PREFACE: VII Brazilian Congress on Metrology (Metrologia 2013)
NASA Astrophysics Data System (ADS)
Costa-Félix, Rodrigo; Bernardes, Americo; Valente de Oliveira, José Carlos; Mauro Granjeiro, José; Epsztejn, Ruth; Ihlenfeld, Waldemar; Smarçaro da Cunha, Valnei
2015-01-01
SEVENTH BRAZILIAN CONGRESS ON METROLOGY (METROLOGIA 2013) Metrology and Quality for a Sustainable Development From November 24th to 27th 2013 was issued the Seventh Brazilian Congress on Metrology (Metrologia 2013), which is a biannual conference organized and sponsored by the Brazilian Society of Metrology (SBM) and the Brazilian National Institute of Metrology, Quality and Technology (Inmetro). This edition was held in the charming and historical city of Ouro Preto, MG, Brazil, and aimed to join people and institutions devoted to the dissemination of the metrology and conformity assessment. The Metrologia 2013 Conference consisted of Keynote Speeches (7) and regular papers (204). Among the regular papers, the 47 most outstanding ones, comprising a high quality content on Metrology and Conformity Assessment, were selected to be published in this issue of the Journal of Physics: Conference Series. The topics of the conference covered all important areas of Metrology, which were agglutinated in the following sessions in the present issue: . Physical Metrology (Acoustics, Vibration and Ultrasound; Electricity and Magnetism; Mechanics; Optics); . Metrology on Ionizing Radiations; . Time and Frequency; . Chemistry Metrology; . Materials Metrology; . Biotechnology; . Uncertainty, Statistics and Mathematics; . Legal Metrology; . Conformity Assessment. It is our great pleasure to present this volume of IOP Journal of Physics: Conference Series (JPCS) to the scientific community to promote further research in Metrology and related areas. We believe that this volume will be both an excellent source of scientific material in the fast evolving fields that were covered by Metrologia 2013. President of the congress Americo Bernardes Federal University of Ouro Preto atb@iceb.ufop.br Editor-in-chief Rodrigo Costa-Félix Brazilian National Institute of Metrology, Quality and Technology rpfelix@inmetro.gov.br Editors José Carlos Valente de Oliveira (Editor on Mechanical Metrology) Brazilian National Institute of Metrology, Quality and Technology jcoliveira@inmetro.gov.br José Mauro Granjeiro (Editor on Biotechnology) Brazilian National Institute of Metrology, Quality and Technology jmgranjeiro@inmetro.gov.br Ruth Epsztejn (Editor on Conformity Assessment) Brazilian National Institute of Metrology, Quality and Technology repsztejn@inmetro.gov.br Waldemar Ihlenfeld (Editor on Electrical Metrology) Brazilian National Institute of Metrology, Quality and Technology wgihlenfeld-pronametro@inmetro.gov.br Valnei Smarçaro da Cunha (Editor on Chemistry Metrology) Brazilian National Institute of Metrology, Quality and Technology vscunha@inmetro.gov.br Technical and Scientific Committee for Metrologia 2013 Ado Jório (UFMG) Carlos Achete (UFRJ, Inmetro) Flávio Vasconcelos (UFMG) Giorgio Moscati (USP) Hans Peter Grieneisen (Inmetro) Humberto Brandi (Inmetro) José Carlos Valente de Oliveira (Inmetro) José Guilherme Pereira Peixoto (IRD) José Mauro Granjeiro (Inmetro) Luiz Claudio Moreira Paschoal (Petrobras) Luis Fernado Rust (Inmetro) Luiz Silva Mello (PUC RJ) Marcos Nogueira Eberlin (Unicamp) Oleksii Kuznetsov (Inmetro) Regis Landim (Inmetro) Ricardo Carvalho (ON) Rodrigo Costa-Felix (Inmetro) Romeu José Daroda (Inmetro) Ruth Epsztejn (Inmetro) Valnei Smarçaro da Cunha (Inmetro) Valter Aibe (Inmetro) Waldemar Guilherme Kürten Ihlenfeld (PTB) Wanderley de Souza (UFRJ, Inmetro)
In-cell overlay metrology by using optical metrology tool
NASA Astrophysics Data System (ADS)
Lee, Honggoo; Han, Sangjun; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, DongYoung; Oh, Eungryong; Choi, Ahlin; Park, Hyowon; Liang, Waley; Choi, DongSub; Kim, Nakyoon; Lee, Jeongpyo; Pandev, Stilian; Jeon, Sanghuck; Robinson, John C.
2018-03-01
Overlay is one of the most critical process control steps of semiconductor manufacturing technology. A typical advanced scheme includes an overlay feedback loop based on after litho optical imaging overlay metrology on scribeline targets. The after litho control loop typically involves high frequency sampling: every lot or nearly every lot. An after etch overlay metrology step is often included, at a lower sampling frequency, in order to characterize and compensate for bias. The after etch metrology step often involves CD-SEM metrology, in this case in-cell and ondevice. This work explores an alternative approach using spectroscopic ellipsometry (SE) metrology and a machine learning analysis technique. Advanced 1x nm DRAM wafers were prepared, including both nominal (POR) wafers with mean overlay offsets, as well as DOE wafers with intentional across wafer overlay modulation. After litho metrology was measured using optical imaging metrology, as well as after etch metrology using both SE and CD-SEM for comparison. We investigate 2 types of machine learning techniques with SE data: model-less and model-based, showing excellent performance for after etch in-cell on-device overlay metrology.
Method and system for processing optical elements using magnetorheological finishing
Menapace, Joseph Arthur; Schaffers, Kathleen Irene; Bayramian, Andrew James; Molander, William A
2012-09-18
A method of finishing an optical element includes mounting the optical element in an optical mount having a plurality of fiducials overlapping with the optical element and obtaining a first metrology map for the optical element and the plurality of fiducials. The method also includes obtaining a second metrology map for the optical element without the plurality of fiducials, forming a difference map between the first metrology map and the second metrology map, and aligning the first metrology map and the second metrology map. The method further includes placing mathematical fiducials onto the second metrology map using the difference map to form a third metrology map and associating the third metrology map to the optical element. Moreover, the method includes mounting the optical element in the fixture in an MRF tool, positioning the optical element in the fixture; removing the plurality of fiducials, and finishing the optical element.
NASA Astrophysics Data System (ADS)
Kim, Hyun-Sok; Hyun, Min-Sung; Ju, Jae-Wuk; Kim, Young-Sik; Lambregts, Cees; van Rhee, Peter; Kim, Johan; McNamara, Elliott; Tel, Wim; Böcker, Paul; Oh, Nang-Lyeom; Lee, Jun-Hyung
2018-03-01
Computational metrology has been proposed as the way forward to resolve the need for increased metrology density, resulting from extending correction capabilities, without adding actual metrology budget. By exploiting TWINSCAN based metrology information, dense overlay fingerprints for every wafer can be computed. This extended metrology dataset enables new use cases, such as monitoring and control based on fingerprints for every wafer of the lot. This paper gives a detailed description, discusses the accuracy of the fingerprints computed, and will show results obtained in a DRAM HVM manufacturing environment. Also an outlook for improvements and extensions will be shared.
NASA Astrophysics Data System (ADS)
Zhao, Qian; Wang, Lei; Wang, Jazer; Wang, ChangAn; Shi, Hong-Fei; Guerrero, James; Feng, Mu; Zhang, Qiang; Liang, Jiao; Guo, Yunbo; Zhang, Chen; Wallow, Tom; Rio, David; Wang, Lester; Wang, Alvin; Wang, Jen-Shiang; Gronlund, Keith; Lang, Jun; Koh, Kar Kit; Zhang, Dong Qing; Zhang, Hongxin; Krishnamurthy, Subramanian; Fei, Ray; Lin, Chiawen; Fang, Wei; Wang, Fei
2018-03-01
Classical SEM metrology, CD-SEM, uses low data rate and extensive frame-averaging technique to achieve high-quality SEM imaging for high-precision metrology. The drawbacks include prolonged data collection time and larger photoresist shrinkage due to excess electron dosage. This paper will introduce a novel e-beam metrology system based on a high data rate, large probe current, and ultra-low noise electron optics design. At the same level of metrology precision, this high speed e-beam metrology system could significantly shorten data collection time and reduce electron dosage. In this work, the data collection speed is higher than 7,000 images per hr. Moreover, a novel large field of view (LFOV) capability at high resolution was enabled by an advanced electron deflection system design. The area coverage by LFOV is >100x larger than classical SEM. Superior metrology precision throughout the whole image has been achieved, and high quality metrology data could be extracted from full field. This new capability on metrology will further improve metrology data collection speed to support the need for large volume of metrology data from OPC model calibration of next generation technology. The shrinking EPE (Edge Placement Error) budget places more stringent requirement on OPC model accuracy, which is increasingly limited by metrology errors. In the current practice of metrology data collection and data processing to model calibration flow, CD-SEM throughput becomes a bottleneck that limits the amount of metrology measurements available for OPC model calibration, impacting pattern coverage and model accuracy especially for 2D pattern prediction. To address the trade-off in metrology sampling and model accuracy constrained by the cycle time requirement, this paper employs the high speed e-beam metrology system and a new computational software solution to take full advantage of the large volume data and significantly reduce both systematic and random metrology errors. The new computational software enables users to generate large quantity of highly accurate EP (Edge Placement) gauges and significantly improve design pattern coverage with up to 5X gain in model prediction accuracy on complex 2D patterns. Overall, this work showed >2x improvement in OPC model accuracy at a faster model turn-around time.
Toward reliable and repeatable automated STEM-EDS metrology with high throughput
NASA Astrophysics Data System (ADS)
Zhong, Zhenxin; Donald, Jason; Dutrow, Gavin; Roller, Justin; Ugurlu, Ozan; Verheijen, Martin; Bidiuk, Oleksii
2018-03-01
New materials and designs in complex 3D architectures in logic and memory devices have raised complexity in S/TEM metrology. In this paper, we report about a newly developed, automated, scanning transmission electron microscopy (STEM) based, energy dispersive X-ray spectroscopy (STEM-EDS) metrology method that addresses these challenges. Different methodologies toward repeatable and efficient, automated STEM-EDS metrology with high throughput are presented: we introduce the best known auto-EDS acquisition and quantification methods for robust and reliable metrology and present how electron exposure dose impacts the EDS metrology reproducibility, either due to poor signalto-noise ratio (SNR) at low dose or due to sample modifications at high dose conditions. Finally, we discuss the limitations of the STEM-EDS metrology technique and propose strategies to optimize the process both in terms of throughput and metrology reliability.
Efficient hybrid metrology for focus, CD, and overlay
NASA Astrophysics Data System (ADS)
Tel, W. T.; Segers, B.; Anunciado, R.; Zhang, Y.; Wong, P.; Hasan, T.; Prentice, C.
2017-03-01
In the advent of multiple patterning techniques in semiconductor industry, metrology has progressively become a burden. With multiple patterning techniques such as Litho-Etch-Litho-Etch and Sidewall Assisted Double Patterning, the number of processing step have increased significantly and therefore, so as the amount of metrology steps needed for both control and yield monitoring. The amount of metrology needed is increasing in each and every node as more layers needed multiple patterning steps, and more patterning steps per layer. In addition to this, there is that need for guided defect inspection, which in itself requires substantially denser focus, overlay, and CD metrology as before. Metrology efficiency will therefore be cruicial to the next semiconductor nodes. ASML's emulated wafer concept offers a highly efficient method for hybrid metrology for focus, CD, and overlay. In this concept metrology is combined with scanner's sensor data in order to predict the on-product performance. The principle underlying the method is to isolate and estimate individual root-causes which are then combined to compute the on-product performance. The goal is to use all the information available to avoid ever increasing amounts of metrology.
Optical metrology for Starlight Separated Spacecraft Stellar Interferometry Mission
NASA Technical Reports Server (NTRS)
Dubovitsky, S.; Lay, O. P.; Peters, R. D.; Abramovici, A.; Asbury, C. G.; Kuhnert, A. C.; Mulder, J. L.
2002-01-01
We describe a high-precision inter-spacecraft metrology system designed for NASA 's StarLight mission, a space-based separated-spacecraft stellar interferometer. It consists of dual-target linear metrology, based on a heterodyne interferometer with carrier phase modulation, and angular metrology designed to sense the pointing of the laser beam and provides bearing information. The dual-target operation enables one metrology beam to sense displacement of two targets independently. We present the current design, breadboard implementation of the Metrology Subsystem in a stellar interferometer testbed and the present state of development of flight qualifiable subsystem components.
7/5nm logic manufacturing capabilities and requirements of metrology
NASA Astrophysics Data System (ADS)
Bunday, Benjamin; Bello, A. F.; Solecky, Eric; Vaid, Alok
2018-03-01
This paper will provide an update to previous works [2][4][9] to our view of the future for in-line high volume manufacturing (HVM) metrology for the semiconductor industry, concentrating on logic technology for foundries. First, we will review of the needs of patterned defect, critical dimensional (CD/3D), overlay and films metrology, and present the extensive list of applications for which metrology solutions are needed. We will then update the industry's progress towards addressing gating technical limits of the most important of these metrology solutions, highlighting key metrology technology gaps requiring industry attention and investment.
NASA Astrophysics Data System (ADS)
Kurnosov, R. Yu; Chernyshova, T. I.; Chernyshov, V. N.
2018-05-01
The algorithms for improving the metrological reliability of analogue blocks of measuring channels and information-measuring systems are developed. The proposed algorithms ensure the optimum values of their metrological reliability indices for a given analogue circuit block solution.
Reducing measurement uncertainty drives the use of multiple technologies for supporting metrology
NASA Astrophysics Data System (ADS)
Banke, Bill, Jr.; Archie, Charles N.; Sendelbach, Matthew; Robert, Jim; Slinkman, James A.; Kaszuba, Phil; Kontra, Rick; DeVries, Mick; Solecky, Eric P.
2004-05-01
Perhaps never before in semiconductor microlithography has there been such an interest in the accuracy of measurement. This interest places new demands on our in-line metrology systems as well as the supporting metrology for verification. This also puts a burden on the users and suppliers of new measurement tools, which both challenge and complement existing manufacturing metrology. The metrology community needs to respond to these challenges by using new methods to assess the fab metrologies. An important part of this assessment process is the ability to obtain accepted reference measurements as a way of determining the accuracy and Total Measurement Uncertainty (TMU) of an in-line critical dimension (CD). In this paper, CD can mean any critical dimension including, for example, such measures as feature height or sidewall angle. This paper describes the trade-offs of in-line metrology systems as well as the limitations of Reference Measurement Systems (RMS). Many factors influence each application such as feature shape, material properties, proximity, sampling, and critical dimension. These factors, along with the metrology probe size, interaction volume, and probe type such as e-beam, optical beam, and mechanical probe, are considered. As the size of features shrinks below 100nm some of the stalwarts of reference metrology come into question, such as the electrically determined transistor gate length. The concept of the RMS is expanded to show how multiple metrologies are needed to achieve the right balance of accuracy and sampling. This is also demonstrated for manufacturing metrology. Various comparisons of CDSEM, scatterometry, AFM, cross section SEM, electrically determined CDs, and TEM are shown. An example is given which demonstrates the importance in obtaining TMU by balancing accuracy and precision for selecting manufacturing measurement strategy and optimizing manufacturing metrology. It is also demonstrated how the necessary supporting metrology will bring together formerly unlinked technology fields requiring new measurement science. The emphasis on accuracy will increase the importance and role of NIST and similar metrology organizations in supporting the semiconductor industry in this effort.
Mask Design for the Space Interferometry Mission Internal Metrology
NASA Technical Reports Server (NTRS)
Marx, David; Zhao, Feng; Korechoff, Robert
2005-01-01
This slide presentation reviews the mask design used for the internal metrology of the Space Interferometry Mission (SIM). Included is information about the project, the method of measurements with SIM, the internal metrology, numerical model of internal metrology, wavefront examples, performance metrics, and mask design
Gaps analysis for CD metrology beyond the 22nm node
NASA Astrophysics Data System (ADS)
Bunday, Benjamin; Germer, Thomas A.; Vartanian, Victor; Cordes, Aaron; Cepler, Aron; Settens, Charles
2013-04-01
This paper will examine the future for critical dimension (CD) metrology. First, we will present the extensive list of applications for which CD metrology solutions are needed, showing commonalities and differences among the various applications. We will then report on the expected technical limits of the metrology solutions currently being investigated by SEMATECH and others in the industry to address the metrology challenges of future nodes, including conventional CD scanning electron microscopy (CD-SEM) and optical critical dimension (OCD) metrology and new potential solutions such as He-ion microscopy (HeIM, sometimes elsewhere referred to as HIM), CD atomic force microscopy (CD-AFM), CD small-angle x-ray scattering (CD-SAXS), high-voltage scanning electron microscopy (HV-SEM), and other types. A technical gap analysis matrix will then be demonstrated, showing the current state of understanding of the future of the CD metrology space.
Evaluation of 3D metrology potential using a multiple detector CDSEM
NASA Astrophysics Data System (ADS)
Hakii, Hidemitsu; Yonekura, Isao; Nishiyama, Yasushi; Tanaka, Keishi; Komoto, Kenji; Murakawa, Tsutomu; Hiroyama, Mitsuo; Shida, Soichi; Kuribara, Masayuki; Iwai, Toshimichi; Matsumoto, Jun; Nakamura, Takayuki
2012-06-01
As feature sizes of semiconductor device structures have continuously decreased, needs for metrology tools with high precision and excellent linearity over actual pattern sizes have been growing. And it has become important to measure not only two-dimensional (2D) but also three-dimensional (3D) shapes of patterns at 22 nm node and beyond. To meet requirements for 3D metrology capabilities, various pattern metrology tools have been developed. Among those, we assume that CDSEM metrology is the most qualified candidate in the light of its non-destructive, high throughput measurement capabilities that are expected to be extended to the much-awaited 3D metrology technology. On the basis of this supposition, we have developed the 3D metrology system, in which side wall angles and heights of photomask patterns can be measured with high accuracy through analyzing CDSEM images generated by multi-channel detectors. In this paper, we will discuss our attempts to measure 3D shapes of defect patterns on a photomask by using Advantest's "Multi Vision Metrology SEM" E3630 (MVM-SEM' E3630).
Experimental Demonstration of Higher Precision Weak-Value-Based Metrology Using Power Recycling
NASA Astrophysics Data System (ADS)
Wang, Yi-Tao; Tang, Jian-Shun; Hu, Gang; Wang, Jian; Yu, Shang; Zhou, Zong-Quan; Cheng, Ze-Di; Xu, Jin-Shi; Fang, Sen-Zhi; Wu, Qing-Lin; Li, Chuan-Feng; Guo, Guang-Can
2016-12-01
The weak-value-based metrology is very promising and has attracted a lot of attention in recent years because of its remarkable ability in signal amplification. However, it is suggested that the upper limit of the precision of this metrology cannot exceed that of classical metrology because of the low sample size caused by the probe loss during postselection. Nevertheless, a recent proposal shows that this probe loss can be reduced by the power-recycling technique, and thus enhance the precision of weak-value-based metrology. Here we experimentally realize the power-recycled interferometric weak-value-based beam-deflection measurement and obtain the amplitude of the detected signal and white noise by discrete Fourier transform. Our results show that the detected signal can be strengthened by power recycling, and the power-recycled weak-value-based signal-to-noise ratio can surpass the upper limit of the classical scheme, corresponding to the shot-noise limit. This work sheds light on higher precision metrology and explores the real advantage of the weak-value-based metrology over classical metrology.
Improving OCD time to solution using Signal Response Metrology
NASA Astrophysics Data System (ADS)
Fang, Fang; Zhang, Xiaoxiao; Vaid, Alok; Pandev, Stilian; Sanko, Dimitry; Ramanathan, Vidya; Venkataraman, Kartik; Haupt, Ronny
2016-03-01
In recent technology nodes, advanced process and novel integration scheme have challenged the precision limits of conventional metrology; with critical dimensions (CD) of device reduce to sub-nanometer region. Optical metrology has proved its capability to precisely detect intricate details on the complex structures, however, conventional RCWA-based (rigorous coupled wave analysis) scatterometry has the limitations of long time-to-results and lack of flexibility to adapt to wide process variations. Signal Response Metrology (SRM) is a new metrology technique targeted to alleviate the consumption of engineering and computation resources by eliminating geometric/dispersion modeling and spectral simulation from the workflow. This is achieved by directly correlating the spectra acquired from a set of wafers with known process variations encoded. In SPIE 2015, we presented the results of SRM application in lithography metrology and control [1], accomplished the mission of setting up a new measurement recipe of focus/dose monitoring in hours. This work will demonstrate our recent field exploration of SRM implementation in 20nm technology and beyond, including focus metrology for scanner control; post etch geometric profile measurement, and actual device profile metrology.
NASA Astrophysics Data System (ADS)
Kim, Min-Suk; Won, Hwa-Yeon; Jeong, Jong-Mun; Böcker, Paul; Vergaij-Huizer, Lydia; Kupers, Michiel; Jovanović, Milenko; Sochal, Inez; Ryan, Kevin; Sun, Kyu-Tae; Lim, Young-Wan; Byun, Jin-Moo; Kim, Gwang-Gon; Suh, Jung-Joon
2016-03-01
In order to optimize yield in DRAM semiconductor manufacturing for 2x nodes and beyond, the (processing induced) overlay fingerprint towards the edge of the wafer needs to be reduced. Traditionally, this is achieved by acquiring denser overlay metrology at the edge of the wafer, to feed field-by-field corrections. Although field-by-field corrections can be effective in reducing localized overlay errors, the requirement for dense metrology to determine the corrections can become a limiting factor due to a significant increase of metrology time and cost. In this study, a more cost-effective solution has been found in extending the regular correction model with an edge-specific component. This new overlay correction model can be driven by an optimized, sparser sampling especially at the wafer edge area, and also allows for a reduction of noise propagation. Lithography correction potential has been maximized, with significantly less metrology needs. Evaluations have been performed, demonstrating the benefit of edge models in terms of on-product overlay performance, as well as cell based overlay performance based on metrology-to-cell matching improvements. Performance can be increased compared to POR modeling and sampling, which can contribute to (overlay based) yield improvement. Based on advanced modeling including edge components, metrology requirements have been optimized, enabling integrated metrology which drives down overall metrology fab footprint and lithography cycle time.
Metrology in physics, chemistry, and biology: differing perceptions.
Iyengar, Venkatesh
2007-04-01
The association of physics and chemistry with metrology (the science of measurements) is well documented. For practical purposes, basic metrological measurements in physics are governed by two components, namely, the measure (i.e., the unit of measurement) and the measurand (i.e., the entity measured), which fully account for the integrity of a measurement process. In simple words, in the case of measuring the length of a room (the measurand), the SI unit meter (the measure) provides a direct answer sustained by metrological concepts. Metrology in chemistry, as observed through physical chemistry (measures used to express molar relationships, volume, pressure, temperature, surface tension, among others) follows the same principles of metrology as in physics. The same basis percolates to classical analytical chemistry (gravimetry for preparing high-purity standards, related definitive analytical techniques, among others). However, certain transition takes place in extending the metrological principles to chemical measurements in complex chemical matrices (e.g., food samples), as it adds a third component, namely, indirect measurements (e.g., AAS determination of Zn in foods). This is a practice frequently used in field assays, and calls for additional steps to account for traceability of such chemical measurements for safeguarding reliability concerns. Hence, the assessment that chemical metrology is still evolving.
MSFC Optical Metrology: A National Resource
NASA Technical Reports Server (NTRS)
Burdine, Robert
1998-01-01
A national need exists for Large Diameter Optical Metrology Services. These services include the manufacture, testing, and assurance of precision and control necessary to assure the success of large optical projects. "Best Practices" are often relied on for manufacture and quality controls while optical projects are increasingly more demanding and complex. Marshall Space Flight Center (MSFC) has acquired unique optical measurement, testing and metrology capabilities through active participation in a wide variety of NASA optical programs. An overview of existing optical facilities and metrology capabilities is given with emphasis on use by other optical projects. Cost avoidance and project success is stressed through use of existing MSFC facilities and capabilities for measurement and metrology controls. Current issues in large diameter optical metrology are briefly reviewed. The need for a consistent and long duration Large Diameter Optical Metrology Service Group is presented with emphasis on the establishment of a National Large Diameter Optical Standards Laboratory. Proposals are made to develop MSFC optical standards and metrology capabilities as the primary national standards resource, providing access to MSFC Optical Core Competencies for manufacturers and researchers. Plans are presented for the development of a national lending library of precision optical standards with emphasis on cost avoidance while improving measurement assurance.
Reducing the overlay metrology sensitivity to perturbations of the measurement stack
NASA Astrophysics Data System (ADS)
Zhou, Yue; Park, DeNeil; Gutjahr, Karsten; Gottipati, Abhishek; Vuong, Tam; Bae, Sung Yong; Stokes, Nicholas; Jiang, Aiqin; Hsu, Po Ya; O'Mahony, Mark; Donini, Andrea; Visser, Bart; de Ruiter, Chris; Grzela, Grzegorz; van der Laan, Hans; Jak, Martin; Izikson, Pavel; Morgan, Stephen
2017-03-01
Overlay metrology setup today faces a continuously changing landscape of process steps. During Diffraction Based Overlay (DBO) metrology setup, many different metrology target designs are evaluated in order to cover the full process window. The standard method for overlay metrology setup consists of single-wafer optimization in which the performance of all available metrology targets is evaluated. Without the availability of external reference data or multiwafer measurements it is hard to predict the metrology accuracy and robustness against process variations which naturally occur from wafer-to-wafer and lot-to-lot. In this paper, the capabilities of the Holistic Metrology Qualification (HMQ) setup flow are outlined, in particular with respect to overlay metrology accuracy and process robustness. The significance of robustness and its impact on overlay measurements is discussed using multiple examples. Measurement differences caused by slight stack variations across the target area, called grating imbalance, are shown to cause significant errors in the overlay calculation in case the recipe and target have not been selected properly. To this point, an overlay sensitivity check on perturbations of the measurement stack is presented for improvement of the overlay metrology setup flow. An extensive analysis on Key Performance Indicators (KPIs) from HMQ recipe optimization is performed on µDBO measurements of product wafers. The key parameters describing the sensitivity to perturbations of the measurement stack are based on an intra-target analysis. Using advanced image analysis, which is only possible for image plane detection of μDBO instead of pupil plane detection of DBO, the process robustness performance of a recipe can be determined. Intra-target analysis can be applied for a wide range of applications, independent of layers and devices.
NASA Astrophysics Data System (ADS)
Kandel, Daniel; Levinski, Vladimir; Sapiens, Noam; Cohen, Guy; Amit, Eran; Klein, Dana; Vakshtein, Irina
2012-03-01
Currently, the performance of overlay metrology is evaluated mainly based on random error contributions such as precision and TIS variability. With the expected shrinkage of the overlay metrology budget to < 0.5nm, it becomes crucial to include also systematic error contributions which affect the accuracy of the metrology. Here we discuss fundamental aspects of overlay accuracy and a methodology to improve accuracy significantly. We identify overlay mark imperfections and their interaction with the metrology technology, as the main source of overlay inaccuracy. The most important type of mark imperfection is mark asymmetry. Overlay mark asymmetry leads to a geometrical ambiguity in the definition of overlay, which can be ~1nm or less. It is shown theoretically and in simulations that the metrology may enhance the effect of overlay mark asymmetry significantly and lead to metrology inaccuracy ~10nm, much larger than the geometrical ambiguity. The analysis is carried out for two different overlay metrology technologies: Imaging overlay and DBO (1st order diffraction based overlay). It is demonstrated that the sensitivity of DBO to overlay mark asymmetry is larger than the sensitivity of imaging overlay. Finally, we show that a recently developed measurement quality metric serves as a valuable tool for improving overlay metrology accuracy. Simulation results demonstrate that the accuracy of imaging overlay can be improved significantly by recipe setup optimized using the quality metric. We conclude that imaging overlay metrology, complemented by appropriate use of measurement quality metric, results in optimal overlay accuracy.
NASA Technical Reports Server (NTRS)
Parks, Robert E.
1991-01-01
An investigation into when it was first recognized that there was a deficiency in NASA optical metrology oversight capability, why this deficiency existed unnoticed for so long, and a proposal for correcting the problem is presented. It is explained why this optical metrology oversight is so critical to program success and at the same time, why it is difficult to establish due to the nature of the technology. The solution proposed is the establishment of an Optics Metrology Group within the NASA/MSFC Optics Branch with a line of authority from NASA S & MA.
Metrological AFMs and its application for versatile nano-dimensional metrology tasks
NASA Astrophysics Data System (ADS)
Dai, Gaoliang; Dziomba, T.; Pohlenz, F.; Danzebrink, H.-U.; Koenders, L.
2010-08-01
Traceable calibrations of various micro and nano measurement devices are crucial tasks for ensuring reliable measurements for micro and nanotechnology. Today metrological AFM are widely used for traceable calibrations of nano dimensional standards. In this paper, we introduced the developments of metrological force microscopes at PTB. Of the three metrological AFMs described here, one is capable of measuring in a volume of 25 mm x 25 mm x 5 mm. All instruments feature interferometers and the three-dimensional position measurements are thus directly traceable to the metre definition. Some calibration examples on, for instance, flatness standards, step height standards, one and two dimensional gratings are demonstrated.
Metrological Support in Technosphere Safety
NASA Astrophysics Data System (ADS)
Akhobadze, G. N.
2017-11-01
The principle of metrological support in technosphere safety is considered. It is based on the practical metrology. The theoretical aspects of accuracy and errors of the measuring instruments intended for diagnostics and control of the technosphere under the influence of factors harmful to human beings are presented. The necessity to choose measuring devices with high metrological characteristics according to the accuracy class and contact of sensitive elements with a medium under control is shown. The types of additional errors in measuring instruments that arise when they are affected by environmental influences are described. A specific example of the analyzers application to control industrial emissions and measure the oil and particulate matter in wastewater is shown; it allows assessing advantages and disadvantages of analyzers. Besides, the recommendations regarding the missing metrological characteristics of the instruments in use are provided. The technosphere continuous monitoring taking into account the metrological principles is expected to efficiently forecast the technosphere development and make appropriate decisions.
PREFACE: 13th International Conference on Metrology and Properties of Engineering Surfaces
NASA Astrophysics Data System (ADS)
Leach, Richard
2011-08-01
The 13th International Conference on Metrology and Properties of Engineering Surfaces focused on the progress in surface metrology, surface characterisation instrumentation and properties of engineering surfaces. The conference provided an international forum for academics, industrialists and engineers from different disciplines to meet and exchange their ideas, results and latest research. The conference was held at Twickenham Stadium, situated approximately six miles from Heathrow Airport and approximately three miles from the National Physical Laboratory (NPL). This was the thirteenth in the very successful series of conferences, which have firmly established surface topography as a new and exciting interdisciplinary field of scientific and technological studies. Scientific Themes: Surface, Micro and Nano Metrology Measurement and Instrumentation Metrology for MST Devices Freeform Surface Measurement and Characterisation Uncertainty, Traceability and Calibration AFM/SPM Metrology Tribology and Wear Phenomena Functional Applications Stylus and Optical Instruments
Entanglement-enhanced quantum metrology in a noisy environment
NASA Astrophysics Data System (ADS)
Wang, Kunkun; Wang, Xiaoping; Zhan, Xiang; Bian, Zhihao; Li, Jian; Sanders, Barry C.; Xue, Peng
2018-04-01
Quantum metrology overcomes standard precision limits and plays a central role in science and technology. Practically, it is vulnerable to imperfections such as decoherence. Here we demonstrate quantum metrology for noisy channels such that entanglement with ancillary qubits enhances the quantum Fisher information for phase estimation but not otherwise. Our photonic experiment covers a range of noise for various types of channels, including for two randomly alternating channels such that assisted entanglement fails for each noisy channel individually. We simulate noisy channels by implementing space-multiplexed dual interferometers with quantum photonic inputs. We demonstrate the advantage of entanglement-assisted protocols in a phase estimation experiment run with either a single-probe or multiprobe approach. These results establish that entanglement with ancillae is a valuable approach for delivering quantum-enhanced metrology. Our approach to entanglement-assisted quantum metrology via a simple linear-optical interferometric network with easy-to-prepare photonic inputs provides a path towards practical quantum metrology.
A Roadmap for Thermal Metrology
NASA Astrophysics Data System (ADS)
Bojkovski, J.; Fischer, J.; Machin, G.; Pavese, F.; Peruzzi, A.; Renaot, E.; Tegeler, E.
2009-02-01
A provisional roadmap for thermal metrology was developed in Spring 2006 as part of the EUROMET iMERA activity toward increasing impact from national investment in European metrology R&D. This consisted of two parts: one addressing the influence of thermal metrology on society, industry, and science, and the other specifying the requirements of enabling thermal metrology to serve future needs. The roadmap represents the shared vision of the EUROMET TC Therm committee as to how thermal metrology should develop to meet future requirements over the next 15 years. It is important to stress that these documents are a first attempt to roadmap the whole of thermal metrology and will certainly need regular review and revision to remain relevant and useful to the community they seek to serve. The first part of the roadmap, “Thermal metrology for society, industry, and science,” identifies the main social and economic triggers driving developments in thermal metrology—notably citizen safety and security, new production technologies, environment and global climate change, energy, and health. Stemming from these triggers, key targets are identified that require improved thermal measurements. The second part of the roadmap, “Enabling thermal metrology to serve future needs” identifies another set of triggers, like global trade and interoperability, future needs in transport, and the earth radiation budget. Stemming from these triggers, key targets are identified, such as improved realizations and dissemination of the SI unit the kelvin, anchoring the kelvin to the Boltzmann constant, k B, and calculating thermal properties from first principles. To facilitate these outcomes, the roadmap identifies the technical advances required in thermal measurement standards.
Metrology needs for the semiconductor industry over the next decade
NASA Astrophysics Data System (ADS)
Melliar-Smith, Mark; Diebold, Alain C.
1998-11-01
Metrology will continue to be a key enabler for the development and manufacture of future generations of integrated circuits. During 1997, the Semiconductor Industry Association renewed the National Technology Roadmap for Semiconductors (NTRS) through the 50 nm technology generation and for the first time included a Metrology Roadmap (1). Meeting the needs described in the Metrology Roadmap will be both a technological and financial challenge. In an ideal world, metrology capability would be available at the start of process and tool development, and silicon suppliers would have 450 mm wafer capable metrology tools in time for development of that wafer size. Unfortunately, a majority of the metrology suppliers are small companies that typically can't afford the additional two to three year wait for return on R&D investment. Therefore, the success of the semiconductor industry demands that we expand cooperation between NIST, SEMATECH, the National Labs, SRC, and the entire community. In this paper, we will discuss several critical metrology topics including the role of sensor-based process control, in-line microscopy, focused measurements for transistor and interconnect fabrication, and development needs. Improvements in in-line microscopy must extend existing critical dimension measurements up to 100 nm generations and new methods may be required for sub 100 nm generations. Through development, existing metrology dielectric thickness and dopant dose and junction methods can be extended to 100 nm, but new and possibly in-situ methods are needed beyond 100 nm. Interconnect process control will undergo change before 100 nm due to the introduction of copper metallization, low dielectric constant interlevel dielectrics, and Damascene process flows.
1995-09-01
strong commitment today, as in the past, is that of metrology —the science and technology of measurement. Metrology has applications in the areas of...problem- solving approach: NIST has earned a worldwide reputation for impartiality and techni- cal excellence. Its competencies in metrology —the science... metrological development5 NIST’s evaluations of industry’s technology needs indicate widespread demand for enhanced measurement capabilities, and
A European Roadmap for Thermophysical Properties Metrology
NASA Astrophysics Data System (ADS)
Filtz, J.-R.; Wu, J.; Stacey, C.; Hollandt, J.; Monte, C.; Hay, B.; Hameury, J.; Villamañan, M. A.; Thurzo-Andras, E.; Sarge, S.
2015-03-01
A roadmap for thermophysical properties metrology was developed in spring 2011 by the Thermophysical Properties Working Group in the EURAMET Technical Committee in charge of Thermometry, Humidity and Moisture, and Thermophysical Properties metrology. This roadmapping process is part of the EURAMET (European Association of National Metrology Institutes) activities aiming to increase impact from national investment in European metrology R&D. The roadmap shows a shared vision of how the development of thermophysical properties metrology should be oriented over the next 15 years to meet future social and economic needs. Since thermophysical properties metrology is a very broad and varied field, the authors have limited this roadmap to the following families of properties: thermal transport properties (thermal conductivity, thermal diffusivity, etc.), radiative properties (emissivity, absorbance, reflectance, and transmittance), caloric quantities (specific heat, enthalpy, etc.), thermodynamic properties (PVT and phase equilibria properties), and temperature-dependent quantities (thermal expansion, compressibility, etc.). This roadmap identifies the main societal and economical triggers that drive developments in thermophysical properties metrology. The key topics considered are energy, environment, advanced manufacturing and processing, public safety, security, and health. Key targets that require improved thermophysical properties measurements are identified in order to address these triggers. Ways are also proposed for defining the necessary skills and the main useful means to be implemented. These proposals will have to be revised as needs and technologies evolve in the future.
Industrial graphene metrology.
Kyle, Jennifer Reiber; Ozkan, Cengiz S; Ozkan, Mihrimah
2012-07-07
Graphene is an allotrope of carbon whose structure is based on one-atom-thick planar sheets of carbon atoms that are densely packed in a honeycomb crystal lattice. Its unique electrical and optical properties raised worldwide interest towards the design and fabrication of future electronic and optical devices with unmatched performance. At the moment, extensive efforts are underway to evaluate the reliability and performance of a number of such devices. With the recent advances in synthesizing large-area graphene sheets, engineers have begun investigating viable methodologies for conducting graphene metrology and quality control at industrial scales to understand a variety of reliability issues including defects, patternability, electrical, and physical properties. This review summarizes the current state of industrial graphene metrology and provides an overview of graphene metrology techniques. In addition, a recently developed large-area graphene metrology technique based on fluorescence quenching is introduced. For each metrology technique, the industrial metrics it measures are identified--layer thickness, edge structure, defects, Fermi level, and thermal conductivity--and a detailed description is provided as to how the measurements are performed. Additionally, the potential advantages of each technique for industrial use are identified, including throughput, scalability, sensitivity to substrate/environment, and on their demonstrated ability to achieve quantified results. The recently developed fluorescence-quenching metrology technique is shown to meet all the necessary criteria for industrial applications, rendering it the first industry-ready graphene metrology technique.
NASA Astrophysics Data System (ADS)
Wallow, Thomas I.; Zhang, Chen; Fumar-Pici, Anita; Chen, Jun; Laenens, Bart; Spence, Christopher A.; Rio, David; van Adrichem, Paul; Dillen, Harm; Wang, Jing; Yang, Peng-Cheng; Gillijns, Werner; Jaenen, Patrick; van Roey, Frieda; van de Kerkhove, Jeroen; Babin, Sergey
2017-03-01
In the course of assessing OPC compact modeling capabilities and future requirements, we chose to investigate the interface between CD-SEM metrology methods and OPC modeling in some detail. Two linked observations motivated our study: 1) OPC modeling is, in principle, agnostic of metrology methods and best practice implementation. 2) Metrology teams across the industry use a wide variety of equipment, hardware settings, and image/data analysis methods to generate the large volumes of CD-SEM measurement data that are required for OPC in advanced technology nodes. Initial analyses led to the conclusion that many independent best practice metrology choices based on systematic study as well as accumulated institutional knowledge and experience can be reasonably made. Furthermore, these choices can result in substantial variations in measurement of otherwise identical model calibration and verification patterns. We will describe several experimental 2D test cases (i.e., metal, via/cut layers) that examine how systematic changes in metrology practice impact both the metrology data itself and the resulting full chip compact model behavior. Assessment of specific methodology choices will include: • CD-SEM hardware configurations and settings: these may range from SEM beam conditions (voltage, current, etc.,) to magnification, to frame integration optimizations that balance signal-to-noise vs. resist damage. • Image and measurement optimization: these may include choice of smoothing filters for noise suppression, threshold settings, etc. • Pattern measurement methodologies: these may include sampling strategies, CD- and contour- based approaches, and various strategies to optimize the measurement of complex 2D shapes. In addition, we will present conceptual frameworks and experimental methods that allow practitioners of OPC metrology to assess impacts of metrology best practice choices on model behavior. Finally, we will also assess requirements posed by node scaling on OPC model accuracy, and evaluate potential consequences for CD-SEM metrology capabilities and practices.
Laser Truss Sensor for Segmented Telescope Phasing
NASA Technical Reports Server (NTRS)
Liu, Duncan T.; Lay, Oliver P.; Azizi, Alireza; Erlig, Herman; Dorsky, Leonard I.; Asbury, Cheryl G.; Zhao, Feng
2011-01-01
A paper describes the laser truss sensor (LTS) for detecting piston motion between two adjacent telescope segment edges. LTS is formed by two point-to-point laser metrology gauges in a crossed geometry. A high-resolution (<30 nm) LTS can be implemented with existing laser metrology gauges. The distance change between the reference plane and the target plane is measured as a function of the phase change between the reference and target beams. To ease the bandwidth requirements for phase detection electronics (or phase meter), homodyne or heterodyne detection techniques have been used. The phase of the target beam also changes with the refractive index of air, which changes with the air pressure, temperature, and humidity. This error can be minimized by enclosing the metrology beams in baffles. For longer-term (weeks) tracking at the micron level accuracy, the same gauge can be operated in the absolute metrology mode with an accuracy of microns; to implement absolute metrology, two laser frequencies will be used on the same gauge. Absolute metrology using heterodyne laser gauges is a demonstrated technology. Complexity of laser source fiber distribution can be optimized using the range-gated metrology (RGM) approach.
Metrology in electricity and magnetism: EURAMET activities today and tomorrow
NASA Astrophysics Data System (ADS)
Piquemal, F.; Jeckelmann, B.; Callegaro, L.; Hällström, J.; Janssen, T. J. B. M.; Melcher, J.; Rietveld, G.; Siegner, U.; Wright, P.; Zeier, M.
2017-10-01
Metrology dedicated to electricity and magnetism has changed considerably in recent years. It encompasses almost all modern scientific, industrial, and societal challenges, e.g. the revision of the International System of Units, the profound transformation of industry, changes in energy use and generation, health, and environment, as well as nanotechnologies (including graphene and 2D materials) and quantum engineering. Over the same period, driven by the globalization of worldwide trade, the Mutual Recognition Arrangement (referred to as the CIPM MRA) was set up. As a result, the regional metrology organizations (RMOs) of national metrology institutes have grown in significance. EURAMET is the European RMO and has been very prominent in developing a strategic research agenda (SRA) and has established a comprehensive research programme. This paper reviews the highlights of EURAMET in electrical metrology within the European Metrology Research Programme and its main contributions to the CIPM MRA. In 2012 EURAMET undertook an extensive roadmapping exercise for proposed activities for the next decade which will also be discussed in this paper. This work has resulted in a new SRA of the second largest European funding programme: European Metrology Programme for Innovation and Research.
Search for general relativistic effects in table-top displacement metrology
NASA Technical Reports Server (NTRS)
Halverson, Peter G.; Macdonald, Daniel R.; Diaz, Rosemary T.
2004-01-01
As displacement metrology accuracy improves, general relativistic effects will become noticeable. Metrology gauges developed for the Space Interferometry Mission were used to search for locally anisotropic space-time, with a null result at the 10 to the negative tenth power level.
Test Evaluation and Modification of Prototype Rotating Gravity Gradiometer
1975-07-01
RECOMMENEATIONS 3 4.0 BEARINGS 6 4.1 Design 6 4.2 Metrology 6 4.3 Preassembly 14 5.0 TEST RIG 17 5.1 Design 17 5.2 Metrology 21 5.3 Assembly and...print requirements of 5 \\i inches TIR max. However, because of available (stare-of-the-art) metrology equipment limitations, no conclusion as to...gravity gradiometer are contained in Shaker Research Corporation drawing series 101 (see Appendix I), 4.2 Metrology The production of the
, agencies and professional associations. Introduction to metrology career day at St. Charles North High St. Charles North High School students to talk with them about metrology. Here, use a portable , a Fermilab metrology technical specialist, visited St. Charles North High School students to talk
Search for general relativistic effects in table-top displacement metrology
NASA Technical Reports Server (NTRS)
Halverson, Peter G.; Diaz, Rosemary T.; Macdonald, Daniel R.
2004-01-01
As displacement metrology accuracy improves, general relativistic effects will become noticeable. Metrology gauges developed for the Space Interferometry Mission, were used to search for locally anisotropic space-time, with a null result at the 10 to the negative 10th power level.
Metrology for the manufacturing of freeform optics
NASA Astrophysics Data System (ADS)
Blalock, Todd; Myer, Brian; Ferralli, Ian; Brunelle, Matt; Lynch, Tim
2017-10-01
Recently the use of freeform surfaces have become a realization for optical designers. These non-symmetrical optical surfaces have allowed unique solutions to optical design problems. The implementation of freeform optical surfaces has been limited by manufacturing capabilities and quality. However over the past several years freeform fabrication processes have improved in capability and precision. But as with any manufacturing, proper metrology is required to monitor and verify the process. Typical optics metrology such as interferometry has its challenges and limitations with the unique shapes of freeform optics. Two contact metrology methods for freeform metrology are presented; a Leitz coordinate measurement machine (CMM) with an uncertainty of +/- 0.5 μm and a high resolution profilometer (Panasonic UA3P) with a measurement uncertainty of +/- 0.05 μm. We are also developing a non-contact high resolution technique based on the fringe reflection technique known as deflectometry. This fast non-contact metrology has the potential to compete with accuracies of the contact methods but also can acquire data in seconds rather than minutes or hours.
Coherent X-ray beam metrology using 2D high-resolution Fresnel-diffraction analysis.
Ruiz-Lopez, M; Faenov, A; Pikuz, T; Ozaki, N; Mitrofanov, A; Albertazzi, B; Hartley, N; Matsuoka, T; Ochante, Y; Tange, Y; Yabuuchi, T; Habara, T; Tanaka, K A; Inubushi, Y; Yabashi, M; Nishikino, M; Kawachi, T; Pikuz, S; Ishikawa, T; Kodama, R; Bleiner, D
2017-01-01
Direct metrology of coherent short-wavelength beamlines is important for obtaining operational beam characteristics at the experimental site. However, since beam-time limitation imposes fast metrology procedures, a multi-parametric metrology from as low as a single shot is desirable. Here a two-dimensional (2D) procedure based on high-resolution Fresnel diffraction analysis is discussed and applied, which allowed an efficient and detailed beamline characterization at the SACLA XFEL. So far, the potential of Fresnel diffraction for beamline metrology has not been fully exploited because its high-frequency fringes could be only partly resolved with ordinary pixel-limited detectors. Using the high-spatial-frequency imaging capability of an irradiated LiF crystal, 2D information of the coherence degree, beam divergence and beam quality factor M 2 were retrieved from simple diffraction patterns. The developed beam metrology was validated with a laboratory reference laser, and then successfully applied at a beamline facility, in agreement with the source specifications.
Analysis of key technologies for virtual instruments metrology
NASA Astrophysics Data System (ADS)
Liu, Guixiong; Xu, Qingui; Gao, Furong; Guan, Qiuju; Fang, Qiang
2008-12-01
Virtual instruments (VIs) require metrological verification when applied as measuring instruments. Owing to the software-centered architecture, metrological evaluation of VIs includes two aspects: measurement functions and software characteristics. Complexity of software imposes difficulties on metrological testing of VIs. Key approaches and technologies for metrology evaluation of virtual instruments are investigated and analyzed in this paper. The principal issue is evaluation of measurement uncertainty. The nature and regularity of measurement uncertainty caused by software and algorithms can be evaluated by modeling, simulation, analysis, testing and statistics with support of powerful computing capability of PC. Another concern is evaluation of software features like correctness, reliability, stability, security and real-time of VIs. Technologies from software engineering, software testing and computer security domain can be used for these purposes. For example, a variety of black-box testing, white-box testing and modeling approaches can be used to evaluate the reliability of modules, components, applications and the whole VI software. The security of a VI can be assessed by methods like vulnerability scanning and penetration analysis. In order to facilitate metrology institutions to perform metrological verification of VIs efficiently, an automatic metrological tool for the above validation is essential. Based on technologies of numerical simulation, software testing and system benchmarking, a framework for the automatic tool is proposed in this paper. Investigation on implementation of existing automatic tools that perform calculation of measurement uncertainty, software testing and security assessment demonstrates the feasibility of the automatic framework advanced.
Issues of Teaching Metrology in Higher Education Institutions of Civil Engineering in Russia
ERIC Educational Resources Information Center
Pukharenko, Yurii Vladimirovich; Norin, Veniamin Aleksandrovich
2017-01-01
The work analyses the training process condition in teaching the discipline "Metrology, Standardization, Certification and Quality Control." It proves that the current educational standard regarding the instruction of the discipline "Metrology, Standardization, Certification and Quality Control" does not meet the needs of the…
Metrology Careers: Jobs for Good Measure
ERIC Educational Resources Information Center
Liming, Drew
2009-01-01
What kind of career rewards precision and accuracy? One in metrology--the science of measurement. By evaluating and calibrating the technology in people's everyday lives, metrologists keep their world running smoothly. Metrology is used in the design and production of almost everything people encounter daily, from the cell phones in their pockets…
Maringer, F J; Suráň, J; Kovář, P; Chauvenet, B; Peyres, V; García-Toraño, E; Cozzella, M L; De Felice, P; Vodenik, B; Hult, M; Rosengård, U; Merimaa, M; Szücs, L; Jeffery, C; Dean, J C J; Tymiński, Z; Arnold, D; Hinca, R; Mirescu, G
2013-11-01
In 2011 the joint research project Metrology for Radioactive Waste Management (MetroRWM)(1) of the European Metrology Research Programme (EMRP) started with a total duration of three years. Within this project, new metrological resources for the assessment of radioactive waste, including their calibration with new reference materials traceable to national standards will be developed. This paper gives a review on national, European and international strategies as basis for science-based metrological requirements in clearance and acceptance of radioactive waste. © 2013 Elsevier Ltd. All rights reserved.
Adjustment method for embedded metrology engine in an EM773 series microcontroller.
Blazinšek, Iztok; Kotnik, Bojan; Chowdhury, Amor; Kačič, Zdravko
2015-09-01
This paper presents the problems of implementation and adjustment (calibration) of a metrology engine embedded in NXP's EM773 series microcontroller. The metrology engine is used in a smart metering application to collect data about energy utilization and is controlled with the use of metrology engine adjustment (calibration) parameters. The aim of this research is to develop a method which would enable the operators to find and verify the optimum parameters which would ensure the best possible accuracy. Properly adjusted (calibrated) metrology engines can then be used as a base for variety of products used in smart and intelligent environments. This paper focuses on the problems encountered in the development, partial automatisation, implementation and verification of this method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Francis, Olivier; Baumann, Henri; Volarik, Tomas; Rothleitner, Christian; Klein, Gilbert; Seil, Marc; Dando, Nicolas; Tracey, Ray; Ullrich, Christian; Castelein, Stefaan; Hua, Hu; Kang, Wu; Chongyang, Shen; Songbo, Xuan; Hongbo, Tan; Zhengyuan, Li; Pálinkás, Vojtech; Kostelecký, Jakub; Mäkinen, Jaakko; Näränen, Jyri; Merlet, Sébastien; Farah, Tristan; Guerlin, Christine; Pereira Dos Santos, Franck; Le Moigne, Nicolas; Champollion, Cédric; Deville, Sabrina; Timmen, Ludger; Falk, Reinhard; Wilmes, Herbert; Iacovone, Domenico; Baccaro, Francesco; Germak, Alessandro; Biolcati, Emanuele; Krynski, Jan; Sekowski, Marcin; Olszak, Tomasz; Pachuta, Andrzej; Agren, Jonas; Engfeldt, Andreas; Reudink, René; Inacio, Pedro; McLaughlin, Daniel; Shannon, Geoff; Eckl, Marc; Wilkins, Tim; van Westrum, Derek; Billson, Ryan
2013-06-01
We present the results of the third European Comparison of Absolute Gravimeters held in Walferdange, Grand Duchy of Luxembourg, in November 2011. Twenty-two gravimeters from both metrological and non-metrological institutes are compared. For the first time, corrections for the laser beam diffraction and the self-attraction of the gravimeters are implemented. The gravity observations are also corrected for geophysical gravity changes that occurred during the comparison using the observations of a superconducting gravimeter. We show that these corrections improve the degree of equivalence between the gravimeters. We present the results for two different combinations of data. In the first one, we use only the observations from the metrological institutes. In the second solution, we include all the data from both metrological and non-metrological institutes. Those solutions are then compared with the official result of the comparison published previously and based on the observations of the metrological institutes and the gravity differences at the different sites as measured by non-metrological institutes. Overall, the absolute gravity meters agree with one another with a standard deviation of 3.1 µGal. Finally, the results of this comparison are linked to previous ones. We conclude with some important recommendations for future comparisons.
Range-Gated Metrology: An Ultra-Compact Sensor for Dimensional Stabilization
NASA Technical Reports Server (NTRS)
Lay, Oliver P.; Dubovitsky, Serge; Shaddock, Daniel A.; Ware, Brent; Woodruff, Christopher S.
2008-01-01
Point-to-point laser metrology systems can be used to stabilize large structures at the nanometer levels required for precision optical systems. Existing sensors are large and intrusive, however, with optical heads that consist of several optical elements and require multiple optical fiber connections. The use of point-to-point laser metrology has therefore been limited to applications where only a few gauges are needed and there is sufficient space to accommodate them. Range-Gated Metrology is a signal processing technique that preserves nanometer-level or better performance while enabling: (1) a greatly simplified optical head - a single fiber optic collimator - that can be made very compact, and (2) a single optical fiber connection that is readily multiplexed. This combination of features means that it will be straightforward and cost-effective to embed tens or hundreds of compact metrology gauges to stabilize a large structure. In this paper we describe the concept behind Range-Gated Metrology, demonstrate the performance in a laboratory environment, and give examples of how such a sensor system might be deployed.
The Development of a Deflectometer for Accurate Surface Figure Metrology
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail; Eberhardt, Andrew; Ramsey, Brian; Atkins, Carolyn
2015-01-01
Marshall Space Flight Center is developing the method of direct fabrication for high resolution full-shell x-ray optics. In this technique the x-ray optics axial profiles are figured and polished using a computer-controlled ZeekoIRP600X polishing machine. Based on the Chandra optics fabrication history about one third of the manufacturing time is spent on moving a mirror between fabrication and metrology sites, reinstallation and alignment with either the metrology or fabrication instruments. Also, the accuracy of the alignment significantly affects the ultimate accuracy of the resulting mirrors. In order to achieve higher convergence rate it is highly desirable to have a metrology technique capable of in situ surface figure measurements of the optics under fabrication, so the overall fabrication costs would be greatly reduced while removing the surface errors due to the re-alignment necessary after each metrology cycle during the fabrication. The goal of this feasibility study is to demonstrate if the Phase Measuring Deflectometry can be applied for in situ metrology of full shell x-ray optics. Examples of the full-shell mirror substrates suitable for the direct fabrication
Coordinate metrology using scanning probe microscopes
NASA Astrophysics Data System (ADS)
Marinello, F.; Savio, E.; Bariani, P.; Carmignato, S.
2009-08-01
New positioning, probing and measuring strategies in coordinate metrology are needed for the accomplishment of true three-dimensional characterization of microstructures, with uncertainties in the nanometre range. In the present work, the implementation of scanning probe microscopes (SPMs) as systems for coordinate metrology is discussed. A new non-raster measurement approach is proposed, where the probe is moved to sense points along free paths on the sample surface, with no loss of accuracy with respect to traditional raster scanning and scan time reduction. Furthermore, new probes featuring long tips with innovative geometries suitable for coordinate metrology through SPMs are examined and reported.
Surface Wave Metrology for Copper/Low-k Interconnects
NASA Astrophysics Data System (ADS)
Gostein, M.; Maznev, A. A.; Mazurenko, A.; Tower, J.
2005-09-01
We review recent advances in the application of laser-induced surface acoustic wave metrology to issues in copper/low-k interconnect development and manufacturing. We illustrate how the metrology technique can be used to measure copper thickness uniformity on a range of features from solid pads to arrays of lines, focusing on specific processing issues in copper electrochemical deposition (ECD) and chemical-mechanical polishing (CMP). In addition, we review recent developments in surface wave metrology for the characterization of low-k dielectric elastic modulus, including the ability to measure within-wafer uniformity of elastic modulus and to characterize porous, anisotropic films.
Enhanced resolution and accuracy of freeform metrology through Subaperture Stitching Interferometry
NASA Astrophysics Data System (ADS)
Supranowitz, Chris; Maloney, Chris; Murphy, Paul; Dumas, Paul
2017-10-01
Recent advances in polishing and metrology have addressed many of the challenges in the fabrication and metrology of freeform surfaces, and the manufacture of these surfaces is possible today. However, achieving the form and mid-spatial frequency (MSF) specifications that are typical of visible imaging systems remains a challenge. Interferometric metrology for freeform surfaces is thus highly desirable for such applications, but the capability is currently quite limited for freeforms. In this paper, we provide preliminary results that demonstrate accurate, high-resolution measurements of freeform surfaces using prototype software on QED's ASI™ (Aspheric Stitching Interferometer).
Roles of chemical metrology in electronics industry and associated environment in Korea: a tutorial.
Kang, Namgoo; Joong Kim, Kyung; Seog Kim, Jin; Hae Lee, Joung
2015-03-01
Chemical metrology is gaining importance in electronics industry that manufactures semiconductors, electronic displays, and microelectronics. Extensive and growing needs from this industry have raised the significance of accurate measurements of the amount of substances and material properties. For the first time, this paper presents information on how chemical metrology is being applied to meet a variety of needs in the aspects of quality control of electronics products and environmental regulations closely associated with electronics industry. For a better understanding of the roles of the chemical metrology within electronics industry, the recent research activities and results in chemical metrology are presented using typical examples in Korea where electronic industry is leading a national economy. Particular attention is paid to the applications of chemical metrology for advancing emerging electronics technology developments. Such examples are a novel technique for the accurate quantification of gas composition at nano-liter levels within a MEMS package, the surface chemical analysis of a semiconductor device. Typical metrological tools are also presented for the development of certified reference materials for fluorinated greenhouse gases and proficiency testing schemes for heavy metals and chlorinated toxic gas in order to cope properly with environmental issues within electronics industry. In addition, a recent technique is presented for the accurate measurement of the destruction and removal efficiency of a typical greenhouse gas scrubber. Copyright © 2014 Elsevier B.V. All rights reserved.
Metrology for Information Technology
1997-05-01
Technology (IT) MEL/ITL Task Group on Metrology for Information Technology (IT) U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of...NIST management requested a white paper on metrology for information technology (IT). A task group was formed to develop this white paper with...representatives from the Manufacturing Engineering Laboratory (MEL), the Information Technology Laboratory (ITL), and Technology Services (TS). The task
On the benefit of high resolution and low aberrations for in-die mask registration metrology
NASA Astrophysics Data System (ADS)
Beyer, Dirk; Seidel, Dirk; Heisig, Sven; Steinert, Steffen; Töpfer, Susanne; Scherübl, Thomas; Hetzler, Jochen
2014-10-01
With the introduction of complex lithography schemes like double and multi - patterning and new design principles like gridded designs with cut masks the requirements for mask to mask overlay have increased dramatically. Still, there are some good news too for the mask industry since more mask are needed and qualified. Although always confronted with throughput demands, latest writing tool developments are able to keep pace with ever increasing pattern placement specs not only for global signatures but for in-die features within the active area. Placement specs less than 3nm (max. 3 Sigma) are expected and needed in all cases in order to keep the mask contribution to the overall overlay budget at an accepted level. The qualification of these masks relies on high precision metrology tools which have to fulfill stringent metrology as well as resolution constrains at the same time. Furthermore, multi-patterning and gridded designs with pinhole type cut masks are drivers for a paradigm shift in registration metrology from classical registration crosses to in-die registration metrology on production features. These requirements result in several challenges for registration metrology tools. The resolution of the system must be sufficiently high to resolve small production features. At the same time tighter repeatability is required. Furthermore, tool induced shift (TIS) limit the accuracy of in-die measurements. This paper discusses and demonstrates the importance of low illumination wavelength together with low aberrations for best contrast imaging for in-die registration metrology. Typical effects like tool induced shift are analyzed and evaluated using the ZEISS PROVE® registration metrology tool. Additionally, we will address performance gains when going to higher resolution. The direct impact on repeatability for small features by registration measurements will be discussed as well.
NASA Astrophysics Data System (ADS)
Dervilllé, A.; Labrosse, A.; Zimmermann, Y.; Foucher, J.; Gronheid, R.; Boeckx, C.; Singh, A.; Leray, P.; Halder, S.
2016-03-01
The dimensional scaling in IC manufacturing strongly drives the demands on CD and defect metrology techniques and their measurement uncertainties. Defect review has become as important as CD metrology and both of them create a new metrology paradigm because it creates a completely new need for flexible, robust and scalable metrology software. Current, software architectures and metrology algorithms are performant but it must be pushed to another higher level in order to follow roadmap speed and requirements. For example: manage defect and CD in one step algorithm, customize algorithms and outputs features for each R&D team environment, provide software update every day or every week for R&D teams in order to explore easily various development strategies. The final goal is to avoid spending hours and days to manually tune algorithm to analyze metrology data and to allow R&D teams to stay focus on their expertise. The benefits are drastic costs reduction, more efficient R&D team and better process quality. In this paper, we propose a new generation of software platform and development infrastructure which can integrate specific metrology business modules. For example, we will show the integration of a chemistry module dedicated to electronics materials like Direct Self Assembly features. We will show a new generation of image analysis algorithms which are able to manage at the same time defect rates, images classifications, CD and roughness measurements with high throughput performances in order to be compatible with HVM. In a second part, we will assess the reliability, the customization of algorithm and the software platform capabilities to follow new specific semiconductor metrology software requirements: flexibility, robustness, high throughput and scalability. Finally, we will demonstrate how such environment has allowed a drastic reduction of data analysis cycle time.
Hybrid enabled thin film metrology using XPS and optical
NASA Astrophysics Data System (ADS)
Vaid, Alok; Iddawela, Givantha; Mahendrakar, Sridhar; Lenahan, Michael; Hossain, Mainul; Timoney, Padraig; Bello, Abner F.; Bozdog, Cornel; Pois, Heath; Lee, Wei Ti; Klare, Mark; Kwan, Michael; Kang, Byung Cheol; Isbester, Paul; Sendelbach, Matthew; Yellai, Naren; Dasari, Prasad; Larson, Tom
2016-03-01
Complexity of process steps integration and material systems for next-generation technology nodes is reaching unprecedented levels, the appetite for higher sampling rates is on the rise, while the process window continues to shrink. Current thickness metrology specifications reach as low as 0.1A for total error budget - breathing new life into an old paradigm with lower visibility for past few metrology nodes: accuracy. Furthermore, for advance nodes there is growing demand to measure film thickness and composition on devices/product instead of surrogate planar simpler pads. Here we extend our earlier work in Hybrid Metrology to the combination of X-Ray based reference technologies (high performance) with optical high volume manufacturing (HVM) workhorse metrology (high throughput). Our stated goal is: put more "eyes" on the wafer (higher sampling) and enable move to films on pattern structure (control what matters). Examples of 1X front-end applications are used to setup and validate the benefits.
Evaluation of a novel ultra small target technology supporting on-product overlay measurements
NASA Astrophysics Data System (ADS)
Smilde, Henk-Jan H.; den Boef, Arie; Kubis, Michael; Jak, Martin; van Schijndel, Mark; Fuchs, Andreas; van der Schaar, Maurits; Meyer, Steffen; Morgan, Stephen; Wu, Jon; Tsai, Vincent; Wang, Cathy; Bhattacharyya, Kaustuve; Chen, Kai-Hsiung; Huang, Guo-Tsai; Ke, Chih-Ming; Huang, Jacky
2012-03-01
Reducing the size of metrology targets is essential for in-die overlay metrology in advanced semiconductor manufacturing. In this paper, μ-diffraction-based overlay (μDBO) measurements with a YieldStar metrology tool are presented for target-sizes down to 10 × 10 μm2. The μDBO technology enables selection of only the diffraction efficiency information from the grating by efficiently separating it from product structure reflections. Therefore, μDBO targets -even when located adjacent to product environment- give excellent correlation with 40 × 160 μm2 reference targets. Although significantly smaller than standard scribe-line targets, they can achieve total-measurement-uncertainty values of below 0.5 nm on a wide range of product layers. This shows that the new μDBO technique allows for accurate metrology on ultra small in-die targets, while retaining the excellent TMU performance of diffraction-based overlay metrology.
Final Report on the Key Comparison CCM.P-K4.2012 in Absolute Pressure from 1 Pa to 10 kPa
Ricker, Jacob; Hendricks, Jay; Bock, Thomas; Dominik, Pražák; Kobata, Tokihiko; Torres, Jorge; Sadkovskaya, Irina
2017-01-01
The report summarizes the Consultative Committee for Mass (CCM) key comparison CCM.P-K4.2012 for absolute pressure spanning the range of 1 Pa to 10 000 Pa. The comparison was carried out at six National Metrology Institutes (NMIs), including National Institute of Standards and Technology (NIST), Physikalisch-Technische Bundesanstalt (PTB), Czech Metrology Institute (CMI), National Metrology Institute of Japan (NMIJ), Centro Nacional de Metrología (CENAM), and DI Mendeleyev Institute for Metrology (VNIIM). The comparison was made via a calibrated transfer standard measured at each of the NMIs facilities using their laboratory standard during the period May 2012 to September 2013. The transfer package constructed for this comparison preformed as designed and provided a stable artifact to compare laboratory standards. Overall the participants were found to be statistically equivalent to the key comparison reference value. PMID:28216793
EDITORIAL: Nanometrology Nanometrology
NASA Astrophysics Data System (ADS)
Tanaka, Mitsuru; Baba, Tetsuya; Postek, Michael T.
2011-02-01
Nanomanufacturing is an essential bridge between the discoveries of nanoscience and real-world nanotech products and is the vehicle by which the world will realize the promise of major technological innovation across a spectrum of products that will affect virtually every industrial sector. For micro and nanotech products to achieve the broad impacts envisioned, they must be manufactured in market-appropriate quantities in a reliable, repeatable, economical and commercially viable manner. In addition, they must be manufactured so that environmental and human health concerns are met, worker safety issues are appropriately assessed and handled, and liability issues are addressed. Critical to this realization of robust manufacturing at the nanoscale is the development of the necessary instrumentation, metrology and standards, i.e. nanometrology. The National Measurement Laboratories are committed to developing the required metrology. Integration of the instruments, their interoperability and appropriate information management are also critical elements that must be considered for viable micro and nanomanufacturing. Advanced instrumentation, metrology and standards will allow the physical dimensions, properties, functionality and purity of the materials, processes, tools, systems, products and emissions that will constitute micro and nanomanufacturing to be measured and characterized. This will in turn enable production to be scalable, controllable, predictable and repeatable to meet market needs. If a product cannot be measured it cannot be manufactured; if that product cannot be made safely it should not be manufactured, and finally, if the metrology is not in place how would you know? The articles in this special feature can be classified into three categories: dimensional metrology (8 papers and one technical design note), density of particles (2 papers) and metrology of thermal properties (3 papers). The articles on dimensional metrology include scanning probe microscope dimensional metrology, the through focus scanning optical (TSOM) imaging method, scatterfield optical microscopy, helium ion microscopy, metrology and combinations of these microscopy and imaging techniques applied to nanostructures and particles such as cellulose nanocrystals, and targeted liposome-based delivery systems. Dimensional metrology covers grating pitch measurement by optical diffraction, measurement of the thickness of silicon oxide by synchrotron radiation x-ray photoelectron spectroscopy (SR-XPS) analysis and determination of pore size distribution of porous low-dielectric-constant films by x-ray scattering. The two papers on particle density present number concentration standards for aerosol nanoparticles of larger diameter than about 10 nm and liquid-borne particles in the range of 10-20 µm diameter, respectively. The three papers on metrology of thermal properties present recent innovative progress in thermophysical metrology of thin films by the ultrafast laser flash methods required for understanding of the thermal science at nanoscales and thermal design of nanodevices. The first paper improves the technology applicable under high pressures in a diamond anvil cell. The second extends this technology to thin films on silicon substrates. The third reports the first observation of non-diffusive heat transfer across thin films at low temperatures. In order to guarantee reliability and traceability of developed measurement methods for nanomaterials, a technical infrastructure for nanomaterials such as metrological standards, reference materials and document standards for measurement methods is important. We hope this special feature will be the first step in a collaboration towards a global harmonization of nanometrology.
Manufacturing Laboratory for Next Generation Engineers
2013-12-16
automated CNC machines, rapid prototype systems, robotic assembly systems, metrology , and non-traditional systems such as a waterjet cutter, EDM machine...CNC machines, rapid prototype systems, robotic assembly systems, metrology , and non-traditional systems such as a waterjet cutter, EDM machine, plasma...System Metrology and Quality Control Equipment - This area already had a CMM and other well known quality control instrumentation. It has been enhanced
Emerging technology for astronomical optics metrology
NASA Astrophysics Data System (ADS)
Trumper, Isaac; Jannuzi, Buell T.; Kim, Dae Wook
2018-05-01
Next generation astronomical optics will enable science discoveries across all fields and impact the way we perceive the Universe in which we live. To build these systems, optical metrology tools have been developed that push the boundary of what is possible. We present a summary of a few key metrology technologies that we believe are critical for the coming generation of optical surfaces.
IT Security Standards and Legal Metrology - Transfer and Validation
NASA Astrophysics Data System (ADS)
Thiel, F.; Hartmann, V.; Grottker, U.; Richter, D.
2014-08-01
Legal Metrology's requirements can be transferred into the IT security domain applying a generic set of standardized rules provided by the Common Criteria (ISO/IEC 15408). We will outline the transfer and cross validation of such an approach. As an example serves the integration of Legal Metrology's requirements into a recently developed Common Criteria based Protection Profile for a Smart Meter Gateway designed under the leadership of the Germany's Federal Office for Information Security. The requirements on utility meters laid down in the Measuring Instruments Directive (MID) are incorporated. A verification approach to check for meeting Legal Metrology's requirements by their interpretation through Common Criteria's generic requirements is also presented.
A metrological approach to improve accuracy and reliability of ammonia measurements in ambient air
NASA Astrophysics Data System (ADS)
Pogány, Andrea; Balslev-Harder, David; Braban, Christine F.; Cassidy, Nathan; Ebert, Volker; Ferracci, Valerio; Hieta, Tuomas; Leuenberger, Daiana; Martin, Nicholas A.; Pascale, Céline; Peltola, Jari; Persijn, Stefan; Tiebe, Carlo; Twigg, Marsailidh M.; Vaittinen, Olavi; van Wijk, Janneke; Wirtz, Klaus; Niederhauser, Bernhard
2016-11-01
The environmental impacts of ammonia (NH3) in ambient air have become more evident in the recent decades, leading to intensifying research in this field. A number of novel analytical techniques and monitoring instruments have been developed, and the quality and availability of reference gas mixtures used for the calibration of measuring instruments has also increased significantly. However, recent inter-comparison measurements show significant discrepancies, indicating that the majority of the newly developed devices and reference materials require further thorough validation. There is a clear need for more intensive metrological research focusing on quality assurance, intercomparability and validations. MetNH3 (Metrology for ammonia in ambient air) is a three-year project within the framework of the European Metrology Research Programme (EMRP), which aims to bring metrological traceability to ambient ammonia measurements in the 0.5-500 nmol mol-1 amount fraction range. This is addressed by working in three areas: (1) improving accuracy and stability of static and dynamic reference gas mixtures, (2) developing an optical transfer standard and (3) establishing the link between high-accuracy metrological standards and field measurements. In this article we describe the concept, aims and first results of the project.
Forensic Metrology: Its Importance and Evolution in the United States
NASA Astrophysics Data System (ADS)
Vosk, JD Ted
2016-11-01
Forensic measurements play a significant role in the U.S. criminal justice system. Guilt or innocence, or the severity of a sentence, may depend upon the results of such measurements. Until recently, however, forensic disciplines were largely unaware of the field of metrology. Accordingly, proper measurement practices were often, and widely, neglected. These include failure to adopt proper calibration techniques, establish the traceability of results and determine measurement uncertainty. These failures undermine confidence in verdicts based upon forensic measurements. Over the past decade, though, the forensic sciences have been introduced to metrology and its principles leading to more reliable measurement practices. The impetus for this change was driven by many forces. Pressure came initially from criminal defense lawyers challenging metrologically unsound practices and results relied upon by government prosecutions. Litigation in the State of Washington led this movement spurring action by attorneys in other jurisdictions and eventually reform in the measurement practices of forensic labs around the country. Since then, the greater scientific community, other forensic scientists and even prosecutors have joined the fight. This paper describes the fight to improve the quality of justice by the application of metrological principles and the evolution of the field of forensic metrology.
PREFACE: 3rd International Congress on Mechanical Metrology (CIMMEC2014)
NASA Astrophysics Data System (ADS)
2015-10-01
From October 14th to 16th 2014, The Brazilian National Institute of Metrology, Quality, and Technology (Inmetro) and the Brazilian Society of Metrology (SBM) organized the 3rd International Congress on Mechanical Metrology (3rd CIMMEC). The 3rd CIMMEC was held in the city of Gramado, Rio Grande do Sul, Brazil. Anticipating the interest and enthusiasm of the technical-scientific community, the Organizing Institutions invite people and organizations to participate in this important congress, reiterating the commitment to organize an event according to highest international standards. This event has been conceived to integrate people and organizations from Brazil and abroad in the discussion of advanced themes in metrology. Manufacturers and dealers of measuring equipment and standards, as well as of auxiliary accessories and bibliographic material, had the chance to promote their products and services in stands at the Fair, which has taken place alongside the Congress. The 3rd CIMMEC consisted of five Keynote Speeches and 116 regular papers. Among the regular papers, the 25 most outstanding ones, comprising a high quality content on Mechanical Metrology, were selected to be published in this issue of Journal of Physics: Conference Series. It is our great pleasure to present this volume of Journal of Physics: Conference Series to the scientific community to promote further research in Mechanical Metrology and related areas. We believe that this volume will be both an excellent source of scientific material in the fast evolving fields that were covered by CIMMEC 2014.
NASA Astrophysics Data System (ADS)
Drass, Holger; Vanzi, Leonardo; Torres-Torriti, Miguel; Dünner, Rolando; Shen, Tzu-Chiang; Belmar, Francisco; Dauvin, Lousie; Staig, Tomás.; Antognini, Jonathan; Flores, Mauricio; Luco, Yerko; Béchet, Clémentine; Boettger, David; Beard, Steven; Montgomery, David; Watson, Stephen; Cabral, Alexandre; Hayati, Mahmoud; Abreu, Manuel; Rees, Phil; Cirasuolo, Michele; Taylor, William; Fairley, Alasdair
2016-08-01
The Multi-Object Optical and Near-infrared Spectrograph (MOONS) will cover the Very Large Telescope's (VLT) field of view with 1000 fibres. The fibres will be mounted on fibre positioning units (FPU) implemented as two-DOF robot arms to ensure a homogeneous coverage of the 500 square arcmin field of view. To accurately and fast determine the position of the 1000 fibres a metrology system has been designed. This paper presents the hardware and software design and performance of the metrology system. The metrology system is based on the analysis of images taken by a circular array of 12 cameras located close to the VLTs derotator ring around the Nasmyth focus. The system includes 24 individually adjustable lamps. The fibre positions are measured through dedicated metrology targets mounted on top of the FPUs and fiducial markers connected to the FPU support plate which are imaged at the same time. A flexible pipeline based on VLT standards is used to process the images. The position accuracy was determined to 5 μm in the central region of the images. Including the outer regions the overall positioning accuracy is 25 μm. The MOONS metrology system is fully set up with a working prototype. The results in parts of the images are already excellent. By using upcoming hardware and improving the calibration it is expected to fulfil the accuracy requirement over the complete field of view for all metrology cameras.
JPRS Report, Science & Technology, USSR: Science & Technology Policy
1988-04-05
associa- tions—were formulated. Specialists, A. V. Glichev, direc- tor of the All-Union Institute of Metrology and Stan- dardization of the USSR State...Various functional subdi- visions—laboratories of reliability, metrological labora- tories, monitoring and diagnostic centers, and so forth— are...department for standards, metrology , and quality. The latter annually does not approve and sends back for modification up to 20 of the "notebooks of
Integrating Residual Stress Analysis of Critical Fastener Holes into USAF Depot Maintenance
2014-11-02
40 Table 15. Metrology of the initial reamer, initial hole diameters, and resulting CX for the class/type hole combinations for Pattern 1...70 Table 16. Metrology of the initial reamer, initial hole diameters, and resulting...step in the cold work process. These procedures produce a digital documentation of the hole, based on critical metrology , which can be linked with
In-Process Metrology And Control Of Large Optical Grinders
NASA Astrophysics Data System (ADS)
Anderson, D. S.; Ketelsen, D.; Kittrell, W. Cary; Kuhn, Wm; Parks, R. E.; Stahl, P.
1987-01-01
The advent of rapid figure generation at the University of Arizona has prompted the development of rapid metrology techniques. The success and efficiency of the generating process is highly dependent on timely and accurate measurements to update the feedback loop between machine and optician. We will describe the advantages and problems associated with the in-process metrology and control systems used at the Optical Sciences Center.
NASA Astrophysics Data System (ADS)
Rana, Narender; Chien, Chester
2018-03-01
A key sensor element in a Hard Disk Drive (HDD) is the read-write head device. The device is complex 3D shape and its fabrication requires over thousand process steps with many of them being various types of image inspection and critical dimension (CD) metrology steps. In order to have high yield of devices across a wafer, very tight inspection and metrology specifications are implemented. Many images are collected on a wafer and inspected for various types of defects and in CD metrology the quality of image impacts the CD measurements. Metrology noise need to be minimized in CD metrology to get better estimate of the process related variations for implementing robust process controls. Though there are specialized tools available for defect inspection and review allowing classification and statistics. However, due to unavailability of such advanced tools or other reasons, many times images need to be manually inspected. SEM Image inspection and CD-SEM metrology tools are different tools differing in software as well. SEM Image inspection and CD-SEM metrology tools are separate tools differing in software and purpose. There have been cases where a significant numbers of CD-SEM images are blurred or have some artefact and there is a need for image inspection along with the CD measurement. Tool may not report a practical metric highlighting the quality of image. Not filtering CD from these blurred images will add metrology noise to the CD measurement. An image classifier can be helpful here for filtering such data. This paper presents the use of artificial intelligence in classifying the SEM images. Deep machine learning is used to train a neural network which is then used to classify the new images as blurred and not blurred. Figure 1 shows the image blur artefact and contingency table of classification results from the trained deep neural network. Prediction accuracy of 94.9 % was achieved in the first model. Paper covers other such applications of the deep neural network in image classification for inspection, review and metrology.
Laser metrology and optic active control system for GAIA
NASA Astrophysics Data System (ADS)
D'Angelo, F.; Bonino, L.; Cesare, S.; Castorina, G.; Mottini, S.; Bertinetto, F.; Bisi, M.; Canuto, E.; Musso, F.
2017-11-01
The Laser Metrology and Optic Active Control (LM&OAC) program has been carried out under ESA contract with the purpose to design and validate a laser metrology system and an actuation mechanism to monitor and control at microarcsec level the stability of the Basic Angle (angle between the lines of sight of the two telescopes) of GAIA satellite. As part of the program, a breadboard (including some EQM elements) of the laser metrology and control system has been built and submitted to functional, performance and environmental tests. In the followings we describe the mission requirements, the system architecture, the breadboard design, and finally the performed validation tests. Conclusion and appraisals from this experience are also reported.
Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su P.; Kaznatcheev K.; Wang, Y.
In a previous paper, the University of Arizona (UA) has developed a measurement technique called: Software Configurable Optical Test System (SCOTS) based on the principle of reflection deflectometry. In this paper, we present results of this very efficient optical metrology method applied to the metrology of X-ray mirrors. We used this technique to measure surface slope errors with precision and accuracy better than 100 nrad (rms) and {approx}200 nrad (rms), respectively, with a lateral resolution of few mm or less. We present results of the calibration of the metrology systems, discuss their accuracy and address the precision in measuring amore » spherical mirror.« less
Joint Research on Scatterometry and AFM Wafer Metrology
NASA Astrophysics Data System (ADS)
Bodermann, Bernd; Buhr, Egbert; Danzebrink, Hans-Ulrich; Bär, Markus; Scholze, Frank; Krumrey, Michael; Wurm, Matthias; Klapetek, Petr; Hansen, Poul-Erik; Korpelainen, Virpi; van Veghel, Marijn; Yacoot, Andrew; Siitonen, Samuli; El Gawhary, Omar; Burger, Sven; Saastamoinen, Toni
2011-11-01
Supported by the European Commission and EURAMET, a consortium of 10 participants from national metrology institutes, universities and companies has started a joint research project with the aim of overcoming current challenges in optical scatterometry for traceable linewidth metrology. Both experimental and modelling methods will be enhanced and different methods will be compared with each other and with specially adapted atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurement systems in measurement comparisons. Additionally novel methods for sophisticated data analysis will be developed and investigated to reach significant reductions of the measurement uncertainties in critical dimension (CD) metrology. One final goal will be the realisation of a wafer based reference standard material for calibration of scatterometers.
Digital terrain modeling and industrial surface metrology: Converging realms
Pike, R.J.
2001-01-01
Digital terrain modeling has a micro-and nanoscale counterpart in surface metrology, the numerical characterization of industrial surfaces. Instrumentation in semiconductor manufacturing and other high-technology fields can now contour surface irregularities down to the atomic scale. Surface metrology has been revolutionized by its ability to manipulate square-grid height matrices that are analogous to the digital elevation models (DEMs) used in physical geography. Because the shaping of industrial surfaces is a spatial process, the same concepts of analytical cartography that represent ground-surface form in geography evolved independently in metrology: The surface topography of manufactured components, exemplified here by automobile-engine cylinders, is routinely modeled by variogram analysis, relief shading, and most other techniques of parameterization and visualization familiar to geography. This article introduces industrial surface-metrology, examines the field in the context of terrain modeling and geomorphology and notes their similarities and differences, and raises theoretical issues to be addressed in progressing toward a unified practice of surface morphometry.
Speckle-based portable device for in-situ metrology of x-ray mirrors at Diamond Light Source
NASA Astrophysics Data System (ADS)
Wang, Hongchang; Kashyap, Yogesh; Zhou, Tunhe; Sawhney, Kawal
2017-09-01
For modern synchrotron light sources, the push toward diffraction-limited and coherence-preserved beams demands accurate metrology on X-ray optics. Moreover, it is important to perform in-situ characterization and optimization of X-ray mirrors since their ultimate performance is critically dependent on the working conditions. Therefore, it is highly desirable to develop a portable metrology device, which can be easily implemented on a range of beamlines for in-situ metrology. An X-ray speckle-based portable device for in-situ metrology of synchrotron X-ray mirrors has been developed at Diamond Light Source. Ultra-high angular sensitivity is achieved by scanning the speckle generator in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that characterization and alignment of X-ray mirrors is simple and fast. The functionality and feasibility of this device is presented with representative examples.
EQ-10 electrodeless Z-pinch EUV source for metrology applications
NASA Astrophysics Data System (ADS)
Gustafson, Deborah; Horne, Stephen F.; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.
2011-11-01
With EUV Lithography systems shipping, the requirements for highly reliable EUV sources for mask inspection and resist outgassing are becoming better defined, and more urgent. The sources needed for metrology applications are very different than that needed for lithography; brightness (not power) is the key requirement. Suppliers for HVM EUV sources have all resources working on high power and have not entered the smaller market for metrology. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinchTM light source since 19951. The source is currently being used for metrology, mask inspection, and resist development2-4. These applications require especially stable performance in both output power and plasma size and position. Over the last 6 years Energetiq has made many source modifications which have included better thermal management to increase the brightness and power of the source. We now have introduced a new source that will meet requirements of some of the mask metrology first generation tools; this source will be reviewed.
Metrological analysis of a virtual flowmeter-based transducer for cryogenic helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arpaia, P., E-mail: pasquale.arpaia@unina.it; Technology Department, European Organization for Nuclear Research; Girone, M., E-mail: mario.girone@cern.ch
2015-12-15
The metrological performance of a virtual flowmeter-based transducer for monitoring helium under cryogenic conditions is assessed. At this aim, an uncertainty model of the transducer, mainly based on a valve model, exploiting finite-element approach, and a virtual flowmeter model, based on the Sereg-Schlumberger method, are presented. The models are validated experimentally on a case study for helium monitoring in cryogenic systems at the European Organization for Nuclear Research (CERN). The impact of uncertainty sources on the transducer metrological performance is assessed by a sensitivity analysis, based on statistical experiment design and analysis of variance. In this way, the uncertainty sourcesmore » most influencing metrological performance of the transducer are singled out over the input range as a whole, at varying operating and setting conditions. This analysis turns out to be important for CERN cryogenics operation because the metrological design of the transducer is validated, and its components and working conditions with critical specifications for future improvements are identified.« less
NASA Astrophysics Data System (ADS)
Blancquaert, Yoann; Dezauzier, Christophe; Depre, Jerome; Miqyass, Mohamed; Beltman, Jan
2013-04-01
Continued tightening of overlay control budget in semiconductor lithography drives the need for improved metrology capabilities. Aggressive improvements are needed for overlay metrology speed, accuracy and precision. This paper is dealing with the on product metrology results of a scatterometry based platform showing excellent production results on resolution, precision, and tool matching for overlay. We will demonstrate point to point matching between tool generations as well as between target sizes and types. Nowadays, for the advanced process nodes a lot of information is needed (Higher order process correction, Reticle fingerprint, wafer edge effects) to quantify process overlay. For that purpose various overlay sampling schemes are evaluated: ultra- dense, dense and production type. We will show DBO results from multiple target type and shape for on product overlay control for current and future node down to at least 14 nm node. As overlay requirements drive metrology needs, we will evaluate if the new metrology platform meets the overlay requirements.
In-field Raman amplification on coherent optical fiber links for frequency metrology.
Clivati, C; Bolognini, G; Calonico, D; Faralli, S; Mura, A; Levi, F
2015-04-20
Distributed Raman amplification (DRA) is widely exploited for the transmission of broadband, modulated signals used in data links, but not yet in coherent optical links for frequency metrology, where the requirements are rather different. After preliminary tests on fiber spools, in this paper we deeper investigate Raman amplification on deployed in-field optical metrological links. We actually test a Doppler-stabilized optical link both on a 94 km-long metro-network implementation with multiplexed ITU data channels and on a 180 km-long dedicated fiber haul connecting two cities, where DRA is employed in combination with Erbium-doped fiber amplification (EDFA). The performance of DRA is detailed in both experiments, indicating that it does not introduce noticeable penalties for the metrological signal or for the ITU data channels. We hence show that Raman amplification of metrological signals can be compatible with a wavelength division multiplexing architecture and that it can be used as an alternative or in combination with dedicated bidirectional EDFAs. No deterioration is noticed in the coherence properties of the delivered signal, which attains frequency instability at the 10(-19) level in both cases. This study can be of interest also in view of the undergoing deployment of continental fiber networks for frequency metrology.
Metrology - Beyond the Calibration Lab
NASA Technical Reports Server (NTRS)
Mimbs, Scott M.
2008-01-01
We rely on data from measurements every day; a gas-pump, a speedometer, and a supermarket weight scale are just three examples of measurements we use to make decisions. We generally accept the data from these measurements as "valid." One reason we can accept the data is the "legal metrology" requirements established and regulated by the government in matters of commerce. The measurement data used by NASA, other government agencies, and industry can be critical to decisions which affect everything from economic viability, to mission success, to the security of the nation. Measurement data can even affect life and death decisions. Metrology requirements must adequately provide for risks associated with these decisions. To do this, metrology must be integrated into all aspects of an industry including research, design, testing, and product acceptance. Metrology, the science of measurement, has traditionally focused on the calibration of instruments, and although instrument calibration is vital, it is only a part of the process that assures quality in measurement data. For example, measurements made in research can influence the fundamental premises that establish the design parameters, which then flow down to the manufacturing processes, and eventually impact the final product. Because a breakdown can occur anywhere within this cycle, measurement quality assurance has to be integrated into every part of the life-cycle process starting with the basic research and ending with the final product inspection process. The purpose of this paper is to discuss the role of metrology in the various phases of a product's life-cycle. For simplicity, the cycle will be divided in four broad phases, with discussions centering on metrology within NASA. .
Coherent double-color interference microscope for traceable optical surface metrology
NASA Astrophysics Data System (ADS)
Malinovski, I.; França, R. S.; Bessa, M. S.; Silva, C. R.; Couceiro, I. B.
2016-06-01
Interference microscopy is an important field of dimensional surface metrology because it provides direct traceability of the measurements to the SI base unit definition of the metre. With a typical measurement range from micrometres to nanometres interference microscopy (IM) covers the gap between classic metrology and nanometrology, providing continuous transfer of dimensional metrology into new areas of nanoscience and nanotechnology. Therefore IM is considered to be an indispensable tool for traceable transfer of the metre unit to different instruments. We report here the metrological study of an absolute Linnik interference microscope (IM) based on two frequency stabilized lasers. The design permits the flexible use of both lasers for measurements depending on the demand of the concrete measurement task. By principle of operation IM is combination of imaging and phase-shifting interferometry (PSI). The traceability is provided by the wavelength reference, that is, a He-Ne 633 nm stabilized laser. The second laser source, that is, a Blue-Green 488 nm grating stabilized laser diode, is used for improvements of resolution, and also for resolving integer fringe discontinuities on sharp features of the surface. The IM was optimized for surface height metrology. We have performed the study of the systematic effects of the measurements. This study allowed us to improve the hardware and software of IM and to find corrections for main systematic errors. The IM is purposed for 1D to 3D height metrology and surface topography in an extended range from nanometres to micrometres. The advantages and disadvantages of the design and developed methods are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Settens, Charles M.
2015-01-01
Simultaneous migration of planar transistors to FinFET architectures, the introduction of a plurality of materials to ensure suitable electrical characteristics, and the establishment of reliable multiple patterning lithography schemes to pattern sub-10 nm feature sizes imposes formidable challenges to current in-line dimensional metrologies. Because the shape of a FinFET channel cross-section immediately influences the electrical characteristics, the evaluation of 3D device structures requires measurement of parameters beyond traditional critical dimension (CD), including their sidewall angles, top corner rounding and footing, roughness, recesses and undercuts at single nanometer dimensions; thus, metrologies require sub-nm and approaching atomic level measurement uncertainty. Synchrotron criticalmore » dimension small angle X-ray scattering (CD-SAXS) has unique capabilities to non-destructively monitor the cross-section shape of surface structures with single nanometer uncertainty and can perform overlay metrology to sub-nm uncertainty. In this dissertation, we perform a systematic experimental investigation using CD-SAXS metrology on a hierarchy of semiconductor 3D device architectures including, high-aspect-ratio contact holes, H2 annealed Si fins, and a series of grating type samples at multiple points along a FinFET fabrication process increasing in structural intricacy and ending with fully fabricated FinFET. Comparative studies between CD-SAXS metrology and other relevant semiconductor dimensional metrologies, particularly CDSEM, CD-AFM and TEM are used to determine physical limits of CD-SAXS approach for advanced semiconductor samples. CD-SAXS experimental tradeoffs, advice for model-dependent analysis and thoughts on the compatibility with a semiconductor manufacturing environment are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foucher, J.; Faurie, P.; Dourthe, L.
2011-11-10
The measurement accuracy is becoming one of the major components that have to be controlled in order to guarantee sufficient production yield. Already at the R and D level, we have to come up with the accurate measurements of sub-40 nm dense trenches and contact holes coming from 193 immersion lithography or E-Beam lithography. Current production CD (Critical Dimension) metrology techniques such as CD-SEM (CD-Scanning Electron Microscope) and OCD (Optical Critical Dimension) are limited in relative accuracy for various reasons (i.e electron proximity effect, outputs parameters correlation, stack influence, electron interaction with materials...). Therefore, time for R and D ismore » increasing, process windows degrade and finally production yield can decrease because you cannot manufactured correctly if you are unable to measure correctly. A new high volume manufacturing (HVM) CD metrology solution has to be found in order to improve the relative accuracy of production environment otherwise current CD Metrology solution will very soon get out of steam.In this paper, we will present a potential Hybrid CD metrology solution that smartly tuned 3D-AFM (3D-Atomic Force Microscope) and CD-SEM data in order to add accuracy both in R and D and production. The final goal for 'chip makers' is to improve yield and save R and D and production costs through real-time feedback loop implement on CD metrology routines. Such solution can be implemented and extended to any kind of CD metrology solution. In a 2{sup nd} part we will discuss and present results regarding a new AFM3D probes breakthrough with the introduction of full carbon tips made will E-Beam Deposition process. The goal is to overcome the current limitations of conventional flared silicon tips which are definitely not suitable for sub-32 nm nodes production.« less
Two Approaches to Calibration in Metrology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campanelli, Mark
2014-04-01
Inferring mathematical relationships with quantified uncertainty from measurement data is common to computational science and metrology. Sufficient knowledge of measurement process noise enables Bayesian inference. Otherwise, an alternative approach is required, here termed compartmentalized inference, because collection of uncertain data and model inference occur independently. Bayesian parameterized model inference is compared to a Bayesian-compatible compartmentalized approach for ISO-GUM compliant calibration problems in renewable energy metrology. In either approach, model evidence can help reduce model discrepancy.
Dynamic metrology and data processing for precision freeform optics fabrication and testing
NASA Astrophysics Data System (ADS)
Aftab, Maham; Trumper, Isaac; Huang, Lei; Choi, Heejoo; Zhao, Wenchuan; Graves, Logan; Oh, Chang Jin; Kim, Dae Wook
2017-06-01
Dynamic metrology holds the key to overcoming several challenging limitations of conventional optical metrology, especially with regards to precision freeform optical elements. We present two dynamic metrology systems: 1) adaptive interferometric null testing; and 2) instantaneous phase shifting deflectometry, along with an overview of a gradient data processing and surface reconstruction technique. The adaptive null testing method, utilizing a deformable mirror, adopts a stochastic parallel gradient descent search algorithm in order to dynamically create a null testing condition for unknown freeform optics. The single-shot deflectometry system implemented on an iPhone uses a multiplexed display pattern to enable dynamic measurements of time-varying optical components or optics in vibration. Experimental data, measurement accuracy / precision, and data processing algorithms are discussed.
Photomask applications of traceable atomic force microscope dimensional metrology at NIST
NASA Astrophysics Data System (ADS)
Dixson, Ronald; Orji, Ndubuisi G.; Potzick, James; Fu, Joseph; Allen, Richard A.; Cresswell, Michael; Smith, Stewart; Walton, Anthony J.; Tsiamis, Andreas
2007-10-01
The National Institute of Standards and Technology (NIST) has a multifaceted program in atomic force microscope (AFM) dimensional metrology. Three major instruments are being used for traceable measurements. The first is a custom in-house metrology AFM, called the calibrated AFM (C-AFM), the second is the first generation of commercially available critical dimension AFM (CD-AFM), and the third is a current generation CD-AFM at SEMATECH - for which NIST has established the calibration and uncertainties. All of these instruments have useful applications in photomask metrology. Linewidth reference metrology is an important application of CD-AFM. We have performed a preliminary comparison of linewidths measured by CD-AFM and by electrical resistance metrology on a binary mask. For the ten selected test structures with on-mask linewidths between 350 nm and 600 nm, most of the observed differences were less than 5 nm, and all of them were less than 10 nm. The offsets were often within the estimated uncertainties of the AFM measurements, without accounting for the effect of linewidth roughness or the uncertainties of electrical measurements. The most recent release of the NIST photomask standard - which is Standard Reference Material (SRM) 2059 - was also supported by CD-AFM reference measurements. We review the recent advances in AFM linewidth metrology that will reduce the uncertainty of AFM measurements on this and future generations of the NIST photomask standard. The NIST C-AFM has displacement metrology for all three axes traceable to the 633 nm wavelength of the iodine-stabilized He-Ne laser. One of the important applications of the C-AFM is step height metrology, which has some relevance to phase shift calibration. In the current generation of the system, the approximate level of relative standard uncertainty for step height measurements at the 100 nm scale is 0.1 %. We discuss the monitor history of a 290 nm step height, originally measured on the C-AFM with a 1.9 nm (k = 2) expanded uncertainty, and describe advances that bring the step height uncertainty of recent measurements to an estimated 0.6 nm (k = 2). Based on this work, we expect to be able to reduce the topographic component of phase uncertainty in alternating aperture phase shift masks (AAPSM) by a factor of three compared to current calibrations based on earlier generation step height references.
NASA Astrophysics Data System (ADS)
Lee, Hong-Goo; Schmitt-Weaver, Emil; Kim, Min-Suk; Han, Sang-Jun; Kim, Myoung-Soo; Kwon, Won-Taik; Park, Sung-Ki; Ryan, Kevin; Theeuwes, Thomas; Sun, Kyu-Tae; Lim, Young-Wan; Slotboom, Daan; Kubis, Michael; Staecker, Jens
2015-03-01
While semiconductor manufacturing moves toward the 7nm node for logic and 15nm node for memory, an increased emphasis has been placed on reducing the influence known contributors have toward the on product overlay budget. With a machine learning technique known as function approximation, we use a neural network to gain insight to how known contributors, such as those collected with scanner metrology, influence the on product overlay budget. The result is a sufficiently trained function that can approximate overlay for all wafers exposed with the lithography system. As a real world application, inline metrology can be used to measure overlay for a few wafers while using the trained function to approximate overlay vector maps for the entire lot of wafers. With the approximated overlay vector maps for all wafers coming off the track, a process engineer can redirect wafers or lots with overlay signatures outside the standard population to offline metrology for excursion validation. With this added flexibility, engineers will be given more opportunities to catch wafers that need to be reworked, resulting in improved yield. The quality of the derived corrections from measured overlay metrology feedback can be improved using the approximated overlay to trigger, which wafers should or shouldn't be, measured inline. As a development or integration engineer the approximated overlay can be used to gain insight into lots and wafers used for design of experiments (DOE) troubleshooting. In this paper we will present the results of a case study that follows the machine learning function approximation approach to data analysis, with production overlay measured on an inline metrology system at SK hynix.
Effect of metrology time delay on overlay APC
NASA Astrophysics Data System (ADS)
Carlson, Alan; DiBiase, Debra
2002-07-01
The run-to-run control strategy of lithography APC is primarily composed of a feedback loop as shown in the diagram below. It is known that the insertion of a time delay in a feedback loop can cause degradation in control performance and could even cause a stable system to become unstable, if the time delay becomes sufficiently large. Many proponents of integrated metrology methods have cited the damage caused by metrology time delays as the primary justification for moving from a stand-alone to integrated metrology. While there is little dispute over the qualitative form of this argument, there has been very light published about the quantitative effects under real fab conditions - precisely how much control is lost due to these time delays. Another issue regarding time delays is that the length of these delays is not typically fixed - they vary from lot to lot and in some cases this variance can be large - from one hour on the short side to over 32 hours on the long side. Concern has been expressed that the variability in metrology time delays can cause undesirable dynamics in feedback loops that make it difficult to optimize feedback filters and gains and at worst could drive a system unstable. By using data from numerous fabs, spanning many sizes and styles of operation, we have conducted a quantitative study of the time delay effect on overlay run- to-run control. Our analysis resulted in the following conclusions: (1) There is a significant and material relationship between metrology time delay and overlay control under a variety of real world production conditions. (2) The run-to-run controller can be configured to minimize sensitivity to time delay variations. (3) The value of moving to integrated metrology can be quantified.
Absolute metrology for space interferometers
NASA Astrophysics Data System (ADS)
Salvadé, Yves; Courteville, Alain; Dändliker, René
2017-11-01
The crucial issue of space-based interferometers is the laser interferometric metrology systems to monitor with very high accuracy optical path differences. Although classical high-resolution laser interferometers using a single wavelength are well developed, this type of incremental interferometer has a severe drawback: any interruption of the interferometer signal results in the loss of the zero reference, which requires a new calibration, starting at zero optical path difference. We propose in this paper an absolute metrology system based on multiplewavelength interferometry.
Metrology Laboratory | Energy Systems Integration Facility | NREL
and artificial) Spectral reflectance and transmission of materials (functional check only , pyrheliometers,* pyranometers,* and pyrgeometers. The Metrology Laboratory provides National Institute of
Coordinate metrology of a primary surface composite panel from the Large Millimeter Telescope
NASA Astrophysics Data System (ADS)
Gale, David M.; Lucero Álvarez, Maribel; Cabrera Cuevas, Lizeth; Leon-Huerta, Andrea; Arizmendi Reyes, Edgar; Icasio Hernández, Octavio; Castro Santos, David; Hernández Ríos, Emilio; Tecuapetla Sosa, Esteban; Tzile Torres, Carlos; Viliesid Alonso, Miguel
2016-07-01
The Large Millimeter Telescope (LMT) is a single-dish fully-steerable radio telescope presently operating with a 32.5 m parabolic primary reflector, in the process of extension to 50 m. The project is managed by the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) in México, and the University of Massachusetts Amherst, USA. A laminated surface panel from the LMT primary reflector has been subjected to a surface measurement assay at Mexico's National Metrology Center (CENAM). Data obtained using a coordinate measuring machine and laser tracker owned by CENAM is compared with measurements using an identical model laser tracker and the photogrammetry technique, the latter systems owned and operated by the LMT. All measurements were performed within the controlled metrology environment at CENAM. The measurement exercise is intended to prepare the groundwork for converting this spare surface panel into a calibrated work-piece. The establishment of a calibrated work-piece provides quality assurance for metrology through measurement traceability. It also simplifies the evaluation of measurement uncertainty for coordinate metrology procedures used by the LMT project during reflector surface qualification.
The role of metrology in mediating and mobilizing the language and culture of scientific facts
NASA Astrophysics Data System (ADS)
Fisher, W. P., Jr.; Stenner, A. J.
2015-02-01
The self-conscious awareness of language and its use is arguably nowhere more intense than in metrology. The careful and deliberate coordination and alignment of shared metrological frames of reference for theory, experiment, and practical application have been characteristics of scientific culture at least since the origins of the SI units in revolutionary France. Though close attention has been focused on the logical and analytical aspects of language use in science, little concern has been shown for understanding how the social and historical aspects of everyday language may have foreshadowed and influenced the development and character of metrological language, especially relative to the inevitably partial knowledge possessed by any given stakeholder participating in the scientific enterprise. Insight in this regard may be helpful in discerning how and if an analogous role for metrology might be created in psychology and the social sciences. It may be that the success of psychology as a science will depend less on taking physics as the relevant model than on attending to the interplay of concepts, models, and social organization that make any culture effective.
Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal, E-mail: kawal.sawhney@diamond.ac.uk
2016-05-15
X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or “tophat” beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicabilitymore » in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.« less
Progress of Multi-Beam Long Trace-Profiler Development
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail; Kilaru, Kiranmayee; Merthe, Daniel J.; Kester, Thomas; McKinney, Wayne R.; Takacs, Peter Z.; Yashchuk, Valeriy V.
2012-01-01
The multi-beam long trace profiler (LTP) under development at NASA s Marshall Space Flight Center[1] is designed to increase the efficiency of metrology of replicated X-ray optics. The traditional LTP operates on a single laser beam that scans along the test surface to detect the slope errors. While capable of exceptional surface slope accuracy, the LTP single beam scanning has slow measuring speed. As metrology constitutes a significant fraction of the time spent in optics production, an increase in the efficiency of metrology helps in decreasing the cost of fabrication of the x-ray optics and in improving their quality. Metrology efficiency can be increased by replacing the single laser beam with multiple beams that can scan a section of the test surface at a single instance. The increase in speed with such a system would be almost proportional to the number of laser beams. A collaborative feasibility study has been made and specifications were fixed for a multi-beam long trace profiler. The progress made in the development of this metrology system is presented.
Geometric errors in 3D optical metrology systems
NASA Astrophysics Data System (ADS)
Harding, Kevin; Nafis, Chris
2008-08-01
The field of 3D optical metrology has seen significant growth in the commercial market in recent years. The methods of using structured light to obtain 3D range data is well documented in the literature, and continues to be an area of development in universities. However, the step between getting 3D data, and getting geometrically correct 3D data that can be used for metrology is not nearly as well developed. Mechanical metrology systems such as CMMs have long established standard means of verifying the geometric accuracies of their systems. Both local and volumentric measurments are characterized on such system using tooling balls, grid plates, and ball bars. This paper will explore the tools needed to characterize and calibrate an optical metrology system, and discuss the nature of the geometric errors often found in such systems, and suggest what may be a viable standard method of doing characterization of 3D optical systems. Finally, we will present a tradeoff analysis of ways to correct geometric errors in an optical systems considering what can be gained by hardware methods versus software corrections.
Optical Metrology for the Segmented Optics on the Constellation-X Spectroscopy X-Ray Telescope
NASA Technical Reports Server (NTRS)
Content, David; Colella, David; Fleetwood, Charles; Hadjimichael, Theo; Lehan, John; McMann, Joseph; Reid, Paul; Saha, Timo; Wright, Geraldine; Zhang, William
2004-01-01
We present the metrology requirements and metrology implementation necessary to prove out the reflector technology for the Constellation X(C-X) spectroscopy X-ray telescope (SXT). This segmented, 1.6m diameter highly nested Wolter-1 telescope presents many metrology and alignment challenges. In particular, these mirrors have a stringent imaging error budget as compared to their intrinsic stiffness; This is required for Constellation-X to have sufficient effective area with the weight requirement. This has implications for the metrology that can be used. A variety of contract and noncontact optical profiling and interferometric methods are combined to test the formed glass substrates before replication and the replicated reflector segments.The reflectors are tested both stand-alone and in-situ in an alignment tower.Some of these methods have not been used on prior X-ray telescopes and some are feasible only because of the segmented approach used on the SXT. Methods discussed include high precision coordinate measurement machines using very low force or optical probe axial interferometric profiling azimuthal circularity profiling and use of advanced null optics such as conical computer generated hologram (CGHs).
Theoferometer for the Construction of Precision Optomechanical Assemblies
NASA Technical Reports Server (NTRS)
Korzun, Ashley M.
2006-01-01
The increasing difficulty of metrology requirements on projects involving optics and the alignment of instrumentation on spacecraft has reached a turning point. Requirements as low as 0.1 arcseconds for the static, rotational alignment of components within a coordinate system cannot be met with a theodolite, the alignment tool currently in use. A "theoferometer" is an interferometer mounted on a rotation stage with degrees of freedom in azimuth and elevation for metrology and alignment applications. The success of a prototype theoferometer in approaching these metrology requirements led to a redesign stressing mechanical, optical, and software changes to increase the sensitivity and portability of the unit. This paper covers the improvements made to the first prototype theoferometer, characteristic testing, and demonstration of the redesigned theoferometer s capabilities as a "theodolite replacement" and low-uncertainty metrology tool.
Recent progress in understanding the imaging and metrology using the helium ion microscope
NASA Astrophysics Data System (ADS)
Postek, Michael T.; Vladar, Andras E.; Ming, Bin
2009-05-01
Nanotechnology is pushing imaging and measurement instrument technology to high levels of required performance. As this continues, new barriers confronting innovation in this field are encountered. Particle beam instrument resolution remains one of these barriers. A new tool for imaging and metrology for nanotechnology is the scanning Helium Ion Microscope (HIM). The HIM is a new approach to imaging and metrology for nanotechnology which may be able to push this barrier lower. As a new methodology, it is just beginning to show promise and the number of potentially advantageous applications for nanotechnology and nanometrology has yet to be fully exploited. This presentation will discuss some of the progress made at NIST in collaboration with the manufacturing community in understanding the imaging and metrology for this new technology.
Earthquakes and sea level - Space and terrestrial metrology on a changing planet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilham, R.
1991-02-01
A review is presented of the stability and scale of crustal deformation metrology which has particular relevance to monitoring deformation associated with sea level and earthquakes. Developments in space geodesy and crustal deformation metrology in the last two decades have the potential to acquire a homogeneous global data set for monitoring relative horizontal and vertical motions of the earth's surface to within several millimeters. New tools discussed for forecasting sea level rise and damaging earthquakes include: very long baseline interferometry, satellite laser ranging, the principles of GPS geodesy, and new sea level sensors. Space geodesy permits a unified global basismore » for future metrology of the earth, and the continued availability of the GPS is currently fundamental to this unification.« less
Integration of mask and silicon metrology in DFM
NASA Astrophysics Data System (ADS)
Matsuoka, Ryoichi; Mito, Hiroaki; Sugiyama, Akiyuki; Toyoda, Yasutaka
2009-03-01
We have developed a highly integrated method of mask and silicon metrology. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used in mask CD-SEM and silicon CD-SEM. We have inspected the high accuracy, stability and reproducibility in the experiments of integration. The accuracy is comparable with that of the mask and silicon CD-SEM metrology. In this report, we introduce the experimental results and the application. As shrinkage of design rule for semiconductor device advances, OPC (Optical Proximity Correction) goes aggressively dense in RET (Resolution Enhancement Technology). However, from the view point of DFM (Design for Manufacturability), the cost of data process for advanced MDP (Mask Data Preparation) and mask producing is a problem. Such trade-off between RET and mask producing is a big issue in semiconductor market especially in mask business. Seeing silicon device production process, information sharing is not completely organized between design section and production section. Design data created with OPC and MDP should be linked to process control on production. But design data and process control data are optimized independently. Thus, we provided a solution of DFM: advanced integration of mask metrology and silicon metrology. The system we propose here is composed of followings. 1) Design based recipe creation: Specify patterns on the design data for metrology. This step is fully automated since they are interfaced with hot spot coordinate information detected by various verification methods. 2) Design based image acquisition: Acquire the images of mask and silicon automatically by a recipe based on the pattern design of CD-SEM.It is a robust automated step because a wide range of design data is used for the image acquisition. 3) Contour profiling and GDS data generation: An image profiling process is applied to the acquired image based on the profiling method of the field proven CD metrology algorithm. The detected edges are then converted to GDSII format, which is a standard format for a design data, and utilized for various DFM systems such as simulation. Namely, by integrating pattern shapes of mask and silicon formed during a manufacturing process into GDSII format, it makes it possible to bridge highly accurate pattern profile information over to the design field of various EDA systems. These are fully integrated into design data and automated. Bi-directional cross probing between mask data and process control data is allowed by linking them. This method is a solution for total optimization that covers Design, MDP, mask production and silicon device producing. This method therefore is regarded as a strategic DFM approach in the semiconductor metrology.
Enabling CD SEM metrology for 5nm technology node and beyond
NASA Astrophysics Data System (ADS)
Lorusso, Gian Francesco; Ohashi, Takeyoshi; Yamaguchi, Astuko; Inoue, Osamu; Sutani, Takumichi; Horiguchi, Naoto; Bömmels, Jürgen; Wilson, Christopher J.; Briggs, Basoene; Tan, Chi Lim; Raymaekers, Tom; Delhougne, Romain; Van den Bosch, Geert; Di Piazza, Luca; Kar, Gouri Sankar; Furnémont, Arnaud; Fantini, Andrea; Donadio, Gabriele Luca; Souriau, Laurent; Crotti, Davide; Yasin, Farrukh; Appeltans, Raf; Rao, Siddharth; De Simone, Danilo; Rincon Delgadillo, Paulina; Leray, Philippe; Charley, Anne-Laure; Zhou, Daisy; Veloso, Anabela; Collaert, Nadine; Hasumi, Kazuhisa; Koshihara, Shunsuke; Ikota, Masami; Okagawa, Yutaka; Ishimoto, Toru
2017-03-01
The CD SEM (Critical Dimension Scanning Electron Microscope) is one of the main tools used to estimate Critical Dimension (CD) in semiconductor manufacturing nowadays, but, as all metrology tools, it will face considerable challenges to keep up with the requirements of the future technology nodes. The root causes of these challenges are not uniquely related to the shrinking CD values, as one might expect, but to the increase in complexity of the devices in terms of morphology and chemical composition as well. In fact, complicated threedimensional device architectures, high aspect ratio features, and wide variety of materials are some of the unavoidable characteristics of the future metrology nodes. This means that, beside an improvement in resolution, it is critical to develop a CD SEM metrology capable of satisfying the specific needs of the devices of the nodes to come, needs that sometimes will have to be addressed through dramatic changes in approach with respect to traditional CD SEM metrology. In this paper, we report on the development of advanced CD SEM metrology at imec on a variety of device platform and processes, for both logic and memories. We discuss newly developed approaches for standard, IIIV, and germanium FinFETs (Fin Field Effect Transistors), for lateral and vertical nanowires (NW), 3D NAND (three-dimensional NAND), STT-MRAM (Spin Transfer Magnetic Torque Random-Access Memory), and ReRAM (Resistive Random Access Memory). Applications for both front-end of line (FEOL) and back-end of line (BEOL) are developed. In terms of process, S/D Epi (Source Drain Epitaxy), SAQP (Self-Aligned Quadruple Patterning), DSA (Dynamic Self-Assembly), and EUVL (Extreme Ultraviolet Lithography) have been used. The work reported here has been performed on Hitachi CG5000, CG6300, and CV5000. In terms of logic, we discuss here the S/D epi defect classification, the metrology optimization for STI (Shallow Trench Isolation) Ge FinFETs, the defectivity of III-V STI FinFETs,, metrology for vertical and horizontal NWs. With respect to memory, we discuss a STT-RAM statistical CD analysis and its comparison to electrical performance, ReRAM metrology for VMCO (Vacancy-modulated conductive oxide) with comparison with electrical performance, 3D NAND ONO (Oxide Nitride Oxide) thickness measurements. In addition, we report on 3D morphological reconstruction using CD SEM in conjunction with FIB (Focused Ion Beam), on optimized BKM (Best Known Methods) development methodologies, and on CD SEM overlay. The large variety of results reported here gives a clear overview of the creative effort put in place to ensure that the critical potential of CD SEM metrology tools is fully enabled for the 5nm node and beyond.
Solar Radiation Research Laboratory | Energy Systems Integration Facility |
radiation components, and has expanded its expertise to include integrated metrology, optics, electronics Acquisition Laboratory, Metrology Laboratory, Optics Laboratory, and Electronics Laboratory. Photo of a
Consultative Committee on Ionizing Radiation: Impact on Radionuclide Metrology
Karam, L.R.; Ratel, G.
2016-01-01
In response to the CIPM MRA, and to improve radioactivity measurements in the face of advancing technologies, the CIPM’s consultative committee on ionizing radiation developed a strategic approach to the realization and validation of measurement traceability for radionuclide metrology. As a consequence, measurement institutions throughout the world have devoted no small effort to establish radionuclide metrology capabilities, supported by active quality management systems and validated through prioritized participation in international comparisons, providing a varied stakeholder community with measurement confidence. PMID:26688351
Vacuum Technology Considerations For Mass Metrology
Abbott, Patrick J.; Jabour, Zeina J.
2011-01-01
Vacuum weighing of mass artifacts eliminates the necessity of air buoyancy correction and its contribution to the measurement uncertainty. Vacuum weighing is also an important process in the experiments currently underway for the redefinition of the SI mass unit, the kilogram. Creating the optimum vacuum environment for mass metrology requires careful design and selection of construction materials, plumbing components, pumping, and pressure gauging technologies. We review the vacuum technology1 required for mass metrology and suggest procedures and hardware for successful and reproducible operation. PMID:26989593
Application of Ionic Liquids in Amperometric Gas Sensors.
Gębicki, Jacek; Kloskowski, Adam; Chrzanowski, Wojciech; Stepnowski, Piotr; Namiesnik, Jacek
2016-01-01
This article presents an analysis of available literature data on metrological parameters of the amperometric gas sensors containing ionic liquids as an electrolyte. Four mechanism types of signal generation in amperometric sensors with ionic liquid are described. Moreover, this article describes the influence of selected physico-chemical properties of the ionic liquids on the metrological parameters of these sensors. Some metrological parameters are also compared for amperometric sensors with GDE and SPE electrodes and with ionic liquids for selected analytes.
The Opportunities and Challenges of Bringing New Metrology Equipment to Market
NASA Astrophysics Data System (ADS)
Perloff, David S.
2005-09-01
This paper provides an overview of the economic and technological factors which are driving the demand for new metrology and inspection equipment, the challenges and opportunities facing new companies in bringing such equipment to market, and the funding environment in which new companies must raise capital to finance their efforts. Seven metrology companies and one inspection equipment company that have received first-time venture backing since 2000 are used to illustrate how these specialized businesses are launched and funded.
A new approach to pattern metrology
NASA Astrophysics Data System (ADS)
Ausschnitt, Christopher P.
2004-05-01
We describe an approach to pattern metrology that enables the simultaneous determination of critical dimensions, overlay and film thickness. A single optical system captures nonzero- and zero-order diffracted signals from illuminated grating targets, as well as unpatterned regions of the surrounding substrate. Differential targets provide in situ dimensional calibration. CD target signals are analyzed to determine average dimension, profile attributes, and effective dose and defocus. In turn, effective dose and defocus determines all CDs pre-correlated to the dose and focus settings of the exposure tool. Overlay target signals are analyzed to determine the relative reflectivity of the layer pair and the overlay error between them. Compared to commercially available pattern metrology (SEM, optical microscopy, AFM, scatterometry and schnitzlometry), our approach promises improved signal-to-noise, higher throughput and smaller targets. We have dubbed this optical chimera MOXIE (Metrology Of eXtremely Irrational Exuberance).
1.5 nm fabrication of test patterns for characterization of metrological systems
Babin, Sergey; Calafiore, Giuseppe; Peroz, Christophe; ...
2015-11-06
Any metrology tool is only as good as it is calibrated. The characterization of metrology systems requires test patterns at a scale about ten times smaller than the measured features. The fabrication of patterns with linewidths down to 1.5 nm is described. The test sample was designed in such a way that the distribution of linewidths appears to be random at any location. This pseudorandom test pattern is used to characterize dimensional metrology equipment over its entire dynamic range by extracting the modulation transfer function of the system. The test pattern contains alternating lines of silicon and tungsten silicide, eachmore » according to its designed width. As a result, the fabricated test samples were imaged using a transmission electron microscope, a scanning electron microscope, and an atomic force microscope. (C) 2015 American Vacuum Society.« less
NASA Astrophysics Data System (ADS)
Pendrill, L. R.; Fisher, William P., Jr.
2013-09-01
A better understanding of how to characterise human response is essential to improved person-centred care and other situations where human factors are crucial. Challenges to introducing classical metrological concepts such as measurement uncertainty and traceability when characterising Man as a Measurement Instrument include the failure of many statistical tools when applied to ordinal measurement scales and a lack of metrological references in, for instance, healthcare. The present work attempts to link metrological and psychometric (Rasch) characterisation of Man as a Measurement Instrument in a study of elementary tasks, such as counting dots, where one knows independently the expected value because the measurement object (collection of dots) is prepared in advance. The analysis is compared and contrasted with recent approaches to this problem by others, for instance using signal error fidelity.
Influence of the air’s refractive index on precision angle metrology with autocollimators
NASA Astrophysics Data System (ADS)
Geckeler, Ralf D.; Křen, Petr; Just, Andreas; Schumann, Matthias; Krause, Michael
2018-07-01
In this paper, we discuss a substantial—though previously neglected—error source in precision metrology with autocollimators, specifically, changes in the air’s refractive index, with a focus on the dominant impact of pressure changes. Pressure decreases with increasing elevation above sea level and is subject to substantial variation due to weather changes. It causes changes in an autocollimator’s angle response which are proportional to the measured angle and which increase linearly with the beam length and air pressure. We characterise this important influence in detail by using extended theoretical and experimental investigations and derive strategies for correcting it. We discuss its implications for the comparison of autocollimator calibrations performed at different metrology institutes which is crucial for validating their calibration capabilities. This work aims at approaching fundamental limits in angle metrology with autocollimators.
NASA Astrophysics Data System (ADS)
Upputuri, Paul Kumar; Pramanik, Manojit
2018-02-01
Phase shifting white light interferometry (PSWLI) has been widely used for optical metrology applications because of their precision, reliability, and versatility. White light interferometry using monochrome CCD makes the measurement process slow for metrology applications. WLI integrated with Red-Green-Blue (RGB) CCD camera is finding imaging applications in the fields optical metrology and bio-imaging. Wavelength dependent refractive index profiles of biological samples were computed from colour white light interferograms. In recent years, whole-filed refractive index profiles of red blood cells (RBCs), onion skin, fish cornea, etc. were measured from RGB interferograms. In this paper, we discuss the bio-imaging applications of colour CCD based white light interferometry. The approach makes the measurement faster, easier, cost-effective, and even dynamic by using single fringe analysis methods, for industrial applications.
High-volume manufacturing device overlay process control
NASA Astrophysics Data System (ADS)
Lee, Honggoo; Han, Sangjun; Woo, Jaeson; Lee, DongYoung; Song, ChangRock; Heo, Hoyoung; Brinster, Irina; Choi, DongSub; Robinson, John C.
2017-03-01
Overlay control based on DI metrology of optical targets has been the primary basis for run-to-run process control for many years. In previous work we described a scenario where optical overlay metrology is performed on metrology targets on a high frequency basis including every lot (or most lots) at DI. SEM based FI metrology is performed ondevice in-die as-etched on an infrequent basis. Hybrid control schemes of this type have been in use for many process nodes. What is new is the relative size of the NZO as compared to the overlay spec, and the need to find more comprehensive solutions to characterize and control the size and variability of NZO at the 1x nm node: sampling, modeling, temporal frequency and control aspects, as well as trade-offs between SEM throughput and accuracy.
NASA Astrophysics Data System (ADS)
Liu, Jian; Tan, Jiubin
2016-12-01
The confocal microscope is appropriate for imaging cells or the measurement of industrial artefacts. However, junior researchers and instrument users sometimes misuse imaging concepts and metrological characteristics, such as position resolution in industrial metrology and scale resolution in bio-imaging. And, metrological characteristics or influence factors in 3D measurement such as height assessment error caused by 3D coupling effect are so far not yet identified. In this book, the authors outline their practices by the working experiences on standardization and system design. This book assumes little previous knowledge of optics, but rich experience in engineering of industrial measurements, in particular with profile metrology or areal surface topography will be very helpful to understand the theoretical concerns and value of the technological advances. It should be useful for graduate students or researchers as extended reading material, as well as microscope users alongside their handbook.
NASA Astrophysics Data System (ADS)
Frankowski, G.; Hainich, R.
2009-02-01
Since the mid-eighties, a fundamental idea for achieving measuring accuracy in projected fringe technology was to consider the projected fringe pattern as an interferogram and evaluate it on the basis of advanced algorithms widely used for phase measuring in real-time interferometry. A fundamental requirement for obtaining a sufficiently high degree of measuring accuracy with this so-called "phase measuring projected fringe technology" is that the projected fringes, analogous to interference fringes, must have a cos2-shaped intensity distribution. Until the mid-nineties, this requirement for the projected fringe pattern measurement technology presented a basic handicap for its wide application in 3D metrology. This situation changed abruptly, when in the nineties Texas Instruments introduced to the market advanced digital light projection on the basis of micro mirror based projection systems, socalled DLP technology, which also facilitated the generation and projection of cos2-shaped intensity and/or fringe patterns. With this DLP technology, which from its original approach was actually oriented towards completely different applications such as multimedia projection, Texas Instruments boosted phase-measuring fringe projection in optical 3D metrology to a worldwide breakthrough both for medical as well as industrial applications. A subject matter of the lecture will be to present the fundamental principles and the resulting advantages of optical 3D metrology based on phase-measuring fringe projection using DLP technology. Further will be presented and discussed applications of the measurement technology in medical engineering and industrial metrology.
[The EFS metrology: From the production to the reason].
Reifenberg, J-M; Riout, E; Leroy, A; Begue, S
2014-06-01
In order to answer statutory requirements and to anticipate the future needs and standards, the EFS is committed, since a few years, in a process of harmonization of its metrology function. In particular, the institution has opted for the skills development by internalizing the metrological traceability of the main critical quantities (temperature, volumetric) measurements. The development of metrology so resulted in a significant increase in calibration and testing activities. Methods are homogenized and improved through accreditations. The investment strategies are based on more and more demanding specifications. The performance of the equipments is better known and mastered. Technical expertise and maturity of the national metrology function today are assets to review in more informed ways the appropriateness of the applied periodicities. Analysis of numerous information and data in the calibration and testing reports could be pooled and operated on behalf of the unique establishment. The objective of this article is to illustrate these reflections with a few examples from of a feedback of the EFS Pyrénées Méditerranée. The analysis of some methods of qualification, the exploitation of the historical metrology in order to quantify the risk of non-compliance, and to adapt the control strategy, analysis of the criticality of an instrument in a measurement process, risk analyses are tools that deserve to be more widely exploited for that discipline wins in efficiency at the national level. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Coulter, Phillip; Beaton, Alexander; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hayden, Joseph E.; Hummel, Susann; Hylan, Jason E.; Lee, David; Madison, Timothy J.; Maszkiewicz, Michael;
2014-01-01
The James Webb Space Telescope science instruments are in the final stages of being integrated into the Integrated Science Instrument Module (ISIM) element. Each instrument is tied into a common coordinate system through mechanical references that are used for optical alignment and metrology within ISIM after element-level assembly. In addition, a set of ground support equipment (GSE) consisting of large, precisely calibrated, ambient, and cryogenic structures are used as alignment references and gauges during various phases of integration and test (I&T). This GSE, the flight instruments, and ISIM structure feature different types of complimentary metrology targeting. These GSE targets are used to establish and track six degrees of freedom instrument alignment during I&T in the vehicle coordinate system (VCS). This paper describes the optomechanical metrology conducted during science instrument integration and alignment in the Spacecraft Systems Development and Integration Facility (SSDIF) cleanroom at NASA Goddard Space Flight Center (GSFC). The measurement of each instrument's ambient entrance pupil location in the telescope coordinate system is discussed. The construction of the database of target locations and the development of metrology uncertainties is also discussed.
NASA Astrophysics Data System (ADS)
Halverson, Peter G.; Loya, Frank M.
2017-11-01
Projects such as the Space Interferometry Mission (SIM) [1] and Terrestrial Planet Finder (TPF) [2] rely heavily on sub-nanometer accuracy metrology systems to define their optical paths and geometries. The James Web Space Telescope (JWST) is using this metrology in a cryogenic dilatometer for characterizing material properties (thermal expansion, creep) of optical materials. For all these projects, a key issue has been the reliability and stability of the electronics that convert displacement metrology signals into real-time distance determinations. A particular concern is the behavior of the electronics in situations where laser heterodyne signals are weak or noisy and subject to abrupt Doppler shifts due to vibrations or the slewing of motorized optics. A second concern is the long-term (hours to days) stability of the distance measurements under conditions of drifting laser power and ambient temperature. This paper describes heterodyne displacement metrology gauge signal processing methods that achieve satisfactory robustness against low signal strength and spurious signals, and good long-term stability. We have a proven displacement-measuring approach that is useful not only to space-optical projects at JPL, but also to the wider field of distance measurements.
On-orbit Metrology and Calibration Requirements for Space Station Activities Definition Study
NASA Technical Reports Server (NTRS)
Cotty, G. M.; Ranganathan, B. N.; Sorrell, A. L.
1989-01-01
The Space Station is the focal point for the commercial development of space. The long term routine operation of the Space Station and the conduct of future commercial activities suggests the need for in-space metrology capabilities analogous when possible to those on-Earth. The ability to perform periodic calibrations and measurements with proper traceability is imperative for the routine operation of the Space Station. An initial review, however, indicated a paucity of data related to metrology and calibration requirements for in-space operations. This condition probably exists because of the highly developmental aspect of space activities to date, their short duration, and nonroutine nature. The on-orbit metrology and calibration needs of the Space Station were examined and assessed. In order to achieve this goal, the following tasks were performed: an up-to-date literature review; identification of on-orbit calibration techniques; identification of sensor calibration requirements; identification of calibration equipment requirements; definition of traceability requirements; preparation of technology development plans; and preparation of the final report. Significant information and major highlights pertaining to each task is presented. In addition, some general (generic) conclusions/observations and recommendations that are pertinent to the overall in-space metrology and calibration activities are presented.
Developments in optical modeling methods for metrology
NASA Astrophysics Data System (ADS)
Davidson, Mark P.
1999-06-01
Despite the fact that in recent years the scanning electron microscope has come to dominate the linewidth measurement application for wafer manufacturing, there are still many applications for optical metrology and alignment. These include mask metrology, stepper alignment, and overlay metrology. Most advanced non-optical lithographic technologies are also considering using topics for alignment. In addition, there have been a number of in-situ technologies proposed which use optical measurements to control one aspect or another of the semiconductor process. So optics is definitely not dying out in the semiconductor industry. In this paper a description of recent advances in optical metrology and alignment modeling is presented. The theory of high numerical aperture image simulation for partially coherent illumination is discussed. The implications of telecentric optics on the image simulation is also presented. Reciprocity tests are proposed as an important measure of numerical accuracy. Diffraction efficiencies for chrome gratings on reticles are one good way to test Kirchoff's approximation as compared to rigorous calculations. We find significant differences between the predictions of Kirchoff's approximation and rigorous methods. The methods for simulating brightfield, confocal, and coherence probe microscope imags are outlined, as are methods for describing aberrations such as coma, spherical aberration, and illumination aperture decentering.
Digital terrain modelling and industrial surface metrology - Converging crafts
Pike, R.J.
2001-01-01
Quantitative characterisation of surface form, increasingly from digital 3-D height data, is cross-disciplinary and can be applied at any scale. Thus, separation of industrial-surface metrology from its Earth-science counterpart, (digital) terrain modelling, is artificial. Their growing convergence presents an opportunity to develop in surface morphometry a unified approach to surface representation. This paper introduces terrain modelling and compares it with metrology, noting their differences and similarities. Examples of potential redundancy among parameters illustrate one of the many issues common to both disciplines. ?? 2001 Elsevier Science Ltd. All rights reserved.
NASA metrology and calibration, 1993
NASA Technical Reports Server (NTRS)
1993-01-01
Th sixteenth annual workshop of NASA's Metrology and Calibration Working Group was held April 20-22, 1993. The goals of the Working Group are to provide Agencywide standardization of individual metrology programs, where appropriate; to promote cooperation and exchange of information within NASA, with other Government agencies, and with industry; to serve as the primary Agency interface with the National Institute of Standards and Technology; and to encourage formal quality control techniques such as Measurement Assurance Programs. These proceedings contain unedited reports and presentations from the workshop and are provided for information only.
In-situ sensing using mass spectrometry and its use for run-to-run control on a W-CVD cluster tool
NASA Astrophysics Data System (ADS)
Gougousi, T.; Sreenivasan, R.; Xu, Y.; Henn-Lecordier, L.; Rubloff, G. W.; Kidder, , J. N.; Zafiriou, E.
2001-01-01
A 300 amu closed-ion-source RGA (Leybold-Inficon Transpector 2) sampling gases directly from the reactor of an ULVAC ERA-1000 cluster tool has been used for real time process monitoring of a W CVD process. The process involves H2 reduction of WF6 at a total pressure of 67 Pa (0.5 torr) to produce W films on Si wafers heated at temperatures around 350 °C. The normalized RGA signals for the H2 reagent depletion and the HF product generation were correlated with the W film weight as measured post-process with an electronic microbalance for the establishment of thin-film weight (thickness) metrology. The metrology uncertainty (about 7% for the HF product) was limited primarily by the very low conversion efficiency of the W CVD process (around 2-3%). The HF metrology was then used to drive a robust run-to-run control algorithm, with the deposition time selected as the manipulated (or controlled) variable. For that purpose, during a 10 wafer run, a systematic process drift was introduced as a -5 °C processing temperature change for each successive wafer, in an otherwise unchanged process recipe. Without adjustment of the deposition time the W film weight (thickness) would have declined by about 50% by the 10th wafer. With the aid of the process control algorithm, an adjusted deposition time was computed so as to maintain constant HF sensing signal, resulting in weight (thickness) control comparable to the accuracy of the thickness metrology. These results suggest that in-situ chemical sensing, and particularly mass spectrometry, provide the basis for wafer state metrology as needed to achieve run-to-run control. Furthermore, since the control accuracy was consistent with the metrology accuracy, we anticipate significant improvements for processes as used in manufacturing, where conversion rates are much higher (40-50%) and corresponding signals for metrology will be much larger.
NPL scoops £25m for advanced metrology centre
NASA Astrophysics Data System (ADS)
Singh Chadha, Kulvinder
2013-03-01
The National Physical Laboratory (NPL) in Teddington, UK, is to receive £25m towards the construction of an Advanced Metrology Laboratory (AML) that will contain up to 20 labs and be complete by 2017.
Technique for the metrology calibration of a Fourier transform spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Locke D.; Naylor, David A
2008-11-10
A method is presented for using a Fourier transform spectrometer (FTS) to calibrate the metrology of a second FTS. This technique is particularly useful when the second FTS is inside a cryostat or otherwise inaccessible.
Combined dry plasma etching and online metrology for manufacturing highly focusing x-ray mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berujon, S., E-mail: berujon@esrf.eu; Ziegler, E., E-mail: ziegler@esrf.eu; Cunha, S. da
A new figuring station was designed and installed at the ESRF beamline BM05. It allows the figuring of mirrors within an iterative process combining the advantage of online metrology with dry etching. The complete process takes place under a vacuum environment to minimize surface contamination while non-contact surfacing tools open up the possibility of performing at-wavelength metrology and eliminating placement errors. The aim is to produce mirrors whose slopes do not deviate from the stigmatic profile by more than 0.1 µrad rms while keeping surface roughness in the acceptable limit of 0.1-0.2 nm rms. The desired elliptical mirror surface shapemore » can be achieved in a few iterations in about a one day time span. This paper describes some of the important aspects of the process regarding both the online metrology and the etching process.« less
Metrology requirements for the serial production of ELT primary mirror segments
NASA Astrophysics Data System (ADS)
Rees, Paul C. T.; Gray, Caroline
2015-08-01
The manufacture of the next generation of large astronomical telescopes, the extremely large telescopes (ELT), requires the rapid manufacture of greater than 500 1.44m hexagonal segments for the primary mirror of each telescope. Both leading projects, the Thirty Meter Telescope (TMT) and the European Extremely Large Telescope (E-ELT), have set highly demanding technical requirements for each fabricated segment. These technical requirements, when combined with the anticipated construction schedule for each telescope, suggest that more than one optical fabricator will be involved in the delivery of the primary mirror segments in order to meet the project schedule. For one supplier, the technical specification is challenging and requires highly consistent control of metrology in close coordination with the polishing technologies used in order to optimize production rates. For production using multiple suppliers, however the supply chain is structured, consistent control of metrology along the supply chain will be required. This requires a broader pattern of independent verification than is the case of a single supplier. This paper outlines the metrology requirements for a single supplier throughout all stages of the fabrication process. We identify and outline those areas where metrology accuracy and duration have a significant impact on production efficiency. We use the challenging ESO E-ELT technical specification as an example of our treatment, including actual process data. We further develop this model for the case of a supply chain consisting of multiple suppliers. Here, we emphasize the need to control metrology throughout the supply chain in order to optimize net production efficiency.
High throughput wafer defect monitor for integrated metrology applications in photolithography
NASA Astrophysics Data System (ADS)
Rao, Nagaraja; Kinney, Patrick; Gupta, Anand
2008-03-01
The traditional approach to semiconductor wafer inspection is based on the use of stand-alone metrology tools, which while highly sensitive, are large, expensive and slow, requiring inspection to be performed off-line and on a lot sampling basis. Due to the long cycle times and sparse sampling, the current wafer inspection approach is not suited to rapid detection of process excursions that affect yield. The semiconductor industry is gradually moving towards deploying integrated metrology tools for real-time "monitoring" of product wafers during the manufacturing process. Integrated metrology aims to provide end-users with rapid feedback of problems during the manufacturing process, and the benefit of increased yield, and reduced rework and scrap. The approach of monitoring 100% of the wafers being processed requires some trade-off in sensitivity compared to traditional standalone metrology tools, but not by much. This paper describes a compact, low-cost wafer defect monitor suitable for integrated metrology applications and capable of detecting submicron defects on semiconductor wafers at an inspection rate of about 10 seconds per wafer (or 360 wafers per hour). The wafer monitor uses a whole wafer imaging approach to detect defects on both un-patterned and patterned wafers. Laboratory tests with a prototype system have demonstrated sensitivity down to 0.3 µm on un-patterned wafers and down to 1 µm on patterned wafers, at inspection rates of 10 seconds per wafer. An ideal application for this technology is preventing photolithography defects such as "hot spots" by implementing a wafer backside monitoring step prior to exposing wafers in the lithography step.
Metrology to quantify wear and creep of polyethylene tibial knee inserts.
Muratoglu, Orhun K; Perinchief, Rebecca S; Bragdon, Charles R; O'Connor, Daniel O; Konrad, Reto; Harris, William H
2003-05-01
Assessment of damage on articular surfaces of ultrahigh molecular weight polyethylene tibial knee inserts primarily has been limited to qualitative methods, such as visual observation and classification of features such as pitting, delamination, and subsurface cracking. Semiquantitative methods also have been proposed to determine the linear penetration and volume of the scar that forms on articular surfaces of tibial knee inserts. The current authors report a new metrologic method that uses a coordinate measuring machine to quantify the dimensions of this scar. The articular surface of the insert is digitized with the coordinate measuring machine before and after regular intervals of testing on a knee simulator. The volume and linear penetration of the scar are calculated by mathematically taking the difference between the digitized surface maps of the worn and unworn articular surfaces. Three conventional polyethylene tibial knee inserts of a posterior cruciate-sparing design were subjected to five million cycles of normal gait on a displacement-driven knee wear simulator in bovine serum. A metrologic method was used to calculate creep and wear contributions to the scar formation on each tibial plateau. Weight loss of the inserts was determined gravimetrically with the appropriate correction for fluid absorption. The total average wear volume was 43 +/- 9 and 41 +/- 4 mm3 measured by the metrologic and gravimetric methods, respectively. The wear rate averaged 8.3 +/- 0.9 and 8.5 +/- 1.6 mm3 per million cycles measured by the metrologic and gravimetric methods, respectively. These comparisons reflected strong agreement between the metrologic and gravimetric methods.
Absolute optical metrology : nanometers to kilometers
NASA Technical Reports Server (NTRS)
Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.
2005-01-01
We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.
Metrology laboratory requirements for third-generation synchrotron radiation sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takacs, P.Z.; Quian, Shinan
1997-11-01
New third-generation synchrotron radiation sources that are now, or will soon, come on line will need to decide how to handle the testing of optical components delivered for use in their beam lines. In many cases it is desirable to establish an in-house metrology laboratory to do the work. We review the history behind the formation of the Optical Metrology Laboratory at Brookhaven National Laboratory and the rationale for its continued existence. We offer suggestions to those who may be contemplating setting up similar facilities, based on our experiences over the past two decades.
Metrological Reliability of Medical Devices
NASA Astrophysics Data System (ADS)
Costa Monteiro, E.; Leon, L. F.
2015-02-01
The prominent development of health technologies of the 20th century triggered demands for metrological reliability of physiological measurements comprising physical, chemical and biological quantities, essential to ensure accurate and comparable results of clinical measurements. In the present work, aspects concerning metrological reliability in premarket and postmarket assessments of medical devices are discussed, pointing out challenges to be overcome. In addition, considering the social relevance of the biomeasurements results, Biometrological Principles to be pursued by research and innovation aimed at biomedical applications are proposed, along with the analysis of their contributions to guarantee the innovative health technologies compliance with the main ethical pillars of Bioethics.
Suran, Jiri; Kovar, Petr; Smoldasova, Jana; Solc, Jaroslav; Van Ammel, Raf; Garcia Miranda, Maria; Russell, Ben; Arnold, Dirk; Zapata-García, Daniel; Boden, Sven; Rogiers, Bart; Sand, Johan; Peräjärvi, Kari; Holm, Philip; Hay, Bruno; Failleau, Guillaume; Plumeri, Stephane; Laurent Beck, Yves; Grisa, Tomas
2018-04-01
Decommissioning of nuclear facilities incurs high costs regarding the accurate characterisation and correct disposal of the decommissioned materials. Therefore, there is a need for the implementation of new and traceable measurement technologies to select the appropriate release or disposal route of radioactive wastes. This paper addresses some of the innovative outcomes of the project "Metrology for Decommissioning Nuclear Facilities" related to mapping of contamination inside nuclear facilities, waste clearance measurement, Raman distributed temperature sensing for long term repository integrity monitoring and validation of radiochemical procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tran, Sophie M; Tran, Hy D.
The Third Seminar on Surface Metrology for the Americas (SSMA) took place in Albuquerque, New Mexico May 12-13, 2014. The conference was at the Marriott Hotel, in the heart of Albuquerque Uptown, within walking distance of many fantastic restaurants. Why surface metrology? Ask Professor Chris Brown of Worcester Polytechnic Institute (WPI), the chair of the first two SSMAs in 2011 and 2012 and the chair of the ASME B46 committee on classification and designation of surface qualities, and Professor Brown responds: “Because surfaces cover everything.”
In-Line Detection and Measurement of Molecular Contamination in Semiconductor Process Solutions
NASA Astrophysics Data System (ADS)
Wang, Jason; West, Michael; Han, Ye; McDonald, Robert C.; Yang, Wenjing; Ormond, Bob; Saini, Harmesh
2005-09-01
This paper discusses a fully automated metrology tool for detection and quantitative measurement of contamination, including cationic, anionic, metallic, organic, and molecular species present in semiconductor process solutions. The instrument is based on an electrospray ionization time-of-flight mass spectrometer (ESI-TOF/MS) platform. The tool can be used in diagnostic or analytical modes to understand process problems in addition to enabling routine metrology functions. Metrology functions include in-line contamination measurement with near real-time trend analysis. This paper discusses representative organic and molecular contamination measurement results in production process problem solving efforts. The examples include the analysis and identification of organic compounds in SC-1 pre-gate clean solution; urea, NMP (N-Methyl-2-pyrrolidone) and phosphoric acid contamination in UPW; and plasticizer and an organic sulfur-containing compound found in isopropyl alcohol (IPA). It is expected that these unique analytical and metrology capabilities will improve the understanding of the effect of organic and molecular contamination on device performance and yield. This will permit the development of quantitative correlations between contamination levels and process degradation. It is also expected that the ability to perform routine process chemistry metrology will lead to corresponding improvements in manufacturing process control and yield, the ability to avoid excursions and will improve the overall cost effectiveness of the semiconductor manufacturing process.
Final report on the key comparison CCM.P-K4.2012 in absolute pressure from 1 Pa to 10 kPa
NASA Astrophysics Data System (ADS)
Ricker, Jacob; Hendricks, Jay; Bock, Thomas; Dominik, Pražák; Kobata, Tokihiko; Torres, Jorge; Sadkovskaya, Irina
2017-01-01
The report summarizes the Consultative Committee for Mass (CCM) key comparison CCM.P-K4.2012 for absolute pressure spanning the range of 1 Pa to 10 000 Pa. The comparison was carried out at six National Metrology Institutes (NMIs), including National Institute of Standards and Technology (NIST), Physikalisch-Technische Bundesanstalt (PTB), Czech Metrology Institute (CMI), National Metrology Institute of Japan (NMIJ), Centro Nacional de Metrología (CENAM), and DI Mendeleyev Institute for Metrology (VNIIM). The comparison was made via a calibrated transfer standard measured at each of the NMIs facilities using their laboratory standard during the period May 2012 to September 2013. The transfer package constructed for this comparison preformed as designed and provided a stable artifact to compare laboratory standards. Overall the participants were found to be statistically equivalent to the key comparison reference value. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Metrology Optical Power Budgeting in SIM Using Statistical Analysis Techniques
NASA Technical Reports Server (NTRS)
Kuan, Gary M
2008-01-01
The Space Interferometry Mission (SIM) is a space-based stellar interferometry instrument, consisting of up to three interferometers, which will be capable of micro-arc second resolution. Alignment knowledge of the three interferometer baselines requires a three-dimensional, 14-leg truss with each leg being monitored by an external metrology gauge. In addition, each of the three interferometers requires an internal metrology gauge to monitor the optical path length differences between the two sides. Both external and internal metrology gauges are interferometry based, operating at a wavelength of 1319 nanometers. Each gauge has fiber inputs delivering measurement and local oscillator (LO) power, split into probe-LO and reference-LO beam pairs. These beams experience power loss due to a variety of mechanisms including, but not restricted to, design efficiency, material attenuation, element misalignment, diffraction, and coupling efficiency. Since the attenuation due to these sources may degrade over time, an accounting of the range of expected attenuation is needed so an optical power margin can be book kept. A method of statistical optical power analysis and budgeting, based on a technique developed for deep space RF telecommunications, is described in this paper and provides a numerical confidence level for having sufficient optical power relative to mission metrology performance requirements.
NASA Astrophysics Data System (ADS)
Buchholz, Bernhard; Ebert, Volker
2018-01-01
Highly accurate water vapor measurements are indispensable for understanding a variety of scientific questions as well as industrial processes. While in metrology water vapor concentrations can be defined, generated, and measured with relative uncertainties in the single percentage range, field-deployable airborne instruments deviate even under quasistatic laboratory conditions up to 10-20 %. The novel SEALDH-II hygrometer, a calibration-free, tuneable diode laser spectrometer, bridges this gap by implementing a new holistic concept to achieve higher accuracy levels in the field. We present in this paper the absolute validation of SEALDH-II at a traceable humidity generator during 23 days of permanent operation at 15 different H2O mole fraction levels between 5 and 1200 ppmv. At each mole fraction level, we studied the pressure dependence at six different gas pressures between 65 and 950 hPa. Further, we describe the setup for this metrological validation, the challenges to overcome when assessing water vapor measurements on a high accuracy level, and the comparison results. With this validation, SEALDH-II is the first airborne, metrologically validated humidity transfer standard which links several scientific airborne and laboratory measurement campaigns to the international metrological water vapor scale.
SAQP pitch walk metrology using single target metrology
NASA Astrophysics Data System (ADS)
Fang, Fang; Herrera, Pedro; Kagalwala, Taher; Camp, Janay; Vaid, Alok; Pandev, Stilian; Zach, Franz
2017-03-01
Self-aligned quadruple patterning (SAQP) processes have found widespread acceptance in advanced technology nodes to drive device scaling beyond the resolution limitations of immersion scanners. Of the four spaces generated in this process from one lithography pattern two tend to be equivalent as they are derived from the first spacer deposition. The three independent spaces are commonly labelled as α, β and γ. α, β and γ are controlled by multiple process steps including the initial lithographic patterning process, the two mandrel and spacer etches as well as the two spacer depositions. Scatterometry has been the preferred metrology approach, however is restricted to repetitive arrays. In these arrays independent measurements, in particular of alpha and gamma, are not possible due to degeneracy of the standard array targets. . In this work we present a single target approach which lifts the degeneracies commonly encountered while using product relevant layout geometries. We will first describe the metrology approach which includes the previously described SRM (signal response metrology) combined with reference data derived from CD SEM data. The performance of the methodology is shown in figures 1-3. In these figures the optically determined values for alpha, beta and gamma are compared to the CD SEM reference data. The variations are achieved using controlled process experiments varying Mandrel CD and Spacer deposition thicknesses.
Advanced metrology by offline SEM data processing
NASA Astrophysics Data System (ADS)
Lakcher, Amine; Schneider, Loïc.; Le-Gratiet, Bertrand; Ducoté, Julien; Farys, Vincent; Besacier, Maxime
2017-06-01
Today's technology nodes contain more and more complex designs bringing increasing challenges to chip manufacturing process steps. It is necessary to have an efficient metrology to assess process variability of these complex patterns and thus extract relevant data to generate process aware design rules and to improve OPC models. Today process variability is mostly addressed through the analysis of in-line monitoring features which are often designed to support robust measurements and as a consequence are not always very representative of critical design rules. CD-SEM is the main CD metrology technique used in chip manufacturing process but it is challenged when it comes to measure metrics like tip to tip, tip to line, areas or necking in high quantity and with robustness. CD-SEM images contain a lot of information that is not always used in metrology. Suppliers have provided tools that allow engineers to extract the SEM contours of their features and to convert them into a GDS. Contours can be seen as the signature of the shape as it contains all the dimensional data. Thus the methodology is to use the CD-SEM to take high quality images then generate SEM contours and create a data base out of them. Contours are used to feed an offline metrology tool that will process them to extract different metrics. It was shown in two previous papers that it is possible to perform complex measurements on hotspots at different process steps (lithography, etch, copper CMP) by using SEM contours with an in-house offline metrology tool. In the current paper, the methodology presented previously will be expanded to improve its robustness and combined with the use of phylogeny to classify the SEM images according to their geometrical proximities.
Toward Advancing Nano-Object Count Metrology: A Best Practice Framework
Boyko, Volodymyr; Meyers, Greg; Voetz, Matthias; Wohlleben, Wendel
2013-01-01
Background: A movement among international agencies and policy makers to classify industrial materials by their number content of sub–100-nm particles could have broad implications for the development of sustainable nanotechnologies. Objectives: Here we highlight current particle size metrology challenges faced by the chemical industry due to these emerging number percent content thresholds, provide a suggested best-practice framework for nano-object identification, and identify research needs as a path forward. Discussion: Harmonized methods for identifying nanomaterials by size and count for many real-world samples do not currently exist. Although particle size remains the sole discriminating factor for classifying a material as “nano,” inconsistencies in size metrology will continue to confound policy and decision making. Moreover, there are concerns that the casting of a wide net with still-unproven metrology methods may stifle the development and judicious implementation of sustainable nanotechnologies. Based on the current state of the art, we propose a tiered approach for evaluating materials. To enable future risk-based refinements of these emerging definitions, we recommend that this framework also be considered in environmental and human health research involving the implications of nanomaterials. Conclusion: Substantial scientific scrutiny is needed in the area of nanomaterial metrology to establish best practices and to develop suitable methods before implementing definitions based solely on number percent nano-object content for regulatory purposes. Strong cooperation between industry, academia, and research institutions will be required to fully develop and implement detailed frameworks for nanomaterial identification with respect to emerging count-based metrics. Citation: Brown SC, Boyko V, Meyers G, Voetz M, Wohlleben W. 2013. Toward advancing nano-object count metrology: a best practice framework. Environ Health Perspect 121:1282–1291; http://dx.doi.org/10.1289/ehp.1306957 PMID:24076973
Metrology and ionospheric observation standards
NASA Astrophysics Data System (ADS)
Panshin, Evgeniy; Minligareev, Vladimir; Pronin, Anton
Accuracy and ionospheric observation validity are urgent trends nowadays. WMO, URSI and national metrological and standardisation services bring forward requirements and descriptions of the ionospheric observation means. Researches in the sphere of metrological and standardisation observation moved to the next level in the Russian Federation. Fedorov Institute of Applied Geophysics (IAG) is in charge of ionospheric observation in the Russian Federation and the National Technical Committee, TC-101 , which was set up on the base of IAG- of the standardisation in the sphere. TC-101 can be the platform for initiation of the core international committee in the network of ISO The new type of the ionosounde “Parus-A” is engineered, which is up to the national requirements. “Parus-A” calibration and test were conducted by National metrological Institute (NMI) -D.I. Mendeleyev Institute for Metrology (VNIIM), signed CIMP MRA in 1991. VNIIM is a basic NMI in the sphere of Space weather (including ionospheric observations), the founder of which was celebrated chemist and metrologist Dmitriy I. Mendeleyev. Tests and calibration were carried out for the 1st time throughout 50-year-history of ionosonde exploitation in Russia. The following metrological characteristics were tested: -measurement range of radiofrequency time delay 0.5-10 ms; -time measurement inaccuracy of radio- frequency pulse ±12mcs; -frequency range of radio impulse 1-20 MHz ; -measurement inaccuracy of radio impulse carrier frequency± 5KHz. For example, the sound impulse simulator that was built-in in the ionosounde was used for measurement range of radiofrequency time delay testing. The number of standards on different levels is developed. - “Ionospheric observation guidance”; - “The Earth ionosphere. Terms and definitions”.
NASA Astrophysics Data System (ADS)
Kim, Cheol-kyun; Kim, Jungchan; Choi, Jaeseung; Yang, Hyunjo; Yim, Donggyu; Kim, Jinwoong
2007-03-01
As the minimum transistor length is getting smaller, the variation and uniformity of transistor length seriously effect device performance. So, the importance of optical proximity effects correction (OPC) and resolution enhancement technology (RET) cannot be overemphasized. However, OPC process is regarded by some as a necessary evil in device performance. In fact, every group which includes process and design, are interested in whole chip CD variation trend and CD uniformity, which represent real wafer. Recently, design based metrology systems are capable of detecting difference between data base to wafer SEM image. Design based metrology systems are able to extract information of whole chip CD variation. According to the results, OPC abnormality was identified and design feedback items are also disclosed. The other approaches are accomplished on EDA companies, like model based OPC verifications. Model based verification will be done for full chip area by using well-calibrated model. The object of model based verification is the prediction of potential weak point on wafer and fast feed back to OPC and design before reticle fabrication. In order to achieve robust design and sufficient device margin, appropriate combination between design based metrology system and model based verification tools is very important. Therefore, we evaluated design based metrology system and matched model based verification system for optimum combination between two systems. In our study, huge amount of data from wafer results are classified and analyzed by statistical method and classified by OPC feedback and design feedback items. Additionally, novel DFM flow would be proposed by using combination of design based metrology and model based verification tools.
Overlay metrology for double patterning processes
NASA Astrophysics Data System (ADS)
Leray, Philippe; Cheng, Shaunee; Laidler, David; Kandel, Daniel; Adel, Mike; Dinu, Berta; Polli, Marco; Vasconi, Mauro; Salski, Bartlomiej
2009-03-01
The double patterning (DPT) process is foreseen by the industry to be the main solution for the 32 nm technology node and even beyond. Meanwhile process compatibility has to be maintained and the performance of overlay metrology has to improve. To achieve this for Image Based Overlay (IBO), usually the optics of overlay tools are improved. It was also demonstrated that these requirements are achievable with a Diffraction Based Overlay (DBO) technique named SCOLTM [1]. In addition, we believe that overlay measurements with respect to a reference grid are required to achieve the required overlay control [2]. This induces at least a three-fold increase in the number of measurements (2 for double patterned layers to the reference grid and 1 between the double patterned layers). The requirements of process compatibility, enhanced performance and large number of measurements make the choice of overlay metrology for DPT very challenging. In this work we use different flavors of the standard overlay metrology technique (IBO) as well as the new technique (SCOL) to address these three requirements. The compatibility of the corresponding overlay targets with double patterning processes (Litho-Etch-Litho-Etch (LELE); Litho-Freeze-Litho-Etch (LFLE), Spacer defined) is tested. The process impact on different target types is discussed (CD bias LELE, Contrast for LFLE). We compare the standard imaging overlay metrology with non-standard imaging techniques dedicated to double patterning processes (multilayer imaging targets allowing one overlay target instead of three, very small imaging targets). In addition to standard designs already discussed [1], we investigate SCOL target designs specific to double patterning processes. The feedback to the scanner is determined using the different techniques. The final overlay results obtained are compared accordingly. We conclude with the pros and cons of each technique and suggest the optimal metrology strategy for overlay control in double patterning processes.
FOREWORD: Neutron metrology Neutron metrology
NASA Astrophysics Data System (ADS)
Thomas, David J.; Nolte, Ralf; Gressier, Vincent
2011-12-01
The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear industry, from the initial fuel enrichment and fabrication processes right through to storage or reprocessing, and neutron metrology is clearly important in this area. Neutron fields do, however, occur in other areas, for example where neutron sources are used in oil well logging and moisture measurements. They also occur around high energy accelerators, including photon linear accelerators used for cancer therapy, and are expected to be a more serious problem around the new hadron radiation therapy facilities. Roughly 50% of the cosmic ray doses experienced by fliers at the flight altitudes of commercial aircraft are due to neutrons. Current research on fusion presents neutron metrology with a whole new range of challenges because of the very high fluences expected. One of the most significant features of neutron fields is the very wide range of possible neutron energies. In the nuclear industry, for example, neutrons occur with energies from those of thermal neutrons at a few meV to the upper end of the fission spectrum at perhaps 10 MeV. For cosmic ray dosimetry the energy range extends into the GeV region. This enormous range sets a challenge for designing measuring devices and a parallel challenge of developing measurement standards for characterizing these devices. One of the major considerations when deciding on topics for this special issue was agreeing on what not to include. Modelling, i.e. the use of radiation transport codes, is now a very important aspect of neutron measurements. These calculations are vital for shielding and for instrument design; nevertheless, the topic has only been included here where it has a direct bearing on metrology and the development of standards. Neutron spectrometry is an increasingly important technique for unravelling some of the problems of dose equivalent measurements and for plasma diagnostics in fusion research. However, this topic is at least one step removed from primary metrology and so it was felt that it should not be covered, particularly as a compendium of papers on spectrometry for radiation protection has been published relatively recently [1]. The CIPM Mutual Recognition Arrangement (CIPM MRA), whereby national measurement standards and certificates issued by different national metrology institutes (NMIs) can be recognized internationally, is covered only briefly, although the key comparisons which underpin the CIPM MRA are highlighted. The papers included in this issue concentrate on the primary physical quantities—neutron source emission rate and neutron fluence, papers on the latter quantity covering the wide range of neutron energies for which standards are required. Neutron cross sections are fundamental to neutron physics and their importance in neutron metrology is also covered. A large amount of work by acknowledged experts in neutron metrology has gone into the preparation of this special issue and we are indebted to them for their time and effort. The list of contributors begins with the authors of the papers but also includes the referees who provided invisible but invaluable input. We are grateful for the support and encouragement of Professor Georgio Moscati, president of the CCRI when the work was proposed, Dr Kim Carneiro the current president, and Dr Penny Allisy-Roberts the executive secretary of the CCRI. When this work was first proposed a list of potential topics was drawn up by the then chairman of Section (III) Dr Horst Klein. It is a measure of his insight and knowledge of the field that the resulting document matches almost exactly the original plan he drew up. This special issue is thus a tribute to his very extensive contribution to the field. We sincerely hope its contents provide an accurate picture of the present state of neutron metrology in view of Dr Klein's conviction of the importance in metrology of getting things right. Reference [1] Thomas D J and Klein H (ed) 2003 Neutron and photon spectrometry techniques for radiation protection Radiat. Prot. Dosim. 107 1-204
7 CFR 802.1 - Qualified laboratories.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 7 2011-01-01 2011-01-01 false Qualified laboratories. 802.1 Section 802.1... REQUIREMENTS FOR GRAIN WEIGHING EQUIPMENT AND RELATED GRAIN HANDLING SYSTEMS § 802.1 Qualified laboratories. (a) Metrology laboratories. (1) Any State metrology laboratory currently approved by the NBS ongoing...
DABAM: an open-source database of X-ray mirrors metrology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele
2016-04-20
An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper,more » with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.« less
Optimal adaptive control for quantum metrology with time-dependent Hamiltonians.
Pang, Shengshi; Jordan, Andrew N
2017-03-09
Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T 2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T 4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case.
DABAM: an open-source database of X-ray mirrors metrology
Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele; Glass, Mark; Idir, Mourad; Metz, Jim; Raimondi, Lorenzo; Rebuffi, Luca; Reininger, Ruben; Shi, Xianbo; Siewert, Frank; Spielmann-Jaeggi, Sibylle; Takacs, Peter; Tomasset, Muriel; Tonnessen, Tom; Vivo, Amparo; Yashchuk, Valeriy
2016-01-01
An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper, with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database. PMID:27140145
Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers.
Consolino, L; Taschin, A; Bartolini, P; Bartalini, S; Cancio, P; Tredicucci, A; Beere, H E; Ritchie, D A; Torre, R; Vitiello, M S; De Natale, P
2012-01-01
Optical frequency comb synthesizers have represented a revolutionary approach to frequency metrology, providing a grid of frequency references for any laser emitting within their spectral coverage. Extending the metrological features of optical frequency comb synthesizers to the terahertz domain would be a major breakthrough, due to the widespread range of accessible strategic applications and the availability of stable, high-power and widely tunable sources such as quantum cascade lasers. Here we demonstrate phase-locking of a 2.5 THz quantum cascade laser to a free-space comb, generated in a LiNbO(3) waveguide and covering the 0.1-6 THz frequency range. We show that even a small fraction (<100 nW) of the radiation emitted from the quantum cascade laser is sufficient to generate a beat note suitable for phase-locking to the comb, paving the way to novel metrological-grade terahertz applications, including high-resolution spectroscopy, manipulation of cold molecules, astronomy and telecommunications.
Lombardi, Michael A.; Novick, Andrew N.; Lopez R, J. Mauricio; Jimenez, Francisco; de Carlos Lopez, Eduardo; Boulanger, Jean-Simon; Pelletier, Raymond; de Carvalho, Ricardo J.; Solis, Raul; Sanchez, Harold; Quevedo, Carlos Andres; Pascoe, Gregory; Perez, Daniel; Bances, Eduardo; Trigo, Leonardo; Masi, Victor; Postigo, Henry; Questelles, Anthony; Gittens, Anselm
2011-01-01
The Sistema Interamericano de Metrologia (SIM) is a regional metrology organization (RMO) whose members are the national metrology institutes (NMIs) located in the 34 nations of the Organization of American States (OAS). The SIM/OAS region extends throughout North, Central, and South America and the Caribbean Islands. About half of the SIM NMIs maintain national standards of time and frequency and must participate in international comparisons in order to establish metrological traceability to the International System (SI) of units. The SIM time network (SIMTN) was developed as a practical, cost effective, and technically sound way to automate these comparisons. The SIMTN continuously compares the time standards of SIM NMIs and produces measurement results in near real-time by utilizing the Internet and the Global Positioning System (GPS). Fifteen SIM NMIs have joined the network as of December 2010. This paper provides a brief overview of SIM and a technical description of the SIMTN. It presents international comparison results and examines the measurement uncertainties. It also discusses the metrological benefits that the network provides to its participants. PMID:26989584
World wide matching of registration metrology tools of various generations
NASA Astrophysics Data System (ADS)
Laske, F.; Pudnos, A.; Mackey, L.; Tran, P.; Higuchi, M.; Enkrich, C.; Roeth, K.-D.; Schmidt, K.-H.; Adam, D.; Bender, J.
2008-10-01
Turn around time/cycle time is a key success criterion in the semiconductor photomask business. Therefore, global mask suppliers typically allocate work loads based on fab capability and utilization capacity. From a logistical point of view, the manufacturing location of a photomask should be transparent to the customer (mask user). Matching capability of production equipment and especially metrology tools is considered a key enabler to guarantee cross site manufacturing flexibility. Toppan, with manufacturing sites in eight countries worldwide, has an on-going program to match the registration metrology systems of all its production sites. This allows for manufacturing flexibility and risk mitigation.In cooperation with Vistec Semiconductor Systems, Toppan has recently completed a program to match the Vistec LMS IPRO systems at all production sites worldwide. Vistec has developed a new software feature which allows for significantly improved matching of LMS IPRO(x) registration metrology tools of various generations. We will report on the results of the global matching campaign of several of the leading Toppan sites.
DABAM: An open-source database of X-ray mirrors metrology
Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele; ...
2016-05-01
An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper,more » with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. In conclusion, some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.« less
Lombardi, Michael A; Novick, Andrew N; Lopez R, J Mauricio; Jimenez, Francisco; de Carlos Lopez, Eduardo; Boulanger, Jean-Simon; Pelletier, Raymond; de Carvalho, Ricardo J; Solis, Raul; Sanchez, Harold; Quevedo, Carlos Andres; Pascoe, Gregory; Perez, Daniel; Bances, Eduardo; Trigo, Leonardo; Masi, Victor; Postigo, Henry; Questelles, Anthony; Gittens, Anselm
2011-01-01
The Sistema Interamericano de Metrologia (SIM) is a regional metrology organization (RMO) whose members are the national metrology institutes (NMIs) located in the 34 nations of the Organization of American States (OAS). The SIM/OAS region extends throughout North, Central, and South America and the Caribbean Islands. About half of the SIM NMIs maintain national standards of time and frequency and must participate in international comparisons in order to establish metrological traceability to the International System (SI) of units. The SIM time network (SIMTN) was developed as a practical, cost effective, and technically sound way to automate these comparisons. The SIMTN continuously compares the time standards of SIM NMIs and produces measurement results in near real-time by utilizing the Internet and the Global Positioning System (GPS). Fifteen SIM NMIs have joined the network as of December 2010. This paper provides a brief overview of SIM and a technical description of the SIMTN. It presents international comparison results and examines the measurement uncertainties. It also discusses the metrological benefits that the network provides to its participants.
Contour metrology using critical dimension atomic force microscopy
NASA Astrophysics Data System (ADS)
Orji, Ndubuisi G.; Dixson, Ronald G.; Vladár, András E.; Ming, Bin; Postek, Michael T.
2012-03-01
The critical dimension atomic force microscope (CD-AFM), which is used as a reference instrument in lithography metrology, has been proposed as a complementary instrument for contour measurement and verification. Although data from CD-AFM is inherently three dimensional, the planar two-dimensional data required for contour metrology is not easily extracted from the top-down CD-AFM data. This is largely due to the limitations of the CD-AFM method for controlling the tip position and scanning. We describe scanning techniques and profile extraction methods to obtain contours from CD-AFM data. We also describe how we validated our technique, and explain some of its limitations. Potential sources of error for this approach are described, and a rigorous uncertainty model is presented. Our objective is to show which data acquisition and analysis methods could yield optimum contour information while preserving some of the strengths of CD-AFM metrology. We present comparison of contours extracted using our technique to those obtained from the scanning electron microscope (SEM), and the helium ion microscope (HIM).
Importance of education and competence maintenance in metrology field (measurement science)
NASA Astrophysics Data System (ADS)
Dobiliene, J.; Meskuotiene, A.
2015-02-01
For certain tasks in metrology field trained employers might be necessary to fulfill specific requirements. It is important to pay attention that metrologists are responsible for fluent work of devices that belong to huge variety of vide spectrum of measurements. People who perform measurements (that are related to our safety, security or everyday life) with reliable measuring instruments must be sure for trueness of their results or conclusions. So with the purpose to reach the harmony between the ordinary man and his used means it is very important to ensure competence of specialists that are responsible for mentioned harmony implementation. Usually these specialists have a university degree and perform highly specified tasks in science, industry or laboratories. Their task is quite narrow. For example, type approval of measuring instrument or calibration and verification. Due to the fact that the number of such employers and their tasks is relatively small in the field of legal metrology, this paper focuses on the significance of training and qualification of legal metrology officers.
DABAM: an open-source database of X-ray mirrors metrology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele
An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper,more » with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.« less
DABAM: An open-source database of X-ray mirrors metrology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele
An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper,more » with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. In conclusion, some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.« less
MetroFission: New high-temperature references and sensors for the nuclear industry
NASA Astrophysics Data System (ADS)
Sadli, M.; del Campo, D.; de Podesta, M.; Deuzé, T.; Failleau, G.; Elliott, C. J.; Fourrez, S.; García, C.; Pearce, J. V.
2013-09-01
The European metrology research programme (EMRP) allows funding for metrology-oriented projects in the frame of targeted calls aimed at improving metrology for important contemporary and future needs in different fields such as energy, environment and industry. A joint research project (JRP), called "MetroFission", was selected for funding in the "Energy" call of 2010. This JRP, led by NPL (UK), aims to anticipate and to start addressing the metrological needs of the next generation of nuclear power plants. The need for improving the accuracy and reliability of temperature measurements at temperatures higher than those currently measured in nuclear power plants is dealt with in the first workpackage of the project. This project started in September 2010 and will last for three years. This paper summarizes the activities of the first half of the project and the expected final achievements, which will be essentially oriented towards new temperature references and new devices, adapted to the high temperature range as well as the particularly harsh working conditions.
Optimal adaptive control for quantum metrology with time-dependent Hamiltonians
Pang, Shengshi; Jordan, Andrew N.
2017-01-01
Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case. PMID:28276428
NASA Technical Reports Server (NTRS)
Zhang, Liwei Dennis; Milman, Mark; Korechoff, Robert
2004-01-01
The current design of the Space Interferometry Mission (SIM) employs a 19 laser-metrology-beam system (also called L19 external metrology truss) to monitor changes of distances between the fiducials of the flight system's multiple baselines. The function of the external metrology truss is to aid in the determination of the time-variations of the interferometer baseline. The largest contributor to truss error occurs in SIM wide-angle observations when the articulation of the siderostat mirrors (in order to gather starlight from different sky coordinates) brings to light systematic errors due to offsets at levels of instrument components (which include comer cube retro-reflectors, etc.). This error is labeled external metrology wide-angle field-dependent error. Physics-based model of field-dependent error at single metrology gauge level is developed and linearly propagated to errors in interferometer delay. In this manner delay error sensitivity to various error parameters or their combination can be studied using eigenvalue/eigenvector analysis. Also validation of physics-based field-dependent model on SIM testbed lends support to the present approach. As a first example, dihedral error model is developed for the comer cubes (CC) attached to the siderostat mirrors. Then the delay errors due to this effect can be characterized using the eigenvectors of composite CC dihedral error. The essence of the linear error model is contained in an error-mapping matrix. A corresponding Zernike component matrix approach is developed in parallel, first for convenience of describing the RMS of errors across the field-of-regard (FOR), and second for convenience of combining with additional models. Average and worst case residual errors are computed when various orders of field-dependent terms are removed from the delay error. Results of the residual errors are important in arriving at external metrology system component requirements. Double CCs with ideally co-incident vertices reside with the siderostat. The non-common vertex error (NCVE) is treated as a second example. Finally combination of models, and various other errors are discussed.
Remote laboratories for optical metrology: from the lab to the cloud
NASA Astrophysics Data System (ADS)
Osten, W.; Wilke, M.; Pedrini, G.
2012-10-01
The idea of remote and virtual metrology has been reported already in 2000 with a conceptual illustration by use of comparative digital holography, aimed at the comparison of two nominally identical but physically different objects, e.g., master and sample, in industrial inspection processes. However, the concept of remote and virtual metrology can be extended far beyond this. For example, it does not only allow for the transmission of static holograms over the Internet, but also provides an opportunity to communicate with and eventually control the physical set-up of a remote metrology system. Furthermore, the metrology system can be modeled in the environment of a 3D virtual reality using CAD or similar technology, providing a more intuitive interface to the physical setup within the virtual world. An engineer or scientist who would like to access the remote real world system can log on to the virtual system, moving and manipulating the setup through an avatar and take the desired measurements. The real metrology system responds to the interaction between the avatar and the 3D virtual representation, providing a more intuitive interface to the physical setup within the virtual world. The measurement data are stored and interpreted automatically for appropriate display within the virtual world, providing the necessary feedback to the experimenter. Such a system opens up many novel opportunities in industrial inspection such as the remote master-sample-comparison and the virtual assembling of parts that are fabricated at different places. Moreover, a multitude of new techniques can be envisaged. To them belong modern ways for documenting, efficient methods for metadata storage, the possibility for remote reviewing of experimental results, the adding of real experiments to publications by providing remote access to the metadata and to the experimental setup via Internet, the presentation of complex experiments in classrooms and lecture halls, the sharing of expensive and complex infrastructure within international collaborations, the implementation of new ways for the remote test of new devices, for their maintenance and service, and many more. The paper describes the idea of remote laboratories and illustrates the potential of the approach on selected examples with special attention to optical metrology.
On the traceability of gaseous reference materials
NASA Astrophysics Data System (ADS)
Brown, Richard J. C.; Brewer, Paul J.; Harris, Peter M.; Davidson, Stuart; van der Veen, Adriaan M. H.; Ent, Hugo
2017-06-01
The complex and multi-parameter nature of chemical composition measurement means that establishing traceability is a challenging task. As a result incorrect interpretations about the origin of the metrological traceability of chemical measurement results can occur. This discussion paper examines why this is the case by scrutinising the peculiarities of the gas metrology area. It considers in particular: primary methods, dissemination of metrological traceability and the role of documentary standards and accreditation bodies in promulgating best practice. There is also a discussion of documentary standards relevant to the NMI and reference material producer community which need clarification, and the impact which key stakeholders in the quality infrastructure can bring to these issues.
NASA Astrophysics Data System (ADS)
Vanchikova, E. V.; Shamrikova, E. V.; Bespyatykh, N. V.; Kyz"yurova, E. V.; Kondratenok, B. M.
2015-02-01
Metrological characteristics—precision, trueness, and accuracy—of the results of measurements of the exchangeable acidity and its components by the potentiometric titration method were studied on the basis of multiple analyses of the soil samples with the examination of statistical data for the outliers and their correspondence to the normal distribution. Measurement errors were estimated. The applied method was certified by the Metrological Center of the Uralian Branch of the Russian Academy of Sciences (certificate no. 88-17641-094-2013) and included in the Federal Information Fund on Assurance of Measurements (FR 1.31.2013.16382).
Mycotoxin metrology: Gravimetric production of zearalenone calibration solution
NASA Astrophysics Data System (ADS)
Rego, E. C. P.; Simon, M. E.; Li, Xiuqin; Li, Xiaomin; Daireaux, A.; Choteau, T.; Westwood, S.; Josephs, R. D.; Wielgosz, R. I.; Cunha, V. S.
2018-03-01
Food safety is a major concern for countries developing metrology and quality assurance systems, including the contamination of food and feed by mycotoxins. To improve the mycotoxin analysis and ensure the metrological traceability, CRM of calibration solution should be used. The production of certified mycotoxin solutions is a major challenge due to the limited amount of standard for conducting a proper purity study and due to the cost of standards. The CBKT project was started at BIPM and Inmetro produced gravimetrically one batch of zearelenone in acetronitrile (14.708 ± 0.016 μg/g, k=2) and conducted homogeneity, stability and value assignment studies.
Axial-Stereo 3-D Optical Metrology for Inner Profile of Pipes Using a Scanning Laser Endoscope
NASA Astrophysics Data System (ADS)
Gong, Yuanzheng; Johnston, Richard S.; Melville, C. David; Seibel, Eric J.
2015-07-01
As the rapid progress in the development of optoelectronic components and computational power, 3-D optical metrology becomes more and more popular in manufacturing and quality control due to its flexibility and high speed. However, most of the optical metrology methods are limited to external surfaces. This article proposed a new approach to measure tiny internal 3-D surfaces with a scanning fiber endoscope and axial-stereo vision algorithm. A dense, accurate point cloud of internally machined threads was generated to compare with its corresponding X-ray 3-D data as ground truth, and the quantification was analyzed by Iterative Closest Points algorithm.
Nano-metrology and terrain modelling - convergent practice in surface characterisation
Pike, R.J.
2000-01-01
The quantification of magnetic-tape and disk topography has a macro-scale counterpart in the Earth sciences - terrain modelling, the numerical representation of relief and pattern of the ground surface. The two practices arose independently and continue to function separately. This methodological paper introduces terrain modelling, discusses its similarities to and differences from industrial surface metrology, and raises the possibility of a unified discipline of quantitative surface characterisation. A brief discussion of an Earth-science problem, subdividing a heterogeneous terrain surface from a set of sample measurements, exemplifies a multivariate statistical procedure that may transfer to tribological applications of 3-D metrological height data.
NASA Technical Reports Server (NTRS)
Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal
2016-01-01
The JWST primary mirror consists of 18 1.5 m hexagonal segments, each with 6-DoF and RoC adjustment. The telescope will be tested at its cryogenic operating temperature at Johnson Space Center. The testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The performance of these metrology systems, including hardware, software, procedures, was assessed during two cryogenic tests at JSC, using the JWST Pathfinder telescope. This paper describes the test setup, the testing performed, and the resulting metrology system performance.
Sub-microradian Surface Slope Metrology with the ALS Developmental Long Trace Profiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, Valeriy V; Barber, Samuel; Domning, Edward E.
2009-09-11
A new low budget slope measuring instrument, the Developmental Long Trace Profiler (DLTP), was recently brought to operation at the ALS Optical Metrology Laboratory. The design, instrumental control and data acquisition system, initial alignment and calibration procedures, as well as the developed experimental precautions and procedures are described in detail. The capability of the DLTP to achieve sub-microradian surface slope metrology is verified via cross-comparison measurements with other high performance slope measuring instruments when measuring the same high quality test optics. The directions of future work to develop a surface slope measuring profiler with nano-radian performance are also discussed.
Single-Grating Talbot Imaging for Wavefront Sensing and X-Ray Metrology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grizolli, Walan; Shi, Xianbo; Kolodziej, Tomasz
2017-01-01
Single-grating Talbot imaging relies on high-spatial-resolution detectors to perform accurate measurements of X-ray beam wavefronts. The wavefront can be retrieved with a single image, and a typical measurement and data analysis can be performed in few seconds. These qualities make it an ideal tool for synchrotron beamline diagnostics and in-situ metrology. The wavefront measurement can be used both to obtain a phase contrast image of an object and to characterize an X-ray beam. In this work, we explore the concept in two cases: at-wavelength metrology of 2D parabolic beryllium lenses and a wavefront sensor using a diamond crystal beam splitter.
Self-Mixing Thin-Slice Solid-State Laser Metrology
Otsuka, Kenju
2011-01-01
This paper reviews the dynamic effect of thin-slice solid-state lasers subjected to frequency-shifted optical feedback, which led to the discovery of the self-mixing modulation effect, and its applications to quantum-noise-limited versatile laser metrology systems with extreme optical sensitivity. PMID:22319406
Metrological traceability of holmium oxide solution
NASA Astrophysics Data System (ADS)
Gonçalves, D. E. F.; Gomes, J. F. S.; Alvarenga, A. P. D.; Borges, P. P.; Araujo, T. O.
2018-03-01
Holmium oxide solution was prepared as a candidate of certified reference material for spectrophotometer wavelength scale calibration. Here is presented the necessary steps for evaluation of the uncertainty and the establishment of metrological traceability for the production of this material. Preliminary results from the first produced batch are shown.
Kite: status of the external metrology testbed for SIM
NASA Astrophysics Data System (ADS)
Dekens, Frank G.; Alvarez-Salazar, Oscar S.; Azizi, Alireza; Moser, Steven J.; Nemati, Bijan; Negron, John; Neville, Timothy; Ryan, Daniel
2004-10-01
Kite is a system level testbed for the External Metrology System of the Space Interferometry Mission (SIM). The External Metrology System is used to track the fiducials that are located at the centers of the interferometer's siderostats. The relative changes in their positions needs to be tracked to an accuracy of tens of picometers in order to correct for thermal deformations and attitude changes of the spacecraft. Because of the need for such high precision measurements, the Kite testbed was build to test both the metrology gauges and our ability to optically model the system at these levels. The Kite testbed is a redundant metrology truss, in which 6 lengths are measured, but only 5 are needed to define the system. The RMS error between the redundant measurements needs to be less than 140pm for the SIM Wide-Angle observing scenario and less than 8 pm for the Narrow-Angle observing scenario. With our current testbed layout, we have achieved an RMS of 85 pm in the Wide-Angle case, meeting the goal. For the Narrow-Angle case, we have reached 5.8 pm, but only for on-axis observations. We describe the testbed improvements that have been made since our initial results, and outline the future Kite changes that will add further effects that SIM faces in order to make the testbed more representative of SIM.
Coherence enhanced quantum metrology in a nonequilibrium optical molecule
NASA Astrophysics Data System (ADS)
Wang, Zhihai; Wu, Wei; Cui, Guodong; Wang, Jin
2018-03-01
We explore the quantum metrology in an optical molecular system coupled to two environments with different temperatures, using a quantum master equation beyond secular approximation. We discover that the steady-state coherence originating from and sustained by the nonequilibrium condition can enhance quantum metrology. We also study the quantitative measures of the nonequilibrium condition in terms of the curl flux, heat current and entropy production at the steady state. They are found to grow with temperature difference. However, an apparent paradox arises considering the contrary behaviors of the steady-state coherence and the nonequilibrium measures in relation to the inter-cavity coupling strength. This paradox is resolved by decomposing the heat current into a population part and a coherence part. Only the latter, the coherence part of the heat current, is tightly connected to the steady-state coherence and behaves similarly with respect to the inter-cavity coupling strength. Interestingly, the coherence part of the heat current flows from the low-temperature reservoir to the high-temperature reservoir, opposite to the direction of the population heat current. Our work offers a viable way to enhance quantum metrology for open quantum systems through steady-state coherence sustained by the nonequilibrium condition, which can be controlled and manipulated to maximize its utility. The potential applications go beyond quantum metrology and extend to areas such as device designing, quantum computation and quantum technology in general.
NASA Astrophysics Data System (ADS)
Acero, R.; Santolaria, J.; Pueo, M.; Aguilar, J. J.; Brau, A.
2015-11-01
High-range measuring equipment like laser trackers need large dimension calibrated reference artifacts in their calibration and verification procedures. In this paper, a new verification procedure for portable coordinate measuring instruments based on the generation and evaluation of virtual distances with an indexed metrology platform is developed. This methodology enables the definition of an unlimited number of reference distances without materializing them in a physical gauge to be used as a reference. The generation of the virtual points and reference lengths derived is linked to the concept of the indexed metrology platform and the knowledge of the relative position and orientation of its upper and lower platforms with high accuracy. It is the measuring instrument together with the indexed metrology platform one that remains still, rotating the virtual mesh around them. As a first step, the virtual distances technique is applied to a laser tracker in this work. The experimental verification procedure of the laser tracker with virtual distances is simulated and further compared with the conventional verification procedure of the laser tracker with the indexed metrology platform. The results obtained in terms of volumetric performance of the laser tracker proved the suitability of the virtual distances methodology in calibration and verification procedures for portable coordinate measuring instruments, broadening and expanding the possibilities for the definition of reference distances in these procedures.
Photogrammetric Metrology for the James Webb Space Telescope Integrated Science Instrument Module
NASA Technical Reports Server (NTRS)
Nowak, Maria; Crane, Allen; Davila, Pam; Eichhorn, William; Gill, James; Herrera, Acey; Hill, Michael; Hylan, Jason; Jetten, Mark; Marsh, James;
2007-01-01
The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approximately 40K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The ISM optical metering structure is a roughly 2.2x1.7x2.2m, asymmetric frame that is composed of carbon fiber and resin tubes bonded to invar end fittings and composite gussets and clips. The structure supports the SIs, isolates the SIs from the OTE, and supports thermal and electrical subsystems. The structure is attached to the OTE structure via strut-like kinematic mounts. The ISIM structure must meet its requirements at the approximately 40K cryogenic operating temperature. The SIs are aligned to the structure's coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The ISIM structure is thermally cycled for stress relief and in order to measure temperature-induced mechanical, structural changes. These ambient-to-cryogenic changes in the alignment of SI and OTE-related interfaces are an important component in the JWST Observatory alignment plan and must be verified. We report on the planning for and preliminary testing of a cryogenic metrology system for ISIM based on photogrammetry. Photogrammetry is the measurement of the location of custom targets via triangulation using images obtained at a suite of digital camera locations and orientations. We describe metrology system requirements, plans, and ambient photogrammetric measurements of a mock-up of the ISIM structure to design targeting and obtain resolution estimates. We compare these measurements with those taken from a well known ambient metrology system, namely, the Leica laser tracker system. We also describe the data reduction algorithm planned to interpret cryogenic data from the Flight structure. Photogrammetry was selected from an informal trade study of cryogenic metrology systems because its resolution meets sub-allocations to ISIM alignment requirements and it is a non-contact method that can in principle measure six degrees of freedom changes in target location. In addition, photogrammetry targets can be readily related to targets used for ambient surveys of the structure. By thermally isolating the photogrammetry camera during testing, metrology can be performed in situ during thermal cycling. Photogrammetry also has a small but significant cryogenic heritage in astronomical instrumentation metrology. It was used to validate the displacement/deformation predictions of the reflectors and the feed horns during thermal/vacuum testing (90K) for the Microwave Anisotropy Probe (MAP). It also was used during thermal vacuum testing (100K) to verify shape and component alignment at operational temperature of the High Gain Antenna for New Horizons. With tighter alignment requirements and lower operating temperatures than the aforementioned observatories, ISIM presents new challenges in the development of this metrology system.
1999-12-01
POSSIBLE VALIDATION OF GENERAL RELATIVITY Andrei A. Grishaev Institute of Metrology for Time and Space (IMVP), GP VNIIFTRI 141570 Mendeleevo...Metrology for Time and Space (IMVP),GP VNIIFTRI ,141570 Mendeleevo, Russia, 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY
Reference Materials for Food and Nutrition Metrology: Past, Present and Future
USDA-ARS?s Scientific Manuscript database
Establishment of a metrology-based measurement system requires the solid foundation of traceability of measurements to available, appropriate certified reference materials (CRM). In the early 1970’s the first “biological” RM of Bowens Kale, as well as Orchard Leaves and Bovine Liver SRMs, from the ...
NASA Metrology and Calibration, 1980
NASA Technical Reports Server (NTRS)
1981-01-01
The proceedings of the fourth annual NASA Metrology and Calibration Workshop are presented. This workshop covered (1) review and assessment of NASA metrology and calibration activities by NASA Headquarters, (2) results of audits by the Office of Inspector General, (3) review of a proposed NASA Equipment Management System, (4) current and planned field center activities, (5) National Bureau of Standards (NBS) calibration services for NASA, (6) review of NBS's Precision Measurement and Test Equipment Project activities, (7) NASA instrument loan pool operations at two centers, (8) mobile cart calibration systems at two centers, (9) calibration intervals and decals, (10) NASA Calibration Capabilities Catalog, and (11) development of plans and objectives for FY 1981. Several papers in this proceedings are slide presentations only.
Structural considerations for fabrication and mounting of the AXAF HRMA optics
NASA Technical Reports Server (NTRS)
Cohen, Lester M.; Cernoch, Larry; Mathews, Gary; Stallcup, Michael
1990-01-01
A methodology is described which minimizes optics distortion in the fabrication, metrology, and launch configuration phases. The significance of finite element modeling and breadboard testing is described with respect to performance analyses of support structures and material effects in NASA's AXAF X-ray optics. The paper outlines the requirements for AXAF performance, optical fabrication, metrology, and glass support fixtures, as well as the specifications for mirror sensitivity and the high-resolution mirror assembly. Analytical modeling of the tools is shown to coincide with grinding and polishing experiments, and is useful for designing large-area polishing and grinding tools. Metrological subcomponents that have undergone initial testing show evidence of meeting force requirements.
A new way of measuring wiggling pattern in SADP for 3D NAND technology
NASA Astrophysics Data System (ADS)
Mi, Jian; Chen, Ziqi; Tu, Li Ming; Mao, Xiaoming; Liu, Gong Cai; Kawada, Hiroki
2018-03-01
A new metrology method of quantitatively measuring wiggling patterns in a Self-Aligned Double Patterning (SADP) process for 2D NAND technology has been developed with a CD-SEM metrology program on images from a Review-SEM system. The metrology program provided accurate modeling of various wiggling patterns. The Review-SEM system provided a-few-micrometer-wide Field of View (FOV), which exceeds precision-guaranteed FOV of a conventional CD-SEM. The result has been effectively verified by visual inspection on vertically compressed images compared with Wiggling Index from this new method. A best-known method (BKM) system has been developed with connected HW and SW to automatically measure wiggling patterns.
Laser and Optical Fiber Metrology in Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sporea, Dan; Sporea, Adelina
2008-04-15
The Romanian government established in the last five years a National Program for the improvement of country's infrastructure of metrology. The set goal was to develop and accredit testing and calibration laboratories, as well as certification bodies, according to the ISO 17025:2005 norm. Our Institute benefited from this policy, and developed a laboratory for laser and optical fibers metrology in order to provide testing and calibration services for the certification of laser-based industrial, medical and communication products. The paper will present the laboratory accredited facilities and some of the results obtained in the evaluation of irradiation effects of optical andmore » optoelectronic parts, tests run under the EU's Fusion Program.« less
Freeform metrology using subaperture stitching interferometry
NASA Astrophysics Data System (ADS)
Supranowitz, Chris; Lormeau, Jean-Pierre; Maloney, Chris; Murphy, Paul; Dumas, Paul
2016-11-01
As applications for freeform optics continue to grow, the need for high-precision metrology is becoming more of a necessity. Currently, coordinate measuring machines (CMM) that implement touch probes or optical probes can measure the widest ranges of shapes of freeform optics, but these measurement solutions often lack sufficient lateral resolution and accuracy. Subaperture stitching interferometry (SSI™) extends traditional Fizeau interferometry to provide accurate, high-resolution measurements of flats, spheres, and aspheres, and development is currently on-going to enable measurements of freeform surfaces. We will present recent freeform metrology results, including repeatability and cross-test data. We will also present MRF® polishing results where the stitched data was used as the input "hitmap" to the deterministic polishing process.
Evaluating diffraction based overlay metrology for double patterning technologies
NASA Astrophysics Data System (ADS)
Saravanan, Chandra Saru; Liu, Yongdong; Dasari, Prasad; Kritsun, Oleg; Volkman, Catherine; Acheta, Alden; La Fontaine, Bruno
2008-03-01
Demanding sub-45 nm node lithographic methodologies such as double patterning (DPT) pose significant challenges for overlay metrology. In this paper, we investigate scatterometry methods as an alternative approach to meet these stringent new metrology requirements. We used a spectroscopic diffraction-based overlay (DBO) measurement technique in which registration errors are extracted from specially designed diffraction targets for double patterning. The results of overlay measurements are compared to traditional bar-in-bar targets. A comparison between DBO measurements and CD-SEM measurements is done to show the correlation between the two approaches. We discuss the total measurement uncertainty (TMU) requirements for sub-45 nm nodes and compare TMU from the different overlay approaches.
USDA-ARS?s Scientific Manuscript database
Establishment of a metrology-based measurement system requires the solid foundation of traceability of measurements to available, appropriate certified reference materials (CRM). In the early 1970s the first “biological” Reference Material (RM) of Bowens Kale, Orchard Leaves, and Bovine Liver from ...
Nuclear Technology. Course 27: Metrology. Module 27-5, Tolerancing.
ERIC Educational Resources Information Center
Selleck, Ben; Espy, John
This fifth in a series of eight modules for a course titled Metrology describes the application of the American National Standard (ANSI Y14.5-1973) for dimensioning and tolerancing and gives guidance on interpreting form and location controls consistent with the national standard. The module follows a typical format that includes the following…
Cultural capital as a measurand
NASA Astrophysics Data System (ADS)
Taymanov, R.; Sapozhnikova, K.
2016-11-01
The necessity for developing metrology due to extension of its application sphere is noted. The efficiency of the metrological approach to measurement of multidimensional quantities in the field of humanities is shown using the development of cultural capital interpreted by L. Harrison. The cultural capital is defined as a measure of the society structure complexity and adaptive capacity.
Development of the metrology and imaging of cellulose nanocrystals
Michael T. Postek; Andras Vladar; John Dagata; Natalia Farkas; Bin Ming; Ryan Wagner; Arvind Raman; Robert J. Moon; Ronald Sabo; Theodore H. Wegner; James Beecher
2011-01-01
The development of metrology for nanoparticles is a significant challenge. Cellulose nanocrystals (CNCs) are one group of nanoparticles that have high potential economic value but present substantial challenges to the development of the measurement science. Even the largest trees owe their strength to this newly appreciated class of nanomaterials. Cellulose is the...
The Remarkable Metrological History of Radiocarbon Dating [II].
Currie, Lloyd A
2004-01-01
This article traces the metrological history of radiocarbon, from the initial breakthrough devised by Libby, to minor (evolutionary) and major (revolutionary) advances that have brought (14)C measurement from a crude, bulk [8 g carbon] dating tool, to a refined probe for dating tiny amounts of precious artifacts, and for "molecular dating" at the 10 µg to 100 µg level. The metrological advances led to opportunities and surprises, such as the non-monotonic dendrochronological calibration curve and the "bomb effect," that gave rise to new multidisciplinary areas of application, ranging from archaeology and anthropology to cosmic ray physics to oceanography to apportionment of anthropogenic pollutants to the reconstruction of environmental history. Beyond the specific topic of natural (14)C, it is hoped that this account may serve as a metaphor for young scientists, illustrating that just when a scientific discipline may appear to be approaching maturity, unanticipated metrological advances in their own chosen fields, and unanticipated anthropogenic or natural chemical events in the environment, can spawn new areas of research having exciting theoretical and practical implications.
A laser scanning system for metrology and viewing in ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spampinato, P.T.; Barry, R.E.; Menon, M.M.
1996-05-01
The construction and operation of a next-generation fusion reactor will require metrology to achieve and verify precise alignment of plasma-facing components and inspection in the reactor vessel. The system must be compatible with the vessel environment of high gamma radiation (10{sup 4} Gy/h), ultra-high-vacuum (10{sup {minus}8} torr), and elevated temperature (200 C). The high radiation requires that the system be remotely deployed. A coherent frequency modulated laser radar-based system will be integrated with a remotely operated deployment mechanism to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics tomore » the laser source and imaging units that are located outside of a biological shield. The deployment mechanism will be a mast-like positioning system. Radiation-damage tests will be conducted on critical sensor components at Oak Ridge National Laboratory to determine threshold damage levels and effects on data transmission. This paper identifies the requirements for International Thermonuclear Experimental Reactor metrology and viewing and describes a remotely operated precision ranging and surface mapping system.« less
Acero, Raquel; Santolaria, Jorge; Brau, Agustin; Pueo, Marcos
2016-01-01
This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform’s mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument’s working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform. PMID:27869722
The future of 2D metrology for display manufacturing
NASA Astrophysics Data System (ADS)
Sandstrom, Tor; Wahlsten, Mikael; Park, Youngjin
2016-10-01
The race to 800 PPI and higher in mobile devices and the transition to OLED displays are driving a dramatic development of mask quality: resolution, CDU, registration, and complexity. 2D metrology for large area masks is necessary and must follow the roadmap. Driving forces in the market place point to continued development of even more dense displays. State-of-the-art metrology has proven itself capable of overlay below 40 nm and registration below 65 nm for G6 masks. Future developments include incoming and recurrent measurements of pellicalized masks at the panel maker's factory site. Standardization of coordinate systems across supplier networks is feasible. This will enable better yield and production economy for both mask and panel maker. Better distortion correction methods will give better registration on the panels and relax the flatness requirements of the mask blanks. If panels are measured together with masks and the results are used to characterize the aligners, further quality and yield improvements are possible. Possible future developments include in-cell metrology and integration with other instruments in the same platform.
The Remarkable Metrological History of Radiocarbon Dating [II
Currie, Lloyd A.
2004-01-01
This article traces the metrological history of radiocarbon, from the initial breakthrough devised by Libby, to minor (evolutionary) and major (revolutionary) advances that have brought 14C measurement from a crude, bulk [8 g carbon] dating tool, to a refined probe for dating tiny amounts of precious artifacts, and for “molecular dating” at the 10 µg to 100 µg level. The metrological advances led to opportunities and surprises, such as the non-monotonic dendrochronological calibration curve and the “bomb effect,” that gave rise to new multidisciplinary areas of application, ranging from archaeology and anthropology to cosmic ray physics to oceanography to apportionment of anthropogenic pollutants to the reconstruction of environmental history. Beyond the specific topic of natural 14C, it is hoped that this account may serve as a metaphor for young scientists, illustrating that just when a scientific discipline may appear to be approaching maturity, unanticipated metrological advances in their own chosen fields, and unanticipated anthropogenic or natural chemical events in the environment, can spawn new areas of research having exciting theoretical and practical implications. PMID:27366605
Understanding Imaging and Metrology with the Helium Ion Microscope
NASA Astrophysics Data System (ADS)
Postek, Michael T.; Vladár, András E.; Ming, Bin
2009-09-01
One barrier to innovation confronting all phases of nanotechnology is the lack of accurate metrology for the characterization of nanomaterials. Ultra-high resolution microscopy is a key technology needed to achieve this goal. But, current microscope technology is being pushed to its limits. The scanning and transmission electron microscopes have incrementally improved in performance and other scanned probe technologies such as atomic force microscopy, scanning tunneling microscopy and focused ion beam microscopes have all been applied to nanotechnology with various levels of success. A relatively new tool for nanotechnology is the scanning helium ion microscope (HIM). The HIM is a new complementary imaging and metrology technology for nanotechnology which may be able to push the current resolution barrier lower. But, successful imaging and metrology with this instrument entails new ion beam/specimen interaction physics which must be fully understood. As a new methodology, HIM is beginning to show promise and the abundance of potentially advantageous applications for nanotechnology have yet to be fully exploited. This presentation will discuss some of the progress made at NIST in understanding the science behind this new technique.
Quantitative optical metrology with CMOS cameras
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Kolenovic, Ervin; Ferguson, Curtis F.
2004-08-01
Recent advances in laser technology, optical sensing, and computer processing of data, have lead to the development of advanced quantitative optical metrology techniques for high accuracy measurements of absolute shapes and deformations of objects. These techniques provide noninvasive, remote, and full field of view information about the objects of interest. The information obtained relates to changes in shape and/or size of the objects, characterizes anomalies, and provides tools to enhance fabrication processes. Factors that influence selection and applicability of an optical technique include the required sensitivity, accuracy, and precision that are necessary for a particular application. In this paper, sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography (OEH) based on CMOS cameras, are discussed. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gauges, demonstrating the applicability of CMOS cameras in quantitative optical metrology techniques. It is shown that the advanced nature of CMOS technology can be applied to challenging engineering applications, including the study of rapidly evolving phenomena occurring in MEMS and micromechatronics.
NASA Astrophysics Data System (ADS)
Motes, Keith R.; Olson, Jonathan P.; Rabeaux, Evan J.; Dowling, Jonathan P.; Olson, S. Jay; Rohde, Peter P.
2015-05-01
Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place—typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer—fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection—is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.
In-line height profiling metrology sensor for zero defect production control
NASA Astrophysics Data System (ADS)
Snel, Rob; Winters, Jasper; Liebig, Thomas; Jonker, Wouter
2017-06-01
Contemporary production systems of mechanical precision parts show challenges as increased complexity, tolerances shrinking to sub-microns and yield losses that must be mastered to the extreme. More advanced automation and process control is required to accomplish this task. Often a solution based on feedforward/feedback control is chosen requiring innovative and more advanced in line metrology. This article concentrates first on the context of in line metrology for process control and then on the development of a specific in line height profiling sensor. The novel sensor technology is based on full field time domain white light interferometry which is well know from the quality lab. The novel metrology system is to be mounted close to the production equipment, as required to minimize time delay in the control loop, and is thereby fully exposed to vibrations. This sensor is innovated to perform in line with an orders of magnitude faster throughput than laboratory instruments; it's robust to withstand the rigors of workshops and has a height resolution that is in the nanometer range.
Acero, Raquel; Santolaria, Jorge; Brau, Agustin; Pueo, Marcos
2016-11-18
This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform's mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument's working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform.
NASA Astrophysics Data System (ADS)
Chen, Kai-Hsiung; Huang, Guo-Tsai; Hsieh, Hung-Chih; Ni, Wei-Feng; Chuang, S. M.; Chuang, T. K.; Ke, Chih-Ming; Huang, Jacky; Rao, Shiuan-An; Cumurcu Gysen, Aysegul; d'Alfonso, Maxime; Yueh, Jenny; Izikson, Pavel; Soco, Aileen; Wu, Jon; Nooitgedagt, Tjitte; Ottens, Jeroen; Kim, Yong Ho; Ebert, Martin
2017-03-01
On-product overlay requirements are becoming more challenging with every next technology node due to the continued decrease of the device dimensions and process tolerances. Therefore, current and future technology nodes require demanding metrology capabilities such as target designs that are robust towards process variations and high overlay measurement density (e.g. for higher order process corrections) to enable advanced process control solutions. The impact of advanced control solutions based on YieldStar overlay data is being presented in this paper. Multi patterning techniques are applied for critical layers and leading to additional overlay measurement demands. The use of 1D process steps results in the need of overlay measurements relative to more than one layer. Dealing with the increased number of overlay measurements while keeping the high measurement density and metrology accuracy at the same time presents a challenge for high volume manufacturing (HVM). These challenges are addressed by the capability to measure multi-layer targets with the recently introduced YieldStar metrology tool, YS350. On-product overlay results of such multi-layers and standard targets are presented including measurement stability performance.
Flexible resources for quantum metrology
NASA Astrophysics Data System (ADS)
Friis, Nicolai; Orsucci, Davide; Skotiniotis, Michalis; Sekatski, Pavel; Dunjko, Vedran; Briegel, Hans J.; Dür, Wolfgang
2017-06-01
Quantum metrology offers a quadratic advantage over classical approaches to parameter estimation problems by utilising entanglement and nonclassicality. However, the hurdle of actually implementing the necessary quantum probe states and measurements, which vary drastically for different metrological scenarios, is usually not taken into account. We show that for a wide range of tasks in metrology, 2D cluster states (a particular family of states useful for measurement-based quantum computation) can serve as flexible resources that allow one to efficiently prepare any required state for sensing, and perform appropriate (entangled) measurements using only single qubit operations. Crucially, the overhead in the number of qubits is less than quadratic, thus preserving the quantum scaling advantage. This is ensured by using a compression to a logarithmically sized space that contains all relevant information for sensing. We specifically demonstrate how our method can be used to obtain optimal scaling for phase and frequency estimation in local estimation problems, as well as for the Bayesian equivalents with Gaussian priors of varying widths. Furthermore, we show that in the paradigmatic case of local phase estimation 1D cluster states are sufficient for optimal state preparation and measurement.
NASA Astrophysics Data System (ADS)
1993-01-01
This meeting, organized by the Paul Scherrer Institute's Department of Applied Solid State Physics, will be held from 27 30 March 1994 at the Hotel Regina-Titlis, Engelberg, Switzerland. The aim is to bring together scientists from two important fields of current research and increasing industrial relevance. Optical metrology is a traditional discipline of applied optics which reached the nanometre scale a long time ago. Nanotechnology is setting new limits and represents a major challenge to metrology, as well as offering new opportunities to optics. The meeting is intended to help define a common future for optical metrology and nanotechnology. Topics to be covered include: nanometre position control and measuring techniques ultrahigh precision interferometry scanning probe microscopy (AFM, SNOM, etc.) surface modification by scanning probe methods precision surface fabrication and characterization nanolithography micro-optics, diffractive optics components, including systems and applications subwavelength optical structures synthetic optical materials structures and technologies for X-ray optics. For further information please contact: Jens Gobrecht (Secretary), Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland.Tel. (41)56992529; Fax (41) 5698 2635.
Motes, Keith R; Olson, Jonathan P; Rabeaux, Evan J; Dowling, Jonathan P; Olson, S Jay; Rohde, Peter P
2015-05-01
Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place--typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer--fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection--is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assoufid, L.; Rommeveaux, A.; Ohashi, H.
2005-01-01
This paper presents the first series of round-robin metrology measurements of x-ray mirrors organized at the Advanced Photon Source (APS) in the USA, the European Synchrotron Radiation Facility in France, and the Super Photon Ring (SPring-8) (in a collaboration with Osaka University, ) in Japan. This work is part of the three institutions' three-way agreement to promote a direct exchange of research information and experience amongst their specialists. The purpose of the metrology round robin is to compare the performance and limitations of the instrumentation used at the optical metrology laboratories of these facilities and to set the basis formore » establishing guidelines and procedures to accurately perform the measurements. The optics used in the measurements were selected to reflect typical, as well as state of the art, in mirror fabrication. The first series of the round robin measurements focuses on flat and cylindrical mirrors with varying sizes and quality. Three mirrors (two flats and one cylinder) were successively measured using long trace profilers. Although the three facilities' LTPs are of different design, the measurements were found to be in excellent agreement. The maximum discrepancy of the rms slope error values is 0.1 {micro}rad, that of the rms shape error was 3 nm, and they all relate to the measurement of the cylindrical mirror. The next round-robin measurements will deal with elliptical and spherical optics.« less
Subaperture metrology technologies extend capabilities in optics manufacturing
NASA Astrophysics Data System (ADS)
Tricard, Marc; Forbes, Greg; Murphy, Paul
2005-10-01
Subaperture polishing technologies have radically changed the landscape of precision optics manufacturing and enabled the production of higher precision optics with increasingly difficult figure requirements. However, metrology is a critical piece of the optics fabrication process, and the dependence on interferometry is especially acute for computer-controlled, deterministic finishing. Without accurate full-aperture metrology, figure correction using subaperture polishing technologies would not be possible. QED Technologies has developed the Subaperture Stitching Interferometer (SSI) that extends the effective aperture and dynamic range of a phase measuring interferometer. The SSI's novel developments in software and hardware improve the capacity and accuracy of traditional interferometers, overcoming many of the limitations previously faced. The SSI performs high-accuracy automated measurements of spheres, flats, and mild aspheres up to 200 mm in diameter by stitching subaperture data. The system combines a six-axis precision workstation, a commercial Fizeau interferometer of 4" or 6" aperture, and dedicated software. QED's software automates the measurement design, data acquisition, and mathematical reconstruction of the full-aperture phase map. The stitching algorithm incorporates a general framework for compensating several types of errors introduced by the interferometer and stage mechanics. These include positioning errors, viewing system distortion, the system reference wave error, etc. The SSI has been proven to deliver the accurate and flexible metrology that is vital to precision optics fabrication. This paper will briefly review the capabilities of the SSI as a production-ready, metrology system that enables costeffective manufacturing of precision optical surfaces.
The MeteoMet2 project—highlights and results
NASA Astrophysics Data System (ADS)
Merlone, A.; Sanna, F.; Beges, G.; Bell, S.; Beltramino, G.; Bojkovski, J.; Brunet, M.; del Campo, D.; Castrillo, A.; Chiodo, N.; Colli, M.; Coppa, G.; Cuccaro, R.; Dobre, M.; Drnovsek, J.; Ebert, V.; Fernicola, V.; Garcia-Benadí, A.; Garcia-Izquierdo, C.; Gardiner, T.; Georgin, E.; Gonzalez, A.; Groselj, D.; Heinonen, M.; Hernandez, S.; Högström, R.; Hudoklin, D.; Kalemci, M.; Kowal, A.; Lanza, L.; Miao, P.; Musacchio, C.; Nielsen, J.; Nogueras-Cervera, M.; Oguz Aytekin, S.; Pavlasek, P.; de Podesta, M.; Rasmussen, M. K.; del-Río-Fernández, J.; Rosso, L.; Sairanen, H.; Salminen, J.; Sestan, D.; Šindelářová, L.; Smorgon, D.; Sparasci, F.; Strnad, R.; Underwood, R.; Uytun, A.; Voldan, M.
2018-02-01
Launched in 2011 within the European Metrology Research Programme (EMRP) of EURAMET, the joint research project ‘MeteoMet’—Metrology for Meteorology—is the largest EMRP consortium; national metrology institutes, universities, meteorological and climate agencies, research institutes, collaborators and manufacturers are working together, developing new metrological techniques, as well as improving existing ones, for use in meteorological observations and climate records. The project focuses on humidity in the upper and surface atmosphere, air temperature, surface and deep-sea temperatures, soil moisture, salinity, permafrost temperature, precipitation, and the snow albedo effect on air temperature. All tasks are performed using a rigorous metrological approach and include the design and study of new sensors, new calibration facilities, the investigation of sensor characteristics, improved techniques for measurements of essential climate variables with uncertainty evaluation, traceability, laboratory proficiency and the inclusion of field influencing parameters, long-lasting measurements, and campaigns in remote and extreme areas. The vision for MeteoMet is to take a step further towards establishing full data comparability, coherency, consistency, and long-term continuity, through a comprehensive evaluation of the measurement uncertainties for the quantities involved in the global climate observing systems and the derived observations. The improvement in quality of essential climate variables records, through the inclusion of measurement uncertainty budgets, will also highlight possible strategies for the reduction of the uncertainty. This contribution presents selected highlights of the MeteoMet project and reviews the main ongoing activities, tasks and deliverables, with a view to its possible future evolution and extended impact.
Reference metrology in a research fab: the NIST clean calibrations thrust
NASA Astrophysics Data System (ADS)
Dixson, Ronald; Fu, Joe; Orji, Ndubuisi; Renegar, Thomas; Zheng, Alan; Vorburger, Theodore; Hilton, Al; Cangemi, Marc; Chen, Lei; Hernandez, Mike; Hajdaj, Russell; Bishop, Michael; Cordes, Aaron
2009-03-01
In 2004, the National Institute of Standards and Technology (NIST) commissioned the Advanced Measurement Laboratory (AML) - a state-of-the-art, five-wing laboratory complex for leading edge NIST research. The NIST NanoFab - a 1765 m2 (19,000 ft2) clean room with 743 m2 (8000 ft2) of class 100 space - is the anchor of this facility and an integral component of the new Center for Nanoscale Science and Technology (CNST) at NIST. Although the CNST/NanoFab is a nanotechnology research facility with a different strategic focus than a current high volume semiconductor fab, metrology tools still play an important role in the nanofabrication research conducted here. Some of the metrology tools available to users of the NanoFab include stylus profiling, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Since 2001, NIST has collaborated with SEMATECH to implement a reference measurement system (RMS) using critical dimension atomic force microscopy (CD-AFM). NIST brought metrology expertise to the table and SEMATECH provided access to leading edge metrology tools in their clean room facility in Austin. Now, in the newly launched "clean calibrations" thrust at NIST, we are implementing the reference metrology paradigm on several tools in the CNST/NanoFab. Initially, we have focused on calibration, monitoring, and uncertainty analysis for a three-tool set consisting of a stylus profiler, an SEM, and an AFM. Our larger goal is the development of new and supplemental calibrations and standards that will benefit from the Class 100 environment available in the NanoFab and offering our customers calibration options that do not require exposing their samples to less clean environments. Toward this end, we have completed a preliminary evaluation of the performance of these instruments. The results of these evaluations suggest that the achievable uncertainties are generally consistent with our measurement goals.
Correlation methods in optical metrology with state-of-the-art x-ray mirrors
NASA Astrophysics Data System (ADS)
Yashchuk, Valeriy V.; Centers, Gary; Gevorkyan, Gevork S.; Lacey, Ian; Smith, Brian V.
2018-01-01
The development of fully coherent free electron lasers and diffraction limited storage ring x-ray sources has brought to focus the need for higher performing x-ray optics with unprecedented tolerances for surface slope and height errors and roughness. For example, the proposed beamlines for the future upgraded Advance Light Source, ALS-U, require optical elements characterized by a residual slope error of <100 nrad (root-mean-square) and height error of <1-2 nm (peak-tovalley). These are for optics with a length of up to one meter. However, the current performance of x-ray optical fabrication and metrology generally falls short of these requirements. The major limitation comes from the lack of reliable and efficient surface metrology with required accuracy and with reasonably high measurement rate, suitable for integration into the modern deterministic surface figuring processes. The major problems of current surface metrology relate to the inherent instrumental temporal drifts, systematic errors, and/or an unacceptably high cost, as in the case of interferometry with computer-generated holograms as a reference. In this paper, we discuss the experimental methods and approaches based on correlation analysis to the acquisition and processing of metrology data developed at the ALS X-Ray Optical Laboratory (XROL). Using an example of surface topography measurements of a state-of-the-art x-ray mirror performed at the XROL, we demonstrate the efficiency of combining the developed experimental correlation methods to the advanced optimal scanning strategy (AOSS) technique. This allows a significant improvement in the accuracy and capacity of the measurements via suppression of the instrumental low frequency noise, temporal drift, and systematic error in a single measurement run. Practically speaking, implementation of the AOSS technique leads to an increase of the measurement accuracy, as well as the capacity of ex situ metrology by a factor of about four. The developed method is general and applicable to a broad spectrum of high accuracy measurements.
NASA Astrophysics Data System (ADS)
Salerno, Antonio; de la Fuente, Isabel; Hsu, Zack; Tai, Alan; Chang, Hammer; McNamara, Elliott; Cramer, Hugo; Li, Daoping
2018-03-01
In next generation Logic devices, overlay control requirements shrink to sub 2.5nm level on-product overlay. Historically on-product overlay has been defined by the overlay capability of after-develop in-scribe targets. However, due to design and dimension, the after development metrology targets are not completely representative for the final overlay of the device. In addition, they are confined to the scribe-lane area, which limits the sampling possibilities. To address these two issues, metrology on structures matching the device structure and which can be sampled with high density across the device is required. Conventional after-etch CDSEM techniques on logic devices present difficulties in discerning the layers of interest, potential destructive charging effects and finally, they are limited by the long measurement times[1] [2] [3] . All together, limit the sampling densities and making CDSEM less attractive for control applications. Optical metrology can overcome most of these limitations. Such measurement, however, does require repetitive structures. This requirement is not fulfilled by logic devices, as the features vary in pitch and CD over the exposure field. The solution is to use small targets, with a maximum pad size of 5x5um2 , which can easily be placed in the logic cell area. These targets share the process and architecture of the device features of interest, but with a modified design that replicates as close as possible the device layout, allowing for in-device metrology for both CD and Overlay. This solution enables measuring closer to the actual product feature location and, not being limited to scribe-lanes, it opens the possibility of higher-density sampling schemes across the field. In summary, these targets become the facilitator of in-device metrology (IDM), that is, enabling the measurements both in-device Overlay and the CD parameters of interest and can deliver accurate, high-throughput, dense and after-etch measurements for Logic. Overlay improvements derived from a high-densely sampled Overlay map measured with 5x5 um2 In Device Metrology (IDM) targets were investigated on a customer Logic application. In this work we present both the main design aspects of the 5x5 um2 IDM targets, as well as the results on the improved Overlay performance.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--High Definition Metrology and Process-2 Micron Manufacturing Under ATP Award No... Metrology and Process-2 Micron Manufacturing under ATP Award No. 70NANB7H7041 has filed written...
NASA Technical Reports Server (NTRS)
Halverson, Peter G.; Loya, Frank M.
2004-01-01
This paper describes heterodyne displacement metrology gauge signal processing methods that achieve satisfactory robustness against low signal strength and spurious signals, and good long-term stability. We have a proven displacement-measuring approach that is useful not only to space-optical projects at JPL, but also to the wider field of distance measurements.
Fundamental Principles of Coherent-Feedback Quantum Control
2014-12-08
in metrology (acceleration sensing, vibrometry, gravity wave detection) and in quantum information processing (continuous-variables quantum ...AFRL-OSR-VA-TR-2015-0009 FUNDAMENTAL PRINCIPLES OF COHERENT-FEEDBACK QUANTUM CONTROL Hideo Mabuchi LELAND STANFORD JUNIOR UNIV CA Final Report 12/08...foundations and potential applications of coherent-feedback quantum control. We have focused on potential applications in quantum -enhanced metrology and
77 FR 25406 - Consortium on “Concrete Rheology: Enabling Metrology (CREME)”: Membership Fee Update
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-30
... Technology (NIST) published a notice of a public meeting, which was held on November 8, 2011, to explore the feasibility of establishing a NIST/Industry Consortium on Concrete Rheology: Enabling Metrology (CREME)''. The... INFORMATION CONTACT: Chiara Ferraris or Nicos Martys via email at [email protected]nist.gov ; [email protected]nist...
Parasitic light scattered by complex optical coatings: modelization and metrology
NASA Astrophysics Data System (ADS)
Zerrad, Myriam; Lequime, Michel; Liukaityte, Simona; Amra, Claude
2017-12-01
Optical components realized for space applications have to be mastered in term of parasitic light. This paper present the last improvements performed at the Institute Fresnel to predict and measure scattering losses of optical components with a special care to complex optical coatings. Agreement between numerical models and metrology is now excellent. Some examples will be presented.
NASA Technical Reports Server (NTRS)
Poberezhskiy, Ilya Y; Chang, Daniel H.; Erlig, Herman
2011-01-01
Optical metrology system reliability during a prolonged space mission is often limited by the reliability of pump laser diodes. We developed a metrology laser pump module architecture that meets NASA SIM Lite instrument optical power and reliability requirements by combining the outputs of multiple single-mode pump diodes in a low-loss, high port count fiber coupler. We describe Monte-Carlo simulations used to calculate the reliability of the laser pump module and introduce a combined laser farm aging parameter that serves as a load-sharing optimization metric. Employing these tools, we select pump module architecture, operating conditions, biasing approach and perform parameter sensitivity studies to investigate the robustness of the obtained solution.
NASA Astrophysics Data System (ADS)
Cosandier, F.; Eichenberger, A.; Baumann, H.; Jeckelmann, B.; Bonny, M.; Chatagny, V.; Clavel, R.
2014-04-01
There is a firm will in the metrology community to redefine the kilogram in the International System of units by linking it to a fundamental physical constant. The watt balance is a promising way to link the mass unit to the Planck constant h. At the Federal Institute of Metrology METAS a second watt balance experiment is under development. A decisive part of the METAS Mark II watt balance is the mechanical linear guiding system. The present paper discusses the development and the metrological characteristics of two guiding systems that were conceived by the Laboratoire de Systèmes Robotiques of EPFL and built using flexure mechanical elements. Integration in the new setup is also described.
Metrology: Calibration and measurement processes guidelines
NASA Technical Reports Server (NTRS)
Castrup, Howard T.; Eicke, Woodward G.; Hayes, Jerry L.; Mark, Alexander; Martin, Robert E.; Taylor, James L.
1994-01-01
The guide is intended as a resource to aid engineers and systems contracts in the design, implementation, and operation of metrology, calibration, and measurement systems, and to assist NASA personnel in the uniform evaluation of such systems supplied or operated by contractors. Methodologies and techniques acceptable in fulfilling metrology quality requirements for NASA programs are outlined. The measurement process is covered from a high level through more detailed discussions of key elements within the process, Emphasis is given to the flowdown of project requirements to measurement system requirements, then through the activities that will provide measurements with defined quality. In addition, innovations and techniques for error analysis, development of statistical measurement process control, optimization of calibration recall systems, and evaluation of measurement uncertainty are presented.
Metrology applied to ultrasound characterization of trabecular bones using the AIB parameter
NASA Astrophysics Data System (ADS)
Braz, D. S.; Silva, C. E.; Alvarenga, A. V.; Junior, D. S.; Costa-Félix, R. P. B.
2016-07-01
Apparent Integrated Backscattering (AIB) presents correlation between Apparent Backscatter Transfer Function and the transducer bandwidth. Replicas of trabecular bones (cubes of 20 mm side length) created by 3D printing technique were characterized using AIB with a 2.25 MHz center frequency transducer. A mechanical scanning system was used to acquire multiple backscatter signals. An uncertainty model in measurement was proposed based on the Guide to the Expression of Uncertainty in Measurement. Initial AIB results are not metrologically reliable, presenting high measurement uncertainties (sample: 5_0.2032/AIB: -15.1 dB ± 13.9 dB). It is noteworthy that the uncertainty model proposed contributes as unprecedented way for metrological assessment of trabecular bone characterization using AIB.
Instrumentation, metrology, and standards: key elements for the future of nanomanufacturing
NASA Astrophysics Data System (ADS)
Postek, Michael T.; Lyons, Kevin
2007-09-01
Nanomanufacturing is the essential bridge between the discoveries of nanoscience and real world nanotech products and is the vehicle by which the Nation and the World will realize the promise of major technological innovation across a spectrum of products that will affect virtually every industrial sector. For nanotech products to achieve the broad impacts envisioned, they must be manufactured in market-appropriate quantities in a reliable, repeatable, economical and commercially viable manner. In addition, they must be manufactured so that environmental and human health concerns are met, worker safety issues are appropriately assessed and handled, and liability issues are addressed. Critical to this realization of robust nanomanufacturing is the development of the necessary instrumentation, metrology, and standards. Integration of the instruments, their interoperability, and appropriate information management are also critical elements that must be considered for viable nanomanufacturing. Advanced instrumentation, metrology and standards will allow the physical dimensions, properties, functionality, and purity of the materials, processes, tools, systems, products, and emissions that will constitute nanomanufacturing to be measured and characterized. This will in turn enable production to be scaleable, controllable, predictable, and repeatable to meet market needs. If a nano-product cannot be measured it cannot be manufactured; additionally if that product cannot be made safely it should not be manufactured. This presentation introduces the Instrumentation, Metrology, and Standards for Nanomanufacturing Conference at the 2007 SPIE Optics and Photonics. This conference will become the leading forum for the exchange of foundational information and discussion of instrumentation, metrology and standards which are key elements for the success of nanomanufacturing.
Efficiency improvements of offline metrology job creation
NASA Astrophysics Data System (ADS)
Zuniga, Victor J.; Carlson, Alan; Podlesny, John C.; Knutrud, Paul C.
1999-06-01
Progress of the first lot of a new design through the production line is watched very closely. All performance metrics, cycle-time, in-line measurement results and final electrical performance are critical. Rapid movement of this lot through the line has serious time-to-market implications. Having this material waiting at a metrology operation for an engineer to create a measurement job plan wastes valuable turnaround time. Further, efficient use of a metrology system is compromised by the time required to create and maintain these measurement job plans. Thus, having a method to develop metrology job plans prior to the actual running of the material through the manufacture area can significantly improve both cycle time and overall equipment efficiency. Motorola and Schlumberger have worked together to develop and test such a system. The Remote Job Generator (RJG) created job plans for new device sin a manufacturing process from an NT host or workstation, offline. This increases available system tim effort making production measurements, decreases turnaround time on job plan creation and editing, and improves consistency across job plans. Most importantly this allows job plans for new devices to be available before the first wafers of the device arrive at the tool for measurement. The software also includes a database manager which allows updates of existing job plans to incorporate measurement changes required by process changes or measurement optimization. This paper will review the result of productivity enhancements through the increased metrology utilization and decreased cycle time associated with the use of RJG. Finally, improvements in process control through better control of Job Plans across different devices and layers will be discussed.
Stochastic analysis of 1D and 2D surface topography of x-ray mirrors
NASA Astrophysics Data System (ADS)
Tyurina, Anastasia Y.; Tyurin, Yury N.; Yashchuk, Valeriy V.
2017-08-01
The design and evaluation of the expected performance of new optical systems requires sophisticated and reliable information about the surface topography for planned optical elements before they are fabricated. The problem is especially complex in the case of x-ray optics, particularly for the X-ray Surveyor under development and other missions. Modern x-ray source facilities are reliant upon the availability of optics with unprecedented quality (surface slope accuracy < 0.1μrad). The high angular resolution and throughput of future x-ray space observatories requires hundreds of square meters of high quality optics. The uniqueness of the optics and limited number of proficient vendors makes the fabrication extremely time consuming and expensive, mostly due to the limitations in accuracy and measurement rate of metrology used in fabrication. We discuss improvements in metrology efficiency via comprehensive statistical analysis of a compact volume of metrology data. The data is considered stochastic and a new statistical model called Invertible Time Invariant Linear Filter (InTILF) is developed now for 2D surface profiles to provide compact description of the 2D data additionally to 1D data treated so far. The model captures faint patterns in the data and serves as a quality metric and feedback to polishing processes, avoiding high resolution metrology measurements over the entire optical surface. The modeling, implemented in our Beatmark software, allows simulating metrology data for optics made by the same vendor and technology. The forecast data is vital for reliable specification for optical fabrication, to be exactly adequate for the required system performance.
Writing next-generation display photomasks
NASA Astrophysics Data System (ADS)
Sandstrom, Tor; Wahlsten, Mikael; Park, Youngjin
2016-10-01
Recent years have seen a fast technical development within the display area. Displays get ever higher pixel density and the pixels get smaller. Current displays have over 800 PPI and market forces will eventually drive for densities of 2000 PPI or higher. The transistor backplanes also get more complex. OLED displays require 4-7 transistors per pixel instead of the typical 1-2 transistors used for LCDs, and they are significantly more sensitive to errors. New large-area maskwriters have been developed for masks used in high volume production of screens for state-of-theart smartphones. Redesigned laser optics with higher NA and lower aberrations improve resolution and CD uniformity and reduce mura effects. The number of beams has been increased to maintain the throughput despite the higher writing resolution. OLED displays are highly sensitive to placement errors and registration in the writers has been improved. To verify the registration of produced masks a separate metrology system has been developed. The metrology system is self-calibrated to high accuracy. The calibration is repeatable across machines and sites using Z-correction. The repeatability of the coordinate system makes it possible to standardize the coordinate system across an entire supply chain or indeed across the entire industry. In-house metrology is a commercial necessity for high-end mask shop, but also the users of the masks, the panel makers, would benefit from having in-house metrology. It would act as the reference for their mask suppliers, give better predictive and post mortem diagnostic power for the panel process, and the metrology could be used to characterize and improve the entire production loop from data to panel.
Development of at-wavelength metrology for x-ray optics at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Yuan, Sheng
2010-07-09
The comprehensive realization of the exciting advantages of new third- and forth-generation synchrotron radiation light sources requires concomitant development of reflecting and diffractive x-ray optics capable of micro- and nano-focusing, brightness preservation, and super high resolution. The fabrication, tuning, and alignment of the optics are impossible without adequate metrology instrumentation, methods, and techniques. While the accuracy of ex situ optical metrology at the Advanced Light Source (ALS) has reached a state-of-the-art level, wavefront control on beamlines is often limited by environmental and systematic alignment factors, and inadequate in situ feedback. At ALS beamline 5.3.1, we are developing broadly applicable, high-accuracy,more » in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of tests with increasing accuracy and sensitivity. Geometric Hartmann tests, performed with a scanning illuminated sub-aperture determine the wavefront slope across the full mirror aperture. Shearing interferometry techniques use coherent illumination and provide higher sensitivity wavefront measurements. Combining these techniques with high precision optical metrology and experimental methods will enable us to provide in situ setting and alignment of bendable x-ray optics to realize diffraction-limited, sub 50 nm focusing at beamlines. We describe here details of the metrology beamline endstation, the x-ray beam diagnostic system, and original experimental techniques that have already allowed us to precisely set a bendable KB mirror to achieve a focused spot size of 150 nm.« less
An image-processing software package: UU and Fig for optical metrology applications
NASA Astrophysics Data System (ADS)
Chen, Lujie
2013-06-01
Modern optical metrology applications are largely supported by computational methods, such as phase shifting [1], Fourier Transform [2], digital image correlation [3], camera calibration [4], etc, in which image processing is a critical and indispensable component. While it is not too difficult to obtain a wide variety of image-processing programs from the internet; few are catered for the relatively special area of optical metrology. This paper introduces an image-processing software package: UU (data processing) and Fig (data rendering) that incorporates many useful functions to process optical metrological data. The cross-platform programs UU and Fig are developed based on wxWidgets. At the time of writing, it has been tested on Windows, Linux and Mac OS. The userinterface is designed to offer precise control of the underline processing procedures in a scientific manner. The data input/output mechanism is designed to accommodate diverse file formats and to facilitate the interaction with other independent programs. In terms of robustness, although the software was initially developed for personal use, it is comparably stable and accurate to most of the commercial software of similar nature. In addition to functions for optical metrology, the software package has a rich collection of useful tools in the following areas: real-time image streaming from USB and GigE cameras, computational geometry, computer vision, fitting of data, 3D image processing, vector image processing, precision device control (rotary stage, PZT stage, etc), point cloud to surface reconstruction, volume rendering, batch processing, etc. The software package is currently used in a number of universities for teaching and research.
Diffraction based overlay re-assessed
NASA Astrophysics Data System (ADS)
Leray, Philippe; Laidler, David; D'havé, Koen; Cheng, Shaunee
2011-03-01
In recent years, numerous authors have reported the advantages of Diffraction Based Overlay (DBO) over Image Based Overlay (IBO), mainly by comparison of metrology figures of merit such as TIS and TMU. Some have even gone as far as to say that DBO is the only viable overlay metrology technique for advanced technology nodes; 22nm and beyond. Typically the only reported drawback of DBO is the size of the required targets. This severely limits its effective use, when all critical layers of a product, including double patterned layers need to be measured, and in-die overlay measurements are required. In this paper we ask whether target size is the only limitation to the adoption of DBO for overlay characterization and control, or are there other metrics, which need to be considered. For example, overlay accuracy with respect to scanner baseline or on-product process overlay control? In this work, we critically re-assess the strengths and weaknesses of DBO for the applications of scanner baseline and on-product process layer overlay control. A comprehensive comparison is made to IBO. For on product process layer control we compare the performance on critical process layers; Gate, Contact and Metal. In particularly we focus on the response of the scanner to the corrections determined by each metrology technique for each process layer, as a measure of the accuracy. Our results show that to characterize an overlay metrology technique that is suitable for use in advanced technology nodes requires much more than just evaluating the conventional metrology metrics of TIS and TMU.
EUV wavefront metrology system in EUVA
NASA Astrophysics Data System (ADS)
Hasegawa, Takayuki; Ouchi, Chidane; Hasegawa, Masanobu; Kato, Seima; Suzuki, Akiyoshi; Sugisaki, Katsumi; Murakami, Katsuhiko; Saito, Jun; Niibe, Masahito
2004-05-01
An Experimental extreme ultraviolet (EUV) interferometer (EEI) using an undulator as a light source was installed in New SUBARU synchrotron facility at Himeji Institute of Technology (HIT). The EEI can evaluate the five metrology methods reported before. (1) A purpose of the EEI is to determine the most suitable method for measuring the projection optics of EUV lithography systems for mass production tools.
ERIC Educational Resources Information Center
Selleck, Ben; Espy, John
This fourth in a series of eight modules for a course titled Metrology describes the universal bevel protractor and the sine bar, the engineering microscope and optical projector, and several types of surface texture gages. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3)…
Metrological Traceability in the Social Sciences: A Model from Reading Measurement
NASA Astrophysics Data System (ADS)
Stenner, A. Jackson; Fisher, William P., Jr.
2013-09-01
The central importance of reading ability in learning makes it the natural place to start in formative and summative assessments in education. The Lexile Framework for Reading constitutes a commercial metrological traceability network linking books, test results, instructional materials, and students in elementary and secondary English and Spanish language reading education in the U.S., Canada, Mexico, and Australia.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-08
..., LLC Including On-Site Leased Workers From Adecco, Argus Technical, Inc., Fox Valley Metrology URS Corp... the certification for workers of the subject firm. New information shows that workers leased from Fox... from Fox Valley Metrology, URS Corp. and CompuCom working on-site at the Oshkosh, Wisconsin location of...
Quantum Communications Systems
2012-09-21
metrology practical. The strategy was to develop robust photonic quantum states and sensors serving as an archetype for loss-tolerant information...communications and metrology. Our strategy consisted of developing robust photonic quantum states and sensors serving as an archetype for loss-tolerant...developed atomic memories in caesium vapour, based on a stimulated Raman transition, that have demonstrated a TBP greater than 1000 and are uniquely suited
Sajnóg, Adam; Hanć, Anetta; Barałkiewicz, Danuta
2018-05-15
Analysis of clinical specimens by imaging techniques allows to determine the content and distribution of trace elements on the surface of the examined sample. In order to obtain reliable results, the developed procedure should be based not only on the properly prepared sample and performed calibration. It is also necessary to carry out all phases of the procedure in accordance with the principles of chemical metrology whose main pillars are the use of validated analytical methods, establishing the traceability of the measurement results and the estimation of the uncertainty. This review paper discusses aspects related to sampling, preparation and analysis of clinical samples by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with emphasis on metrological aspects, i.e. selected validation parameters of the analytical method, the traceability of the measurement result and the uncertainty of the result. This work promotes the introduction of metrology principles for chemical measurement with emphasis to the LA-ICP-MS which is the comparative method that requires studious approach to the development of the analytical procedure in order to acquire reliable quantitative results. Copyright © 2018 Elsevier B.V. All rights reserved.
Surface slope metrology of highly curved x-ray optics with an interferometric microscope
NASA Astrophysics Data System (ADS)
Gevorkyan, Gevork S.; Centers, Gary; Polonska, Kateryna S.; Nikitin, Sergey M.; Lacey, Ian; Yashchuk, Valeriy V.
2017-09-01
The development of deterministic polishing techniques has given rise to vendors that manufacture high quality threedimensional x-ray optics. The surface metrology on these optics remains a difficult task. For the fabrication, vendors usually use unique surface metrology tools, generally developed on site, that are not available in the optical metrology labs at x-ray facilities. At the Advanced Light Source X-Ray Optics Laboratory, we have developed a rather straightforward interferometric-microscopy-based procedure capable of sub microradian characterization of sagittal slope variation of x-ray optics for two-dimensionally focusing and collimating (such as ellipsoids, paraboloids, etc.). In the paper, we provide the mathematical foundation of the procedure and describe the related instrument calibration. We also present analytical expression describing the ideal surface shape in the sagittal direction of a spheroid specified by the conjugate parameters of the optic's beamline application. The expression is useful when analyzing data obtained with such optics. The high efficiency of the developed measurement and data analysis procedures is demonstrated in results of measurements with a number of x-ray optics with sagittal radius of curvature between 56 mm and 480 mm. We also discuss potential areas of further improvement.
Quantum metrology with a transmon qutrit
NASA Astrophysics Data System (ADS)
Shlyakhov, A. R.; Zemlyanov, V. V.; Suslov, M. V.; Lebedev, A. V.; Paraoanu, G. S.; Lesovik, G. B.; Blatter, G.
2018-02-01
Making use of coherence and entanglement as metrological quantum resources allows us to improve the measurement precision from the shot-noise or quantum limit to the Heisenberg limit. Quantum metrology then relies on the availability of quantum engineered systems that involve controllable quantum degrees of freedom which are sensitive to the measured quantity. Sensors operating in the qubit mode and exploiting their coherence in a phase-sensitive measurement have been shown to approach the Heisenberg scaling in precision. Here, we show that this result can be further improved by operating the quantum sensor in the qudit mode, i.e., by exploiting d rather than two levels. Specifically, we describe the metrological algorithm for using a superconducting transmon device operating in a qutrit mode as a magnetometer. The algorithm is based on the base-3 semiquantum Fourier transformation and enhances the quantum theoretical performance of the sensor by a factor of 2. Even more, the practical gain of our qutrit implementation is found in a reduction of the number of iteration steps of the quantum Fourier transformation by the factor ln(2 )/ln(3 )≈0.63 compared to the qubit mode. We show that a two-tone capacitively coupled radio-frequency signal is sufficient for implementation of the algorithm.
Metrological traceability of carbon dioxide measurements in atmosphere and seawater
NASA Astrophysics Data System (ADS)
Rolle, F.; Pessana, E.; Sega, M.
2017-05-01
The accurate determination of gaseous pollutants is fundamental for the monitoring of the trends of these analytes in the environment and the application of the metrological concepts to this field is necessary to assure the reliability of the measurement results. In this work, an overview of the activity carried out at Istituto Nazionale di Ricerca Metrologica to establish the metrological traceability of the measurements of gaseous atmospheric pollutants, in particular of carbon dioxide (CO2), is presented. Two primary methods, the gravimetry and the dynamic dilution, are used for the preparation of reference standards for composition which can be used to calibrate sensors and analytical instrumentation. At present, research is carried out to lower the measurement uncertainties of the primary gas mixtures and to extend their application to the oceanic field. The reason of such investigation is due to the evidence of the changes occurring in seawater carbonate chemistry, connected to the rising level of CO2 in the atmosphere. The well established activity to assure the metrological traceability of CO2 in the atmosphere will be applied to the determination of CO2 in seawater, by developing suitable reference materials for calibration and control of the sensors during their routine use.
Relativistic Quantum Metrology: Exploiting relativity to improve quantum measurement technologies
Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette
2014-01-01
We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects. PMID:24851858
Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies.
Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette
2014-05-22
We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects.
Current state of the art in small mass and force metrology within the International System of Units
NASA Astrophysics Data System (ADS)
Shaw, Gordon A.
2018-07-01
This review article summarizes new scientific trends in research for metrology of small mass (1 mg and lower) and small force (10 micronewtons and lower). After a brief introduction to the field, this paper provides an overview of recent developments in methods that demonstrate traceability to the International System of Units (SI) with emphasis on the implications of redefining the kilogram in terms of Planck’s constant. Specific research applications include new metrology facilities, calibration of small mass and force references such as milligram to submilligram masses or atomic force microscope (AFM) cantilevers, and laser power measurement using radiation pressure forces. Also discussed are recent scientific developments that may impact the field moving forward in the study of ultrasmall forces present in trapped and cooled quantum mechanical systems, resonant micro- and nanomechanical mass sensors, and other areas that are potentially well suited for SI metrology. The work reviewed is not intended as a comprehensive review of all research in which small forces are measured, but rather as an overview of a field in which the accurate measurement of small mass and force with quantified uncertainty is the primary goal.
Kite: Status of the External Metrology Testbed for SIM
NASA Technical Reports Server (NTRS)
Dekens, Frank G.; Alvarez-Salazar, Oscar; Azizi, Alireza; Moser, Steven; Nemati, Bijan; Negron, John; Neville, Timothy; Ryan, Daniel
2004-01-01
Kite is a system level testbed for the External Metrology system of the Space Interferometry Mission (SIM). The External Metrology System is used to track the fiducial that are located at the centers of the interferometer's siderostats. The relative changes in their positions needs to be tracked to tens of picometers in order to correct for thermal measurements, the Kite testbed was build to test both the metrology gauges and out ability to optically model the system at these levels. The Kite testbed is an over-constraint system where 6 lengths are measured, but only 5 are needed to determine the system. The agreement in the over-constrained length needs to be on the order of 140 pm for the SIM Wide-Angle observing scenario and 8 pm for the Narrow-Angle observing scenario. We demonstrate that we have met the Wide-Angle goal with our current setup. For the Narrow-Angle case, we have only reached the goal for on-axis observations. We describe the testbed improvements that have been made since our initial results, and outline the future Kite changes that will add further effects that SIM faces in order to make the testbed more SIM like.
Schnell, Oliver; Hinzmann, Rolf; Kulzer, Bernd; Freckmann, Guido; Erbach, Michael; Lodwig, Volker; Heinemann, Lutz
2013-01-01
Reliability of blood glucose (BG) measurements is a prerequisite for successful diabetes management. Publications on the evaluation of self-monitored glucose values, however, are frequently characterized by a confusion in terminology. We provide an inventory of key terms such as accuracy, trueness, precision, traceability, calibration, and matrix effect to avoid future misunderstanding. Definitions are taken from the metrological literature and international norms and explained in a language intended for nonspecialists in metrology. The terms are presented in light of the need to apply generally accepted definitions. In addition, a description of requirements and components for a sound evaluation of BG measurement systems is presented. These factors will also enable improvement in future comparisons of study results. PMID:24351185
Statistical model for speckle pattern optimization.
Su, Yong; Zhang, Qingchuan; Gao, Zeren
2017-11-27
Image registration is the key technique of optical metrologies such as digital image correlation (DIC), particle image velocimetry (PIV), and speckle metrology. Its performance depends critically on the quality of image pattern, and thus pattern optimization attracts extensive attention. In this article, a statistical model is built to optimize speckle patterns that are composed of randomly positioned speckles. It is found that the process of speckle pattern generation is essentially a filtered Poisson process. The dependence of measurement errors (including systematic errors, random errors, and overall errors) upon speckle pattern generation parameters is characterized analytically. By minimizing the errors, formulas of the optimal speckle radius are presented. Although the primary motivation is from the field of DIC, we believed that scholars in other optical measurement communities, such as PIV and speckle metrology, will benefit from these discussions.
NASA Astrophysics Data System (ADS)
Pratt, Jon R.; Kramar, John A.; Newell, David B.; Smith, Douglas T.
2005-05-01
If nanomechanical testing is to evolve into a tool for process and quality control in semiconductor fabrication, great advances in throughput, repeatability, and accuracy of the associated instruments and measurements will be required. A recent grant awarded by the NIST Advanced Technology Program seeks to address the throughput issue by developing a high-speed AFM-based platform for quantitative nanomechanical measurements. The following paper speaks to the issue of quantitative accuracy by presenting an overview of various standards and techniques under development at NIST and other national metrology institutes (NMIs) that can provide a metrological basis for nanomechanical testing. The infrastructure we describe places firm emphasis on traceability to the International System of Units, paving the way for truly quantitative, rather than qualitative, physical property testing.
Metrological assurance and traceability for Industry 4.0 and additive manufacturing in Ukraine
NASA Astrophysics Data System (ADS)
Skliarov, Volodymyr; Neyezhmakov, Pavel; Prokopov, Alexander
2018-03-01
The national measurement standards from the point of view of traceability of the results of measurement in additive manufacturing in Ukraine are considered in the paper. The metrological characteristics of the national primary measurement standards in the field of geometric, temperature, optical-physical and time-frequency measurements, which took part in international comparisons within COOMET projects, are presented. The accurate geometric, temperature, optical-physical and time-frequency measurements are the key ones in controlling the quality of additive manufacturing. The use of advanced CAD/CAE/CAM systems allows to simulate the process of additive manufacturing at each stage. In accordance with the areas of the technology of additive manufacturing, the ways of improving the national measurement standards of Ukraine for the growing needs of metrology of additive manufacturing are considered.
NASA Astrophysics Data System (ADS)
Fisher, William P., Jr.; Stenner, A. Jackson
2013-09-01
The public and researchers in psychology and the social sciences are largely unaware of the huge resources invested in metrology and standards in science and commerce, for understandable reasons, but with unfortunate consequences. Measurement quality varies widely in fields lacking uniform standards, making it impossible to coordinate local behaviours and decisions in tune with individually observed instrument readings. However, recent developments in reading measurement have effectively instituted metrological traceability methods within elementary and secondary English and Spanish language reading education in the U.S., Canada, Mexico, and Australia. Given established patterns in the history of science, it may be reasonable to expect that widespread routine reproduction of controlled effects expressed in uniform units in the social sciences may lead to significant developments in theory and practice.
Miniaturization as a key factor to the development and application of advanced metrology systems
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Dobrev, Ivo; Harrington, Ellery; Hefti, Peter; Khaleghi, Morteza
2012-10-01
Recent technological advances of miniaturization engineering are enabling the realization of components and systems with unprecedented capabilities. Such capabilities, which are significantly beneficial to scientific and engineering applications, are impacting the development and the application of optical metrology systems for investigations under complex boundary, loading, and operating conditions. In this paper, and overview of metrology systems that we are developing is presented. Systems are being developed and applied to high-speed and high-resolution measurements of shape and deformations under actual operating conditions for such applications as sustainability, health, medical diagnosis, security, and urban infrastructure. Systems take advantage of recent developments in light sources and modulators, detectors, microelectromechanical (MEMS) sensors and actuators, kinematic positioners, rapid prototyping fabrication technologies, as well as software engineering.
3D interconnect metrology in CMS/ITRI
NASA Astrophysics Data System (ADS)
Ku, Y. S.; Shyu, D. M.; Hsu, W. T.; Chang, P. Y.; Chen, Y. C.; Pang, H. L.
2011-05-01
Semiconductor device packaging technology is rapidly advancing, in response to the demand for thinner and smaller electronic devices. Three-dimensional chip/wafer stacking that uses through-silicon vias (TSV) is a key technical focus area, and the continuous development of this novel technology has created a need for non-contact characterization. Many of these challenges are novel to the industry due to the relatively large variety of via sizes and density, and new processes such as wafer thinning and stacked wafer bonding. This paper summarizes the developing metrology that has been used during via-middle & via-last TSV process development at EOL/ITRI. While there is a variety of metrology and inspection applications for 3D interconnect processing, the main topics covered here are via CD/depth measurement, thinned wafer inspection and wafer warpage measurement.
NASA Astrophysics Data System (ADS)
Park, Dong-Kiu; Kim, Hyun-Sok; Seo, Moo-Young; Ju, Jae-Wuk; Kim, Young-Sik; Shahrjerdy, Mir; van Leest, Arno; Soco, Aileen; Miceli, Giacomo; Massier, Jennifer; McNamara, Elliott; Hinnen, Paul; Böcker, Paul; Oh, Nang-Lyeom; Jung, Sang-Hoon; Chai, Yvon; Lee, Jun-Hyung
2018-03-01
This paper demonstrates the improvement using the YieldStar S-1250D small spot, high-NA, after-etch overlay in-device measurements in a DRAM HVM environment. It will be demonstrated that In-device metrology (IDM) captures after-etch device fingerprints more accurately compared to the industry-standard CDSEM. Also, IDM measurements (acquiring both CD and overlay) can be executed significantly faster increasing the wafer sampling density that is possible within a realistic metrology budget. The improvements to both speed and accuracy open the possibility of extended modeling and correction capabilities for control. The proof-book data of this paper shows a 36% improvement of device overlay after switching to control in a DRAM HVM environment using indevice metrology.
ERIC Educational Resources Information Center
Terner, Janet R.
The purpose of this project was to survey the National Bureau of Standards library holdings of pre-1900 works on metrology and from these, to assemble a special collection of historically important documents. The 265 imprints selected for the collection are listed in this report. Each entry includes the main author, title, imprint, and collation…
1998-01-01
Scintillation Method of Analysis for Determination of Properties of Wear Particles in Lubricating Oils Andrey B. Alkhimov Applied Physics Insitute...lubricating oils; metrological properties ; scintillation spectral analysis; spectrometer; unit-to-unit diagnostics; wear particles. Introduction: In...filter. The use of air reduces the metrological properties of the method, but it saves the operators the trouble and expense of using argon and
Catalog of Federal metrology and calibration capabilities: 1980 edition
NASA Astrophysics Data System (ADS)
Leedy, K. O.
1980-09-01
Federal laboratories involved in metrology and calibration are listed. Included is the name of a person to contact at each laboratory telephone number and address. The capabilities of each laboratory are indicated in a tabular listing by agency. To provide geographical distribution, the laboratories are listed by States. In addition, the laboratories are shown on a map by coded number. Other references are described.
2010-11-01
Tokyo University of Science, Japan; K. Watabe, K. Hagimoto, and T . Ikegami , National Metrology Institute of Japan Studies on an Improved...141 T . Iwata, K. Machita, T . Matsuzawa, National Institute of Advanced Industrial...285 K. Liang, National Institute of Metrology, P. R. China; T . Feldmann, A. Bauch, and D. Piester, Physikalisch
Advanced Mathematical Tools in Metrology III
NASA Astrophysics Data System (ADS)
Ciarlini, P.
The Table of Contents for the book is as follows: * Foreword * Invited Papers * The ISO Guide to the Expression of Uncertainty in Measurement: A Bridge between Statistics and Metrology * Bootstrap Algorithms and Applications * The TTRSs: 13 Oriented Constraints for Dimensioning, Tolerancing & Inspection * Graded Reference Data Sets and Performance Profiles for Testing Software Used in Metrology * Uncertainty in Chemical Measurement * Mathematical Methods for Data Analysis in Medical Applications * High-Dimensional Empirical Linear Prediction * Wavelet Methods in Signal Processing * Software Problems in Calibration Services: A Case Study * Robust Alternatives to Least Squares * Gaining Information from Biomagnetic Measurements * Full Papers * Increase of Information in the Course of Measurement * A Framework for Model Validation and Software Testing in Regression * Certification of Algorithms for Determination of Signal Extreme Values during Measurement * A Method for Evaluating Trends in Ozone-Concentration Data and Its Application to Data from the UK Rural Ozone Monitoring Network * Identification of Signal Components by Stochastic Modelling in Measurements of Evoked Magnetic Fields from Peripheral Nerves * High Precision 3D-Calibration of Cylindrical Standards * Magnetic Dipole Estimations for MCG-Data * Transfer Functions of Discrete Spline Filters * An Approximation Method for the Linearization of Tridimensional Metrology Problems * Regularization Algorithms for Image Reconstruction from Projections * Quality of Experimental Data in Hydrodynamic Research * Stochastic Drift Models for the Determination of Calibration Intervals * Short Communications * Projection Method for Lidar Measurement * Photon Flux Measurements by Regularised Solution of Integral Equations * Correct Solutions of Fit Problems in Different Experimental Situations * An Algorithm for the Nonlinear TLS Problem in Polynomial Fitting * Designing Axially Symmetric Electromechanical Systems of Superconducting Magnetic Levitation in Matlab Environment * Data Flow Evaluation in Metrology * A Generalized Data Model for Integrating Clinical Data and Biosignal Records of Patients * Assessment of Three-Dimensional Structures in Clinical Dentistry * Maximum Entropy and Bayesian Approaches to Parameter Estimation in Mass Metrology * Amplitude and Phase Determination of Sinusoidal Vibration in the Nanometer Range using Quadrature Signals * A Class of Symmetric Compactly Supported Wavelets and Associated Dual Bases * Analysis of Surface Topography by Maximum Entropy Power Spectrum Estimation * Influence of Different Kinds of Errors on Imaging Results in Optical Tomography * Application of the Laser Interferometry for Automatic Calibration of Height Setting Micrometer * Author Index
Preliminary results for mask metrology using spatial heterodyne interferometry
NASA Astrophysics Data System (ADS)
Bingham, Philip R.; Tobin, Kenneth; Bennett, Marylyn H.; Marmillion, Pat
2003-12-01
Spatial heterodyne interferometry (SHI) is an imaging technique that captures both the phase and amplitude of a complex wavefront in a single high-speed image. This technology was developed at the Oak Ridge National Laboratory (ORNL) and is currently being implemented for semiconductor wafer inspection by nLine Corporation. As with any system that measures phase, metrology and inspection of surface structures is possible by capturing a wavefront reflected from the surface. The interpretation of surface structure heights for metrology applications can become very difficult with the many layers of various materials used on semiconductor wafers, so inspection (defect detection) has been the primary focus for semiconductor wafers. However, masks used for photolithography typically only contain a couple well-defined materials opening the doors to high-speed mask metrology in 3 dimensions in addition to inspection. Phase shift masks often contain structures etched out of the transparent substrate material for phase shifting. While these structures are difficult to inspect using only intensity, the phase and amplitude images captured with SHI can produce very good resolution of these structures. The phase images also provide depth information that is crucial for these phase shift regions. Preliminary testing has been performed to determine the feasibility of SHI for high-speed non-contact mask metrology using a prototype SHI system with 532 nm wavelength illumination named the Visible Alpha Tool (VAT). These results show that prototype SHI system is capable of performing critical dimension measurements on 400nm lines with a repeatability of 1.4nm and line height measurements with a repeatability of 0.26nm. Additionally initial imaging of an alternating aperture phase shift mask has shown the ability of SHI to discriminate between typical phase shift heights.
Clean focus, dose and CD metrology for CD uniformity improvement
NASA Astrophysics Data System (ADS)
Lee, Honggoo; Han, Sangjun; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, DongYoung; Oh, Eungryong; Choi, Ahlin; Kim, Nakyoon; Robinson, John C.; Mengel, Markus; Pablo, Rovira; Yoo, Sungchul; Getin, Raphael; Choi, Dongsub; Jeon, Sanghuck
2018-03-01
Lithography process control solutions require more exacting capabilities as the semiconductor industry goes forward to the 1x nm node DRAM device manufacturing. In order to continue scaling down the device feature sizes, critical dimension (CD) uniformity requires continuous improvement to meet the required CD error budget. In this study we investigate using optical measurement technology to improve over CD-SEM methods in focus, dose, and CD. One of the key challenges is measuring scanner focus of device patterns. There are focus measurement methods based on specially designed marks on scribe-line, however, one issue of this approach is that it will report focus of scribe line which is potentially different from that of the real device pattern. In addition, scribe-line marks require additional design and troubleshooting steps that add complexity. In this study, we investigated focus measurement directly on the device pattern. Dose control is typically based on using the linear correlation behavior between dose and CD. The noise of CD measurement, based on CD-SEM for example, will not only impact the accuracy, but also will make it difficult to monitor dose signature on product wafers. In this study we will report the direct dose metrology result using an optical metrology system which especially enhances the DUV spectral coverage to improve the signal to noise ratio. CD-SEM is often used to measure CD after the lithography step. This measurement approach has the advantage of easy recipe setup as well as the flexibility to measure critical feature dimensions, however, we observe that CD-SEM metrology has limitations. In this study, we demonstrate within-field CD uniformity improvement through the extraction of clean scanner slit and scan CD behavior by using optical metrology.
OPC model data collection for 45-nm technology node using automatic CD-SEM offline recipe creation
NASA Astrophysics Data System (ADS)
Fischer, Daniel; Talbi, Mohamed; Wei, Alex; Menadeva, Ovadya; Cornell, Roger
2007-03-01
Optical and Process Correction in the 45nm node is requiring an ever higher level of characterization. The greater complexity drives a need for automation of the metrology process allowing more efficient, accurate and effective use of the engineering resources and metrology tool time in the fab, helping to satisfy what seems an insatiable appetite for data by lithographers and modelers charged with development of 45nm and 32nm processes. The scope of the work referenced here is a 45nm design cycle "full-loop automation", starting with gds formatted target design layout and ending with the necessary feedback of one and two dimensional printed wafer metrology. In this paper the authors consider the key elements of software, algorithmic framework and Critical Dimension Scanning Electron Microscope (CDSEM) functionality necessary to automate its recipe creation. We evaluate specific problems with the methodology of the former art, "on-tool on-wafer" recipe construction, and discuss how the implementation of the design based recipe generation improves upon the overall metrology process. Individual target-by-target construction, use of a one pattern recognition template fits all approach, a blind navigation to the desired measurement feature, lengthy sessions on tool to construct recipes and limited ability to determine measurement quality in the resultant data set are each discussed as to how the state of the art Design Based Metrology (DBM) approach is implemented. The offline created recipes have shown pattern recognition success rates of up to 100% and measurement success rates of up to 93% for line/space as well as for 2D Minimum/Maximum measurements without manual assists during measurement.
NASA Astrophysics Data System (ADS)
Ducoté, Julien; Dettoni, Florent; Bouyssou, Régis; Le-Gratiet, Bertrand; Carau, Damien; Dezauzier, Christophe
2015-03-01
Patterning process control of advanced nodes has required major changes over the last few years. Process control needs of critical patterning levels since 28nm technology node is extremely aggressive showing that metrology accuracy/sensitivity must be finely tuned. The introduction of pitch splitting (Litho-Etch-Litho-Etch) at 14FDSOInm node requires the development of specific metrologies to adopt advanced process control (for CD, overlay and focus corrections). The pitch splitting process leads to final line CD uniformities that are a combination of the CD uniformities of the two exposures, while the space CD uniformities are depending on both CD and OVL variability. In this paper, investigations of CD and OVL process control of 64nm minimum pitch at Metal1 level of 14FDSOI technology, within the double patterning process flow (Litho, hard mask etch, line etch) are presented. Various measurements with SEMCD tools (Hitachi), and overlay tools (KT for Image Based Overlay - IBO, and ASML for Diffraction Based Overlay - DBO) are compared. Metrology targets are embedded within a block instanced several times within the field to perform intra-field process variations characterizations. Specific SEMCD targets were designed for independent measurement of both line CD (A and B) and space CD (A to B and B to A) for each exposure within a single measurement during the DP flow. Based on those measurements correlation between overlay determined with SEMCD and with standard overlay tools can be evaluated. Such correlation at different steps through the DP flow is investigated regarding the metrology type. Process correction models are evaluated with respect to the measurement type and the intra-field sampling.
The UK National Quantum Technologies Hub in sensors and metrology (Keynote Paper)
NASA Astrophysics Data System (ADS)
Bongs, K.; Boyer, V.; Cruise, M. A.; Freise, A.; Holynski, M.; Hughes, J.; Kaushik, A.; Lien, Y.-H.; Niggebaum, A.; Perea-Ortiz, M.; Petrov, P.; Plant, S.; Singh, Y.; Stabrawa, A.; Paul, D. J.; Sorel, M.; Cumming, D. R. S.; Marsh, J. H.; Bowtell, R. W.; Bason, M. G.; Beardsley, R. P.; Campion, R. P.; Brookes, M. J.; Fernholz, T.; Fromhold, T. M.; Hackermuller, L.; Krüger, P.; Li, X.; Maclean, J. O.; Mellor, C. J.; Novikov, S. V.; Orucevic, F.; Rushforth, A. W.; Welch, N.; Benson, T. M.; Wildman, R. D.; Freegarde, T.; Himsworth, M.; Ruostekoski, J.; Smith, P.; Tropper, A.; Griffin, P. F.; Arnold, A. S.; Riis, E.; Hastie, J. E.; Paboeuf, D.; Parrotta, D. C.; Garraway, B. M.; Pasquazi, A.; Peccianti, M.; Hensinger, W.; Potter, E.; Nizamani, A. H.; Bostock, H.; Rodriguez Blanco, A.; Sinuco-Leon, G.; Hill, I. R.; Williams, R. A.; Gill, P.; Hempler, N.; Malcolm, G. P. A.; Cross, T.; Kock, B. O.; Maddox, S.; John, P.
2016-04-01
The UK National Quantum Technology Hub in Sensors and Metrology is one of four flagship initiatives in the UK National of Quantum Technology Program. As part of a 20-year vision it translates laboratory demonstrations to deployable practical devices, with game-changing miniaturized components and prototypes that transform the state-of-the-art for quantum sensors and metrology. It brings together experts from the Universities of Birmingham, Glasgow, Nottingham, Southampton, Strathclyde and Sussex, NPL and currently links to over 15 leading international academic institutions and over 70 companies to build the supply chains and routes to market needed to bring 10-1000x improvements in sensing applications. It seeks, and is open to, additional partners for new application development and creates a point of easy open access to the facilities and supply chains that it stimulates or nurtures.
Metrological digital audio reconstruction
Fadeyev,; Vitaliy, Haber [Berkeley, CA; Carl, [Berkeley, CA
2004-02-19
Audio information stored in the undulations of grooves in a medium such as a phonograph record may be reconstructed, with little or no contact, by measuring the groove shape using precision metrology methods coupled with digital image processing and numerical analysis. The effects of damage, wear, and contamination may be compensated, in many cases, through image processing and analysis methods. The speed and data handling capacity of available computing hardware make this approach practical. Two examples used a general purpose optical metrology system to study a 50 year old 78 r.p.m. phonograph record and a commercial confocal scanning probe to study a 1920's celluloid Edison cylinder. Comparisons are presented with stylus playback of the samples and with a digitally re-mastered version of an original magnetic recording. There is also a more extensive implementation of this approach, with dedicated hardware and software.
Metrology for industrial quantum communications: the MIQC project
NASA Astrophysics Data System (ADS)
Rastello, M. L.; Degiovanni, I. P.; Sinclair, A. G.; Kück, S.; Chunnilall, C. J.; Porrovecchio, G.; Smid, M.; Manoocheri, F.; Ikonen, E.; Kubarsepp, T.; Stucki, D.; Hong, K. S.; Kim, S. K.; Tosi, A.; Brida, G.; Meda, A.; Piacentini, F.; Traina, P.; Natsheh, A. Al; Cheung, J. Y.; Müller, I.; Klein, R.; Vaigu, A.
2014-12-01
The ‘Metrology for Industrial Quantum Communication Technologies’ project (MIQC) is a metrology framework that fosters development and market take-up of quantum communication technologies and is aimed at achieving maximum impact for the European industry in this area. MIQC is focused on quantum key distribution (QKD) technologies, the most advanced quantum-based technology towards practical application. QKD is a way of sending cryptographic keys with absolute security. It does this by exploiting the ability to encode in a photon's degree of freedom specific quantum states that are noticeably disturbed if an eavesdropper trying to decode it is present in the communication channel. The MIQC project has started the development of independent measurement standards and definitions for the optical components of QKD system, since one of the perceived barriers to QKD market success is the lack of standardization and quality assurance.
Information systems as a tool to improve legal metrology activities
NASA Astrophysics Data System (ADS)
Rodrigues Filho, B. A.; Soratto, A. N. R.; Gonçalves, R. F.
2016-07-01
This study explores the importance of information systems applied to legal metrology as a tool to improve the control of measuring instruments used in trade. The information system implanted in Brazil has also helped to understand and appraise the control of the measurements due to the behavior of the errors and deviations of instruments used in trade, allowing the allocation of resources wisely, leading to a more effective planning and control on the legal metrology field. A study case analyzing the fuel sector is carried out in order to show the conformity of fuel dispersers according to maximum permissible errors. The statistics of measurement errors of 167,310 fuel dispensers of gasoline, ethanol and diesel used in the field were analyzed demonstrating the accordance of the fuel market in Brazil to the legal requirements.
NASA Astrophysics Data System (ADS)
Sanger, Gregory M.; Reid, Paul B.; Baker, Lionel R.
1990-11-01
Consideration is given to advanced optical fabrication, profilometry and thin films, and metrology. Particular attention is given to automation for optics manufacturing, 3D contouring on a numerically controlled grinder, laser-scanning lens configurations, a noncontact precision measurement system, novel noncontact profiler design for measuring synchrotron radiation mirrors, laser-diode technologies for in-process metrology, measurements of X-ray reflectivities of Au-coatings at several energies, platinum coating of an X-ray mirror for SR lithography, a Hilbert transform algorithm for fringe-pattern analysis, structural error sources during fabrication of the AXAF optical elements, an in-process mirror figure qualification procedure for large deformable mirrors, interferometric evaluation of lenslet arrays for 2D phase-locked laser diode sources, and manufacturing and metrology tooling for the solar-A soft X-ray telescope.
Gloss evaluation from soft and hard metrologies.
Wang, Zihao; Xu, Lihao; Hu, Yu; Mirjalili, Fereshteh; Luo, Ming Ronnier
2017-09-01
Recent advances in bidirectional reflectance distribution function (BRDF) acquisitions have provided a novel approach for appearance measurement and analysis. In particular, since gloss appearance is dependent on the directional reflective properties of surfaces, it is reasonable to leverage the BRDF for gloss evaluation. In this paper, we investigate gloss appearance from both soft metrology and hard metrology. A psychophysical experiment was conducted for the gloss assessment of 47 neutral-color samples. In the evaluation of gloss perception from gloss meter measurements, we report several ambiguous correspondences in the medium gloss range. In order to analyze and explain this phenomenon, the BRDF was acquired and examined using a commercial BRDF measuring device. With an improved correlation-to-visual perception, we propose a two-dimensional gloss model by combining a parameter, the standard deviation of the specular lobe, from Ward's BRDF model with measured gloss values.
The National Time and Frequency Service of the Russian Federation
2004-09-01
Krutikov Gosstandard of Russia, Moscow 119991, Russia V. Kostromin and N. Koshelyaevsky Institute of Metrology for Time and Space FGUP “ VNIIFTRI ...Metrology for Time and Space FGUP VNIIFTRI Mendeleevo 141570, Russia 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND...is supplied from reserved sources located in premises outside the main territory of VNIIFTRI . According to the State Traceability Chart for Time
NASA Astrophysics Data System (ADS)
Reeve, Gerome; Marks, Roger; Blackburn, David
1990-12-01
How the National Institute of Standards and Technology (NIST) interacts with the GaAs community and the Defense Advanced Research Projects Agency microwave monolithic integrated circuit (MMIC) initiative is described. The organization of a joint industry and government laboratory consortium for MMIC-related metrology research is described along with some of the initial technical developments at NIST done in support of the consortium.
Sub-Planck structures and Quantum Metrology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panigrahi, Prasanta K.; Kumar, Abhijeet; Roy, Utpal
The significance of sub-Planck structures in relation to quantum metrology is explored, in close contact with experimental setups. It is shown that an entangled cat state can enhance the accuracy of parameter estimations. The possibility of generating this state, in dissipative systems has also been demonstrated. Thereafter, the quantum Cramer-Rao bound for phase estimation through a pair coherent state is calculated, which achieves the maximum possible resolution in an interferometer.
In Situ Metrology for the Corrective Polishing of Replicating Mandrels
2010-06-08
distribution is unlimited. 13. SUPPLEMENTARY NOTES Presented at Mirror Technology Days, Boulder, Colorado, USA, 7-9 June 2010. 14...ABSTRACT The International X-ray Observatory (IXO) will require mandrel metrology with extremely tight tolerances on mirrors with up to 1.6 meter radii...ideal. Error budgets for the IXO mirror segments are presented. A potential solution is presented that uses a voice-coil controlled gauging head, air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achyuthan, Komandoor E.; Wheeler, David R.
Evaluating the stability of coupling reagents, quality control (QC), and surface functionalization metrology are all critical to the production of high quality peptide microarrays. We describe a broadly applicable screening technique for evaluating the fidelity of solid phase peptide synthesis (SPPS), the stability of activation/coupling reagents, and a microarray surface metrology tool. This technique was used to assess the stability of the activation reagent 1-{[1-(Cyano-2-ethoxy-2-oxo-ethylidenaminooxy)dimethylamino-morpholinomethylene]}methaneaminiumHexafluorophosphate (COMU) (Sigma-Aldrich, St. Louis, MO, USA) by SPPS of Leu-Enkephalin (YGGFL) or the coupling of commercially synthesized YGGFL peptides to (3-aminopropyl)triethyoxysilane-modified glass surfaces. Coupling efficiency was quantitated by fluorescence signaling based on immunoreactivity of themore » YGGFL motif. It was concluded that COMU solutions should be prepared fresh and used within 5 h when stored at ~23 °C and not beyond 24 h if stored refrigerated, both in closed containers. Caveats to gauging COMU stability by absorption spectroscopy are discussed. Commercial YGGFL peptides needed independent QC, due to immunoreactivity variations for the same sequence synthesized by different vendors. This technique is useful in evaluating the stability of other activation/coupling reagents besides COMU and as a metrology tool for SPPS and peptide microarrays.« less
Achyuthan, Komandoor E.; Wheeler, David R.
2015-08-27
Evaluating the stability of coupling reagents, quality control (QC), and surface functionalization metrology are all critical to the production of high quality peptide microarrays. We describe a broadly applicable screening technique for evaluating the fidelity of solid phase peptide synthesis (SPPS), the stability of activation/coupling reagents, and a microarray surface metrology tool. This technique was used to assess the stability of the activation reagent 1-{[1-(Cyano-2-ethoxy-2-oxo-ethylidenaminooxy)dimethylamino-morpholinomethylene]}methaneaminiumHexafluorophosphate (COMU) (Sigma-Aldrich, St. Louis, MO, USA) by SPPS of Leu-Enkephalin (YGGFL) or the coupling of commercially synthesized YGGFL peptides to (3-aminopropyl)triethyoxysilane-modified glass surfaces. Coupling efficiency was quantitated by fluorescence signaling based on immunoreactivity of themore » YGGFL motif. It was concluded that COMU solutions should be prepared fresh and used within 5 h when stored at ~23 °C and not beyond 24 h if stored refrigerated, both in closed containers. Caveats to gauging COMU stability by absorption spectroscopy are discussed. Commercial YGGFL peptides needed independent QC, due to immunoreactivity variations for the same sequence synthesized by different vendors. This technique is useful in evaluating the stability of other activation/coupling reagents besides COMU and as a metrology tool for SPPS and peptide microarrays.« less
Characterization of integrated optical CD for process control
NASA Astrophysics Data System (ADS)
Yu, Jackie; Uchida, Junichi; van Dommelen, Youri; Carpaij, Rene; Cheng, Shaunee; Pollentier, Ivan; Viswanathan, Anita; Lane, Lawrence; Barry, Kelly A.; Jakatdar, Nickhil
2004-05-01
The accurate measurement of CD (critical dimension) and its application to inline process control are key challenges for high yield and OEE (overall equipment efficiency) in semiconductor production. CD-SEM metrology, although providing the resolution necessary for CD evaluation, suffers from the well-known effect of resist shrinkage, making accuracy and stability of the measurements an issue. For sub-100 nm in-line process control, where accuracy and stability as well as speed are required, CD-SEM metrology faces serious limitations. In contrast, scatterometry, using broadband optical spectra taken from grating structures, does not suffer from such limitations. This technology is non-destructive and, in addition to CD, provides profile information and film thickness in a single measurement. Using Timbre's Optical Digital Profililometry (ODP) technology, we characterized the Process Window, using a iODP101 integrated optical CD metrology into a TEL Clean Track at IMEC. We demonstrate the Optical CD's high sensitivity to process change and its insensitivity to measurement noise. We demonstrate the validity of ODP modeling by showing its accurate response to known process changes built into the evaluation and its excellent correlation to CD-SEM. We will further discuss the intrinsic Optical CD metrology factors that affect the tool precision, accuracy and its correlation to CD-SEM.
Overlay improvements using a real time machine learning algorithm
NASA Astrophysics Data System (ADS)
Schmitt-Weaver, Emil; Kubis, Michael; Henke, Wolfgang; Slotboom, Daan; Hoogenboom, Tom; Mulkens, Jan; Coogans, Martyn; ten Berge, Peter; Verkleij, Dick; van de Mast, Frank
2014-04-01
While semiconductor manufacturing is moving towards the 14nm node using immersion lithography, the overlay requirements are tightened to below 5nm. Next to improvements in the immersion scanner platform, enhancements in the overlay optimization and process control are needed to enable these low overlay numbers. Whereas conventional overlay control methods address wafer and lot variation autonomously with wafer pre exposure alignment metrology and post exposure overlay metrology, we see a need to reduce these variations by correlating more of the TWINSCAN system's sensor data directly to the post exposure YieldStar metrology in time. In this paper we will present the results of a study on applying a real time control algorithm based on machine learning technology. Machine learning methods use context and TWINSCAN system sensor data paired with post exposure YieldStar metrology to recognize generic behavior and train the control system to anticipate on this generic behavior. Specific for this study, the data concerns immersion scanner context, sensor data and on-wafer measured overlay data. By making the link between the scanner data and the wafer data we are able to establish a real time relationship. The result is an inline controller that accounts for small changes in scanner hardware performance in time while picking up subtle lot to lot and wafer to wafer deviations introduced by wafer processing.
Using the Leitz LMS 2000 for monitoring and improvement of an e-beam
NASA Astrophysics Data System (ADS)
Blaesing-Bangert, Carola; Roeth, Klaus-Dieter; Ogawa, Yoichi
1994-11-01
Kaizen--a continuously improving--is a philosophy lived in Japan which is also becoming more and more important in Western companies. To implement this philosophy in the semiconductor industry, a high performance metrology tool is essential to determine the status of production quality periodically. An important prerequisite for statistical process control is the high stability of the metrology tool over several months or years; the tool-induced shift should be as small as possible. The pattern placement metrology tool Leitz LMS 2000 has been used in a major European mask house for several years now to qualify masks within the tightest specifications and to monitor the MEBES III and its cassettes. The mask shop's internal specification for the long term repeatability of the pattern placement metrology tool is 19 nm instead of 42 nm as specified by the supplier of the tool. Then the process capability of the LMS 2000 over 18 months is represented by an average cpk value of 2.8 for orthogonality, 5.2 for x-scaling, and 3.0 for y-scaling. The process capability of the MEBES III and its cassettes was improved in the past years. For instance, 100% of the masks produced with a process tolerance of +/- 200 nm are now within this limit.
Optical truss and retroreflector modeling for picometer laser metrology
NASA Astrophysics Data System (ADS)
Hines, Braden E.
1993-09-01
Space-based astrometric interferometer concepts typically have a requirement for the measurement of the internal dimensions of the instrument to accuracies in the picometer range. While this level of resolution has already been achieved for certain special types of laser gauges, techniques for picometer-level accuracy need to be developed to enable all the various kinds of laser gauges needed for space-based interferometers. Systematic errors due to retroreflector imperfections become important as soon as the retroreflector is allowed to either translate in position or articulate in angle away from its nominal zero-point. Also, when combining several laser interferometers to form a three-dimensional laser gauge (a laser optical truss), systematic errors due to imperfect knowledge of the truss geometry are important as the retroreflector translates away from its nominal zero-point. In order to assess the astrometric performance of a proposed instrument, it is necessary to determine how the effects of an imperfect laser metrology system impact the astrometric accuracy. This paper show the development of an error propagation model from errors in the 1-D metrology measurements through the impact on the overall astrometric accuracy for OSI. Simulations are then presented based on this development which were used to define a multiplier which determines the 1-D metrology accuracy required to produce a given amount of fringe position error.
NASA Astrophysics Data System (ADS)
Liedberg, Hans; Abdelaziz, Yasser; Tesfaye, Fitsum; Egadwa, Wilson; Norranim, Uthai; Rwashana, Simon; Kagoma, Alphonce; Ziagi, Adam; Kwong, Christian Ng Ha; Madeleine, Gilbert
2017-01-01
A Regional Metrology Organization (RMO) supplementary comparison of platinum resistance thermometer and digital thermometer (AFRIMETS.T-S1) was carried out by the National Metrology Institute of South Africa (NMISA), National Institute for Standards Egypt (NIS), National Metrology Institute of Ethiopia (NMIE), Kenya Bureau of Standards (KEBS), National Institute of Metrology Thailand (NIMT), Uganda National Bureau of Standards (UNBS), Tanzania Bureau of Standards (TBS), Mauritius Standards Bureau (MSB) and Seychelles Bureau of Standards (SBS) between March 2008 and October 2010. The temperature range of the inter comparison is -50 °C to 450 °C. The results of this comparison are reported here, along with descriptions of the Artefacts and devices used during measurement. This report also presents the uncertainty budget. The results are analysed and normalized error (En) values are reported. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Entanglement with negative Wigner function of three thousand atoms heralded by one photon
NASA Astrophysics Data System (ADS)
McConnell, Robert; Zhang, Hao; Hu, Jiazhong; Ćuk, Senka; Vuletić, Vladan
2016-06-01
Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. Metrologically useful entangled states of large atomic ensembles have been experimentally realized [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], but these states display Gaussian spin distribution functions with a non-negative Wigner function. Non-Gaussian entangled states have been produced in small ensembles of ions [11, 12], and very recently in large atomic ensembles [13, 14, 15]. Here, we generate entanglement in a large atomic ensemble via the interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function, an important hallmark of nonclassicality, and verify an entanglement depth (minimum number of mutually entangled atoms) of 2910 ± 190 out of 3100 atoms. Attaining such a negative Wigner function and the mutual entanglement of virtually all atoms is unprecedented for an ensemble containing more than a few particles. While the achieved purity of the state is slightly below the threshold for entanglement-induced metrological gain, further technical improvement should allow the generation of states that surpass this threshold, and of more complex Schrödinger cat states for quantum metrology and information processing.
NASA Astrophysics Data System (ADS)
Currie, L. A.
2003-01-01
Radiocarbon dating would not have been possible if 14C had not had the “wrong” half-life—a fact that delayed its discovery [1]. Following the discovery of this 5730 year radionuclide in laboratory experiments by Ruben and Kamen, it became clear to W. F. Libby that 14C should exist in nature, and that it could serve as a quantitative means for dating artifacts and events marking the history of civilization. The search for natural radiocarbon was a metrological challenge; the level in the living biosphere [ca. 230 Bq/kg] lay far beyond the then current state of the measurement art. This article traces the metrological history of radiocarbon, from the initial breakthrough devised by Libby, to minor (evolutionary) and major (revolutionary) advances that have brought 14C measurement from a crude, bulk [8 g carbon] dating tool, to a refined probe for dating tiny amounts of precious artifacts, and for “molecular dating” at the 10 μg to 100 μg level. The metrological advances led to opportunities and surprises, such as the non-monotonic dendrochronological calibration curve and the “bomb effect,” that spawned new multidisciplinary areas of application, ranging from cosmic ray physics to oceanography to the reconstruction of environmental history.
Development of metrology for freeform optics in reflection mode
NASA Astrophysics Data System (ADS)
Burada, Dali R.; Pant, Kamal K.; Mishra, Vinod; Bichra, Mohamed; Khan, Gufran S.; Sinzinger, Stefan; Shakher, Chandra
2017-06-01
The increased range of manufacturable freeform surfaces offered by the new fabrication techniques is giving opportunities to incorporate them in the optical systems. However, the success of these fabrication techniques depends on the capabilities of metrology procedures and a feedback mechanism to CNC machines for optimizing the manufacturing process. Therefore, a precise and in-situ metrology technique for freeform optics is in demand. Though all the techniques available for aspheres have been extended for the freeform surfaces by the researchers, but none of the techniques has yet been incorporated into the manufacturing machine for in-situ measurement. The most obvious reason is the complexity involved in the optical setups to be integrated in the manufacturing platforms. The Shack-Hartmann sensor offers the potential to be incorporated into the machine environment due to its vibration insensitivity, compactness and 3D shape measurement capability from slope data. In the present work, a measurement scheme is reported in which a scanning Shack-Hartmann Sensor has been employed and used as a metrology tool for measurement of freeform surface in reflection mode. Simulation studies are conducted for analyzing the stitching accuracy in presence of various misalignment errors. The proposed scheme is experimentally verified on a freeform surface of cubic phase profile.
XPS-XRF hybrid metrology enabling FDSOI process
NASA Astrophysics Data System (ADS)
Hossain, Mainul; Subramanian, Ganesh; Triyoso, Dina; Wahl, Jeremy; Mcardle, Timothy; Vaid, Alok; Bello, A. F.; Lee, Wei Ti; Klare, Mark; Kwan, Michael; Pois, Heath; Wang, Ying; Larson, Tom
2016-03-01
Planar fully-depleted silicon-on-insulator (FDSOI) technology potentially offers comparable transistor performance as FinFETs. pFET FDOSI devices are based on a silicon germanium (cSiGe) layer on top of a buried oxide (BOX). Ndoped interfacial layer (IL), high-k (HfO2) layer and the metal gate stacks are then successively built on top of the SiGe layer. In-line metrology is critical in precisely monitoring the thickness and composition of the gate stack and associated underlying layers in order to achieve desired process control. However, any single in-line metrology technique is insufficient to obtain the thickness of IL, high-k, cSiGe layers in addition to Ge% and N-dose in one single measurement. A hybrid approach is therefore needed that combines the capabilities of more than one measurement technique to extract multiple parameters in a given film stack. This paper will discuss the approaches, challenges, and results associated with the first-in-industry implementation of XPS-XRF hybrid metrology for simultaneous detection of high-k thickness, IL thickness, N-dose, cSiGe thickness and %Ge, all in one signal measurement on a FDSOI substrate in a manufacturing fab. Strong correlation to electrical data for one or more of these measured parameters will also be presented, establishing the reliability of this technique.
Measuring soot particles from automotive exhaust emissions
NASA Astrophysics Data System (ADS)
Andres, Hanspeter; Lüönd, Felix; Schlatter, Jürg; Auderset, Kevin; Jordan-Gerkens, Anke; Nowak, Andreas; Ebert, Volker; Buhr, Egbert; Klein, Tobias; Tuch, Thomas; Wiedensohler, Alfred; Mamakos, Athanasios; Riccobono, Francesco; Discher, Kai; Högström, Richard; Yli-Ojanperä, Jaakko; Quincey, Paul
2014-08-01
The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today's opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.
Improving the accuracy of CT dimensional metrology by a novel beam hardening correction method
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Li, Lei; Zhang, Feng; Xi, Xiaoqi; Deng, Lin; Yan, Bin
2015-01-01
Its powerful nondestructive characteristics are attracting more and more research into the study of computed tomography (CT) for dimensional metrology, which offers a practical alternative to the common measurement methods. However, the inaccuracy and uncertainty severely limit the further utilization of CT for dimensional metrology due to many factors, among which the beam hardening (BH) effect plays a vital role. This paper mainly focuses on eliminating the influence of the BH effect in the accuracy of CT dimensional metrology. To correct the BH effect, a novel exponential correction model is proposed. The parameters of the model are determined by minimizing the gray entropy of the reconstructed volume. In order to maintain the consistency and contrast of the corrected volume, a punishment term is added to the cost function, enabling more accurate measurement results to be obtained by the simple global threshold method. The proposed method is efficient, and especially suited to the case where there is a large difference in gray value between material and background. Different spheres with known diameters are used to verify the accuracy of dimensional measurement. Both simulation and real experimental results demonstrate the improvement in measurement precision. Moreover, a more complex workpiece is also tested to show that the proposed method is of general feasibility.
What metrology can do to improve the quality of your atmospheric ammonia measurements
NASA Astrophysics Data System (ADS)
Leuenberger, Daiana; Martin, Nicholas A.; Pascale, Céline; Guillevic, Myriam; Ackermann, Andreas; Ferracci, Valerio; Cassidy, Nathan; Hook, Josh; Battersby, Ross M.; Tang, Yuk S.; Stevens, Amy C. M.; Jones, Matthew R.; Braban, Christine F.; Gates, Linda; Hangartner, Markus; Sacco, Paolo; Pagani, Diego; Hoffnagle, John A.; Niederhauser, Bernhard
2017-04-01
Measuring ammonia in ambient air is a sensitive and priority issue due to its harmful effects on human health and ecosystems. The European Directive 2001/81/EC on "National Emission Ceilings for Certain Atmospheric Pollutants (NEC)" regulates ammonia emissions in the member states. However, there is a lack of regulation to ensure reliable ammonia measurements, namely in applicable analytical technology, maximum allowed uncertainty, quality assurance and quality control (QC/QA) procedures, as well as in the infrastructure to attain metrological traceability, i.e. that the results of measurements are traceable to SI-units through an unbroken chain of calibrations. In the framework of the European Metrology Research Programme (EMRP) project on the topic "Metrology for Ammonia in Ambient Air" (MetNH3), European national metrology institutes (NMI's) have joined to tackle the issue of generating SI-traceable reference material, i.e. generate reference gas mixtures containing known amount fractions of NH3.This requires special infrastructure and analytical techniques: Measurements of ambient ammonia are commonly carried out with diffusive samplers or by active sampling with denuders, but such techniques have not yet been extensively validated. Improvements in the metrological traceability may be achieved through the determination of NH3 diffusive sampling rates using ammonia Primary Standard Gas Mixtures (PSMs), developed by gravimetry at the National Physical Laboratory NPL and a controlled atmosphere test facility in combination with on-line monitoring with a cavity ring-down spectrometer. The Federal Institute of Metrology METAS has developed an infrastructure to generate SI-traceable NH3 reference gas mixtures dynamically in the amount fraction range 0.5-500 nmol/mol (atmospheric concentrations) and with uncertainties UNH3 <3%. The infrastructure consists of a stationary as well as a mobile device for full flexibility for calibrations in the laboratory and in the field. Both devices apply the method of temperature and pressure dependant permeation of a pure substance through a membrane into a stream of pre-purified matrix gas and subsequent dilution to required amount fractions. All relevant parameters are fully traceable to SI-units. Extractive optical analysers can be connected directly to both, stationary and mobile systems for calibration. Moreover, the resulting gas mixture can also be pressurised into coated cylinders by cryo-filling. The mobile system as well as these cylinders can be applied for calibrations of optical instruments in other laboratories and in the field. In addition, an SI-traceable dilution system based on a cascade of critical orifices has been established to dilute NH3 mixtures in the order of μmol/mol stored in cylinders. It is planned to apply this system to calibrate and re-sample gas mixtures in cylinders due to its very economical gas use. Here we present insights into the development of said infrastructure and results performance tests. Moreover, we include results of the study on adsorption/desorption effects in dry as well as humidified matrix gas into the discussion on the generation of reference gas mixtures. Acknowledgement: This work was supported by the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.
NASA Technical Reports Server (NTRS)
Cordara, Franco; Grimaldi, Sabrina; Leschiutta, Sigfrido
1994-01-01
Time and frequency metrology in Europe presents some peculiar features in its three main components: research on clocks, comparisons and dissemination methods, and dissemination services. Apart from the usual activities of the national metrological laboratories, an increasing number of cooperation between the European countries are promoted inside some European organizations, such as the ECC, EFTA, EUROMET, and WECC. Cooperation between these organizations is covered. The present, evolving situation will be further influenced by the recent political changes in Eastern Europe.
Overlay improvement methods with diffraction based overlay and integrated metrology
NASA Astrophysics Data System (ADS)
Nam, Young-Sun; Kim, Sunny; Shin, Ju Hee; Choi, Young Sin; Yun, Sang Ho; Kim, Young Hoon; Shin, Si Woo; Kong, Jeong Heung; Kang, Young Seog; Ha, Hun Hwan
2015-03-01
To accord with new requirement of securing more overlay margin, not only the optical overlay measurement is faced with the technical limitations to represent cell pattern's behavior, but also the larger measurement samples are inevitable for minimizing statistical errors and better estimation of circumstance in a lot. From these reasons, diffraction based overlay (DBO) and integrated metrology (IM) were mainly proposed as new approaches for overlay enhancement in this paper.
Jędrkiewicz, Renata; Orłowski, Aleksander; Namieśnik, Jacek; Tobiszewski, Marek
2016-01-15
In this study we perform ranking of analytical procedures for 3-monochloropropane-1,2-diol determination in soy sauces by PROMETHEE method. Multicriteria decision analysis was performed for three different scenarios - metrological, economic and environmental, by application of different weights to decision making criteria. All three scenarios indicate capillary electrophoresis-based procedure as the most preferable. Apart from that the details of ranking results differ for these three scenarios. The second run of rankings was done for scenarios that include metrological, economic and environmental criteria only, neglecting others. These results show that green analytical chemistry-based selection correlates with economic, while there is no correlation with metrological ones. This is an implication that green analytical chemistry can be brought into laboratories without analytical performance costs and it is even supported by economic reasons. Copyright © 2015 Elsevier B.V. All rights reserved.
Quantum metrology and estimation of Unruh effect
Wang, Jieci; Tian, Zehua; Jing, Jiliang; Fan, Heng
2014-01-01
We study the quantum metrology for a pair of entangled Unruh-Dewitt detectors when one of them is accelerated and coupled to a massless scalar field. Comparing with previous schemes, our model requires only local interaction and avoids the use of cavities in the probe state preparation process. We show that the probe state preparation and the interaction between the accelerated detector and the external field have significant effects on the value of quantum Fisher information, correspondingly pose variable ultimate limit of precision in the estimation of Unruh effect. We find that the precision of the estimation can be improved by a larger effective coupling strength and a longer interaction time. Alternatively, the energy gap of the detector has a range that can provide us a better precision. Thus we may adjust those parameters and attain a higher precision in the estimation. We also find that an extremely high acceleration is not required in the quantum metrology process. PMID:25424772
Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alcock, Simon G., E-mail: simon.alcock@diamond.ac.uk; Nistea, Ioana; Sawhney, Kawal
2016-05-15
We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM’s autocollimator adds intomore » the overall measured value of the mirror’s slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.« less
Optimizing Hybrid Metrology: Rigorous Implementation of Bayesian and Combined Regression.
Henn, Mark-Alexander; Silver, Richard M; Villarrubia, John S; Zhang, Nien Fan; Zhou, Hui; Barnes, Bryan M; Ming, Bin; Vladár, András E
2015-01-01
Hybrid metrology, e.g., the combination of several measurement techniques to determine critical dimensions, is an increasingly important approach to meet the needs of the semiconductor industry. A proper use of hybrid metrology may yield not only more reliable estimates for the quantitative characterization of 3-D structures but also a more realistic estimation of the corresponding uncertainties. Recent developments at the National Institute of Standards and Technology (NIST) feature the combination of optical critical dimension (OCD) measurements and scanning electron microscope (SEM) results. The hybrid methodology offers the potential to make measurements of essential 3-D attributes that may not be otherwise feasible. However, combining techniques gives rise to essential challenges in error analysis and comparing results from different instrument models, especially the effect of systematic and highly correlated errors in the measurement on the χ 2 function that is minimized. Both hypothetical examples and measurement data are used to illustrate solutions to these challenges.
Half a century of light scatter metrology and counting
NASA Astrophysics Data System (ADS)
Stover, John C.
2014-09-01
Back in the early days Bill Wolf once said something like: "The guy with the lowest scatter measurement is closest to the right answer." He was often right then - but not anymore. Everything has changed. Today measurements are limited by Rayleigh scatter from the air - not the instrument. We have both written and physical standards and everybody spells BRDF the same way. In the time it takes to give this talk, over 100,000 silicon wafers will be inspected around the world using a few thousand scatterometers - average price about one million dollars each. The way the world illuminates everything from homes to football fields is changing with the advent of high brightness LED's and these lighting systems are designed using a combination of scatter metrology and analysis techniques - many of which were started at The Optical Sciences Center. This paper reviews two major highlights in half a century of scatter metrology progress.
The elusive Heisenberg limit in quantum-enhanced metrology
Demkowicz-Dobrzański, Rafał; Kołodyński, Jan; Guţă, Mădălin
2012-01-01
Quantum precision enhancement is of fundamental importance for the development of advanced metrological optical experiments, such as gravitational wave detection and frequency calibration with atomic clocks. Precision in these experiments is strongly limited by the 1/√N shot noise factor with N being the number of probes (photons, atoms) employed in the experiment. Quantum theory provides tools to overcome the bound by using entangled probes. In an idealized scenario this gives rise to the Heisenberg scaling of precision 1/N. Here we show that when decoherence is taken into account, the maximal possible quantum enhancement in the asymptotic limit of infinite N amounts generically to a constant factor rather than quadratic improvement. We provide efficient and intuitive tools for deriving the bounds based on the geometry of quantum channels and semi-definite programming. We apply these tools to derive bounds for models of decoherence relevant for metrological applications including: depolarization, dephasing, spontaneous emission and photon loss. PMID:22990859
Nonlinear Quantum Metrology of Many-Body Open Systems
NASA Astrophysics Data System (ADS)
Beau, M.; del Campo, A.
2017-07-01
We introduce general bounds for the parameter estimation error in nonlinear quantum metrology of many-body open systems in the Markovian limit. Given a k -body Hamiltonian and p -body Lindblad operators, the estimation error of a Hamiltonian parameter using a Greenberger-Horne-Zeilinger state as a probe is shown to scale as N-[k -(p /2 )], surpassing the shot-noise limit for 2 k >p +1 . Metrology equivalence between initial product states and maximally entangled states is established for p ≥1 . We further show that one can estimate the system-environment coupling parameter with precision N-(p /2 ), while many-body decoherence enhances the precision to N-k in the noise-amplitude estimation of a fluctuating k -body Hamiltonian. For the long-range Ising model, we show that the precision of this parameter beats the shot-noise limit when the range of interactions is below a threshold value.
Development of the metrology and imaging of cellulose nanocrystals
NASA Astrophysics Data System (ADS)
Postek, Michael T.; Vladár, András; Dagata, John; Farkas, Natalia; Ming, Bin; Wagner, Ryan; Raman, Arvind; Moon, Robert J.; Sabo, Ronald; Wegner, Theodore H.; Beecher, James
2011-02-01
The development of metrology for nanoparticles is a significant challenge. Cellulose nanocrystals (CNCs) are one group of nanoparticles that have high potential economic value but present substantial challenges to the development of the measurement science. Even the largest trees owe their strength to this newly appreciated class of nanomaterials. Cellulose is the world's most abundant natural, renewable, biodegradable polymer. Cellulose occurs as whisker-like microfibrils that are biosynthesized and deposited in plant material in a continuous fashion. The nanocrystals are isolated by hydrolyzing away the amorphous segments leaving the acid resistant crystalline fragments. Therefore, the basic raw material for new nanomaterial products already abounds in nature and is available to be utilized in an array of future materials. However, commercialization requires the development of efficient manufacturing processes and nanometrology to monitor quality. This paper discusses some of the instrumentation, metrology and standards issues associated with the ramping up for production and use of CNCs.
Theory-based metrological traceability in education: A reading measurement network.
Fisher, William P; Stenner, A Jackson
2016-10-01
Huge resources are invested in metrology and standards in the natural sciences, engineering, and across a wide range of commercial technologies. Significant positive returns of human, social, environmental, and economic value on these investments have been sustained for decades. Proven methods for calibrating test and survey instruments in linear units are readily available, as are data- and theory-based methods for equating those instruments to a shared unit. Using these methods, metrological traceability is obtained in a variety of commercially available elementary and secondary English and Spanish language reading education programs in the U.S., Canada, Mexico, and Australia. Given established historical patterns, widespread routine reproduction of predicted text-based and instructional effects expressed in a common language and shared frame of reference may lead to significant developments in theory and practice. Opportunities for systematic implementations of teacher-driven lean thinking and continuous quality improvement methods may be of particular interest and value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhitarev, V. E., E-mail: vejitarev@yandex.ru; Lebedev, G. V.; Sergevnin, A. Yu.
2016-12-15
The efficiency of control rods of the RBMK critical assembly is measured in a series of experiments. The aim of measurements is to determine the characteristics of the model of an RKI-1 reactimeter. The RKI-1 reactimeter is intended for measuring the efficiency of control rods when, according to conditions of operation, the metrological certification of results of an experiment is required. Complications with the metrological certification of reactimeters arise owing to the fact that usually calculated corrections to the results of measurements are required. When the RKI-1 reactimeter is used, there is no need to introduce calculated corrections; the resultmore » of measurements is given with the indication of substantiated errors. In connection with this, the metrological certification of the results of measurements using the RKI-1 reactimeter is simplified.« less
Sub-atomic dimensional metrology: developments in the control of x-ray interferometers
NASA Astrophysics Data System (ADS)
Yacoot, Andrew; Kuetgens, Ulrich
2012-07-01
Within the European Metrology Research Programme funded project NANOTRACE, the nonlinearity of the next generation of optical interferometers has been measured using x-ray interferometry. The x-ray interferometer can be regarded as a ruler or translation stage whose graduations or displacement steps are based on the lattice spacing of the crystallographic planes from which the x-rays are diffracted: in this case the graduations are every 192 pm corresponding to the spacing between the (2 2 0) planes in silicon. Precise displacement of the x-ray interferometer's monolithic translation stage in steps corresponding to discrete numbers of x-ray fringes requires servo positioning capability at the picometre level. To achieve this very fine control, a digital control system has been developed which has opened up the potential for advances in metrology using x-ray interferometry that include quadrature counting of x-ray fringes.
Measuring optical phase digitally in coherent metrology systems
NASA Astrophysics Data System (ADS)
Kelly, Damien P.; Ryle, James; Zhao, Liang; Sheridan, John T.
2017-05-01
The accurate measurement of optical phase has many applications in metrology. For biological samples, which appear transparent, the phase data provides information about the refractive index of the sample. In speckle metrology, the phase can be used to estimate stress and strains of a rough surface with high sensitivity. In this theoretical manuscript we compare and contrast the properties of two techniques for estimating the phase distribution of a wave field under the paraxial approximation: (I) A digital holographic system, and (II) An idealized phase retrieval system. Both systems use a CCD or CMOS array to measure the intensities of the wave fields that are reflected from or transmitted through the sample of interest. This introduces a numerical aspect to the problem. For the two systems above we examine how numerical calculations can limit the performance of these systems leading to a near-infinite number of possible solutions.
High-intensity therapeutic ultrasound: metrological requirements versus clinical usage
NASA Astrophysics Data System (ADS)
Aubry, J.-F.
2012-10-01
High-intensity therapeutic ultrasound (HITU) is an appealing non-invasive, non-ionizing therapeutic modality with a wide range of tissue interactions ranging from transient permeabilization of cell membranes to thermal ablation. The ability to guide and monitor the treatment with an associated ultrasonic or magnetic resonance imaging device has resulted in a dramatic rise in the clinical use of therapeutic ultrasound in the past two decades. Nevertheless, the range of clinical applications and the number of patients treated has grown at a much higher pace than the definition of standards. In this paper the metrological requirements of the therapeutic beams are reviewed and are compared with the current clinical use of image-guided HITU mostly based on a practical approach. Liver therapy, a particularly challenging clinical application, is discussed to highlight the differences between some complex clinical situations and the experimental conditions of the metrological characterization of ultrasonic transducers.
FOREWORD: Special issue on radionuclide metrology
NASA Astrophysics Data System (ADS)
Simpson, Bruce; Judge, Steven
2007-08-01
This special issue of Metrologia on radionuclide metrology is the first of a trilogy on the subject of ionizing radiation measurement, a field that is overseen by Sections I, II and III of the CIPM's Consultative Committee for Ionizing Radiation (CCRI). The idea was first proposed at the 2003 series of CCRI Section meetings, with the general aim of showcasing the relevance and importance of metrology in ionizing radiation to a broader metrological audience. After the 2005 meeting of Section II (measurement of radionuclides), the radioactivity aspect of the project began to move forward in earnest. A working group was set up with the brief that the special issue should be of use by experienced metrologists as an overview of the 'state of the art' to compare progress and scientific content with those in other fields of metrology, as a resource for new metrologists joining the field and as a guide for users of radioactivity to explain how traceability to the international measurement system may be achieved. Since mankind first became aware of the existence of radioactivity just over a century ago (due to its discovery by Becquerel and further work by the Curies), much has been learnt and understood in the interim period. The field of radionuclide metrology that developed subsequently is broad-based and encompasses, amongst others, nuclear physics (experimental and theory), chemistry, mathematics, mathematical statistics, uncertainty analysis and advanced computing for data analysis, simulation and modelling. To determine the activity of radionuclides accurately requires elements of all of these subjects. In more recent decades the focus has been on the practical applications of radioactivity in industry and the health field in particular. In addition, low-level environmental radioactivity monitoring has taken on ever greater importance in the nuclear power era. These developments have required new detection instrumentation and techniques on an ongoing basis to ensure the improvement in accuracy and precision of measurement as demanded by the stringent requirements of the user community, such as the correct calibration of nuclear instrumentation. This leads into the need for traceability to national measurement standards maintained by the national metrology institutes. As part of the radioactivity traceability chain, as for all areas of metrology, it is vital that systems are in place to ensure that national standards can be checked for worldwide uniformity and measurement equivalence. Many of the resulting areas are covered by the topics in this special issue, although specifically excluded from the scope of the publication are topics that are widely covered in other publications due to their application in applied metrology—for example, radiochemistry, environmental gamma spectrometry and alpha spectrometry. There are three sections to this issue, starting with papers on how the CIPM Mutual Recognition Arrangement has been implemented for radionuclide metrology, following into the bulk of the publication with articles on the `state of the art' in radionuclide metrology and ending with traceability to national/international standards in nuclear medicine, environmental monitoring, radiation protection and decommissioning. This special issue in essence follows on from earlier BIPM Monographies that were published in order to provide the base information for radionuclide metrology. In many respects they complement the special issue since much of their content is still valid today, particularly those published more recently as an aid to ensuring consistency of method and data. The BIPM Monographies are freely available to download from the BIPM website at http://www.bipm.org/en/publications/monographies-ri.html. The papers in the special issue draw on the experience of radionuclide metrologists who have been involved in their area of expertise for many years. The authors give readers an insightful account of the selected topics through in-depth review articles. We are indeed indebted to them for accepting this difficult and time-consuming task and also thank the many researchers recognized in the articles who have contributed to expanding the field over many years. The considerable effort put into this issue would not have been possible without input from the appointed referees, as well as the project team also comprising Yoshio Hino, Jose-Marie Los Arcos, Mike Unterweger and Brian Zimmerman. Thanks are also due to the Metrologia Editor, Jeffrey Williams, and the editorial staff for their sterling efforts in keeping the issue on track and the publication on schedule. Last, but not least, we thank Prof. Georgio Moscati, President of the CCRI, and Dr Penny Allisy-Roberts, Executive Secretary of the CCRI, for their continuous interest and support for the project.
Performances of OsO(4) stabilized CO(2) lasers as optical frequency standards near 29 THz.
Daussy, C; Ducos, F; Rovera, G D; Acef, O
2000-01-01
In this paper, we report on the metrological capabilities of CO (2)/OsO(4) optical frequency standards operating around 29 THz. Those frequency standards are currently involved in various fields, such as frequency metrology, high resolution spectroscopy, and Rydberg constant measurements. The most impressive features of the standards lies in the 10(-15) level frequency stability allied to a long-term reproducibility (1 yr) of 1.3x10 (-13).
Karam, Lisa; Anagnostakis, Marios J; Gudelis, Arunas; Marsoem, Pujadi; Mauring, Alexander; Wurdiyanto, Gatot; Yücel, Ülkü
2012-09-01
The Scientific Committee of the ICRM decided, for the 2011 Conference, to present laboratories that are at a key developmental stage in establishing, expanding or applying radionuclide metrology capabilities. The expansion of radionuclide metrology capabilities is crucial to meet evolving and emerging needs in health care, environmental monitoring, and nuclear energy. Five laboratories (from Greece, Lithuania, Indonesia, Norway and Turkey) agreed to participate. Each laboratory is briefly introduced, and examples of their capabilities and standardization activities are discussed. Published by Elsevier Ltd.
Aerospace Mechanisms Symposium (22nd) Held at Hampton, Virginia on 4-6 May 1988.
1988-05-06
monitoring is accomplished by a pressure transducer located near the hole drilled through the vessel wall between seals. A lip is machined on the...are presented and a design example involving a machine tool metrology bench is given. Design goals included thousandfold strain attenuation in the...systems such as a metrology bench, etc. These bodies must be supported. Six degrees of freedom must be fixed, but if the base upon which they are
1980-03-01
Ennos, A. E., " Measurement by Laser Photography," National Physical Laboratory, Division of Optical Metrology, Teddington, Middlesex, U.K. 9. Archbold...Field Measurement ," Optics and Laser TechnoloZ, pp. 216 - 219, October 1776. 149 37. Khetan, R. P., and Chiang, F. P., "Strain Analysis by One Beam...AD-AO85 145 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/G 17/8 SURFACE DISPLACEMENT MEASUREMENTS , STRAIN AND VIBRATIONAL ANALY-ETC(U) MAR GO A B
Recent developments in dimensional nanometrology using AFMs
NASA Astrophysics Data System (ADS)
Yacoot, Andrew; Koenders, Ludger
2011-12-01
Scanning probe microscopes, in particular the atomic force microscope (AFM), have developed into sophisticated instruments that, throughout the world, are no longer used just for imaging, but for quantitative measurements. A role of the national measurement institutes has been to provide traceable metrology for these instruments. This paper presents a brief overview as to how this has been achieved, highlights the future requirements for metrology to support developments in AFM technology and describes work in progress to meet this need.
Addressing FinFET metrology challenges in 1X node using tilt-beam CD-SEM
NASA Astrophysics Data System (ADS)
Zhang, Xiaoxiao; Zhou, Hua; Ge, Zhenhua; Vaid, Alok; Konduparthi, Deepasree; Osorio, Carmen; Ventola, Stefano; Meir, Roi; Shoval, Ori; Kris, Roman; Adan, Ofer; Bar-Zvi, Maayan
2014-04-01
At 1X node, 3D FinFETS raise a number of new metrology challenges. Gate height and fin height are two of the most important parameters for process control. At present there is a metrology gap in inline in-die measurement of these parameters. In order to fill this metrology gap, in-column beam tilt has been developed and implemented on Applied Materials V4i+ top-down CD-SEM for height measurement. A low tilt (5°) beam and a high tilt (14°) beam have been calibrated to obtain two sets of images providing measurement of sidewall edge width to calculate height in the host. Evaluations are done with applications in both gate height and fin height. TEM correlation with R2 being 0.89 and precision of 0.81nm have been achieved on various in-die features in gate height application. Fin height measurement shows less accuracy (R2 being 0.77) and precision (1.49 nm) due to challenges brought by fin geometry, yet still promising as first attempt. Sensitivity to DOE offset, die-to-die and in-die variation is demonstrated in both gate height and fin height. Process defect is successfully captured from inline wafers with gate height measurement implemented in production. This is the first successful demonstration of inline in-die gate height measurement for 14nm FinFET process control.
Automatic pattern localization across layout database and photolithography mask
NASA Astrophysics Data System (ADS)
Morey, Philippe; Brault, Frederic; Beisser, Eric; Ache, Oliver; Röth, Klaus-Dieter
2016-03-01
Advanced process photolithography masks require more and more controls for registration versus design and critical dimension uniformity (CDU). The distribution of the measurement points should be distributed all over the whole mask and may be denser in areas critical to wafer overlay requirements. This means that some, if not many, of theses controls should be made inside the customer die and may use non-dedicated patterns. It is then mandatory to access the original layout database to select patterns for the metrology process. Finding hundreds of relevant patterns in a database containing billions of polygons may be possible, but in addition, it is mandatory to create the complete metrology job fast and reliable. Combining, on one hand, a software expertise in mask databases processing and, on the other hand, advanced skills in control and registration equipment, we have developed a Mask Dataprep Station able to select an appropriate number of measurement targets and their positions in a huge database and automatically create measurement jobs on the corresponding area on the mask for the registration metrology system. In addition, the required design clips are generated from the database in order to perform the rendering procedure on the metrology system. This new methodology has been validated on real production line for the most advanced process. This paper presents the main challenges that we have faced, as well as some results on the global performances.
Diffraction gratings metrology and ray-tracing results for an XUV Raman spectrometer at FLASH
Dziarzhytski, Siarhei; Siewert, Frank; Gwalt, Grzegorz; Seliger, Tino; Rübhausen, Michael; Weigelt, Holger; Brenner, Günter
2018-01-01
The extreme-ultraviolet double-stage imaging Raman spectrometer is a permanent experimental endstation at the plane-grating monochromator beamline branch PG1 at FLASH at DESY in Hamburg, Germany. This unique instrument covers the photon energy range from 20 to 200 eV with high energy resolution of about 2 to 20 meV (design values) featuring an efficient elastic line suppression as well as effective stray light rejection. Such a design enables studies of low-energy excitations like, for example, phonons in solids close to the vicinity of the elastic line. The Raman spectrometer effectively operates with four reflective off-axial parabolic mirrors and two plane-grating units. The optics quality and their precise alignment are crucial to guarantee best performance of the instrument. Here, results on a comprehensive investigation of the quality of the spectrometer diffraction gratings are presented. The gratings have been characterized by ex situ metrology at the BESSY-II Optics Laboratory, employing slope measuring deflectometry and interferometry as well as atomic force microscopy studies. The efficiency of these key optical elements has been measured at the at-wavelength metrology laboratory using the reflectometer at the BESSY-II Optics beamline. Also, the metrology results are discussed with respect to the expected resolving power of the instrument by including them in ray-tracing studies of the instrument. PMID:29271763
NASA Astrophysics Data System (ADS)
Hourd, Andrew C.; Grimshaw, Anthony; Scheuring, Gerd; Gittinger, Christian; Brueck, Hans-Juergen; Chen, Shiuh-Bin; Chen, Parkson W.; Hartmann, Hans; Ordynskyy, Volodymyr; Jonckheere, Rik M.; Philipsen, Vicky; Schaetz, Thomas; Sommer, Karl
2002-08-01
Critical Dimension fidelity continues to be one of the key driving parameters defining photomask quality and printing performance. The present advanced optical CD metrology systems, operating at i-line, will very soon be challenged as viable tools owing to their restricted resolution and measurement linearity impact on the ability to produce repeatable measurements. Alternative measurement technologies such as CD-SEM and -AFM have started to appear, but are also not without tier concerns in the field of reticle CD metrology. This paper introduces a new optical metrology system (MueTec /) operating at DUV wavelength (248nm), which has been specifically designed to meet the resolution and measurement repeatability requirements of reticle manufacture at the 130nm and 100nm nodes. The system is based upon a specially designed mechanical-optical platform for maximum stability and very advanced optical, illumination, alignment and software systems. The at wavelength operation of this system also makes it an ideal platform for defect printability analysis and review. The system is currently part of a European Commission funded assessment project (IST-2000-28086: McD'OR) to develop a testing strategy to verify the system performance, agree on equipment specifications and demonstrate its capability on advanced production reticles - including long-term reliability. It is the preliminary results from this evaluation that are presented here.
Enabling Quantitative Optical Imaging for In-die-capable Critical Dimension Targets
Barnes, B.M.; Henn, M.-A.; Sohn, M. Y.; Zhou, H.; Silver, R. M.
2017-01-01
Dimensional scaling trends will eventually bring semiconductor critical dimensions (CDs) down to only a few atoms in width. New optical techniques are required to address the measurement and variability for these CDs using sufficiently small in-die metrology targets. Recently, Qin et al. [Light Sci Appl, 5, e16038 (2016)] demonstrated quantitative model-based measurements of finite sets of lines with features as small as 16 nm using 450 nm wavelength light. This paper uses simulation studies, augmented with experiments at 193 nm wavelength, to adapt and optimize the finite sets of features that work as in-die-capable metrology targets with minimal increases in parametric uncertainty. A finite element based solver for time-harmonic Maxwell's equations yields two- and three-dimensional simulations of the electromagnetic scattering for optimizing the design of such targets as functions of reduced line lengths, fewer number of lines, fewer focal positions, smaller critical dimensions, and shorter illumination wavelength. Metrology targets that exceeded performance requirements are as short as 3 μm for 193 nm light, feature as few as eight lines, and are extensible to sub-10 nm CDs. Target areas measured at 193 nm can be fifteen times smaller in area than current state-of-the-art scatterometry targets described in the literature. This new methodology is demonstrated to be a promising alternative for optical model-based in-die CD metrology. PMID:28757674
High-Speed Digital Interferometry
NASA Technical Reports Server (NTRS)
De Vine, Glenn; Shaddock, Daniel A.; Ware, Brent; Spero, Robert E.; Wuchenich, Danielle M.; Klipstein, William M.; McKenzie, Kirk
2012-01-01
Digitally enhanced heterodyne interferometry (DI) is a laser metrology technique employing pseudo-random noise (PRN) codes phase-modulated onto an optical carrier. Combined with heterodyne interferometry, the PRN code is used to select individual signals, returning the inherent interferometric sensitivity determined by the optical wavelength. The signal isolation arises from the autocorrelation properties of the PRN code, enabling both rejection of spurious signals (e.g., from scattered light) and multiplexing capability using a single metrology system. The minimum separation of optical components is determined by the wavelength of the PRN code.
Linkov, Pavel; Artemyev, Mikhail; Efimov, Anton E; Nabiev, Igor
2013-10-07
Fabrication of modern nanomaterials and nanostructures with specific functional properties is both scientifically promising and commercially profitable. The preparation and use of nanomaterials require adequate methods for the control and characterization of their size, shape, chemical composition, crystalline structure, energy levels, pathways and dynamics of physical and chemical processes during their fabrication and further use. In this review, we discuss different instrumental methods for the analysis and metrology of materials and evaluate their advantages and limitations at the nanolevel.
Integrated scatterometry for tight overlay and CD control to enable 20-nm node wafer manufacturing.
NASA Astrophysics Data System (ADS)
Benschop, Jos; Engelen, Andre; Cramer, Hugo; Kubis, Michael; Hinnen, Paul; van der Laan, Hans; Bhattacharyya, Kaustuve; Mulkens, Jan
2013-04-01
The overlay, CDU and focus requirements for the 20nm node can only be met using a holistic lithography approach whereby full use is made of high-order, field-by-field, scanner correction capabilities. An essential element in this approach is a fast, precise and accurate in-line metrology sensor, capable to measure on product. The capabilities of the metrology sensor as well as the impact on overlay, CD and focus will be shared in this paper.
NASA Astrophysics Data System (ADS)
Bhattacharyya, Kaustuve; Ke, Chih-Ming; Huang, Guo-Tsai; Chen, Kai-Hsiung; Smilde, Henk-Jan H.; Fuchs, Andreas; Jak, Martin; van Schijndel, Mark; Bozkurt, Murat; van der Schaar, Maurits; Meyer, Steffen; Un, Miranda; Morgan, Stephen; Wu, Jon; Tsai, Vincent; Liang, Frida; den Boef, Arie; ten Berge, Peter; Kubis, Michael; Wang, Cathy; Fouquet, Christophe; Terng, L. G.; Hwang, David; Cheng, Kevin; Gau, TS; Ku, Y. C.
2013-04-01
Aggressive on-product overlay requirements in advanced nodes are setting a superior challenge for the semiconductor industry. This forces the industry to look beyond the traditional way-of-working and invest in several new technologies. Integrated metrology2, in-chip overlay control, advanced sampling and process correction-mechanism (using the highest order of correction possible with scanner interface today), are a few of such technologies considered in this publication.
Aksiuta, E F; Ostashev, A V; Sergeev, E V; Aksiuta, V E
1997-01-01
The methods of the information (entropy) error theory were used to make a metrological analysis of the well-known commercial measuring systems for timing an anticipative reaction (AR) to the position of a moving object, which is based on the electromechanical, gas-discharge, and electron principles. The required accuracy of measurement was ascertained to be achieved only by using the systems based on the electron principle of moving object simulation and AR measurement.
An interferometer for high-resolution optical surveillance from GEO - internal metrology breadboard
NASA Astrophysics Data System (ADS)
Bonino, L.; Bresciani, F.; Piasini, G.; Pisani, M.; Cabral, A.; Rebordão, J.; Musso, F.
2017-11-01
This paper describes the internal metrology breadboard development activities performed in the frame of the EUCLID CEPA 9 RTP 9.9 "High Resolution Optical Satellite Sensor" project of the WEAO Research Cell by AAS-I and INETI. The Michelson Interferometer Testbed demonstrates the possibility of achieving a cophasing condition between two arms of the optical interferometer starting from a large initial white light Optical Path Difference (OPD) unbalance and of maintaining the fringe pattern stabilized in presence of disturbances.
Radius of Curvature Measurements: An Independent Look at Accuracy Using Novel Optical Metrology
NASA Technical Reports Server (NTRS)
Taylor, Bryon; Kahan, Mark; Russell, Kevin (Technical Monitor)
2002-01-01
The AMSD (Advanced Mirror System Demonstrator) program mirror specifications include the ability to manufacture the mirror to a radius of curvature of 10 m +/- 1 mm and to control its radius at 30K to the same specification. Therefore, it is necessary for the Government Team to be able to measure mirror radius of curvature to an accuracy of better than 0.5 mm. This presentation discusses a novel optical metrology system for measuring radius of curvature.
Bibliography of Soviet Laser Developments Number 54, July-August 1981.
1982-12-01
441. Kotyuk, A.F., A.P. Romashkov, and N.Sh. Khaykin (0). Production of a metrologic control system for measuring pulse power. IT, no. 8, 1981, 30-31...Possibility of recording the bas!ic characteristics of a wave process by a laser strain gauge . Sb 17, 30-34. 474. Dubovoy, A.P., and V.M. Sinel’nikov (0...Yu.S. Nechayev (560). Metrological features of a laser device with a single-mirror deflecting unit. Institut fiziki vysokoy energiy. Serpukhov
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2014-01-01
Based on 30 years of optical testing experience, a lot of mistakes, a lot of learning and a lot of experience, I have defined seven guiding principles for optical testing - regardless of how small or how large the optical testing or metrology task: Fully Understand the Task, Develop an Error Budget, Continuous Metrology Coverage, Know where you are, Test like you fly, Independent Cross-Checks, Understand All Anomalies. These rules have been applied with great success to the inprocess optical testing and final specification compliance testing of the JWST mirrors.
Microeconomics of 300-mm process module control
NASA Astrophysics Data System (ADS)
Monahan, Kevin M.; Chatterjee, Arun K.; Falessi, Georges; Levy, Ady; Stoller, Meryl D.
2001-08-01
Simple microeconomic models that directly link metrology, yield, and profitability are rare or non-existent. In this work, we validate and apply such a model. Using a small number of input parameters, we explain current yield management practices in 200 mm factories. The model is then used to extrapolate requirements for 300 mm factories, including the impact of simultaneous technology transitions to 130nm lithography and integrated metrology. To support our conclusions, we use examples relevant to factory-wide photo module control.
NASA Astrophysics Data System (ADS)
Leuenberger, Daiana; Balslev-Harder, David; Braban, Christine F.; Ebert, Volker; Ferracci, Valerio; Gieseking, Bjoern; Hieta, Tuomas; Martin, Nicholas A.; Pascale, Céline; Pogány, Andrea; Tiebe, Carlo; Twigg, Marsailidh M.; Vaittinen, Olavi; van Wijk, Janneke; Wirtz, Klaus; Niederhauser, Bernhard
2016-04-01
Measuring ammonia in ambient air is a sensitive and priority issue due to its harmful effects on human health and ecosystems. In addition to its acidifying effect on natural waters and soils and to the additional nitrogen input to ecosystems, ammonia is an important precursor for secondary aerosol formation in the atmosphere. The European Directive 2001/81/EC on "National Emission Ceilings for Certain Atmospheric Pollutants (NEC)" regulates ammonia emissions in the member states. However, there is a lack of regulation regarding certified reference material (CRM), applicable analytical methods, measurement uncertainty, quality assurance and quality control (QC/QA) procedures as well as in the infrastructure to attain metrological traceability. As shown in a key comparison in 2007, there are even discrepancies between reference materials provided by European National Metrology Institutes (NMIs) at amount fraction levels up to three orders of magnitude higher than ambient air levels. MetNH3 (Metrology for ammonia in ambient air), a three-year project that started in June 2014 in the framework of the European Metrology Research Programme (EMRP), aims to reduce the gap between requirements set by the European emission regulations and state-of-the-art of analytical methods and reference materials. The overarching objective of the JRP is to achieve metrological traceability for ammonia measurements in ambient air from primary certified reference material CRM and instrumental standards to the field level. This requires the successful completion of the three main goals, which have been assigned to three technical work packages: To develop improved reference gas mixtures by static and dynamic gravimetric generation methods Realisation and characterisation of traceable preparative calibration standards (in pressurised cylinders as well as mobile generators) of ammonia amount fractions similar to those in ambient air based on existing methods for other reactive analytes. The aimed uncertainty is < 1 % for static mixtures at the 10 to 100 μmol/mol level, and < 3 % for portable dynamic generators in the 0 to 500 nmol/mol amount fraction range. Special emphasis is put on the minimisation of adsorption losses. To develop and characterise laser based optical spectrometric standards Evaluation and characterisation of the applicability of a newly developed open-path as well as of existing extractive measurement techniques as optical transfer standards according to metrological standards. To establish the transfer from high-accuracy standards to field applicable methods Employment of characterised exposure chambers as well as field sites for validation and comparison experiments to test and evaluate the performance of different instruments and measurement methods at ammonia amount fractions of the ambient air. The active exchange in workshops and inter-comparisons, publications in technical journals as well as presentations at relevant conferences and standardisation bodies will transfer the knowledge to stakeholders and end-users. The work has been carried out in the framework of the EMRP. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rommeveaux, A.; Assoufid, L.; Ohashi, H.
2007-01-01
The first series of metrology round-robin measurements carried out in 2005 at the APS, ESRF and SPring-8 metrology laboratories involving two flat x-ray mirrors and a cylindrical x-ray mirror has shown excellent agreement among the three facilities Long Trace Profilers (LTP) despite their architectural differences. Because of the growing interest in diffraction-limited hard x-ray K-B focusing mirrors, it was decided to extend the round robin measurements to spherical and aspheric x-ray mirrors. The strong surface slope variation of these mirrors presents a real challenge to LTP. As a result, new LTP measurement protocol has to be developed and implemented tomore » ensure measurement accuracy and consistency. In this paper, different measurement techniques and procedures will be described, the results will be discussed, and comparison will be extended to micro-stitching interferometry measurements performed at Osaka University, Japan.« less
Wasak, Tomasz; Chwedeńczuk, Jan
2018-04-06
We propose an experiment, where the Bell inequality is violated in a many-body system of massive particles. The source of correlated atoms is a spinor F=1 Bose-Einstein condensate residing in an optical lattice. We characterize the complete procedure-the local operations, the measurements, and the inequality-necessary to run the Bell test. We show how the degree of violation of the Bell inequality depends on the strengths of the two-body correlations and on the number of scattered pairs. We show that the system can be used to demonstrate the Einstein-Podolsky-Rosen paradox. Also, the scattered pairs are an excellent many-body resource for the quantum-enhanced metrology. Our results apply to any multimode system where the spin-changing collision drives the scattering into separate regions. The presented inquiry shows that such a system is versatile as it can be used for the tests of nonlocality, quantum metrology, and quantum information.
Advantages of High Tolerance Measurements in Fusion Environments Applying Photogrammetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. Dodson, R. Ellis, C. Priniski, S. Raftopoulos, D. Stevens, M. Viola
2009-02-04
Photogrammetry, a state-of-the-art technique of metrology employing digital photographs as the vehicle for measurement, has been investigated in the fusion environment. Benefits of this high tolerance methodology include relatively easy deployment for multiple point measurements and deformation/distortion studies. Depending on the equipment used, photogrammetric systems can reach tolerances of 25 microns (0.001 in) to 100 microns (0.004 in) on a 3-meter object. During the fabrication and assembly of the National Compact Stellarator Experiment (NCSX) the primary measurement systems deployed were CAD coordinate-based computer metrology equipment and supporting algorithms such as both interferometer-aided (IFM) and absolute distance measurementbased (ADM) laser trackers,more » as well as portable Coordinate Measurement Machine (CMM) arms. Photogrammetry was employed at NCSX as a quick and easy tool to monitor coil distortions incurred during welding operations of the machine assembly process and as a way to reduce assembly downtime for metrology processes.« less
Laser SRS tracker for reverse prototyping tasks
NASA Astrophysics Data System (ADS)
Kolmakov, Egor; Redka, Dmitriy; Grishkanich, Aleksandr; Tsvetkov, Konstantin
2017-10-01
According to the current great interest concerning Large-Scale Metrology applications in many different fields of manufacturing industry, technologies and techniques for dimensional measurement have recently shown a substantial improvement. Ease-of-use, logistic and economic issues, as well as metrological performance, are assuming a more and more important role among system requirements. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of chip and microlasers as radiators on the linear-angular characteristics of existing measurement systems. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of microlasers as radiators on the linear-angular characteristics of existing measurement systems. The system consists of a distributed network-based layout, whose modularity allows to fit differently sized and shaped working volumes by adequately increasing the number of sensing units. Differently from existing spatially distributed metrological instruments, the remote sensor devices are intended to provide embedded data elaboration capabilities, in order to share the overall computational load.
Lovell-Smith, J W; Feistel, R; Harvey, A H; Hellmuth, O; Bell, S A; Heinonen, M; Cooper, J R
2016-01-01
Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth’s radiation balance, atmospheric water vapour is the strongest “greenhouse” gas, and non-equilibrium relative humidity at the air-sea interface drives evaporation and latent heat export from the ocean. In this paper, we examine the climatologically relevant atmospheric relative humidity, noting fundamental deficiencies in the definition of this key observable. The metrological history of this quantity is reviewed, problems with its current definition and measurement practice are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10. It is concluded that the International Bureau of Weights and Measures, (BIPM), in cooperation with the International Association for the Properties of Water and Steam, IAPWS, along with other international organisations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions for this long standing metrological problem, such as are suggested here. PMID:26877551
[Fundamental aspects for accrediting medical equipment calibration laboratories in Colombia].
Llamosa-Rincón, Luis E; López-Isaza, Giovanni A; Villarreal-Castro, Milton F
2010-02-01
Analysing the fundamental methodological aspects which should be considered when drawing up calibration procedure for electro-medical equipment, thereby permitting international standard-based accreditation of electro-medical metrology laboratories in Colombia. NTC-ISO-IEC 17025:2005 and GTC-51-based procedures for calibrating electro-medical equipment were implemented and then used as patterns. The mathematical model for determining the estimated uncertainty value when calibrating electro-medical equipment for accreditation by the Electrical Variable Metrology Laboratory's Electro-medical Equipment Calibration Area accredited in compliance with Superintendence of Industry and Commerce Resolution 25771 May 26th 2009 consists of two equations depending on the case; they are: E = (Ai + sigmaAi) - (Ar + sigmaAr + deltaAr1) and E = (Ai + sigmaAi) - (Ar + sigmaA + deltaAr1). The mathematical modelling implemented for measuring uncertainty in the Universidad Tecnológica de Pereira's Electrical Variable Metrology Laboratory (Electro-medical Equipment Calibration Area) will become a good guide for calibration initiated in other laboratories in Colombia and Latin-America.
NASA Astrophysics Data System (ADS)
Wasak, Tomasz; Chwedeńczuk, Jan
2018-04-01
We propose an experiment, where the Bell inequality is violated in a many-body system of massive particles. The source of correlated atoms is a spinor F =1 Bose-Einstein condensate residing in an optical lattice. We characterize the complete procedure—the local operations, the measurements, and the inequality—necessary to run the Bell test. We show how the degree of violation of the Bell inequality depends on the strengths of the two-body correlations and on the number of scattered pairs. We show that the system can be used to demonstrate the Einstein-Podolsky-Rosen paradox. Also, the scattered pairs are an excellent many-body resource for the quantum-enhanced metrology. Our results apply to any multimode system where the spin-changing collision drives the scattering into separate regions. The presented inquiry shows that such a system is versatile as it can be used for the tests of nonlocality, quantum metrology, and quantum information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele
An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper,more » with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.« less
With Great Measurements Come Great Results
NASA Astrophysics Data System (ADS)
Williams, Carl
Measurements are the foundation for science and modern life. Technologies we take for granted every day depend on them-cell phones, CAT scans, pharmaceuticals, even sports equipment. Metrology, or measurement science, determines what industry can make reliably and what they cannot. At the National Institute of Standards and Technology (NIST) we specialize in making world class measurements that an incredibly wide range of industries use to continually improve their products - computer chips with nanoscale components, atomic clocks that you can hold in your hand, lasers for both super-strong welds and delicate eye surgeries. Think of all the key technologies developed over the last 100 years and better measurements, standards, or analysis techniques played a role in making them possible. NIST works collaboratively with industry researchers on the advanced metrology for tomorrow's technologies. A new kilogram based on electromagnetic force, cars that weigh half as much but are just as strong, quantum computers, personalized medicine, single atom devices - it's all happening in our labs now. This talk will focus on how metrology creates the future.
NASA Astrophysics Data System (ADS)
Daakir, M.; Pierrot-Deseilligny, M.; Bosser, P.; Pichard, F.; Thom, C.; Rabot, Y.; Martin, O.
2017-05-01
This article presents a coupled system consisting of a single-frequency GPS receiver and a light photogrammetric quality camera embedded in an Unmanned Aerial Vehicle (UAV). The aim is to produce high quality data that can be used in metrology applications. The issue of Integrated Sensor Orientation (ISO) of camera poses using only GPS measurements is presented and discussed. The accuracy reached by our system based on sensors developed at the French Mapping Agency (IGN) Opto-Electronics, Instrumentation and Metrology Laboratory (LOEMI) is qualified. These sensors are specially designed for close-range aerial image acquisition with a UAV. Lever-arm calibration and time synchronization are explained and performed to reach maximum accuracy. All processing steps are detailed from data acquisition to quality control of final products. We show that an accuracy of a few centimeters can be reached with this system which uses low-cost UAV and GPS module coupled with the IGN-LOEMI home-made camera.
Performance of the upgraded LTP-II at the ALS Optical Metrology Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Advanced Light Source; Yashchuk, Valeriy V; Kirschman, Jonathan L.
2008-07-14
The next generation of synchrotrons and free electron laser facilities requires x-ray optical systems with extremely high performance, generally of diffraction limited quality. Fabrication and use of such optics requires adequate, highly accurate metrology and dedicated instrumentation. Previously, we suggested ways to improve the performance of the Long Trace Profiler (LTP), a slope measuring instrument widely used to characterize x-ray optics at long spatial wavelengths. The main way is use of a CCD detector and corresponding technique for calibration of photo-response non-uniformity [J. L. Kirschman, et al., Proceedings of SPIE 6704, 67040J (2007)]. The present work focuses on the performancemore » and characteristics of the upgraded LTP-II at the ALS Optical Metrology Laboratory. This includes a review of the overall aspects of the design, control system, the movement and measurement regimes for the stage, and analysis of the performance by a slope measurement of a highly curved super-quality substrate with less than 0.3 microradian (rms)slope variation.« less
NASA Astrophysics Data System (ADS)
Rerucha, Simon; Yacoot, Andrew; Pham, Tuan M.; Cizek, Martin; Hucl, Vaclav; Lazar, Josef; Cip, Ondrej
2017-04-01
We demonstrated that an iodine stabilized distributed Bragg reflector (DBR) diode based laser system lasing at a wavelength in close proximity to λ =633 nm could be used as an alternative laser source to the helium-neon lasers in both scientific and industrial metrology. This yields additional advantages besides the optical frequency stability and coherence: inherent traceability, wider optical frequency tuning range, higher output power and high frequency modulation capability. We experimentally investigated the characteristics of the laser source in two major steps: first using a wavelength meter referenced to a frequency comb controlled with a hydrogen maser and then on an interferometric optical bench testbed where we compared the performance of the laser system with that of a traditional frequency stabilized He-Ne laser. The results indicate that DBR diode laser system provides a good laser source for applications in dimensional (nano)metrology, especially in conjunction with novel interferometric detection methods exploiting high frequency modulation or multiaxis measurement systems.
Unconditional violation of the shot-noise limit in photonic quantum metrology
NASA Astrophysics Data System (ADS)
Slussarenko, Sergei; Weston, Morgan M.; Chrzanowski, Helen M.; Shalm, Lynden K.; Verma, Varun B.; Nam, Sae Woo; Pryde, Geoff J.
2017-11-01
Interferometric phase measurement is widely used to precisely determine quantities such as length, speed and material properties1-3. Without quantum correlations, the best phase sensitivity Δ ϕ achievable using n photons is the shot-noise limit, Δ ϕ
Frequency comb transferred by surface plasmon resonance
Geng, Xiao Tao; Chun, Byung Jae; Seo, Ji Hoon; Seo, Kwanyong; Yoon, Hana; Kim, Dong-Eon; Kim, Young-Jin; Kim, Seungchul
2016-01-01
Frequency combs, millions of narrow-linewidth optical modes referenced to an atomic clock, have shown remarkable potential in time/frequency metrology, atomic/molecular spectroscopy and precision LIDARs. Applications have extended to coherent nonlinear Raman spectroscopy of molecules and quantum metrology for entangled atomic qubits. Frequency combs will create novel possibilities in nano-photonics and plasmonics; however, its interrelation with surface plasmons is unexplored despite the important role that plasmonics plays in nonlinear spectroscopy and quantum optics through the manipulation of light on a subwavelength scale. Here, we demonstrate that a frequency comb can be transformed to a plasmonic comb in plasmonic nanostructures and reverted to the original frequency comb without noticeable degradation of <6.51 × 10−19 in absolute position, 2.92 × 10−19 in stability and 1 Hz in linewidth. The results indicate that the superior performance of a well-defined frequency comb can be applied to nanoplasmonic spectroscopy, quantum metrology and subwavelength photonic circuits. PMID:26898307
Optimizing Hybrid Metrology: Rigorous Implementation of Bayesian and Combined Regression
Henn, Mark-Alexander; Silver, Richard M.; Villarrubia, John S.; Zhang, Nien Fan; Zhou, Hui; Barnes, Bryan M.; Ming, Bin; Vladár, András E.
2015-01-01
Hybrid metrology, e.g., the combination of several measurement techniques to determine critical dimensions, is an increasingly important approach to meet the needs of the semiconductor industry. A proper use of hybrid metrology may yield not only more reliable estimates for the quantitative characterization of 3-D structures but also a more realistic estimation of the corresponding uncertainties. Recent developments at the National Institute of Standards and Technology (NIST) feature the combination of optical critical dimension (OCD) measurements and scanning electron microscope (SEM) results. The hybrid methodology offers the potential to make measurements of essential 3-D attributes that may not be otherwise feasible. However, combining techniques gives rise to essential challenges in error analysis and comparing results from different instrument models, especially the effect of systematic and highly correlated errors in the measurement on the χ2 function that is minimized. Both hypothetical examples and measurement data are used to illustrate solutions to these challenges. PMID:26681991
Neutron activation analysis: A primary method of measurement
NASA Astrophysics Data System (ADS)
Greenberg, Robert R.; Bode, Peter; De Nadai Fernandes, Elisabete A.
2011-03-01
Neutron activation analysis (NAA), based on the comparator method, has the potential to fulfill the requirements of a primary ratio method as defined in 1998 by the Comité Consultatif pour la Quantité de Matière — Métrologie en Chimie (CCQM, Consultative Committee on Amount of Substance — Metrology in Chemistry). This thesis is evidenced in this paper in three chapters by: demonstration that the method is fully physically and chemically understood; that a measurement equation can be written down in which the values of all parameters have dimensions in SI units and thus having the potential for metrological traceability to these units; that all contributions to uncertainty of measurement can be quantitatively evaluated, underpinning the metrological traceability; and that the performance of NAA in CCQM key-comparisons of trace elements in complex matrices between 2000 and 2007 is similar to the performance of Isotope Dilution Mass Spectrometry (IDMS), which had been formerly designated by the CCQM as a primary ratio method.
Mathematical calibration procedure of a capacitive sensor-based indexed metrology platform
NASA Astrophysics Data System (ADS)
Brau-Avila, A.; Santolaria, J.; Acero, R.; Valenzuela-Galvan, M.; Herrera-Jimenez, V. M.; Aguilar, J. J.
2017-03-01
The demand for faster and more reliable measuring tasks for the control and quality assurance of modern production systems has created new challenges for the field of coordinate metrology. Thus, the search for new solutions in coordinate metrology systems and the need for the development of existing ones still persists. One example of such a system is the portable coordinate measuring machine (PCMM), the use of which in industry has considerably increased in recent years, mostly due to its flexibility for accomplishing in-line measuring tasks as well as its reduced cost and operational advantages compared to traditional coordinate measuring machines. Nevertheless, PCMMs have a significant drawback derived from the techniques applied in the verification and optimization procedures of their kinematic parameters. These techniques are based on the capture of data with the measuring instrument from a calibrated gauge object, fixed successively in various positions so that most of the instrument measuring volume is covered, which results in time-consuming, tedious and expensive verification and optimization procedures. In this work the mathematical calibration procedure of a capacitive sensor-based indexed metrology platform (IMP) is presented. This calibration procedure is based on the readings and geometric features of six capacitive sensors and their targets with nanometer resolution. The final goal of the IMP calibration procedure is to optimize the geometric features of the capacitive sensors and their targets in order to use the optimized data in the verification procedures of PCMMs.
NASA Astrophysics Data System (ADS)
Rana, Narender; Zhang, Yunlin; Wall, Donald; Dirahoui, Bachir; Bailey, Todd C.
2015-03-01
Integrate circuit (IC) technology is going through multiple changes in terms of patterning techniques (multiple patterning, EUV and DSA), device architectures (FinFET, nanowire, graphene) and patterning scale (few nanometers). These changes require tight controls on processes and measurements to achieve the required device performance, and challenge the metrology and process control in terms of capability and quality. Multivariate data with complex nonlinear trends and correlations generally cannot be described well by mathematical or parametric models but can be relatively easily learned by computing machines and used to predict or extrapolate. This paper introduces the predictive metrology approach which has been applied to three different applications. Machine learning and predictive analytics have been leveraged to accurately predict dimensions of EUV resist patterns down to 18 nm half pitch leveraging resist shrinkage patterns. These patterns could not be directly and accurately measured due to metrology tool limitations. Machine learning has also been applied to predict the electrical performance early in the process pipeline for deep trench capacitance and metal line resistance. As the wafer goes through various processes its associated cost multiplies. It may take days to weeks to get the electrical performance readout. Predicting the electrical performance early on can be very valuable in enabling timely actionable decision such as rework, scrap, feedforward, feedback predicted information or information derived from prediction to improve or monitor processes. This paper provides a general overview of machine learning and advanced analytics application in the advanced semiconductor development and manufacturing.
Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon.
McConnell, Robert; Zhang, Hao; Hu, Jiazhong; Ćuk, Senka; Vuletić, Vladan
2015-03-26
Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. Metrologically useful entangled states of large atomic ensembles have been experimentally realized, but these states display Gaussian spin distribution functions with a non-negative Wigner quasiprobability distribution function. Non-Gaussian entangled states have been produced in small ensembles of ions, and very recently in large atomic ensembles. Here we generate entanglement in a large atomic ensemble via an interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function--an important hallmark of non-classicality--and verify an entanglement depth (the minimum number of mutually entangled atoms) of 2,910 ± 190 out of 3,100 atoms. Attaining such a negative Wigner function and the mutual entanglement of virtually all atoms is unprecedented for an ensemble containing more than a few particles. Although the achieved purity of the state is slightly below the threshold for entanglement-induced metrological gain, further technical improvement should allow the generation of states that surpass this threshold, and of more complex Schrödinger cat states for quantum metrology and information processing. More generally, our results demonstrate the power of heralded methods for entanglement generation, and illustrate how the information contained in a single photon can drastically alter the quantum state of a large system.
Metrology of variable-line-spacing x-ray gratings using the APS Long Trace Profiler
NASA Astrophysics Data System (ADS)
Sheung, Janet; Qian, Jun; Sullivan, Joseph; Thomasset, Muriel; Manton, Jonathan; Bean, Sunil; Takacs, Peter; Dvorak, Joseph; Assoufid, Lahsen
2017-09-01
As resolving power targets have increased with each generation of beamlines commissioned in synchrotron radiation facilities worldwide, diffraction gratings are quickly becoming crucial optical components for meeting performance targets. However, the metrology of variable-line-spacing (VLS) gratings for high resolution beamlines is not widespread; in particular, no metrology facility at any US DOE facility is currently equipped to fully characterize such gratings. To begin to address this issue, the Optics Group at the Advanced Photon Source at Argonne, in collaboration with SOLEIL and with support from Brookhaven National Laboratory (BNL), has developed an alternative beam path addition to the Long Trace Profiler (LTP) at Argonne's Advanced Photon Source. This significantly expands the functionality of the LTP not only to measure mirrors surface slope profile at normal incidence, but also to characterize the groove density of VLS diffraction gratings in the Littrow incidence up to 79°, which covers virtually all diffraction gratings used at synchrotrons in the first order. The LTP light source is a 20mW HeNe laser, which yields enough signal for diffraction measurements to be performed on low angle blazed gratings optimized for soft X-ray wavelengths. We will present the design of the beam path, technical requirements for the optomechanics, and our data analysis procedure. Finally, we discuss challenges still to be overcome and potential limitations with use of the LTP to perform metrology on diffraction gratings.
Computer aided manufacturing for complex freeform optics
NASA Astrophysics Data System (ADS)
Wolfs, Franciscus; Fess, Ed; Johns, Dustin; LePage, Gabriel; Matthews, Greg
2017-10-01
Recently, the desire to use freeform optics has been increasing. Freeform optics can be used to expand the capabilities of optical systems and reduce the number of optics needed in an assembly. The traits that increase optical performance also present challenges in manufacturing. As tolerances on freeform optics become more stringent, it is necessary to continue to improve methods for how the grinding and polishing processes interact with metrology. To create these complex shapes, OptiPro has developed a computer aided manufacturing package called PROSurf. PROSurf generates tool paths required for grinding and polishing freeform optics with multiple axes of motion. It also uses metrology feedback for deterministic corrections. ProSurf handles 2 key aspects of the manufacturing process that most other CAM systems struggle with. The first is having the ability to support several input types (equations, CAD models, point clouds) and still be able to create a uniform high-density surface map useable for generating a smooth tool path. The second is to improve the accuracy of mapping a metrology file to the part surface. To perform this OptiPro is using 3D error maps instead of traditional 2D maps. The metrology error map drives the tool path adjustment applied during processing. For grinding, the error map adjusts the tool position to compensate for repeatable system error. For polishing, the error map drives the relative dwell times of the tool across the part surface. This paper will present the challenges associated with these issues and solutions that we have created.
NASA Astrophysics Data System (ADS)
Crouch, Stephen; Kaylor, Brant M.; Barber, Zeb W.; Reibel, Randy R.
2015-09-01
Currently large volume, high accuracy three-dimensional (3D) metrology is dominated by laser trackers, which typically utilize a laser scanner and cooperative reflector to estimate points on a given surface. The dependency upon the placement of cooperative targets dramatically inhibits the speed at which metrology can be conducted. To increase speed, laser scanners or structured illumination systems can be used directly on the surface of interest. Both approaches are restricted in their axial and lateral resolution at longer stand-off distances due to the diffraction limit of the optics used. Holographic aperture ladar (HAL) and synthetic aperture ladar (SAL) can enhance the lateral resolution of an imaging system by synthesizing much larger apertures by digitally combining measurements from multiple smaller apertures. Both of these approaches only produce two-dimensional imagery and are therefore not suitable for large volume 3D metrology. We combined the SAL and HAL approaches to create a swept frequency digital holographic 3D imaging system that provides rapid measurement speed for surface coverage with unprecedented axial and lateral resolution at longer standoff ranges. The technique yields a "data cube" of Fourier domain data, which can be processed with a 3D Fourier transform to reveal a 3D estimate of the surface. In this paper, we provide the theoretical background for the technique and show experimental results based on an ultra-wideband frequency modulated continuous wave (FMCW) chirped heterodyne ranging system showing ~100 micron lateral and axial precisions at >2 m standoff distances.
Improving automated 3D reconstruction methods via vision metrology
NASA Astrophysics Data System (ADS)
Toschi, Isabella; Nocerino, Erica; Hess, Mona; Menna, Fabio; Sargeant, Ben; MacDonald, Lindsay; Remondino, Fabio; Robson, Stuart
2015-05-01
This paper aims to provide a procedure for improving automated 3D reconstruction methods via vision metrology. The 3D reconstruction problem is generally addressed using two different approaches. On the one hand, vision metrology (VM) systems try to accurately derive 3D coordinates of few sparse object points for industrial measurement and inspection applications; on the other, recent dense image matching (DIM) algorithms are designed to produce dense point clouds for surface representations and analyses. This paper strives to demonstrate a step towards narrowing the gap between traditional VM and DIM approaches. Efforts are therefore intended to (i) test the metric performance of the automated photogrammetric 3D reconstruction procedure, (ii) enhance the accuracy of the final results and (iii) obtain statistical indicators of the quality achieved in the orientation step. VM tools are exploited to integrate their main functionalities (centroid measurement, photogrammetric network adjustment, precision assessment, etc.) into the pipeline of 3D dense reconstruction. Finally, geometric analyses and accuracy evaluations are performed on the raw output of the matching (i.e. the point clouds) by adopting a metrological approach. The latter is based on the use of known geometric shapes and quality parameters derived from VDI/VDE guidelines. Tests are carried out by imaging the calibrated Portable Metric Test Object, designed and built at University College London (UCL), UK. It allows assessment of the performance of the image orientation and matching procedures within a typical industrial scenario, characterised by poor texture and known 3D/2D shapes.
Data fusion for CD metrology: heterogeneous hybridization of scatterometry, CDSEM, and AFM data
NASA Astrophysics Data System (ADS)
Hazart, J.; Chesneau, N.; Evin, G.; Largent, A.; Derville, A.; Thérèse, R.; Bos, S.; Bouyssou, R.; Dezauzier, C.; Foucher, J.
2014-04-01
The manufacturing of next generation semiconductor devices forces metrology tool providers for an exceptional effort in order to meet the requirements for precision, accuracy and throughput stated in the ITRS. In the past years hybrid metrology (based on data fusion theories) has been investigated as a new methodology for advanced metrology [1][2][3]. This paper provides a new point of view of data fusion for metrology through some experiments and simulations. The techniques are presented concretely in terms of equations to be solved. The first point of view is High Level Fusion which is the use of simple numbers with their associated uncertainty postprocessed by tools. In this paper, it is divided into two stages: one for calibration to reach accuracy, the second to reach precision thanks to Bayesian Fusion. From our perspective, the first stage is mandatory before applying the second stage which is commonly presented [1]. However a reference metrology system is necessary for this fusion. So, precision can be improved if and only if the tools to be fused are perfectly matched at least for some parameters. We provide a methodology similar to a multidimensional TMU able to perform this matching exercise. It is demonstrated on a 28 nm node backend lithography case. The second point of view is Deep Level Fusion which works on the contrary with raw data and their combination. In the approach presented here, the analysis of each raw data is based on a parametric model and connections between the parameters of each tool. In order to allow OCD/SEM Deep Level Fusion, a SEM Compact Model derived from [4] has been developed and compared to AFM. As far as we know, this is the first time such techniques have been coupled at Deep Level. A numerical study on the case of a simple stack for lithography is performed. We show strict equivalence of Deep Level Fusion and High Level Fusion when tools are sensitive and models are perfect. When one of the tools can be considered as a reference and the second is biased, High Level Fusion is far superior to standard Deep Level Fusion. Otherwise, only the second stage of High Level Fusion is possible (Bayesian Fusion) and do not provide substantial advantage. Finally, when OCD is equipped with methods for bias detection [5], Deep Level Fusion outclasses the two-stage High Level Fusion and will benefit to the industry for most advanced nodes production.
NASA Astrophysics Data System (ADS)
Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.
2016-06-01
Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial measurement for large structure with similar dimension with large deployable reflector to confirm the validity of the network design and instrumentation. In this report, the overview of this R&D project and the results of feasibility study of network design based on simulations on vision metrology and beam pattern compensation of antenna with very large reflector in orbit is discussed. The feasibility of assumed network design for vision metrology and satisfaction of accuracy requirements are discussed. The feasibility of beam pattern compensation by using accurately measured reflector shape is confirmed with antenna pattern simulation for deformed parabola reflector. If reflector surface of communication satellite can be measured routinely in orbit, the antenna pattern can be compensated and maintain the high performance every moment.
NASA Astrophysics Data System (ADS)
Dos Santos Ferreira, Olavio; Sadat Gousheh, Reza; Visser, Bart; Lie, Kenrick; Teuwen, Rachel; Izikson, Pavel; Grzela, Grzegorz; Mokaberi, Babak; Zhou, Steve; Smith, Justin; Husain, Danish; Mandoy, Ram S.; Olvera, Raul
2018-03-01
Ever increasing need for tighter on-product overlay (OPO), as well as enhanced accuracy in overlay metrology and methodology, is driving semiconductor industry's technologists to innovate new approaches to OPO measurements. In case of High Volume Manufacturing (HVM) fabs, it is often critical to strive for both accuracy and robustness. Robustness, in particular, can be challenging in metrology since overlay targets can be impacted by proximity of other structures next to the overlay target (asymmetric effects), as well as symmetric stack changes such as photoresist height variations. Both symmetric and asymmetric contributors have impact on robustness. Furthermore, tweaking or optimizing wafer processing parameters for maximum yield may have an adverse effect on physical target integrity. As a result, measuring and monitoring physical changes or process abnormalities/artefacts in terms of new Key Performance Indicators (KPIs) is crucial for the end goal of minimizing true in-die overlay of the integrated circuits (ICs). IC manufacturing fabs often relied on CD-SEM in the past to capture true in-die overlay. Due to destructive and intrusive nature of CD-SEMs on certain materials, it's desirable to characterize asymmetry effects for overlay targets via inline KPIs utilizing YieldStar (YS) metrology tools. These KPIs can also be integrated as part of (μDBO) target evaluation and selection for final recipe flow. In this publication, the Holistic Metrology Qualification (HMQ) flow was extended to account for process induced (asymmetric) effects such as Grating Imbalance (GI) and Bottom Grating Asymmetry (BGA). Local GI typically contributes to the intrafield OPO whereas BGA typically impacts the interfield OPO, predominantly at the wafer edge. Stack height variations highly impact overlay metrology accuracy, in particular in case of multi-layer LithoEtch Litho-Etch (LELE) overlay control scheme. Introducing a GI impact on overlay (in nm) KPI check quantifies the grating imbalance impact on overlay, whereas optimizing for accuracy using self-reference captures the bottom grating asymmetry effect. Measuring BGA after each process step before exposure of the top grating helps to identify which specific step introduces the asymmetry in the bottom grating. By evaluating this set of KPI's to a BEOL LELE overlay scheme, we can enhance robustness of recipe selection and target selection. Furthermore, these KPIs can be utilized to highlight process and equipment abnormalities. In this work, we also quantified OPO results with a self-contained methodology called Triangle Method. This method can be utilized for LELE layers with a common target and reference. This allows validating general μDBO accuracy, hence reducing the need for CD-SEM verification.
NASA Astrophysics Data System (ADS)
Timoney, Padraig; Kagalwala, Taher; Reis, Edward; Lazkani, Houssam; Hurley, Jonathan; Liu, Haibo; Kang, Charles; Isbester, Paul; Yellai, Naren; Shifrin, Michael; Etzioni, Yoav
2018-03-01
In recent years, the combination of device scaling, complex 3D device architecture and tightening process tolerances have strained the capabilities of optical metrology tools to meet process needs. Two main categories of approaches have been taken to address the evolving process needs. In the first category, new hardware configurations are developed to provide more spectral sensitivity. Most of this category of work will enable next generation optical metrology tools to try to maintain pace with next generation process needs. In the second category, new innovative algorithms have been pursued to increase the value of the existing measurement signal. These algorithms aim to boost sensitivity to the measurement parameter of interest, while reducing the impact of other factors that contribute to signal variability but are not influenced by the process of interest. This paper will evaluate the suitability of machine learning to address high volume manufacturing metrology requirements in both front end of line (FEOL) and back end of line (BEOL) sectors from advanced technology nodes. In the FEOL sector, initial feasibility has been demonstrated to predict the fin CD values from an inline measurement using machine learning. In this study, OCD spectra were acquired after an etch process that occurs earlier in the process flow than where the inline CD is measured. The fin hard mask etch process is known to impact the downstream inline CD value. Figure 1 shows the correlation of predicted CD vs downstream inline CD measurement obtained after the training of the machine learning algorithm. For BEOL, machine learning is shown to provide an additional source of information in prediction of electrical resistance from structures that are not compatible for direct copper height measurement. Figure 2 compares the trench height correlation to electrical resistance (Rs) and the correlation of predicted Rs to the e-test Rs value for a far back end of line (FBEOL) metallization level across 3 products. In the case of product C, it is found that the predicted Rs correlation to the e-test value is significantly improved utilizing spectra acquired at the e-test structure. This paper will explore the considerations required to enable use of machine learning derived metrology output to enable improved process monitoring and control. Further results from the FEOL and BEOL sectors will be presented, together with further discussion on future proliferation of machine learning based metrology solutions in high volume manufacturing.
NASA Astrophysics Data System (ADS)
Cinelli, L. R.; Silva, L. G.; Junior, E. A.; Almeida, R. O.
2018-03-01
This article was prepared in the context of the work of the Fluids Measurement Sector (Seflu) of the Legal Metrology Department of Inmetro (Dimel) in order to try to answer the following question: What is the magnitude of Social Profit generated for brazilian society from the existence of legal control of measuring instruments within the scope of this sector? In this sense, some examples of a case study containing the main measurement instruments related to the evaluation process of models performed at the Seflu are presented.
Polarizability of Helium, Neon, and Argon: New Perspectives for Gas Metrology
NASA Astrophysics Data System (ADS)
Gaiser, Christof; Fellmuth, Bernd
2018-03-01
With dielectric-constant gas thermometry, the molar polarizability of helium, neon, and argon has been determined with relative standard uncertainties of about 2 parts per million. A series of isotherms measured with the three noble gases and two different experimental setups led to this unprecedented level of uncertainty. These data are crucial for scientists in the field of gas metrology, working on pressure and temperature standards. Furthermore, with the new benchmark values for neon and argon, theoretical calculations, today about 3 orders of magnitude larger in uncertainty, can be checked and improved.
1989-01-01
circuit of the field equations of Maxwell ", Proc IRE, vol 32, Kay 1944, pp 360-367. 3. S. Akhtarzad P.B. Johns ,"Solution of Maxwell’s equations in three...ELFCTROMAGNETICS APPLIED TO INTEGRATED CIRCUIT MICROLITHOGRAPHY AND METROLOGY John C . Mould Jr. & Gregory L Wojc* Welinger Associates, 4410 El Camino Real, Los...1AICROLITHOGRAPHY AND METROLOGY John C . Mould Jr. & Gregory L Wo c * Weldlinger Associates, 4410 El Camino Real. Los Allos, Ca. 94022 1. Pholoreslat
Polarizability of Helium, Neon, and Argon: New Perspectives for Gas Metrology.
Gaiser, Christof; Fellmuth, Bernd
2018-03-23
With dielectric-constant gas thermometry, the molar polarizability of helium, neon, and argon has been determined with relative standard uncertainties of about 2 parts per million. A series of isotherms measured with the three noble gases and two different experimental setups led to this unprecedented level of uncertainty. These data are crucial for scientists in the field of gas metrology, working on pressure and temperature standards. Furthermore, with the new benchmark values for neon and argon, theoretical calculations, today about 3 orders of magnitude larger in uncertainty, can be checked and improved.
Metrological challenges for measurements of key climatological observables Part 2: oceanic salinity
NASA Astrophysics Data System (ADS)
Pawlowicz, R.; Feistel, R.; McDougall, T. J.; Ridout, P.; Seitz, S.; Wolf, H.
2016-02-01
Salinity is a key variable in the modelling and observation of ocean circulation and ocean-atmosphere fluxes of heat and water. In this paper, we examine the climatological relevance of ocean salinity, noting fundamental deficiencies in the definition of this key observable, and its lack of a secure foundation in the International System of Units, the SI. The metrological history of salinity is reviewed, problems with its current definitions and measurement practices are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10.
Quantum Metrology Assisted by Abstention
NASA Astrophysics Data System (ADS)
Gendra, B.; Ronco-Bonvehi, E.; Calsamiglia, J.; Muñoz-Tapia, R.; Bagan, E.
2013-03-01
The main goal of quantum metrology is to obtain accurate values of physical parameters using quantum probes. In this context, we show that abstention, i.e., the possibility of getting an inconclusive answer at readout, can drastically improve the measurement precision and even lead to a change in its asymptotic behavior, from the shot-noise to the Heisenberg scaling. We focus on phase estimation and quantify the required amount of abstention for a given precision. We also develop analytical tools to obtain the asymptotic behavior of the precision and required rate of abstention for arbitrary pure states.
Metrology system for the Terrestrial Planet Finder Coronagraph
NASA Technical Reports Server (NTRS)
Shaklin, Stuart; Marchen, Luis; Zhao, Feng; Peters, Robert D.; Ho, Tim; Holmes, Buck
2004-01-01
The Terrestrial Planet Finder (TPF) employs an aggressive coronagraph designed to obtain better than 1e-10 contrast inside the third Airy ring. Minute changes in low-order aberration content scatter significant light at this position. One implication is the requirement to control low-order aberrations induced by motion of the secondary mirror relative to the primary mirror; sub-nanometer relative positional stability is required. We propose a 6-beam laser truss to monitor the relative positions of the two mirrors. The truss is based on laser metrology developed for the Space Interferometry Mission.
Metrology in health: a pilot study
NASA Astrophysics Data System (ADS)
Ferreira, M.; Matos, A.
2015-02-01
The purpose of this paper is to identify and analyze some relevant issues which arise when the concept of metrological traceability is applied to health care facilities. Discussion is structured around the results that were obtained through a characterization and comparative description of the practices applied in 45 different Portuguese health entities. Following a qualitative exploratory approach, the information collected was the support for the initial research hypotheses and the development of the questionnaire survey. It was also applied a quantitative methodology that included a descriptive and inferential statistical analysis of the experimental data set.
Optical Fabrication and Measurement AXAF and CIRS
NASA Technical Reports Server (NTRS)
Engelhaupt, Darell
1997-01-01
This paper presents a final report on Optical Fabrication and Measurement AXAF (Advanced X-Ray Astrophysics Facility) and CIRS (Composite Infrared Spectrometer) from July 12, 1994 to August 16, 1996.. This paper includes specific tasks to be performed. The tasks are as follows: 1) Preparation and Characterization of Zerodur Glass Samples; 2) Develop and Fabricate AXAF and CIRS Metrology Tooling; 3) Update AXAF Technical Data Base; and 4) Perform Fabrication Related Metrology Tasks for CIRS. This paper also includes final activities from the July, 1996 report to August 1996.
2016-06-03
Ultracold Atoms 5:10 Zelevinsky Ye Inouye High-precision spectroscopy with two-body quantum systems Low entropy quantum gas of polar molecules New limit...12th US-Japan Seminar: Many Body Quantum Systems from Quantum Gases to Metrology and Information Processing Support was provided for The 12th US...Japan Seminar on many body quantum systems which was held in Madison, Wisconsin from September 20 to 24, 2015 at the Monona Terrace Convention Center
Spectroscopic metrology for isotope composition measurements and transfer standards
NASA Astrophysics Data System (ADS)
Anyangwe Nwaboh, Javis; Balslev-Harder, David; Kääriäinen, Teemu; Richmond, Craig; Manninen, Albert; Mohn, Joachim; Kiseleva, Maria; Petersen, Jan C.; Werhahn, Olav; Ebert, Volker
2017-04-01
The World Meteorological Organization (WMO) has identified greenhouse gases such as CO2, CH4 and N2O as critical for global climate monitoring. Other molecules such as CO that has an indirect effect of enhancing global warming are also monitored. WMO has stated compatibility goals for atmospheric concentration and isotope ratio measurements of these gases, e.g. 0.1 ppm for CO2 concentration measurements in the northern hemisphere and 0.01 ‰ for δ13C-CO2. For measurements of the concentration of greenhouse gases, gas analysers are typically calibrated with static gas standards e.g. traceable to the WMO scale or to the International System of Units (SI) through a national metrology institute. However, concentrations of target components, e.g. CO, in static gas standards have been observed to drift, and typically the gas matrix as well as the isotopic composition of the target component does not always reflect field gas composition, leading to deviations of the analyser response, even after calibration. The deviations are dependent on the measurement technique. To address this issue, part of the HIGHGAS (Metrology for high-impact greenhouse gases) project [1] focused on the development of optical transfer standards (OTSs) for greenhouse gases, e.g. CO2 and CO, potentially complementing gas standards. Isotope ratio mass spectrometry (IRMS) [2] is currently used to provide state-of-the-art high precision (in the 0.01 ‰ range) measurements for the isotopic composition of greenhouse gases. However, there is a need for field-deployable techniques such as optical isotope ratio spectroscopy (OIRS) that can be combined with metrological measurement methods. Within the HIGHGAS project, OIRS methods and procedures based on e.g. cavity enhanced spectroscopy (CES) and tunable diode laser absorption spectroscopy (TDLAS), matched to metrological principles have been established for the measurement of 13C/12C and 18O/16O ratios in CO2, 15N/14N ratios in N2O, and 13C/12C and 2H/1H ratios in CH4. Here, based on HIGHGAS project results, we present OTSs for atmospheric CO2 and CO measurements. The results delivered by the OTSs are in excellent agreement with gravimetric values of metrological "primary" static gas standards. The repeatabilities of the OTS results are matching the compatibility goals stated by WMO for atmospheric CO2 and CO measurements. In addition, we present OIRS measurement methods and procedures to demonstrate their applicability and validation. The requirements on, e.g. absorption line data quality and temperature sensitivity of isotope ratio, are discussed. Uncertainty budgets are presented and the traceability of the results is addressed. The current limitations in our measurements are discussed and steps taken to address these limitations are presented. Acknowledgement Parts of this work have been carried out within the European Metrology Research Programme (EMRP) ENV52 project-HIGHGAS. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. References [1] EMRP project ENV52-HIGHGAS, available at: http://www.euramet.org/ [2] Prosenjit Ghosh, Willi A. Brand, International Journal of Mass Spectrometry 228, 1-33 (2003).
Investigation of hyper-NA scanner emulation for photomask CDU performance
NASA Astrophysics Data System (ADS)
Poortinga, Eric; Scheruebl, Thomas; Conley, Will; Sundermann, Frank
2007-02-01
As the semiconductor industry moves toward immersion lithography using numerical apertures above 1.0 the quality of the photomask becomes even more crucial. Photomask specifications are driven by the critical dimension (CD) metrology within the wafer fab. Knowledge of the CD values at resist level provides a reliable mechanism for the prediction of device performance. Ultimately, tolerances of device electrical properties drive the wafer linewidth specifications of the lithography group. Staying within this budget is influenced mainly by the scanner settings, resist process, and photomask quality. Tightening of photomask specifications is one mechanism for meeting the wafer CD targets. The challenge lies in determining how photomask level metrology results influence wafer level imaging performance. Can it be inferred that photomask level CD performance is the direct contributor to wafer level CD performance? With respect to phase shift masks, criteria such as phase and transmission control are generally tightened with each technology node. Are there other photomask relevant influences that effect wafer CD performance? A comprehensive study is presented supporting the use of scanner emulation based photomask CD metrology to predict wafer level within chip CD uniformity (CDU). Using scanner emulation with the photomask can provide more accurate wafer level prediction because it inherently includes all contributors to image formation related to the 3D topography such as the physical CD, phase, transmission, sidewall angle, surface roughness, and other material properties. Emulated images from different photomask types were captured to provide CD values across chip. Emulated scanner image measurements were completed using an AIMS TM45-193i with its hyper-NA, through-pellicle data acquisition capability including the Global CDU Map TM software option for AIMS TM tools. The through-pellicle data acquisition capability is an essential prerequisite for capturing final CDU data (after final clean and pellicle mounting) before the photomask ships or for re-qualification at the wafer fab. Data was also collected on these photomasks using a conventional CD-SEM metrology system with the pellicles removed. A comparison was then made to wafer prints demonstrating the benefit of using scanner emulation based photomask CD metrology.
Advanced X-ray Optics Metrology for Nanofocusing and Coherence Preservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, Kenneth A.; Yashchuk, Valeriy
2007-12-01
What is the point of developing new high-brightness light sources if beamline optics won't be available to realize the goals of nano-focusing and coherence preservation? That was one of the central questions raised during a workshop at the 2007 Advanced Light Source Users Meeting. Titled, 'Advanced X-Ray Optics Metrology for Nano-focusing and Coherence Preservation', the workshop was organized by Kenneth Goldberg and Valeriy Yashchuk (both of Lawrence Berkeley National Laboratory, LBNL), and it brought together industry representatives and researchers from Japan, Europe, and the US to discuss the state of the art and to outline the optics requirements of newmore » light sources. Many of the presentations are viewable on the workshop website http://goldberg.lbl.gov/MetrologyWorkshop07/. Many speakers shared the same view of one of the most significant challenges facing the development of new high-brightness third and fourth generation x-ray, soft x-ray, and EUV light sources: these sources place extremely high demands on the surface quality of beamline optics. In many cases, the 1-2-nm surface error specs that define the outer bounds of 'diffraction-limited' quality are beyond the reach of leading facilities and optics vendors. To focus light to 50-nm focal spots, or smaller, from reflective optics and to preserve the high coherent flux that new sources make possible, the optical surface quality and alignment tolerances must be measured in nano-meters and nano-radians. Without a significant, well-supported research effort, including the development of new metrology techniques for use both on and off the beamline, these goals will likely not be met. The scant attention this issue has garnered is evident in the stretched budgets and limited manpower currently dedicated to metrology. With many of the world's leading groups represented at the workshop, it became clear that Japan and Europe are several steps ahead of the US in this critical area. But the situation isn't all dire: several leading groups are blazing a trail forward, and the recognition of this issue is increasing. The workshop featured eleven invited talks whose presenters came from Japan, Europe, and the US.« less
Investigation of phase distribution using Phame® in-die phase measurements
NASA Astrophysics Data System (ADS)
Buttgereit, Ute; Perlitz, Sascha
2009-03-01
As lithography mask processes move toward 45nm and 32nm node, mask complexity increases steadily, mask specifications tighten and process control becomes extremely important. Driven by this fact the requirements for metrology tools increase as well. Efforts in metrology have been focused on accurately measuring CD linearity and uniformity across the mask, and accurately measuring phase variation on Alternating/Attenuated PSM and transmission for Attenuated PSM. CD control on photo masks is usually done through the following processes: exposure dose/focus change, resist develop and dry etch. The key requirement is to maintain correct CD linearity and uniformity across the mask. For PSM specifically, the effect of CD uniformity for both Alternating PSM and Attenuated PSM and etch depth for Alternating PSM becomes also important. So far phase measurement has been limited to either measuring large-feature phase using interferometer-based metrology tools or measuring etch depth using AFM and converting etch depth into phase under the assumption that trench profile and optical properties of the layers remain constant. However recent investigations show that the trench profile and optical property of layers impact the phase. This effect is getting larger for smaller CD's. The currently used phase measurement methods run into limitations because they are not able to capture 3D mask effects, diffraction limitations or polarization effects. The new phase metrology system - Phame(R) developed by Carl Zeiss SMS overcomes those limitations and enables laterally resolved phase measurement in any kind of production feature on the mask. The resolution of the system goes down to 120nm half pitch at mask level. We will report on tool performance data with respect to static and dynamic phase repeatability focusing on Alternating PSM. Furthermore the phase metrology system was used to investigate mask process signatures on Alternating PSM in order to further improve the overall PSM process performance. Especially global loading effects caused by the pattern density and micro loading effects caused by the feature size itself have been evaluated using the capability of measuring phase in the small production features. The results of this study will be reported in this paper.
GPU accelerated Monte-Carlo simulation of SEM images for metrology
NASA Astrophysics Data System (ADS)
Verduin, T.; Lokhorst, S. R.; Hagen, C. W.
2016-03-01
In this work we address the computation times of numerical studies in dimensional metrology. In particular, full Monte-Carlo simulation programs for scanning electron microscopy (SEM) image acquisition are known to be notoriously slow. Our quest in reducing the computation time of SEM image simulation has led us to investigate the use of graphics processing units (GPUs) for metrology. We have succeeded in creating a full Monte-Carlo simulation program for SEM images, which runs entirely on a GPU. The physical scattering models of this GPU simulator are identical to a previous CPU-based simulator, which includes the dielectric function model for inelastic scattering and also refinements for low-voltage SEM applications. As a case study for the performance, we considered the simulated exposure of a complex feature: an isolated silicon line with rough sidewalls located on a at silicon substrate. The surface of the rough feature is decomposed into 408 012 triangles. We have used an exposure dose of 6 mC/cm2, which corresponds to 6 553 600 primary electrons on average (Poisson distributed). We repeat the simulation for various primary electron energies, 300 eV, 500 eV, 800 eV, 1 keV, 3 keV and 5 keV. At first we run the simulation on a GeForce GTX480 from NVIDIA. The very same simulation is duplicated on our CPU-based program, for which we have used an Intel Xeon X5650. Apart from statistics in the simulation, no difference is found between the CPU and GPU simulated results. The GTX480 generates the images (depending on the primary electron energy) 350 to 425 times faster than a single threaded Intel X5650 CPU. Although this is a tremendous speedup, we actually have not reached the maximum throughput because of the limited amount of available memory on the GTX480. Nevertheless, the speedup enables the fast acquisition of simulated SEM images for metrology. We now have the potential to investigate case studies in CD-SEM metrology, which otherwise would take unreasonable amounts of computation time.
NASA Astrophysics Data System (ADS)
Fischer, J.; Fellmuth, B.
2005-05-01
The majority of the processes used by the manufacturing industry depend upon the accurate measurement and control of temperature. Thermal metrology is also a key factor affecting the efficiency and environmental impact of many high-energy industrial processes, the development of innovative products and the health and safety of the general population. Applications range from the processing, storage and shipment of perishable foodstuffs and biological materials to the development of more efficient and less environmentally polluting combustion processes for steel-making. Accurate measurement and control of temperature is, for instance, also important in areas such as the characterization of new materials used in the automotive, aerospace and semiconductor industries. This paper reviews the current status of temperature metrology. It starts with the determination of thermodynamic temperatures required on principle because temperature is an intensive quantity. Methods to determine thermodynamic temperatures are reviewed in detail to introduce the underlying physical basis. As these methods cannot usually be applied for practical measurements the need for a practical temperature scale for day-to-day work is motivated. The International Temperature Scale of 1990 and the Provisional Low Temperature Scale PLTS-2000 are described as important parts of the International System of Units to support science and technology. Its main importance becomes obvious in connection with industrial development and international markets. Every country is strongly interested in unique measures, in order to guarantee quality, reproducibility and functionability of products. The eventual realization of an international system, however, is only possible within the well-functioning organization of metrological laboratories. In developed countries the government established scientific institutes have certain metrological duties, as, for instance, the maintenance and dissemination of national units. For the base unit kelvin, this procedure is described in the sections on practical temperature scales, practical thermometry and reference standards. Testing experimentally the fundamental laws of physics means in practice the precise determination of the fundamental constants appearing in the laws. The essence of current activities is that prototypes, which may vary uncontrollably with time and location, are replaced by abstract experimental prescriptions that relate the units to the constants. This approach is shown for the definition of the kelvin and the Boltzmann constant. Dedicated to the occasion of the 60th birthday of Wolfgang Buck.
NASA Astrophysics Data System (ADS)
Razdan, Vikram; Bateman, Richard
2015-05-01
This study investigates the use of a Smartphone and its camera vision capabilities in Engineering metrology and flaw detection, with a view to develop a low cost alternative to Machine vision systems which are out of range for small scale manufacturers. A Smartphone has to provide a similar level of accuracy as Machine Vision devices like Smart cameras. The objective set out was to develop an App on an Android Smartphone, incorporating advanced Computer vision algorithms written in java code. The App could then be used for recording measurements of Twist Drill bits and hole geometry, and analysing the results for accuracy. A detailed literature review was carried out for in-depth study of Machine vision systems and their capabilities, including a comparison between the HTC One X Android Smartphone and the Teledyne Dalsa BOA Smart camera. A review of the existing metrology Apps in the market was also undertaken. In addition, the drilling operation was evaluated to establish key measurement parameters of a twist Drill bit, especially flank wear and diameter. The methodology covers software development of the Android App, including the use of image processing algorithms like Gaussian Blur, Sobel and Canny available from OpenCV software library, as well as designing and developing the experimental set-up for carrying out the measurements. The results obtained from the experimental set-up were analysed for geometry of Twist Drill bits and holes, including diametrical measurements and flaw detection. The results show that Smartphones like the HTC One X have the processing power and the camera capability to carry out metrological tasks, although dimensional accuracy achievable from the Smartphone App is below the level provided by Machine vision devices like Smart cameras. A Smartphone with mechanical attachments, capable of image processing and having a reasonable level of accuracy in dimensional measurement, has the potential to become a handy low-cost Machine vision system for small scale manufacturers, especially in field metrology and flaw detection.
NASA Astrophysics Data System (ADS)
Obein, Gaël.; Audenaert, Jan; Ged, Guillaume; Leloup, Frédéric B.
2015-03-01
Among the complete bidirectional reflectance distribution function (BRDF), visual gloss is principally related to physical reflection characteristics located around the specular reflection direction. This particular part of the BRDF is usually referred to as the specular peak. A good starting point for the physical description of gloss could be to measure the reflection properties around this specular peak. Unfortunately, such a characterization is not trivial, since for glossy surfaces the width of the specular peak can become very narrow (typically a full width at half maximum inferior to 0.5° is encountered). In result, new BRDF measurement devices with a very small solid angle of detection are being introduced. Yet, differences in the optical design of BRDF measurement instruments engender different measurement results for the same specimen, complicating direct comparison of the measurement results. This issue is addressed in this paper. By way of example, BRDF measurement results of two samples, one being matte and the other one glossy, obtained by use of two high level goniospectrophotometers with a different optical design, are described. Important discrepancies in the results of the glossy sample are discussed. Finally, luminance maps obtained from renderings with the acquired BRDF data are presented, exemplifying the large visual differences that might be obtained. This stresses the metrological aspects that must be known for using BRDF data. Indeed, the comprehension of parameters affecting the measurement results is an inevitable step towards progress in the metrology of surface gloss, and thus towards a better metrology of appearance in general.
Sub-50 nm metrology on extreme ultra violet chemically amplified resist—A systematic assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maas, D. J., E-mail: diederik.maas@tno.nl; Herfst, R.; Veldhoven, E. van
2015-10-15
With lithographic patterning dimensions decreasing well below 50 nm, it is of high importance to understand metrology at such small scales. This paper presents results obtained from dense arrays of contact holes (CHs) with various Critical Dimension (CD) between 15 and 50 nm, as patterned in a chemically amplified resist using an ASML EUV scanner and measured at ASML and TNO. To determine the differences between various (local) CD metrology techniques, we conducted an experiment using optical scatterometry, CD-Scanning Electron Microscopy (CD-SEM), Helium ion Microscopy (HIM), and Atomic Force Microscopy (AFM). CD-SEM requires advanced beam scan strategies to mitigate samplemore » charging; the other tools did not need that. We discuss the observed main similarities and differences between the various techniques. To this end, we assessed the spatial frequency content in the raw images for SEM, HIM, and AFM. HIM and AFM resolve the highest spatial frequencies, which are attributed to the more localized probe-sample interaction for these techniques. Furthermore, the SEM, HIM, and AFM waveforms are analyzed in detail. All techniques show good mutual correlation, albeit the reported CD values systematically differ significantly. HIM systematically reports a 25% higher CD uniformity number than CD-SEM for the same arrays of CHs, probably because HIM has a higher resolution than the CD-SEM used in this assessment. A significant speed boost for HIM and AFM is required before these techniques are to serve the demanding industrial metrology applications like optical critical dimension and CD-SEM do nowadays.« less
Target-Tracking Camera for a Metrology System
NASA Technical Reports Server (NTRS)
Liebe, Carl; Bartman, Randall; Chapsky, Jacob; Abramovici, Alexander; Brown, David
2009-01-01
An analog electronic camera that is part of a metrology system measures the varying direction to a light-emitting diode that serves as a bright point target. In the original application for which the camera was developed, the metrological system is used to determine the varying relative positions of radiating elements of an airborne synthetic aperture-radar (SAR) antenna as the airplane flexes during flight; precise knowledge of the relative positions as a function of time is needed for processing SAR readings. It has been common metrology system practice to measure the varying direction to a bright target by use of an electronic camera of the charge-coupled-device or active-pixel-sensor type. A major disadvantage of this practice arises from the necessity of reading out and digitizing the outputs from a large number of pixels and processing the resulting digital values in a computer to determine the centroid of a target: Because of the time taken by the readout, digitization, and computation, the update rate is limited to tens of hertz. In contrast, the analog nature of the present camera makes it possible to achieve an update rate of hundreds of hertz, and no computer is needed to determine the centroid. The camera is based on a position-sensitive detector (PSD), which is a rectangular photodiode with output contacts at opposite ends. PSDs are usually used in triangulation for measuring small distances. PSDs are manufactured in both one- and two-dimensional versions. Because it is very difficult to calibrate two-dimensional PSDs accurately, the focal-plane sensors used in this camera are two orthogonally mounted one-dimensional PSDs.
NASA Astrophysics Data System (ADS)
Jones, Christopher W.; O’Connor, Daniel
2018-07-01
Dimensional surface metrology is required to enable advanced manufacturing process control for products such as large-area electronics, microfluidic structures, and light management films, where performance is determined by micrometre-scale geometry or roughness formed over metre-scale substrates. While able to perform 100% inspection at a low cost, commonly used 2D machine vision systems are insufficient to assess all of the functionally relevant critical dimensions in such 3D products on their own. While current high-resolution 3D metrology systems are able to assess these critical dimensions, they have a relatively small field of view and are thus much too slow to keep up with full production speeds. A hybrid 2D/3D inspection concept is demonstrated, combining a small field of view, high-performance 3D topography-measuring instrument with a large field of view, high-throughput 2D machine vision system. In this concept, the location of critical dimensions and defects are first registered using the 2D system, then smart routing algorithms and high dynamic range (HDR) measurement strategies are used to efficiently acquire local topography using the 3D sensor. A motion control platform with a traceable position referencing system is used to recreate various sheet-to-sheet and roll-to-roll inline metrology scenarios. We present the artefacts and procedures used to calibrate this hybrid sensor system for traceable dimensional measurement, as well as exemplar measurement of optically challenging industrial test structures.
Sub-50 nm metrology on extreme ultra violet chemically amplified resist—A systematic assessment
NASA Astrophysics Data System (ADS)
Maas, D. J.; Fliervoet, T.; Herfst, R.; van Veldhoven, E.; Meessen, J.; Vaenkatesan, V.; Sadeghian, H.
2015-10-01
With lithographic patterning dimensions decreasing well below 50 nm, it is of high importance to understand metrology at such small scales. This paper presents results obtained from dense arrays of contact holes (CHs) with various Critical Dimension (CD) between 15 and 50 nm, as patterned in a chemically amplified resist using an ASML EUV scanner and measured at ASML and TNO. To determine the differences between various (local) CD metrology techniques, we conducted an experiment using optical scatterometry, CD-Scanning Electron Microscopy (CD-SEM), Helium ion Microscopy (HIM), and Atomic Force Microscopy (AFM). CD-SEM requires advanced beam scan strategies to mitigate sample charging; the other tools did not need that. We discuss the observed main similarities and differences between the various techniques. To this end, we assessed the spatial frequency content in the raw images for SEM, HIM, and AFM. HIM and AFM resolve the highest spatial frequencies, which are attributed to the more localized probe-sample interaction for these techniques. Furthermore, the SEM, HIM, and AFM waveforms are analyzed in detail. All techniques show good mutual correlation, albeit the reported CD values systematically differ significantly. HIM systematically reports a 25% higher CD uniformity number than CD-SEM for the same arrays of CHs, probably because HIM has a higher resolution than the CD-SEM used in this assessment. A significant speed boost for HIM and AFM is required before these techniques are to serve the demanding industrial metrology applications like optical critical dimension and CD-SEM do nowadays.
Comparison of contact and non-contact asphere surface metrology devices
NASA Astrophysics Data System (ADS)
DeFisher, Scott; Fess, Edward M.
2013-09-01
Metrology of asphere surfaces is critical in the precision optics industry. Surface metrology serves as feedback into deterministic grinding and polishing platforms. Many different techniques and devices are used to qualify an asphere surface during fabrication. A contact profilometer is one of the most common measurement technologies used in asphere manufacturing. A profilometer uses a fine stylus to drag a diamond or ruby tip over the surface, resulting in a high resolution curved profile. Coordinate measuring machines (CMM) apply a similar concept by touching the optic with a ruby or silicon carbine sphere. A CMM is able to move in three dimensions while collecting data points along the asphere surface. Optical interferometers use a helium-neon laser with transmission spheres to compare a reflected wavefront from an asphere surface to a reference spherical wavefront. Large departure aspheres can be measured when a computer generated hologram (CGH) is introduced between the interferometer and the optic. OptiPro Systems has developed a non-contact CMM called UltraSurf. It utilizes a single point non-contact sensor, and high accuracy air bearings. Several different commercial non-contact sensors have been integrated, allowing for the flexibility to measure a variety of surfaces and materials. Metrology of a sphere and an asphere using a profilometer, CMM, Interferometer with a CGH, and the UltraSurf will be presented. Cross-correlation of the measured surface error magnitude and shape will be demonstrated. Comparisons between the techniques and devices will be also presented with attention to accuracy, repeatability, and overall measurement time.
Microfabricated Tactile Sensors for Biomedical Applications: A Review
Saccomandi, Paola; Schena, Emiliano; Oddo, Calogero Maria; Zollo, Loredana; Silvestri, Sergio; Guglielmelli, Eugenio
2014-01-01
During the last decades, tactile sensors based on different sensing principles have been developed due to the growing interest in robotics and, mainly, in medical applications. Several technological solutions have been employed to design tactile sensors; in particular, solutions based on microfabrication present several attractive features. Microfabrication technologies allow for developing miniaturized sensors with good performance in terms of metrological properties (e.g., accuracy, sensitivity, low power consumption, and frequency response). Small size and good metrological properties heighten the potential role of tactile sensors in medicine, making them especially attractive to be integrated in smart interfaces and microsurgical tools. This paper provides an overview of microfabricated tactile sensors, focusing on the mean principles of sensing, i.e., piezoresistive, piezoelectric and capacitive sensors. These sensors are employed for measuring contact properties, in particular force and pressure, in three main medical fields, i.e., prosthetics and artificial skin, minimal access surgery and smart interfaces for biomechanical analysis. The working principles and the metrological properties of the most promising tactile, microfabricated sensors are analyzed, together with their application in medicine. Finally, the new emerging technologies in these fields are briefly described. PMID:25587432
Optics for Processes, Products and Metrology
NASA Astrophysics Data System (ADS)
Mather, George
1999-04-01
Optical physics has a variety of applications in industry, including process inspection, coatings development, vision instrumentation, spectroscopy, and many others. Optics has been used extensively in the design of solar energy collection systems and coatings, for example. Also, with the availability of good CCD cameras and fast computers, it has become possible to develop real-time inspection and metrology devices that can accommodate the high throughputs encountered in modern production processes. More recently, developments in moiré interferometry show great promise for applications in the basic metals and electronics industries. The talk will illustrate applications of optics by discussing process inspection techniques for defect detection, part dimensioning, birefringence measurement, and the analysis of optical coatings in the automotive, glass, and optical disc industries. In particular, examples of optical techniques for the quality control of CD-R, MO, and CD-RW discs will be presented. In addition, the application of optical concepts to solar energy collector design and to metrology by moiré techniques will be discussed. Finally, some of the modern techniques and instruments used for qualitative and quantitative material analysis will be presented.
NASA Astrophysics Data System (ADS)
Ribeiro-Palau, Rebeca; Lafont, Fabien; Kazazis, Dimitris; Michon, Adrien; Couturaud, Olivier; Consejo, Christophe; Jouault, Benoit; Poirier, Wilfrid; Schopfer, Felicien
2015-03-01
Replace GaAs-based quantum Hall resistance standards (GaAs-QHRS) by a more convenient one, based on graphene (Gr-QHRS), is an ongoing goal in metrology. The new Gr-QHRS are expected to work in less demanding experimental conditions than GaAs ones. It will open the way to a broad dissemination of quantum standards, potentially towards industrial end-users, and it will support the implementation of a new International System of Units based on fixed fundamental constants. Here, we present accurate quantum Hall resistance measurements in large graphene Hall bars, grown by the hybrid scalable technique of propane/hydrogen chemical vapor deposition (CVD) on silicon carbide (SiC). This new Gr-QHRS shows a relative accuracy of 1 ×10-9 of the Hall resistance under the lowest magnetic field ever achieved in graphene. These experimental conditions surpass those of the most wildely used GaAs-QHRS. These results confirm the promises of graphene for resistance metrology applications and emphasizes the quality of the graphene produced by the CVD on SiC for applications as demanding as the resistance metrology.
Microwave evaluation of electromigration susceptibility in advanced interconnects
NASA Astrophysics Data System (ADS)
Sunday, Christopher E.; Veksler, Dmitry; Cheung, Kin C.; Obeng, Yaw S.
2017-11-01
Traditional metrology has been unable to adequately address the needs of the emerging integrated circuits (ICs) at the nano scale; thus, new metrology and techniques are needed. For example, the reliability challenges in fabrication need to be well understood and controlled to facilitate mass production of through-substrate-via (TSV) enabled three-dimensional integrated circuits (3D-ICs). This requires new approaches to the metrology. In this paper, we use the microwave propagation characteristics to study the reliability issues that precede the physical damage caused by electromigration in the Cu-filled TSVs. The pre-failure microwave insertion losses and group delay are dependent on both the device temperature and the amount of current forced through the devices-under-test. The microwave insertion losses increase with the increase in the test temperature, while the group delay increases with the increase in the forced direct current magnitude. The microwave insertion losses are attributed to the defect mobility at the Cu-TiN interface, and the group delay changes are due to resistive heating in the interconnects, which perturbs the dielectric properties of the cladding dielectrics of the copper fill in the TSVs.
APMP Scale Comparison with Three Radiation Thermometers and Six Fixed-Point Blackbodies
NASA Astrophysics Data System (ADS)
Yamada, Y.; Shimizu, Y.; Ishii, J.
2015-08-01
New Asia Pacific Metrology Programme (APMP) comparisons of radiation thermometry standards, APMP TS-11, and -12, have recently been initiated. These new APMP comparisons cover the temperature range from to . Three radiation thermometers with central wavelengths of 1.6 , 0.9 , and 0.65 are the transfer devices for the radiation thermometer scale comparison conducted in the so-called star configuration. In parallel, a compact fixed-point blackbody furnace that houses six types of fixed-point cells of In, Sn, Zn, Al, Ag, and Cu is circulated, again in a star-type comparison, to substantiate fixed-point calibration capabilities. Twelve APMP national metrology institutes are taking part in this endeavor, in which the National Metrology Institute of Japan acts as the pilot. In this article, the comparison scheme is described with emphasis on the features of the transfer devices, i.e., the radiation thermometers and the fixed-point blackbodies. Results of preliminary evaluations of the performance and characteristic of these instruments as well as the evaluation method of the comparison results are presented.
Optimization of pencil beam f-theta lens for high-accuracy metrology
NASA Astrophysics Data System (ADS)
Peng, Chuanqian; He, Yumei; Wang, Jie
2018-01-01
Pencil beam deflectometric profilers are common instruments for high-accuracy surface slope metrology of x-ray mirrors in synchrotron facilities. An f-theta optical system is a key optical component of the deflectometric profilers and is used to perform the linear angle-to-position conversion. Traditional optimization procedures of the f-theta systems are not directly related to the angle-to-position conversion relation and are performed with stops of large size and a fixed working distance, which means they may not be suitable for the design of f-theta systems working with a small-sized pencil beam within a working distance range for ultra-high-accuracy metrology. If an f-theta system is not well-designed, aberrations of the f-theta system will introduce many systematic errors into the measurement. A least-squares' fitting procedure was used to optimize the configuration parameters of an f-theta system. Simulations using ZEMAX software showed that the optimized f-theta system significantly suppressed the angle-to-position conversion errors caused by aberrations. Any pencil-beam f-theta optical system can be optimized with the help of this optimization method.
Industrial Photogrammetry - Accepted Metrology Tool or Exotic Niche
NASA Astrophysics Data System (ADS)
Bösemann, Werner
2016-06-01
New production technologies like 3D printing and other adaptive manufacturing technologies have changed the industrial manufacturing process, often referred to as next industrial revolution or short industry 4.0. Such Cyber Physical Production Systems combine virtual and real world through digitization, model building process simulation and optimization. It is commonly understood that measurement technologies are the key to combine the real and virtual worlds (eg. [Schmitt 2014]). This change from measurement as a quality control tool to a fully integrated step in the production process has also changed the requirements for 3D metrology solutions. Key words like MAA (Measurement Assisted Assembly) illustrate that new position of metrology in the industrial production process. At the same time it is obvious that these processes not only require more measurements but also systems to deliver the required information in high density in a short time. Here optical solutions including photogrammetry for 3D measurements have big advantages over traditional mechanical CMM's. The paper describes the relevance of different photogrammetric solutions including state of the art, industry requirements and application examples.
Microfabricated tactile sensors for biomedical applications: a review.
Saccomandi, Paola; Schena, Emiliano; Oddo, Calogero Maria; Zollo, Loredana; Silvestri, Sergio; Guglielmelli, Eugenio
2014-12-01
During the last decades, tactile sensors based on different sensing principles have been developed due to the growing interest in robotics and, mainly, in medical applications. Several technological solutions have been employed to design tactile sensors; in particular, solutions based on microfabrication present several attractive features. Microfabrication technologies allow for developing miniaturized sensors with good performance in terms of metrological properties (e.g., accuracy, sensitivity, low power consumption, and frequency response). Small size and good metrological properties heighten the potential role of tactile sensors in medicine, making them especially attractive to be integrated in smart interfaces and microsurgical tools. This paper provides an overview of microfabricated tactile sensors, focusing on the mean principles of sensing, i.e., piezoresistive, piezoelectric and capacitive sensors. These sensors are employed for measuring contact properties, in particular force and pressure, in three main medical fields, i.e., prosthetics and artificial skin, minimal access surgery and smart interfaces for biomechanical analysis. The working principles and the metrological properties of the most promising tactile, microfabricated sensors are analyzed, together with their application in medicine. Finally, the new emerging technologies in these fields are briefly described.
Scatterometry-based metrology for SAQP pitch walking using virtual reference
NASA Astrophysics Data System (ADS)
Kagalwala, Taher; Vaid, Alok; Mahendrakar, Sridhar; Lenahan, Michael; Fang, Fang; Isbester, Paul; Shifrin, Michael; Etzioni, Yoav; Cepler, Aron; Yellai, Naren; Dasari, Prasad; Bozdog, Cornel
2016-03-01
Advanced technology nodes, 10nm and beyond, employing multi-patterning techniques for pitch reduction pose new process and metrology challenges in maintaining consistent positioning of structural features. Self-Aligned Quadruple Patterning (SAQP) process is used to create the Fins in FinFET devices with pitch values well below optical lithography limits. The SAQP process bares compounding effects from successive Reactive Ion Etch (RIE) and spacer depositions. These processes induce a shift in the pitch value from one fin compared to another neighboring fin. This is known as pitch walking. Pitch walking affects device performance as well as later processes which work on an assumption that there is consistent spacing between fins. In SAQP there are 3 pitch walking parameters of interest, each linked to specific process steps in the flow. These pitch walking parameters are difficult to discriminate at a specific process step by singular evaluation technique or even with reference metrology such as Transmission Electron Microscopy (TEM). In this paper we will utilize a virtual reference to generate a scatterometry model to measure pitch walk for SAQP process flow.
NASA Astrophysics Data System (ADS)
Kagalwala, Taher; Vaid, Alok; Mahendrakar, Sridhar; Lenahan, Michael; Fang, Fang; Isbester, Paul; Shifrin, Michael; Etzioni, Yoav; Cepler, Aron; Yellai, Naren; Dasari, Prasad; Bozdog, Cornel
2016-10-01
Advanced technology nodes, 10 nm and beyond, employing multipatterning techniques for pitch reduction pose new process and metrology challenges in maintaining consistent positioning of structural features. A self-aligned quadruple patterning (SAQP) process is used to create the fins in FinFET devices with pitch values well below optical lithography limits. The SAQP process bears the compounding effects from successive reactive ion etch and spacer depositions. These processes induce a shift in the pitch value from one fin compared to another neighboring fin. This is known as pitch walking. Pitch walking affects device performance as well as later processes, which work on an assumption that there is consistent spacing between fins. In SAQP, there are three pitch walking parameters of interest, each linked to specific process steps in the flow. These pitch walking parameters are difficult to discriminate at a specific process step by singular evaluation technique or even with reference metrology, such as transmission electron microscopy. We will utilize a virtual reference to generate a scatterometry model to measure pitch walk for SAQP process flow.
A new ultra-high-accuracy angle generator: current status and future direction
NASA Astrophysics Data System (ADS)
Guertin, Christian F.; Geckeler, Ralf D.
2017-09-01
Lack of an extreme high-accuracy angular positioning device available in the United States has left a gap in industrial and scientific efforts conducted there, requiring certain user groups to undertake time-consuming work with overseas laboratories. Specifically, in x-ray mirror metrology the global research community is advancing the state-of-the-art to unprecedented levels. We aim to fill this U.S. gap by developing a versatile high-accuracy angle generator as a part of the national metrology tool set for x-ray mirror metrology and other important industries. Using an established calibration technique to measure the errors of the encoder scale graduations for full-rotation rotary encoders, we implemented an optimized arrangement of sensors positioned to minimize propagation of calibration errors. Our initial feasibility research shows that upon scaling to a full prototype and including additional calibration techniques we can expect to achieve uncertainties at the level of 0.01 arcsec (50 nrad) or better and offer the immense advantage of a highly automatable and customizable product to the commercial market.
Speed scanning system based on solid-state microchip laser for architectural planning
NASA Astrophysics Data System (ADS)
Redka, Dmitriy; Grishkanich, Alexsandr S.; Kolmakov, Egor; Tsvetkov, Konstantin
2017-10-01
According to the current great interest concerning Large-Scale Metrology applications in many different fields of manufacturing industry, technologies and techniques for dimensional measurement have recently shown a substantial improvement. Ease-of-use, logistic and economic issues, as well as metrological performance, are assuming a more and more important role among system requirements. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of microlasers as radiators on the linear-angular characteristics of existing measurement systems. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of microlasers as radiators on the linear-angular characteristics of existing measurement systems. The system consists of a distributed network-based layout, whose modularity allows to fit differently sized and shaped working volumes by adequately increasing the number of sensing units. Differently from existing spatially distributed metrological instruments, the remote sensor devices are intended to provide embedded data elaboration capabilities, in order to share the overall computational load.
Coordinate measuring system based on microchip lasers for reverse prototyping
NASA Astrophysics Data System (ADS)
Iakovlev, Alexey; Grishkanich, Alexsandr S.; Redka, Dmitriy; Tsvetkov, Konstantin
2017-02-01
According to the current great interest concerning Large-Scale Metrology applications in many different fields of manufacturing industry, technologies and techniques for dimensional measurement have recently shown a substantial improvement. Ease-of-use, logistic and economic issues, as well as metrological performance, are assuming a more and more important role among system requirements. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of chip and microlasers as radiators on the linear-angular characteristics of existing measurement systems. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of microlasers as radiators on the linear-angular characteristics of existing measurement systems. The system consists of a distributed network-based layout, whose modularity allows to fit differently sized and shaped working volumes by adequately increasing the number of sensing units. Differently from existing spatially distributed metrological instruments, the remote sensor devices are intended to provide embedded data elaboration capabilities, in order to share the overall computational load.
NASA Astrophysics Data System (ADS)
Liedberg, Hans; Kebede Ejigu, Efrem; Madiba, Tshifhiwa; du Clou, Sven; Chibaya, Blessing; Mwazi, Victor; Kajane, Tebogo; Mundembe, Victor; Kwong, Christian Ng Ha; Madeleine, Gilbert
2017-01-01
A Regional Metrology Organization (RMO) supplementary comparison of liquid in glass thermometer (AFRIMETS.T-S5) was carried out by the National Metrology Institute of South Africa (NMISA), Zimbabwe Scientific & Industrial Research & Development Centre—National Metrology Institute (SIRDC-NMI), Zambia Bureau of Standards (ZABS), Botswana Bureau of Standards (BOBS), Namibian Standards Institute (NSI), Mauritius Standards Bureau (MSB) and Seychelles Bureau of Standards (SBS) between January and September 2016. The temperature range of the inter comparison is -35 °C to 250 °C. The results of this comparison are reported here, along with descriptions of the Artefacts used. This report also presents the uncertainty budget of each participant. The results are analysed and normalized error (En) values are reported. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Metrology Mount and Optics Mandrels
NASA Technical Reports Server (NTRS)
Tananbaum, H.; Russell, Kevin (Technical Monitor)
2000-01-01
This document is the Final Report for NASA Grant NAG8-1198 from NASA Marshall Space Flight Center (MSFC) to the Smithsonian Astrophysical Observatory (SAO). The Grant is entitled "Metrology Mount and Optics Materials." This final report is required by the terms of the Grant. The period of performance was from September 15, 1995 through January 14, 1999. Total funding received by SAO from MSFC for this effort was, $254,000. Mr. Lester Cohen carried out most of the work at SAO, but received limited support from other engineers, technicians, and designers. Dr. Harvey Tananbaum, the Principal Investigator for the grant provided overall direction and work- assessment. The Grant has had two funding augmentations to its basic amount and has, over time, emphasized three different research areas - each of which has been an extension of earlier research. The research activity was in 2 areas: (1) Expert opto-structural studies related to separation mechanics and effects of electro formed nickel X-ray mirrors. and (2) Design, fabrication and evaluation of a low force metrology and assembly station for light weight full shell electroformed X-ray mirrors.
Achieving optimum diffraction based overlay performance
NASA Astrophysics Data System (ADS)
Leray, Philippe; Laidler, David; Cheng, Shaunee; Coogans, Martyn; Fuchs, Andreas; Ponomarenko, Mariya; van der Schaar, Maurits; Vanoppen, Peter
2010-03-01
Diffraction Based Overlay (DBO) metrology has been shown to have significantly reduced Total Measurement Uncertainty (TMU) compared to Image Based Overlay (IBO), primarily due to having no measurable Tool Induced Shift (TIS). However, the advantages of having no measurable TIS can be outweighed by increased susceptibility to WIS (Wafer Induced Shift) caused by target damage, process non-uniformities and variations. The path to optimum DBO performance lies in having well characterized metrology targets, which are insensitive to process non-uniformities and variations, in combination with optimized recipes which take advantage of advanced DBO designs. In this work we examine the impact of different degrees of process non-uniformity and target damage on DBO measurement gratings and study their impact on overlay measurement accuracy and precision. Multiple wavelength and dual polarization scatterometry are used to characterize the DBO design performance over the range of process variation. In conclusion, we describe the robustness of DBO metrology to target damage and show how to exploit the measurement capability of a multiple wavelength, dual polarization scatterometry tool to ensure the required measurement accuracy for current and future technology nodes.
Diffraction-based overlay metrology for double patterning technologies
NASA Astrophysics Data System (ADS)
Dasari, Prasad; Korlahalli, Rahul; Li, Jie; Smith, Nigel; Kritsun, Oleg; Volkman, Cathy
2009-03-01
The extension of optical lithography to 32nm and beyond is made possible by Double Patterning Techniques (DPT) at critical levels of the process flow. The ease of DPT implementation is hindered by increased significance of critical dimension uniformity and overlay errors. Diffraction-based overlay (DBO) has shown to be an effective metrology solution for accurate determination of the overlay errors associated with double patterning [1, 2] processes. In this paper we will report its use in litho-freeze-litho-etch (LFLE) and spacer double patterning technology (SDPT), which are pitch splitting solutions that reduce the significance of overlay errors. Since the control of overlay between various mask/level combinations is critical for fabrication, precise and accurate assessment of errors by advanced metrology techniques such as spectroscopic diffraction based overlay (DBO) and traditional image-based overlay (IBO) using advanced target designs will be reported. A comparison between DBO, IBO and CD-SEM measurements will be reported. . A discussion of TMU requirements for 32nm technology and TMU performance data of LFLE and SDPT targets by different overlay approaches will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A Rasmussen, Andrew P.; Hale, Layton; Kim, Peter
Meeting the science goals for the Large Synoptic Survey Telescope (LSST) translates into a demanding set of imaging performance requirements for the optical system over a wide (3.5{sup o}) field of view. In turn, meeting those imaging requirements necessitates maintaining precise control of the focal plane surface (10 {micro}m P-V) over the entire field of view (640 mm diameter) at the operating temperature (T {approx} -100 C) and over the operational elevation angle range. We briefly describe the hierarchical design approach for the LSST Camera focal plane and the baseline design for assembling the flat focal plane at room temperature.more » Preliminary results of gravity load and thermal distortion calculations are provided, and early metrological verification of candidate materials under cold thermal conditions are presented. A detailed, generalized method for stitching together sparse metrology data originating from differential, non-contact metrological data acquisition spanning multiple (non-continuous) sensor surfaces making up the focal plane, is described and demonstrated. Finally, we describe some in situ alignment verification alternatives, some of which may be integrated into the camera's focal plane.« less
NASA Technical Reports Server (NTRS)
Ohl, Raymond G.; Dow, Thomas A.; Sohn, alex
2004-01-01
We present highlights from the American Society for Precision Engineering's 2004 winter topical meeting entitled Free-Form Optics: Design, Fabrication, Metrology, Assembly. We emphasize those papers that are most relevant to astronomical optics. Optical surfaces that transcend the bounds of rotational symmetry have been implemented in novel optical systems with fantastic results since the release of Polaroid's first instant camera. Despite these successes, free-form optics have found only a few niche applications and have yet to enter the mainstream. The purpose of this meeting is to identify the state of the art of free-form optics design, fabrication, metrology and assembly and to identify the technical and logistical challenges that inhibit their widespread use. Issues that will be addressed include: What are free-form optics? How can optical systems be made better with free-form optics? How can designers use free-form optics? How can free-form optics be fabricated? How can they be measured? How are free-form optical systems assembled? Control of multi-axis systems.
NASA Astrophysics Data System (ADS)
Hudson, R. P.
1981-04-01
In July 1976, some thirty young scientists and their lecturers were privileged to participate in a conference on "Metrology and the Fundamental Constants" at Varenna, this being the 68th course in the "Enrico Fermi International School of Physics". Now, at last, we are all privileged to share in that experience—to a large degree—with the appearance of the Proceedings, published last summer under the auspices of the Italian Physical Society. This rather massive volume (800 pages) places in one's hands a summary of the "state of the art" in the greater part of physical metrology. It is not, however, a metrology handbook, designed to assist the unskilled in making trustworthy measurements. It summarizes, via the lectures of internationally-recognized experts, the most recent attempts to realize with enhanced accuracy the basic units of measurement and, in so doing, it presents the subject of measurement science as the central (or all-pervasive) topic in physics itself. Clearly demonstrated is the progress from discovery to "understanding" of physical phenomena which is made possible through the historical alternation of observation and measurement. The volume includes informative reviews of the fundamentals of this fundamental science, namely, the concepts of quantities and units (Allisy); systems of units and the Système International, SI. (Terrien); international aspects of metrology and standards (Terrien); practical considerations in a hierarchy of standards (Terrien); materials problems affecting metrology (Ferro Milone and Sourdo) and statistical methods (Allisy). These discussions alone, being brought together in one place, are of particular usefulness. The remaining, and major, part of the book is taken up by authoritative and generally very readable discussions of measurement topics, for the most part separately focused on one of the base units. For these one cannot help noticing nor refrain from recording a measure of imbalance: some quantities (for example, time and frequency) are accorded several lectures and lecturers, while most receive only one each. That choice by the conference's organizers is not explained in the Foreword. But it is not a very serious drawback; nor—for the anglophone reader, at least—is the appearance here and there of quaint inventions in English which, in fact, add to the charm. There are short articles on the Determination of Atomic Masses of Nuclides (Wapstra), some Problems in Photometry (Korte); two by A Bray on Force Standards, one dealing with Dissemination and the other with Measurement of "g"; Time Scales (Leschiutta); determining the Volume of a Sphere (Terrien); and two by Giacomo, one commenting on Mass Measurements and one discussing the Speed of Light. Of intermediate length are reviews of the Determination of Best Values of the Fundamental Physical Constants (Cohen); Length Measurement Standards (Giacomo), and Topics in Quantum Electrodynamics (Combley and Picasso). The extended treatment of time and frequency metrology includes three major articles by Audoin: a general (largely analytical) one on Frequency Metrology, followed by detailed discussions of Cesium Beam and Hydrogen Maser technology. There are, in addition, specialized treatments of Optically-Pumped Microwave Devices (Arditi) and of Optical Frequency Standards (i.e., lasers) by Chebotayev; finally, a brief note by De Marchi on Problems in Frequency Synthesis in the far Infrared Region. A long article by Petley covers the many-faceted subject of Electrical Metrology and the Fundamental Constants. Equally variegated, although belied by its simple title, is a discussion of Thermometry by Quinn. And last, but not least, is a detailed account by Deslattes of his determination of Avogadro's Constant which ranges over the topics of Infrared to Gamma-ray Reference Wavelengths, Mass and Density. In summarizing it is difficult to avoid the assertion, however hackneyed, that no physicist can afford to be without—or, at least, do without reading—a copy of these Proceedings.
EDITORIAL: Nanoscale metrology Nanoscale metrology
NASA Astrophysics Data System (ADS)
Klapetek, P.; Koenders, L.
2011-09-01
This special issue of Measurement Science and Technology presents selected contributions from the NanoScale 2010 seminar held in Brno, Czech Republic. It was the 5th Seminar on Nanoscale Calibration Standards and Methods and the 9th Seminar on Quantitative Microscopy (the first being held in 1995). The seminar was jointly organized with the Czech Metrology Institute (CMI) and the Nanometrology Group of the Technical Committee-Length of EURAMET. There were two workshops that were integrated into NanoScale 2010: first a workshop presenting the results obtained in NANOTRACE, a European Metrology Research Project (EMRP) on displacement-measuring optical interferometers, and second a workshop about the European metrology landscape in nanometrology related to thin films, scanning probe microscopy and critical dimension. The aim of this workshop was to bring together developers, applicants and metrologists working in this field of nanometrology and to discuss future needs. For more information see www.co-nanomet.eu. The articles in this special issue of Measurement Science and Technology cover some novel scientific results. This issue can serve also as a representative selection of topics that are currently being investigated in the field of European and world-wide nanometrology. Besides traditional topics of dimensional metrology, like development of novel interferometers or laser stabilization techniques, some novel interesting trends in the field of nanometrology are observed. As metrology generally reflects the needs of scientific and industrial research, many research topics addressed refer to current trends in nanotechnology, too, focusing on traceability and improved measurement accuracy in this field. While historically the most studied standards in nanometrology were related to simple geometric structures like step heights or 1D or 2D gratings, now we are facing tasks to measure 3D structures and many unforeseen questions arising from interesting physical properties of nanoparticles, nanotubes, quantum dots and similar fascinating objects. Currently there is a high level of interest in characterization of nanoparticles since they are increasingly encountered in science, technology, life sciences and even everyday life. Quantitative characterization of nanoparticles has been the subject of many discussions and some recent work over the last couple of years, and both scanning probe microscopy and scanning or transmission electron microscopy characterization of nanoparticles are presented here. There is also a continuous need for improvement of scanning probe microscopy that is a basic tool for nanometrology. Increasing thermal stability, scanning speed and tip stability, improving traceability and reducing uncertainty are all areas being addressed. As scanning probe microscopy is essentially based on force measurements in the nano- and piconewton range, we take notice of large developments, both theoretical and experimental, in the field of traceable measurements of nanoscale forces. This will greatly increase the understanding and quantification of many basic phenomena in scanning probe microscopy. Finally, we observe that high resolution techniques for acquiring more than just morphology are slowly shifting from purely qualitative tools to well defined quantitative methods. Lack of simple and reliable chemical identification in scanning probe microscopy is compensated by many other local probing methods seen in commercial microscopes, like scanning thermal microscopy or the Kelvin probe technique. All these methods still require underpinning with theoretical and experimental work before they can become traceable analytical methods; however, the increased interest in the metrology community gives rise to optimism in this field. The production of this issue involved considerable effort from many contributors. We would like to thank all the authors for their contributions, the referees for their time spent reviewing the contributions and their valuable comments, and the whole Editorial Board of Measurement Science and Technology for their support.
PREFACE: Fundamental Constants in Physics and Metrology
NASA Astrophysics Data System (ADS)
Klose, Volkmar; Kramer, Bernhard
1986-01-01
This volume contains the papers presented at the 70th PTB Seminar which, the second on the subject "Fundamental Constants in Physics and Metrology", was held at the Physikalisch-Technische Bundesanstalt in Braunschweig from October 21 to 22, 1985. About 100 participants from the universities and various research institutes of the Federal Republic of Germany participated in the meeting. Besides a number of review lectures on various broader subjects there was a poster session which contained a variety of topical contributed papers ranging from the theory of the quantum Hall effect to reports on the status of the metrological experiments at the PTB. In addition, the participants were also offered the possibility to visit the PTB laboratories during the course of the seminar. During the preparation of the meeting we noticed that even most of the general subjects which were going to be discussed in the lectures are of great importance in connection with metrological experiments and should be made accessible to the scientific community. This eventually resulted in the idea of the publication of the papers in a regular journal. We are grateful to the editor of Metrologia for providing this opportunity. We have included quite a number of papers from basic physical research. For example, certain aspects of high-energy physics and quantum optics, as well as the many-faceted role of Sommerfeld's fine-structure constant, are covered. We think that questions such as "What are the intrinsic fundamental parameters of nature?" or "What are we doing when we perform an experiment?" can shed new light on the art of metrology, and do, potentially, lead to new ideas. This appears to be especially necessary when we notice the increasing importance of the role of the fundamental constants and macroscopic quantum effects for the definition and the realization of the physical units. In some cases we have reached a point where the limitations of our knowledge of a fundamental constant and/or a physical unit have their origin in the shortcomings of our understanding of the underlying physics rather than being due to the technical problems in the experiment. In this context, it is worth mentioning that the quantum Hall effect, the discovery of which by Klaus von Klitzing was rewarded only recently by the Nobel Prize for physics, still needs further attention. We are able to reproduce experimentally resistances with an extremely high precision using this effect. Nevertheless, we have severe difficulties in our present physical understanding of the mechanism which provides the plateaux in the Hall resistance. Lectures on "Quantum Non-Demolition" and "Determination of the Boltzmann Constant" have been included in order to show routes to "new frontiers" in metrology. Even the "conventional" metrological concepts, when combined with modern technology, can provide surprises: Although the Josephson effect is known since 1962, it was only recently that a quantized voltage in the 1-volt range could be experimentally realized. The experiment was performed by making use of modern thin-film technology. In addition to providing a simple and precise voltage standard in a practically important regime it also sets a new frontier in precision electrical metrology by demonstrating that, ultimately, the reproducibility of the unit of voltage is limited by that of the unit of time. We are indebted to a number of people who helped to organize the Seminar as well as to prepare this volume. Especially, we would like to mention Mrs Inge Bode. Without her continuous work the 70th PTB Seminar would not have been possible in the way we all have experienced it. We appreciate also the help of R P Hudson and H Lotsch in achieving a fast publication of this volume. Financial support from the Helmholtz-Fond is gratefully acknowledged.
Metrology-based control and profitability in the semiconductor industry
NASA Astrophysics Data System (ADS)
Weber, Charles
2001-06-01
This paper summarizes three studies of the semiconductor industry conducted at SEMATECH and MIT's Sloan School of Management. In conjunction they lead to the conclusion that rapid problem solving is an essential component of profitability in the semiconductor industry, and that metrology-based control is instrumental to rapid problem solving. The studies also identify the need for defect attribution. Once a source of a defect has been identified, the appropriate resources--human and technological--need to be brought into the physically optimal location for corrective action. The Internet is likely to enable effective defect attribution by inducing collaboration between different companies.
A Toolbox of Metrology-Based Techniques for Optical System Alignment
NASA Technical Reports Server (NTRS)
Coulter, Phillip; Ohl, Raymond G.; Blake, Peter N.; Bos, Brent J.; Casto, Gordon V.; Eichhorn, William L.; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hagopian, John G.; Hayden, Joseph E.;
2016-01-01
The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a toolbox format. We discuss a range of applications, from small-scale optical alignment of sensors to mirror and bench examples that make use of various large-volume metrology techniques. We also discuss instruments and analytical tools.
A Toolbox of Metrology-Based Techniques for Optical System Alignment
NASA Technical Reports Server (NTRS)
Coulter, Phillip; Ohl, Raymond G.; Blake, Peter N.; Bos, Brent J.; Eichhorn, William L.; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hagopian, John G.; Hayden, Joseph E.; Hetherington, Samuel E.;
2016-01-01
The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a "toolbox" format. We discuss a range of applications, from small-scale optical alignment of sensors to mirror and bench examples that make use of various large-volume metrology techniques. We also discuss instruments and analytical tools.
Metrology of airborne and liquid-borne nanoparticles: current status and future needs
NASA Astrophysics Data System (ADS)
Ehara, Kensei; Sakurai, Hiromu
2010-04-01
The current status and future needs of nanoparticle metrology are discussed, particularly with respect to measurements of size, size distribution and number concentration of airborne and liquid-borne nanoparticles. Possible classification of types of measurement standards is proposed, and the role of each type of standard, including the feasibility of its establishment, is examined. A desirable interplay between measurement standards and documentary standards in establishing the traceability chain in particle measurements is suggested. Particle-related calibration services currently provided by our laboratory at the National Institute of Advanced Industrial Science and Technology are also described.
A risk analysis approach applied to field surveillance in utility meters in legal metrology
NASA Astrophysics Data System (ADS)
Rodrigues Filho, B. A.; Nonato, N. S.; Carvalho, A. D.
2018-03-01
Field surveillance represents the level of control in metrological supervision responsible for checking the conformity of measuring instruments in-service. Utility meters represent the majority of measuring instruments produced by notified bodies due to self-verification in Brazil. They play a major role in the economy once electricity, gas and water are the main inputs to industries in their production processes. Then, to optimize the resources allocated to control these devices, the present study applied a risk analysis in order to identify among the 11 manufacturers notified to self-verification, the instruments that demand field surveillance.
A focal plane metrology system and PSF centroiding experiment
NASA Astrophysics Data System (ADS)
Li, Haitao; Li, Baoquan; Cao, Yang; Li, Ligang
2016-10-01
In this paper, we present an overview of a detector array equipment metrology testbed and a micro-pixel centroiding experiment currently under development at the National Space Science Center, Chinese Academy of Sciences. We discuss on-going development efforts aimed at calibrating the intra-/inter-pixel quantum efficiency and pixel positions for scientific grade CMOS detector, and review significant progress in achieving higher precision differential centroiding for pseudo star images in large area back-illuminated CMOS detector. Without calibration of pixel positions and intrapixel response, we have demonstrated that the standard deviation of differential centroiding is below 2.0e-3 pixels.
Fabrication and metrology of lithium niobate narrowband optical filters for the solar orbiter
NASA Astrophysics Data System (ADS)
Gensemer, Stephen D.; Farrant, David
2014-06-01
We report on the fabrication of custom voltage tunable etalons for the SO/PHI spaceborne solar imaging instrument [A. Gandorfer, S. K. Solanki, J. Woch, V. M. Pillet, A. A. Herrero, and T. Appourchaux, J. Phys.: Conference Series 271, 012086 (2011)]. The etalons were manufactured to place a transmission maximum within 0.3 Å of the FeI emission line at 6175.0 Å. Meeting this specification requires an overall thickness specified to within ±15 nm, over a 60 mm aperture. We describe here the metrology, modelling and coating procedures we developed to achieve this.
A programmable quantum current standard from the Josephson and the quantum Hall effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, W., E-mail: wilfrid.poirier@lne.fr; Lafont, F.; Djordjevic, S.
We propose a way to realize a programmable quantum current standard (PQCS) from the Josephson voltage standard and the quantum Hall resistance standard (QHR) exploiting the multiple connection technique provided by the quantum Hall effect (QHE) and the exactness of the cryogenic current comparator. The PQCS could lead to breakthroughs in electrical metrology like the realization of a programmable quantum current source, a quantum ampere-meter, and a simplified closure of the quantum metrological triangle. Moreover, very accurate universality tests of the QHE could be performed by comparing PQCS based on different QHRs.
Digital Holography, a metrological tool for quantitative analysis: Trends and future applications
NASA Astrophysics Data System (ADS)
Paturzo, Melania; Pagliarulo, Vito; Bianco, Vittorio; Memmolo, Pasquale; Miccio, Lisa; Merola, Francesco; Ferraro, Pietro
2018-05-01
A review on the last achievements of Digital Holography is reported in this paper, showing that this powerful method can be a key metrological tool for the quantitative analysis and non-invasive inspection of a variety of materials, devices and processes. Nowadays, its range of applications has been greatly extended, including the study of live biological matter and biomedical applications. This paper overviews the main progresses and future perspectives of digital holography, showing new optical configurations and investigating the numerical issues to be tackled for the processing and display of quantitative data.
An Optical Lever For The Metrology Of Grazing Incidence Optics
NASA Astrophysics Data System (ADS)
DeCew, Alan E.; Wagner, Robert W.
1986-11-01
Research Optics & Development, Inc. is using a slope tracing profilometer to measure the figure of optical surfaces which cannot be measured conveniently by interferometric means. As a metrological tool, the technique has its greatest advantage as an in-process easurement system. An optician can easily convert from polishing to measurement in less than a minute of time. This rapid feedback allows figure correction with minimal wasted effort and setup time. The present configuration of the slope scanner provides resolutions to 1 micro-radian. By implementing minor modifications, the resolution could be improved by an order of magnitude.
Programmed LWR metrology by multi-techniques approach
NASA Astrophysics Data System (ADS)
Reche, Jérôme; Besacier, Maxime; Gergaud, Patrice; Blancquaert, Yoann; Freychet, Guillaume; Labbaye, Thibault
2018-03-01
Nowadays, roughness control presents a huge challenge for the lithography step. For advanced nodes, this morphological aspect reaches the same order of magnitude than the Critical Dimension. Hence, the control of roughness needs an adapted metrology. In this study, specific samples with designed roughness have been manufactured using e-beam lithography. These samples have been characterized with three different methodologies: CD-SEM, OCD and SAXS. The main goal of the project is to compare the capability of each of these techniques in terms of reliability, type of information obtained, time to obtain the measurements and level of maturity for the industry.
Mounting for Fabrication, Metrology, and Assembly of Full Shell Grazing Incidence Optics
NASA Technical Reports Server (NTRS)
Roche, Jacqueline M.; Gubarev, Mikhail V.; O'Dell, Stephen L.; Kolodziejczak, Jeffery; Weisskopf, Martin C.; Ramsey, Brian D.; Elsner, Ronald F.
2014-01-01
Future x-ray telescopes will likely require lightweight mirrors to attain the large collecting areas needed to accomplish the science objectives. Understanding and demonstrating processes now is critical to achieving sub-arcsecond performance in the future. Consequently, designs not only of the mirrors but of fixtures for supporting them during fabrication, metrology, handling, assembly, and testing must be adequately modeled and verified. To this end, MSFC is using finite-element modeling to study the effects of mounting on full-shell grazing-incidence mirrors, during all processes leading to flight mirror assemblies. Here we report initial results of this study.
La coherence conceptuelle d'etudiants collegiaux en mecanique Newtonienne et en metrologie
NASA Astrophysics Data System (ADS)
Periard, Martin
This thesis evaluates the coherence of the conceptual network demonstrated by college students in life and applied sciences. This evaluation was based on the analysis of Burt tables issuing from multiple choice questionnaires, on the creation and careful examination of a novel tool, the matrix of specific discrimination coefficients, which will be described in the main text, and on the qualitative analysis of actual laboratory work of students doing an experimentation. At the completion of this project, four research axis have been explored. (1) What is the conceptual coherence demonstrated in Newtonian mechanics? (2) Is the mastery of uncertainty quantification related to the development of logical thinking or to mathematical competency? (3) What is the conceptual coherence demonstrated in the quantification of experimental uncertainty? (4) What are the concrete procedures utilized by students to quantify experimental uncertainty in a semi-directed laboratory context? The main conclusions that emerged from each axis of research can be summerized as follow. (1) The most prevalent erroneous conceptions are not solidly set in a rigid conceptual network. For example, a student successful in a question about Newton's third law (the most difficult subject of the Force Concept Inventory) is just slightly more likely to succeed in another related question than the other participants. Many pairs of questions displays a negative specific discrimination coefficient demonstrating a weak conceptual coherence in pre-test and a somewhat ameliorated conceptual coherence in post-test. (2) If a small proportion of students has demonstrated marked deficiencies in questions related with control of variable and in those related to the relationship between the graphical display of experimental data and a mathematical model, the majority of students can be considered as adequately mastering those subjects. However, almost every student demonstrated a lack of mastery of concepts underlying the quantification of experimental uncertainty and the propagation of uncertainty (heretofore referred to as metrology). No statistically significant correlation has been observed between the three main topics suggesting that they are largely independent cognitive abilities. Burt table has demonstrated a greater degree of conceptual coherence between control of variables questions than suggested by Pearson correlation coefficients. Equivalent question in the topic of metrology did not permit to demonstrate a clear conceptual coherence. (3) Analysis of a questionnaire entirely devoted to metrology has shown erroneous conceptions caused by prior learning (didactical obstacles), erroneous conceptions based on intuitive models and a lack of global comprehension of metrological concepts although some appear to be almost acquired. (4) When doing real experiments in semi-directed laboratory, students demonstrated the same difficulty identified in the questionnaire of 3) which could interpreted as corroborating previously obtained results. However, many unanticipated behaviors related to measurement were observed that could not have been anticipated solely by analyzing answers in the multiple-choice questionnaire. Interviews immediately following each semi-directed laboratory permitted the participants to detail certain aspects of their metrological methodology. Most notably, the use of repeated measurement strategies, their "spontaneous" strategies to quantify uncertainty, and their explanation of numerical estimates of reading uncertainties. Overall, uncertainty propagation algorithms were adequately employed. Many erroneous metrological conceptions seem to resist strongly to be modified by learning. Among others, assignation of the resolution of a digital scale as the uncertainty value and the lack of stacking strategies to diminish uncertainty. The conception that a numerical value cannot be more precise than the tolerance of an instrument seems firmly set. Key words. Burt tables, conceptual coherence, experimental uncertainty, laboratories, metrology, Newtonian mechanics, uncertainty propagation.
Positioning sensor by combining optical projection and photogrammetry
NASA Astrophysics Data System (ADS)
Zheng, Benrui
Six spatial parameters, (x, y, z) for translation, and pitch, roll, and yaw for rotation, are used to describe the 3-dimensional position and orientation of a rigid body---the 6 degrees of freedom (DOF). The ability to measure these parameters is required in a diverse range of applications including machine tool metrology, robot calibration, motion control, motion analysis, and reconstructive surgery. However, there are limitations associated with the currently available measurement systems. Shortcomings include some of the following: short dynamic range, limited accuracy, line of sight restrictions, and capital cost. The objective of this dissertation was to develop a new metrology system that overcomes line of sight restrictions, reduces system costs, allows large dynamic range and has the potential to provide high measurement accuracy. The new metrology system proposed in this dissertation is based on a combination of photogrammetry and optical pattern projection. This system has the potential to enable real-time measurement of a small lightweight module's location. The module generates an optical pattern that is observable on the surrounding walls, and photogrammetry is used to measure the absolute coordinates of features in the projected optical pattern with respect to a defined global coordinate system. By combining these absolute coordinates with the known angular information of the optical projection beams, a minimization algorithm can be used to extract the absolute coordinates and angular orientation of the module itself. The feasibility of the proposed metrology system was first proved through preliminary experimental tests. By using a module with a 7x7 dot matrix pattern, experimental agreement of 1 to 5 parts in 103 was obtained by translating the module over 0.9 m and by rotating it through 60°. The proposed metrology system was modeled through numerical simulations and factors affecting the uncertainty of the measurement were investigated. The simulation results demonstrate that optimum design of the projected pattern gives a lower associated measurement uncertainty than is possible by direct photogrammetric measurement with traditional tie points alone. Based on the simulation results, a few improvements have been made to the proposed metrology systems. These improvements include using a module with larger full view angle and larger number of dots, performing angle calibration for the module, using a virtual camera approach to determine the module location and employing multiple coordinates system for large range rotation measurement. With the new proposed virtual camera approach, experimental agreement at the level of 3 parts in 104 was observed for the one dimension translation test. The virtual camera approach is faster than the algorithm and an additional minimization analysis is no longer needed. In addition, the virtual camera approach offers an additional benefit that it is no longer necessary to identify all dots in the pattern and so is more amenable to use in realistic and usually complicated environments. A preliminary rotation test over 120° was conducted by tying three coordinate systems together. It was observed that the absolute values of the angle differences between the measured angle and the encoder reading are smaller than 0.23° for all measurements. It is found that this proposed metrology system has the ability to measure larger angle range (up to 360°) by using multiple coordinate systems. The uncertainty analysis of the proposed system was performed through Monte Carlo simulation and it was demonstrated that the experimental results are consistent with the analysis.
NASA Astrophysics Data System (ADS)
Chang, Ya-Ling; Hsu, Kuan-Yu; Lee, Chih-Kung
2016-03-01
Advancement of distributed piezo-electret sensors and actuators facilitates various smart systems development, which include paper speakers, opto-piezo/electret bio-chips, etc. The array-based loudspeaker system possess several advantages over conventional coil speakers, such as light-weightness, flexibility, low power consumption, directivity, etc. With the understanding that the performance of the large-area piezo-electret loudspeakers or even the microfluidic biochip transport behavior could be tailored by changing their dynamic behaviors, a full-field real-time high-resolution non-contact metrology system was developed. In this paper, influence of the resonance modes and the transient vibrations of an arraybased loudspeaker system on the acoustic effect were measured by using a real-time projection moiré metrology system and microphones. To make the paper speaker even more versatile, we combine the photosensitive material TiOPc into the original electret loudspeaker. The vibration of this newly developed opto-electret loudspeaker could be manipulated by illuminating different light-intensity patterns. Trying to facilitate the tailoring process of the opto-electret loudspeaker, projection moiré was adopted to measure its vibration. By recording the projected fringes which are modulated by the contours of the testing sample, the phase unwrapping algorithm can give us a continuous phase distribution which is proportional to the object height variations. With the aid of the projection moiré metrology system, the vibrations associated with each distinctive light pattern could be characterized. Therefore, we expect that the overall acoustic performance could be improved by finding the suitable illuminating patterns. In this manuscript, the system performance of the projection moiré and the optoelectret paper speakers were cross-examined and verified by the experimental results obtained.
NASA Astrophysics Data System (ADS)
Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal
2016-07-01
The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 m in diameter and consists of 18 hexagonal segments, each 1.5 m point-to-point. Each segment has a six degree-of-freedom hexapod actuation system and a radius of-curvature (RoC) actuation system. The full telescope will be tested at its cryogenic operating temperature at Johnson Space Center. This testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The COCOA includes an interferometer, a reflective null, an interferometer-null calibration system, coarse and fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer (MWIF) is used for alignment and phasing of the PM segments. The ADMA is used to measure, and set, the spacing between the PM and the focus of the COCOA null (i.e. the PM center-of-curvature) for determination of the ROC. The performance of these metrology systems was assessed during two cryogenic tests at JSC. This testing was performed using the JWST Pathfinder telescope, consisting mostly of engineering development and spare hardware. The Pathfinder PM consists of two spare segments. These tests provided the opportunity to assess how well the center-of-curvature optical metrology hardware, along with the software and procedures, performed using real JWST telescope hardware. This paper will describe the test setup, the testing performed, and the resulting metrology system performance. The knowledge gained and the lessons learned during this testing will be of great benefit to the accurate and efficient cryogenic testing of the JWST flight telescope.
NASA Technical Reports Server (NTRS)
Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal
2016-01-01
The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 m in diameter and consists of 18 hexagonal segments, each 1.5 m point-to-point. Each segment has a six degree-of-freedom hexapod actuation system and a radius-of-curvature (RoC) actuation system. The full telescope will be tested at its cryogenic operating temperature at Johnson Space Center. This testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The COCOA includes an interferometer, a reflective null, an interferometer-null calibration system, coarse & fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer (MWIF) is used for alignment & phasing of the PM segments. The ADMA is used to measure, and set, the spacing between the PM and the focus of the COCOA null (i.e. the PM center-of-curvature) for determination of the ROC. The performance of these metrology systems was assessed during two cryogenic tests at JSC. This testing was performed using the JWST Pathfinder telescope, consisting mostly of engineering development & spare hardware. The Pathfinder PM consists of two spare segments. These tests provided the opportunity to assess how well the center-of-curvature optical metrology hardware, along with the software & procedures, performed using real JWST telescope hardware. This paper will describe the test setup, the testing performed, and the resulting metrology system performance. The knowledge gained and the lessons learned during this testing will be of great benefit to the accurate & efficient cryogenic testing of the JWST flight telescope.
Cobbaert, Christa; Smit, Nico; Gillery, Philippe
2018-05-07
In our efforts to advance the profession and practice of clinical laboratory medicine, strong coordination and collaboration are needed more than ever before. At the dawn of the 21st century, medical laboratories are facing many unmet clinical needs, a technological revolution promising a plethora of better biomarkers, financial constraints, a growing scarcity of well-trained laboratory technicians and a sharply increasing number of International Organization for Standardization guidelines and new regulations to which medical laboratories should comply in order to guarantee safety and effectiveness of medical test results. Although this is a global trend, medical laboratories across continents and countries are in distinct phases and experience various situations. A universal underlying requirement for safe and global use of medical test results is the standardization and harmonization of test results. Since two decades and after a number of endeavors on standardization/harmonization of medical tests, it is time to reflect on the effectiveness of the approaches used. To keep laboratory medicine sustainable, viable and affordable, clarification of the promises of metrological traceability of test results for improving sick and health care, realization of formal commitment among all stakeholders of the metrological traceability chain and preparation of a joint and global plan for action are essential prerequisites. Policy makers and regulators should not only overwhelm the diagnostic sector with oversight and regulations but should also create the conditions by establishing a global professional forum for anchoring the metrological traceability concept in the medical test domain. Even so, professional societies should have a strong voice in their (inter-) national governments to negotiate long-lasting public policy commitment and funds for global standardization of medical tests.
NASA Astrophysics Data System (ADS)
Boning, Duane S.; Chung, James E.
1998-11-01
Advanced process technology will require more detailed understanding and tighter control of variation in devices and interconnects. The purpose of statistical metrology is to provide methods to measure and characterize variation, to model systematic and random components of that variation, and to understand the impact of variation on both yield and performance of advanced circuits. Of particular concern are spatial or pattern-dependencies within individual chips; such systematic variation within the chip can have a much larger impact on performance than wafer-level random variation. Statistical metrology methods will play an important role in the creation of design rules for advanced technologies. For example, a key issue in multilayer interconnect is the uniformity of interlevel dielectric (ILD) thickness within the chip. For the case of ILD thickness, we describe phases of statistical metrology development and application to understanding and modeling thickness variation arising from chemical-mechanical polishing (CMP). These phases include screening experiments including design of test structures and test masks to gather electrical or optical data, techniques for statistical decomposition and analysis of the data, and approaches to calibrating empirical and physical variation models. These models can be integrated with circuit CAD tools to evaluate different process integration or design rule strategies. One focus for the generation of interconnect design rules are guidelines for the use of "dummy fill" or "metal fill" to improve the uniformity of underlying metal density and thus improve the uniformity of oxide thickness within the die. Trade-offs that can be evaluated via statistical metrology include the improvements to uniformity possible versus the effect of increased capacitance due to additional metal.
Metrology of human-based and other qualitative measurements
NASA Astrophysics Data System (ADS)
Pendrill, Leslie; Petersson, Niclas
2016-09-01
The metrology of human-based and other qualitative measurements is in its infancy—concepts such as traceability and uncertainty are as yet poorly developed. This paper reviews how a measurement system analysis approach, particularly invoking as performance metric the ability of a probe (such as a human being) acting as a measurement instrument to make a successful decision, can enable a more general metrological treatment of qualitative observations. Measures based on human observations are typically qualitative, not only in sectors, such as health care, services and safety, where the human factor is obvious, but also in customer perception of traditional products of all kinds. A principal challenge is that the usual tools of statistics normally employed for expressing measurement accuracy and uncertainty will probably not work reliably if relations between distances on different portions of scales are not fully known, as is typical of ordinal or other qualitative measurements. A key enabling insight is to connect the treatment of decision risks associated with measurement uncertainty to generalized linear modelling (GLM). Handling qualitative observations in this way unites information theory, the perceptive identification and choice paradigms of psychophysics. The Rasch invariant measure psychometric GLM approach in particular enables a proper treatment of ordinal data; a clear separation of probe and item attribute estimates; simple expressions for instrument sensitivity; etc. Examples include two aspects of the care of breast cancer patients, from diagnosis to rehabilitation. The Rasch approach leads in turn to opportunities of establishing metrological references for quality assurance of qualitative measurements. In psychometrics, one could imagine a certified reference for knowledge challenge, for example, a particular concept in understanding physics or for product quality of a certain health care service. Multivariate methods, such as Principal Component Regression, can also be improved by exploiting the increased resolution of the Rasch approach.
Metrology Arrangement for Measuring the Positions of Mirrors of a Submillimeter Telescope
NASA Technical Reports Server (NTRS)
Abramovici, Alex; Bartman, Randall K.
2011-01-01
The position of the secondary mirror of a submillimeter telescope with respect to the primary mirror needs to be known .0.03 mm in three dimensions. At the time of this reporting, no convenient, reasonably priced arrangement that offers this capability exists. The solution proposed here relies on measurement devices developed and deployed for the GeoSAR mission, and later adapted for the ISAT (Innovative Space Based Radar Antenna Technology) demonstration. The measurement arrangement consists of four metrology heads, located on an optical bench, attached to the secondary mirror. Each metrology head has a dedicated target located at the edge of the primary mirror. One laser beam, launched from the head and returned by the target, is used to measure distance. Another beam, launched from a beacon on the target, is monitored by the metrology head and generates a measurement of the target position in the plane perpendicular to the laser beam. A 100-MHz modulation is carried by a collimated laser beam. The relevant wavelength is the RF one, 3 m, divided by two, because the light carries it to the target and back. The phase change due to travel to the target and back is measured by timing the zero-crossing of the RF modulation, using a 100-MHz clock. In order to obtain good resolution, the 100-MHz modulation signal is down-converted to 1 kHz. Then, the phase change corresponding to the round-trip to the target is carried by a 1-kHz signal. Since the 100-MHz clock beats 100,000 times during one period of the 1-kHz signal, the least-significant-bit (LSB) resolution is LSB = 0.015 mm.
Stitching interferometry for ellipsoidal x-ray mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yumoto, Hirokatsu, E-mail: yumoto@spring8.or.jp; Koyama, Takahisa; Matsuyama, Satoshi
2016-05-15
Ellipsoidal mirrors, which can efficiently produce a two-dimensional focusing beam with a single mirror, are superior x-ray focusing optics, especially when compared to elliptical-cylinder mirrors in the Kirkpatrick–Baez geometry. However, nano-focusing ellipsoidal mirrors are not commonly used for x-ray optics because achieving the accuracy required for the surface metrology of nano-focusing ellipsoidal mirrors is difficult due to their small radius of curvature along the short ellipsoidal axis. Here, we developed a surface metrology system for nano-focusing ellipsoidal mirrors using stitching interferometric techniques. The developed system simultaneously measures sub-aperture shapes with a microscopic interferometer and the tilt angles of the sub-aperturemore » shapes with a large Fizeau interferometer. After correcting the systematic errors included in the sub-aperture shapes, the entire mirror shape is calculated by stitching the sub-aperture shapes based on the obtained relative angles between partially overlapped sub-apertures. In this study, we developed correction methods for systematic errors in sub-aperture shapes that originated from off-axis aberrations produced in the optics of the microscopic interferometer. The systematic errors on an ellipsoidal mirror were estimated by measuring a series of tilted plane substrates and the ellipsoidal substrate. From measurements of an ellipsoidal mirror with a 3.6-mm radius of curvature at the mirror center, we obtained a measurement repeatability of 0.51 nm (root-mean-square) in an assessment area of 0.5 mm × 99.18 mm. This value satisfies the requirements for surface metrology of nano-focusing x-ray mirrors. Thus, the developed metrology system should be applicable for fabricating nano-focusing ellipsoidal mirrors.« less
FPGA-Based Networked Phasemeter for a Heterodyne Interferometer
NASA Technical Reports Server (NTRS)
Rao, Shanti
2009-01-01
A document discusses a component of a laser metrology system designed to measure displacements along the line of sight with precision on the order of a tenth the diameter of an atom. This component, the phasemeter, measures the relative phase of two electrical signals and transfers that information to a computer. Because the metrology system measures the differences between two optical paths, the phasemeter has two inputs, called measure and reference. The reference signal is nominally a perfect square wave with a 50- percent duty cycle (though only rising edges are used). As the metrology system detects motion, the difference between the reference and measure signal phases is proportional to the displacement of the motion. The phasemeter, therefore, counts the elapsed time between rising edges in the two signals, and converts the time into an estimate of phase delay. The hardware consists of a circuit board that plugs into a COTS (commercial, off-the- shelf) Spartan-III FPGA (field-programmable gate array) evaluation board. It has two BNC inputs, (reference and measure), a CMOS logic chip to buffer the inputs, and an Ethernet jack for transmitting reduced-data to a PC. Two extra BNC connectors can be attached for future expandability, such as external synchronization. Each phasemeter handles one metrology channel. A bank of six phasemeters (and two zero-crossing detector cards) with an Ethernet switch can monitor the rigid body motion of an object. This device is smaller and cheaper than existing zero-crossing phasemeters. Also, because it uses Ethernet for communication with a computer, instead of a VME bridge, it is much easier to use. The phasemeter is a key part of the Precision Deployable Apertures and Structures strategic R&D effort to design large, deployable, segmented space telescopes.
MO-G-12A-01: Quantitative Imaging Metrology: What Should Be Assessed and How?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giger, M; Petrick, N; Obuchowski, N
The first two symposia in the Quantitative Imaging Track focused on 1) the introduction of quantitative imaging (QI) challenges and opportunities, and QI efforts of agencies and organizations such as the RSNA, NCI, FDA, and NIST, and 2) the techniques, applications, and challenges of QI, with specific examples from CT, PET/CT, and MR. This third symposium in the QI Track will focus on metrology and its importance in successfully advancing the QI field. While the specific focus will be on QI, many of the concepts presented are more broadly applicable to many areas of medical physics research and applications. Asmore » such, the topics discussed should be of interest to medical physicists involved in imaging as well as therapy. The first talk of the session will focus on the introduction to metrology and why it is critically important in QI. The second talk will focus on appropriate methods for technical performance assessment. The third talk will address statistically valid methods for algorithm comparison, a common problem not only in QI but also in other areas of medical physics. The final talk in the session will address strategies for publication of results that will allow statistically valid meta-analyses, which is critical for combining results of individual studies with typically small sample sizes in a manner that can best inform decisions and advance the field. Learning Objectives: Understand the importance of metrology in the QI efforts. Understand appropriate methods for technical performance assessment. Understand methods for comparing algorithms with or without reference data (i.e., “ground truth”). Understand the challenges and importance of reporting results in a manner that allows for statistically valid meta-analyses.« less
NASA Astrophysics Data System (ADS)
Laurent, Olivier; Yver Kwok, Camille; Guemri, Ali; Philippon, Carole; Rivier, Leonard; Ramonet, Michel
2017-04-01
Due to the high variability of the water vapor content in the atmosphere, the mole fraction of trace gas such as greenhouse gas (GHG) in the atmosphere is usually presented as mole fraction in dry air. In consequence, the first technology used for GHG measurement, gas chromatography or non-dispersive infra-red spectroscopy, required to dry the air sample prior to analysis at a dew point lower than -50°C. The emergence of new GHG analyzers using infrared Enhanced Cavity Spectroscopy which measure the water vapor content in the air sample, allows providing the dry mole fraction of GHG without any drying system upstream by applying appropriate correction of the water vapor effects (dilution, pressure broadening…). In the framework of ICOS, a European research infrastructure aiming to provide harmonized high precision data for advanced research on carbon cycle and GHG budgets over Europe, the Metrology Lab of the Atmosphere Thematic Centre (ATC), located at LSCE in France, is mainly dedicated to elaborating measurement protocols and evaluating performance of GHG analyzers. Among the different tests conducted to characterize the metrological performance, the Metrology Lab focuses on the water vapor correction to apply on the GHG measurement. Most of the analyzers tested at the Metrology Lab are based on Cavity Enhanced Spectroscopy measuring the ICOS mandatory species, CO2, CH4 and CO. This presentation presents the results of the performance assessment of the manufacturer built-in water vapor correction and the possible improvement. Thanks to the large number of instrument tested, the presentation provides a performance overview of the GHG analyzers deployed in the ICOS atmospheric station network. Finally the performance of the water vapor correction will be discussed in regard of the performance obtained by using a drying system.
Traceable quantum sensing and metrology relied up a quantum electrical triangle principle
NASA Astrophysics Data System (ADS)
Fang, Yan; Wang, Hengliang; Yang, Xinju; Wei, Jingsong
2016-11-01
Hybrid quantum state engineering in quantum communication and imaging1-2 needs traceable quantum sensing and metrology, which are especially critical to quantum internet3 and precision measurements4 that are important across all fields of science and technology-. We aim to set up a mode of traceable quantum sensing and metrology. We developed a method by specially transforming an atomic force microscopy (AFM) and a scanning tunneling microscopy (STM) into a conducting atomic force microscopy (C-AFM) with a feedback control loop, wherein quantum entanglement enabling higher precision was relied upon a set-point, a visible light laser beam-controlled an interferometer with a surface standard at z axis, diffractometers with lateral standards at x-y axes, four-quadrant photodiode detectors, a scanner and its image software, a phase-locked pre-amplifier, a cantilever with a kHz Pt/Au conducting tip, a double barrier tunneling junction model, a STM circuit by frequency modulation and a quantum electrical triangle principle involving single electron tunneling effect, quantum Hall effect and Josephson effect5. The average and standard deviation result of repeated measurements on a 1 nm height local micro-region of nanomedicine crystal hybrid quantum state engineering surface and its differential pA level current and voltage (dI/dV) in time domains by using C-AFM was converted into an international system of units: Siemens (S), an indicated value 0.86×10-12 S (n=6) of a relative standard uncertainty was superior over a relative standard uncertainty reference value 2.3×10-10 S of 2012 CODADA quantized conductance6. It is concluded that traceable quantum sensing and metrology is emerging.
Metrology measurements for large-aperture VPH gratings
NASA Astrophysics Data System (ADS)
Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen
2013-09-01
The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.
A review of manufacturing metrology for improved reliability of silicon photovoltaic modules
NASA Astrophysics Data System (ADS)
Davis, Kristopher O.; Walters, Joseph; Schneller, Eric; Seigneur, Hubert; Brooker, R. Paul; Scardera, Giuseppe; Rodgers, Marianne P.; Mohajeri, Nahid; Shiradkar, Narendra; Dhere, Neelkanth G.; Wohlgemuth, John; Rudack, Andrew C.; Schoenfeld, Winston V.
2014-10-01
In this work, the use of manufacturing metrology across the supply chain to improve crystalline silicon (c-Si) photovoltaic (PV) module reliability and durability is addressed. Additionally, an overview and summary of a recent extensive literature survey of relevant measurement techniques aimed at reducing or eliminating the probability of field failures is presented. An assessment of potential gaps is also given, wherein the PV community could benefit from new research and demonstration efforts. This review is divided into three primary areas representing different parts of the c-Si PV supply chain: (1) feedstock production, crystallization and wafering; (2) cell manufacturing; and (3) module manufacturing.
Accreditation experience of radioisotope metrology laboratory of Argentina.
Iglicki, A; Milá, M I; Furnari, J C; Arenillas, P; Cerutti, G; Carballido, M; Guillén, V; Araya, X; Bianchini, R
2006-01-01
This work presents the experience developed by the Radioisotope Metrology Laboratory (LMR), of the Argentine National Atomic Energy Commission (CNEA), as result of the accreditation process of the Quality System by ISO 17025 Standard. Considering the LMR as a calibration laboratory, services of secondary activity determinations and calibration of activimeters used in Nuclear Medicine were accredited. A peer review of the (alpha/beta)-gamma coincidence system was also carried out. This work shows in detail the structure of the quality system, the results of the accrediting audit and gives the number of non-conformities detected and of observations made which have all been resolved.
Metrological-grade tunable coherent source in the mid-infrared for molecular precision spectroscopy
NASA Astrophysics Data System (ADS)
Insero, G.; Clivati, C.; D'Ambrosio, D.; Cancio Pastor, P.; Verde, M.; Schunemann, P. G.; Zondy, J.-J.; Inguscio, M.; Calonico, D.; Levi, F.; De Natale, P.; Santambrogio, G.; Borri, S.
2018-02-01
We report on a metrological-grade mid-IR source with a 10-14 short-term instability for high-precision spectroscopy. Our source is based on the combination of a quantum cascade laser and a coherent radiation obtained by difference-frequency generation in an orientation-patterned gallium phosphide (OP-GaP) crystal. The pump and signal lasers are locked to an optical frequency comb referenced to the primary frequency standard via an optical fiber link. We demonstrate the robustness of the apparatus by measuring a vibrational transition around 6 μm on a metastable state of CO molecuels with 11 digits of precision.
Metrologically useful states of spin-1 Bose condensates with macroscopic magnetization
NASA Astrophysics Data System (ADS)
Kajtoch, Dariusz; Pawłowski, Krzysztof; Witkowska, Emilia
2018-02-01
We study theoretically the usefulness of spin-1 Bose condensates with macroscopic magnetization in a homogeneous magnetic field for quantum metrology. We demonstrate Heisenberg scaling of the quantum Fisher information for states in thermal equilibrium. The scaling applies to both antiferromagnetic and ferromagnetic interactions. The effect preserves as long as fluctuations of magnetization are sufficiently small. Scaling of the quantum Fisher information with the total particle number is derived within the mean-field approach in the zero-temperature limit and exactly in the high-magnetic-field limit for any temperature. The precision gain is intuitively explained owing to subtle features of the quasidistribution function in the phase space.
Quantum metrology for gravitational wave astronomy.
Schnabel, Roman; Mavalvala, Nergis; McClelland, David E; Lam, Ping K
2010-11-16
Einstein's general theory of relativity predicts that accelerating mass distributions produce gravitational radiation, analogous to electromagnetic radiation from accelerating charges. These gravitational waves (GWs) have not been directly detected to date, but are expected to open a new window to the Universe once the detectors, kilometre-scale laser interferometers measuring the distance between quasi-free-falling mirrors, have achieved adequate sensitivity. Recent advances in quantum metrology may now contribute to provide the required sensitivity boost. The so-called squeezed light is able to quantum entangle the high-power laser fields in the interferometer arms, and could have a key role in the realization of GW astronomy.
Scanner focus metrology and control system for advanced 10nm logic node
NASA Astrophysics Data System (ADS)
Oh, Junghun; Maeng, Kwang-Seok; Shin, Jae-Hyung; Choi, Won-Woong; Won, Sung-Keun; Grouwstra, Cedric; El Kodadi, Mohamed; Heil, Stephan; van der Meijden, Vidar; Hong, Jong Kyun; Kim, Sang-Jin; Kwon, Oh-Sung
2018-03-01
Immersion lithography is being extended beyond the 10-nm node and the lithography performance requirement needs to be tightened further to ensure good yield. Amongst others, good on-product focus control with accurate and dense metrology measurements is essential to enable this. In this paper, we will present new solutions that enable onproduct focus monitoring and control (mean and uniformity) suitable for high volume manufacturing environment. We will introduce the concept of pure focus and its role in focus control through the imaging optimizer scanner correction interface. The results will show that the focus uniformity can be improved by up to 25%.
Takeda, Mitsuo
2013-01-01
The paper reviews a technique for fringe analysis referred to as Fourier fringe analysis (FFA) or the Fourier transform method, with a particular focus on its application to metrology of extreme physical phenomena. Examples include the measurement of extremely small magnetic fields with subfluxon sensitivity by electron wave interferometry, subnanometer wavefront evaluation of projection optics for extreme UV lithography, the detection of sub-Ångstrom distortion of a crystal lattice, and the measurement of ultrashort optical pulses in the femotsecond to attosecond range, which show how the advantages of FFA are exploited in these cutting edge applications.
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Yokum, Jeffrey S.; Pryputniewicz, Ryszard J.
2002-06-01
Sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography based on fiber optics and high-spatial and high-digital resolution cameras, are discussed in this paper. It is shown that sensitivity, accuracy, and precision dependent on both, the effective determination of optical phase and the effective characterization of the illumination-observation conditions. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gages, demonstrating the applicability of quantitative optical metrology techniques to satisfy constantly increasing needs for the study and development of emerging technologies.
Comparison of the performance of the next generation of optical interferometers
NASA Astrophysics Data System (ADS)
Pisani, Marco; Yacoot, Andrew; Balling, Petr; Bancone, Nicola; Birlikseven, Cengiz; Çelik, Mehmet; Flügge, Jens; Hamid, Ramiz; Köchert, Paul; Kren, Petr; Kuetgens, Ulrich; Lassila, Antti; Bartolo Picotto, Gian; Şahin, Ersoy; Seppä, Jeremias; Tedaldi, Matthew; Weichert, Christoph
2012-08-01
Six European National Measurement Institutes (NMIs) have joined forces within the European Metrology Research Programme funded project NANOTRACE to develop the next generation of optical interferometers having a target uncertainty of 10 pm. These are needed for NMIs to provide improved traceable dimensional metrology that can be disseminated to the wider nanotechnology community, thereby supporting the growth in nanotechnology. Several approaches were followed in order to develop the interferometers. This paper briefly describes the different interferometers developed by the various partners and presents the results of a comparison of performance of the optical interferometers using an x-ray interferometer to generate traceable reference displacements.
NASA Astrophysics Data System (ADS)
Çelik, Mehmet; Hamid, Ramiz; Kuetgens, Ulrich; Yacoot, Andrew
2012-08-01
X-ray interferometry is emerging as an important tool for dimensional nanometrology both for sub-nanometre measurement and displacement. It has been used to verify the performance of the next generation of displacement measuring optical interferometers within the European Metrology Research Programme project NANOTRACE. Within this project a more detailed set of comparison measurements between the x-ray interferometer and a dual channel Fabry-Perot optical interferometer (DFPI) have been made to demonstrate the capabilities of both instruments for picometre displacement metrology. The results show good agreement between the two instruments, although some minor differences of less than 5 pm have been observed.
A universal quantum module for quantum communication, computation, and metrology
NASA Astrophysics Data System (ADS)
Hanks, Michael; Lo Piparo, Nicolò; Trupke, Michael; Schmiedmayer, Jorg; Munro, William J.; Nemoto, Kae
2017-08-01
In this work, we describe a simple module that could be ubiquitous for quantum information based applications. The basic modules comprises a single NV- center in diamond embedded in an optical cavity, where the cavity mediates interactions between photons and the electron spin (enabling entanglement distribution and efficient readout), while the nuclear spins constitutes a long-lived quantum memories capable of storing and processing quantum information. We discuss how a network of connected modules can be used for distributed metrology, communication and computation applications. Finally, we investigate the possible use of alternative diamond centers (SiV/GeV) within the module and illustrate potential advantages.
Thermoelectric converters for alternating current standards
NASA Astrophysics Data System (ADS)
Anatychuk, L. I.; Taschuk, D. D.
2012-06-01
Thermoelectric converters of alternating current remain priority instruments when creating standard equipment. This work presents the results of design and manufacture of alternating current converter for a military standard of alternating current in Ukraine. Results of simulation of temperature distribution in converter elements, ways of optimization to improve the accuracy of alternating current signal reproduction are presented. Results of metrological trials are given. The quality of thermoelectric material specially created for alternating current metrology is verified. The converter was used in alternating current standard for the frequency range from 10 Hz to 30 MHz. The efficiency of using thermoelectric signal converters in measuring instruments is confirmed.
Metrological activity determination of 133Ba by sum-peak absolute method
NASA Astrophysics Data System (ADS)
da Silva, R. L.; de Almeida, M. C. M.; Delgado, J. U.; Poledna, R.; Santos, A.; de Veras, E. V.; Rangel, J.; Trindade, O. L.
2016-07-01
The National Laboratory for Metrology of Ionizing Radiation provides gamma sources of radionuclide and standardized in activity with reduced uncertainties. Relative methods require standards to determine the sample activity while the absolute methods, as sum-peak, not. The activity is obtained directly with good accuracy and low uncertainties. 133Ba is used in research laboratories and on calibration of detectors for analysis in different work areas. Classical absolute methods don't calibrate 133Ba due to its complex decay scheme. The sum-peak method using gamma spectrometry with germanium detector standardizes 133Ba samples. Uncertainties lower than 1% to activity results were obtained.
Will Future Measurement Needs of the Semiconductor Industry Be Met?
Bennett, Herbert S
2007-01-01
We discuss the ability of the nation's measurement system to meet future metrology needs of the semiconductor industry. Lacking an acceptable metric for assessing the health of metrology for the semiconductor industry, we identify a limited set of unmet measurement needs. Assuming that this set of needs may serve as proxy for the galaxy of semiconductor measurement needs, we examine it from the perspective of what will be required to continue the semiconductor industry's powerful impact in the world's macro-economy and maintain its exceptional record of numerous technological innovations. This paper concludes with suggestions about ways to strengthen the measurement system for the semiconductor industry.
NASA Astrophysics Data System (ADS)
Egan, James; McMillan, Normal; Denieffe, David
2011-08-01
Proposals for a review of the limits of measurement for telecommunications are made. The measures are based on adapting work from the area of chemical metrology for the field of telecommunications. Currie has introduced recommendations for defining the limits of measurement in chemical metrology and has identified three key fundamental limits of measurement. These are the critical level, the detection limit and the determination limit. Measurements on an optical system are used to illustrate the utility of these measures and discussion is given into the advantages of using these fundamental quantitations over existing methods.
The 2014 Annual(MCWG)Annual Metrology and Calibration Working Gr
2014-05-07
Annual Metrology and Calibration Working Group Face to Face meeting held at Langley Research Center; Front Row (L to R): Stacy Sigmon – LaRC, Brent Watling – JSC, Ralph Hickman – WFF, Kirk Foster – MSFC, Don Wilson – SSC, Greg Boyd – JSC, Perry King – KSC, Bobby Price – GSFC, Felicia Donnell – GSFC, Perry LaRosa – GRC. Second Row (L to R): Ken Mathews – KSC, Darrell Shoup – WSTF, Gary Kennedy – MSFC, Terry Fleet – GRC, Damon Flansburg – ARC, Salvatore Tomaselli - WFF, Bruce Farner - SSC, David Scott – JPL, Jim Wachter – KSC, Shawn Britton – LaRC.
Angle comparison using an autocollimator
NASA Astrophysics Data System (ADS)
Geckeler, Ralf D.; Just, Andreas; Vasilev, Valentin; Prieto, Emilio; Dvorácek, František; Zelenika, Slobodan; Przybylska, Joanna; Duta, Alexandru; Victorov, Ilya; Pisani, Marco; Saraiva, Fernanda; Salgado, Jose-Antonio; Gao, Sitian; Anusorn, Tonmueanwai; Leng Tan, Siew; Cox, Peter; Watanabe, Tsukasa; Lewis, Andrew; Chaudhary, K. P.; Thalmann, Ruedi; Banreti, Edit; Nurul, Alfiyati; Fira, Roman; Yandayan, Tanfer; Chekirda, Konstantin; Bergmans, Rob; Lassila, Antti
2018-01-01
Autocollimators are versatile optical devices for the contactless measurement of the tilt angles of reflecting surfaces. An international key comparison (KC) on autocollimator calibration, EURAMET.L-K3.2009, was initiated by the European Association of National Metrology Institutes (EURAMET) to provide information on the capabilities in this field. The Physikalisch-Technische Bundesanstalt (PTB) acted as the pilot laboratory, with a total of 25 international participants from EURAMET and from the Asia Pacific Metrology Programme (APMP) providing measurements. This KC was the first one to utilise a high-resolution electronic autocollimator as a standard. In contrast to KCs in angle metrology which usually involve the full plane angle, it focused on relatively small angular ranges (+/-10 arcsec and +/-1000 arcsec) and step sizes (10 arcsec and 0.1 arcsec, respectively). This document represents the approved final report on the results of the KC. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCL, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
A heterodyne interferometer for high-performance industrial metrology
NASA Astrophysics Data System (ADS)
Schuldt, Thilo; Gohlke, Martin; Weise, Dennis; Johann, Ulrich; Peters, Achim; Braxmaier, Claus
2008-11-01
We developed a compact, fiber-coupled heterodyne interferometer for translation and tilt metrology. Noise levels below 5 pm/√Hz in translation and below 10 nrad/√Hz in tilt measurement, both for frequencies above 10-2 Hz, were demonstrated in lab experiments. While this setup was developed with respect to the LISA (Laser Interferometer Space Antenna) space mission current activities focus on its adaptation for dimensional characterization of ultra-stable materials and industrial metrology. The interferometer is used in high-accuracy dilatometry measuring the coefficient of thermal expansion (CTE) of dimensionally highly stable materials such as carbon-fiber reinforced plastic (CFRP) and Zerodur. The facility offers the possibility to measure the CTE with an accuracy better 10-8/K. We also develop a very compact and quasi-monolithic sensor head utilizing ultra-low expansion glass material which is the basis for a future space-qualifiable interferometer setup and serves as a prototype for a sensor head used in industrial environment. For high resolution 3D profilometry and surface property measurements (i. e. roughness, evenness and roundness), a low-noise (<=1nm/√ Hz) actuator will be implemented which enables a scan of the measurement beam over the surface under investigation.
NASA Astrophysics Data System (ADS)
Tsyba, E.; Kaufman, M.
2015-08-01
Preparatory works for resuming operational calculations of the Earth rotation parameters based on the results of satellite laser ranging data processing (LAGEOS 1, LAGEOS 2) are to be completed in the Main Metrology Centre Of The State Time And Frequency Service (VNIIFTRI) in 2014. For this purpose BERNESE 5.2 software (Dach & Walser, 2014) was chosen as a base software which has been used for many years in the Main Metrological Centre of the State Time and Frequency Service to process phase observations of GLONASS and GPS satellites. Although in the BERNESE 5.2 software announced presentation the possibility of the SLR data processing is declared, it has not been fully implemented. In particular there is no such an essential element as corrective action (as input or resulting parameters) in the local time scale ("time bias"), etc. Therefore, additional program blocks have been developed and integrated into the BERNESE 5.2 software environment. The program blocks are written in Perl and Matlab program languages and can be used both for Windows and Linux, 32-bit and 64-bit platforms.
NASA Astrophysics Data System (ADS)
Glaser, Ulf; Li, Zhichao; Bichmann, Stephan, II; Pfeifer, Tilo
2003-05-01
By China's entry into the WTO, Chinese as well as German companies are facing the question, how to minimize the risk of unfamiliar cooperation partners when developing products. The rise of customer demands concerning quality, product diversity and the reduction of expenses require flexibility and efficiency with reliable component suppliers. In order to build and strengthen sino-german cooperations, a manufacturing control using homogenized and efficient measures to assure high quality is of vital importance. Lack of unifications may cause identical measurements conducted at subcontractors or customers to be carried out with different measurement processes which leads to incomparable results. Rapidly growing company cooperations and simultaneously decreasing of manufacturing scope cause substantial difficulties when coordinating joint quality control activities. "ProSens," a sino-german project consortium consisting of industrial users, technology producers and research institutes, aims at improving selected production processes by: Creation of a homogeneous quality awareness in sino-german cooperations. Sensitization for process accompanying metrology at an early stage of product development. Increase of the process performance by the use of integrated metrology. Reduction of production time and cost. Unification of quality control of complex products by means of efficient measurement strategies and CAD-based inspection planning.
Development of an ultrasensitive interferometry system as a key to precision metrology applications
NASA Astrophysics Data System (ADS)
Gohlke, Martin; Schuldt, Thilo; Weise, Dennis; Johann, Ulrich; Peters, Achim; Braxmaier, Claus
2009-06-01
We present a symmetric heterodyne interferometer as a prototype of a highly sensitive translation and tilt measurement system. This compact optical metrology system was developed over the past several years by EADS Astrium (Friedrichshafen) in cooperation with the Humboldt-University (Berlin) and the university of applied science Konstanz (HTWG-Konstanz). The noise performance was tested at frequencies between 10-4 and 3 Hz, the noise levels are below 1 nm/Hz 1/2 for translation and below 1 μrad/Hz1/2, for tilt measurements. For frequencies higher than 10 mHz noise levels below 5pm/Hz1/2 and 4 nrad/Hz1/2 respectively, were demonstrated. Based on this highly sensitive metrology system we also developed a dilatometer for the characterization of the CTE (coefficient of thermal expansion) of various materials, i.e. CFRP (carbon fiber reinforced plastic) or Zerodur. The currently achieved sensitivity of these measurements is better than 10-7 K-1. Future planned applications of the interferometer include ultra-high-precision surface profiling and characterization of actuator noise in low-noise opto-mechanics setups. We will give an overview of the current experimental setup and the latest measurement results.
A novel methodology for building robust design rules by using design based metrology (DBM)
NASA Astrophysics Data System (ADS)
Lee, Myeongdong; Choi, Seiryung; Choi, Jinwoo; Kim, Jeahyun; Sung, Hyunju; Yeo, Hyunyoung; Shim, Myoungseob; Jin, Gyoyoung; Chung, Eunseung; Roh, Yonghan
2013-03-01
This paper addresses a methodology for building robust design rules by using design based metrology (DBM). Conventional method for building design rules has been using a simulation tool and a simple pattern spider mask. At the early stage of the device, the estimation of simulation tool is poor. And the evaluation of the simple pattern spider mask is rather subjective because it depends on the experiential judgment of an engineer. In this work, we designed a huge number of pattern situations including various 1D and 2D design structures. In order to overcome the difficulties of inspecting many types of patterns, we introduced Design Based Metrology (DBM) of Nano Geometry Research, Inc. And those mass patterns could be inspected at a fast speed with DBM. We also carried out quantitative analysis on PWQ silicon data to estimate process variability. Our methodology demonstrates high speed and accuracy for building design rules. All of test patterns were inspected within a few hours. Mass silicon data were handled with not personal decision but statistical processing. From the results, robust design rules are successfully verified and extracted. Finally we found out that our methodology is appropriate for building robust design rules.
The Ampere and Electrical Standards
Elmquist, Randolph E.; Cage, Marvin E.; Tang, Yi-hua; Jeffery, Anne-Marie; Kinard, Joseph R.; Dziuba, Ronald F.; Oldham, Nile M.; Williams, Edwin R.
2001-01-01
This paper describes some of the major contributions to metrology and physics made by the NIST Electricity Division, which has existed since 1901. It was one of the six original divisions of the National Bureau of Standards. The Electricity Division provides dc and low-frequency calibrations for industrial, scientific, and research organizations, and conducts research on topics related to electrical metrology and fundamental constants. The early work of the Electricity Division staff included the development of precision standards, such as Rosa and Thomas standard resistors and the ac-dc thermal converter. Research contributions helped define the early international system of measurement units and bring about the transition to absolute units based on fundamental principles and physical and dimensional measurements. NIST research has helped to develop and refine electrical standards using the quantum Hall effect and the Josephson effect, which are both based on quantum physics. Four projects covering a number of voltage and impedance measurements are described in detail. Several other areas of current research at NIST are described, including the use of the Internet for international compatibility in metrology, determination of the fine-structure and Planck constants, and construction of the electronic kilogram. PMID:27500018
Nanoposition sensors with superior linear response to position and unlimited travel ranges
NASA Astrophysics Data System (ADS)
Lee, Sheng-Chiang; Peters, Randall D.
2009-04-01
With the advancement in nanotechnology, the ability of positioning/measuring at subnanometer scale has been one of the most critical issues for the nanofabrication industry and researchers using scanning probe microscopy. Commercial nanopositioners have achieved direct measurements at the scale of 0.01 nm with capacitive sensing metrology. However, the commercial sensors have small dynamic ranges (up to only a few hundred micrometers) and are relatively large in size (centimeters in the transverse directions to the motion), which is necessary for healthy signal detections but making it difficult to use on smaller devices. This limits applications in which large materials (on the scale of centimeters or greater) are handled with needs of subnanometer resolutions. What has been done in the past is to combine the fine and coarse translation stages with different dynamic ranges to simultaneously achieve long travel range and high spatial resolution. In this paper, we present a novel capacitive position sensing metrology with ultrawide dynamic range from subnanometer to literally any practically desired length for a translation stage. This sensor will greatly simplify the task and enhance the performance of direct metrology in a hybrid translational stage covering translation tasks from subnanometer to centimeters.
Evaluating the effects of modeling errors for isolated finite three-dimensional targets
NASA Astrophysics Data System (ADS)
Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui
2017-10-01
Optical three-dimensional (3-D) nanostructure metrology utilizes a model-based metrology approach to determine critical dimensions (CDs) that are well below the inspection wavelength. Our project at the National Institute of Standards and Technology is evaluating how to attain key CD and shape parameters from engineered in-die capable metrology targets. More specifically, the quantities of interest are determined by varying the input parameters for a physical model until the simulations agree with the actual measurements within acceptable error bounds. As in most applications, establishing a reasonable balance between model accuracy and time efficiency is a complicated task. A well-established simplification is to model the intrinsically finite 3-D nanostructures as either periodic or infinite in one direction, reducing the computationally expensive 3-D simulations to usually less complex two-dimensional (2-D) problems. Systematic errors caused by this simplified model can directly influence the fitting of the model to the measurement data and are expected to become more apparent with decreasing lengths of the structures. We identify these effects using selected simulation results and present experimental setups, e.g., illumination numerical apertures and focal ranges, that can increase the validity of the 2-D approach.
Registration performance on EUV masks using high-resolution registration metrology
NASA Astrophysics Data System (ADS)
Steinert, Steffen; Solowan, Hans-Michael; Park, Jinback; Han, Hakseung; Beyer, Dirk; Scherübl, Thomas
2016-10-01
Next-generation lithography based on EUV continues to move forward to high-volume manufacturing. Given the technical challenges and the throughput concerns a hybrid approach with 193 nm immersion lithography is expected, at least in the initial state. Due to the increasing complexity at smaller nodes a multitude of different masks, both DUV (193 nm) and EUV (13.5 nm) reticles, will then be required in the lithography process-flow. The individual registration of each mask and the resulting overlay error are of crucial importance in order to ensure proper functionality of the chips. While registration and overlay metrology on DUV masks has been the standard for decades, this has yet to be demonstrated on EUV masks. Past generations of mask registration tools were not necessarily limited in their tool stability, but in their resolution capabilities. The scope of this work is an image placement investigation of high-end EUV masks together with a registration and resolution performance qualification. For this we employ a new generation registration metrology system embedded in a production environment for full-spec EUV masks. This paper presents excellent registration performance not only on standard overlay markers but also on more sophisticated e-beam calibration patterns.
Review of current progress in nanometrology with the helium ion microscope
NASA Astrophysics Data System (ADS)
Postek, Michael T.; Vladár, András; Archie, Charles; Ming, Bin
2011-02-01
Scanning electron microscopy has been employed as an imaging and measurement tool for more than 50 years and it continues as a primary tool in many research and manufacturing facilities across the world. A new challenger to this work is the helium ion microscope (HIM). The HIM is a new imaging and metrology technology. Essentially, substitution of the electron source with a helium ion source yields a tool visually similar in function to the scanning electron microscope, but very different in the fundamental imaging and measurement process. The imaged and measured signal originates differently than in the scanning electron microscope and that fact and its single atom source diameter may be able to push the obtainable resolution lower, provide greater depth-of-field and ultimately improve the metrology. Successful imaging and metrology with this instrument entails understanding and modeling of new ion beam/specimen interaction physics. As a new methodology, HIM is beginning to show promise and the abundance of potentially advantageous applications for nanometrology has yet to be fully exploited. This paper discusses some of the progress made at NIST in collaboration with IBM to understand the science behind this new technology.
Six-Port Based Interferometry for Precise Radar and Sensing Applications.
Koelpin, Alexander; Lurz, Fabian; Linz, Sarah; Mann, Sebastian; Will, Christoph; Lindner, Stefan
2016-09-22
Microwave technology plays a more important role in modern industrial sensing applications. Pushed by the significant progress in monolithic microwave integrated circuit technology over the past decades, complex sensing systems operating in the microwave and even millimeter-wave range are available for reasonable costs combined with exquisite performance. In the context of industrial sensing, this stimulates new approaches for metrology based on microwave technology. An old measurement principle nearly forgotten over the years has recently gained more and more attention in both academia and industry: the six-port interferometer. This paper reviews the basic concept, investigates promising applications in remote, as well as contact-based sensing and compares the system with state-of-the-art metrology. The significant advantages will be discussed just as the limitations of the six-port architecture. Particular attention will be paid to impairment effects and non-ideal behavior, as well as compensation and linearization concepts. It will be shown that in application fields, like remote distance sensing, precise alignment measurements, as well as interferometrically-evaluated mechanical strain analysis, the six-port architecture delivers extraordinary measurement results combined with high measurement data update rates for reasonable system costs. This makes the six-port architecture a promising candidate for industrial metrology.
Comparison of infusion pumps calibration methods
NASA Astrophysics Data System (ADS)
Batista, Elsa; Godinho, Isabel; do Céu Ferreira, Maria; Furtado, Andreia; Lucas, Peter; Silva, Claudia
2017-12-01
Nowadays, several types of infusion pump are commonly used for drug delivery, such as syringe pumps and peristaltic pumps. These instruments present different measuring features and capacities according to their use and therapeutic application. In order to ensure the metrological traceability of these flow and volume measuring equipment, it is necessary to use suitable calibration methods and standards. Two different calibration methods can be used to determine the flow error of infusion pumps. One is the gravimetric method, considered as a primary method, commonly used by National Metrology Institutes. The other calibration method, a secondary method, relies on an infusion device analyser (IDA) and is typically used by hospital maintenance offices. The suitability of the IDA calibration method was assessed by testing several infusion instruments at different flow rates using the gravimetric method. In addition, a measurement comparison between Portuguese Accredited Laboratories and hospital maintenance offices was performed under the coordination of the Portuguese Institute for Quality, the National Metrology Institute. The obtained results were directly related to the used calibration method and are presented in this paper. This work has been developed in the framework of the EURAMET projects EMRP MeDD and EMPIR 15SIP03.
Holistic approach for overlay and edge placement error to meet the 5nm technology node requirements
NASA Astrophysics Data System (ADS)
Mulkens, Jan; Slachter, Bram; Kubis, Michael; Tel, Wim; Hinnen, Paul; Maslow, Mark; Dillen, Harm; Ma, Eric; Chou, Kevin; Liu, Xuedong; Ren, Weiming; Hu, Xuerang; Wang, Fei; Liu, Kevin
2018-03-01
In this paper, we discuss the metrology methods and error budget that describe the edge placement error (EPE). EPE quantifies the pattern fidelity of a device structure made in a multi-patterning scheme. Here the pattern is the result of a sequence of lithography and etching steps, and consequently the contour of the final pattern contains error sources of the different process steps. EPE is computed by combining optical and ebeam metrology data. We show that high NA optical scatterometer can be used to densely measure in device CD and overlay errors. Large field e-beam system enables massive CD metrology which is used to characterize the local CD error. Local CD distribution needs to be characterized beyond 6 sigma, and requires high throughput e-beam system. We present in this paper the first images of a multi-beam e-beam inspection system. We discuss our holistic patterning optimization approach to understand and minimize the EPE of the final pattern. As a use case, we evaluated a 5-nm logic patterning process based on Self-Aligned-QuadruplePatterning (SAQP) using ArF lithography, combined with line cut exposures using EUV lithography.
NASA Astrophysics Data System (ADS)
Nwokoye, Chidubem A.; Zaghloul, Mona; Cresswell, Michael W.; Allen, Richard A.; Murabito, Christine E.
2006-10-01
The technical objective of the work reported here is to assess whether radio-frequency (RF) measurements made on coplanar waveguide (CPW) test structures, which are replicated in conducting material on insulating substrates, could be employed to extract the critical dimension (CD) of the signal line using its center-to-center separation from the groundlines as a reference. The specific near-term objective is to assess whether this CPW-based CD-metrology has sensitivity and repeatability competitive with the other metrology techniques that are now used for chrome-on-glass (COG) photomasks. An affirmative answer is encouraging because advancing to a non-contact and non-vacuum implementation would then seem possible for this application. Our modeling of specific cases shows that, when the pitch of the replicated lines of the CPW is maintained constant, the sensitivity of its characteristic impedance to the CDs of the signal and ground lines is approximately 60 Ω/μm. This is a potentially useful result. For the same implementation, the quantity ∂C/∂w has a value of approximately 45 (pF/m)/μm, which appears to be large enough to provide acceptable accuracy.
Advances in engineering nanometrology at the National Physical Laboratory
NASA Astrophysics Data System (ADS)
Leach, Richard K.; Claverley, James; Giusca, Claudiu; Jones, Christopher W.; Nimishakavi, Lakshmi; Sun, Wenjuan; Tedaldi, Matthew; Yacoot, Andrew
2012-07-01
The National Physical Laboratory, UK, has been active in the field of engineering nanometrology for a number of years. A summary of progress over the last five years is presented in this paper and the following research projects discussed in detail. (1) Development of an infrastructure for the calibration of instruments for measuring areal surface topography, along with the development of areal software measurement standards. This work comprises the use of the optical transfer function and a technique for the simultaneous measurement of topography and the phase change on reflection, allowing composite materials to be measured. (2) Development of a vibrating micro-CMM probe with isotropic probing reaction and the ability to operate in a non-contact mode. (3) A review of x-ray computed tomography and its use in dimensional metrology. (4) The further development of a metrology infrastructure for atomic force microscopy and the development of an instrument for the measurement of the effect of the probe-surface interaction. (5) Traceable measurement of displacement using optical and x-ray interferometry to picometre accuracy. (6) Development of an infrastructure for low-force metrology, including the development of appropriate transfer artefacts.
Evaluation of uncertainty for regularized deconvolution: A case study in hydrophone measurements.
Eichstädt, S; Wilkens, V
2017-06-01
An estimation of the measurand in dynamic metrology usually requires a deconvolution based on a dynamic calibration of the measuring system. Since deconvolution is, mathematically speaking, an ill-posed inverse problem, some kind of regularization is required to render the problem stable and obtain usable results. Many approaches to regularized deconvolution exist in the literature, but the corresponding evaluation of measurement uncertainties is, in general, an unsolved issue. In particular, the uncertainty contribution of the regularization itself is a topic of great importance, because it has a significant impact on the estimation result. Here, a versatile approach is proposed to express prior knowledge about the measurand based on a flexible, low-dimensional modeling of an upper bound on the magnitude spectrum of the measurand. This upper bound allows the derivation of an uncertainty associated with the regularization method in line with the guidelines in metrology. As a case study for the proposed method, hydrophone measurements in medical ultrasound with an acoustic working frequency of up to 7.5 MHz are considered, but the approach is applicable for all kinds of estimation methods in dynamic metrology, where regularization is required and which can be expressed as a multiplication in the frequency domain.
Recent progress in high pressure metrology in Europe
NASA Astrophysics Data System (ADS)
Sabuga, Wladimir; Pražák, Dominik; Rabault, Thierry
2014-08-01
Five European national metrology institutes in collaboration with a university, a research institute and five industrial companies are working on a joint research project within a framework of the European Metrology Research Programme aimed at development of 1.6 GPa primary and 1.5 GPa transfer pressure standards. Two primary pressure standards were realised as pressure-measuring multipliers, each consisting of a low pressure and a high pressure (HP) piston-cylinder assembly (PCA). A special design of the HP PCAs was developed in which a tungsten carbide cylinder is supported by two thermally shrunk steel sleeves and, additionally, by jacket pressure applied to the outside of the outer sleeve. Stress-strain finite element analysis (FEA) was performed to predict behaviour of the multipliers and a pressure generation system. With FEA, the pressure distortion coefficient was determined, taking into account irregularities of the piston-cylinder gap. Transfer pressure standards up to 1.5 GPa are developed on the basis of modern 1.5 GPa pressure transducers. This project shall solve a discrepancy between the growing needs of the industry demanding precise traceable calibrations of the high pressure transducers and the absence of adequate primary standards for pressures higher than 1 GPa in the European Union today.
Microwave evaluation of electromigration susceptibility in advanced interconnects.
Sunday, Christopher E; Veksler, Dmitry; Cheung, Kin C; Obeng, Yaw S
2017-11-07
Traditional metrology has been unable to adequately address the needs of the emerging integrated circuits (ICs) at the nano scale; thus, new metrology and techniques are needed. For example, the reliability challenges in fabrication need to be well understood and controlled to facilitate mass production of through-substrate-via (TSV) enabled three-dimensional integrated circuits (3D-ICs). This requires new approaches to the metrology. In this paper, we use the microwave propagation characteristics to study the reliability issues that precede the physical damage caused by electromigration in the Cu-filled TSVs. The pre-failure microwave insertion losses and group delay are dependent on both the device temperature and the amount of current forced through the devices-under-test. The microwave insertion losses increase with the increase in the test temperature, while the group delay increases with the increase in the forced direct current magnitude. The microwave insertion losses are attributed to the defect mobility at the Cu-TiN interface, and the group delay changes are due to resistive heating in the interconnects, which perturbs the dielectric properties of the cladding dielectrics of the copper fill in the TSVs. https://doi.org/10.1063/1.4992135.
WaferOptics® mass volume production and reliability
NASA Astrophysics Data System (ADS)
Wolterink, E.; Demeyer, K.
2010-05-01
The Anteryon WaferOptics® Technology platform contains imaging optics designs, materials, metrologies and combined with wafer level based Semicon & MEMS production methods. WaferOptics® first required complete new system engineering. This system closes the loop between application requirement specifications, Anteryon product specification, Monte Carlo Analysis, process windows, process controls and supply reject criteria. Regarding the Anteryon product Integrated Lens Stack (ILS), new design rules, test methods and control systems were assessed, implemented, validated and customer released for mass production. This includes novel reflowable materials, mastering process, replication, bonding, dicing, assembly, metrology, reliability programs and quality assurance systems. Many of Design of Experiments were performed to assess correlations between optical performance parameters and machine settings of all process steps. Lens metrologies such as FFL, BFL, and MTF were adapted for wafer level production and wafer mapping was introduced for yield management. Test methods for screening and validating suitable optical materials were designed. Critical failure modes such as delamination and popcorning were assessed and modeled with FEM. Anteryon successfully managed to integrate the different technologies starting from single prototypes to high yield mass volume production These parallel efforts resulted in a steep yield increase from 30% to over 90% in a 8 months period.
Characterization and metrology implications of the 1997 NTRS
NASA Astrophysics Data System (ADS)
Class, W.; Wortman, J. J.
1998-11-01
In the Front-end (transistor forming) area of silicon CMOS device processing, several NTRS difficult challenges have been identified including; scaled and alternate gate dielectric materials, new DRAM dielectric materials, alternate gate materials, elevated contact structures, engineered channels, and large-area cost-effective silicon substrates. This paper deals with some of the characterization and metrology challenges facing the industry if it is to meet the projected needs identified in the NTRS. In the areas of gate and DRAM dielectric, scaling requires that existing material layers be thinned to maximize capacitance. For the current gate dielectric, SiO2 and its nitrided derivatives, direct tunneling will limit scaling to approximately 1.5nm for logic applications before power losses become unacceptable. Low power logic and memory applications may limit scaling to the 2.0-2.2nm range. Beyond these limits, dielectric materials having higher dielectric constant, will permit continued capacitance increases while allowing for the use of thicker dielectric layers, where tunneling may be minimized. In the near term silicon nitride is a promising SiO2 substitute material while in the longer term "high-k" materials such as tantalum pentoxide and barium strontium titanate (BST) will be required. For these latter materials, it is likely that a multilayer dielectric stack will be needed, consisting of an ultra-thin (1-2 atom layer) interfacial SiO2 layer and a high-k overlayer. Silicon wafer surface preparation control, as well as the control of composition, crystal structure, and thickness for such stacks pose significant characterization and metrology challenges. In addition to the need for new gate dielectric materials, new gate materials will be required to overcome the limitations of the current doped polysilicon gate materials. Such a change has broad ramifications on device electrical performance and manufacturing process robustness which again implies a broad range of new characterization and metrology requirements. Finally, the doped structure of the MOS transistor must scale to very small lateral and depth dimensions, and thermal budgets must be reduced to permit the retention of very abrupt highly doped drain and channel engineered structures. Eventually, the NTRS forecasts the need for an elevated contact structure. Here, there are significant challenges associated with three-dimensional dopant profiling, measurement of dopant activity in ultra-shallow device regions, as well as point defect metrology and characterization.
NASA Astrophysics Data System (ADS)
Foucher, Johann; Labrosse, Aurelien; Dervillé, Alexandre; Zimmermann, Yann; Bernard, Guilhem; Martinez, Sergio; Grönqvist, Hanna; Baderot, Julien; Pinzan, Florian
2017-03-01
The development and integration of new materials and structures at the nanoscale require multiple parallel characterizations in order to control mostly physico-chemical properties as a function of applications. Among all properties, we can list physical properties such as: size, shape, specific surface area, aspect ratio, agglomeration/aggregation state, size distribution, surface morphology/topography, structure (including crystallinity and defect structure), solubility and chemical properties such as: structural formula/molecular structure, composition (including degree of purity, known impurities or additives), phase identity, surface chemistry (composition, charge, tension, reactive sites, physical structure, photocatalytic properties, zeta potential), hydrophilicity/lipophilicity. Depending on the final material formulation (aerosol, powder, nanostructuration…) and the industrial application (semiconductor, cosmetics, chemistry, automotive…), a fleet of complementary characterization equipments must be used in synergy for accurate process tuning and high production yield. The synergy between equipment so-called hybrid metrology consists in using the strength of each technique in order to reduce the global uncertainty for better and faster process control. The only way to succeed doing this exercise is to use data fusion methodology. In this paper, we will introduce the work that has been done to create the first generic hybrid metrology software platform dedicated to nanotechnologies process control. The first part will be dedicated to process flow modeling that is related to a fleet of metrology tools. The second part will introduce the concept of entity model which describes the various parameters that have to be extracted. The entity model is fed with data analysis as a function of the application (automatic analysis or semi-automated analysis). The final part will introduce two ways of doing data fusion on real data coming from imaging (SEM, TEM, AFM) and non-imaging techniques (SAXS). First approach is dedicated to high level fusion which is the art of combining various populations of results from homogeneous or heterogeneous tools, taking into account precision and repeatability of each of them to obtain a new more accurate result. The second approach is dedicated to deep level fusion which is the art of combining raw data from various tools in order to create a new raw data. We will introduce a new concept of virtual tool creator based on deep level fusion. As a conclusion we will discuss the implementation of hybrid metrology in semiconductor environment for advanced process control
NASA Technical Reports Server (NTRS)
Hadjimichael, Theo; Ohl, Raymond G.; Berrier, Joshua; Gum, Jeffery; Hayden, Joseph; Khreishi, Manal; McLean, Kyle; Redman, Kevin; Sullivan, Joseph; Wenzel, Greg;
2017-01-01
NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SIs). Prior to integration with the spacecraft, theJWST optical assembly is put through rigorous launch condition environmental testing. This work reports on the metrology operations conducted to determine any changes in subassembly alignment, including primary mirror segments with respect to each other, the secondary mirror to its support structure, the tertiary mirror assembly to the backplane of the telescope and ultimately to the ISIM.
Digital Phase Meter for a Laser Heterodyne Interferometer
NASA Technical Reports Server (NTRS)
Loya, Frank
2008-01-01
The Digital Phase Meter is based on a modified phase-locked loop. When phase alignment between the reference input and the phase-shifted metrological input is achieved, the loop locks and the phase shift of the digital phase shifter equals the phase difference that one seeks to measure. This digital phase meter is being developed for incorporation into a laser heterodyne interferometer in a metrological apparatus, but could also be adapted to other uses. Relative to prior phase meters of similar capability, including digital ones, this digital phase meter is smaller, less complex, and less expensive. The phase meter has been constructed and tested in the form of a field-programmable gate array (FPGA).
NASA Astrophysics Data System (ADS)
Ferrucci, M.; Muralikrishnan, B.; Sawyer, D.; Phillips, S.; Petrov, P.; Yakovlev, Y.; Astrelin, A.; Milligan, S.; Palmateer, J.
2014-10-01
Large volume laser scanners are increasingly being used for a variety of dimensional metrology applications. Methods to evaluate the performance of these scanners are still under development and there are currently no documentary standards available. This paper describes the results of extensive ranging and volumetric performance tests conducted on a large volume laser scanner. The results demonstrated small but clear systematic errors that are explained in the context of a geometric error model for the instrument. The instrument was subsequently returned to the manufacturer for factory calibration. The ranging and volumetric tests were performed again and the results are compared against those obtained prior to the factory calibration.
Predicting silicon pore optics
NASA Astrophysics Data System (ADS)
Vacanti, Giuseppe; Barriére, Nicolas; Bavdaz, Marcos; Chatbi, Abdelhakim; Collon, Maximilien; Dekker, Danielle; Girou, David; Günther, Ramses; van der Hoeven, Roy; Landgraf, Boris; Sforzini, Jessica; Vervest, Mark; Wille, Eric
2017-09-01
Continuing improvement of Silicon Pore Optics (SPO) calls for regular extension and validation of the tools used to model and predict their X-ray performance. In this paper we present an updated geometrical model for the SPO optics and describe how we make use of the surface metrology collected during each of the SPO manufacturing runs. The new geometrical model affords the user a finer degree of control on the mechanical details of the SPO stacks, while a standard interface has been developed to make use of any type of metrology that can return changes in the local surface normal of the reflecting surfaces. Comparisons between the predicted and actual performance of samples optics will be shown and discussed.
Maintaining and disseminating the kilogram following its redefinition
NASA Astrophysics Data System (ADS)
Stock, M.; Davidson, S.; Fang, H.; Milton, M.; de Mirandés, E.; Richard, P.; Sutton, C.
2017-12-01
The new definition of the kilogram, which is expected to be adopted by the General Conference on Weights and Measures in 2018, will bring some major changes to mass metrology. The most fundamental change will be the replacement of the present artefact-based definition with a universal definition, enabling in principle any National Metrology Institute (NMI) to realize the kilogram. The principles for the realization and dissemination of the kilogram in the revised SI are described in the mise en pratique of the definition of the kilogram. This paper provides some additional information and explains how traceability can be obtained by NMIs that do not operate a primary experiment to realize the definition of the kilogram.
Neural network approximation of nonlinearity in laser nano-metrology system based on TLMI
NASA Astrophysics Data System (ADS)
Olyaee, Saeed; Hamedi, Samaneh
2011-02-01
In this paper, an approach based on neural network (NN) for nonlinearity modeling in a nano-metrology system using three-longitudinal-mode laser heterodyne interferometer (TLMI) for length and displacement measurements is presented. We model nonlinearity errors that arise from elliptically and non-orthogonally polarized laser beams, rotational error in the alignment of laser head with respect to the polarizing beam splitter, rotational error in the alignment of the mixing polarizer, and unequal transmission coefficients in the polarizing beam splitter. Here we use a neural network algorithm based on the multi-layer perceptron (MLP) network. The simulation results show that multi-layer feed forward perceptron network is successfully applicable to real noisy interferometer signals.
Calibration of space instruments at the Metrology Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, R., E-mail: roman.klein@ptb.de; Fliegauf, R.; Gottwald, A.
2016-07-27
PTB has more than 20 years of experience in the calibration of space-based instruments using synchrotron radiation to cover the UV, VUV and X-ray spectral range. New instrumentation at the electron storage ring Metrology Light Source (MLS) opens up extended calibration possibilities within this framework. In particular, the set-up of a large vacuum vessel that can accommodate entire space instruments opens up new prospects. Moreover, a new facility for the calibration of radiation transfer source standards with a considerably extended spectral range has been put into operation. Besides, characterization and calibration of single components like e.g. mirrors, filters, gratings, andmore » detectors is continued.« less
Guest Editorial Precision Surface Metrology
NASA Astrophysics Data System (ADS)
Wyant, James C.
1984-08-01
During the past two decades there have been many changes in precision surface metrology. The introduction of the laser and the large computer during the 1960s and 1970s produced many changes in testing capabilities and requirements. Several commercial interferometers became available in the 1970s, enabling people who were not necessarily experts in interferometry to use interferometers to produce better optics. Since both buyers and sellers could test optics, the quality of the optics manufactured and sold improved greatly. If a person ordered 1/10 wave optics, he would probably get 1/10 wave or better optics; if he got optics of lower quality, he would know it, and he could prove it and return it.
INTERNATIONAL NEWS: CPEM 2006 round table discussion 'Proposed changes to the SI'
NASA Astrophysics Data System (ADS)
Stock, Michael; Witt, Thomas J.
2006-12-01
This report summarizes a round table session held last July at the CPEM 2006 to discuss recently proposed redefinitions of some base units of the International System of Units (SI) based on defined values of some fundamental constants. The aim of the session was to inform CPEM delegates of the various proposals and to promote a wide discussion of the issues arising from them. An interdisciplinary panel of six experts from national metrology institutes, the academic community and the industrial metrology community briefly presented their views and their concerns. The presentations were followed by a session in which the panel answered questions and heard comments from the audience.
Large Volume, Optical and Opto-Mechanical Metrology Techniques for ISIM on JWST
NASA Technical Reports Server (NTRS)
Hadjimichael, Theo
2015-01-01
The final, flight build of the Integrated Science Instrument Module (ISIM) element of the James Webb Space Telescope is the culmination of years of work across many disciplines and partners. This paper covers the large volume, ambient, optical and opto-mechanical metrology techniques used to verify the mechanical integration of the flight instruments in ISIM, including optical pupil alignment. We present an overview of ISIM's integration and test program, which is in progress, with an emphasis on alignment and optical performance verification. This work is performed at NASA Goddard Space Flight Center, in close collaboration with the European Space Agency, the Canadian Space Agency, and the Mid-Infrared Instrument European Consortium.
Radionuclide metrology research for nuclear site decommissioning
NASA Astrophysics Data System (ADS)
Judge, S. M.; Regan, P. H.
2017-11-01
The safe and cost-effective decommissioning of legacy nuclear sites relies on accurate measurement of the radioactivity content of the waste materials, so that the waste can be assigned to the most appropriate disposal route. Such measurements are a new challenge for the science of radionuclide metrology which was established largely to support routine measurements on operating nuclear sites and other applications such as nuclear medicine. In this paper, we provide a brief summary of the international measurement system that is established to enable nuclear site operators to demonstrate that measurements are accurate, independent and fit for purpose, and highlight some of the projects that are underway to adapt the measurement system to meet the changing demands from the industry.
Imhoff, Michael; Cecconi, Maurizio
2015-01-01
Metrology is the science of measurements. Although of critical importance in medicine and especially in critical care, frequent confusion in terms and definitions impact either interphysician communications or understanding of manufacturers’ and engineers’ instructions and limitations when using devices. In this review, we first list the terms defined by the International Bureau of Weights and Measures regarding quantities and units, measurements, devices for measurement, properties of measuring devices, and measurement standards. The traditional tools for assessing the most important measurement quality criteria are also reviewed with clinical examples for diagnosis, alarm, and titration purposes, as well as for assessing the uncertainty of reference methods. PMID:25625255
Probabilistic Metrology Attains Macroscopic Cloning of Quantum Clocks
NASA Astrophysics Data System (ADS)
Gendra, B.; Calsamiglia, J.; Muñoz-Tapia, R.; Bagan, E.; Chiribella, G.
2014-12-01
It has recently been shown that probabilistic protocols based on postselection boost the performances of the replication of quantum clocks and phase estimation. Here we demonstrate that the improvements in these two tasks have to match exactly in the macroscopic limit where the number of clones grows to infinity, preserving the equivalence between asymptotic cloning and state estimation for arbitrary values of the success probability. Remarkably, the cloning fidelity depends critically on the number of rationally independent eigenvalues of the clock Hamiltonian. We also prove that probabilistic metrology can simulate cloning in the macroscopic limit for arbitrary sets of states when the performance of the simulation is measured by testing small groups of clones.
Virtual Metrology applied in Run-to-Run Control for a Chemical Mechanical Planarization process
NASA Astrophysics Data System (ADS)
Jebri, M. A.; El Adel, E. M.; Graton, G.; Ouladsine, M.; Pinaton, J.
2017-01-01
This paper deals with missing data in semiconductor manufacturing derived from a measurement sampling strategies. The idea is to construct a virtual metrology module to estimate non measured variables using a new modified Just-In-Time Learning approach (JITL). The aim of this paper is to integrate estimated data into product control loop. In collaboration with our industrial partner STMicroelectronics Rousset, the accuracy of the proposed method is illustrated by using industrial data-sets derived from Chemical Mechanical Planarization (CMP) process that enables us to compare results obtained with the classical and the modified version of JITL approach. Then, the contribution of the estimated data is shown in product quality improvement.
Research on rapid agile metrology for manufacturing based on real-time multitask operating system
NASA Astrophysics Data System (ADS)
Chen, Jihong; Song, Zhen; Yang, Daoshan; Zhou, Ji; Buckley, Shawn
1996-10-01
Rapid agile metrology for manufacturing (RAMM) using multiple non-contact sensors is likely to remain a growing trend in manufacturing. High speed inspecting systems for manufacturing is characterized by multitasks implemented in parallel and real-time events which occur simultaneously. In this paper, we introduce a real-time operating system into RAMM research. A general task model of a class-based object- oriented technology is proposed. A general multitask frame of a typical RAMM system using OPNet is discussed. Finally, an application example of a machine which inspects parts held on a carrier strip is described. With RTOS and OPNet, this machine can measure two dimensions of the contacts at 300 parts/second.
NASA Technical Reports Server (NTRS)
Hadjimichael, Theo; Ohl, Raymond G.; Berrier, Joshua; Gum, Jeff; Hayden, Joseph; Khreishi, Manal; Mclean, Kyle; Redman, Kevin; Sullivan, Joseph; Wenzel, Greg;
2017-01-01
NASAs James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SIs). Prior to integration with the spacecraft, the JWST optical assembly is put through rigorous launch condition environmental testing. This work reports on the metrology operations conducted to determine any changes in subassembly alignment, including primary mirror segments with respect to each other, the secondary mirror to its support structure, the tertiary mirror assembly to the backplane of the telescope and ultimately to the ISIM.
Fabrication and Metrology of High-Precision Foil Mirror Mounting Elements
NASA Technical Reports Server (NTRS)
Schattenburg, Mark L.
2002-01-01
During the period of this Cooperative Agreement, MIT (Massachusetts Institute of Technology) developed advanced methods for applying silicon microstructures for the precision assembly of foil x-ray optics in support of the Constellation-X Spectroscopy X-ray Telescope (SXT) development effort at Goddard Space Flight Center (GSFC). MIT developed improved methods for fabricating and characterizing the precision silicon micro-combs. MIT also developed and characterized assembly tools and several types of metrology tools in order to characterize and reduce the errors associated with precision assembly of foil optics. Results of this effort were published and presented to the scientific community and the GSFC SXT team. A bibliography of papers and presentations is offered.
Will Future Measurement Needs of the Semiconductor Industry Be Met?
Bennett, Herbert S.
2007-01-01
We discuss the ability of the nation’s measurement system to meet future metrology needs of the semiconductor industry. Lacking an acceptable metric for assessing the health of metrology for the semiconductor industry, we identify a limited set of unmet measurement needs. Assuming that this set of needs may serve as proxy for the galaxy of semiconductor measurement needs, we examine it from the perspective of what will be required to continue the semiconductor industry’s powerful impact in the world’s macro-economy and maintain its exceptional record of numerous technological innovations. This paper concludes with suggestions about ways to strengthen the measurement system for the semiconductor industry. PMID:27110452
Diffraction based overlay metrology for α-carbon applications
NASA Astrophysics Data System (ADS)
Saravanan, Chandra Saru; Tan, Asher; Dasari, Prasad; Goelzer, Gary; Smith, Nigel; Woo, Seouk-Hoon; Shin, Jang Ho; Kang, Hyun Jae; Kim, Ho Chul
2008-03-01
Applications that require overlay measurement between layers separated by absorbing interlayer films (such as α- carbon) pose significant challenges for sub-50nm processes. In this paper scatterometry methods are investigated as an alternative to meet these stringent overlay metrology requirements. In this article, a spectroscopic Diffraction Based Overlay (DBO) measurement technique is used where registration errors are extracted from specially designed diffraction targets. DBO measurements are performed on detailed set of wafers with varying α-carbon (ACL) thicknesses. The correlation in overlay values between wafers with varying ACL thicknesses will be discussed. The total measurement uncertainty (TMU) requirements for these layers are discussed and the DBO TMU results from sub-50nm samples are reviewed.
Applications of Microwave Photonics in Radio Astronomy and Space Communication
NASA Technical Reports Server (NTRS)
D'Addario, Larry R.; Shillue, William P.
2006-01-01
An overview of narrow band vs wide band signals is given. Topics discussed included signal transmission, reference distribution and photonic antenna metrology. Examples of VLA, ALMA, ATA and DSN arrays are given. . Arrays of small antennas have become more cost-effective than large antennas for achieving large total aperture or gain, both for astronomy and for communication. It is concluded that emerging applications involving arrays of many antennas require low-cost optical communication of both wide bandwidth and narrow bandwidth; development of round-trip correction schemes enables timing precision; and free-space laser beams with microwave modulation allow structural metrology with approx 100 micrometer precision over distances of 200 meters.
Investigations of interpolation errors of angle encoders for high precision angle metrology
NASA Astrophysics Data System (ADS)
Yandayan, Tanfer; Geckeler, Ralf D.; Just, Andreas; Krause, Michael; Asli Akgoz, S.; Aksulu, Murat; Grubert, Bernd; Watanabe, Tsukasa
2018-06-01
Interpolation errors at small angular scales are caused by the subdivision of the angular interval between adjacent grating lines into smaller intervals when radial gratings are used in angle encoders. They are often a major error source in precision angle metrology and better approaches for determining them at low levels of uncertainty are needed. Extensive investigations of interpolation errors of different angle encoders with various interpolators and interpolation schemes were carried out by adapting the shearing method to the calibration of autocollimators with angle encoders. The results of the laboratories with advanced angle metrology capabilities are presented which were acquired by the use of four different high precision angle encoders/interpolators/rotary tables. State of the art uncertainties down to 1 milliarcsec (5 nrad) were achieved for the determination of the interpolation errors using the shearing method which provides simultaneous access to the angle deviations of the autocollimator and of the angle encoder. Compared to the calibration and measurement capabilities (CMC) of the participants for autocollimators, the use of the shearing technique represents a substantial improvement in the uncertainty by a factor of up to 5 in addition to the precise determination of interpolation errors or their residuals (when compensated). A discussion of the results is carried out in conjunction with the equipment used.
Teeter, Matthew G; Kopacz, Alexander J; Nikolov, Hristo N; Holdsworth, David W
2015-01-01
Additive manufacturing continues to increase in popularity and is being used in applications such as biomaterial ingrowth that requires sub-millimeter dimensional accuracy. The purpose of this study was to design a metrology test object for determining the capabilities of additive manufacturing systems to produce common objects, with a focus on those relevant to medical applications. The test object was designed with a variety of features of varying dimensions, including holes, cylinders, rectangles, gaps, and lattices. The object was built using selective laser melting, and the produced dimensions were compared to the target dimensions. Location of the test objects on the build plate did not affect dimensions. Features with dimensions less than 0.300 mm did not build or were overbuilt to a minimum of 0.300 mm. The mean difference between target and measured dimensions was less than 0.100 mm in all cases. The test object is applicable to multiple systems and materials, tests the effect of location on the build, uses a minimum of material, and can be measured with a variety of efficient metrology tools (including measuring microscopes and micro-CT). Investigators can use this test object to determine the limits of systems and adjust build parameters to achieve maximum accuracy. © IMechE 2014.
NASA Technical Reports Server (NTRS)
Gordon, T. E.
1995-01-01
The mirror assembly of the AXAF observatory consists of four concentric, confocal, Wolter type 1 telescopes. Each telescope includes two conical grazing incidence mirrors, a paraboloid followed by a hyperboloid. Fabrication of these state-or-the-art optics is now complete, with predicted performance that surpasses the goals of the program. The fabrication of these optics, whose size and requirements exceed those of any previous x-ray mirrors, presented a challenging task requiring the use of precision engineering in many different forms. Virtually all of the equipment used for this effort required precision engineering. Accurate metrology required deterministic support of the mirrors in order to model the gravity distortions which will not be present on orbit. The primary axial instrument, known as the Precision Metrology Station (PMS), was a unique scanning Fizeau interferometer. After metrology was complete, the optics were placed in specially designed Glass Support Fixtures (GSF's) for installation on the Automated Cylindrical Grinder/Polishers (ACG/P's). The GSF's were custom molded for each mirror element to match the shape of the outer surface to minimize distortions of the inner surface. The final performance of the telescope is expected to far exceed the original goals and expectations of the program.
Six-Port Based Interferometry for Precise Radar and Sensing Applications
Koelpin, Alexander; Lurz, Fabian; Linz, Sarah; Mann, Sebastian; Will, Christoph; Lindner, Stefan
2016-01-01
Microwave technology plays a more important role in modern industrial sensing applications. Pushed by the significant progress in monolithic microwave integrated circuit technology over the past decades, complex sensing systems operating in the microwave and even millimeter-wave range are available for reasonable costs combined with exquisite performance. In the context of industrial sensing, this stimulates new approaches for metrology based on microwave technology. An old measurement principle nearly forgotten over the years has recently gained more and more attention in both academia and industry: the six-port interferometer. This paper reviews the basic concept, investigates promising applications in remote, as well as contact-based sensing and compares the system with state-of-the-art metrology. The significant advantages will be discussed just as the limitations of the six-port architecture. Particular attention will be paid to impairment effects and non-ideal behavior, as well as compensation and linearization concepts. It will be shown that in application fields, like remote distance sensing, precise alignment measurements, as well as interferometrically-evaluated mechanical strain analysis, the six-port architecture delivers extraordinary measurement results combined with high measurement data update rates for reasonable system costs. This makes the six-port architecture a promising candidate for industrial metrology. PMID:27669246
Frenkel, Robert B; Farrance, Ian
2018-01-01
The "Guide to the Expression of Uncertainty in Measurement" (GUM) is the foundational document of metrology. Its recommendations apply to all areas of metrology including metrology associated with the biomedical sciences. When the output of a measurement process depends on the measurement of several inputs through a measurement equation or functional relationship, the propagation of uncertainties in the inputs to the uncertainty in the output demands a level of understanding of the differential calculus. This review is intended as an elementary guide to the differential calculus and its application to uncertainty in measurement. The review is in two parts. In Part I, Section 3, we consider the case of a single input and introduce the concepts of error and uncertainty. Next we discuss, in the following sections in Part I, such notions as derivatives and differentials, and the sensitivity of an output to errors in the input. The derivatives of functions are obtained using very elementary mathematics. The overall purpose of this review, here in Part I and subsequently in Part II, is to present the differential calculus for those in the medical sciences who wish to gain a quick but accurate understanding of the propagation of uncertainties. © 2018 Elsevier Inc. All rights reserved.
Coursey, Bert M
2014-05-01
Accurate measurements of radiation and radioactivity rarely rise to the level of national policy. The things that matter most to ordinary citizens do not normally include questions of science and technology. Citizens are more often concerned with issues close to home relating to commerce, health, safety, security and the environment. When questions of confidence in measurements arise, they are first directed to the ministry that has responsibilities in that area. When the required uncertainty in field measurements challenges the capability of the regulatory authorities, the National Metrology Institute may be asked to develop transfer standards to enhance the capabilities of the ministry with the mission lead. In this paper, we will consider eight instances over the past nine decades in which questions in radiation and radionuclide metrology in the US did rise to the level that they influenced decisions on national policy. These eight examples share some common threads. Radioactivity and ionizing radiation are useful tools in many disciplines, but can often represent potential or perceived threats to health and public safety. When unforeseen applications of radiation arise, or when environmental radioactivity from natural and man-made sources presents a possible health hazard, the radiation metrologists may be called upon to provide the technical underpinning for policy development. © 2013 Published by Elsevier Ltd.
Process and system - A dual definition, revisited with consequences in metrology
NASA Astrophysics Data System (ADS)
Ruhm, K. H.
2010-07-01
Lets assert that metrology life could be easier scientifically as well as technologically, if we, intentionally, would make an explicit distinction between two outstanding domains, namely the given, really existent domain of processes and the just virtually existent domain of systems, the latter of which is designed and used by the human mind. The abstract domain of models, by which we map the manifold reality of processes, is itself part of the domain of systems. Models support comprehension and communication, although they are normally extreme simplifications of properties and behaviour of a concrete reality. So, systems and signals represent processes and quantities, which are described by means of Signal and System Theory as well as by Stochastics and Statistics. The following presentation of this new, demanding and somehow irritating definition of the terms process and system as a dual pair is unusual indeed, but it opens the door widely to a better and more consistent discussion and understanding of manifold scientific tools in many areas. Metrology [4] is one of the important fields of concern due to many reasons: One group of the soft and hard links between the domain of processes and the domain of systems is realised by concepts of measurement science on the one hand and by instrumental tools of measurement technology on the other hand.
High pressure metrology for industrial applications
NASA Astrophysics Data System (ADS)
Sabuga, Wladimir; Rabault, Thierry; Wüthrich, Christian; Pražák, Dominik; Chytil, Miroslav; Brouwer, Ludwig; Ahmed, Ahmed D. S.
2017-12-01
To meet the needs of industries using high pressure technologies, in traceable, reliable and accurate pressure measurements, a joint research project of the five national metrology institutes and the university was carried out within the European Metrology Research Programme. In particular, finite element methods were established for stress-strain analysis of elastic and nonlinear elastic-plastic deformation, as well as of contact processes in pressure-measuring piston-cylinder assemblies, and high-pressure components at pressures above 1 GPa. New pressure measuring multipliers were developed and characterised, which allow realisation of the pressure scale up to 1.6 GPa. This characterisation is based on research including measurements of material elastic constants by the resonant ultrasound spectroscopy, hardness of materials of high pressure components, density and viscosity of pressure transmitting liquids at pressures up to 1.4 GPa and dimensional measurements on piston-cylinders. A 1.6 GPa pressure system was created for operation of the 1.6 GPa multipliers and calibration of high pressure transducers. A transfer standard for 1.5 GPa pressure range, based on pressure transducers, was built and tested. Herewith, the project developed the capability of measuring pressures up to 1.6 GPa, from which industrial users can calibrate their pressure measurement devices for accurate measurements up to 1.5 GPa.
NASA Astrophysics Data System (ADS)
Duffy, Alan; Yates, Brian; Takacs, Peter
2012-09-01
The Optical Metrology Facility at the Canadian Light Source (CLS) has recently purchased MountainsMap surface analysis software from Digital Surf and we report here our experiences with this package and its usefulness as a tool for examining metrology data of synchrotron x-ray mirrors. The package has a number of operators that are useful for determining surface roughness and slope error including compliance with ISO standards (viz. ISO 4287 and ISO 25178). The software is extensible with MATLAB scripts either by loading an m-file or by a user written script. This makes it possible to apply a custom operator to measurement data sets. Using this feature we have applied the simple six-line MATLAB code for the direct least square fitting of ellipses developed by Fitzgibbon et. al. to investigate the residual slope error of elliptical mirrors upon the removal of the best-fit-ellipse. The software includes support for many instruments (e.g. Zygo, MicroMap, etc...) and can import ASCII data (e.g. LTP data). The stitching module allows the user to assemble overlapping images and we report on our experiences with this feature applied to MicroMap surface roughness data. The power spectral density function was determined for the stitched and unstitched data and compared.
Optical system design for a Lunar Optical Interferometer
NASA Technical Reports Server (NTRS)
Colavita, M. M.; Shao, M.; Hines, B. E.; Levine, B. M.; Gershman, R.
1991-01-01
The moon offers particular advantages for interferometry, including a vacuum environment, a large stable base on which to assemble multi-kilometer baselines, and a cold nighttime temperature to allow for passive cooling of optics for high IR sensitivity. A baseline design for a Lunar Optical Interferometer (LOI) which exploits these features is presented. The instrument operates in the visible to mid-IL region, and is designed for both astrometry and synthesis imaging. The design uses a Y-shaped array of 12 siderostats, with maximum arm lengths of about 1 km. The inner siderostats are monitored in three dimensions from a central laser metrology structure to allow for high precision astrometry. The outer siderostats, used primarily for synthesis imaging, exploit the availability of bright reference stars in order to determine the instrument geometry. The path delay function is partitioned into coarse and fine components, the former accomplished with switched banks of range mirrors monitored with an absolute laser metrology system, and the latter with a short cat's eye delay line. The back end of the instrument is modular, allowing for beam combiners for astrometry, visible and IR synthesis imaging, and direct planet detection. With 1 m apertures, the instrument will have a point-source imaging sensitivity of about 29 mag; with the laser metrology system, astrometry at the microarcsecond level will be possible.
Elements for successful sensor-based process control {Integrated Metrology}
NASA Astrophysics Data System (ADS)
Butler, Stephanie Watts
1998-11-01
Current productivity needs have stimulated development of alternative metrology, control, and equipment maintenance methods. Specifically, sensor applications provide the opportunity to increase productivity, tighten control, reduce scrap, and improve maintenance schedules and procedures. Past experience indicates a complete integrated solution must be provided for sensor-based control to be used successfully in production. In this paper, Integrated Metrology is proposed as the term for an integrated solution that will result in a successful application of sensors for process control. This paper defines and explores the perceived four elements of successful sensor applications: business needs, integration, components, and form. Based upon analysis of existing successful commercially available controllers, the necessary business factors have been determined to be strong, measurable industry-wide business needs whose solution is profitable and feasible. This paper examines why the key aspect of integration is the decision making process. A detailed discussion is provided of the components of most importance to sensor based control: decision-making methods, the 3R's of sensors, and connectivity. A metric for one of the R's (resolution) is proposed to allow focus on this important aspect of measurement. A form for these integrated components which synergistically partitions various aspects of control at the equipment and MES levels to efficiently achieve desired benefits is recommended.
Gruen, Margaret E.; Griffith, Emily H.; Thomson, Andrea E.; Simpson, Wendy; Lascelles, B. Duncan X.
2015-01-01
Introduction Degenerative joint disease and associated pain are common in cats, particularly in older cats. There is a need for treatment options, however evaluation of putative therapies is limited by a lack of suitable, validated outcome measures that can be used in the target population of client owned cats. The objectives of this study were to evaluate low-dose daily meloxicam for the treatment of pain associated with degenerative joint disease in cats, and further validate two clinical metrology instruments, the Feline Musculoskeletal Pain Index (FMPI) and the Client Specific Outcome Measures (CSOM). Methods Sixty-six client owned cats with degenerative joint disease and owner-reported impairments in mobility were screened and enrolled into a double-masked, placebo-controlled, randomized clinical trial. Following a run-in baseline period, cats were given either placebo or meloxicam for 21 days, then in a masked washout, cats were all given placebo for 21 days. Subsequently, cats were given the opposite treatment, placebo or meloxicam, for 21 days. Cats wore activity monitors throughout the study, owners completed clinical metrology instruments following each period. Results Activity counts were increased in cats during treatment with daily meloxicam (p<0.0001) compared to baseline. The FMPI results and activity count data offer concurrent validation for the FMPI, though the relationship between baseline activity counts and FMPI scores at baseline was poor (R2=0.034). The CSOM did not show responsiveness for improvement in this study, and the relationship between baseline activity counts and CSOM scores at baseline was similarly poor (R2=0.042). Conclusions Refinements to the FMPI, including abbreviation of the instrument and scoring as percent of possible score are recommended. This study offered further validation of the FMPI as a clinical metrology instrument for use in detecting therapeutic efficacy in cats with degenerative joint disease. PMID:26162101
Fast and accurate: high-speed metrological large-range AFM for surface and nanometrology
NASA Astrophysics Data System (ADS)
Dai, Gaoliang; Koenders, Ludger; Fluegge, Jens; Hemmleb, Matthias
2018-05-01
Low measurement speed remains a major shortcoming of the scanning probe microscopic technique. It not only leads to a low measurement throughput, but a significant measurement drift over the long measurement time needed (up to hours or even days). To overcome this challenge, PTB, the national metrology institute of Germany, has developed a high-speed metrological large-range atomic force microscope (HS Met. LR-AFM) capable of measuring speeds up to 1 mm s‑1. This paper has introduced the design concept in detail. After modelling scanning probe microscopic measurements, our results suggest that the signal spectrum of the surface to be measured is the spatial spectrum of the surface scaled by the scanning speed. The higher the scanning speed , the broader the spectrum to be measured. To realise an accurate HS Met. LR-AFM, our solution is to combine different stages/sensors synchronously in measurements, which provide a much larger spectrum area for high-speed measurement capability. Two application examples have been demonstrated. The first is a new concept called reference areal surface metrology. Using the developed HS Met. LR-AFM, surfaces are measured accurately and traceably at a speed of 500 µm s‑1 and the results are applied as a reference 3D data map of the surfaces. By correlating the reference 3D data sets and 3D data sets of tools under calibration, which are measured at the same surface, it has the potential to comprehensively characterise the tools, for instance, the spectrum properties of the tools. The investigation results of two commercial confocal microscopes are demonstrated, indicating very promising results. The second example is the calibration of a kind of 3D nano standard, which has spatially distributed landmarks, i.e. special unique features defined by 3D-coordinates. Experimental investigations confirmed that the calibration accuracy is maintained at a measurement speed of 100 µm s‑1, which improves the calibration efficiency by a factor of 10.
Parametric boundary reconstruction algorithm for industrial CT metrology application.
Yin, Zhye; Khare, Kedar; De Man, Bruno
2009-01-01
High-energy X-ray computed tomography (CT) systems have been recently used to produce high-resolution images in various nondestructive testing and evaluation (NDT/NDE) applications. The accuracy of the dimensional information extracted from CT images is rapidly approaching the accuracy achieved with a coordinate measuring machine (CMM), the conventional approach to acquire the metrology information directly. On the other hand, CT systems generate the sinogram which is transformed mathematically to the pixel-based images. The dimensional information of the scanned object is extracted later by performing edge detection on reconstructed CT images. The dimensional accuracy of this approach is limited by the grid size of the pixel-based representation of CT images since the edge detection is performed on the pixel grid. Moreover, reconstructed CT images usually display various artifacts due to the underlying physical process and resulting object boundaries from the edge detection fail to represent the true boundaries of the scanned object. In this paper, a novel algorithm to reconstruct the boundaries of an object with uniform material composition and uniform density is presented. There are three major benefits in the proposed approach. First, since the boundary parameters are reconstructed instead of image pixels, the complexity of the reconstruction algorithm is significantly reduced. The iterative approach, which can be computationally intensive, will be practical with the parametric boundary reconstruction. Second, the object of interest in metrology can be represented more directly and accurately by the boundary parameters instead of the image pixels. By eliminating the extra edge detection step, the overall dimensional accuracy and process time can be improved. Third, since the parametric reconstruction approach shares the boundary representation with other conventional metrology modalities such as CMM, boundary information from other modalities can be directly incorporated as prior knowledge to improve the convergence of an iterative approach. In this paper, the feasibility of parametric boundary reconstruction algorithm is demonstrated with both simple and complex simulated objects. Finally, the proposed algorithm is applied to the experimental industrial CT system data.
NASA Astrophysics Data System (ADS)
de Podesta, Michael; Bell, Stephanie; Underwood, Robin
2018-04-01
In both meteorological and metrological applications, it is well known that air temperature sensors are susceptible to radiative errors. However, it is not widely known that the radiative error measured by an air temperature sensor in flowing air depends upon the sensor diameter, with smaller sensors reporting values closer to true air temperature. This is not a transient effect related to sensor heat capacity, but a fluid-dynamical effect arising from heat and mass flow in cylindrical geometries. This result has been known historically and is in meteorology text books. However, its significance does not appear to be widely appreciated and, as a consequence, air temperature can be—and probably is being—widely mis-estimated. In this paper, we first review prior descriptions of the ‘sensor size’ effect from the metrological and meteorological literature. We develop a heat transfer model to describe the process for cylindrical sensors, and evaluate the predicted temperature error for a range of sensor sizes and air speeds. We compare these predictions with published predictions and measurements. We report measurements demonstrating this effect in two laboratories at NPL in which the air flow and temperature are exceptionally closely controlled. The results are consistent with the heat-transfer model, and show that the air temperature error is proportional to the square root of the sensor diameter and that, even under good laboratory conditions, it can exceed 0.1 °C for a 6 mm diameter sensor. We then consider the implications of this result. In metrological applications, errors of the order of 0.1 °C are significant, representing limiting uncertainties in dimensional and mass measurements. In meteorological applications, radiative errors can easily be much larger. But in both cases, an understanding of the diameter dependence allows assessment and correction of the radiative error using a multi-sensor technique.
Sub-microradian Surface Slope Metrology with the ALS Developmental Long Trace Profiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, Valeriy V.; Barber, Samuel; Domning, Edward E.
2009-06-15
Development of X-ray optics for 3rd and 4th generation X-ray light sources with a level of surface slope precision of 0.1-0.2 {micro}rad requires the development of adequate fabrication technologies and dedicated metrology instrumentation and methods. Currently, the best performance of surface slope measurement has been achieved with the NOM (Nanometer Optical Component Measuring Machine) slope profiler at BESSY (Germany) [1] and the ESAD (Extended Shear Angle Difference) profiler at the PTB (Germany) [2]. Both instruments are based on electronic autocollimators (AC) precisely calibrated for the specific application [3] with small apertures of 2.5-5 mm in diameter. In the present work,more » we describe the design, initial alignment and calibration procedures, the instrumental control and data acquisition system, as well as the measurement performance of the Developmental Long Trace Profiler (DLTP) slope measuring instrument recently brought into operation at the Advanced Light Source (ALS) Optical Metrology Laboratory (OML). Similar to the NOM and ESAD, the DLTP is based on a precisely calibrated autocollimator. However, this is a reasonably low budget instrument used at the ALS OML for the development and testing of new measuring techniques and methods. Some of the developed methods have been implemented into the ALS LTP-II (slope measuring long trace profiler [4]) which was recently upgraded and has demonstrated a capability for 0.25 {micro}rad surface metrology [5]. Performance of the DLTP was verified via a number of measurements with high quality reference mirrors. A comparison with the corresponding results obtained with the world's best slope measuring instrument, the BESSY NOM, proves the accuracy of the DLTP measurements on the level of 0.1-0.2 {micro}rad depending on the curvature of a surface under test. The directions of future work to develop a surface slope measuring profiler with nano-radian performance are also discussed.« less
Improving the astrometric performance of VLTI-PRIMA
NASA Astrophysics Data System (ADS)
Woillez, J.; Abuter, R.; Andolfato, L.; Berger, J.-P.; Bonnet, H.; Delplancke, F.; Derie, F.; Di Lieto, N.; Guniat, S.; Mérand, A.; Duc, T. Phan; Schmid, C.; Schuhler, N.; Henning, T.; Launhardt, R.; Pepe, F.; Queloz, D.; Quirrenbach, A.; Reffert, S.; Sahlmann, J.; Segransan, D.
2014-07-01
In the summer of 2011, the first on-sky astrometric commissioning of PRIMA-Astrometry delivered a performance of 3 m″ for a 10 ″ separation on bright objects, orders of magnitude away from its exoplanet requirement of 50 μ″ ~ 20 μ″ on objects as faint as 11 mag ~ 13 mag in K band. This contribution focuses on upgrades and characterizations carried out since then. The astrometric metrology was extended from the Coudé focus of the Auxillary Telescopes to their secondary mirror, in order to reduce the baseline instabilities and improve the astrometric performance. While carrying out this extension, it was realized that the polarization retardance of the star separator derotator had a major impact on both the astrometric metrology and the fringe sensors. A local compensation of this retardance and the operation on a symmetric baseline allowed a new astrometric commissioning. In October 2013, an improved astrometric performance of 160 μ″ was demonstrated, still short of the requirements. Instabilities in the astrometric baseline still appear to be the dominating factor. In preparation to a review held in January 2014, a plan was developed to further improve the astrometric and faint target performance of PRIMA Astrometry. On the astrometric aspect, it involved the extension of the internal longitudinal metrology to primary space, the design and implementation of an external baseline metrology, and the development of an astrometric internal fringes mode. On the faint target aspect, investigations of the performance of the fringe sensor units and the development of an AO system (NAOMI) were in the plan. Following this review, ESO decided to take a proposal to the April 2014 STC that PRIMA be cancelled, and that ESO resources be concentrated on ensuring that Gravity and Matisse are a success. This proposal was recommended by the STC in May 2014, and endorsed by ESO.
AGILE integration into APC for high mix logic fab
NASA Astrophysics Data System (ADS)
Gatefait, M.; Lam, A.; Le Gratiet, B.; Mikolajczak, M.; Morin, V.; Chojnowski, N.; Kocsis, Z.; Smith, I.; Decaunes, J.; Ostrovsky, A.; Monget, C.
2015-09-01
For C040 technology and below, photolithographic depth of focus control and dispersion improvement is essential to secure product functionality. Critical 193nm immersion layers present initial focus process windows close to machine control capability. For previous technologies, the standard scanner sensor (Level sensor - LS) was used to map wafer topology and expose the wafer at the right Focus. Such optical embedded metrology, based on light reflection, suffers from reading issues that cannot be neglected anymore. Metrology errors are correlated to inspected product area for which material types and densities change, and so optical properties are not constant. Various optical phenomena occur across the product field during wafer inspection and have an effect on the quality and position of the reflected light. This can result in incorrect heights being recorded and exposures possibly being done out of focus. Focus inaccuracy associated to aggressive process windows on critical layers will directly impact product realization and therefore functionality and yield. ASML has introduced an air gauge sensor to complement the optical level sensor and lead to optimal topology metrology. The use of this new sensor is managed by the AGILE (Air Gauge Improved process LEveling) application. This measurement with no optical dependency will correct for optical inaccuracy of level sensor, and so improve best focus dispersion across the product. Due to the fact that stack complexity is more and more important through process steps flow, optical perturbation of standard Level sensor metrology is increasing and is becoming maximum for metallization layers. For these reasons AGILE feature implementation was first considered for contact and all metal layers. Another key point is that standard metrology will be sensitive to layer and reticle/product density. The gain of Agile will be enhanced for multiple product contribution mask and for complex System on Chip. Into ST context (High mix logic Fab) in term of product and technology portfolio AGILE corrects for up to 120nm of product topography error on process layer with less than 50nm depth of focus Based on tool functionalities delivered by ASML and on high volume manufacturing requirement, AGILE integration is a real challenge. Regarding ST requirements "Automatic AGILE" functionality developed by ASML was not a turnkey solution and a dedicated functionality was needed. A "ST homemade AGILE integration" has been fully developed and implemented within ASML and ST constraints. This paper describes this integration in our Advanced Process Control platform (APC).
Electrical test prediction using hybrid metrology and machine learning
NASA Astrophysics Data System (ADS)
Breton, Mary; Chao, Robin; Muthinti, Gangadhara Raja; de la Peña, Abraham A.; Simon, Jacques; Cepler, Aron J.; Sendelbach, Matthew; Gaudiello, John; Emans, Susan; Shifrin, Michael; Etzioni, Yoav; Urenski, Ronen; Lee, Wei Ti
2017-03-01
Electrical test measurement in the back-end of line (BEOL) is crucial for wafer and die sorting as well as comparing intended process splits. Any in-line, nondestructive technique in the process flow to accurately predict these measurements can significantly improve mean-time-to-detect (MTTD) of defects and improve cycle times for yield and process learning. Measuring after BEOL metallization is commonly done for process control and learning, particularly with scatterometry (also called OCD (Optical Critical Dimension)), which can solve for multiple profile parameters such as metal line height or sidewall angle and does so within patterned regions. This gives scatterometry an advantage over inline microscopy-based techniques, which provide top-down information, since such techniques can be insensitive to sidewall variations hidden under the metal fill of the trench. But when faced with correlation to electrical test measurements that are specific to the BEOL processing, both techniques face the additional challenge of sampling. Microscopy-based techniques are sampling-limited by their small probe size, while scatterometry is traditionally limited (for microprocessors) to scribe targets that mimic device ground rules but are not necessarily designed to be electrically testable. A solution to this sampling challenge lies in a fast reference-based machine learning capability that allows for OCD measurement directly of the electrically-testable structures, even when they are not OCD-compatible. By incorporating such direct OCD measurements, correlation to, and therefore prediction of, resistance of BEOL electrical test structures is significantly improved. Improvements in prediction capability for multiple types of in-die electrically-testable device structures is demonstrated. To further improve the quality of the prediction of the electrical resistance measurements, hybrid metrology using the OCD measurements as well as X-ray metrology (XRF) is used. Hybrid metrology is the practice of combining information from multiple sources in order to enable or improve the measurement of one or more critical parameters. Here, the XRF measurements are used to detect subtle changes in barrier layer composition and thickness that can have second-order effects on the electrical resistance of the test structures. By accounting for such effects with the aid of the X-ray-based measurements, further improvement in the OCD correlation to electrical test measurements is achieved. Using both types of solution incorporation of fast reference-based machine learning on nonOCD-compatible test structures, and hybrid metrology combining OCD with XRF technology improvement in BEOL cycle time learning could be accomplished through improved prediction capability.
Metrology System for a Large, Somewhat Flexible Telescope
NASA Technical Reports Server (NTRS)
Liebe, Carl Christian; Bartman, Randall; Cook, Walter; Craig, William
2009-01-01
A proposed metrology system would be incorporated into a proposed telescope that would include focusing optics on a rigid bench connected via a deployable mast to another rigid bench holding a focal-plane array of photon counting photodetectors. Deformations of the deployable mast would give rise to optical misalignments that would alter the directions (and, hence, locations) of incidence of photons on the focal plane. The metrology system would measure the relative displacement of the focusing- optics bench and the focal-plane array bench. The measurement data would be used in post-processing of the digitized photodetector outputs to compensate for the mast-deformation-induced changes in the locations of incidence of photons on the focal plane, thereby making it possible to determine the original directions of incidence of photons with greater accuracy. The proposed metrology system is designed specifically for the Nuclear Spectroscopic Telescope Array (NuSTAR) a proposed spaceborne x-ray telescope. The basic principles of design and operation are also applicable to other large, somewhat flexible telescopes, both terrestrial and spaceborne. In the NuSTAR, the structural member connecting the optical bench and the photodetector array would be a 10-m-long deployable mast, and there is a requirement to keep errors in measured directions of incidence of photons below 10 arc seconds (3 sigma). The proposed system would include three diode lasers that would be mounted on the focusing-optics bench. For clarity, only one laser is shown in the figure, which is a greatly simplified schematic diagram of the system. Each laser would be aimed at a position-sensitive photodiode that would be mounted on the detector bench alongside the aforementioned telescope photodetector array. The diode lasers would operate at a wavelength of 830 nm, each at a power of 200 mW. Each laser beam would be focused to a spot of .1-mm diameter on the corresponding position-sensitive photodiode. To reduce the effect of sunlight on the measurements, a one-stage light baffle and an 830-nm transmission filter of 10-nm bandwidth would be placed in front of the position- sensitive photodiode. For each metrology reading, the output of the position-sensitive detector would be sampled and digitized twice: once with the lasers turned on, then once with the lasers turned off. The data from these two sets of samples would be subtracted from each other to further reduce the effects of sun glints or other background light sources.
NASA Astrophysics Data System (ADS)
Buchholz, Bernhard; Ebert, Volker
2014-05-01
Airborne hygrometry is often demanded in scientific flight campaigns to provide datasets for environmental modeling or to correct for water vapor dilution or cross sensitivity effects in other gas analytical techniques. Water vapor measurements, however, are quite challenging due to the large dynamic range in the atmosphere (between 2 and 40000 ppmv) and the high spatio-temporal variability. Airborne hygrometers therefore need to combine a large measurement range with high temporal resolution to resolve - at typical airspeeds of 500 to 900 km/h - atmospheric gradients of several 1000 ppmv/s. Especially during the ascent into the upper troposphere, hygrometers need to work at high gas exchange rates to minimize water vapor adsorption effects. On the other hand, water vapor sensors are difficult to calibrate due to the strong water adsorption and the lack of bottled reference gas standards, which requires pre- or/and post-flight field calibrations. Recently in-flight calibration using an airborne H2O generator was demonstrated, which minimizes calibration drift but still imposes a lot of additional work and hardware to the experiments, since these kind of calibrations just transfer the accuracy level issues to the in-flight calibration-source. To make things worse, the low gas flow (1-5 std l/min, compared with up to 100 std l/min in flight for fast response instruments) adheres critical questions of wall absorption/desorption of the source and instrument even during the calibration process. The national metrological institutes (NMIs) maintain a global metrological water vapor scale which is defined via national primary humidity generators. These provide for calibration purposes well-defined, accurate water vapor samples of excellent comparability and stability traced back to the SI-units. The humidity calibration chain is maintained via high accuracy (but rather slow) Dew-Point-Mirror-Hygrometers as transfer standards. These provide a traceable performance and calibration link to any industrial or research laboratory hygrometer. To establish metrological traceability in field and particular in airborne hygrometers is however challenging and requires fast, field-compatible, metrologically qualified transfer hygrometry standards to link the metrological and the environmental sciences water scales. The SEALDH (Selective Extractive Airborne Laser Diode Hygrometer) development started 3 years ago and aims at filling this gap by using Tunable Diode Laser Absorption Spectroscopy (TDLAS) with a special, calibration-free data evaluation [1]. Previously developed, laboratory-based TDLAS instruments, such as [2] [3], were starting points to develop an autonomously operating, extractive water vapor sensor in a compact 19' 4 HU form factor. This new airborne package and far-reaching developments [4] in hard- and software allow an autonomous, low maintenance, airborne operation. SEALDH-II can be used in a calibration-free field sensor mode (with an absolute, metrologically defined uncertainty of 4.3% +- 3ppmv). The response time is mainly limited by the gas flow and significantly below 1 sec with a precision down to 0.08 ppmv (1σ, 1sec) measured at 600 ppmv and 1000 hPa. The excellent long-term stability of SEALDH-II (
FOREWORD: Materials metrology Materials metrology
NASA Astrophysics Data System (ADS)
Bennett, Seton; Valdés, Joaquin
2010-04-01
It seems that so much of modern life is defined by the materials we use. From aircraft to architecture, from cars to communications, from microelectronics to medicine, the development of new materials and the innovative application of existing ones have underpinned the technological advances that have transformed the way we live, work and play. Recognizing the need for a sound technical basis for drafting codes of practice and specifications for advanced materials, the governments of countries of the Economic Summit (G7) and the European Commission signed a Memorandum of Understanding in 1982 to establish the Versailles Project on Advanced Materials and Standards (VAMAS). This project supports international trade by enabling scientific collaboration as a precursor to the drafting of standards. The VAMAS participants recognized the importance of agreeing a reliable, universally accepted basis for the traceability of the measurements on which standards depend for their preparation and implementation. Seeing the need to involve the wider metrology community, VAMAS approached the Comité International des Poids et Mesures (CIPM). Following discussions with NMI Directors and a workshop at the BIPM in February 2005, the CIPM decided to establish an ad hoc Working Group on the metrology applicable to the measurement of material properties. The Working Group presented its conclusions to the CIPM in October 2007 and published its final report in 2008, leading to the signature of a Memorandum of Understanding between VAMAS and the BIPM. This MoU recognizes the work that is already going on in VAMAS as well as in the Consultative Committees of the CIPM and establishes a framework for an ongoing dialogue on issues of materials metrology. The question of what is meant by traceability in the metrology of the properties of materials is particularly vexed when the measurement results depend on a specified procedure. In these cases, confidence in results requires not only traceable calibration of the various instruments and standards used but also the reliable application of an accepted measurement procedure. Nowhere is this more evident than in the use of hardness scales, which are not directly traceable to the SI. This special issue of Metrologia includes a summary of the findings and conclusions of the Working Group and a further 14 papers covering the full range of properties of interest in science, engineering and standards making. It includes papers by authors at eight national measurement institutes and four other research centres. In addition to mechanical properties, there are papers addressing issues associated with the measurement of electromagnetic, acoustic and optical properties as well as those arising from the specific structural features of many new materials. As guest editors, we are extremely grateful to all the authors who have contributed to this special issue on the measurement of the properties of materials. We hope it will contribute to a wider appreciation of many of the associated issues and foster a growing understanding of the importance of ensuring that all such measurements are performed in accordance with accepted standards and procedures, with proper attention to the need to establish the traceability of the results. Only in this way can the performance, safety and fitness for purpose of products be guaranteed.
NASA Astrophysics Data System (ADS)
Legras, Jean-Claude; Jousten, Karl; Severn, Ian
2005-12-01
The fourth CCM (Consultative Committee for Mass and related quantities) International Conference on Pressure Metrology from Ultra-High Vacuum to Very High Pressures (10-9 Pa to 109 Pa) was held at the Institute of Physics in London from 19-21 April 2005. The event, which was organized by the Low, Medium and High Pressure working groups of the CCM, was attended by in excess of one hundred participants with representatives from five continents and every regional metrology organization. The purpose of this conference is to review all the work that is devoted to the highest quality of pressure measurement by primary standards as well as the dissemination of the pressure scale. A total of 52 papers were presented orally, and 26 as posters, in sessions that covered the following topics: Latest scientific advances in pressure and vacuum metrology Innovative transfer standards, advanced sensors and new instrument development Primary (top-level) measurement standards International and regional key comparisons New approaches to calibration It is interesting the note that since the third conference in 1999 the pressure range covered has increased by two orders of magnitude to 109 Pa, to take into account more exacting scientific and industrial demands for traceable vacuum measurement. A further feature of the conference was the increased range of instrumentation and techniques used in the realization and potential realization of pressure standards. Seton Bennett, Director of International Metrology at the National Physical Laboratory, opened the conference and Andrew Wallard, Director of the Bureau International des Poids et Mesures (BIPM), gave the keynote address which described the implementation of the mutual recognition arrangement and the resulting removal of metrological barriers to international trade. Many experts have contributed significant amounts of their time to organize the event and to review the submitted papers. Thanks are due to all of these people, particularly Gianfranco Molinar who offered much advice based on experience of organizing the previous conference. Special thanks must also be made to Mitsuru Tanaka, President of the CCM, and Andrew Wallard, Director of the BIPM, for their support of the event. The event was coordinated by Jasmina Bolfek-Radovani, of the Institute of Physics, without whose tireless efforts the event would not have been as successful. The production of this issue of Metrologia would not have been possible without the help and support of its editor, Jeffrey Williams. The National Measurement System Directorate of the Department of Trade and Industry supported the conference and it was sponsored by DH Instruments and BOC Edwards. Additional financial assistance was also received from Chell Instruments Ltd, DH-Budenberg, GE Infrastructure Sensing, Hi-Pro Pressure Products Ltd, Kurt J Lesker Company Ltd and Leybold Vacuum UK Ltd. Finally we would like to thank all of the conference participants who made the event both technically stimulating and enjoyable. By the time the next CCM Pressure conference is held in Berlin in 2011, pressure science and technology will undoubtedly have moved on still further and we may see the culmination of work to realize primary pressure standards by more fundamental methods.
Jeff Cheatham, senior metrologist
2015-01-27
JEFF CHEATHAM, SENIOR METROLOGIST AT THE MARSHALL METROLOGY AND CALIBRATION LABORATORY, SPENT 12 YEARS DEVELOPING 2400 AUTOMATED SOFTWARE PROCEDURES USED FOR CALIBRATION AND TESTING SPACE VEHICLES AND EQUIPMENT
Improvements in the EQ-10 electrodeless Z-pinch EUV source for metrology applications
NASA Astrophysics Data System (ADS)
Horne, Stephen F.; Gustafson, Deborah; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.
2011-04-01
Now that EUV lithography systems are beginning to ship into the fabs for next generation chips it is more critical that the EUV infrastructure developments are keeping pace. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinch™ light source since 2005. The source is currently being used for metrology, mask inspection, and resist development. These applications require especially stable performance in both power and source size. Over the last 5 years Energetiq has made many source modifications which have included better thermal management as well as high pulse rate operation6. Recently we have further increased the system power handling and electrical pulse reproducibility. The impact of these modifications on source performance will be reported.
Patterned wafer geometry grouping for improved overlay control
NASA Astrophysics Data System (ADS)
Lee, Honggoo; Han, Sangjun; Woo, Jaeson; Park, Junbeom; Song, Changrock; Anis, Fatima; Vukkadala, Pradeep; Jeon, Sanghuck; Choi, DongSub; Huang, Kevin; Heo, Hoyoung; Smith, Mark D.; Robinson, John C.
2017-03-01
Process-induced overlay errors from outside the litho cell have become a significant contributor to the overlay error budget including non-uniform wafer stress. Previous studies have shown the correlation between process-induced stress and overlay and the opportunity for improvement in process control, including the use of patterned wafer geometry (PWG) metrology to reduce stress-induced overlay signatures. Key challenges of volume semiconductor manufacturing are how to improve not only the magnitude of these signatures, but also the wafer to wafer variability. This work involves a novel technique of using PWG metrology to provide improved litho-control by wafer-level grouping based on incoming process induced overlay, relevant for both 3D NAND and DRAM. Examples shown in this study are from 19 nm DRAM manufacturing.
Automatic three-dimensional measurement of large-scale structure based on vision metrology.
Zhu, Zhaokun; Guan, Banglei; Zhang, Xiaohu; Li, Daokui; Yu, Qifeng
2014-01-01
All relevant key techniques involved in photogrammetric vision metrology for fully automatic 3D measurement of large-scale structure are studied. A new kind of coded target consisting of circular retroreflective discs is designed, and corresponding detection and recognition algorithms based on blob detection and clustering are presented. Then a three-stage strategy starting with view clustering is proposed to achieve automatic network orientation. As for matching of noncoded targets, the concept of matching path is proposed, and matches for each noncoded target are found by determination of the optimal matching path, based on a novel voting strategy, among all possible ones. Experiments on a fixed keel of airship have been conducted to verify the effectiveness and measuring accuracy of the proposed methods.
Quantum speed limits in open system dynamics.
del Campo, A; Egusquiza, I L; Plenio, M B; Huelga, S F
2013-02-01
Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive, and trace preserving evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the determination of precision limits for quantum metrology in the presence of dephasing noise.
A Precision Metrology System for the Hubble Space Telescope Wide Field Camera 3 Instrument
NASA Technical Reports Server (NTRS)
Toland, Ronald W.
2003-01-01
The Wide Field Camera 3 (WFC3) instrument for the Hubble Space Telescope (HST) will replace the current Wide Field and Planetary Camera 2 (WFPC2). By providing higher throughput and sensitivity than WFPC2, and operating from the near-IR to the near-UV, WFC3 will once again bring the performance of HST above that from ground-based observatories. Crucial to the integration of the WFC3 optical bench is a pair of 2-axis cathetometers used to view targets which cannot be seen by other means when the bench is loaded into its enclosure. The setup and calibration of these cathetometers is described, along with results from a comparison of the cathetometer system with other metrology techniques.