time on the photocatalytic activity was studied. It was found that the photocatalytic activity of modified SiNWs was enhanced when the deposition time of metal nanoparticles was increased. In addition of modified SiNWs with Pt, Au and Pd nanoparticles, oxidized silicon substrate (Ox-Si), oxidized silicon nanowires (Ox-SiNWs) and hydrogen-terminated silicon nanowires (H-SiNWs) were also evaluated for the photodegradation of methylene blue.

  10. Laser-induced silver nanoparticles on titanium oxide for photocatalytic degradation of methylene blue.

    PubMed

    Whang, Thou-Jen; Huang, Hsien-Yu; Hsieh, Mu-Tao; Chen, Jyun-Jen

    2009-10-29

    Silver nanoparticles doped on titanium oxide (TiO(2)) were produced by laser-liquid interaction of silver nitrate (AgNO(3)) in isopropanol. Characteristics of Ag/TiO(2) (Ag doped TiO(2)) nanoparticles produced by the methods presented in this article were investigated by XRD, TEM, SEM, EDX, and UV-Vis. From the UV-Vis measurements, the absorption of visible light of the Ag/TiO(2) photocatalysts was improved (additional absorption at longer wavelength in visible light region) obviously. The photocatalytic efficiency of Ag/TiO(2) was tested by the degradation of methylene blue (MB) in aqueous solution. A maximum of 82.3% MB degradation is achieved by 2.0 wt% Ag/TiO(2) photocatalyst under 2 h illumination with a halogen lamp.

  11. Adsorption and Photocatalytic Degradation of Methylene Blue Using Potassium Polytitanate and Solar Simulator.

    PubMed

    Shahid, Mohammad; El Saliby, Ibrahim; McDonagh, Andrew; Chekli, Laura; Tijing, Leonard D; Kim, Jong-Ho; Shon, Ho Kyong

    2016-05-01

    Solar photocatalytic degradation of organic water pollutants can be used to degrade toxic organic pollutants in water. In this study, potassium titanate nanofibres were synthesized by an aqueous peroxide route at high pH and examined as photocatalysts for photodegradation of methylene blue (MB) using a solar simulator. Initially, MB was adsorbed on the surface of potassium polytitanates to achieve adsorption equilibrium before the photocatalysts were illuminated using solar simulator. The results showed that potassium polytitanate nanofibres were effective adsorbents of MB and also facilitated its photocatalytic degradation. Sulphate ion evolution during photocatalysis confirmed that some mineralisation occurred and hence photo-oxidative degradation of MB took place. The optimum operational conditions for the photocatalytic degradation of MB were found at 0.05 g/L of photocatalyst load, 10 mg/L MB and pH 7. The stability and regeneration of the photocatalyst specimen was also studied for 3 degradation cycles using adsorption/photocatalysis model. Morphological structure analysis of potassium titanate showed nanocrystallines structure of longitudinally-oriented isolated fibre with a length up to several micrometres with diameters ranging from 10 to 20 nanometres.

  12. Adsorption and Photocatalytic Degradation of Methylene Blue Using Potassium Polytitanate and Solar Simulator.

    PubMed

    Shahid, Mohammad; El Saliby, Ibrahim; McDonagh, Andrew; Chekli, Laura; Tijing, Leonard D; Kim, Jong-Ho; Shon, Ho Kyong

    2016-05-01

    Solar photocatalytic degradation of organic water pollutants can be used to degrade toxic organic pollutants in water. In this study, potassium titanate nanofibres were synthesized by an aqueous peroxide route at high pH and examined as photocatalysts for photodegradation of methylene blue (MB) using a solar simulator. Initially, MB was adsorbed on the surface of potassium polytitanates to achieve adsorption equilibrium before the photocatalysts were illuminated using solar simulator. The results showed that potassium polytitanate nanofibres were effective adsorbents of MB and also facilitated its photocatalytic degradation. Sulphate ion evolution during photocatalysis confirmed that some mineralisation occurred and hence photo-oxidative degradation of MB took place. The optimum operational conditions for the photocatalytic degradation of MB were found at 0.05 g/L of photocatalyst load, 10 mg/L MB and pH 7. The stability and regeneration of the photocatalyst specimen was also studied for 3 degradation cycles using adsorption/photocatalysis model. Morphological structure analysis of potassium titanate showed nanocrystallines structure of longitudinally-oriented isolated fibre with a length up to several micrometres with diameters ranging from 10 to 20 nanometres. PMID:27483755

  13. Photocatalytic activity of TiO2 nanomaterials for methylene blue dye degradation

    NASA Astrophysics Data System (ADS)

    Lee, Deuk Yong; Son, Siwon; Jeon, Min-Seok; Lee, Myung-Hyun; Kim, Bae-Yeon

    2016-04-01

    TiO2 nanomaterials were prepared by a sol-gel derived electrospinning, calcination from 500°C to 650°C, and subsequent mechanical grinding to investigate the effect of calcination temperature on crystal structure, crystallinity, and photocatalytic activity of methylene blue (MB). XRD results indicated that TiO2 nanorods calcined at 500°C is composed of anatase TiO2 only. However, mixed crystals of anatase and rutile were observed for TiO2 calcined above 550°C. Higher MB degradation was found for the TiO2 nanorods calcined at 550°C probably due to the mixed crystals and larger surface area. However, the improved photocatalytic activity was achieved for TiO2 nanotube due to the synergic combinations of mixed crystals, larger specific surface area, and light trapping effect.

  14. Photocatalytic Activity of W-Doped TiO2 Nanofibers for Methylene Blue Dye Degradation.

    PubMed

    Song, Yo-Seung; Cho, Nam-Ihn; Lee, Myung-Hyun; Kim, Bae-Yeon; Lee, Deuk Yong

    2016-02-01

    Photocatalytic degradation of methylene blue (MB) in water was examined using W-doped TiO2 nanofibers prepared by a sol-gel derived electrospinning and subsequent calcination for 4 h at 550 degrees C. Different concentrations of W dopant in the range of 0 to 8 mol% were synthesized to evaluate the effect of W concentration on the photocatalytic activity of TiO2. XRD results indicated that the undoped TiO2 is composed of anatase and rutile phases. The rutile phase was transformed to anatase phase completely with the W doping. Among W-TiO2 catalysts, the 2 mol% W-TiO2 catalyst showed the highest MB degradation rate. The degradation kinetic constant increased from 1.04 x 10(-3) min(-1) to 3.54 x 10(-3) min(-1) with the increase of W doping from 0 to 2 mol%, but decreased down to 1.77 x 10(-3) min(-1) when the W content was 8 mol%. It can be concluded that the degradation of MB under UV radiation was more efficient with W-TiO2 catalysts than with pure TiO2-

  15. Photocatalytic Activity of W-Doped TiO2 Nanofibers for Methylene Blue Dye Degradation.

    PubMed

    Song, Yo-Seung; Cho, Nam-Ihn; Lee, Myung-Hyun; Kim, Bae-Yeon; Lee, Deuk Yong

    2016-02-01

    Photocatalytic degradation of methylene blue (MB) in water was examined using W-doped TiO2 nanofibers prepared by a sol-gel derived electrospinning and subsequent calcination for 4 h at 550 degrees C. Different concentrations of W dopant in the range of 0 to 8 mol% were synthesized to evaluate the effect of W concentration on the photocatalytic activity of TiO2. XRD results indicated that the undoped TiO2 is composed of anatase and rutile phases. The rutile phase was transformed to anatase phase completely with the W doping. Among W-TiO2 catalysts, the 2 mol% W-TiO2 catalyst showed the highest MB degradation rate. The degradation kinetic constant increased from 1.04 x 10(-3) min(-1) to 3.54 x 10(-3) min(-1) with the increase of W doping from 0 to 2 mol%, but decreased down to 1.77 x 10(-3) min(-1) when the W content was 8 mol%. It can be concluded that the degradation of MB under UV radiation was more efficient with W-TiO2 catalysts than with pure TiO2- PMID:27433681

  16. Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle

    SciTech Connect

    Kong Jizhou; Li Aidong; Li Xiangyu; Zhai Haifa; Zhang Wenqi; Gong Youpin; Li Hui; Wu Di

    2010-06-15

    A photocatalyst of Ta-doped ZnO was prepared by a modified Pechini-type method. The structural, morphological properties and photocatalytic activity of 1 mol % Ta-doped ZnO samples annealed at different temperatures were characterized. The photo-oxidation of methylene blue under the visible-light irradiation followed the pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. It is found that the photocatalysis of 1% Ta-doped ZnO annealed at 700 {sup o}C showed excellent performance of the photodegradation of methylene blue, which was attributed to a competitive trade-off among the crystallinity, surface hydroxyl groups, and specific surface area. The processing parameter such as the pH value also played an important role in tuning the photocatalytic activity. The maximum photodecomposed rate was achieved at pH=8, and an novel model about the absorption of methylene blue on the surface of the catalysts was proposed. - Graphical abstract: This model describes the adsorption between the amphoteric behavior of the metal oxide and the cationic dye methylene blue (MB) on the surface of the catalyst at the acidic and alkaline condition.

  17. Photocatalytic Degradation of Methylene Blue under UV Light Irradiation on Prepared Carbonaceous TiO2

    PubMed Central

    Che Ramli, Zatil Amali; Asim, Nilofar; Isahak, Wan N. R. W.; Emdadi, Zeynab; Ahmad-Ludin, Norasikin; Yarmo, M. Ambar; Sopian, K.

    2014-01-01

    This study involves the investigation of altering the photocatalytic activity of TiO2 using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC), TiO2/carbon (C), and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC) was obtained after treating TiO2/carbon with 1.0 M KOH solution, followed by calcination at a temperature of 450°C. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TG-DTA), Brunauer-Emmet-Teller (BET), and UV-Vis spectroscopy were used to characterize and evaluate the prepared samples. The specific surface area was determined to be in the following order: TiO2/AC > TiO2/C > TiO2/PANi > TiO2 (179 > 134 > 54 > 9 m2 g−1). The evaluation of photocatalytic performance for the degradation of methylene blue under UV light irradiation was also of the same order, with 98 > 84.7 > 69% conversion rate, which is likely to be attributed to the porosity and synergistic effect in the prepared samples. PMID:25013855

  18. MoS2-GO nanocomposites synthesized via a hydrothermal hydrogel method for solar light photocatalytic degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Ding, Yong; Zhou, Yifeng; Nie, Wangyan; Chen, Pengpeng

    2015-12-01

    In this work, molybdenum disulfide-graphene oxide (MoS2-GO) composite hydrogel was prepared via a one-step hydrothermal method. The morphology and structure of the as-prepared hydrogels with different proportions of MoS2 and GO were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, electrochemical impedance spectra and UV-vis absorption spectroscopy. The photocatalytic performance of MoS2-GO nanocomposites was studied toward the degradation of methylene blue (MB). Results showed that the MoS2-GO nanocomposites exhibited improved photocatalytic activities in the degradation of MB with a maximum degradation rate of 99% under solar lights irradiation within 60 min. The synthesized MoS2-GO composite hydrogel possesses great potential toward the development of newly synthesizable catalysts in the field of organic degradation in water.

  19. Influence of activated carbon upon the photocatalytic degradation of methylene blue under UV-vis irradiation.

    PubMed

    Matos, Juan; Montaña, Ricmary; Rivero, Eliram

    2015-01-01

    Photodegradation of methylene blue (MB) was studied on TiO2 in the presence of activated carbon (AC) prepared from the sawdust of a soft wood by physical activation under CO2 flow, by pyrolysis under N2 flow, and by chemical activation with ZnCl2 and H3PO4 under N2 flow. MB photodegradation was performed under UV and UV-visible irradiation to verify the scaling-up of the present TiO2-AC binary materials. It was verified that oxygenated surface groups on carbon were intrinsically photoactive, and a synergy effect between both solids has been estimated from the first-order apparent rate constants in the photodegradation of MB. This effect enhances the photoactivity of TiO2 up to a factor of about 9 under visible irradiation, and it was associated to the surface properties of AC. PMID:24788930

  20. Design and Synthesis of Metal Complexes of (2E)-2-[(2E)-3-Phenylprop-2-en-1-ylidene]hydrazinecarbothioamide and Their Photocatalytic Degradation of Methylene Blue

    PubMed Central

    Krishna, P. Murali; Reddy, N. B. Gopal; Kottam, Nagaraju; Yallur, B. C.; Katreddi, Hussain Reddy

    2013-01-01

    The photocatalytic degradation has been considered to be an efficient process for the degradation of organic pollutants, which are present in the effluents released by industries. The photocatalytic bleaching of cationic dye methylene blue was carried out spectrometrically on irradiation of UV light using Cu(II), Ni(II), and Co(II) complexes of (2E)-2-[(2E)-3-phenylprop-2-en-1-ylidene]hydrazinecarbothioamide (HL). The effects of pH and metal ion were studied on the efficiency of the reaction. Cu(II) complex shows better catalytic activity and the highest percentage degradation (~88.8%) of methylene blue was observed at pH 12. A tentative mechanism has also been proposed for the photocatalytic degradation of methylene blue. PMID:24363623

  1. Preparation and characterization of Cu{sub 2}O-TiO{sub 2}: Efficient photocatalytic degradation of methylene blue

    SciTech Connect

    Xu Yuehua Liang Dahui; Liu Manle; Liu Dingzhong

    2008-12-01

    A series of copper-deposited titania were prepared by photoreduction method under irradiation with a 125-W high-pressure mercury lamp. From XPS and AES results, the deposited-copper formed Ti-O-Cu bond on the surface of TiO{sub 2}, and the Cu species on the surface of copper-deposited TiO{sub 2} can be identified as Cu(I). The photocatalytic degradation activity of methylene blue for the Cu{sub 2}O-TiO{sub 2} series increased with increasing Cu{sub 2}O-deposited content, and then decreased. The highest photocatalytic degradation activity of methylene blue was obtained for 0.16% Cu{sub 2}O-TiO{sub 2}. When copper-deposited content reached to 0.32%, the photocatalytic activity was lower than that of pure TiO{sub 2}. It is shown that Cu{sub 2}O on the surface of TiO{sub 2} can trap electrons from the TiO{sub 2} conduction band, and the electrons trapped on the Cu{sub 2}O-TiO{sub 2} site are subsequently transferred to the surrounding adsorbed O{sub 2}, thereby avoiding electron-hole recombination, and enhancing the photocatalytic activity. Excess copper loading may screen the photocatalyst from the UV source, so the photocatalytic activity diminishes with increasing Cu{sub 2}O.

  2. Methylene blue degradation by NaTaO3 sol-gel doped with Sm and La.

    PubMed

    Torres-Martínez, Leticia M; Cruz-López, Arquímedes; Juárez-Ramírez, Isaías; Meza-de la Rosa, Ma Elena

    2009-06-15

    In this work, NaTaO(3) compounds doped with 1M% of La and Sm, were prepared by the sol-gel (SG) method and solid state (SS) reaction; and tested as photocatalysts on the degradation of methylene blue (MB) under UV light. The structural characterization by X-ray powder diffraction revealed that the crystallization of the NaTaO(3) phase prepared by the sol-gel method started at 600 degrees C, reaching maximum crystallization at 800 degrees C. It was determined that the presence of Sm and La retard the crystallization of the NaTaO(3) phase. On the other hand, the compounds synthesized in this work showed particle sizes in the nanometric scale, as it was observed by scanning electron microscopy (SEM). The specific surface area of the compounds synthesized by the sol-gel method, showed values 4 times higher than those obtained by the solid state reaction, favoring their functional and photocatalytic performance in the methylene blue degradation. In addition, the best photocatalytic performance was shown by the NaTaO(3) doped with Sm and heated at 600 degrees C, having a half-life time of 65 min.

  3. Methylene blue degradation by NaTaO3 sol-gel doped with Sm and La.

    PubMed

    Torres-Martínez, Leticia M; Cruz-López, Arquímedes; Juárez-Ramírez, Isaías; Meza-de la Rosa, Ma Elena

    2009-06-15

    In this work, NaTaO(3) compounds doped with 1M% of La and Sm, were prepared by the sol-gel (SG) method and solid state (SS) reaction; and tested as photocatalysts on the degradation of methylene blue (MB) under UV light. The structural characterization by X-ray powder diffraction revealed that the crystallization of the NaTaO(3) phase prepared by the sol-gel method started at 600 degrees C, reaching maximum crystallization at 800 degrees C. It was determined that the presence of Sm and La retard the crystallization of the NaTaO(3) phase. On the other hand, the compounds synthesized in this work showed particle sizes in the nanometric scale, as it was observed by scanning electron microscopy (SEM). The specific surface area of the compounds synthesized by the sol-gel method, showed values 4 times higher than those obtained by the solid state reaction, favoring their functional and photocatalytic performance in the methylene blue degradation. In addition, the best photocatalytic performance was shown by the NaTaO(3) doped with Sm and heated at 600 degrees C, having a half-life time of 65 min. PMID:19042087

  4. Nanoscale zero-valent iron incorporated with nanomagnetic diatomite for catalytic degradation of methylene blue in heterogeneous Fenton system.

    PubMed

    Zha, Yiming; Zhou, Ziqing; He, Haibo; Wang, Tianlin; Luo, Liqiang

    2016-01-01

    Nanoscale zero-valent iron (nZVI) incorporated with nanomagnetic diatomite (DE) composite material was prepared for catalytic degradation of methylene blue (MB) in heterogeneous Fenton system. The material was constructed by two facile steps: Fe3O4 magnetic nanoparticles were supported on DE by chemical co-precipitation method, after which nZVI was incorporated into magnetic DE by liquid-phase chemical reduction strategy. The as-prepared catalyst was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, magnetic properties measurement and nitrogen adsorption-desorption isotherm measurement. The novel nZVI@Fe3O4-diatomite nanocomposites showed a distinct catalytic activity and a desirable effect for degradation of MB. MB could be completely decolorized within 8 min and the removal efficiency of total organic carbon could reach to 90% after reaction for 1 h. PMID:27232419

  5. Visible-light photocatalytic degradation of methylene blue with laser-induced Ag/ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Whang, Thou-Jen; Hsieh, Mu-Tao; Chen, Huang-Han

    2012-01-01

    The preparation of Ag doped ZnO nanoparticles conducted through the method of laser-induction is presented in this work. The Ag/ZnO nanoparticles attained from various weight percentages of added AgNO3 relative to ZnO were applied under visible-light irradiation for evaluating the heterogeneous photocatalytic degradations of methylene blue (MB) solutions. It was shown that the catalytic behavior of Ag/ZnO nanoparticles in the visible-light range is notably improved through the Ag deposition onto ZnO nanoparticles by the method of laser-induction with a maximum effectiveness of 92% degradation. The properties of the nanoparticles were characterized by the employments of UV-vis spectroscopy (UV-vis), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and selected-area electron diffraction (SAED).

  6. Plasmon-assisted degradation of methylene blue with Ag/AgCl/montmorillonite nanocomposite under visible light

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Zanjanchi, M. A.; Razavi, M.

    2014-09-01

    Metal-semiconductor compounds, such as Ag/AgX (X = Cl, Br, I), enable visible light absorption and separation of photogenerated electron-hole through surface plasmon resonance (SPR) effect. However, the electron-hole generated and separated by light are vulnerable in Ag/AgX phase because of the occurrence of secondary recombined. In order to more effectively utilize the SPR photocatalytic effect, nanoparticles are located in a matrix. In this article, Ag/AgCl nanoparticles were synthesized in montmorillonite (MMT) matrix using dispersion method and light irradiation. The structure, composition and optical properties of such material were investigated by transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray diffraction (XRD) and FTIR. Powder X-ray diffraction showed intercalation of Ag/AgCl nanoparticles into the clay layers. The as-prepared plasmonic photocatalyst exhibited an enhanced and stable photoactivity for the degradation of methylene blue (MB) under visible light. The high activity was attributed to the surface plasmon resonance (SPR) exhibited by Ag nanoparticles on the surface of AgCl. The detection of reactive species by radical scavengers displays that rad O2- and rad OH- are the main reactive species for the degradation of MB under visible light irradiation. The studies showed that 20 min illumination under visible light can complete degradation of methylene blue (MB), and indicate a high stability of photocatalytic degradation. The mechanism of separation of the photo-generated electrons and holes at the Ag/AgCl-MMT nanocomposite was discussed.

  7. Enhanced photocatalytic activity of TiO2-C hybrid aerogels for methylene blue degradation

    PubMed Central

    Shao, Xia; Lu, Wencong; Zhang, Rui; Pan, Feng

    2013-01-01

    Carbon-based TiO2 composites have many advantages as photocatalysts. However, they suffer from low light efficiency due to the low contrast of TiO2 with carbon. We synthesized a novel type of anatase-type TiO2-C hybrid aerogel by a one-pot sol-gel method, which shows a photocatalytic activity for methylene degradation up to 4.23 times that of P25, a commercial photocatalyst from Degussa Inc. The hybrid aerogels are prepared from TiCl4 and resorcinol–furfural, and have a tunable macropore size from 167 to 996 nm. They are formed of submicrometer particles that consist of interwoven anatase and carbon nanoparticles. The anatase nanoparticles have a size of 8–9 nm and a tunable oxygen vacancy from 7.2 to 18.0%. The extremely high activity is ascribed to the large light absorption caused by macropore scattering and oxygen vacancies in the anatase. These findings may open up a new avenue and stimulate further research to improve photocatalytic performance. PMID:24145581

  8. Enhanced photocatalytic activity of TiO2-C hybrid aerogels for methylene blue degradation

    NASA Astrophysics Data System (ADS)

    Shao, Xia; Lu, Wencong; Zhang, Rui; Pan, Feng

    2013-10-01

    Carbon-based TiO2 composites have many advantages as photocatalysts. However, they suffer from low light efficiency due to the low contrast of TiO2 with carbon. We synthesized a novel type of anatase-type TiO2-C hybrid aerogel by a one-pot sol-gel method, which shows a photocatalytic activity for methylene degradation up to 4.23 times that of P25, a commercial photocatalyst from Degussa Inc. The hybrid aerogels are prepared from TiCl4 and resorcinol-furfural, and have a tunable macropore size from 167 to 996 nm. They are formed of submicrometer particles that consist of interwoven anatase and carbon nanoparticles. The anatase nanoparticles have a size of 8-9 nm and a tunable oxygen vacancy from 7.2 to 18.0%. The extremely high activity is ascribed to the large light absorption caused by macropore scattering and oxygen vacancies in the anatase. These findings may open up a new avenue and stimulate further research to improve photocatalytic performance.

  9. Visible light photo-degradation of methylene blue over Fe or Cu promoted ZnO nanoparticles.

    PubMed

    Mardani, Hamid Reza; Forouzani, Mehdi; Ziari, Mitra; Biparva, Pourya

    2015-04-15

    CuxZn(1-x)O, FexZn(1-x)O (x=0.01) and ZnO nanoparticles were and were characterized by X-ray diffraction, ultraviolet and visible spectroscopy, FTIR spectroscopy and SEM. The photodegradation of an aqueous solution of methylene blue (as an organic pollutant) by nanoparticles with H2O2 (30%) under visible light and the progress of the reaction were monitored by UV-Vis spectroscopy absorption. The photocatalytic oxidation efficiency of all nanoparticles was 100% at the appropriate time. The degradation time was 90 min for FeZnO, 120 min for CuZnO and 210 min for ZnO. This indicates that the photocatalytic activity of the doped nanoparticles was better than that of ZnO alone. ZnO doped with a small amount of Fe or Cu decreased the size of the nanoparticles and the band gap and increased photocatalytic efficiency.

  10. Visible light photo-degradation of methylene blue over Fe or Cu promoted ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Mardani, Hamid Reza; Forouzani, Mehdi; Ziari, Mitra; Biparva, Pourya

    2015-04-01

    CuxZn(1-x)O, FexZn(1-x)O (x = 0.01) and ZnO nanoparticles were and were characterized by X-ray diffraction, ultraviolet and visible spectroscopy, FTIR spectroscopy and SEM. The photodegradation of an aqueous solution of methylene blue (as an organic pollutant) by nanoparticles with H2O2 (30%) under visible light and the progress of the reaction were monitored by UV-Vis spectroscopy absorption. The photocatalytic oxidation efficiency of all nanoparticles was 100% at the appropriate time. The degradation time was 90 min for FeZnO, 120 min for CuZnO and 210 min for ZnO. This indicates that the photocatalytic activity of the doped nanoparticles was better than that of ZnO alone. ZnO doped with a small amount of Fe or Cu decreased the size of the nanoparticles and the band gap and increased photocatalytic efficiency.

  11. Crystal Structure and Photocatalytic Activity of Al-Doped TiO2 Nanofibers for Methylene Blue Dye Degradation.

    PubMed

    Lee, Deuk Yong; Lee, Myung-Hyun; Kim, Bae-Yeon; Cho, Nam-Ihn

    2016-05-01

    Al-TiO2 nanofibers were prepared using a sol-gel derived electrospinning by varying the Al/Ti molar ratio from 0 to 0.73 to investigate the effect of Al doping on the crystal structure and the photocatalytic activity of Al-TiO2 for methylene blue (MB) degradation. XRD results indicated that as the Al/Ti molar ratio rose, crystal structure of Al-TiO2 was changed from anatase/rutile (undoped), anatase (0.07-0.18), to amorphous phase (0.38-0.73), which was confirmed by XPS and Raman analysis. The degradation kinetic constant increased from 7.3 x 10(-4) min(-1) to 4.5 x 10(-3) min(-1) with the increase of Al/Ti molar ratios from 0 to 0.38, but decreased to 3.4 x 10(-3) min(-1) when the Al/Ti molar ratio reached 0.73. The Al-TiO2 catalyst doped with 0.38 Al/Ti molar ratio demonstrated the best MB degradation. Experimental results indicated that the Al doping in Al-TiO2 was mainly attributed to the crystal structure of TiO2 and the photocatalytic degradation of MB.

  12. Crystal Structure and Photocatalytic Activity of Al-Doped TiO2 Nanofibers for Methylene Blue Dye Degradation.

    PubMed

    Lee, Deuk Yong; Lee, Myung-Hyun; Kim, Bae-Yeon; Cho, Nam-Ihn

    2016-05-01

    Al-TiO2 nanofibers were prepared using a sol-gel derived electrospinning by varying the Al/Ti molar ratio from 0 to 0.73 to investigate the effect of Al doping on the crystal structure and the photocatalytic activity of Al-TiO2 for methylene blue (MB) degradation. XRD results indicated that as the Al/Ti molar ratio rose, crystal structure of Al-TiO2 was changed from anatase/rutile (undoped), anatase (0.07-0.18), to amorphous phase (0.38-0.73), which was confirmed by XPS and Raman analysis. The degradation kinetic constant increased from 7.3 x 10(-4) min(-1) to 4.5 x 10(-3) min(-1) with the increase of Al/Ti molar ratios from 0 to 0.38, but decreased to 3.4 x 10(-3) min(-1) when the Al/Ti molar ratio reached 0.73. The Al-TiO2 catalyst doped with 0.38 Al/Ti molar ratio demonstrated the best MB degradation. Experimental results indicated that the Al doping in Al-TiO2 was mainly attributed to the crystal structure of TiO2 and the photocatalytic degradation of MB. PMID:27483928

  13. Photocatalytic degradation of methylene blue and inactivation of gram-negative bacteria by TiO2 nanoparticles in aqueous suspension

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The photocatalytic degradation of methylene blue (MB) and inactivation of Gram-negative bacteria E. coli K12 and P. aeruginosa by TiO2 nanoparticles in aqueous suspension were studied. TiO2 resulted in significant reduction in MB absorption and a shift of MB absorption peak from 664 nm to 658 nm aft...

  14. Photocatalytic degradation of methylene blue and inactivation of pathogenic bacteria using silver nanoparticles modified titanium dioxide thin films.

    PubMed

    Ibrahim, Haytham M M

    2015-07-01

    Titanium dioxide (TiO2) is a well-studied photocatalyst that is known to break down organic molecules upon ultraviolet irradiation. TiO2 thin films were fabricated on glass substrates using the doctor-blade procedure, the film surface was modified with silver nanoparticles to increase its visible light response. The Ag-TiO2 films were characterized by transmission electron microscopy, scanning electron microscopy equipped with energy dispersive spectrometry and X-ray diffraction. The photocatalytic degradation of methylene blue (MB) and inactivation of Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus were studied. The modified films presented enhanced photocatalytic efficiency and can decompose MB solution two-times faster than the unmodified TiO2 films, under illumination of sunlight. A nominal degradation (15 %) was observed in control MB under sunlight. The degradation efficiency of Ag-TiO2 films slightly decreased after five consecutive experiments. Ag-TiO2 films revealed very effective bactericidal activity against both E. coli and S. aureus. The photocatalytic inactivation toward E. coli and S. aureus showed a similar trend with much higher effectiveness toward E. coli under the same experimental conditions. The inactivation efficiency was maximized and reached 95 % for S. aureus and 97 % for E. coli, after 180 min incubation. These results demonstrate the potential of application of Ag-TiO2 photocatalysis as a method for treatment of diluted waste waters in textile industries. PMID:25877701

  15. Self-organized TiO2 nanotube arrays in the photocatalytic degradation of methylene blue under UV light irradiation

    NASA Astrophysics Data System (ADS)

    Chung, Eun Hyuk; Baek, Seong Rim; Yu, Seong Mi; Kim, Jong Pil; Hong, Tae Eun; Kim, Hyun Gyu; Bae, Jong-Seong; Jeong, Euh Duck; Khan, F. Nawaz; Jung, Ok-sang

    2015-04-01

    Nanostructured titanium dioxide (NTiO2) is known to possess efficient photocatalytic activity and to have diverse applications in many fields due to its chemical stability, high surface area/volume ratio, high transmittance, and high refractive index in the visible and the near-ultraviolet regions. These facts prompted us to develop TiO2 nanotube (TiO2 NT) arrays through electrochemical anodic oxidation involving different electrolytes comprised of phosphoric acid — hydrofluoric acid aqueous systems by varying the voltage and the time. The annealing temperature of the nanotubes, TiO2 NTs, were varied to modify the surface morphology and were characterized by using X-ray diffraction and scanning electron microscopy. Scanning electron microscopy and X-ray diffraction results showed that the samples had uniform morphologies and good crystalline structures of the anatase phase at lower annealing temperatures and of the rutile phase at higher annealing temperatures. A secondary-ion mass-spectrometry analysis was used to investigate the surface atoms and to conduct a depth profile analysis of the TiO2 NTs. The efficiency of the photocatalytic activity of the TiO2 NT arrays in degrading methylene blue (MB) was investigated under UV-Vis light irradiation. The maximum photocatalytic activity was achieved for the samples with lower annealing temperatures due to their being in the anatase phase and having a higher surface area and a smaller crystal size, which play important roles in the degradation of organic pollutants.

  16. Electrocatalytic degradation of methylene blue on PbO2-ZrO2 nanocomposite electrodes prepared by pulse electrodeposition.

    PubMed

    Yao, Yingwu; Zhao, Chunmei; Zhao, Manman; Wang, Xiao

    2013-12-15

    PbO2-ZrO2 nanocomposite electrodes (P) were prepared by pulse electrodeposition and used for the electrocatalytic degradation of methylene blue (MB). The SEM and XRD tests show that PbO2-ZrO2 nanocomposite electrodes (P) possess more compact structure and finer grain size than PbO2-ZrO2 nanocomposite electrodes (D) prepared by direct electrodeposition. The electrochemical measurements show that PbO2-ZrO2 nanocomposite electrodes (P) have higher oxygen evolution overpotential and the oxidation regions of MB and water are significantly separated. The experimental parameters on electrocatalytic degradation of MB by PbO2-ZrO2 nanocomposite electrodes (P) were evaluated, such as initial MB concentration, current density, pH value and supporting electrolyte concentration. The results indicate that MB and COD removal efficiency of PbO2-ZrO2 nanocomposite electrodes (P) reach 100% and 72.7%, respectively, after 120 min electrolysis at initial 30 mg L(-1) MB concentration at current density of 50 mA cm(-2) in 0.2 mol L(-1) Na2SO4 supporting electrolyte solution, and the degradation of MB follows pseudo-first-order kinetics. Compared with PbO2-ZrO2 nanocomposite electrodes (D), PbO2-ZrO2 nanocomposite electrodes (P) show higher COD removal efficiency and instantaneous current efficiency with MB degradation. The experimental results demonstrate that PbO2-ZrO2 nanocomposite electrodes (P) possesses the excellent electrocatalytic properties and show great potential applications in refractory pollutants.

  17. Electrocatalytic degradation of methylene blue on PbO2-ZrO2 nanocomposite electrodes prepared by pulse electrodeposition.

    PubMed

    Yao, Yingwu; Zhao, Chunmei; Zhao, Manman; Wang, Xiao

    2013-12-15

    PbO2-ZrO2 nanocomposite electrodes (P) were prepared by pulse electrodeposition and used for the electrocatalytic degradation of methylene blue (MB). The SEM and XRD tests show that PbO2-ZrO2 nanocomposite electrodes (P) possess more compact structure and finer grain size than PbO2-ZrO2 nanocomposite electrodes (D) prepared by direct electrodeposition. The electrochemical measurements show that PbO2-ZrO2 nanocomposite electrodes (P) have higher oxygen evolution overpotential and the oxidation regions of MB and water are significantly separated. The experimental parameters on electrocatalytic degradation of MB by PbO2-ZrO2 nanocomposite electrodes (P) were evaluated, such as initial MB concentration, current density, pH value and supporting electrolyte concentration. The results indicate that MB and COD removal efficiency of PbO2-ZrO2 nanocomposite electrodes (P) reach 100% and 72.7%, respectively, after 120 min electrolysis at initial 30 mg L(-1) MB concentration at current density of 50 mA cm(-2) in 0.2 mol L(-1) Na2SO4 supporting electrolyte solution, and the degradation of MB follows pseudo-first-order kinetics. Compared with PbO2-ZrO2 nanocomposite electrodes (D), PbO2-ZrO2 nanocomposite electrodes (P) show higher COD removal efficiency and instantaneous current efficiency with MB degradation. The experimental results demonstrate that PbO2-ZrO2 nanocomposite electrodes (P) possesses the excellent electrocatalytic properties and show great potential applications in refractory pollutants. PMID:24220200

  18. TiO₂ (rutile) embedded inulin--A versatile bio-nanocomposite for photocatalytic degradation of methylene blue.

    PubMed

    Jayanthi Kalaivani, G; Suja, S K

    2016-06-01

    Inulin, a water soluble carbohydrate polymer, was extracted from Allium sativum L. by hot water diffusion method. A novel bio-nanocomposite was prepared by embedding TiO2 (rutile) onto the inulin matrix. The extracted inulin and the prepared bio-nanocomposite were characterized using UV-vis, FT-IR, XRD, SEM, TEM and TGA techniques. The photocatalytic activity of the bio-nanocomposite for the degradation of methylene blue was studied under UV illumination in batch mode experiment and was found to be twice as high as that of pristine TiO2. The kapp for inulin-TiO2 (0.0449 min(-1)) was higher than that for TiO2 (0.0325 min(-1)) which may be due to the synergistic action of inulin and TiO2. The stabilization of photo excited electron suppressed the electron-hole pair recombination thereby inducing the electrons and the holes to participate in the photo reduction and oxidation processes, respectively and enhancing the photocatalytic activity. PMID:27083343

  19. TiO₂ (rutile) embedded inulin--A versatile bio-nanocomposite for photocatalytic degradation of methylene blue.

    PubMed

    Jayanthi Kalaivani, G; Suja, S K

    2016-06-01

    Inulin, a water soluble carbohydrate polymer, was extracted from Allium sativum L. by hot water diffusion method. A novel bio-nanocomposite was prepared by embedding TiO2 (rutile) onto the inulin matrix. The extracted inulin and the prepared bio-nanocomposite were characterized using UV-vis, FT-IR, XRD, SEM, TEM and TGA techniques. The photocatalytic activity of the bio-nanocomposite for the degradation of methylene blue was studied under UV illumination in batch mode experiment and was found to be twice as high as that of pristine TiO2. The kapp for inulin-TiO2 (0.0449 min(-1)) was higher than that for TiO2 (0.0325 min(-1)) which may be due to the synergistic action of inulin and TiO2. The stabilization of photo excited electron suppressed the electron-hole pair recombination thereby inducing the electrons and the holes to participate in the photo reduction and oxidation processes, respectively and enhancing the photocatalytic activity.

  20. Adsorption and photocatalytic degradation of methylene blue over hydrogen-titanate nanofibres produced by a peroxide method.

    PubMed

    El Saliby, Ibrahim; Erdei, Laszlo; Kim, Jong-Ho; Shon, Ho Kyong

    2013-08-01

    In this study, Degussa P25 TiO2 was partially dissolved in a mixture of hydrogen peroxide and sodium hydroxide at high pH. The fabrication of nanofibres proceeded by the hydrothermal treatment of the solution at 80 °C. This was followed by acid wash in HCl at pH 2 for 60 min, which resulted in the formation of hydrogen-titanate nanofibres. The nanofibres were annealed at 550 °C for 6 h to produce crystalline anatase nanofibres. The nanofibres were characterised for physico-chemical modifications and tested for the adsorption and photocatalytic degradation of methylene blue as a model water pollutant. An average specific surface area of 31.54 m(2)/g, average pore volume of 0.10 cm(3)/g and average pore size of 50 Å were recorded. The nanofibres were effective adsorbents of the model pollutant and adsorbents and good photocatalysts under simulated solar light illumination. No reduction in photocatalytic activity was observed over three complete treatment cycles, and the effective separation of nanofibres was achieved by gravity settling resulting in low residual solution turbidity.

  1. Engineering birnessite-type MnO2 nanosheets on fiberglass for pH-dependent degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Xin Zhang, Yu; Long Guo, Xiao; Huang, Ming; Dong Hao, Xiao; Yuan, Yuan; Hua, Chao

    2015-08-01

    We construct hierarchical MnO2 nanosheets @ fiberglass nanostructures via one-pot hydrothermal method without any surfactants. The morphology and structure of MnO2-modified fiberglass composites are examined by focus ion beam scanning electron microscopy (FIB/SEM), X-Ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The birnessite-type MnO2 nanosheets are observed to grow vertically on the surface of fiberglass. Furthermore, the birnessite-type MnO2-fiberglass composites exhibit good ability for degradation of methylene blue (MB) in different pH levels. In neutral solution (pH 6.5-7.0), it achieves a high removal rate of 96.1% (2 h, at 60 °C) in the presence of H2O2; and in acidic environment (pH 1.5), 96.8% of MB solution (20 mg/L, 100 mL) is decomposed by oxidation within only 5 min. In principles, the rational design of MnO2 nanosheets-decorated fiberglass architectures demonstrated the suitability of the low-cost MnO2-modified fiberglass nanostructure for water treatment.

  2. Fenton-like degradation of Methylene Blue using paper mill sludge-derived magnetically separable heterogeneous catalyst: Characterization and mechanism.

    PubMed

    Zhou, Guoqiang; Chen, Ziwen; Fang, Fei; He, Yuefeng; Sun, Haili; Shi, Huixiang

    2015-09-01

    For the paper industry, the disposal and management of the yielded sludge are a considerable challenge. In our work, the paper mill sludge-derived magnetically separable heterogeneous catalyst (PMS-Fe-380) was prepared easily through a facile synthesis method. The morphology and structure of PMS-Fe-380 were fully characterized by means of X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and Brunauer-Emmet-Teller analysis. The catalytic activity of PMS-Fe-380 was evaluated by degradation of Methylene Blue (MB). The reusability and stability of PMS-Fe-380 were evaluated in five repeated runs, which suggested that PMS-Fe-380 manifested excellent stability of catalytic activity. Moreover, leaching tests indicated that the leached iron is negligible (<0.5mg/L). This study provides an alternative environmentally friendly reuse method for paper mill sludge and a novel catalyst PMS-Fe-380 that can be considered as a promising heterogeneous Fenton-like catalyst. PMID:26354688

  3. Visible Light-Induced Degradation of Methylene Blue in the Presence of Photocatalytic ZnS and CdS Nanoparticles

    PubMed Central

    Soltani, Nayereh; Saion, Elias; Hussein, Mohd Zobir; Erfani, Maryam; Abedini, Alam; Bahmanrokh, Ghazaleh; Navasery, Manizheh; Vaziri, Parisa

    2012-01-01

    ZnS and CdS nanoparticles were prepared by a simple microwave irradiation method under mild conditions. The obtained nanoparticles were characterized by XRD, TEM and EDX. The results indicated that high purity of nanosized ZnS and CdS was successfully obtained with cubic and hexagonal crystalline structures, respectively. The band gap energies of ZnS and CdS nanoparticles were estimated using UV-visible absorption spectra to be about 4.22 and 2.64 eV, respectively. Photocatalytic degradation of methylene blue was carried out using physical mixtures of ZnS and CdS nanoparticles under a 500-W halogen lamp of visible light irradiation. The residual concentration of methylene blue solution was monitored using UV-visible absorption spectrometry. From the study of the variation in composition of ZnS:CdS, a composition of 1:4 (by weight) was found to be very efficient for degradation of methylene blue. In this case the degradation efficiency of the photocatalyst nanoparticles after 6 h irradiation time was about 73% with a reaction rate of 3.61 × 10−3 min−1. Higher degradation efficiency and reaction rate were achieved by increasing the amount of photocatalyst and initial pH of the solution. PMID:23202896

  4. Tubular structured hierarchical mesoporous titania material derived from natural cellulosic substances and application as photocatalyst for degradation of methylene blue

    SciTech Connect

    Huang, Haiqing; Liu, Xiaoyan; Huang, Jianguo

    2011-11-15

    Graphical abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material with high photocatalytic activity under UV light was fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template using a one-pot sol-gel method. Highlights: {yields} Tubular structured mesoporous titania material was fabricated by sol-gel method. {yields} The titania material faithfully recorded the hierarchical structure of the template substrate (cotton). {yields} The titania material exhibited high photocatalytic activity in decomposition of methylene blue. -- Abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material was designed and fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template by one-pot sol-gel method. The tubular structured hierarchical mesoporous titania material processes large specific surface area (40.23 m{sup 2}/g) and shows high photocatalytic activity in the photodegradation of methylene blue under UV light irradiation.

  5. Prussian-blue-modified iron oxide magnetic nanoparticles as effective peroxidase-like catalysts to degrade methylene blue with H2O2.

    PubMed

    Wang, Hui; Huang, Yuming

    2011-07-15

    Prussian-blue (PB)-modified γ-Fe(2)O(3) magnetic nanoparticles (PBMNPs) were successfully synthesized based on electric interactions between negatively charged [Fe(CN)(6)](4-) and positively charged γ-Fe(2)O(3) nanoparticles. The in situ PB coating was generated by the coordinating reaction between the adsorbed [Fe(CN)(6)](4-) and the ferric ions on the surface of γ-Fe(2)O(3) NPs. The as-prepared PBMNPs were characterized by FT-IR, XRD, TEM, and used to remove organic pollutants from aqueous solution, namely, using methylene blue (MB) as model compound. The experimental results showed that the target compound could be removed efficiently from solution over a wide pH range from 3 to 10 in the presence of PBMNPs as peroxidase-like catalyst and H(2)O(2) as oxidant. Under optimal conditions, MB could be removed completely after 120 min of reaction at 298 K; the chemical oxygen demand (COD) removal efficiency and the total organic carbon (TOC) abatement efficiency were 53.6% and 35%, respectively. Furthermore, the PBMNPs catalysts showed high magnetization, temperature tolerance, long-term storage and operational stability, and they could be readily separated from solution by applying an external magnetic field. Finally, a possible reaction mechanism for MB degradation was also discussed. PMID:21570769

  6. Sol–gel synthesis of SnO{sub 2}–MgO nanoparticles and their photocatalytic activity towards methylene blue degradation

    SciTech Connect

    Bayal, Nisha; Jeevanandam, P.

    2013-10-15

    Graphical abstract: - Highlights: • A simple sol–gel method for the synthesis of SnO{sub 2}–MgO nanoparticles is reported. • Band gap of SnO{sub 2} can be tuned by varying the magnesium content in SnO{sub 2}–MgO. • SnO{sub 2}–MgO shows good photocatalytic activity towards degradation of methylene blue. - Abstract: SnO{sub 2}–MgO mixed metal oxide nanoparticles were prepared by a simple sol–gel method. The nanoparticles were characterized by power X-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The XRD results indicate the formation of mixed metal oxide nanoparticles and also a decrease of SnO{sub 2} crystallite size in the mixed metal oxide nanoparticles with increasing magnesium oxide content. The reflectance spectroscopy results show a blue shift of the band gap of SnO{sub 2} in the mixed metal oxide nanoparticles. The photocatalytic activity of the SnO{sub 2}–MgO nanoparticles was tested using the photodegradation of aqueous methylene blue in the presence of sunlight. The results indicate that the mixed metal oxide nanoparticles possess higher efficiency for the photodegradation of methylene blue compared to pure SnO{sub 2} nanoparticles.

  7. Fabrication and efficient photocatalytic degradation of methylene blue over CuO/BiVO{sub 4} composite under visible-light irradiation

    SciTech Connect

    Jiang Haiqing Endo, Hiromitsu; Natori, Hirotaka; Nagai, Masayuki; Kobayashi, Koichi

    2009-03-05

    CuO/BiVO{sub 4} composite photocatalysts were prepared by solution combustion synthesis method and impregnation technique. X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scan electron microscopy and UV-vis diffusion reflectance spectra were used to identify the physical properties and photophysical properties of CuO/BiVO{sub 4} composite photocatalysts. The photocatalysts exhibit the enhanced photocatalytic properties for degradation of methylene blue under visible-light ({lambda} > 420 nm). The mechanism of improved photocatalytic activity is also discussed.

  8. Gadolinium nanoparticle-decorated multiwalled carbon nanotube/titania nanocomposites for degradation of methylene blue in water under simulated solar light.

    PubMed

    Mamba, G; Mbianda, X Y; Mishra, A K

    2014-04-01

    Gadolinium oxide nanoparticles of diameters <5 nm were uniformly decorated on the surfaces of multiwalled carbon nanotubes which were subsequently used as templates to fabricate gadolinium oxide nanoparticle-decorated multiwalled carbon nanotube/titania nanocomposites. The prepared nanocomposites were evaluated for the photocatalytic degradation of methylene blue under simulated solar light irradiation. Higher photocatalytic activity was observed for the gadolinium oxide-decorated multiwalled carbon nanotube-based nanocomposites compared to the neat multiwalled carbon nanotube/titania nanocomposite and commercial titania. This improvement in photocatalytic activity was ascribed to the gadolinium oxide nanoparticles supported at the interface of the carbon nanotubes and titania resulting in efficient electron transfer between the two components of the composite. Total organic carbon (TOC) analysis revealed a higher degree of complete mineralisation of methylene blue (80.0 % TOC removal) which minimise the possible formation of toxic by-products. The photocatalyst could be re-used for five times, reaching a maximum degradation efficiency of 85.9 % after the five cycles. The proposed photocatalytic degradation mechanism is outlined herein.

  9. Solvothermal synthesis of V{sub 4}O{sub 9} flake-like morphology and its photocatalytic application in the degradation of methylene blue

    SciTech Connect

    Chine, M.K.; Sediri, F.; Gharbi, N.

    2012-11-15

    Highlights: ► Flake-like nanocrystalline V{sub 4}O{sub 9} was synthesized by a solvothermal route. ► Photocatalytic activity has been evaluated by the degradation of methylene blue under visible light irradiation. ► V{sub 4}O{sub 9} nanoflakes exhibited much higher photocatalytic activity two times higher than the bulk V{sub 2}O{sub 5}. -- Abstract: Flake-like nanocrystalline V{sub 4}O{sub 9} has been successfully synthesized by solvothermal process using V{sub 2}O{sub 5} as vanadium source and phenolphthalein as a reducing agent and a structure-directing template. Techniques X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and ultraviolet–visible (UV–vis) spectroscopy have been used to characterize the structure, the morphology and the composition of the material. The photocatalytic activity of the material has been evaluated by the degradation of methylene blue under visible light irradiation. As a result, after the lapse of 150 min, around 93.54% bleaching was observed, with V{sub 4}O{sub 9} nanoflakes yielding more photodegradation compared to that of bulk V{sub 2}O{sub 5}. This presents a degradation percentage of about 44.67%.

  10. Efficient degradation of methylene blue dye over tungsten trioxide/multi-walled carbon nanotube system as a novel photocatalyst

    NASA Astrophysics Data System (ADS)

    Dinari, Mohammad; Momeni, Mohamad Mohsen; Ahangarpour, Marzieh

    2016-10-01

    Combination of acid-functionalized multi-walled carbon nanotube/tungsten trioxide (MWCNT/WO3) with different MWCNT's weight percentages as visible light-induced photocatalysts for photodegradation of methylene blue (MB) dye was synthesized. These photocatalysts were characterized by Fourier transform infrared, X-ray diffraction, UV-Vis diffuse reflectance spectroscopy, field emission scanning electron microscopy and transmission electron microscopy techniques. Their photocatalytic activities were tested by using MB as a model compound. The results show that the MWCNT/WO3 hybrid nanostructures exhibit higher photocatalytic activity than pure WO3 or MWCNTs due to their higher absorption enhancement in visible light region and effective separation of electrons and holes. The stability of the hybrid was characterized through cyclic photocatalytic test.

  11. One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation

    NASA Astrophysics Data System (ADS)

    Vinothkannan, M.; Karthikeyan, C.; Gnana kumar, G.; Kim, Ae Rhan; Yoo, Dong Jin

    2015-02-01

    The reduced graphene oxide (RGO)/Fe3O4 nanocomposites were synthesized through a facile one-pot green synthesis by using solanum trilobatum extract as a reducing agent. Spherical shaped Fe3O4 nanoparticles with the diameter of 18 nm were uniformly anchored over the RGO matrix and the existence of fcc structured Fe3O4 nanoparticles over the RGO matrix was ensured from X-ray diffraction patterns. The amide functional groups exist in the solanum trilobatum extract is directly responsible for the reduction of Fe3+ ions and GO. The thermal stability of GO was increased by the removal of hydrophilic functional groups via solanum trilobatum extract and was further promoted by the ceramic Fe3O4 nanoparticles. The ID/IG ratio of RGO/Fe3O4 was increased over GO, indicating the extended number of structural defects and disorders in the RGO/Fe3O4 composite. The catalytic efficiency of prepared nanostructures toward methylene blue (MB) dye degradation mediated through the electron transfer process of BH4- ions was studied in detail. The π-π stacking, hydrogen bonding and electrostatic interaction exerted between the RGO/Fe3O4 composite and methylene blue, increased the adsorption efficiency of dye molecules and the large surface area and extended number of active sites completely degraded the MB dye within 12 min.

  12. Zirconium and silver co-doped TiO2 nanoparticles as visible light catalyst for reduction of 4-nitrophenol, degradation of methyl orange and methylene blue

    NASA Astrophysics Data System (ADS)

    Naraginti, Saraschandra; Stephen, Finian Bernard; Radhakrishnan, Adhithya; Sivakumar, A.

    2015-01-01

    Catalytic activity of Zr and Ag co-doped TiO2 nanoparticles on the reduction of 4-nitrophenol, degradation of methylene blue and methyl orange was studied using sodium borohydride as reducing agent. The nanoparticles were characterized using X-ray diffraction, energy dispersive X-ray, high resolution transmission electron microscopy, selected area electron diffraction and UV-Vis spectroscopy. The rate of the reduction/degradation was found to increase with increasing amount of the photocatalyst which could be attributed to higher dispersity and small size of the nanoparticles. The catalytic activity of Zr and Ag co-doped TiO2 nanoparticles showed no significant difference even after recycling the catalyst four times indicating a promising potential for industrial application of the prepared photocatalyst.

  13. Effect of Vanadium(IV)-Doping on the Visible Light-Induced Catalytic Activity of Titanium Dioxide Catalysts for Methylene Blue Degradation

    PubMed Central

    Lin, Wen-Churng; Lin, Yo-Jane

    2012-01-01

    Abstract Vanadium(IV)-doped titanium dioxide (TiO2) photocatalyst powders were prepared by the sol–gel method and characterized by Brunauer–Emmett–Teller–specific surface area, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible spectroscopy. V-doping in the TiO2 increases the crystal grain size, which decreases the specific surface areas of powders. This V-doping changes the band gap of TiO2, leading to extend the absorption to visible light regions (400–800 nm). Photocatalytic degradation of methylene blue (MB) in water was investigated as a function of the vanadium content in TiO2 and was found to follow pseudo first-order rate kinetics. Appropriate content of V-doping is an effective means to improve the photocatalytic activity of TiO2 for MB degradation under visible light irradiation. PMID:22693413

  14. Synthesis of pore-variable mesoporous CdS and evaluation of its photocatalytic activity in degrading methylene blue

    SciTech Connect

    Zhang, Wei-Min; Jiang, Yao-Quan; Cao, Xiao-Yan; Chen, Meng; Ge, Dong-Lai; Sun, Zhong-Xi

    2013-10-15

    Graphical abstract: - Highlights: • Self-templated synthesis of tubular CdS. • Cadmium complexes of aliphatic acids sustain the network of mesoporous structures. • Aliphatic acids affect the phase composition and particle size. • Pore size and volume vary with aliphatic acids having different hydrocarbonyl. - Abstract: In this study, mesoporous CdS polycrystallites have been synthesized using aliphatic acids of hexanoic acid, octanoic acid, and oleic acid as coordinating and capping agents, respectively. The fibrous Cd–fatty acid salts act as a template to form the tubular CdS. The organic species are found to be necessary for maintaining the network of mesoporous CdS. The characterization results indicate that the shorter carbon chain length in aliphatic acids favors the wurtzite phase and particle size growth the specific surface area, pore diameter and pore volume show a monotonic raise with increasing carbon chain. The photocatalytic activities of mesoporous CdS tubes exhibit much higher efficiency than those of nanosized CdS powders in decolorizing methylene blue under simulated visible light.

  15. A facile modification of g-C3N4 with enhanced photocatalytic activity for degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Chang, Fei; Xie, Yunchao; Li, Chenlu; Chen, Juan; Luo, Jieru; Hu, Xuefeng; Shen, Jiaowen

    2013-09-01

    In this investigation, a facile modification of g-C3N4 through co-pyrolysis of melamine and sodium nitrate or potassium nitrate was reported and the as-synthesized samples were characterized by a collection of techniques, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-vis diffuse reflectance spectroscopy, nitrogen adsorption-desorption, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and elemental analysis. Based upon the analysis, we speculated that the g-C3N4 framework was partially destroyed to produce cyano-containing fragments, which resulted into the variation of physical and optical properties, further affecting the adsorption and photocatalytic performance of g-C3N4 on the dye methylene blue. Furthermore, we found that nitrate anions rather than sodium or potassium ions had important effect on the structure and photocatalytic performance of g-C3N4. In addition, the photocatalysis mechanism and reusability test were also investigated and discussed in the study.

  16. Spectroscopic and kinetic studies on the degradation of methylene blue using the supramolecular coordination polymer [(Ph3Sn)4Fe(CN)6] as catalyst

    NASA Astrophysics Data System (ADS)

    Ibrahim, Amany M. A.; Al-Ashqar, Sawsan M. A.

    The structure of the supramolecular coordination polymer (SCP), [(Ph3Sn)4Fe(CN)6], 1, consists of octahedral [Fe(CN)6]4- building blocks which are connected by the TBPY-5 configured Ph3Sn(CN…)2 fragments creating 3D-network structure that contains terminal cyanide groups. The catalytic behavior of the SCP 1 was utilized for Fenton and photo-Fenton degradation of methylene blue dye (MB). The plot of kinetic degradation indicates pseudo first-order rate with respect to the MB dye concentration, Kobs. = 0.071 min-1. On the other hand, the observed rate constant of the photo catalytic degradation of MB equals to 1.45 min-1 indicating that irradiation enhances, significantly, the rate of degradation of MB dye. Discoloration of the dye was obtained in less than 3 h. Meanwhile, the conjugated structure and the phenyl rings of the MB molecule were destroyed or even broken down into small organic acids and inorganic ions, as indicated by FT-IR spectra. Disodium salt of terephthalic acid photoluminescence probing technology and radical scavenging measurements were carried out to identify the reactive oxygen species. The different parameters that affect MB degradation rate were evaluated. Moreover, the efficiency of recycled the SCP 1 and the mechanism of degradation of MB dye was investigated.

  17. Spectroscopic and kinetic studies on the degradation of methylene blue using the supramolecular coordination polymer [(Ph3Sn)4FeCN(6)] as catalyst.

    PubMed

    Ibrahim, Amany M A; Al-Ashqar, Sawsan M A

    2012-06-15

    The structure of the supramolecular coordination polymer (SCP), [(Ph(3)Sn)(4)Fe(CN)(6)], 1, consists of octahedral [Fe(CN)(6)](4-) building blocks which are connected by the TBPY-5 configured Ph(3)Sn(CN…)(2) fragments creating 3D-network structure that contains terminal cyanide groups. The catalytic behavior of the SCP 1 was utilized for Fenton and photo-Fenton degradation of methylene blue dye (MB). The plot of kinetic degradation indicates pseudo first-order rate with respect to the MB dye concentration, K(obs.)=0.071 min(-1). On the other hand, the observed rate constant of the photo catalytic degradation of MB equals to 1.45 min(-1) indicating that irradiation enhances, significantly, the rate of degradation of MB dye. Discoloration of the dye was obtained in less than 3h. Meanwhile, the conjugated structure and the phenyl rings of the MB molecule were destroyed or even broken down into small organic acids and inorganic ions, as indicated by FT-IR spectra. Disodium salt of terephthalic acid photoluminescence probing technology and radical scavenging measurements were carried out to identify the reactive oxygen species. The different parameters that affect MB degradation rate were evaluated. Moreover, the efficiency of recycled the SCP 1 and the mechanism of degradation of MB dye was investigated.

  18. Influence of anatase and rutile phase in TiO2 upon the photocatalytic degradation of methylene blue under solar irradiation in presence of activated carbon.

    PubMed

    Matos, J; Montaña, R; Rivero, E; Escudero, A; Uzcategui, D

    2014-01-01

    The influence of activated carbon (AC) on the photocatalytic activity of different crystalline TiO2 phases was verified in the photocatalytic degradation of methylene blue under UV and solar irradiation. The results showed a volcano trend with a maximum photoactivity for the crystalline phase ratio of anatase:rutile equal to 80:20 both under UV or solar irradiation. By contrast, in presence of AC the photocatalytic activity of the binary materials of TiO2/AC followed an exponential trend, increasing as a function of the increase in anatase proportion in the TiO2 framework. The increase in the photoactivity of the binary material TiO2/AC relative to neat TiO2 was up to 22 and about 17 times higher under UV and visible irradiation, respectively. The present results suggest that AC interacts more efficiently with anatase phase than with rutile phase.

  19. Synthesis of Ag-ZnO with multiple rods (multipods) morphology and its application in the simultaneous photo-catalytic degradation of methyl orange and methylene blue.

    PubMed

    Arab Chamjangali, M; Bagherian, G; Javid, A; Boroumand, S; Farzaneh, N

    2015-11-01

    In this study, the photo-decolorization of a mixture of methylene blue (MB) and methyl orange (MO) was investigated using Ag-ZnO multipods. The photo-catalyst used, ZnO multipods, was successfully synthesized. The surface of ZnO microstructure was modified by deposition of different amounts of Ag nanoparticles (Ag NPs) using the photo-reduction method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis and atomic absorption spectroscopy. The photo-catalytic efficiency of Ag-ZnO is mainly controlled by the amount of Ag NPs deposited on the ZnO surface. The results obtained suggest that Ag-ZnO containing 6.5% Ag NPs, has the highest photo-catalytic performance in the simultaneous photo-degradation of dyes at a shorter time.

  20. Comparison of catalytic activities for photocatalytic and sonocatalytic degradation of methylene blue in present of anatase TiO2-CNT catalysts.

    PubMed

    Zhang, Kan; Zhang, Feng Jun; Chen, Ming Liang; Oh, Won Chun

    2011-05-01

    Anatase TiO(2)-CNT catalysts with high specific surface areas were prepared by depositing TiO(2) particles on the surface of carbon nanotubes (CNTs) using a modified sol-gel technique. These catalysts prepared with different amounts of CNTs were characterized by nitrogen adsorption, Fourier Transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), Raman spectroscopy, energy dispersive X-ray (EDX) and ultraviolet-visible (UV-Vis) spectroscopy. The catalytic activity of the anatase TiO(2)-CNT catalysts was assessed by examining the degradation of methylene blue (MB) from model aqueous solutions as a probe reaction under visible light and ultrasonic irradiation. The synergistic effect of the greater surface area and catalytic activities of the composite catalysts was examined in terms of the strong adsorption ability and interphase interaction by comparing the different amounts and roles of CNTs in the catalysts.

  1. A novel bio-degradable polymer stabilized Ag/TiO2 nanocomposites and their catalytic activity on reduction of methylene blue under natural sun light.

    PubMed

    Geetha, D; Kavitha, S; Ramesh, P S

    2015-11-01

    In the present work we defined a novel method of TiO2 doped silver nanocomposite synthesis and stabilization using bio-degradable polymers viz., chitosan (Cts) and polyethylene glycol (PEG). These polymers are used as reducing agents. The instant formation of AgNPs was analyzed by visual observation and UV-visible spectrophotometer. TiO2 nanoparticles doped at different concentrations viz., 0.03, 0.06 and 0.09mM on PEG/Cts stabilized silver (0.04wt%) were successfully synthesized. This study presents a simple route for the in situ synthesis of both metal and polymer confined within the nanomaterial, producing ternary hybrid inorganic-organic nanomaterials. The results reveal that they have higher photocatalytic efficiencies under natural sun light. The synthesized TiO2 doped Ag nanocomposites (NCs) were characterized by SEM/EDS, TEM, XRD, FTIR and DLS with zeta potential. The stability of Ag/TiO2 nanocomposite is due to the high negative values of zeta potential and capping of constituents present in the biodegradable polymer which is evident from zeta potential and FT-IR studies. The XRD and EDS pattern of synthesized Ag/TiO2 NCs showed their crystalline structure, with face centered cubic geometry oriented in (111) plane. AFM and DLS studies revealed that the diameter of stable Ag/TiO2 NCs was approximately 35nm. Moreover the catalytic activity of synthesize Ag/TiO2 NCs in the reduction of methylene blue was studied by UV-visible spectrophotometer. The synthesized Ag/TiO2 NCs are observed to have a good catalytic activity on the reduction of methylene blue by bio-degradable which is confirmed by the decrease in absorbance maximum value of methylene blue with respect to time using UV-vis spectrophotometer. The significant enhancement in the photocatalytic activity of Ag/TiO2 nanocomposites under sun light irradiation can be ascribed to the effect of noble metal Ag by acting as electron traps in TiO2 band gap.

  2. Ni/Ti layered double hydroxide: synthesis, characterization and application as a photocatalyst for visible light degradation of aqueous methylene blue.

    PubMed

    Roy Chowdhury, Priyadarshi; Bhattacharyya, Krishna G

    2015-04-21

    Visible light responsive 2 : 1 Ni/Ti layered double hydroxide (LDH) was synthesized by a single step hydrothermal route using commercially available Ni(NO3)2·6H2O, TiCl4 and urea. The material exhibited significant absorption in the visible range with a very narrow band gap (2.68 eV). This could be attributed to structural defects as confirmed by diffuse reflectance spectroscopy (DRS), photoluminescence (PL), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) measurements. FT-IR, TGA, DTA, DSC, HR-TEM and SEM-EDX measurements yielded information about structural aspects, thermal stability and surface morphology. Surface and pore characteristics of the material were obtained from the BET isotherm for N2 adsorption at 77 K. Zeta potential measurements were used to characterize the electrical properties of the surface while XPS revealed changes in surface states and oxygen deficiencies. The material was found to be an excellent photocatalyst for the degradation of aqueous methylene blue in visible light. The photocatalytic properties of the material were explained on the basis of the narrow band gap, the high surface area and the presence of surface defects. The photocatalytic activity improved in alkaline media [pH 11.0, catalyst load 15 mg in 200 ml dye solution, dye concentration 1 × 10(-6) M (= 0.3198 mg L(-1))] due to the electrostatic attractions between the dye cations and the negative charges on the Ni/Ti LDH surface. The catalytic activity was found to be higher than the common commercial catalysts like ZnO, ZnS, NiO, TiO2 and Degussa P25. The catalytic activity was retained even after five methylene blue degradation cycles, demonstrating that the LDH could be an important addition to the field of wastewater treatment.

  3. Featured Molecules: Ascorbic Acid and Methylene Blue

    NASA Astrophysics Data System (ADS)

    Coleman, William F.; Wildman, Randall J.

    2003-05-01

    The WebWare molecules of the month for May are featured in several articles in this issue. "Arsenic: Not So Evil After All?" discusses the pharmaceutical uses of methylene blue and its development as the first synthetic drug used against a specific disease. The JCE Classroom Activity "Out of the Blue" and the article "Greening the Blue Bottle" feature methylene blue and ascorbic acid as two key ingredients in the formulation of the blue bottle. You can also see a colorful example of these two molecules in action on the cover. "Sailing on the 'C': A Vitamin Titration with a Twist" describes an experiment to determine the vitamin C (ascorbic acid) content of citrus fruits and challenges students, as eighteenth-century sea captains, to decide the best fruit to take on a long voyage. Fully manipulable (Chime) versions of these and other molecules are available at Only@JCE Online.

  4. Facile synthesis of novel CaFe2O4/g-C3N4 nanocomposites for degradation of methylene blue under visible-light irradiation.

    PubMed

    Vadivel, S; Maruthamani, D; Habibi-Yangjeh, A; Paul, Bappi; Dhar, Siddhartha Sankar; Selvam, Kaliyamoorthy

    2016-10-15

    Hybrid organic/inorganic nanocomposites comprised of calcium ferrite (CaFe2O4) and graphitic carbon nitride (g-C3N4) were prepared via a simple two-step process. The hybridized CaFe2O4/g-C3N4 heterostructure was characterized by a variety of techniques, including X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy, electrochemical impedance spectroscopy (EIS), and photoelectrochemical studies. Photocatalytic activity of the prepared samples was evaluated against degradation of methylene blue (MB) under visible-light irradiation. The photocatalytic activity of CaFe2O4 30%/g-C3N4 nanocomposite, as optimum photocatalyst, for degradation of MB was superior to the pure CaFe2O4 and g-C3N4 samples. It was demonstrated that the photogenerated holes and superoxide ion radicals were the two main reactive species towards the photocatalytic degradation of MB over the nanocomposite. Based on the experimental results, a possible photocatalytic mechanism for the MB degradation over the nanocomposite was proposed. This work may provide some inspiration for the fabrication of spinel ferrites with efficient photocatalytic performance. PMID:27421115

  5. Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation.

    PubMed

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Perumal, Suguna; Karthikeyan, Dhanapalan; Lee, Yong Rok

    2016-09-01

    Zinc oxide nanoparticles decorated graphene oxide (ZnO@GO) composite was synthesized by simple solvothermal method where zinc oxide (ZnO) nanoparticles and graphene oxide (GO) were synthesized via simple thermal oxidation and Hummers method, respectively. The obtained materials were thoroughly characterized by various physico-chemical techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Raman spectrum shows the intensity of D to G value was close to one which confirms the obtained GO and ZnO@GO composite possesses moderate graphitization. TEM images shows the ZnO nanoparticles mean size of 15±5nm were dispersed over the wrinkled graphene layers. The photocatalytic performance of ZnO@GO composite on degradation of methylene blue (MB) is investigated and the results show that the GO plays an important role in the enhancement of photocatalytic performance. The synthesized ZnO@GO composite achieves a maximum degradation efficiency of 98.5% in a neutral solution under UV-light irradiation for 15min as compared with pure ZnO (degradation efficiency is 49% after 60min of irradiation) due to the increased light absorption, the reduced charge recombination with the introduction of GO. Moreover, the resulting ZnO@GO composite possesses excellent degradation efficiency as compared to ZnO nanoparticles alone on MB.

  6. Adsorption thermodynamics of Methylene Blue onto bentonite.

    PubMed

    Hong, Song; Wen, Cheng; He, Jing; Gan, Fuxing; Ho, Yuh-Shan

    2009-08-15

    The effect of temperature on the equilibrium adsorption of Methylene Blue dye from aqueous solution using bentonite was investigated. The equilibrium adsorption data were analyzed using three widely applied isotherms: Langmuir, Freundlich, and Redlich-Peterson. A non-linear method was used for comparing the best fit of the isotherms. Best fit was found to be Redlich-Peterson isotherm. Thermodynamic parameters, such as DeltaG degrees, DeltaH degrees, and DeltaS degrees were calculated using adsorption equilibrium constant obtained from the Langmuir isotherm. Results suggested that the Methylene Blue adsorption on bentonite was a spontaneous and endothermic process.

  7. Severe anaphylactic shock with methylene blue instillation.

    PubMed

    Dewachter, Pascale; Mouton-Faivre, Claudie; Tréchot, Philippe; Lleu, Jean-Claude; Mertes, Paul Michel

    2005-07-01

    We report a documented severe immunoglobulin E-mediated hypersensitivity reaction associated with use of 1% methylene blue for detection of tubal permeability occurring during general anesthesia. Clinical symptoms, biological assessment results, and cutaneous test positivity confirmed an anaphylactic reaction to methylene blue. This case report confirms the need for systematic allergological investigation of all drugs and substances administered during the perioperative period in the event of a hypersensitivity reaction occurring during anesthesia. Anesthesiologists should be aware of the possibility of hypersensitivity reactions involving any drug or substance used during surgery.

  8. Hierarchical flower-like Co3-xFexO4 ferrite hollow spheres: facile synthesis and catalysis in the degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Hao, Jinhui; Yang, Wenshu; Zhang, Zhe; Pan, Shunhao; Lu, Baoping; Ke, Xi; Zhang, Bailin; Tang, Jilin

    2013-03-01

    A facile method is proposed for the synthesis of three-dimensional (3D) flower-like Co3-xFexO4 ferrite (CF) hollow spheres, using SiO2@FeOOH as precursor. The CF hollow spheres are efficient for the catalytic degradation of methylene blue (MB) in the presence of H2O2 at 80 °C. The obtained CF hollow spheres were characterized using transmission electron microscopy, field emission scanning electron microscopy, X-ray diffraction, X-ray photo-electron spectroscopy, and N2 adsorption-desorption isotherm measurements. The formation of 3D hierarchical flower-like superstructure was influenced by the relative amount of urea used. As the mole ratio of CoCl2 and urea decreased, the structure of the products was tailored from yolk-like spheres to hollow spheres with different sized void interiors. Moreover, N2 adsorption-desorption isotherm analysis showed that the CF hollow spheres have a large specific surface area (163 m2 g-1) which provided more activity sites. The CF hollow spheres can catalyze the oxidation of MB efficiently. These results indicate that the designed CF hollow spheres exhibit promising capability for the degradation of dyes.A facile method is proposed for the synthesis of three-dimensional (3D) flower-like Co3-xFexO4 ferrite (CF) hollow spheres, using SiO2@FeOOH as precursor. The CF hollow spheres are efficient for the catalytic degradation of methylene blue (MB) in the presence of H2O2 at 80 °C. The obtained CF hollow spheres were characterized using transmission electron microscopy, field emission scanning electron microscopy, X-ray diffraction, X-ray photo-electron spectroscopy, and N2 adsorption-desorption isotherm measurements. The formation of 3D hierarchical flower-like superstructure was influenced by the relative amount of urea used. As the mole ratio of CoCl2 and urea decreased, the structure of the products was tailored from yolk-like spheres to hollow spheres with different sized void interiors. Moreover, N2 adsorption-desorption isotherm

  9. Methylene Blue Causing Serotonin Syndrome Following Cystocele Repair.

    PubMed

    Kapadia, Kailash; Cheung, Felix; Lee, Wai; Thalappillil, Richard; Florence, F Barry; Kim, Jason

    2016-11-01

    Methylene blue is an intravenously administered agent that may potentiate serotonin syndrome. The usage of methylene blue to evaluate ureters for injuries and patency during urological surgeries is recognized as common practice. However, there is no mention of serotonin syndrome caused by methylene blue in urological literature or for urological surgery. We report the first urological case in order to raise awareness of the risk for serotonin toxicity with utilizing methylene blue. PMID:27617215

  10. Cu2O nanoparticles decorated BiVO4 as an effective visible-light-driven p-n heterojunction photocatalyst for methylene blue degradation

    NASA Astrophysics Data System (ADS)

    Min, Shixiong; Wang, Fang; Jin, Zhiliang; Xu, Jing

    2014-10-01

    Bismuth vanadate (BiVO4) is a chemically stable and nontoxic semiconductor (SC) photocatalyst that can absorb visible light to degrade most of pollutants in aqueous solution due to suitable band-gap energy (ca. 2.4 eV), but it usually shows a low activity in its pristine form owing to poor charge-separation characteristics and the weak surface adsorption properties. In this paper, we demonstrated that the photocatalytic activity of BiVO4 can be greatly enhanced by surface modification with Cu2O nanoparticles through polyol reduction method. The modified photocatalysts (Cu2O/BiVO4) with proper loading amount of Cu2O (0.75 wt%) showed the highest photocatalytic degradation activity for methylene blue (MB) degradation with the pseudo-first-order rate constant kapp and degradation efficiency two times higher than pristine BiVO4 under visible light and solar light irradiation. The characterizations of resulting photocatalysts revealed that decoration of Cu2O nanoparticles led to the formation of a p-n heterojunction at the contact interface of Cu2O and BiVO4, which narrowed the band gap of BiVO4 for extending the absorption range of visible light and promoted the charge transfer across interface for suppressing the recombination of photogenerated electron-hole pairs, thus improving the catalytic performance of photocatalysts. This work demonstrates that the structural integration of p-type Cu2O SC with n-type BiVO4 SC will be a new promising strategy to develop a high-efficient heterojunction photocatalyst for visible-light-driven degradation of pollutants.

  11. The organotin coordination polymer [(n-Bu3Sn)4Fe(CN)6H2O] as effective catalyst towards the oxidative degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Etaiw, S. E. H.; Saleh, Dalia I.

    2014-01-01

    The structure of the supramolecular coordination polymer SCP 1; [(n-Bu3Sn)4Fe(CN)6H2O] consists of octahedral [Fe(CN)6]4- building blocks which are connected by the TBPY-5 configured n-Bu3Sn(CN..)2 fragments creating 3D-network structure. Fenton and photo-Fenton oxidative discoloration of Methylene Blue (MB) has been investigated by hydrogen peroxide catalyzed with the SCP 1. The reaction exhibited pseudo first-order kinetics with respect to each of MB and H2O2. The irradiation of the reaction with UV-light enhanced the rate of MB mineralization, Kobs = 0.76 h-1. Mineralization of MB was investigated by FT-IR spectra. Disodium salt of terephthalic acid photoluminescence probing technology was carried out to identify the reactive oxygen species. The different parameters that affect MB degradation rate were evaluated. Moreover, the efficiency of recycled the SCP 1 and the mechanism of degradation of MB dye were investigated.

  12. Enhanced photocatalytic degradation and adsorption of methylene blue via TiO2 nanocrystals supported on graphene-like bamboo charcoal

    NASA Astrophysics Data System (ADS)

    Wu, Fangjun; Liu, Wei; Qiu, Jielong; Li, Jinzhen; Zhou, Wuyi; Fang, Yueping; Zhang, Shuting; Li, Xin

    2015-12-01

    In this study, a novel efficient photocatalytic nanomaterial, TiO2 nanocrystals supported on graphene-like bamboo charcoal, has been successfully synthesized via a facile multi-step process. The structural and optical properties of the as-prepared samples were characterized by different techniques, such as X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis absorption spectroscopy, photoluminescence spectra (PL), Raman spectra and nitrogen adsorption-desorption isotherms. The photocatalytic activities under sunlight were evaluated by the degradation of methylene blue (MB). The results indicated that the ternary hybrid photocatalysts exhibited much higher photocatalytic activities toward the degradation of MB than the pure TiO2 under UV light irradiation. Moreover, the optimum weight content of graphene-like bamboo charcoal in composite photocatalysts was 6 wt% for achieving the maximum photocatalytic degradation rate. The apparent rate constant of the best sample (0.0509 min-1) was about 3 times greater than that of the commercial P25 (0.0170 min-1). The adsorption and degradation kinetics of MB can be described by the pseudo-first-order model and apparent first-order kinetics model, respectively. The highly enhanced photocatalytic performance was attributed to the synergetic effect of graphene-like carbon and bamboo charcoal, which lead to the promoted charge separation and reduction reaction of oxygen, and enhanced adsorption capacities of MB, respectively. The composite photocatalysts displayed a high photochemical stability under repeated irradiation. This work may provide new insights and understanding on the graphene-like bamboo charcoal as an excellent support for photocatalyst nanoparticles to enhance their visible-light photocatalytic activity.

  13. Effects of catalyst characters on the photocatalytic activity and process of NiO nanoparticles in the degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Wan, Xia; Yuan, Meng; Tie, Shao-long; Lan, Sheng

    2013-07-01

    By a hydrothermal method combining a subsequent calcination process, series of nano-scale NiO samples with different morphologies and sizes were synthesized and characterized. The effects of synthesis conditions including using different alkali reactants and being calcined at different temperatures on the characters of NiO samples have been investigated. In these characters the integrality of crystal structure and the crystallinity of NiO were found to become the determinative factors which affect the photocatalytic activity and process of NiO catalyst in the degradation of methylene blue (MB). The NiO sample which has a good crystallinity and small particle size (≤100 nm) possesses more shallowly trapped holes to react with chemisorbed oxhydryl OH- or H2O to generate OHrad radicals, exhibiting a high photocatalytic activity, furthermore, in this UV/NiO suspension the photocatalytic oxidation process of MB occurrs via the attack by OHrad radicals. The NiO sample which has a higher crystallinity and bigger particle size (>200 nm) possesses more deeply trapped holes (hvb+) to react directly with physisorbed organism, exhibiting a low photocatalytic activity, therefore, in this system the MB is oxidized by direct reacting with holes (hvb+).

  14. Porous FeOx/BiVO4-deltaS0.08: highly efficient photocatalysts for the degradation of methylene blue under visible-light illumination.

    PubMed

    Zhao, Zhenxuan; Dai, Hongxing; Deng, Jiguang; Liu, Yuxi; Wang, Yuan; Li, Xinwei; Bai, Guangmei; Gao, Baozu; Au, Chak Tong

    2013-10-01

    Porous S-doped bismuth vanadate with an olive-like morphology and its supported iron oxide (y wt.% FeOx/BiVO4-deltaS0.08, y = 0.06, 0.76, and 1.40) photocatalysts were fabricated using the dodecylamine-assisted alcohol-hydrothermal and incipient wetness impregnation methods, respectively. It is shown that the y wt.% FeOx/BiVO4-deltaS0.08 photocatalysts contained a monoclinic scheetlite BiVO4 phase with a porous olive-like morphology, a surface area of 8.8-9.2 m2/g, and a bandgap energy of 2.38-2.42 eV. There was co-presence of surface Bi5+, Bi3+, V5+, V3+, Fe3+, and Fe2+ species in y wt.% FeOx/BiVO4-deltaS0.08. The 1.40 wt.% FeOx/BiVO4-deltaS0.08 sample performed the best for Methylene Blue degradation under visible-light illumination. The photocatalytic mechanism was also discussed. We believe that the sulfur and FeOx co-doping, higher oxygen adspecies concentration, and lower bandgap energy were responsible for the excellent visible-light-driven catalytic activity of 1.40 wt.% FeOx/BiVO4-deltaS0.08. PMID:24494502

  15. A facile one-pot hydrothermal synthesis of β-MnO{sub 2} nanopincers and their catalytic degradation of methylene blue

    SciTech Connect

    Cheng, Gao; Yu, Lin Lin, Ting; Yang, Runnong; Sun, Ming; Lan, Bang; Yang, Lili; Deng, Fangze

    2014-09-15

    Branched β-MnO{sub 2} bipods with novel nanopincer morphology were prepared by a facile one-pot hydrothermal method via a redox reaction between NaClO{sub 3} and MnSO{sub 4} in sulfuric acid solution without using any surfactants or templates. The products were characterized in detail by various techniques including X-ray powder diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, surface area analyzer, field emission scanning electron microscopy and transmission electron microscopy. Results show that the obtained β-MnO{sub 2} nanopincers consist of two sharp nanorods with a diameter of 100–200 nm and a length of 1–2 μm. The concentration of H{sub 2}SO{sub 4} solution plays an important role in controlling the crystal phase and morphology of the final product. A possible formation mechanism for the β-MnO{sub 2} nanopincers was proposed. Moreover, these β-MnO{sub 2} nanostructures exhibited better catalytic performance than the commercial MnO{sub 2} particles to decompose methyl blue (MB) in the presence of H{sub 2}O{sub 2}. - Graphical abstract: Branched β-MnO{sub 2} bipods with novel nanopincer morphology were prepared by a facile one-pot hydrothermal method through oxidizing MnSO{sub 4} with NaClO{sub 3} in H2SO{sub 4} condition without using any surfactants or templates. - Highlights: {sup •} Branched β-MnO{sub 2} nanopincers were prepared by a facile one-pot hydrothermal method. {sup •} Morphology and crystal phase of MnO{sub 2} were controlled by the H{sub 2}SO{sub 4} concentration. {sup •} A possible formation mechanism for the obtained β-MnO{sub 2} nanopincers was proposed. {sup •} The products showed great catalytic performance in degradation of methylene blue.

  16. Metachromasy as an indicator of photostabilization of methylene blue adsorbed to clays and minerals.

    PubMed

    Samuels, Maya; Mor, Omer; Rytwo, Giora

    2013-04-01

    The influence of methylene blue adsorption to different clays on its photodegradation was studied. Methylene blue in solution was decomposed by sunlight in a zero-order process. Adsorption to some clay minerals (sepiolite and vermiculite) and a zeolite (clinoptilolite) accelerated the degradation process, and converted it to a first-order reaction. On the other hand, adsorption to other clay minerals (palygorskite and montmorillonite) stabilized the dye and prevented its degradation. Interestingly, in the clay-dye complexes that exhibited stability, clear metachromasy of the adsorbed methylene blue occurred, whereas the effect was not observed in the clay-dye complexes that underwent photodegradation.

  17. Synthesis and properties of (Yb, N)-TiO{sub 2} photocatalyst for degradation of methylene blue (MB) under visible light irradiation

    SciTech Connect

    Zhang, J.; Xu, L.J.; Zhu, Z.Q.; Liu, Q.J.

    2015-10-15

    Highlights: • The (Yb, N)-TiO{sub 2} nanoparticles were prepared and characterized. • The spectrum absorption region of (Yb, N)-TiO{sub 2} is red-shifted to visible light. • The recombination of the photo-generated electron–hole pairs of (Yb, N)-TiO{sub 2} is suppressed. • The photocatalytic activity of (Yb, N)-TiO{sub 2} is more higher than that of TiO{sub 2}-P25, N-TiO{sub 2} and the Yb-TiO{sub 2}. - Abstract: (Yb, N)-TiO{sub 2} photocatalyst has been synthesized by sol–gel method combined with microwave chemical synthesis. Also, the efficiency of the (Yb, N)-TiO{sub 2} as a photocatalyst for the degradation of methylene blue (MB) using visible light irradiation has been evaluated. The prepared samples were characterized by XRD, TEM, XPS, UV–vis-DRS and PL. The results show that the (Yb, N)-TiO{sub 2} photocatalyst has the anatase TiO{sub 2} crystalline phase. The TEM micrograph demonstrated that the average particle size of the sample was about 12 nm. The band-gap energy absorption edge shifted to longer wavelength as compared to commercial TiO{sub 2}-P25, N-TiO{sub 2} and the Yb-TiO{sub 2} prepared by our group. Results of degradation revealed that the (Yb, N)-TiO{sub 2} has shown much more higher photocatalytic activity than that of the TiO{sub 2}-P25, the N-TiO{sub 2} and the Yb-TiO{sub 2} under the visible light.

  18. Nano-Titania Photocatalyst Loaded on W-MCM-41 Support and Its Highly Efficient Degradation of Methylene Blue

    NASA Astrophysics Data System (ADS)

    Shankar, H.; Saravanan, R.; Narayanan, V.; Stephen, A.

    2011-07-01

    Most of the azo dyes produced in textile, printing, paper manufacturing, pulp processing and pharmaceutical industries contain different organic contaminants. These dyes can enter the body through ingestion and the high content in living systems can prove to be carcinogenic. Therefore photocatalytic degradation of such toxic organic compounds in water, in the presence of semiconductor powders has received much attention over the last two decades. Nanocrystalline titanium dioxide, TiO2, is a well studied and commonly used material for photocatalytic applications. However, the control of particle size, monodispersity, large catalytic surface for sufficient adsorption of organic pollutants, recovery and recycle of TiO2 nanoparticles are challenging tasks. Hence in the present study, titania was introduced into the nanopores (2-10 nm size) of MCM-41 to produce stable nanoparticles of uniform size and shape. Further, in order to lengthen the life time of the excited electrons/holes during photoreaction, tungsten atoms were incorporated in to the MCM-41 silica matrix in addition to titania loading.

  19. Visible light photo catalytic inactivation of bacteria and photo degradation of methylene blue with Ag/TiO2 nanocomposite prepared by a novel method.

    PubMed

    Tahir, Kamran; Ahmad, Aftab; Li, Baoshan; Nazir, Sadia; Khan, Arif Ullah; Nasir, Tabassum; Khan, Zia Ul Haq; Naz, Rubina; Raza, Muslim

    2016-09-01

    Water purification is one of the worldwide problem and most of the conventional methods are associated with a number of drawbacks. Therefore it is the need of the day to develop new methods and materials to overcome the problem of water purification. In this research work we present a simple and green approach to synthesize silver decorated titanium dioxide (Ag/TiO2) nanocomposite with an efficient photo catalytic activities. Phytochemicals of the Cestrum nocturnum leaf extract were used to synthesize silver nanoparticles (AgNPs), Titanium dioxide (TiO2) and Ag/TiO2 nanocomposite. To confirm the formation, crystal structure, particle size and shape of green synthesized nanoparticles and nanocomposite, they were characterized by UV-visible spectroscopy (UV-vis), X-ray diffraction spectroscopy (XRD), high resolution transmission electron microscopy (HRTEM), Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The AgNPs, TiO2 and Ag/TiO2 were evaluated for photo degradation of methylene blue (MB) and photo inhibition of Bacteria. The bio-synthesized Ag/TiO2 nanocomposite was observed to have strong catalytic activities for photo reduction of MB and photo inactivation of bacteria as compared to bare AgNPs and TiO2. In the presence of Ag/TiO2, 90% of MB was degraded only in 40min of irradiation. Alternatively the bare AgNPs and TiO2 degraded less than 30% and 80% respectively of MB even in more than 100min of irradiation. Similarly the Ag/TiO2 has very strong photo inhibition efficiency towards Escherichia coli and Pseudomonas aeruginosa. The zone of inhibition of irradiated Ag/TiO2 nanocomposites against E. coli and P. aeruginosa was 19mm and 17mm respectively which was two times higher than in dark. These promising photocatalytic activities of nanocomposite may be due to the highly decorated AgNPs over the surface of TiO2.

  20. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine.

    PubMed

    Pakavathkumar, Prateep; Sharma, Gyanesh; Kaushal, Vikas; Foveau, Bénédicte; LeBlanc, Andrea C

    2015-09-24

    Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases.

  1. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine

    PubMed Central

    Pakavathkumar, Prateep; Sharma, Gyanesh; Kaushal, Vikas; Foveau, Bénédicte; LeBlanc, Andrea C.

    2015-01-01

    Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases. PMID:26400108

  2. Prophylaxis and reversal of ifosfamide encephalopathy with methylene-blue.

    PubMed

    Küpfer, A; Aeschlimann, C; Wermuth, B; Cerny, T

    1994-03-26

    The antineoplastic ifosfamide produces dose-dependent signs of neurotoxicity. After ifosfamide overdose in a patient, we found excessive urinary excretion of glutaric acid and sarcosine, which is compatible with glutaric aciduria type II, a defect in mitochondrial fatty acid oxidation that results from defective electron transfer to flavoproteins. We therefore used the electron-accepting drug methylene-blue as an antidote for ifosfamide encephalopathy. In one patient, ifosfamide neurotoxicity was rapidly reversed by methylene-blue 50 mg intravenously. In another patient with previous episodes of ifosfamide encephalopathy, methylene-blue was administered orally prophylactically. No symptoms of neurotoxicity were noted.

  3. Methylene blue treatment in experimental ischemic stroke: a mini review

    PubMed Central

    Jiang, Zhao; Duong, Timothy Q

    2016-01-01

    Stroke is a leading cause of death and long-term disability. Methylene blue, a drug grandfathered by the Food and Drug Administration with a long history of safe usage in humans for treating methemoglobinemia and cyanide poisoning, has recently been shown to be neuroprotective in neurodegenerative diseases and brain injuries. The goal of this paper is to review studies on methylene blue in experimental stroke models. PMID:27042692

  4. Thoracoscopic resection with intraoperative use of methylene blue to localize mediastinal parathyroid adenomas.

    PubMed

    Adachi, Yoshin; Nakamura, Hiroshige; Taniguchi, Yuji; Miwa, Ken; Fujioka, Shinji; Haruki, Tomohiro

    2012-03-01

    We report a case of thoracoscopic resection of mediastinal parathyroid adenomas using methylene blue to localize the tumors during the operation. After methylene blue 4 mg/kg was injected intravenously, we easily identified methylene blue-stained parathyroid glands and successfully resected them with sufficient surgical margins. The use of methylene blue for detection of parathyroid adenoma is a useful technique.

  5. Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue

    PubMed Central

    Rojas, Julio C.; Bruchey, Aleksandra K.; Gonzalez-Lima, F.

    2011-01-01

    This paper provides the first review of the memory-enhancing and neuroprotective metabolic mechanisms of action of methylene blue in vivo. These mechanisms have important implications as a new neurobiological approach to improve normal memory and to treat memory impairment and neurodegeneration associated with mitochondrial dysfunction. Methylene blue’s action is unique because its neurobiological effects are not determined by regular drug-receptor interactions or drug-response paradigms. Methylene blue shows a hormetic dose-response, with opposite effects at low and high doses. At low doses, methylene blue is an electron cycler in the mitochondrial electron transport chain, with unparalleled antioxidant and cell respiration-enhancing properties that affect the function of the nervous system in a versatile manner. A major role of the respiratory enzyme cytochrome oxidase on the memory-enhancing effects of methylene blue is supported by available data. The memory-enhancing effects have been associated with improvement of memory consolidation in a network-specific and use-dependent fashion. In addition, low doses of methylene blue have also been used for neuroprotection against mitochondrial dysfunction in humans and experimental models of disease. The unique auto-oxidizing property of methylene blue and its pleiotropic effects on a number of tissue oxidases explain its potent neuroprotective effects at low doses. The evidence reviewed supports a mechanistic role of low-dose methylene blue as a promising and safe intervention for improving memory and for the treatment of acute and chronic conditions characterized by increased oxidative stress, neurodegeneration and memory impairment. PMID:22067440

  6. Layer structured Na2Ni(MoO4)2 particles as a visible-light-driven photocatalyst for degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Lu, Yuting; Chen, Luyang; Huang, Yanlin; Chen, Cuili; Kim, Sun Il; Seo, Hyo Jin

    2015-03-01

    A new visible-light-driven photocatalyst of Na2Ni(MoO4)2 particle was prepared by the modified Pechini method. The crystal structure was measured by X-ray diffraction (XRD) and the structural refinement. The sample was investigated by scanning electron microscope (SEM), transmission electron microscopy (TEM), and UV-vis absorption spectrum measurements. The average size of Na2Ni(MoO4)2 particle is about 180 nm. Na2Ni(MoO4)2 particle have an efficient optical absorption in the UV-visible light wavelength region with a direct allowed electronic transition of 2.06 eV. The effective photodegradation of methylene blue (MB) dye was demonstrated, which benefits from the special crystal structure of Na2Ni(MoO4)2 particle. This crystal lattice has two infinite chains formed by (Ni,Na)O6 and MoO4 polyhedra standing in lines alone with the inner wall of the hexagonal tunnels. This results in the efficient optical absorption and provides more chances for electron-hole separations, which can further react with dye molecules to oxidize the dye pollutant into non-toxic products.

  7. Hydrotalcite-TiO2 magnetic iron oxide intercalated with the anionic surfactant dodecylsulfate in the photocatalytic degradation of methylene blue dye.

    PubMed

    Miranda, Liany D L; Bellato, Carlos R; Milagres, Jaderson L; Moura, Luciano G; Mounteer, Ann H; de Almeida, Marciano F

    2015-06-01

    The new magnetic photocatalysts HT/TiO2/Fe and HT-DS/TiO2/Fe, modified with the anionic surfactant sodium dodecylsulfate (DS) were successfully synthesized in this work. Titanium dioxide (anatase) followed by iron oxide were deposited on the hydrotalcite support. Several catalyst samples were prepared with different amounts of titanium and iron. The photocatalysts were characterized by infrared and Raman spectroscopy, X-ray diffraction, scanning electron microscopy. Photocatalytic performance was analyzed by UV-visible radiation (filter cutoff, λ > 300 nm) of an aqueous solution (24 mg/L) of methylene blue (MB). The most efficient catalyst was obtained at an iron oxide:TiO2 molar ratio of 2:3. This catalyst showed high photocatalytic activity, removing 96% of the color and 61% of total organic carbon from the MB solution after 120 min. It was easily removed from solution after use because of its magnetic properties. The reuse of the HT-DS/TiO2/Fe23 catalyst was viable and the catalyst was structurally stable for at least four consecutive photocatalytic cycles. PMID:25846003

  8. Preparation of reduced graphene oxide/meso-TiO2/AuNPs ternary composites and their visible-light-induced photocatalytic degradation n of methylene blue

    NASA Astrophysics Data System (ADS)

    Yang, Yongfang; Ma, Zheng; Xu, Lidong; Wang, Hefang; Fu, Nian

    2016-04-01

    Reduced graphene oxide/meso-TiO2/AuNPs (RGO/meso-TiO2/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO2/AuNPs under hydrothermal conditions. The structure and the morphology of the RGO/meso-TiO2/AuNPs materials were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The photocatalytic activity of RGO/meso-TiO2/AuNPs was evaluated by degradation of methyl blue (MB) under visible-light illumination. The ternary composites present an extended light absorption range, efficient charge separation properties, high adsorption ability for MB and high photocatalytic degradation activity of MB compared to the meso-TiO2 and meso-TiO2/AuNPs.

  9. Adsorption of methylene blue from aqueous solution by graphene.

    PubMed

    Liu, Tonghao; Li, Yanhui; Du, Qiuju; Sun, Jiankun; Jiao, Yuqin; Yang, Guangming; Wang, Zonghua; Xia, Yanzhi; Zhang, Wei; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai

    2012-02-01

    Graphene was prepared using a modified Hummers' method. The physico-chemical properties of graphene were characterized by TEM, BET specific surface area, FTIR, Raman and XRD measurements. The effect factors including pH, contact time, temperature and dosage on the adsorption properties of methylene blue onto graphene were investigated. The experimental data of isotherm followed the Langmuir isotherm model better than the Freundlich model. The maximum adsorption capacity obtained from Langmuir isotherm equation at 293 K was 153.85 mg/g, indicating graphene is a good adsorbent for the adsorption of MB. The kinetic study illustrated that the adsorption of methylene blue onto graphene fit the pseudo second-order model. The thermodynamic parameters indicated that the adsorption of methylene blue onto graphene was an endothermic and spontaneous process.

  10. A novel P-doped g-C3N4/Zn0.8Cd0.2S composite photocatalyst for degradation of methylene blue under simulated sunlight

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Li, Naixu; Zhou, Jiancheng

    2016-01-01

    P-doped g-C3N4/Zn0.8Cd0.2S (PCN/ZS) heterostructures have been constructed via a two-pot method and investigated as catalysts for photocatalytic degradation of methylene blue (MB) under simulated sunlight. XRD, UV-vis spectrometry, FT-IR, PL, TEM, and EDS were used to provide structure information of the as-prepared samples involving the formation of the ZS solid solution, the existence of the heterostructure between PCN and ZS, the graphite-like structure of PCN and successful incorporation of P into the framework of CN. The enhanced catalytic performance of PCN/ZS for the degradation of MB compared with pure PCN and ZS benefited from elevated light-harvesting property, favorable transport and separation efficiency of photoinduced charge carriers through the construction of the heterojunction originated from in situ growth of the ZS solid solution on PCN. The degradation efficiency (D) had a maximum of 91.3% with a given mass ratio of PCN to ZS (y = 0.5 wt%). h+ and rad O2- proved the main reactive species for MB degradation, based on which the possible reaction path was proposed.

  11. Borax methylene blue: a spectroscopic and staining study.

    PubMed

    Donaldson, P T; Russo, A; Reynolds, C; Lillie, R D

    1978-07-01

    Borax methylene blue is quite stable at room temperatures of 22-25 C. At 30 C polychroming is slow; during 50 days in a water bath at this temperature the absorption peak moves from 665 to 656 nm. At 35 C, the absorption peak reaches 660 nm in 7 days, 654 nm in 14. At 60 C polychroming is rapid, the absorption peak reaching 640-620 nm in 3 days. When the pH of the borax methylene blue solutions, normally about 9.0, is adjusted to pH 6.5, the absorption peak remains at 665 nm even when incubated at 60 C for extended periods. When used as a blood stain 0.4 ml borax methylene blue (1% methylene blue in 1% borax), 4 ml acetone, 2 ml borax-acid phosphate buffer to bring the solution to pH 6.5, and distilled water to make 40 ml, with 0.2 ml 1% eosin added just before using, an excellent Nocht-Giemsa type stain is achieved after 30 minutes staining. The material plasmodia P. falciparum, P. vivax, and P. berghei stain moderate blue with dark red chromatin and green to black pigment granules. The study confirms Malachowski's 1891 results and explains Gautier's 1896-98 failure to duplicate it.

  12. Extinction Memory Improvement by the Metabolic Enhancer Methylene Blue

    ERIC Educational Resources Information Center

    Gonzalez-Lima, F.; Bruchey, Aleksandra K.

    2004-01-01

    We investigated whether postextinction administration of methylene blue (MB) could enhance retention of an extinguished conditioned response. MB is a redox compound that at low doses elevates cytochrome oxidase activity, thereby improving brain energy production. Saline or MB (4 mg/kg intraperitoneally) were administered to rats for 5 d following…

  13. Methylene Blue-Ascorbic Acid: An Undergraduate Experiment in Kinetics.

    ERIC Educational Resources Information Center

    Snehalatha, K. C.; And Others

    1997-01-01

    Describes a laboratory exercise involving methylene blue and L-ascorbic acid in a simple clock reaction technique to illustrate the basic concepts of chemical kinetics. If stock solutions are supplied and each type of experiment takes no more than half an hour, the entire investigation can be completed in three practical sessions of three hours…

  14. γ-Fe{sub 2}O{sub 3} nanoparticles: An easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant

    SciTech Connect

    Dutta, Amit Kumar; Maji, Swarup Kumar; Adhikary, Bibhutosh

    2014-01-01

    Graphical abstract: - Highlights: • γ-Fe{sub 2}O{sub 3} NPs from a single-source precursor and characterized by XRD, TEM, UV–vis spectra. • The NPs were tested as effective photocatalyst toward degradation of RB and MB dyes. • The possible pathway of the photocatalytic decomposition process has been discussed. • The active species, OH·, was detected by TA photoluminescence probing techniques. - Abstract: γ-Fe{sub 2}O{sub 3} nanoparticles (NPs) were synthesized from a single-source precursor complex [Fe{sub 3}O(C{sub 6}H{sub 5}COO){sub 6}(H{sub 2}O){sub 3}]NO{sub 3} by a simple thermal decomposition process and have been characterized by X-ray diffraction analysis (XRD), transmission electron microscopy (TEM) and UV–vis spectroscopic techniques. The NPs were highly pure and well crystallized having hexagonal morphology with an average particle size of 35 nm. The prepared γ-Fe{sub 2}O{sub 3} (maghemite) NPs show effective photo-catalytic activity toward the degradation of rose bengal (RB) and methylene blue (MB) dyes under visible light irradiation and can easily be recoverable in the presence of magnetic field for successive re-uses. The possible photo-catalytic decomposition mechanism is discussed through the detection of hydroxyl radical (OH·) by terephthalic acid photo-luminescence probing technique.

  15. 21 CFR 500.27 - Methylene blue-containing drugs for use in animals.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Methylene blue-containing drugs for use in animals... Decisions § 500.27 Methylene blue-containing drugs for use in animals. (a) New information requires a re- evaluation of the status of drugs containing methylene blue (tetramethylthionine chloride) for oral use...

  16. 21 CFR 500.27 - Methylene blue-containing drugs for use in animals.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Methylene blue-containing drugs for use in animals... Decisions § 500.27 Methylene blue-containing drugs for use in animals. (a) New information requires a re- evaluation of the status of drugs containing methylene blue (tetramethylthionine chloride) for oral use...

  17. Heterogeneous photocatalysis of methylene blue over titanate nanotubes: effect of adsorption.

    PubMed

    Xiong, Lin; Sun, Weiling; Yang, Ye; Chen, Cheng; Ni, Jinren

    2011-04-01

    Titanate nanotubes were synthesized with hydrothermal reaction using TiO(2) and NaOH as the precursors and subsequent calcination at 400°C for 2h. The products were characterized with SEM and XRD. Adsorption and photocatalysis of methylene blue over titanate nanotubes and TiO(2) were investigated. The results indicated that titanate nanotubes exhibited a better photocatalytic degradation of methylene blue in a simultaneous adsorption and photodegradation system than that in equilibrium adsorption followed by a photodegradation system, whereas TiO(2) showed no significant differences in photocatalytic activity in the two systems. The methylene blue overall removal efficiency over TNTs in the first system even exceeded that over TiO(2). The different catalytic performances of titanate nanotubes in the two systems were tentatively attributed to different effects of adsorption of methylene blue, i.e., the promoting effect in the former and the inhibition effect in the latter. Decantation experiments showed that the titanate nanotube photocatalyst could be easily separated from the reaction medium by sedimentation. Thus titanate nanotubes with high sedimentation rates and concurrent adsorption represent a new catalyst system with a strong potential for commercial applications.

  18. Methylene blue adsorption on graphene oxide/calcium alginate composites.

    PubMed

    Li, Yanhui; Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Wang, Yonghao; Wu, Shaoling; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua

    2013-06-01

    Graphene oxide has been used as an adsorbent in wastewater treatment. However, the dispersibility in aqueous solution and the biotoxicity to human cells of graphene oxide limits its practical application in environmental protection. In this research, a novel environmental friendly adsorbent, calcium alginate immobilized graphene oxide composites was prepared. The effects of pH, contact time, temperature and dosage on the adsorption properties of methylene blue onto calcium alginate immobilized graphene oxide composites were investigated. The equilibrium adsorption data were described by the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 181.81 mg/g. The pseudo-first order, pseudo-second order, and intraparticle diffusion equation were used to evaluate the kinetic data. Thermodynamic analysis of equilibriums indicated that the adsorption reaction of methylene blue onto calcium alginate immobilized graphene oxide composites was exothermic and spontaneous in nature.

  19. Spinel NixZn1-xFe2O4 (0.0 ≤ x ≤ 1.0) nano-photocatalysts: Synthesis, characterization and photocatalytic degradation of methylene blue dye

    NASA Astrophysics Data System (ADS)

    Padmapriya, G.; Manikandan, A.; Krishnasamy, V.; Jaganathan, Saravana Kumar; Antony, S. Arul

    2016-09-01

    Spinel NixZn1-xFe2O4 (x = 0.0 to 1.0) nanoparticles were successfully synthesized by a simple microwave combustion method (MCM) using metal nitrates as raw materials and glycine as the fuel. The structural, morphological and opto-magnetic properties of the spinel NixZn1-xFe2O4 ferrites were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray (EDX) spectroscopy, high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED) pattern, UV-Visible diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). Powder XRD, and EDX analysis was confirmed the formation of pure phase of spinel ferrites. HR-SEM and HR-TEM analysis was confirmed the formation of sphere like-particle morphology of the samples with smaller agglomeration. VSM analysis clearly showed the superparamagnetic and ferromagnetic nature of the samples. The Ms value is 3.851 emu/g for undoped ZnFe2O4 sample and it increased with increase in Ni content. Photo-catalytic degradation (PCD) of methylene blue (MB) dye using the samples were carried out and observed good PCD results.

  20. [Adsorption of methylene blue from water by the biochars generated from crop residues].

    PubMed

    Xu, Ren-Kou; Zhao, An-Zhen; Xiao, Shuang-Cheng; Yuan, Jin-Hua

    2012-01-01

    Biochars were prepared from straws of rice, peanut and soybean and rice hull using a low temperature pyrolysis method and adsorption of methylene blue by these biochars were investigated with batch and leaching experiments. Results indicated that biochars have high adsorption capacity for methylene blue and followed the order: rice straw char > soybean straw char > peanut straw char > rice hull char. This order is generally consistent with the amount of negative charge and specific surface area of these biochars. While methylene blue was mainly adsorbed specifically by the biochars, because the adsorption of methylene blue increased with the increase of ionic strength and the adsorption led to the shift of zeta potential of biochar particles to positive value direction. Langmuir equation fitted the adsorption isotherms well and can be used to describe the adsorption behaviors of methylene blue by the biochars. The maximum adsorption capacity of methylene blue predicted by langmuir equation was 196.1, 169.5, 129.9 and 89.3 mmol x kg(-1) for rice straw char, soybean straw char, peanut straw char and rice hull char, respectively. Leaching experiments show that rice hull char of 156 g can remove methylene blue from 30 L water containing 0.3 mmol x L(-1) of methylene blue completely and the cumulative amount of methylene blue absorbed by the biochar reaches 57.7 mmol x kg(-1). The biochars can be used as efficient adsorbents to remove methylene blue from waste water of dye.

  1. [Adsorption of methylene blue from water by the biochars generated from crop residues].

    PubMed

    Xu, Ren-Kou; Zhao, An-Zhen; Xiao, Shuang-Cheng; Yuan, Jin-Hua

    2012-01-01

    Biochars were prepared from straws of rice, peanut and soybean and rice hull using a low temperature pyrolysis method and adsorption of methylene blue by these biochars were investigated with batch and leaching experiments. Results indicated that biochars have high adsorption capacity for methylene blue and followed the order: rice straw char > soybean straw char > peanut straw char > rice hull char. This order is generally consistent with the amount of negative charge and specific surface area of these biochars. While methylene blue was mainly adsorbed specifically by the biochars, because the adsorption of methylene blue increased with the increase of ionic strength and the adsorption led to the shift of zeta potential of biochar particles to positive value direction. Langmuir equation fitted the adsorption isotherms well and can be used to describe the adsorption behaviors of methylene blue by the biochars. The maximum adsorption capacity of methylene blue predicted by langmuir equation was 196.1, 169.5, 129.9 and 89.3 mmol x kg(-1) for rice straw char, soybean straw char, peanut straw char and rice hull char, respectively. Leaching experiments show that rice hull char of 156 g can remove methylene blue from 30 L water containing 0.3 mmol x L(-1) of methylene blue completely and the cumulative amount of methylene blue absorbed by the biochar reaches 57.7 mmol x kg(-1). The biochars can be used as efficient adsorbents to remove methylene blue from waste water of dye. PMID:22452202

  2. Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system.

    PubMed

    Yang, Xiaoling; Chen, Wei; Huang, Jianfei; Zhou, Ying; Zhu, Yihua; Li, Chunzhong

    2015-05-22

    Herein, a ternary nanocomposite with TiO2 nanoparticles anchored on reduced graphene oxide (rGO)-encapsulated Fe3O4 spheres (Fe3O4@rGO@TiO2) is presented as a high efficient heterogeneous catalyst for photo-Fenton degradation of recalcitrant pollutants under neutral pH. Fe3O4@rGO@TiO2 was synthesized by depositing TiO2 nanoparticles on the surface of the Fe3O4 spheres wrapped by graphene oxide (GO) which was obtained by an electrostatic layer-by-layer method. This as-prepared catalyst reflected good ferromagnetism and superior stability which makes it convenient to be separated and recycled. Due to the synergic effects between the different components composed the catalyst, swift reduction of Fe(3+) can be achieved to regenerate Fe(2+). Fe3O4@rGO@TiO2 exhibited enhancing catalytic activity for the degradation of azo-dyes compared with Fe3O4, Fe3O4@SiO2@TiO2 or SiO2@rGO@TiO2, further conforming the rapid redox reaction between Fe(2+) and Fe(3+). All these merits indicate that the composite catalyst possesses great potential for visible-light driven destruction of organic compounds.

  3. Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system.

    PubMed

    Yang, Xiaoling; Chen, Wei; Huang, Jianfei; Zhou, Ying; Zhu, Yihua; Li, Chunzhong

    2015-01-01

    Herein, a ternary nanocomposite with TiO2 nanoparticles anchored on reduced graphene oxide (rGO)-encapsulated Fe3O4 spheres (Fe3O4@rGO@TiO2) is presented as a high efficient heterogeneous catalyst for photo-Fenton degradation of recalcitrant pollutants under neutral pH. Fe3O4@rGO@TiO2 was synthesized by depositing TiO2 nanoparticles on the surface of the Fe3O4 spheres wrapped by graphene oxide (GO) which was obtained by an electrostatic layer-by-layer method. This as-prepared catalyst reflected good ferromagnetism and superior stability which makes it convenient to be separated and recycled. Due to the synergic effects between the different components composed the catalyst, swift reduction of Fe(3+) can be achieved to regenerate Fe(2+). Fe3O4@rGO@TiO2 exhibited enhancing catalytic activity for the degradation of azo-dyes compared with Fe3O4, Fe3O4@SiO2@TiO2 or SiO2@rGO@TiO2, further conforming the rapid redox reaction between Fe(2+) and Fe(3+). All these merits indicate that the composite catalyst possesses great potential for visible-light driven destruction of organic compounds. PMID:26000975

  4. Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system

    PubMed Central

    Yang, Xiaoling; Chen, Wei; Huang, Jianfei; Zhou, Ying; Zhu, Yihua; Li, Chunzhong

    2015-01-01

    Herein, a ternary nanocomposite with TiO2 nanoparticles anchored on reduced graphene oxide (rGO)-encapsulated Fe3O4 spheres (Fe3O4@rGO@TiO2) is presented as a high efficient heterogeneous catalyst for photo-Fenton degradation of recalcitrant pollutants under neutral pH. Fe3O4@rGO@TiO2 was synthesized by depositing TiO2 nanoparticles on the surface of the Fe3O4 spheres wrapped by graphene oxide (GO) which was obtained by an electrostatic layer-by-layer method. This as-prepared catalyst reflected good ferromagnetism and superior stability which makes it convenient to be separated and recycled. Due to the synergic effects between the different components composed the catalyst, swift reduction of Fe3+ can be achieved to regenerate Fe2+. Fe3O4@rGO@TiO2 exhibited enhancing catalytic activity for the degradation of azo-dyes compared with Fe3O4, Fe3O4@SiO2@TiO2 or SiO2@rGO@TiO2, further conforming the rapid redox reaction between Fe2+ and Fe3+. All these merits indicate that the composite catalyst possesses great potential for visible-light driven destruction of organic compounds. PMID:26000975

  5. Photocatalytic degradation of methylene blue dye and magneto-optical studies of magnetically recyclable spinel NixMn1-xFe2O4 (x = 0.0-1.0) nanoparticles

    NASA Astrophysics Data System (ADS)

    Mathubala, G.; Manikandan, A.; Arul Antony, S.; Ramar, P.

    2016-06-01

    Nickel doped spinel manganese ferrite (NixMn1-xFe2O4: x = 0.0-1.0) nanoparticles were prepared successfully by a superficial microwave irradiation technique using urea as the fuel. Powder X-ray diffraction (XRD) analysis was recognized the configuration of single phase spinel structure of NixMn1-xFe2O4. Debye Sherrer's formula was used to calculate the average crystallite size of the samples, which were found in the range of 15-20 nm. High resolution scanning electron microscopy (HR-SEM) was used to analyze the surface morphology of the samples, which showed the particle like-morphology with smaller agglomeration, and it was also confirmed by high resolution transmission electron microscopy (HR-TEM). Energy dispersive X-ray (EDX) analysis confirmed the elemental composition, which also evidence for the formation of single pure phase. Microwave heating method produced well crystalline nature of the products, which was confirmed by selected area electron diffraction (SAED) analysis. UV-Visible diffuse reflectance spectra (DRS) were used to calculate the energy band gap and the observed values are increased slightly from 2.05 eV to 2.44 eV with increasing the Ni-dapant. Magnetic characterization of the samples were analyzed by room temperature vibrating sample magnetometer (VSM) technique and the observed magnetization (Ms) values are decreased with increasing Ni content, due to the different magnetic moments of Mn2+ and Ni2+ cations. Photocatalytic degradation (PCD) of methylene blue dye was carried out by self designed photo-catalytic reactor. It was observed that PCD efficiency is increased with increase in concentration of Ni and the sample Ni0.6Mn0.4Fe2O4 shows better photocatalytic activity (96.73%) than other samples.

  6. Adsorption of Methylene Blue, Bromophenol Blue, and Coomassie Brilliant Blue by α-chitin nanoparticles.

    PubMed

    Dhananasekaran, Solairaj; Palanivel, Rameshthangam; Pappu, Srinivasan

    2016-01-01

    Expelling of dyestuff into water resource system causes major thread to the environment. Adsorption is the cost effective and potential method to remove the dyes from the effluents. Therefore, an attempt was made to study the adsorption of dyestuff (Methylene Blue (MB), Bromophenol Blue (BPB) and Coomassie Brilliant Blue (CBB)) by α-chitin nanoparticles (CNP) prepared from Penaeus monodon (Fabricius, 1798) shell waste. On contrary to the most recognizable adsorption studies using chitin, this is the first study using unique nanoparticles of ⩽50 nm used for the dye adsorption process. The results showed that the adsorption process increased with increase in the concentration of CNP, contact time and temperature with the dyestuff, whereas the adsorption process decreased with increase in the initial dye concentration and strong acidic pH. The results from Fourier transform infrared (FTIR) spectroscopy confirmed that the interaction between dyestuff and CNP involved physical adsorption. The adsorption process obeys Langmuir isotherm (R (2) values were 0.992, 0.999 and 0.992 for MB, BPB and CBB, and RL value lies between 0 and 1 for all the three dyes) and pseudo second order kinetics (R (2) values were 0.996, 0.999 and 0.996 for MB, BPB and CBB) more effectively. The isotherm and kinetic models confirmed that CNP can be used as a suitable adsorbent material for the removal of dyestuff from effluents.

  7. Adsorption of Methylene Blue, Bromophenol Blue, and Coomassie Brilliant Blue by α-chitin nanoparticles

    PubMed Central

    Dhananasekaran, Solairaj; Palanivel, Rameshthangam; Pappu, Srinivasan

    2015-01-01

    Expelling of dyestuff into water resource system causes major thread to the environment. Adsorption is the cost effective and potential method to remove the dyes from the effluents. Therefore, an attempt was made to study the adsorption of dyestuff (Methylene Blue (MB), Bromophenol Blue (BPB) and Coomassie Brilliant Blue (CBB)) by α-chitin nanoparticles (CNP) prepared from Penaeus monodon (Fabricius, 1798) shell waste. On contrary to the most recognizable adsorption studies using chitin, this is the first study using unique nanoparticles of ⩽50 nm used for the dye adsorption process. The results showed that the adsorption process increased with increase in the concentration of CNP, contact time and temperature with the dyestuff, whereas the adsorption process decreased with increase in the initial dye concentration and strong acidic pH. The results from Fourier transform infrared (FTIR) spectroscopy confirmed that the interaction between dyestuff and CNP involved physical adsorption. The adsorption process obeys Langmuir isotherm (R2 values were 0.992, 0.999 and 0.992 for MB, BPB and CBB, and RL value lies between 0 and 1 for all the three dyes) and pseudo second order kinetics (R2 values were 0.996, 0.999 and 0.996 for MB, BPB and CBB) more effectively. The isotherm and kinetic models confirmed that CNP can be used as a suitable adsorbent material for the removal of dyestuff from effluents. PMID:26843977

  8. Removal of methylene blue from dye effluent using ageratum conyzoide leaf powder (ACLP)

    NASA Astrophysics Data System (ADS)

    Ezechi, Ezerie Henry; Kutty, Shamsul Rahman bin Mohamed; Malakahmad, Amirhossein; Isa, Mohamed Hasnain; Aminu, Nasiru; Salihi, Ibrahim Umar

    2015-07-01

    Methylene blue (MB), a common environmental pollutant discharged from dye effluents were removed from synthetic effluents in this study using ageratum conyzoide leaf powder. Effects of operating parameters such as pH, initial Methylene blue concentration, adsorbent weight and contact time were examined on methylene blue removal whereas stirring speed was constant at 100 rpm. Results show that low pH (3-4) had more Methylene blue removal than high pH. Methylene blue removal decreased when initial concentration was increased but increased when adsorbent weight was increased. Removal of Methylene blue by Ageratum conyzoide leaf powder was rapid and significantly above 80% in all initial concentrations examined. At optimum conditions of pH 3, 20 minutes contact time and adsorbent weight of 60 mg for Methylene blue initial concentration of 20 mg/L, 40 mg/L and 60 mg/L, Methylene blue removal of 84.7%, 83.9% and 81.2% were obtained respectively. Results suggest that Ageratum conyzoide leaf powder could be potential adsorbents for Methylene blue removal from dye effluents.

  9. A Reminder of Methylene Blue's Effectiveness in Treating Vasoplegic Syndrome after On-Pump Cardiac Surgery.

    PubMed

    Manghelli, Joshua; Brown, Lisa; Tadros, Hany B; Munfakh, Nabil A

    2015-10-01

    The inflammatory response induced by cardiopulmonary bypass decreases vascular tone, which in turn can lead to vasoplegic syndrome. Indeed the hypotension consequent to on-pump cardiac surgery often necessitates vasopressor and intravenous fluid support. Methylene blue counteracts vasoplegic syndrome by inhibiting the formation of nitric oxide. We report the use of methylene blue in a 75-year-old man who developed vasoplegic syndrome after cardiac surgery. After the administration of methylene blue, his hypotension improved to the extent that he could be weaned from vasopressors. The use of methylene blue should be considered in patients who develop hypotension refractory to standard treatment after cardiac surgery. PMID:26504450

  10. In Situ XANES Study of CuO/TiO2 Thin Films During Photodegradation of Methylene Blue

    NASA Astrophysics Data System (ADS)

    Hsiung, Tung Li; Wang, H. Paul; Wei, Yu-Ling

    2007-02-01

    Speciation of copper in the CuO/TiO2 thin film (synthesized by the doctor-blade deposition method) during photocatalytic decomposition of methylene blue has been studied by in situ X-ray absorption near-edge structural (XANES) spectroscopy. During the UV/VIS radiation (90 min), in the presence of methylene blue, a decrease of Cu(II) and an increases of Cu(0) and Cu(I) fractions in the CuO/TiO2 thin film are observed by in situ XANES. The r-space Fourier transformation EXAFS (extend X-ray absorption fine structural) spectra also show that the bond distance of Cu-O in the thin film is decreased by 0.03 Å during photocatalytic degradation of methylene blue.

  11. In Situ XANES Study of CuO/TiO2 Thin Films During Photodegradation of Methylene Blue

    SciTech Connect

    Hsiung Tungli; Wang, H. Paul; Wei Yuling

    2007-02-02

    Speciation of copper in the CuO/TiO2 thin film (synthesized by the doctor-blade deposition method) during photocatalytic decomposition of methylene blue has been studied by in situ X-ray absorption near-edge structural (XANES) spectroscopy. During the UV/VIS radiation (90 min), in the presence of methylene blue, a decrease of Cu(II) and an increases of Cu(0) and Cu(I) fractions in the CuO/TiO2 thin film are observed by in situ XANES. The r-space Fourier transformation EXAFS (extend X-ray absorption fine structural) spectra also show that the bond distance of Cu-O in the thin film is decreased by 0.03 A during photocatalytic degradation of methylene blue.

  12. Aminothienopyridazines and Methylene Blue Affect Tau Fibrillization via Cysteine Oxidation*

    PubMed Central

    Crowe, Alex; James, Michael J.; Lee, Virginia M.-Y.; Smith, Amos B.; Trojanowski, John Q.; Ballatore, Carlo; Brunden, Kurt R.

    2013-01-01

    Alzheimer disease and several other neurodegenerative disorders are characterized by the accumulation of intraneuronal fibrils comprised of the protein Tau. Tau is normally a soluble protein that stabilizes microtubules, with splice isoforms that contain either three (3-R) or four (4-R) microtubule binding repeats. The formation of Tau fibrils is thought to result in neuronal damage, and inhibitors of Tau fibrillization may hold promise as therapeutic agents. The process of Tau fibrillization can be replicated in vitro, and a number of small molecules have been identified that inhibit Tau fibril formation. However, little is known about how these molecules affect Tau fibrillization. Here, we examined the mechanism by which the previously described aminothieno pyridazine (ATPZ) series of compounds inhibit Tau fibrillization. Active ATPZs were found to promote the oxidation of the two cysteine residues within 4-R Tau by a redox cycling mechanism, resulting in the formation of a disulfide-containing compact monomer that was refractory to fibrillization. Moreover, the ATPZs facilitated intermolecular disulfide formation between 3-R Tau monomers, leading to dimers that were capable of fibrillization. The ATPZs also caused cysteine oxidation in molecules unrelated to Tau. Interestingly, methylene blue, an inhibitor of Tau fibrillization under evaluation in Alzheimer disease clinical trials, caused a similar oxidation of cysteines in Tau and other molecules. These findings reveal that the ATPZs and methylene blue act by a mechanism that may affect their viability as potential therapeutic agents. PMID:23443659

  13. Adsorption behavior of methylene blue on carbon nanotubes.

    PubMed

    Yao, Yunjin; Xu, Feifei; Chen, Ming; Xu, Zhongxiao; Zhu, Zhiwen

    2010-05-01

    The effect of temperature on the equilibrium adsorption of methylene blue dye from aqueous solution using carbon nanotubes was investigated. The equilibrium adsorption data were analyzed using two widely applied isotherms: Langmuir and Freundlich. The results revealed that Langmuir isotherm fit the experimental results well. Kinetic analyses were conducted using pseudo-first and second-order models and the intraparticle diffusion model. The regression results showed that the adsorption kinetics were more accurately represented by pseudo-second-order model. The activation energy of system (Ea) was calculated as 18.54 kJ/mol. Standard free energy changes (DeltaG(0)), standard enthalpy change (DeltaH(0)), and standard entropy change (DeltaS(0)) were calculated using adsorption equilibrium constants obtained from the Langmuir isotherm at different temperatures. All DeltaG(0) values were negative; the DeltaH(0) values and DeltaS(0) values of CNTs were 7.29 kJ/mol and 64.6 J/mol K, respectively. Results suggested that the methylene blue adsorption on CNTs was a spontaneous and endothermic process.

  14. Study of Methylene Blue adsorption on keratin nanofibrous membranes.

    PubMed

    Aluigi, A; Rombaldoni, F; Tonetti, C; Jannoke, L

    2014-03-15

    In this work, keratin nanofibrous membranes (mean diameter of about 220nm) were prepared by electrospinning and tested as adsorbents for Methylene Blue through batch adsorption tests. The adsorption capacity of the membranes was evaluated as a function of initial dye concentration, pH, adsorbent dosage, time and temperature. The adsorption capacity increased with increasing the initial dye concentration and pH, while it decreased with increasing the adsorbent dosage and temperature, indicating an exothermic process. The adsorption results indicated that the Langmuir isotherm fitted the experimental data better than the Freundlich and Temkin isotherm models. A mean free energy evaluated through the Dubinin-Radushkevich model of about 16kJmol(-1), indicated a chemisorption process which occurred by ion exchange. The kinetic data were found to fit the pseudo-second-order model better than the pseudo-first-order model. The obtained results suggest that keratin nanofibrous membranes could be promising candidates as dye adsorption filters.

  15. Sequestration of Methylene Blue into Polyelectrolyte Complex Coacervates.

    PubMed

    Zhao, Mengmeng; Zacharia, Nicole S

    2016-08-01

    Polyelectrolyte complex coacervation is a process that has been proposed as a model for protocell formation due to its ability to compartmentalize chemicals in solution without a membrane. During the liquid-liquid phase separation that results in water rich and polyelectrolyte rich phases, small molecules present in solution selectively partition to one phase over the other. This sequestration is based on relative affinities. Here, a study of the sequestration of methylene blue (MB) into the complex coacervate phase of three pairs of synthetic polyelectrolytes is presented; branched polyethylene imine with polyacrylic acid, polyvinyl sulfonate, or poly(4-styrenesulfonic acid). These materials are characterized with UV-vis, zeta potential measurements, and dynamic light scattering. The branched polyethylene imine/poly(4-styrenesulfonic acid) system is shown to have a significantly higher sequestration capacity for the MB as compared to either of the other two systems, based on π-π interactions which are not possible in the other systems. PMID:27336461

  16. Methylene blue adsorption on a DMPA lipid langmuir monolayer.

    PubMed

    Giner Casares, Juan José; Camacho, Luis; Martín-Romero, Maria Teresa; López Cascales, José Javier

    2010-07-12

    Adsorption of methylene blue (MB) onto a dimyristoylphosphatidic acid (DMPA) Langmuir air/water monolayer is studied by molecular dynamics (MD) simulations, UV reflection spectroscopy and surface potential measurements. The free-energy profile associated with MB transfer from water to the lipid monolayer shows two minima of -66 and -60 kJ mol(-1) for its solid and gas phase, respectively, corresponding to a spontaneous thermodynamic process. From the position of the free-energy minima, it is possible to predict the precise location of MB in the interior of the DMPA monolayer. Thus, MB is accommodated in the phosphoryl or carbonyl region of the DMPA Langmuir air/water interface, depending on the isomorphic state (solid or gas phase, respectively). Reorientation of MB, measured from the bulk solution to the interior of the lipid monolayer, passes from a random orientation in bulk solution to an orientation parallel to the surface of the lipid monolayer when MB is absorbed. PMID:20544777

  17. Methylene blue adsorption on a DMPA lipid langmuir monolayer.

    PubMed

    Giner Casares, Juan José; Camacho, Luis; Martín-Romero, Maria Teresa; López Cascales, José Javier

    2010-07-12

    Adsorption of methylene blue (MB) onto a dimyristoylphosphatidic acid (DMPA) Langmuir air/water monolayer is studied by molecular dynamics (MD) simulations, UV reflection spectroscopy and surface potential measurements. The free-energy profile associated with MB transfer from water to the lipid monolayer shows two minima of -66 and -60 kJ mol(-1) for its solid and gas phase, respectively, corresponding to a spontaneous thermodynamic process. From the position of the free-energy minima, it is possible to predict the precise location of MB in the interior of the DMPA monolayer. Thus, MB is accommodated in the phosphoryl or carbonyl region of the DMPA Langmuir air/water interface, depending on the isomorphic state (solid or gas phase, respectively). Reorientation of MB, measured from the bulk solution to the interior of the lipid monolayer, passes from a random orientation in bulk solution to an orientation parallel to the surface of the lipid monolayer when MB is absorbed.

  18. Methylene blue mediated laser therapy of maxillary sinusitis

    NASA Astrophysics Data System (ADS)

    Genina, E. A.; Bashkatov, A. N.; Chikina, E. E.; Knyazev, A. B.; Mareev, O. V.; Tuchin, V. V.

    2006-07-01

    The purpose of the present work is a clinical study of photodynamic therapy of maxillary sinusitis. 0.1%-Methylene Blue aqueous solution in combination with He-Ne laser irradiation (632.8 nm) have been used for treatment of maxillary sinus mucous of patients with acute and chronic maxillary sinusitis. The differences between the results of the treatment with dye and light versus treatment with a drug for every group of patients were statistically analyzed by Student’s t test. The efficacy of the photodynamic therapy was estimated with the use of the following criteria: the state of respiration, olfaction, duration of purulent discharge, reconstruction of transport function of ciliary epithelium, etc. The obtained results have shown that the photodynamic therapy is effective in comparison with conservative methods of treatment of the disease.

  19. Treatment of dilute methylene blue-containing wastewater by coupling sawdust adsorption and electrochemical regeneration.

    PubMed

    Bouaziz, I; Chiron, C; Abdelhedi, R; Savall, A; Groenen Serrano, K

    2014-01-01

    In the present work, the coupling of adsorption and electrochemical oxidation on a boron-doped diamond (BDD) electrode to treat solutions containing dyes is studied. This coupling may be convenient for the treatment of diluted pollutant that is limited by the low rate of electrooxidation due to mass-transfer limitation. A pre-concentration step by adsorption could minimize the design of the electrochemical reactor. The adsorbent chosen was mixed with softwood sawdust, and methylene blue was chosen as the model dye molecule. Isotherms of adsorption and kinetics were investigated as well as the effects of current density and regeneration time. The BDD electrochemical oxidation of methylene blue adsorbed onto sawdust led simultaneously to its degradation and sawdust regeneration for the next adsorption. It was observed that multiple adsorption and electrochemical regeneration cycles led to an enhancement of adsorption capacity of the sawdust. This study demonstrated that adsorption–electrochemical degradation coupling offers a promising approach for the efficient elimination of organic dyes from wastewater.

  20. ON THE NATURE OF THE DYE PENETRATING THE VACUOLE OF VALONIA FROM SOLUTIONS OF METHYLENE BLUE.

    PubMed

    Irwin, M

    1927-07-20

    When uninjured cells of Valonia are placed in methylene blue dissolved in sea water it is found, after 1 to 3 hours, that at pH 5.5 practically no dye penetrates, while at pH 9.5 more enters the vacuole. As the cells become injured more dye enters at pH 5.5, as well as at pH 9.5. No dye in reduced form is found in the sap of uninjured cells exposed from 1 to 3 hours to methylene blue in sea water at both pH values. When uninjured cells are placed in azure B solution, the rate of penetration of dye into the vacuole is found to increase with the rise in the pH value of the external dye solution. The partition coefficient of the dye between chloroform and sea water is higher at pH 9.5 than at pH 5.5 with both methylene blue and azure B. The color of the dye in chloroform absorbed from methylene blue or from azure B in sea water at pH 5.5 is blue, while it is reddish purple when absorbed from methylene blue and azure B at pH 9.5. Dry salt of methylene blue and azure B dissolved in chloroform appears blue. It is shown that chiefly azure B in form of free base is absorbed by chloroform from methylene blue or azure B dissolved in sea water at pH 9.5, but possibly a mixture of methylene blue and azure B in form of salt is absorbed from methylene blue at pH 5.5, and azure B in form of salt is absorbed from azure B in sea water at pH 5.5. Spectrophotometric analysis of the dye shows the following facts. 1. The dye which is absorbed by the cell wall from methylene blue solution is found to be chiefly methylene blue. 2. The dye which has penetrated from methylene blue solution into the vacuole of uninjured cells is found to be azure B or trimethyl thionine, a small amount of which may be present in a solution of methylene blue especially at a high pH value. 3. The dye which has penetrated from methylene blue solution into the vacuole of injured cells is either methylene blue or a mixture of methylene blue and azure B. 4. The dye which is absorbed by chloroform from methylene

  1. Methylene blue prevents retinal damage in an experimental model of ischemic proliferative retinopathy.

    PubMed

    Rey-Funes, Manuel; Larrayoz, Ignacio M; Fernández, Juan C; Contartese, Daniela S; Rolón, Federico; Inserra, Pablo I F; Martínez-Murillo, Ricardo; López-Costa, Juan J; Dorfman, Verónica B; Martínez, Alfredo; Loidl, César F

    2016-06-01

    Perinatal asphyxia induces retinal lesions, generating ischemic proliferative retinopathy, which may result in blindness. Previously, we showed that the nitrergic system was involved in the physiopathology of perinatal asphyxia. Here we analyze the application of methylene blue, a well-known soluble guanylate cyclase inhibitor, as a therapeutic strategy to prevent retinopathy. Male rats (n = 28 per group) were treated in different ways: 1) control group comprised born-to-term animals; 2) methylene blue group comprised animals born from pregnant rats treated with methylene blue (2 mg/kg) 30 and 5 min before delivery; 3) perinatal asphyxia (PA) group comprised rats exposed to perinatal asphyxia (20 min at 37°C); and 4) methylene blue-PA group comprised animals born from pregnant rats treated with methylene blue (2 mg/kg) 30 and 5 min before delivery, and then the pups were subjected to PA as above. For molecular studies, mRNA was obtained at different times after asphyxia, and tissue was collected at 30 days for morphological and biochemical analysis. Perinatal asphyxia produced significant gliosis, angiogenesis, and thickening of the inner retina. Methylene blue treatment reduced these parameters. Perinatal asphyxia resulted in a significant elevation of the nitrergic system as shown by NO synthase (NOS) activity assays, Western blotting, and (immuno)histochemistry for the neuronal isoform of NOS and NADPH-diaphorase activity. All these parameters were also normalized by the treatment. In addition, methylene blue induced the upregulation of the anti-angiogenic peptide, pigment epithelium-derived factor. Application of methylene blue reduced morphological and biochemical parameters of retinopathy. This finding suggests the use of methylene blue as a new treatment to prevent or decrease retinal damage in the context of ischemic proliferative retinopathy. PMID:26984891

  2. Bipolar pulsed electrical discharge for decomposition of methylene blue in aqueous TiO2 nanoparticle dispersions.

    PubMed

    Kim, Byung Hoon; Kim, Sun-Jae; Chung, Minchul; Ahn, Ho-Geun; Lee, Heon; Park, Sung Hoon; Jung, Sang-Chul

    2013-03-01

    The objective of this paper is to investigate the decomposition process of organic pollutants by liquid phase plasma. A bipolar pulsed power supply was used to generate discharges in the aqueous TiO2 nanoparticle dispersions. The applied voltage, pulse width, and frequency were 250 V, 5 micros, and 30 kHz, respectively. Properties of generated plasma were investigated by electrical and optical emission spectroscopy methods. The comparison of properties of the discharge operated with and without oxygen gas bubbling is shown. The results of electrical-discharge degradation of methylene blue showed that the decomposition rate increased with the TiO2 particle dosages. Addition of oxygen gas bubbles also increased the degradation rate of methylene blue.

  3. Photoacoustic lifetime imaging of dissolved oxygen using methylene blue

    NASA Astrophysics Data System (ADS)

    Ashkenazi, Shai

    2010-07-01

    Measuring distribution of dissolved oxygen in biological tissue is of prime interest for cancer diagnosis, prognosis, and therapy optimization. Tumor hypoxia indicates poor prognosis and resistance to radiotherapy. Despite its major clinical significance, no current imaging modality provides direct imaging of tissue oxygen. We present preliminary results demonstrating the potential of photoacoustic lifetime imaging (PALI) for noninvasive, 3-D imaging of tissue oxygen. The technique is based on photoacoustic probing of the excited state lifetime of methylene blue (MB) dye. MB is an FDA-approved water soluble dye with a peak absorption at 660 nm. A double pulse laser system (pump probe) is used to excite the dye and probe its transient absorption by detecting photoacoustic emission. The relaxation rate of MB depends linearly on oxygen concentration. Our measurements show high photoacoustic signal contrast at a probe wavelength of 810 nm, where the excited state absorption is more than four times higher than the ground state absorption. Imaging of a simple phantom is demonstrated. We conclude by discussing possible implementations of the technique in clinical settings and combining it with photodynamic therapy (PDT) for real-time therapy monitoring.

  4. Adsorption of methylene blue onto sonicated sepiolite from aqueous solutions.

    PubMed

    Küncek, Ilknur; Sener, Savaş

    2010-01-01

    The aim of the present study is to enhance the methylene blue (MB) adsorption of sepiolite by ultrasonic treatment. The natural sepiolite was pretreated by sonication to improve the surface characteristics and enhance the dye uptake capacity. Sonication process resulted in a significant increase in the specific surface area (SSA) of sepiolite. The FTIR spectrum of the sonicated sepiolite indicates that the tetrahedral sheet is probably distorted after sonication process. The effect of various parameters such as sonication, pH, initial dye concentration and temperature on dye adsorption has been investigated. The adsorbed amount of MB on sepiolite increased after sonication as well as with increasing pH and temperature. The experimental data were evaluated by applying the pseudo-first- and second-order, and the intraparticle diffusion adsorption kinetic models. Adsorption process of MB onto sepiolite followed the pseudo-second-order rate expression. The experimental data were analyzed by Langmuir and Freundlich isotherms, and found that the isotherm data were reasonably well correlated by Langmuir isotherm. Maximum monolayer adsorption capacity of sepiolite for MB increased from 79.37 to 128.21 mg/g after the sonication. Various thermodynamic parameters, such as Delta G(0), Delta H(0) and DeltaS(0) were calculated. The thermodynamics of MB/sepiolite system indicated spontaneous and endothermic nature of the process. Adsorption measurements showed that the process was very fast and physical in nature.

  5. Removal of methylene blue by lava adsorption and catalysis oxidation.

    PubMed

    Ma, Jianfeng; Zhang, Jinbao; Li, Dinglong

    2010-03-01

    Adsorption has been found to be effective for the removal of dyes from effluent; however, the contaminant will cause secondary pollution if it is not properly treated. In this paper, the ability of lava as a low-cost adsorbent and catalyst for the removal of a commercial dye, Methylene Blue (MB), from aqueous solution has been investigated under various experimental conditions. It was found that lava had a high efficiency (more than 98%) for MB removal by adsorption. The adsorption equilibrium data can be fitted well by the Langmuir adsorption isotherm model. The adsorption kinetics was shown to be pseudo-second-order. After adsorption the contaminant could be catalysis oxidized by lava with the aids of H2O2 and ultrasound. The result showed that 95% of the MB could be decomposed in 100 min with the aid of ultrasound at 85 W/cm2. Overall, this study demonstrates lava as a promising material for wastewater treatment to remove and decompose dyes in a single treatment step.

  6. [Adsorption of methylene blue onto vanadium-doped magnetite].

    PubMed

    Zhong, Yuan-Hong; Liang, Xiao-Liang; Zhu, Jian-Xi; He, Hong-Ping; Yuan, Peng

    2010-06-01

    A series of vanadium-doped magnetite (Fe3-x VxO4, x < 0.4) synthesized by an oxidation-precipitation method, were characterized using chemical analysis, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), as well as thermogravimetric and differential scanning calorimetry (TG-DSC) analyses. The obtained results show that the synthetic Fe3-x VxO4 has spinel structure while vanadium mostly replaces Fe3+ in the octahedral sites. The synthetic Fe3-x VxO4 is magnetic material, with crystal size ranging from 28 to 35 nm. The substitution of vanadium in the magnetite structure increases the amount of surface hydroxyls. The experimental adsorption results indicate that, in neutral pH condition, the maximum adsorption capacities of Fe3-x VxO4 increase obviously with the increase of vanadium concentration in magnetite while the adsorption isotherm complies well with the Langmuir model. The adsorption of methylene blue (MB) on Fe3-x VxO4 can get equilibrium in the first 25 min, supporting a pseudo-second order equation. Moreover, the rise of the solution pH value results in an increase of the adsorption capability of MB on Fe3-x VxO4.

  7. A Novel Use of Methylene Blue in the Pediatric ICU.

    PubMed

    Rutledge, Chrystal; Brown, Brian; Benner, Kimberley; Prabhakaran, Priya; Hayes, Leslie

    2015-10-01

    Methylene blue (MB) is a medication commonly used to treat methemoglobinemia, reducing methemoglobin to hemoglobin. A novel use of MB, as detailed here, is in the treatment of refractory hypotension. A number of reports have detailed use of MB for this purpose in adults, but few data in pediatrics. A 22-month-old girl with Noonan syndrome, biventricular hypertrophic cardiomyopathy, and chronic positive pressure ventilation developed shock with tachycardia, hypotension, and fever after 3 days of diarrhea. She was critically ill, with warm extremities, bounding pulses, and brisk capillary refill. Laboratory tests revealed metabolic acidosis, low mixed venous oxygen saturation, and leukocytosis with bandemia. Treatment of severe septic shock was initiated with fluid resuscitation, inotropic support, sedation, and paralysis. She remained hypotensive despite norepinephrine at 0.7 μg/kg per minute, dopamine at 20 μg/kg per minute, and vasopressin at 0.04 U/kg per hour. Her vasoplegic shock worsened, despite aggressive conventional therapy. Intravenous MB was initiated, with a loading dose of 1 mg/kg followed by a continuous infusion at 0.25 mg/kg per hour. Upon initiation of MB, her systolic blood pressure increased by 33 points (40% increase), and diastolic blood pressure increased by 20 points (46% increase). She was able to wean off all inotropes quickly after initiation of MB. MB should be considered in the setting of refractory vasoplegic shock in the PICU. PMID:26347436

  8. Can methylene blue only be used in sentinel lymph node biopsy for breast cancer?

    PubMed

    Golshan, Mehra; Nakhlis, Faina

    2006-01-01

    Sentinel lymph node biopsy (SLNB) has become an accepted standard of care to stage the axilla for clinically node-negative early stage breast cancer. In experienced hands, studies have shown an acceptable rate of identification of the sentinel lymph node (SLN) with blue dye only. Lymphazurin is occasionally associated with severe allergic reaction, including anaphylaxis and death. The use of methylene blue alone as a method of identifying the SLN in breast cancer has been reported once previously in the literature. Methylene blue may be an acceptable alternative with fewer deleterious side effects. Medical records of patients, who underwent sentinel node mapping between September 2003 and March 2005 by two surgeons at an academic medical center were reviewed. SLN mapping was performed by periareolar injection of 5 cc of 1% methylene blue. All patients with positive SLNs underwent completion axillary node dissection. During the study period, 141 consecutive patients with clinically node-negative axillas and without evidence of inflammatory breast cancer underwent SLNB with injection of methylene blue only. A SLN was identified in 136 of 141 patients (96.5%). Thirty-three of 136 SLNs (24%) harbored metastatic disease. No cases of anaphylaxis were noted. In experienced hands, methylene blue alone is a highly sensitive method of detecting SLNs. Avoiding the greater frequency of allergic reactions seen with lymphazurin is an important advantage of methylene blue.

  9. 21 CFR 500.27 - Methylene blue-containing drugs for use in animals.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Methylene blue-containing drugs for use in animals. 500.27 Section 500.27 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... according to label directions. The specific cause of the reaction was determined to be the methylene...

  10. Quantum dot/methylene blue FRET mediated NIR fluorescent nanomicelles with large Stokes shift for bioimaging.

    PubMed

    Li, Li; Liu, Jianbo; Yang, Xiaohai; Peng, Zhihong; Liu, Wei; Xu, Jianguo; Tang, Jinlu; He, Xiaoxiao; Wang, Kemin

    2015-10-01

    Here we present a novel large Stokes shifting NIR fluorescent nanomicelle through the encapsulation of a quantum dot/methylene blue FRET pair, which is employed as an excellent contrast reagent for NIR fluorescence bioimaging. PMID:26267557

  11. Safety of methylene blue dye for lymphatic mapping in patients taking selective serotonin reuptake inhibitors.

    PubMed

    Shah-Khan, Miraj G; Lovely, Jenna; Degnim, Amy C

    2012-11-01

    Methylene blue dye has an important role in lymphatic mapping for sentinel lymph node surgery. A recent safety announcement from the US Food and Drug Administration warned physicians about possible serious central nervous system reactions in patients on serotonergic medications who received intravenous methylene blue for the identification of parathyroid glands. This report summarizes evidence from the Food and Drug Administration's announcement and methylene blue pharmacokinetics. The authors conclude that the use of methylene blue dye at low doses for lymphatic mapping likely carries very little risk for serotonin neurotoxicity, although breast surgeons should be aware of this potential complication in the event of mental status or neuromuscular changes in patients after lymphatic mapping.

  12. Removal of methylene blue from wastewater using fly ash as an adsorbent by hydrocyclone.

    PubMed

    Rastogi, K; Sahu, J N; Meikap, B C; Biswas, M N

    2008-10-30

    The excessive release of color into the environment is a major concern worldwide. Adsorption process is among the most effective techniques for color removal from wastewater and fly ash has been widely used as an adsorbent. Therefore, this study was carried out to understand the adsorption behavior of methylene blue from aqueous systems onto fly ash using the continuous mode. Continuous mode sorption experiments were carried out to remove methylene blue from its aqueous solutions in hydrocyclone equipment. The experiments were performed at constant temperature and dimensions of hydrocyclone with variation of flows through the equipment, concentrations of methylene blue solutions and fly ash concentration, respectively. A maximum removal of 58.24% was observed at adsorbent dosage of 900 mg/l at pH 6.75 for an initial methylene blue concentration of 65 mg/l.

  13. Fast and considerable adsorption of methylene blue dye onto graphene oxide.

    PubMed

    Zhang, Wenjie; Zhou, Chunjiao; Zhou, Weichang; Lei, Aihua; Zhang, Qinglin; Wan, Qiang; Zou, Bingsuo

    2011-07-01

    The quite efficient adsorption of methylene blue dye from an aqueous solution by graphene oxide was studied. The favorable electrostatic attraction is the main interaction between methylene blue and graphene oxide. As graphene oxide has the special nanostructural properties and negatively charged surface, the positively charged methylene blue molecules can be easily adsorbed on it. In the aqueous solution of methylene blue at 293 K, the adsorption data could be fitted by the Langmuir equation with a maximum adsorption amount of 1.939 mg/mg and a Langmuir adsorption equilibrium constant of 18.486 mL/mg. The adsorption amount increased with the increase of the solution pH (3-11), was not affected significantly by KCl under the examined condition and the adsorption process was exothermic in nature. The fast and considerable adsorption of graphene oxide could be regarded as a potential adsorbent for cationic dye removal in wastewater treatment process.

  14. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies.

    PubMed

    Hameed, B H; Din, A T M; Ahmad, A L

    2007-03-22

    Bamboo, an abundant and inexpensive natural resource in Malaysia was used to prepare activated carbon by physiochemical activation with potassium hydroxide (KOH) and carbon dioxide (CO(2)) as the activating agents at 850 degrees C for 2h. The adsorption equilibrium and kinetics of methylene blue dye on such carbon were then examined at 30 degrees C. Adsorption isotherm of the methylene blue (MB) on the activated carbon was determined and correlated with common isotherm equations. The equilibrium data for methylene blue adsorption well fitted to the Langmuir equation, with maximum monolayer adsorption capacity of 454.2mg/g. Two simplified kinetic models including pseudo-first-order and pseudo-second-order equation were selected to follow the adsorption processes. The adsorption of methylene blue could be best described by the pseudo-second-order equation. The kinetic parameters of this best-fit model were calculated and discussed.

  15. Methylene Blue to Treat Protamine-induced Anaphylaxis Reactions. An Experimental Study in Pigs

    PubMed Central

    Albuquerque, Agnes Afrodite S.; Margarido, Edson A.; Menardi, Antonio Carlos; Scorzoni Filho, Adilson; Celotto, Andrea Carla; Rodrigues, Alfredo J.; Vicente, Walter Vilella A.; Evora, Paulo Roberto B.

    2016-01-01

    OBJECTIVE: To examine if methylene blue (MB) can counteract or prevent protamine (P) cardiovascular effects. METHODS: The protocol included five heparinized pig groups: Group Sham -without any drug; Group MB - MB 3 mg/kg infusion; Group P - protamine; Group P/MB - MB after protamine; Group MB/P - MB before protamine. Nitric oxide levels were obtained by the nitric oxide/ozone chemiluminescence method, performed using the Nitric Oxide Analizer 280i (Sievers, Boulder, CO, USA). Malondialdehyde plasma levels were estimated using the thiobarbiturate technique. RESULTS: 1) Groups Sham and MB presented unchanged parameters; 2) Group P - a) Intravenous protamine infusion caused mean arterial pressure decrease and recovery trend after 25-30 minutes, b) Cardiac output decreased and remained stable until the end of protamine injection, and c) Sustained systemic vascular resistance increased until the end of protamine injection; 3) Methylene blue infusion after protamine (Group P/MB) - a) Marked mean arterial pressure decreased after protamine, but recovery after methylene blue injection, b) Cardiac output decreased after protamine infusion, recovering after methylene blue infusion, and c) Sustained systemic vascular resistance increased after protamine infusion and methylene blue injections; 4) Methylene blue infusion before protamine (Group MB/P) - a) Mean arterial pressure decrease was less severe with rapid recovery, b) After methylene blue, there was a progressive cardiac output increase up to protamine injection, when cardiac output decreased, and c) Sustained systemic vascular resistance decreased after protamine, followed by immediate Sustained systemic vascular resistance increase; 5) Plasma nitrite/nitrate and malondialdehyde values did not differ among the experimental groups. CONCLUSION: Reviewing these experimental results and our clinical experience, we suggest methylene blue safely prevents and treats hemodynamic protamine complications, from the endothelium

  16. Methylene blue solder re-absorption in microvascular anastomoses

    NASA Astrophysics Data System (ADS)

    Birch, Jeremy F.; Hepplewhite, J.; Frier, Malcolm; Bell, Peter R. F.

    2003-06-01

    Soldered vascular anastomoses have been reported using several chromophores but little is known of the optimal conditions for microvascular anastomosis. There are some indications of the optimal protein contents of a solder, and the effects of methylene blue on anastomotic strength. The effects of varying laser power density in vivo have also been described, showing a high rate of thrombosis with laser power over 22.9Wcm-2. However no evidence exists to describe how long the solder remains at the site of the anastomosis. Oz et al reported that the fibrin used in their study had been almost completely removed by 90 days but without objective evidence of solder removal. In order to address the issue of solder re-absorption from the site of an anastomosis we used radio-labelled albumin (I-125) incorporated into methylene blue based solder. This was investigated in both the situation of the patent and thrombosed anastomosis with anastomoses formed at high and low power. Iodine-125 (half life: 60.2 days) was covalently bonded to porcine albumin and mixed with the solder solution. Radio-iodine has been used over many years to determine protein turnover using either I-125 or I-131. Iodine-125 labelled human albumin is regularly used as a radiopharmaceutical tool for the determination of plasma volume. Radio-iodine has the advantages of not affecting protein metabolism and the label is rapidly excreted after metabolic breakdown. Labelling with chromium (Cr-51) causes protein denaturation and is lost from the protein with time. Labelled albumin has been reported in human studies over a 21-day period, with similar results reported by Matthews. Most significantly McFarlane reported a different rate of catabolism of I-131 and I-125 over a 22-day period. The conclusion from this is that the rate of iodine clearance is a good indicator of protein catabolism. In parallel with the surgery a series of blank standards were prepared with a known mass of solder to correct for isotope

  17. Methylene blue mediated photodynamic therapy for resistant plaque psoriasis.

    PubMed

    Salah, Manal; Samy, Nevien; Fadel, Maha

    2009-01-01

    Topical treatment of resistant psoriatic plaque stage lesions may be difficult and the systemic therapies seem inappropriate. Therefore, a topical 0.1% methylene blue (MB) hydrogel was prepared and evaluated for percent drug content, drug uniformity, pH, rheological and organoleptic characters such as feel tackiness, grittiness sensation, and transparency in addition to release kinetics study in vitro. The efficiency of the photodynamic therapy (PDT) of MB photo-activated using 565 mW Light emitting diode (LED) 670 nm was evaluated in patients with resistant plaque psoriasis. The gel was evaluated in single blinded study. The patients were subjected to repeated sessions of irradiation, skin biopsies from each patient in the beginning and at the end of the sessions were taken for histopathological studies. Results showed the hydrogel was transparent nongritty and the drug uniformly dispersed with pH=7.2 and viscosity value=25.04 Pa. The drug content was found to be 99.4 +/- 0.15 %. Drug release was following zero order kinetics with rate constant K=0.348 +/- 0.01 and T(1/2) = 0.95 +/- 0.5 hours. Sixteen patients experienced complete clearance of their treated lesions. Skin appeared normal in color, texture, and pliability with no complications indicating the lack of skin sensitivity. Histopathological examinations showed nearly normal epidermis at the end of all sessions. The authors concluded that the prepared hydrogel was safe, stable, and very effective. The results are encouraging to accept MB as a photosensitizer for PDT and as a safe and effective method for treatment of selected cases of resistant localized psoriasis PMID:19180895

  18. Methylene blue mediated photodynamic therapy for resistant plaque psoriasis.

    PubMed

    Salah, Manal; Samy, Nevien; Fadel, Maha

    2009-01-01

    Topical treatment of resistant psoriatic plaque stage lesions may be difficult and the systemic therapies seem inappropriate. Therefore, a topical 0.1% methylene blue (MB) hydrogel was prepared and evaluated for percent drug content, drug uniformity, pH, rheological and organoleptic characters such as feel tackiness, grittiness sensation, and transparency in addition to release kinetics study in vitro. The efficiency of the photodynamic therapy (PDT) of MB photo-activated using 565 mW Light emitting diode (LED) 670 nm was evaluated in patients with resistant plaque psoriasis. The gel was evaluated in single blinded study. The patients were subjected to repeated sessions of irradiation, skin biopsies from each patient in the beginning and at the end of the sessions were taken for histopathological studies. Results showed the hydrogel was transparent nongritty and the drug uniformly dispersed with pH=7.2 and viscosity value=25.04 Pa. The drug content was found to be 99.4 +/- 0.15 %. Drug release was following zero order kinetics with rate constant K=0.348 +/- 0.01 and T(1/2) = 0.95 +/- 0.5 hours. Sixteen patients experienced complete clearance of their treated lesions. Skin appeared normal in color, texture, and pliability with no complications indicating the lack of skin sensitivity. Histopathological examinations showed nearly normal epidermis at the end of all sessions. The authors concluded that the prepared hydrogel was safe, stable, and very effective. The results are encouraging to accept MB as a photosensitizer for PDT and as a safe and effective method for treatment of selected cases of resistant localized psoriasis

  19. Functional inactivation of lymphocytes by methylene blue with visible light.

    PubMed

    Zhang, Bo; Cheng, Zhenzhen; Mo, Qin; Wang, Li; Wang, Xun; Wu, Xiaofei; Jia, Yao; Huang, Yuwen

    2015-10-01

    Transfusion of allogeneic white blood cells (WBCs) may cause adverse reactions in immunocompromised recipients, including transfusion-associated graft-versus-host disease (TA-GVHD), which is often fatal and incurable. In this study, the in vitro effect of methylene blue with visible light (MB + L) treatment on lymphocyte proliferation and cytokine production was measured to investigate whether MB + L can be used to prevent immune reactions that result from transfused lymphocytes. WBCs and 3 μM of MB were mixed and transferred into medical PVC bags, which were then exposed to visible light. Gamma irradiation was conducted as a parallel positive control. The cells without treatment were used as untreated group. All the groups were tested for the ability of cell proliferation and cytokine production upon stimulation. After incubation with mitogen phytohemagglutinin (PHA) or plate-bound anti-CD3 plus anti-CD28, the proliferation of MB + L/gamma-irradiation treated lymphocytes was significantly inhibited (P < 0.01) as compared to the untreated ones; the proliferation inhibitive rate of the MB + L group was even higher than that of gamma-irradiated cells (73.77% ± 28.75% vs. 44.72% ± 38.20%). MB + L treated cells incubated up to 7 days with PHA also showed no significant proliferation. The levels of TNF-α, IFN-γ, IL-6, IL-8, IL-10 and IL-1β present in the supernatant of MB + L treated lymphocytes upon stimulation were significantly lower than those of untreated lymphocytes. These results demonstrated that MB + L treatment functionally and irreversibly inactivated lymphocytes by inhibiting lymphocyte proliferation and the production of cytokines. MB + L treatment might be a promising method for the prevention of adverse immune responses caused by WBCs. PMID:26295729

  20. Photocatalytic activity enhancement of anatase-graphene nanocomposite for methylene removal: Degradation and kinetics.

    PubMed

    Rezaei, Mostafa; Salem, Shiva

    2016-10-01

    In the present research, the TiO2-graphene nanocomposite was synthesized by an eco-friendly method. The blackberry juice was introduced to graphene oxide (GO) as a reducing agent to produce the graphene nano-sheets. The nanocomposite of anatase-graphene was developed as a photocatalyst for the degradation of methylene blue, owing to the larger specific surface area and synergistic effect of reduced graphene oxide (RGO). The UV spectroscopy measurements showed that the prepared nanocomposite exhibited an excellent photocatalytic activity toward the methylene blue degradation. The rate of electron transfer of redox sheets is much higher than that observed on GO, indicating the applicability of proposed method for the production of anatase-RGO nanocomposite for treatment of water contaminated by cationic dye. The prepared materials were characterized with Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller surface area measurement, scanning electron microscopy and transmission electron microscopy. A facile and rapid route was applied for the uniform deposition of anatase nanoparticles on the sheets. The resulting nanocomposite contained nanoparticles with a mean diameter of 10nm. A mechanism for the photocatalytic activity of nanocomposite was suggested and the degradation reaction obeyed the second-order kinetics. It was concluded that the degradation kinetics is changed due to the reduction of GO in the presence of blackberry juice.

  1. Photocatalytic activity enhancement of anatase-graphene nanocomposite for methylene removal: Degradation and kinetics

    NASA Astrophysics Data System (ADS)

    Rezaei, Mostafa; Salem, Shiva

    2016-10-01

    In the present research, the TiO2-graphene nanocomposite was synthesized by an eco-friendly method. The blackberry juice was introduced to graphene oxide (GO) as a reducing agent to produce the graphene nano-sheets. The nanocomposite of anatase-graphene was developed as a photocatalyst for the degradation of methylene blue, owing to the larger specific surface area and synergistic effect of reduced graphene oxide (RGO). The UV spectroscopy measurements showed that the prepared nanocomposite exhibited an excellent photocatalytic activity toward the methylene blue degradation. The rate of electron transfer of redox sheets is much higher than that observed on GO, indicating the applicability of proposed method for the production of anatase-RGO nanocomposite for treatment of water contaminated by cationic dye. The prepared materials were characterized with Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller surface area measurement, scanning electron microscopy and transmission electron microscopy. A facile and rapid route was applied for the uniform deposition of anatase nanoparticles on the sheets. The resulting nanocomposite contained nanoparticles with a mean diameter of 10 nm. A mechanism for the photocatalytic activity of nanocomposite was suggested and the degradation reaction obeyed the second-order kinetics. It was concluded that the degradation kinetics is changed due to the reduction of GO in the presence of blackberry juice.

  2. Sonocatalytic Methylene Blue in The Presence of Fe3O4-CuO-TiO2 Nanocomposites Heterostructure

    NASA Astrophysics Data System (ADS)

    Fauzian, Malleo; Jalaludin, Shofianina; Taufik, Ardiansyah; Saleh, Rosari

    2016-04-01

    In this work, the emphasis was mainly placed on investigating the sonocatalytic activity of Fe3O4-CuO-TiO2 nanocomposites heterostructure. The prepared samples were characterized by X-ray diffraction (XRD), Vibrating Sample Magnetometer (VSM), Brunauer-Emmett-Teller (BET) Surface Area Analysis. Methylene blue dye was selected to examine the sonocatalytic activity of Fe3O4-CuO-TiO2 nanocomposites heterostructure. The degradation reaction processes were monitored by UV-vis spectrophotometer. The influence on the activity of the Fe3O4-CuO-TiO2 nanocomposites heterostructure such as TiO2 loading was studied. The sonocatalyst Fe3O4-CuO-TiO2 with molar ratio of 1:1:5 showed the highest sonocatalytic activity. At last, the experiment also indicated that holes are the main reactive species in the photodegradation mechanism in methylene blue.

  3. Preparation of Fe3O4 Nanoparticles and Removal of Methylene Blue through Adsorption

    NASA Astrophysics Data System (ADS)

    Trujillo Hernandez, J. S.; Aragón Muriel, A.; Tabares, J. A.; Pérez Alcázar, G. A.; Bolaños, A.

    2015-07-01

    In this work, we studied the catalytic activity, structural properties, and behavior of a Fe3O4 magnetic system. The Fe3O4 nanoparticles were prepared by the thermal decomposition method. X-ray diffraction confirmed the presence of a structural Fe3O4 phase, where acicular shape of the grains is shown. Transmission Mossbauer spectroscopy showed a wide distribution of particle sizes at room temperature, some of these present superparamagnetic behavior and are responsible of paramagnetic sites. The hysteresis loops obtained by the use of a vibrating sample magnetometer showed that these nanoparticles exhibit superparamagnetic behavior. However, the cycles present a significant contribution from a ferrimagnetic component at 2 K, which agrees with Mossbauer results. Through scanning electron microscopy, a tendency to the agglomeration of nanoparticles was observed. Nanoparticle activity in the degradation of methylene blue (MB) was studied through fluorescence spectroscopy, finding dye adsorption properties.

  4. Complexation between carrageenan and methylene blue for sensor design

    NASA Astrophysics Data System (ADS)

    Ling, Yew Pei; Heng, Lee Yook

    2013-11-01

    Theoretical studies on the methylene blue (MB)-carrageenans complexation at solution and solid states have been carried out via ultraviolet spectrophotoscopy and reflectometry methods. The equilibrium constant (Ka) of the MBcarrageenans complexation follows the order of Iota > Lambda > Kappa carrageenans, which indicated Iota-carrageenan forms a stable complex. MB-carrageenan complexation reaction showed decrease in Ka value from 210.71 ppm-1 to 114.57 ppm-1 when the reaction temperature increased from 298 K to 323 K. Le Chatelier's principle and mass action law explained that the MB-carrageenan complexation was an exothermic reaction (ΔH=-18.54 kJmol-1) that release heat. Thus MB-carrageenan complex was less stable at high temperature and tend to dissociate into free MB and carrageenan molecules. It was also supported by the van't Hoff equation. The reaction is a spontaneous process (ΔG=-13.23 kJmol-1) where the randomness of the molecules reduced (ΔS=-17.83 Jmol-1K-1) due to complexation. Besides, linear regression of the concentration and absorption of the MB-carrageenan reaction obeys the Beer Lambert law, which elucidated that the complexation process was not affected by any concentration dependent factors such as aggregation and self-quenching. Moreover, linear Benesi Hilderbrend plot revealed that the interaction between MB and carrageenan was a reversible and stoichiometric reaction with 1:1 ratio. However, the molar extinction coefficient (ɛ) and molar adsorption coefficient (μa) of the MB-carrageenan complex were lower compared to free MB, described that the complex was less adsorptive. The sensor constructed based on these theoretical investigations showed response behavior that was similar with solution test as both have attraction for carrageenans in the sequence of Iota-, Lambda-, Kappa- carrageenans. Likewise, carrageenan sensor was more selective towards Iota-carrageenan than to Lambda- and Kappa-carrageenans, and no response observed when

  5. Urea enhances the photodynamic efficiency of methylene blue.

    PubMed

    Nuñez, Silvia C; Yoshimura, Tania M; Ribeiro, Martha S; Junqueira, Helena C; Maciel, Cleiton; Coutinho-Neto, Maurício D; Baptista, Maurício S

    2015-09-01

    Methylene blue (MB) is a well-known photosensitizer used mostly for antimicrobial photodynamic therapy (APDT). MB tends to aggregate, interfering negatively with its singlet oxygen generation, because MB aggregates lean towards electron transfer reactions, instead of energy transfer with oxygen. In order to avoid MB aggregation we tested the effect of urea, which destabilizes solute-solute interactions. The antimicrobial efficiency of MB (30 μM) either in water or in 2M aqueous urea solution was tested against a fungus (Candida albicans). Samples were kept in the dark and irradiation was performed with a light emitting diode (λ = 645 nm). Without urea, 9 min of irradiation was needed to achieve complete microbial eradication. In urea solution, complete eradication was obtained with 6 min illumination (light energy of 14.4 J). The higher efficiency of MB/urea solution was correlated with a smaller concentration of dimers, even in the presence of the microorganisms. Monomer to dimer concentration ratios were extracted from the absorption spectra of MB solutions measured as a function of MB concentration at different temperatures and at different concentrations of sodium chloride and urea. Dimerization equilibrium decreased by 3 and 6 times in 1 and 2M urea, respectively, and increased by a factor of 6 in 1M sodium chloride. The destabilization of aggregates by urea seems to be applied to other photosensitizers, since urea also destabilized aggregation of Meso-tetra(4-n-methyl-pyridyl)porphyrin, which is a positively charged porphyrin. We showed that urea destabilizes MB aggregates mainly by causing a decrease in the enthalpic gain of dimerization, which was exactly the opposite of the effect of sodium chloride. In order to understand this phenomenon at the molecular level, we computed the free energy for the dimer association process (ΔG(dimer)) in aqueous solution as well as its enthalpic component in aqueous and in aqueous/urea solutions by molecular dynamics

  6. The interaction between methylene blue and the cholinergic system

    PubMed Central

    Pfaffendorf, M; Bruning, T A; Batink, H D; van Zwieten, P A

    1997-01-01

    The inhibitory effects of methylene blue (MB) on different types of cholinesterases and [3H]-N-methylscopolamine ([3H]-NMS) binding to muscarinic receptors were studied. Human plasma from young healthy male volunteers, purified human pseudocholinesterase and purified bovine true acetylcholinesterase were incubated with acetylcholine and increasing concentrations of MB (0.1–100 μmol l−1) in the presence of the pH-indicator m-nitrophenol for 30 min at 25°C. The amount of acetic acid produced by the enzymatic hydrolysis of acetylcholine was determined photometrically. Rat cardiac left ventricle homogenate was incubated with [3H]-NMS and with increasing concentrations of MB (0.1 nmol l−1–100 μmol l−1) at 37°C for 20 min. The binding of [3H]-NMS to the homogenate was quantified by a standard liquid scintillation technique. MB inhibited the esterase activity of human plasma, human pseudocholinesterase and bovine acetylcholinesterase concentration-dependently with IC50 values of 1.05±0.05 μmol l−1, 5.32±0.36 μmol l−1 and 0.42±0.09 μmol l−1, respectively. MB induced complete inhibition of the esterase activity of human plasma and human pseudocholinesterase, whereas bovine acetylcholinesterase was maximally inhibited by 73±3.3%. MB was able to inhibit specific [3H]-NMS binding to rat cardiac left ventricle homogenate completely with an IC50 value of 0.77±0.03 μmol l−1, which resulted in a Ki value for MB of 0.58±0.02 μmol l−1. In conclusion, MB may be considered as a cholinesterase inhibitor with additional, relevant affinity for muscarinic binding sites at concentrations at which MB is used for investigations into the endothelial system. In our opinion these interactions between MB and the cholinergic system invalidate the use of MB as a tool for the investigation of the L-arginine-NO-pathway, in particular when muscarinic receptor stimulation is involved. PMID:9298533

  7. Rapid alkaline methylene blue supravital staining for assessment of anterior segment infections

    PubMed Central

    Kiuchi, Katsuji

    2016-01-01

    Purpose To present the Löffler’s alkaline methylene blue technique of staining eye discharges in eyes with anterior segment infections. Method The Löffler’s alkaline methylene blue staining method is a simple staining technique that can be used to differentiate bacterial, viral, and fungal infections. It is a cationic dye that stains cells blue because the positively charged dye is attracted to negatively charged particles such as polyphosphates, DNAs, and RNAs. Specimens collected from patients by swabbing are smeared onto microscope slides and the methylene blue solution is dropped on the slide. The slide is covered with a glass cover slip and examined under a microscope. The entire time from the collection to the viewing is about 30 seconds. Results Histopathological images of the conjunctival epithelial cells and neutrophils in eye discharges were dyed blue and the nuclei were stained more intensely blue. Bacterial infections consisted mainly of neutrophils, and viral infections consisted mainly of lymphocytes. Conclusions Löffler’s alkaline methylene blue staining can be done in about 30 seconds for diagnosis. Even though this is a one color stain, it is possible to infer the cause of the infection by detection of the absence of bacteria and/or fungi in context of the differential distribution of neutrophils and lymphocytes. PMID:27784986

  8. Optimization of methylene blue using Ca(2+) and Zn(2+) bio-polymer hydrogel beads: A comparative study.

    PubMed

    Kumar, M; Tamilarasan, R; Arthanareeswaran, G; Ismail, A F

    2015-11-01

    Recently noted that the methylene blue cause severe central nervous system toxicity. It is essential to optimize the methylene blue from aqueous environment. In this study, a comparison of an optimization of methylene blue was investigated by using modified Ca(2+) and Zn(2+) bio-polymer hydrogel beads. A batch mode study was conducted using various parameters like time, dye concentration, bio-polymer dose, pH and process temperature. The isotherms, kinetics, diffusion and thermodynamic studies were performed for feasibility of the optimization process. Freundlich and Langmuir isotherm equations were used for the prediction of isotherm parameters and correlated with dimensionless separation factor (RL). Pseudo-first order and pseudo-second order Lagegren's kinetic equations were used for the correlation of kinetic parameters. Intraparticle diffusion model was employed for diffusion of the optimization process. The Fourier Transform Infrared Spectroscopy (FTIR) shows different absorbent peaks of Ca(2+) and Zn(2+) beads and the morphology of the bio-polymer material analyzed with Scanning Electron Microscope (SEM). The TG & DTA studies show that good thermal stability with less humidity without production of any non-degraded products.

  9. Decolourization of Methylene Blue in Water Using Bentonite Impregnated with Ti and Ag as Photocatalyst.

    PubMed

    Wu, Edward Ming-Yang; Kuo, Shu-Lung

    2015-08-01

    This article used bentonite impregnated with titanium and silver, respectively, as photocatalyst, to degrade methylene blue (MB) under conditions of MB solutions exposed to sodium lamp and sunlight. Due to the semi-conducting properties of synthesized bentonite catalysts, when exposed to sodium lamp and sunlight, catalyst particles are excited for photocatalysis to achieve decolourization. After an FT-IR analysis, this study finds that smectite catalysts have significant and complicated wave crests between the fingerprint area with wave numbers 415~600 cm⁻¹ and 750~1170 cm⁻¹. The bentonite impregnated with Ti(4+) (Sm-Ti) and with Ag⁺ (Sm-Ag) removes MB through the mechanisms of adsorption and degradation, while the commercial product of titanium dioxide (TiO₂) only exhibits the capability of MB degradation. At present, a heterogeneous photocatalytic system has been fully applied for use in daily life, with its efficiency determined by the free radical action of electrons and holes, the generation efficiency of ·OH.

  10. Heinz-body hemolytic anemia associated with ingestion of methylene blue in a river otter.

    PubMed

    Narurkar, Neelesh S; Thomas, Jennifer S; Phalen, David N

    2002-02-01

    Heinz-body hemolytic anemia and nephrosis associated with hemoglobinuria were diagnosed in a North American river otter. Fluids were administered, and the signs of renal failure improved immediately. Severe anemia developed, and the otter received a semisynthetic hemoglobin product to maintain the oxygen-carrying capacity of the blood until a blood transfusion could be given. Immediate clinical improvement was observed following hemoglobin administration, and adverse effects were not seen. Six days after admission, the otter began to produce its own RBC and recovered without complications. The Heinz-body anemia was determined to be caused by methylene blue that was in the water of minnows consumed by the otter the night before it became ill. Methylene blue is a common ingredient in products used to extend the life of bait fish. Bait fish kept in water treated with methylene blue should not be used as food for fish-eating animals.

  11. Adsorption of chlorophenol, chloroaniline and methylene blue on fuel oil fly ash.

    PubMed

    Andini, Salvatore; Cioffi, Raffaele; Colangelo, Francesco; Montagnaro, Fabio; Santoro, Luciano

    2008-09-15

    Fuel oil fly ash has been tested as low-cost carbon-based adsorbent of 2-chlorophenol (CP), 2-chloroaniline (CA) and methylene blue (MB) from aqueous solutions. In all the cases the adsorption was found to be of cooperative type. Different adsorption capacities were found for the three organics. Specifically, it was highest for 2-chlorophenol, reaching about 70 mg g(-1), and quite lower in the other two cases, that is about 47 and 36 mg g(-1) for methylene blue and 2-chloroaniline, respectively. Varying the initial pH and adding KCl were found to have different effects on the adsorption of the three organics. In particular, the presence of other ions had no effect on the adsorption of methylene blue, adverse effect in the case of 2-chlorophenol and enhancing effect in the case of 2-chloroaniline.

  12. Utility of methylene blue for the reversal of excessive levels of methemoglobin

    SciTech Connect

    Vick, J.; Von Bredow, J.; Brown, L.; Kaminskis, A.; Bossone, C.

    1993-05-13

    Many new prophylactic and therapeutic compounds are being studied as potential sources of methemoglobin useful in counteracting the lethal effects of cyanide intoxication. The formation of methemoglobin also leads to a reduction in the blood oxygen carrying capacity which may, in extreme cases, lead to lethal consequences. The i.v. administration of Methylene blue rapidly reverses methemoglobin to hemoglobin. Unanticipated high levels of methemoglobin (65 - 85%) in three sheep exposed to propiophenone derivatives led to a lethal outcome in one untreated sheep and complete recovery in two sheep which were treated with 3.0 mg/kg methylene blue i.v. methemoglobin was reduced to safe levels within minutes following administration. A similar exposure of dogs to propriophenone derivatives led to high levels (77 - 78%) of methemoglobin which were readily reversed following the intravenous administration of the same dose of methylene blue.

  13. Viral Inactivation of Human Osteochondral Grafts with Methylene Blue and Light

    PubMed Central

    Zhao, Zhixing; Call, Gazell M.; Gao, Jizong; Yao, Jian Q.

    2014-01-01

    Objective: Cartilage injury is one of the most common disorders of synovial joints. Fresh osteochondral allografts are becoming a standard treatment; however, they are supply constrained with a potential risk of disease transmission. There are no known virucidal processes available for osteochondral allografts and most methods presently available are detrimental to cartilage. Methylene blue light treatment has been shown to be successful in the literature for viral inactivation of fresh frozen plasma. The purpose of this study was to determine the capacity of methylene blue light treatment to inactivate a panel of clinically relevant viruses inoculated onto osteochondral allografts. Design: Osteochondral grafts recovered from human cadaveric knees were inoculated with one of the following viruses: bovine viral diarrhea virus (BVDV), hepatitis A virus (HAV), human immunodeficiency virus type 1 (HIV-1), porcine parvovirus (PPV), and pseudorabies virus (PrV). The samples were processed through a methylene blue light treatment, which consisted of an initial soak in nonilluminated circulating methylene blue at ambient temperature, followed by light exposure with circulating methylene blue at cool temperatures. The final titer was compared with the recovery control for the viral log reduction. Results: HIV-1, BVDV, and PrV were reduced to nondetectable levels while HAV and PPV were reduced by 3.1 and 5.6 logs, respectively. Conclusions: The methylene blue light treatment was effective in reducing (a) enveloped DNA and RNA viruses to nondetectable levels and (b) nonenveloped DNA and RNA viruses of inoculated human osteochondral grafts by 3.1 to 5.6 logs. This study demonstrates the first practical method for significantly reducing viral load in osteochondral implants. PMID:26069682

  14. Aggregation of 1,3,7-trimethylxanthine with methylene blue in aqueous solution

    NASA Astrophysics Data System (ADS)

    Baranovskii, S. F.; Bolotin, P. A.; Evstigneev, M. P.

    2006-03-01

    We have studied self-association of aromatic molecules of the thiazine dye methylene blue in aqueous solution, using a dimer model. We have determined the dimerization equilibrium constant for the dye molecules KD = 3900 ± 800 M-1 at T = 293 K. We have decomposed the experimental spectrum into dimer and monomer components. Using the ratio of the molar absorption coefficients for two absorption bands of the dimer spectrum, we obtained the “average” value of the angle between the electronic transition moments of the molecules in the dimers, α = 48°. We have studied heteroassociation of methylene blue (MB) and 1,3,7-trimethylxanthine (caffeine) molecules in aqueous solution. We have calculated the heteroassociation constant as 200 ± 34 M-1. We conclude that heteroassociation of methylene blue and caffeine molecules leads to a lower effective dye concentration in solution, which hypothetically may affect its biological activity. We have determined the values of the Gibbs free energy, the enthalpy, and the entropy for dimerization of methylene blue molecules: ΔG293 = -(20 ± 3) kJ/mol, ΔH = -(25 ± 9) kJ/mol, Δ S293 = -(17 ± 6) J/mol·K; and for methylene blue-caffeine heteroassociation: ΔG293 = -(13 ± 3) kJ/mol, ΔH = -(14 ± 10) kJ/mol, ΔS293 = -(2.4 ± 0.2) J/mol·K, respectively. We have shown that the methylene blue aggregates and the heteroassociates with caffeine are predominantly stabilized by dispersion interactions between the chromophore molecules in the associates.

  15. Comparative pharmacokinetics of oral and intravenous ifosfamide/mesna/methylene blue therapy.

    PubMed

    Aeschlimann, C; Küpfer, A; Schefer, H; Cerny, T

    1998-09-01

    Oral treatment with ifosfamide results in dose-limiting encephalopathy. Methylene blue is effective in reversal and prophylaxis of this side effect. In the present study, the pharmacokinetics of ifosfamide after iv and po therapy in combination with prophylactic administration of methylene blue were investigated. Nine patients with metastatic non-small cell lung cancer were treated by a combination of ifosfamide (3 days), sodium 2-mercaptoethane sulfonate (4 days), and etoposide (8 days). Cycles were repeated every 28 days. Ifosfamide was administered orally, with the exception of one of the first two cycles, when it was administered as a short infusion (randomly assigned). The patients received methylene blue in doses of 50 mg po 3 times daily; an initial dose of 50 mg was given the evening before chemotherapy. Urine samples were collected over the entire treatment period, and concentrations of ifosfamide and its major metabolite, 2-chloroethylamine, were measured by gas liquid chromatography. By the same technique, 2- and 3-dechloroethylifosfamide were determined in plasma and urine. Overall alkylating activity in urine was assayed by reaction of the alkylating metabolites with 4-(4'-nitrobenzyl)-pyridine. The chemotherapeutic regimen was well-tolerated by all of the patients studied. There was no evidence of a shift in the metabolic pattern dependent on the route of administration. From the data, we conclude that methylene blue has a neuroprotective effect and that the pharmacokinetics of ifosfamide are not influenced by its comedication.

  16. The feasibility of using methylene blue sensitized polyvinylalcohol film as a linear polarizer

    SciTech Connect

    Jyothilakshmi, K.; Anju, K. S.; Arathy, K.; John, Beena Mary; Krishna, P. B.; Sruthi, C. T.; Chacko, Maria

    2014-01-28

    Linear light polarizing films selectively transmit radiations vibrating along an electromagnetic radiation vector and selectively absorb radiations vibrating along a second electromagnetic radiation vector. It happens according to the anisotropy of the film . In the present study the polarization effects of methylene blue sensitized polyvinyl alcohol is investigated. The polarization effects on the dye concentration, heating and stretching of film also are evaluated.

  17. Visible light induced photobleaching of methylene blue over melamine-doped TiO2 nanocatalyst

    EPA Science Inventory

    TiO2 doping with N-rich melamine produced a stable, active and visible light sentisized nanocatalyst that showed a remarkable efficiency towards the photobleaching of a model compound – methylene blue (MB) in aqueous solution. The photobleaching followed a mixed reaction order ki...

  18. Citrus pectin derived porous carbons as a superior adsorbent toward removal of methylene blue

    NASA Astrophysics Data System (ADS)

    Zhang, Wenlin; Zhang, Lian Ying; Zhao, Xi Juan; Zhou, Zhiqin

    2016-11-01

    An adsorbent, citrus pectin derived porous carbons with ultra-high adsorption capacity, rapid adsorption rate and good reusability toward removal of methylene blue, was synthesized by a facile zinc chloride activation approach in this study. The materials hold a great potential for treatment of dye wastewater.

  19. 21 CFR 500.27 - Methylene blue-containing drugs for use in animals.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... 500.27 Section 500.27 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... cats or dogs. (1)(i) It has been demonstrated that two orally administered urinary antiseptic-antispasmodic preparations that contained methylene blue cause Heinz body hemolytic anemia in cats when...

  20. 21 CFR 500.27 - Methylene blue-containing drugs for use in animals.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... 500.27 Section 500.27 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... cats or dogs. (1)(i) It has been demonstrated that two orally administered urinary antiseptic-antispasmodic preparations that contained methylene blue cause Heinz body hemolytic anemia in cats when...

  1. [Sensitive determination of Bi3+ by spectrofluorimetry based on graphene oxide-methylene blue system].

    PubMed

    Zhai, Qiu-ge; Guo, Peng; Zhou, Lin; Liu, Yan-ming

    2014-08-01

    Graphene oxide was prepared by the modified Hummers method and characterized by field emission scanning electron microscopy. The interaction of graphene with methylene blue was studied by UV absorption, the intensity of two main absorption peaks of methylene blue decreased significantly after the fluorescence was quenched, and the energy transfer didn't occur because the overlap of the absorption spectrum of GO and the emission spectrum of MB is too small. Therefore, the fluorescence quenching of MB and GO was static. When adding a certain amount of Bi3+ in the graphene-methylene blue system, Bi3+ replaces the methylene blue from the graphene-methylene blue complexes because Bi3+ has the smaller volume and is more positively charged. The methylene blue therefore dissociates from the GO-MB complexes, resulting in the recovery of fluorescence of the system. Furthermore, the fluorescence of the system increases with the increase in the amount of Bi3+ due to the enhanced amount of MB in the system. A novel spectrofluorimetric method was therefore developed for the sensitive determination of Bi3+. Some parameters including the concentration of methylene blue, the amount of graphene oxide, the amount of nitric acid and the sequence of reagent adding were optimized to obtain higher sensitivity. The fluorescence of the system was detected at an emission wavelength of 667 nm with excitation at 690 nm. Under the optimized conditions, the concentration of Bi3+ showed good linear relationships with the fluorescence intensity in the range of 0.5-100 micromol x L(-1), with correlation coefficients of r = 0.9955. The limits of detection for Bi3+ was 1.0 x 10(-8) mol x L(-1) (S/N=3). The selectivity of the proposed method was evaluated and the results showed that 1000-fold K+, Ca+, Na+, Mg2+, Cu2+; 100-fold Fe3+, Be2+, SiO2- Al3+, Ni2+, Sb3+, NO3-, Cl-, F-, and 20-fold Pb2+, Hg2+, Cd2+ had negligible interference with the determination of Bi3+. The method has advantages of

  2. [Ectopic mediastinal parathyroid tumor resected by video-assisted thoracic surgery with intraoperative methylene blue infusion; report of a case].

    PubMed

    Okagawa, Takehiko; Hiramatsu, Yoshinori

    2014-03-01

    We report a surgical case of ectopic mediastinal parathyroid tumor resected by video-assisted thoracic surgery with intraoperative methylene blue infusion. It is often difficult to detect ectopic mediastinal parathyroid tumor during the operation because the tumor is soft, small and buried under mediastinal tissue. After methylene blue 4 mg/kg intravenously administration, the tumor was gradually dyed blue and easily detected and resected by video-assisted thoracic surgery. It is useful of methylene blue for detection of ectopic mediastinal parathyroid tumor.

  3. [Study on the inclusion behavior of cucurbit [7] uril with methylene blue by spectrofluorometric titrations].

    PubMed

    Yu, Hua-peng; Sun, Jun-yong; Wu, Lian; Xu, Hong-wei; Wang, Lun; Zhou, Yun-you

    2009-04-01

    The characteristics of host-guest complexation between cucurbit [7] uril (CB7) and methylene blue (MB) were investigated by fluorescence spectrometry in acetate buffer solution at room temperature. It was found that the fluorescence intensity of methylene blue regularly increased upon the addition of cucurbit [7] uril accompanying with a blue-shift of the position of the emission maximum. The results indicate the formation of complex between CB7 and MB at a 1 : 1 complex stoichiometry and the association constant was calculated by applying a deduced equation. 1H NMR spectra were applied to to complement the fluorescence work to verify the formation of the complex. From the temperature dependence of the equilibrium constants, thermodynamics parametersH andS values were obtained, indicating an enthalpic driving force for complexation. The possible interaction mechanism was also discussed. This work may extend the application range of cucurbit [7] uril in biochemistry and pharmaceutical analysis.

  4. Graphene oxide functionalized with methylene blue and its performance in singlet oxygen generation

    SciTech Connect

    Wojtoniszak, M.; Rogińska, D.; Machaliński, B.; Drozdzik, M.; Mijowska, E.

    2013-07-15

    Graphical abstract: - Highlights: • Adsorption of methylene blue (MB) on graphene oxide (GO). • Characterization of graphene oxide–methylene blue nanocomposite (MB–GO). • Examination of MB–GO efficiency in singlet oxygen generation (SOG). • MB–GO performs higher SOG efficiency than pristine MB. - Abstract: Due to unique electronic, mechanical, optical and structural properties, graphene has shown promising applications in many fields, including biomedicine. One of them is noninvasive anticancer therapy – photodynamic therapy (PDT), where singlet oxygen (SO), generated under the irradiation of light with appropriate wavelengths, kills cancer cells. In this study, authors report graphene oxide (GO) noncovalent functionalization with methylene blue (MB). MB molecules underwent adsorption on the surface of GO. Detailed characterization of the obtained material was carried out with UV–vis spectroscopy, Raman spectroscopy, FT-IR spectroscopy, and confocal laser scanning microscopy. Furthermore, its performance in singlet oxygen generation (SOG) under irradiation of laser with excitation wavelengths of 785 nm was investigated. Interestingly, GO functionalized with MB (MB–GO) showed enhanced efficiency in singlet oxygen generation compared to pristine MB. The efficiency in SOG was detected by photobleaching of 9,10-anthracenediyl-bis(methylene)dimalonic acid (ABMDMA). These results indicate the material is promising in PDT anticancer therapy and further in vitro and in vivo studies are required.

  5. Decolorization of methylene blue in aqueous suspensions of gold nanoparticles using parallel nanosecond pulsed laser.

    PubMed

    Zong, Yan P; Liu, Xian H; Du, Xi W; Lu, Yi R; Wang, Mei Y; Wang, Guang Y

    2013-01-01

    Using 532 nm parallel nanosecond pulsed laser, the decolorization of methylene blue (MB) in aqueous suspensions of gold nanoparticles (GNPs) was studied. The effects of various experimental parameters, such as irradiation time, laser energy, and initial MB concentration on the decolorization rate were investigated. Experiments using real samples of textile dyeing wastewater were also carried out to examine the effectiveness of the method in more complex samples. From the results, the following conclusions may be drawn: (i) Under the optimum conditions (pH 7.19, 135 mJ laser energy, 4 mg/L MB concentration, and 11.6 mg/L GNP concentration), the rate of MB decolorization could reach 94% in 15 min. The decolorization follows pseudo-first-order kinetics; (ii) The amount of MB decreased rapidly during the decolorization. No intermediates of the decolorization could be detected by high-performance liquid chromatography. These observations indicate that MB was decolorized through a very rapid degradation mechanism; (iii) The rate of MB decolorization increased with the increase in laser energy (at laser energies of 0 to 135 mJ); and, (iv) The efficient decolorization of MB in real samples of textile dyeing wastewater was achieved at a decolorization rate of about 85% in 15 min.

  6. CNS toxicity involving methylene blue: the exemplar for understanding and predicting drug interactions that precipitate serotonin toxicity.

    PubMed

    Gillman, P Ken

    2011-03-01

    Methylene blue has only recently been noted to cause severe central nervous system toxicity. Methylene blue is used for various conditions, including, intravenously, in methemoglobinemia, vasoplegia and as an aid to parathyroidectomy (at doses of 1-7.5 mg kg(-1)). This review of the current evidence concludes that 13 of 14 of the reported cases of CNS toxicity were serotonin toxicity that met the Hunter Serotonin Toxicity Criteria. That has important preventative and treatment implications. Serotonin toxicity is precipitated by the monoamine oxidase inhibitor (MAOI) property of methylene blue interacting with serotonin reuptake inhibitors. Serotonin toxicity is reviewed, using the lessons inherent in the methylene blue story and experience, to illustrate how the mechanisms and potency of serotonergic drugs interact to determine severity. Recent human data showed that an intravenous dose of only 0.75 mg kg(-1) of methylene blue produced a peak plasma concentration of 500 ng ml(-1) (1.6 µM), indicating that the concentration in the central nervous system reaches a level that inhibits monoamine oxidase A. That is consonant with the actual occurrence of severe serotonin toxicity in humans at the dose of only 1 mg kg(-1). It seems that all proposed uses of methylene blue entail levels that block monoamine oxidase, so cessation of serotonin reuptake inhibitors should be very carefully considered before using methylene blue.

  7. Methylene blue- and thiol-based oxygen depletion for super-resolution imaging.

    PubMed

    Schäfer, Philip; van de Linde, Sebastian; Lehmann, Julian; Sauer, Markus; Doose, Sören

    2013-03-19

    Anaerobic conditions are often required in solution-based bionanotechnological applications. Efficient oxygen depletion is essential for increasing photostability, optimizing fluorescence signals, and adjusting kinetics of fluorescence intermittency in single-molecule fluorescence spectroscopy/microscopy, particularly for super-resolution imaging techniques. We characterized methylene blue (MB)- and thiol-based redox reactions with the aim of designing an oxygen scavenger system as an alternative to the established enzyme-based oxygen scavenging systems or purging procedures. Redox reactions of the chromophore methylene blue in aqueous solution, commonly visualized in the blue bottle experiment, deplete molecular oxygen as long as a sacrificial reduction component is present in excess concentrations. We demonstrate that methylene blue in combination with reducing compounds such as β-mercaptoethylamine (MEA) can serve as fast and efficient oxygen scavenger. Efficient oxygen scavenging in aqueous solution is also possible with mere β-mercaptoethylamine at mM concentrations. We present kinetic parameters of the relevant reactions, pH-stability of the MB/MEA-oxygen scavenging system, and its application in single-molecule based super-resolution imaging.

  8. Fast-response humidity-sensing films based on methylene blue aggregates formed on nanoporous semiconductor films

    NASA Astrophysics Data System (ADS)

    Ishizaki, Ryota; Katoh, Ryuzi

    2016-05-01

    We prepared fast-response colorimetric humidity-sensing (vapochromic) films based on methylene blue adsorption onto nanoporous semiconductor (TiO2, Al2O3) films. Color changes caused by changes of humidity could be easily identified visually. A characteristic feature of the vapochromic films was their fast response to changes of humidity. We found that the response began to occur within 10 ms. The response was rapid because all the methylene blue molecules attached to the nanoporous semiconductor surface were directly exposed to the environment. We also deduced that the color changes were caused by structural changes of the methylene blue aggregates on the surface.

  9. Comparative study of calcium alginate, activated carbon, and their composite beads on methylene blue adsorption.

    PubMed

    Hassan, A F; Abdel-Mohsen, A M; Fouda, Moustafa M G

    2014-02-15

    Three adsorbents, calcium alginate beads (AB), sodium hydroxide activated carbon based coconut shells (C), and calcium alginate/activated carbon composite beads (ACB) were prepared. Their textural properties were characterized by N2-adsorption at -196°C and scanning electron microscopy. The porosity, surface area and total pore volume of C>ACB>AB, but AB adsorbent was more acidic function groups more than the other adsorbents. Adsorption experiments were conducted to examine the effects of adsorbent dosage, pH, time, temperature and initial concentration of methylene blue. Methylene blue adsorption on C, AB and ACB was observed at pH>6 to avoid the competition of H(+). The amount of dye adsorbed increases as the adsorbent dosage increase. Adsorption of dye follows pseudo-second order mechanism. Thermodynamic studies show spontaneous and endothermic nature of the overall adsorption process.

  10. Photo-Induced Inactivation of Viruses: Adsorption of Methylene Blue, Thionine, and Thiopyronine on Qβ Bacteriophage

    NASA Astrophysics Data System (ADS)

    Jockusch, Steffen; Lee, Denis; Turro, Nicholas J.; Leonard, Edward F.

    1996-07-01

    The adsorption of cationic organic dyes (methylene blue, thionine, and thiopyronine) on Qβ bacteriophage was studied by UV-visible and fluorescence spectroscopy. The dyes have shown a strong affinity to the virus and some have been used as sensitizers for photo-induced inactivation of virus. In the methylene blue concentration range of 0.1-5 μ M and at high ratios of dye to virus (greater than 1000 dye molecules per virion), the dyes bind as aggregates on the virus. Aggregation lowers the efficiency of photoinactivation because of self-quenching of the dye. At lower ratios of dye to virus (lower than 500 dye molecules per virion), the dye binds to the virus as a monomer. Fluorescence polarization and time-resolved studies of the fluorescence support the conclusions based on fluorescence quenching. Increasing the ionic strength (adding NaCl) dissociates bound dye aggregates on the virus and releases monomeric dye into the bulk solution.

  11. Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of methylene blue.

    PubMed

    Dai, Hongjie; Huang, Huihua

    2016-09-01

    Novel composite hydrogels based on pineapple peel cellulose and sepia ink were synthesized by homogeneous acetylation of cellulose in ionic liquid 1-butyl-3-methylimidazolium chloride. The structure and morphology of the prepared hydrogels were characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscope, X-ray diffraction, thermogravimetry and differential scanning calorimetry. The effects of acetylation time, acetylation temperature, molar ratio of acetic anhydride/anhydroglucose unit and the additive amount of sepia ink on methylene blue adsorption capacity of the hydrogels embedded with sepia ink were also investigated. Methylene blue adsorption of the hydrogels followed pseudo-second-order kinetic model and sepia ink improved adsorption capacity significantly. The adsorption capacity at equilibrium was increased from 53.72 to 138.25mg/g when the additive amount of sepia ink of the hydrogels was 10%. PMID:27185109

  12. Electrochemical preparation of poly(methylene blue)/graphene nanocomposite thin films

    SciTech Connect

    Erçarıkcı, Elif; Dağcı, Kader; Topçu, Ezgi; Alanyalıoğlu, Murat

    2014-07-01

    Highlights: • Poly(MB)/graphene thin films are prepared by a simple electrochemical approach. • Graphene layers in the film show a broad band in visible region of absorbance spectra. • Morphology of composite films indicates both disordered and ordered regions. • XRD reveals that nanocomposite films include rGO layers after electropolymerization process. • Chemically prepared graphene is better than electrochemically prepared graphene for electrooxidation of nitrite. - Abstract: Poly(methylene blue)/graphene nanocomposite thin films were prepared by electropolymerization of methylene blue in the presence of graphene which have been synthesized by two different methods of a chemical oxidation process and an electrochemical approach. Synthesized nanocomposite thin films were characterized by using cyclic voltammetry, UV–vis. absorption spectroscopy, powder X-ray diffraction, and scanning tunneling microscopy techniques. Electrocatalytical properties of prepared poly(methylene blue)/graphene nanocomposite films were compared toward electrochemical oxidation of nitrite. Under optimized conditions, electrocatalytical effect of nanocomposite films of chemically prepared graphene through electrochemical oxidation of nitrite was better than that of electrochemically prepared graphene.

  13. Comparison of acridine orange, methylene blue, and Gram stains for blood cultures.

    PubMed Central

    Mirrett, S; Lauer, B A; Miller, G A; Reller, L B

    1982-01-01

    Direct microscopic screening of blood cultures by Gram stain or methylene blue stain is time consuming and frequently insensitive. Therefore, we evaluated a fluorescent-staining procedure that uses acridine orange (AO) at pH 3.5 and compared it with the methylene blue and Gram stain procedures. All smears were prepared within 24 h of receiving the culture, fixed with methanol, and examined without the results of the companion smears being known. AO-stained smears were examined with incident-light fluorescence at 600 x magnification and confirmed at 1,500x magnification. All bottles macroscopically positive within 24 h were excluded from the study. Of 2,946 cultures entered into the study, 204 (6.9%) were positive within 3 days. The sensitivity and specificity of AO based on these culture results were 52 and 98%, respectively, compared with 38% sensitivity and 99% specificity by methylene blue and Gram stains. The AO staining procedure is a simple, sensitive, screening technique for the early detection of positive blood cultures. PMID:6175656

  14. Adsorption of methylene blue from aqueous solution on pyrolyzed petrified sediment.

    PubMed

    Aroguz, Ayse Z; Gulen, J; Evers, R H

    2008-04-01

    The adsorption kinetics of methylene blue on pyrolyzed petrified sediment (PPS) has been performed using a batch-adsorption technique. The effects of various experimental parameters, such as initial dye concentration, contact time, and temperature were investigated. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data. The best correlation coefficient was obtained using the pseudo first-order kinetic model, which shows that the adsorption of methylene blue followed the pseudo-first-order rate expression and the rate constants were evaluated. The Langmuir and Freundlich adsorption isotherm models were applied to describe the equilibrium isotherms and the isotherm constants were determined. It was found that the data fitted well to Langmuir and Freundlich models. The activation energy of adsorption was also evaluated for the adsorption of methylene blue onto pyrolyzed sediment. It was found about 8.5 kJ mol(-1). Thermodynamics parameters DeltaG(o), DeltaH(o), DeltaS(o) were calculated, indicating that this process can be spontaneous and endothermic. The adsorption enthalpy and entropy were found as 14-18.5 kJ mol(-1) and 52.8-67 J mol(-1) K(-1), respectively. The results obtained from the adsorption process using PPS as adsorbent was subjected to student's t-test.

  15. Simultaneous multiselective spectroelectrochemical fiber-optic sensor: demonstration of the concept using methylene blue and ferrocyanide.

    PubMed

    Imai, Kenichiro; Okazaki, Takuya; Hata, Noriko; Taguchi, Shigeru; Sugawara, Kazuharu; Kuramitz, Hideki

    2015-02-17

    Herein, we present a novel spectroelectrochemical fiber-optic sensor that combines electrochemistry, spectroscopy, and electrostatic adsorption in three modes of selectivity. The proposed sensor is simple and consists of a gold mesh cover on a multimode fiber optic that uses attenuated total reflection as the optical detection mode. The sensing is based on changes in the attenuation of the light that passes through the fiber-optic core accompanying the electrochemical oxidation-reduction of an analyte at the electrode. Methylene blue and ferrocyanide were used as model analytes to evaluate the performance of the proposed sensor. The optical transmission changes generated by electrochemical manipulation showed a good linear relationship with the concentration and the limits of detection (3σ) for methylene blue and ferrocyanide at 2.0 × 10(-7) and 1.6 × 10(-3) M, respectively. The sensor responses were successfully enhanced with an additional level of selectivity via an electrostatically adsorbed, self-assembled monolayer (SAM), which consisted of a silane coupling layer, a polyanion, and a polycation. The improvement observed in the sensitivity of a SAM-modified fiber-optic sensor was rather encouraging. The optimized sensor had detection limits (3σ) of 8.3 × 10(-9) M for methylene blue and 7.1 × 10(-4) M for ferrocyanide. The developed sensor was successfully applied to the detection of ferrocyanide in simulated nuclear waste.

  16. Determination of low level sulfides in environmental waters by automated gas dialysis/methylene blue colorimetry

    SciTech Connect

    Francom, D. Goodwin, L.R.; Dieken, F.P. )

    1990-01-01

    A sensitive and rapid automated method has been developed for the selective analysis of acid extractable sulfide in environmental samples by combining gas dialysis separation techniques with methylene blue detection procedures. Acid extractable sulfide is separated from the sample matrix by the gas dialysis membrane and subsequently trapped in a dilute sodium hydroxide receiving stream. This stream is reacted with N,N-dimethyl-p-phenylenediamine and ferric chloride to produce methylene blue which is then quantitated colorimetrically at 660 nm. For standards and nonturbid environmental samples, there is good agreement between the results obtained by this procedure and the standard methylene blue method. The effect of interferences on the accurate determination of sulfide by both methods was also examined and it was found that cupric ions significantly interfered with sulfide estimation. To obtain adequate sulfide recoveries in tap water and environmental samples ascorbic acid must be added as an antioxidant. A detection limit of 2 {mu}g/L of sulfide has been obtained using this procedure.

  17. Impact of methylene blue in addition to norepinephrine on the intestinal microcirculation in experimental septic shock.

    PubMed

    Nantais, Jordan; Dumbarton, Tristan C; Farah, Nizam; Maxan, Alexander; Zhou, Juan; Minor, Samuel; Lehmann, Christian

    2014-01-01

    Methylene blue (MB) has been used with some success as a treatment for the vasoplegia of vasopressor-refractory septic shock. The putative mechanism of action of MB is the inhibition of endothelial nitric oxide within the microvasculature and improved responsiveness to endogenous catecholamines (norepinephrine (NE)). However, to date, no study has demonstrated the microcirculatory effect of methylene blue in septic shock. The objective of this randomized, controlled, animal study was to show, in an experimentally-induced, septic shock model in rats, the effects of MB and NE on global hemodynamics and the microcirculation. Mean arterial pressure (MAP) was drastically reduced following bacterial endotoxin (lipopolysaccharide, LPS) administration in animals not receiving vasopressors. Only the combination of NE + MB restored MAP to control levels by the end of the three hour experiment. Intravital microscopy of the microcirculation was performed in the terminal ileum in order to examine functional capillary density in intestinal muscle layers and the mucosa, as well as leukocyte activation in venules (rolling, adhesion to the endothelium). Untreated LPS animals showed a significant increase in leukocyte adhesion and a decrease in capillary perfusion in the intestinal microcirculation. In groups receiving NE or NE+MB, we observed a significant decrease in leukocyte adhesion and improved functional capillary density, indicating that microvasculature function was improved. This study suggests that methylene blue may be able to improve hemodynamics while preserving microvascular function in septic shock.

  18. Methylene Blue: The Long and Winding Road from Stain to Brain: Part 1.

    PubMed

    Howland, Robert H

    2016-09-01

    Methylene blue, first discovered and used as a dye in the textile industry, has long been used for biological staining in histology, bacteriology, and hematology. Because of its unique physiochemical properties, it was the first synthetic drug used in medicine, having been used to treat malaria more than one century ago. Methylene blue was also one of the first drugs used for the treatment of patients with psychosis at the end of the 19th century and was the lead drug in the serendipitous development of phenothiazine antipsychotic drugs in the mid-20th century. It was studied in bipolar disorder in the 1980s and has been investigated in neurodegenerative disorders in recent years. The history of methylene blue from its discovery as a dye to its use as a stain and then its therapeutic application in medicine is an example of how a drug's use can evolve over time through careful observation, clinical needs, serendipity, and the integration of concepts from different disciplines. [Journal of Psychosocial Nursing and Mental Health Services, 54(9), 21-24.]. PMID:27576224

  19. Mutations induced by methylene blue plus light in single-stranded M13mp2.

    PubMed Central

    McBride, T J; Schneider, J E; Floyd, R A; Loeb, L A

    1992-01-01

    Reactive oxygen species are generated by a variety of cellular processes. These endogenously generated, reactive intermediates produce a multiplicity of DNA alterations and mutations and have been implicated in the pathogenesis of several human diseases. We report here that treatment of single-stranded M13mp2 bacteriophage DNA with methylene blue and white light generates increased levels of 8-hydroxydeoxyguanosine and that mutagenesis is both highly specific and dependent on the SOS response. Lesions produced block the progression of DNA synthesis one base preceding template guanines. In SOS-induced Escherichia coli, 97% of all methylene blue-induced mutations in the lacZ alpha gene of M13mp2 DNA are single-base substitutions opposite template guanines. The most frequent mutations are G----C transversions. The G----T transversions expected from the presence of 8-hydroxydeoxyguanosine in the template strand occur, but at a lower frequency. Sequence data together with SOS dependency and the presence of replication blockage demonstrate that while 8-hydroxydeoxyguanosine may serve as an important marker to monitor oxygen-induced DNA damage in humans, it does not account for either the observed blockage to replication or the mutagenesis by methylene blue plus light in SOS-induced E. coli. Instead, an as yet unidentified lesion generated by active oxygen species is a more potent mutagenic event. Images PMID:1495976

  20. Methylene Blue-Loaded Dissolving Microneedles: Potential Use in Photodynamic Antimicrobial Chemotherapy of Infected Wounds

    PubMed Central

    Caffarel-Salvador, Ester; Kearney, Mary-Carmel; Mairs, Rachel; Gallo, Luigi; Stewart, Sarah A.; Brady, Aaron J.; Donnelly, Ryan F.

    2015-01-01

    Photodynamic therapy involves delivery of a photosensitising drug that is activated by light of a specific wavelength, resulting in generation of highly reactive radicals. This activated species can cause destruction of targeted cells. Application of this process for treatment of microbial infections has been termed “photodynamic antimicrobial chemotherapy” (PACT). In the treatment of chronic wounds, the delivery of photosensitising agents is often impeded by the presence of a thick hyperkeratotic/necrotic tissue layer, reducing their therapeutic efficacy. Microneedles (MNs) are an emerging drug delivery technology that have been demonstrated to successfully penetrate the outer layers of the skin, whilst minimising damage to skin barrier function. Delivering photosensitising drugs using this platform has been demonstrated to have several advantages over conventional photodynamic therapy, such as, painless application, reduced erythema, enhanced cosmetic results and improved intradermal delivery. The aim of this study was to physically characterise dissolving MNs loaded with the photosensitising agent, methylene blue and assess their photodynamic antimicrobial activity. Dissolving MNs were fabricated from aqueous blends of Gantrez® AN-139 co-polymer containing varying loadings of methylene blue. A height reduction of 29.8% was observed for MNs prepared from blends containing 0.5% w/w methylene blue following application of a total force of 70.56 N/array. A previously validated insertion test was used to assess the effect of drug loading on MN insertion into a wound model. Staphylococcus aureus, Escherichia coli and Candida albicans biofilms were incubated with various methylene blue concentrations within the range delivered by MNs in vitro (0.1–2.5 mg/mL) and either irradiated at 635 nm using a Paterson Lamp or subjected to a dark period. Microbial susceptibility to PACT was determined by assessing the total viable count. Kill rates of >96%, were achieved for

  1. Methylene Blue-Loaded Dissolving Microneedles: Potential Use in Photodynamic Antimicrobial Chemotherapy of Infected Wounds.

    PubMed

    Caffarel-Salvador, Ester; Kearney, Mary-Carmel; Mairs, Rachel; Gallo, Luigi; Stewart, Sarah A; Brady, Aaron J; Donnelly, Ryan F

    2015-01-01

    Photodynamic therapy involves delivery of a photosensitising drug that is activated by light of a specific wavelength, resulting in generation of highly reactive radicals. This activated species can cause destruction of targeted cells. Application of this process for treatment of microbial infections has been termed "photodynamic antimicrobial chemotherapy" (PACT). In the treatment of chronic wounds, the delivery of photosensitising agents is often impeded by the presence of a thick hyperkeratotic/necrotic tissue layer, reducing their therapeutic efficacy. Microneedles (MNs) are an emerging drug delivery technology that have been demonstrated to successfully penetrate the outer layers of the skin, whilst minimising damage to skin barrier function. Delivering photosensitising drugs using this platform has been demonstrated to have several advantages over conventional photodynamic therapy, such as, painless application, reduced erythema, enhanced cosmetic results and improved intradermal delivery. The aim of this study was to physically characterise dissolving MNs loaded with the photosensitising agent, methylene blue and assess their photodynamic antimicrobial activity. Dissolving MNs were fabricated from aqueous blends of Gantrez(®) AN-139 co-polymer containing varying loadings of methylene blue. A height reduction of 29.8% was observed for MNs prepared from blends containing 0.5% w/w methylene blue following application of a total force of 70.56 N/array. A previously validated insertion test was used to assess the effect of drug loading on MN insertion into a wound model. Staphylococcus aureus, Escherichia coli and Candida albicans biofilms were incubated with various methylene blue concentrations within the range delivered by MNs in vitro (0.1-2.5 mg/mL) and either irradiated at 635 nm using a Paterson Lamp or subjected to a dark period. Microbial susceptibility to PACT was determined by assessing the total viable count. Kill rates of >96%, were achieved for S

  2. Functional Polymeric Systems as Delivery Vehicles for Methylene Blue in Photodynamic Therapy.

    PubMed

    Junqueira, Mariana V; Borghi-Pangoni, Fernanda B; Ferreira, Sabrina B S; Rabello, Bruno R; Hioka, Noboru; Bruschi, Marcos L

    2016-01-12

    Antibiotic-resistant microorganisms have become a global concern, and the search for alternative therapies is very important. Photodynamic therapy (PDT) consists of the use of a nontoxic photosensitizer (PS), light, and oxygen. This combination produces reactive oxygen species and singlet oxygen, which can alter cellular structures. Methylene blue (MB) is a substance from the phenothiazine class often used as a PS. In this work, to facilitate the PS contact within the wounds, we have used Design of Experiments 2(3) plus central point to develop functional polymeric systems. The formulations were composed by poloxamer 407 [15.0, 17.5, or 20.0% (w/w)], Carbopol 934P [0.15, 0.20, or 0.25% (w/w)], and MB [0.25, 0.50, or 0.75% (w/w)]. The sol-gel transition temperature, flow rheometry, in vitro MB release, and ex vivo study of MB cutaneous permeation and retention were investigated. Moreover, the evaluation of photodynamic activity was also analyzed by in vitro degradation of tryptophan by singlet oxygen and using Artemia salina. The determination of the gelation temperature displayed values within the range of 25-37 °C, and the systems with better characteristics were subjected to rheological analysis and in vitro release profiling. The 20/0.15/0.25 formulation showed the best release profile (42.57% at 24 h). This system displayed no significant skin permeation (0.38% at 24 h), and the photooxidation of tryptophan test showed the production of reactive species of oxygen. The toxicity test using A. salina revealed that the MB associated with the light increased the mortality rate by 61.29%. Therefore, investigating the PDT efficacy of the functional polymeric system containing MB will be necessary in the future.

  3. Functional Polymeric Systems as Delivery Vehicles for Methylene Blue in Photodynamic Therapy.

    PubMed

    Junqueira, Mariana V; Borghi-Pangoni, Fernanda B; Ferreira, Sabrina B S; Rabello, Bruno R; Hioka, Noboru; Bruschi, Marcos L

    2016-01-12

    Antibiotic-resistant microorganisms have become a global concern, and the search for alternative therapies is very important. Photodynamic therapy (PDT) consists of the use of a nontoxic photosensitizer (PS), light, and oxygen. This combination produces reactive oxygen species and singlet oxygen, which can alter cellular structures. Methylene blue (MB) is a substance from the phenothiazine class often used as a PS. In this work, to facilitate the PS contact within the wounds, we have used Design of Experiments 2(3) plus central point to develop functional polymeric systems. The formulations were composed by poloxamer 407 [15.0, 17.5, or 20.0% (w/w)], Carbopol 934P [0.15, 0.20, or 0.25% (w/w)], and MB [0.25, 0.50, or 0.75% (w/w)]. The sol-gel transition temperature, flow rheometry, in vitro MB release, and ex vivo study of MB cutaneous permeation and retention were investigated. Moreover, the evaluation of photodynamic activity was also analyzed by in vitro degradation of tryptophan by singlet oxygen and using Artemia salina. The determination of the gelation temperature displayed values within the range of 25-37 °C, and the systems with better characteristics were subjected to rheological analysis and in vitro release profiling. The 20/0.15/0.25 formulation showed the best release profile (42.57% at 24 h). This system displayed no significant skin permeation (0.38% at 24 h), and the photooxidation of tryptophan test showed the production of reactive species of oxygen. The toxicity test using A. salina revealed that the MB associated with the light increased the mortality rate by 61.29%. Therefore, investigating the PDT efficacy of the functional polymeric system containing MB will be necessary in the future. PMID:26673856

  4. A dose-finding study of methylene blue to inhibit nitric oxide actions in the hemodynamics of human septic shock.

    PubMed

    Juffermans, Nicole P; Vervloet, Marc G; Daemen-Gubbels, Catharina R G; Binnekade, Jan M; de Jong, Martin; Groeneveld, A B Johan

    2010-05-15

    Methylene blue increases blood pressure and myocardial function in septic shock mainly by inhibiting nitric oxide (NO) actions. However, a dose-dependency of methylene blue has not been established. Therefore, the compound is currently used as rescue treatment only. To evaluate dose-dependency, a prospective, randomized, double blind, single centre study was performed in 15 consecutive, mechanically ventilated patients with septic shock admitted to the intensive care unit, in whom methylene blue was infused at 1 mg/kg (n=4), 3 mg/kg (n=6) or 7 mg/kg (n=5) over 20 min. Hemodynamic parameters were measured before and after the infusion. Gastric tonometry was performed. Methylene blue treatment increased heart rate, cardiac index, mean arterial, pulmonary artery, pulmonary artery occlusion and central venous pressures, systemic vascular resistance, ventricular stroke work indices and O(2) delivery and uptake, and decreased lactate levels. Methylene blue had a dose-dependent effect on cardiac index, mean arterial, mean pulmonary artery and pulmonary artery occlusion pressures, left ventricular function, O(2) delivery and consumption and lactate levels. The drug dose-dependently increased the gastric-arterial blood PCO(2) gap. The data suggest that in human septic shock, methylene blue increases mean arterial blood pressure by an increase in cardiac index and systemic vascular resistance. The rise in cardiac index is caused by an increase in left ventricular filling and function, increasing tissue oxygenation, even at a dose of 1mg/kg. High doses of methylene blue may compromise splanchnic perfusion, even though further enhancing global hemodynamics, and should therefore, be avoided in future studies.

  5. Novel alkylimidazolium/vanadium pentoxide intercalation compounds with excellent adsorption performance for methylene blue

    SciTech Connect

    Kong Aiguo; Ding Yongjie; Wang Ping; Zhang Hengqiang; Yang Fan; Shan Yongkui

    2011-02-15

    Novel alkylimidazolium-intercalated V{sub 2}O{sub 5} compounds were synthesized by a redox reaction between iodide ion and V{sub 2}O{sub 5}. The X-ray photoelectron spectroscopy and the diffuse reflectance UV-vis spectrometry experiments reveal that the vanadium in the intercalated V{sub 2}O{sub 5} products was partially reduced by an iodide ion and the resultant iodine can be removed in the final products. The transmission electron microscope observation and X-ray diffraction analysis testify that the prepared alkylimidazolium/V{sub 2}O{sub 5} intercalation compounds have typical lamellar structure with different d{sub 100} interlayer spacing values and the special straw-like nanofiber morphology with the length of 0.5-10 {mu}m. Systematic investigation indicates that new intercalation compounds possess the extraordinary adsorption performance for methylene blue in an aqueous solution. -- Graphical abstract: The alkylimidazolium-intercalated V{sub 2}O{sub 5} compounds with special straw-like nanofiber morphology were synthesized by a redox reaction between iodide ion and V{sub 2}O{sub 5}, which show the excellent adsorption performance for methylene blue in an aqueous medium. Display Omitted Research highlights: {yields} Novel alkylimidazolium-intercalated V{sub 2}O{sub 5} compounds. {yields} A simple preparation method by a redox reaction between iodide ion in ionic liquid and V{sub 2}O{sub 5}. {yields} The excellent adsorption performance for methylene blue in an aqueous medium.

  6. Congenital Methemoglobinemia Type II-Clinical Improvement with Short-Term Methylene Blue Treatment.

    PubMed

    Cooper, Monica S; Randall, Melinda; Rowell, Margaret; Charlton, Margaret; Greenway, Anthea; Barnes, Chris

    2016-03-01

    We report a case of prophylactic management with methylene blue (MB) in an almost 4-year-old male with congenital methemoglobinemia type II. He has a CYB5R3 compound heterozygote mutation, causing a cytochrome-b(5) reductase deficiency. Since the MB treatment regimen has commenced, his methemoglobin level has been significantly lower. He has shown modest behavioral improvements (as assessed on the Achenbach behavior report scales). There have been no iatrogenic side effects. These findings are encouraging for symptomatic improvement with regular prophylactic MB treatment but represent a single case report, which must be interpreted with caution.

  7. Mechanism of complexation of the phenothiazine dye methylene blue with fullerene C60

    NASA Astrophysics Data System (ADS)

    Buchelnikov, A. S.; Kostyukov, V. V.; Yevstigneev, M. P.; Prylutskyy, Yu. I.

    2013-04-01

    The complexation of fullerene C60 with the aromatic dye methylene blue (MB) in aqueous solution was studied. Spectrophotometric titration revealed a reasonably strong interaction between C60 and MB molecules with an equilibrium constant K = 2110 L/mol and the binding of up to five dye molecules with the surface of C60. The energy analysis of the MB-C60 system showed that the intermolecular and hydrophobic interactions were dominant in the energy profile of the complexation, and while the electrostatic factor played an insignificant role.

  8. Adsorption of methylene blue dye from aqueous solutions using Eichhornia crassipes.

    PubMed

    Wanyonyi, Wycliffe Chisutia; Onyari, John Mmari; Shiundu, Paul Mwanza

    2013-09-01

    Adsorption of methylene blue (MB) from aqueous solution using dried roots, stems, and leaves of Eichhornia crassipes biomass obtained from Lake Victoria was studied. Batch experimental results revealed that the adsorption process was highly dependent on adsorbent dosage, initial MB concentration, E. crassipes particle size and aqueous solution temperature. The isotherm data fitted Freundlich mathematical models with maximum dye adsorption of 35.37 mg g(-1). Roots adsorbed over 99 % of the MB in <5 min. Sorption kinetics followed a pseudo-second-order model. Results provide evidence that E. crassipes is an effective and inexpensive biomaterial for dye removal from aqueous dye solutions and industrial effluents.

  9. Methylene blue sensitized gelatin as a photosensitive medium for conventional and polarizing holography.

    PubMed

    Solano, C; Lessard, R A; Roberge, P C

    1987-05-15

    The properties of thin gelatin films sensitized with a dye (methylene blue) when used as a holographic material are discussed. On illumination the excited dye molecule changes its structure giving a colorless molecule. The higher rate of bleaching and therefore the higher diffraction efficiency of the developed phase gratings are obtained in an oxygen-free atmosphere. Furthermore, the light absorption probability of the dye molecules depends on its position with respect to the electric vector of the light, with the result that the exposed part of the dye becomes dichroic when illuminated with linearly polarized light. This result allows the use of this material for polarizing holography. PMID:20454433

  10. Encapsulation of methylene blue in polyacrylamide nanoparticle platforms protects its photodynamic effectiveness.

    PubMed

    Tang, Wei; Xu, Hao; Park, Edwin J; Philbert, Martin A; Kopelman, Raoul

    2008-05-01

    The ability to prevent methylene blue (MB), a photosensitizer, from being reduced by plasma reductases will greatly improve its efficacy in photodynamic therapy (PDT) applications. We have developed a delivery approach for PDT by encapsulating MB using nanoparticle platforms (NPs). The 30-nm polyacrylamide-based NPs provide protection for the embedded MB against reduction by diaphorase enzymes. Furthermore, our data shows the matrix-protected MB efficiently induces photodynamic damage to tumor cells. The unprecedented results demonstrate the significant in vitro photodynamic effectiveness of MB when encapsulated within NPs, which promises to open new opportunities for MB in its in vivo and clinical studies.

  11. Methylene Blue Dichromated-Gelatin Holograms: Antihumidity Method for Taking Off Strongly Adsorbing Humidity Groups

    NASA Astrophysics Data System (ADS)

    Wang, Ketai; Guo, Lurong; Zhu, Jianhua; Zhang, Weiping; Cheng, Bo

    1998-01-01

    A new, to our knowledge, method of modifying methylene blue dichromated-gelatin (MBDCG) holograms by use of ninhydrin and removal of their amino groups and carboxyl groups, which strongly adsorb humidity, has been developed. The modified MBDCG holograms are stable for 1000-line /mm gratings (diffractional efficiency of 95%) in a high-humidity environment (relative humidity of 80% -85%). The modifying reaction does not affect the diffraction efficiency of the MBDCG holograms. It is demonstrated that the amino groups and carboxyl groups of the side chains in the gelatin do not undergo the chelation reaction with Cr iii in the sensitive area.

  12. Congenital Methemoglobinemia Type II-Clinical Improvement with Short-Term Methylene Blue Treatment.

    PubMed

    Cooper, Monica S; Randall, Melinda; Rowell, Margaret; Charlton, Margaret; Greenway, Anthea; Barnes, Chris

    2016-03-01

    We report a case of prophylactic management with methylene blue (MB) in an almost 4-year-old male with congenital methemoglobinemia type II. He has a CYB5R3 compound heterozygote mutation, causing a cytochrome-b(5) reductase deficiency. Since the MB treatment regimen has commenced, his methemoglobin level has been significantly lower. He has shown modest behavioral improvements (as assessed on the Achenbach behavior report scales). There have been no iatrogenic side effects. These findings are encouraging for symptomatic improvement with regular prophylactic MB treatment but represent a single case report, which must be interpreted with caution. PMID:26574897

  13. Encapsulation of methylene blue in polyacrylamide nanoparticle platforms protects its photodynamic effectiveness.

    PubMed

    Tang, Wei; Xu, Hao; Park, Edwin J; Philbert, Martin A; Kopelman, Raoul

    2008-05-01

    The ability to prevent methylene blue (MB), a photosensitizer, from being reduced by plasma reductases will greatly improve its efficacy in photodynamic therapy (PDT) applications. We have developed a delivery approach for PDT by encapsulating MB using nanoparticle platforms (NPs). The 30-nm polyacrylamide-based NPs provide protection for the embedded MB against reduction by diaphorase enzymes. Furthermore, our data shows the matrix-protected MB efficiently induces photodynamic damage to tumor cells. The unprecedented results demonstrate the significant in vitro photodynamic effectiveness of MB when encapsulated within NPs, which promises to open new opportunities for MB in its in vivo and clinical studies. PMID:18298950

  14. Spectroscopic studies of the interactive model of methylene blue with DNA by means of β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Zhao, Guang-Chao; Zhu, Jun-Jie; Chen, Hong-Yuan

    1999-05-01

    The formation of the inclusion complex of methylene blue with β-cyclodextrin is studied by spectroscopic and electrochemical methods and the binding constant of the inclusion complex is 4.5×10 3 l mol -1. The interactive model of methylene blue with DNA has been investigated by means of the inclusion action of β-cyclodextrin. Through the changes of absorption and fluorescence spectra, the intrinsic binding constant ( k) of methylene blue with DNA and inclusion complex with DNA is obtained. In the case of 20 m mol l -1 Tris buffer solution (pH 7.2), their values are 1.53×10 5 l mol -1 and 9.98×10 4 l mol -1, respectively. The experimental results suggest that the inclusion complex does not decompose when it interacts with DNA. The binding number ( n) is 1 for both methylene blue and inclusion complex with DNA. According to the experimental results, it can be inferred that the interactive model of methylene blue with DNA is 'electrostatic binding'. This conclusion is able to explain the experimental phenomena clearly.

  15. Effect of methylene blue-mediated photodynamic therapy for treatment of basal cell carcinoma.

    PubMed

    Samy, Nevien A; Salah, Manal M; Ali, Maha F; Sadek, Ahmed M

    2015-01-01

    Photodynamic therapy (PDT) is regarded as a treatment option for basal cell carcinoma (BCC). The aim of this study is to investigate the efficacy of methylene blue (MB)-based PDT in patients suffering from nodular or ulcerative BCCs. This study is a prospective clinical trial with a 6-months follow-up. The study setting is at the Dermatology Clinic at NILES, Cairo University, Egypt. Seventeen patients complaining of nodular BCC (nBCC) and three patients complaining of ulcerative BCC (uBCC) were taken as samples. Methylene blue, the photosensitizer, was prepared in two different formulas: liposomal-loaded MB (LMB) was prepared and formulated in hydrogel (MB 0.2%) to be used topically alone for treating BCCs <2 cm in diameter or to be combined with intralesional injection (ILI) of free MB 2% aqueous solution for treating BCCs ≥2 cm in diameter. A session was performed every 2 weeks until complete response (CR) of the lesion or for a maximum of six sessions. Clinical assessments of clinical improvement, dermatological photography, monthly follow-up visits for 6 months, and skin biopsy after 3 months of follow-up to confirm the response, recurrence, or both in cases in which the clinical evaluation was ambiguous. Seventeen patients of the 20 completed the study, 11 patients achieved CR with very good cosmetic outcome, photosensitizer tolerance, and minimal reported side effects. MB is a cheap promising alternative photosensitizer for PDT of nBCC.

  16. Nonlinear chemoconvection in the methylene-blue-glucose system: Two-dimensional shallow layers

    NASA Astrophysics Data System (ADS)

    Pons, A. J.; Batiste, O.; Bees, M. A.

    2008-07-01

    Interfacial hydrodynamic instabilities arise in a range of chemical systems. One mechanism for instability is the occurrence of unstable density gradients due to the accumulation of reaction products. In this paper we conduct two-dimensional nonlinear numerical simulations for a member of this class of system: the methylene-blue-glucose reaction. The result of these reactions is the oxidation of glucose to a relatively, but marginally, dense product, gluconic acid, that accumulates at oxygen permeable interfaces, such as the surface open to the atmosphere. The reaction is catalyzed by methylene-blue. We show that simulations help to disassemble the mechanisms responsible for the onset of instability and evolution of patterns, and we demonstrate that some of the results are remarkably consistent with experiments. We probe the impact of the upper oxygen boundary condition, for fixed flux, fixed concentration, or mixed boundary conditions, and find significant qualitative differences in solution behavior; structures either attract or repel one another depending on the boundary condition imposed. We suggest that measurement of the form of the boundary condition is possible via observation of oxygen penetration, and improved product yields may be obtained via proper control of boundary conditions in an engineering setting. We also investigate the dependence on parameters such as the Rayleigh number and depth. Finally, we find that pseudo-steady linear and weakly nonlinear techniques described elsewhere are useful tools for predicting the behavior of instabilities beyond their formal range of validity, as good agreement is obtained with the simulations.

  17. Adsorptional removal of methylene blue by guar gum-cerium (IV) tungstate hybrid cationic exchanger.

    PubMed

    Gupta, V K; Pathania, Deepak; Singh, Pardeep; Kumar, Amit; Rathore, B S

    2014-01-30

    Guar gum-cerium (IV) tungstate nanocomposite (GG/CTNC) cationic exchanger was synthesized using simple sol gel method. The GG/CTNC was characterized using X-ray diffraction (XRD), Fourier transmission infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectrophotometer (EDX). The XRD studies confirmed amorphous and fibrous in nature of GG/CTNC. The high percentage of oxygen in the nanocomposite material confirmed the functionality tungstate (WO4(-)). The ion exchange capacity of GG/CTNC for Na(+) ion was observed to be 1.30 mequivg(-1). The hybrid exchanger was used as potential adsorbent for the removal of methylene blue (MB) from aqueous system. The correlation coefficients value indicated a good fit of monolayer Langmuir model to the adsorption of methylene blue onto GG/CTNC. The adsorption kinetic study revealed that the adsorption process followed the pseudo second order kinetic. The Gibbs free energy (ΔG) values confirmed the spontaneous nature of adsorption process.

  18. [Adsorption of methylene blue from aqueous solution onto magnetic Fe3O4/ graphene oxide nanoparticles].

    PubMed

    Chang, Qing; Jiang, Guo-Dong; Hu, Meng-Xuan; Huang, Jia; Tang, He-Qing

    2014-05-01

    A simple ultrasound-assisted co-precipitation method was developed to prepare magnetic Fe3O4/graphene oxide (Fe3O4/ GO) nanoparticles. The characterization with transmission electron microscope (TEM) indicated that the products possessed small particle size. The hysteresis loop of the dried Fe3O4/GO nanoparticles demonstrated that the sample had typical features of superparamagnetic material. Batch adsorption studies were carried out to investigate the effects of the initial pH of the solution, the dosage of adsorbent, the contact time and temperature on the adsorption of methylene blue. The results indicated that the composites prepared could be used over a broad pH range (pH 6-9). The adsorption process was very fast within the first 25 min and the equilibrium was reached at 180 min. The adsorption equilibrium and kinetics data fitted well with the Langmuir isotherm model and the pseudo-second-order kinetic model. The adsorption process was a spontaneous and endothermic process in nature. The composite exhibited fairly high adsorption capacity (196.5 mg.g-1) of methylene blue at 313 K. In addition, the magnetic composite could be effectively and simply separated by using an external magnetic field, and then regenerated by hydrogen peroxide and recycled for further use. The results indicated that the adsorbent had a potential in the application of the dye wastewater treatment.

  19. Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder.

    PubMed

    Weng, Chih-Huang; Lin, Yao-Tung; Tzeng, Tai-Wei

    2009-10-15

    The ability of an unconventional bio-adsorbent, pineapple leaf powder (PLP) for the adsorption of methylene blue (MB) from aqueous solution was studied. It was observed that intra-particle diffusion was involved in the adsorption process and that the kinetic data fitted well with a pseudo-second-order equation. Fitting parameters revealed that the rate of adsorption increased with decrease in dye concentration and decrease in ionic strength while the mixing speed did not have a significant effect on adsorption. The adsorption was favorable at higher pH and lower temperature, and the equilibrium data were well fitted by the Langmuir isotherm. The maximum adsorption capacity varied from 4.68 x 10(-4) to 9.28 x 10(-4)mol/g when pH increases from 3.5 to 9.5. Thermodynamic parameters suggest that the adsorption is a typical physical process, spontaneous, and exothermic in nature. The results revealed that this agricultural waste has potential to be used as an economical adsorbent for the removal of methylene blue from aqueous solution.

  20. Synthesis and characterization of magnetic palygorskite nanoparticles and their application on methylene blue remotion from water

    NASA Astrophysics Data System (ADS)

    Middea, Antonieta; Spinelli, Luciana S.; Souza, Fernando G.; Neumann, Reiner; Gomes, Otavio da F. M.; Fernandes, Thais L. A. P.; de Lima, Luiz C.; Barthem, Vitoria M. T. S.; de Carvalho, Fernanda V.

    2015-08-01

    Recently there has been considerable interest in magnetic sorbents materials, which is added excellent capabilities such as sorption and magnetic response to an applied field. Accordingly, palygorskite nanoparticles were covered by magnetite using a co-precipitation technique and characterized by: X-ray fluorescence (XRF), X-ray diffraction (XRD), surface analysing and scanning electron microscopy (SEM) with element analysis and mapping, particle size, pore surface area (BET), density, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and zeta potential. Additionally, magnetic properties were studied by SQUID magnetometer, magnetic force microscopy (MFM) and also using a simple experimental setup. Magnetic nanoparticles produced had average diameters in a nanometric range. The amount of iron present in the nanoparticles increased by six times after the magnetization and a superparamagnetic behavior was exhibited with high saturation magnetization, from 4.0 × 10-4 Am2/kg to about 20 Am2/kg. A weight loss was also observed around 277 °C-339 °C by TGA, indicating a structural change from magnetite to maghemite, which confirms the magnetization of palygorskite. Batch adsorption experiments were carried out for the removal of methylene blue cationic dye from aqueous solution using pure and covered by magnetite palygorskite nanoparticles as adsorbents. Furthermore, about 90% of methylene blue was removed within 3 min using magnetized palygorskite.

  1. A Possible Phenomenon of Persistence in Pseudomonas aeruginosa Treated with Methylene Blue and Red Light.

    PubMed

    Forte Giacobone, Ana Florencia; Ruiz Gale, Maria Fernanda; Hogert, Elsa Noemí; Oppezzo, Oscar Juan

    2016-09-01

    Planktonic Pseudomonas aeruginosa cells harvested in stationary phase were exposed to red light in the presence of methylene blue to study the potential occurrence of persistence in bacterial populations submitted to photodynamic antimicrobial therapy. Survival curves revealed the existence of small subpopulations of cells exhibiting increased ability to tolerate the treatment. These subpopulations were detected even using high concentrations of photosensitizer, whether added in a single step or following a fractionated scheme, and when the irradiation medium was modified to delay the photodecomposition of methylene blue. When cells grown from survivors to the treatment were cultured and exposed to red light and dye, their responses were similar to that of the original strain. These results exclude exhaustion of the photosensitizer and selection of resistant mutants as explanations for the features of the survival curves. Cells able to tolerate the treatment were found even when radiation was imparted at a high-dose rate. They exhibit a response typical of persisters, which tolerate antimicrobial agents due to transient and reversible changes in their phenotype, suggesting that persistence is a factor to consider upon evaluating the efficacy of photodynamic antimicrobial therapy.

  2. Hybrid multiwalled carbon nanotube--Laponite sorbent for removal of methylene blue from aqueous solutions.

    PubMed

    Loginov, Maksym; Lebovka, Nikolai; Vorobiev, Eugene

    2014-10-01

    The article discusses adsorption of methylene blue dye by novel hybrid sorbent consisting of Laponite and multiwalled carbon nanotubes. The sorbent was obtained by sonication of the aqueous suspensions of nanotubes at different concentrations of Laponite. The methods of the methylene blue adsorption, dead-end membrane filtration and environmental scanning electron microscopy were used for the sorbent characterization. It may be concluded from the results of filtration and adsorption experiments that sonication of mixed aqueous suspensions of Laponite and multiwalled carbon nanotubes leads to the formation of hybrid particles (ML-particles) with a core-shell structure. The size and the shape of hybrid particles were determined by nanotubes, while their adsorption properties were determined by Laponite particles attached to the surface of nanotubes. The Laponite content in hybrid particles was corresponding to the Laponite to nanotubes ratio in the initial suspension X(L)=0-1. Due to the presence of Laponite in the sorbent, its adsorbing capacity was much higher as compared to the adsorbing capacity of pure nanotubes, and it was directly proportional to the Laponite content. This sorbent may be used either as a purifying additive or as a filtering layer if it is deposited on the surface of a supporting membrane. Due to relatively large size of hybrid particles, they can be easily separated from the purified solution by filtration or centrifugation.

  3. Potential Biosorbent Derived from Calligonum polygonoides for Removal of Methylene Blue Dye from Aqueous Solution

    PubMed Central

    Nasrullah, Asma; Khan, Hizbullah; Khan, Amir Sada; Man, Zakaria; Muhammad, Nawshad; Khan, Muhammad Irfan; Abd El-Salam, Naser M.

    2015-01-01

    The ash of C. polygonoides (locally called balanza) was collected from Lakki Marwat, Khyber Pakhtunkhwa, Pakistan, and was utilized as biosorbent for methylene blue (MB) removal from aqueous solution. The ash was used as biosorbent without any physical or chemical treatment. The biosorbent was characterized by using various techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The particle size and surface area were measured using particle size analyzer and Brunauer-Emmett-Teller equation (BET), respectively. The SEM and BET results expressed that the adsorbent has porous nature. Effects of various conditions such as initial concentration of methylene blue (MB), initial pH, contact time, dosage of biosorbent, and stirring rate were also investigated for the adsorption process. The rate of the adsorption of MB on biomass sample was fast, and equilibrium has been achieved within 1 hour. The kinetics of MB adsorption on biosorbent was studied by pseudo-first- and pseudo-second-order kinetic models and the pseudo-second-order has better mathematical fit with correlation coefficient value (R2) of 0.999. The study revealed that C. polygonoides ash proved to be an effective, alternative, inexpensive, and environmentally benign biosorbent for MB removal from aqueous solution. PMID:25705714

  4. Potential biosorbent derived from Calligonum polygonoides for removal of methylene blue dye from aqueous solution.

    PubMed

    Nasrullah, Asma; Khan, Hizbullah; Khan, Amir Sada; Man, Zakaria; Muhammad, Nawshad; Khan, Muhammad Irfan; Abd El-Salam, Naser M

    2015-01-01

    The ash of C. polygonoides (locally called balanza) was collected from Lakki Marwat, Khyber Pakhtunkhwa, Pakistan, and was utilized as biosorbent for methylene blue (MB) removal from aqueous solution. The ash was used as biosorbent without any physical or chemical treatment. The biosorbent was characterized by using various techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The particle size and surface area were measured using particle size analyzer and Brunauer-Emmett-Teller equation (BET), respectively. The SEM and BET results expressed that the adsorbent has porous nature. Effects of various conditions such as initial concentration of methylene blue (MB), initial pH, contact time, dosage of biosorbent, and stirring rate were also investigated for the adsorption process. The rate of the adsorption of MB on biomass sample was fast, and equilibrium has been achieved within 1 hour. The kinetics of MB adsorption on biosorbent was studied by pseudo-first- and pseudo-second-order kinetic models and the pseudo-second-order has better mathematical fit with correlation coefficient value (R (2)) of 0.999. The study revealed that C. polygonoides ash proved to be an effective, alternative, inexpensive, and environmentally benign biosorbent for MB removal from aqueous solution.

  5. Kinetics and thermodynamics of adsorption of methylene blue by a magnetic graphene-carbon nanotube composite

    NASA Astrophysics Data System (ADS)

    Wang, Peifang; Cao, Muhan; Wang, Chao; Ao, Yanhui; Hou, Jun; Qian, Jin

    2014-01-01

    A solvothermal method was employed to prepare a novel magnetic composite adsorbent composed of graphene, multi-walled carbon nanotubes (MWCNTs) and Fe3O4 nanoparticles. The prepared adsorbents were characterized by X-ray diffraction, scanning electron microscopy and X-ray fluorescence spectrometry and Fourier transform infrared spectroscopy. Fourier transform infrared spectroscopy and the particle size distribution of the samples before and after adsorption was also carried out. The performance of as-prepared composites was investigated by the adsorption of dye methylene blue. Results showed that the maximum adsorption capacity of the samples was up to 65.79 mg g-1, which was almost equal to the sum of magnetic graphene and magnetic MWCNTs. The effect of pH and temperature on the adsorption performance of methylene blue onto the magnetic adsorbents was investigated. The kinetic was well-described by pseudo-second-order and intraparticle diffusion model, while the isotherm obeyed the Langmuir isotherm. Furthermore, the as-prepared composites were found to be regenerative and reusable. The application in the treatment of an artificial dye wastewater and its cost estimation were also discussed. Therefore, the as-prepared magnetic composites can be severed as a potential adsorbent for removal of dye pollutant, owing to its high adsorption performance, magnetic separability and efficient recyclable property.

  6. Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder.

    PubMed

    Weng, Chih-Huang; Lin, Yao-Tung; Tzeng, Tai-Wei

    2009-10-15

    The ability of an unconventional bio-adsorbent, pineapple leaf powder (PLP) for the adsorption of methylene blue (MB) from aqueous solution was studied. It was observed that intra-particle diffusion was involved in the adsorption process and that the kinetic data fitted well with a pseudo-second-order equation. Fitting parameters revealed that the rate of adsorption increased with decrease in dye concentration and decrease in ionic strength while the mixing speed did not have a significant effect on adsorption. The adsorption was favorable at higher pH and lower temperature, and the equilibrium data were well fitted by the Langmuir isotherm. The maximum adsorption capacity varied from 4.68 x 10(-4) to 9.28 x 10(-4)mol/g when pH increases from 3.5 to 9.5. Thermodynamic parameters suggest that the adsorption is a typical physical process, spontaneous, and exothermic in nature. The results revealed that this agricultural waste has potential to be used as an economical adsorbent for the removal of methylene blue from aqueous solution. PMID:19447547

  7. Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging.

    PubMed

    Jeon, Mansik; Song, Wentao; Huynh, Elizabeth; Kim, Jungho; Kim, Jeesu; Helfield, Brandon L; Leung, Ben Y C; Goertz, David E; Zheng, Gang; Oh, Jungtaek; Lovell, Jonathan F; Kim, Chulhong

    2014-01-01

    Ultrasound and photoacoustic imaging are highly complementary modalities since both use ultrasonic detection for operation. Increasingly, photoacoustic and ultrasound have been integrated in terms of hardware instrumentation. To generate a broadly accessible dual-modality contrast agent, we generated microbubbles (a standard ultrasound contrast agent) in a solution of methylene blue (a standard photoacoustic dye). This MB2 solution was formed effectively and was optimized as a dual-modality contrast solution. As microbubble concentration increased (with methylene blue concentration constant), photoacoustic signal was attenuated in the MB2 solution. When methylene blue concentration increased (with microbubble concentration held constant), no ultrasonic interference was observed. Using an MB2 solution that strongly attenuated all photoacoustic signal, high powered ultrasound could be used to burst the microbubbles and dramatically enhance photoacoustic contrast (>800-fold increase), providing a new method for spatiotemporal control of photoacoustic signal generation.

  8. Modified use of methylene blue in the tissue compression technique to detect sarcocysts in meat-producing animals.

    PubMed

    Ng, Yit Han; Subramaniam, Vellayan; Lau, Yee Ling

    2015-11-30

    Sarcocystosis in meat-producing animals is a major cause of reduced productivity in many countries, especially those that rely on agriculture. Although several diagnostic methods are available to detect sarcocystosis, many are too time-consuming for routine use in abattoirs and meat inspection centers, where large numbers of samples need to be tested. This study aimed to compare the sensitivity of the methylene blue tissue preparation, unstained tissue preparation and nested PCR in the detection of sarcocysts in tissue samples. Approximately three-fold more sarcocysts were detected in methylene blue-stained tissue compared to unstained controls (McNemar's test: P<0.01). Test sensitivity was comparable to that of the gold standard for sarcocyst detection, nested polymerase chain reaction. These results suggest that methylene blue can be used in tissue compression as a rapid, safe, and inexpensive technique for the detection of ruminant sarcocystosis in abattoirs. PMID:26455572

  9. Methylene blue not ferrocene: Optimal reporters for electrochemical detection of protease activity.

    PubMed

    González-Fernández, Eva; Avlonitis, Nicolaos; Murray, Alan F; Mount, Andrew R; Bradley, Mark

    2016-10-15

    Electrochemical peptide-based biosensors are attracting significant attention for the detection and analysis of proteins. Here we report the optimisation and evaluation of an electrochemical biosensor for the detection of protease activity using self-assembled monolayers (SAMs) on gold surfaces, using trypsin as a model protease. The principle of detection was the specific proteolytic cleavage of redox-tagged peptides by trypsin, which causes the release of the redox reporter, resulting in a decrease of the peak current as measured by square wave voltammetry. A systematic enhancement of detection was achieved through optimisation of the properties of the redox-tagged peptide; this included for the first time a side-by-side study of the applicability of two of the most commonly applied redox reporters used for developing electrochemical biosensors, ferrocene and methylene blue, along with the effect of changing both the nature of the spacer and the composition of the SAM. Methylene blue-tagged peptides combined with a polyethylene-glycol (PEG) based spacer were shown to be the best platform for trypsin detection, leading to the highest fidelity signals (characterised by the highest sensitivity (signal gain) and a much more stable background than that registered when using ferrocene as a reporter). A ternary SAM (T-SAM) configuration, which included a PEG-based dithiol, minimised the non-specific adsorption of other proteins and was sensitive towards trypsin in the clinically relevant range, with a Limit of Detection (LoD) of 250pM. Kinetic analysis of the electrochemical response with time showed a good fit to a Michaelis-Menten surface cleavage model, enabling the extraction of values for kcat and KM. Fitting to this model enabled quantitative determination of the solution concentration of trypsin across the entire measurement range. Studies using an enzyme inhibitor and a range of real world possible interferents demonstrated a selective response to trypsin

  10. Methylene blue not ferrocene: Optimal reporters for electrochemical detection of protease activity.

    PubMed

    González-Fernández, Eva; Avlonitis, Nicolaos; Murray, Alan F; Mount, Andrew R; Bradley, Mark

    2016-10-15

    Electrochemical peptide-based biosensors are attracting significant attention for the detection and analysis of proteins. Here we report the optimisation and evaluation of an electrochemical biosensor for the detection of protease activity using self-assembled monolayers (SAMs) on gold surfaces, using trypsin as a model protease. The principle of detection was the specific proteolytic cleavage of redox-tagged peptides by trypsin, which causes the release of the redox reporter, resulting in a decrease of the peak current as measured by square wave voltammetry. A systematic enhancement of detection was achieved through optimisation of the properties of the redox-tagged peptide; this included for the first time a side-by-side study of the applicability of two of the most commonly applied redox reporters used for developing electrochemical biosensors, ferrocene and methylene blue, along with the effect of changing both the nature of the spacer and the composition of the SAM. Methylene blue-tagged peptides combined with a polyethylene-glycol (PEG) based spacer were shown to be the best platform for trypsin detection, leading to the highest fidelity signals (characterised by the highest sensitivity (signal gain) and a much more stable background than that registered when using ferrocene as a reporter). A ternary SAM (T-SAM) configuration, which included a PEG-based dithiol, minimised the non-specific adsorption of other proteins and was sensitive towards trypsin in the clinically relevant range, with a Limit of Detection (LoD) of 250pM. Kinetic analysis of the electrochemical response with time showed a good fit to a Michaelis-Menten surface cleavage model, enabling the extraction of values for kcat and KM. Fitting to this model enabled quantitative determination of the solution concentration of trypsin across the entire measurement range. Studies using an enzyme inhibitor and a range of real world possible interferents demonstrated a selective response to trypsin

  11. γ-Fe2O3 nanocrystals-anchored macro/meso-porous graphene as a highly efficient adsorbent toward removal of methylene blue.

    PubMed

    Zhang, Lian Ying; Zhang, Wenlin; Zhou, Zhiqin; Li, Chang Ming

    2016-08-15

    An adsorbent, γ-Fe2O3 nanocrystals-anchored macro/meso-porous graphene was synthesized by metal etching approach toward removal of methylene blue, exhibiting rapid adsorption rate, high adsorption capacity and good recyclability, thus holding a great promise for treatment of methylene blue in wastewater. PMID:27218808

  12. Facile decolorization of methylene blue by morphology-dependence δ-MnO2 nanosheets -modified diatomite

    NASA Astrophysics Data System (ADS)

    Yu, Ting Ting; Li, Kai Lin; Guo, Xiao Long; Li, Fei; Huang, Jia Mu; Zhang, Yu Xin

    2015-12-01

    In this work, coscinodiscus-diatomite and melosira-diatomite have been decorated by ultrathin birnessite MnO2 (δ-MnO2) nanosheets through a one-pot hydrothermal method without using any surfactants. The δ-MnO2 nanosheets are observed to grow vertically on the purified melosira-diatomite as well as coscinodiscus-diatomite. Moreover, the two composites exhibit high efficiency for decomposing methylene blue (MB) in the presence of H2O2. The coscinodiscus-diatmite@MnO2 achieves a removal rate of 81.8% (2 h), and yet melosira-diatomite@MnO2 reaches a higher degradation rate of 91.3% in 2 h. Additionally, the effects of catalyst amount, catalysis reaction temperature, preparing time have also been investigated. In principle, the diverse diatomite@MnO2 nanostructures not only present an environmentally friendly and low cost with a good cycling stability, but also offer a simple way for the catalytic degradation of dye waste water in practical applications.

  13. Use of Ca-alginate as a novel support for TiO2 immobilization in methylene blue decolorisation.

    PubMed

    Albarelli, Juliana Q; Santos, Diego T; Murphy, Sharon; Oelgemöller, Michael

    2009-01-01

    This study provides a preliminary contribution to the development of an industrial process for the UV/TiO(2) water treatment by introducing a novel support for TiO(2) immobilization. For the following study, Methylene Blue (MB) was chosen as the model dye to evaluate this novel immobilization system. The results showed that TiO(2) immobilized in a Ca-alginate bead retained its photoactivity during all of the experiments and the TiO(2)-gel beads presented good stability in water for maintaining its shape after several uses. When a proportion of 10% (v/v) of these beads was used, the configuration system demonstrated an improved mass transfer and consequently enhanced degradation efficiency. Experiments were also performed using 'recycled' beads. The results showed an increase in the degradation efficiency when the beads were reused, with an eventual 'self-destructive' effect. These studies showed great promise regarding the recyclable reagents with a reduction in waste at no greater cost or reduction in efficiency. Therefore, the potential of TiO(2)-gel beads as a simple and environmentally friendly catalyst for continuous use was developed.

  14. Microsporidia and Candida spores: their discrimination by Calcofluor, trichrome-blue and methylene-blue combination staining.

    PubMed

    Schottelius, J; Kuhn, E M; Enriquez, R

    2000-06-01

    Faeces of immunocompromised patients are often contaminated with the chitin-containing spores of microsporidia and Candida, which exclude the use of the chitin-specific fluorescent brightener Calcofluor white M2R for the identification of microsporidian spores. We developed a combination staining of Calcofluor white M2R with modified trichrome-blue staining and subsequent methylene-blue incubation which permits discrimination between these two types of spores. As a basis for diagnosis, a difference in the fluorescence pattern (365-440 nm) is combined with a difference in the light microscopic staining pattern. Under fluorescence conditions microsporidia spores have a spotted, brilliant white Calcofluor fluorescence and can easily be identified, while Candida spores show a reddish purple colour. Under the light microscope microsporidian spores show a light red colour with nonstained vacuole spots or strips in contrast to the yeast spores with their red-brown colour. This combination technique offers a highly specific means for the diagnosis of microsporidia spores in faeces.

  15. Extractive spectrophotometric determination of some nonsteroidal anti-inflammatory drugs using methylene blue.

    PubMed

    El-Kommos, Michael E; Mohamed, Niveen A; Hakiem, Ahmed F Abdel

    2013-01-01

    A simple, rapid, sensitive, and accurate extractive spectrophotometric method has been developed for the determination of seven nonsteroidal anti-inflammatory drugs (NSAIDs)--namely diclofenac sodium, ibuprofen, indomethacin, ketoprofen, ketorolac tromethamine, mefenamic acid, and naproxen-in pure forms as well as their pharmaceutical dosage forms (tablets, capsules, effervescent granules, syrups, oral drops, ampules, eye drops, gels, and suppositories). The method depends on the formation of an intensely colored ion-pair complex between the acidic drug and methylene blue in alkaline medium. The complex is stable and extractable into methylene chloride. All parameters were optimized. Beer-Lambert's law was obeyed in concentrations ranging from 0.04 to 9 microg/mL. Statistical analysis of the calibration data was carried out, and correlation coefficients were in the range from 0.9996 to 0.9998. The developed method was fully validated according to International Conference on Harmonization guidelines, and complied with U.S. Pharmacopeia guidelines. The proposed method was applied to the analysis of the investigated drugs in their pharmaceutical formulations, and good recoveries were obtained. The results obtained were compared with those of reported and official methods, and no significant differences were found with t- and F-tests. Interference effects of some compounds usually present in combination with NSAIDs were studied, and the tolerance limits of these compounds were determined. PMID:24000745

  16. Use of TOF-SIMS to study adsorption and loading behavior of methylene blue and papain in a nano-porous silicon layer.

    PubMed

    Kempson, Ivan M; Barnes, Timothy J; Prestidge, Clive A

    2010-02-01

    TOF-SIMS was applied to study the cross-sectional distribution of methylene blue and papain in porous silicon layers. Elemental and molecular information were used to study their distributions in the porous region and the chemistry of their adsorption. Methylene blue (MW = 284 Da) penetrated to the base to the pores. Positive ions (SiCH(3)(+)) suggest methylene blue binds to the substrate via its methyl groups. Negative fragments (SiOSH(3)(-) and SiO(2)SCH(-)) also suggested chemisorption via O bridging of the substrate Si and methylene blue S. The larger Papain molecule (23,406 Da) distributed itself in a similar manner to methylene blue demonstrating larger molecules can be effectively incorporated into such pore structures.

  17. Catalytic ozone aqueous decomposition of methylene blue using composite metal oxides

    NASA Astrophysics Data System (ADS)

    Liu, Xuan; Hou, Yongjiang; Guo, Jie; Wang, Yaquan; Zuo, Qian; Wang, Chunyu

    2015-07-01

    By using the method of co-precipitation, Fe-Mn, Al-Mn, Al-Mg composite metal oxides were prepared. Using X-ray diffractometer(XRD), the phases of catalysts synthesized were observed to be Mn3O4 and Fe2O3. With the increase of the calcination temperature, Mn3O4 was gradually transformed into Mn2O3. The experimental results show that: the best catalyst is the Fe-Mn composite metal oxide with the calcination temperature of 650 °C. In this experimental condition, when the ozone amount was 1.92mg/min, and the dosage of catalyst was 0.5g, the removal rate of methylene blue (MB) was the best. The decolorization rate can reach to 100%. Compared with the effect of ozonation alone, the total organic carbon removal rate increased from 29.19% up to 65.78% after adding catalysts.

  18. Comparative adsorption isotherms and modeling of methylene blue onto activated carbons

    NASA Astrophysics Data System (ADS)

    Belhachemi, Meriem; Addoun, Fatima

    2011-12-01

    The adsorption of methylene blue (MB) on activated carbons prepared from date stones with different degree of activation has been investigated. Equilibrium adsorption data of MB was carried out at 298 K. Four isotherm models (Freundlich, Langmuir, Redlich-Peterson and Sips) were tested for modeling the adsorption isotherms by nonlinear method. The three-parameter equations (Redlich-Peterson and Sips) showed more applicability than the two-parameter equations (Freundlich and Langmuir), which can be explained by the fact that these have three adjustable parameters. The best fit was achieved with the Redlich-Peterson equation according to the high value of correlation coefficient. All the samples were capable of retaining the MB, with the best result being reached by the sample with higher burn-off. Date stones activated carbon showed high adsorption capacity of 460 mg/g, calculated from the Sips isotherm model.

  19. Methylene blue as an early diagnostic marker for oral precancer and cancer.

    PubMed

    Riaz, Akhtar; Shreedhar, Balasundari; Kamboj, Mala; Natarajan, S

    2013-12-01

    Oral cancer is one of the most common neoplasm's and is ranked eighth in the cancer incidence worldwide. Early detection is of critical importance because survival rates markedly improve. In vivo staining is a simple, inexpensive, and fairly sensitive method. Involved 120 patients (50 with Premalignant Lesion, 50 with OSCC and 20 controls) stained by Methylene Blue (MB). The results of MB uptake were compared with a simultaneous biopsy of these lesions. Pathologically confirmed precancers and cancers were the positive targets of this screening, while hyperkeratosis without dysplasia and no evidence of malignancy were sorted as negative subjects of screening. The results revealed sensitivity of 91.4%, specificity of 66.6%, positive predictive value 97.7% and negative predictive value 33% leading to diagnostic accuracy of MB stain to 90%. We state that MB staining is useful diagnostic tool in community oral cancer screening programmes for high-risk individuals.

  20. Adsorption characteristics of methylene blue onto agricultural wastes lotus leaf in bath and column modes.

    PubMed

    Han, Xiuli; Wang, Wei; Ma, Xiaojian

    2011-01-01

    The adsorption potential of lotus leaf to remove methylene blue (MB) from aqueous solution was investigated in batch and fixed-bed column experiments. Langmuir, Freundlich, Temkin and Koble-Corrigan isotherm models were employed to discuss the adsorption behavior. The results of analysis indicated that the equilibrium data were perfectly represented by Temkin isotherm and the Langmuir saturation adsorption capacity of lotus leaf was found to be 239.6 mg g(-1) at 303 K. In fixed-bed column experiments, the effects of flow rate, influent concentration and bed height on the breakthrough characteristics of adsorption were discussed. The Thomas and the bed-depth/service time (BDST) models were applied to the column experimental data to determine the characteristic parameters of the column adsorption. The two models were found to be suitable to describe the dynamic behavior of MB adsorbed onto the lotus leaf powder column.

  1. Effect of a magnetic field on the adsorptive removal of methylene blue onto wheat straw biochar.

    PubMed

    Li, Guoting; Zhu, Weiyong; Zhang, Chunyu; Zhang, Shen; Liu, Lili; Zhu, Lingfeng; Zhao, Weigao

    2016-04-01

    Biochar pyrolyzed from wheat straw was innovatively used for the adsorptive removal of cationic dye methylene blue through exposure to a magnetic field. The adsorption capability of the biochar pyrolyzed at 200 °C exceeded that of samples pyrolyzed at higher temperatures. The surface acidic functional groups of wheat straw biochar were deduced to be more sensitive to the effects of the external magnetic field. The enhancement of the magnetic field achieved by increases in the initial dye concentration, and a decrease in the biochar dosage and solution pH, were more significant compared with those caused by other conditions. Kinetic experiments indicated that chemisorption occurred during adsorption. The qmax values for dye adsorption without, and with, an external magnetic field were found to be 46.6 and 62.5mg/g, respectively. These demonstrated that wheat straw biochar could be used for the efficient adsorption of pollutants when assisted by an external magnetic field.

  2. Study on the methylene blue adsorption from wastewaters by pore-expanded calcium fluoride sludge adsorbent.

    PubMed

    Hong, Junming; Lin, Bing; Hong, Gui-Bing; Chang, Chang-Tang

    2014-04-01

    The adsorption of methylene blue (MB) onto pore-expanded calcium fluoride sludge (ECF) by the batch adsorption technique was investigated. The results showed that the adsorption capacity increased with increasing MB concentration but decreased as pH was increased. In order to investigate the adsorption mechanisms, three simplified isotherm models and kinetic models were used in this study. The best-fit adsorption isotherm was achieved with the Temkin model. Furthermore, the pseudo-second-order kinetic model agreed very well with the dynamical behavior for the adsorption of MB onto ECF. Thermodynamic studies revealed that the adsorption process of MB onto ECF was spontaneous and exothermic. The results indicated that ECF adsorbed MB efficiently and could be used as a waste adsorbent for the removal of cationic dyes in wastewater treatment.

  3. Removal of Methylene Blue and Orange-G from Waste Water Using Magnetic Biochar

    NASA Astrophysics Data System (ADS)

    Mubarak, N. M.; Fo, Y. T.; Al-Salim, Hikmat Said; Sahu, J. N.; Abdullah, E. C.; Nizamuddin, S.; Jayakumar, N. S.; Ganesan, P.

    2015-04-01

    The study on the removal of methylene blue (MB) and orange-G dyes using magnetic biochar derived from the empty fruit bunch (EFB) was carried out. Process parameters such as pH, adsorbent dosage, agitation speed and contact time were optimized using Design-Expert Software v.6.0.8. The statistical analysis reveals that the optimum conditions for the maximum adsorption of MB are at pH 2 and pH 10, dosage 1.0 g, and agitation speed and contact time of 125 rpm and 120 min respectively. While for orange-G, at pH 2, dosage 1.0 g, and agitation speed and contact time of 125 rpm and 120 min respectively. The maximum adsorption capacity of 31.25 mg/g and 32.36 mg/g for MB and orange-G respectively. The adsorption kinetic for both dyes obeyed pseudo-second order.

  4. Equilibrium models and kinetic for the adsorption of methylene blue on Co-hectorites.

    PubMed

    Ma, Jun; Jia, Yong-Zhong; Jing, Yan; Sun, Jin-He; Yao, Ying; Wang, Xiao-Hua

    2010-03-15

    The adsorption of methylene blue (MB) onto the surface of cobalt doping hectorite (Co-hectorite) was systematically studied. The physical properties of Co-hectorites were investigated, where characterizations were carried out by X-ray diffraction (XRD) and Electron Diffraction Spectrum (EDS) techniques, and morphology was examined by nitrogen adsorption. The sample with a Co content 5% (m/m) had a higher specific surface area than other Co-hectorites. The pore diameters were distributed between 2.5 and 5.0 nm. The adsorption results revealed that Co-hectorite surfaces possessed effective interactions with MB and bases, and greatest adsorption capacity achieved with Co content 5%, where the best-fit isotherm model was the Langmuir adsorption model. Kinetic studies were fitted to the pseudo-second-order kinetic model. The intraparticle diffusion was not the rate-limiting step for the whole reaction.

  5. Methylene blue adsorption from aqueous solution by activated carbon: effect of acidic and alkaline solution treatments.

    PubMed

    Ijagbemi, Christianah O; Chun, Ji I; Han, Da H; Cho, Hye Y; O, Se J; Kim, Dong S

    2010-01-01

    The removal of Methylene Blue (MB) from aqueous solution using activated carbon (AC) has been investigated. Adsorption experiments were conducted and the maximum adsorption capacity was determined. The effect of experimental parameters such as pH, dye concentration and temperature were studied on the adsorption process. Equilibrium data were mathematically modeled using the Langmuir and Freundlich adsorption models to describe the equilibrium isotherms at different dye concentrations and temperature. Parameters of best-fit model were calculated and discussed. To understand the mechanism of adsorption, kinetic models were employed to follow the adsorption processes; the pseudo-first-order best described the adsorption of MB onto AC. It was found that pH plays a major role in the adsorption process; adsorption capacity was influenced by the physical and surface chemical properties of carbon and the pH of the solution. 99.0% MB removal was achieved at equilibrium.

  6. Adsorptive performance for methylene blue of magnetic Ni@activated carbon nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Panfeng; Xu, Jingcai; Zhang, Beibei; Li, Jing; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Hong, Bo; Gong, Jie; Ge, Hongliang; Wang, Xinqing

    2015-11-01

    Owing to the unique microporous structure and high specific surface area, activated carbon (AC) can act as a good candidate for functional materials. In this paper, Ni@AC magnetic nanocomposites with excellent magnetic response are synthesized by the hydrothermal method. All Ni@AC nanocomposites present ferromagnetism and Ni nanoparticles exist in the pores of AC. The saturation magnetization (Ms) increases with the increasing content of Ni, while the specific surface area and pore volume decrease. The S-50 sample possesses the parameters of the specific surface area of 1156.8 m2 ṡ g-1 and Ms of 3.5 emu/g. Furthermore, the methylene blue (MB) removal analysis indicates that 99% MB can be adsorbed in 50 min. The as-prepared Ni@AC nanocomposites present good adsorptive capacity of MB and can be separated easily from water by magnetic separation technique.

  7. Supramolecular hybrids of polytungstates and their adsorption properties for methylene blue

    NASA Astrophysics Data System (ADS)

    Liu, Yunping; Zheng, Ran; Han, Zhangang; Gong, Kaining; He, Xueli; Zhai, Xueliang

    2015-11-01

    Two supramolecular hybrids [Ni(mbpy)3]2[V2W4O19]·6H2O (1) and [Ni(mbpy)3]2[VW12O40] (2) (mbpy=4,4ʹ-dimethyl-2,2ʹ-bipyridyl) had been synthesized and characterized. Single crystal X-ray diffraction analyses revealed that the anionic moieties in two hybrids belong to typical Lindqvist and α-Keggin-type structures, respectively. The counter ion [Ni(mbpy)3]2+ units were anchored to the polyanions via non-covalent intermolecular interactions. These supramolecular hybrids exhibit reversible adsorption-desorption performance for organic dye methylene blue (MB). Hybrid 2 shows a fast adsorption behavior towards MB and a relatively high value can be reached within 5 min in dark. Both 1 and 2 are structurally stable and can be easily separated from the reaction system for reuse.

  8. Reliability of assessing dye penetration along root canal fillings using methylene blue.

    PubMed

    Souza, Erick Miranda; Pappen, Fernanda Geraldes; Shemesh, Hagay; Bonanato-Estrela, Cristiane; Bonetti-Filho, Idomeo

    2009-12-01

    Methylene blue (MB) remains the most frequently used tracer for dye penetration tests of endodontic fillings, despite its chemical reactions with different materials. This study checked whether dye penetration displayed by MB is comparable to Rhodamine B (RB). One hundred and seventy-two root canals were filled with gutta-percha and six sealers. Samples were covered with nail varnish except for the apical area, and immersed in MB or RB solutions under negative pressure. After 24 h, roots were bisected, photographed and the maximal dye penetration recorded. Dye penetrations displayed by MB and RB were compared (Newman-Keuls test). MB and RB displayed comparable results for groups filled with AH Plus, EndoREZ and Polifil (P > 0.05). For Endofill, Sealer 26 and Sealapex, a significant lower dye penetration was observed when MB was used (P < 0.05). Laboratory tests using MB for measuring dye penetration through filled root canals can result in misleading conclusions.

  9. A Silver Nanoparticle-Modified Evanescent Field Optical Fiber Sensor for Methylene Blue Detection

    PubMed Central

    Luo, Ji; Yao, Jun; Lu, Yonggang; Ma, Wenying; Zhuang, Xuye

    2013-01-01

    A silver nanoparticle-modified evanescent field optical fiber sensor based on a MEMS microchannel chip has been successfully fabricated. Experimental results show that the sensor response decreases linearly with increasing concentration of analyte. Over a range of methylene blue concentrations from 0 to 0.4 μmol/mL, the sensor response is linear (R = 0.9496). A concentration variation of 0.1 μmol/mL can cause an absorbance change of 0.402 dB. Moreover, the optical responses of the same sensing fiber without decoration and modified with silver nanoparticles have also been compared. It can be observed that the output intensity of the Ag nanoparticle-modified sensor is enhanced and the sensitivity is higher. Meanwhile, the absorbance spectra are found to be more sensitive to concentration changes compared to the spectra of the peak wavelength. PMID:23519353

  10. Near-infrared fluorescence imaging of a solitary fibrous tumor of the pancreas using methylene blue.

    PubMed

    van der Vorst, Joost R; Vahrmeijer, Alexander L; Hutteman, Merlijn; Bosse, Tjalling; Smit, Vincent T H B M; van de Velde, Cornelis J H; Frangioni, John V; Bonsing, Bert A

    2012-07-27

    A 67-year-old female presented with unexplained abdominal pain. A contrast-enhanced computed tomography scan of the abdomen incidentally revealed a mass in the uncinate process of the pancreas. This mass was resected and based on histopathological findings, diagnosed as a solitary fibrous tumor (SFT) of the pancreas. A SFT is an extremely rare benign mesenchymal tumor that in 65% of cases affects the visceral pleura but can also affect extra-pleural sites. The intraoperative demarcation of pancreatic tumors, such as SFTs, can be challenging. In this report, the first clear intraoperative identification of a SFT of the pancreas in a human was shown using near-infrared fluorescence and methylene blue.

  11. Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies.

    PubMed

    Senthilkumaar, S; Varadarajan, P R; Porkodi, K; Subbhuraam, C V

    2005-04-01

    Jute fiber obtained from the stem of a plant was used to prepare activated carbon using phosphoric acid. Feasibility of employing this jute fiber activated carbon (JFC) for the removal of Methylene blue (MB) from aqueous solution was investigated. The adsorption of MB on JFC has found to dependent on contact time, MB concentration and pH. Experimental result follows Langmuir isotherm model and the capacity was found to be 225.64 mg/g. The optimum pH for the MB removal was found to be 5-10. The kinetic data obtained at different concentrations have been analyzed using a pseudo-first-order, pseudo-second-order equation, intraparticle diffusion and Elovich equation. Among the kinetic models studied, the intraparticle diffusion was the best applicable model to describe the adsorption of MB onto JFC.

  12. Pseudopeptide-Based Hydrogels Trapping Methylene Blue and Eosin Y.

    PubMed

    Milli, Lorenzo; Zanna, Nicola; Merlettini, Andrea; Di Giosia, Matteo; Calvaresi, Matteo; Focarete, Maria Letizia; Tomasini, Claudia

    2016-08-16

    We present herein the preparation of four different hydrogels based on the pseudopeptide gelator Fmoc-l-Phe-d-Oxd-OH (Fmoc=fluorenylmethyloxycarbonyl), either by changing the gelator concentration or adding graphene oxide (GO) to the water solution. The hydrogels have been analysed by rheological studies that demonstrated that pure hydrogels are slightly stronger compared to GO-loaded hydrogels. Then the hydrogels efficiency to trap the cationic methylene blue (MB) and anionic eosin Y (EY) dyes has been analyzed. MB is efficiently trapped by both the pure hydrogel and the GO-loaded hydrogel through π-π interactions and electrostatic interactions. In contrast, the removal of the anionic EY is achieved in less satisfactory yields, due to the unfavourable electrostatic interactions between the dye, the gelator and GO.

  13. Report: Simultaneous determination of naphazoline hydrochloride, chlorpheniramine maleate and methylene blue in their ternary mixture.

    PubMed

    Ali, Nouruddin Wageih; Hegazy, Maha Ahmad; Abdelkawy, Mohamad; Abdelfatah, Rehab Magdy

    2013-05-01

    Validated spectrophotometric and chemometric methods were developed for determination of Naphazoline Hydrochloride (NAP), Chlorpheniramine maleate (CLO) and Methylene blue (MB) in their ternary mixture. Method A was a spectrophotometric method, where NAP and MB were determined using second derivative (D²) spectrophoto metric method using the peak amplitudes at 299 nm and 337 nm for NAP and MB respectively , while CLO was determined using second derivative ratio (DD²) spectrophotometric method using the peak amplitude at 276.6 nm. Method B used the chemometric techniques; principal component regression (PCR) and partial least squares (PLS) for determination of NAP, CLO and MB using the information contained in the absorption spectra of their ternary mixture solutions. The proposed methods have been successfully applied for the analysis of NAP, CLO and MB in their pharmaceutical formulation and the obtained results were statistically compared with the reported methods.

  14. LED-activated methylene blue-loaded Pluronic-nanogold hybrids for in vitro photodynamic therapy.

    PubMed

    Simon, Timea; Boca-Farcau, Sanda; Gabudean, Ana-Maria; Baldeck, Patrice; Astilean, Simion

    2013-12-01

    In this work we introduce a new class of multifunctional photodynamic agents based on the coupling of photosensitizer molecules with noble metal nanoparticles, which can be efficiently activated under low light intensity. The favourable modification of the photophysical properties of methylene blue (MB) in MB-loaded Pluronic-nanogold hybrids (Au-PF127-MB) increases the probability of singlet oxygen generation, which in turn allows the use of a light emitting diode (LED) irradiation source instead of commonly used, more invasive lasers. In this regard, Au-PF127-MB treated human lung carcinoma cells (HTB 177) were irradiated at different light doses, using a 660 nm LED source, the results indicating a dose dependent therapeutic effect, decreasing the cell viability down to 13%. Owing to their effectiveness, biocompatibility and integrated imaging and therapeutic functionalities, Au-PF127-MB could represent an important development in the field of biophotonic applications.

  15. Strong aggregation adsorption of methylene blue from water using amorphous WO3 nanosheets

    NASA Astrophysics Data System (ADS)

    Luo, Jian Yi; Cao, Zhi; Chen, Feng; Li, Li; Lin, Yu Rong; Liang, Bao Wen; Zeng, Qing Guang; Zhang, Mei; He, Xin; Li, Chen

    2013-12-01

    In this paper, authors demonstrate the high performance of the amorphous WO3 nanosheets in the removal of methylene blue (MB) from water. The saturated MB adsorbed amount by using WO3 nanosheets as an adsorbent can reach to 600 mg/g, exceeding the ones of the normal activated carbon powders. Results indicate that the aggregation of adsorbed MB molecules occurs in the porous micro-structures of the amorphous WO3 nanosheets, and a precipitation phenomenon begins to happen when the initial MB concentration reach to 20 mg/L or greater, attributed to the density increase of WO3 nanosheets after their porous micro-structures are adsorbed with enough MB molecules.

  16. Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution.

    PubMed

    Sajab, Mohd Shaiful; Chia, Chin Hua; Zakaria, Sarani; Jani, Saad Mohd; Ayob, Mohd Khan; Chee, Kah Leong; Khiew, Poi Sim; Chiu, Wee Siong

    2011-08-01

    Chemically modified kenaf core fibres were prepared via esterification in the presence of citric acid (CA). The adsorption kinetics and isotherm studies were carried out under different conditions to examine the adsorption efficiency of CA-treated kenaf core fibres towards methylene blue (MB). The adsorption capacity of the kenaf core fibres increased significantly after the citric acid treatment. The values of the correlation coefficients indicated that the Langmuir isotherm fitted the experimental data better than the Freundlich isotherm. The maximum adsorption capacity of the CA-treated kenaf core fibres was found to be 131.6mg/g at 60°C. Kinetic models, pseudo-first-order, pseudo-second-order and intraparticle diffusion, were employed to describe the adsorption mechanism. The kinetic data were found to fit pseudo-second-order model equation as compared to pseudo-first-order model. The adsorption of MB onto the CA-treated kenaf core fibres was spontaneous and endothermic.

  17. Fluorescence tissue distribution of methylene blue used for photodynamic therapy of Helicobacter Pylori

    NASA Astrophysics Data System (ADS)

    Millson, Charles E.; Buonaccorsi, Giovanni A.; MacRobert, Alexander J.; Mlkvy, Peter; Bown, Stephen G.

    1995-03-01

    Helicobacter pylori is associated with a wide range of pathologies in the upper gastrointestinal tract. Current treatments employing antibiotics are disappointing, and an endoscopic PDT might offer a better alternative. Methylene blue is a widely known histological dye and has been in use for photodynamic therapy experimentally for some years. A prospective application of MB is photosensitization of Helicobacter pylori, but little is known about its effect with light on normal mucosa of the stomach. We studied the fluorescence microscopy of the stomachs of 3 ferrets which had been sensitized by oral route with three different concentrations of MB 1 hour prior to sacrifice. MB at all doses was seen to concentrate on the surface of the mucosa and shows little deeper penetration. As Helicobacter lie on the superficial mucosa, this study suggests that oral dosing with MB should sensitize these bacteria. These findings are an important preliminary to an in vivo trial of PDT for the treatment of H pylori.

  18. Methylene blue protects astrocytes against glucose oxygen deprivation by improving cellular respiration.

    PubMed

    Roy Choudhury, Gourav; Winters, Ali; Rich, Ryan M; Ryou, Myoung-Gwi; Gryczynski, Zygmunt; Yuan, Fang; Yang, Shao-Hua; Liu, Ran

    2015-01-01

    Astrocytes outnumber neurons and serve many metabolic and trophic functions in the mammalian brain. Preserving astrocytes is critical for normal brain function as well as for protecting the brain against various insults. Our previous studies have indicated that methylene blue (MB) functions as an alternative electron carrier and enhances brain metabolism. In addition, MB has been shown to be protective against neurodegeneration and brain injury. In the current study, we investigated the protective role of MB in astrocytes. Cell viability assays showed that MB treatment significantly protected primary astrocytes from oxygen-glucose deprivation (OGD) & reoxygenation induced cell death. We also studied the effect of MB on cellular oxygen and glucose metabolism in primary astrocytes following OGD-reoxygenation injury. MB treatment significantly increased cellular oxygen consumption, glucose uptake and ATP production in primary astrocytes. In conclusion our study demonstrated that MB protects astrocytes against OGD-reoxygenation injury by improving astrocyte cellular respiration.

  19. Comparison effects and dielectric properties of different dose methylene-blue-doped hydrogels.

    PubMed

    Yalçın, O; Coşkun, R; Okutan, M; Öztürk, M

    2013-08-01

    The dielectric properties of methylene blue (MB)-doped hydrogels were investigated by impedance spectroscopy. The real part (ε') and the imaginary part (ε") of the complex dielectric constant and the energy loss tangent/dissipation factor (tan δ) were measured in the frequency range of 10 Hz to 100 MHz at room temperature for pH 5.5 value. Frequency variations of the resistance, the reactance, and the impedance of the samples have also been investigated. The dielectric permittivity of the MB-doped hydrogels is sensitive to ionic conduction and electrode polarization in low frequency. Furthermore, the dielectric behavior in high-frequency parts was attributed to the Brownian motion of the hydrogen bonds. The ionic conduction for MB-doped samples was prevented for Cole-Cole plots, while the Cole-Cole plots for pure sample show equivalent electrical circuit. The alternative current (ac) conductivity increases with the increasing MB concentration and the frequency.

  20. Kinetics and mechanism of removal of methylene blue by adsorption onto perlite.

    PubMed

    Doğan, Mehmet; Alkan, Mahir; Türkyilmaz, Aydin; Ozdemir, Yasemin

    2004-06-18

    The kinetics and mechanism of methylene blue adsorption on perlite have been studied. The effects of various experimental parameters, such as initial dye concentration, temperature and pH on the adsorption rate were investigated. Adsorption measurements show that the process is very fast and physical in nature. The extent of the dye removal increased with increase in the initial concentration of the dye and the initial pH and temperature of solution. Adsorption data were modelled using the first and second-order kinetic equations, mass transfer and intra-particle diffusion models. It was shown that the second-order kinetic equation could best describe the sorption kinetics. The diffusion coefficient, D, was found to increase when the initial dye concentration, pH and temperature were raised. Thermodynamic activation parameters, such as DeltaG*, DeltaS* and DeltaH*, were calculated.

  1. Fixed-bed adsorption study of methylene blue onto pyrolytic tire char

    NASA Astrophysics Data System (ADS)

    Makrigianni, Vassiliki; Giannakas, Aris; Papadaki, Maria; Albanis, Triantafyllos; Konstantinou, Ioannis

    2016-04-01

    In this work, the adsorption efficiency of acid treated pyrolytic tire char to cationic methylene blue (MB) dye adsorption from aqueous solutions was investigated by fixed-bed adsorption column experiments. The effects of the initial dye concentration (10 - 40 mg L-1) and feed flow rate (50 - 150 mL min -1) with a fixed bed height (15 cm) were studied in order to determine the breakthrough characteristics of the adsorption system. The Adams-Bohart, Yoon-Nelson and Thomas model were applied to the adsorption of MB onto char at different operational conditions to predict the breakthrough curves and to determine the characteristic parameters of the column. The results showed that the maximum adsorbed quantities decreased with increasing flow rate and increased with increasing initial MB concentration. Breakthrough time and exhaustion time increased with decreasing inlet dye concentration and flow rate. In contrast with Adams-Bohart model, Yoon-Nelson model followed by Thomas model were found more suitable to describe the fixed-bed adsorption of methylene blue by char. The correlation coefficient values R2 for both models at different operating conditions are higher than 0.9 and the low average relative error values provided very good fittings of experimental data at different operating conditions. Higher adsorption capacity of 3.85 mg g -1 was obtained at 15 cm of adsorbent bed height, flow rate of 100 mL min -1and initial MB concentration of 40 mg L-1. Although that activated carbons exhibited higher adsorption capacities in the literature, acid-treated pyrolytic tire char was found to be considerably efficient adsorbent for the removal of MB dye column taking into account the advantages of the simpler production process compared to activated carbons, as well as, the availability of waste tire feedstock and concurrent waste tire management.

  2. Perioperative Diagnosis and Treatment of Serotonin Syndrome Following Administration of Methylene Blue

    PubMed Central

    Francescangeli, James; Vaida, Sonia; Bonavia, Anthony S.

    2016-01-01

    Patient: Male, 67 Final Diagnosis: Serotonin syndrome Symptoms: Agitation • muscular spasticity, deficient muscular control • nystygmus • sweating • tachycardia Medication: Methylene Blue Clinical Procedure: Total abdominal colectomy Specialty: Anesthesiology Objective: Unusual clinical course Background: Serotonin syndrome (SS) involves serotonergic hyperactivity caused by excessive activation of 5-HT2A receptors. As the use of antidepressants increases, so does the population of patients at risk for developing this complication. The diagnosis is made based on current serotonergic medication use in conjunction with certain clinical signs. The severity of the clinical presentation may vary, especially when the complication occurs while the patient is under general anesthesia. As a result, the incidence of SS is likely underreported and treatment may be delayed, leading to life-threatening complications. Case Report: A 67-year-old, American Society of Anesthesiologist physical status 3 male with multiple medical comorbidities, including anxiety/depression and chronic neck pain, presented for an elective laparoscopic total abdominal colectomy for colonic inertia. His intraoperative course was significant for SS likely triggered by the administration of methylene blue, which only became clinically apparent during anesthetic emergence. We considered and systematically ruled out other potential causes of his clinical condition. His management was primarily supportive, using hydration and benzodiazepine administration, and resulted in full neurologic recovery. Conclusions: SS is an underdiagnosed condition with limited treatment options beyond symptom management. Thus, vigilance, early diagnosis, and cessation of offending medications are of utmost importance. Anesthesiologists managing at-risk surgical patients must have a high clinical suspicion of perioperative SS if their patients exhibit tachycardia, hypertension, and hyperthermia together with clonus

  3. Desorption and photodegradation of methylene blue from modified sugarcane bagasse surface by acid TiO2 hydrosol

    NASA Astrophysics Data System (ADS)

    Yu, Jun-Xia; Chi, Ru-An; Guo, Jia; Zhang, Yue-Fei; Xu, Zhi-Gao; Xiao, Chun-Qiao

    2012-02-01

    Waste sugarcane bagasse (SCB) was modified by pyromellitic dianhydride to improve its adsorption capacity for cationic dyes. Results showed that the adsorption capacity of the modified SCB for methylene blue was 564 mg g-1, which was about 12 times than that obtained on the unmodified SCB. Methylene blue loaded modified SCB was regenerated by a self-clean eluent: TiO2 hydrosol with pH ranged from 1 to 4, and HNO3 solution with the same pH range was tested at the same time for comparison. Results showed that desorption kinetics of methylene blue in the hydrosol systems fit two-step kinetic model and controlled mainly by the slow step. As a self-clean eluent, acid hydrosol could firstly desorb and then photodegrade methylene blue under sunlight irradiation. After five desorption-photodegradation cycles, 78.3% of the absorbed dyes could be desorbed by using hydrosol (pH 2) as eluent. The hydrosol could be continuously used in desorption and photodegradation process, which would economize large volume of the eluent and moreover it would not bring secondary pollution.

  4. Papain gel containing methylene blue for simultaneous caries removal and antimicrobial photoinactivation against Streptococcus mutans biofilms

    PubMed Central

    Silva Jr., Zenildo Santos; Huang, Ying-Ying; de Freitas, Lucas Freitas; França, Cristiane Miranda; Botta, Sergio Brossi; Ana, Patrícia Aparecida; Mesquita-Ferrari, Raquel Agnelli; Santos Fernandes, Kristianne Porta; Deana, Alessandro; Lima Leal, Cintia Raquel; Prates, Renato Araujo; Hamblin, Michael R.; Bussadori, Sandra Kalil

    2016-01-01

    This study intended to evaluate the effects of a papain-gel with a red-light absorbing pigment (methylene blue – MB) to mediate photodynamic therapy (PDT) against Streptococcus mutans biofilms. The PapaMBlue was compared with free MB to generate reactive oxygen species using fluorescence probes (SOSG and HPF). PDT (660-nm light) was carried out against S. mutans biofilms grown on either plastic dishes or on collagen membrane and assayed by CFU, live-dead staining using confocal microscopy, transmission electron microscopy and H&E staining for collagen films. Cytotoxicity and subcellular localization was studied in human fibroblasts. Sponges of bioabsorbable type I collagen membrane were exposed to papain based gel, irradiated with laser and analyzed about their integrity by ATR-FTIR. The PapaMBlue produced higher amounts of singlet oxygen and hydroxyl radicals than free MB, possibly due to better disaggregation of the dye in solution. The PapaMBlue antimicrobial effects on biofilms proved to be capable of reducing the S. mutans. Both MTT and PrestoBlue assays showed higher cell viability and metabolism scores in fibroblasts treated with PapaMBlue and MB, possibly due to stimulation of mitochondrial activity and that collagen triple helix is unaffected. The PapaMBlue is equally effective as MB in destroying S. mutans biofilms growing on plastic or collagen without affecting fibroblasts. PMID:27641507

  5. Pump-probe optical coherence tomography using microencapsulated methylene blue as a contrast agent (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Wihan; Zebrowski, Erin; Lopez, Hazel C.; Applegate, Brian E.; Charoenphol, Phapanin; Jo, Javier A.

    2016-03-01

    Molecular contrast imaging can target specific molecules or receptors to provide detailed information on the local biochemistry and yield enhanced visualization of pathological and physiological processes. When paired with Optical Coherence Tomography (OCT) it can simultaneously supply the morphological context for the molecular information. We recently demonstrated in vivo molecular contrast imaging of methylene blue (MB) using a 663 nm diode laser as a pump in a Pump-Probe OCT (PPOCT) system. The simple addition of a dichroic mirror in the sample arm enabled PPOCT imaging with a typical 830-nm band spectral-domain OCT system. Here we report on the development of a microencapsulated MB contrast agent. The poly lactic-co-glycolic acid (PLGA) microspheres loaded with MB offer several advantages over bare MB. The microsphere encapsulation improves the PPOCT signal both by enhancing the scattering and preventing the reduction of MB to leucomethylene blue. The surface of the microsphere can readily be functionalized to enable active targeting of the contrast agent without modifying the excited state dynamics of MB that enable PPOCT imaging. Both MB and PLGA are used clinically. PLGA is FDA approved and used in drug delivery and tissue engineering applications. 2.5 μm diameter microspheres were synthesized with an inner core containing 0.01% (w/v) aqueous MB. As an initial demonstration the MB microspheres were imaged in a 100 μm diameter capillary tube submerged in a 1% intralipid emulsion.

  6. Papain gel containing methylene blue for simultaneous caries removal and antimicrobial photoinactivation against Streptococcus mutans biofilms.

    PubMed

    Silva, Zenildo Santos; Huang, Ying-Ying; de Freitas, Lucas Freitas; França, Cristiane Miranda; Botta, Sergio Brossi; Ana, Patrícia Aparecida; Mesquita-Ferrari, Raquel Agnelli; Santos Fernandes, Kristianne Porta; Deana, Alessandro; Lima Leal, Cintia Raquel; Prates, Renato Araujo; Hamblin, Michael R; Bussadori, Sandra Kalil

    2016-01-01

    This study intended to evaluate the effects of a papain-gel with a red-light absorbing pigment (methylene blue - MB) to mediate photodynamic therapy (PDT) against Streptococcus mutans biofilms. The PapaMBlue was compared with free MB to generate reactive oxygen species using fluorescence probes (SOSG and HPF). PDT (660-nm light) was carried out against S. mutans biofilms grown on either plastic dishes or on collagen membrane and assayed by CFU, live-dead staining using confocal microscopy, transmission electron microscopy and H&E staining for collagen films. Cytotoxicity and subcellular localization was studied in human fibroblasts. Sponges of bioabsorbable type I collagen membrane were exposed to papain based gel, irradiated with laser and analyzed about their integrity by ATR-FTIR. The PapaMBlue produced higher amounts of singlet oxygen and hydroxyl radicals than free MB, possibly due to better disaggregation of the dye in solution. The PapaMBlue antimicrobial effects on biofilms proved to be capable of reducing the S. mutans. Both MTT and PrestoBlue assays showed higher cell viability and metabolism scores in fibroblasts treated with PapaMBlue and MB, possibly due to stimulation of mitochondrial activity and that collagen triple helix is unaffected. The PapaMBlue is equally effective as MB in destroying S. mutans biofilms growing on plastic or collagen without affecting fibroblasts. PMID:27641507

  7. Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways.

    PubMed

    Atamna, Hani; Nguyen, Andy; Schultz, Carla; Boyle, Kathleen; Newberry, Justin; Kato, Hiroyuki; Ames, Bruce N

    2008-03-01

    Methylene blue (MB) has been used clinically for about a century to treat numerous ailments. We show that MB and other diaminophenothiazines extend the life span of human IMR90 fibroblasts in tissue culture by >20 population doubling (PDLs). MB delays senescence at nM levels in IMR90 by enhancing mitochondrial function. MB increases mitochondrial complex IV by 30%, enhances cellular oxygen consumption by 37-70%, increases heme synthesis, and reverses premature senescence caused by H2O2 or cadmium. MB also induces phase-2 antioxidant enzymes in hepG2 cells. Flavin-dependent enzymes are known to use NAD(P)H to reduce MB to leucomethylene blue (MBH2), whereas cytochrome c reoxidizes MBH2 to MB. Experiments on lysates from rat liver mitochondria suggest the ratio MB/cytochrome c is important for the protective actions of MB. We propose that the cellular senescence delay caused by MB is due to cycling between MB and MBH2 in mitochondria, which may partly explain the increase in specific mitochondrial activities. Cycling of MB between oxidized and reduced forms may block oxidant production by mitochondria. Mitochondrial dysfunction and oxidative stress are thought to be key aberrations that lead to cellular senescence and aging. MB may be useful to delay mitochondrial dysfunction with aging and the decrease in complex IV in Alzheimer disease.

  8. Improving the performance of methylene blue sensitized photopolymer by doping with nickel ion

    NASA Astrophysics Data System (ADS)

    Aswathy, G.; Rajesh, C. S.; Sreekumar, K.; Joseph, R.; Kartha, C. Sudha

    2016-05-01

    Holographic performance of an economically cheap metal ion doped photopolymer material is presented. We investigated the effect of incorporation of nickel ion into the methylene blue sensitized poly (vinyl alcohol)/acrylamide (MBPVA/AA) photopolymer system. The composition and preliminary characterization of the developed photopolymer material is reported. The presence of nickel ion improves the diffraction efficiency, stability of the material and it operates in a wide range of spatial frequencies (550-2000 lines/mm) at exposure energy of 100 mJ/cm2. When nickel ion concentration was 0.01 mM, maximum diffraction efficiency of 84% at exposure energy of 100 mJ/cm2 with spatial frequency 1335 lines/mm could be achieved for gratings recorded using wavelength of 632.8 nm. The material showed panchromaticity with more than 70% diffraction efficiency in both blue and green regions. Effects of humidity and temperature on the stored gratings were studied by keeping films in different environmental conditions. Suitability of recording large area holograms was also explored.

  9. [Lymph node preparation in colorectal cancer. Ex vivo methylene blue injection as a novel technique to improve lymph node visualization].

    PubMed

    Märkl, B; Kerwel, T; Jähnig, H; Anthuber, M; Arnholdt, H

    2008-07-01

    The UICC requires investigation of a minimum of 12 lymph nodes for adequate lymph node staging in colorectal cancer. Despite that, many authors recommend investigation of a larger number, and different techniques, such as fat clearance, have therefore been developed. In this study we introduce a novel technique involving ex vivo lymph node staining with intraarterial methylene blue injection in colon cancer. We compared 14 cases in which methylene injection was used with 14 cases from our records in which conventional investigation techniques were applied. The lymph node harvest differed highly significantly (p<0.001) between the two groups, with average numbers of 28+/-7 and 14+/-3 in the methylene blue group and the unstained group, respectively. The largest difference occurred in the size group 2-4 mm (191 vs 70 lymph nodes). In 6 cases in the unstained group additional embedding of fatty tissue was necessary to reach an adequate number of investigated lymph nodes. Methylene blue injection is a novel and highly effective method that will improve lymph node preparation in colorectal cancer.

  10. In vitro investigation of methylene blue-bearing, electrostatically assembled aptamer-silica nanocomposites as potential photodynamic therapeutics.

    PubMed

    Ding, Tian-Shyng; Huang, Xin-Chun; Luo, Yun-Ling; Hsu, Hsin-Yun

    2015-11-01

    Photodynamic therapy, that is, excitation of a photosensitizer with light to generate reactive oxygen species such as singlet oxygen, has emerged as a noninvasive technique for cancer theranostics. However, the clinical use of many photosensitizers is impeded by their hydrophobicity, the nonspecific damage they cause to normal tissues, and their susceptibility to environmental degradation. In this study, we developed a simple electrostatic adsorption strategy to fabricate aptamer-silica nanocomposites by sequentially functionalizing nanocomposites with the cell surface-associated mucin 1 aptamer for tumor targeting and a hydrophilic photosensitizer, methylene blue, for photodynamic therapy applications. We investigated the relationship between the biophysical properties and cellular uptake of such nanocomposites to improve their formulation. Effective generation of singlet oxygen was achieved with a low photosensitizer dosage (0.5 μM) and a short, low-power irradiation (1 min, 10 mW/cm(2)). With the current strategy, the efficiency of photodynamic therapy was determined by the cellular uptake of nanocomposites and the targeting molecules used.

  11. Microwave-assisted synthesis of reduced graphene oxide/titania nanocomposites as an adsorbent for methylene blue adsorption

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Gao, Haihuan; Chen, Mingxi; Xu, Xiaoyang; Wang, Xuefang; Pan, Cheng; Gao, Jianping

    2016-01-01

    In this study microwave-assisted reduction (MrGO) and direct reduction of graphene oxide (rGO) by Ti powders were established, and the effect of the reaction conditions on the reduction were discussed. The results showed that GO can be effectively reduced by both methods, however, microwave assistance can greatly shorten the reduction time. The produced Ti ions from the reaction of Ti powder with GO were transferred to TiO2 by hydrolysis and formed MrGO/TiO2 and rGO/TiO2. They were used as adsorbents for the removal of methylene blue (MB). MrGO/TiO2 showed a higher adsorption capacity (qmax, 845.6 mg/g) than rGO/TiO2 (qmax, 467.6 mg/g). Investigation on the adsorption MB onto MrGO/TiO2 was conducted and demonstrated that adsorption kinetics followed the pseudo second-order kinetics model and the adsorption isotherm was well described by the Langmuir isotherm model. The recycling of MrGO/TiO2 was achieved by photocatalytic degradation of MB catalyzed by MrGO/TiO2 itself.

  12. Visible-light-driven photodegradation of sulfamethoxazole and methylene blue by Cu2O/rGO photocatalysts.

    PubMed

    Liu, Shou-Heng; Wei, Yu-Shao; Lu, Jun-Sheng

    2016-07-01

    The cuprous oxide-reduced graphene oxide (Cu2O/rGO-x) composites were prepared via a simple wet-chemical method by using CuSO4·5H2O and graphene oxide as precursors and ascorbic acid as a reducing agent, respectively. These Cu2O/rGO-x were employed as photocatalysts for degrading emerging contaminants and organic dye pollutants (i.e., sulfamethoxazole (SMX) and methylene blue (MB)) under visible light. A variety of different spectroscopic and analytical techniques, such as X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman scattering spectroscopy and UV-Visible spectroscopy were used to characterize the physical properties of photocatalysts. In the photodegrading experiments, it can be found that the Cu2O/rGO-80 photocatalyst has the superior visible-light response of ca. 50% removal efficiency of SMX within 120 min and 100% removal efficiency of MB within 40 min. These observations may be attributed the well-dispersed and visible-light-responsive Cu2O nanoparticles are supported on the surface of rGO sheets that can enhance absorption of visible light during photocatalysis. PMID:27043377

  13. Efficient Sunlight-Induced Methylene Blue Removal over One-Dimensional Mesoporous Monoclinic BiVO4 Nanorods

    PubMed Central

    Hou, Linrui; Yang, Long; Li, Jiaoyang; Tan, Jie; Yuan, Changzhou

    2012-01-01

    Sunlight-driven mesoporous BiVO4 nanorods with monoclinic structure have been successfully synthesized via a simple hydrothermal method. The as-prepared one-dimensional BiVO4 nanorods exhibited high specific surface area due to their unique mesoporous structure. The mesoporous BiVO4 nanorods possessed strong photoabsorption properties in the visible light region as well as the ultravisible region, and the band gap was estimated to be ca. 2.18 eV. The photocatalytic activities were evaluated by decolorization of methylene blue under sunlight irradiation. Photocatalytic tests demonstrated that the decolorization rate of as-prepared mesoporous BiVO4 nanorods was even up to 98.8% in 180 min, much better than that prepared by solid-state reaction (23.1%) and the commercial TiO2 (Degussa P25) (14.2%) under the same conditions, due to their higher specific surface area and appropriate band gap. Moreover, the unique BiVO4 nanorods exhibit high stability after five photocatalytic degradation recycles. PMID:22567556

  14. Computed Tomography Guided Percutaneous Injection of a Mixture of Lipiodol and Methylene Blue in Rabbit Lungs: Evaluation of Localization Ability for Video-Assisted Thoracoscopic Surgery

    PubMed Central

    Jin, Kwang Nam; Kim, Tae Jung; Song, Yong Sub; Kim, Dong Il

    2014-01-01

    Preoperative localization is necessary prior to video assisted thoracoscopic surgery for the detection of small or deeply located lung nodules. We compared the localization ability of a mixture of lipiodol and methylene blue (MLM) (0.6 mL, 1:5) to methylene blue (0.5 mL) in rabbit lungs. CT-guided percutaneous injections were performed in 21 subjects with MLM and methylene blue. We measured the extent of staining on freshly excised lung and evaluated the subjective localization ability with 4 point scales at 6 and 24 hr after injections. For MLM, radio-opacity was evaluated on the fluoroscopy. We considered score 2 (acceptable) or 3 (excellent) as appropriate for localization. The staining extent of MLM was significantly smaller than methylene blue (0.6 vs 1.0 cm, P<0.001). MLM showed superior staining ability over methylene blue (2.8 vs 2.2, P=0.010). Excellent staining was achieved in 17 subjects (81%) with MLM and 8 (38%) with methylene blue (P=0.011). An acceptable or excellent radio-opacity of MLM was found in 13 subjects (62%). An appropriate localization rate of MLM was 100% with the use of the directly visible ability and radio-opacity of MLM. MLM provides a superior pulmonary localization ability over methylene blue. PMID:24431917

  15. Color measurement of methylene blue dye/clay mixtures and its application using economical methods

    NASA Astrophysics Data System (ADS)

    Milosevic, Maja; Kaludjerovic, Lazar; Logar, Mihovil

    2016-04-01

    Identifying the clay mineral components of clay materials by staining tests is rapid and simple, but their applicability is restricted because of the mutual interference of the common components of clay materials and difficulties in color determination. The change of color with concentration of the dye is related to the use of colorants as a field test for identifying clay minerals and has been improved over the years to assure the accuracy of the tests (Faust G. T., 1940). The problem of measurement and standardization of color may be solved by combination of colors observed in staining tests with prepared charts of color chips available in the Munsell Book of Color, published by Munsell Color Co. Under a particular set of illumination conditions, a human eye can achieve an approximate match between the color of the dyed clay sample and that of a standard color chip, even though they do have different spectral reflectance characteristics. Experiments were carried out with diffuse reflectance spectroscopy on selected clay samples (three montmorillonite, three kaolinite and one mix-layer clay samples) saturated with different concentration of methylene blue dye solution. Dominant wavelength and purity of the color was obtained on oriented dry samples and calculated by use of the I. C. I. (x, y) - diagram in the region of 400-700 nm (reflectance spectra) without MB and after saturation with different concentrations of MB solutions. Samples were carefully photographed in the natural light environment and processed with user friendly and easily accessible applications (Adobe color CC and ColorHexa encyclopedia) available for android phones or tablets. Obtained colors were compared with Munsell standard color chips, RGB and Hexa color standards. Changes in the color of clay samples in their interaction with different concentration of the applied dye together with application of economical methods can still be used as a rapid fieldwork test. Different types of clay

  16. The interactions of azure B, a metabolite of methylene blue, with acetylcholinesterase and butyrylcholinesterase

    SciTech Connect

    Petzer, Anél; Harvey, Brian H.; Petzer, Jacobus P.

    2014-02-01

    Methylene blue (MB) is reported to possess diverse pharmacological actions and is attracting increasing attention for the treatment of neurodegenerative disorders such as Alzheimer's disease. Among the pharmacological actions of MB, is the significant inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These activities may, at least in part, underlie MB's beneficial effects in Alzheimer's disease. MB is metabolized to yield N-demethylated products of which azure B, the monodemethyl metabolite, is the predominant species. Azure B has been shown to be pharmacologically active and also possesses a variety of biological actions. Azure B therefore may contribute to the pharmacological profile of MB. Based on these considerations, the present study investigates the possibility that azure B may, similar to MB, act as an inhibitor of human AChE and BuChE. The results document that azure B inhibits AChE and BuChE with IC{sub 50} values of 0.486 μM and 1.99 μM, respectively. The results further show that azure B inhibits AChE and BuChE reversibly, and that the modes of inhibition are most likely competitive. Although the AChE and BuChE inhibitory activities of azure B are twofold and fivefold, respectively, less potent than those recorded for MB [IC{sub 50}(AChE) = 0.214 μM; IC{sub 50}(BuChE) = 0.389 μM] under identical conditions, azure B may be a contributor to MB's in vivo activation of the cholinergic system and beneficial effects in Alzheimer's disease. - Highlights: • Methylene blue (MB) is a known inhibitor of AChE and BuChE. • Azure B, the major metabolite of MB, also is an inhibitor of AChE and BuChE. • Azure B may be a contributor to MB's in vivo activation of the cholinergic system. • Azure B may contribute to MB's potential in Alzheimer's disease therapy.

  17. Study on the interaction of methylene blue with cyclodextrin derivatives by absorption and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Guomei; Shuang, Shaomin; Dong, Chuan; Pan, Jinghao

    2003-11-01

    The ability of β-cyclodextrin (β-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD), and carboxymethyl-β-cyclodextrin (CM-β-CD) to break the aggregate of the methylene blue (MB) and to form 1:1 inclusion complexes has been studied by absorption and fluorescence spectroscopy. Experimental conditions including concentrations of various cyclodextrins (β-CD, HP-β-CD and CM-β-CD) and media acidity were investigated for the inclusion formation in detail. The formation constants are calculated by using steady-state fluorimetry, from which the inclusion capacity of different cyclodextrins (CDs) is compared. The results suggest that the charged β-cyclodextrin (CM-β-CD) is more suitable for inclusion of the cationic dye MB than the neutral β-cyclodextrins (β-CD, HP-β-CD) at pH>5. A mechanism is proposed which is consistent with the stronger binding of MB with CM-β-CD compared with the other CDs at pH>5.

  18. Heterogeneous photodegradation of methylene blue with iron and tea or coffee polyphenols in aqueous solutions.

    PubMed

    Morikawa, Claudio Kendi; Shinohara, Makoto

    2016-01-01

    Recently, we developed two new Fenton catalysts using iron (Fe) and spent tea leaves or coffee grounds as raw material. In this study, Fe-to-tea or Fe-to-coffee polyphenol complexes were successfully tested as heterogeneous photo-Fenton catalysts. The photodegradation efficiency of methylene blue solutions with Fe-to-polyphenol complexes was higher than that of homogeneous iron salts in the photo-Fenton process. Furthermore, the tested Fe-to-polyphenol complexes could be reused by simply adding H2O2 to the solutions. After three sequential additions of H2O2, the conventional catalysts FeCl2·4H2O and FeCl3 removed only 16.6% and 53.6% of the dye, while the catalysts made using spent coffee grounds and tea leaves removed 94.4% and 96.0% of the dye, respectively. These results showed that the complexes formed between Fe and chlorogenic acid, caffeic acid, gallic acid and catechin, which are the main polyphenols in tea and coffee, can be used to improve the photo-Fenton process.

  19. The binding properties of photosensitizer methylene blue to herring sperm DNA: a spectroscopic study.

    PubMed

    Zhang, Lei Z; Tang, Guo-Qing

    2004-05-27

    Methylene blue (MB) is a phenothiazinium photosensitizer with promising applications in the photodynamic therapy (PDT) for anticancer treatment. The binding properties of MB to herring sperm DNA have been investigated by the measurements of absorption spectra, quenching experiments and the elucidation of the photobleaching processes. Remarkable hypochromic and bathochromic effects of MB in the presence of increasing amounts of DNA have been observed in the absorption spectra. The quenching of MB by the DNA bases obeys the Stern-Volmer equation and ferrocyanide quenching of MB in the absence and presence of DNA is also measured as extended experiments. Results from the above spectral measurements are all consistent with the intercalative binding mode of MB to DNA with the Kb value of 1.89 x 10(4) M(-1). The photobleaching processes of MB and its DNA complex have also been studies, which indicate that the photobleaching of MB and its DNA complex proceeds with different mechanisms and the reactive oxygen species are responsible for the self-sensitized photooxidation of MB. PMID:15157907

  20. Activated carbon coated palygorskite as adsorbent by activation and its adsorption for methylene blue.

    PubMed

    Zhang, Xianlong; Cheng, Liping; Wu, Xueping; Tang, Yingzhao; Wu, Yucheng

    2015-07-01

    An activation process for developing the surface and porous structure of palygorskite/carbon (PG/C) nanocomposite using ZnCl2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (SEM), and Brunauer-Emmett-Teller analysis (BET) techniques. The effects of activation conditions were examined, including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of CC and C-H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold (1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay. PMID:26141882

  1. The use of methylene blue in abdominal aortic surgery: a case report.

    PubMed

    Piraccini, E; Agnoletti, V; Corso, R; Maitan, S; Gambale, G

    2010-01-01

    The open abdominal aortic surgery includes a well-known phase in which arterial blood flow is stopped by occluding clamps, resulting in peculiar physiologic changes usually superimposed on advanced pathologic conditions. An anesthetic plan should aim at providing hemodynamic stability and preserving organ function. Clamp removal leads to an acute fall in blood pressure following a decrease in systemic vascular resistance, caused by reactive hyperemia due to opening of the previously minimally perfused vascular beds. Several different mediators, including the nitrous oxide (NO) pathway, have been thought to be responsible for this hemodynamic effect. The massive production of NO by the inducible isoform of NO synthase could be partially responsible for the profound vasodilatation and myocardial dysfunction. The dye methylene blue (MB) has been used as to prevent vasodilatation in other clinical situations like sepsis, cardiopulmonary bypass and liver transplantation. We describe its use in a patient with poor hemodynamic status, who was submitted to aortic aneurism repair with infrarenal cross clamp. The intervention was also associated with a severe bleeding. In this case MB allowed us to control hypotension with relatively low doses of vasopressors. PMID:23440623

  2. Removal of Congo Red and Methylene Blue from Aqueous Solutions by Vermicompost-Derived Biochars.

    PubMed

    Yang, Gang; Wu, Lin; Xian, Qiming; Shen, Fei; Wu, Jun; Zhang, Yanzong

    2016-01-01

    Biochars, produced by pyrolyzing vermicompost at 300, 500, and 700°C were characterized and their ability to adsorb the dyes Congo red (CR) and Methylene blue (MB) in an aqueous solution was investigated. The physical and chemical properties of biochars varied significantly based on the pyrolysis temperatures. Analysis of the data revealed that the aromaticity, polarity, specific surface area, pH, and ash content of the biochars increased gradually with the increase in pyrolysis temperature, while the cation exchange capacity, and carbon, hydrogen, nitrogen and oxygen contents decreased. The adsorption kinetics of CR and MB were described by pseudo-second-order kinetic models. Both of Langmuir and Temkin model could be employed to describe the adsorption behaviors of CR and MB by these biochars. The biochars generated at higher pyrolysis temperature displayed higher CR adsorption capacities and lower MB adsorption capacities than those compared with the biochars generated at lower pyrolysis temperatures. The biochar generated at the higher pyrolytic temperature displayed the higher ability to adsorb CR owing to its promoted aromaticity, and the cation exchange is the key factor that positively affects adsorption of MB. PMID:27144922

  3. Comparative evaluation of methylene blue and demeclocycline for enhancing optical contrast of gliomas in optical images.

    PubMed

    Wirth, Dennis; Snuderl, Matija; Curry, William; Yaroslavsky, Anna

    2014-09-01

    Contrast agents have shown to be useful in the detection of cancers. The goal of this study was to compare enhancement of brain cancer contrast using reflectance and fluorescence confocal imaging of two fluorophores, methylene blue (MB) and demeclocycline (DMN). MB absorbs light in the red spectral range and fluoresces in the near-infrared. It is safe for in vivo staining of human skin and breast tissue. However, its safety for staining human brain is questionable. Thus, DMN, which absorbs light in the violet spectral range and fluoresces between 470 and 570 nm, could provide a safer alternative to MB. Fresh human gliomas, obtained from surgeries, were cut in half and stained with aqueous solutions of MB and DMN, respectively. Stained tissues were imaged using multimodal confocal microscopy. Resulting reflectance and fluorescence optical images were compared with hematoxylin and eosin histopathology, processed from each imaged tissue. Results indicate that images of tissues stained with either stain exhibit comparable contrast and resolution of morphological detail. Further studies are required to establish the safety and efficacy of these contrast agents for use in human brain.

  4. Enhanced photodynamic therapy efficacy of methylene blue-loaded calcium phosphate nanoparticles.

    PubMed

    Seong, Da-Young; Kim, Young-Jin

    2015-05-01

    Although methylene blue (MB) is the most inexpensive photosensitizer with promising applications in the photodynamic therapy (PDT) for its high quantum yield of singlet oxygen generation, the clinical use of MB has been limited by its rapid enzymatic reduction in the biological environment. To enhance PDT efficacy of MB by preventing the enzymatic reduction, we have developed a new mineralization method to produce highly biocompatible MB-loaded calcium phosphate (CaP-MB) nanoparticles in the presence of polymer templates. The resulting CaP-MB nanoparticles exhibited spherical shape with a size of under 50 nm. Fourier transform infrared (FT-IR) and zeta-potential analyses confirmed the insertion of MB into the CaP-MB nanoparticles. The encapsulation of MB in CaP nanoparticles could effectively protect MB from the enzymatic reduction. In addition, the CaP-MB nanoparticles exhibited a good biocompatibility in the dark condition and significantly enhanced PDT efficacy due to apoptotic cell death against human breast cancer cells as compared with free MB, implying that CaP-MB nanoparticle system might be potentially applicable in PDT.

  5. Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy.

    PubMed

    Sahu, Abhishek; Choi, Won Il; Lee, Jong Hyun; Tae, Giyoong

    2013-08-01

    Nano graphene oxide sheet (nanoGO) was non-covalently functionalized with Pluronic block copolymer and complexed with methylene blue, a hydrophilic and positively charged photosensitizer, via electrostatic interaction for combined photodynamic-photothermal therapy of cancer. Pluronic coating of nanoGO ensured its stability in biological fluids. NanoGO plays dual role of a photothermal material as well as a delivery agent for photosensitizer. The release of the photosensitizer from nanoGO surface was pH-dependent and an acidic condition increased the release rate considerably. This nanocomplex showed enhanced uptake by cancer cells than normal cells and in the absence of light it showed no major toxicity towards the cells. In contrast, when irradiated with selective NIR laser lights, it induced significant cell death. Intravenous injection of the complex into tumor bearing mice showed high tumor accumulation, and when the tumors were exposed to NIR lights, it caused total ablation of tumor tissue through the combined action of photodynamic and photothermal effects. This work shows the potential of nanoGO for synergistic combination phototherapy of tumor in vivo.

  6. Methylene blue-mediated photodynamic therapy enhances apoptosis in lung cancer cells.

    PubMed

    Lim, Eun Jin; Oak, Chul-Ho; Heo, Jeonghoon; Kim, Young-Ho

    2013-08-01

    Combined treatment with a photosensitizer and iodide laser [photodynamic therapy (PDT)] has improved the outcome of various cancers. In this study, we investigated the effects of using the photosensitizer methylene blue (MB) in PDT in human lung adenocarcinoma cells. We found that MB enhances PDT-induced apoptosis in association with downregulation of anti-apoptotic proteins, reduced mitochondrial membrane potential (MMP), increased phosphorylation of the mitogen-activated protein kinase (MAPK) and the generation of reactive oxygen species (ROS). In MB-PDT-treated A549 cells, we observed PARP cleavage, procaspase-3 activation, downregulation of the anti-apoptotic proteins Bcl-2 and Mcl-1, and the reduction of mitochondrial membrane potential (MMP). Western blot data showed that phosphorylation of p38 was increased in MB-PDT-treated A549 cells, indicating that several signaling molecules participate in the apoptotic cascade. Our data also showed that apoptotic cell death in MB-PDT-treated cells occurred through a series of steps beginning with the photochemical generation of ROS. Demonstrating the role of ROS, pretreatment of A549 cells with the antioxidant N-acetylcysteine (NAC) followed by MB-PDT resulted in increased cell viability and reduced proteolytic cleavage of PARP.

  7. Comparative evaluation of methylene blue and demeclocycline for enhancing optical contrast of gliomas in optical images

    NASA Astrophysics Data System (ADS)

    Wirth, Dennis; Snuderl, Matija; Curry, William; Yaroslavsky, Anna

    2014-09-01

    Contrast agents have shown to be useful in the detection of cancers. The goal of this study was to compare enhancement of brain cancer contrast using reflectance and fluorescence confocal imaging of two fluorophores, methylene blue (MB) and demeclocycline (DMN). MB absorbs light in the red spectral range and fluoresces in the near-infrared. It is safe for in vivo staining of human skin and breast tissue. However, its safety for staining human brain is questionable. Thus, DMN, which absorbs light in the violet spectral range and fluoresces between 470 and 570 nm, could provide a safer alternative to MB. Fresh human gliomas, obtained from surgeries, were cut in half and stained with aqueous solutions of MB and DMN, respectively. Stained tissues were imaged using multimodal confocal microscopy. Resulting reflectance and fluorescence optical images were compared with hematoxylin and eosin histopathology, processed from each imaged tissue. Results indicate that images of tissues stained with either stain exhibit comparable contrast and resolution of morphological detail. Further studies are required to establish the safety and efficacy of these contrast agents for use in human brain.

  8. Chemical convection in the methylene-blue-glucose system: Optimal perturbations and three-dimensional simulations

    NASA Astrophysics Data System (ADS)

    Köllner, Thomas; Rossi, Maurice; Broer, Frauke; Boeck, Thomas

    2014-11-01

    A case of convection driven by chemical reactions is studied by linear stability theory and direct numerical simulations. In a plane aqueous layer of glucose, the methylene-blue-enabled catalytic oxidation of glucose produces heavier gluconic acid. As the oxygen is supplied through the top surface, the production of gluconic acid leads to an overturning instability. Our results complement earlier experimental and numerical work by Pons et al. First, we extend the model by including the top air layer with diffusive transport and Henry's law for the oxygen concentration at the interface to provide a more realistic oxygen boundary condition. Second, a linear stability analysis of the diffusive basic state in the layers is performed using an optimal perturbation approach. This method is appropriate for the unsteady basic state and determines the onset time of convection and the associated wavelength. Third, the nonlinear evolution is studied by the use of three-dimensional numerical simulations. Three typical parameters sets are explored in detail showing significant differences in pattern formation. One parameter set for which the flow is dominated by viscous forces, displays persistently growing convection cells. The other set with increased reaction rate displays a different flow regime marked by local chaotic plume emission. The simulated patterns are then compared to experimental observations.

  9. Chemoconvection patterns in the methylene-blue-glucose system: Weakly nonlinear analysis

    NASA Astrophysics Data System (ADS)

    Pons, A. J.; Sagués, F.; Bees, M. A.

    2004-12-01

    The oxidation of solutions of glucose with methylene-blue as a catalyst in basic media can induce hydrodynamic overturning instabilities, termed chemoconvection in recognition of their similarity to convective instabilities. The phenomenon is due to gluconic acid, the marginally dense product of the reaction, which gradually builds an unstable density profile. Experiments indicate that dominant pattern wavenumbers initially increase before gradually decreasing or can even oscillate for long times. Here, we perform a weakly nonlinear analysis for an established model of the system with simple kinetics, and show that the resulting amplitude equation is analogous to that obtained in convection with insulating walls. We show that the amplitude description predicts that dominant pattern wavenumbers should decrease in the long term, but does not reproduce the aforementioned increasing wavenumber behavior in the initial stages of pattern development. We hypothesize that this is due to horizontally homogeneous steady states not being attained before pattern onset. We show that the behavior can be explained using a combination of pseudo-steady-state linear and steady-state weakly nonlinear theories. The results obtained are in qualitative agreement with the analysis of experiments.

  10. Adsorption of methylene blue and methyl red dyes from aqueous solutions onto modified zeolites.

    PubMed

    Ioannou, Z; Karasavvidis, Ch; Dimirkou, A; Antoniadis, V

    2013-01-01

    Zeolite, hematite, modified zeolite and commercial activated charcoal were examined for their ability to remove methylene blue (MB) and methyl red (MR) from their aqueous solutions. Modified zeolite and hematite were produced according to the Schwertmann and Cornell method while zeolite and commercial activated charcoal were obtained from S&B and Fluka AG companies, respectively. Adsorption experiments were conducted at three different adsorbent-to-solution ratios, namely 8, 16 and 24 g/L under environmental conditions and continuous stirring. Equilibrium isotherms of MB and MR were studied at different initial concentrations (from 5 × 10(-4) to 5 × 10(-3) g/L). MB adsorption kinetics were also studied. The maximum adsorption of MB and MR from their aqueous solutions was achieved at 24 g/L (adsorbent-to-dye solution ratio) after 1 h and was equal to 100% (MB) on modified zeolite and 99% (MR) on commercial activated charcoal, respectively. All the other materials achieved intermediate values of dye adsorption. From the applied kinetic models, the pseudo-second-order equation best described the adsorption of MB and MR. Consequently, modified zeolite showed the highest adsorption capacity for MB, while commercial activated charcoal showed the highest adsorption capacity of MR. The studied adsorbents can be used as filters to remove dyes from wastewaters.

  11. Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue.

    PubMed

    Yan, Han; Tao, Xue; Yang, Zhen; Li, Kun; Yang, Hu; Li, Aimin; Cheng, Rongshi

    2014-03-15

    In this current work, a series of graphene oxides (GO) with different oxidation degrees (OD) was prepared using Hummer method. Fundamental adsorption behavior of the GO series for removal of methylene blue (MB) from aqueous solutions has been studied. The GO series shows an overall fast and pH-independent MB adsorption, which is even capable of removing trace levels of dye completely from very dilute solutions. Furthermore, the effects of the oxidation degree (OD) on MB adsorption behavior have been investigated systematically, indicating that the dye uptakes of GO exponentially increase with the increase of OD. Further study on the adsorption mechanism shows that adsorption behavior of GO would change from a Freundlich-type to a Langmuir-type adsorption as the OD increases. It may be due to both the enhanced exfoliation degree of the carbon planes in graphite caused by oxidation and the production of more active adsorption sites. The binding features of the MB loaded GO gradually change from MB molecule parallel stacking on graphite plane through hydrophobic π-π interaction to vertical standing via electrostatic interaction with increasing OD, resulting in a significant improvement of MB uptakes. In addition, the adsorption capacity of the regenerated GO has little loss until four cycles.

  12. Kinetics of competitive adsorption of β-casein and methylene blue on hydrophilic glass.

    PubMed

    Qi, Zhi-mei; Lu, Dan-feng; Deng, Lin; Matsuda, Naoki

    2012-03-01

    The competitive adsorption of methylene blue (MB) and β-casein on hydrophilic glass from an aqueous mixed solution was directly detected at the solution pH smaller than the protein isoelectric point (pI) by means of the waveguide-based broadband time-resolved evanescent wave absorption spectroscopy. The competitive adsorption causes the MB coverage to exponentially decrease with time from its peak value and prevents MB aggregation at the interface. The kinetic equation for the competitive adsorption of binary adsorbates was theoretically deduced based on the Langmuir model, and was used for creating the best fit to the experimental data. In the case of a fixed concentration of MB in the mixed solution, the best-fit parameter τ(-1) increases with the protein concentration at a specific pH and decreases with the solution pH at a given concentration of protein. The findings suggest that the β-casein concentration in sub-μM level can be rapidly determined by the time-resolved waveguide absorptiometry based on the competitive adsorption of MB and protein.

  13. Experimental Design Approach for Methylene Blue Dye Removal in Aqueous Environment by Nitrilotriacetic Modified Banana Pith.

    PubMed

    Lee, Shi-Ling; Liew, Shu-Wei; Ong, Siew-Teng

    2016-01-01

    Native banana pith (NBP) was modified by using nitrilotriacetic acid to increase its efficiency and adsorption capacity for methylene blue (MB) dye. The effect of various parameters such as pH, contact time and initial dye concentration, sorption isotherm and adsorbent dosage were studied. The maximum adsorption capacity of the NBP and NTA-BP is 100 and 142.86 mg/g, respectively. The IR spectrum of NBP and NTA-BP showed the presence of both carboxyl and hydroxyl groups. From the SEM micrographs, the surface morphology of NTA-BP before adsorption appeared to be smoother as compared to that after adsorption process. The pH(pzc) of NBP is 5.6 whereas for NTA-BP is 7.6. The experimental data fitted well into Langmuir isotherm with R(2) of 0.992. Plackett-Burman design was applied to identify the significant factors in affecting the uptake whereas the interaction between the factors and their optimum levels for the maximum percentage uptake of MB were determined using response surface methodology (RSM). Based on the results, the optimum condition for adsorption of MB was by using 0.06 g of NTA-BP in dye solution at pH 6 with 120 minutes contact time. The maximum adsorption of MB by NTA-BP achieved 99.42% under the optimum condition.

  14. Surface properties and adsorption characteristics to methylene blue and iodine of adsorbents from sludge.

    PubMed

    Deng, L Y; Xu, G R; Li, G B

    2010-01-01

    Adsorbent materials created from wastewater sludge have unique surface characteristics and could be effective in adsorption applications. In this research, the sludge-adsorbents were generated by pyrolyzing mixtures of sewage sludge and H(2)SO(4). Scanning electron microscope (SEM), thermal analysis, X-ray diffraction (XRD) and X-ray photoelectron spectroscope (XPS) were used to analyze the properties of sludge-adsorbent. XPS results show that the adsorbent surface functional groups with high contents of oxygen-containing groups serve as active sites for the adsorption and affect the surface characteristics; the adsorption mechanism of methylene blue (MB) is mainly Brönsted acid-base reaction between the adsorbent surface and MB; and iodine atoms are bonded to the surface of the adsorbent mainly by dispersive interactions rather than by electrostatic interactions. The results also show that H(2)SO(4) level, pyrolysis temperature and sulfuric acid/sludge weight ratio actually affected the adsorption characteristics. Using the conditions (H(2)SO(4) level of 1-18 M, pyrolysis temperature of 650°C, and weight ratio of 0.8), the adsorption capacities for MB and iodine were 74.7-62.3 mg g(-1) and 169.5-209.3 mg g(-1), respectively.

  15. Highly effective removal of Methylene Blue using functionalized attapulgite via hydrothermal process.

    PubMed

    Zhang, Zhifang; Wang, Wenbo; Wang, Aiqin

    2015-07-01

    Attapulgite (APT) has been frequently used for the adsorptive removal of dyes from aqueous solution owing to its unique one-dimensional nanoscale structure and low-cost, abundant, eco-friendly advantages. In this work, APT was functionalized under mild hydrothermal condition using chloroacetic acid (CA) with COOH functional groups to improve its adsorption properties. The effect of hydrothermal modification on the microstructure and physicochemical features of APT was investigated by Fourier transform infrared spectroscopy, X-ray diffraction and Field-emission scanning electron microscopy analyses. The effects of hydrothermal reaction parameters on the adsorption properties of modified APT were intensively investigated. It was revealed that the rearrangement of crystal structure and the surface functionalization of APT with COOH groups cause the surprising increase of adsorption capability for Methylene Blue (MB). The removal ratio of raw APT for MB is only 59.52%, while modified APT could almost completely remove MB in the 200 mg/L of MB solution with a removal ratio of 99.8%. The adsorption kinetics fitted pseudo second-order kinetic model, and the adsorption isotherm could be described with Langmuir isotherm model very well. The hydrogen-bonding interaction, electrostatic attraction and chemical association are the main driving force for the adsorption process.

  16. [Adsorption properties of modified graphene for methylene blue removal from wastewater].

    PubMed

    Wu, Yan; Luo, Han-Jin; Wang, Hou; Zhang, Zi-Long; Wang, Can; Wang, Yu-Wei

    2013-11-01

    In this study, cetyltrimethylammonium bromide (CTAB) was chosen to modify graphene, which was applied to remove methylene blue (MB) from aqueous solutions. The characteristics of graphene and modified graphene were characterized by X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), thermal gravimetric analyzer (TGA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The effects of factors including pH, contact time, temperature, and dosage on the adsorption properties of MB onto graphene and modified graphene were investigated. The results revealed that the addition of CTAB in preparation could obviously increase the specific surface area and improve the efficiency of removal. The adsorption processes were rapid within the first 15 min and reached equilibrium in about 120 min. The adsorption kinetics fitted well with the pseudo-second-order model. The optimal reaction temperature was 293 K, the optimal concentration of adsorbent dosage was 2 g x L(-1), and the initial pH value of the solution had little impact on the amount of adsorption. The adsorption capacity of MB on modified graphene inferred from the Langmuir model was 86.43 mg x g(-1) at 293 K, and the adsorption was an exothermic process.

  17. Preparation of modified semi-coke by microwave heating and adsorption kinetics of methylene blue.

    PubMed

    Wang, Xin; Peng, Jin-Hui; Duan, Xin-Hui; Srinivasakannan, Chandrasekar

    2013-01-01

    Preparation of modified semi-coke has been achieved, using phosphoric acid as the modifying agent, by microwave heating from virgin semi-coke. Process optimization using a Central Composite Design (CCD) design of Response Surface Methodology (RSM) technique for the preparation of modifies semi-coke is presented in this paper. The optimum conditions for producing modified semi-coke were: concentration of phosphoric acid 2.04, heating time 20 minutes and temperature 587 degrees C, with the optimum iodine of 862 mg/g and yield of 47.48%. The textural characteristics of modified semi-coke were analyzed using scanning electron microscopy (SEM) and nitrogen adsorption isotherm. The BET surface area of modified semi-coke was estimated to be 989.60 m2/g, with the pore volume of 0.74 cm3/g and a pore diameter of 3.009 nm, with micro-pore volume contributing to 62.44%. The Methylene Blue monolayer adsorption capacity was found to be mg/g at K. The adsorption capacity of the modified semi-coke highlights its suitability for liquid phase adsorption application with a potential usage in waste water treatment.

  18. Activated carbon coated palygorskite as adsorbent by activation and its adsorption for methylene blue.

    PubMed

    Zhang, Xianlong; Cheng, Liping; Wu, Xueping; Tang, Yingzhao; Wu, Yucheng

    2015-07-01

    An activation process for developing the surface and porous structure of palygorskite/carbon (PG/C) nanocomposite using ZnCl2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (SEM), and Brunauer-Emmett-Teller analysis (BET) techniques. The effects of activation conditions were examined, including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of CC and C-H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold (1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay.

  19. Sulfur K-edge XANES for methylene blue in photocatalytic reaction over WO3 nanomaterials

    NASA Astrophysics Data System (ADS)

    Komori, K.; Yoshida, T.; Nomoto, T.; Yamamoto, M.; Tsukada, C.; Yagi, S.; Yajima, M.; Kajita, S.; Ohno, N.

    2015-12-01

    We investigated the photocatalysis of dendritic nanostructured WO3/W composite materials fabricated by He plasma irradiation to tungsten plates, followed by the surface oxidation. The samples promoted the decolorization reaction of methylene blue (MB) aqueous solution under near infrared (NIR) light irradiation. To verify the MB molecule is actually decomposed by the photocatalysis of the samples, reaction products were analyzed by S K-edge XANES measurements for the MB solution kept with the samples under the light irradiation or in the dark. By the light irradiation, the σ*(S-C) peak in the XANES spectra reduced and a new peak originated from SO42- species was clearly observed, suggesting that S-C bonds in a MB molecule are broken by the NIR light irradiation and finally the sulfur species exists in the solution in the state of SO42- ion. After the adsorption reaction in the dark, the XANES spectra of the sample surfaces showed a sharp π*(S-C) peaks, indicating that MB molecules are adsorbed on the sample surfaces and stacked each other by the π-π interaction. These results demonstrate that the photocatalytic decomposition of MB molecules really proceeds over WO3/W composite materials even under NIR light irradiation.

  20. The preparation of novel adsorbent materials with efficient adsorption performance for both chromium and methylene blue.

    PubMed

    Li, Leilei; Liu, Feng; Duan, Huimin; Wang, Xiaojiao; Li, Jianbo; Wang, Yanhui; Luo, Chuannan

    2016-05-01

    The hydroxy-functionalized ionic liquids (ILs) modified with magnetic chitosan/grapheneoxide (MG-ILs-OH) were synthesized. The surface morphology of MG-ILs-OH was characterized by transmission electron microscopy, X-ray diffraction, thermo gravimetric analysis and Fourier transform infrared spectroscopy techniques. It was found that the adsorption kinetics is well fitted by a pseudo-second-order model and the adsorption isotherms agree well with the Langmuir model, and the MG-ILs-OH could be repeatedly used by simple treatment. The results showed that the addition of ILs-OH can largely increase the adsorption sites (hydroxy and amino groups) and adsorption properties. The MG-ILs-OH were used as adsorbent for the removal of methylene blue (MB) and Cr(VI) from simulated wastewater with a fast solid-liquid separation in the presence of external magnetic field. The maximum obtained adsorption capacities of MB and Cr(VI) were 243.31 and 107.99 mg/g, respectively. The application of MG-ILs-OH could effectively solve the problem that the adsorbent only adsorb similar adsorbate.

  1. Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes.

    PubMed

    Szlachta, M; Wójtowicz, P

    2013-01-01

    This study was conducted to determine the adsorption removal of dyes by powdered activated carbon (PAC, Norit) and multi-walled carbon nanotubes (MWCNTs, Chinese Academy of Science) from an aqueous solution. Methylene blue (MB) and Congo red (CR) were selected as model compounds. The adsorbents tested have a high surface area (PAC 835 m(2)/g, MWCNTs 358 m(2)/g) and a well-developed porous structure which enabled the effective treatment of dye-contaminated waters and wastewaters. To evaluate the capacity of PAC and MWCNTs to adsorb dyes, a series of batch adsorption experiments was performed. Both adsorbents exhibited a high adsorptive capacity for MB and CR, and equilibrium data fitted well with the Langmuir model, with the maximum adsorption capacity up to 400 mg/g for MB and 500 mg/g for CR. The separation factor, RL, revealed the favorable nature of the adsorption process under experimental conditions. The kinetics of adsorption was studied at various initial dye concentrations and solution temperatures. The pseudo-second-order model was used for determining the adsorption kinetics of MB and CR. The data obtained show that adsorption of both dyes was rapid in the initial stage and followed by slower processing to reach the plateau. The uptake of dyes increased with contact time, irrespective of their initial concentration and solution temperature. However, changes in the solution temperature did not significantly influence dye removal.

  2. Removal of methylene blue from aqueous solution by wood millet carbon optimization using response surface methodology.

    PubMed

    Ghaedi, Mehrorang; Nasiri Kokhdan, Syamak

    2015-02-01

    The use of cheep, non-toxic, safe and easily available adsorbent are efficient and recommended material and alternative to the current expensive substance for pollutant removal from wastewater. The activated carbon prepared from wood waste of local tree (millet) extensively was applied for quantitative removal of methylene blue (MB), while simply. It was used to re-used after heating and washing with alkaline solution of ethanol. This new adsorbent was characterized by using BET surface area measurement, FT-IR, pH determination at zero point of charge (pHZPC) and Boehm titration method. Response surface methodology (RSM) by at least the number of experiments main and interaction of experimental conditions such as pH of solution, contact time, initial dye concentration and adsorbent dosage was optimized and set as pH 7, contact time 18 min, initial dye concentration 20 ppm and 0.2 g of adsorbent. It was found that variable such as pH and amount of adsorbent as solely or combination effects seriously affect the removal percentage. The fitting experimental data with conventional models reveal the applicability of isotherm models Langmuir model for their well presentation and description and Kinetic real rate of adsorption at most conditions efficiently can be represented pseudo-second order, and intra-particle diffusion. It novel material is good candidate for removal of huge amount of MB (20 ppm) in short time (18 min) by consumption of small amount (0.2 g).

  3. High-pressure homogenization associated hydrothermal process of palygorskite for enhanced adsorption of Methylene blue

    NASA Astrophysics Data System (ADS)

    Zhang, Zhifang; Wang, Wenbo; Wang, Aiqin

    2015-02-01

    Palygorskite (PAL) was modified by a high-pressure homogenization assisted hydrothermal process. The effects of modification on the morphology, structure and physicochemical properties of PAL were systematically investigated by Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD) and Zeta potential analysis techniques, and the adsorption properties were systematically evaluated using Methylene blue (MB) as the model dye. The results revealed that the crystal bundles were disaggregated and the PAL nanorods became more even after treated via associated high-pressure homogenization and hydrothermal process, and the crystal bundles were dispersed as nanorods. The intrinsic crystal structure of PAL was remained after hydrothermal treatment, and the pore size calculated by the BET method was increased. The adsorption properties of PAL for MB were evidently improved (from 119 mg/g to 171 mg/g) after modification, and the dispersion of PAL before hydrothermal reaction is favorable to the adsorption. The desorption evaluation confirms that the modified PAL has stronger affinity with MB, which is benefit to fabricate a stable organic-inorganic hybrid pigment.

  4. Mechanism of Adsorptive Removal of Methylene Blue Using Dried Biomass of Rhizopus oryzae.

    PubMed

    Dey, Manash Deep; Shukla, Ruchi; Bordoloi, Naba K; Doley, Robin; Mukhopadhyay, Rupak

    2015-09-01

    Adsorption is an efficient way to remove synthetic dyes from industrial effluent. Here, we show mechanism of adsorptive removal of cationic dye methylene blue (MB) from its aqueous solution using dried biomass of Rhizopus oryzae as a biosorbent. The optimum pH and temperature for adsorption was found to be 7.0 and 28 °C, respectively. Scanning electron microscopy (SEM) of the biomass suggested distinct changes in surface topology post-MB adsorption, while Fourier transform infrared (FTIR) study indicated chemical interaction between the surface of the biomass and MB. Chemical modification of -OH and -C=O groups of biomass reduced the MB adsorption and corroborated with the FTIR analyses. Kinetics study revealed that the adsorption rate was fast initially and reached equilibrium at 4 h following a pseudo-second-order-kinetics. The adsorption isotherm followed Freundlich isotherm model with n value of 1.1615.The dried biomass of R. oryzae can be used as a potent biosorbent for the removal of MB.

  5. Adsorption of methylene blue on biochar microparticles derived from different waste materials.

    PubMed

    Lonappan, Linson; Rouissi, Tarek; Das, Ratul Kumar; Brar, Satinder K; Ramirez, Antonio Avalos; Verma, Mausam; Surampalli, Rao Y; Valero, José R

    2016-03-01

    Biochar microparticles were prepared from three different types of biochar, derived from waste materials, such as pine wood (BC-PW), pig manure (BC-PM) and cardboard (BC-PD) under various pyrolysis conditions. The microparticles were prepared by dry grinding and sequential sieving through various ASTM sieves. Particle size and specific surface area were analyzed using laser particle size analyzer. The particles were further characterized using scanning electron microscope (SEM). The adsorption capacity of each class of adsorbent was determined by methylene blue adsorption tests in comparison with commercially available activated carbon. Experimental results showed that dye adsorption increased with initial concentration of the adsorbate and biochar dosage. Biochar microparticles prepared from different sources exhibited improvement in adsorption capacity (7.8±0.5 mg g(-1) to 25±1.3 mg g(-1)) in comparison with raw biochar and commercially available activated carbon. The adsorption capacity varied with source material and method of production of biochar. The maximum adsorption capacity was 25 mg g(-1) for BC-PM microparticles at 25°C for an adsorbate concentration of 500 mg L(-1) in comparison with 48.30±3.6 mg g(-1) for activated carbon. The equilibrium adsorption data were best described by Langmuir model for BC-PM and BC-PD and Freundlich model for BC-PW.

  6. Removal of methylene blue from aqueous solutions by chemically modified bamboo.

    PubMed

    Guo, Jian-Zhong; Li, Bing; Liu, Li; Lv, Kangle

    2014-09-01

    Chemically modified bamboo (CMB) was utilized for removing methylene blue (MB) from aqueous media in the present study. The adsorbent was characterized by Fourier transform infrared (FTIR) spectra and elemental analysis, which confirms that carboxyl groups and diethylenetriamine were successfully introduced into the surface of bamboo. The effects of initial MB concentration (100-900mgL(-1)), contact time (15-315min), the pH of the solution (3-10), temperature (298-318K), adsorbent dosage (0.4-2.6gL(-1)) and salt concentration on the adsorption efficiency of CMB towards MB were investigated. It was found that the adsorption of MB in CMB fits Langmuir mode well, and the maximum adsorption capacity of CMB achieved 606mgg(-1) at 298K, which is much higher than those obtained from previously investigated bioadsorbents. The adsorption kinetics can be described by pseudo-second-order kinetic model, and the adsorption of MB on CMB was an exothermic process. The results of the present study suggest that CMB is an effective biosorbent for removal of organic pollutants from aqueous solutions.

  7. Adsorption of methylene blue on biochar microparticles derived from different waste materials.

    PubMed

    Lonappan, Linson; Rouissi, Tarek; Das, Ratul Kumar; Brar, Satinder K; Ramirez, Antonio Avalos; Verma, Mausam; Surampalli, Rao Y; Valero, José R

    2016-03-01

    Biochar microparticles were prepared from three different types of biochar, derived from waste materials, such as pine wood (BC-PW), pig manure (BC-PM) and cardboard (BC-PD) under various pyrolysis conditions. The microparticles were prepared by dry grinding and sequential sieving through various ASTM sieves. Particle size and specific surface area were analyzed using laser particle size analyzer. The particles were further characterized using scanning electron microscope (SEM). The adsorption capacity of each class of adsorbent was determined by methylene blue adsorption tests in comparison with commercially available activated carbon. Experimental results showed that dye adsorption increased with initial concentration of the adsorbate and biochar dosage. Biochar microparticles prepared from different sources exhibited improvement in adsorption capacity (7.8±0.5 mg g(-1) to 25±1.3 mg g(-1)) in comparison with raw biochar and commercially available activated carbon. The adsorption capacity varied with source material and method of production of biochar. The maximum adsorption capacity was 25 mg g(-1) for BC-PM microparticles at 25°C for an adsorbate concentration of 500 mg L(-1) in comparison with 48.30±3.6 mg g(-1) for activated carbon. The equilibrium adsorption data were best described by Langmuir model for BC-PM and BC-PD and Freundlich model for BC-PW. PMID:26818183

  8. Removal of Congo Red and Methylene Blue from Aqueous Solutions by Vermicompost-Derived Biochars

    PubMed Central

    Yang, Gang; Wu, Lin; Xian, Qiming; Shen, Fei; Wu, Jun; Zhang, Yanzong

    2016-01-01

    Biochars, produced by pyrolyzing vermicompost at 300, 500, and 700°C were characterized and their ability to adsorb the dyes Congo red (CR) and Methylene blue (MB) in an aqueous solution was investigated. The physical and chemical properties of biochars varied significantly based on the pyrolysis temperatures. Analysis of the data revealed that the aromaticity, polarity, specific surface area, pH, and ash content of the biochars increased gradually with the increase in pyrolysis temperature, while the cation exchange capacity, and carbon, hydrogen, nitrogen and oxygen contents decreased. The adsorption kinetics of CR and MB were described by pseudo-second-order kinetic models. Both of Langmuir and Temkin model could be employed to describe the adsorption behaviors of CR and MB by these biochars. The biochars generated at higher pyrolysis temperature displayed higher CR adsorption capacities and lower MB adsorption capacities than those compared with the biochars generated at lower pyrolysis temperatures. The biochar generated at the higher pyrolytic temperature displayed the higher ability to adsorb CR owing to its promoted aromaticity, and the cation exchange is the key factor that positively affects adsorption of MB. PMID:27144922

  9. Inhibition of postsurgical adhesions by methylene blue-loaded nanofibers versus cast film matrices.

    PubMed

    El-Sayed, Nesma; Galal, Sally; El-Gowelli, Hanan; El-Khordagui, Labiba

    2016-07-01

    In the quest for barrier membranes for the prevention of post-surgical tissue adhesions, polymer matrices may provide a platform of biomaterials with versatile properties. However, the relationship between the anti-adhesion effects of different polymer matrices and their physicochemical and structural properties is not yet adequately understood. In a preclinical study using a rat cecum model, we directly compared the anti-adhesion potential of polyhydroxybutyrate (PHB) electrospun nanofibrous versus cast film matrices loaded with methylene blue (MB) as antioxidant adhesion inhibitor. PHB retained MB presumably forming MB-bioactivated matrices. In the preclinical study, quantitative morphologic assessment in addition to histopathologic and SEM examinations 14 days post-surgery indicated that plain PHB NFs and MB-PHB NFs, moderately enhanced cecal wall healing and inhibited adhesion formation. In contrast, reshaping PHB as cast films, significantly enhanced healing, reduced adhesion bands and prevented inter-visceral adhesions. Cast films also inhibited tissue attachment to the matrix recovered 14 days post-surgery. Both PHB matrix types reduced tissue inflammation. Despite tissue anti-adhesion potential of individual matrix components, modulation of the micro-architectural properties generated polymer barriers with varying tissue anti-adhesion and healing potentials, the MB-loaded cast film achieving the best outcome.

  10. Removal of methylene blue from aqueous solution by Artist's Bracket fungi: kinetic and equilibrium studies.

    PubMed

    Naghipour, Daryush; Taghavi, Kamran; Moslemzadeh, Mehrdad

    2016-01-01

    In this study, adsorption of methylene blue (MB) dye onto Artist's Bracket (AB) fungi was investigated in aqueous solution. Fourier transform infrared and scanning electron microscopy were used to investigate surface characteristic of AB fungi. Influence of operational parameters such as pH, contact time, biosorbent dosage, dye concentration, inorganic salts and temperature was studied on dye removal efficiency. With the increase of pH from 3 to 9, removal efficiency increased from 74.0% to 90.4%. Also, it reduced from 99.8% to 81.8% with increasing initial MB concentration from 25 mg L(-1) to 100 mg L(-1), whereas it increased from 54.7% to 98.7% and from 98.5% to 99.9% with increasing biosorbent dosage from 0.5 g L(-1) to 2 g L(-1) and with increasing temperature from 25 °C to 50 °C, respectively. Isotherm studies have shown adsorption of MB dye over the AB fungi had a better coefficient of determination (R(2)) of 0.98 for Langmuir isotherm. In addition, the maximum monolayer adsorption capacity (qm) was 100 mg g(-1). Also, the MB dye adsorption process followed pseudo-second-order kinetic. In general, AB fungi particles can be favorable for removal of MB dye from dye aqueous solution with natural pH and high temperature. PMID:27232421

  11. Methylene Blue Reduces Acute Cerebral Ischemic Injury via the Induction of Mitophagy.

    PubMed

    Di, Yao; He, Yun-Ling; Zhao, Tong; Huang, Xin; Wu, Kui-Wu; Liu, Shu-Hong; Zhao, Yong-Qi; Fan, Ming; Wu, Li-Ying; Zhu, Ling-Ling

    2015-05-19

    The treatment of stroke is limited by a short therapeutic window and a lack of effective clinical drugs. Methylene blue (MB) has been used in laboratories and clinics since the 1890s. Few studies have reported the neuroprotective role of MB in cerebral ischemia-reperfusion injury. However, whether and how MB protects against acute cerebral ischemia (ACI) injury was unclear. In this study, we investigated the effect of MB on this injury and revealed that MB protected against ACI injury by augmenting mitophagy. Using a rat middle cerebral artery occlusion (MCAO) model, we demonstrated that MB improved neurological function and reduced the infarct volume and necrosis after ACI injury. These improvements depended on the effect of MB on mitochondrial structure and function. ACI caused the disorder and disintegration of mitochondrial structure, while MB ameliorated the destruction of mitochondria. In addition, mitophagy was inhibited at 24 h after stroke and MB augmented mitophagy. In an oxygen-glucose deprivation (OGD) model in vitro, we further revealed that the elevation of mitochondrial membrane potential (MMP) by MB under OGD conditions mediated the augmented mitophagy. In contrast, exacerbating the decline of MMP during OGD abolished the MB-induced activation of mitophagy. Taken together, MB promotes mitophagy by maintaining the MMP at a relatively high level, which contributes to a decrease in necrosis and an improvement in neurological function, thereby protecting against ACI injury.

  12. Removal of methylene blue from aqueous solution by wood millet carbon optimization using response surface methodology

    NASA Astrophysics Data System (ADS)

    Ghaedi, Mehrorang; Kokhdan, Syamak Nasiri

    2015-02-01

    The use of cheep, non-toxic, safe and easily available adsorbent are efficient and recommended material and alternative to the current expensive substance for pollutant removal from wastewater. The activated carbon prepared from wood waste of local tree (millet) extensively was applied for quantitative removal of methylene blue (MB), while simply. It was used to re-used after heating and washing with alkaline solution of ethanol. This new adsorbent was characterized by using BET surface area measurement, FT-IR, pH determination at zero point of charge (pHZPC) and Boehm titration method. Response surface methodology (RSM) by at least the number of experiments main and interaction of experimental conditions such as pH of solution, contact time, initial dye concentration and adsorbent dosage was optimized and set as pH 7, contact time 18 min, initial dye concentration 20 ppm and 0.2 g of adsorbent. It was found that variable such as pH and amount of adsorbent as solely or combination effects seriously affect the removal percentage. The fitting experimental data with conventional models reveal the applicability of isotherm models Langmuir model for their well presentation and description and Kinetic real rate of adsorption at most conditions efficiently can be represented pseudo-second order, and intra-particle diffusion. It novel material is good candidate for removal of huge amount of MB (20 ppm) in short time (18 min) by consumption of small amount (0.2 g).

  13. Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters.

    PubMed

    Doğan, Mehmet; Abak, Harun; Alkan, Mahir

    2009-05-15

    The adsorption kinetics of methylene blue (MB) on the hazelnut shell with respect to the initial dye concentration, pH, ionic strength, particle size and temperature were investigated. The rate and the transport/kinetic processes of MB adsorption were described by applying the first-order Lagergren, the pseudo-second-order, mass transfer coefficient and the intraparticle diffusion models. Kinetic studies showed that the kinetic data were well described by the pseudo-second-order kinetic model. Significant increases in initial adsorption rate were observed with the increase in temperature followed by pH and initial MB concentration. The intraparticle diffusion was found to be the rate-limiting step in the adsorption process. Adsorption activation energy was calculated to be 45.6kJmol(-1). The values of activation parameters such as free energy (DeltaG(*)), enthalpy (DeltaH(*)) and entropy (DeltaS(*)) were also determined as 83.4kJmol(-1), 42.9kJmol(-1) and -133.5Jmol(-1)K(-1), respectively.

  14. Control of burn wound sepsis in rats by methylene blue-mediated photodynamic treatment

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hiroyuki; Sato, Shunichi; Kawauchi, Satoko; Saitoh, Daizoh; Shinomiya, Nariyoshi; Ashida, Hiroshi; Terakawa, Mitsuhiro

    2012-02-01

    Control of wound sepsis is an important challenge in traumatology. However, increase in the drug-resistant bacteria makes this challenge considerably difficult in recent years. In this study, we attempted to control burn wound sepsis in rats by photodynamic treatment, which has been reported to be effective against some drug-resistant bacteria. A 20% TBSA (total body surface area) full-thickness burn was made in rat dorsal skin, and five days after injury, a suspension of P. aeruginosa was applied to the wound surface. At 30 min after infection, a methylene blue (MB) solution was applied to the wound surface; 5 min afterwards, the wound was illuminated with a 665-nm light emitting diode (LED) array for 10 min. This treatment (application of MB and illumination) was repeated 3 times successively. The averaged light intensity on the wound surface was 3.3 mW/cm2, the corresponding total light dose being 5.9 J/cm2. One week after injury, the numbers of bacteria in the blood and liver were counted by colony forming assay. In the liver, the number of bacteria of the treated group was significantly lower than that of the sham control group without photodynamic treatment. In the blood, no bacteria were detected in the treated group, while a certain amount of bacteria was detected in the control group. These results demonstrate the efficacy of MB-mediated PDT with a red LED array to control burn wound sepsis.

  15. Methylene blue biosorption by pericarp of corn, alfalfa, and agave bagasse wastes.

    PubMed

    Rosas-Castor, José M; Garza-González, María T; García-Reyes, Refugio B; Soto-Regalado, Eduardo; Cerino-Córdova, Felipe J; García-González, Alcione; Loredo-Medrano, José A

    2014-01-01

    The presence of dyes in effluent is a matter of concern due to their toxicologic and aesthetical effects. In this research, locally available agro-industrial wastes (Zea mays pericarp, ZMP; Agave tequilana bagasse, ATB; and Medicago sativa waste, MSW) were used as alternative low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. The adsorbents were characterized physically and chemically by Fourier transform infrared, scanning electron microscopy, potentiometric titrations, and N2 physisorption. MB adsorption experiments were carried out in batch systems and experimental data were used to calculate the adsorption isotherm model parameters (Langmuir, Freundlich, and Temkin) and the adsorption kinetic model parameters (pseudo-first- and pseudo-second-order models). MB-loaded biosorbents were desorbed with deionized water, ethanol (10% and 50% v/v), hydrochloric acid (0.01 and 0.05 N), and sodium hydroxide (0.1 N) at room temperature, and the best eluent was used in various adsorption-desorption cycles. The selected agricultural wastes can be considered as promising adsorbents for dye uptake from water since they exhibit considerable MB adsorption capacity (MSW 202.6 mg g(-1), ATB 156.2mg g(-1), and ZMP 110.9mg g(-1)), but it is lower than that reported for activated carbon; however, the biosorbents show higher adsorption rate than powdered activated carbon. Furthermore, the adsorbents can be economically regenerated with HCl solutions and reused for seven adsorption-desorption cycles. PMID:24701903

  16. Inhibition of postsurgical adhesions by methylene blue-loaded nanofibers versus cast film matrices.

    PubMed

    El-Sayed, Nesma; Galal, Sally; El-Gowelli, Hanan; El-Khordagui, Labiba

    2016-07-01

    In the quest for barrier membranes for the prevention of post-surgical tissue adhesions, polymer matrices may provide a platform of biomaterials with versatile properties. However, the relationship between the anti-adhesion effects of different polymer matrices and their physicochemical and structural properties is not yet adequately understood. In a preclinical study using a rat cecum model, we directly compared the anti-adhesion potential of polyhydroxybutyrate (PHB) electrospun nanofibrous versus cast film matrices loaded with methylene blue (MB) as antioxidant adhesion inhibitor. PHB retained MB presumably forming MB-bioactivated matrices. In the preclinical study, quantitative morphologic assessment in addition to histopathologic and SEM examinations 14 days post-surgery indicated that plain PHB NFs and MB-PHB NFs, moderately enhanced cecal wall healing and inhibited adhesion formation. In contrast, reshaping PHB as cast films, significantly enhanced healing, reduced adhesion bands and prevented inter-visceral adhesions. Cast films also inhibited tissue attachment to the matrix recovered 14 days post-surgery. Both PHB matrix types reduced tissue inflammation. Despite tissue anti-adhesion potential of individual matrix components, modulation of the micro-architectural properties generated polymer barriers with varying tissue anti-adhesion and healing potentials, the MB-loaded cast film achieving the best outcome. PMID:27093975

  17. The hemodynamic effects of methylene blue when administered at the onset of cardiopulmonary bypass.

    PubMed

    Maslow, Andrew D; Stearns, Gary; Butala, Parag; Batula, Parag; Schwartz, Carl S; Gough, Jeffrey; Singh, Arun K

    2006-07-01

    Hypotension occurs during cardiopulmonary bypass (CPB), in part because of induction of the inflammatory response, for which nitric oxide and guanylate cyclase play a central role. In this study we examined the hemodynamic effects of methylene blue (MB), an inhibitor of guanylate cyclase, administered during cardiopulmonary bypass (CPB) to patients taking angiotensin-converting enzyme inhibitors. Thirty patients undergoing cardiac surgery were randomized to receive either MB (3 mg/kg) or saline (S) after institution of CPB and cardioplegic arrest. CPB was managed similarly for all study patients. Hemodynamic data were assessed before, during, and after CPB. The use of vasopressors was recorded. All study patients experienced a similar reduction in mean arterial blood pressure (MAP) and systemic vascular resistance (SVR) with the onset of CPB and cardioplegic arrest. MB increased MAP and SVR and this effect lasted for 40 minutes. The saline group demonstrated a persistently reduced MAP and SVR throughout CPB. The saline group received phenylephrine more frequently during CPB, and more norepinephrine after CPB to maintain a desirable MAP. The MB group recorded significantly lower serum lactate levels despite equal or greater MAP and SVR. In conclusion, administration of MB after institution of CPB for patients taking angiotensin-converting enzyme inhibitors increased MAP and SVR and reduced the need for vasopressors. Furthermore, serum lactate levels were lower in MB patients, suggesting more favorable tissue perfusion. PMID:16790616

  18. A sensitive resveratrol assay with a simple probe methylene blue by resonance light scattering technique

    NASA Astrophysics Data System (ADS)

    Xiang, Haiyan; Dai, Kaijin; Luo, Qizhi; Duan, Wenjun; Xie, Yang

    2011-01-01

    A novel resonance light scattering (RLS) method was developed for the determination of resveratrol based on the interaction between resveratrol and methylene blue (MB). It was found that at pH 8.69, the weak RLS intensity of MB was remarkably enhanced by the addition of trace amount of resveratrol with the maximum peak located at 385.0 nm. Under the optimum conditions, a good linear relationship between the enhanced RLS intensities and the concentrations of resveratrol was obtained over the range of 2.0-14.0 μg ml -1 with the detection limit (3 σ) of 0.63 μg ml -1. The results of the analysis of resveratrol in synthetic samples and human urine are satisfactory, which showed it may provide a more sensitive, convenient, rapid and reproducible method for the detection of resveratrol, especially in biological and pharmaceutical field. In this work, the characteristics of RLS, absorption and fluorescence spectra of the resveratrol-MB system, the influencing factors and the optimum conditions of the reaction were investigated.

  19. Guava (Psidium guajava) leaf powder: novel adsorbent for removal of methylene blue from aqueous solutions.

    PubMed

    Ponnusami, V; Vikram, S; Srivastava, S N

    2008-03-21

    Batch sorption experiments were carried out using a novel adsorbent, guava leaf powder (GLP), for the removal of methylene blue (MB) from aqueous solutions. Potential of GLP for adsorption of MB from aqueous solution was found to be excellent. Effects of process parameters pH, adsorbent dosage, concentration, particle size and temperature were studied. Temperature-concentration interaction effect on dye uptake was studied and a quadratic model was proposed to predict dye uptake in terms of concentration, time and temperature. The model conforms closely to the experimental data. The model was used to find optimum temperature and concentration that result in maximum dye uptake. Langmuir model represent the experimental data well. Maximum dye uptake was found to be 295mg/g, indicating that GLP can be used as an excellent low-cost adsorbent. Pseudo-first-order, pseudo-second order and intraparticle diffusion models were tested. From experimental data it was found that adsorption of MB onto GLP follow pseudo second order kinetics. External diffusion and intraparticle diffusion play roles in adsorption process. Free energy of adsorption (DeltaG degrees ), enthalpy change (DeltaH degrees ) and entropy change (DeltaS degrees ) were calculated to predict the nature of adsorption. Adsorption in packed bed was also evaluated.

  20. Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste.

    PubMed

    Tsai, Wen-Tien; Hsu, Hsin-Chieh; Su, Ting-Yi; Lin, Keng-Yu; Lin, Chien-Ming

    2008-06-15

    In the work, the beer brewery waste has been shown to be a low-cost adsorbent for the removal of basic dye from the aqueous solution as compared to its precursor (i.e., diatomite) based on its physical and chemical characterizations including surface area, pore volume, scanning electron microscopy (SEM), and non-mineral elemental analyses. The pore properties of this waste were significantly larger than those of its raw material, reflecting that the trapped organic matrices contained in the waste probably provided additional adsorption sites and/or adsorption area. The results of preliminary adsorption kinetics showed that the diatomite waste could be directly used as a potential adsorbent for removal of methylene blue on the basis of its adsorption-biosorption mechanisms. The adsorption parameters thus obtained from the pseudo-second-order model were in accordance with their pore properties. From the results of adsorption isotherm at 298 K and the applicability examinations in treating industrial wastewater containing basic dye, it was further found that the adsorption capacities of diatomite waste were superior to those of diatomite, which were also in good agreement with their corresponding physical properties. From the results mentioned above, it is feasible to utilize the food-processing waste for removing dye from the industrial dying wastewater.

  1. Biosorption of methylene blue from wastewater by an extraction residue of Salvia miltiorrhiza Bge.

    PubMed

    Zhao, Sunxiang; Zhou, Tongshui

    2016-11-01

    Efforts were made in this study to using an extraction residue of Salvia mitiorrziza Bge (SM), a widely utilized traditional Chinese medicine, as an effective biosorbent of methylene blue from polluted water. Batch experiments were carried out with original and chemical modification, particle size, dosage, solution pH, contact time, and initial concentration of the dye. Experimental data fit Langmuir isotherm and pseudo-second order kinetic best compared to other models applied in the study. Characterization of adsorption was determined by FT-IR, SEM and particle surface area measurement. The maximum monolayer biosorption capacity of raw SM is 100.0mg·g(-1). The citric acid and Na2CO3 modification can significantly enhance this value up to 161.29 and 178.57mg·g(-1), respectively. This investigation provides a novel approach for reutilizing the enormous quantity of Chinese herbal medicine wastes, which is significant since these dregs have brought out big environmental and heathy problems in the present China. PMID:27501030

  2. Designing metallic iron based water filters: Light from methylene blue discoloration.

    PubMed

    Btatkeu-K, B D; Tchatchueng, J B; Noubactep, C; Caré, S

    2016-01-15

    Available water filtration systems containing metallic iron (Fe(0) filters) are pragmatically designed. There is a lack of sound design criteria to exploit the full potential of Fe(0) filters. A science-based design relies on valuable information on processes within a Fe(0) filter, including chemical reactions, hydrodynamics and their relation to the performance of the filter. The aim of this study was to establish a simple method to evaluate the initial performance of Fe(0) filters. The differential adsorptive affinity of methylene blue (MB) onto sand and iron oxide is exploited to characterize the evolution of a Fe(0)/sand system using the pure sand system as operational reference. Five systems were investigated for more than 70 days: pure sand, pure Fe(0), Fe(0)/sand, Fe(0)/pumice and Fe(0)/sand/pumice. Individual systems were characterized by the extent of changes in pH value, iron breakthrough, MB breakthrough and hydraulic conductivity. Results showed that for MB discoloration (i) pure sand was the most efficient system, (ii) hybrid systems were more sustainable than the pure Fe(0) system, and (iii) the pores of used pumice are poorly interconnected. Characterizing the initial reactivity of Fe(0) filters using MB discoloration has introduced a powerful tool for the exploration of various aspects of filter design.

  3. Aggregation of methylene blue in frozen aqueous solutions studied by absorption spectroscopy.

    PubMed

    Heger, Dominik; Jirkovský, Jaromír; Klán, Petr

    2005-08-01

    The paper presents a qualitative as well as quantitative spectroscopic study of methylene blue (MB) aggregation that occurs upon freezing the aqueous solutions over a wide concentration range. The Gaussian curve analysis and the multivariate curve resolution-alternating least squares method were used to determine the number and concentration of chemical species responsible for the overlaying absorption visible spectra measured. The results show the extent of aggregation for the concentrations above 10(-7) mol L(-1), being dependent on the freezing rate and the initial concentration. While the local concentration of MB at the grain boundaries of polycrystalline ice increased by approximately 3 orders of magnitude upon fast freezing at 77 K compared to the liquid phase, the concentration raised at least by 6 orders of magnitude upon slow freezing at 243 K. Since enhancement of the local concentration of solutes plays an important role in (photo)chemical transformations in solid aqueous media, this work helps to understand how the initial conditions control the course of the process. The results are relevant in other interdisciplinary fields, such as environmental chemistry, cosmochemistry, or geochemistry.

  4. Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes.

    PubMed

    Szlachta, M; Wójtowicz, P

    2013-01-01

    This study was conducted to determine the adsorption removal of dyes by powdered activated carbon (PAC, Norit) and multi-walled carbon nanotubes (MWCNTs, Chinese Academy of Science) from an aqueous solution. Methylene blue (MB) and Congo red (CR) were selected as model compounds. The adsorbents tested have a high surface area (PAC 835 m(2)/g, MWCNTs 358 m(2)/g) and a well-developed porous structure which enabled the effective treatment of dye-contaminated waters and wastewaters. To evaluate the capacity of PAC and MWCNTs to adsorb dyes, a series of batch adsorption experiments was performed. Both adsorbents exhibited a high adsorptive capacity for MB and CR, and equilibrium data fitted well with the Langmuir model, with the maximum adsorption capacity up to 400 mg/g for MB and 500 mg/g for CR. The separation factor, RL, revealed the favorable nature of the adsorption process under experimental conditions. The kinetics of adsorption was studied at various initial dye concentrations and solution temperatures. The pseudo-second-order model was used for determining the adsorption kinetics of MB and CR. The data obtained show that adsorption of both dyes was rapid in the initial stage and followed by slower processing to reach the plateau. The uptake of dyes increased with contact time, irrespective of their initial concentration and solution temperature. However, changes in the solution temperature did not significantly influence dye removal. PMID:24292474

  5. Adsorption of methylene blue on low-cost adsorbents: a review.

    PubMed

    Rafatullah, Mohd; Sulaiman, Othman; Hashim, Rokiah; Ahmad, Anees

    2010-05-15

    In this article, the use of low-cost adsorbents for the removal of methylene blue (MB) from solution has been reviewed. Adsorption techniques are widely used to remove certain classes of pollutants from waters, especially those which are not easily biodegradable. The removal of MB, as a pollutant, from waste waters of textile, paper, printing and other industries has been addressed by the researchers. Currently, a combination of biological treatment and adsorption on activated carbon is becoming more common for removal of dyes from wastewater. Although commercial activated carbon is a preferred adsorbent for color removal, its widespread use is restricted due to its relatively high cost which led to the researches on alternative non-conventional and low-cost adsorbents. The purpose of this review article is to organize the scattered available information on various aspects on a wide range of potentially low-cost adsorbents for MB removal. These include agricultural wastes, industrial solid wastes, biomass, clays minerals and zeolites. Agricultural waste materials being highly efficient, low cost and renewable source of biomass can be exploited for MB remediation. It is evident from a literature survey of about 185 recently published papers that low-cost adsorbents have demonstrated outstanding removal capabilities for MB. PMID:20044207

  6. Removal of Congo Red and Methylene Blue from Aqueous Solutions by Vermicompost-Derived Biochars.

    PubMed

    Yang, Gang; Wu, Lin; Xian, Qiming; Shen, Fei; Wu, Jun; Zhang, Yanzong

    2016-01-01

    Biochars, produced by pyrolyzing vermicompost at 300, 500, and 700°C were characterized and their ability to adsorb the dyes Congo red (CR) and Methylene blue (MB) in an aqueous solution was investigated. The physical and chemical properties of biochars varied significantly based on the pyrolysis temperatures. Analysis of the data revealed that the aromaticity, polarity, specific surface area, pH, and ash content of the biochars increased gradually with the increase in pyrolysis temperature, while the cation exchange capacity, and carbon, hydrogen, nitrogen and oxygen contents decreased. The adsorption kinetics of CR and MB were described by pseudo-second-order kinetic models. Both of Langmuir and Temkin model could be employed to describe the adsorption behaviors of CR and MB by these biochars. The biochars generated at higher pyrolysis temperature displayed higher CR adsorption capacities and lower MB adsorption capacities than those compared with the biochars generated at lower pyrolysis temperatures. The biochar generated at the higher pyrolytic temperature displayed the higher ability to adsorb CR owing to its promoted aromaticity, and the cation exchange is the key factor that positively affects adsorption of MB.

  7. Porphyrin-Alkaline Earth MOFs with the Highest Adsorption Capacity for Methylene Blue.

    PubMed

    Hou, Yuxia; Sun, Junshan; Zhang, Daopeng; Qi, Dongdong; Jiang, Jianzhuang

    2016-04-25

    A series of four porphyrin-alkaline earth metal- organic frameworks [Mg(HDCPP)2 (DMF)2 ]n ⋅(H2 O)7 n (1), [Ca(HDCPP)2 (H2 O)2 ]n (DMF)1.5 n (2), [Sr(DCPP)(H2 O)(DMA)]n (3), and [Ba(DCPP)(H2 O)(DMA)]n (4) was isolated for the first time from solvothermal reaction between metal-free 5,15-di(4- carboxyphenyl)porphyrin (H2 DCPP) and alkaline earth ions. Single-crystal X-ray diffraction analysis reveals the 2D and 3D supramolecular network with periodic nanosized porosity for 1/2 and 3/4, respectively. The whole series of MOFs, in particular, compounds 1 and 2 with intrinsic low molecular formula weight, exhibit superior adsorption performance for methylene blue (MB) with excellent capture capacity as represented by the thus far highest adsorption amount of 952 mg g(-1) for 2 and good selectivity, opening a new way for the potential application of the main group metal-based MOFs. PMID:27002679

  8. Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue.

    PubMed

    Yan, Han; Tao, Xue; Yang, Zhen; Li, Kun; Yang, Hu; Li, Aimin; Cheng, Rongshi

    2014-03-15

    In this current work, a series of graphene oxides (GO) with different oxidation degrees (OD) was prepared using Hummer method. Fundamental adsorption behavior of the GO series for removal of methylene blue (MB) from aqueous solutions has been studied. The GO series shows an overall fast and pH-independent MB adsorption, which is even capable of removing trace levels of dye completely from very dilute solutions. Furthermore, the effects of the oxidation degree (OD) on MB adsorption behavior have been investigated systematically, indicating that the dye uptakes of GO exponentially increase with the increase of OD. Further study on the adsorption mechanism shows that adsorption behavior of GO would change from a Freundlich-type to a Langmuir-type adsorption as the OD increases. It may be due to both the enhanced exfoliation degree of the carbon planes in graphite caused by oxidation and the production of more active adsorption sites. The binding features of the MB loaded GO gradually change from MB molecule parallel stacking on graphite plane through hydrophobic π-π interaction to vertical standing via electrostatic interaction with increasing OD, resulting in a significant improvement of MB uptakes. In addition, the adsorption capacity of the regenerated GO has little loss until four cycles. PMID:24491443

  9. Designing metallic iron based water filters: Light from methylene blue discoloration.

    PubMed

    Btatkeu-K, B D; Tchatchueng, J B; Noubactep, C; Caré, S

    2016-01-15

    Available water filtration systems containing metallic iron (Fe(0) filters) are pragmatically designed. There is a lack of sound design criteria to exploit the full potential of Fe(0) filters. A science-based design relies on valuable information on processes within a Fe(0) filter, including chemical reactions, hydrodynamics and their relation to the performance of the filter. The aim of this study was to establish a simple method to evaluate the initial performance of Fe(0) filters. The differential adsorptive affinity of methylene blue (MB) onto sand and iron oxide is exploited to characterize the evolution of a Fe(0)/sand system using the pure sand system as operational reference. Five systems were investigated for more than 70 days: pure sand, pure Fe(0), Fe(0)/sand, Fe(0)/pumice and Fe(0)/sand/pumice. Individual systems were characterized by the extent of changes in pH value, iron breakthrough, MB breakthrough and hydraulic conductivity. Results showed that for MB discoloration (i) pure sand was the most efficient system, (ii) hybrid systems were more sustainable than the pure Fe(0) system, and (iii) the pores of used pumice are poorly interconnected. Characterizing the initial reactivity of Fe(0) filters using MB discoloration has introduced a powerful tool for the exploration of various aspects of filter design. PMID:26518123

  10. Methylene blue biosorption by pericarp of corn, alfalfa, and agave bagasse wastes.

    PubMed

    Rosas-Castor, José M; Garza-González, María T; García-Reyes, Refugio B; Soto-Regalado, Eduardo; Cerino-Córdova, Felipe J; García-González, Alcione; Loredo-Medrano, José A

    2014-01-01

    The presence of dyes in effluent is a matter of concern due to their toxicologic and aesthetical effects. In this research, locally available agro-industrial wastes (Zea mays pericarp, ZMP; Agave tequilana bagasse, ATB; and Medicago sativa waste, MSW) were used as alternative low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. The adsorbents were characterized physically and chemically by Fourier transform infrared, scanning electron microscopy, potentiometric titrations, and N2 physisorption. MB adsorption experiments were carried out in batch systems and experimental data were used to calculate the adsorption isotherm model parameters (Langmuir, Freundlich, and Temkin) and the adsorption kinetic model parameters (pseudo-first- and pseudo-second-order models). MB-loaded biosorbents were desorbed with deionized water, ethanol (10% and 50% v/v), hydrochloric acid (0.01 and 0.05 N), and sodium hydroxide (0.1 N) at room temperature, and the best eluent was used in various adsorption-desorption cycles. The selected agricultural wastes can be considered as promising adsorbents for dye uptake from water since they exhibit considerable MB adsorption capacity (MSW 202.6 mg g(-1), ATB 156.2mg g(-1), and ZMP 110.9mg g(-1)), but it is lower than that reported for activated carbon; however, the biosorbents show higher adsorption rate than powdered activated carbon. Furthermore, the adsorbents can be economically regenerated with HCl solutions and reused for seven adsorption-desorption cycles.

  11. Methylene Blue Modulates β-Secretase, Reverses Cerebral Amyloidosis, and Improves Cognition in Transgenic Mice*

    PubMed Central

    Mori, Takashi; Koyama, Naoki; Segawa, Tatsuya; Maeda, Masahiro; Maruyama, Nobuhiro; Kinoshita, Noriaki; Hou, Huayan; Tan, Jun; Town, Terrence

    2014-01-01

    Amyloid precursor protein (APP) proteolysis is required for production of amyloid-β (Aβ) peptides that comprise β-amyloid plaques in the brains of patients with Alzheimer disease (AD). Here, we tested whether the experimental agent methylene blue (MB), used for treatment of methemoglobinemia, might improve AD-like pathology and behavioral deficits. We orally administered MB to the aged transgenic PSAPP mouse model of cerebral amyloidosis and evaluated cognitive function and cerebral amyloid pathology. Beginning at 15 months of age, animals were gavaged with MB (3 mg/kg) or vehicle once daily for 3 months. MB treatment significantly prevented transgene-associated behavioral impairment, including hyperactivity, decreased object recognition, and defective spatial working and reference memory, but it did not alter nontransgenic mouse behavior. Moreover, brain parenchymal and cerebral vascular β-amyloid deposits as well as levels of various Aβ species, including oligomers, were mitigated in MB-treated PSAPP mice. These effects occurred with inhibition of amyloidogenic APP proteolysis. Specifically, β-carboxyl-terminal APP fragment and β-site APP cleaving enzyme 1 protein expression and activity were attenuated. Additionally, treatment of Chinese hamster ovary cells overexpressing human wild-type APP with MB significantly decreased Aβ production and amyloidogenic APP proteolysis. These results underscore the potential for oral MB treatment against AD-related cerebral amyloidosis by modulating the amyloidogenic pathway. PMID:25157105

  12. Preparation and characterization of methylene blue nanoparticles for Alzheimer's disease and other tauopathies.

    PubMed

    Jinwal, Umesh K; Groshev, Anastasia; Zhang, Juan; Grover, Aditya; Sutariya, Vijaykumar B

    2014-01-01

    Methylene blue (MB) has been shown to slow down the progression of the Alzheimer's disease (AD) and other tauopathies; however distribution of MB into the brain is limited due its high hydrophilicity. In this study, we aimed to prepare novel hydrophobic glutathione coated PLGA nanoparticles to improve bioavailability of MB in the brain. Glutathione coated poly-(lactide-co-glycolide) (PLGA-b-PEG) nanoparticles (NPs) were prepared and tested in two different cell culture models of AD expressing microtubule associated protein tau (tau). The NPs showed a particle size averaging 136.5±4.4nm, which is suitable for the blood brain barrier (BBB) permeation. The in vitro release profile of the NPs exhibited no initial burst release and showed sustained drug release for up to 144 hours. Interestingly, treatment of newly formulated MB-NPs showed a potent reduction in both endogenous and over expressed tau protein levels in human neuroblastoma SHSY-5Y cells expressing endogenous tau and transfected HeLa cells over-expressing tau protein, respectively. Furthermore, in vitro BBB Transwell™ study showed significantly higher permeation of MB-NP compared to the MB solution through the co culture of rat brain endothelial 4 (RBE4) and C6 astrocytoma cells (p<0.05). The proposed MB loaded nanoparticles could provide a more effective treatment option for AD and many other related disorders.

  13. Methylene blue photodynamic therapy in rats' wound healing: 21 days follow-up

    NASA Astrophysics Data System (ADS)

    Carneiro, Vanda Sanderana Macêdo; Catao, Maria Helena Chaves de Vasconcelos; Menezes, Rebeca Ferraz; Araújo, Natália Costa; Gerbi, Marleny Elizabeth Martinez

    2015-06-01

    The experimental evaluated the photodynamic therapy (PDT) in wound healing. It used 60 male rats, making two circular wounds at each animal. They were treated at 48hs intervals, with methylene blue (MB), low level laser treatment (LLLT) or both, thus resulting in PDT. The wounds were observed 01, 03, 07, 14 and 21 days after and then processed and subjected to HE staining to analyze granulation tissue, necrosis, epithelialization and collagen. After day 1, wounds treated with MB showed necrosis less intense than other groups, and the PDT group showed more intense granulation tissue. At day 3, reepithelialization was absent for half of injuries in the PDT group, and this group was also with lower collagen. However, at day 7, this same group presented reepithelialization more advanced than control group, which did not happen with those treated with MB or LLLT (p = 0.015). The results allow us to conclude that PDT difficulted reepithelization at 7th day and interfered in standard healing. However, when used separately, MB and LLLT interfered significantly compared to the control group, which did not happened to the PDT group. There was no significant difference between the treatment groups in other analysed times.

  14. New Twist on an Old Favorite: Gentian Violet and Methylene Blue Antibacterial Foams

    PubMed Central

    Edwards, Karen

    2016-01-01

    Significance: Absorptive antibacterial dressings that assist in controlling bioburden without risks of cytotoxicity or residual absorption can be effectively used for prolonged periods throughout the wound healing continuum. Recent Advances: Until recently, gentian violet and methylene blue (GV/MB) antibacterial dressings have been commercially available only in polyvinyl alcohol (PVA) foam; polyurethane (PU) foam bonded with GV and MB with thin film backing is now commercially available. GV/MB PU foam does not require hydration or a necessary secondary dressing. GV/MB PVA and PU foam dressings were recently granted FDA clearance as antibacterial dressings, as opposed to bacteriostatic dressings as previously classified. Within the class of antibacterial dressings, GV/MB foam dressings are of lower cost alternative to silver- or iodine-based antibacterial dressings with no risk of absorption of any of the foam components into the tissues. Critical Issues: Control of wound bioburden levels by antibacterial agents and absorption of excess exudate are crucial in preventing infections that drastically increase the price of wound care. Use of GV/MB dressings may improve wound healing outcomes and decrease overall costs through super absorption, promotion of autolytic debridement, bioburden reduction, ease of use, and decreased dressing change frequency. Future Directions: Evolution in resistant bacterial strains will drive continual changes in advanced wound care products. Demand will increase for economically priced, versatile wound care dressings that assist in debridement, maintain a moist wound environment, absorb and trap bacterial debris, and decrease dressing change frequency. PMID:26858911

  15. Facile fabrication of magnetic carboxymethyl starch/poly(vinyl alcohol) composite gel for methylene blue removal.

    PubMed

    Gong, Guisheng; Zhang, Faai; Cheng, Zehong; Zhou, Li

    2015-11-01

    This study presents a simple method to fabricate magnetic carboxymethyl starch/poly(vinyl alcohol) (mCMS/PVA) composite gel. The obtained mCMS/PVA was characterized by Fourier transform infrared (FTIR) spectra, vibrating-sample magnetometer (VSM) and scanning electron microscopy (SEM) measurements. The application of mCMS/PVA as an adsorbent for removal of cationic methylene blue (MB) dye from water was investigated. Benefiting from the combined merits of carboxymethyl starch and magnetic gel, the mCMS/PVA simultaneously exhibited excellent adsorption property toward MB and convenient magnetic separation capability. The effects of initial dye concentration, contact time, pH and ionic strength on the adsorption performance of mCMS/PVA adsorbent were investigated systematically. The adsorption process of mCMS/PVA for MB fitted pseudo-second-order model and Freundlich isotherm. Moreover, desorption experiments revealed that the mCMS/PVA adsorbent could be well regenerated in ethanol solution without obvious compromise of removal efficiency even after eight cycles of desorption/adsorption. Considering the facile fabrication process and robust adsorption performance, the mCMS/PVA composite gel has great potential as a low cost adsorbent for environmental decontamination.

  16. Adsorption of Methylene Blue from Aqueous Solutions by Polyvinyl Alcohol/Graphene Oxide Composites.

    PubMed

    Yang, Xiaoxia; Li, Yanhui; Du, Qiuju; Wang, Xiaohui; Hu, Song; Chen, Long; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua

    2016-02-01

    As a new member of the carbon family, graphene oxide (GO) has shown excellent adsorption ability to micro-pollutants in aqueous solutions. However, its tiny size makes it difficult to be removed from aqueous solutions using the conventional separation methods, which limits its practical application in the environmental protection. In this study, polyvinyl alcohol (PVA) was used as carrier immobilizing GO, and novel PVA/GO composites were prepared. The morphology and physicochemical properties of the composites were characterized by SEM, FTIR and TGA analysis. The adsorption properties of methylene blue (MB) onto the composites were studied through investigating the experimental parameters such as solution pH, adsorbent dosage, contact time and temperature. The isotherm data were analyzed using the Langmuir, Freundlich and Dubinin-Radushkevich models. The calculated maximum adsorption capacity reached 476.2 mg/g at 50% GO content. The pseudo-first-order kinetic, pseudo-second-order kinetic and intra-particle diffusion models were used to explore the adsorption kinetics. The results showed that the dynamic data were fitted to the pseudo-second-order kinetic model. PMID:27433669

  17. Sorption of methylene blue on treated agricultural adsorbents: equilibrium and kinetic studies

    NASA Astrophysics Data System (ADS)

    Tiwari, D. P.; Singh, S. K.; Sharma, Neetu

    2015-03-01

    Agricultural adsorbents are reported to have a remarkable performance for adsorption of dyes. In the present study, formaldehyde and sulphuric acid treated two agricultural adsorbents; potato peel and neem bark are used to adsorb methylene blue. On the whole, the acid-treated adsorbents are investigated to have high sorption efficiency compared to HCHO treated adsorbents. The percentage removal efficiency of H2SO4 treated potato peel (APP) increases considerably high from 75 to 100 % with increase in adsorbent dose, whereas the removal efficiency of H2SO4 treated neem bark (ANB) is found to be 98 % after adding the first dose only. The monolayer sorption behaviour of HCHO treated potato peel (PP) and APP is well defined by Langmuir, whereas the chemisorptions behaviour of HCHO treated neem bark (NB) and ANB is suggested by Temkin's isotherm model. The maximum adsorption capacity measured is highest in ANB followed by NB, PP and APP with the values of 1000, 90, 47.62 and 40.0 mg/g, respectively. The pseudo-second-order kinetic model fitted well with the observed data of all the four adsorbents. The results obtained reveal that NB and ANB both are good adsorbents compared to PP and APP.

  18. Effects of ionic strength on the antimicrobial photodynamic efficiency of methylene blue.

    PubMed

    Núñez, Silvia Cristina; Garcez, Aguinaldo Silva; Kato, Ilka Tiemy; Yoshimura, Tania Mateus; Gomes, Laércio; Baptista, Maurício Silva; Ribeiro, Martha Simões

    2014-03-01

    Antimicrobial photodynamic therapy (APDT) may become a useful clinical tool to treat microbial infections, and methylene blue (MB) is a well-known photosensitizer constantly employed in APDT studies, and although MB presents good efficiency in antimicrobial studies, some of the MB photochemical characteristics still have to be evaluated in terms of APDT. This work aimed to evaluate the role of MB solvent's ionic strength regarding dimerization, photochemistry, and photodynamic antimicrobial efficiency. Microbiological survival fraction assays on Escherichia coli were employed to verify the solution's influence on MB antimicrobial activity. MB was evaluated in deionized water and 0.9% saline solution through optical absorption spectroscopy; the solutions were also analysed via dissolved oxygen availability and reactive oxygen species (ROS) production. Our results show that bacterial reduction was increased in deionized water. Also we demonstrated that saline solution presents less oxygen availability than water, the dimer/monomer ratio for MB in saline is smaller than in water and MB presented a higher production of ROS in water than in 0.9% saline. Together, our results indicate the importance of the ionic strength in the photodynamic effectiveness and point out that this variable must be taken into account to design antimicrobial studies and to evaluate similar studies that might present conflicting results.

  19. Effects of methylene blue in acute lung injury induced by oleic acid in rats

    PubMed Central

    Cassiano Silveira, Ana Paula; Vento, Daniella Alves; Albuquerque, Agnes Afrodite Sumarelli; Celotto, Andrea Carla; Tefé-Silva, Cristiane; Ramos, Simone Gusmão; Rubens de Nadai, Tales; Rodrigues, Alfredo José; Poli-Neto, Omero Benedicto

    2016-01-01

    Background In acute lung injury (ALI), rupture of the alveolar-capillary barrier determines the protein-rich fluid influx into alveolar spaces. Previous studies have reported that methylene blue (MB) attenuates such injuries. This investigation was carried out to study the MB effects in pulmonary capillary permeability. Methods Wistar rats were divided into five groups: (I) Sham: saline bolus; (II) MB, MB infusion for 2 h; (III) oleic acid (OA), OA bolus; (IV) MB/OA, MB infusion for 2 h, and at 5 min after from the beginning, concurrently with an OA bolus; and (V) OA/MB, OA bolus, and after 2 h, MB infusion for 2 h. After 4 h, blood, bronchoalveolar lavage (BAL), and lung tissue were collected from all groups for analysis of plasma and tissue nitric oxide, calculation of the wet weight to dry weight ratio (WW/DW), and histological examination of lung tissue. Statistical analysis was performed using nonparametric test. Results Although favourable trends have been observed for permeability improvement parameters (WW/WD and protein), the results were not statistically significant. However, histological analysis of lung tissue showed reduced lesion areas in both pre- and post-treatment groups. Conclusions The data collected using this experimental model was favourable only through macroscopic and histological analysis. These observations are valid for both MB infusions before or after induction of ALI. PMID:26855944

  20. Heterogeneous photodegradation of methylene blue with iron and tea or coffee polyphenols in aqueous solutions.

    PubMed

    Morikawa, Claudio Kendi; Shinohara, Makoto

    2016-01-01

    Recently, we developed two new Fenton catalysts using iron (Fe) and spent tea leaves or coffee grounds as raw material. In this study, Fe-to-tea or Fe-to-coffee polyphenol complexes were successfully tested as heterogeneous photo-Fenton catalysts. The photodegradation efficiency of methylene blue solutions with Fe-to-polyphenol complexes was higher than that of homogeneous iron salts in the photo-Fenton process. Furthermore, the tested Fe-to-polyphenol complexes could be reused by simply adding H2O2 to the solutions. After three sequential additions of H2O2, the conventional catalysts FeCl2·4H2O and FeCl3 removed only 16.6% and 53.6% of the dye, while the catalysts made using spent coffee grounds and tea leaves removed 94.4% and 96.0% of the dye, respectively. These results showed that the complexes formed between Fe and chlorogenic acid, caffeic acid, gallic acid and catechin, which are the main polyphenols in tea and coffee, can be used to improve the photo-Fenton process. PMID:27120642

  1. Twenty years of vasoplegic syndrome treatment in heart surgery. Methylene blue revised

    PubMed Central

    Evora, Paulo Roberto Barbosa; Alves, Lafaiete; Ferreira, Cesar Augusto; Menardi, Antônio Carlos; Bassetto, Solange; Rodrigues, Alfredo José; Scorzoni, Adilson; Vicente, Walter Vilella de Andrade

    2015-01-01

    Objective This study was conducted to reassess the concepts established over the past 20 years, in particular in the last 5 years, about the use of methylene blue in the treatment of vasoplegic syndrome in cardiac surgery. Methods A wide literature review was carried out using the data extracted from: MEDLINE, SCOPUS and ISI WEB OF SCIENCE. Results The reassessed and reaffirmed concepts were 1) MB is safe in the recommended doses (the lethal dose is 40 mg/kg); 2) MB does not cause endothelial dysfunction; 3) The MB effect appears in cases of NO up-regulation; 4) MB is not a vasoconstrictor, by blocking the cGMP pathway it releases the cAMP pathway, facilitating the norepinephrine vasoconstrictor effect; 5) The most used dosage is 2 mg/kg as IV bolus, followed by the same continuous infusion because plasma concentrations sharply decrease in the first 40 minutes; and 6) There is a possible "window of opportunity" for MB's effectiveness. In the last five years, major challenges were: 1) Observations about side effects; 2) The need for prophylactic and therapeutic guidelines, and; 3) The need for the establishment of the MB therapeutic window in humans. Conclusion MB action to treat vasoplegic syndrome is time-dependent. Therefore, the great challenge is the need, for the establishment the MB therapeutic window in humans. This would be the first step towards a systematic guideline to be followed by possible multicenter studies. PMID:25859872

  2. [Adsorption behavior of copper ion and methylene blue on citric acid- esterified wheat straw].

    PubMed

    Sun, Jin; Zhong, Ke-Ding; Feng, Min; Liu, Xing-Yan; Gong, Ren-Min

    2008-03-01

    A cationic adsorbent with carboxyl groups derived from citric acid- esterified wheat straw (EWS) was prepared by the method of solid phase preparation, and a batch experiment was conducted to study the adsorption behaviors of Cu (II) and methylene blue (MB) in aqueous solution on the EWS under conditions of different initial pH, adsorbent dosage, adsorbate concentration, and contact time. The results showed that the maximum adsorption of Cu (II) and MB was obtained when the initial solution pH was > or = 4.0. 96% of Cu (II) in 100 mg x L(-1) Cu solution and 99% of MB in 250 mg x L(-1) dye solution could be removed by > or = 2.0 g x L(-1) of EWS. The adsorption of Cu (II) and MB fitted the Langmuir sorption isothermal model. The maximum removal capacity (Qm) of EWS was 79.37 mg x g(-1) for Cu (II) and 312.50 mg x g(-1) for MB, and the adsorption equilibrium of Cu (II) and MB was reached within 75 min and 5 h, respectively. The adsorption processes of Cu (II) and MB could be described by pseudo-first order and pseudo-second order kinetic functions, respectively.

  3. Photosensitization of Aggregatibacter actinomycetemcomitans with methylene blue: a microbiological and spectroscopic study

    NASA Astrophysics Data System (ADS)

    Yamada Júnior, Aécio M.; Prates, Renato A.; Cai, Silvana; Ribeiro, Martha S.

    2008-03-01

    The aim of this study was to determinate the efficiency of methylene blue (MB) to kill cultures of Aggregatibacter actinomycetemcomitans under red light and to investigate MB photobleaching by optical absorption spectroscopy. Bacteria were diluted in aqueous solution, putted in glass tubes and distributed in 5 groups: (L-MB-) control group; (L+MB-) laser alone by 5min; (L-MB+) MB alone through 5min; (3L+MB+) MB+laser 3min; (5L+MB+) MB+laser 5min. Laser parameters were P=30mW, λ=660nm, E=9J in 5min and E=5.4J in 3min. The samples were diluted and bacterial colonies were counted and converted into colony forming units (CFU). Absorption spectra of the MB-stained bacterial suspension and photosensitized bacterial suspension were obtained. Groups L-MB-, L+MB-, and L-MB+ did not show a decrease in CFU/mL. L+MB+ groups showed a significant decrease in CFU/mL but no statistically significant differences were observed between 3min and 5min. Spectroscopy showed that MB is photodegraded after irradiation and that dimer species are more notably consumed than monomeric species. These results suggest that MB is a suitable photosensitizer to reduce A. actinomycetemcomitans, and that 3min of irradiation are enough to produce a significant effect. Due to the spectral changes observed on MB solution after irradiation a type I mechanism may be involved.

  4. Sugarcane bagasse for the removal of erythrosin B and methylene blue from aqueous waste

    NASA Astrophysics Data System (ADS)

    Sharma, Pankaj; Kaur, Harleen

    2011-12-01

    Present study explores the potentiality of locally available cellulose, hemicellulose and lignin-rich agricultural by-product sugarcane bagasse (SB) for the removal of erythrosin B (EB) and methylene blue (MB) from aqueous waste. The SB has been characterized by Fourier transform infrared and scanning electron microscopy analytical techniques. Batch experiments have been carried out to determine the influence of parameters like initial dye concentration, pH of the medium, contact time between the adsorbate and adsorbent, weight of adsorbent and system temperature on the removal of EB and MB. Optimum conditions for adsorption are found to be pH 9, temperature 308 K and an equilibration time of 1 h. Under these conditions equilibrium isotherms have been analysed by Langmuir and Freundlich isotherm equations. Based on the Langmuir adsorption isotherm model, the predicted maximum monolayer adsorption capacities of SB for EB and MB are found to be 500 mg g-1 (at 328 K) and 1,000 mg g-1 (at 308 K), respectively. The separation factor reveals the favourable nature of the isotherm for the studied dyes—SB system. The thermodynamic study indicates that the adsorptions of dyes are spontaneous and endothermic process. High temperatures favour EB adsorption whereas optimum temperature for MB adsorption is 318 K.

  5. Use of methylene blue as a simulant for the physical properties of cocaine HCl and heroin HCl

    NASA Astrophysics Data System (ADS)

    Patrick, Julie C.; Orzechowska, Grazyna E.; Poziomek, Edward J.

    1997-02-01

    Technological challenges in the development and testing of illicit narcotics include assuring safety of researchers and operations personnel from drug exposure, assessing the efficiency of sampling and sample handling, checking for artifacts introduced by field procedures, and maintaining quality control/quality assurance. The dye methylene blue was chosen as a simulant for cocaine HCl and heroin HCl. The similarities include the presence of fused ring systems, molecular weights over 300 g/mol, and melting points between 200 and 300 degrees C. A significant difference is that methylene blue has a much lower solubility in water than cocaine HCl and heroin HCl. Experiments have been conducted to successfully increase the solubility of the simulant to match those of cocaine HCl and heroin HCl by adding solidum methyl sulfate.

  6. Methylene blue adsorption onto swede rape straw (Brassica napus L.) modified by tartaric acid: equilibrium, kinetic and adsorption mechanisms.

    PubMed

    Feng, Yanfang; Zhou, Hui; Liu, Guohua; Qiao, Jun; Wang, Jinhua; Lu, Haiying; Yang, Linzhang; Wu, Yonghong

    2012-12-01

    The aim of this study was to develop a promising and competitive bioadsorbent with the abundant of source, low price and environmentally friendly characters to remove cationic dye from wastewater. The swede rape straw (Brassica napus L.) modified by tartaric acid (SRSTA) was prepared, characterized and used to remove methylene blue (MB) from aqueous solution at varied operational conditions (including MB initial concentrations, adsorbent dose, etc.). Results demonstrated that the equilibrium data was well fitted by Langmuir isotherm model. The maximum MB adsorption capacity of SRSTA was 246.4 mg g(-1), which was comparable to the results of some previous studied activated carbons. The higher dye adsorption capacity could be attributed to the presence of more functional groups such as carboxyl group on the surface of SRSTA. The adsorption mechanism was also discussed. The results indicate that SRSTA is a promising and valuable absorbent to remove methylene blue from wastewater.

  7. Adsorption of methylene blue on raw and MTZ/imogolite hybrid surfaces: effect of concentration and calorimetric investigation.

    PubMed

    Guerra, Denis L; Batista, Adriano C; Viana, Rúbia R; Airoldi, Claudio

    2010-11-15

    The synthetic imogolite sample was used for organofunctionalization process with 2-mercaptothiazoline (MTZ). The compound 2-mercaptothiazoline was anchored onto imogolite surface by heterogeneous route. Due to the increment of basic centers attached to the pendant chains the dye adsorption capability of the final chelating material, was found to be higher than is precursor. The ability of these materials to remove methylene blue from aqueous solution was followed by a series of adsorption isotherms at room temperature and pH 4.0. The maximum number of moles adsorbed was determined to be 40.32×10(-2) and 65.13×10(-2) mmol g(-1) for IMO and IMO(MTZ), respectively. The energetic effects caused by dye cations adsorption were determined through calorimetric titrations. Thermodynamics indicated the existence of favorable conditions for such methylene blue-nitrogen and sulfur interactions.

  8. One-pot preparation of superparamagnetic attapulgite/Fe3O4/polydopamine nanocomposites for adsorption of methylene blue

    NASA Astrophysics Data System (ADS)

    Mu, Bin; Kang, Yuru; Zheng, Maosong; Wang, Aiqin

    2016-05-01

    Superparamagnetic attapulgite/Fe3O4/polydopamine nanocomposites have been facilely prepared by a one-pot process without the nitrogen protection, in which Fe(III) was served as both of the oxidant for dopamine and the precursor of Fe3O4 in the presence of attapulgite. The introduction of attapulgite can effectively induce the uniform encapsulation of polydopamine and Fe3O4 nanoparticles on the surface of attapulgite, preventing from the formation of the free aggregates of Fe3O4 nanoparticles. The as-prepared APT/Fe3O4/PANI nanocomposites can be used as an adsorbent for the removal of methylene blue, and the adsorption ratio toward 100 ppm of methylene blue could reach 95.8%.

  9. Simultaneous adsorption of methyl red and methylene blue onto biochar and an equilibrium modeling at high concentration.

    PubMed

    Ding, Guanyu; Wang, Buyun; Chen, Lingyu; Zhao, Shuangjiao

    2016-11-01

    Methyl red, methylene blue and biochar were used to investigate simultaneous adsorption of dyes onto low-cost adsorbent at different concentrations combinations. Langmuir mixed model could describe the adsorption well at low concentrations. However, it could not describe the adsorption anymore when concentrations of methyl red and methylene blue were higher than 255 and 300 mg L(-1) respectively with 0.5 g L(-1) biochar loading. A new model on the interaction among adsorbed adsorbates at equilibrium was developed. It could describe the adsorption at high concentrations well. According to the experimental results, interaction among dyes molecules would replace the competition onto adsorbent to be the main factor influencing adsorption when amount of adsorbed adsorbates were higher than those required to form a monolayer on all the adsorbing sites of adsorbent. The model was further verified by adsorption with other solute such as glucose or NaCl in solution.

  10. Studies on the ion-association of methylene blue and salicylic acid in neat and mixed binary solvents

    NASA Astrophysics Data System (ADS)

    Basu, Soumen; Ghosh, Sujit Kumar; Kundu, Subrata; Nath, Sudip; Panigrahi, Sudipa; Praharaj, Snigdhamayee; Pal, Tarasankar

    2005-05-01

    Thiazine dye, methylene blue forms 1:1 ion-associate with salicylic acid in aqueous phase and the ion-associate can be extracted in a series of non-polar non-coordinating solvent systems. The influence of different parameters on the process of ion-association has been studied. The suitability of a number of phenolic precursors for the formation of ion-associate with methylene blue has been tested. Charge-transfer absorption band of the dye molecules in relation to ion-pair has been followed in a sequence of neat and mixed binary solvents and the dependence of the absorption maxima has been found to correlate well with the solvent polarity.

  11. Rapid inactivation of HIV-1 in single donor preparations of human fresh frozen plasma by methylene blue/light treatment.

    PubMed

    Lambrecht, B; Norley, S G; Kurth, R; Mohr, H

    1994-09-01

    Human fresh frozen plasma (FFP) was spiked with highly titered HIV-1 and illuminated with visible light in the presence of 1 microM of the photoactive dye methylene blue (MB). As shown by titration on MT-4 cells, the infectivity of the virus containing plasma was rapidly lost during illumination: after 5 min the infective titer was reduced by 4.3 and after 10 min by at least 6.32 log10, i.e. it was below the detection limit of the assay applied. Methylene blue without illumination and illumination alone had only a marginal effect on HIV-1 infectivity. Thus our data indicate that the MB/light treatment of FFP is an effective method to eliminate the risk of HIV-1 infection through use of the product. This is especially important for those cases in which the plasma is collected during the 'window period' between infection of the donor and the subsequent seroconversion.

  12. Simultaneous adsorption of methyl red and methylene blue onto biochar and an equilibrium modeling at high concentration.

    PubMed

    Ding, Guanyu; Wang, Buyun; Chen, Lingyu; Zhao, Shuangjiao

    2016-11-01

    Methyl red, methylene blue and biochar were used to investigate simultaneous adsorption of dyes onto low-cost adsorbent at different concentrations combinations. Langmuir mixed model could describe the adsorption well at low concentrations. However, it could not describe the adsorption anymore when concentrations of methyl red and methylene blue were higher than 255 and 300 mg L(-1) respectively with 0.5 g L(-1) biochar loading. A new model on the interaction among adsorbed adsorbates at equilibrium was developed. It could describe the adsorption at high concentrations well. According to the experimental results, interaction among dyes molecules would replace the competition onto adsorbent to be the main factor influencing adsorption when amount of adsorbed adsorbates were higher than those required to form a monolayer on all the adsorbing sites of adsorbent. The model was further verified by adsorption with other solute such as glucose or NaCl in solution. PMID:27543677

  13. Methylene blue, midodrine, and pseudoephedrine: a review of alternative agents for refractory hypotension in the intensive care unit.

    PubMed

    Van Berkel, Megan A; Fuller, Laura A; Alexandrov, Anne W; Jones, G Morgan

    2015-01-01

    Hypotensive episodes are common among patients in the intensive care unit and can lead to multiorgan failure if uncontrolled. Fluid administration and continuous infusion of vasoactive agents are frequently used for management of hypotension; however, both therapies may be associated with adverse effects including pulmonary edema and tissue necrosis. In addition, availability of these first-line agents has been impacted by the increasing occurrence of drug shortages. Methylene blue, pseudoephedrine, and midodrine have been considered potential alternatives to standard therapy. These agents may not only be used when first-line agents are unavailable due to shortages, but they may also aid in reducing the cumulative dose of other vasoactive agents used. The purpose of this review was to discuss strategies for the safe and effective use of methylene blue, pseudoephedrine, and midodrine for the treatment of hypotension in the critically ill.

  14. Methylene blue injection into the rectal artery as a simple method to improve lymph node harvest in rectal cancer.

    PubMed

    Märkl, Bruno; Kerwel, Therese G; Wagner, Theodor; Anthuber, Matthias; Arnholdt, Hans M

    2007-07-01

    Adequate lymph node assessment in colorectal cancer is crucial for prognosis estimation and further therapy stratification. However, there is still an ongoing debate on required minimum lymph node numbers and the necessity of advanced techniques such as immunohistochemistry or PCR. It has been proven in several studies that lymph node harvest is often inadequate under routine analysis. Lymph nodes smaller than 5 mm are especially concerning as they can carry the majority of metastases. These small, but affected lymph nodes may escape detection in routine analysis. Therefore, fat-clearing protocols and sentinel techniques have been developed to improve accuracy of lymph node staging. We describe a novel and simple method of ex vivo methylene blue injection into the superior rectal artery of rectal cancer specimens, which highlights lymph nodes and makes them easy to detect during manual dissection. Initially, this method was developed for proving accuracy of total mesorectal excision. We performed a retrospective study comparing lymph node recovery of 12 methylene blue stained and an equal number of unstained cases. Lymph node recovery differed significantly with average lymph node numbers of 27+/-7 and 14+/-4 (P<0.001) for the methylene blue and the unstained group, respectively. The largest difference was found in size groups between 1 and 4 mm causing a shift in size distribution toward smaller nodes. Metastases were confirmed in 21 and 19 lymph nodes occurring in five and four cases, respectively. Hence, we conclude that methylene blue injection technique improves accuracy of lymph node staging by heightening the lymph node harvest in rectal resections. In our experience, it is a very simple time and cost effective method that can be easily established under routine circumstances.

  15. Comparative study of polymer containing beta-cyclodextrin and -COOH for adsorption toward aniline, 1-naphthylamine and methylene blue.

    PubMed

    Zhao, Dong; Zhao, Liang; Zhu, Cheng-Shen; Shen, Xiangyu; Zhang, Xiaozhuan; Sha, Baofeng

    2009-11-15

    Three different polymers P1, P2 and P3 (P1 containing both beta-CD and -COOH, P2 containing beta-CD and P3 containing -COOH) were synthesized and applied to adsorption toward aniline, 1-naphthylamine and methylene blue. The concentrations (C) before and after adsorption were determined and the adsorption capacities (q) of P1, P2 and P3 were calculated. The maximum adsorption capacities (q(max)) toward aniline: q(max) (P1)=104 micromol g(-1), q(max) (P2)=14.9 micromol g(-1) and q(max) (P3)=53.1 micromol g(-1); toward 1-naphthylamine: q(max) (P1)=184 micromol g(-1), q(max) (P2)=53.8 micromol g(-1) and q(max) (P3)=125 micromol g(-1); toward methylene blue: q(max) (P1)=200 micromol g(-1), q(max) (P2)=12.7 micromol g(-1) and q(max) (P3)=215 micromol g(-1). P1 exhibited remarkable adsorption toward all the three adsorbates. P2 was almost equal to P1 in adsorption toward methylene blue, but was less efficient than P1 in adsorption toward aniline and 1-naphthylamine. P3 also exhibited considerable adsorption toward aniline and 1-naphthylamine, but was inefficient toward methylene blue. P1 was obtained from nontoxic materials and through environment friendly procedures, so it was potentially an efficient and green adsorbent for water purification.

  16. Fabrication of magnetic carbon composites from peanut shells and its application as a heterogeneous Fenton catalyst in removal of methylene blue

    NASA Astrophysics Data System (ADS)

    Zhou, Lincheng; Ma, Junjun; Zhang, He; Shao, Yanming; Li, Yanfeng

    2015-01-01

    Magnetic carbons were prepared from agricultural waste peanut shells and Ferric ammonium oxalate via a simple impregnation and carbonization process. The obtained composites were characterized by element analysis, MÖssbauer spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, X-ray diffraction, vibrating sample magnetometry and the Brunauer-Emmett-Teller surface area method, respectively. The magnetic carbon material was used as catalyst of heterogeneous Fenton reaction to remove methylene blue with the help of persulfate in waste water. The results indicated that both the removal rate and removal efficiency of this catalytic system are very excellent. The degradation efficiency was best (90% within 30 min) using initial concentrations of 0.5 g L-1 persulfate and 40 mg L-1 methylene blue. The removal mechanism was investigated by LC-MS. The catalyst retained its activity after seven reuses, indicating its good stability and reusability. It is inexpensive because it consists mainly of agricultural waste. Its porosity contributed to its high activity, which was achieved without any additional activation process. These indicating that the catalyst is potentially useful in the treatment of wastewater.

  17. Fully-automated radiosynthesis and in vitro uptake investigation of [N-methyl-¹¹C]methylene blue.

    PubMed

    Schweiger, Lutz F; Smith, Tim A D

    2013-10-01

    Malignant melanoma is a type of skin cancer which can spread rapidly if not detected early and left untreated. Positron Emission Tomography (PET) is a powerful imaging technique for detecting cancer but with only a limited number of radiotracers available the development of novel PET probes for detection and prevention of cancer is imperative. In the present study we present the fully-automated radiosynthesis of [N-methyl-(11)C]methylene blue and an in vitro uptake study in metastasic melanoma cell lines. Using the GE TRACERlab FXc Pro module [N-methyl-(11)C]methylene blue was isolated via solid-phase extraction in an average time of 36 min after end of bombardment and formulated with a radiochemical purity greater than 95%. The in vitro uptake study of [N-methyl-(11)C]methylene blue in SK-MEL28 melanin-expressing melanoma cell line demonstrated in site-specific binding of 51% promoting it as a promising melanoma PET imaging agent.

  18. Water-insoluble sericin/β-cyclodextrin/PVA composite electrospun nanofibers as effective adsorbents towards methylene blue.

    PubMed

    Zhao, Rui; Wang, Yong; Li, Xiang; Sun, Bolun; Jiang, Ziqiao; Wang, Ce

    2015-12-01

    A novel water-insoluble sericin/β-cyclodextrin/poly (vinyl alcohol) composite nanofiber adsorbent was prepared by electrospinning and followed by thermal crosslinking for removal of cationic dye methylene blue from aqueous solution. Fourier transform infrared spectroscopy and solubility experiments confirmed that sericin and β-cyclodextrin were incorporated into the nanofibers and the crosslinking reaction occurred successfully. Kinetics, isotherms and thermodynamics analysis were studied for adsorption of methylene blue. The adsorption process is better fitted with the pseudo-second-order model and Langmuir isotherm model. The maximum adsorption capacities are 187.97, 229.89, and 261.10mg/g at the temperatures 293, 313 and 333 K, respectively. Thermodynamic parameters showed that methylene blue adsorption was endothermic and spontaneous. In addition, the fiber membrane adsorbent could be easily separated from dye solution and showed high recyclable removal efficiency. All these results suggest that crosslinked sericin/β-cyclodextrin/poly(vinyl alcohol) composite nanofibers could be potential recyclable adsorbents in dye wastewater treatment.

  19. Water-insoluble sericin/β-cyclodextrin/PVA composite electrospun nanofibers as effective adsorbents towards methylene blue.

    PubMed

    Zhao, Rui; Wang, Yong; Li, Xiang; Sun, Bolun; Jiang, Ziqiao; Wang, Ce

    2015-12-01

    A novel water-insoluble sericin/β-cyclodextrin/poly (vinyl alcohol) composite nanofiber adsorbent was prepared by electrospinning and followed by thermal crosslinking for removal of cationic dye methylene blue from aqueous solution. Fourier transform infrared spectroscopy and solubility experiments confirmed that sericin and β-cyclodextrin were incorporated into the nanofibers and the crosslinking reaction occurred successfully. Kinetics, isotherms and thermodynamics analysis were studied for adsorption of methylene blue. The adsorption process is better fitted with the pseudo-second-order model and Langmuir isotherm model. The maximum adsorption capacities are 187.97, 229.89, and 261.10mg/g at the temperatures 293, 313 and 333 K, respectively. Thermodynamic parameters showed that methylene blue adsorption was endothermic and spontaneous. In addition, the fiber membrane adsorbent could be easily separated from dye solution and showed high recyclable removal efficiency. All these results suggest that crosslinked sericin/β-cyclodextrin/poly(vinyl alcohol) composite nanofibers could be potential recyclable adsorbents in dye wastewater treatment. PMID:26433644

  20. Quantification of metabolically active biomass using Methylene Blue dye Reduction Test (MBRT): measurement of CFU in about 200 s.

    PubMed

    Bapat, Prashant; Nandy, Subir Kumar; Wangikar, Pramod; Venkatesh, K V

    2006-04-01

    Quantification of viable cells is a critical step in almost all biological experiments. Despite its importance, the methods developed so far to differentiate between viable and non-viable cells suffer from major limitations such as being time intensive, inaccurate and expensive. Here, we present a method to quantify viable cells based on reduction of methylene blue dye in cell cultures. Although the methylene blue reduction method is well known to check the bacterial load in milk, its application in the quantification of viable cells has not been reported. We have developed and standardized this method by monitoring the dye reduction rate at each time point for growth of Escherichia coli. The standard growth curve was monitored using this technique. The Methylene Blue dye Reduction Test (MBRT) correlates very well with Colony Forming Units (CFU) up to a 800 live cells as established by plating. The test developed is simple, accurate and fast (200 s) as compared to available techniques. We demonstrate the utility of the developed assay to monitor CFU rapidly and accurately for E. coli, Bacillus subtilis and a mixed culture of E. coli and B. subtilis. This assay, thus, has a wide applicability to all types of aerobic organisms.

  1. A pulsed electric field enhances cutaneous delivery of methylene blue in excised full-thickness porcine skin.

    PubMed

    Johnson, P G; Gallo, S A; Hui, S W; Oseroff, A R

    1998-09-01

    We used electric pulses to permeabilize porcine stratum corneum and demonstrate enhanced epidermal transport of methylene blue, a water-soluble cationic dye. Electrodes were placed on the outer surface of excised full-thickness porcine skin, and methylene blue was applied to the skin beneath the positive electrode; 1 ms pulses of up to 240 V were delivered at frequencies of 20-100 Hz for up to 30 min. The amount of dye in a skin sample was determined from absorbance spectra of dissolved punch biopsy sections. Penetration depth and concentration of the dye were measured with light and fluorescence microscopy of cryosections. At an electric exposure dose VT (applied voltage x frequency x pulse width x treatment duration) of about 4700 Vs, there is a threshold for efficient drug delivery. Increasing the applied voltage or field application time resulted in increased dye penetration. Transport induced by electric pulses was more than an order of magnitude greater than that seen following iontophoresis. We believe that the enhanced cutaneous delivery of methylene blue is due to a combination of de novo permeabilization of the stratum corneum by electric pulses, passive diffusion through the permeabilization sites, and electrophoretic and electroosmotic transport by the electric pulses. Pulsed electric fields may have important applications for drug delivery in a variety of fields where topical drug delivery is a goal.

  2. Distribution of Methylene Blue after Injection into the Epidural Space of Anaesthetized Pregnant and Non-Pregnant Sheep

    PubMed Central

    Moll, Xavier; García, Felix; Ferrer, Rosa Isabel; Santos, Laura; Aguilar, Adrià; Andaluz, Anna

    2014-01-01

    The aim of the study was to determine the distribution of different volumes of methylene blue solution injected into the epidural space in anaesthetized pregnant and non-pregnant sheep, to evaluate its cranial distribution and to compare between them. Fifteen pregnant and fifteen non-pregnant sheep were included in the study. Sheep were anaesthetized and received 0.05, 0.1, or 0.2 mL/kg of a lumbosacral epidural solution containing 0.12% methylene blue in 0.9% saline. Thirty minutes after the epidural injection, the ewes were euthanized. The extension of the dye within the epidural space was measured, and the correlation between the volume of the dye injected and the number of stained vertebrae was evaluated. The cranial migration of the dye between pregnant and non-pregnant sheep was also compared. The results show that the volume of methylene blue injected epidurally into pregnant and non-pregnant sheep correlated directly with its cephalic distribution into the epidural space; and a volume of 0.1 mL/kg or 0.2 mL/kg stained up to the first lumbar segment in pregnant and non-pregnant sheep, respectively. Also, the results suggest that the volume of drugs administered into the epidural space of pregnant sheep should be half the volume that would be used in non-pregnant sheep. PMID:24709655

  3. A prospective study on sentinel lymph node biopsy in early oral cancers using methylene blue dye alone.

    PubMed

    Ramamurthy, Rajaraman; Kottayasamy Seenivasagam, Rajkumar; Shanmugam, Subbiah; Palanivelu, Kathirvelkumaran

    2014-09-01

    Sentinel Lymph Node (SLN) biopsy using a combination of radioisotopes and blue dyes have a good accuracy rate in predicting subclinical neck nodal metastases in head and neck cancers. However, the limited availability of lymphoscintigraphy facilities in India requires exploration of alternative methods of SLN detection. We evaluated the feasibility of using methylene blue dye alone in detecting SLN in cN0 early oral cancers. 32 patients with cN0 early (T1, T2) oral squamous cell cancers underwent SLN biopsy using peri tumoural methylene blue dye injection. Blue dye stained (SLN) nodes were sent for frozen section analyses. Patients who had microscopic metastases in SLN underwent modified radical neck dissections and the rest underwent selective neck dissections. Paraffin sections and IHC studies were done on all nodes. SLN was identified in 29 patients (Identification rate = 90.6 %) of which SLN was positive for metastases on frozen section in 5 patients. The sensitivity, specificity and NPV of SLN with frozen section were 80 %, 95.8 % and 95.8 % respectively. IHC with cytokeratins increased the sensitivity (100 %) and NPV (100 %) at the loss of specificity (87.5 %). Methylene blue dye alone can be successfully used for SLN identification in early oral cancers with a good accuracy and sensitivity. This method will be of use especially in resource limited countries and centres where nuclear medicine facilities are not widely available. However, it has to be validated by larger randomised multi institutional trials for wider applicability. Immunohistochemistry increases the sensitivity and negative predictive value of SLN but its applicability in real time decision making is limited.

  4. Treatment and toxicity evaluation of methylene blue using electrochemical oxidation, fly ash adsorption and combined electrochemical oxidation-fly ash adsorption.

    PubMed

    Wang, Kai-sung; Wei, Ming-Chi; Peng, Tzu-Huan; Li, Heng-Ching; Chao, Shu-Ju; Hsu, Tzu-Fang; Lee, Hong-Shen; Chang, Shih-Hsien

    2010-08-01

    Treatment of a basic dye, methylene blue, by electrochemical oxidation, fly ash adsorption, and combined electrochemical oxidation-fly ash adsorption was compared. Methylene blue at 100 mgL(-1) was used in this study. The toxicity was also monitored by the Vibrio fischeri light inhibition test. When electrochemical oxidation was used, 99% color and 84% COD were removed from the methylene blue solution in 20 min at a current density of 428 Am(-2), NaCl of 1000 mgL(-1), and pH(0) of 7. However, the decolorized solution showed high toxicity (100% light inhibition). For fly ash adsorption, a high dose of fly ash (>20,000 mgL(-1)) was needed to remove methylene blue, and the Freundlich isotherm described the adsorption behavior well. In the combined electrochemical oxidation-fly ash adsorption treatment, the addition of 4000 mgL(-1) fly ash effectively reduced intermediate toxicity and decreased the COD of the electrochemical oxidation-treated methylene blue solution. The results indicated that the combined process effectively removed color, COD, and intermediate toxicity of the methylene blue solution.

  5. Comparative evaluation of methylene blue and demeclocycline for enhancing optical contrast of brain neoplasms

    NASA Astrophysics Data System (ADS)

    Wirth, Dennis J.

    Brain tumors cause significant morbidity and mortality even when benign. Completeness of resection of brain tumors has been associated with better quality of life. However, that is often difficult to accomplish. The goal of this study was to evaluate the feasibility of using contrast enhanced multimodal confocal imaging for intraoperative detection of brain neoplasms. Different types of benign and malignant, primary and metastatic brain tumors, stained with Methylene Blue (MB) as a contrast agent, were imaged. MB is a traditional histopathologic stain that absorbs light in the red spectral range and fluoresces in the near infrared. It is FDA-approved for in vivo staining of human skin and breast tissue. Optical images showed good correlation with histopathology, demonstrating the potential of contrast enhanced multimodal confocal imaging for intraoperative detection of brain neoplasms ex vivo. However, the safety of MB for staining human brain in vivo is questionable. Demeclocycline (DMN), an antibiotic of the tetracycline family, has shown to be effective in differentiating normal from cancerous tissue in various organs. DMN is a fluorophore, which absorbs light in the violet spectral range and has a broad emission band covering green and yellow wavelengths. It is commonly used to treat infection and inflammatory disorders, and could provide a safer alternative to MB. To test this hypothesis, fresh excess human brain tissues were bisected and stained with aqueous solutions of either MB or DMN and then imaged. Reflectance and fluorescence images acquired from tissues stained with the two dyes were compared, and correlated with processed H&E histopathology. Comparison showed similar staining patterns and contrast of diagnostic features in glioblastomas, stained using either MB or DMN. The results show potential of both MB and DMN for the intraoperative detection of microscopic nests of brain neoplasms. Further studies will establish safety and efficacy of these

  6. Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells.

    PubMed

    Yu, Jiashing; Hsu, Che-Hao; Huang, Chih-Chia; Chang, Po-Yang

    2015-01-14

    Photodynamic therapy (PDT) involves the cellular uptake of a photosensitizer (PS) combined with oxygen molecules and light at a specific wavelength to be able to trigger cancer cell death via the apoptosis pathway, which is less harmful and has less inflammatory side effect than necrosis. However, the traditional PDT treatment has two main deficiencies: the dark toxicity of the PS and the poor selectivity of the cellular uptake of PS between the target cells and normal tissues. In this work, methylene blue (MB), a known effective PS, combined with Au nanoparticles (NPs) was prepared using an intermolecular interaction between a polystyrene-alt-maleic acid (PSMA) layer on the Au NPs and MB. The Au@polymer/MB NPs produced a high quantum yield of singlet oxygen molecules, over 50% as much as that of free MB, when they were excited by a dark red light source at 660 nm, but without significant dark toxicity. Furthermore, transferrin (Tf) was conjugated on the Au@polymer/MB NPs via an EDC/NHS reaction to enhance the selectivity to HeLa cells compared to 3T3 fibroblasts. With a hand-held single laser treatment (32 mW/cm) for 4 min, the new Au@polymer/MB-Tf NPs showed a 2-fold enhancement of PDT efficiency toward HeLa cells over the use of free MB at 4 times dosage. Cellular staining examinations showed that the HeLa cells reacted with Au@polymer/MB-Tf NPs and the 660 nm light excitation triggered PDT, which caused the cells to undergo apoptosis ("programmed" cell death). We propose that applying this therapeutic Au@polymer/MB-Tf nanoagent is facile and safe for delivery and cancer cell targeting to simultaneously minimize side effects and accomplish a significant enhancement in photodynamic therapeutic efficiency toward next-generation nanomedicine development.

  7. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater.

    PubMed

    Wu, Zhibin; Zhong, Hua; Yuan, Xingzhong; Wang, Hou; Wang, Lele; Chen, Xiaohong; Zeng, Guangming; Wu, Yan

    2014-12-15

    In this article, a rhamnolipid-functionalized graphene oxide (RL-GO) hybrid was prepared by one-step ultrasonication and adsorptive removal of methylene blue (MB) from both artificial and real wastewater by the RL-GO was investigated. The Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrum (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) area and Zeta potential analysis were used to characterize the adsorbent. The results showed that RL-GO had abundant functional groups and a mesopores feature. MB adsorption by the RL-GO increased with increase in adsorbent dose, pH, temperature and initial MB concentration, while it was insensitive to ionic strength variation. The adsorption kinetics fitted well to the pseudo-second-order model with correlation coefficients greater than 0.999. The Intra-particle diffusion and Boyd's film-diffusion models showed that the rate-controlled step was dominated by film-diffusion in the beginning and then followed by intra-particle diffusion. The adsorption isotherm was fitted by adsorption models with the suitability in order of BET > Freundlich > Langmuir > Temkin, based on comparison between correlation coefficients. Thermodynamic analysis of equilibriums suggested that the adsorption MB on RL-GO was spontaneous and endothermic. The adsorption mechanism was also proposed to be electrostatic attraction, π-π interaction and hydrogen bond. In addition, the real wastewater experiment, the regeneration study and the comparative cost analysis showed that the RL-GO composites could be a cost-effective and promising sorbent for MB wastewater treatment owing to its high efficiency and excellent reusability.

  8. Mechanism of Methylene Blue adsorption on hybrid laponite-multi-walled carbon nanotube particles.

    PubMed

    Manilo, Maryna; Lebovka, Nikolai; Barany, Sandor

    2016-04-01

    The kinetics of adsorption and parameters of equilibrium adsorption of Methylene Blue (MB) on hybrid laponite-multi-walled carbon nanotube (NT) particles in aqueous suspensions were determined. The laponite platelets were used in order to facilitate disaggregation of NTs in aqueous suspensions and enhance the adsorption capacity of hybrid particles for MB. Experiments were performed at room temperature (298 K), and the laponite/NT ratio (Xl) was varied in the range of 0-0.5. For elucidation of the mechanism of MB adsorption on hybrid particles, the electrical conductivity of the system as well as the electrokinetic potential of laponite-NT hybrid particles were measured. Three different stages in the kinetics of adsorption of MB on the surface of NTs or hybrid laponite-NT particles were discovered to be a fast initial stage I (adsorption time t=0-10 min), a slower intermediate stage II (up to t=120 min) and a long-lasting final stage III (up to t=24hr). The presence of these stages was explained accounting for different types of interactions between MB and adsorbent particles, as well as for the changes in the structure of aggregates of NT particles and the long-range processes of restructuring of laponite platelets on the surface of NTs. The analysis of experimental data on specific surface area versus the value of Xl evidenced in favor of the model with linear contacts between rigid laponite platelets and NTs. It was also concluded that electrostatic interactions control the first stage of adsorption at low MB concentrations.

  9. Methylene Blue Removal by Biochars from Food Industry By-Products

    NASA Astrophysics Data System (ADS)

    Orfanos, Alexis; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.

    2016-04-01

    Biomass produced by food industries is mainly used as feedstock or in composting. In recent years, considerable research effort has been focused on the production of biochar under oxygen-limited conditions from carbon-rich biomass, such as food industry by-products, as mitigation measure for global warming once it is used as a soil amendment. The present study presents the findings of an experimental work, which investigated the use of different biochars for the removal of methylene blue (MB) from aqueous solutions. Biochars were produced from malt spent rootlets (MSR) from brewering and espresso coffee residue from coffee shops. MSR was pyrolyzed at temperatures of 300, 400, 500, 750, 850, and 900oC and the coffee residue was pyrolyzed at 850oC. The charring process was performed under limited-oxygen conditions using specialized containers. The surface area and the porosity of the materials were determined. Batch experiments were conducted in order to evaluate the sorption capacity of the above materials, and samples were agitated for 24 h at 25oC, at an optimum pH of about 7. Kinetic analysis was conducted over a period of 24 h, and isotherm studies were also constructed. The surface area of biochar produced from MSR and the MB removal were considerably increased at pyrolysis temperatures higher than 500oC. At 850oC, the maximum surface area value (300 m2 g-1) was observed, and the MB sorption capacity was 99 mg g-1. Based on the kinetic experimental data, sorption capacities at 120 min were over 58% of their equilibrium values for the biochars used. The maximum MB sorption capacity, based on the isotherm data, was 130 mg g-1, for the two biochars employed.

  10. Sensitive analytical performance of folding based biosensor using methylene blue tagged aptamers.

    PubMed

    Catanante, Gaëlle; Mishra, Rupesh K; Hayat, Akhtar; Marty, Jean-Louis

    2016-06-01

    This work demonstrates the development of a folding based electrochemical aptasensor using methylene blue (MB) tagged anti-Ochratoxin A (OTA) aptamers. Different aptamer coupling strategies were tested using Hexamethylenediamine, polyethylene glycol, simple adsorption and diazonium coupling mechanism. The best sensitivity was recorded by oxidation of amines using hexamethylenediamine (HDMA) on screen printed carbon electrode (SPCE). To achieve the direct detection of OTA, aptamer conjugated redox probe was used and detection was demonstrated based on the conformational changes in aptamer structure upon OTA sensing. Signaling in this class of sensors arises from changes in electron transfer efficiency upon target-induced changes in the conformation/flexibility of the aptamer probe. These changes can be readily recorded electrochemically. The developed aptasensor is unique in its own mechanism as redox probe tagged aptamer coupling such as MB has never been tried to immobilize using long carbon chain spacers as, addition of spacers would provide more sensitive detection methods. A good dynamic range 0.01-5ng/ml was obtained for OTA with Limit of detection (LOD) 0.01ng/ml and Limit of quantification (LOQ) of 0.03ng/ml respectively. The good reproducibility was recorded with RSD% of 3.75. The obtained straight line equation was y=0.4035x+0.90311, r=0.9976. We believe that the sensor design guidelines outlined here represents a general strategy for developing new folding-based electrochemical aptasensors. The developed aptasensor was extended to screen cocoa samples for OTA contamination. The cocoa samples were extracted and purified using molecular imprinted polymer (MIP) columns. The aptasensor displayed good recovery values in the range 84-85% thus, exhibited the effectiveness of proposed aptasensor for such complex matrices. PMID:27130100

  11. Photodynamic fungicidal efficacy of hypericin and dimethyl methylene blue against azole-resistant Candida albicans strains.

    PubMed

    Paz-Cristobal, M P; Royo, D; Rezusta, A; Andrés-Ciriano, E; Alejandre, M C; Meis, J F; Revillo, M J; Aspiroz, C; Nonell, S; Gilaberte, Y

    2014-01-01

    Antimicrobial photodynamic therapy (aPDT) is an emerging alternative to treat infections based on the use of photosensitisers (PSs) and visible light. To investigate the fungicidal effect of PDT against azole-resistant Candida albicans strains using two PSs with a different mechanism of action, hypericin (HYP) and 1,9-dimethyl methylene blue (DMMB), comparing their efficacy and the reactive oxygen species (ROS) species involved in their cytotoxicity. Azole-resistant and the azole-susceptible C. albicans strains were used. Solutions of 0.5 and 4 McFarland inoculum of each Candida strain were treated with different concentrations of each PS, and exposed to two light-emitting diode light fluences (18 and 37 J cm⁻²). Mechanistic insight was gained using several ROS quenchers. The minimal fungicidal concentration of HYP for ≥3 log₁₀ CFU reduction (0.5 McFarland) was 0.62 μmol l⁻¹ for most strains, whereas for DMMB it ranged between 1.25 and 2.5 μmol l⁻¹. Increasing the fluence to 37 J cm⁻² allowed to reduce the DMMB concentration. Higher concentrations of both PSs were required to reach a 6 log₁₀ reduction (4 McFarland). H₂O₂ was the main phototoxic species involved in the fungicidal effect of HYP-aPDT whereas ¹O₂ was more important for DMMB-based treatments. aPDT with either HYP or DMMB is effective in killing of C. albicans strains independent of their azole resistance pattern. HYP was more efficient at low fungal concentration and DMMB at higher concentrations. PMID:23905682

  12. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater.

    PubMed

    Wu, Zhibin; Zhong, Hua; Yuan, Xingzhong; Wang, Hou; Wang, Lele; Chen, Xiaohong; Zeng, Guangming; Wu, Yan

    2014-12-15

    In this article, a rhamnolipid-functionalized graphene oxide (RL-GO) hybrid was prepared by one-step ultrasonication and adsorptive removal of methylene blue (MB) from both artificial and real wastewater by the RL-GO was investigated. The Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrum (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) area and Zeta potential analysis were used to characterize the adsorbent. The results showed that RL-GO had abundant functional groups and a mesopores feature. MB adsorption by the RL-GO increased with increase in adsorbent dose, pH, temperature and initial MB concentration, while it was insensitive to ionic strength variation. The adsorption kinetics fitted well to the pseudo-second-order model with correlation coefficients greater than 0.999. The Intra-particle diffusion and Boyd's film-diffusion models showed that the rate-controlled step was dominated by film-diffusion in the beginning and then followed by intra-particle diffusion. The adsorption isotherm was fitted by adsorption models with the suitability in order of BET > Freundlich > Langmuir > Temkin, based on comparison between correlation coefficients. Thermodynamic analysis of equilibriums suggested that the adsorption MB on RL-GO was spontaneous and endothermic. The adsorption mechanism was also proposed to be electrostatic attraction, π-π interaction and hydrogen bond. In addition, the real wastewater experiment, the regeneration study and the comparative cost analysis showed that the RL-GO composites could be a cost-effective and promising sorbent for MB wastewater treatment owing to its high efficiency and excellent reusability. PMID:25314573

  13. Cellular mechanisms of plasmalemmal sealing and axonal repair by polyethylene glycol and methylene blue.

    PubMed

    Spaeth, C S; Robison, T; Fan, J D; Bittner, G D

    2012-05-01

    Mammalian neurons and all other eukaryotic cells endogenously repair traumatic injury within minutes by a Ca²⁺-induced accumulation of vesicles that interact and fuse with each other and the plasmalemma to seal any openings. We have used uptake or exclusion of extracellular fluorescent dye to measure the ability of rat hippocampal B104 cells or rat sciatic nerves to repair (seal) transected neurites in vitro or transected axons ex vivo. We report that endogenous sealing in both preparations is enhanced by Ca²⁺-containing solutions and is decreased by Ca²⁺-free solutions containing antioxidants such as dithiothreitol (DTT), melatonin (MEL), methylene blue (MB), and various toxins that decrease vesicular interactions. In contrast, the fusogen polyethylene glycol (PEG) at 10-50 mM artificially seals the cut ends of B104 cells and rat sciatic axons within seconds and is not affected by Ca²⁺ or any of the substances that affect endogenous sealing. At higher concentrations, PEG decreases sealing of transected axons and disrupts the plasmalemma of intact cells. These PEG-sealing data are consistent with the hypothesis that lower concentrations of PEG directly seal a damaged plasmalemma. We have considered these and other data to devise a protocol using a well-specified series of solutions that vary in tonicity, Ca²⁺, MB, and PEG content. These protocols rapidly and consistently repair (PEG-fuse) rat sciatic axons in completely cut sciatic nerves in vivo rapidly and dramatically to restore long-lasting morphological continuity, action potential conduction, and behavioral functions. PMID:22302626

  14. Neuroprotective and Functional Improvement Effects of Methylene Blue in Global Cerebral Ischemia.

    PubMed

    Lu, Qing; Tucker, Donovan; Dong, Yan; Zhao, Ningjun; Zhang, Quanguang

    2016-10-01

    Transient global cerebral ischemia (GCI) causes delayed neuronal cell death in the vulnerable hippocampus CA1 subfield, as well as behavioral deficits. Ischemia reperfusion (I/R) produces excessive reactive oxygen species and plays a key role in brain injury. The mitochondrial electron respiratory chain is the main cellular source of free radical generation, and dysfunction of mitochondria has a significant impact on the neuronal cell death in ischemic brain. The aim of the present study is to investigate the potential beneficial effects of methylene blue (MB) in a four-vessel occlusion (4VO) GCI model on adult male rats. MB was delivered at a dose of 0.5 mg/kg/day for 7 days, through a mini-pump implanted subcutaneously after GCI. We first found that MB significantly improved ischemic neuronal survival in the hippocampal CA1 region as measured by cresyl violet staining as well as NeuN staining. We also found that MB has the ability to rescue ischemia-induced decreases of cytochrome c oxidase activity and ATP generation in the CA1 region following I/R. Further analysis with labeling of MitoTracker® Red revealed that the depolarization of mitochondrial membrane potential (MMP) was markedly attenuated following MB treatment. In addition, the induction of caspase-3, caspase-8, and caspase-9 activities and the increased numbers of TUNEL-positive cells of the CA1 region were significantly reduced by MB application. Correspondingly, Barnes maze tests showed that the deterioration of spatial learning and memory performance following GCI was significantly improved in the MB-treatment group compared to the ischemic control group. In summary, our study suggests that MB may be a promising therapeutic agent targeting neuronal cell death and cognitive deficits following transient global cerebral ischemia.

  15. [Study on treatment of methylene blue wastewater by fly ash adsorption-Fenton and thermal regeneration].

    PubMed

    Bai, Yu-Jie; Zhang, Ai-Li; Zhou, Ji-Ti

    2012-07-01

    The physicochemical properties of water-washed fly ash (FA) and acid modified fly ash (M-FA) were investigated. The adsorption of methylene blue by FA and M-FA were studied by batch experiments. Two methods, Fenton-drive oxidation regeneration and thermal regeneration, were used for regeneration of the used FA and M-FA. The result showed that the rate of adsorption process followed the second order kinetics and the adsorption followed Langmuir isotherms. The adsorption equilibrium time was 30 min, and the equilibrium adsorption capacity of FA and M-FA were 4.22 mg x g(-1) and 5.98 mg x g(-1) respectively. The adsorption capability of M-FA was higher than that of FA. In the range of pH 2-12, the adsorption capacity of M-FA increased with the increase of pH, whereas the adsorption capacity of FA decreased slowly until the pH 8 and then increased. Electrostatic adsorption was the major factor on the adsorption capacity. Around 61% and 55% percentage regeneration (PR) were obtained for FA and M-FA respectively when 78.4 mmol x L(-1) H2O2 and 0.72 mmol x L(-1) Fe2+ were used. When the condition of thermal regeneration was 400 degrees C and 2 h, a positive correlation can be found between the PRs of FA and regeneration times, the PRs were 102%, 104% and 107% in three cycles of adsorption-thermal regeneration process. However a negative correlation can be found between the PRs of M-FA and regeneration times, the PRs were 82%, 75% and 74% in three cycles of adsorption-thermal regeneration process. The PR of FA was higher than that of M-FA, and thermal regeneration was superior to Fenton-drive regeneration. PMID:23002621

  16. sup 211 At-methylene blue for targeted radiotherapy of human melanoma xenografts: Treatment of micrometastases

    SciTech Connect

    Link, E.M.; Carpenter, R.N. )

    1990-05-15

    Treatment of micrometastases of HX34 human melanoma grown as xenografts in nude mice represents an advanced stage of preclinical investigations concerning targeted radiotherapy of this neoplasm using 3,7-(dimethylamino)phenazathionium chloride methylene blue (MTB) labeled with astatine-211 (211At) (alpha-particle emitter). The therapeutic effectiveness of 211At-MTB administered i.v. was determined by a lung colony assay combined with a search for metastases to organs other than the lungs. A single dose of 211At-MTB lowered the HX34 cell surviving fraction in lungs to below 10% almost independently of the time interval between cell inoculation and radioisotope injection and of 211At-MTB radioactivity within its investigated range. Radiation dose and the time of its administration did, however, influence the size of lung colonies. In contrast, the efficacy of 211At-MTB treatment as assessed by both surviving fraction and colony size was significantly dependent on a number of HX34 cells inoculated initially into mice. These results are explained by a short range of alpha-particles emitted by 211At and a mechanism of growth of lung colonies from tumor cells circulating with blood and blocking lung capillaries. Metastases in organs other than lungs and characteristic of control animals were not found in mice treated with 211At-MTB. The high therapeutic efficacy achieved proved that 211At-MTB is a very efficient scavenger of single melanoma cells distributed through blood and micrometastases with sizes below the limit of clinical detection.

  17. Excellent adsorption and desorption characteristics of polypyrrole/TiO2 composite for Methylene Blue

    NASA Astrophysics Data System (ADS)

    Li, Jingjing; Feng, Jiangtao; Yan, Wei

    2013-08-01

    P25 or self-prepared TiO2 coated polypyrrole (PPy/P25 or PPy/TiO2) composites as novel adsorbents were prepared. Their adsorption-desorption characteristics for Methylene Blue (MB) were comparatively investigated. X-ray photoelectron spectroscopy (XPS) showed that PPy/TiO2 possessed higher doping level than PPy/P25. Thermogravimetric analysis (TGA) indicated that PPy/TiO2 contained more PPy than PPy/P25. The results of water vapor adsorption suggested that the PPy/TiO2 composite was more hydrophobic than PPy/P25. The adsorption results revealed that the composites pretreated in the solution with higher pH value exhibited larger adsorption capacities. The ionic concentration in MB solution slightly impacted the removal of MB by the PPy/TiO2 composite. The adsorption equilibrium results showed that the adsorption of MB was completed in a short time of 30 min. Pseudo-second-order and Langmuir isotherm models were effectively employed to describe the adsorption behavior of MB. PPy/TiO2 and PPy/P25 were found to have better removal ability for MB compared with pure PPy; especially PPy/TiO2, on which the maximum adsorption amount was about 3.6 or 5.5 times higher than that of PPy/P25 or pure PPy, respectively. The thermodynamic analysis indicated that the adsorption of MB was spontaneous and endothermic in nature. The regeneration experiments exhibited that PPy/TiO2 can be reused at least seven times without obvious loss of its original adsorption capacity. Electrostatic interaction, hydrogen bonding and hydrophobic interaction played the roles in MB adsorption performance. It is expected that the PPy/TiO2 composite can be considered as a stable adsorbent for dye removal.

  18. Effect of Gelatin-Stabilized Copper Nanoparticles on Catalytic Reduction of Methylene Blue

    NASA Astrophysics Data System (ADS)

    Musa, Aminu; Ahmad, Mansor B.; Hussein, Mohd Zobir; Saiman, Mohd Izham; Sani, Hannatu Abubakar

    2016-10-01

    The synthesis of copper nanoparticles was carried out with gelatin as a stabilizer by reducing CuSO4.5H2O ions using hydrazine. Ascorbic acid and aqueous NaOH were also used as an antioxidant and pH controller, respectively. The effects of NaOH, hydrazine, and concentration of gelatin as stabilizer were studied. The synthesized copper nanoparticles were characterized by UV-vis spectroscopy, XRD, zeta potential measurements, FTIR, EDX, FESEM, and TEM. The formation of CuNPs@Gelatin is initially confirmed by UV-vis spectroscopic analysis with the characteristic band at 583 nm. XRD and TEM reports revealed that CuNPs@Gelatin (0.75 wt.%) is highly crystalline and spherical in shape with optimum average size of 4.21 ± 0.95 nm. FTIR studies indicated the presence of amide group on the surface of the CuNPs indicating the stability of CuNPs which is further supported by zeta potential measurements with the negative optimum value of -37.90 ± 0.6 mV. The CuNPs@G4 showed a good catalytic activity against methylene blue (MB) reduction using NaBH4 as a reducing agent in an aqueous solution. The best enhanced properties of CuNPs@G4 were found for the 0.75 wt.% gelatin concentration. Thermodynamic parameters (Δ H and Δ S) indicate that under the studied temperature, the reduction of MB by CuNPs@G4 is not feasible and had endothermic in nature.

  19. [Study on treatment of methylene blue wastewater by fly ash adsorption-Fenton and thermal regeneration].

    PubMed

    Bai, Yu-Jie; Zhang, Ai-Li; Zhou, Ji-Ti

    2012-07-01

    The physicochemical properties of water-washed fly ash (FA) and acid modified fly ash (M-FA) were investigated. The adsorption of methylene blue by FA and M-FA were studied by batch experiments. Two methods, Fenton-drive oxidation regeneration and thermal regeneration, were used for regeneration of the used FA and M-FA. The result showed that the rate of adsorption process followed the second order kinetics and the adsorption followed Langmuir isotherms. The adsorption equilibrium time was 30 min, and the equilibrium adsorption capacity of FA and M-FA were 4.22 mg x g(-1) and 5.98 mg x g(-1) respectively. The adsorption capability of M-FA was higher than that of FA. In the range of pH 2-12, the adsorption capacity of M-FA increased with the increase of pH, whereas the adsorption capacity of FA decreased slowly until the pH 8 and then increased. Electrostatic adsorption was the major factor on the adsorption capacity. Around 61% and 55% percentage regeneration (PR) were obtained for FA and M-FA respectively when 78.4 mmol x L(-1) H2O2 and 0.72 mmol x L(-1) Fe2+ were used. When the condition of thermal regeneration was 400 degrees C and 2 h, a positive correlation can be found between the PRs of FA and regeneration times, the PRs were 102%, 104% and 107% in three cycles of adsorption-thermal regeneration process. However a negative correlation can be found between the PRs of M-FA and regeneration times, the PRs were 82%, 75% and 74% in three cycles of adsorption-thermal regeneration process. The PR of FA was higher than that of M-FA, and thermal regeneration was superior to Fenton-drive regeneration.

  20. Electrode erosion during submerged arc treatment of methylene blue water solution

    NASA Astrophysics Data System (ADS)

    Parkansky, Naum; Yakubov, Violetta; Beilis, Isak I.; Boxman, Raymond L.; Berkh, Olga

    2015-06-01

    Low voltage, low energy submerged pulsed arcs with a pulse repetition rate of 100 Hz, energy of 48 mJ and duration of 20 μs were used to determine the electrode erosion rate during treatment of 10 mg l-1 methylene blue (MB) dissolved in 40 ml of deionized water, with and without the addition of 0.5% H2O2. Anode/cathode pairs of Fe/Fe, Ti/Ti, Cu/Cu, Cu/Fe, Fe/Cu, Ti/Fe, Fe/Ti, Cu/Ti and Ti/Cu were used. Smaller cathode erosion was measured, in the solutions without H2O2, with copper cathodes than with other cathodes. Smaller anode erosion in the same conditions was demonstrated by using pairs with a Ti anode than with other anodes and larger erosion was found for Cu anodes. By adding H2O2 to the treated solution, smaller cathode erosion was measured by using pairs with a Ti cathode than with other cathodes and larger rates were measured for Fe cathodes. The largest anode erosion was observed for a Cu anode. The erosion of the anode and cathode depends on material combination of the electrode pairs, i.e. on the thermo physical properties of the electrode materials. The correlations of anode/cathode erosion ratio (Ga/Gc) with ratio (qam/qcm) for various electrode materials were found, where qam and qcm are heat fluxes in the body of the anode and cathode, respectively. The experimental data were fitted by curves described with equation Ga/Gc =A(qa/qc)-b where A and b are experimental constants.

  1. Photocatalytic dechlorination of polychlorinated biphenyls using leuco-methylene blue sensitization, broad spectrum visible lamps, or light emitting diodes.

    PubMed

    Izadifard, Maryam; Langford, Cooper H; Achari, Gopal

    2010-12-01

    Photocatalytic routes to dechlorinate polychlorinated biphenyls (PCBs) have considerable potential for development. This paper describes efficient dye-photocatalyzed processes which can be driven by long wavelength light sources including light-emitting diodes (LEDs), fluorescent lamps, and quite probably sunlight. The reduced form of methylene blue (MB), leuco-methylene blue (LMB), has previously been found to photoinduce dechlorination of chloroaromatics with an electron transfer from its triplet excited state. Sodium borohydride, used in this case is an efficient sacrificial reductant, which can maintain LMB as the major species in competition with air oxidation of LMB to MB. There is also evidence that it plays a further (chain reaction) role in promoting the LMB photodechlorination process as well. The generality of the photoelectron transfer from reduced members of the phenothiazine dye family is demonstrated with phenothiazine and leuco-methylene green when a wavelength (UV) is chosen to produce the highly reductive triplet. It is likely that dechlorination can be initiated by many triplet excited states with adequate reduction potential.

  2. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of methylene blue active substances by spectrophotometry

    USGS Publications Warehouse

    Burkhardt, Mark R.; Cinotto, Pete J.; Frahm, Galen W.; Woodworth, Mark T.; Pritt, Jeffrey W.

    1995-01-01

    A method for the determination of methylene blue active substances in whole-water samples by liquid-liquid extraction and spectrophotometric detection is described. Sulfate and sulfonate-based surfectants are reacted with methylene blue to form a blue-colored complex. The complex is extracted into chloroform, back-washed with an acidified phosphate-based buffer solution, and measured against external standards with a probe spectrophotometer. The method detection limt for routine analysis is 0.02 milligram per liter. The precision is plus/minus 10 percent relative standard deviation. The positive bias from nitrate and chloride and U.S. Geological Survey method O-3111-83 for methylene blue active substances is minized by adding a back-washing step.

  3. Nucleotide excision repair activity on DNA damage induced by photoactivated methylene blue.

    PubMed

    Berra, Carolina Maria; de Oliveira, Carla Santos; Garcia, Camila Carrião Machado; Rocha, Clarissa Ribeiro Reily; Lerner, Letícia Koch; Lima, Leonardo Carmo de Andrade; Baptista, Maurício da Silva; Menck, Carlos Frederico Martins

    2013-08-01

    The nucleotide excision repair (NER) mechanism is well known to be involved in the removal of UV-induced lesions. Nevertheless, the involvement of this pathway in the repair of lesions generated after DNA oxidation remains controversial. The effects of visible-light-excited methylene blue (MB), known to generate reactive oxygen species (ROS), were examined directly in xeroderma pigmentosum (XP)-A and XP-C NER-deficient human fibroblasts. Initially, MB was confirmed as being incorporated in similar amounts by the cells and that its photoexcitation induces the generation of (1)O2 within cells. The analysis of cell survival indicated that NER-deficient cells were hypersensitive to photoactivated MB. This sensitivity was confirmed with cells silenced for the XPC gene and by host-cell reactivation (HCR) of plasmid exposed to the photosensitizing effects of photoexcited MB. The sensitivity detected by HCR was restored in complemented cells, confirming the participation of XPA and XPC proteins in the repair of DNA lesions induced by photosensitized MB. Furthermore, DNA damage (single- and double-strand breaks and alkali-sensitive sites) was observed in the nuclei of treated cells by alkaline comet assay, with higher frequency of lesions in NER-deficient than in NER-proficient cells. Likewise, NER-deficient cells also presented more γ-H2AX-stained nuclei and G2/M arrest after photoactivated MB treatment, probably as a consequence of DNA damage response. Notwithstanding, the kinetics of both alkali- and FPG-sensitive sites repair were similar among cells, thereby demonstrating not only that MB photoexcitation generates nuclear DNA damage, but also that the removal of these lesions is NER-independent. Therefore, this work provides further evidence that XPA and XPC proteins have specific roles in cell protection and repair/tolerance of ROS-induced DNA damage. Moreover, as XPC-deficient patients do not present neurodegeneration, premature aging, or developmental clinical

  4. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation.

    PubMed

    Altenor, Sandro; Carene, Betty; Emmanuel, Evens; Lambert, Jacques; Ehrhardt, Jean-Jacques; Gaspard, Sarra

    2009-06-15

    Vetiver roots have been utilized for the preparation of activated carbon (AC) by chemical activation with different impregnation ratios of phosphoric acid, X(P) (gH(3)PO(4)/g precursor): 0.5:1; 1:1 and 1.5:1. Textural characterization, determined by nitrogen adsorption at 77K shows that mixed microporous and mesoporous structures activated carbons (ACs) with high surface area (>1000 m(2)/g) and high pore volume (up to 1.19 cm(3)/g) can be obtained. The surface chemical properties of these ACs were investigated by X-ray photoelectron spectroscopy (XPS) and Boehm titration. Their textural and chemical characteristics were compared to those of an AC sample obtained by steam activation of vetiver roots. Classical molecules used for characterizing liquid phase adsorption, phenol and methylene blue (MB), were used. Adsorption kinetics of MB and phenol have been studied using commonly used kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the intraparticle diffusion model and as well the fractal, BWS (Brouers, Weron and Sotolongo) kinetic equation. The correlation coefficients (R(2)) and the normalized standard deviation Deltaq (%) were determined showing globally, that the recently derived fractal kinetic equation could best describe the adsorption kinetics for the adsorbates tested here, indicating a complex adsorption mechanism. The experimental adsorption isotherms of these molecules on the activated carbon were as well analysed using four isotherms: the classical Freundlich, Langmuir, Redlich-Peterson equations, but as well the newly published deformed Weibull Brouers-Sotolongo isotherm. The results obtained from the application of the equations show that the best fits were achieved with the Brouers-Sotolongo equation and with the Redlich-Peterson equation. Influence of surface functional groups towards MB adsorption is as well studied using various ACs prepared from vetiver roots and sugar cane bagasse. Opposite effects governing MB

  5. Influence of metal oxides on the adsorption characteristics of PPy/metal oxides for Methylene Blue.

    PubMed

    Chen, Jie; Feng, Jiangtao; Yan, Wei

    2016-08-01

    In this paper, the pure PPy and PPy/metal oxide composites including PPy/SiO2, PPy/Al2O3, and PPy/Fe3O4 as well as PPy coated commercial SiO2 and Al2O3 (PPy/SiO2(C) and PPy/Al2O3(C)) were successfully synthetized via chemical oxidative polymerization in acid aqueous medium to investigate the influence of metal oxides on adsorption capacity and their adsorption characteristics for Methylene Blue (MB). The composites were characterized by Zeta potential analysis, BET analysis, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The results indicate that the metal oxides have great impact on textural properties, morphology, Zeta potential and PPy polymerization on their surface, further influence the adsorption capacity of their composites. The PPy/Al2O3(C) composite owns the highest specific surface area, rougher surface and most PPy content, and show the highest monolayer adsorption capacity reaching 134.77mg/g. In the adsorption characteristic studies, isotherm investigation shows an affinity order of PPy/metal oxides of PPy/Al2O3(C)>PPy/Al2O3>PPy/SiO2(C)>PPy/SiO2>PPy/Fe3O4>PPy, stating the affinity between PPy and MB was greatly improved by metal oxide, and Al2O3 owns high affinity for MB, followed by SiO2 and Fe3O4. Kinetic data of the composites selected (PPy/SiO2(C), PPy/Al2O3(C) and PPy/Fe3O4) were described more appropriately by the pseudo-second-order model, and the order of K2 is PPy/Al2O3>PPy/SiO2>PPy/Fe3O4, further showing a fast adsorption and good affinity of PPy/Al2O3(C) for MB. The regeneration method by HCl-elution and NaOH-activation was available, and the composites selected still owned good adsorption and desorption efficiency after six adsorption-desorption cycles.

  6. Mechanism of cell destruction and cell protection during methylene-blue-induced PDT

    NASA Astrophysics Data System (ADS)

    Rueck, Angelika C.; Beck, G.; Heckelsmiller, K.; Knoedlsdorfer, U.; Genze, Felicitas; Orth, K.

    1999-02-01

    Methylene Blue (MB+) is a well-known dye in medicine and has been discussed as an easily applicable drug for the topical treatment in photodynamic therapy (PDT). MB+ can potentially be used as a redox indicator to detect the important redox reactions that are induced during PDT. MB+ induced PDT was successful in the intraluminal treatment of inoperable esophageal tumors and in the topical treatment of psoriasis. In order to improve the therapy, the reaction mechanism of MB+ was investigated in vivo by local injection of MB+ in a xenotransplanted subcutaneous tumor (adeno-carcinoma, G-3) in female nude mice. The MB+ preparation 'MB+1%' was applied both undiluted and diluted to 0.1% and 0.01% with isotonic sodium chloride. After an incubation period of 1 h, the tumors were irradiated at 662 nm. Treatment with 1% MB+ and subsequent irradiation with 100 J/cm2 led to complete tumor destruction in 79% of the treated animals. A decrease of the fluence rate from 100 mW/cm2 to 50 mW/cm2 significantly increased the phototoxic response, which was attributed to oxygen depletion but also to nonlinear redox reactions. In addition, fractionated light application with 15 s interruption intervals enhanced the effect. When 0.1% MB+ was used, complete tumor destruction was observed only in 10% of the treated animals. Below a relatively high threshold dose the therapeutic response was not significant. The efficiency of the therapy was correlated with nonlinear dynamics of MB+ on a subcellular level, using laser scanning microscopy. During MB+-PDT nonlinear redox- reactions were induced. This could be deduced from local fast changes of the MB+-fluorescence as well as the pH-value during irradiation of single cells. The light induced reaction of MB+ seems to be correlated with the nonlinear production of reactive oxygen species (ROS). As a consequence below a threshold dose the reducing ability of MB+ prevents tissue from oxidative damage. However, above this dose, as a point of no

  7. Influence of metal oxides on the adsorption characteristics of PPy/metal oxides for Methylene Blue.

    PubMed

    Chen, Jie; Feng, Jiangtao; Yan, Wei

    2016-08-01

    In this paper, the pure PPy and PPy/metal oxide composites including PPy/SiO2, PPy/Al2O3, and PPy/Fe3O4 as well as PPy coated commercial SiO2 and Al2O3 (PPy/SiO2(C) and PPy/Al2O3(C)) were successfully synthetized via chemical oxidative polymerization in acid aqueous medium to investigate the influence of metal oxides on adsorption capacity and their adsorption characteristics for Methylene Blue (MB). The composites were characterized by Zeta potential analysis, BET analysis, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The results indicate that the metal oxides have great impact on textural properties, morphology, Zeta potential and PPy polymerization on their surface, further influence the adsorption capacity of their composites. The PPy/Al2O3(C) composite owns the highest specific surface area, rougher surface and most PPy content, and show the highest monolayer adsorption capacity reaching 134.77mg/g. In the adsorption characteristic studies, isotherm investigation shows an affinity order of PPy/metal oxides of PPy/Al2O3(C)>PPy/Al2O3>PPy/SiO2(C)>PPy/SiO2>PPy/Fe3O4>PPy, stating the affinity between PPy and MB was greatly improved by metal oxide, and Al2O3 owns high affinity for MB, followed by SiO2 and Fe3O4. Kinetic data of the composites selected (PPy/SiO2(C), PPy/Al2O3(C) and PPy/Fe3O4) were described more appropriately by the pseudo-second-order model, and the order of K2 is PPy/Al2O3>PPy/SiO2>PPy/Fe3O4, further showing a fast adsorption and good affinity of PPy/Al2O3(C) for MB. The regeneration method by HCl-elution and NaOH-activation was available, and the composites selected still owned good adsorption and desorption efficiency after six adsorption-desorption cycles. PMID:27149689

  8. Continuous and Delayed Photohemolysis Sensitized With Methylene Blue and Iron Oxide Nanoparticles (Fe3O4)

    NASA Astrophysics Data System (ADS)

    AL-Akhras, M.-Ali; Aljarrah, Khaled; Albiss, Borhan; Alhaji Bala, Abba

    2015-10-01

    This research present the sensitization of methylene blue (MB), as a potential photodynamic therapy photo sensitizer which showed phototoxicity for many tumor cells in vitro incorporated with iron oxide nanoparticles (Fe3O4, IO-NP), which offer magnificent interaction both inside and outside the surface of biomolecules together with red blood cells (RBC's) with significant change in hemolysis process. The study investigated the sensitization of continuous photohemolysis (CPH) for MB and MB with IO-NP, delayed photohemolysis (DPH) at different irradiation temperature (Tirr). The photohemolysis rate for CPH at room temperature has a power dependence of 0.39 ± 0.05 with relative of steepness of 1.25 ± 0.02 and for different concentration of MB and power dependent of 0.15 ± 0.03 with relative steepness of 1.34 ± 0.01 for different MB and IO-NP. Logistic and Gompertz functions were applied as appropriate mathematical models to fit the collected experimental data for CPH and DPH respectively, and to calculate fractional photohemolysis rate with minimum errors. The Logistic function parameter; α, the hemolysis rate, increases with increasing concentrations of MB and decreases with increasing IO-NP concentrations in the presence of 6 μg/ml of MB. The parameter β the time required to reduce the maximum number of RBCs to one half of its value, decreases with increasing MB concentration and increases with increasing IO-NP concentrations in the presence of 6 pg/ml of MB. In DPH at different Tirr, the Gompertz parameter; a, fractional hemolysis ratio, is independent of temperature in both case MB and MB plus IO-NP, while the parameter; b, rate of fractional hemolysis change, increases with increasing Tirr, in both case MB and MB plus IO-NP. The apparent activation energy of colloid-osmotic hemolysis is 9.47±0.01 Kcal/mol with relative steepness of 1.31 ± 0.05 for different MB and 6.06±0.03 Kcal/mol with relative steepness of 1.41 ± 0.09 for MB with iron oxide. Our

  9. Hyperbaric oxygen therapy augments the photodynamic action of methylene blue against bacteria in vitro

    NASA Astrophysics Data System (ADS)

    Bisland, S. K.; Dadani, F. N.; Chien, C.; Wilson, B. C.

    2007-02-01

    Photodynamic therapy (PDT) entails the combination of photosensitizer and light to generate cytotoxic molecules that derive from molecular oxygen (O II). The presence of sufficient O II within the target tissues is critical to the efficiency of PDT. This study investigates the use of hyperbaric oxygen therapy in combination with PDT (HOTPDT) to augment the photodynamic action of methylene blue (MB) or 5-aminolevulinic acid (ALA) against gram positive and gram negative bacterial strains in vitro. Staphylococcus aureus or Pseudomonas aeruginosa were grown in trypticase soy broth as planktonic cultures (~10 8/mL) or as established biofilms in 48 well plates (3 days old) at 32°C. Dark toxicity and PDT response in the presence or absence of HOT (2 atmospheres, 100% O II for 30, 60 or 120 min) was established for both MB (0-0.1 mM) and ALA (0- 1 mM) for a range of incubation times. The number of surviving colonies (CFU/mL) was plotted for each treatment groups. Light treatments (5, 10, 20 or 30 J/cm2) were conducted using an array of halogen bulbs with a red filter providing 90% transmittance over 600-800 nm at 21 mW/cm2. HOT increased the dark toxicity of MB (30 min, 0.1 mM) from < 0.2 log cell kill to 0.5 log cell kill. Dark toxicity of ALA (4 hr, 1 mM) was negligible and did not increase with HOT. For non-dark toxic concentrations of MB or ALA, (0.05 mM and 1 mM respectively) HOT-PDT enhanced the antimicrobial effect of MB against Staphylococcus aureus in culture by >1 and >2 logs of cell kill (CFU/mL) at 5 and 10 J/cm2 light dose respectively as compared to PDT alone. HOT-PDT also increased the anti-microbial effects of MB against Staphylococcus aureus biofilms compared to PDT, albeit less so (> 2 logs) following 10 J/cm2 light dose. Anti-microbial effects of PDT using ALA were not significant for either strain with or without HOT. These data suggest that HOTPDT may be useful for improving the PDT treatment of bacterial infections.

  10. Sandwichlike magnesium silicate/reduced graphene oxide nanocomposite for enhanced Pb²⁺ and methylene blue adsorption.

    PubMed

    Gui, Chen-Xi; Wang, Qian-Qian; Hao, Shu-Meng; Qu, Jin; Huang, Pei-Pei; Cao, Chang-Yan; Song, Wei-Guo; Yu, Zhong-Zhen

    2014-08-27

    A sandwichlike magnesium silicate/reduced graphene oxide nanocomposite (MgSi/RGO) with high adsorption efficiency of organic dye and lead ion was synthesized by a hydrothermal approach. MgSi nanopetals were formed in situ on both sides of RGO sheets. The nanocomposite with good dispersion of nanopetals exhibits a high specific surface area of 450 m(2)/g and a good mass transportation property. Compared to MgSi and RGO, the mechanical stability and adsorption capacity of the nanocomposite is significantly improved due to the synergistic effect. The maximum adsorption capacities for methylene blue and lead ion are 433 and 416 mg/g, respectively. PMID:25073122

  11. [Methylene blue as a supressor of the genotoxic effect of ultraviolet radiation with a wavelength of 300-400 nm].

    PubMed

    Chistiakov, V A; Sazykina, M A; Kolenko, M A; Cherviakov, G G; Usatov, A V

    2009-03-01

    Ultraviolet radiation with a wavelength of 300-400 nm is characteristic of sunlight at the earth surface and causes DNA damage mediated by energy transfer to O2 with the transformation of the latter in the singlet state. In connection with this, scavengers of reactive oxygen species (ROSs) are potential protectors against the genotoxic effect of this kind of radiation. It was found that the methylene blue dye at doses differing by several orders of magnitude from those that are toxic for humans is able to suppress completely the SOS response induced by UV with a wavelength of 300--400 nm in Escherichia coli.

  12. Dissimilarities between methylene blue and cyanide on relaxation and cyclic GMP formation in endothelium-intact intrapulmonary artery caused by nitrogen oxide-containing vasodilators and acetylcholine

    SciTech Connect

    Ignarro, L.J.; Harbison, R.G.; Wood, K.S.; Kadowitz, P.J.

    1986-01-01

    The objective of the present study was to ascertain whether cyanide shares the properties of methylene blue as a selective inhibitor of vascular smooth muscle relaxation elicited by agents that stimulate the formation of cyclic GMP. Experiments were performed with endothelium-intact rings prepared from bovine intrapulmonary artery. Methylene blue, a good inhibitor of soluble guanylate cyclase, antagonized both arterial relaxation and cyclic GMP accumulation in response to sodium nitroprusside, glyceryl trinitrate, S-nitroso-N-acetylpenicillamine and acetylcholine. In contrast, cyanide inhibited only the responses to sodium nitroprusside. Increasing concentrations of methylene blue depressed resting arterial levels of cyclic GMP and caused slowly developing but marked contractions whereas cyanide was without effect. Contractile responses to phenylephrine, potassium and U46619 were potentiated by methylene blue but not by cyanide. Preincubation of dilute solutions of cyanide containing sodium nitroprusside in oxygenated Krebs' buffer at 37 degrees C for 15 min before addition to bath chambers depressed relaxation and cyclic GMP accumulation caused by sodium nitroprusside markedly. Similar treatment of glyceryl trinitrate, however, failed to alter its effects in arterial rings. A chemical inactivation of sodium nitroprusside by cyanide appears to account for the specific inhibitory action of cyanide on arterial responses to sodium nitroprusside. This study indicates clearly that cyanide does not share the properties of methylene blue as an inhibitor of arterial relaxation elicited by vasodilators that stimulate cyclic GMP formation.

  13. The contribution of vanadium and titanium on improving methylene blue decolorization through heterogeneous UV-Fenton reaction catalyzed by their co-doped magnetite.

    PubMed

    Liang, Xiaoliang; Zhong, Yuanhong; Zhu, Sanyuan; Ma, Lingya; Yuan, Peng; Zhu, Jianxi; He, Hongping; Jiang, Zheng

    2012-01-15

    This study investigated the methylene blue (MB) decolorization through heterogeneous UV-Fenton reaction catalyzed by V-Ti co-doped magnetites, with emphasis on comparing the contribution of V and Ti cations on improving the adsorption and catalytic activity of magnetite. In the well crystallized spinel structure, both Ti(4+) and V(3+) occupied the octahedral sites. Ti(4+) showed a more obvious effect on increasing specific surface area and superficial hydroxyl amount than V(3+) did, resulting in a significant improvement of the adsorption ability of magnetite to MB. The UV introduction greatly accelerated MB degradation. And magnetite with more Ti and less V displayed better catalytic activity in MB degradation through heterogeneous UV-Fenton reaction. The transformation of degradation products and individual contribution from vanadium and titanium on improving adsorption and catalytic activity of magnetite were also investigated. These new insights are of high importance for well understanding the interface interaction between contaminants and metal doped magnetites, and the environmental application of natural and synthetic magnetites.

  14. Preparation and characterization of poly(AA co PVP)/PGS composite and its application for methylene blue adsorption.

    PubMed

    Yang, Cai-xia; Lei, Lei; Zhou, Peng-xin; Zhang, Zhe; Lei, Zi-qiang

    2015-04-01

    Poly (AA co PVP)/PGS (PAPP) composite adsorbent was prepared by radical polymerization from Acrylic acid (AA), Polyvinylpyrrolidone (PVP) and Palygorskite (PGS), using N,N-methylenebisacrylamide (MBA) as cross-linker and potassium persulfate (KPS) as initiator. The PAPP was characterized with Fourier transform infrared (FT-IR), thermogravimetric analysis (TG), scanning electron microscope (SEM) and transmission electron microscopy (TEM). PAPP was used as adsorbent for the removal of methylene blue from aqueous solutions. The influences of pH, adsorption temperature and adsorption time on the adsorption properties of the composite to the dye were also investigated. Meanwhile, the adsorption rate data and adsorption equilibrium date were analyzed based on the pseudo-first-order and pseudo-second-order kinetic model, Langmuir and Freundlich isotherm models, respectively. The results indicating that the kinetic behavior better fit with the pseudo-second-order kinetic model. The maximum equilibrium adsorption capacity (q(m)) is 1815 mg/g at 289 K. The isotherm behavior can be explained by the Langmuir isotherm models. The activation energy was also evaluated for the removal of methylene blue onto PAPP. These results demonstrate that this composite material could be used as a good adsorbent for the removal of cationic dyes from wastewater. PMID:25540826

  15. Poly(amic acid)-modified biomass of baker's yeast for enhancement adsorption of methylene blue and basic magenta.

    PubMed

    Yu, Jun-xia; Li, Bu-hai; Sun, Xiao-mei; Yuan, Jun; Chi, Ru-an

    2010-03-01

    In this study, poly(amic acid)-modified biomass was prepared to improve the adsorption capacities for two cationic dyes, methylene blue and basic magenta. X-ray photoelectron spectroscopy and potentiometric titration demonstrated that a large number of imide, amine, and carboxyl groups were introduced on the biomass surface, and the concentrations of these functional groups were calculated to be 0.27, 1.08, and 1.08 mmol g(-1) by using the first derivative method. According to the Langmuir equation, the maximum uptake capacities (q(m)) for methylene blue and basic magenta were 680.3 and 353.4 mg g(-1), respectively, which were 13- and sevenfold than that obtained on the unmodified biomass. Adsorption kinetics study showed that the completion of the adsorption process needed only 40 min, which is faster than the common sorbent such as activated carbon and resin. Experimental results showed that pH and ionic strength had little effect on the capacity of the modified biomass, indicating that the modified biomass had good potential for practical use.

  16. Preparation and characterization of poly(AA co PVP)/PGS composite and its application for methylene blue adsorption.

    PubMed

    Yang, Cai-xia; Lei, Lei; Zhou, Peng-xin; Zhang, Zhe; Lei, Zi-qiang

    2015-04-01

    Poly (AA co PVP)/PGS (PAPP) composite adsorbent was prepared by radical polymerization from Acrylic acid (AA), Polyvinylpyrrolidone (PVP) and Palygorskite (PGS), using N,N-methylenebisacrylamide (MBA) as cross-linker and potassium persulfate (KPS) as initiator. The PAPP was characterized with Fourier transform infrared (FT-IR), thermogravimetric analysis (TG), scanning electron microscope (SEM) and transmission electron microscopy (TEM). PAPP was used as adsorbent for the removal of methylene blue from aqueous solutions. The influences of pH, adsorption temperature and adsorption time on the adsorption properties of the composite to the dye were also investigated. Meanwhile, the adsorption rate data and adsorption equilibrium date were analyzed based on the pseudo-first-order and pseudo-second-order kinetic model, Langmuir and Freundlich isotherm models, respectively. The results indicating that the kinetic behavior better fit with the pseudo-second-order kinetic model. The maximum equilibrium adsorption capacity (q(m)) is 1815 mg/g at 289 K. The isotherm behavior can be explained by the Langmuir isotherm models. The activation energy was also evaluated for the removal of methylene blue onto PAPP. These results demonstrate that this composite material could be used as a good adsorbent for the removal of cationic dyes from wastewater.

  17. Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies.

    PubMed

    Gao, Jun-Jie; Qin, Ye-Bo; Zhou, Tao; Cao, Dong-Dong; Xu, Ping; Hochstetter, Danielle; Wang, Yue-Fei

    2013-07-01

    Tea (Camellia sinensis L.) seed shells, the main byproduct of the manufacture of tea seed oil, were used as precursors for the preparation of tea activated carbon (TAC) in the present study. A high yield (44.1%) of TAC was obtained from tea seed shells via a one-step chemical method using ZnCl2 as an agent. The Brunauer-Emmett-Teller (BET) surface area and the total pore volumes of the obtained TAC were found to be 1530.67 mg(2)/g and 0.7826 cm(3)/g, respectively. The equilibrium adsorption results were complied with Langmuir isotherm model and its maximum monolayer adsorption capacity was 324.7 mg/g for methylene blue. Adsorption kinetics studies indicated that the pseudo-second-order model yielded the best fit for the kinetic data. An intraparticle diffusion model suggested that the intraparticle diffusion was not the only rate-controlling step. Thermodynamics studies revealed the spontaneous and exothermic nature of the sorption process. These results indicate that tea seed shells could be utilized as a renewable resource to develop activated carbon which is a potential adsorbent for methylene blue.

  18. Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies*

    PubMed Central

    Gao, Jun-jie; Qin, Ye-bo; Zhou, Tao; Cao, Dong-dong; Xu, Ping; Hochstetter, Danielle; Wang, Yue-fei

    2013-01-01

    Tea (Camellia sinensis L.) seed shells, the main byproduct of the manufacture of tea seed oil, were used as precursors for the preparation of tea activated carbon (TAC) in the present study. A high yield (44.1%) of TAC was obtained from tea seed shells via a one-step chemical method using ZnCl2 as an agent. The Brunauer-Emmett-Teller (BET) surface area and the total pore volumes of the obtained TAC were found to be 1 530.67 mg2/g and 0.782 6 cm3/g, respectively. The equilibrium adsorption results were complied with Langmuir isotherm model and its maximum monolayer adsorption capacity was 324.7 mg/g for methylene blue. Adsorption kinetics studies indicated that the pseudo-second-order model yielded the best fit for the kinetic data. An intraparticle diffusion model suggested that the intraparticle diffusion was not the only rate-controlling step. Thermodynamics studies revealed the spontaneous and exothermic nature of the sorption process. These results indicate that tea seed shells could be utilized as a renewable resource to develop activated carbon which is a potential adsorbent for methylene blue. PMID:23825151

  19. Adsorptive removal and kinetics of methylene blue from aqueous solution using NiO/MCM-41 composite

    NASA Astrophysics Data System (ADS)

    Xiao, Xuechun; Zhang, Fei; Feng, Zhipeng; Deng, Shaojuan; Wang, Yude

    2015-01-01

    Highly ordered mesoporous material MCM-41 was synthesized from tetraethylorthosilicate (TEOS) as Si source and cetyltrimethylammonium bromide (CTAB) as template. Well-dispersed NiO nanoparticles were introduced into the highly ordered mesoporous MCM-41 by chemical precipitation method to prepare the highly ordered mesoporous NiO/MCM-41 composite. X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and high-resolution TEM (HRTEM), and nitrogen adsorption-desorption measurement were used to examine the morphology and the microstructure of the obtained composite. The morphological study clearly revealed that the synthesized NiO/MCM-41 composite has a highly ordered mesoporous structure with a specific surface area of 435.9 m2 g-1. A possible formation mechanism is preliminary proposed for the formation of the nanostructure. The adsorption performance of NiO/MCM-41 composite as an adsorbent was further demonstrated in the removal azo dyes of methyl orange (MO), Congo red (CR), methylene blue (MB) and rhodaming B (RB) under visible light irradiation and dark, respectively. The kinetics and mechanism of removal methylene blue were studied. The results show that NiO/MCM-41 composite has a good removal capacity for organic pollutant MB from the wastewater under the room temperature. Compared with MCM-41 and NiO nanoparticles, 54.2% and 100% higher removal rate were obtained by the NiO/MCM-41 composite.

  20. The photocatalytic investigation of methylene blue dye with Cr doped zinc oxide nanoparticles

    SciTech Connect

    Ray, Rajeev; Kumar, Ashavani

    2015-08-28

    The present work reports eco-friendly and cost effective sol-gel technique for synthesis of Chromium doped ZnO nanoparticles at room temperature. In this process Zinc nitrate, Chromium nitrate were used as precursor. Structural as well as optical properties of Cr induced ZnO samples were analysed by X-ray diffraction technique (XRD), SEM, PL and UV-Visible spectroscopy (UV-Vis) respectively. XRD analysis shows that the samples have hexagonal (wurtzite) structure with no additional peak which suggests that Cr ions fit into the regular Zn sites of ZnO crystal structure. By using Scherrer’s formula for pure and Cr doped ZnO samples the average grain size was found to be 32 nm. Further band gap of pure and doped ZnO samples have been calculated by using UV-Vis spectra. The photo-catalytic degradation of methyl blue dye under UV irradiation was examined for synthesized samples. The results show that the concentration plays an important role in photo-catalytic activity.

  1. Comparison of raw and modified activated carbon and rice industry wastes for methylene blue sorption

    NASA Astrophysics Data System (ADS)

    Befani, Maria; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.; Quintero, César E.

    2015-04-01

    In Argentina the average paddy rice production was 1.3x106 tn/year in the last decade. Entre Ríos province (E.R.) accounts for 60% of national milling, resulting in a significant accumulation of waste in the local environment; husk and ashes are used as fuel in drying grain plants. The use of rice wastes, as low-cost sorbents for the removal of synthetic dyes and other contaminants may be a sustainable option. The aim of this work is the investigation of the removal capacity of methylene blue (MB) from aqueous solutions using: (a) rice husk from a rice mill located in E.R. of size between 0.15 to 1.18 mm (RH2), (b) ash from rice husk burned at 800°C in oven for the grain drying unit of the rice mill (RHA800), and (c) biochar obtained from pyrolysis of RH2 material at 850°C (RHA4). Commercial activated carbon (AC), which is a porous material of high sorption capacity, was also used to compare its sorption capacity with the rice husk products. Furthermore, the incorporation of iron in the AC was studied using two different AC/Fe weight-by-weight ratios (AC-Fe and AC-0.5 Fe). The solution pH effect was studied in a range from 2 to 6.9. The maximal MB removal was achieved at pH of 6.8 to 6.9 for all materials studied, and at pH of 6.4 for AC. Kinetic experiments were conducted for a period of 48 h at pH 7 and C0 = 50 mg MB/L. Equilibrium was reached after 24 h and the adsorption capacity was 156, 104, 90, 79, 26, and 9 mg/g for AC, AC-Fe, AC-0.5 Fe, RHA4, RH2 and RHA800, respectively. The pseudo-second-order model expressed better the sorption kinetics of MB for all adsorbent materials. The AC-based materials presented better performance. The experimental data were fitted with the Freundlich and Langmuir isotherm models. The Langmuir model fits the data better in all cases. The maximum adsorption capacity was 238, 125, 92, 91, 46 and 9 mg/g for AC, AC-Fe, AC-0.5 Fe, RHA4, RH2 and RHA800, respectively. Agricultural wastes can be considered low-cost sorbents, but

  2. A methylene blue-assisted technique for harvesting lymph nodes after radical surgery for gastric cancer: a prospective, randomized, controlled study.

    PubMed

    Aoyama, Toru; Fujikawa, Hirohito; Cho, Haruhiko; Ogata, Takashi; Shirai, Junya; Hayashi, Tsutomu; Rino, Yasushi; Masuda, Munetaka; Oba, Mari S; Morita, Satoshi; Yoshikawa, Takaki

    2015-02-01

    Harvesting lymph nodes (LNs) after gastrectomy is essential for accurate staging. This trial evaluated the efficiency and quality of a conventional method and a methylene blue-assisted method in a randomized manner. The key eligibility criteria were as follows: (i) histologically proven adenocarcinoma of the stomach; (ii) clinical stage I-III; (iii) R0 resection planned by gastrectomy with D1+ or D2 lymphadenectomy. The primary endpoint was the ratio of the pathologic number of harvested LNs per time (minutes) as an efficacy measure. The secondary endpoint was the number of harvested LNs, as a quality measure. Between August 2012 and December 2012, 60 patients were assigned to undergo treatment using the conventional method (n=29) and the methylene blue dye method (n=31). The baseline demographics were mostly well balanced between the 2 groups. The number of harvested LNs (mean±SD) was 33.6±11.9 in the conventional arm and 43.4±13.9 in the methylene blue arm (P=0.005). The ratio of the number of the harvested LNs per time was 1.12±0.46 LNs/min in the conventional arm and 1.49±0.59 LNs/min in the methylene blue arm (P=0.010). In the subgroup analyses, the quality and efficacy were both superior for the methylene blue dye method compared with the conventional method. The methylene blue technique is recommended for harvesting LNs during gastric cancer surgery on the basis of both the quality and efficacy.

  3. Adjuvant therapy with methylene blue in the treatment of right ventricular failure after pulmonary embolectomy.

    PubMed

    Raikhelkar, Jayashree K; Milla, Federico; Darrow, Bruce; Scurlock, Corey

    2011-04-01

    Severe pulmonary embolism often leads to right ventricular failure after surgical embolectomy secondary to ischaemia reperfusion injury and acute lung injury (ALI). Acute right ventricular dysfunction is traditionally treated with inotropes and vasopressors to maintain cardiac output and coronary perfusion as well as selective pulmonary vasodilators to provide right ventricular afterload reduction. We report the first case of utilisation of methylene (MB) in a patient with acute right ventricular failure and vasoplegic shock after surgical pulmonary embolectomy. PMID:20952252

  4. Suitability of the methylene blue test for determination of cation exchange capacity of clay minerals related to ammonium acetate method

    NASA Astrophysics Data System (ADS)

    Milošević, Maja; Logar, Mihovil; Dojčinović, Biljana; Erić, Suzana

    2015-04-01

    Cation exchange capacity (CEC) represents one of the most important parameters of clay minerals which reflects their ability to exchange cations with liquid phases in near contact. Measurement of CEC is used for characterizing sample plasticity, adsorbing and swelling properties which later define their usage in industrial purposes. Several methods have been developed over the years for determination of layer charge, charge density, charge distribution, etc. and have been published in numerous papers (Czimerova et al., 2006; Yukselen and Kaya, 2008). The main goal of present study is comparison of suitability of more recent method - methylene blue test in regard to older method - ammonium acetate for determination of CEC. For this study, we selected one montmorillonite clay (Bogovina, Serbia) and two mainly kaolinite clays (Miličinica, Serbia). Chemicals used for CEC determinations were solution of methylene blue (MB)(14*10-6M/ml) and ammonium acetate (AA) solution (1M). The obtained results are showing generally lower values in case of MB method. The main difference is due to molecular aggregation of MB on the clay surface. AA method is highly sensitive to the presence of CaO. Release of Ca ion from the sample into the solution can limit the saturation of exchange sites by the ammonium ion. This is clearly visible in case of montmorillonite clay. Fe2+ and Mg ions are difficult to move by the ammonium ion because of their ion radius, but in case of MB molecule there is no such restriction in removing them from the exchange sites. MB solution, even in a low concentration (2*10-6M/ml), is showing preferable results in moving the ions from their positions which is already visible after adding a small quantity of solution (25cm3). Both MB-titration and MB-spot test yield similar results and are much simpler methods than AA and they also give other information such as specific surface area (external and internal) whereas AA method only provides information about

  5. Synthesis of cobalt ferrite nanoparticles from thermolysis of prospective metal-nitrosonaphthol complexes and their photochemical application in removing methylene blue

    NASA Astrophysics Data System (ADS)

    Tavana, Jalal; Edrisi, Mohammad

    2016-03-01

    In this study, cobalt ferrite (CoFe2O4) nanoparticles were synthesized by two novel methods. The first method is based on the thermolysis of metal-NN complexes. In the second method, a template free sonochemical treatment of mixed cobalt and iron chelates of α-nitroso-β-naphthol (NN) was applied. Products prepared through method 1 were spherical, with high specific surface area (54.39 m2 g-1) and small average crystalline size of 13 nm. However, CoFe2O4 nanoparticles prepared by method 2 were in random shapes, a broad range of crystalline sizes and a low specific surface area of 25.46 m2 g-1 though highly pure. A Taguchi experimental design was implemented in method 1 to determine and obtain the optimum catalyst. The structural and morphological properties of products were investigated by x-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, Brunauer-Emmett-Teller and dynamic laser light scattering. The crystalline size calculations were performed using Williamson-Hall method on XRD spectrum. The photocatalytic activity of the optimum nanocrystalline cobalt ferrite was investigated for degradation of a representative pollutant, methylene blue (MB), and visible light as energy source. The results showed that some 92% degradation of MB could be achieved for 7 h of visible light irradiation.

  6. A histochemical comparison of methylene-blue/acid fuchsin with hematoxylin and eosin for differentiating calcification of stromal tissue.

    PubMed

    Gupta, K; Kale, A D; Hallikeremath, S R; Kotrashetti, V S

    2012-05-01

    Benign and malignant connective tissue tumors consist of a fibrous component that contains varying amounts of one or more types of bone or other calcified tissue. Diagnosis of these connective tissue tumors often poses challenges for pathologists, because it is difficult to differentiate the organic matrix of osteoid from hyalinized stroma. To establish a definitive diagnosis, it sometimes is advantageous to demonstrate histologically by special staining either the type of calcification or the presence or absence of calcification. We compared the efficacy of methylene blue-acid fuchsin (MB-AF) to hematoxylin and eosin (H-E) for connective tissue tumors suspected to contain calcifications and to devise an optimal staining technique for calcification that would be specific, simple, and cost- and time-effective. We examined 50 benign and 45 malignant connective tissue tumors that were suspected to contain calcifications. Sections were stained with H-E and MB-AF and evaluated. MB-AF stained bone pink, which contrasted with blue soft tissue. After MB-AF staining, osteoid was faint pink in a blue stromal background. Osteoid was not visualized in H-E stained sections; it was stained the same shade of pink as stromal tissue. Dystrophic calcification and cementum could be identified equally well using either staining technique, but contrast was better after H-E staining. MB-AF staining of bone was comparable to H-E staining and could be used effectively to stain bone and osteoid. MB-AF is a simple, single step procedure. It also stains cementum blue with faint blue rimming and dystrophic calcification bluish-pink, but it cannot be used as a specific stain for types of calcification other than bone and osteoid.

  7. What Is Happening when the Blue Bottle Bleaches: An Investigation of the Methylene Blue-Catalyzed Air Oxidation of Glucose

    ERIC Educational Resources Information Center

    Anderson, Laurens; Wittkopp, Stacy M.; Painter, Christopher J.; Liegel, Jessica J.; Schreiner, Rodney; Bell, Jerry A.; Shakhashiri, Bassam Z.

    2012-01-01

    An investigation of the Blue Bottle Experiment, a well-known lecture demonstration reaction involving the dye-catalyzed air oxidation of a reducing sugar in alkaline solution, has delineated the sequence of reactions leading to the bleaching of the dye, the regeneration of color, and so forth. Enolization of the sugar is proposed as a key step in…

  8. A study on the adsorption of methylene blue onto gum ghatti/TiO2 nanoparticles-based hydrogel nanocomposite.

    PubMed

    Mittal, Hemant; Ray, Suprakas Sinha

    2016-07-01

    The objective of this work was to study the isotherm and kinetic models for the adsorption of methylene blue (MB) onto a TiO2 nanoparticle (TiO2NP)-containing hydrogel nanocomposite (HNC) of polyacrylamide-grafted gum ghatti (PAAm-g-Gg). The grafting of PAAm onto Gg was conducted using N,N'-methylene-bis-acrylamide (MBA) as a crosslinker, and different weight percentages of TiO2NPs were incorporated into the hydrogel matrix during the grafting reaction. The graft co-polymerization and the formation of the HNC were confirmed using FTIR, XRD, BET, SEM, TEM and EDS analyses. The adsorption of MB was studied in batch mode and it was found to be highly dependent on solution pH, ionic strength temperature and adsorbent loading. The MB-adsorption process followed the pseudo-second-order rate model and Langmuir adsorption isotherm with a maximum adsorption capacity of 1305.5mgg(-1). Thermodynamic studies revealed that the adsorption of MB onto the HNC surface was spontaneous, endothermic and through a process of physisorption. The results also showed that the HNC was much more effective for the adsorption of cationic dyes than anionic dyes, and it retained its original adsorption capacity for five successive cycles of adsorption-desorption. In conclusion, the hydrogel nanocomposite showed huge potential for remediating industrial wastewater polluted by toxic cationic dyes.

  9. A study on the adsorption of methylene blue onto gum ghatti/TiO2 nanoparticles-based hydrogel nanocomposite.

    PubMed

    Mittal, Hemant; Ray, Suprakas Sinha

    2016-07-01

    The objective of this work was to study the isotherm and kinetic models for the adsorption of methylene blue (MB) onto a TiO2 nanoparticle (TiO2NP)-containing hydrogel nanocomposite (HNC) of polyacrylamide-grafted gum ghatti (PAAm-g-Gg). The grafting of PAAm onto Gg was conducted using N,N'-methylene-bis-acrylamide (MBA) as a crosslinker, and different weight percentages of TiO2NPs were incorporated into the hydrogel matrix during the grafting reaction. The graft co-polymerization and the formation of the HNC were confirmed using FTIR, XRD, BET, SEM, TEM and EDS analyses. The adsorption of MB was studied in batch mode and it was found to be highly dependent on solution pH, ionic strength temperature and adsorbent loading. The MB-adsorption process followed the pseudo-second-order rate model and Langmuir adsorption isotherm with a maximum adsorption capacity of 1305.5mgg(-1). Thermodynamic studies revealed that the adsorption of MB onto the HNC surface was spontaneous, endothermic and through a process of physisorption. The results also showed that the HNC was much more effective for the adsorption of cationic dyes than anionic dyes, and it retained its original adsorption capacity for five successive cycles of adsorption-desorption. In conclusion, the hydrogel nanocomposite showed huge potential for remediating industrial wastewater polluted by toxic cationic dyes. PMID:26997239

  10. Application of central composite design for simultaneous removal of methylene blue and Pb2+ ions by walnut wood activated carbon

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Mazaheri, H.; Khodadoust, S.; Hajati, S.; Purkait, M. K.

    2015-01-01

    Activated carbon was prepared from walnut wood which was locally available, non-toxic, abundant and cheap. This new adsorbent was characterized using BET, FTIR and SEM. Point of zero charge (pHpzc) and oxygen containing functional groups were also determined. The prepared adsorbent was applied for simultaneous removal of Pb2+ ions and methylene blue (MB) dye from aqueous solution. The prominent effect and interaction of variables such as amount of adsorbent, contact time, concentration of MB and Pb2+ ions were optimized by central composite design. The equilibrium data obtained at optimum condition were fitted to conventional isotherm models and found that Langmuir model was the best fitted isotherm. Kinetic data were fitted using various models. It was revealed that the adsorption rate follows pseudo-second order kinetic model and intraparticle diffusion model.

  11. Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beads in fixed bed columns.

    PubMed

    Mohammed, Nishil; Grishkewich, Nathan; Waeijen, Herman Ambrose; Berry, Richard M; Tam, Kam Chiu

    2016-01-20

    The adsorption behavior of methylene blue by cellulose nanocrystal-alginate (CNC-ALG) hydrogel beads in a fixed bed column was studied by varying the initial dye concentrations, bed depths and flow rates. An unusual phenomenon was observed in the early phase of the adsorption, and the phenomenon was elucidated by varying other critical design parameters, such as the flow direction, diameter of column and composition of adsorbent. The swelling and shrinkage of hydrogel beads during the adsorption was responsible for the anomalous concentration versus time profile of the adsorption process. The maximum adsorption capacity of the column was 255.5mg/g, which is in agreement with the batch study determined from the Langmuir adsorption isotherm. A comprehensive understanding on the adsorption mechanism of CNC-ALG hydrogel beads during the early stages of adsorption was derived from this study.

  12. Photocatalytic Decomposition of Methylene Blue Over MIL-53(Fe) Prepared Using Microwave-Assisted Process Under Visible Light Irradiation.

    PubMed

    Trinh, Nguyen Duy; Hong, Seong-Soo

    2015-07-01

    Iron-based MIL-53 crystals with uniform size were successfully synthesized using a microwave-assisted solvothermal method and characterized by XRD, FE-SEM and DRS. We also investigated the photocatalytic activity of MIL-53(Fe) for the decomposition of methylene blue using H2O2 as an electron acceptor. From XRD and SEM results, the fully crystallized MIL-53(Fe) materials were obtained regardless of preparation method. From DRS results, MIL-53(Fe) samples prepared using microwave-assisted process displayed the absorption spectrum up to the visible region and then they showed the high photocatalytic activity under visible light irradiation. The MIL-53(Fe) catalyst prepared by two times microwave irradiation showed the highest activity.

  13. Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis.

    PubMed

    Ai, Lunhong; Zhang, Chunying; Liao, Fang; Wang, Yao; Li, Ming; Meng, Lanying; Jiang, Jing

    2011-12-30

    In this study, we have demonstrated the efficient removal of cationic dye, methylene blue (MB), from aqueous solution with the one-pot solvothermal synthesized magnetite-loaded multi-walled carbon nanotubes (M-MWCNTs). The as-prepared M-MWCNTs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The effects of contact time, initial dye concentration, and solution pH on the adsorption of MB onto M-MWCNTs were systematically studied. It was shown that the MB adsorption was pH-dependent. Adsorption kinetics was best described by the pseudo-second-order model. Equilibrium data were well fitted to the Langmuir isotherm model, yielding maximum monolayer adsorption capacity of 48.06 mg g(-1). FTIR analysis suggested that the adsorption mechanism was possibly attributed to the electrostatic attraction and π-π stacking interactions between MWCNTs and MB.

  14. Preconcentration of Sn (II) using the methylene blue on the activated carbon and its determination by spectrophotometry method.

    PubMed

    Khodadoust, Saeid; Cham Kouri, Narges

    2014-04-01

    A simple and accurate spectrophotometric method for determination of trace amounts of Sn (II) ion in soil sample was developed by using the methylene blue (MB) in the presence of activated carbon (AC) as the adsorbent Solid Phase Extraction (SPE) of Sn (II) and then determined by UV-Vis. The Beer's law is obeyed over the concentration range of 1-80ngmL(-1) of Sn (II) with the detection limits of 0.34ngmL(-1). The influence of type and volume of eluent, concentration of MB, pH, and amount of AC on sensitivity of spectrophotometric method were optimized. The method has been successfully applied for Sn (II) ion determination in soil sample.

  15. P25-graphene hydrogels: room-temperature synthesis and application for removal of methylene blue from aqueous solution.

    PubMed

    Hou, Chengyi; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi

    2012-02-29

    Herein we report a room-temperature synthesis of chemically bonded TiO2 (P25)-graphene composite hydrogels and their use as high performance visible light photocatalysts. The three-dimensional (3D) TiO2-carbon composite exhibits a significant enhancement in the reaction rate in the decontamination of methylene blue, compared to the bare P25. The 3D P25-graphene hydrogel is much easier to prepare and apply as a macroscopic device, compared to the 2D P25-graphene sheets. This work could provide new insights into the room-temperature synthesis of graphene-based materials. As a kind of the novel 3D graphene-based composite, the obtained high performance P25-graphene gel could be widely used in the environmental protection issues. PMID:22264584

  16. Nanomolar determination of 4-nitrophenol based on a poly(methylene blue)-modified glassy carbon electrode.

    PubMed

    Giribabu, Krishnamoorthy; Suresh, Ranganathan; Manigandan, Ramadoss; Munusamy, Settu; Kumar, Sivakumar Praveen; Muthamizh, Selvamani; Narayanan, Vengidusamy

    2013-10-01

    A poly(methylene blue)-modified glassy carbon electrode (PMB/GCE) was fabricated by electropolymerisation of methylene blue on a GCE and further utilized to investigate the electrochemical determination of 4-nitrophenol (4-NP) by cyclic voltammetry (CV), differential pulse voltammetry and chronocoulometry. The morphology of the PMB on GCE was examined using a scanning electron microscope (SEM). An oxidation peak of 4-NP at the PMB modified electrode was observed at 0.28 V, and in the case of bare GCE, no oxidation peak was observed, which indicates that PMB/GCE exhibits a remarkable effect on the electrochemical determination of 4-NP. Due to this remarkable effect of PMB/GCE, a sensitive and simple electrochemical method was proposed for the determination of 4-NP. The effect of the scan rate and pH was investigated to determine the optimum conditions at which the PMB/GCE exhibits a higher sensitivity with a lower detection limit. Moreover, kinetic parameters such as the electron transfer number, proton transfer number and standard heterogeneous rate constant were calculated. Under optimum conditions, the oxidation current of 4-NP is proportional to its concentration in the range of 15-250 nM with a correlation coefficient of 0.9963. The detection limit was found to be 90 nM (S/N = 3). The proposed method based on PMB/GCE is simple, easy and cost effective. To further confirm its possible application, the proposed method was successfully used for the determination of 4-NP in real water samples with recoveries ranging from 97% to 101.6%. The interference due to sodium, potassium, calcium, magnesium, copper, zinc, iron, sulphate, carbonate, chloride, nitrate and phosphate was found to be almost negligible. PMID:23897002

  17. Azure B, a metabolite of methylene blue, is a high-potency, reversible inhibitor of monoamine oxidase

    SciTech Connect

    Petzer, Anél; Harvey, Brian H.; Wegener, Gregers; Petzer, Jacobus P.

    2012-02-01

    Methylene blue (MB) has been shown to act at multiple cellular and molecular targets and as a result possesses diverse medical applications. Among these is a high potency reversible inhibition of monoamine oxidase A (MAO-A) that may, at least in part, underlie its adverse effects but also its psycho- and neuromodulatory actions. MB is metabolized to yield N-demethylated products of which azure B, the monodemethyl species, is the major metabolite. Similar to MB, azure B also displays a variety of biological activities and may therefore contribute to the pharmacological profile of MB. Based on these observations, the present study examines the interactions of azure B with recombinant human MAO-A and -B. The results show that azure B is a potent MAO-A inhibitor (IC{sub 50} = 11 nM), approximately 6-fold more potent than is MB (IC{sub 50} = 70 nM) under identical conditions. Measurements of the time-dependency of inhibition suggest that the interaction of azure B with MAO-A is reversible. Azure B also reversibly inhibits the MAO-B isozyme with an IC{sub 50} value of 968 nM. These results suggest that azure B may be a hitherto under recognized contributor to the pharmacology and toxicology of MB by blocking central and peripheral MAO-A activity and as such needs to be considered during its use in humans and animals. Highlights: ► Methylene blue (MB) is a known potent MAO-A inhibitor. ► Azure B, the major metabolite of MB, is more potent as a MAO-A inhibitor. ► Azure B may be a contributor to the CNS pharmacology and toxicology of MB.

  18. Intratumor photosensitizer injection for photodynamic therapy: Pre-clinical experience with methylene blue, Pc 4, and Photofrin

    NASA Astrophysics Data System (ADS)

    Baran, Timothy M.; Foster, Thomas H.

    2016-03-01

    Intravenous administration of some photosensitizers, including the FDA-approved Photofrin, results in significant systemic photosensitivity and a 2-3-day drug-light interval. Direct intratumor injection of photosensitizer could potentially eliminate these negative aspects of photodynamic therapy (PDT), while requiring a lower photosensitizer dose to achieve comparable drug concentration in the target tissue. We performed PDT using intratumor injection of 3 photosensitizers, methylene blue (MB), Pc 4, and Photofrin, in mouse tumor models. After a 0-15 minute drug-light interval, illumination was delivered by appropriate diode lasers. For animals receiving MB or Pc 4, surface illumination was delivered using a microlens-terminated fiber. For animals receiving Photofrin, interstitial illumination was delivered by a 1 cm diffuser. In animals receiving MB or Pc 4, tumor dimensions were measured daily post-PDT, with a cure being defined as no palpable tumor 90 days post-treatment. For Photofrin, animals were sacrificed 24 hours post-PDT and tumors were excised, with samples HE stained to assess PDT-induced necrosis. 55% of tumors were cured with MB-PDT, and significant tumor growth delay (p=0.002) was observed for Pc 4. For Photofrin PDT, the mean necrosis radius was 3.4+/-0.8 mm, compared to 2.9+/-1.3 mm for systemic administration, which was not a significant difference (p=0.58). Intratumoral injection of the photosensitizers methylene blue, Pc 4, and Photofrin is feasible, and results in appreciable tumor response. Further investigation is necessary to optimize treatment protocols and assess the systemic photosensitivity induced by intratumor injection.

  19. N-acetylcysteine, Ascorbic Acid, and Methylene Blue for the Treatment of Aluminium Phosphide Poisoning: Still Beneficial?

    PubMed Central

    Gheshlaghi, Farzad; Lavasanijou, Mohamad Reza; Moghaddam, Noushin Afshar; Khazaei, Majid; Behjati, Mohaddeseh; Farajzadegan, Ziba; Sabzghabaee, Ali Mohammad

    2015-01-01

    Objectives: Intentional and accidental intoxication with aluminium phosphide (ALP) remains a clinical problem, especially in the Middle East region. Considering the high mortality rate besides lack of any recommended first option drug for its treatment, this study was aimed to compare the therapeutic effects of N-acetylcysteine (NAC), vitamin C (Vit C), and methylene blue; both in isolate and also in combination, for the treatment of ALP intoxication in a rat model. Materials and Methods: In this experimental animal study, 80 male Wistar rats in eight groups were intoxicated with ALP (12.5 mg/kg) and treated with a single dose of NAC (100 mg/kg) or Vit C (500–1,000 mg/kg) or methylene blue (1 mg/kg/5 min, 0.1%) or two of these agents or all three of them (controls were not treated). Rats were monitored regarding the parameters of drug efficacy as increased survival time and reduced morbidity and mortality rate for 3 consecutive days to ensure toxin neutralization. Macroscopic changes were recorded and biopsy sections were taken from brain, cerebellum, kidney, liver, and heart for microscopic evaluation regarding cellular hypoxia. Results: The mean survival times of rats exposed to ALP and treated with VitC + NAC was 210.55±236.22 minutes. In analysis of survival times, there was a significant difference between Group 5 which received VitC + NAC and the other groups (P < 0.01). Serum magnesium levels after death were higher than normal (P = 0.01). Conclusions: Despite the higher survival rate of antioxidant-treated rats compared with controls, this difference was not statistically significant. PMID:26862259

  20. Nanomolar determination of 4-nitrophenol based on a poly(methylene blue)-modified glassy carbon electrode.

    PubMed

    Giribabu, Krishnamoorthy; Suresh, Ranganathan; Manigandan, Ramadoss; Munusamy, Settu; Kumar, Sivakumar Praveen; Muthamizh, Selvamani; Narayanan, Vengidusamy

    2013-10-01

    A poly(methylene blue)-modified glassy carbon electrode (PMB/GCE) was fabricated by electropolymerisation of methylene blue on a GCE and further utilized to investigate the electrochemical determination of 4-nitrophenol (4-NP) by cyclic voltammetry (CV), differential pulse voltammetry and chronocoulometry. The morphology of the PMB on GCE was examined using a scanning electron microscope (SEM). An oxidation peak of 4-NP at the PMB modified electrode was observed at 0.28 V, and in the case of bare GCE, no oxidation peak was observed, which indicates that PMB/GCE exhibits a remarkable effect on the electrochemical determination of 4-NP. Due to this remarkable effect of PMB/GCE, a sensitive and simple electrochemical method was proposed for the determination of 4-NP. The effect of the scan rate and pH was investigated to determine the optimum conditions at which the PMB/GCE exhibits a higher sensitivity with a lower detection limit. Moreover, kinetic parameters such as the electron transfer number, proton transfer number and standard heterogeneous rate constant were calculated. Under optimum conditions, the oxidation current of 4-NP is proportional to its concentration in the range of 15-250 nM with a correlation coefficient of 0.9963. The detection limit was found to be 90 nM (S/N = 3). The proposed method based on PMB/GCE is simple, easy and cost effective. To further confirm its possible application, the proposed method was successfully used for the determination of 4-NP in real water samples with recoveries ranging from 97% to 101.6%. The interference due to sodium, potassium, calcium, magnesium, copper, zinc, iron, sulphate, carbonate, chloride, nitrate and phosphate was found to be almost negligible.

  1. Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder: A fixed-bed column study.

    PubMed

    Uddin, Md Tamez; Rukanuzzaman, Md; Khan, Md Maksudur Rahman; Islam, Md Akhtarul

    2009-08-01

    Continuous fixed-bed studies were undertaken to evaluate the efficiency of jackfruit leaf powder (JLP) as an adsorbent for the removal of methylene blue (MB) from aqueous solution under the effect of various process parameters like bed depth (5-10cm), flow rate (30-50mL/min) and initial MB concentrations (100-300mg/L). The pH at point of zero charge (pH(PZC)) of the adsorbent was determined by the titration method and a value of 3.9 was obtained. A FTIR of the adsorbent was done before and after the adsorption to find the potential adsorption sites for interaction with methylene blue molecules. The results showed that the total adsorbed quantities and equilibrium uptake decreased with increasing flow rate and increased with increasing initial MB concentration. The longest breakthrough time and maximum MB adsorption were obtained at pH 10. The results showed that the column performed well at low flow rate. Also, breakthrough time and exhaustion time increased with increasing bed depth. The bed-depth service time (BDST) model and the Thomas model were applied to the adsorption of MB at different bed depths, flow rates, influent concentrations and pH to predict the breakthrough curves and to determine the characteristic parameters of the column that are useful for process design. The two model predictions were in very good agreement with the experimental results at all the process parameters studied indicating that they were very suitable for JLP column design.

  2. Evaluation of Coronal Leakage Following Different Obturation Techniques and in-vitro Evalution Using Methylene Blue Dye Preparation

    PubMed Central

    Mathur, Rachit; Sharma, Medhavi; Sharma, Deepak; Raisingani, Deepak; Vishnoi, Suchita; Singhal, Deepika

    2015-01-01

    Introduction Coronal and apical leakage still remains one of the most important cause for endodontic failure in spite of the presence of advanced endodontic materials. The cause may attribute to different filling techniques, physical and chemical properties of sealers and presence or absence of smear layer assessment of coronal or apical leakage is used as a research method to compare the sealing ability of different techniques and endodontic materials. Aim To compare the coronal bacterial leakage using methylene blue in four different obturation techniques after protaper hand instrumentation. Materials and Methods Ninety extracted single-rooted teeth were instrumented to an apical preparation size F3 Protaper hand files. Twenty teeth were randomly obturated with lateral compaction, 20 with vertical compaction, 20 with combination of vertical and lateral compaction and 20 with Thermafil. Ten teeth were used for positive and negative controls (five teeth in each group). Teeth were kept in 100% humidity for 90 days, and then subjected coronally to Proteus vulgaris for 21 days to assess bacterial leakage. After bacterial challenge, methylene blue was placed coronally for another 21 days, and then scoring was done according to depth of dye leakage. Chi-square test was done for statistical analysis. Results Leakage as observed with combination of vertical and lateral compaction was significantly less than vertical compaction, lateral compaction and thermafil carriers during bacterial challenge. However, when dye was used it also showed statistically significant results with thermafil carriers showing the least leakage in comparison to vertical condensation, lateral condensation and combined groups. Conclusion The study concludes that two different methods i.e. bacterial and dye leakage revealed considerable variation on the same substrate Thus, due to the presence of variability among the results obtained by two different analytical methods used in the present study

  3. Localization of Small Peripheral Pulmonary Lesion by Methylene Blue Injection With Radial Endobronchial Ultrasonography in Sublobar Resection.

    PubMed

    Liu, Zhengcheng; Yang, Rusong; Shao, Feng; Pan, Yanqing

    2016-02-01

    Ultrasonography can be performed as an adjunct to aid in the localization of small nodules. We describe 25 patients with computed tomographic evidence of peripheral pulmonary lesions (PPLs) who underwent bronchoscopy with endobronchial ultrasonography (EBUS) for localization. The results demonstrate that methylene blue injection with radial EBUS is a simple and easy location technique for PLLs in Sublobar resection.

  4. A universally applicable and rapid method for measuring the growth of streptomyces and other filamentous microorganisms by methylene blue adsorption-desorption.

    PubMed

    Fischer, Marco; Sawers, R Gary

    2013-07-01

    Quantitative assessment of growth of filamentous microorganisms, such as streptomycetes, is generally restricted to determination of dry weight. Here, we describe a straightforward methylene blue-based sorption assay to monitor microbial growth quantitatively, simply, and rapidly. The assay is equally applicable to unicellular and filamentous bacterial and eukaryotic microorganisms.

  5. 7-Nitroindazole and methylene blue, inhibitors of neuronal nitric oxide synthase and NO-stimulated guanylate cyclase, block MK-801-elicited behaviors in mice.

    PubMed

    Deutsch, S I; Rosse, R B; Paul, S M; Tomasino, V; Koetzner, L; Morn, C B; Mastropaolo, J

    1996-07-01

    We examined the abilities of 7-nitroindazole and methylene blue, inhibitors of the neuronal isoform of nitric oxide synthase (NOS) and nitric oxide-stimulated guanylate cyclase activity respectively, to attenuate explosive episodic jumping behavior(s) ("popping") elicited by MK-801 in mice. MK-801, like phencyclidine (PCP), is a high-affinity, noncompetitive antagonist of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor. We have postulated that MK-801-elicited popping behavior in mice represents an animal model of schizophrenia, because popping behavior is markedly inhibited/antagonized by both typical and atypical antipsychotic drugs. In the present study, popping behavior induced by MK-801 was measured using an automated detection system that quantifies vertical displacements on the testing platform. 7-Nitroindazole (100 mg/kg) and methylene blue (32 and 100 mg/kg) significantly reduced the number and force of MK-801-elicited popping behavior. Mouse rotorod performance did not differ between animals receiving 7-nitroindazole, methylene blue, or their respective vehicles, suggesting that attenuation of MK-801-elicited popping behavior was not due to either sedation or ataxia caused by 7-nitroindazole or methylene blue. Our findings suggest that nitric oxide may, in part, mediate behaviors induced by NMDA receptor antagonists, like MK-801, and that inhibitors of NOS may have antipsychotic actions.

  6. Improved methylene blue two-phase titration method for determining cationic surfactant concentration in high-salinity brine.

    PubMed

    Cui, Leyu; Puerto, Maura; López-Salinas, José L; Biswal, Sibani L; Hirasaki, George J

    2014-11-18

    The methylene blue (MB) two-phase titration method is a rapid and efficient method for determining the concentrations of anionic surfactants. The point at which the aqueous and chloroform phases appear equally blue is called Epton's end point. However, many inorganic anions, e.g., Cl(-), NO3(-), Br(-), and I(-), can form ion pairs with MB(+) and interfere with Epton's end point, resulting in the failure of the MB two-phase titration in high-salinity brine. Here we present a method to extend the MB two-phase titration method for determining the concentration of various cationic surfactants in both deionized water and high-salinity brine (22% total dissolved solid). A colorless end point, at which the blue color is completely transferred from the aqueous phase to the chloroform phase, is proposed as titration end point. Light absorbance at the characteristic wavelength of MB is measured using a spectrophotometer. When the absorbance falls below a threshold value of 0.04, the aqueous phase is considered colorless, indicating that the end point has been reached. By using this improved method, the overall error for the titration of a permanent cationic surfactant, e.g., dodecyltrimethylammonium bromide, in deionized (DI) water and high-salinity brine is 1.274% and 1.322% with limits of detection (LOD) of 0.149 and 0.215 mM, respectively. Compared to the traditional acid-base titration method, the error of this improved method for a switchable cationic surfactant, e.g., tertiary amine surfactant (Ethomeen C12), is 2.22% in DI water and 0.106% with LOD of 0.369 and 0.439 mM, respectively.

  7. Iron Impregnated Activated Carbon as an Efficient Adsorbent for the Removal of Methylene Blue: Regeneration and Kinetics Studies

    PubMed Central

    Shah, Irfan; Adnan, Rohana; Wan Ngah, Wan Saime; Mohamed, Norita

    2015-01-01

    In this study, iron impregnated activated carbon (FeAC) was synthesized following an oxidation and iron impregnation of activated carbon (AC). Both the AC and FeAC were characterized by pHZPC and FTIR spectroscopy. The removal of Methylene Blue (MB) by AC and FeAC was examined under various experimental conditions. The FeAC showed up to 95% (higher than AC) MB removal in the pH range of 7–10. Although the reaction kinetics was pseudo–second order, the overall rate was controlled by a number of processes such as film diffusion, pore diffusion and intraparticle diffusion. The activation energy values for the MB uptake by AC and FeAC (21.79 and 14.82 kJ/mol, respectively) revealed a physisorption process. In the regeneration study, FeAC has shown consistently ≥ 90% MB removal even up to 10 repeated cycles. The reusable characteristic of the spent FeAC improved the practical use of activated carbon and can be a breakthrough for continuous flow system applications where it can work effectively without any significant reduction in its performance. PMID:25849291

  8. Enhanced photoluminescence properties of methylene blue dye encapsulated in nanosized hydroxyapatite/silica particles with core-shell structure

    NASA Astrophysics Data System (ADS)

    Ge, Xiaolu; Li, Chengfeng; Fan, Chengyu; Feng, Xiaoxing; Cao, Bingqiang

    2013-11-01

    Organic dye of methylene blue (MB) was encapsulated in core-shell structured hydroxyapatite/silica particles (HAp/silica-MB) through a modified Stöber method with the addition of polyvinylpyrrolidone molecules. It was found that MB molecules were released from HAp/silica-MB at a slower rate than those from silica-MB in deionized water. In phosphate buffered saline (pH: 7.2-7.4) and acidic solutions (pH: 1.5-1.6), the penetration of ions in the interface influenced the interaction between HAp and MB molecules, which resulted in the rapid release of MB molecules from HAp/silica-MB. From the UV-Vis absorbance spectra, one could see that MB molecules in HAp/silica-MB were weakly aggregated in comparison with those in silica-MB. For HAp/silica-MB, enhanced luminescence properties were observed in the photoluminescence spectra and dual luminescence with two emission peaks were caused by the presence of monomers and dimers. Contrarily, no photoluminescence emission was detected for samples of free MB and silica-MB under the same excitation condition because of the self-quenching effect. It was the adsorption of MB molecules on HAp that had resulted in the enlargement of intramolecular distance and the reduction of self-quenching effect. These hybrid particles with enhanced luminescent properties might find wide applications in the field of bioanalysis, bioseparation, and biomedical imaging.

  9. Synthesis of β-Cyclodextrin-Based Electrospun Nanofiber Membranes for Highly Efficient Adsorption and Separation of Methylene Blue.

    PubMed

    Zhao, Rui; Wang, Yong; Li, Xiang; Sun, Bolun; Wang, Ce

    2015-12-01

    Water-insoluble β-cyclodextrin-based fibers were synthesized by electrospinining followed by thermal cross-linking. The fibers were characterized by field-emission scanning electron microscopic (FE-SEM) and Fourier transformed infrared spectrometer (FT-IR). The highly insoluble fraction obtained from different pH values (3-11) indicates successful cross-linking reactions and their usability in aqueous solution. After the cross-linking reaction, the fibers' tensile strength increases significantly and the BET surface area is 19.49 m(2)/g. The cross-linked fibers exhibited high adsorption capacity for cationic dye methylene blue (MB) with good recyclability. The adsorption performance can be fitted well with pseudo-second-order model and Langmuir isotherm model. The maximum adsorption capacity is 826.45 mg/g according to Langmuir fitting. Due to electrostatic repulsion, the fibers show weak adsorption toward negatively charged anionic dye methyl orange (MO). On the basis of the selective adsorption, the fiber membrane can separate the MB/MO mixture solution by dynamic filtration at a high flow rate of 150 mL/min. The fibers can maintain good fibrous morphology and high separation efficiency even after five filtration-regeneration cycles. The obtained results suggested potential applications of β-cyclodextrin-based electrospun fibers in the dye wastewater treatment field. PMID:26572223

  10. The Effects of Methylene Blue on Autophagy and Apoptosis in MRI-Defined Normal Tissue, Ischemic Penumbra and Ischemic Core

    PubMed Central

    Jiang, Zhao; Watts, Lora Talley; Huang, Shiliang; Shen, Qiang; Rodriguez, Pavel; Chen, Chunhua; Zhou, Changman; Duong, Timothy Q.

    2015-01-01

    Methylene blue (MB) USP, which has energy-enhancing and antioxidant properties, is currently used to treat methemoglobinemia and cyanide poisoning in humans. We recently showed that MB administration reduces infarct volume and behavioral deficits in rat models of ischemic stroke and traumatic brain injury. This study reports the underlying molecular mechanisms of MB neuroprotection following transient ischemic stroke in rats. Rats were subjected to transient (60-mins) ischemic stroke. Multimodal MRI during the acute phase and at 24hrs were used to define three regions of interest (ROIs): i) the perfusion-diffusion mismatch salvaged by reperfusion, ii) the perfusion-diffusion mismatch not salvaged by reperfusion, and iii) the ischemic core. The tissues from these ROIs were extracted for western blot analyses of autophagic and apoptotic markers. The major findings were: 1) MB treatment reduced infarct volume and behavioral deficits, 2) MB improved cerebral blood flow to the perfusion-diffusion mismatch tissue after reperfusion and minimized harmful hyperperfusion 24hrs after stroke, 3) MB inhibited apoptosis and enhanced autophagy in the perfusion-diffusion mismatch, 4) MB inhibited apoptotic signaling cascades (p53-Bax-Bcl2-Caspase3), and 5) MB enhanced autophagic signaling cascades (p53-AMPK-TSC2-mTOR). MB induced neuroprotection, at least in part, by enhancing autophagy and reducing apoptosis in the perfusion-diffusion mismatch tissue following ischemic stroke. PMID:26121129

  11. Catalytic reduction of methylene blue and Congo red dyes using green synthesized gold nanoparticles capped by salmalia malabarica gum

    NASA Astrophysics Data System (ADS)

    Ganapuram, Bhagavanth Reddy; Alle, Madhusudhan; Dadigala, Ramakrishna; Dasari, Ayodhya; Maragoni, Venkatesham; Guttena, Veerabhadram

    2015-08-01

    Stable gold nanoparticles (AuNPs) were synthesized using salmalia malabarica gum as both reducing and capping agent. It is a simple and eco-friendly green synthesis. The successful formation of AuNPs was confirmed by UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction and transmission electron microscopy (TEM). The synthesized AuNPs were characterized by a peak at 520-535 nm in the UV-Vis spectrum. The X-ray diffraction studies indicated that the resulting AuNPs were highly crystalline with face-centred cubic geometry. TEM studies showed that the average particle size of the synthesized AuNPs was 12 ± 2 nm. FTIR analysis revealed that -OH groups present in the gum matrix might be responsible for the reduction of Au+3 into AuNPs. The synthesized AuNPs exhibited good catalytic properties in the reduction of methylene blue and Congo red.

  12. Synthesis and high-efficiency methylene blue adsorption of magnetic PAA/MnFe2O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Ding, Zui; Cai, Minhan; Jian, Haitao; Zeng, Zhiqiao; Li, Feng; Liu, J. Ping

    2015-08-01

    MnFe2O4 nanoparticles and polyacrylic acid PAA/MnFe2O4 nanocomposites were synthesized by a hydrothermal method and ultrasonic mixing process. The obtained materials were characterized by XRD, FTIR, SEM, TEM, and VSM. XRD patterns indicate that the synthesized MnFe2O4 nanoparticles have a single cubic spinel phase. SEM images confirm the existence of three types of basic morphology of MnFe2O4 nanoparticles: octahedral, flower-like, and plate-like particles. High saturation magnetization Ms (up to 74.6 emu/g) of the as-synthesized MnFe2O4 nanoparticles was obtained. Experiments demonstrate that the variation of the hydrothermal reaction time does not remarkably affect the magnetic properties of MnFe2O4 nanoparticles. In PAA/MnFe2O4 nanocomposites, the coating of PAA leads to a slight decrease in magnetization of MnFe2O4 nanoparticles. Additionally, PAA coating greatly enhances the adsorption properties of MnFe2O4 nanoparticles for Methylene Blue (MB) dye. Especially, the removal efficiency reaches 96.3%. This research indicates that the as-synthesized PAA/MnFe2O4 nanocomposites exhibit excellent magnetic properties and can be taken as a promising adsorbent for removal of MB dye in industrial scale.

  13. Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue.

    PubMed

    Thakur, Sourbh; Pandey, Sadanand; Arotiba, Omotayo A

    2016-11-20

    Batch adsorption experiments were carried out for the removal of methylene blue (MB) cationic dye from aqueous solution using organic/inorganic hydrogel nanocomposite of titania incorporated sodium alginate crosslinked polyacrylic acid (SA-cl-poly(AA)-TiO2). The hydrogel was prepared by graft copolymerization of acrylic acid (AA) onto sodium alginate (SA) biopolymer in the presence of a crosslinking agent, a free radical initiator and TiO2 nanoparticles. The hydrogel exhibited a high swelling capacity of 412.98g/g. The factors influencing adsorption capacity of the absorbents such as pH of the dye solutions, initial concentration of the dye, amount of absorbents, and temperature were investigated and used to propose a possible mechanism of adsorption. The adsorption process concurs with a pseudo-second-order kinetics and with Langmuir isotherm equation. A very high adsorption capacity (Qmax=2257.36 (mg/g)) and a correlation coefficient of 0.998 calculated from isotherm equations show the high efficiency of the absorbent and thus expected to be a good candidate as an absorbent for water treatment.

  14. Effect of electrostatic interaction on the methylene blue and methyl orange adsorption by the pristine and functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Robati, D.; Bagheriyan, S.; Rajabi, M.; Moradi, O.; Peyghan, A. Ahmadi

    2016-09-01

    Multi-walled carbon nanotubes (MWCNTs) were functionalized with cysteamine groups by several percentage of mass as adsorbents, then kinetics adsorption capacity was investigated for methylene blue (MB) and methyl orange (MO) as anionic and cationic dyes adsorbate molecules, respectively. The effect of temperature (from 283 to 303 K), contact time and initial concentration of the MB and MO dyes in a solution (10 to 40 ppm) was considered. The optimal contact time was found to be about 60 min. Some kinetics model such as pseudo-first-order, pseudo-second-order, intra-particle diffusion and the Elovich were tested. The adsorptions of MB dye on the pristine and functionalized MWCNT surfaces were found to be the intra-particle diffusion and the pseudo-second-order kinetic model, respectively and for adsorption of MO dye by the pristine and low functionalized MWCNTs and highly functionalized tubes, found to be the pseudo-second-order and intra-particle diffusion kinetic model, respectively, based on the chi-square statistic (X2) and also high correlation coefficient (R2) values.

  15. Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology.

    PubMed

    Roosta, M; Ghaedi, M; Daneshfar, A; Sahraei, R; Asghari, A

    2014-01-01

    The present study was focused on the removal of methylene blue (MB) from aqueous solution by ultrasound-assisted adsorption onto the gold nanoparticles loaded on activated carbon (Au-NP-AC). This nanomaterial was characterized using different techniques such as SEM, XRD, and BET. The effects of variables such as pH, initial dye concentration, adsorbent dosage (g), temperature and sonication time (min) on MB removal were studied and using central composite design (CCD) and the optimum experimental conditions were found with desirability function (DF) combined response surface methodology (RSM). Fitting the experimental equilibrium data to various isotherm models such as Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show the suitability and applicability of the Langmuir model. Analysis of experimental adsorption data to various kinetic models such as pseudo-first and second order, Elovich and intraparticle diffusion models show the applicability of the second-order equation model. The small amount of proposed adsorbent (0.01 g) is applicable for successful removal of MB (RE>95%) in short time (1.6 min) with high adsorption capacity (104-185 mg g(-1)).

  16. Parametric and adsorption kinetic studies of methylene blue removal from simulated textile water using durian (Durio zibethinus murray) skin.

    PubMed

    Anisuzzaman, S M; Joseph, Collin G; Krishnaiah, D; Bono, A; Ooi, L C

    2015-01-01

    In this study, durian (Durio zibethinus Murray) skin was examined for its ability to remove methylene blue (MB) dye from simulated textile wastewater. Adsorption equilibrium and kinetics of MB removal from aqueous solutions at different parametric conditions such as different initial concentrations (2-10 mg/L), biosorbent dosages (0.3-0.7 g) and pH solution (4-9) onto durian skin were studied using batch adsorption. The amount of MB adsorbed increased from 3.45 to 17.31 mg/g with the increase in initial concentration of MB dye; whereas biosorbent dosage increased from 1.08 to 2.47 mg/g. Maximum dye adsorption capacity of the durian skin was found to increase from 3.78 to 6.40 mg/g, with increasing solution pH. Equilibrium isotherm data were analyzed according to Langmuir and Freundlich isotherm models. The sorption equilibrium was best described by the Freundlich isotherm model with maximum adsorption capacity of 7.23 mg/g and this was due to the heterogeneous nature of the durian skin surface. Kinetic studies indicated that the sorption of MB dye tended to follow the pseudo second-order kinetic model with promising correlation of 0.9836 < R(2) < 0.9918.

  17. Core-shell Mn3O4/birnessite-MnO2 hierachical structure with enhanced adsorption towards methylene blue

    NASA Astrophysics Data System (ADS)

    Huang, Feifan; Zhou, Bowen; Xiao, Han; Xiao, Wei

    2016-01-01

    The core-shell Mn3O4/birnessite-MnO2 (Mn3O4/MnO2) was successfully established by assembly of birnessite-type MnO2 over Mn3O4 backbones. The product was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), as well as UV-vis absorption spectra (UV-vis) to assess its adsorption of methylene blue (MB) from neutral aqueous solutions. Compared to the individual Mn3O4, the prepared Mn3O4/MnO2 shows enhanced adsorption capability towards MB. Such enhancement is due to the higher surface area and the unique nanosheet shells. The adsorption of MB on the surface of Mn3O4/MnO2 was studied in terms of pseudo-first-order and the pseudo-second-order kinetic models, and the latter was found better. The present study indicates that hierarchically structured core-shell manganese oxides are promising adsorbents for wastewater treatment.

  18. Adsorption of a cationic dye, methylene blue, on to chitosan hydrogel beads generated by anionic surfactant gelation.

    PubMed

    Chatterjee, Sudipta; Chatterjee, Tania; Lim, Seong-Rin; Woo, Seung H

    2011-10-01

    Chitosan hydrogel beads (CSB) formed by sodium dodecyl sulphate (SDS) gelation were used for the removal of a cationic dye, methylene blue (MB), from aqueous solutions. The adsorption capacity of chitosan beads (CB) formed by alkali gelation was low because of charge repulsions between the chitosan (CS) and the MB. The adsorption capacity of CSB (4 g/L SDS gelation) for MB (100 mg/L) was 129.44 mg/g, and it decreased significantly with increasing SDS concentration during gelation. This decrease was a result of increased density of the CSB membrane materials. The CSB membrane materials formed with the 4 g/L SDS gelation showed the highest volumetric adsorption capacity. The MB adsorption on to CB and CSB increased with increasing values for the initial pH of solution. Data from both CB and CSB showed good fit to Sips isotherm models, and the maximum adsorption capacity of CSB (226.24 mg/g) was higher than that of CB (99.01 mg/g).

  19. Synthesis of β-Cyclodextrin-Based Electrospun Nanofiber Membranes for Highly Efficient Adsorption and Separation of Methylene Blue.

    PubMed

    Zhao, Rui; Wang, Yong; Li, Xiang; Sun, Bolun; Wang, Ce

    2015-12-01

    Water-insoluble β-cyclodextrin-based fibers were synthesized by electrospinining followed by thermal cross-linking. The fibers were characterized by field-emission scanning electron microscopic (FE-SEM) and Fourier transformed infrared spectrometer (FT-IR). The highly insoluble fraction obtained from different pH values (3-11) indicates successful cross-linking reactions and their usability in aqueous solution. After the cross-linking reaction, the fibers' tensile strength increases significantly and the BET surface area is 19.49 m(2)/g. The cross-linked fibers exhibited high adsorption capacity for cationic dye methylene blue (MB) with good recyclability. The adsorption performance can be fitted well with pseudo-second-order model and Langmuir isotherm model. The maximum adsorption capacity is 826.45 mg/g according to Langmuir fitting. Due to electrostatic repulsion, the fibers show weak adsorption toward negatively charged anionic dye methyl orange (MO). On the basis of the selective adsorption, the fiber membrane can separate the MB/MO mixture solution by dynamic filtration at a high flow rate of 150 mL/min. The fibers can maintain good fibrous morphology and high separation efficiency even after five filtration-regeneration cycles. The obtained results suggested potential applications of β-cyclodextrin-based electrospun fibers in the dye wastewater treatment field.

  20. Ceria and titania incorporated silica based catalyst prepared from rice husk: adsorption and photocatalytic studies of methylene blue.

    PubMed

    Adam, Farook; Muniandy, Lingeswarran; Thankappan, Radhika

    2013-09-15

    Titania and ceria incorporated rice husk silica based catalyst was synthesized via sol-gel method using CTAB and glycerol as surface directing agents at room temperature and labeled as RHS-50Ti10Ce. The catalyst was used to study the adsorption and photodegradation of methylene blue (MB) under UV irradiation. The powder XRD pattern of RHS-50Ti10Ce was much broader (2θ=25-30°) than that of the parent RHS (2θ=22°). The catalyst exhibited type IV isotherm with H3 hysteresis loop, and the TEM images showed partially ordered pore arrangements. The TGA-DTG thermograms confirmed the complete removal of the templates after calcination at 500°C. RHS-50Ti10Ce exhibited excellent adsorption capability with more than 99% removal of MB from a 40 mg L(-1) solution in just 15 min. It also decolorized an 80 mg L(-1) MB solution under UV irradiation in 210 min, which was comparable with the commercialized pure anatase TiO2.

  1. Application of AlMCM-41 for competitive adsorption of methylene blue and rhodamine B: Thermodynamic and kinetic studies.

    PubMed

    Eftekhari, S; Habibi-Yangjeh, A; Sohrabnezhad, Sh

    2010-06-15

    AlMCM-41 was applied for adsorption of methylene blue (MB) and rhodamine B (RB) in single and binary component systems. In the single component systems, AlMCM-41 represents higher adsorption capacity for MB than RB with the maximal adsorption capacity of 2.08x10(-4) and 8.74x10(-5)mol/g at 25 degrees C for MB and RB, respectively. In the binary component system, MB and RB exhibit competitive adsorption onto the adsorbent. The adsorption is approximately reduced to 94 and 79% of single component adsorption systems for MB and RB (initial concentration of 8x10(-6)M) at 25 degrees C. In single and binary component systems, kinetic and adsorption isotherm studies demonstrate that the data are following pseudo-second-order kinetic model and Langmuir isotherm. Effect of solution pH on the adsorption in single and binary component systems was studied and the results were described by electrostatic interactions.

  2. Defatted algal biomass as a non-conventional low-cost adsorbent: surface characterization and methylene blue adsorption characteristics.

    PubMed

    Sarat Chandra, T; Mudliar, S N; Vidyashankar, S; Mukherji, S; Sarada, R; Krishnamurthi, K; Chauhan, V S

    2015-05-01

    The present study investigates the use of defatted algal biomass (DAB) as a non-conventional low cost adsorbent. The maximum adsorption capacity of biomass (raw, defatted and sulfuric acid pretreated DAB) was determined by liquid phase adsorption studies in batch mode for the removal of methylene blue present at various concentrations (1, 2, 3, 4, and 5 mg L(-1)) from aqueous solutions. The data was well fitted with Langmuir and Freundlich isotherms. The maximum adsorption capacity for raw, defatted and sulfuric acid pretreated DAB was found to be 6.0, 7.73 and 7.80 mg g(-1), respectively. The specific surface area of raw, defatted and sulfuric acid pretreated DAB was estimated to be 14.70, 18.94, and 19.10 m(2) g(-1), respectively. To evaluate the kinetic mechanism that controls the adsorption process, pseudo-first order, pseudo-second order, intraparticle diffusion and particle diffusion has been tested. The data fitted quite well with pseudo-second order kinetic model.

  3. Maghemite nanosorbcats for methylene blue adsorption and subsequent catalytic thermo-oxidative decomposition: Computational modeling and thermodynamics studies.

    PubMed

    El-Qanni, Amjad; Nassar, Nashaat N; Vitale, Gerardo; Hassan, Azfar

    2016-01-01

    In this study methylene blue (MB) has been investigated for its adsorption and subsequent catalytic thermo-oxidative decomposition on surface of maghemite (γ-Fe2O3) nanoparticles. The experimental adsorption isotherm fit well to the Freundlich model, indicating multi-sites adsorption. Computational modeling of the interaction between the MB molecule and γ-Fe2O3 nanoparticle surface was carried out to get more insights into its adsorption behavior. Adsorption energies of MB molecules on the surface indicated that there are different adsorption sites on the surface of γ-Fe2O3 confirming the findings regarding the adsorption isotherm. The catalytic activity of the γ-Fe2O3 nanoparticles toward MB thermo-oxidative decomposition has been confirmed by subjecting the adsorbed MB to a thermo oxidation process up to 600 °C in a thermogravimetric analyzer. The experimental results showed a catalytic activity for post adsorption oxidation. The oxidation kinetics were studied using the Ozawa-Flyn-Wall (OFW) corrected method. The most probable mechanism functions were fifth and third orders for virgin MB and MB adsorbed onto γ-Fe2O3 nanoparticles, respectively. Moreover, the results of thermodynamic transition state parameters, namely changes in Gibbs free energy of activation (ΔG(‡)), enthalpy of activation (ΔH(‡)), and entropy of activation (ΔS(‡)), emphasized the catalytic activity of γ-Fe2O3 nanoparticles toward MB oxidation.

  4. A facile approach to prepare porous cup-stacked carbon nanotube with high performance in adsorption of methylene blue.

    PubMed

    Gong, Jiang; Liu, Jie; Jiang, Zhiwei; Wen, Xin; Mijowska, Ewa; Tang, Tao; Chen, Xuecheng

    2015-05-01

    Novel porous cup-stacked carbon nanotube (P-CSCNT) with special stacked morphology consisting of many truncated conical graphene layers was synthesized by KOH activating CSCNT from polypropylene. The morphology, microstructure, textural property, phase structure, surface element composition and thermal stability of P-CSCNT were investigated by field-emission scanning electron microscope, transmission electron microscope (TEM), high-resolution TEM, N2 sorption, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and thermal gravimetric analysis. A part of oblique graphitic layers were etched by KOH, and many holes with a diameter of several to a doze of nanometers connecting inner tube with outside were formed, which endowed P-CSCNT with high specific surface area (558.7 m(2)/g), large pore volume (1.993 cm(3)/g) and abundant surface functional groups. Subsequently, P-CSCNT was used for adsorption of methylene blue (MB) from wastewater. Langmuir model closely fitted the adsorption results, and the maximum adsorption capacity of P-CSCNT was as high as 319.1mg/g. This was ascribed to multiple adsorption mechanisms including pore filling, hydrogen bonding, π-π and electrostatic interactions. Pseudo second-order kinetic model was more valid to describe the adsorption behavior. Besides, P-CSCNT showed good recyclablity and reusability. These results demonstrated that P-CSCNT had potential application in wastewater treatment.

  5. Sorption and Desorption Behaviors of Methylene Blue in Soils Amended with Rice-Straw Ash and Biochar

    NASA Astrophysics Data System (ADS)

    Liu, Xinzhong; Chen, Rongguo; Weng, Rengui; Chen, Yilan; Peng, Lei; Xiu, Furong

    2012-06-01

    The ash (Ash) and biochar (BC) derived from the partial combustion of rice-straw are ubiquitous in soils and sediments and can potentially affect the environmental fate of organic contaminants. In this study, the effects of Ash and BC on the sorption and desorption behaviors of methylene blue (MB) were investigated. Ash was obtained from the direct burning of the rice-straw, and BC was separated from Ash by HCl treatment. SEM, BET, FT-IR, and pore size distribution analyses were used to characterize the Ash and BC prepared. Sorption capacities of MB on Ash-amended soil (AS) and BC-amended soil (BS) increased significantly with increasing contents of Ash and BC in soils. Sorption isotherms of soil amended with various amounts of Ash or BC fitted better to the Langmuir equation. The significant increase of apparent desorption hysteresis could be observed with increasing content of Ash or BC in the soils, especially in the case of BC, presumably due to the presence of micropores, hydroxyl groups and relatively higher specific surface area. It is believed that the presence of small amounts of BC produced from the rice-straw-derived ash in soil can have a marked effect on the transfer behavior of dye contaminations.

  6. Spectroscopic studies on the thermodynamic and thermal denaturation of the ct-DNA binding of methylene blue

    NASA Astrophysics Data System (ADS)

    Mudasir; Wahyuni, Endang Tri; Tjahjono, Daryono H.; Yoshioka, Naoki; Inoue, Hidenari

    2010-10-01

    The ct-DNA binding properties of methylene blue (MB) including binding constant, thermodynamic parameter and thermal denaturation ( Tm) have been systematically studied by spectrophotometric method. The binding of MB to ct-DNA is quite strong as indicated by remarkable hypochromicity, red shift and equilibrium binding constant ( Kb). Van't Hoff plot of 1/ T versus ln Kb suggests that the MB dye binds exothermically to ct-DNA which is characterized by large negative enthalpy and entropy changes. According to polyelectrolyte theory, the charge release ( Z) when ct-DNA interacts with MB is +1.09 which corresponds very well to the one positive charge carried by the MB dye. The Kb at a low concentration of salt is dominated by electrostatic interaction (90%) while that at a high concentration of salt is mostly controlled by non-electrostatic process (85%). However, the stabilization of the DNA binding event in both cases is governed by non-electrostatic process. A moderate stabilization of double helix ct-DNA occurs when the MB dye binds to ct-DNA as indicated by the increase in Tm of ct-DNA of about 5.5 °C in the presence of MB. This suggests that MB dye possibly binds to ct-DNA via electrostatic and intercalation modes.

  7. Oxygen-Deficient TiO2 - x/Methylene Blue Colloids: Highly Efficient Photoreversible Intelligent Ink.

    PubMed

    Imran, M; Yousaf, Ammar B; Zhou, Xiao; Liang, Kuang; Jiang, Yi-Fan; Xu, An-Wu

    2016-09-01

    Oxygen-sensitive photoreversible intelligent ink capable of assessment with the human eye is an ongoing demand in the modern era. In the food industry, redox-dye-based oxygen indicator films have been proposed, but the leaching of dyes from the film that contaminates the food is one unsolved issue. On the other hand, it is also highly desirable to develop rewritable paper that significantly reduces the pressure on modern society for the production and consumption of paper. Herein, we have developed an oxygen-deficient TiO2 - x/methylene blue (MB) sol without relying on external sacrificial electron donors (SEDs) for photoreversible color switching. Oxygen vacancies in TiO2 - x can work as electron donor to favor the adsorption of the substrate and improve the charge separation that is required for the redox-based color-switching system. The problems of rewriteable paper and food packaging are addressed as two sides of a single coin in this article. We have used hydroxyethyl cellulose (HEC) for rewritable paper that can significantly delay the oxidation of leuco-MB (LMB) through hydrogen bonding and retain the printed information for a long time. The dye leaching from oxygen indicator films is also significantly reduced (only 1.54%) by using furcelleran as the coating polymer that is extracted from edible red seaweed. PMID:27556281

  8. Facile method to synthesize magnetic iron oxides/TiO2 hybrid nanoparticles and their photodegradation application of methylene blue

    PubMed Central

    2011-01-01

    Many methods have been reported to improving the photocatalytic efficiency of organic pollutant and their reliable applications. In this work, we propose a facile pathway to prepare three different types of magnetic iron oxides/TiO2 hybrid nanoparticles (NPs) by seed-mediated method. The hybrid NPs are composed of spindle, hollow, and ultrafine iron oxide NPs as seeds and 3-aminopropyltriethyloxysilane as linker between the magnetic cores and TiO2 layers, respectively. The composite structure and the presence of the iron oxide and titania phase have been confirmed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectra. The hybrid NPs show good magnetic response, which can get together under an external applied magnetic field and hence they should become promising magnetic recovery catalysts (MRCs). Photocatalytic ability examination of the magnetic hybrid NPs was carried out in methylene blue (MB) solutions illuminated under Hg light in a photochemical reactor. About 50% to 60% of MB was decomposed in 90 min in the presence of magnetic hybrid NPs. The synthesized magnetic hybrid NPs display high photocatalytic efficiency and will find recoverable potential applications in cleaning polluted water with the help of magnetic separation. PMID:21961891

  9. Adsorption of methylene blue onto poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) nanotubes: kinetics, isotherm and thermodynamics analysis.

    PubMed

    Chen, Zhonghui; Zhang, Jianan; Fu, Jianwei; Wang, Minghuan; Wang, Xuzhe; Han, Runping; Xu, Qun

    2014-05-30

    Poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) (PZS) nanotubes, an excellent adsorbent, were successfully synthesized by an in situ template method and used for the removal of methylene blue (MB) from aqueous solution. The morphology and structures of as-synthesized PZS nanotubes were characterized by scanning electron microscopy, transmission electron microscope, Fourier transform infrared spectroscopy and N2 adsorption/desorption isotherms. The effects of temperature, concentration, pH and contact time on MB adsorption were studied. It was favorable for adsorption under the condition of basic and high temperature. The pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to fit adsorption data in the kinetic studies. And results showed that the adsorption kinetics were more accurately described by the pseudo-second-order model. The equilibrium isotherms were conducted using Freundlich and Langmuir models. It has been demonstrated that the better agreement was Langmuir isotherm with correlation coefficient of 0.9933, equilibrium absorption capacity of 69.16mg/g and the corresponding contact time of 15min. Thermodynamic analyses showed that MB adsorption onto the PZS nanotubes was endothermic and spontaneous and it was also a physisorption process.

  10. Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue.

    PubMed

    Thakur, Sourbh; Pandey, Sadanand; Arotiba, Omotayo A

    2016-11-20

    Batch adsorption experiments were carried out for the removal of methylene blue (MB) cationic dye from aqueous solution using organic/inorganic hydrogel nanocomposite of titania incorporated sodium alginate crosslinked polyacrylic acid (SA-cl-poly(AA)-TiO2). The hydrogel was prepared by graft copolymerization of acrylic acid (AA) onto sodium alginate (SA) biopolymer in the presence of a crosslinking agent, a free radical initiator and TiO2 nanoparticles. The hydrogel exhibited a high swelling capacity of 412.98g/g. The factors influencing adsorption capacity of the absorbents such as pH of the dye solutions, initial concentration of the dye, amount of absorbents, and temperature were investigated and used to propose a possible mechanism of adsorption. The adsorption process concurs with a pseudo-second-order kinetics and with Langmuir isotherm equation. A very high adsorption capacity (Qmax=2257.36 (mg/g)) and a correlation coefficient of 0.998 calculated from isotherm equations show the high efficiency of the absorbent and thus expected to be a good candidate as an absorbent for water treatment. PMID:27561469

  11. Facile preparation of hierarchically porous carbon using diatomite as both template and catalyst and methylene blue adsorption of carbon products.

    PubMed

    Liu, Dong; Yuan, Peng; Tan, Daoyong; Liu, Hongmei; Wang, Tong; Fan, Mingde; Zhu, Jianxi; He, Hongping

    2012-12-15

    Hierarchically porous carbons were prepared using a facile preparation method in which diatomite was utilized as both template and catalyst. The porous structures of the carbon products and their formation mechanisms were investigated. The macroporosity and microporosity of the diatomite-templated carbons were derived from replication of diatom shell and structure-reconfiguration of the carbon film, respectively. The macroporosity of carbons was strongly dependent on the original morphology of the diatomite template. The macroporous structure composed of carbon plates connected by the pillar- and tube-like macropores resulted from the replication of the central and edge pores of the diatom shells with disk-shaped morphology, respectively. And another macroporous carbon tubes were also replicated from canoe-shaped diatom shells. The acidity of diatomite dramatically affected the porosity of the carbons, more acid sites of diatomite template resulted in higher surface area and pore volume of the carbon products. The diatomite-templated carbons exhibited higher adsorption capacity for methylene blue than the commercial activated carbon (CAC), although the specific surface area was much smaller than that of CAC, due to the hierarchical porosity of diatomite-templated carbons. And the carbons were readily reclaimed and regenerated.

  12. A novel conversion of the groundwater treatment sludge to magnetic particles for the adsorption of methylene blue.

    PubMed

    Zhu, Suiyi; Fang, Shuai; Huo, Mingxin; Yu, Yang; Chen, Yu; Yang, Xia; Geng, Zhi; Wang, Yi; Bian, Dejun; Huo, Hongliang

    2015-07-15

    Iron sludge, produced from filtration and backwash of groundwater treatment plant, has long been considered as a waste for landfill. In this study, iron sludge was reused to synthesize Fe3O4 magnetic particles (MPs) by using a novel solvothermal process. Iron sludge contained abundant amounts of silicon, iron, and aluminum and did not exhibit magnetic properties. After treatment for 4h, the amorphous Fe in iron sludge was transformed into magnetite Fe3O4, which could be easily separated from aqueous solution with a magnet. The prepared particles demonstrated the intrinsic properties of soft magnetic materials and could aggregate into a size of 1 μm. MPs treated for 10h exhibited excellent magnetic properties and a saturation magnetization value of 9 emu/g. The obtained particles presented the optimal adsorption of methylene blue under mild conditions, and the maximum adsorption capacity was 99.4 mg/g, which was higher than that of granular active carbon. The simple solvothermal method can be used to prepare Fe3O4 MPs from iron sludge, and the products could be applied to treatment of dyeing wastewater.

  13. Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles.

    PubMed

    Sandoval, Robert; Cooper, Anne Marie; Aymar, Kathryn; Jain, Arti; Hristovski, Kiril

    2011-10-15

    This study investigated the effects of in situ ZrO(2) nanoparticle formation on properties of granulated activated carbon (GAC) and their impacts on arsenic and organic co-contaminant removal. Bituminous and lignite based zirconium dioxide impregnated GAC (Zr-GAC) media were fabricated by hydrolysis of zirconium salt followed by annealing of the product at 400 °C in an inert environment. Media characterization suggested that GAC type does not affect the crystalline structure of the resulting ZrO(2) nanoparticles, but does affect zirconium content of the media, nanoparticle morphology, nanoparticle distribution, and surface area of Zr-GAC. The arsenic removal performance of both media was compared using 5mM NaHCO(3) buffered ultrapure water and model groundwater containing competing ions, both with an initial arsenic C(0) ≈ 120 μg/L. Experimental outcomes suggested favorable adsorption energies and higher or similar adsorption capacities than commercially available or experimental adsorbents when compared on the basis of metal content. Short bed adsorber column tests showed that arsenic adsorption capacity decreases as a result of kinetics of competing ions. Correlation between the properties of the media and arsenic and methylene blue removal suggested that surface area and GAC type may be the dominant factors controlling the arsenic and organic co-contaminant removal performance of the fabricated Zr-GAC media.

  14. Different inhibitory response of cyanidin and methylene blue for filament formation of tau microtubule-binding domain

    SciTech Connect

    Hattori, Masaki; Sugino, Etsuko; Minoura, Katsuhiko In, Yasuko; Sumida, Miho; Taniguchi, Taizo; Tomoo, Koji; Ishida, Toshimasa

    2008-09-12

    One of the priorities in Alzheimer research is to develop a compound that inhibits the filament formation of tau protein. Since the three- or four-repeat microtubule-binding domain (MBD) in tau protein plays an essential role in filament formation, the inhibitory behavior of cyanidin (Cy) and methylene blue (MB) with respect to heparin-induced filament formation of MBD in a neutral solution (pH 7.6) was characterized by fluorescence, circular dichroism, and electron microscopy measurements. The planar aromatic ring of Cy and the N-unsubstituted phenothiazine ring of MB were shown to be necessary for the inhibition. However, the inhibitory responses with respect to heparin-induced filament formation to the second and third repeat peptides of MBD were different: Cy suppresses the formation and MB does not prevent the formation. This suggests the importance of the first and fourth repeat peptides in the inhibitory activity of MB for MBD filament formation. In this study, we showed that the decrease of thioflavin S fluorescence intensity is not always linked to inhibition of filament formation.

  15. Antifungal Action of Methylene Blue Involves Mitochondrial Dysfunction and Disruption of Redox and Membrane Homeostasis in C. albicans

    PubMed Central

    Ansari, Moiz A.; Fatima, Zeeshan; Hameed, Saif

    2016-01-01

    Candida albicans is known to cause infections ranging from superficial and systemic in immunocompromised person. In this study, we explored that the antifungal action of Methylene blue (MB) is mediated through mitochondrial dysfunction and disruption of redox and membrane homeostasis against C. albicans. We demonstrated that MB displayed its antifungal potential against C. albicans and two clinical isolates tested. We also showed that MB is effective against two non- albicans species as well. Notably, the antifungal effect of MB seems to be independent of the major drug efflux pumps transporter activity. We explored that MB treated Candida cells were sensitive on non-fermentable carbon source leading us to propose that MB inhibits mitochondria. This sensitive phenotype was reinforced with the fact that sensitivity of Candida cells to MB could be rescued upon the supplementation of ascorbic acid, an antioxidant. This clearly suggests that disturbances in redox status are linked with MB action. We further demonstrated that Candida cells were susceptible to membrane perturbing agent viz. SDS which was additionally confirmed by transmission electron micrographs showing disruption of membrane integrity. Moreover, the ergosterol levels were significantly decreased by 66% suggesting lipid compositional changes due to MB. Furthermore, we could demonstrate that MB inhibits the yeast to hyphal transition in C. albicans which is one of the major virulence attribute in most of the hyphal inducing conditions. Taken together, the data generated from present study clearly establishes MB as promising antifungal agent that could be efficiently employed in strategies to treat Candida infections. PMID:27006725

  16. Methylene Blue Improves Brain Mitochondrial ABAD Functions and Decreases Aβ in a Neuroinflammatory Alzheimer's Disease Mouse Model.

    PubMed

    Zakaria, Aya; Hamdi, Nabila; Abdel-Kader, Reham Mahmoud

    2016-03-01

    Methylene blue (MB) phase II clinical trials reported improvements in cognitive functions of Alzheimer's disease (AD) patients. Regarding MB mechanism of action, its antioxidant and mitochondrial protective effects have been previously described. In relation to AD, it has been recently reported that MB reduced amyloid beta (Aβ) levels in AD models. The mitochondrial enzyme amyloid-binding alcohol dehydrogenase (ABAD) has been shown to bind Aβ inducing mitochondrial dysfunction, providing a direct relation between Aβ toxicity and mitochondrial dysfunction occurring in AD. Since it has been reported that inhibiting ABAD protects mitochondrial functions and prevents Aβ-induced toxicity, the aim of the current study was to investigate if the protective effects of MB could be associated with an effect on ABAD levels and functions. The current study shows that MB is able to enhance cell viability, reduce both reactive oxygen species levels and importantly Aβ oligomers in a lipopolysaccharide (LPS) mouse model. Interestingly, ABAD levels were increased in the brains of the LPS mouse model and MB treatment was able to reduce its levels. Given that regulation of the estradiol level is a well-established function of ABAD, brain estradiol level was compared in LPS mouse model and in MB-treated mice. The results of the current study show that MB treatment is able to improve significantly the LPS-induced decrease of estradiol levels in mice brains, indicating its ability to modulate both levels and function of ABAD. These results give a new insight to possible mechanisms of MB in AD.

  17. Simultaneous determination of cation exchange capacity and surface area of acid activated bentonite powders by methylene blue sorption

    NASA Astrophysics Data System (ADS)

    Yener, Nilgün; Biçer, Cengiz; Önal, Müşerref; Sarıkaya, Yüksel

    2012-01-01

    To distinguish the ion exchanged and physically adsorbed methylene blue cations (MB+) on ionic surfaces, acid activated bentonite samples were used as porous adsorbents. A natural calcium bentonite (CaB) sample from Enez/Edirne, Turkey, was acid activated at 90 °C for 16 h with various HCl/CaB ratios. The irreversible exchange and physical adsorption of MB+ cations on the ionic solids have simultaneously occurred. The ion exchanged (mex) and physically adsorbed (mad) MB+ contents were obtained as the values of sorption capacity at c = 0 and the increase to a plateaus of adsorption isotherms, respectively. The mad value was taken to be monolayer adsorption capacity. Cation exchange capacity (CEC) and specific surface area (SMB) for each sample were calculated from the mex and mad values, respectively. Also, the BET specific surface areas (SBET) and pore size distribution were determined from low temperature nitrogen adsorption/desorption data. A linear correlation between the SMB and SBET values was found.

  18. Use of invisible near infrared light fluorescence with indocyanine green and methylene blue in urology. Part 2

    PubMed Central

    Markuszewski, Marcin; Rho, Young Soo; Matuszewski, Marcin

    2014-01-01

    Introduction In the second part of this paper, concerning the use of invisible near infrared light (NIR) fluorescence with indocyanine green (ICG) and methylene blue (MB) in urology, other possible uses of this new technique will be presented. In kidney transplantation, this concerns allograft perfusion and real time NIR–guided angiography; moreover, perfusion angiography of tissue flaps, NIRF visualization of ureters, NIR–guided visualization of urinary calcifications, NIRF in male infertility and semen quality assessment. In this part, we have also analysed cancer targeting and imaging fluorophores as well as cost benefits associated with the use of these new techniques. Material and methods PubMed and Medline databases were searched for ICG and MB use in urological settings, along with data published in abstracts of urological conferences. Results Although NIR–guided ICG and MB are still in their initial phases, there have been significant developments in a few more major domains of urology, including 1) kidney transplantation: kidney allograft perfusion and vessel reconstruction; 2) angiography perfusion of tissue flaps; 3) visualization of ureters; 4) visualization of urinary calcifications; and 5) NIRF in male infertility and semen quality assessment. Conclusions Near infrared technology in urology is at its early stages. More studies are needed to assess the true potential and limitations of the technology. Initial studies show that this pioneering tool may influence various aspects of urology. PMID:25247093

  19. Clay honeycomb monoliths for water purification: Modulating methylene blue adsorption through controlled activation via natural coal templating

    NASA Astrophysics Data System (ADS)

    Gatica, José M.; Gómez, Diana M.; Harti, Sanae; Vidal, Hilario

    2013-07-01

    Texturally modified clay honeycomb monoliths were prepared for use as filters to remove pollutants from water solutions. An easy, economical, "green chemistry" activation route was employed during the preparation to enhance the adsorption capacity of the honeycombs. The method involves mixing the clay before its extrusion with a natural coal that is subsequently eliminated from the monolith by heating it under air at the lowest possible temperature (440 °C according to a thermogravimetric study). The size of the coal particles used as a template was intentionally modified by adjusting the milling process (dry or wet) and its duration (1-120 min) to modulate the porosity induced in the clay monoliths after their further burning. N2 physisorption, mercury porosimetry, granulometry and SEM were used to investigate the influence of the above preparative variables on the textural properties of the clay, significant effects being found in the macropore range. Methylene blue adsorption tests under dynamic conditions suggest that there is a correlation between pollutant removal and the macropore structure generated. FTIR spectroscopy indicates that the differences observed in cationic dye adsorption over the monoliths must be related to their different texture rather than to differences in the nature of their surface hydroxyl groups.

  20. Binding of methylene blue onto Langmuir monolayers representing cell membranes may explain its efficiency as photosensitizer in photodynamic therapy.

    PubMed

    Schmidt, Thaís F; Caseli, Luciano; Oliveira, Osvaldo N; Itri, Rosangela

    2015-04-14

    We provide evidence for the electrostatic interactions between the cationic photosensitizer methylene blue (MB) and cell membrane models represented by neat and mixed Langmuir monolayers of dioleylphosphatidylcholine (DOPC) and 1,1',2,2'-tetraoleoylcardiolipin (CL). From surface pressure measurements, MB was found to adsorb strongly and expand CL-containing monolayers, while it caused an apparent decreasing in molecular area on neat DOPC monolayer. The binding site of MB could be inferred from data with the surface-specific polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) technique, where changes induced by MB were observed in the vibrational modes of the phosphate groups of both CL and DOPC. The incorporation of MB also affected the carbonyl groups and the packing of the alkyl chains, thus indicating that MB binding site favors singlet oxygen generation close to the double bonds in the alkyl chains, an important requirement for photodynamic efficiency. Significantly, the data presented here demonstrate that MB may act in membranes composed by PCs, such as mammalian plasma membranes, and in those containing CL, as in bacterial and inner mitochondrial membranes.

  1. Bacterial Photodynamic Inactivation Mediated by Methylene Blue and Red Light Is Enhanced by Synergistic Effect of Potassium Iodide

    PubMed Central

    Vecchio, Daniela; Gupta, Asheesh; Huang, Liyi; Landi, Giacomo; Avci, Pinar; Rodas, Andrea

    2015-01-01

    The inexorable increase of antibiotic resistance occurring in different bacterial species is increasing the interest in developing new antimicrobial treatments that will be equally effective against multidrug-resistant strains and will not themselves induce resistance. One of these alternatives may be photodynamic inactivation (PDI), which uses a combination of nontoxic dyes, called photosensitizers (PS), excited by harmless visible light to generate reactive oxygen species (ROS) by type 1 (radical) and type 2 (singlet oxygen) pathways. In this study, we asked whether it was possible to improve the efficacy of PDI in vitro and in vivo by addition of the inert salt potassium iodide (KI) to a commonly investigated PS, the phenothiazinium dye methylene blue (MB). By adding KI, we observed a consistent increase of red light-mediated bacterial killing of Gram-positive and Gram-negative species in vitro and in vivo. In vivo, we also observed less bacterial recurrence in wounds in the days posttreatment. The mechanism of action is probably due to formation of reactive iodine species that are produced quickly with a short lifetime. This finding may have a relevant clinical impact by reducing the risk of amputation and, in some cases, the risk of death, leading to improvement in the care of patients affected by localized infections. PMID:26077247

  2. Phosphorus dendrimers and photodynamic therapy. Spectroscopic studies on two dendrimer-photosensitizer complexes: Cationic phosphorus dendrimer with rose bengal and anionic phosphorus dendrimer with methylene blue.

    PubMed

    Dabrzalska, Monika; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2015-08-15

    Dendrimers due to their unique architecture may play an important role in drug delivery systems including chemotherapy, gene therapy and recently, photodynamic therapy as well. We investigated two dendrimer-photosensitizer systems in context of potential use of these systems in photodynamic therapy. The mixtures of an anionic phosphorus dendrimer of the second generation and methylene blue were studied by UV-vis spectroscopy while that of a cationic phosphorus dendrimer (third generation) and rose bengal were investigated by spectrofluorimetric methods. Spectroscopic analysis of these two systems revealed the formation of dendrimer-photosensitizer complexes via electrostatic interactions as well as π stacking. The stoichiometry of the rose bengal-cationic dendrimer complex was estimated to be 7:1 and 9:1 for the methylene blue-anionic dendrimer complex. The results suggest that these polyanionic or polycationic phosphorus dendrimers can be promising candidates as carriers in photodynamic therapy.

  3. Identification of methylene diphenyl diisocyanate thermal degradation products in a generation chamber by liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Gagne, Sébastien; Cloutier, Yves

    2016-01-01

    Isocyanate thermal degradation characterization by liquid chromatography coupled with electrospray tandem mass spectrometry has been performed to elucidate the methylene diphenyl diisocyanate (MDI) thermal degradation structure emitted in a generation chamber using a temperature between 50°C and 180°C to produce MDI vapors. [M+H](+) ions containing an isocyanate functional group were studied by tandem mass spectrometry. The [M+H](+) ion analyses based on the combination of full scans and precursor ion scans were useful for identifying all structures. The compounds emitted were identified and validated as a mixture of compounds containing amine and isocyanate functions. Residual MDI, methylene diphenyl amino-isocyanate, and methylene diphenyl diamine were identified. Polymerized forms of these structures were also observed because amine and isocyanate chemical functions react rapidly to polymerize. These results must be used with special care by scientists establishing sensitization diagnostics and developing sampling devices using generation chambers as they must be related to MDI behavior in workplaces. Even if pure MDI is introduced in the generation chamber, several different compounds are generated when the MDI is heated at a high temperature. This can result in some misleading interpretations for non-specific isocyanate sampling device development and sensitization diagnostics as MDI is present in the chamber with other compounds with known adverse effects.

  4. Uniform Cu{sub 2}Cl(OH){sub 3} hierarchical microspheres: A novel adsorbent for methylene blue adsorptive removal from aqueous solution

    SciTech Connect

    Wei, Wei; Gao, Pin; Xie, Jimin Zong, Sekai; Cui, Henglv; Yue, Xuejie

    2013-08-15

    Using the solution phase method without any surfactants or templates, the hierarchical of Cu{sub 2}Cl(OH){sub 3} microspheres were synthesized by freeze drying. The size and surface area of the microspheres are ca. 1–2 µm and 76.61 m{sup 2} g{sup −1}, respectively. A possible formation mechanism is presented based on the experimental results. Methylene blue was chosen to investigate the adsorption capacity of the as-prepared adsorbent. The effects of various experimental parameters, such as pH, initial dye concentration, and contact time were investigated. The results showed that the dye removal increased with the increasing in the initial concentration of the dye and also increased in the amount of microspheres used and initial pH. Adsorption data fitted well with the Freundlich adsorption isotherm. The thermodynamic analysis presented the exothermic, spontaneous and more ordered arrangement process. The microspheres could be employed effective for removal of dyes from aqueous solution. - Graphical abstract: The single-crystalline hierarchical Cu{sub 2}Cl(OH){sub 3} spheres can be prepared for the first time by using a template-free process through freeze-drying. Meanwhile, the hierarchical spheres exhibited high adsorption capacity to methylene blue. Display Omitted - Highlights: • Cu{sub 2}Cl(OH){sub 3} microspheres were successfully synthesized through a freeze drying process. • A possible formation mechanism of hierarchical microspheres was presented. • The Cu{sub 2}Cl(OH){sub 3} microspheres have high methylene blue adsorption capacity. • Methylene blue adsorption is a spontaneous and exothermic process. • The adsorption mechanism of microspheres onto dye was proposed in detail.

  5. Methylene blue-assisted technique for harvesting lymph nodes after radical surgery for gastric cancer: a prospective randomized phase III study

    PubMed Central

    2014-01-01

    Background This randomized Phase III trial will evaluate whether the methylene blue-assisted technique is efficient for harvesting lymph nodes after radical surgery for gastric cancer. Methods/design Patients that undergo distal or total gastrectomy with radical nodal dissection will be randomly assigned to Group A: the standard group, the lymph nodes (LNs) will be harvested from the fresh specimen immediately after surgery, or Group B: the methylene blue-assisted group, where the LNs will be harvested from specimens fixed with 10% buffered formalin with methylene blue for 48 hours after surgery. The primary endpoint is the ratio of the number of the harvested LNs per time (minute). The secondary endpoint is the number of harvested LNs. A 25% reduction in the ratio of harvested lymph-node/time (minute) was determined to be necessary for this test treatment, considering the balance between the cost and benefit. Retrospective data was used to estimate the ratio of the number of the harvested LNs per time (minute) to be 40/30 minutes in Group A. A 25% risk reduction and a rate of 40/22.5 minutes is expected in Group B. Therefore, the sample size required ensuring a two-sided alpha error of 5% and statistical power of 80% is 52 patients, with 26 patients per arm. The number of patients to be accrued was set at 60 in total, due to the likelihood of enrolling ineligible patients. Trial registration UMIN000008624 PMID:24597931

  6. Uptake and therapeutic effectiveness of /sup 125/I- and /sup 211/At-methylene blue for pigmented melanoma in an animal model system

    SciTech Connect

    Link, E.M.; Brown, I.; Carpenter, R.N.; Mitchell, J.S.

    1989-08-01

    The investigations concerning a targeted radiotherapy for pigmented melanoma with a radiolabeled phenothiazine derivative, 3,7-(dimethylamino)phenazathionium chloride (methylene blue (MTB)), were continued using melanotic and amelanotic sublines of B16 melanoma. Two radionuclides, 125I and 211At, emitting Auger electrons and alpha particles, respectively, replaced 35S previously studied since their biological effectiveness is significantly higher. In vitro autoradiography revealed a selective accumulation of methylene blue labeled with either of the radioisotopes in pigmented melanoma cells but its absence in nonpigmented cells. Treatments with (125I)MTB and (211At)MTB were performed both in vitro and in vivo, with their effectiveness determined by lung clonogenic assay. (125I)MTB proved to be relatively ineffective when incorporated into melanosomes distributed in the cytoplasm, i.e., too far away from the genome. Conspicuous therapeutic effects were achieved with (211At)MTB for pigmented melanoma only. 211At itself did not affect either of the investigated sublines of B16 melanoma confirming once again the high affinity of methylene blue to melanin. Calculations of cumulative radiation doses from (211At)MTB deposited in melanotic melanoma tumors and pigmented normal organs which would be at a particular risk led to the conclusion that (211At)MTB could be used for a highly selective and very efficient targeted radiotherapy of pigmented melanomas without damaging normal tissues.

  7. Controlling Protein Activity and Degradation Using Blue Light.

    PubMed

    Lutz, Anne P; Renicke, Christian; Taxis, Christof

    2016-01-01

    Regulation of protein stability is a fundamental process in eukaryotic cells and pivotal to, e.g., cell cycle progression, faithful chromosome segregation, or protein quality control. Synthetic regulation of protein stability requires conditional degradation sequences (degrons) that induce a stability switch upon a specific signal. Fusion to a selected target protein permits to influence virtually every process in a cell. Light as signal is advantageous due to its precise applicability in time, space, quality, and quantity. Light control of protein stability was achieved by fusing the LOV2 photoreceptor domain of Arabidopsis thaliana phototropin1 with a synthetic degron (cODC1) derived from the carboxy-terminal degron of ornithine decarboxylase to obtain the photosensitive degron (psd) module. The psd module can be attached to the carboxy terminus of target proteins that are localized to the cytosol or nucleus to obtain light control over their stability. Blue light induces structural changes in the LOV2 domain, which in turn lead to activation of the degron and thus proteasomal degradation of the whole fusion protein. Variants of the psd module with diverse characteristics are useful to fine-tune the stability of a selected target at permissive (darkness) and restrictive conditions (blue light). PMID:26965116

  8. A simple way to prepare Au@polypyrrole/Fe3O4 hollow capsules with high stability and their application in catalytic reduction of methylene blue dye

    NASA Astrophysics Data System (ADS)

    Yao, Tongjie; Cui, Tieyu; Wang, Hao; Xu, Linxu; Cui, Fang; Wu, Jie

    2014-06-01

    Metal nanoparticles are promising catalysts for dye degradation in treating wastewater despite the challenges of recycling and stability. In this study, we have introduced a simple way to prepare Au@polypyrrole (PPy)/Fe3O4 catalysts with Au nanoparticles embedded in a PPy/Fe3O4 capsule shell. The PPy/Fe3O4 capsule shell used as a support was constructed in one-step, which not only dramatically simplified the preparation process, but also easily controlled the magnetic properties of the catalysts through adjusting the dosage of FeCl2.4H2O. The component Au nanoparticles could catalyze the reduction of methylene blue dye with NaBH4 as a reducing agent and the reaction rate constant was calculated through the pseudo-first-order reaction equation. The Fe3O4 nanoparticles permitted quick recycling of the catalysts with a magnet due to their room-temperature superparamagnetic properties; therefore, the catalysts exhibited good reusability. In addition to catalytic activity and reusability, stability is also an important property for catalysts. Because both Au and Fe3O4 nanoparticles were wrapped in the PPy shell, compared with precursor polystyrene/Au composites and bare Fe3O4 nanoparticles, the stability of Au@PPy/Fe3O4 hollow capsules was greatly enhanced. Since the current method is simple and flexible to create recyclable catalysts with high stability, it would promote the practicability of metal nanoparticle catalysts in industrial polluted water treatment.Metal nanoparticles are promising catalysts for dye degradation in treating wastewater despite the challenges of recycling and stability. In this study, we have introduced a simple way to prepare Au@polypyrrole (PPy)/Fe3O4 catalysts with Au nanoparticles embedded in a PPy/Fe3O4 capsule shell. The PPy/Fe3O4 capsule shell used as a support was constructed in one-step, which not only dramatically simplified the preparation process, but also easily controlled the magnetic properties of the catalysts through adjusting

  9. Removal of cationic dye methylene blue by zero-valent iron: Effects of pH and dissolved oxygen on removal mechanisms.

    PubMed

    Sun, Xuan; Kurokawa, Tomoyo; Suzuki, Moe; Takagi, Minoru; Kawase, Yoshinori

    2015-01-01

    Effects of pH and dissolved oxygen on mechanisms for decolorization and total organic carbon (TOC) removal of cationic dye methylene blue (MB) by zero-valent iron (ZVI) were systematically examined. Decolorization and TOC removal of MB by ZVI are attributed to the four potential mechanisms, i.e. reduction, degradation, precipitation and adsorption. The contributions of four mechanisms were quantified at pH 3.0, 6.0 and 10.0 in the oxic and anoxic systems. The maximum efficiencies of decolorization and TOC removal of MB were found at pH 6.0. The TOC removal efficiencies at pH 3.0 and 10.0 were 11.0 and 17.0%, respectively which were considerably lower as compared with 68.1% at pH 6.0. The adsorption, which was favorable at higher pH but was depressed by the passive layer formed on the ZVI surface at alkaline conditions, characterized the effects of pH on decolorization and TOC removal of MB. The efficiencies of decolorization and TOC removal at pH 6.0 under the anoxic condition were 73.0 and 59.0%, respectively, which were comparable to 79.9 and 55.5% obtained under the oxic condition. In the oxic and anoxic conditions, however, the contributions of removal mechanisms were quite different. Although the adsorption dominated the decolorization and TOC removal under the oxic condition, the contribution of precipitation was largely superior to that of adsorption under the anoxic condition.

  10. Removal of methylene blue by two zeolites prepared from naturally occurring Egyptian kaolin as cost effective technique

    NASA Astrophysics Data System (ADS)

    Jamil, Tarek S.; Abdel Ghafar, Hany H.; Ibrahim, Hanan S.; Abd El-Maksoud, Islam H.

    2011-10-01

    The optimum condition as well as adsorption behavior of two zeolite types prepared from Egyptian kaolin (namely, zeolite A and zeolite X) with methylene blue (MB) are demonstrated in this study. This will be a step to remove such dyes from textile as well as dying industries. MB removal was investigated using synthetic solutions at initial concentrations 15 mg/L of MB at constant temperature and pH (25 ± 0.1 °C and 7.5 ± 0.2) respectively. The removal efficiency was determined at different contact times and different zeolite doses. The optimum contact times for the removal of MB were 60 min and 75 min for zeolite X and zeolite A, respectively. 0.6 g was the optimum dose for removal of MB with both zeolite types. The batch method has been employed, using MB concentration in solution ranging from 2 to 25 mg /L. The percentage removal and distribution coefficients ( Kd) were determined for the adsorption system as a function of sorbate concentration. The isothermal models investigated in this study show that adsorption ratios of MB on both zeolites match to Langmuir and Freundlich equation adding to that every equation constant has been calculated. According to the equilibrium studies, adsorption of zeolite X in higher concentrations is much better than that of zeolite A. Dublin-Kaganer-Radushkevich (DKR) shows physisorption endothermic adsorption process for both zeolites and also linear correlation of Redlich-Peterson and Tekman isothermal models were proved. These results show that zeolites prepared from naturally abundant Egyptian kaolin hold great potential to remove dying materials such as MB from wastewater. This will encourage using such low cost technique in removal of dyes from industrial wastewater.

  11. Structural and functional characterization of the interaction of the photosensitizing probe methylene blue with Torpedo californica acetylcholinesterase

    PubMed Central

    Paz, Aviv; Roth, Esther; Ashani, Yacov; Xu, Yechun; Shnyrov, Valery L; Sussman, Joel L; Silman, Israel; Weiner, Lev

    2012-01-01

    The photosensitizer, methylene blue (MB), generates singlet oxygen that irreversibly inhibits Torpedo californica acetylcholinesterase (TcAChE). In the dark, it inhibits reversibly. Binding is accompanied by a bathochromic absorption shift, used to demonstrate displacement by other acetylcholinesterase inhibitors interacting with the catalytic “anionic” subsite (CAS), the peripheral “anionic” subsite (PAS), or bridging them. MB is a noncompetitive inhibitor of TcAChE, competing with reversible inhibitors directed at both “anionic” subsites, but a single site is involved in inhibition. MB also quenches TcAChE's intrinsic fluorescence. It binds to TcAChE covalently inhibited by a small organophosphate (OP), but not an OP containing a bulky pyrene. Differential scanning calorimetry shows an ∼8° increase in the denaturation temperature of the MB/TcAChE complex relative to native TcAChE, and a less than twofold increase in cooperativity of the transition. The crystal structure reveals a single MB stacked against Trp279 in the PAS, oriented down the gorge toward the CAS; it is plausible that irreversible inhibition is associated with photooxidation of this residue and others within the active-site gorge. The kinetic and spectroscopic data showing that inhibitors binding at the CAS can impede binding of MB are reconciled by docking studies showing that the conformation adopted by Phe330, midway down the gorge, in the MB/TcAChE crystal structure, precludes simultaneous binding of a second MB at the CAS. Conversely, binding of ligands at the CAS dislodges MB from its preferred locus at the PAS. The data presented demonstrate that TcAChE is a valuable model for understanding the molecular basis of local photooxidative damage. PMID:22674800

  12. Preparation and characterization of magnetic porous carbon microspheres for removal of methylene blue by a heterogeneous Fenton reaction.

    PubMed

    Zhou, Lincheng; Shao, Yanming; Liu, Junrui; Ye, Zhengfang; Zhang, He; Ma, Junjun; Jia, Yan; Gao, Weijie; Li, Yanfeng

    2014-05-28

    High-specific-surface-area magnetic porous carbon microspheres (MPCMSs) were fabricated by annealing Fe(2+)-treated porous polystyrene (PS) microspheres, which were prepared using a two-step seed emulsion polymerization process. The resulting porous microspheres were then sulfonated, and Fe(2+) was loaded by ion exchange, followed by annealing at 250 °C for 1 h under an ambient atmosphere to obtain the PS-250 composite. The MPCMS-500 and MPCMS-800 composites were obtained by annealing PS-250 at 500 and 800 °C for 1 h, respectively. The iron oxide in MPCMS-500 mainly existed in the form of Fe3O4, which was concluded by characterization. The MPCMS-500 carbon microspheres were used as catalysts in heterogeneous Fenton reactions to remove methylene blue (MB) from wastewater with the help of H2O2 and NH2OH. The results indicated that this catalytic system has a good performance in terms of removal of MB; it could remove 40 mg L(-1) of MB within 40 min. After the reaction, the catalyst was conveniently separated from the media within several seconds using an external magnetic field, and the catalytic activity was still viable even after 10 removal cycles. The good catalytic performance of the composites could be attributed to synergy between the functions of the porous carbon support and the Fe3O4 nanoparticles embedded in the carrier. This work indicates that porous carbon spheres provide good support for the development of a highly efficient heterogeneous Fenton catalyst useful for environmental pollution cleanup. PMID:24731240

  13. Adsorption of methylene blue dye onto activated carbons based on agricultural by-products: equilibrium and kinetic studies.

    PubMed

    Ioannou, Z; Simitzis, J

    2013-01-01

    Mixtures of novolac resin and olive stone biomass (20/80 and 40/60 w/w) were cured, pyrolyzed up to 1,000 °C and activated with CO2 under a continuous flow operation (named N20B-cCa and N40B-cCa respectively). Commercial activated charcoal was similarly re-activated with CO2 and used for comparison reasons (AC-a). The characterization of these materials was performed by Fourier transform Infrared (FTIR) analysis and their specific surface area was determined according to DIN 66132. The materials were tested for their adsorption abilities at different temperatures (298, 333 K) and initial dye concentrations (0.01-0.35 g/L) using 1 L of methylene blue (MB) solution in 10 g of activated carbon. MB adsorption kinetic was also studied. The FTIR spectra of all activated carbons show absorption peaks which correspond to -OH, -CH, -C-O-C- groups and to aromatic ring. The presence of the absorption peak at about 1,400 cm(-1) for N20B-cCa, N40B-cCa indicates more acidic groups on them compared to the commercial AC-a. The specific surface area of N20B-cCa, N40B-cCa and AC-a has values equal to 352, 342 and 760 m(2)/g respectively. From the applied kinetic models, pseudo-second-order equation could best describe MB adsorption. Consequently, such adsorbents can be used as filters to adsorb dyes from wastewaters.

  14. Continuous adsorption of Pb(II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column

    NASA Astrophysics Data System (ADS)

    Gong, Ji-Lai; Zhang, Yong-Liang; Jiang, Yan; Zeng, Guang-Ming; Cui, Zhi-Hui; Liu, Ke; Deng, Can-Hui; Niu, Qiu-Ya; Deng, Jiu-Hua; Huan, Shuang-Yan

    2015-03-01

    The mixture of several effluents, caused by the improper handling and management of effluents, generated multi-component wastewater containing both metals and dyes, leading to the complicated treatment process. In this study, a continuous adsorption of Pb(II) and methylene blue (MB) has been studied in single and binary solutions by using graphite oxide coated sand (GO-sand) as an adsorbent in a fixed-bed column. GO-sand was analyzed by X-ray photoelectron spectroscopy before and after analyte adsorption. Compared with sand filter, adsorption quantity and capacity for Pb(II) and MB by GO-sand filter were greatly increased. In Pb(II) and MB single solutions, the experimental parameters were investigated in detail including initial concentration, flow rate, bed depth and pH. Exhaustion time decreased with increasing initial concentration and flow rate, and increased with increasing bed depth and pH. In the Pb(II)-MB binary solution, exhaustion time significantly decreased for Pb(II) adsorption, but increased for MB adsorption. The reason was explained that the more favorable adsorption for MB onto the surface of GO-sand than that for Pb(II), which was derived from π-π interaction between MB and GO on sand surface in packed filter. The Yoon-Nelson model was applied at different concentration of Pb(II) and MB to predict the breakthrough curves. The experimental data were well fit with the model indicating that it was suitable for this column design.

  15. Methylene blue counteracts H2S toxicity-induced cardiac depression by restoring L-type Ca channel activity.

    PubMed

    Judenherc-Haouzi, Annick; Zhang, Xue-Qian; Sonobe, Takashi; Song, Jianliang; Rannals, Matthew D; Wang, JuFang; Tubbs, Nicole; Cheung, Joseph Y; Haouzi, Philippe

    2016-06-01

    We have previously reported that methylene blue (MB) can counteract hydrogen sulfide (H2S) intoxication-induced circulatory failure. Because of the multifarious effects of high concentrations of H2S on cardiac function, as well as the numerous properties of MB, the nature of this interaction, if any, remains uncertain. The aim of this study was to clarify 1) the effects of MB on H2S-induced cardiac toxicity and 2) whether L-type Ca(2+) channels, one of the targets of H2S, could transduce some of the counteracting effects of MB. In sedated rats, H2S infused at a rate that would be lethal within 5 min (24 μM·kg(-1)·min(-1)), produced a rapid fall in left ventricle ejection fraction, determined by echocardiography, leading to a pulseless electrical activity. Blood concentrations of gaseous H2S reached 7.09 ± 3.53 μM when cardiac contractility started to decrease. Two to three injections of MB (4 mg/kg) transiently restored cardiac contractility, blood pressure, and V̇o2, allowing the animals to stay alive until the end of H2S infusion. MB also delayed PEA by several minutes following H2S-induced coma and shock in unsedated rats. Applying a solution containing lethal levels of H2S (100 μM) on isolated mouse cardiomyocytes significantly reduced cell contractility, intracellular calcium concentration ([Ca(2+)]i) transient amplitudes, and L-type Ca(2+) currents (ICa) within 3 min of exposure. MB (20 mg/l) restored the cardiomyocyte function, ([Ca(2+)]i) transient, and ICa The present results offer a new approach for counteracting H2S toxicity and potentially other conditions associated with acute inhibition of L-type Ca(2+) channels. PMID:26962024

  16. Two inorganic-organic hybrid materials based on polyoxometalate anions and methylene blue: Preparations, crystal structures and properties

    SciTech Connect

    Nie Shanshan; Zhang Yaobin; Liu Bin; Li Zuoxi; Hu Huaiming; Xue Ganglin; Fu Feng; Wang Jiwu

    2010-12-15

    Two novel inorganic-organic hybrid materials based on an organic dye cation methylene blue (MB) and Lindqvist-type POM polyanions, [C{sub 22}H{sub 18}N{sub 3}S]{sub 2}Mo{sub 6}O{sub 19} 2DMF (1) and [C{sub 22}H{sub 18}N{sub 3}S]{sub 2}W{sub 6}O{sub 19} 2DMF (2) were synthesized under ambient conditions and characterized by CV, IR spectroscopy, solid diffuse reflectance spectrum, UV-vis spectra in DMF solution, luminescent spectrum and single crystal X-ray diffraction. Crystallographic data reveal that compounds 1 and 2 are isostructural and both crystallize in the triclinic space group P1-bar . Their crystal structures present that the layers of organic molecules and inorganic anions array alternatively, and there exist strong {pi}...{pi} stacking interactions between dimeric MB cations and near distance interactions among organic dye cations, Lindqvist-type POM polyanions and DMF molecules. The solid diffuse reflectance spectra and UV-vis spectra in DMF solution appear new absorption bands ascribed to the charge-transfer transition between the cationic MB donor and the POM acceptors. Studies of the photoluminescent properties show that the formation of 1 and 2 lead to the fluorescence quenching of starting materials. -- Graphical abstract: Their crystal structures present that the layers of organic molecules and inorganic anions array alternatively, and there exist strong {pi}...{pi} stacking interactions between dimeric MB cations. Display Omitted

  17. SIRT1 activation by methylene blue, a repurposed drug, leads to AMPK-mediated inhibition of steatosis and steatohepatitis.

    PubMed

    Shin, Seo Young; Kim, Tae Hyun; Wu, Hongmin; Choi, Young Hee; Kim, Sang Geon

    2014-03-15

    Sirtuins maintain energy balance. Particularly, sirtuin 1 (SIRT1) activation mimics calorie restriction and nutrient utilization. However, no medications are available for the up-regulation of SIRT1. Methylene blue (MB) had been in clinical trials for the treatment of neurological diseases. This study investigated the effect of MB on sirtuin expression in association with the treatment of steatosis and steatohepatitis, and explored the underlying basis. The effects of MB on mitochondrial function, molecular markers, pharmacokinetics, and histopathology were assessed using hepatocyte and/or mouse models. Immunoblotting, PCR and reporter assays were done for molecular experiments. After oral administration, MB was well distributed in the liver. MB treatment increased NAD(+)/NADH ratio in hepatocytes. Of the major forms, MB treatment up-regulated SIRT1, and thereby decreased PGC-1α acetylation. Consistently, hepatic mitochondrial DNA contents and oxygen consumption rates were enhanced. MB treatment also notably activated AMPK, CPT-1 and PPARα: the AMPK activation relied on SIRT1. Activation of LXRα and the induction of SREBP-1c and its target genes by T0901317 were diminished by MB. In addition, MB treatment antagonized the ability of palmitate to acetylate PGC-1α, and increase SERBP-1c, FAS, and ACC levels. In mice fed on a high-fat diet for 8 weeks, MB treatment inhibited excessive hepatic fat accumulation and steatohepatitis. The ability of MB to activate SIRT1 promotes mitochondrial biogenesis and oxygen consumption and activates AMPK, contributing to anti-lipogenesis in the liver. Our results provide new information on the potential use of MB for the treatment of steatosis and steatohepatitis.

  18. DNA interactions with a Methylene Blue redox indicator depend on the DNA length and are sequence specific.

    PubMed

    Farjami, Elaheh; Clima, Lilia; Gothelf, Kurt V; Ferapontova, Elena E

    2010-06-01

    A DNA molecular beacon approach was used for the analysis of interactions between DNA and Methylene Blue (MB) as a redox indicator of a hybridization event. DNA hairpin structures of different length and guanine (G) content were immobilized onto gold electrodes in their folded states through the alkanethiol linker at the 5'-end. Binding of MB to the folded hairpin DNA was electrochemically studied and compared with binding to the duplex structure formed by hybridization of the hairpin DNA to a complementary DNA strand. Variation of the electrochemical signal from the DNA-MB complex was shown to depend primarily on the DNA length and sequence used: the G-C base pairs were the preferential sites of MB binding in the duplex. For short 20 nts long DNA sequences, the increased electrochemical response from MB bound to the duplex structure was consistent with the increased amount of bound and electrochemically readable MB molecules (i.e. MB molecules that are available for the electron transfer (ET) reaction with the electrode). With longer DNA sequences, the balance between the amounts of the electrochemically readable MB molecules bound to the hairpin DNA and to the hybrid was opposite: a part of the MB molecules bound to the long-sequence DNA duplex seem to be electrochemically mute due to long ET distance. The increasing electrochemical response from MB bound to the short-length DNA hybrid contrasts with the decreasing signal from MB bound to the long-length DNA hybrid and allows an "off"-"on" genosensor development.

  19. Red blood cells donate electrons to methylene blue mediated chemical reduction of methemoglobin compartmentalized in liposomes in blood.

    PubMed

    Sakai, Hiromi; Li, Bing; Lim, Wei Lee; Iga, Yumika

    2014-07-16

    Electron-energy-rich coenzymes in cells, NADH and NADPH, are re-energized repeatedly through the Embden-Meyerhof and pentose-phosphate glycolytic pathways, respectively. This study demonstrates extraction of their electron energies in red blood cells (RBCs) for in vivo extracellular chemical reactions using an electron mediator shuttling across the biomembrane. Hemoglobin-vesicles (HbVs) are an artificial oxygen carrier encapsulating purified and concentrated Hb solution in liposomes. Because of the absence of a metHb-reducing enzymatic system in HbV, HbO2 gradually autoxidizes to form metHb. Wistar rats received HbV suspension (10 mL/kg body weight) intravenously. At the metHb level of around 50%, methylene blue [MB(+); 3,7-bis(dimethylamino)phenothiazinium chloride] was injected. The level of metHb quickly decreased to around 16% in 40 min, remaining for more than 5 h. In vitro mixing of HbV/MB(+) with RBCs recreated the in vivo metHb reduction, but not with plasma. NAD(P)H levels in RBCs decreased after metHb reduction. The addition of glucose facilitated metHb reduction. Liposome-encapsulated NAD(P)H, a model of RBC, reduced metHb in HbV in the presence of MB(+). These results indicate that (i) NAD(P)H in RBCs reacts with MB(+) to convert it to leukomethylene blue (MBH); (ii) MB(+) and MBH shuttle freely between RBC and HbV across the hydrophobic lipid membranes; and (iii) MBH is transferred into HbV and reduces metHb in HbV. Four other electron mediators with appropriate redox potentials appeared to be as effective as MB(+) was, indicating the possibility for further optimization of electron mediators. We established an indirect enzymatic metHb reducing system for HbV using unlimited endogenous electrons created in RBCs in combination with an effective electron mediator that prolongs the functional lifespan of HbV in blood circulation.

  20. Measuring the bioactivity and molecular conformation of typically globular proteins with phenothiazine-derived methylene blue in solid and in solution: A comparative study using photochemistry and computational chemistry.

    PubMed

    Ding, Fei; Xie, Yong; Peng, Wei; Peng, Yu-Kui

    2016-05-01

    Methylene blue is a phenothiazine agent, that possesses a diversity of biomedical and biological therapeutic purpose, and it has also become the lead compound for the exploitation of other pharmaceuticals such as chlorpromazine and the tricyclic antidepressants. However, the U.S. Food and Drug Administration has acquired cases of detrimental effects of methylene blue toxicities such as hemolytic anemia, methemoglobinemia and phototoxicity. In this work, the molecular recognition of methylene blue by two globular proteins, hemoglobin and lysozyme was characterized by employing fluorescence, circular dichroism (CD) along with molecular modeling at the molecular scale. The recognition of methylene blue with proteins appears fluorescence quenching via static type, this phenomenon does cohere with time-resolved fluorescence lifetime decay that nonfluorescent protein-drug conjugate formation has a strength of 10(4)M(-1), and the primary noncovalent bonds, that is hydrogen bonds, π-conjugated effects and hydrophobic interactions were operated and remained adduct stable. Meantime, the results of far-UV CD and synchronous fluorescence suggest that the α-helix of hemoglobin/lysozyme decreases from 78.2%/34.7% (free) to 58.7%/23.8% (complex), this elucidation agrees well with the elaborate description of three-dimensional fluorescence showing the polypeptide chain of proteins partially destabilized upon conjugation with methylene blue. Furthermore, both extrinsic fluorescent indicator and molecular modeling clearly exhibit methylene blue is situated within the cavity constituted by α1, β2 and α2 subunits of hemoglobin, while it was located at the deep fissure on the lysozyme surface and Trp-62 and Trp-63 residues are nearby. With the aid of computational analyses and combining the wet experiments, it can evidently be found that the recognition ability of proteins for methylene blue is patterned upon the following sequence: lysozyme

  1. Zn3(OH)2V2O7·2H2O/g-C3N4: A novel composite for efficient photodegradation of methylene blue under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Qizhao; Zheng, Longhui; Bai, Yan; Zhao, Jianjun; Wang, Fangping; Zhang, Rong; Huang, Haohao; Su, Bitao

    2015-08-01

    In this work, we used a facile method to prepare a series of Zn3(OH)2V2O7·2H2O/g-C3N4 composites in a 70 °C water bath for 10 h and characterized them by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis diffuse reflectance spectroscopy (DRS), Brunauer-Emmett-Teller (BET), and photoluminescence (PL). Degradation of methylene blue (MB) and phenol were carried out to evaluate the photocatalytic activities of samples under visible light irradiation. Presence of Zn3(OH)2V2O7·2H2O increased surface areas and promoted the charge separation, exerted great influence on the photocatalytic activity and absorption capacity of g-C3N4. In addition, the synergic effect was explained and a possible photocatalytic mechanism was proposed.

  2. Methylene blue exerts a neuroprotective effect against traumatic brain injury by promoting autophagy and inhibiting microglial activation

    PubMed Central

    ZHAO, MINGFEI; LIANG, FENG; XU, HANGDI; YAN, WEI; ZHANG, JIANMIN

    2016-01-01

    Traumatic brain injury (TBI) leads to permanent neurological impairment, and methylene blue (MB) exerts central nervous system neuroprotective effects. However, only one previous study has investigated the effectiveness of MB in a controlled cortical impact injury model of TBI. In addition, the specific mechanisms underlying the effect of MB against TBI remain to be elucidated. Therefore, the present study investigated the neuroprotective effect of MB on TBI and the possible mechanisms involved. In a mouse model of TBI, the animals were randomly divided into sham, vehicle (normal saline) or MB groups. The treatment time-points were 24 and 72 h (acute phase of TBI), and 14 days (chronic phase of TBI) post-TBI. The brain water content (BWC), and levels of neuronal death, and autophagy were determined during the acute phase, and neurological deficit, injury volume and microglial activation were assessed at all time-points. The injured hemisphere BWC was significantly increased 24 h post-TBI, and this was attenuated following treatment with MB. There was a significantly higher number of surviving neurons in the MB group, compared with the Vehicle group at 24 and 72 h post-TBI. In the acute phase, the MB-treated animals exhibited significantly upregulated expression of Beclin 1 and increased LC3-II to LC3-I ratios, compared with the vehicle group, indicating an increased rate of autophagy. Neurological functional deficits, measured using the modified neurological severity score, were significantly lower in the acute phase in the MB-treated animals and cerebral lesion volumes in the MB-treated animals were significantly lower, compared with the other groups at all time-points. Microglia were activated 24 h after TBI, peaked at 72 h and persisted until 14 days after TBI. Although the number of Iba-1-positive cells in the vehicle and MB groups 24 h post-TBI were not significantly different, marked microglial inhibition was observed in the MB group 72 h and 14 days after

  3. Biosorption of Methylene Blue by De-Oiled Algal Biomass: Equilibrium, Kinetics and Artificial Neural Network Modelling

    PubMed Central

    Maurya, Rahulkumar; Ghosh, Tonmoy; Paliwal, Chetan; Shrivastav, Anupama; Chokshi, Kaumeel; Pancha, Imran; Ghosh, Arup; Mishra, Sandhya

    2014-01-01

    The main objective of the present study is to effectively utilize the de-oiled algal biomass (DAB) to minimize the waste streams from algal biofuel by using it as an adsorbent. Methylene blue (MB) was used as a sorbate for evaluating the potential of DAB as a biosorbent. The DAB was characterized by SEM, FTIR, pHPZC, particle size, pore volume and pore diameter to understand the biosorption mechanism. The equilibrium studies were carried out by variation in different parameters, i.e., pH (2–9), temperature (293.16–323.16 K), biosorbent dosage (1–10 g L−1), contact time (0–1,440 min), agitation speed (0–150 rpm) and dye concentration (25–2,500 mg L−1). MB removal was greater than 90% in both acidic and basic pH. The optimum result of MB removal was found at 5–7 g L−1 DAB concentration. DAB removes 86% dye in 5 minutes under static conditions and nearly 100% in 24 hours when agitated at 150 rpm. The highest adsorption capacity was found 139.11 mg g−1 at 2,000 mg L−1 initial MB concentration. The process attained equilibrium in 24 hours. It is an endothermic process whose spontaneity increases with temperature. MB biosorption by DAB follows pseudo-second order kinetics. Artificial neural network (ANN) model also validates the experimental dye removal efficiency (R2 = 0.97) corresponding with theoretically predicted values. Sensitivity analysis suggests that temperature and agitation speed affect the process most with 23.62% and 21.08% influence on MB biosorption, respectively. Dye adsorption capacity of DAB in fixed bed column was 107.57 mg g−1 in preliminary study while it went up to 139.11 mg g−1 in batch studies. The probable mechanism for biosorption in this study is chemisorptions via surface active charges in the initial phase followed by physical sorption by occupying pores of DAB. PMID:25310576

  4. Biosorption of methylene blue by de-oiled algal biomass: equilibrium, kinetics and artificial neural network modelling.

    PubMed

    Maurya, Rahulkumar; Ghosh, Tonmoy; Paliwal, Chetan; Shrivastav, Anupama; Chokshi, Kaumeel; Pancha, Imran; Ghosh, Arup; Mishra, Sandhya

    2014-01-01

    The main objective of the present study is to effectively utilize the de-oiled algal biomass (DAB) to minimize the waste streams from algal biofuel by using it as an adsorbent. Methylene blue (MB) was used as a sorbate for evaluating the potential of DAB as a biosorbent. The DAB was characterized by SEM, FTIR, pHPZC, particle size, pore volume and pore diameter to understand the biosorption mechanism. The equilibrium studies were carried out by variation in different parameters, i.e., pH (2-9), temperature (293.16-323.16 K), biosorbent dosage (1-10 g L(-1)), contact time (0-1,440 min), agitation speed (0-150 rpm) and dye concentration (25-2,500 mg L(-1)). MB removal was greater than 90% in both acidic and basic pH. The optimum result of MB removal was found at 5-7 g L(-1) DAB concentration. DAB removes 86% dye in 5 minutes under static conditions and nearly 100% in 24 hours when agitated at 150 rpm. The highest adsorption capacity was found 139.11 mg g(-1) at 2,000 mg L(-1) initial MB concentration. The process attained equilibrium in 24 hours. It is an endothermic process whose spontaneity increases with temperature. MB biosorption by DAB follows pseudo-second order kinetics. Artificial neural network (ANN) model also validates the experimental dye removal efficiency (R2 = 0.97) corresponding with theoretically predicted values. Sensitivity analysis suggests that temperature and agitation speed affect the process most with 23.62% and 21.08% influence on MB biosorption, respectively. Dye adsorption capacity of DAB in fixed bed column was 107.57 mg g(-1) in preliminary study while it went up to 139.11 mg g(-1) in batch studies. The probable mechanism for biosorption in this study is chemisorptions via surface active charges in the initial phase followed by physical sorption by occupying pores of DAB. PMID:25310576

  5. The determination of kaolinite clay content in limestones of western Tamil Nadu by methylene blue adsorption using UV-vis spectroscopy.

    PubMed

    Ramasamy, V; Anandalakshmi, K

    2008-06-01

    The clay index values of 60 different limestone samples collected from western Tamil Nadu were determined using UV-vis spectrophotometric method with the help of the absorbance value at 663 nm of a known concentration of methylene blue. The type of clay was determined as kaolinite through the FTIR technique. The applicability of this approach and advantages over the current methods in cement and chemical industries are demonstrated. According to the clay index values, the quality of the samples obtained from Padaivedu area of Namakkal district is better than the other samples.

  6. Influence of methylene blue-mediated photodynamic therapy on the resistance to detachment of streptococcus mutans biofilms from titanium substrata

    NASA Astrophysics Data System (ADS)

    Sharab, Lina Y.

    In dental settings, as well as in other natural systems, plaque-forming microorganisms develop biofilms in which the microbes become protected via their own phenotypic changes and their polymeric exudates from disinfection by washes and antibiotics. Photodynamic Therapy (PDT) is variably effective against these microorganisms, depending on such factors as whether the bacteria are Gram positive or Gram negative, plaque age and thickness, and internal biofilm oxygen concentration. This investigation applied a novel combination of PDT and water-jet impingement techniques to Streptococcus mutans (ATCC strain 27351)-formed biofilms on commercially pure titanium (cpTi) starting with three different phases (ages) of the bacteria, to examine whether the detachment shear stress --as a signature for the work required for removal of the biofilms- would be affected by prior PDT treatment independently from microbial viability. Biofilms were grown with sucrose addition to Brain Heart Infusion media, producing visible thick films and nearly invisible thin films (within the same piece) having the same numbers of culturable microorganisms, the thicker films having greater susceptibility to detachment by water--jet impingement. Colony-forming-unit (CFU) counts routinely correlated well with results from a spectrophotometric Alamar Blue (AB) assay. Use of Methylene Blue (MB) as a photosensitizer (PS) for PDT of biofilms did not interfere with the AB assay, but did mask AB reduction spectral changes when employed with planktonic organisms. It was discovered in this work that PD-treated microbial biofilms, independently from starting or PS-influenced microorganism viability, were significantly (p<0.05) and differentially more easily delaminated and ultimately removed from their substrata biomaterials by the hydrodynamic forces of water-jet impingement. Control biofilms of varying thickness, not receiving PDT treatment, required between 144 and 228 dynes/cm2 of shear stress to

  7. Hydrothermal synthesis of Mn vanadate nanosheets and visible-light photocatalytic performance for the degradation of methyl blue

    SciTech Connect

    Pei, L.Z. Xie, Y.K.; Pei, Y.Q.; Jiang, Y.X.; Yu, H.Y.; Cai, Z.Y.

    2013-07-15

    Graphical abstract: - Highlights: • Mn vanadate nanosheets have been synthesized by simple hydrothermal process. • The formation of Mn vanadate nanosheets can be controlled by growth conditions. • Mn vanadate nanosheets exhibit good photocatalytic activities for methyl blue. - Abstract: Mn vanadate nanosheets have been synthesized via a facile hydrothermal route using ammonium metavanadate and Mn acetate as the raw materials, polyvinyl pyrrolidone (PVP) as the surfactant. X-ray diffraction (XRD) shows that the Mn vanadate nanosheets are composed of monoclinic MnV{sub 2}O{sub 6} phase. Scanning electron microscopy (SEM) observation indicates that the nanosheets have the average thickness of about 50 nm, length of 2–10 μm and width of 800 nm to 2 μm. The growth process of the Mn vanadate nanosheets has also been discussed based on the analysis of the roles of the growth conditions on the formation of the Mn vanadate nanosheets. The nanosheets show good photocatalytic activities for the degradation of methylene blue (MB) under visible light irradiation. About 72.96% MB can be degraded after visible light irradiation for 1 h over 10 mg Mn vanadate nanosheets in 10 mL MB solution with the concentration of 10 mg L{sup −1}.

  8. Activated carbons from waste of oil-palm kernel shells, sawdust and tannery leather scraps and application to chromium(VI), phenol, and methylene blue dye adsorption.

    PubMed

    Montoya-Suarez, Sergio; Colpas-Castillo, Fredy; Meza-Fuentes, Edgardo; Rodríguez-Ruiz, Johana; Fernandez-Maestre, Roberto

    2016-01-01

    Phenol, chromium, and dyes are continuously dumped into water bodies; the adsorption of these contaminants on activated carbon is a low-cost alternative for water remediation. We synthesized activated carbons from industrial waste of palm oil seed husks (kernel shells), sawdust, and tannery leather scraps. These materials were heated for 24 h at 600, 700 or 800°C, activated at 900°C with CO2 and characterized by proximate analysis and measurement of specific surface area (Brunauer-Emmett-Teller (BET) and Langmuir), and microporosity (t-plot). Isotherms showed micropores and mesopores in activated carbons. Palm seed activated carbon showed the highest fixed carbon content (96%), and Langmuir specific surface areas up to 1,268 m2/g, higher than those from sawdust (581 m2/g) and leather scraps (400 m2/g). The carbons were applied to adsorption of Cr(VI), phenol, and methylene blue dye from aqueous solutions. Phenol adsorption on activated carbons was 78-82 mg/g; on palm seed activated carbons, Cr(VI) adsorption at pH 7 was 0.35-0.37 mg/g, and methylene blue adsorption was 40-110 mg/g, higher than those from sawdust and leather scraps. Activated carbons from palm seed are promising materials to remove contaminants from the environment and represent an alternative application for vegetal wastes instead of dumping into landfills.

  9. Principal component analysis- adaptive neuro-fuzzy inference system modeling and genetic algorithm optimization of adsorption of methylene blue by activated carbon derived from Pistacia khinjuk.

    PubMed

    Ghaedi, M; Ghaedi, A M; Abdi, F; Roosta, M; Vafaei, A; Asghari, A

    2013-10-01

    In the present study, activated carbon (AC) simply derived from Pistacia khinjuk and characterized using different techniques such as SEM and BET analysis. This new adsorbent was used for methylene blue (MB) adsorption. Fitting the experimental equilibrium data to various isotherm models shows the suitability and applicability of the Langmuir model. The adsorption mechanism and rate of processes was investigated by analyzing time dependency data to conventional kinetic models and it was found that adsorption follow the pseudo-second-order kinetic model. Principle component analysis (PCA) has been used for preprocessing of input data and genetic algorithm optimization have been used for prediction of adsorption of methylene blue using activated carbon derived from P. khinjuk. In our laboratory various activated carbon as sole adsorbent or loaded with various nanoparticles was used for removal of many pollutants (Ghaedi et al., 2012). These results indicate that the small amount of proposed adsorbent (1.0g) is applicable for successful removal of MB (RE>98%) in short time (45min) with high adsorption capacity (48-185mgg(-1)).

  10. Preferential adsorption behavior of methylene blue dye onto surface hydroxyl group enriched TiO2 nanotube and its photocatalytic regeneration.

    PubMed

    Natarajan, Thillai Sivakumar; Bajaj, Hari C; Tayade, Rajesh J

    2014-11-01

    The present manuscript focus on the synthesis of surface hydroxyl group enriched titanium dioxide nanotube (TNT) by hydrothermal method for preferential adsorption of methylene blue (MB) dye. The mixture of methylene blue (MB) and rhodamine B (RhB) dye was used to study the preferential adsorption nature of TNT. The synthesized TNT were characterized by various techniques such as powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption, and ammonia-temperature programmed desorption (NH3-TPD) analysis. Result demonstrated that enhancement in the surface area of TNT and higher number of hydroxyl group on the surface of TNT. In the binary mixture, the adsorption of MB dye was 12.9 times higher as compared to RhB dye, which clearly indicated the preferential adsorption of MB dye on TNT surface. The preferential interaction of MB on TNT is due to the electrostatic interaction between the cationic MB and negatively charged TNT surface. The preferential adsorption of MB dye was studied by applying Langmuir, Freundlich and Sips isotherm; pseudo-first and second-order kinetic model. Furthermore, the regeneration of dye adsorbed TNT was carried out by eco-friendly photocatalytic process under the irradiation of ultraviolet light.

  11. Activated carbons from waste of oil-palm kernel shells, sawdust and tannery leather scraps and application to chromium(VI), phenol, and methylene blue dye adsorption.

    PubMed

    Montoya-Suarez, Sergio; Colpas-Castillo, Fredy; Meza-Fuentes, Edgardo; Rodríguez-Ruiz, Johana; Fernandez-Maestre, Roberto

    2016-01-01

    Phenol, chromium, and dyes are continuously dumped into water bodies; the adsorption of these contaminants on activated carbon is a low-cost alternative for water remediation. We synthesized activated carbons from industrial waste of palm oil seed husks (kernel shells), sawdust, and tannery leather scraps. These materials were heated for 24 h at 600, 700 or 800°C, activated at 900°C with CO2 and characterized by proximate analysis and measurement of specific surface area (Brunauer-Emmett-Teller (BET) and Langmuir), and microporosity (t-plot). Isotherms showed micropores and mesopores in activated carbons. Palm seed activated carbon showed the highest fixed carbon content (96%), and Langmuir specific surface areas up to 1,268 m2/g, higher than those from sawdust (581 m2/g) and leather scraps (400 m2/g). The carbons were applied to adsorption of Cr(VI), phenol, and methylene blue dye from aqueous solutions. Phenol adsorption on activated carbons was 78-82 mg/g; on palm seed activated carbons, Cr(VI) adsorption at pH 7 was 0.35-0.37 mg/g, and methylene blue adsorption was 40-110 mg/g, higher than those from sawdust and leather scraps. Activated carbons from palm seed are promising materials to remove contaminants from the environment and represent an alternative application for vegetal wastes instead of dumping into landfills. PMID:26744931

  12. Oxygen uptake induced by electron transfer from donors to the triplet state of methylene blue and xanthene dyes in air-saturated aqueous solution.

    PubMed

    Görner, Helmut

    2008-03-01

    The effects of oxygen in the photolysis of rose bengal, eosin, erythrosin and methylene blue were studied in the presence of formate and electron donors, such as ascorbic acid, aromatic amino acids or aliphatic amines, e.g. triethylamine (TEA). The overall reaction is conversion of oxygen via the hydroperoxyl/superoxide ion radical into hydrogen peroxide. The quantum yield of oxygen uptake (Phi(-O2)) increases with the donor concentration. The photoinduced formation of H2O2 is initiated by quenching of the triplet state of the dye by the donor and subsequent reactions of both the dye and donor radicals with oxygen. For methylene blue and the xanthene dyes in the presence of 10 mM ascorbic acid or 0.1 M TEA Phi(-O2)=0.07-0.25. The spectral and kinetic properties of the specific dye transients, including the radicals involved and the pH and concentration dependences, are discussed. PMID:18389155

  13. A Case of Severe Chlorite Poisoning Successfully Treated With Early Administration of Methylene Blue, Renal Replacement Therapy, and Red Blood Cell Transfusion

    PubMed Central

    Gebhardtova, Andrea; Vavrinec, Peter; Vavrincova-Yaghi, Diana; Seelen, Mark; Dobisova, Anna; Flassikova, Zora; Cikova, Andrea; Henning, Robert H.; Yaghi, Aktham

    2014-01-01

    Abstract The case of a 55-year-old man who attempted suicide by ingesting <100 mL of 28% sodium chlorite solution is presented. On arrival in the intensive care unit, the patient appeared cyanotic with lowered consciousness and displayed anuria and chocolate brown serum. Initial laboratory tests revealed 40% of methemoglobin. The formation of methemoglobin was effectively treated with methylene blue (10% after 29 hours). To remove the toxin, and because of the anuric acute renal failure, the patient received renal replacement therapy. Despite these therapeutic measures, the patient developed hemolytic anemia and disseminated intravascular coagulation, which were treated with red blood cell transfusion and intermittent hemodialysis. These interventions led to the improvement of his condition and the patient eventually fully recovered. Patient gave written informed consent. This is the third known case of chlorite poisoning that has been reported. Based upon this case, we suggest the management of sodium chlorite poisoning to comprise the early administration of methylene blue, in addition to renal replacement therapy and transfusion of red blood cells. PMID:25144325

  14. MBAS (Methylene Blue Active Substances) and LAS (Linear Alkylbenzene Sulphonates) in Mediterranean coastal aerosols: Sources and transport processes

    NASA Astrophysics Data System (ADS)

    Becagli, S.; Ghedini, C.; Peeters, S.; Rottiers, A.; Traversi, R.; Udisti, R.; Chiari, M.; Jalba, A.; Despiau, S.; Dayan, U.; Temara, A.

    2011-12-01

    Methylene Blue Active Substances (MBAS) and Linear Alkylbenzene Sulphonates (LAS) concentrations, together with organic carbon and ions were measured in atmospheric coastal aerosols in the NW Mediterranean Basin. Previous studies have suggested that the presence of surfactants in coastal aerosols may result in vegetation damage without specifically detecting or quantifying these surfactants. Coastal aerosols were collected at a remote site (Porquerolles Island-Var, France) and at a more anthropised site (San Rossore National Park-Tuscany, Italy). The chemical data were interpreted according to a comprehensive local meteorological analysis aiming to decipher the airborne source and transport processes of these classes of compounds. The LAS concentration (anthropogenic surfactants) was measured in the samples using LC-MS/MS, a specific analytical method. The values were compared with the MBAS concentration, determined by a non-specific analytical method. At Porquerolles, the MBAS concentration (103 ± 93 ng m -3) in the summer samples was significantly higher than in the winter samples. In contrast, LAS concentrations were rarely greater than in the blank filters. At San Rossore, the mean annual MBAS concentration (887 ± 473 ng m -3 in PM10) contributed about 10% to the total atmospheric particulate organic matter. LAS mean concentration in these same aerosol samples was 11.5 ± 10.5 ng m -3. A similar MBAS (529 ± 454 ng m -3) - LAS (7.1 ± 4.1 ng m -3 LAS) ratio of ˜75 was measured in the fine (PM2.5) aerosol fraction. No linear correlation was found between MBAS and LAS concentrations. At San Rossore site the variation of LAS concentrations was studied on a daily basis over a year. The LAS concentrations in the coarse fraction (PM10-2.5) were higher during strong sea storm conditions, characterized by strong air flow coming from the sea sector. These events, occurring with more intensity in winter, promoted the formation of primary marine aerosols containing LAS

  15. Synthesis of magnetic ZnO/ZnFe2O4 by a microwave combustion method, and its high rate of adsorption of methylene blue.

    PubMed

    Feng, Jing; Wang, Yuting; Zou, Linyi; Li, Bowen; He, Xiaofeng; Ren, Yueming; Lv, Yanzhuo; Fan, Zhuangjun

    2015-01-15

    The magnetic ZnO/ZnFe2O4 particles have been synthesized by a microwave combustion method using NaAc as fuel. The as-obtained ZnO/ZnFe2O4 was characterized and applied for the removal of methylene blue (MB) from aqueous solution in the batch system. The ZnO/ZnFe2O4 particles display larger S(BET) and smaller size with increase of NaAc dosage. Because a certain amount of gas is generated during NaAc decomposing and the gas prevent the particles from growing larger. More interestingly, even at neutral pH value, the ZnO/ZnFe2O4 obtained with 24 mL NaAc shows high-rate adsorption properties with the MB removal efficiency up to 90% in 0.5 min and a maximum adsorption capacity of 37.27 mg/g.

  16. [Lymph node staging in gastrointestinal cancer. Combination of methylene blue-assisted lymph node dissection and ex vivo sentinel lymph node mapping].

    PubMed

    Märkl, B; Arnholdt, H

    2012-11-01

    The histopathological lymph node staging is of crucial importance for the prognosis estimation and therapy stratification in gastrointestinal cancer. However, the recommended numbers of lymph nodes that should be evaluated are often not reached in routine practice. Methylene blue assisted lymph node dissection was introduced as a new, simple and efficient technique to improve lymph node harvest in gastrointestinal cancer. This method is inexpensive, causes no delay and needs no toxic substances. All studies performed revealed a highly significantly improved lymph node harvest in comparison to the conventional technique. Moreover, this technique can be combined with a new ex vivo sentinel lymph node mapping that for the first time is based on histological sentinel lymph node detection. The success rate of this method is similar to conventional techniques and it enables an efficient application of extended investigation methods, such as immunohistochemistry or the polymerase chain reaction.

  17. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids.

    PubMed

    Sun, Lei; Chen, Dongmei; Wan, Shungang; Yu, Zebin

    2015-12-01

    Biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids at low temperatures was utilized as adsorbent to remove methylene blue (MB) from aqueous solutions. Fourier transform infrared spectroscopy analysis showed that the carboxyl group was introduced on the biochar surface. Adsorption experiment data indicated that eucalyptus saw dust modified with citric acid showed higher MB adsorption efficiency than that modified with tartaric and acetic acids. Pseudo-second-order kinetics was the most suitable model for describing MB adsorption on biochar compared with pseudo-first-order, Elovich, and intraparticle diffusion models. The calculated values of ΔG(0) and ΔH(0) indicated the spontaneous and endothermic nature of the adsorption process. MB adsorption on biochar followed the Langmuir isotherm. The maximum adsorption capacities for eucalyptus saw dust modified with citric, tartaric, and acetic acids were 178.57, 99.01, and 29.94 mg g(-1), respectively, at 35°C.

  18. Adsorption studies of methylene blue and gentian violet on sugarcane bagasse modified with EDTA dianhydride (EDTAD) in aqueous solutions: kinetic and equilibrium aspects.

    PubMed

    Gusmão, Karla Aparecida Guimarães; Gurgel, Leandro Vinícius Alves; Melo, Tânia Márcia Sacramento; Gil, Laurent Frédéric

    2013-03-30

    In this study the adsorption of cationic dyes by modified sugarcane bagasse with EDTA dianhydride (EB) was examined using methylene blue (MB) and gentian violet (GV) as model compounds in aqueous single solutions. The synthesized adsorbent (EB) was characterized by FTIR, elemental analysis, and BET. The capacity of EB to adsorb dyes was evaluated at different contact times, pH values, and initial dye concentrations. According to the obtained results, the adsorption processes could be described by a pseudo-second-order kinetic model. The adsorption isotherms were well fitted by the Langmuir model. Maximum adsorption capacities for MB and GV on EB were found to be 202.43 and 327.83 mg/g, respectively. The free energy change during adsorption of MB and GV was found to be -22.50 and -24.21 kJ/mol, respectively, suggesting that chemisorption is the main mechanism controlling the adsorption process.

  19. Relating organic fouling of reverse osmosis membranes to adsorption during the reclamation of secondary effluents containing methylene blue and rhodamine B.

    PubMed

    Li, Haigang; Lin, Yanwen; Luo, Yunbai; Yu, Ping; Hou, Liwei

    2011-08-30

    Dyes fouling of reverse osmosis (RO) membranes and its relation to adsorption had been investigated by using a crossflow RO filtration setup. Methylene blue (MB) and rhodamine B (RB) were used as model organic foulants. The calculated amount of the irreversible sorption was related to the irreversible flux decline. The characteristic fouling kinetics was accounted by Langmuir-Hinshelwood (L-H) kinetics model for initial fouling, with the fouling rate constant k=0.0556μm s(-1)min(-1) and k=0.0181μm s(-1)min(-1) for MB and RB fouling RO membrane CPA2, respectively. And the subsequent fouling was attributed to the growth of a dye cake. A remarkable correlation was obtained between the quantified irreversible sorption and irreversible flux decline under the solution chemistries investigated. In the presence of divalent cation, the extent of flux decline was related to the competition model.

  20. Study on the inclusion interaction of p-sulfonated calix[ n]arenes with Vitamin K 3 using methylene blue as a spectral probe

    NASA Astrophysics Data System (ADS)

    Lu, Qin; Gu, Jiashan; Yu, Huapeng; Liu, Chun; Wang, Lun; Zhou, Yunyou

    2007-09-01

    The characteristics of host-guest complexation between p-sulfonated calix[ n]arene ( SCnA, n = 4, 6) and Vitamin K 3 ( VK3) were investigated by fluorescence spectrometry and absorption spectrometry using methylene blue ( MB) as a probe. Interaction with MB and SCnA led to an obvious decrease in fluorescence intensity of MB, accompanying with shifts of emission peaks. Absorption peaks also showed interesting changes; however, when VK3 was added, fluorescence intensity and absorbance recovered and a slight and slow red shift was observed. The obtained results showed that the inclusion ability of p-sulphonated calix[ n]arenes towards VK3 was the order: p-sulphonated calix[6]arene ( SC6A) > p-sulphonated calix[4]arene ( SC4A). Relative mechanism was proposed to explain the inclusion process.

  1. Adsorptive removal of methylene blue by CuO-acid modified sepiolite as effective adsorbent and its regeneration with high-temperature gas stream.

    PubMed

    Su, Chengyuan; Wang, Liang; Chen, Menglin; Huang, Zhi; Lin, Xiangfeng

    2016-01-01

    In this study, the dynamic adsorption of methylene blue dye onto CuO-acid modified sepiolite was investigated. Meanwhile, the equilibrium and kinetic data of the adsorption process were studied to understand the adsorption mechanism. Furthermore, a high-temperature gas stream was applied to regenerate the adsorbent. The results showed that the Langmuir isotherm model was applied to describe the adsorption process. The positive value of enthalpy change indicated that the adsorption process was endothermic in nature. In the dynamic adsorption process, the best adsorption performance was achieved when the ratio of column height to diameter was 2.56 and the treatment capacity was 6 BV/h. The optimal scenario for regeneration experiments was the regeneration temperature of 550-650 °C, the space velocity of 100 min(-1) and the regeneration time of 10 min. The effective adsorption of CuO-acid modified sepiolite was kept for 12 cycles of adsorption and regeneration. PMID:27533859

  2. Spectroscopic investigation on interaction and sonodynamic damage of Riboflavin to DNA under ultrasonic irradiation by using Methylene Blue as fluorescent probe

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Wu, Qiong; Wang, Jun; Chen, Dandan; Fan, Ping; Wang, Baoxin

    2014-01-01

    In this paper, the Riboflavin (RF) as a sonosensitizer and Methylene Blue (MB) as a fluorescent probe were used to study the interaction and sonodynamic damage to Deoxyribonucleic Acid (DNA) by fluorescence and UV-vis spectroscopy. The results showed that the RF could efficiently bind to DNA in aqueous solution and exchange with the MB through competing reaction. And then, under ultrasonic irradiation, the RF could obviously damage the DNA. In addition, the influencing factors such as ultrasonic irradiation time and RF concentration on the sonodynamic damage to DNA were also considered. The experimental results showed that the sonodynamic damage degree increase with the increase of ultrasonic irradiation time and RF concentration. Perhaps, this paper may offer some important subjects for broadening the application of RF in sonodynamic therapy (SDT) technologies for tumor treatment.

  3. The impact of crystallization conditions on structure-based drug design: A case study on the methylene blue/acetylcholinesterase complex.

    PubMed

    Dym, Orly; Song, Wanling; Felder, Clifford; Roth, Esther; Shnyrov, Valery; Ashani, Yacov; Xu, Yechun; Joosten, Robbie P; Weiner, Lev; Sussman, Joel L; Silman, Israel

    2016-06-01

    Structure-based drug design utilizes apoprotein or complex structures retrieved from the PDB. >57% of crystallographic PDB entries were obtained with polyethylene glycols (PEGs) as precipitant and/or as cryoprotectant, but <6% of these report presence of individual ethyleneglycol oligomers. We report a case in which ethyleneglycol oligomers' presence in a crystal structure markedly affected the bound ligand's position. Specifically, we compared the positions of methylene blue and decamethonium in acetylcholinesterase complexes obtained using isomorphous crystals precipitated with PEG200 or ammonium sulfate. The ligands' positions within the active-site gorge in complexes obtained using PEG200 are influenced by presence of ethyleneglycol oligomers in both cases bound to W84 at the gorge's bottom, preventing interaction of the ligand's proximal quaternary group with its indole. Consequently, both ligands are ∼3.0Å further up the gorge than in complexes obtained using crystals precipitated with ammonium sulfate, in which the quaternary groups make direct π-cation interactions with the indole. These findings have implications for structure-based drug design, since data for ligand-protein complexes with polyethylene glycol as precipitant may not reflect the ligand's position in its absence, and could result in selecting incorrect drug discovery leads. Docking methylene blue into the structure obtained with PEG200, but omitting the ethyleneglycols, yields results agreeing poorly with the crystal structure; excellent agreement is obtained if they are included. Many proteins display features in which precipitants might lodge. It will be important to investigate presence of precipitants in published crystal structures, and whether it has resulted in misinterpreting electron density maps, adversely affecting drug design.

  4. Effect of vanillin on methylene blue plus light-induced single-strand breaks in plasmid pBR322 DNA.

    PubMed

    Kumar, S S; Ghosh, A; Devasagayam, T P; Chauhan, P S

    2000-09-20

    The ability of vanillin (4-hydroxy-3-methoxybenzaldehyde), a naturally occurring food flavouring agent, in inhibiting photosensitization-induced single-strand breaks (ssbs) in plasmid pBR322 DNA has been examined in an in vitro system, independent of DNA repair/replication processes. Photosensitization of DNA with methylene blue, visible light and oxygen, induced ssbs resulting in the production of open circular form (OC form) in a concentration-dependent manner. The yield of OC form induced by photosensitization was increased several-fold by deuteration of the buffer and was found to be inhibited by sodium azide, a scavenger of singlet oxygen (1O(2)). Vanillin, per se, did not induce but inhibited photosensitization-induced ssbs in plasmid DNA, at millimolar concentrations. The inhibitory effect of vanillin was both concentration- and time-dependent. On a molar basis, vanillin was, however, less effective than trolox, a water-soluble analogue of alpha-tocopherol. Photosensitization by methylene blue system generates singlet oxygen, as one of the major components of ROS. Therefore, interaction of singlet oxygen with vanillin was investigated. The rate constant of vanillin with 1O(2) was estimated to be 5.93x10(7)M(-1)s(-1) and that of sodium azide as 2. 7x10(8)M(-1)s(-1). The present investigations show that vanillin can protect against photosensitization-induced ssbs in the plasmid pBR322 DNA, and this effect may partly be due to its ability to scavenge 1O(2).

  5. An extracytoplasmic function sigma factor cotranscribed with its cognate anti-sigma factor confers tolerance to NaCl, ethanol and methylene blue in Azospirillum brasilense Sp7.

    PubMed

    Mishra, Mukti Nath; Kumar, Santosh; Gupta, Namrata; Kaur, Simarjot; Gupta, Ankush; Tripathi, Anil K

    2011-04-01

    Azospirillum brasilense, a plant-growth-promoting rhizobacterium, is exposed to changes in its abiotic environment, including fluctuations in temperature, salinity, osmolarity, oxygen concentration and nutrient concentration, in the rhizosphere and in the soil. Since extra-cytoplasmic function (ECF) sigma factors play an important role in stress adaptation, we analysed the role of ECF sigma factor (also known as RpoE or σ(E)) in abiotic stress tolerance in A. brasilense. An in-frame rpoE deletion mutant of A. brasilense Sp7 was carotenoidless and slow-growing, and was sensitive to salt, ethanol and methylene blue stress. Expression of rpoE in the rpoE deletion mutant complemented the defects in growth, carotenoid biosynthesis and sensitivity to different stresses. Based on data from reverse transcriptase-PCR, a two-hybrid assay and a pull-down assay, we present evidence that rpoE is cotranscribed with chrR and the proteins synthesized from these two overlapping genes interact with each other. Identification of the transcription start site by 5' rapid amplification of cDNA ends showed that the rpoE-chrR operon was transcribed by two promoters. The proximal promoter was less active than the distal promoter, whose consensus sequence was characteristic of RpoE-dependent promoters found in alphaproteobacteria. Whereas the proximal promoter was RpoE-independent and constitutively expressed, the distal promoter was RpoE-dependent and strongly induced in response to stationary phase and elevated levels of ethanol, salt, heat and methylene blue. This study shows the involvement of RpoE in controlling carotenoid synthesis as well as in tolerance to some abiotic stresses in A. brasilense, which might be critical in the adaptation, survival and proliferation of this rhizobacterium in the soil and rhizosphere under stressful conditions.

  6. Morphological synthesis of Prussian blue analogue Zn3[Fe(CN)6]2⋅xH2O micro-/nanocrystals and their excellent adsorption performance toward methylene blue.

    PubMed

    Wu, Shikui; Shen, Xiaoping; Zhou, Hu; Zhu, Guoxing; Wang, Rongyan; Ji, Zhenyuan; Chen, Kangmin; Chen, Chaojun

    2016-02-15

    Prussian blue analogue Zn3[Fe(CN)6]2⋅xH2O (Zn-PBA) micro-/nanocrystals with well-defined spherical, cubic and polyhedral morphologies have been successfully synthesized by a simple room-temperature solution method. The morphologies and sizes of the micro-/nanocrystals can be easily tuned by HCl dosage and polymer additive. The as-prepared products are characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis and Brunauer Emmet Teller adsorption-desorption analysis. The possible formation mechanism for these Zn-PBA micro-/nanocrystals is then proposed. In addtion, adsorption performances of these micro-/nanocrystals toward organic dyes are systematically investigated. It is demonstrated that they exhibit strong adsorption selectivity to methylene blue (MB) with an extraordinary adsorption capacity as high as 1.016gg(-1) due to the proper pore size and large specific surface area (643.2m(2)g(-1)) of the product as well as the strong electrostatic interaction between MB molecules and Zn-PBA particles. It is found that the morphology and size of the micro-/nanocrystals have an important effect on their adsorption performance. Moreover, the adsorbed MB dye can be well released in some organic solvents such as ethanol and trichloromethane. The facile morphology-controlled synthesis and excellent adsorption property afford the materials promising application in adsorption related fields.

  7. The Blue Bottle Revisited.

    ERIC Educational Resources Information Center

    Vandaveer, Walter R., IV; Mosher, Mel

    1997-01-01

    Presents a modification of the classic Blue Bottle demonstration that involves the alkaline glucose reduction of methylene blue. Uses other indicators in the classic Blue Bottle to produce a rainbow of colors. (JRH)

  8. Combined activation of the energy and cellular-defense pathways may explain the potent anti-senescence activity of methylene blue.

    PubMed

    Atamna, Hani; Atamna, Wafa; Al-Eyd, Ghaith; Shanower, Gregory; Dhahbi, Joseph M

    2015-12-01

    Methylene blue (MB) delays cellular senescence, induces complex-IV, and activates Keap1/Nrf2; however, the molecular link of these effects to MB is unclear. Since MB is redox-active, we investigated its effect on the NAD/NADH ratio in IMR90 cells. The transient increase in NAD/NADH observed in MB-treated cells triggered an investigation of the energy regulator AMPK. MB induced AMPK phosphorylation in a transient pattern, which was followed by the induction of PGC1α and SURF1: both are inducers of mitochondrial and complex-IV biogenesis. Subsequently MB-treated cells exhibited >100% increase in complex-IV activity and a 28% decline in cellular oxidants. The telomeres erosion rate was also significantly lower in MB-treated cells. A previous research suggested that the pattern of AMPK activation (i.e., chronic or transient) determines the AMPK effect on cell senescence. We identified that the anti-senescence activity of MB (transient activator) was 8-times higher than that of AICAR (chronic activator). Since MB lacked an effect on cell cycle, an MB-dependent change to cell cycle is unlikely to contribute to the anti-senescence activity. The current findings in conjunction with the activation of Keap1/Nrf2 suggest a synchronized activation of the energy and cellular defense pathways as a possible key factor in MB's potent anti-senescence activity.

  9. Linezolid and vancomycin decrease the therapeutic effect of methylene blue-photodynamic therapy in a mouse model of MRSA bacterial arthritis.

    PubMed

    Tanaka, Masamitsu; Mroz, Pawel; Dai, Tianhong; Huang, Liyi; Morimoto, Yuji; Kinoshita, Manabu; Yoshihara, Yasuo; Shinomiya, Nariyoshi; Seki, Shuhji; Nemoto, Koichi; Hamblin, Michael R

    2013-01-01

    We previously reported that photodynamic therapy (PDT) using intra-articular methylene blue (MB) could be used to treat arthritis in mice caused by bioluminescent methicillin-resistant Staphylococcus aureus (MRSA) either in a therapeutic or in a preventative mode. PDT accumulated neutrophils into the mouse knee via activation of chemoattractants such as inflammatory cytokines or chemokines. In this study, we asked whether PDT combined with antibiotics used for MRSA could provide added benefit in controlling the infection. We compared MB-PDT alone, systemic administration of either linezolid (LZD) alone or vancomycin (VCM) alone or the combination of PDT with either LZD or VCM. Real-time noninvasive imaging was used to serially follow the progress of the infection. PDT alone was the most effective, whereas LZD alone was ineffective and VCM alone showed some benefit. Surprisingly the addition of LZD or VCM reduced the therapeutic effect of PDT alone (P < 0.05). Considering that PDT in this mouse model stimulates neutrophils to be antibacterial rather than actively killing the bacteria, we propose that LZD and VCM might inhibit the activation of inflammatory cytokines without eradicating the bacteria, and thereby reduce the therapeutic effect of PDT.

  10. Methylene blue-assisted lymph node dissection technique is not associated with an increased detection of lymph node metastases in colorectal cancer.

    PubMed

    Märkl, Bruno; Schaller, Tina; Krammer, Ines; Cacchi, Claudio; Arnholdt, Hans M; Schenkirsch, Gerhard; Kretsinger, Hallie; Anthuber, Matthias; Spatz, Hanno

    2013-09-01

    Lymph node staging is of paramount importance for prognosis estimation and therapy stratification in colorectal cancer. A high number of harvested lymph nodes is associated with an improved outcome. Methylene blue-assisted lymph node dissection effectively improves the lymph node harvest and ensures sufficient staging. Now, the effect on node positivity rate and stage-related outcome was investigated. The study cohort with advanced lymph node dissection consisted of 669 colorectal cancer cases of all stages, which were collected between 2007 and 2012. A historical collection of 663 cases investigated with conventional techniques between 2002 and 2004 served as control. Lymph node harvest was dramatically improved in the study group with mean lymph node numbers of 34 ± 17 vs 13 ± 5 (P<0.001) and sufficient staging rates of 98% vs 62% (P<0.001). However, neither the rate of nodal positive cases (37% vs 37%; P = 0.98) nor the rate of N2 cases differed between the two groups (14% vs 13%; P = 0.80). Furthermore, no differences were found concerning the outcome in both groups. The advanced lymph node dissection technique guarantees adequate histopathological lymph node staging in virtually all cases of colorectal cancer and is therefore extremely helpful. The hypothesis that it also provides a higher sensitivity in detecting metastases, however, could be not proved.

  11. Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue.

    PubMed

    Jung, Kyung-Won; Choi, Brian Hyun; Hwang, Min-Jin; Jeong, Tae-Un; Ahn, Kyu-Hong

    2016-11-01

    Biomass-based granular activated carbon was successfully prepared by entrapping activated carbon powder derived from spent coffee grounds into calcium-alginate beads (SCG-GAC) for the removal of acid orange 7 (AO7) and methylene blue (MB) from aqueous media. The dye adsorption process is highly pH-dependent and essentially independent of ionic effects. The adsorption kinetics was satisfactorily described by the pore diffusion model, which revealed that pore diffusion was the rate-limiting step during the adsorption process. The equilibrium isotherm and isosteric heat of adsorption indicate that SCG-GAC possesses an energetically heterogeneous surface and operates via endothermic process in nature. The maximum adsorption capacities of SCG-GAC for AO7 (pH 3.0) and MB (pH 11.0) adsorption were found to be 665.9 and 986.8mg/g at 30°C, respectively. Lastly, regeneration tests further confirmed that SCG-GAC has promising potential in its reusability, showing removal efficiency of more than 80% even after seven consecutive cycles.

  12. Preparation of highly developed mesoporous activated carbon fiber from liquefied wood using wood charcoal as additive and its adsorption of methylene blue from solution.

    PubMed

    Ma, Xiaojun; Zhang, Fan; Zhu, Junyan; Yu, Lili; Liu, Xinyan

    2014-07-01

    Activated carbon fiber (C-WACF) with super high surface area and well-developed small mesopores were prepared by liquefied wood and uses wood charcoal (WC) as additive. The characterization and properties of C-WACF were investigated by XRD, XPS and N2 adsorption. Results showed the pore development was significant at temperatures >750°C, and reached a maximum BET surface area (2604.7 m(2)/g) and total pore volume (1.433 cm(3)/g) at 850°C, of which 86.8% was from the contribution of the small mesopores of 2-4 nm. It was also found that the mesopore volume and methylene blue adsorption of C-WACF were highly increased as the temperature increases from 750 to 850°C. Additionally, the reduction of graphitic layers, the obvious changes of functional groups and the more unstable carbons on the surface of C-WACF, which played important roles in the formation of mesopores, were also observed.

  13. A situ co-precipitation method to prepare magnetic PMDA modified sugarcane bagasse and its application for competitive adsorption of methylene blue and basic magenta.

    PubMed

    Yu, Jun-Xia; Chi, Ru-An; Zhang, Yue-Fei; Xu, Zhi-Gao; Xiao, Chun-Qiao; Guo, Jia

    2012-04-01

    Magnetic pyromellitic dianhydride (PMDA) modified sugarcane bagasse (SCB) was prepared by a situ co-precipitation method. Results showed that the magnetic modified SCB could be recycled easily by an applied magnetic field. Adsorption capacities of the magnetic sorbent for cationic dyes: methylene blue and basic magenta were 315.5 and 304.9mgg(-1), respectively. Competitive adsorption in the binary system showed that concentration percentages (C(P)) and initial concentration (C(0)) both had good linear relationship with adsorption capacities of the magnetic sorbent (q(e)(')) in the investigated range. The linear equations between C(P) and q(e)(') almost did not affect by the variation of total initial concentration of the dyes (C(T)), whereas that between C(0) and q(e)(') changed greatly with it. C(P) was the main factor that impacted q(e)(') in the binary competitive adsorption system. Similar linear equations between C(P) and q(e)(') demonstrated that the magnetic sorbent had similar adsorption affinity toward the two dyes.

  14. In situ assembly of monodisperse, multifunctional silica microspheres embedded with magnetic and fluorescent nanoparticles and their application in adsorption of methylene blue.

    PubMed

    Shi, Jianhui; Ren, Xiaozhen; Tong, Lizhu; Chen, Xiaodong; Yang, Xuwei; Yang, Hua

    2013-11-14

    Many efforts have been devoted towards the fabrication of multifunctional (mesoporous, magnetic and fluorescent) nanocomposites due to their growing applications as adsorbents, catalysts, and biomedical application, etc. Novel, flower-structured multifunctional Fe3O4/YVO4:Eu(3+)@SiO2 microspheres were successfully synthesized through a simple self-assembled process. The as-obtained products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption, photoluminescence (PL) spectroscopy and using a vibrating sample magnetometer (VSM). The results reveal that the novel composites exhibit typical mesoporous structure, narrow size distribution, good monodispersity, excellent luminescent properties and superparamagnetic features. The effects of magnetic field on the luminescent intensity of multifunctional composites have been discussed in our manuscript. Furthermore, the adsorption experiments indicate that the resulting multifunctional composites are powerful adsorbents for the removal of methylene blue from water with a maximum adsorption efficiency of 98%. It is envisioned that multifunctional composites with high surface area are of particular interest for adsorption of pollutants, separation, and water purification.

  15. Facile synthesis of Fe3O4-graphene@mesoporous SiO2 nanocomposites for efficient removal of Methylene Blue

    NASA Astrophysics Data System (ADS)

    Wu, Xi-Lin; Shi, Yanpeng; Zhong, Shuxian; Lin, Hongjun; Chen, Jian-Rong

    2016-08-01

    Herein, we have developed a facile and low-cost method for the synthesis of novel graphene based nanosorbents. Firstly, well-defined Fe3O4 nanoparticles were decorated onto graphene sheets, and then a layer of mesoporous SiO2 were deposited on the surface of the Fe3O4-graphene composites. The obtained Fe3O4-graphene@mesoporous SiO2 nanocomposites (denoted as MG@m-SiO2) were characterized by scanning electron microscopic (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transformed infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The adsorptive property was investigated by using MG@m-SiO2 as sorbents and Methylene Blue (MB), a common dye, as model of the organic pollutants. Adsorption kinetics, isotherms, thermodynamics as well as effects of pH and adsorbent dose on the adsorption were studied. The adsorption isotherms and kinetics are better described by Langmuir isotherm model and pseudo-second-order kinetic model, respectively. Thermodynamic studies suggest that the adsorption of MB onto the MG@m-SiO2 is endothermic and spontaneous process. The results imply that the MG@m-SiO2 can be served as a cost-effective adsorbent for the removal of organic pollutants from aqueous solutions.

  16. Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies.

    PubMed

    Sun, Lei; Wan, Shungang; Luo, Wensui

    2013-07-01

    Biochars prepared from anaerobic digestion residue (BC-R), palm bark (BC-PB) and eucalyptus (BC-E) were used as sorbents for removal of cationic methylene blue dye (MB). The FE-SEM images indicated that the biochars have a well-developed pore structure, and the Brunauer-Emmett-Teller surface areas of BC-R, BC-PB, and BC-E were 7.60, 2.46, and 10.35 m(2)g(-1), respectively. The efficiencies of MB removal in the samples with initial concentrations of 5 mg L(-1) at pH 7.0 and 40°C by BC-R, BC-PB, and BC-E after 2h were 99.5%, 99.3%, and 86.1%, respectively. Pseudo-second-order kinetics was the most suitable model for describing the adsorption of MB onto the biochars. The experimental data were best described by the Langmuir isotherm model, with a maximum monolayer adsorption capacity of 9.50 mg g(-1) at 40°C for BC-R. The biochars produced from the three types of solid waste showed considerable potential for adsorption.

  17. Synthesis of magnetic oxidized multiwalled carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic Methylene Blue dye adsorption.

    PubMed

    Duman, Osman; Tunç, Sibel; Polat, Tülin Gürkan; Bozoğlan, Bahar Kancı

    2016-08-20

    In this study, magnetic oxidized multiwalled carbon nanotube (OMWCNT)-Fe3O4 and OMWCNT-κ-carrageenan-Fe3O4 nanocomposites were synthesized and used as adsorbent for the removal of Methylene Blue (MB) from aqueous solution. Magnetic nanocomposites were characterized by using of specific surface area, Fourier transform infrared, X-ray diffraction, vibrating sample magnetometry, thermal gravimetric analysis, scanning electron microscope and transmission electron microscope measurements. The results of characterization analyses exhibited that OMWCNT was successfully modified with κ-carrageenan. Furthermore, OMWCNT-Fe3O4 and OMWCNT-κ-carrageenan-Fe3O4 nanocomposites were of a super-paramagnetic property. Adsorption studies revealed that the data of adsorption kinetics and isotherm were well fitted by the pseudo second-order kinetic model and Langmuir isotherm model, respectively. The adsorption amounts of magnetic adsorbents increased with contact time and initial dye concentration. Compared with magnetic OMWCNT-Fe3O4 nanocomposite, magnetic OMWCNT-κ-carrageenan-Fe3O4 nanocomposite showed a better adsorption performance for the removal of MB from aqueous solution. Therefore, OMWCNT-κ-carrageenan-Fe3O4 nanocomposite may be used as a magnetic adsorbent to remove the cationic dyes from wastewaters.

  18. Artificial neural network (ANN) modeling of adsorption of methylene blue by NaOH-modified rice husk in a fixed-bed column system.

    PubMed

    Chowdhury, Shamik; Saha, Papita Das

    2013-02-01

    In this study, rice husk was modified with NaOH and used as adsorbent for dynamic adsorption of methylene blue (MB) from aqueous solutions. Continuous removal of MB from aqueous solutions was studied in a laboratory scale fixed-bed column packed with NaOH-modified rice husk (NMRH). Effect of different flow rates and bed heights on the column breakthrough performance was investigated. In order to determine the most suitable model for describing the adsorption kinetics of MB in the fixed-bed column system, the bed depth service time (BDST) model as well as the Thomas model was fitted to the experimental data. An artificial neural network (ANN)-based model was also developed for describing the dynamic dye adsorption process. An extensive error analysis was carried out between experimental data and data predicted by the models by using the following error functions: correlation coefficient (R(2)), average relative error, sum of the absolute error and Chi-square statistic test (χ(2)). Results show that with increasing bed height and decreasing flow rate, the breakthrough time was delayed. All the error functions yielded minimum values for the ANN model than the traditional models (BDST and Thomas), suggesting that the ANN model is the most suitable model to describe the fixed-bed adsorption of MB by NMRH. It is also more rational and reliable to interpret dynamic dye adsorption data through a process of ANN architecture.

  19. Intense pulsed light versus photodynamic therapy using liposomal methylene blue gel for the treatment of truncal acne vulgaris: a comparative randomized split body study.

    PubMed

    Moftah, Nayera Hassan; Ibrahim, Shady Mahmoud; Wahba, Nadine Hassan

    2016-05-01

    Acne vulgaris is an extremely common skin condition. It often leads to negative psychological consequences. Photodynamic therapy (PDT) using intense pulsed light has been introduced for effective treatment of acne. The objective was to study the effect of PDT in truncal acne vulgaris using liposomal methylene blue (LMB) versus IPL alone. Thirty-five patients with varying degrees of acne were treated with topical 0.1 % LMB hydrogel applied on the randomly selected one side of the back, and after 60 min the entire back was exposed to IPL. The procedure was done once weekly for three sessions and patients were re-evaluated 1 month after the third session by two independent dermatologists. Acne severity was graded using the Burton scale. Patient satisfaction using Cardiff Acne Disability Index (CADI) was recorded before and after treatment. On LMB-pretreated side, inflammatory acne lesion counts were significantly decreased by 56.40 % compared with 34.06 % on IPL alone. Marked improvement was seen on LMB-pretreated side in 11.5 % of patients compared with 2.8 % on IPL alone. There was a correlation between CADI score and overall improvement. Our study concluded that LMB-IPL is more effective than IPL alone, safe with tolerable pain in the treatment of acne vulgaris on the back. LMB-IPL is more effective than IPL alone, safe with tolerable pain in the treatment of acne vulgaris on the back.

  20. Three-dimensional Printed Acrylonitrile Butadiene Styrene Framework Coated with Cu-BTC Metal-organic Frameworks for the Removal of Methylene Blue

    NASA Astrophysics Data System (ADS)

    Wang, Zongyuan; Wang, Jiajun; Li, Minyue; Sun, Kaihang; Liu, Chang-Jun

    2014-08-01

    Three-dimensional (3D) printing was applied for the fabrication of acrylonitrile butadiene styrene (ABS) framework. Functionalization of the ABS framework was then performed by coating of porous Cu-BTC (BTC = benzene tricarboxylic acid) metal-organic frameworks on it using a step-by-step in-situ growth. The size of the Cu-BTC particles on ABS was ranged from 200 nm to 900 nm. The Cu-BTC/ABS framework can take up most of the space of the tubular reactor that makes the adsorption effective with no need of stirring. Methylene blue (MB) can be readily removed from aqueous solution by this Cu-BTC/ABS framework. The MB removal efficiency for solutions with concentrations of 10 and 5 mg/L was 93.3% and 98.3%, respectively, within 10 min. After MB adsorption, the Cu-BTC/ABS composite can easily be recovered without the need for centrifugation or filtration and the composite is reusable. In addition the ABS framework can be recovered for subsequent reuse. A significant advantage of 3D-printed frameworks is that different frameworks can be easily fabricated to meet the needs of different applications. This is a promising strategy to synthesize new frameworks using MOFs and polymers to develop materials for applications beyond adsorption.