Science.gov

Sample records for mev proton accelerator

  1. Flare vs. Shock Acceleration of >100 MeV Protons in Large Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Cliver, Edward W.

    2016-05-01

    Recently several studies have presented correlative evidence for a significant-to-dominant role for a flare-resident process in the acceleration of high-energy protons in large solar particle events. In one of these investigations, a high correlation between >100 MeV proton fluence and 35 GHz radio fluence is obtained by omitting large proton events associated with relatively weak flares; these outlying events are attributed to proton acceleration by shock waves driven by coronal mass ejections (CMEs). We argue that the strong CMEs and associated shocks observed for proton events on the main sequence of the scatter plot are equally likely to accelerate high-energy protons. In addition, we examine ratios of 0.5 MeV electron to >100 MeV proton intensities in large SEP events, associated with both well-connected and poorly-connected solar eruptions, to show that scaled-up versions of the small flares associated with classical impulsive SEP events are not significant accelerators of >100 MeV protons.

  2. Calculations of neutron shielding data for 10-100 MeV proton accelerators.

    PubMed

    Chen, C C; Sheu, R J; Jian, S H

    2005-01-01

    The characteristics of neutron sources and their attenuation in concrete were investigated in detail for protons with energies ranging from 10 to 100 MeV striking on target materials of C, N, Al, Fe, Cu and W. A two-step approach was adopted: thick-target double-differential neutron yields were first calculated from the (p, xn) cross sections recommended in the ICRU Report 63; further, transport simulations of those neutrons in concrete were performed by using the FLUKA Monte Carlo code. The purpose of this study is to provide reasonably accurate parameters for shielding design for 10-100 MeV proton accelerators. Source terms and the corresponding attenuation lengths in concrete for several target materials are given as a function of proton energies and neutron emission angles.

  3. Equation of State Measurements of Dense Plasmas Heated by Laser Accelerated MeV Protons

    NASA Astrophysics Data System (ADS)

    Dyer, Gilliss; Bernstein, Aaron; Cho, Byoung-Ick; Grigsby, Will; Dalton, Allen; Shepherd, Ronnie; Ping, Yuan; Chen, Hui; Widmann, Klaus; Ozterhoz, Jens; Ditmire, Todd

    2008-04-01

    Using a fast proton beam generated with an ultra intense laser we have generated and measured the equation of state of solid density plasma at temperatures near 20 eV, a regime in which there have been few previous experimental measurements. The laser accelerated a directional, short pulse of MeV protons, which isochorically heated a solid slab of aluminum. Using two simultaneous, temporally resolved measurements we observed the thermal emission and expansion of the heated foil with picosecond time resolution. With these data we were able to confirm, to within 10%, the SESAME equation-of-state table in this dense plasma region.

  4. Comparing Solar-Flare Acceleration of >-20 MeV Protons and Electrons Above Various Energies

    NASA Technical Reports Server (NTRS)

    Shih, Albert Y.

    2010-01-01

    A large fraction (up to tens of percent) of the energy released in solar flares goes into accelerated ions and electrons, and studies indicate that these two populations have comparable energy content. RHESSI observations have shown a striking close linear correlation between the 2.223 MeV neutron-capture gamma-ray line and electron bremsstrahlung emission >300 keV, indicating that the flare acceleration of >^20 MeV protons and >300 keV electrons is roughly proportional over >3 orders of magnitude in fluence. We show that the correlations of neutron-capture line fluence with GOES class or with bremsstrahlung emission at lower energies show deviations from proportionality, primarily for flares with lower fluences. From analyzing thirteen flares, we demonstrate that there appear to be two classes of flares with high-energy acceleration: flares that exhibit only proportional acceleration of ions and electrons down to 50 keV and flares that have an additional soft, low-energy bremsstrahlung component, suggesting two separate populations of accelerated electrons. We use RHESSI spectroscopy and imaging to investigate a number of these flares in detail.

  5. Comparing Solar-Flare Acceleration of >-20 MeV Protons and Electrons Above Various Energies

    NASA Technical Reports Server (NTRS)

    Shih, Albert Y.

    2010-01-01

    A large fraction (up to tens of percent) of the energy released in solar flares goes into accelerated ions and electrons, and studies indicate that these two populations have comparable energy content. RHESSI observations have shown a striking close linear correlation between the 2.223 MeV neutron-capture gamma-ray line and electron bremsstrahlung emission >300 keV, indicating that the flare acceleration of >^20 MeV protons and >300 keV electrons is roughly proportional over >3 orders of magnitude in fluence. We show that the correlations of neutron-capture line fluence with GOES class or with bremsstrahlung emission at lower energies show deviations from proportionality, primarily for flares with lower fluences. From analyzing thirteen flares, we demonstrate that there appear to be two classes of flares with high-energy acceleration: flares that exhibit only proportional acceleration of ions and electrons down to 50 keV and flares that have an additional soft, low-energy bremsstrahlung component, suggesting two separate populations of accelerated electrons. We use RHESSI spectroscopy and imaging to investigate a number of these flares in detail.

  6. Research program for the 660 MeV proton accelerator driven MOX-plutonium subcritical assembly

    NASA Astrophysics Data System (ADS)

    Barashenkov, V. S.; Buttsev, V. S.; Buttseva, G. L.; Dudarev, S. Ju.; Polanski, A.; Puzynin, I. V.; Sissakian, A. N.

    2000-07-01

    This paper presents the research program of the Experimental Accelerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton accelerator operating in the Laboratory of Nuclear Problems at the Joint Institute for Nuclear Research in Dubna. Mixed-oxide (MOX) fuel (25% PuO2+75% UO2) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient keff=0.945, energetic gain G=30, and accelerator beam power of 0.5 kW.

  7. Characterization of MeV proton acceleration from double pulse irradiation of foil targets

    NASA Astrophysics Data System (ADS)

    Kerr, S.; Mo, M. Z.; Masud, R.; Tiedje, H. F.; Tsui, Y.; Fedosejevs, R.; Link, A.; Patel, P.; McLean, H. S.; Hazi, A.; Chen, H.; Ceurvorst, L.; Norreys, P.

    2014-10-01

    We report on the experimental characterization of proton acceleration from double-pulse irradiation of um-scale foil targets. Temporally separated sub-picosecond pulses have been shown to increase the conversion efficiency of laser energy to MeV protons. Here, two 700 fs, 1 ω pulses were separated by 1 to 5 ps; total beam energy was 100 J, with 5-20% of the total energy contained within the first pulse. In contrast to the ultraclean beams used in previous experiments, prepulse energies on the order of 10 mJ were present in the current experiments which appear to have a moderating effect on the enhancement. Proton beam measurements were made with radiochromic film stacks, as well as magnetic spectrometers. The effect on electron generation was measured using Kα emission from buried Cu tracer layers, while specular light diagnostics (FROG, reflection spectralon) indicated the laser coupling efficiency into the target. The results obtained will be presented and compared to PIC simulations. Work by LLNL was performed under the auspices of U.S. DOE under contract DE-AC52-07NA27344.

  8. Filamentation control and collimation of laser accelerated MeV protons

    NASA Astrophysics Data System (ADS)

    Ramakrishna, B.; Tayyab, M.; Bagchi, S.; Mandal, T.; Upadhyay, A.; Weng, S. M.; Murakami, M.; Cowan, T. E.; Chakera, J. A.; Naik, P. A.; Gupta, P. D.

    2015-12-01

    We demonstrate experimentally that the proton beam filamentation in dense plasma can be controlled in multi-layered (Al-CH-Al) sandwich targets. We observe up to three-fold reduction in the MeV proton beam divergence (~12°) from these targets as a result of decrease in filamentary structures in the proton beam profile. Strong self-generated resistive magnetic fields in targets with a high-Z transport layer are mainly responsible for this observed effect. Enhancement in the proton flux and energy is also observed from these targets. Supported by a matching 2D particle-in-cell (PIC) simulation and theoretical considerations, we suggest that these targets can be very effectively implemented to collimate proton beams useful for ion oncology applications or advanced fast igniter approach of inertial confinement fusion (ICF).

  9. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.

    PubMed

    Hsu, Yung-Cheng; Lai, Bo-Lun; Sheu, Rong-Jiun

    2016-01-01

    This study evaluated the magnitude of potential neutron yield and induced radioactivity of two new accelerators in Taiwan: a 235-MeV proton cyclotron for radiation therapy and a 3-GeV electron synchrotron serving as the injector for the Taiwan Photon Source. From a nuclear interaction point of view, neutron production from targets bombarded with high-energy particles is intrinsically related to the resulting target activation. Two multi-particle interaction and transport codes, FLUKA and MCNPX, were used in this study. To ensure prediction quality, much effort was devoted to the associated benchmark calculations. Comparisons of the accelerators' results for three target materials (copper, stainless steel and tissue) are presented. Although the proton-induced neutron yields were higher than those induced by electrons, the maximal neutron production rates of both accelerators were comparable according to their respective beam outputs during typical operation. Activation products in the targets of the two accelerators were unexpectedly similar because the primary reaction channels for proton- and electron-induced activation are (p,pn) and (γ,n), respectively. The resulting residual activities and remnant dose rates as a function of time were examined and discussed.

  10. Proton-Proton Scattering at 105 Mev and 75 Mev

    DOE R&D Accomplishments Database

    Birge, R. W.; Kruse, U. E.; Ramsey, N. F.

    1951-01-31

    The scattering of protons by protons provides an important method for studying the nature of nuclear forces. Recent proton-proton scattering experiments at energies as high as thirty Mev{sup 1} have failed to show any appreciable contribution to the cross section from higher angular momentum states, but it is necessary to bring in tensor forces to explain the magnitude of the observed cross section.

  11. Acceleration of protons to above 6 MeV using H{sub 2}O 'snow' nanowire targets

    SciTech Connect

    Pomerantz, I.; Schleifer, E.; Nahum, E.; Eisenmann, S.; Botton, M.; Gordon, D.; Sprangel, P.; Zigler, A.

    2012-07-09

    A scheme is presented for using H{sub 2}O 'snow' nanowire targets for the generation of fast protons. This novel method may relax the requirements for very high laser intensities, thus reducing the size and cost of laser based ion acceleration system.

  12. Shielding data for 100 250 MeV proton accelerators: Double differential neutron distributions and attenuation in concrete

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Magistris, M.; Mereghetti, A.; Silari, M.; Zajacova, Z.

    2007-12-01

    Double differential distributions of neutrons produced by 100, 150, 200 and 250 MeV protons stopped in a thick iron target were simulated with the FLUKA Monte Carlo code at four emission angles: forward, 45°, transverse and 135° backwards. The attenuation in ordinary concrete of the dose equivalent due to secondary neutrons, protons, photons and electrons was calculated. Some of the resulting attenuation curves are best fitted by a double-exponential function rather than a single-exponential. The effect of various approximations introduced in the simulations is thoroughly discussed. The contribution to the total ambient dose equivalent from photons and protons is usually limited to a few percent, except in the backward direction where photons contribute more than 10% and up to 35% to the total dose for a shield thickness of 1-2 m. Source terms and attenuation lengths are given as a function of energy and emission angle, along with fit to the Monte Carlo data. An extensive comparison is made of values obtained in the present work with published experimental and computational data.

  13. Berkeley Proton Linear Accelerator

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  14. Improvement of dose distribution in phantom by using epithermal neutron source based on the Be(p,n) reaction using a 30 MeV proton cyclotron accelerator.

    PubMed

    Tanaka, H; Sakurai, Y; Suzuki, M; Takata, T; Masunaga, S; Kinashi, Y; Kashino, G; Liu, Y; Mitsumoto, T; Yajima, S; Tsutsui, H; Takada, M; Maruhashi, A; Ono, K

    2009-07-01

    In order to generate epithermal neutrons for boron neutron capture therapy (BNCT), we proposed the method of filtering and moderating fast neutrons, which are emitted from the reaction between a beryllium target and 30 MeV protons accelerated by a cyclotron, using an optimum moderator system composed of iron, lead, aluminum, calcium fluoride, and enriched (6)LiF ceramic filter. At present, the epithermal-neutron source is under construction since June 2008 at Kyoto University Research Reactor Institute. This system consists of a cyclotron to supply a proton beam of about 1 mA at 30 MeV, a beam transport system, a beam scanner system for heat reduction on the beryllium target, a target cooling system, a beam shaping assembly, and an irradiation bed for patients. In this article, an overview of the cyclotron-based neutron source (CBNS) and the properties of the treatment neutron beam optimized by using the MCNPX Monte Carlo code are presented. The distribution of the RBE (relative biological effectiveness) dose in a phantom shows that, assuming a (10)B concentration of 13 ppm for normal tissue, this beam could be employed to treat a patient with an irradiation time less than 30 min and a dose less than 12.5 Gy-eq to normal tissue. The CBNS might be an alternative to the reactor-based neutron sources for BNCT treatments.

  15. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    NASA Astrophysics Data System (ADS)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  16. Cascaded proton acceleration by collisionless electrostatic shock

    SciTech Connect

    Xu, T. J.; Shen, B. F. E-mail: zhxm@siom.ac.cn; Zhang, X. M. E-mail: zhxm@siom.ac.cn; Yi, L. Q.; Wang, W. P.; Zhang, L. G.; Xu, J. C.; Zhao, X. Y.; Shi, Y.; Liu, C.; Pei, Z. K.

    2015-07-15

    A new scheme for proton acceleration by cascaded collisionless electrostatic shock (CES) is proposed. By irradiating a foil target with a moderate high-intensity laser beam, a stable CES field can be induced, which is employed as the accelerating field for the booster stage of proton acceleration. The mechanism is studied through simulations and theoretical analysis, showing that a 55 MeV seed proton beam can be further accelerated to 265 MeV while keeping a good energy spread. This scheme offers a feasible approach to produce proton beams with energy of hundreds of MeV by existing available high-intensity laser facilities.

  17. ACCELERATING POLARIZED PROTONS TO HIGH ENERGY.

    SciTech Connect

    BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; BLASKIEWICZ, M.; BRAVAR, A.; BRENNAN, J.M.; BRUNO, D.; BUNCE, G.; ET AL.

    2006-10-02

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide collisions of high energy polarized protons for the quest of understanding the proton spin structure. Polarized proton collisions at a beam energy of 100 GeV have been achieved in RHIC since 2001. Recently, polarized proton beam was accelerated to 250 GeV in RHIC for the first time. Unlike accelerating unpolarized protons, the challenge for achieving high energy polarized protons is to fight the various mechanisms in an accelerator that can lead to partial or total polarization loss due to the interaction of the spin vector with the magnetic fields. We report on the progress of the RHIC polarized proton program. We also present the strategies of how to preserve the polarization through the entire acceleration chain, i.e. a 200 MeV linear accelerator, the Booster, the AGS and RHIC.

  18. Shielding data for 100 250 MeV proton accelerators: Attenuation of secondary radiation in thick iron and concrete/iron shields

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Magistris, M.; Mereghetti, A.; Silari, M.; Zajacova, Z.

    2008-08-01

    Double differential distributions of neutrons produced by 100, 150, 200 and 250 MeV protons stopped in a thick iron target were calculated with the FLUKA Monte Carlo code at four emission angles: forward, 45°, transverse and 135° backwards. The attenuation in thick iron shields of the dose equivalent due to neutrons, protons, photons and electrons was also calculated. The contribution to the total ambient dose equivalent from photons and protons is limited to a few percent at maximum. Source terms and attenuation lengths are given as a function of energy and emission angle, along with fits to the Monte Carlo data, for shallow depth and deep penetration in the shield. A brief discussion of simulations performed with composite iron/concrete shields is also given, showing the need for further investigations.

  19. Large Scale Accelerator Production of 225Ac: Effective Cross sections for 78-192 MeV Protons Incident on 232Th Targets

    DOE PAGES

    Griswold, Justin R; Medvedev, Dmitri G.; Engle, Jonathan W.; ...

    2016-09-28

    Actinium-225 and 213Bi have been used successfully in targeted alpha therapy (TAT) in preclinical and clinical research. This paper is a continuation of research activities aiming to expand the availability of 225Ac. The high energy proton spallation reaction on natural thorium metal target has been utilized to produce millicurie quantities of 225Ac. The results of sixteen irradiation experiments of Th metal at beam energies between 78 and 200 MeV are summarized in this work. Irradiations have been conducted at Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL), while target dissolution and processing was carried out at Oak Ridgemore » National Laboratory (ORNL). Excitation functions for actinium and thorium isotopes as well as for some of the fission products are presented. The cross sections for production of 225Ac range from 3.6 to 16.7 mb in the incident proton energy range of 78 to 192 MeV. Based on these data, production of Curie quantities of 225Ac is possible by irradiating a 5.0 g cm-2232Th target for 10 days in either BNL or LANL proton irradiation facilities.« less

  20. Large scale accelerator production of (225)Ac: Effective cross sections for 78-192MeV protons incident on (232)Th targets.

    PubMed

    Griswold, J R; Medvedev, D G; Engle, J W; Copping, R; Fitzsimmons, J M; Radchenko, V; Cooley, J C; Fassbender, M E; Denton, D L; Murphy, K E; Owens, A C; Birnbaum, E R; John, K D; Nortier, F M; Stracener, D W; Heilbronn, L H; Mausner, L F; Mirzadeh, S

    2016-12-01

    Actinium-225 and (213)Bi have been used successfully in targeted alpha therapy (TAT) in preclinical and clinical research. This paper is a continuation of research activities aiming to expand the availability of (225)Ac. The high-energy proton spallation reaction on natural thorium metal targets has been utilized to produce millicurie quantities of (225)Ac. The results of sixteen irradiation experiments of thorium metal at beam energies between 78 and 192MeV are summarized in this work. Irradiations have been conducted at Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL), while target dissolution and processing was carried out at Oak Ridge National Laboratory (ORNL). Excitation functions for actinium and thorium isotopes, as well as for some of the fission products, are presented. The cross sections for production of (225)Ac range from 3.6 to 16.7mb in the incident proton energy range of 78-192MeV. Based on these data, production of curie quantities of (225)Ac is possible by irradiating a 5.0gcm(-2 232)Th target for 10 days in either BNL or LANL proton irradiation facilities.

  1. Proton Beams from Nanotube Accelerator

    NASA Astrophysics Data System (ADS)

    Murakami, Masakatsu; Tanaka, Motohiko

    2013-10-01

    A carbon nanotube (CNT) is known to have extraordinary material and mechanical properties. Here we propose a novel ion acceleration scheme with nanometer-size CNT working at such an extreme circumstance as temperatures higher than billions of degree and durations shorter than tens of femtosecond, dubbed as nanotube accelerator, with which quasimonoenergetic and collimated MeV-order proton beams are generated. In nanotube accelerators, CNTs with fragments of a hydrogen compound embedded inside are irradiated by an ultrashort ultraintense laser. Under such laser and target conditions, low-Z materials such as hydrogen and carbon will be fully ionized. Substantial amount of electrons of the system are then blown off by the brutal laser electric field within only a few laser cycles. This leads to a new type of ion acceleration, in which the nanotube and embedded materials play the roles of a gun barrel and bullets, respectively, to produce highly collimated and quasimonoenergetic proton beams. Three-dimensional particle simulations, that take all the two-body Coulomb interactions into account, demonstrate generation of quasimonoenergetic 1.5-MeV proton beams under a super-intense electrostatic field ~ 1014 V m-1.

  2. [Proton therapy and particle accelerators].

    PubMed

    Fukumoto, Sadayoshi

    2012-01-01

    Since the high energy accelerator plan was changed from a 40 GeV direct machine to a 12GeV cascade one, a 500 MeV rapid cycling booster synchrotron was installed between the injector linac and the 12 GeV main ring at KEK, National Lab. for High Energy Physics. The booster beams were used not only for injection to the main ring but also for medical use. Their energy was reduced to 250 MeV by a graphite block for clinical trial of cancer therapy. In 1970's, pi(-) or heavy ions were supposed to be promising. Although advantage of protons with Bragg Peak was pointed out earlier, they seemed effective only for eye melanoma at that time. In early 1980's, it was shown that they were effective for deep-seated tumor by Tsukuba University with KEK beams. The first dedicated facility was built at Loma Linda University Medical Center. Its synchrotron was made by Fermi National Accelerator Lab. Since a non-resonant accelerating rf cavity was installed, operation of the synchrotron became much easier. Later, innovation of the cyclotron was achieved. Its weight was reduced from 1,000 ton to 200 ton. Some of the cyclotrons are equipped with superconducting coils.

  3. Characterization of moderator assembly dimension for accelerator boron neutron capture therapy of brain tumors using 7Li(p, n) neutrons at proton energy of 2.5 MeV.

    PubMed

    Tanaka, Kenichi; Kobayashi, Tooru; Bengua, Gerard; Nakagawa, Yoshinobu; Endo, Satoru; Hoshi, Masaharu

    2006-06-01

    The characteristics of moderator assembly dimension are investigated for the usage of 7Li(p,n) neutrons by 2.5 MeV protons in boron newtron capture therapy (BNCT) of brain tumors in the present study. The indexes checked are treatable protocol depth (TPD), which is the greatest depth of the region satisfying the dose requirements in BNCT protocol, proton current necessary to complete BNCT by 1 h irradiation, and the heat flux deposited in the Li target which should be removed. Assumed materials are D2O for moderator, and mixture of polyethylene and LiF with 50 wt % for collimator. Dose distributions have been computed with MCNP 4B and 4C codes. Consequently, realized TPD does not show a monotonical tendency for the Li target diameter. However, the necessary proton current and heat flux in the Li target decreases as the Li target diameter increases, while this trend reverses at around 10 cm of the Li target diameter for the necessary proton current in the condition of this study. As to the moderator diameter, TPD does not exhibit an apparent dependence. On the other hand, necessary proton current and heat flux decrease as the moderator diameter increases, and this tendency saturates at around 60 cm of the moderator diameter in this study. As to the collimator, increase in inner diameter is suitable from the viewpoint of increasing TPD and decreasing necessary proton current and heat flux, while these indexes do not show apparent difference for collimator inner diameters over 14 cm for the parameters treated here. The practical viewpoint in selecting the parameters of moderator assembly dimension is to increase TPD, within the technically possible condition of accelerated proton current and heat removal from the Li target. In this process, the values for which the resultant characteristics mentioned above saturate or reverse would be important factors.

  4. Characterization of moderator assembly dimension for accelerator boron neutron capture therapy of brain tumors using {sup 7}Li(p,n) neutrons at proton energy of 2.5 MeV

    SciTech Connect

    Tanaka, Kenichi; Kobayashi, Tooru; Bengua, Gerard; Nakagawa, Yoshinobu; Endo, Satoru; Hoshi, Masaharu

    2006-06-15

    The characteristics of moderator assembly dimension are investigated for the usage of {sup 7}Li(p,n) neutrons by 2.5 MeV protons in boron newtron capture therapy (BNCT) of brain tumors in the present study. The indexes checked are treatable protocol depth (TPD), which is the greatest depth of the region satisfying the dose requirements in BNCT protocol, proton current necessary to complete BNCT by 1 h irradiation, and the heat flux deposited in the Li target which should be removed. Assumed materials are D{sub 2}O for moderator, and mixture of polyethylene and LiF with 50 wt % for collimator. Dose distributions have been computed with MCNP 4B and 4C codes. Consequently, realized TPD does not show a monotonical tendency for the Li target diameter. However, the necessary proton current and heat flux in the Li target decreases as the Li target diameter increases, while this trend reverses at around 10 cm of the Li target diameter for the necessary proton current in the condition of this study. As to the moderator diameter, TPD does not exhibit an apparent dependence. On the other hand, necessary proton current and heat flux decrease as the moderator diameter increases, and this tendency saturates at around 60 cm of the moderator diameter in this study. As to the collimator, increase in inner diameter is suitable from the viewpoint of increasing TPD and decreasing necessary proton current and heat flux, while these indexes do not show apparent difference for collimator inner diameters over 14 cm for the parameters treated here. The practical viewpoint in selecting the parameters of moderator assembly dimension is to increase TPD, within the technically possible condition of accelerated proton current and heat removal from the Li target. In this process, the values for which the resultant characteristics mentioned above saturate or reverse would be important factors.

  5. Shielding measurements for a 230 MeV proton beam

    SciTech Connect

    Siebers, J.V.

    1990-01-01

    Energetic secondary neutrons produced as protons interact with accelerator components and patients dominate the radiation shielding environment for proton radiotherapy facilities. Due to the scarcity of data describing neutron production, attenuation, absorbed dose, and dose equivalent values, these parameters were measured for 230 MeV proton bombardment of stopping length Al, Fe, and Pb targets at emission angles of 0{degree}, 22{degree}, 45{degree}, and 90{degree} in a thick concrete shield. Low pressure tissue-equivalent proportional counters with volumes ranging from 1 cm{sup 3} to 1000 cm{sup 3} were used to obtain microdosimetric spectra from which absorbed dose and radiation quality are deduced. Does equivalent values and attenuation lengths determined at depth in the shield were found to vary sharply with angle, but were found to be independent of target material. Neutron dose and radiation length values are compared with Monte Carlo neutron transport calculations performed using the Los Alamos High Energy Transport Code (LAHET). Calculations used 230 MeV protons incident upon an Fe target in a shielding geometry similar to that used in the experiment. LAHET calculations overestimated measured attenuation values at 0{degree}, 22{degree}, and 45{degree}, yet correctly predicted the attenuation length at 90{degree}. Comparison of the mean radiation quality estimated with the Monte Carlo calculations with measurements suggest that neutron quality factors should be increased by a factor of 1.4. These results are useful for the shielding design of new facilities as well as for testing neutron production and transport calculations.

  6. Medical Application of the SARAF-Proton/Deuteron 40 MeV Superconducting Linac

    NASA Astrophysics Data System (ADS)

    Halfon, Shlomi

    2007-11-01

    The Soreq Applied Research Accelerator Facility (SARAF) is based on a superconducting linear accelerator currently being built at the Soreq research center (Israel). The SARAF is planned to generate a 2 mA 4 MeV proton beam during its first year of operation and up to 40 MeV proton or deuteron beam in 2012. The high intensity beam, together with the linac ability to adjust the ion energy provides opportunities for medical research, such as Boron Neutron Capture Therapy (BNCT) and the production of medical radioisotopes, for instance 103Pd for prostate brachytherapy.

  7. TAC Proton Accelerator Facility: The Status and Road Map

    SciTech Connect

    Algin, E.; Akkus, B.; Caliskan, A.; Yilmaz, M.; Sahin, L.

    2011-06-28

    Proton Accelerator (PA) Project is at a stage of development, working towards a Technical Design Report under the roof of a larger-scale Turkish Accelerator Center (TAC) Project. The project is supported by the Turkish State Planning Organization. The PA facility will be constructed in a series of stages including a 3 MeV test stand, a 55 MeV linac which can be extended to 100+ MeV, and then a full 1-3 GeV proton synchrotron or superconducting linac. In this article, science applications, overview, and current status of the PA Project will be given.

  8. Proton Therapy - Accelerating Protons to Save Lives

    SciTech Connect

    Keppel, Cynthia

    2011-10-25

    In 1946, physicist Robert Wilson first suggested that protons could be used as a form of radiation therapy in the treatment of cancer because of the sharp drop-off that occurs on the distal edge of the radiation dose. Research soon confirmed that high-energy protons were particularly suitable for treating tumors near critical structures, such as the heart and spinal column. The precision with which protons can be delivered means that more radiation can be deposited into the tumor while the surrounding healthy tissue receives substantially less or, in some cases, no radiation. Since these times, particle accelerators have continuously been used in cancer therapy and today new facilities specifically designed for proton therapy are being built in many countries. Proton therapy has been hailed as a revolutionary cancer treatment, with higher cure rates and fewer side effects than traditional X-ray photon radiation therapy. Proton therapy is the modality of choice for treating certain small tumors of the eye, head or neck. Because it exposes less of the tissue surrounding a tumor to the dosage, proton therapy lowers the risk of secondary cancers later in life - especially important for young children. To date, over 80,000 patients worldwide have been treated with protons. Currently, there are nine proton radiation therapy facilities operating in the United States, one at the Hampton University Proton Therapy Institute. An overview of the treatment technology and this new center will be presented.

  9. Proton acceleration with a table-top TW laser

    NASA Astrophysics Data System (ADS)

    Seimetz, M.; Bellido, P.; Lera, R.; Ruiz-de la Cruz, A.; Mur, P.; Sánchez, I.; Galán, M.; Sánchez, F.; Roso, L.; Benlloch, J. M.

    2016-11-01

    We report on the recent demonstration of proton acceleration from a purpose-made Ti:Sapphire laser system. In the first successful series of autumn 2015, running at 2 TW peak power and 100 Hz diode pump rate, protons up to 0.7 MeV have been spectrally characterised. Subsequently, at increased laser pulse energy and improved contrast, we have obtained maximum particle energies around 1.7 MeV. These results, achieved in single-shot mode with a variety of thin foil targets, are an important step towards our aim of a stable, compact proton accelerator with high rate capacity.

  10. Accelerator Science: Proton vs. Electron

    ScienceCinema

    Lincoln, Don

    2016-10-19

    Particle accelerators are one of the most powerful ways to study the fundamental laws that govern the universe. However, there are many design considerations that go into selecting and building a particular accelerator. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of building an accelerator that collides pairs of protons to one that collides electrons.

  11. Accelerator Science: Proton vs. Electron

    SciTech Connect

    Lincoln, Don

    2016-10-11

    Particle accelerators are one of the most powerful ways to study the fundamental laws that govern the universe. However, there are many design considerations that go into selecting and building a particular accelerator. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of building an accelerator that collides pairs of protons to one that collides electrons.

  12. Shock Acceleration of Solar Energetic Protons: The First 10 Minutes

    NASA Technical Reports Server (NTRS)

    Ng, Chee K.; Reames, Donald V.

    2008-01-01

    Proton acceleration at a parallel coronal shock is modeled with self-consistent Alfven wave excitation and shock transmission. 18 - 50 keV seed protons at 0.1% of plasma proton density are accelerated in 10 minutes to a power-law intensity spectrum rolling over at 300 MeV by a 2500km s-1 shock traveling outward from 3.5 solar radius, for typical coronal conditions and low ambient wave intensities. Interaction of high-energy protons of large pitch-angles with Alfven waves amplified by low-energy protons of small pitch angles is key to rapid acceleration. Shock acceleration is not significantly retarded by sunward streaming protons interacting with downstream waves. There is no significant second-order Fermi acceleration.

  13. Low cost/low intensity 50 MeV proton irradiation facility

    SciTech Connect

    Kramer, S.L.; Martin, R.L.

    1985-01-01

    Protons have been proposed as one of the most useful particles for radiation therapy, but have found limited use due to the cost and scarcity of medium energy proton accelerators. However, the highly successful program on the Harvard Cyclotron has increased interest in expanding the number of treatment facilities. In order to demonstrate that high intensity proton accelerators are not required and to gain experience with treating patients using protons, a low cost and low intensity source of 50 MeV protons was developed at Argonne. Although the beam penetration is limited to 22 mm, the beam is capable of treating a major fraction of the ocular melanoma tumors treated at the Harvard Cyclotron. This beam operates parasitically with the Rapid Cycling Synchrotron at Argonne using a source of 50 MeV H/sup 0/ atoms which are produced by stripping in the gas of the 50 MeV H/sup -/ linear accelerator. A stripping fraction of about 3 to 5 x 10/sup -5/ is observed and yields a 0.4 namp beam of protons. Results on the properties and operation of this parasitic beam are presented. 5 refs., 3 figs.

  14. Stochastic acceleration of solar flare protons

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1978-01-01

    The acceleration of solar flare protons is considered by cyclotron damping of intense Alfven wave turbulence in a magnetic trap. The energy diffusion coefficient is computed for a near-isotropic distribution of super-Alfvenic protons and a steady-state solution for the particle spectrum is found for both transit-time and diffusive losses out of the ends of the trap. The acceleration time to a characteristic energy approximately 20 Mev/nucl can be as short as 10 sec. On the basis of phenomenological arguments an omega/2 frequency dependence for the Alfven wave spectrum is inferred. The correlation time of the turbulence lies in the range .0005 less than tau/corr less than .05s.

  15. Magnifying lens for 800 MeV proton radiography.

    PubMed

    Merrill, F E; Campos, E; Espinoza, C; Hogan, G; Hollander, B; Lopez, J; Mariam, F G; Morley, D; Morris, C L; Murray, M; Saunders, A; Schwartz, C; Thompson, T N

    2011-10-01

    This article describes the design and performance of a magnifying magnetic-lens system designed, built, and commissioned at the Los Alamos National Laboratory (LANL) for 800 MeV flash proton radiography. The technique of flash proton radiography has been developed at LANL to study material properties under dynamic loading conditions through the analysis of time sequences of proton radiographs. The requirements of this growing experimental program have resulted in the need for improvements in spatial radiographic resolution. To meet these needs, a new magnetic lens system, consisting of four permanent magnet quadrupoles, has been developed. This new lens system was designed to reduce the second order chromatic aberrations, the dominant source of image blur in 800 MeV proton radiography, as well as magnifying the image to reduce the blur contribution from the detector and camera systems. The recently commissioned lens system performed as designed, providing nearly a factor of three improvement in radiographic resolution.

  16. High brightness 50 MeV Cyclotron for Accelerator-Driven Subcritical Fission

    NASA Astrophysics Data System (ADS)

    Assadi, Saeed; Badgley, Karie; Mann, Thomas; McIntyre, Peter; Pogue, Nathaniel; Sattarov, Akhdiyor

    2011-10-01

    The Accelerator Research Lab at Texas A&M University is developing new accelerator technology for a high-brightness, high-current cyclotron with capabilities that will be beneficial for applications to accelerator-driven subcritical fission, medical isotope production, and proton therapy. As a first embodiment of the technology, we are developing a detailed design for TAMU-50, a 50 MeV, 5 mA proton cyclotron with high beam brightness. In this presentation we present devices and beamline components for injection, extraction, controls and diagnostics. We emphasize the system integration and implementation of TAMU-50 for production of medical radioisotopes.

  17. RADIATION DAMAGE TO BSCCO-2223 FROM 50 MEV PROTONS

    SciTech Connect

    Zeller, A.F.; Ronningen, R.M.; Godeke, A.; Heilbronn, L.H.; McMahan-Norris, P.; Gupta, R.

    2007-11-27

    The use of HTS materials in high radiation environmentsrequires that the superconducting properties remain constant up to aradiation high dose. BSCCO-2223 samples from two manufacturers wereirradiated with 50 MeV protons at fluences of up to 5 x 1017 protons/cm2.The samples lost approximately 75 percent of their pre-irradiation Ic.This compares with Nb3Sn, which loses about 50 percent at the samedisplacements per atom.

  18. RADIATION DAMAGE TO BSCCO-2223 FROM 50 MEV PROTONS

    SciTech Connect

    Zeller, A.F.; Ronningen, R.M.; Godeke, Arno; Heibronn, L.H; McMahan-Norris, P.; Gupta, R.

    2007-11-01

    The use of HTS materials in high radiation environments requires that the superconducting properties remain constant up to a radiation high dose. BSCCO-2223 samples from two manufacturers were irradiated with 50 MeV protons at fluences of up to 5 x 10{sup 17} protons/cm{sup 2}. The samples lost approximately 75% of their pre-irradiation I{sub c}. This compares with Nb{sub 3}Sn, which loses about 50% at the same displacements per atom.

  19. Possible parameters of proton acceleration using backward traveling wave harmonic

    NASA Astrophysics Data System (ADS)

    Paramonov, V. V.

    2016-12-01

    Analysis shows that, when accelerating protons of intermediate energy range using the field of backward harmonic of the traveling wave, a range of practically accessible parameters of accelerating structure exists, where it is possible to provide simultaneously the stability of longitudinal and transverse particle motion and high rates of acceleration. The focusing effect is provided by the field of slow fundamental harmonic. The calculated characteristics of accelerating structure and the assessment of parameters of the proton linac are obtained in a range of 15-230 MeV.

  20. Measurement of the Wolfenstein parameters for proton-proton and proton-neutron scattering at 500 MeV

    SciTech Connect

    Marshall, J.A.

    1984-07-01

    Using liquid hydrogen and liquid deuterium targets respectively, forward angle (ten degrees to sixty degrees in the center of Mass) free proton-proton and quasielastic proton-proton and proton-neutron triple scattering data at 500 MeV have been obtained using the high resolution spectrometer at the Los Alamos Meson Physics Facility. The data are in reasonable agreement with recent predictions from phase shift analyses, indicating that the proton-nucleon scattering amplitudes are fairly well determined at 500 MeV. 32 references.

  1. High-Intensity Proton Accelerator

    SciTech Connect

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  2. Dependence of E ≥ 100 MeV protons on the associated flares and CMEs

    NASA Astrophysics Data System (ADS)

    Le, Gui-Ming; Li, Chuan; Zhang, Xue-Feng

    2017-07-01

    To investigate the possible solar source of high-energy protons, correlation coefficients between the peak intensities of E ≥ 100 MeV protons, {I}100, and the peak flux and fluence of solar soft X-ray (SXR) emission, and coronal mass ejection (CME) linear speed in the three longitudinal areas W0-W39, W40-W70 and W71-W90 have been calculated respectively. Classical correlation analysis shows that the correlation coefficients between CME speeds and {I}100 in the three longitudinal areas are 0.28 ± 0.21, 0.35 ± 0.21 and 0.04 ± 0.30 respectively. The classical correlation coefficients between {I}100 and SXR peak flux in the three longitudinal areas are 0.48 ± 0.17, 0.72 ± 0.13 and 0.02 ± 0.30 respectively, while the correlation coefficients between {I}100 and SXR fluence in the three longitudinal areas are 0.25 ± 0.21, 0.84 ± 0.07 and 0.10 ± 0.30 respectively. Partial correlation analysis shows that for solar proton events with source location in the well connected region (W40-W70), only SXR fluence can significantly affect the peak intensity of E ≥ 100 MeV protons, but SXR peak flux has little influence on the peak intensities of E ≥ 100 MeV protons; moreover, CME speed has no influence on the peak intensities of E ≥ 100 MeV protons. We conclude that these findings provide statistical evidence that E ≥ 100 MeV protons may be mainly accelerated by concurrent flares.

  3. Preliminary shielding assessment for the 100 MeV proton linac (KOMAC).

    PubMed

    Lee, Young-Ouk; Cho, Y S; Chang, J

    2005-01-01

    The Proton Engineering Frontier Project is building the Korea Multipurpose Accelerator Complex facilities from 2002 to 2012, which consists of a high-current 100 MeV proton linear accelerator and various beam-lines. This paper provides a preliminary estimate of the shielding required for the 20 mA proton linac and the beam-dump. For an accurate information on secondary neutron production from the guiding magnet and primary heat sink of the beam dump, proton-induced 63Cu and 65Cu cross section data were evaluated and applied to shielding calculations. The required thickness of the concrete was assessed by a simple line-of-sight model for the lateral shielding of the beam-line and the full shielding of the beam dump. Monte Carlo simulations were also performed using the MCNPX code to obtain the source term and attenuation coefficients for the three-dimensional lateral shielding model of the beam-line.

  4. Klystron based high power rf system for proton accelerator

    SciTech Connect

    Pande, Manjiri; Shrotriya, Sandip; Sharma, Sonal; Patel, Niranjan; Handu, Verander E-mail: manjiri08@gmail.com

    2011-07-01

    As a part of ADS program a proton accelerator (20 MeV, 30 mA) and its high power RF systems (HPRF) are being developed in BARC. This paper explains design details of this klystron based HPRF system. (author)

  5. Absolute polarimeter for the proton-beam energy of 200 MeV

    SciTech Connect

    Zelenski, A. N.; Atoian, G.; Bogdanov, A. A.; Nurushev, S. B.; Pylaev, F. S.; Raparia, D.; Runtso, M. F.; Stephenson, E.

    2013-12-15

    A polarimeter is upgraded and tested in a 200-MeV polarized-proton beam at the accelerator-collider facility of the Brookhaven National Laboratory. The polarimeter is based on the elastic polarizedproton scattering on a carbon target at an angle of 16.2°, in which case the analyzing power is close to unity and was measured to a very high degree of precision. It is shown that, in the energy range of 190–205 MeV, the absolute polarization can be measured to a precision better than ±0.5%.

  6. Developments for 230 MeV superconducting cyclotrons for proton therapy and proton irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Tianjue; Wang, Chuan; Li, Ming; Cui, Tao; Yin, Zhiguo; Ji, Bin; Lv, Yinlong; Guan, Fengping; Ge, Tao; Xing, Jiansheng; Yang, Jianjun; Jia, Xianlu; Yin, Meng; Zhang, Suping; Cao, Xuelong; An, Shizhong; Wei, Sumin; Lin, Jun; Cao, Lei; Zhang, Dongsheng; Hou, Shigang; Wang, Feng; Gong, Pengfei

    2017-09-01

    There are very strong demands for mid-energy proton machine in recent years due to the surging cancer patients and fast progress of the space science in China. For the applications of proton therapy and proton irradiation, the energy range of proton beam is usually from 200 MeV to 250 MeV, or even higher for astronavigation. Based on the R&D starting from 2009, a construction project of a 230 MeV superconducting cyclotron (CYCIAE-230) has been launched recently at China Institute of Atomic Energy (CIAE). It was started in Jan 2015, for the program of proton therapy and space science launched by China National Nuclear Corporation (CNNC). In this paper, the designs for the superconducting (SC) cyclotron and its key components, including the main magnet, SC coils, internal ion source and central region, extraction system, etc, and the construction progress of the machine CYCIAE-230 will be presented.

  7. Efficient production and diagnostics of MeV proton beams from a cryogenic hydrogen ribbon

    NASA Astrophysics Data System (ADS)

    Velyhan, A.; Giuffrida, L.; Scuderi, V.; Perin, J. P.; Chatain, D.; Garcia, S.; Bonnay, P.; Dostal, J.; Ullschmied, J.; Dudzak, R.; Krousky, E.; Cykhardt, J.; Prokupek, J.; Pfeifer, M.; Rosinski, M.; Krasa, J.; Brabcova, K.; De Napoli, M.; Lastovicka, T.; Margarone, D.

    2017-06-01

    A solid hydrogen thin ribbon, produced by the cryogenic system ELISE (Experiments on Laser Interaction with Solid hydrogEn) target delivery system, was experimentally used at the PALS kJ-laser facility to generate intense proton beams with energies in the MeV range. This sophisticated target system operating at cryogenic temperature (~ 10 K) continuously producing a 62 μm thick target was combined with a 600 J sub-nanosecond laser pulse to generate a collimated proton stream. The accelerated proton beams were fully characterized by a number of diagnostics. High conversion efficiency of laser to energetic protons is of great interest for future potential applications in non-conventional proton therapy and fast ignition for inertial confinement fusion.

  8. Stochastic cooling of 200 MeV protons

    NASA Astrophysics Data System (ADS)

    Lambertson, G.; Bisognano, J.; Flood, W.; Laslett, L. J.; Leemann, C.; Leskovar, B.; Lo, C. C.; Main, R.; Smith, L.; Staples, J.

    1980-07-01

    Vertical and longitudinal cooling was achieved at the FNAL 200 MeV cooling ring. Initial longitudinal cooling times of 20 seconds for 1.5 x 1 million circulating protons are in approximate 20 seconds for 1.5 x 1 million circulating protons are in approximate agreement with calculations based on measured system parameters. The cooling systems have an electronic bandwidth of approxmately 300 MHz, traveling wave pickups and kickers, and a notch filter using flexible cable. The traveling wave structures provide a good signal-to-noise ratio and reduce output power requirements.

  9. Large Scale Accelerator Production of 225Ac: Effective Cross sections for 78-192 MeV Protons Incident on 232Th Targets

    SciTech Connect

    Griswold, Justin R; Medvedev, Dmitri G.; Engle, Jonathan W.; Copping, Roy; Fitzsimmons, Jonathan M.; Radchenko, Valery; Cooley, Jason; Fassbender, Michael; Denton, David L.; Murphy, Karen E.; Owens, Allison C.; Birnbaum, Eva R.; John, Kevin D.; Nortier, Francois M.; Stracener, Daniel W; Heilbronn, Lawrence H.; Mausner, Leonard F.; Mirzadeh, Saed

    2016-09-28

    Actinium-225 and 213Bi have been used successfully in targeted alpha therapy (TAT) in preclinical and clinical research. This paper is a continuation of research activities aiming to expand the availability of 225Ac. The high energy proton spallation reaction on natural thorium metal target has been utilized to produce millicurie quantities of 225Ac. The results of sixteen irradiation experiments of Th metal at beam energies between 78 and 200 MeV are summarized in this work. Irradiations have been conducted at Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL), while target dissolution and processing was carried out at Oak Ridge National Laboratory (ORNL). Excitation functions for actinium and thorium isotopes as well as for some of the fission products are presented. The cross sections for production of 225Ac range from 3.6 to 16.7 mb in the incident proton energy range of 78 to 192 MeV. Based on these data, production of Curie quantities of 225Ac is possible by irradiating a 5.0 g cm-2232Th target for 10 days in either BNL or LANL proton irradiation facilities.

  10. Large Scale Accelerator Production of 225Ac: Effective Cross sections for 78-192 MeV Protons Incident on 232Th Targets

    SciTech Connect

    Griswold, Justin R; Medvedev, Dmitri G.; Engle, Jonathan W.; Copping, Roy; Fitzsimmons, Jonathan M.; Radchenko, Valery; Cooley, Jason; Fassbender, Michael; Denton, David L.; Murphy, Karen E.; Owens, Allison C.; Birnbaum, Eva R.; John, Kevin D.; Nortier, Francois M.; Stracener, Daniel W; Heilbronn, Lawrence H.; Mausner, Leonard F.; Mirzadeh, Saed

    2016-09-28

    Actinium-225 and 213Bi have been used successfully in targeted alpha therapy (TAT) in preclinical and clinical research. This paper is a continuation of research activities aiming to expand the availability of 225Ac. The high energy proton spallation reaction on natural thorium metal target has been utilized to produce millicurie quantities of 225Ac. The results of sixteen irradiation experiments of Th metal at beam energies between 78 and 200 MeV are summarized in this work. Irradiations have been conducted at Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL), while target dissolution and processing was carried out at Oak Ridge National Laboratory (ORNL). Excitation functions for actinium and thorium isotopes as well as for some of the fission products are presented. The cross sections for production of 225Ac range from 3.6 to 16.7 mb in the incident proton energy range of 78 to 192 MeV. Based on these data, production of Curie quantities of 225Ac is possible by irradiating a 5.0 g cm-2232Th target for 10 days in either BNL or LANL proton irradiation facilities.

  11. Gadolinium-148 production cross section measurements for 600-and 800-MEV protons.

    SciTech Connect

    Kelley, K. C.; Devlin, M. J.; Pitcher, E. J.; Mashnik, S. G.; Hertel, N. E.

    2004-01-01

    In a series of experiments at LANSCE's WNR facility, {sup 148}Gd production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 {mu}m thin W, Ta, and Au foils and 10 {mu}m thin Al activation foils. Gadolinium spallation yields were determined from these foils using alpha spectroscopy and compared with the LANL codes CEM2k+GEM2 and MCNPX. When heavy metal targets, such as tungsten, are bombarded with protons greater than a few hundred MeV many different nuclides are produced. These nuclides are both stable and radioactive and are created by spallation, proton activation, or secondary reactions with neutrons and other nuclear particles made in the target. These products are distributed somewhat heterogeneously throughout a thick target because of the energy dependence of the cross sections and energy loss of the proton beam within the target. From this standpoint, it is difficult to measure nuclide production cross sections for a given energy proton in a thick target. At the Los Alamos Neutron Science Center (LANSCE) accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research (WNR) facility and 1L target at the Manuel Lujan Jr. Neutron Scattering Center. DOE requires hazard classification analyses to be performed on these targets and places limits on radionuclide inventories in the target as a means of determining the 'nuclear facility' category level. Presently, WNR's Target 4 is a non-nuclear facility while the Lujan 1L target is classified as a Category 3 nuclear facility. Gadolinium-148 is a radionuclide created from the spallation of tungsten and other heavy elements. Allowable isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of {sup 148}Gd is generally low, but it encompasses almost two-thirds of the total inhalation dose burden in an accident

  12. Proton polarimeter calibration between 82 and 217 MeV

    NASA Astrophysics Data System (ADS)

    Glister, J.; Ron, G.; Lee, B.; Beck, A.; Brash, E.; Camsonne, A.; Choi, S.; Dumas, J.; Feuerbach, R.; Gilman, R.; Higinbotham, D. W.; Jiang, X.; Jones, M. K.; May-Tal Beck, S.; McCullough, E.; Paolone, M.; Piasetzky, E.; Roche, J.; Rousseau, Y.; Sarty, A. J.; Sawatzky, B.; Strauch, S.

    2009-07-01

    The proton analyzing power in carbon has been measured for energies of 82-217 MeV and proton scattering angles of 5-41∘. The measurements were carried out using polarized protons from the elastic scattering H1(e⇒,p⇒) reaction and the Focal Plane Polarimeter (FPP) in Hall A of Jefferson Lab. A new parameterization of the FPP p-C analyzing power was fit to the data, which is in good agreement with previous parameterizations and provides an extension to lower energies and larger angles. The main conclusions are that all polarimeters to date give consistent measurements of the carbon analyzing power, independently of the details of their construction and that measuring on a larger angular range significantly improves the polarimeter figure of merit at low energies.

  13. Proton Polarimeter Calibration between 82 and 217 MeV

    SciTech Connect

    Glister, J; Lee, B; Beck, A; Brash, E; Camsonne, A; Choi, S; Dumas, J; Feuerbach, R; Gilman, R; Higinbotham, D W; Jiang, X; Jones, M K; May-Tal Beck, S; McCullough, E; Paolone, M; Piasetzky, E; Roche, J; Rousseau, Y; Sarty, A J; Sawatzky, B; Strauch, S

    2009-07-01

    The proton analyzing power in carbon has been measured for energies of 82 to 217 MeV and proton scattering angles of 5 to 41 degrees. The measurements were carried out using polarized protons from the elastic scattering H(pol. e, pol. p) reaction and the Focal Plane Polarimeter (FPP) in Hall A of Jefferson Lab. A new parameterization of the FPP p-C analyzing power was fit to the data, which is in good agreement with previous parameterizations and provides an extension to lower energies and larger angles. The main conclusions are that all polarimeters to date give consistent measurements of the carbon analyzing power, independently of the details of their construction and that measuring on a larger angular range significantly improves the polarimeter figure of merit at low energies.

  14. Characterization of MeV proton irradiated PS films

    NASA Astrophysics Data System (ADS)

    Martínez-Pardo, Ma. Esther; Cardoso, J.; Vázquez, H.; Aguilar, M.; Rickards, J.; Andrade, E.

    1997-08-01

    Poly(styrene) PS thin films were irradiated under vacuum with protons of three different energies and fluences. Radiation can induce polycyclic structures formation, as could be observed by UV and NMR. To support these observations, H-NMR and C, H concentration measurements were performed. The film becomes more rigid due to the possible formation of cyclic chemical groups and crosslinking. PS is known for its great stability to ionizing radiation and other degradation processes. Indeed, we studied the mass loss during bombardment, measuring the C and H concentration by proton scattering (back and forward). With dose up to 510 MGy, no mass loss was observed. Based on the results obtained in this study, a free radicals mechanism for PS is suggested, with the goal to explain the modifications induced by MeV proton irradiation.

  15. Accelerator Driven System Based on Plutonium Subcritical Reactor and 660 MeV Phasotron

    SciTech Connect

    Arkhipov, V.A.; Barashenkov, V.S.; Buttsev, V.S.; Chultem, D.; Dudarev, S.Yu.; Furman, V.I.; Gudowski, W.; Janczyszyn, J.; Maltsev, A.A.; Onischenko, L.M.; Pogodajev, G.N.; Polanski, A.; Popov, Yu.P.; Puzynin, I.V.; Sissakian, A.N.; Taczanowski, S.

    1999-12-31

    The proposal presents a PLUTONIUM BASED ENERGY AMPLIFIER TESTING CONCEPT which employs a plutonium subcritical assembly and a 660 MeV proton accelerator. operating in the JINR (Dubna, Russia). To make the present conceptual design of the Plutonium Energy Amplifier we have chosen a nominal unit capacity of 20 kW (thermal). This corresponds to a multiplication coefficient, keff, between 0.94 and 0.95 and an energy gain about 20.

  16. Accelerator driven system based on plutonium subcritical reactor and 660 MeV phasotron

    SciTech Connect

    Arkhipov, V. A.; Barashenkov, V. S.; Buttsev, V. S.; Chultem, D.; Furman, V. I.; Maltsev, A. A.; Onischenko, L. M.; Pogodajev, G. N.; Popov, Yu. P.; Puzynin, I. V.; Sissakian, A. N.; Dudarev, S. Yu.; Gudowski, W.; Janczyszyn, J.; Polanski, A.; Taczanowski, S.

    1999-11-16

    The proposal presents a PLUTONIUM BASED ENERGY AMPLIFIER TESTING CONCEPT which employs a plutonium subcritical assembly and a 660 MeV proton accelerator, operating in the the JINR (Dubna, Russia). To make the present conceptual design of the Plutonium Energy Amplifier we have chosen a nominal unit capacity of 20 kW (thermal). This corresponds to the multiplication coefficient keff between 0.94 and 0.95 and the energetic gain about 20.

  17. RF phase stability in the 100-MeV proton linac operation

    NASA Astrophysics Data System (ADS)

    Seol, Kyung-Tae

    2015-02-01

    The 100-MeV proton linac of the Korea multi-purpose accelerator complex (KOMAC) has been operated to provide a proton beam to users. The 100-MeV linac consists of a 3-MeV radio-frequency quadrupole accelerator (RFQ), four 20-MeV drift-tube linac (DTL) tanks, two medium-energy beam-transmitter (MEBT) tanks, and seven 100-MeV DTL tanks. The requirements of the field stability are within ±1% in RF amplitude and ±1 degree in RF phase. The RF phase stability is influenced by a RF reference line, RF transmission lines, and a RF control system. The RF reference signal is chosen to be a 300-MHz local oscillator (LO) signal, and a rigid copper coaxial line with temperature control was installed for an RF reference distribution. A phase stability of ±0.1 degrees was measured under a temperature change of ±0.1 °C. A digital feedback control system with a field-programmable gate-array (FPGA) module was adopted for a high RF stability. The RF phase was maintained within ±0.1 degrees with a dummy cavity and was within ±0.3 degrees at RFQ operation. In the case of the 20-MeV DTL tanks, one klystron drives 4 tanks, and the input phases of 4 tanks were designed to be in phase. The input phases of 4 tanks were fixed within ±1 degree by adjusting a phase shifter in each waveguide.

  18. Scaling Studies of Laser Proton Acceleration by Radiation Pressure Sail

    NASA Astrophysics Data System (ADS)

    Liu, T. C.; Dudinkova, G.; Liu, Chuan S.; Shao, X.; Sagdeev, R. Z.

    2010-02-01

    We present scaling studies of proton acceleration by short pulse, intense lasers in the region of radiation pressure acceleration of ultra thin foil. By defining the monoenergetic proton as having energy spread less than 10 percent in 2D PIC simulation, we studied the proton mono-energy profile as a function of the laser power and peak intensity, thin foil thickness and target density ratio to critical density. We found that the energy of monoenergetic proton scales linearly with the square root of laser power after fixing the target density ratio to critical density. The Rayleigh-Taylor (R-T) instability plays significant role in increasing the energy spread of accelerated protons. But, there are parameter regimes for instability remediation or suppression. Parameters of interest are for lasers in sub-Peta Watt range and producing quasi energetic protons to 250 Mev and carbon ion to 1 Gev. The simulation results are able to provide experimentalists with suggestion for optimal scaling for laser acceleration of thin foils for instability avoidance and optimal ion acceleration. Possible medical applications of the technology in proton cancer therapy is also discussed. )

  19. Acceleration tests of a 3 GHz proton linear accelerator (LIBO) for hadrontherapy

    NASA Astrophysics Data System (ADS)

    De Martinis, C.; Giove, D.; Amaldi, U.; Berra, P.; Crandall, K.; Mauri, M.; Weiss, M.; Zennaro, R.; Rosso, E.; Szeless, B.; Vretenar, M.; Masullo, M. R.; Vaccaro, V.; Calabretta, L.; Rovelli, A.

    2012-07-01

    This paper describes the acceleration tests performed at the Catania LNS Laboratory on a 3 GHz linac module of the side coupled type, which boosts the proton energy of a beam extracted from a cyclotron from 62 to 72 MeV. The output proton energy was measured with two devices: a NaI(Tl) crystal and a bending magnet. The experimental spectra are in good agreement with the calculated ones. From their shape it is obtained that (18±3.0)% of the transmitted protons fall in a ±2 MeV interval centered around 72 MeV. This result is in good agreement with the 20% value derived from the simulation of the acceleration process. The measured energy of the accelerated protons was used to check that the shunt impedance of the structure is equal to the computed one within 3%. This was the first time that a 3 GHz structure has been used to accelerate protons, and the results of the tests have demonstrated that a high frequency linac can be used as a cyclotron booster.

  20. MeV proton flux predictions near Saturn's D ring

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Roussos, E.; Kotova, A.; Cooper, J. F.; Mitchell, D. G.; Krupp, N.; Paranicas, C.

    2015-10-01

    Radiation belts of MeV protons have been observed just outward of Saturn's main rings. During the final stages of the mission, the Cassini spacecraft will pass through the gap between the main rings and the planet. Based on how the known radiation belts of Saturn are formed, it is expected that MeV protons will be present in this gap and also bounce through the tenuous D ring right outside the gap. At least one model has suggested that the intensity of MeV protons near the planet could be much larger than in the known belts. We model this inner radiation belt using a technique developed earlier to understand Saturn's known radiation belts. We find that the inner belt is very different from the outer belts in the sense that its intensity is limited by the densities of the D ring and Saturn's upper atmosphere, not by radial diffusion and satellite absorption. The atmospheric density is relatively well constrained by EUV occultations. Based on that we predict an intensity in the gap region that is well below that of the known belts. It is more difficult to do the same for the region magnetically connected to the D ring since its density is poorly constrained. We find that the intensity in this region can be comparable to the known belts. Such intensities pose no hazard to the mission since Cassini would only experience these fluxes on timescales of minutes but might affect scientific measurements by decreasing the signal-to-contamination ratio of instruments.

  1. MeV proton flux predictions near Saturn's D ring.

    PubMed

    Kollmann, P; Roussos, E; Kotova, A; Cooper, J F; Mitchell, D G; Krupp, N; Paranicas, C

    2015-10-01

    Radiation belts of MeV protons have been observed just outward of Saturn's main rings. During the final stages of the mission, the Cassini spacecraft will pass through the gap between the main rings and the planet. Based on how the known radiation belts of Saturn are formed, it is expected that MeV protons will be present in this gap and also bounce through the tenuous D ring right outside the gap. At least one model has suggested that the intensity of MeV protons near the planet could be much larger than in the known belts. We model this inner radiation belt using a technique developed earlier to understand Saturn's known radiation belts. We find that the inner belt is very different from the outer belts in the sense that its intensity is limited by the densities of the D ring and Saturn's upper atmosphere, not by radial diffusion and satellite absorption. The atmospheric density is relatively well constrained by EUV occultations. Based on that we predict an intensity in the gap region that is well below that of the known belts. It is more difficult to do the same for the region magnetically connected to the D ring since its density is poorly constrained. We find that the intensity in this region can be comparable to the known belts. Such intensities pose no hazard to the mission since Cassini would only experience these fluxes on timescales of minutes but might affect scientific measurements by decreasing the signal-to-contamination ratio of instruments.

  2. First test of a partial Siberian snake for acceleration of polarized protons

    NASA Astrophysics Data System (ADS)

    Caussyn, D. D.; Baiod, R.; Blinov, B. B.; Chu, C. M.; Courant, E. D.; Crandell, D. A.; Derbenev, Ya. S.; Ellison, T. J. P.; Kaufman, W. A.; Krisch, A. D.; Lee, S. Y.; Minty, M. G.; Nurushev, T. S.; Ohmori, C.; Phelps, R. A.; Raczkowski, D. B.; Ratner, L. G.; Schwandt, P.; Stephenson, E. J.; Sperisen, F.; Przewoski, B. von; Wienands, U.; Wong, V. K.

    1995-09-01

    We recently studied the first acceleration of a spin-polarized proton beam through a depolarizing resonance using a partial Siberian snake. We accelerated polarized protons from 95 to 140 MeV with a constant 10% partial Siberian snake obtained using rampable solenoids. The 10% partial snake suppressed all observable depolarization during acceleration due to the Gγ=2 imperfection depolarizing resonance which occurred near 108 MeV. However, 20% and 30% partial Siberian snakes apparently moved an intrinsic depolarizing resonance, normally near 177 MeV, into our energy range; this caused some interesting, although not-yet-fully understood, depolarization.

  3. Flare vs. Shock Acceleration of High-energy Protons in Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Cliver, E. W.

    2016-12-01

    Recent studies have presented evidence for a significant to dominant role for a flare-resident acceleration process for high-energy protons in large (“gradual”) solar energetic particle (SEP) events, contrary to the more generally held view that such protons are primarily accelerated at shock waves driven by coronal mass ejections (CMEs). The new support for this flare-centric view is provided by correlations between the sizes of X-ray and/or microwave bursts and associated SEP events. For one such study that considered >100 MeV proton events, we present evidence based on CME speeds and widths, shock associations, and electron-to-proton ratios that indicates that events omitted from that investigation’s analysis should have been included. Inclusion of these outlying events reverses the study’s qualitative result and supports shock acceleration of >100 MeV protons. Examination of the ratios of 0.5 MeV electron intensities to >100 MeV proton intensities for the Grechnev et al. event sample provides additional support for shock acceleration of high-energy protons. Simply scaling up a classic “impulsive” SEP event to produce a large >100 MeV proton event implies the existence of prompt 0.5 MeV electron events that are approximately two orders of magnitude larger than are observed. While classic “impulsive” SEP events attributed to flares have high electron-to-proton ratios (≳5 × 105) due to a near absence of >100 MeV protons, large poorly connected (≥W120) gradual SEP events, attributed to widespread shock acceleration, have electron-to-proton ratios of ˜2 × 103, similar to those of comparably sized well-connected (W20-W90) SEP events.

  4. ETFE polymer bombarded with 1 MeV proton

    NASA Astrophysics Data System (ADS)

    Parada, M. A.; de Almeida, A.; Muntele, I.; Muntele, C.; Delalez, N.; Ila, D.

    2005-12-01

    The ethylenetetrafluoroethylene (ETFE) is a polymer formed by alternating ethylene and tetrafluoroethylene segments. It has high impact resistance and useful mechanical properties. ETFE can be used as components of pumps, valves, tie wraps, and electrical components. It can also be applied in the field of medical physics as intra venous catheters and as radiation dosimeter. When a material is exposed to the ionizing radiation, it suffers damage that depends on the type, energy and intensity of the radiation. In order to determine the radiation damage mechanism, ETFE films were bombarded with 1 MeV protons to the fluence between 1 × 1011 and 1 × 1016 protons/cm2 and the chemical species emitted during the bombardment were measured with residual gas analysis (RGA) and show that HF gas is the entity preferentially emitted. Optical absorption photospectrometry (OAP) and attenuated total reflectometry fourier transform infrared (ATR-FTIR) shows quantitative chemical evidence of the damage. Our results show that damage is detectable at low proton fluence, but damage that can compromise the application in dosimetry occurs only for fluence greater than 1014 protons/cm2.

  5. The LILIA experiment: Energy selection and post-acceleration of laser generated protons

    NASA Astrophysics Data System (ADS)

    Turchetti, Giorgio; Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Sumini, Marco; Giove, Dario; De Martinis, Carlo

    2012-12-01

    The LILIA experiment is planned at the SPARCLAB facility of the Frascati INFN laboratories. We have simulated the laser acceleration of protons, the transport and energy selection with collimators and a pulsed solenoid and the post-acceleration with a compact high field linac. For the highest achievable intensity corresponding to a = 30 over 108 protons at 30 MeV with a 3% spread are selected, and at least107 protons are post-accelerated up to 60 MeV. If a 10 Hz repetition rated can be achieved the delivered dose would be suitable for the treatment of small superficial tumors.

  6. First acceleration of a proton beam in a side coupled drift tube linac

    NASA Astrophysics Data System (ADS)

    Ronsivalle, C.; Picardi, L.; Ampollini, A.; Bazzano, G.; Marracino, F.; Nenzi, P.; Snels, C.; Surrenti, V.; Vadrucci, M.; Ambrosini, F.

    2015-07-01

    We report the first experiment aimed at the demonstration of low-energy protons acceleration by a high-efficiency S-band RF linear accelerator. The proton beam has been accelerated from 7 to 11.6 MeV by a 1 meter long SCDTL (Side Coupled Drift Tube Linac) module powered with 1.3 MW. The experiment has been done in the framework of the Italian TOP-IMPLART (Oncological Therapy with Protons-Intensity Modulated Proton Therapy Linear Accelerator for Radio-Therapy) project devoted to the realization of a proton therapy centre based on a proton linear accelerator for intensity modulated cancer treatments to be installed at IRE-IFO, the largest oncological hospital in Rome. It is the first proton therapy facility employing a full linear accelerator scheme based on high-frequency technology.

  7. Predicting solar energetic proton events (E > 10 MeV)

    NASA Astrophysics Data System (ADS)

    NúñEz, Marlon

    2011-07-01

    A high level of proton radiation exposure can be dangerous to astronauts, satellite equipment, and air passengers/crew flying along polar routes. The presented solar energetic proton (SEP) event forecaster is based on a dual-model approach for predicting the time interval within which the integral proton flux is expected to meet or surpass the Space Weather Prediction Center threshold of J (E > 10 MeV) = 10 pr cm-2 sr-1 s-1 and the intensity of the first hours of well- and poorly connected SEP events. This forecaster analyzes flare and near-Earth space environment data (soft X-ray, differential and integral proton fluxes). The purpose of the first model is to identify precursors of well-connected events by empirically estimating the magnetic connectivity from the associated CME/flare process zone to the near-Earth environment and identifying the flare temporally associated with the phenomenon. The goal of the second model is to identify precursors of poorly connected events by using a regression model that checks whether the differential proton flux behavior is similar to that in the beginning phases of previous historically poorly connected SEP events and thus deduce similar consequences. An additional module applies a higher-level analysis for inferring additional information about the situation by filtering out inconsistent preliminary forecasts and estimating the intensity of the first hours of the predicted SEP events. The high-level module periodically retrieves solar data and, in the case of well-connected events, automatically identifies the associated flare and active region. For the events of solar cycles 22 and 23 of the NOAA/SWPC SEP list, the presented dual-model system, called UMASEP, has a probability of detection of all well- and poorly connected events of 80.72% (134/166) and a false alarm rate of 33.99% (69/203), which outperforms current automatic forecasters in predicting >10 MeV SEP events. The presented forecaster has an average warning time

  8. Fermilab proton accelerator complex status and improvement plans

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir

    2017-05-01

    Fermilab carries out an extensive program of accelerator-based high energy particle physics research at the Intensity Frontier that relies on the operation of 8 GeV and 120 GeV proton beamlines for a number of fixed target experiments. Routine operation with a world-record 700 kW of average 120 GeV beam power on the neutrino target was achieved in 2017 as a result of the Proton Improvement Plan (PIP) upgrade. There are plans to further increase the power from 900-1000 kW. The next major upgrade of the FNAL accelerator complex, called PIP-II, is under development. It aims at 1.2 MW beam power on target at the start of the LBNF/DUNE experiment in the middle of the next decade and assumes replacement of the existing 40 years old 400 MeV normal-conducting Linac with a modern 800 MeV superconducting RF linear accelerator. There are several concepts to further double the beam power to > 2.4 MW after replacement of the existing 8 GeV Booster synchrotron. In this review, we discuss current performance of the Fermilab proton accelerator complex, the upgrade plans for the next two decades and the accelerator R&D program to address cost and performance risks for these upgrades.

  9. Absolute calibration of photostimulable image plate detectors used as (0.5-20 MeV) high-energy proton detectors

    NASA Astrophysics Data System (ADS)

    Mančić, A.; Fuchs, J.; Antici, P.; Gaillard, S. A.; Audebert, P.

    2008-07-01

    In this paper, the absolute calibration of photostimulable image plates (IPs) used as proton detectors is presented. The calibration is performed in a wide range of proton energies (0.5-20MeV) by exposing simultaneously the IP and calibrated detectors (radiochromic films and solid state detector CR39) to a source of broadband laser-accelerated protons, which are spectrally resolved. The final result is a calibration curve that enables retrieving the proton number from the IP signal.

  10. Compact Proton Accelerator for Cancer Therapy

    SciTech Connect

    Chen, Y; Paul, A C

    2007-06-12

    An investigation is being made into the feasibility of making a compact proton dielectric wall (DWA) accelerator for medical radiation treatment based on the high gradient insulation (HGI) technology. A small plasma device is used for the proton source. Using only electric focusing fields for transporting and focusing the beam on the patient, the compact DWA proton accelerator m system can deliver wide and independent variable ranges of beam currents, energies and spot sizes.

  11. Cross sections from proton irradiation of thorium at 800 MeV

    NASA Astrophysics Data System (ADS)

    Engle, Jonathan W.; Mashnik, Stepan G.; Weidner, John W.; Wolfsberg, Laura E.; Fassbender, Michael E.; Jackman, Kevin; Couture, Aaron; Bitteker, Leo J.; Ullmann, John L.; Gulley, Mark S.; Pillai, Chandra; John, Kevin D.; Birnbaum, Eva R.; Nortier, Francois M.

    2013-07-01

    Nuclear formation cross sections are reported for 65 nuclides produced from 800-MeV proton irradiation of thorium foils. These data are useful as benchmarks for computational predictions in the ongoing process of theoretical code development and also in the design of spallation-based radioisotope production currently being considered for multiple radiotherapeutic pharmaceutical agents. Measured data are compared with the predictions of three mcnp6 event generators and used to evaluate the potential for 800-MeV productions of radioisotopes of interest for medical radiotherapy. In only a few instances code predictions are discrepant from measured values by more than a factor of 2, demonstrating satisfactory predictive power across a large mass range. Similarly, agreement between measurements presented here and those previously reported is good, lending credibility to predictions of target yields and radioimpurities for high-energy accelerator-produced radionuclides.

  12. a Survey of Giant Resonance Excitations with 200 Mev Protons

    NASA Astrophysics Data System (ADS)

    Tinsley, James Royce

    The giant resonance region in ('60)Ni, ('90)Zr, ('120)Sn, and ('208)Pb has been studied using inelastic scattering of 200 MeV protons. Angular distributions were obtained for the giant quadrupole resonance, giant octupole resonance, and for the combined giant dipole and giant monopole resonance between 4 and 20 degrees. The 2(H/2PI)(omega) component of the giant hexadecapole resonance has been directly observed for the first time in ('208)Pb. In the other nuclei, upper limits on the amount of hexadecapole strength contained within the giant quadrupole resonance have been obtained. Peaks are observed in ('60)Ni and ('90)Zr that are consistent with recently reported M1 states. Discrepancies between sum rules extracted from this data and from previous work are discussed. Possible explanations include DWBA breakdown or difficulties in estimating the magnitude of the continuum. Systematics obtained for the giant resonances are compared to earlier work.

  13. Measurement of Neutron Proton Going to Proton Proton Negative Pion at 443 Mev

    NASA Astrophysics Data System (ADS)

    Bachman, Mark Gregory

    Experiment E372 at TRIUMF measured the analyzing powers (A_{rm NO}, A_ {rm SO}, A_{rm LO}) and relative differential cross section for the reaction np to pppi ^- at 443 MeV. We directed a polarized neutron beam on to a liquid hydrogen target and measured the scattered events in a large solid angle detector capable of measuring the velocities and directions of all of the protons produced in the reaction as well as many of the pions. Kinematic analysis of the events allowed us to remove almost all background and resulted in a clean set of np to pppi^- events. These events were binned against appropriate kinematic variables to produce yields which correspond to relative differential cross sections, and asymmetries which correspond to A _{rm NO}, A_{rm SO}, and A_{rm LO }. These results are the first of their kind for this energy. Comparisons to a theoretical model of Kloet and Lomon and a preliminary study using partial waves are presented.

  14. A Study of Polarized Proton Acceleration in J-PARC

    SciTech Connect

    Luccio, A. U.; Bai, M.; Roser, T.; Molodojentsev, A.; Ohmori, C.; Sato, H.; Hatanaka, K.

    2007-06-13

    We have studied the feasibility of polarized proton acceleration in rhe J-PARC accelerator facility, consisting of a 400 MeV linac, a 3 GeV rapid cycling synchrotron (RCS) and a 50 GeV synchrotron (MR). We show how the polarization of the beam can be preserved using an rf dipole in the RCS and two superconductve partial helical Siberian snakes in the MR. The lattice of the MR will be modified with the addition of quadrupoles to compensate for the focusing properties of the snakes.

  15. A STUDY OF POLARIZED PROTON ACCELERATION IN J-PARC.

    SciTech Connect

    LUCCIO, A.U.; BAI, M.; ROSER, T.

    2006-10-02

    We have studied the feasibility of polarized proton acceleration in rhe J-PARC accelerator facility, consisting of a 400 MeV linac, a 3 GeV rapid cycling synchrotron (RCS) and a 50 GeV synchrotron (MR). We show how the polarization of the beam can be preserved using an rf dipole in the RCS and two superconductive partial helical Siberian snakes in the MR. The lattice of the MR will be modified with the addition of quadrupoles to compensate for the focusing properties of the snakes.

  16. Measurement of the angular distribution of neutron-proton scattering at 10 MeV

    SciTech Connect

    Haight, R.C.; Bateman, F.B.; Grimes, S.M.; Brient, C.E.; Massey, T.N.; Wasson, O.A.; Carlson, A.D.; Zhou, H.

    1995-12-31

    The relative angular distribution of neutrons scattered from protons was measured at an incident neutron energy of 10 MeV at the Ohio University Accelerator Laboratory. An array of 11 detector telescopes at laboratory angles of 0 to 60 degrees was used to detect recoil protons from neutron interactions with a CH{sub 2} (polypropylene) target. Data for 7 of these telescopes were obtained with one set of electronics and are presented here. These data, from 108 to 180 degrees for the center-of-mass scattering angles, have a small slope which agrees better with angular distributions predicted by the Arndt phase shifts than with the ENDF/B-VI angular distribution.

  17. Laser acceleration of protons with an optically shaped, near-critical hydrogen gas target

    NASA Astrophysics Data System (ADS)

    Chen, Yu-hsin; Helle, Michael; Ting, Antonio; Gordon, Daniel; Dover, Nicholas; Ettlinger, Oliver; Najmudin, Zulfikar; Polyanskiy, Mikhail; Pogorelsky, Igor; Babzien, Marcus

    2017-03-01

    We report our recent experimental results on CO2 laser acceleration of protons, with a near-critical hydrogen gas target tailored by a Nd:YAG laser-produced blast wave. Monoenergetic protons with energies up to 2.5 MeV were observed.

  18. Deep proton writing with 12 MeV protons for rapid prototyping of microstructures in polymethylmethacrylate

    NASA Astrophysics Data System (ADS)

    Ebraert, Evert; Gökçe, Berkcan; Van Vlierberghe, Sandra; Vervaeke, Michael; Meyer, Pascal; Guttmann, Markus; Dubruel, Peter; Thienpont, Hugo; Van Erps, Jürgen

    2016-10-01

    Deep proton writing (DPW) is a fabrication technology developed for the rapid prototyping of polymer microstructures. We use polymethylmethacrylate (PMMA) substrates, which act as a positive resist, for irradiation with a collimated 12-MeV energy proton beam. Using 12 MeV enables the irradiation of increasingly thick PMMA substrates with less conicity of the sidewalls compared to the lower energies used in previous work. A microhole of 47.7 μm diameter over a depth of 1 mm is achieved, leading to a maximum aspect ratio of 21∶1. The sidewalls of the irradiated structures show a slightly conical shape and their root-mean-square surface roughness is lower than 50 nm averaged over 72 measured areas of 56 μm×44 μm. This means that DPW components have optical surface quality sidewalls for wavelengths larger than 400 nm. Based on the trade-off among the sidewall roughness, conicity, and the development time, we determine that the optimal proton fluence for 12-MeV DPW in PMMA is 7.75×106 μm-2. Finally, we discuss some high aspect ratio microstructures with optical surface quality that were created with DPW to be used for a myriad of applications, such as micromirrors, microlenses, optofluidic devices, and high-precision alignment structures for single-mode optical fiber connectors.

  19. Polarized proton acceleration program at the AGS

    SciTech Connect

    Lee, Y.Y.

    1981-01-01

    The unexpected importance of high energy spin effects and the success of the ZGS in correcting many intrinsic and imperfection depolarizing resonances led us to attempt to accelerate polarized protons in the AGS. A multi-university/laboratory collaborative effort involving Argonne, Brookhaven, Michigan, Rice and Yale is underway to improve and modify to accelerate polarized protons. From the experience at the ZGS and careful studies made us confident of the feasibility of achieving a polarization of over 60 percent up to 26 GeV/c with an intensity of 10/sup 11/ approx. 10/sup 12/ per pulse. The first polarized proton acceleration at the AGS is expected in 1983.

  20. Neutron production from 200-500 MeV proton interaction with spacecraft materials.

    PubMed

    Maurer, Richard H; Kinnison, James D; Roth, David R

    2005-01-01

    We report on detailed energy spectra of neutron production > 14 MeV from collisions of 200-500 MeV protons with combinations of aluminium, graphite and polyethylene. Comparisons of normalised neutron spectra are made with respect to incident proton energy, angle of neutron production and material. In general, carbon (graphite) or polyethylene (by itself or in combination with aluminium) reduce secondary neutron production > 14 MeV relative to the production from interactions in aluminium.

  1. Acceleration of ampere class H(-) ion beam by MeV accelerator.

    PubMed

    Taniguchi, M; Inoue, T; Umeda, N; Kashiwagi, M; Watanabe, K; Tobari, H; Dairaku, M; Sakamoto, K

    2008-02-01

    The H(-) ion accelerator R&D to realize the international thermonuclear experimental reactor neutral beam is ongoing at Japan Atomic Energy Agency (JAEA). The required performance for the prototype MeV accelerator developed at JAEA is 1 MeV, 500 mA (current density of 200 A/m(2)) H(-) ion beam at the beamlet divergence angle of less than 7 mrad. Up to 2005, 836 keV, 146 A/m(2) H(-) ion beam was successfully accelerated as the highest record of the current density at MeV class energy beams. In the present work, high current negative ion beam acceleration test was performed by increasing the beam extraction apertures from 3 x 3 (9 apertures) to 3 x 5 (15 apertures). By fixing the air leak at the source chamber due to backstream ions as well as the improvement of voltage holding capability by a new fiber reinforced plastic insulator ring, the performance of the MeV accelerator was improved. So far, H(-) ion beam of 320 mA was successfully accelerated up to 796 keV with the beam divergence angle of 5.5 mrad. The accelerated drain current including the electron reaches close to the power supply limit for the MeV test facility. The heat flux by the backstream ion during the above beam acceleration was estimated to be 360 W/cm(2). The Cs leakage to the accelerator during the test campaign (Cs total input of 5.0 g) was 0.26 mg (7.0 microg/cm(2)). This is considered to be the allowable level from the viewpoint of voltage holding.

  2. Shielding design for a laser-accelerated proton therapy system.

    PubMed

    Fan, J; Luo, W; Fourkal, E; Lin, T; Li, J; Veltchev, I; Ma, C-M

    2007-07-07

    In this paper, we present the shielding analysis to determine the necessary neutron and photon shielding for a laser-accelerated proton therapy system. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. A special particle selection and collimation device is needed to generate desired proton beams for energy- and intensity-modulated proton therapy. A great number of unwanted protons and even more electrons as a side-product of laser acceleration have to be stopped by collimation devices and shielding walls, posing a challenge in radiation shielding. Parameters of primary particles resulting from the laser-target interaction have been investigated by particle-in-cell simulations, which predicted energy spectra with 300 MeV maximum energy for protons and 270 MeV for electrons at a laser intensity of 2 x 10(21) W cm(-2). Monte Carlo simulations using FLUKA have been performed to design the collimators and shielding walls inside the treatment gantry, which consist of stainless steel, tungsten, polyethylene and lead. A composite primary collimator was designed to effectively reduce high-energy neutron production since their highly penetrating nature makes shielding very difficult. The necessary shielding for the treatment gantry was carefully studied to meet the criteria of head leakage <0.1% of therapeutic absorbed dose. A layer of polyethylene enclosing the whole particle selection and collimation device was used to shield neutrons and an outer layer of lead was used to reduce photon dose from neutron capture and electron bremsstrahlung. It is shown that the two-layer shielding design with 10-12 cm thick polyethylene and 4 cm thick lead can effectively absorb the unwanted particles to meet the shielding requirements.

  3. Shielding design for a laser-accelerated proton therapy system

    NASA Astrophysics Data System (ADS)

    Fan, J.; Luo, W.; Fourkal, E.; Lin, T.; Li, J.; Veltchev, I.; Ma, C.-M.

    2007-07-01

    In this paper, we present the shielding analysis to determine the necessary neutron and photon shielding for a laser-accelerated proton therapy system. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. A special particle selection and collimation device is needed to generate desired proton beams for energy- and intensity-modulated proton therapy. A great number of unwanted protons and even more electrons as a side-product of laser acceleration have to be stopped by collimation devices and shielding walls, posing a challenge in radiation shielding. Parameters of primary particles resulting from the laser-target interaction have been investigated by particle-in-cell simulations, which predicted energy spectra with 300 MeV maximum energy for protons and 270 MeV for electrons at a laser intensity of 2 × 1021 W cm-2. Monte Carlo simulations using FLUKA have been performed to design the collimators and shielding walls inside the treatment gantry, which consist of stainless steel, tungsten, polyethylene and lead. A composite primary collimator was designed to effectively reduce high-energy neutron production since their highly penetrating nature makes shielding very difficult. The necessary shielding for the treatment gantry was carefully studied to meet the criteria of head leakage <0.1% of therapeutic absorbed dose. A layer of polyethylene enclosing the whole particle selection and collimation device was used to shield neutrons and an outer layer of lead was used to reduce photon dose from neutron capture and electron bremsstrahlung. It is shown that the two-layer shielding design with 10-12 cm thick polyethylene and 4 cm thick lead can effectively absorb the unwanted particles to meet the shielding requirements.

  4. Response functions of Fuji imaging plates to monoenergetic protons in the energy range 0.6-3.2 MeV

    SciTech Connect

    Bonnet, T.; Denis-Petit, D.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Aleonard, M. M.

    2013-01-15

    We have measured the responses of Fuji MS, SR, and TR imaging plates (IPs) to protons with energies ranging from 0.6 to 3.2 MeV. Monoenergetic protons were produced with the 3.5 MV AIFIRA (Applications Interdisciplinaires de Faisceaux d'Ions en Region Aquitaine) accelerator at the Centre d'Etudes Nucleaires de Bordeaux Gradignan (CENBG). The IPs were irradiated with protons backscattered off a tantalum target. We present the photo-stimulated luminescence response of the IPs together with the fading measurements for these IPs. A method is applied to allow correction of fading effects for variable proton irradiation duration. Using the IP fading corrections, a model of the IP response function to protons was developed. The model enables extrapolation of the IP response to protons up to proton energies of 10 MeV. Our work is finally compared to previous works conducted on Fuji TR IP response to protons.

  5. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV

    NASA Astrophysics Data System (ADS)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.

    2014-03-01

    We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  6. A brief history of high power RF proton linear accelerators

    SciTech Connect

    Browne, J.C.

    1996-12-31

    The first mention of linear acceleration was in a paper by G. Ising in 1924 in which he postulated the acceleration of positive ions induced by spark discharges which produced electric fields in gaps between a series of {open_quotes}drift tubes{close_quotes}. Ising apparently was not able to demonstrate his concept, most likely due to the limited state of electronic devices. Ising`s work was followed by a seminal paper by R. Wideroe in 1928 in which he demonstrated the first linear accelerator. Wideroe was able to accelerate sodium or potassium ions to 50 keV of energy using drift tubes connected alternately to high frequency waves and to ground. Nuclear physics during this period was interested in accelerating protons, deuterons, electrons and alpha particles and not heavy ions like sodium or potassium. To accelerate the light ions required much higher frequencies than available at that time. So linear accelerators were not pursued heavily at that time. Research continued during the 1930s but the development of high frequency RF tubes for radar applications in World War 2 opened the potential for RF linear accelerators after the war. The Berkeley laboratory of E. 0. Lawrence under the leadership of Luis Alvarez developed a new linear proton accelerator concept that utilized drift tubes that required a full RF period to pass through as compared to the earlier concepts. This development resulted in the historic Berkeley 32 MeV proton linear accelerator which incorporated the {open_quotes}Alvarez drift tube{close_quotes} as the basic acceleration scheme using surplus 200 MHz radar components.

  7. Technical assessment of the Loma Linda University proton therapy accelerator

    SciTech Connect

    Not Available

    1989-10-01

    In April 1986, officials of Loma Linda University requested that Fermilab design and construct a 250 MeV proton synchrotron for radiotherapy, to be located at the Loma Linda University Medical Center. In June 1986 the project, having received all necessary approvals, commenced. In order to meet a desirable schedule providing for operation in early 1990, it was decided to erect such parts of the accelerator as were complete at Fermilab and conduct a precommissioning activity prior to the completion of the building at Loma Linda which will house the final radiotherapy facility. It was hoped that approximately one year would be saved by the precommissioning, and that important information would be obtained about the system so that improvements could be made during installation at Loma Linda. This report contains an analysis by Fermilab staff members of the information gained in the precommissioning activity and makes recommendations about steps to be taken to enhance the performance of the proton synchrotron at Loma Linda. In the design of the accelerator, effort was made to employ commercially available components, or to industrialize the products developed so that later versions of the accelerator could be produced industrially. The magnets could only be fabricated at Fermilab if the schedule was to be met, but efforts were made to transfer that technology to industry. Originally, it was planned to use a 1.7 MeV RFQ fabricated at the Lawrence Berkeley Laboratory as injector, but LBL would have found it difficult to meet the project schedule. After consideration of other options, for example a 3.4 MeV tandem accelerator, a supplier (AccSys Inc.) qualified itself to provide a 2 MeV RFQ on a schedule well matched to the project schedule. This choice was made, but a separate supplier was selected to develop and provide the 425 MHz power amplifier for the RFQ.

  8. Radiobiology with laser-accelerated quasi-monoenergetic proton beams

    NASA Astrophysics Data System (ADS)

    Yogo, A.; Maeda, T.; Hori, T.; Sakaki, H.; Ogura, K.; Nishiuchi, M.; Sagisaka, A.; Bolton, P. R.; Murakami, M.; Kawanishi, S.; Kondo, K.

    2011-05-01

    Human cancer cells are irradiated by laser-driven quasi-monoenergetic protons. Laser pulse intensities at the 5×1019-W/cm2 level provide the source and acceleration field for protons that are subsequently transported by four energy-selective dipole magnets. The transport line delivers 2.25 MeV protons with an energy spread of 0.66 MeV and a bunch duration of 20 ns. The survival fraction of in-vitro cells from a human salivary gland tumor is measured with a colony formation assay following proton irradiation at dose levels up to 8 Gy, for which the single bunch does rate is 1 × 107 Gy/s and the effective dose rate is 0.2 Gy/s for 1-Hz repetition of irradiation. Relative biological effectiveness at the 10% survival fraction is measured to be 1.20 +/- 0.11 using protons with a linear energy transfer of 17.1 +/- 2.8 keV/μm.

  9. Solid hydrogen target for laser driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  10. Preparation of {sup 82}Sr from a metallic Rb target in a 100 MeV proton beam

    SciTech Connect

    Zhuikov, B.L.; Kokhanyuk, V.M.; Glushchenko, V.N. |||

    1995-07-01

    The medical radioisotope {sup 82}Sr was obtained by irradiating a metallic Rb target with protons accelerated to an energy of 100 MeV. The yield of {sup 82}Sr was chemically isolated by dissolving metallic Rb in isobutanol with subsequent conversion to the chloride, distillation of the organic phase, and removal of Rb{sup +} on cation exchanger. The product has high radionuclidic purity.

  11. Proton-induced cross sections relevant to production of 225Ac and 223Ra in natural thorium targets below 200 MeV.

    PubMed

    Weidner, J W; Mashnik, S G; John, K D; Hemez, F; Ballard, B; Bach, H; Birnbaum, E R; Bitteker, L J; Couture, A; Dry, D; Fassbender, M E; Gulley, M S; Jackman, K R; Ullmann, J L; Wolfsberg, L E; Nortier, F M

    2012-11-01

    Cross sections for (223,)(225)Ra, (225)Ac and (227)Th production by the proton bombardment of natural thorium targets were measured at proton energies below 200 MeV. Our measurements are in good agreement with previously published data and offer a complete excitation function for (223,)(225)Ra in the energy range above 90 MeV. Comparison of theoretical predictions with the experimental data shows reasonable-to-good agreement. Results indicate that accelerator-based production of (225)Ac and (223)Ra below 200 MeV is a viable production method. Published by Elsevier Ltd.

  12. Acceleration of polarized protons in circular accelerators

    SciTech Connect

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  13. Experimental study of ion-beam self-pinched transport for MeV protons

    SciTech Connect

    Neri, J.M.; Young, F.C.; Stephanakis, S.J.; Ottinger, P.F.; Rose, D.V.; Hinshelwood, D.D.; Weber, B.V.

    1999-07-01

    A 100-kA, 1.2-MeV proton beam from a pinch-reflex ion diode on the Gamble II accelerator is used to test the concept of self-pinched ion transport. Self-pinched transport (SPT) uses the self-generated magnetic field from the ion beam to radially confine the ion beam. A proton beam is injected through a 3-cm radius aperture covered with a 2-{micro}m thick polycarbonate foil into a 10-cm radius transport region. The transport region is filled with helium at pressures of 30--250 mTorr, vacuum (10{sup {minus}4} Torr), or 1-Torr air. The beam is diagnosed with witness plates, multiple-pinhole-camera imaging onto radiochromic film, time- and space-resolved proton-scattering, and with prompt-{gamma} and nuclear-activation from LiF targets. Witness-plates and the multiple-pinhole-camera are used to determine the size, location, and uniformity of the beam at different distances from the injection aperture. A beam global divergence of 200 mrad is measured at 15 cm. At 50 cm, the beam fills the transport region. At 110 cm and 100- to 200-mTorr helium, there is evidence of beam filamentation. The measured increase in protons is consistent with the physical picture for SPT, and comparisons with IPROP simulations are in qualitative agreement with the measurements.

  14. The R/D of high power proton accelerator technology in China

    NASA Astrophysics Data System (ADS)

    Xialing, Guan

    2002-12-01

    In China, a multipurpose verification system as a first phase of our ADS program consists of a low energy accelerator (150 MeV/3 mA proton LINAC) and a swimming pool light water subcritical reactor. In this paper the activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the RFQ accelerator and some other technology of HPPA, are described.

  15. Study on strontium isotope abundance-ratio measurements by using a 13-MeV proton beam

    NASA Astrophysics Data System (ADS)

    Jeong, Cheol-Ki; Jang, Han; Lee, Goung-Jin

    2016-09-01

    The Rb-Sr dating method is used in dating Paleozoic and Precambrian rocks. This method measures the 87Rb and the 87Sr concentrations by using thermal ionization mass spectrometry (TIMS) [J. Hefne et al., Inter. J. Phys. Sci. 3(1), 28 (2008)]. In addition, it calculates the initial 87Sr/86Sr ratio to increase the reliability of Rb-Sr dating. In this study, the 87Sr/86Sr ratio was measured by using a 13-MeV proton accelerator. Proton kinetic energies are in the range of tens of megaelectronvolts, and protons have large absorption cross-sections for ( p, n) reactions with most substances. After absorbing a proton with such a high kinetic energy, an element is converted into a nuclide with its atomic number increased by one via nuclear transmutation. These nuclides usually have short half-lives and return to the original state through radioactive decay. When a strontium sample is irradiated with protons, nuclear transmutation occurs; thus, the strontium isotope present in the sample changes to a yttrium isotope, which is an activated radioisotope. Based on this, the 87Sr/86Sr ratio was calculated by analyzing the gamma-rays emitted by each yttrium isotope. The KIRAMS-13 cyclotron at the Cyclotron Center of Chosun University, where 13-MeV protons can be extracted, was utilized in our experiment. The 87Sr/86Sr isotope ratio was computed for samples irradiated with these protons, and the result was similar to the isotope ratio for the Standard Reference Material, i.e., 98.2 ± 3.4%. As part of the analysis, proton activation analyses were performed using 13-MeV protons, and the experimental results of this research suggest a possible approach for measuring the strontium-isotope abundance ratio of samples.

  16. Particle in cell simulation of laser-accelerated proton beams for radiation therapy.

    PubMed

    Fourkal, E; Shahine, B; Ding, M; Li, J S; Tajima, T; Ma, C M

    2002-12-01

    In this article we present the results of particle in cell (PIC) simulations of laser plasma interaction for proton acceleration for radiation therapy treatments. We show that under optimal interaction conditions protons can be accelerated up to relativistic energies of 300 MeV by a petawatt laser field. The proton acceleration is due to the dragging Coulomb force arising from charge separation induced by the ponderomotive pressure (light pressure) of high-intensity laser. The proton energy and phase space distribution functions obtained from the PIC simulations are used in the calculations of dose distributions using the GEANT Monte Carlo simulation code. Because of the broad energy and angular spectra of the protons, a compact particle selection and beam collimation system will be needed to generate small beams of polyenergetic protons for intensity modulated proton therapy.

  17. 225Ac and 223Ra production via 800 MeV proton irradiation of natural thorium targets.

    PubMed

    Weidner, J W; Mashnik, S G; John, K D; Ballard, B; Birnbaum, E R; Bitteker, L J; Couture, A; Fassbender, M E; Goff, G S; Gritzo, R; Hemez, F M; Runde, W; Ullmann, J L; Wolfsberg, L E; Nortier, F M

    2012-11-01

    Cross sections for the formation of (225,227)Ac, (223,225)Ra, and (227)Th via the proton bombardment of natural thorium targets were measured at a nominal proton energy of 800 MeV. No earlier experimental cross section data for the production of (223,225)Ra, (227)Ac and (227)Th by this method were found in the literature. A comparison of theoretical predictions with the experimental data shows agreement within a factor of two. Results indicate that accelerator-based production of (225)Ac and (223)Ra is a viable production method. Published by Elsevier Ltd.

  18. Interlock system for machine protection of the KOMAC 100-MeV proton linac

    NASA Astrophysics Data System (ADS)

    Song, Young-Gi

    2015-02-01

    The 100-MeV proton linear accelerator of the Korea Multi-purpose Accelerator Complex (KOMAC) has been developed. The beam service started this year after performing the beam commissioning. If the very sensitive and essential equipment is to be protected during machine operation, a machine interlock system is required, and the interlock system has been implemented. The purpose of the interlock system is to shut off the beam when the radio-frequency (RF) and ion source are unstable or a beam loss occurs. The interlock signal of the KOMAC linac includes a variety of sources, such as the beam loss, RF and high-voltage converter modulator faults, and fast closing valves of the vacuum window at the beam lines and so on. This system consists of a hardware-based interlock system using analog circuits and a software-based interlock system using an industrial programmable logic controller (PLC). The hardware-based interlock system has been fabricated, and the requirement has been satisfied with the results being within 10 µs. The software logic interlock system using the PLC has been connected to the framework of with the experimental physics and industrial control system (EPICS) to integrate a variety of interlock signals and to control the machine components when an interlock occurs. This paper will describe the design and the construction of the machine interlock system for the KOMAC 100-MeV linac.

  19. High power solid state rf amplifier for proton accelerator.

    PubMed

    Jain, Akhilesh; Sharma, Deepak Kumar; Gupta, Alok Kumar; Hannurkar, P R

    2008-01-01

    A 1.5 kW solid state rf amplifier at 352 MHz has been developed and tested at RRCAT. This rf source for cw operation will be used as a part of rf system of 100 MeV proton linear accelerator. A rf power of 1.5 kW has been achieved by combining output power from eight 220 W rf amplifier modules. Amplifier modules, eight-way power combiner and divider, and directional coupler were designed indigenously for this development. High efficiency, ease of fabrication, and low cost are the main features of this design.

  20. Resistively enhanced proton acceleration via high-intensity laser interactions with cold foil targets

    SciTech Connect

    Gibbon, Paul

    2005-08-01

    The acceleration of MeV protons by high-intensity laser interaction with foil targets is studied using a recently developed plasma simulation technique. Based on a hierarchical N-body tree algorithm, this method provides a natural means of treating three-dimensional, collisional transport effects hitherto neglected in conventional explicit particle-in-cell simulations. For targets with finite resistivity, hot electron transport is strongly inhibited, even at temperatures in the MeV range. This leads to suppression of ion acceleration from the rear of the target and an enhancement in energies and numbers of protons originating from the front.

  1. Microstructured snow targets for high energy quasi-monoenergetic proton acceleration

    NASA Astrophysics Data System (ADS)

    Schleifer, E.; Nahum, E.; Eisenmann, S.; Botton, M.; Baspaly, A.; Pomerantz, I.; Abricht, F.; Branzel, J.; Priebe, G.; Steinke, S.; Andreev, A.; Schnuerer, M.; Sandner, W.; Gordon, D.; Sprangle, P.; Ledingham, K. W. D.; Zigler, A.

    2013-05-01

    Compact size sources of high energy protons (50-200MeV) are expected to be key technology in a wide range of scientific applications 1-8. One promising approach is the Target Normal Sheath Acceleration (TNSA) scheme 9,10, holding record level of 67MeV protons generated by a peta-Watt laser 11. In general, laser intensity exceeding 1018 W/cm2 is required to produce MeV level protons. Another approach is the Break-Out Afterburner (BOA) scheme which is a more efficient acceleration scheme but requires an extremely clean pulse with contrast ratio of above 10-10. Increasing the energy of the accelerated protons using modest energy laser sources is a very attractive task nowadays. Recently, nano-scale targets were used to accelerate ions 12,13 but no significant enhancement of the accelerated proton energy was measured. Here we report on the generation of up to 20MeV by a modest (5TW) laser system interacting with a microstructured snow target deposited on a Sapphire substrate. This scheme relax also the requirement of high contrast ratio between the pulse and the pre-pulse, where the latter produces the highly structured plasma essential for the interaction process. The plasma near the tip of the snow target is subject to locally enhanced laser intensity with high spatial gradients, and enhanced charge separation is obtained. Electrostatic fields of extremely high intensities are produced, and protons are accelerated to MeV-level energies. PIC simulations of this targets reproduce the experimentally measured energy scaling and predict the generation of 150 MeV protons from laser power of 100TW laser system18.

  2. Two-stage acceleration of protons from relativistic laser-solid interaction

    SciTech Connect

    Liu Jinlu; Sheng, Z. M.; Zheng, J.; Wang, W. M.; Yu, M. Y.; Liu, C. S.; Zhang, J.

    2012-12-21

    A two-stage proton acceleration scheme using present-day intense lasers and a unique target design is proposed. The target system consists of a hollow cylinder, inside which is a hollow cone, which is followed by the main target with a flat front and dish-like flared rear surface. At the center of the latter is a tapered proton layer, which is surrounded by outer proton layers at an angle to it. In the first acceleration stage, protons in both layers are accelerated by target normal sheath acceleration. The center-layer protons are accelerated forward along the axis and the side protons are accelerated and focused towards them. As a result, the side-layer protons radially compress as well as axially further accelerate the front part of the accelerating center-layer protons in the second stage, which are also radially confined and guided by the field of the fast electrons surrounding them. Two-dimensional particle-incell simulation shows that a 79fs 8.5 Multiplication-Sign 10{sup 20} W/cm{sup 2} laser pulse can produce a proton bunch with {approx} 267MeV maximum energy and {approx} 9.5% energy spread, which may find many applications, including cancer therapy.

  3. Hospital-based proton linear accelerator for particle therapy and radioisotope production

    NASA Astrophysics Data System (ADS)

    Lennox, Arlene J.

    1991-05-01

    Taking advantage of recent advances in linear accelerator technology, it is possible for a hospital to use a 70 MeV proton linac for fast neutron therapy, boron neutron capture therapy, proton therapy for ocular melanomas, and production of radiopharmaceuticals. The linac can also inject protons into a synchrotron for proton therapy of deep-seated tumors. With 180 μA average current, a single linac can support all these applications. This paper presents a conceptual design for a medical proton linac, switchyard, treatment rooms, and isotope production rooms. Special requirements for each application are outlined and a layout for sharing beam among the applications is suggested.

  4. Design study for a 500 MeV proton synchrotron with CSNS linac as an injector

    NASA Astrophysics Data System (ADS)

    Huang, Liang-Sheng; Ji, Hong-Fei; Wang, Sheng

    2016-09-01

    Using the China Spallation Neutron Source (CSNS) linac as the injector, a 500 MeV proton synchrotron is proposed for multidisciplinary applications, such as biology, material science and proton therapy. The synchrotron will deliver proton beam with energy from 80 MeV to 500 MeV. A compact lattice design has been worked out, and all the important beam dynamics issues have been investigated. The 80 MeV H- beam is stripped and injected into the synchrotron by using multi-turn injection. In order to continuously extraction the proton with small beam loss, an achromatic structure is proposed and a slow extraction method with RF knock-out is adopted and optimized.

  5. Proton Acceleration at Oblique Shocks

    NASA Astrophysics Data System (ADS)

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-01

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  6. PROTON ACCELERATION AT OBLIQUE SHOCKS

    SciTech Connect

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-20

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  7. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  8. Improvement Plans of Fermilab's Proton Accelerator Complex

    SciTech Connect

    Shiltsev, Vladimir

    2016-01-01

    The flagship of Fermilab's long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab's Main Injector. The physics goals of the DUNE require a proton beam with a power of some 2.4 MW at 120 GeV, which is roughly four times the current maximum power. Here I discuss current performance of the Fermilab proton accelerator complex, our plans for construction of the SRF proton linac as key part of the Proton Improvement Plan-II (PIP-II), outline the main challenges toward multi-MW beam power operation of the Fermilab accelerator complex and the staged plan to achieve the required performance over the next 15 years.

  9. Injection and diffusive transport of suprathermal through energetic solar flare protons (35 keV to 20 MeV)

    NASA Technical Reports Server (NTRS)

    Beeck, J.; Mason, G. M.; Hamilton, D. C.; Marsden, R. G.; Sanderson, T. R.

    1990-01-01

    Consideration is given to the injection and interplanetary propagation of low-energy protons caused by the solar particle event of July 20, 1981, in which flare protons in the range from 35 keV to 20 MeV were observed by instruments on ISEE 3. The observed time-intensity and time-anisotropy profiles were fitted over the entire energy range using a model based on the spherically symmetric Fokker-Plank equation, including convection, diffusion, and adiabatic deceleration. The results are used to discuss the behavior of the radial interplanetary diffusion coefficient and the scattering mean free path for protons. Also, evidence is found for diffusive coronal shock acceleration of protons during the event.

  10. Neutrino mixing in accelerated proton decays

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Dharam Vir; Labun, Lance; Torrieri, Giorgio

    2016-07-01

    We discuss the inverse β-decay of accelerated protons in the context of neutrino flavor superpositions (mixings) in mass eigenstates. The process p→ n ℓ+ ν_{ℓ} is kinematically allowed because the accelerating field provides the rest energy difference between initial and final states. The rate of p→ n conversions can be evaluated in either the laboratory frame (where the proton is accelerating) or the co-moving frame (where the proton is at rest and interacts with an effective thermal bath of ℓ and ν_{ℓ} due to the Unruh effect). By explicit calculation, we show that the rates in the two frames disagree when taking into account neutrino mixings, because the weak interaction couples to charge eigenstates whereas gravity couples to neutrino mass eigenstates (D.V. Ahluwalia et al., arXiv:1505.04082 [hep-ph]). The contradiction could be resolved experimentally, potentially yielding new information on the origins of neutrino masses.

  11. Post-acceleration of laser driven protons with a compact high field linac

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Turchetti, Giorgio; Bolton, Paul R.

    2013-05-01

    We present a start-to-end 3D numerical simulation of a hybrid scheme for the acceleration of protons. The scheme is based on a first stage laser acceleration, followed by a transport line with a solenoid or a multiplet of quadrupoles, and then a post-acceleration section in a compact linac. Our simulations show that from a laser accelerated proton bunch with energy selection at ~ 30MeV, it is possible to obtain a high quality monochromatic beam of 60MeV with intensity at the threshold of interest for medical use. In the present day experiments using solid targets, the TNSA mechanism describes accelerated bunches with an exponential energy spectrum up to a cut-off value typically below ~ 60MeV and wide angular distribution. At the cut-off energy, the number of protons to be collimated and post-accelerated in a hybrid scheme are still too low. We investigate laser-plasma acceleration to improve the quality and number of the injected protons at ~ 30MeV in order to assure efficient post-acceleration in the hybrid scheme. The results are obtained with 3D PIC simulations using a code where optical acceleration with over-dense targets, transport and post-acceleration in a linac can all be investigated in an integrated framework. The high intensity experiments at Nara are taken as a reference benchmarks for our virtual laboratory. If experimentally confirmed, a hybrid scheme could be the core of a medium sized infrastructure for medical research, capable of producing protons for therapy and x-rays for diagnosis, which complements the development of all optical systems.

  12. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    NASA Astrophysics Data System (ADS)

    Gschwendtner, E.; Adli, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.-M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V. K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P. N.; Burt, G.; Buttenschön, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A. A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Hüther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K. V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V. A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Öz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z. M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A. P.; Spitsyn, R. I.; Trines, R.; Tuev, P. V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C. P.; Wing, M.; Xia, G.; Zhang, H.

    2016-09-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms 12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy ( 15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  13. Polarized Proton Acceleration in AGS and RHIC

    SciTech Connect

    Roser, Thomas

    2008-02-06

    As the first hadron accelerator and collider consisting of two independent superconducting rings RHIC has operated with a wide range of beam energies and particle species including polarized proton beams. The acceleration of polarized beams in both the injector and the collider rings is complicated by numerous depolarizing spin resonances. Partial and full Siberian snakes have made it possible to overcome the depolarization and beam polarizations of up to 65% have been reached at 100 GeV in RHIC.

  14. POLARIZED PROTON ACCELERATION IN AGS AND RHIC.

    SciTech Connect

    ROSER,T.

    2007-09-10

    As the first hadron accelerator and collider consisting of two independent superconducting rings RHIC has operated with a wide range of beam energies and particle species including polarized proton beams. The acceleration of polarized beams in both the injector and the collider rings is complicated by numerous depolarizing spin resonances. Partial and full Siberian snakes have made it possible to overcome the depolarization and beam polarizations of up to 65% have been reached at 100 GeV in RHIC.

  15. Proton Injection into the Fermilab Integrable Optics Test Accelerator (IOTA)

    SciTech Connect

    Prebys, Eric; Antipov, Sergey; Piekarz, Henryk; Valishev, A.

    2015-06-01

    The Integrable Optics Test Accelerator (IOTA) is an experimental synchrotron being built at Fermilab to test the concept of non-linear "integrable optics". These optics are based on a lattice including non-linear elements that satisfies particular conditions on the Hamiltonian. The resulting particle motion is predicted to be stable but without a unique tune. The system is therefore insensitive to resonant instabilities and can in principle store very intense beams, with space charge tune shifts larger than those which are possible in conventional linear synchrotrons. The ring will initially be tested with pencil electron beams, but this poster describes the ultimate plan to install a 2.5 MeV RFQ to inject protons, which will produce tune shifts on the order of unity. Technical details will be presented, as well as simulations of protons in the ring.

  16. Ultrashort Pulse Laser Accelerated Proton Beams for First Radiobiological Applications

    SciTech Connect

    Schramm, U.; Zeil, K.; Beyreuther, E.; Bussmann, M.; Cowan, T. E.; Kluge, T.; Kraft, S.; Metzkes, J.; Sauerbrey, R.; Richter, C.; Enghardt, W.; Pawelke, J.; Karsch, L.; Laschinsky, L.; Naumburger, D.

    2010-11-04

    We report on the generation of proton pulses with maximum energies exceeding 15 MeV by means of the irradiation of few micron thick metal foils by ultrashort (30 fs) laser pulses at a power level of 100 TW. In contrast to the well known situation for longer laser pulses, here, a near linear scaling of the maximum proton energy with laser power can be found. Aiming for radiobiological applications the long and short term stability of the laser plasma accelerator as well as a compact energy selection and dosimetry system is presented. The first irradiation of in vitro tumour cells showing dose dependent biological damage is demonstrated paving the way for systematic radiobiological studies.

  17. The computer simulation of laser proton acceleration for hadron therapy

    NASA Astrophysics Data System (ADS)

    Lykov, Vladimir; Baydin, Grigory

    2008-11-01

    The ions acceleration by intensive ultra-short laser pulses has interest in views of them possible applications for proton radiography, production of medical isotopes and hadron therapy. The 3D relativistic PIC-code LegoLPI is developed at RFNC-VNIITF for modeling of intensive laser interaction with plasma. The LegoLPI-code simulations were carried out to find the optimal conditions for generation of proton beams with parameters necessary for hadrons therapy. The performed simulations show that optimal for it may be two-layer foil of aluminum and polyethylene with thickness 100 nm and 50 nm accordingly. The maximum efficiency of laser energy transformation into 200 MeV protons is achieved on irradiating these foils by 30 fs laser pulse with intensity about 2.10^22 W/cm^2. The conclusion is made that lasers with peak power about 0.5-1PW and average power 0.5-1 kW are needed for generation of proton beams with parameters necessary for proton therapy.

  18. CHALLENGES FACING HIGH POWER PROTON ACCELERATORS

    SciTech Connect

    Plum, Michael A

    2013-01-01

    This presentation will provide an overview of the challenges of high power proton accelerators such as SNS, J-PARC, etc., and what we have learned from recent experiences. Beam loss mechanisms and methods to mitigate beam loss will also be discussed.

  19. 2 MeV linear accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Smith, Richard R.; Farrell, Sherman R.

    1997-02-01

    RPC Industries has developed a high average power scanned electron beam linac system for medium energy industrial processing, such as in-line sterilization. The parameters are: electron energy 2 MeV; average beam current 5.0 mA; and scanned width 0.5 meters. The control system features data logging and a Man-Machine Interface system. The accelerator is vertically mounted, the system height above the floor is 3.4 m, and the footprint is 0.9×1.2 meter2. The typical processing cell inside dimensions are 3.0 m by 3.5 m by 4.2 m high with concrete side walls 0.5 m thick above ground level. The equal exit depth dose is 0.73 gm cm-2. Additional topics that will be reported are: throughput, measurements of dose vs depth, dose uniformity across the web, and beam power by calorimeter and magnetic deflection of the beam.

  20. Rf cavity primer for cyclic proton accelerators

    SciTech Connect

    Griffin, J.E.

    1988-04-01

    The purpose of this note is to describe the electrical and mechanical properites of particle accelerator rf cavities in a manner which will be useful to physics and engineering graduates entering the accelerator field. The discussion will be limited to proton (or antiproton) synchrotron accelerators or storage rings operating roughly in the range of 20 to 200 MHz. The very high gradient, fixed frequency UHF or microwave devices appropriate for electron machines and the somewhat lower frequency and broader bandwidth devices required for heavy ion accelerators are discussed extensively in other papers in this series. While it is common pratice to employ field calculation programs such as SUPERFISH, URMEL, or MAFIA as design aids in the development of rf cavities, we attempt here to elucidate various of the design parameters commonly dealt with in proton machines through the use of simple standing wave coaxial resonator expressions. In so doing, we treat only standing wave structures. Although low-impedance, moderately broad pass-band travelling wave accelerating systems are used in the CERN SPS, such systems are more commonly found in linacs, and they have not been used widely in large cyclic accelerators. Two appendices providing useful supporting material regarding relativistic particle dynamics and synchrotron motion in cyclic accelerators are added to supplement the text.

  1. COMPACT PROTON INJECTOR AND FIRST ACCELERATOR SYSTEM TEST FOR COMPACT PROTON DIELECTRIC WALL CANCER THERAPY ACCELERATOR

    SciTech Connect

    Chen, Y; Guethlein, G; Caporaso, G; Sampayan, S; Blackfield, D; Cook, E; Falabella, S; Harris, J; Hawkins, S; Nelson, S; Poole, B; Richardson, R; Watson, J; Weir, J; Pearson, D

    2009-04-23

    A compact proton accelerator for cancer treatment is being developed by using the high-gradient dielectric insulator wall (DWA) technology [1-4]. We are testing all the essential DWA components, including a compact proton source, on the First Article System Test (FAST). The configuration and progress on the injector and FAST will be presented.

  2. Scaling Laws for Proton Acceleration from the Rear Surface of Laser-Irradiated Thin Foils

    NASA Astrophysics Data System (ADS)

    Fuchs, J.; Antici, P.; d'Humières, E.; Lefebvre, E.; Borghesi, M.; Brambrink, E.; Cecchetti, C. A.; Kaluza, M.; Malka, V.; Manclossi, M.; Meyroneinc, S.; Mora, P.; Schreiber, J.; Toncian, T.; Pépin, H.; Audebert, P.

    2006-04-01

    In the last few years, intense research has been conducted on the topic of laser-accelerated ion sources and their applications. Ultra-bright beams of multi-MeV protons are produced by irradiating thin metallic foils with ultra-intense short laser pulses. These sources open new opportunities for ion beam generation and control, and could stimulate development of compact ion accelerators for many applications, in particular proton therapy of deep-seated tumours. Here we show that scaling laws deduced from fluid models reproduce well the acceleration of proton beams for a large range of laser and target parameters. These scaling laws show that, in our regime, there is an optimum in the laser pulse duration of ˜200 fs-1 ps, with a needed laser energy level of 30 to 100 J, in order to achieve e.g. 200 MeV energy protons necessary for proton therapy.

  3. Scaling Laws for Proton Acceleration from the Rear Surface of Laser-Irradiated Thin Foils

    SciTech Connect

    Fuchs, J.; Antici, P.; D'Humieres, E.; Lefebvre, E.; Borghesi, M.; Cecchetti, C. A.; Brambrink, E.; Audebert, P.; Kaluza, M.; Schreiber, J.; Malka, V.; Manclossi, M.; Meyroneinc, S.; Mora, P.; Toncian, T.; Pepin, H.

    2006-04-07

    In the last few years, intense research has been conducted on the topic of laser-accelerated ion sources and their applications. Ultra-bright beams of multi-MeV protons are produced by irradiating thin metallic foils with ultra-intense short laser pulses. These sources open new opportunities for ion beam generation and control, and could stimulate development of compact ion accelerators for many applications, in particular proton therapy of deep-seated tumours. Here we show that scaling laws deduced from fluid models reproduce well the acceleration of proton beams for a large range of laser and target parameters. These scaling laws show that, in our regime, there is an optimum in the laser pulse duration of {approx}200 fs-1 ps, with a needed laser energy level of 30 to 100 J, in order to achieve e.g. 200 MeV energy protons necessary for proton therapy.

  4. Proton acceleration from magnetized overdense plasmas

    NASA Astrophysics Data System (ADS)

    Kuri, Deep Kumar; Das, Nilakshi; Patel, Kartik

    2017-01-01

    Proton acceleration by an ultraintense short pulse circularly polarized laser from an overdense three dimensional (3D) particle-in-cell (PIC) 3D-PIC simulations. The axial magnetic field modifies the dielectric constant of the plasma, which causes a difference in the behaviour of ponderomotive force in case of left and right circularly polarized laser pulse. When the laser is right circularly polarized, the ponderomotive force gets enhanced due to cyclotron effects generating high energetic electrons, which, on reaching the target rear side accelerates the protons via target normal sheath acceleration process. On the other hand, in case of left circular polarization, the effects get reversed causing a suppression of the ponderomotive force at a short distance and lead towards a rise in the radiation pressure, which results in the effective formation of laser piston. Thus, the axial magnetic field enhances the effect of radiation pressure in case of left circularly polarized laser resulting in the generation of high energetic protons at the target front side. The transverse motion of protons get reduced as they gyrate around the axial magnetic field which increases the beam collimation to some extent. The optimum thickness of the overdense plasma target is found to be increased in the presence of an axial magnetic field.

  5. Capture and Transport of Laser Accelerated Protons by Pulsed Magnetic Fields: Advancements Toward Laser-Based Proton Therapy

    NASA Astrophysics Data System (ADS)

    Burris-Mog, Trevor J.

    The interaction of intense laser light (I > 10 18 W/cm2) with a thin target foil leads to the Target Normal Sheath Acceleration mechanism (TNSA). TNSA is responsible for the generation of high current, ultra-low emittance proton beams, which may allow for the development of a compact and cost effective proton therapy system for the treatment of cancer. Before this application can be realized, control is needed over the large divergence and the 100% kinetic energy spread that are characteristic of TNSA proton beams. The work presented here demonstrates control over the divergence and energy spread using strong magnetic fields generated by a pulse power solenoid. The solenoidal field results in a parallel proton beam with a kinetic energy spread DeltaE/E = 10%. Assuming that next generation lasers will be able to operate at 10 Hz, the 10% spread in the kinetic energy along with the 23% capture efficiency of the solenoid yield enough protons per laser pulse to, for the first time, consider applications in Radiation Oncology. Current lasers can generate proton beams with kinetic energies up to 67.5 MeV, but for therapy applications, the proton kinetic energy must reach 250 MeV. Since the maximum kinetic energy Emax of the proton scales with laser light intensity as Emax ∝ I0.5, next generation lasers may very well accelerate 250 MeV protons. As the kinetic energy of the protons is increased, the magnetic field strength of the solenoid will need to increase. The scaling of the magnetic field B with the kinetic energy of the protons follows B ∝ E1/2. Therefor, the field strength of the solenoid presented in this work will need to be increased by a factor of 2.4 in order to accommodate 250 MeV protons. This scaling factor seems reasonable, even with present technology. This work not only demonstrates control over beam divergence and energy spread, it also allows for us to now perform feasibility studies to further research what a laser-based proton therapy system

  6. {sup 7}Li(p,n) NUCLEAR DATA LIBRARY FOR INCIDENT PROTON ENERGIES TO 150 MEV

    SciTech Connect

    S. MASHNIK; ET AL

    2000-11-01

    Researchers at Los Alamos National Laboratory are considering the possibility of using the Low Energy Demonstration Accelerator (LEDA), constructed at LANSCE for the Accelerator Production of Tritium program (APT), as a neutron source. Evaluated nuclear data are needed for the p+{sup 7}Li reaction, to predict neutron production from thin and thick lithium targets. In this report we describe evaluation methods that make use of experimental data, and nuclear model calculations, to develop an ENDF-formatted data library for incident protons with energies up to 150 MeV. The important {sup 7}Li(p,n{sub 0}) and {sup 7}Li(p,n{sub 1}) reactions are evaluated from the experimental data, with their angular distributions represented using Lengendre polynomial expansions. The decay of the remaining reaction flux is estimated from GNASH nuclear model calculations. This leads to the emission of lower-energy neutrons and other charged particles and gamma-rays from preequilibrium and compound nucleus decay processes. The evaluated ENDF-data are described in detail, and illustrated in numerous figures. We also illustrate the use of these data in a representative application by a radiation transport simulation with the code MCNPX.

  7. DESIGN CRITERIA OF A PROTON FFAG ACCELERATOR.

    SciTech Connect

    RUGGIERO, A.G.

    2004-10-13

    There are two major issues that are to be confronted in the design of a Fixed-Field Alternating-Gradient (FFAG) accelerator, namely: (1) the stability of motion over the large momentum range needed for the beam acceleration, and (2) the compactness of the trajectories over the same momentum range to limit the dimensions of the magnets. There are a numbers of rules that need to be followed to resolve these issues. In particular, the magnet arrangement in the accelerator lattice and the distribution of the bending and focusing fields are to be set properly in accordance with these rules. In this report they describe four of these rules that ought to be applied for the optimum design of a FFAG accelerator, especially in the case of proton beams.

  8. Design of a 10 MeV normal conducting CW proton linac based on equidistant multi-gap CH cavities

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Hui

    2015-09-01

    Continuous wave (CW) high current proton linacs have wide applications as the front end of high power proton machines. The low energy part of such a linac is the most difficult and there is currently no widely accepted solution. Based on the analysis of the focusing properties of the CW low energy proton linac, a 10 MeV low energy normal conducting proton linac based on equidistant seven-gap Cross-bar H-type (CH) cavities is proposed. The linac is composed of ten 7-gap CH cavities and the transverse focusing is maintained by quadrupole doublets located between the cavities. The total length of the linac is less than 6 meters and the average acceleration gradient is about 1.2 MeV/m. The electromagnetic properties of the cavities are investigated by Microwave Studio. At the nominal acceleration gradient the maximum surface electric field in the cavities is less than 1.3 times the Kilpatrick limit, and the Ohmic loss of each cavity is less than 35 kW. Multi-particle beam dynamics simulations are performed with Tracewin code, and the results show that the beam dynamics of the linac are quite stable, the linac has the capability to accelerate up to 30 mA beam with acceptable dynamics behavior. Supported by National Natural Science Foundation of China (11375122, 91126003)

  9. Emittance growth mechanisms for laser-accelerated proton beams.

    PubMed

    Kemp, Andreas J; Fuchs, J; Sentoku, Y; Sotnikov, V; Bakeman, M; Antici, P; Cowan, T E

    2007-05-01

    In recent experiments the transverse normalized rms emittance of laser-accelerated MeV ion beams was found to be < 0.002 mm mrad, which is at least 100 times smaller than the emittance of thermal ion sources used in accelerators [T. E. Cowan, Phys. Rev. Lett. 92, 204801 (2004)]. We investigate the origin for the low emittance of laser-accelerated proton beams by studying several candidates for emittance-growth mechanisms. As our main tools, we use analytical models and one- and two-dimensional particle-in-cell simulations that have been modified to include binary collisions between particles. We find that the dominant source of emittance is filamentation of the laser-generated hot electron jets that drive the ion acceleration. Cold electron-ion collisions that occur before ions are accelerated contribute less than ten percent of the final emittance. Our results are in qualitative agreement with the experiment, for which we present a refined analysis relating emittance to temperature, a better representative of the fundamental beam physics.

  10. 25 MeV Solar Proton Events in Cycle 24 and Previous Cycles

    NASA Astrophysics Data System (ADS)

    Richardson, I. G.; Cane, H. V.; von Rosenvinge, T. T.

    2014-12-01

    We summarize observations of nearly 1000 solar energetic particle events that include 25 MeV protons made by Goddard instruments on various spacecraft (IMPs IV, V, 7, 8, ISEE-3) and by other instruments on SOHO, since 1967, encompassing solar cycles 20 to 24. We also include recent observations of such events from the STEREO spacecraft. These extended observations place studies focusing on Cycles 23 and 24 in a broader context. For example, the time distribution of 25 MeV proton events varies from cycle to cycle such that each cycle is unique. In the current cycle, ~25 MeV proton events were absent during the preceding solar minimum, whereas earlier minima showed occasional, often reasonably intense events, and there have been, so far, fewer exceptionally intense events compared to Cycles 22 and 23, though Cycle 21 also apparently lacked such events.

  11. COMPACT ACCELERATOR CONCEPT FOR PROTON THERAPY

    SciTech Connect

    Caporaso, G; Sampayan, S; Chen, Y; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2006-08-18

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is being developed as a compact flash x-ray radiography source. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be presented.

  12. Polarization measurement of laser-accelerated protons

    SciTech Connect

    Raab, Natascha; Engels, Ralf; Engin, Ilhan; Greven, Patrick; Holler, Astrid; Lehrach, Andreas; Maier, Rudolf; Büscher, Markus; Cerchez, Mirela; Swantusch, Marco; Toncian, Monika; Toncian, Toma; Willi, Oswald; Gibbon, Paul; Karmakar, Anupam

    2014-02-15

    We report on the successful use of a laser-driven few-MeV proton source to measure the differential cross section of a hadronic scattering reaction as well as on the measurement and simulation study of polarization observables of the laser-accelerated charged particle beams. These investigations were carried out with thin foil targets, illuminated by 100 TW laser pulses at the Arcturus laser facility; the polarization measurement is based on the spin dependence of hadronic proton scattering off nuclei in a Silicon target. We find proton beam polarizations consistent with zero magnitude which indicates that for these particular laser-target parameters the particle spins are not aligned by the strong magnetic fields inside the laser-generated plasmas.

  13. Neutron production by a 13C thick target irradiated by 20 90 MeV protons

    NASA Astrophysics Data System (ADS)

    Lhersonneau, G.; Malkiewicz, T.; Vakhtin, D.; Plokhoi, V.; Alyakrinskiy, O.; Barbui, M.; Brandenburg, S.; Dendooven, P.; Cinausero, M.; Kandiev, Ya.; Kettunen, H.; Khlebnikov, S.; Lyapin, V.; Penttilä, H.; Prete, G.; Rizzi, V.; Samarin, S.; Tecchio, L. B.; Trzaska, W. H.; Tyurin, G.

    2008-10-01

    Neutron production using an enriched 13C carbon converter has been measured during the design study of the italian RIB facility SPES. Energy and angular distributions of neutrons emitted by bombarding a 13C target of stopping length with protons in the range of 20 to 90 MeV have been measured by time-of-flight and activation and compared with the prediction of a Monte Carlo code developed at Snezhinsk. At the proton energy of 100 MeV, firstly envisaged for SPES, the gain with respect to a natural C target is less than a factor of two, while yields still compare well with those for 40 MeV deuterons on natural carbon adopted by SPIRAL-II. At energies near 30 MeV the 13C thick target is definitely more prolific than the target of natural carbon, but both yields with protons are clearly lower than the one with deuterons. At the energy of 20 MeV envisaged for a first stage of SPES it might be more efficient to irradiate the uranium target with protons rather than using the two-stage method with converter.

  14. Inelastic scattering of 61 MeV protons by pb-207

    NASA Technical Reports Server (NTRS)

    Owais, M.

    1976-01-01

    Differential cross sections for the excitation of the first four neutron-hole states and the doublet at 2.61 MeV by 61.2 MeV protons were measured. The data are analyzed in terms of both a purely collective model description and a microscopic model supplemented by macroscopic core polarization. A realistic two-body interaction is used and knock-on amplitudes are included. Core polarization is found to be important but represents a relatively smaller contribution than in most nuclei previously studied. A parallel analysis of similar data at lower proton bombarding energies reveals a surprisingly strong energy dependence of the reaction mechanisms.

  15. Discriminating Acquisition of 15-MeV Protons from D-3He Fusion Reaction in LHD

    NASA Astrophysics Data System (ADS)

    Watanabe, Tsuguhiro; Miyazawa, Junichi; Yamada, Hiroshi; Murakami, Sadayoshi; Masuzaki, Suguru; Osakabe, Masaki; Isobe, Mitsutaka; Tokitani, Masayuki; Motojima, Osamu

    Discriminating acquisition of 15-MeV protons is possible in LHD D-3He experiments (D+ beam to 3He plasma), due to the nonaxisymmetric structure of the magnetic field and the ultra-high energy of the fusion products. The collisionless orbits of D-3He fusion products are studied numerically in the standard magnetic field configuration of LHD. Three sets of fusion product acquisition systems are installed in LHD and numerical computations show the possibility of discriminating between fusion products and plasma particles. The acquisition rate of 15-MeV protons is expected to be in the range of 12 ˜ 28 %.

  16. Advanced polymer targets for TNSA regime producing 6 MeV protons at 1016 W/cm2 laser intensity

    NASA Astrophysics Data System (ADS)

    Torrisi, L.

    2017-02-01

    High intensity laser pulses, at an intensity of the order of 1016 W/cm2, are employed to irradiate in vacuum polyethylene terephthalate thin foils in the target normal sheath acceleration (TNSA) regime. The plasma obtained in the forward emission is investigated using ion collectors and semiconductor detectors connected in a time-of-flight configuration, Thomson parabola spectrometer, and X-ray streak camera. The results indicate that the foil thickness of 1 micron is optimal to accelerate protons of up to 6.5 MeV. The high ion acceleration can be due to different effects such as the high absorption in the advanced semicrystalline polymer containing spherulite centers, the high resonant absorption in gold nanoparticles embedded in the polymer, the optimal thickness of the used polymer to enhance the electron density in the forward plasma, and the self-focusing effect induced by preplasma created in front of the irradiated target.

  17. Radiation shielding for 250 MeV protons

    SciTech Connect

    Awschalom, M.

    1987-04-01

    This paper is targetted at personnel who have the responsibility of designing the radiation shielding against neutron fluences created when protons interact with matter. Shielding of walls and roofs are discussed, as well as neutron dose leakage through labyrinths. Experimental data on neutron flux attenuation are considered, as well as some calculations using the intranuclear cascade calculations and parameterizations.

  18. Neutron yield from a thick 13C target irradiated by 90 MeV protons

    NASA Astrophysics Data System (ADS)

    Alyakrinskiy, O.; Andrighetto, A.; Barbui, M.; Brandenburg, S.; Cinausero, M.; Dalena, B.; Dendooven, P.; Fioretto, E.; Lhersonneau, G.; Lyapin, W.; Prete, G.; Simonetti, G.; Stroe, L.; Tecchio, L. B.; Trzaska, W. H.

    2005-08-01

    In the context of the design of an intense source of low and intermediate energy neutrons, the angular and energy distributions of neutrons produced in the interaction of 90 MeV protons in a 13C target, in which the protons are stopped, have been measured by time-of-flight and activation techniques. As compared to 12C the yield is less than a factor two higher, while it is somewhat less than for a 9Be target.

  19. Spin-rotation functions for 500-MeV protons scattered by UCa nuclei

    SciTech Connect

    Berezhnoi, Y.A.; Molev, A.S.; Pilipenko, V.V.; Soznik, A.P.

    1985-06-01

    The polarization characteristics in the elastic and inelastic scattering of 500-MeV protons by UCa nuclei are analyzed, using the theory of multiple diffraction scattering. The investigated proton-spin-rotation functions are very sensitive to the NN-amplitude parameters. A set of NN-amplitude parameters is found that correctly describes the set of measured observables. The analysis yields valuable information on the NN amplitude, especially on its spin-orbit part.

  20. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  1. Laser Acceleration of Quasi-Monoenergetic Protons via Radiation Pressure Driven Thin Foil

    SciTech Connect

    Liu, Chuan S.; Shao Xi; Liu, T. C.; Dudnikova, Galina; Sagdeev, Roald Z.; Eliasson, Bengt

    2011-01-04

    We present a theoretical and simulation study of laser acceleration of quasi-monoenergetic protons in a thin foil irradiated by high intensity laser light. The underlying physics of radiation pressure acceleration (RPA) is discussed, including the importance of optimal thickness and circularly polarized light for efficient acceleration of ions to quasi-monoenergetic beams. Preliminary two-dimensional simulation studies show that certain parameter regimes allow for stabilization of the Rayleigh-Taylor instability and possibility of acceleration of monoenergetic ions to an excess of 200 MeV, making them suitable for important applications such as medical cancer therapy and fast ignition.

  2. Laser Acceleration of Quasi-Monoenergetic Protons via Radiation Pressure Driven Thin Foil

    NASA Astrophysics Data System (ADS)

    Liu, Chuan S.; Shao, Xi; Eliasson, Bengt; Liu, T. C.; Dudnikova, Galina; Sagdeev, Roald Z.

    2011-01-01

    We present a theoretical and simulation study of laser acceleration of quasi-monoenergetic protons in a thin foil irradiated by high intensity laser light. The underlying physics of radiation pressure acceleration (RPA) is discussed, including the importance of optimal thickness and circularly polarized light for efficient acceleration of ions to quasi-monoenergetic beams. Preliminary two-dimensional simulation studies show that certain parameter regimes allow for stabilization of the Rayleigh-Taylor instability and possibility of acceleration of monoenergetic ions to an excess of 200 MeV, making them suitable for important applications such as medical cancer therapy and fast ignition.

  3. The Single Event Upset (SEU) response to 590 MeV protons

    NASA Technical Reports Server (NTRS)

    Nichols, D. K.; Price, W. E.; Smith, L. S.; Soli, G. A.

    1984-01-01

    The presence of high-energy protons in cosmic rays, solar flares, and trapped radiation belts around Jupiter poses a threat to the Galileo project. Results of a test of 10 device types (including 1K RAM, 4-bit microP sequencer, 4-bit slice, 9-bit data register, 4-bit shift register, octal flip-flop, and 4-bit counter) exposed to 590 MeV protons at the Swiss Institute of Nuclear Research are presented to clarify the picture of SEU response to the high-energy proton environment of Jupiter. It is concluded that the data obtained should remove the concern that nuclear reaction products generated by protons external to the device can cause significant alteration in the device SEU response. The data also show only modest increases in SEU cross section as proton energies are increased up to the upper limits of energy for both the terrestrial and Jovian trapped proton belts.

  4. ACCELERATING POLARIZED PROTONS TO 250 GEV

    SciTech Connect

    BAI,M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; ET AL.

    2007-06-25

    The Relativistic Heavy Ion Collider (RHIC) as the first high energy polarized proton collider was designed t o provide polarized proton collisions a t a maximum beam energy of 250 GeV. I t has been providing collisions a t a beam energy of 100 Gel' since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during the acceleration from injection to 100 GeV with careful control of the betatron tunes and the vertical orbit distortions. However, the intrinsic spin resonances beyond 100 GeV are about a factor of two stronger than those below 100 GeV? making it important t o examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were accelerated t o the record energy of 250 GeV in RHIC with a polarization of 46% measured a t top energy in 2006. The polarization measurement as a function of beam energy also shows some polarization loss around 136 GeV, the first strong intrinsic resonance above 100 GeV. This paper presents the results and discusses the sensitivity of the polarization survival t o orbit distortions.

  5. Laser-accelerated proton conversion efficiency thickness scaling

    SciTech Connect

    Hey, D. S.; Foord, M. E.; Key, M. H.; LePape, S. L.; Mackinnon, A. J.; Patel, P. K.; Ping, Y.; Akli, K. U.; Stephens, R. B.; Bartal, T.; Beg, F. N.; Fedosejevs, R.; Friesen, H.; Tiedje, H. F.; Tsui, Y. Y.

    2009-12-15

    The conversion efficiency from laser energy into proton kinetic energy is measured with the 0.6 ps, 9x10{sup 19} W/cm{sup 2} Titan laser at the Jupiter Laser Facility as a function of target thickness in Au foils. For targets thicker than 20 {mu}m, the conversion efficiency scales approximately as 1/L, where L is the target thickness. This is explained by the domination of hot electron collisional losses over adiabatic cooling. In thinner targets, the two effects become comparable, causing the conversion efficiency to scale weaker than 1/L; the measured conversion efficiency is constant within the scatter in the data for targets between 5 and 15 {mu}m, with a peak conversion efficiency of 4% into protons with energy greater than 3 MeV. Depletion of the hydrocarbon contaminant layer is eliminated as an explanation for this plateau by using targets coated with 200 nm of ErH{sub 3} on the rear surface. The proton acceleration is modeled with the hybrid-particle in cell code LSP, which reproduced the conversion efficiency scaling observed in the data.

  6. Double-Relativistic-Electron-Layer Proton Acceleration with High-Contrast Circular-Polarization Laser Pulses

    NASA Astrophysics Data System (ADS)

    Huang, Yong-Sheng; Wang, Nai-Yan; Tang, Xiu-Zhang; Shi, Yi-Jin; Zhang, Shan

    2013-02-01

    A new laser-proton acceleration scheme consisting of two relativistic electron layers, a suprathermal electron layer and a thermal electron cloud is proposed for a0 ≳ 80σ0, where a0 is the normalized laser field and σ0 is the normalized plasma surface density. This is essentially different from target normal sheath acceleration and radiation pressure acceleration. The persistent opaqueness of the first relativistic electron layer for the incident circular-polarization laser pulse and electron recirculation are key points in forming the new acceleration scheme. A proton beam with a uniform energy distribution in the energy range 1-2 GeV and a monoenergetic proton beam with hundreds of MeV have been predicted for a0 = 39.5.

  7. Prompt radiation, shielding and induced radioactivity in a high-power 160 MeV proton linac

    NASA Astrophysics Data System (ADS)

    Magistris, Matteo; Silari, Marco

    2006-06-01

    CERN is designing a 160 MeV proton linear accelerator, both for a future intensity upgrade of the LHC and as a possible first stage of a 2.2 GeV superconducting proton linac. A first estimate of the required shielding was obtained by means of a simple analytical model. The source terms and the attenuation lengths used in the present study were calculated with the Monte Carlo cascade code FLUKA. Detailed FLUKA simulations were performed to investigate the contribution of neutron skyshine and backscattering to the expected dose rate in the areas around the linac tunnel. An estimate of the induced radioactivity in the magnets, vacuum chamber, the cooling system and the concrete shield was performed. A preliminary thermal study of the beam dump is also discussed.

  8. Observations of low-energy /0.3- to 1.8-MeV/ differential spectrums of trapped protons.

    NASA Technical Reports Server (NTRS)

    Venkatesan, D.; Krimigis, S. M.

    1971-01-01

    Measurements of differential energy spectrums of trapped protons obtained from several passes during the period January to November 1969 using the polar orbiting, low-altitude Injun 5 satellite equipped with a special solid-state detector proton-electron telescope are presented. Results reveal the existence of a quasi-persistent peak in the differential energy spectrum in the McIlwain shell parameter (L) range 2 to 2.6 and in the energy range of approximately 0.32 to 0.72 MeV. The fact that the shape of the spectrum is stable for several days or can change with time scales as small as 4 hours suggests an impulsive acceleration mechanism deep in the radiation belts. Other features of the spectrum show that if the spectrum is represented by an exponential form in energy, the dependence of the spectral parameter is in general agreement with diffusion theory over the L range of approximately 2 to 4.

  9. η-meson production in proton-proton collisions at excess energies of 40 and 72 MeV

    NASA Astrophysics Data System (ADS)

    Petrén, H.; Bargholtz, Chr.; Bashkanov, M.; Bogoslavsky, D.; Calén, H.; Clement, H.; Demirörs, L.; Ekström, C.; Fransson, K.; Fäldt, G.; Gerén, L.; Höistad, B.; Ivanov, G.; Jacewicz, M.; Jiganov, E.; Johansson, T.; Keleta, S.; Khakimova, O.; Koch, I.; Kren, F.; Kullander, S.; Kupść, A.; Lindberg, K.; Marciniewski, P.; Morosov, B.; Pauly, C.; Petukhov, Y.; Povtorejko, A.; Schönning, K.; Scobel, W.; Skorodko, T.; Stepaniak, J.; Tegnér, P.-E.; Thörngren Engblom, P.; Tikhomirov, V.; Wilkin, C.; Wolke, M.; Zabierowski, J.; Zartova, I.; Złomańczuk, J.

    2010-11-01

    The production of η mesons in proton-proton collisions has been studied using the WASA detector at the CELSIUS storage ring at excess energies of Q=40 MeV and Q=72 MeV. The η was detected through its 2γ decay in a near-4π electromagnetic calorimeter, whereas the protons were measured by a combination of straw chambers and plastic scintillator planes in the forward hemisphere. About 6.9×104 and 9.3×104 events were found at Q=40 MeV and Q=72 MeV, respectively, with background contributions of less than 5%. A simple parametrization of the production cross section in terms of low partial waves was used to evaluate the acceptance corrections. Strong evidence was found for the influence of higher partial waves. The Dalitz plots show the presence of p waves in both the pp and the η{pp} systems and the angular distributions of the η in the center-of-mass frame suggest the influence of d-wave η mesons.

  10. {eta}-meson production in proton-proton collisions at excess energies of 40 and 72 MeV

    SciTech Connect

    Petren, H.; Calen, H.; Fransson, K.; Faeldt, G.; Hoeistad, B.; Jacewicz, M.; Johansson, T.; Keleta, S.; Koch, I.; Kullander, S.; Kupsc, A.; Marciniewski, P.; Schoenning, K.; Wolke, M.; Zlomanczuk, J.; Bargholtz, Chr.; Geren, L.; Lindberg, K.; Tegner, P.-E.; Thoerngren Engblom, P.

    2010-11-15

    The production of {eta} mesons in proton-proton collisions has been studied using the WASA detector at the CELSIUS storage ring at excess energies of Q=40 MeV and Q=72 MeV. The {eta} was detected through its 2{gamma} decay in a near-4{pi} electromagnetic calorimeter, whereas the protons were measured by a combination of straw chambers and plastic scintillator planes in the forward hemisphere. About 6.9x10{sup 4} and 9.3x10{sup 4} events were found at Q=40 MeV and Q=72 MeV, respectively, with background contributions of less than 5%. A simple parametrization of the production cross section in terms of low partial waves was used to evaluate the acceptance corrections. Strong evidence was found for the influence of higher partial waves. The Dalitz plots show the presence of p waves in both the pp and the {eta}{l_brace}pp{r_brace} systems and the angular distributions of the {eta} in the center-of-mass frame suggest the influence of d-wave {eta} mesons.

  11. Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in microcone targets

    SciTech Connect

    Gaillard, S. A.; Kluge, T.; Bussmann, M.; Cowan, T. E.; Flippo, K. A.; Offermann, D. T.; Gall, B.; Lockard, T.; Sentoku, Y.; Geissel, M.; Schollmeier, M.

    2011-05-15

    We present experimental results showing a laser-accelerated proton beam maximum energy cutoff of 67.5 MeV, with more than 5 x 10{sup 6} protons per MeV at that energy, using flat-top hollow microcone targets. This result was obtained with a modest laser energy of {approx}80 J, on the high-contrast Trident laser at Los Alamos National Laboratory. From 2D particle-in-cell simulations, we attribute the source of these enhanced proton energies to direct laser-light-pressure acceleration of electrons along the inner cone wall surface, where the laser light wave accelerates electrons just outside the surface critical density, in a potential well created by a shift of the electrostatic field maximum with respect to that of the magnetic field maximum. Simulations show that for an increasing acceleration length, the continuous loading of electrons into the accelerating phase of the laser field yields an increase in high-energy electrons.

  12. Analysis of latent tracks for MeV protons in CR-39

    NASA Astrophysics Data System (ADS)

    Kar, S.; Borghesi, M.; Romagnani, L.; Takahashi, S.; Zayats, A.; Malka, V.; Fritzler, S.; Schiavi, A.

    2007-02-01

    For protons of energy up to a few MeV, the temporal evolution of etched latent tracks in CR-39 nuclear track detector has been numerically modeled by assuming that the electronic energy loss of the protons governs the latent track formation. The technique is applied in order to obtain the energy spectrum of high intensity laser driven proton beams, with high accuracy. The precise measurement of the track length and areal track density have been achieved by scanning short etched, highly populated CR-39 employing atomic force microscope.

  13. 200 MeV Proton Radiography Studies with a Hand Phantom Using a Prototype Proton CT Scanner

    PubMed Central

    Plautz, Tia; Bashkirov, V.; Feng, V.; Hurley, F.; Johnson, R.P.; Leary, C.; Macafee, S.; Plumb, A.; Rykalin, V.; Sadrozinski, H.F.-W.; Schubert, K.; Schulte, R.; Schultze, B.; Steinberg, D.; Witt, M.; Zatserklyaniy, A.

    2014-01-01

    Proton radiography has applications in patient alignment and verification procedures for proton beam radiation therapy. In this paper, we report an experiment which used 200 MeV protons to generate proton energy-loss and scattering radiographs of a hand phantom. The experiment used the first-generation proton CT scanner prototype, which was installed on the research beam line of the clinical proton synchrotron at Loma Linda University Medical Center (LLUMC). It was found that while both radiographs displayed anatomical details of the hand phantom, the energy-loss radiograph had a noticeably higher resolution. Nonetheless, scattering radiography may yield more contrast between soft and bone tissue than energy-loss radiography, however, this requires further study. This study contributes to the optimization of the performance of the next-generation of clinical proton CT scanners. Furthermore, it demonstrates the potential of proton imaging (proton radiography and CT), which is now within reach of becoming available as a new, potentially low-dose medical imaging modality. PMID:24710156

  14. Design study of the ESS-Bilbao 50 MeV proton beam line for radiobiological studies

    NASA Astrophysics Data System (ADS)

    Huerta-Parajon, M.; Martinez-Ballarin, R.; Abad, E.

    2015-02-01

    The ESS-Bilbao proton accelerator facility has been designed fulfilling the European Spallation Source (ESS) specifications to serve as the Spanish contribution to the ESS construction. Furthermore, several applications of the ESS-Bilbao proton beam are being considered in order to contribute to the knowledge in the field of radiobiology, materials and aerospace components. Understanding of the interaction of radiation with biological systems is of vital importance as it affects important applications such as cancer treatment with ion beam therapy among others. ESS-Bilbao plans to house a facility exclusively dedicated to radiobiological experiments with protons up to 50 MeV. Beam line design, optimisation and initial calculations of flux densities and absorbed doses were undertaken using the Monte Carlo simulation package FLUKA. A proton beam with a flux density of about 106 protons/cm2 s reaches the water sample with a flat lateral distribution of the dose. The absorbed dose at the pristine Bragg peak calculated with FLUKA is 2.4 ± 0.1 Gy in 1 min of irradiation time. This value agrees with the clinically meaningful dose rates, i.e. around 2 Gy/min, used in hadrontherapy. Optimisation and validation studies in the ESS-Bilbao line for radiobiological experiments are detailed in this article.

  15. Irradiation of thin diamond detectors and radiation hardness tests using MeV protons

    NASA Astrophysics Data System (ADS)

    Grilj, V.; Skukan, N.; Jakšić, M.; Kada, W.; Kamiya, T.

    2013-07-01

    Although numerous studies have confirmed the superb radiation hardness of diamond for high-energy (above 100 MeV) protons, almost no data have been reported in the MeV energy range. Because the interaction mechanism that dominates the displacement damage cross section is different for these two energy regimes, it could be misleading to simply extrapolate the results of previous papers down to low energies. Therefore, the radiation tolerance of a 50 μm thick single-crystal CVD diamond detector was tested by irradiating it with 4.5 MeV protons. The scanning microbeam allowed for the selective introduction of damage to a small area of the detector. The ion beam-induced current (IBIC) was used to monitor the charge collection efficiency (CCE) degradation due to the electrically active defects produced. The irradiation was stopped when a signal degradation of nearly 3% was observed. For comparison, the procedure was repeated on a 50 μm thick silicon surface barrier detector (SSBD), for which a significantly higher proton fluence was required to reach the same signal decrease as in the diamond detector. This result can be explained by the different recombination rates of the vacancies and interstitials created in the two materials. The transport properties of electrons and holes in the damaged and virgin areas of the diamond detector were also investigated by 500 keV protons and 6 MeV carbon ions as short-range IBIC probes. The mobility-lifetime products calculated for both charge carriers after fitting the single-carrier Hecht equation indicated that there was more pronounced electron trapping by the radiation-induced defects. The frequently reported effect of polarization in diamond was successfully avoided for 500 keV protons but still remained for 6 MeV carbon ions because an order of magnitude higher ionization rate.

  16. 25 MeV solar proton events in Cycle 24 and previous cycles

    NASA Astrophysics Data System (ADS)

    Richardson, Ian G.; von Rosenvinge, Tycho T.; Cane, Hilary V.

    2017-08-01

    We summarize observations of around a thousand solar energetic particle (SEP) events since 1967 that include ∼25 MeV protons, made by various near-Earth spacecraft (IMPs 4, 5, 7, 8, ISEE 3, SOHO), that encompass Solar Cycle 20 to the current cycle (24). We also discuss recent observations of similar SEP events in Cycle 24 made by the STEREO spacecraft. The observations show, for example, that the time distribution of ∼25 MeV proton events varies from cycle to cycle. In particular, the time evolution of the SEP occurrence rate in Cycle 24 is strongly asymmetric between the northern and southern solar hemispheres, and tracks the sunspot number in each hemisphere, whereas Cycle 23 was more symmetric. There was also an absence of 25 MeV proton events during the solar minimum preceding Cycle 24 (other minima show occasional, often reasonably intense events). So far, events comparable to the exceptionally intense events detected in Cycles 22 and 23 have not been observed at Earth in Cycle 24, though Cycle 21 (the largest of the cycles considered here) also apparently lacked such events. We note a correlation between the rates of intense 25 MeV proton events and ;ground level enhancements; (GLEs) observed by neutron monitors, since 1967, and conclude that the number of ;official; GLEs (1) observed to date in Cycle 24 appears to be significantly lower than expected (5 to 7 ± 1) based on the rate of intense 25 MeV proton events in this cycle.

  17. Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets

    DOE PAGES

    Obst, Lieselotte; Gode, Sebastian; Rehwald, Martin; ...

    2017-08-31

    We report on recent experimental results deploying a continuous cryogenic hydrogen jet as a debris-free, renewable laser-driven source of pure proton beams generated at the 150 TW ultrashort pulse laser Draco. Efficient proton acceleration reaching cut-off energies of up to 20 MeV with particle numbers exceeding 109 particles per MeV per steradian is demonstrated, showing for the first time that the acceleration performance is comparable to solid foil targets with thicknesses in the micrometer range. Two different target geometries are presented and their proton beam deliverance characterized: cylindrical (Ø 5 μm) and planar (20 μm × 2 μm). In bothmore » cases typical Target Normal Sheath Acceleration emission patterns with exponential proton energy spectra are detected. Significantly higher proton numbers in laser-forward direction are observed when deploying the planar jet as compared to the cylindrical jet case. As a result, this is confirmed by two-dimensional Particle-in-Cell (2D3V PIC) simulations, which demonstrate that the planar jet proves favorable as its geometry leads to more optimized acceleration conditions.« less

  18. The response of CR-39 nuclear track detector to 1-9 MeV protons

    DOE PAGES

    Sinenian, N.; Rosenberg, M. J.; Manuel, M.; ...

    2011-10-28

    The response of CR-39 nuclear track detector (TasTrak®) to protons in the energy range of 0.92-9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. The effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather thanmore » the age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.« less

  19. A new proton fluence model for E greater than 10 MeV

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Armstrong, T. P.; Dao-Gibner, L.; Silverman, S.

    1988-01-01

    Researchers describe a new engineering model for the fluence of protons with energies greater than 10 MeV. The data set used is a combination of observations made primarily from the Earth's surface between 1956 and 1963 and observations made from spacecraft in the vicinity of Earth between 1963 and 1985. With this data set we find that the distinction between ordinary proton events and anomalously large proton events made in earlier work disappears. The greater than 10 MeV fluences at 1 AU calculated with the new model are about twice those expected on the basis of models now in use. In contrast to earlier models, results do not depend critically on the fluence from any one event.

  20. The response of CR-39 nuclear track detector to 1-9 MeV protons

    SciTech Connect

    Sinenian, N.; Rosenberg, M. J.; Manuel, M.; McDuffee, S. C.; Casey, D. T.; Zylstra, A. B.; Rinderknecht, H. G.; Johnson, M. Gatu; Seguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.

    2011-10-28

    The response of CR-39 nuclear track detector (TasTrak®) to protons in the energy range of 0.92-9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. The effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather than the age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.

  1. The design of the 300 MeV proton microprobe system in Harbin

    NASA Astrophysics Data System (ADS)

    Dou, Yanxin; Jamieson, David N.; Liu, Jianli; Lv, Kun; Li, Liyi

    2017-08-01

    In Harbin, a 300 MeV proton microprobe system is under development for many applications in space science studies including upset studies in microelectronic devices, radiation hardness of materials for satellites and radiation effects in human tissues. The microprobe system, as a component of Space Environment Simulation Research Infrastructure (SESRI), will employ a purpose-built synchrotron to provide the proton beam. Our design goal for the 300 MeV proton microprobe is for energy spread 0.1%, emittance 10π mm mrad, intensity 109 per pulse and a probe size of 10 μm. A magnetic quadrupole lens system will be used to focus the microprobe with a demagnification of 50. This paper presents a systematic investigation of the ion beam optics to optimize the design. The feasibility of the design for the Harbin system is evaluated by comparison with existing microprobe systems designed for high energy ions.

  2. Study of proton induced reactions on niobium targets up to 70 MeV

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Takács, S.; Tárkányi, F.; Baba, M.; Corniani, E.; Shubin, Yu. N.

    2008-12-01

    Niobium is a metal with important technological applications: use as alloying element to increase strength of super alloys, as thin layer for tribological applications, as superconductive material, in high temperature engineering systems, etc. In the frame of a systematic study of activation cross-sections of charged particle induced reactions on structural materials proton induced excitation functions on Nb targets were determined with the aim of applications in accelerator and reactor technology and for thin layer activation (TLA). The charged particle activation cross-sections on this element are also important for yield calculation of medical isotope production ( 88,89Zr, 86,87,88Y) and for dose estimation in PET targetry. As Niobium is a monoisotopic element it is an ideal target material to test nuclear reaction theories. We present here the integral excitation functions of 93Nb(p,x) 90,93mMo, 92m,91m,90Nb, 86,88,89Zr, 86,87mg,88Y and 85Sr in the energy range 30-70 MeV, some measured for the first time at this energy range. The results were compared with the theoretical cross-sections calculated by means of the code ALICE-IPPE and with the literature data. The calculations have been carried out without any parameter adjustment. The theory reproduces the shape of the measured results well and magnitude is also acceptable. Thick target yields calculated from our fitted cross-section give reliable estimations for production of medically relevant radioisotopes and for dose estimation in accelerator technology.

  3. Laser driven MeV proton beam focussing by auto-charged electrostatic lens configuration

    NASA Astrophysics Data System (ADS)

    Kar, S.; Markey, K.; Simpson, P. T.; Bellei, C.; Green, J. S.; Nagel, S. R.; Kneip, S.; Carroll, D. C.; Dromey, B.; Willingale, L.; Clark, E. L.; McKenna, P.; Najmudin, Z.; Krushelnick, K.; Norreys, P.; Clarke, R. J.; Neely, D.; Borghesi, M.; Schiavi, A.; Zepf, M.

    2008-06-01

    Significant reduction of inherent large divergence of the laser driven MeV proton beams is achieved by strong (of the order of 109 V/m) electrostatic focussing field generated in the confined region of a suitably shaped structure attached to the proton generating foil. The scheme exploits the positively charging of the target following an intense laser interaction. Reduction in the proton beam divergence, and commensurate increase in proton flux is observed while preserving the beam laminarity. The underlying mechanism has been established by the help of particle tracing simulations. Dynamic focussing power of the lens, mainly due to the target discharging, can also be exploited in order to bring up the desired chromaticity of the lens for the proton beams of broad energy range.

  4. Enhancement of proton acceleration field in laser double-layer target interaction

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Kong, Q.; Kawata, S.; Izumiyama, T.; Li, X. F.; Yu, Q.; Wang, P. X.; Ma, Y. Y.

    2013-07-01

    A mechanism is proposed to enhance a proton acceleration field in laser plasma interaction. A double-layer plasma with different densities is illuminated by an intense short pulse. Electrons are accelerated to a high energy in the first layer by the wakefield. The electrons accelerated by the laser wakefield induce the enhanced target normal sheath (TNSA) and breakout afterburner (BOA) accelerations through the second layer. The maximum proton energy reaches about 1 GeV, and the total charge with an energy higher than 100 MeV is about several tens of μC/μm. Both the acceleration gradient and laser energy transfer efficiency are higher than those in single-target-based TNSA or BOA. The model has been verified by 2.5D-PIC simulations.

  5. Enhancement of proton acceleration field in laser double-layer target interaction

    SciTech Connect

    Gu, Y. J.; Kong, Q.; Li, X. F.; Yu, Q.; Wang, P. X.; Kawata, S.; Izumiyama, T.; Ma, Y. Y.

    2013-07-15

    A mechanism is proposed to enhance a proton acceleration field in laser plasma interaction. A double-layer plasma with different densities is illuminated by an intense short pulse. Electrons are accelerated to a high energy in the first layer by the wakefield. The electrons accelerated by the laser wakefield induce the enhanced target normal sheath (TNSA) and breakout afterburner (BOA) accelerations through the second layer. The maximum proton energy reaches about 1 GeV, and the total charge with an energy higher than 100 MeV is about several tens of μC/μm. Both the acceleration gradient and laser energy transfer efficiency are higher than those in single-target-based TNSA or BOA. The model has been verified by 2.5D-PIC simulations.

  6. Medical Implication of Quasi-monoenergetic Proton Generated from Laser Acceleration of Ultra-thin Multi-Ion Foil

    NASA Astrophysics Data System (ADS)

    Liu, Tung-Chang; Shao, Xi; Su, Jao-Jang; Liu, Chuan-Sheng; He, Minqing; Eliasson, Bengt; Sagdeev, Roald

    2011-10-01

    Recent work by Liu et al. [2011] (presented in this conference) shows that high quality quasi-monoenergetic proton beams can be generated in laser acceleration of an ultra-thin multi-ion, i.e. carbon-proton, foil. The proton acceleration is due to the combination of radiation pressure and heavy-ion Coulomb repulsion. Using a normalized peak laser amplitude of a0 = 5 and a carbon-proton target with 10% protons, our PIC simulation shows that the resulting quasi-monoenergetic (energy spread < 10%) proton energy is ~ 70 MeV. To assess the feasibility of laser-proton cancer therapy with such a proton accelerator, simulations are carried out to model the interaction of protons with water and determine the radiation dosage deposition for particle beams produced from the PIC simulation of laser acceleration of multi-ion target. We used the SRIM code to calculate the depth and lateral dose distribution of protons energized by laser radiation pressure. The overall dosage deposition map from the proton beam is derived by superposing the radiation dosage contributed from each particle fed from the PIC simulation. Comparison between the dosage map produced from quasi-monoenergetic protons generated from laser acceleration of single ion and multi-ion targets is also presented.

  7. Proton-induced polonium production in massive lead bismuth target irradiated by 660 MeV protons

    NASA Astrophysics Data System (ADS)

    Polanski, Aleksander; Petrochenkov, Sergey; Pohorecki, Wladyslaw

    2006-06-01

    The paper presents study of polonium production in bismuth foils placed in lead target. Proton-induced production of residual nuclei 206Po, 207Po, 208Po, 209Po, 210Po in 209Bi foils placed in lead target irradiated by 660 MeV protons was calculated. A comparison with calculated spatial distribution of polonium production using an MCNPX code and experimental results has been performed. The results of calculation will be useful for design of target of Subcritical Assembly in Dubna (SAD).

  8. Response functions of Fuji imaging plates to monoenergetic protons in the energy range 0.6-3.2 MeV.

    PubMed

    Bonnet, T; Comet, M; Denis-Petit, D; Gobet, F; Hannachi, F; Tarisien, M; Versteegen, M; Aleonard, M M

    2013-01-01

    We have measured the responses of Fuji MS, SR, and TR imaging plates (IPs) to protons with energies ranging from 0.6 to 3.2 MeV. Monoenergetic protons were produced with the 3.5 MV AIFIRA (Applications Interdisciplinaires de Faisceaux d'Ions en Région Aquitaine) accelerator at the Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG). The IPs were irradiated with protons backscattered off a tantalum target. We present the photo-stimulated luminescence response of the IPs together with the fading measurements for these IPs. A method is applied to allow correction of fading effects for variable proton irradiation duration. Using the IP fading corrections, a model of the IP response function to protons was developed. The model enables extrapolation of the IP response to protons up to proton energies of 10 MeV. Our work is finally compared to previous works conducted on Fuji TR IP response to protons.

  9. Particle selection and beam collimation system for laser-accelerated proton beam therapy.

    PubMed

    Luo, Wei; Fourkal, Eugene; Li, Jinsheng; Ma, Chang-Ming

    2005-03-01

    In a laser-accelerated proton therapy system, the initial protons have broad energy and angular distributions, which are not suitable for direct therapeutic applications. A compact particle selection and collimation device is needed to deliver small pencil beams of protons with desired energy spectra. In this work, we characterize a superconducting magnet system that produces a desired magnetic field configuration to spread the protons with different energies and emitting angles for particle selection. Four magnets are set side by side along the beam axis; each is made of NbTi wires which carry a current density of approximately 10(5) A/cm2 at 4.2 K, and produces a magnetic field of approximately 4.4 T in the corresponding region. Collimation is applied to both the entrance and the exit of the particle selection system to generate a desired proton pencil beam. In the middle of the magnet system, where the magnetic field is close to zero, a particle selection collimator allows only the protons with desired energies to pass through for therapy. Simulations of proton transport in the presence of the magnetic field show that the selected protons have successfully refocused on the beam axis after passing through the magnetic field with the optimal magnet system. The energy spread for any given characteristic proton energy has been obtained. It is shown that the energy spread is a function of the magnetic field strength and collimator size and reaches the full width at half maximum of 25 MeV for 230 MeV protons. Dose distributions have also been calculated with the GEANT3 Monte Carlo code to study the dosimetric properties of the laser-accelerated proton beams for radiation therapy applications.

  10. INJECTOR PARTICLE SIMULATION AND BEAM TRANSPORT IN A COMPACT LINEAR PROTON ACCELERATOR

    SciTech Connect

    Blackfield, D T; Chen, Y J; Harris, J; Nelson, S; Paul, A; Poole, B

    2007-06-18

    A compact Dielectric Wall Accelerator (DWA), with field gradient up to 100 MW/m is being developed to accelerate proton bunches for use in cancer therapy treatment. The injector must create a proton pulse up to several hundred picoseconds, which is then shaped and accelerated with energies up to 250 MeV. The Particle-In-Cell (PIC) code LSP is used to model several aspects of this design. First, we use LSP to obtain the voltage waveform in the A-K gap that will produce a proton bunch with the requisite charge. We then model pulse compression and shaping in the section between the A-K gap and the DWA. We finally use LSP to model the beam transport through the DWA.

  11. Emittance measurements from the LLUMC proton accelerator

    NASA Astrophysics Data System (ADS)

    Coutrakon, G.; Gillespie, G. H.; Hubbard, J.; Sanders, E.

    2005-12-01

    A new method of calculating beam emittances at the extraction point of a particle accelerator is presented. The technique uses the optimization programs NPSOL and MINOS developed at Stanford University in order to determine the initial values of beam size, divergence and correlation parameters (i.e. beam sigma matrix, σij) that best fit measured beam parameters. These σij elements are then used to compute the Twiss parameters α, β, and the phase space area, ε, of the beam at the extraction point. Beam size measurements in X and Y throughout the transport line were input to the optimizer along with the magnetic elements of bends, quads, and drifts. The σij parameters were optimized at the accelerator's extraction point by finding the best agreement between these measured beam sizes and those predicted by TRANSPORT. This expands upon a previous study in which a "trial and error" technique was used instead of the optimizer software, and which yielded similar results. The Particle Beam Optics Laboratory (PBO Lab™) program used for this paper integrates particle beam optics and other codes into a single intuitive graphically-based computing environment. This new software provides a seamless interface between the NPSOL and MINOS optimizer and TRANSPORT calculations. The results of these emittance searches are presented here for the eight clinical energies between 70 and 250 MeV currently being used at LLUMC.

  12. Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses

    PubMed Central

    Bulanov, Stepan S.; Brantov, Andrei; Bychenkov, Valery Yu.; Chvykov, Vladimir; Kalinchenko, Galina; Matsuoka, Takeshi; Rousseau, Pascal; Reed, Stephen; Yanovsky, Victor; Krushelnick, Karl; Litzenberg, Dale William; Maksimchuk, Anatoly

    2008-01-01

    Proton acceleration by high-intensity laser pulses from ultrathin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10−11 achieved on the Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 1022 W∕cm2 that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-in-cell (PIC) computer simulations of proton acceleration in the directed Coulomb explosion regime from ultrathin double-layer (heavy ions∕light ions) foils of different thicknesses were performed under the anticipated experimental conditions for the Hercules laser with pulse energies from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 μm (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the maximum proton energy on the foil thickness has been found and the laser pulse characteristics have been matched with the thickness of the target to ensure the most efficient acceleration. Moreover, the proton spectrum demonstrates a peaked structure at high energies, which is required for radiation therapy. Two-dimensional PIC simulations show that a 150–500 TW laser pulse is able to accelerate protons up to 100–220 MeV energies. PMID:18561651

  13. Enhancement of proton energy by polarization switch in laser acceleration of multi-ion foils

    SciTech Connect

    Liu, Tung-Chang; Shao, Xi; Liu, Chuan-Sheng; Eliasson, Bengt; Wang, Jyhpyng; Chen, Shih-Hung

    2013-10-15

    We present a scheme to significantly increase the energy of quasi-monoenergetic protons accelerated by a laser beam without increasing the input power. This improvement is accomplished by first irradiating the foil several wave periods with circular polarization and then switching the laser to linear polarization. The polarization switch increases the electron temperature and thereby moves more electrons ahead of the proton layer, resulting in a space charge electric field pushing the protons forwards. The scaling of the proton energy evolution with respect to the switching time is studied, and an optimal switching time is obtained. The proton energy for the case with optimal switching time can reach about 80 MeV with an input laser power of 70 TW, an improvement of more than 30% compared to the case without polarization switch.

  14. Acceleration of protons in plasma produced from a thin plastic or aluminum target by a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Rosinski, M.; Badziak, J.; Parys, P.; Zaras-Szydlowska, A.; Ryc, L.; Torrisi, L.; Szydlowski, A.; Malinowska, A.; Kaczmarczyk, B.; Makowski, J.; Torrisi, A.

    2016-05-01

    The acceleration of protons in plasma produced from thin mylar (3.5 μ m) and aluminum (2 μm) targets by a 45-fs laser pulses with the energy of 400 mJ and the intensity of up to 1019 W/cm2 was investigated. Characteristics of forward-accelerated protons were measured by the time-of-flight method. In the measurements, special attention was paid to the dependence of proton beam parameters on the laser focus position (FP) in relation to the target surface which resulted in the intensity change within a factor of ~ 10. It was observed that in the case of using the Mylar target, the dependence of both the maximum (Epmax) and the mean (langleEprangle) proton energy on |Δx| is clearly non-symmetric with regard to the point where FP = 0 (the focal plane on the target surface) and highest proton energies are achieved when the focal plane is situated in front of the target. In particular, for the target with the thickness of 3.5 μ m Epmax reached 2.2 MeV for FP = +50 μm while for FP = 0 and FP = -100 μm the maximum proton energies reached only 1.6 MeV and 1.3 MeV, respectively. For the aluminum target of 2 μm thickness Ep changed only within ~ 40% and the highest proton energies reached 2.4 MeV.

  15. The dependence of single event upset on proton energy /15-590 MeV/

    NASA Technical Reports Server (NTRS)

    Nichols, D. K.; Price, W. E.; Andrews, J. L.

    1982-01-01

    Low earth orbit satellite and Jupiter orbiter probe semiconductor devices may incur soft errors or single event upsets, manifested as bit flips, during exposure to such nuclear particles or heavy ions as trapped protons with energies ranging up to 1000 MeV. Experimental data is given on the average proton fluence needed to cause a bit flip as a function of proton energy for isoplanar bipolar TTL RAMs. Error dependence data shape and threshold energy can be related to the existing body of theoretical data on energy deposition following proton nuclear reactions. Experimental data also show that the relative cross sectional amplitude for functionally identical devices can be related to the device's power consumption.

  16. Calculation of A x for the Proton-Deuteron Breakup Reaction at 135 MeV

    NASA Astrophysics Data System (ADS)

    Eslami-Kalantari, M.; Mehmandoost-Khajeh-Dad, A. A.; Shafaei, M. A.; Amir-Ahmadi, H. R.; Biegun, A.; Gašparic, I.; Joulaeizadeh, L.; Kalantar-Nayestanaki, N.; Kistryn, St.; Kozela, A.; Mardanpour, H.; Messchendorp, J. G.; Moeini, H.; Ramazani-Moghaddam-Arani, A.; Shende, S. V.; Stephan, E.; Sworst, R.

    2013-08-01

    Observables in proton-deuteron scattering are sensitive probes of the nucleon-nucleon interaction and three-nucleon force effects (3NF). Several facilities in the world, including Kernfysisch Versneller Instituut (KVI), allow a detailed study a few-nucleon interaction below the pion-production threshold exploiting polarized proton and deuteron beams. In this contribution we explored 3NF effects in the break-up scattering process by performing a measurement of differential cross section and the analyzing power, especially the x component of the analyzing power, using a 135 MeV polarized-proton beam impinging on a liquid-deuteron target. The proton-deuteron breakup reaction leads to a final state with three free particles and a rich phase space that allows us to study observables for continuous set of kinematical configurations of the outgoing nucleons. The results are interpreted with the help of state-of-the-art Faddeev calculations.

  17. Elastic scattering of polarized protons on deuterium at 800 MeV

    SciTech Connect

    Weston, G.S.

    1984-07-01

    A specific set of spin transfer coefficients has been measured for proton-deuteron elastic scattering at 800 MeV using an unpolarized liquid deuterium target. The experiment was done using the High Resolution Spectrometer (HRS) at the Los Alamos Meson Physics Facility (LAMPF) with a polarized proton beam. The scattered proton spin direction was determined using the Focal Plane Polarimeter (FPP) of the HRS, which employs a carbon analyzer. Some of the spin dependent parameters measured in this experiment are of considerable interest because they provide selective information about the nucleon-nucleon (NN) amplitude. Since the deuteron is the simplest bound nucleus, pd elastic scattering is particularly well suited for testing multiple scattering theories. These measurements will also be used to eventually determine the full pd collision matrix, which contains all possible information about the scattering process. In addition, the experimental setup is described for a polarized proton-polarized deuterium target spin transfer experiment also done at the HRS at 800 MeV incident proton energy. 71 references.

  18. Microscopic description of 295 MeV polarized protons incident on Sn isotopes

    SciTech Connect

    Haider, W.; Sharma, Manjari; Gambhir, Y. K.; Kailas, S.

    2010-03-15

    We present a Brueckner theory analysis of proton-scattering data from Sn isotopes at 295 MeV. A soft-core Urbana v{sub 14} internucleon potential has been used to calculate reaction matrices that are folded with point-nucleon (both proton and neutron) densities obtained in the relativistic mean field (RMF) framework to calculate the optical potential. We get reasonably satisfactory agreement with the differential cross-section and analyzing-power data using only three scaling parameters for all isotopes. It is observed that the calculated neutron skin increases smoothly as the neutron number increases, in conformity with earlier findings.

  19. A beam intensity monitor for the Loma Linda cancer therapy proton accelerator.

    PubMed

    Coutrakon, G; Miller, D; Kross, B J; Anderson, D F; DeLuca, P; Siebers, J

    1991-01-01

    A beam intensity monitor was tested in a 230-MeV proton beam at the Loma Linda Proton Therapy Accelerator during its commissioning at Fermi National Accelerator Laboratory. The intensity monitor was designed to regulate the beam intensity extracted from the proton synchrotron. The proton beam is tunable between 70 and 250 MeV with an adjustable intensity between 10(10) and 10(11) protons per spill. A beam spill is typically 1 s long with a 2-s repetition period. The intensity monitor must be radiation hard, expose minimum mass to the beam, and measure intensity to 1% in 1-ms time intervals. To this end, a 5-cm-thick xenon gas scintillator optically coupled to a photomultiplier tube (PMT) was tested to measure its response to the proton beam. The gas cell was operated at 1.2 atm of pressure and has 12.7-microns-thick titanium entrance and exit foils. The total mass exposed to the beam is 0.14 g/cm2 and is dominated by the titanium windows. This mass corresponds to a range attenuation equal to 1.4 mm of water. The energy lost to the xenon gas is about 70 keV per proton. Each passing proton will produce approximately 2000 photons. With a detection efficiency on the order of 0.05% for this UV light, one would anticipate over 10(10) photoelectrons per second. In a 1-ms time bin there will be approximately 10(7) photoelectrons. This yields a resolution limited by systematics. For unregulated 0.4-s proton spills, we observe a response bandwidth in excess of 10(4) Hz. While signal-to-noise and linearity were not easily measured, we estimate as few as 10(3) protons can be observed suggesting a dynamic range in excess of 10(5) is available.

  20. A proton medical accelerator by the SBIR route: An example of technology transfer

    SciTech Connect

    Martin, R.L.

    1988-01-01

    Medical facilities for radiation treatment of cancer with protons have been established in many laboratories throughout the world. Essentially all of these have been designed as physics facilities, however, because of the requirement for protons up to 250 MeV. Most of the experience in this branch of accelerator technology lies in the national laboratories and a few large universities. A major issue is the transfer of this technology to the commercial sector to provide hospitals with simple, reliable, and relatively inexpensive accelerators for this application. The author has chosen the SBIR route to accomplish this goal. ACCTEK Associates have received grants from the National Cancer Institute for development of the medical accelerator and beam delivery systems. Considerable encouragement and help has been received from Argonne National Laboratory and the Department of Energy. The experiences to date and the pros and cons on this approach to commercializing medical accelerators are described. 4 refs., 1 fig.

  1. Elastic scattering of 400-MeV protons by Pb-208

    NASA Technical Reports Server (NTRS)

    Hutcheon, D. A.; Cameron, J. M.; Liljestrand, R. P.; Kitching, P.; Miller, C. A.; Mcdonald, W. J.; Sheppard, D. M.; Olsen, W. C.; Neilson, G. C.; Sherif, H. S.

    1981-01-01

    Cross-section and analyzing-power angular distributions for elastic scattering of 400-MeV protons by Pb-208 have been measured between 3 and 51 deg. Results have been compared to second-order Kerman-McManus-Thaler (1959) calculations of the optical potential. There is evidence that free nucleon-nucleon scattering amplitudes do not adequately describe nucleon propagation in nuclear matter at this energy.

  2. Isotopic production cross sections in proton-nucleus collisions at 200 MeV

    SciTech Connect

    Machner, H.; Aschman, D.G.; Steyn, D.; Baruth-Ram, K.; Carter, J.; Sideras-Haddad, E.; Sellschop, J.P.F.; Cowley, A.A.; Goldenbaum, F.; Nangu, B.M.; Spoelstra, B.; Pilcher, J.V.; Smit, F.D.

    2006-04-15

    Intermediate-mass fragments from the interaction of {sup 27}Al, {sup 59}Co, and {sup 197}Au with 200-MeV protons were measured in an angular range from 20 deg. to 120 deg. in the laboratory system. The fragments, ranging from isotopes of helium up to isotopes of carbon, were isotopically resolved. Double-differential cross sections, energy-differential cross sections, and total cross sections were extracted.

  3. Radiation effects of 200 MeV proton beams on Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Yasuda, K.; Sasase, M.; Ishigami, R.; Hatori, S.; Ohashi, K.; Tanaka, S.

    2003-08-01

    Effects of 200 MeV proton irradiation on the re-magnetized Nd-Fe-B magnet (Shin-Etsu Chemical N48) were investigated. The dose dependence of the magnetic flux loss for the re-magnetized sample agreed well with that for the unirradiated one within the experimental accuracy. The N48 magnet, demagnetized by the radiation, had perfectly its magnetic properties of its unirradiated level by means of the re-magnetization.

  4. The radiation dosimetry of a quartz viewer irradiated with a 4.5 MeV proton beam

    NASA Astrophysics Data System (ADS)

    Ouyasathian, Kalong

    The present dissertation describes a procedure to measure the radiation dose received by an accelerator operator who uses a quartz viewer to locate an ion beam. This procedure consists of the following steps: (i) A solid-state gamma radiation detector was calibrated to determine its efficiency and its energy scale. (ii) The calibrated detector was used to measure the gamma energy spectrum obtained when bombarding the viewer with the ion beam. This measurement was normalized, that is, beam current and measurement duration were determined. (iii) Individual gamma energy lines were extracted from the gamma spectrum and the respective energies and emission rates were obtained. Energies were checked with known transitions in silicon and oxygen, to ensure correct identification. (iv) The Compton gamma energy spectrum generated by the primary gamma rays was determined using a Compton code. (v) Finally the charged-ion bremsstrahlung spectrum was obtained using the formalism of Alder et. al. In this dissertation several prospective contributors to the radiation dose have been checked and were found to be insignificant. They were: the radiation dose due to x-rays generated by Compton electrons and the radiation dose generated by electrons produced by collisions with the incident ions. With a proton energy of 4.5 MeV the eye dose equivalent was determined at 0 and 90 degrees to the proton beam. At 0 degree with a proton fluence rate of 8.9 x 1011 protons/s the dose was 8.7 x 10-3 rem/hr. At 90 degrees with a proton fluence rate of 1.1 x 1012 protons/s the dose was 8.1 x 10-3 rem/hr.

  5. Laser beam-profile impression and target thickness impact on laser-accelerated protons

    NASA Astrophysics Data System (ADS)

    Schollmeier, M.; Harres, K.; Nürnberg, F.; Blažević, A.; Audebert, P.; Brambrink, E.; Fernández, J. C.; Flippo, K. A.; Gautier, D. C.; Geißel, M.; Hegelich, B. M.; Schreiber, J.; Roth, M.

    2008-05-01

    Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained during the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50μm Au) is only modified due to multiple small angle scattering. Thin targets (10μm) show large source sizes of over 100μm diameter for 5MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons.

  6. Laser beam-profile impression and target thickness impact on laser-accelerated protons

    SciTech Connect

    Schollmeier, M.; Harres, K.; Nuernberg, F.; Roth, M.; Blazevic, A.; Audebert, P.; Brambrink, E.; Fernandez, J. C.; Flippo, K. A.; Gautier, D. C.; Geissel, M.; Hegelich, B. M.; Schreiber, J.

    2008-05-15

    Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained during the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50 {mu}m Au) is only modified due to multiple small angle scattering. Thin targets (10 {mu}m) show large source sizes of over 100 {mu}m diameter for 5 MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons.

  7. Ultra-High Intensity Proton Accelerators and their Applications

    SciTech Connect

    Weng, W. T.

    1997-12-31

    The science and technology of proton accelerators have progressed considerably in the past three decades. Three to four orders of magnitude increase in both peak intensity and average flux have made it possible to construct high intensity proton accelerators for modern applications, such as: spallation neutron sources, kaon factory, accelerator production of tritium, energy amplifier and muon collider drivers. The accelerator design focus switched over from intensity for synchrotrons, to brightness for colliders to halos for spallation sources. An overview of this tremendous progress in both accelerator science and technology is presented, with special emphasis on the new challenges of accelerator physics issues such as: H(-) injection, halo formation and reduction of losses.

  8. ACCELERATING AND COLLIDING POLARIZED PROTONS IN RHIC WITH SIBERIAN SNAKES.

    SciTech Connect

    ROSER,T.; AHRENS,L.; ALESSI,J.; BAI,M.; BEEBE - WANG,J.; BRENNAN,J.M.; BROWN,K.A.; BUNCE,G.; CAMERON,P.; COURANT,E.D.; DREES,A.; FISCHER,W.; ET AL

    2002-06-02

    We successfully injected polarized protons in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. Each snake consists of four helical superconducting dipoles which rotate the polarization by 180{sup o} about a horizontal axis. This is the first time that polarized protons have been accelerated to 100 GeV. We report on our experiences during commissioning and operation of collider with polarized protons.

  9. Proton beam studies with a 1.25 MeV, cw radio frequency quadrupole linac

    SciTech Connect

    Bolme, G.O.; Hardek, T.W.; Hansborough, L.D.

    1998-12-31

    A high-current, cw linear accelerator has been proposed as a spallation neutron source driver for tritium production. Key features of this accelerator are high current (100 mA), low emittance-growth beam propagation, cw operation, high efficiency, and minimal maintenance downtime. A 268 MHz, cw radio frequency quadrupole (RFQ) LINAC section and klystrode based rf system were obtained from the Chalk River Laboratories and were previously installed at LANL to support systems development and advanced studies in support of cw, proton accelerators. A variation of the Low Energy Demonstration Accelerator (LEDA) proton injector, modified to operate at 50 keV, was mated to the RFQ and was operated to support advance developments for the Accelerator Production of Tritium (APT) program. High current, proton beam studies were completed which focused on the details of injector-RFQ integration, development of beam diagnostics, development of operations procedures, and personnel and equipment safety systems integration. This development led to acceleration of up to 100 mA proton beam.

  10. Measurement of natW(p,xn)177,178,179Re excitation function of natural tungsten by using a 100-MeV proton beam

    NASA Astrophysics Data System (ADS)

    Yoon, Jungran; Lee, Jieun; Lee, Samyol

    2017-01-01

    Measurements of the proton-induced excitation function for the natW(p,xn)177,178,179Re nuclear reaction has been measured in the energy region below 100 MeV by using the 100-MeV proton linear accelerator at the Korea Multi-Purpose Accelerator Complex. The stacked foil activation technique was adopted in the present study. The gamma-rays generated from the proton-irradiated samples were measured by using a gamma-ray spectroscopy system with a HPGe detector. The 27Al(p,3p+n)24Na reaction was used as a monitor reaction for proton flux monitoring. The nuclear reactions of natW(p,xn)177,178,179Re were observed in the present study. The proton-induced excitation functions of natural tungsten were derived from the delayed gamma-ray yield of the produced nucleus. The present results were compared with the previous experimental excitation function data of Yu. E. Titarenko et al. [1].

  11. Requirements of a proton beam accelerator for an accelerator-driven reactor

    SciTech Connect

    Takahashi, H.; Zhao, Y.; Tsoupas, N.; An, Y.; Yamazaki, Y.

    1997-12-31

    When the authors first proposed an accelerator-driven reactor, the concept was opposed by physicists who had earlier used the accelerator for their physics experiments. This opposition arose because they had nuisance experiences in that the accelerator was not reliable, and very often disrupted their work as the accelerator shut down due to electric tripping. This paper discusses the requirements for the proton beam accelerator. It addresses how to solve the tripping problem and how to shape the proton beam.

  12. Occurrence of brain tumors in rhesus monkeys exposed to 55-MeV protons

    NASA Astrophysics Data System (ADS)

    Wood, D. H.; Yochmowitz, M. G.; Hardy, K. A.; Salmon, Y. L.

    Twenty-year observation of monkeys exposed to single doses of high energy protons simulating solar particles revealed that the most prevalent fatal cancers were brain tumors in the group of animals exposed to 55-MeV protons. Of 72 animals (50 males and 22 females) receiving 0.25 to 8.0 Gy total body surface dose, nine developed fatal tumors classified as grade IV astrocytoma or glioblastoma multiforme. The latent period for tumor development ranged from 14 months to 20 years, with a median of 5 years. Doses associated with the tumors were 4.0 to 8.0 Gy. Eight males and one female were affected. Depth-dose determinations suggest that the high incidence of cerebral neoplasia is associated with the Bragg Peak energy distribution of the 55-MeV protons. Comparison of the tumor incidence with that in humans with brain exposures incidental to radiotherapy indicates a high biological effectiveness compared with gamma radiation. Studies are in progress to attempt to replicate the results in rodents and establish a dose-response curve for proton-induced brain tumors.

  13. Particle Simulations of a Linear Dielectric Wall Proton Accelerator

    SciTech Connect

    Poole, B R; Blackfield, D T; Nelson, S D

    2007-06-12

    The dielectric wall accelerator (DWA) is a compact induction accelerator structure that incorporates the accelerating mechanism, pulse forming structure, and switch structure into an integrated module. The DWA consists of stacked stripline Blumlein assemblies, which can provide accelerating gradients in excess of 100 MeV/meter. Blumleins are switched sequentially according to a prescribed acceleration schedule to maintain synchronism with the proton bunch as it accelerates. A finite difference time domain code (FDTD) is used to determine the applied acceleration field to the proton bunch. Particle simulations are used to model the injector as well as the accelerator stack to determine the proton bunch energy distribution, both longitudinal and transverse dynamic focusing, and emittance growth associated with various DWA configurations.

  14. Trends and applications for MeV electrostatic ion beam accelerators

    NASA Astrophysics Data System (ADS)

    Norton, G. A.; Stodola, S. E.

    2014-08-01

    The 1970s into the 1980s saw a major broadening of applications for electrostatic accelerators. Prior to this time, all accelerators were used primarily for nuclear structure research. In the 70s there was a significant move into production ion implantation with the necessary MeV ion beam analysis techniques such as RBS and ERD. Accelerators are still being built for these materials analysis techniques today. However, there is still a great ongoing expansion of applications for these machines. At the present time, the demand for electrostatic accelerators is near an all time high. The number of applications continues to grow. This paper will touch on some of the current applications which are as diverse as nuclear fission reactor developments and pharmacokinetics. In the field of nuclear engineering, MeV ion beams from electrostatic accelerators are being used in material damage studies and for iodine and actinide accelerator mass spectrometry (AMS). In the field of pharmacokinetics, electrostatic MeV accelerators are being used to detect extremely small amounts of above background 14C. This has significantly reduced the time required to reach first in human studies. These and other applications will be discussed.

  15. Single event upsets calculated from new ENDF/B-VI proton and neutron data up to 150 MeV

    SciTech Connect

    Chadwick, M.B.; Normand, E.

    1999-06-01

    Single-event upsets (SEU) in microelectronics are calculated from newly-developed silicon nuclear reaction recoil data that extend up to 150 MeV, for incident protons and neutrons. Calculated SEU cross sections are compared with measured data.

  16. Modification of radiobiological effects of 171 MeV protons by elements of physical protection

    NASA Astrophysics Data System (ADS)

    Bulinina, Taisia; Shurshakov, Vyacheslav; Ivanov, Alexander; Molokanov, Alexander

    2016-07-01

    Space radiation includes protons of various energies. Physical protection is effective in the case of low energy protons (50-100 MeV) and becomes insufficient for radiation with a high part of high-energy protons. In the experiment performed on outbred mice, the purpose of the study was to evaluate the radiobiological effect of 171 MeV protons and protons modified by elements of physical protection of the spacecraft, on a complex of indicators of the functional condition of the system hematopoiesis and the central nervous system in 24 hours after irradiation at 20 cGy dose. The spacecraft radiation protection elements used in the experiment were a construction of wet hygiene wipes called a «protective curtain», and a glass plate imitating an ISS window. Mass thickness of the " protective curtain" in terms of water equivalent was ̴ 6,2 g/cm2. Physical shielding along the path of 171 MeV protons increases their linear energy transfer leading to the absorbed dose elevation and strengthening of the radiobiological effect. In the experiment, the two types of shielding together raised the absorbed dose from 20 to 23.2 cGy. Chemically different materials (glass and water in the wipes) were found to exert unequal modifying effects on physical and biological parameters of the proton-irradiated mice. There was a distinct dose-dependent reduction of bone marrow cellularity within the dose range from 20 cGy to 23.2 cGy in 24 hours after exposure. No modifying effect of the radiation protection elements on spontaneous motor activity was discovered when compared with entrance protons. The group of animals protected by the glass plate exhibited normal orientative-trying reactions and weakened grip with the forelimbs. The effects observed in the experiment indicate the necessity to carry out comprehensive radiobiological researches (physical, biological and mathematical) in assessing the effects of physical protection, that are actual for ensuring radiation safety of crews in

  17. Radiation effects induced in pin photodiodes by 40- and 85-MeV protons

    NASA Technical Reports Server (NTRS)

    Becher, J.; Kernell, R. L.; Reft, C. S.

    1985-01-01

    PIN photodiodes were bombarded with 40- and 85-MeV protons to a fluence of 1.5 x 10 to the 11th power p/sq cm, and the resulting change in spectral response in the near infrared was determined. The photocurrent, dark current and pulse amplitude were measured as a function of proton fluence. Changes in these three measured properties are discussed in terms of changes in the diode's spectral response, minority carrier diffusion length and depletion width. A simple model of induced radiation effects is presented which is in good agreement with the experimental results. The model assumes that incident protons produce charged defects within the depletion region simulating donor type impurities.

  18. Response of Cellulose detectors to different doses of 62 MeV protons

    NASA Astrophysics Data System (ADS)

    Tripathy, S. P.; Mishra, R.; Dwivedi, K. K.; Ghosh, S.; Fink, D.; Khathing, D. T.

    2003-08-01

    Optical and thermal responses of two cellulose detectors, Cellulose triacetate (Triafol-TN) and Cellulose acetate butyrate (Triafol-BN), to four different doses of 62 MeV protons were studied using spectroscopic, thermal and track-etching techniques. The spectroscopic analysis revealed that though the optical band-gap in the polymers was affected by proton irradiation, the polymers showed high resistance against any major structural modification by radiation. The thermal stability of the polymers was found to be affected by proton irradiation. The activation energy of etching was found to be almost constant for both the polymers even after irradiation. It is hoped that the findings in this work would be of significant relevance to material science and applications of polymers.

  19. New Capabilties of 800 MeV Proton Radiography at LOS Alamos

    NASA Astrophysics Data System (ADS)

    Schwartz, C. L.; Hogan, G. E.; Kwiatkowski, K.; Rigg, P. A.; Rightley, P. M.; Mariam, F. G.; Marr-Lyon, M.; Merrill, F. E.; Morris, C. L.; Saunders, A.; Tupa, D.

    2007-12-01

    Three new capabilities have recently been commissioned at the proton radiography [1] facility at Los Alamos. A powder gun driver system has been installed and commissioned and a series of demonstration measurements have been completed. This powder gun is now regularly used to drive dynamic experiments. A new CMOS hybrid camera technology has been developed and fielded resulting in dramatic improvements in quantum efficiency as well as providing eight additional radiographic images per dynamic event. A proton x3 magnifier was designed, built and commissioned to provide improved radiographic resolution for 800 MeV proton radiography experiments. Details of these new capabilities will be presented along with data from recent experiments which utilized these new capabilities.

  20. Bend-fatigue properties of 590 MeV proton irradiated JPCA and 316F SS

    NASA Astrophysics Data System (ADS)

    Saito, S.; Kikuchi, K.; Usami, K.; Ishikawa, A.; Nishino, Y.; Kawai, M.; Dai, Y.

    2004-08-01

    A beam window of a spallation target will be subjected to proton/neutron irradiation, pressure wave and thermal stresses accompanied by high-energy proton beam injection. To obtain irradiation data, the SINQ target irradiation program (STIP) was initiated in 1996 at PSI. JAERI takes part in STIP and conducted the post-irradiation examination of JPCA, 316F. Irradiation conditions of JAERI specimens were as follows: proton energy was 590 MeV. Irradiation temperature ranged from 135 to 360 °C and irradiation dose from 6.3 to 12.5 dpa. The fatigue life of irradiated specimens is almost the same as that of unirradiated specimens. On the other hand, fracture surfaces varied with irradiation conditions. Specimens irradiated at low temperature fractured in a ductile manner. However, intergranular fractured surfaces were observed for 316F irradiated up to 12.5 dpa at 360 °C.

  1. mA beam acceleration efforts on 100 MeV H- cyclotron at CIAE

    NASA Astrophysics Data System (ADS)

    Zhang, Tianjue; An, Shizhong; Lv, Yinlong; Ge, Tao; Jia, Xianlu; Ji, Bin; Yin, Zhiguo; Pan, Gaofeng; Cao, Lei; Guan, Fengping; Yang, Jianjun; Li, Zhenguo; Zhao, Zhenlu; Wu, Longcheng; Zhang, He; Wang, Jingfeng; Zhang, Yiwang; Liu, Jingyuan; Li, Shiqiang; Lu, Xiaotong; Liu, Zhenwei; Li, Yaoqian; Guo, Juanjuan; Cao, Xuelong; Guan, Leilei; Wang, Fei; Wang, Yang; Yang, Guang; Zhang, Suping; Hou, Shigang; Wang, Feng

    2017-09-01

    Various technologies for high current compact H- cyclotron have been developed at CIAE since 1990s. A 375 μA proton beam was extracted from a 30 MeV compact H- cyclotron CYCIAE-30 at the end of 1994. A central region model cyclotron CYCIAE-CRM was developed for the design verification of a 100 MeV high current compact H- cyclotron CYCIAE-100. It is also a 10 MeV proton machine as a prototype for PET application. A 430 μA beam was achieved in 2009. The first beam was extracted from the CYCIAE-100 cyclotron on July 4, 2014, the operation stability has been improved and beam current has been increased gradually. A 1.1 mA proton beam was measured on the internal target in July 2016. The effort for an increasing of proton beam has continued till now. In this paper, the effort on several aspects for mA beam development will be presented, including the multi-cusp source, buncher, matching from the energy of the injected beam, vertical beam line and central region, beam loading of the RF system and instrumentation for beam diagnostics etc.

  2. Efficient and stable proton acceleration by irradiating a two-layer target with a linearly polarized laser pulse

    NASA Astrophysics Data System (ADS)

    Wang, H. Y.; Yan, X. Q.; Chen, J. E.; He, X. T.; Ma, W. J.; Bin, J. H.; Schreiber, J.; Tajima, T.; Habs, D.

    2013-01-01

    We report an efficient and stable scheme to generate ˜200 MeV proton bunch by irradiating a two-layer targets (near-critical density layer+solid density layer with heavy ions and protons) with a linearly polarized Gaussian pulse at intensity of 6.0×1020 W/cm2. Due to self-focusing of laser and directly accelerated electrons in the near-critical density layer, the proton energy is enhanced by a factor of 3 compared to single-layer solid targets. The energy spread of proton is also remarkably reduced. Such scheme is attractive for applications relevant to tumor therapy.

  3. Proton acceleration by multi-terawatt interaction with a near-critical density hydrogen jet

    NASA Astrophysics Data System (ADS)

    Goers, Andy; Feder, Linus; Hine, George; Salehi, Fatholah; Woodbury, Daniel; Su, J. J.; Papadopoulos, Dennis; Zigler, Arie; Milchberg, Howard

    2016-10-01

    We investigate the high intensity laser interaction with thin, near critical density plasmas as a means of efficient acceleration of MeV protons. A promising mechanism is magnetic vortex acceleration, where the ponderomotive force of a tightly focused laser pulse drives a relativistic electron current which generates a strong azimuthal magnetic field. The rapid expansion of this azimuthal magnetic field at the back side of the target can accelerate plasma ions to MeV scale energies. Compared to typical ion acceleration experiments utilizing a laser- thin solid foil interaction, magnetic vortex acceleration in near critical density plasma may be realized in a high density gas jet, making it attractive for applications requiring high repetition rates. We present preliminary experiments studying laser-plasma interaction and proton acceleration in a thin (< 200 μm) near-critical density hydrogen gas jet delivering electron densities 1020 -1021 cm-3 . This research was funded by the United States Department of Energy and the Defense Advanced Research Projects Agency (DARPA) under Contract Number W911-NF-15-C-0217, issued by the Army Research Office.

  4. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding.

    PubMed

    George, K; Willingham, V; Wu, H; Gridley, D; Nelson, G; Cucinotta, F A

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples.

  5. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding

    NASA Technical Reports Server (NTRS)

    George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  6. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding

    NASA Technical Reports Server (NTRS)

    George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  7. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding

    NASA Astrophysics Data System (ADS)

    George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm 2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples.

  8. Field-Guided Proton Acceleration at Reconnecting x-Points in Flares

    NASA Astrophysics Data System (ADS)

    Hamilton, B.; McCLEMENTS, K. G.; Fletcher, L.; Thyagaraja, A.

    2003-06-01

    An explicitly energy-conserving full orbit code CUEBIT, developed originally to describe energetic particle effects in laboratory fusion experiments, has been applied to the problem of proton acceleration in solar flares. The model fields are obtained from solutions of the linearised MHD equations for reconnecting modes at an X-type neutral point, with the additional ingredient of a longitudinal magnetic field component. To accelerate protons to the highest observed energies on flare timescales, it is necessary to invoke anomalous resistivity in the MHD solution. It is shown that the addition of a longitudinal field component greatly increases the efficiency of ion acceleration, essentially because it greatly reduces the magnitude of drift motions away from the vicinity of the X-point, where the accelerating component of the electric field is largest. Using plasma parameters consistent with flare observations, we obtain proton distributions extending up to γ-ray-emitting energies (>1 MeV). In some cases the energy distributions exhibit a bump-on-tail in the MeV range. In general, the shape of the distribution is sensitive to the model parameters.

  9. The 500-MeV, 2 1/2% duty factor linear electron accelerator (MEA)

    SciTech Connect

    Bruinsma, P.J.T.; Kroes, F.B.; Kuijer, L.H.; Noomen, J.G.; Spelt, J.B.; Vogel, A.G.C.

    1983-08-01

    Although the intermediate energy electron accelerator in Amsterdam has not reached completely its design specifications, since early 1981 a fully grown scientific program has developed using beams with an energy ranging from 20 to 120 MeV in the 140 MeV substation (for radio-chemistry and low-energy electron scattering over 180/sup 0/) and from 70 to 400 MeV in the high energy stations for electron scattering and physics with pion and muon beams. A brief description of the MIT-type accelerator and its performance will be given with emphasis on typical features of the machine. Some examples will be given of recently obtained scientific data from which can be derived that the quality of the beam is in full accordance with the high performance level of the scientific equipment, involving a complex beam transport system and a pair of spectrometers for high resolution (1x10/sup -4/) work.

  10. Neutron Induced Reactions with the 17 Mev Facility at the Athens Tandem Accelerator NCSR 'Demokritos'

    NASA Astrophysics Data System (ADS)

    Vlastou, R.; Kalamara, A.; Serris, M.; Diakaki, M.; Kokkoris, M.; Paneta, V.; Axiotis, M.; Lagoyannis, A.

    In the 5.5 MV tandem T11/25 Accelerator Laboratory of NCSR "Demokritos" monoenergetic neutron beams have been produced in the energy range∼ 15-20 MeV using anew Ti-tritiated target of 373 GBq activity, by means of the 3H(d,n)4He reaction. The corresponding deuteron beam energies obtained from the accelerator, were in the 1.5-4.5MeV range.The maximum flux has been determined to be of the order of 106 n/cm2 s, implementing reference reactions. The 17.1MeV neutron beam has been used for the measurement of 197Au(n,2n) reaction cross section. Theoretical calculations have been performed via the statistical model code EMPIRE and compared to the experimental data of the present work and data from literature.

  11. Experimental stand for studying the impact of laser-accelerated protons on biological objects

    NASA Astrophysics Data System (ADS)

    Burdonov, K. F.; Eremeev, A. A.; Ignatova, N. I.; Osmanov, R. R.; Sladkov, A. D.; Soloviev, A. A.; Starodubtsev, M. V.; Ginzburg, V. N.; Kuz'min, A. A.; Maslennikova, A. V.; Revet, G.; Sergeev, A. M.; Fuchs, J.; Khazanov, E. A.; Chen, S.; Shaykin, A. A.; Shaikin, I. A.; Yakovlev, I. V.

    2016-04-01

    An original experimental stand is presented, aimed at studying the impact of high-energy protons, produced by the laser-plasma interaction at a petawatt power level, on biological objects. In the course of pilot experiments with the energy of laser-accelerated protons up to 25 MeV, the possibility is demonstrated of transferring doses up to 10 Gy to the object of study in a single shot with the magnetic separation of protons from parasitic X-ray radiation and fast electrons. The technique of irradiating the cell culture HeLa Kyoto and measuring the fraction of survived cells is developed. The ways of optimising the parameters of proton beams and the suitable methods of their separation with respect to energy and transporting to the studied living objects are discussed. The construction of the stand is intended for the improvement of laser technologies for hadron therapy of malignant neoplasms.

  12. Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets.

    PubMed

    Obst, Lieselotte; Göde, Sebastian; Rehwald, Martin; Brack, Florian-Emanuel; Branco, João; Bock, Stefan; Bussmann, Michael; Cowan, Thomas E; Curry, Chandra B; Fiuza, Frederico; Gauthier, Maxence; Gebhardt, René; Helbig, Uwe; Huebl, Axel; Hübner, Uwe; Irman, Arie; Kazak, Lev; Kim, Jongjin B; Kluge, Thomas; Kraft, Stephan; Loeser, Markus; Metzkes, Josefine; Mishra, Rohini; Rödel, Christian; Schlenvoigt, Hans-Peter; Siebold, Mathias; Tiggesbäumker, Josef; Wolter, Steffen; Ziegler, Tim; Schramm, Ulrich; Glenzer, Siegfried H; Zeil, Karl

    2017-08-31

    We report on recent experimental results deploying a continuous cryogenic hydrogen jet as a debris-free, renewable laser-driven source of pure proton beams generated at the 150 TW ultrashort pulse laser Draco. Efficient proton acceleration reaching cut-off energies of up to 20 MeV with particle numbers exceeding 10(9) particles per MeV per steradian is demonstrated, showing for the first time that the acceleration performance is comparable to solid foil targets with thicknesses in the micrometer range. Two different target geometries are presented and their proton beam deliverance characterized: cylindrical (∅ 5 μm) and planar (20 μm × 2 μm). In both cases typical Target Normal Sheath Acceleration emission patterns with exponential proton energy spectra are detected. Significantly higher proton numbers in laser-forward direction are observed when deploying the planar jet as compared to the cylindrical jet case. This is confirmed by two-dimensional Particle-in-Cell (2D3V PIC) simulations, which demonstrate that the planar jet proves favorable as its geometry leads to more optimized acceleration conditions.

  13. Proton acceleration in the interaction of high power laser and cryogenic hydrogen targets

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini; Fiuza, Frederico; Glenzer, Siegfried

    2014-10-01

    High intensity laser driven ion acceleration has attracted great interest due to many prospective applications ranging from inertial confinement fusion, cancer therapy, particle accelerators. Particle-in-Cell (PIC) simulations are performed to model and design experiments at MEC for high power laser interaction with cryogenic hydrogen targets of tunable density and thickness. Preliminary 1D and 2D simulations, using fully relativistic particle-in-cell code PICLS, show a unique regime of proton acceleration, e.g. ~ 300 MeV peak energy protons are observed in the 1D run for interaction of ~1020 W/cm2, 110 fs intense laser with 6nc dense (nc = 1021 cm-3) and 2 micron thin target. The target is relativistically under-dense for the laser and we observe that a strong (multi-terawatt) shock electric field is produced and protons are reflected to high velocities by this field. Further, the shock field and the laser field keep propagating through the hydrogen target and meets up with target normal sheath acceleration (TNSA) electric field produced at the target rear edge and vacuum interface and this superposition amplifies the TNSA fields resulting in higher proton energy. In addition, the electrons present at the rear edge of the target continue to gain energy via strong interaction with laser that crosses the target and these accelerated electrons maintains higher electric sheath fields which further provides acceleration to protons. We will also present detailed investigation with 2D PICLS simulations to gain a better insight of such physical processes to characterize multidimensional effects and establish analytical scaling between laser and target conditions for the optimization of proton acceleration.

  14. Accelerator Configuration for Polarized Proton-Antiproton Physics at FAIR

    SciTech Connect

    Lehrach, Andreas

    2007-06-13

    The HESR at FAIR is being designed to accelerate and store unpolarized antiprotons in the momentum range from 1.5 to 15 Ge V/c. Different scenarios are proposed to accelerate polarized proton and antiproton beams and finally store and collide them. In this paper required modifications and extensions of the accelerator layout are discussed and luminosity estimates presented.

  15. Thickness uniformity of beryllium foils derived from energy loss broadening of transmitted MeV protons

    NASA Astrophysics Data System (ADS)

    Hietel, B.; Wittmaack, K.

    2000-03-01

    The thickness uniformity of beryllium foils commonly in use as entrance windows of Si(Li) detectors has been determined by measuring the broadening in energy loss of 1.5-2.5 MeV protons transmitted through such foils. The energy loss spectra were measured after backscattering of the transmitted protons from a thin layer of gold on a polypropylene film. The contribution due to energy loss straggling was assessed in transmission studies on uniform films of polypropylene and polyester (Mylar). The full width at half maximum (FWHM) of the loss peaks for the polymer films increased with the square root of the energy loss Δ E, in accordance with theory. By contrast, the FWHM of the energy loss in Be increased linearly with increasing Δ E, with a maximum FWHM=0.21Δ E at 2.5 MeV. After correcting for the straggling contribution in quadrature, the net excess broadening was found to range from 18% to 20%, for Be foils with a nominal thickness between 12.5 and 37.5 μm. The excess broadening is attributed to a corresponding variation in thickness across the foils, probably due to a significant porosity generated during the fabrication process (sintering). This result supports previous indirect evidence derived from studies on background generation in proton-induced X-ray emission spectrometry (PIXE).

  16. a Technique to Calibrate Neutron-Proton Elastic Scattering Spin Observables Near 183 Mev

    NASA Astrophysics Data System (ADS)

    Bowyer, Theodore William

    Free neutron-proton scattering is one of the most fundamental reactions we can study in the field of nuclear physics, yet the n-p scattering data base is quite sparse. The data that does exist is often plagued by systematic uncertainties associated with the determination of beam and/or target polarizations. In contrast, there is an abundance of high quality, high statistics p-p elastic scattering data. We report on a technique which we have developed which exploits the high quality of the p-p data to calibrate n-p elastic scattering spin observables by simultaneous measurement of vec n-vec p and p-vec p elastic scattering by bombarding a polarized proton target with a mixed beam of polarized neutrons and protons. This technique has allowed us to calibrate the n-p elastic spin observables at 183 MeV: the beam and target analyzing powers A _{n}(theta_{p}),A _{p}(theta p), and the spin correlation coefficient, C_{NN}( theta_{p}). The mixed secondary beam was produced by bombarding a liquid deuterium target with a 200 MeV beam of polarized protons. The experiment was preformed in the Polarized Neutron Facility at the Indiana University Cyclotron Facility utilizing a left-right symmetric detection system, sensitive to both scattered protons and neutrons, and spanned the laboratory angular range of 24^circ to 62^circ. We identified free scattering events through a number of kinematic correlations. We compare our results to various phase shift calculations and potential models and examine the sensitivity of magnitude of various phase shifts results to the inclusion of our data into the n-p data base.

  17. High intensity electron cyclotron resonance proton source for low energy high intensity proton accelerator.

    PubMed

    Roychowdhury, P; Chakravarthy, D P

    2009-12-01

    Electron cyclotron resonance (ECR) proton source at 50 keV, 50 mA has been designed, developed, and commissioned for the low energy high intensity proton accelerator (LEHIPA). Plasma characterization of this source has been performed. ECR plasma was generated with 400-1100 W of microwave power at 2.45 GHz, with hydrogen as working gas. Microwave was fed in the plasma chamber through quartz window. Plasma density and temperature was studied under various operating conditions, such as microwave power and gas pressure. Langmuir probe was used for plasma characterization using current voltage variation. The typical hydrogen plasma density and electron temperature measured were 7x10(11) cm(-3) and 6 eV, respectively. The total ion beam current of 42 mA was extracted, with three-electrode extraction geometry, at 40 keV of beam energy. The extracted ion current was studied as a function of microwave power and gas pressure. Depending on source pressure and discharge power, more than 30% total gas efficiency was achieved. The optimization of the source is under progress to meet the requirement of long time operation. The source will be used as an injector for continuous wave radio frequency quadrupole, a part of 20 MeV LEHIPA. The required rms normalized emittance of this source is less than 0.2 pi mm mrad. The simulated value of normalized emittance is well within this limit and will be measured shortly. This paper presents the study of plasma parameters, first beam results, and the status of ECR proton source.

  18. High intensity electron cyclotron resonance proton source for low energy high intensity proton accelerator

    SciTech Connect

    Roychowdhury, P.; Chakravarthy, D. P.

    2009-12-15

    Electron cyclotron resonance (ECR) proton source at 50 keV, 50 mA has been designed, developed, and commissioned for the low energy high intensity proton accelerator (LEHIPA). Plasma characterization of this source has been performed. ECR plasma was generated with 400-1100 W of microwave power at 2.45 GHz, with hydrogen as working gas. Microwave was fed in the plasma chamber through quartz window. Plasma density and temperature was studied under various operating conditions, such as microwave power and gas pressure. Langmuir probe was used for plasma characterization using current voltage variation. The typical hydrogen plasma density and electron temperature measured were 7x10{sup 11} cm{sup -3} and 6 eV, respectively. The total ion beam current of 42 mA was extracted, with three-electrode extraction geometry, at 40 keV of beam energy. The extracted ion current was studied as a function of microwave power and gas pressure. Depending on source pressure and discharge power, more than 30% total gas efficiency was achieved. The optimization of the source is under progress to meet the requirement of long time operation. The source will be used as an injector for continuous wave radio frequency quadrupole, a part of 20 MeV LEHIPA. The required rms normalized emittance of this source is less than 0.2 {pi} mm mrad. The simulated value of normalized emittance is well within this limit and will be measured shortly. This paper presents the study of plasma parameters, first beam results, and the status of ECR proton source.

  19. Utilization of an intense beam of 800 MeV protons to prepare radionuclides

    SciTech Connect

    O'Brien, H.A.

    1988-01-01

    Since the early 1970's, a program has been underway at this institution to employ the excess proton beam emerging from the major experimental areas of the LAMPF accelerator to make a wide variety of radioactive nuclides. This paper presents a review of the targets irradiated, cross section data, and nuclide yield measurements. 32 refs., 1 figs., 8 tabs.

  20. Laser Radiation Pressure Accelerator for Quasi-Monoenergetic Proton Generation and Its Medical Implications

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Shao, X.; Liu, T. C.; Su, J. J.; He, M. Q.; Eliasson, B.; Tripathi, V. K.; Dudnikova, G.; Sagdeev, R. Z.; Wilks, S.; Chen, C. D.; Sheng, Z. M.

    Laser radiation pressure acceleration (RPA) of ultrathin foils of subwavelength thickness provides an efficient means of quasi-monoenergetic proton generation. With an optimal foil thickness, the ponderomotive force of the intense short-pulse laser beam pushes the electrons to the edge of the foil, while balancing the electric field due to charge separation. The electron and proton layers form a self-organized plasma double layer and are accelerated by the radiation pressure of the laser, the so-called light sail. However, the Rayleigh-Taylor instability can limit the acceleration and broaden the energy of the proton beam. Two-dimensional particle-in-cell (PIC) simulations have shown that the formation of finger-like structures due to the nonlinear evolution of the Rayleigh-Taylor instability limits the acceleration and leads to a leakage of radiation through the target by self-induced transparency. We here review the physics of quasi-monoenergetic proton generation by RPA and recent advances in the studies of energy scaling of RPA, and discuss the RPA of multi-ion and gas targets. The scheme for generating quasi-monoenergetic protons with RPA has the potential of leading to table-top accelerators as sources for producing monoenergetic 50-250 MeV protons. We also discuss potential medical implications, such as particle therapy for cancer treatment, using quasi-monoenergetic proton beams generated from RPA. Compact monoenergetic ion sources also have applications in many other areas such as high-energy particle physics, space electronics radiation testing, and fast ignition in laser fusion.

  1. Proton-nucleus total inelastic cross sections - An empirical formula for E greater than 10 MeV

    NASA Technical Reports Server (NTRS)

    Letaw, J. R.; Silberberg, R.; Tsao, C. H.

    1983-01-01

    An empirical formula for the total inelastic cross section of protons on nuclei with charge greater than 1 is presented. The formula is valid with a varying degree of accuracy down to proton energies of 10 MeV. At high energies (equal to or greater than 2 GeV) the formula reproduces experimental data to within reported errors (about 2%).

  2. Cross Sections and Analyzing Powers of Nitrogen -15(PROTON, NEUTRON)OXYGEN-15 at 200 Mev and 494 Mev.

    NASA Astrophysics Data System (ADS)

    Ciskowski, Douglas Edward

    Differential cross sections and analyzing powers have been measured for the ^{15} N(p,n)^{15}O(g.s.) reaction at bombarding energies of 200 MeV and 494 MeV. The 494 MeV data were obtained at the LAMPF Neutron Time-Of -Flight Facility on an 82 m flight path with a resolution of about 2.7 MeV. The 200 MeV data were obtained at IUCF on a 76 m flight path with a resolution of about 1.1 MeV. At both energies, the measured analyzing power is small, the magnitude is less than.2 for momentum transfers of less than 1 fm^{-1}. In contrast, both Relativistic and standard DWIA calculations predict a maximum of A = -.7 near q = 0.7 fm ^{-1}.

  3. Alignment of components and assembly of 3 MeV electron beam accelerator - a complete solution

    SciTech Connect

    Gupta, R.K.; Srivastava, S.P.; Yadav, S.K.; Jawale, S.B.; Bakhtsingh, R.I.; Ghodke, S.R.; Bhattacharjee, D.

    2014-07-01

    A 3 MeV, 30 kW DC Electron Beam Accelerator developed at BARC is installed at the Electron Beam Centre (EBC) Kharghar, Navi Mumbai. The entire accelerator assembly, spread over two floors, consists of Electron Gun, Accelerating Tube, Steering Magnet, Focusing Coil, Beam Tube, Beam Locating Aperture, Scan Magnet Chamber and Scan Horn. The complete electron beamline will be maintained under high vacuum of the order of 10{sup -6} mbar. The paper discusses about the present problem of alignment, measurement technique of alignment, reasons for misalignment, ways to solve the problem, detailed alignment procedure and equipment used for alignment work. (author)

  4. Plasma based wakefield acceleration using a 46MeV multibunched electron beam

    NASA Astrophysics Data System (ADS)

    Kallos, Efthymios; Ben-Zvi, Ilan; Zhou, Feng; Kimura, Wayne

    2005-10-01

    In the multibunch plasma wakefield acceleration scheme a series of electron microbunches are fed into a high density plasma and resonantly excite a wakefield that can accelerate the beam electrons. Here we present some recent experimental results conducted at Brookhaven's Accelerator test Facility (ATF) where ˜90 microbunches at 46MeV created through the IFEL effect with a 10.6μm CO2 laser interact with a high density 10^19cm-3 12mm long plasma. Some further PIC simulations provide insight into the physics of the interaction.

  5. Beam dynamics simulation of a double pass proton linear accelerator

    NASA Astrophysics Data System (ADS)

    Hwang, Kilean; Qiang, Ji

    2017-04-01

    A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015, 10.1016/j.nima.2015.05.056)] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.

  6. Phenomenological optical potential analysis of proton-carbon elastic scattering at 200 MeV

    NASA Technical Reports Server (NTRS)

    Bidasaria, H. B.; Townsend, L. W.

    1982-01-01

    Differential cross sections for 200 MeV protons elastically scattered from C-12 were analyzed utilizing a local, complex, spin-dependent optical potential with a harmonic well radial dependence. Analyses were performed using the WKB and eikonal approximations. For the latter, first-order corrections to he phase shifts were incorporated to account for the spin-orbit contribution. Large disagreement between theory and experiment was observed when the usual Thomas form for the spin-orbit potential was utilized. Substantial improvement was obtained by allowing the parameters in the central and spin-orbit potential terms to vary independently.

  7. Neutron-proton spin-correlation parameter A sub z z at 68 MeV

    SciTech Connect

    Hammans, M.; Brogli-Gysin, C.; Burzynski, S.; Campbell, J.; Haffter, P.; Henneck, R.; Lorenzon, W.; Pickar, M.A.; Sick, I. ); Konter, J.A.; Mango, S.; van den Brandt, B. )

    1991-05-06

    We report a first measurement of the spin-correlation parameter {ital A}{sub {ital z}{ital z}} in neutron-proton scattering at 67.5 MeV. The results, obtained in the angular range 105{degree}{le}{theta}{sub c.m.}{le}170{degree} with typical accuracies of 0.008, are highly sensitive to the {sup 3}{ital S}{sub 1}-{sup 3}{ital D}{sub 1} mixing parameter {epsilon}{sub 1}. A phase-shift analysis based on the current world data yields a value of {epsilon}{sub 1} significantly higher than predicted by modern potential models.

  8. Parity nonconservation in proton-water scattering at 800 MeV

    SciTech Connect

    Nagle, D.E.; Bowman, J.D.; Carlini, R.; Mischke, R.E.; Frauenfelder, H.; Harper, R.W.; Yuan, V.; McDonald, A.B.; Talaga, R.

    1982-01-01

    A search has been made for parity nonconservation in the scattering of 800 MeV polarized protons from an unpolarized water target. The result is for the longitudinal asymmetry, A/sub L/ = +(6.6 +- 3.2) x 10/sup -7/. Control runs with Pb, using a thickness which gave equivalent beam broadening from Coulomb multiple scattering, but a factor of ten less nuclear interactions than the water target, gave A/sub L/ = -(0.5 +- 6.0) x 10/sup -7/.

  9. Parity Nonconservation in Proton-water Scattering at 800 MeV

    DOE R&D Accomplishments Database

    Nagle, D. E.; Bowman, J. D.; Carlini, R.; Mischke, R. E.; Frauenfelder, H.; Harper, R. W.; Yuan, V.; McDonald, A. B.; Talaga, R.

    1982-01-01

    A search has been made for parity nonconservation in the scattering of 800 MeV polarized protons from an unpolarized water target. The result is for the longitudinal asymmetry, A{sub L} = +(6.6 +- 3.2) x 10{sup -7}. Control runs with Pb, using a thickness which gave equivalent beam broadening from Coulomb multiple scattering, but a factor of ten less nuclear interactions than the water target, gave A{sub L} = -(0.5 +- 6.0) x 10{sup -7}.

  10. Nuclear excitation functions from 40 to 200 MeV proton irradiation of terbium

    NASA Astrophysics Data System (ADS)

    Engle, Jonathan W.; Mashnik, Stepan G.; Parker, Lauren A.; Jackman, Kevin R.; Bitteker, Leo J.; Ullmann, John L.; Gulley, Mark S.; Pillai, Chandra; John, Kevin D.; Birnbaum, Eva R.; Nortier, Francois M.

    2016-01-01

    Nuclear formation cross sections are reported for 26 radionuclides, measured with 40-200 MeV proton irradiations of terbium foils. These data provide the basis for the production of medically relevant radionuclides (e.g., 152Tb, 155Tb, 155Eu, and 156Eu) and 153Gd, a potential source used in ongoing efforts to characterize stellar nucleosynthesis routes. Computational predictions from the ALICE2011, CEM03.03, Bertini, and INCL + ABLA codes are compared with newly measured data to contribute to the ongoing process of code development, and yields are calculated for selected radionuclides using measured data.

  11. Charged pions from the isotopes sup 58,64 Ni by 201 MeV protons

    SciTech Connect

    Palmeri, A.; Aiello, S.; Badala, A.; Barbera, R.; Pappalardo, G.S. ); Bimbot, L. ); Reide, F. ); Willis, N.; Oeschler, H.

    1989-08-01

    Charged pion production induced by 201 MeV protons on {sup 58}Ni and {sup 64}Ni has been studied. The double differential cross sections have been measured over a wide angular range. Different behavior of the angular distribution is observed for low and high energy pions. The yield of positive pions shows a pronounced forward peaked component. The deduced total production yields are about the same for ({ital p},{pi}{sup +}) on both isotopes whereas that for {sup 64}Ni({ital p},{pi}{sup {minus}}) is twice as large as for {sup 58}Ni({ital p},{pi}{sup {minus}}).

  12. An 800-MeV proton radiography facility for dynamic experiments

    NASA Astrophysics Data System (ADS)

    King, N. S. P.; Ables, E.; Adams, Ken; Alrick, K. R.; Amann, J. F.; Balzar, Stephen; Barnes, P. D., Jr.; Crow, M. L.; Cushing, S. B.; Eddleman, J. C.; Fife, T. T.; Flores, Paul; Fujino, D.; Gallegos, R. A.; Gray, N. T.; Hartouni, E. P.; Hogan, G. E.; Holmes, V. H.; Jaramillo, S. A.; Knudsson, J. N.; London, R. K.; Lopez, R. R.; McDonald, T. E.; McClelland, J. B.; Merrill, F. E.; Morley, K. B.; Morris, C. L.; Naivar, F. J.; Parker, E. L.; Park, H. S.; Pazuchanics, P. D.; Pillai, C.; Riedel, C. M.; Sarracino, J. S.; Shelley, F. E., Jr.; Stacy, H. L.; Takala, B. E.; Thompson, Richard; Tucker, H. E.; Yates, G. J.; Ziock, H.-J.; Zumbro, J. D.

    1999-11-01

    The capability has successfully been developed at the Los Alamos Nuclear Science Center (LANSCE) to utilize a spatially and temporally prepared 800 MeV proton beam to produce proton radiographs. A series of proton bursts are transmitted through a dynamic object and transported, via a unique magnetic lens system, to an image plane. The magnetic lens system permits correcting for the effects of multiple coulomb scattering which would otherwise completely blur the spatially transmitted information at the image plane. The proton radiographs are recorded either on a time integrating film plate or with a recently developed multi-frame electronic imaging camera system. The latter technique permits obtaining a time dependent series of proton radiographs with time intervals (modulo 358 ns) up to many microseconds and variable time intervals between images. One electronically shuttered, intensified, CCD camera is required per image. These cameras can detect single protons interacting with a scintillating fiber optic array in the image plane but also have a dynamic range which permits recording radiographs with better than 5% statistics for observation of detailed density variations in the object. A number of tests have been carried out to characterize the quality of the proton radiography system for absolute mass determination, resolution, and dynamic range. Initial dynamic experiments characterized the temporal and spatial behavior of shock propagation in a high explosive sample with up to six images per experiment. Based on experience with the prototype system, a number of upgrades are being implemented including the anticipated capability for enhanced mass discrimination through differential multiple coulomb scattering radiographs and more images with improved imaging techniques.

  13. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale; Giove, Dario; De Martinis, Carlo; Bolton, Paul R.

    2014-03-01

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15 M €. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.

  14. Spallation yield of neutrons produced in thick lead target bombarded with 250 MeV protons

    NASA Astrophysics Data System (ADS)

    Chen, L.; Ma, F.; Zhanga, X. Y.; Ju, Y. Q.; Zhang, H. B.; Ge, H. L.; Wang, J. G.; Zhou, B.; Li, Y. Y.; Xu, X. W.; Luo, P.; Yang, L.; Zhang, Y. B.; Li, J. Y.; Xu, J. K.; Liang, T. J.; Wang, S. L.; Yang, Y. W.; Gu, L.

    2015-01-01

    The neutron yield from thick target of Pb irradiated with 250 MeV protons has been studied experimentally. The neutron production was measured with the water-bath gold method. The thermal neutron distributions in the water were determined according to the measured activities of Au foils. Corresponding results calculated with the Monte Carlo code MCNPX were compared with the experimental data. It was found out that the Au foils with cadmium cover significantly changed the spacial distribution of the thermal neutron field. The corrected neutron yield was deduced to be 2.23 ± 0.19 n/proton by considering the influence of the Cd cover on the thermal neutron flux.

  15. Proton-Deuteron Break-Up Measurements with Bina at 135 MeV

    NASA Astrophysics Data System (ADS)

    Eslami-Kalantari, M.; Amir-Ahmadi, H. R.; Biegun, A.; Gašparić, I.; Joulaeizadeh, L.; Kalantar-Nayestanaki, N.; Kistryn, St.; Kozela, A.; Mardanpour, H.; Messchendorp, J. G.; Moeini, H.; Ramazani-Moghaddam-Arani, A.; Shende, S. V.; Stephan, E.; Sworst, R.

    High-precision measurements of the proton-deuteron elastic and break-up reaction have been performed in the past at KVI and elsewhere with the aim to study three-nucleon force (3NF) effects. In the present work, we explored 3NF effects in the break-up scattering process by performing a measurement of vector analyzing powers and differential cross sections using a 135 MeV polarized-proton beam impinging on a liquid-deuterium target. For this study, we used a new experimental setup, Big Instrument for Nuclear-polarization Analysis, BINA, which covers almost the entire kinematical phase space of the break-up reaction. The results are interpreted with the help of state-of-the-art Faddeev calculations.

  16. Beam collimation and transport of quasineutral laser-accelerated protons by a solenoid field

    NASA Astrophysics Data System (ADS)

    Harres, K.; Alber, I.; Tauschwitz, A.; Bagnoud, V.; Daido, H.; Günther, M.; Nürnberg, F.; Otten, A.; Schollmeier, M.; Schütrumpf, J.; Tampo, M.; Roth, M.

    2010-02-01

    This article reports about controlling laser-accelerated proton beams with respect to beam divergence and energy. The particles are captured by a pulsed high field solenoid with a magnetic field strength of 8.6 T directly behind a flat target foil that is irradiated by a high intensity laser pulse. Proton beams with energies around 2.3 MeV and particle numbers of 1012 could be collimated and transported over a distance of more than 300 mm. In contrast to the protons the comoving electrons are strongly deflected by the solenoid field. They propagate at a submillimeter gyroradius around the solenoid's axis which could be experimentally verified. The originated high flux electron beam produces a high space charge resulting in a stronger focusing of the proton beam than expected by tracking results. Leadoff particle-in-cell simulations show qualitatively that this effect is caused by space charge attraction due to the comoving electrons. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications such as postacceleration by conventional accelerator structures.

  17. Status Of The Dielectric Wall Accelerator For Proton Therapy

    NASA Astrophysics Data System (ADS)

    Caporaso, George J.; Chen, Yu-Jiuan; Watson, James A.; Blackfield, Don T.; Nelson, Scott D.; Poole, Brian R.; Stanley, Joel R.; Sullivan, James S.

    2011-06-01

    The Dielectric Wall Accelerator (DWA) offers the potential to produce a high gradient linear accelerator for proton therapy and other applications. The current status of the DWA for proton therapy will be reviewed. Recent progress in SiC photoconductive switch development will be presented. There are serious beam transport challenges in the DWA arising from short pulse excitation of the wall. Solutions to these transport difficulties will be discussed.

  18. POLARIZED PROTON ACCELERATION AT THE BROOKHAVEN AGS - AN UPDATE.

    SciTech Connect

    HUANG,H.; AHRENS,L.; ALESSI,J.; BAI,M.; BEEBE-WANG,J.; BROWN,K.A.; GLENN,W.; LUCCIO,A.U.; MACKAY,W.W.; MONTAG,C.; PTITSYN,V.; ROSER,T.; TSOUPAS,N.; ZELENSKI,A.; ZENO,K.; CADMAN,B.; SPINKA,H.; UNDERWOOD,D.; RANJBAR,V.

    2002-06-02

    The RHIC spin design goal assumes 2 x 10{sup 11} proton/bunch with 70% polarization. As the injector to RHIC, polarized protons have been accelerated at the AGS for years to increase the polarization transmission efficiency. Several novel techniques have been applied in the AGS to overcome the intrinsic and imperfection resonances. The present level of accelerator performance is discussed. Progress on understanding the beam polarization behavior is presented. The outlook and future plan are also discussed.

  19. The proton injector for the accelerator facility of antiproton and ion research (FAIR)

    SciTech Connect

    Ullmann, C. Kester, O.; Chauvin, N.; Delferriere, O.

    2014-02-15

    The new international accelerator facility for antiproton and ion research (FAIR) at GSI in Darmstadt, Germany, is one of the largest research projects worldwide and will provide an antiproton production rate of 7 × 10{sup 10} cooled pbars per hour. This is equivalent to a primary proton beam current of 2 × 10{sup 16} protons per hour. For this request a high intensity proton linac (p-linac) will be built with an operating rf-frequency of 325 MHz to accelerate a 35 mA proton beam at 70 MeV, using conducting crossed-bar H-cavities. The repetition rate is 4 Hz with beam pulse length of 36 μs. The microwave ion source and low energy beam transport developed within a joint French-German collaboration GSI/CEA-SACLAY will serve as an injector of the compact proton linac. The 2.45 GHz ion source allows high brightness ion beams at an energy of 95 keV and will deliver a proton beam current of 100 mA at the entrance of the radio frequency quadrupole (RFQ) within an acceptance of 0.3π mm mrad (norm., rms)

  20. Stochastic spatial energy deposition profiles for MeV protons and keV electrons

    NASA Astrophysics Data System (ADS)

    Udalagama, C.; Bettiol, A. A.; Watt, F.

    2009-12-01

    With the rapid advances being made in novel high-energy ion-beam techniques such as proton beam writing, single-ion-event effects, ion-beam-radiation therapy, ion-induced fluorescence imaging, proton/ion microscopy, and ion-induced electron imaging, it is becoming increasingly important to understand the spatial energy-deposition profiles of energetic ions as they penetrate matter. In this work we present the results of comprehensive yet straightforward event-by-event Monte Carlo calculations that simulate ion/electron propagation and secondary electron ( δ ray) generation to yield spatial energy-deposition data. These calculations combine SRIM/TRIM features, EEDL97 data and volume-plasmon-localization models with a modified version of one of the newer δ ray generation models, namely, the Hansen-Kocbach-Stolterfoht. The development of the computer code DEEP (deposition of energy due to electrons and protons) offers a unique means of studying the energy-deposition/redistribution problem while still retaining the important stochastic nature inherent in these processes which cannot be achieved with analytical modeling. As an example of an application of DEEP we present results that compare the energy-deposition profiles of primary MeV protons and primary keV electrons in polymethymethacrylate. Such data are important when comparing proximity effects in the direct write lithography processes of proton-beam writing and electron-beam writing. Our calculations demonstrate that protons are able to maintain highly compact spatial energy-deposition profiles compared with electrons.

  1. Neutron production for 250 MeV protons bombarding on thick grain-made tungsten target

    NASA Astrophysics Data System (ADS)

    Zhang, Xueying; Zhang, Yanbin; Ma, Fei; Ju, Yongqin; Chen, Liang; Zhang, Hongbin; Li, Yanyan; Wan, Bo; Wang, Jianguo; Ge, Honglin

    2015-08-01

    Neutron yield for 250 MeV protons incident on a tungsten target has been measured using the water bath method. The target was made of many randomly placed tungsten grains. Through analyzing the activity of Au foils, the neutron flux distribution in water was obtained. The neutrons slowing down process shows that the neutrons from tungsten have an average energy lower than neutrons from the lead target. The neutron yield was experimentally determined to be 2.02 ± 0.15 neutron/proton. Detailed simulation was also performed with the Geant4 toolkit. Comparison has been made with the experimentally derived neutron yield. It was found that, around 250 MeV, experimental results were described satisfactorily with a combination of high-energy spallation, low-energy neutron reaction and scattering. It was shown that the grain-packed target does not affect much the main neutronic properties, which are of crucial importance for the design of the spallation target.

  2. Quantitative Assessment of MeV Electron Acceleration in Non-Linear Interactions with VLF Chorus

    NASA Astrophysics Data System (ADS)

    Foster, J. C.; Erickson, P. J.; Omura, Y.; Baker, D. N.

    2016-12-01

    For occurrences of apparent rapid acceleration of radiation belt electrons to MeV energies at L 4, we examine the energy gained by seed electrons in non-linear (NL) interactions with VLF chorus rising tones. For the 17-18 March 2013 storm, observations of outer zone radiation belt electron populations were made with the magEIS and REPT instruments on Van Allen Probes A & B. These reveal that MeV electron fluxes at L=4.2 increased 10-fold in 30 min at the times of 30 - 100 keV electron injections during "substorm" dipolarizations. Simultaneous enhancements of VLF chorus were observed with the EMFISIS wave instruments. Three-axis burst mode observations of wave electric and magnetic fields have been used to investigate electron interactions with individual chorus rising tones on a sub millisecond time scale. Wave amplitudes at 2500 Hz were 1 nT (|B|) and 30 mV/m (|E|). Frequency - time characteristics of the observed chorus elements closely match those predicted by NL electron-chorus interaction modeling [Omura et al., 2015, J. Geophys. Res. Space Phys., 120, doi:10.1002/2015JA021563]. For seed electrons with initial energies 50 keV to 8 MeV, subpacket wave analysis was used to quantify resonant electron energy gain both by relativistic turning acceleration and by ultrarelativistic acceleration through nonlinear trapping by the chorus waves. Electrons with 1-2 MeV initial energy can experience a 300 keV total energy gain in NL interactions with a single 200 msec rising tone. Maximum energy gain from interaction with a single 10 msec subpacket was 100 keV for a 2 MeV seed electron. Examining a number of chorus elements at different locations during the rapid local acceleration of the radiation belt during this event, we conclude that seed electrons (100s keV - 5 MeV) can be accelerated by 50 keV - 500 keV in resonant NL interactions with a single VLF rising tone on a time scale of 10-100 msec.

  3. Spill-to-spill and daily proton energy consistency with a new accelerator control system.

    PubMed

    Moyers, M F; Ghebremedhin, A

    2008-05-01

    The Loma Linda University proton accelerator has had several upgrades installed including synchrotron dipole power supplies and a system for monitoring the beam energy. The consistency of the energy from spill-to-spill has been tested by measuring the depth ionization at the distal edge as a function of time. These measurements were made with a minimally equipped beamline to reduce interference from confounding factors. The consistency of the energy over several months was measured in a treatment room beamline using an ionization chamber based daily quality assurance device. The results showed that the energy of protons delivered from the accelerator (in terms of water equivalent range) was consistent from spill-to-spill to better than +/-0.03 mm at 70, 155, and 250 MeV and that the energy check performed each day in the treatment room over a several month period was within +/-0.11 mm (+/-0.06 MeV) at 149 MeV. These results are within the tolerances required for the energy stacking technique.

  4. Radiotherapy using a laser proton accelerator

    SciTech Connect

    Murakami, Masao; Hishikawa, Yoshio; Miyajima, Satoshi; Okazaki, Yoshiko; Sutherland, Kenneth L.; Abe, Mitsuyuki; Bulanov, Sergei V.; Daido, Hiroyuki; Esirkepov, Timur Zh.; Koga, James; Yamagiwa, Mitsuru; Tajima, Toshiki

    2008-06-24

    Laser acceleration promises innovation in particle beam therapy of cancer where an ultra-compact accelerator system for cancer beam therapy can become affordable to a broad range of patients. This is not feasible without the introduction of a technology that is radically different from the conventional accelerator-based approach. Because of its compactness and other novel characteristics, the laser acceleration method provides many enhanced capabilities.

  5. A Monte Carlo Model for LET Spectra of 200 MeV Protons Used for Microelectronic Testing

    NASA Technical Reports Server (NTRS)

    O'Neill, Patrick M.; Culpepper, William X.

    2003-01-01

    The direct ionization Linear Energy Transfer (LET) for 200 MeV protons in silicon is much smaller than that for higher charged particles since LET increases as the square of the ion charge. However, occasionally the proton interacts with the silicon nuclei and produces a shower of fragments and a recoiling nucleus. When this happens, the LET produced is much greater than the direct ionization LET. Testing the single event effect susceptibility of components using energetic (200 MeV) protons is often the only viable option for system level testing commercial-off-the-shelf (COTS) avionics that have not been designed for space environments. However, the question of how a system tested with protons will perform in a heavy ion environment arises. Here the concern is not only with prediction of on-orbit upset rate, but also about possibility of on-orbit failures that were not observed during proton testing.

  6. Spin excitations in /sup 48/Ca and /sup 90/Zr with 319 MeV protons

    SciTech Connect

    Nanda, S.K.

    1985-05-01

    Cross sections, analyzing powers, and spin-flip probabilities have been measured in the low momentum transfer region in the /sup 90/Zr(p vector, p' vector) /sup 90/Zr* reaction at 319 MeV. A rich fine structure is observed for the first time in inelastic proton scattering in the previously proposed M1 giant resonance region. Angular distribution of most of these states are consistent with M1 excitation. The excitation energies of the fine structure states are in good agreement with similar structure seen in electron scattering; however, discrepancies in spin assignments remain. The measured cross section for the entire bump is about 37 +- 10% of the Distorted Wave Impulse Approximation (DWIA) prediction for the M1 strength in /sup 90/Zr with simple wave functions. However, an analysis of the fine structure states reveals about 15% of the strength in the M1 region to be due to narrow El states; another 8% is attributed to M2 strength. The spin-flip measurements for /sup 90/Zr reveal a large spin-flip probability value for the M1 region; good agreement is obtained with DWIA calculations. However, a large cross section for spin excitations distributed uniformly over the excitation energy region from about 7 to 25 MeV is observed for the first time. The spin excitation strength in this giant resonance continuum is found to about 0.80 mb/sr/MeV. Angular distributions for the spin-flip cross sections from 7 to 18 MeV in steps of 2 MeV have been analyzed with low multipole spin excitation calculations in the DWIA framework; the observed spin-flip strength in this region is found to be consistent with spin excitation involving angular momentum transfer of up to two. Finally, cross section, analyzing power, and spin-flip probability data have also been obtained for the 10.23 MeV M1 transition in the /sup 48/Ca(p vector, p' vector)/sup 48/Ca* reaction at 319 MeV. The quenching of M1 strength in /sup 48/Ca relative to theoretical predictions is found to be consistent with

  7. Independent isotopic yields in 25 MeV and 50 MeV proton-induced fission of natU

    NASA Astrophysics Data System (ADS)

    Penttilä, H.; Gorelov, D.; Elomaa, V.-V.; Eronen, T.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Karvonen, P.; Moore, I. D.; Parkkonen, J.; Peräjärvi, K.; Pohjalainen, I.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Rubchenya, V. A.; Saastamoinen, A.; Simutkin, V.; Sonoda, T.; Weber, C.; Voss, A.; Äystö, J.

    2016-04-01

    Independent isotopic yields for elements from Zn to La in the 25 MeV proton-induced fission of {}^{nat}U were determined with the JYFLTRAP facility. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in the 50 MeV proton-induced fission of {}^{nat}U were measured. The deduced isotopic yield distributions are compared with a Rubchenya model, the GEF model with universal parameters and the semi-empirical Wahl model. Of these, the Rubchenya model gives the best overall agreement with the obtained data. Combining the isotopic yield data with mass yield data to obtain the absolute independent yields was attempted. The result depends on the mass yield distribution.

  8. Comparison between calculation and measurement of energy deposited by 800 MeV protons

    SciTech Connect

    Loewe, W.E.

    1980-04-03

    The High Energy Transport Code, HETC, was obtained from the Radiation Shielding Information Center (RSIC) at Oak Ridge National Laboratory and altered as necessary to run on a CDC 7600 using the LTSS software in use at LLNL. HETC was then used to obtain calculated estimates of energy deposited, for comparison with a series of benchmark experiments done by LLNL. These experiments used proton beams of various energies incident on well-defined composite targets in good geometry. In this report, two aspects of the comparison between calculated and experimental energy depositions from an 800 MeV proton beam are discussed. Both aspects involve the fact that workers at SAI had previously used their version of HETC to calculate this experiment and reported their comparison with the measured data. The first aspect addressed is that their calculated data and LLNL calculations do not agree, suggesting an error in the conversion process from the RSIC code. The second aspect is not independent of the first, but is of sufficient importance to merit separate emphasis. It is that the SAI calculations agree well with experiments at the detector plate located some distance from the shower plate, whereas the LLNL calculations show a clearcut discrepancy there in comparison with the experiment. A contract was let in January 1980 by LLNL with SAI in order to obtain full details on the two cited aspects of the comparison between calculated and experimental energy depositions from an 800 MeV proton beam. The ensuing discussion is based on the final report of that contracted work.

  9. 1 MeV, 10 kW DC electron accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Nayak, B.; Acharya, S.; Bhattacharjee, D.; Bakhtsingh, R. I.; Rajan, R.; Sharma, D. K.; Dewangan, S.; Sharma, V.; Patel, R.; Tiwari, R.; Benarjee, S.; Srivastava, S. K.

    2016-03-01

    Several modern applications of radiation processing like medical sterilization, rubber vulcanization, polymerization, cross-linking and pollution control from thermal power stations etc. require D.C. electron accelerators of energy ranging from a few hundred keVs to few MeVs and power from a few kilowatts to hundreds of kilowatts. To match these requirements, a 3 MeV, 30 kW DC electron linac has been developed at BARC, Mumbai and current operational experience of 1 MeV, 10 kW beam power will be described in this paper. The LINAC composed mainly of Electron Gun, Accelerating Tubes, Magnets, High Voltage source and provides 10 kW beam power at the Ti beam window stably after the scanning section. The control of the LINAC is fully automated. Here Beam Optics study is carried out to reach the preferential parameters of Accelerating as well as optical elements. Beam trials have been conducted to find out the suitable operation parameters of the system.

  10. Laser proton accelerator with improved repeatability at Peking University

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Geng, Y.; Liao, Q.; Zhu, J.; Wang, P.; Wu, M.; Li, C.; Xu, X.; Li, R.; Lu, H.; Zhao, Y.; Ma, W.; Lin, C.; Yan, X.

    2017-07-01

    The repeatability of laser proton accelerator is mainly limited by laser plasma interaction, laser target coupling and laser parameter variation. In our recent experiments performed on the Compact Laser Plasma Accelerator at Peking University, gain of proton beams with improved repeatability is demonstrated. In order to control the laser plasma interaction in pre-plasma, cross polarized-wave generation technique is employed to provide a laser pulse with an ultrahigh contrast of 10-10 A semi-automatic laser and target alignment system with a sensitivity of few microns is employed. The repetition rate of the laser pro-ton accelerator is at the level of 0.1 Hz which is beneficial to decrease laser parameter variation. The shot-to-shot variation of proton energies is about 9% for a level of confidence of 0.95.

  11. Shielding calculations for industrial 5/7.5MeV electron accelerators using the MCNP Monte Carlo Code

    NASA Astrophysics Data System (ADS)

    Peri, Eyal; Orion, Itzhak

    2017-09-01

    High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, and by that extend the shelf life of the products. The production of X-rays is done by accelerating 5 MeV electrons and bombarding them into a heavy target (high Z). Since 2004, the FDA has approved using 7.5 MeV energy, providing higher production rates with lower treatments costs. In this study we calculated all the essential data needed for a straightforward concrete shielding design of typical food accelerator rooms. The following evaluation is done using the MCNP Monte Carlo code system: (1) Angular dependence (0-180°) of photon dose rate for 5 MeV and 7.5 MeV electron beams bombarding iron, aluminum, gold, tantalum, and tungsten targets. (2) Angular dependence (0-180°) spectral distribution simulations of bremsstrahlung for gold, tantalum, and tungsten bombarded by 5 MeV and 7.5 MeV electron beams. (3) Concrete attenuation calculations in several photon emission angles for the 5 MeV and 7.5 MeV electron beams bombarding a tantalum target. Based on the simulation, we calculated the expected increase in dose rate for facilities intending to increase the energy from 5 MeV to 7.5 MeV, and the concrete width needed to be added in order to keep the existing dose rate unchanged.

  12. Visualization experiment of 30 MeV proton beam irradiated water target

    NASA Astrophysics Data System (ADS)

    Hwan Hong, Bong; Gun Yang, Tea; Su Jung, In; Soo Park, Yeun; Hee Cho, Hyung

    2011-11-01

    The nucleate boiling phenomena in a water target irradiated by 30 MeV proton beam were visualized experimentally. The beam size was 10 mm in diameter and beam current of 10, 15 and 20 μA were used, respectively. A target cavity of 4.5 cc in volume was filled with distilled water without atmosphere. A CMOS camera is used to record the phenomena through a side window. The temperature and pressure were measured during experiments. The depth of the Bragg peak was indicated by the blue light emission of the proton beam in the water target. In the case of 10 μA beam intensity, there was no visible phase change but fluxes by convection was observed at the Bragg peak and near the foil surface region. At 15 μA beam intensity, steam bubbles were generated by homogenous nuclear boiling at the Bragg peak and corrupted by cavitation at the upper region. The steam bubble generation point can be indicated by the blue light emission, which can show us the position of the Bragg peak. At 20 μΑ beam intensity, the steam bubbles were generated at Bragg peak and near the foil surface. The homogenous nucleate boiling at the Bragg peak was dominant and the heterogeneous nucleate boiling near the foil surface took place, occasionally. The cavitation of the steam bubble was also observed in the upper region within the target. The penetration depth of the proton beam was change along with the steam bubble formation. The blue light emission of the proton beam in water shows that the penetration depth of the proton beam becomes deeper when vapor bubbles are generated.

  13. Acceleration of Solar Wind Ions to 1 Mev by Electromagnetic Moguls in the Foreshock

    NASA Astrophysics Data System (ADS)

    Stasiewicz, K.; Strumik, M.; Markidis, S.; Eliasson, B.; Yamauchi, M.

    2013-05-01

    We present measurements from the ESA/NASA Cluster mission that show in situ acceleration of ions to energies of 1 MeV outside the bow shock. The observed heating can be associated with the presence of electromagnetic structures with strong spatial gradients (divergence) of the electric field that lead to ion gyro-phase breaking and to the onset of chaos in ion trajectories. It results in rapid, stochastic acceleration of ions in the direction perpendicular to the ambient magnetic field. The electric potential of the structures can be compared to a field of moguls on a ski slope, capable of accelerating and ejecting the fast running skiers out of piste. This mechanism may represent the universal, basic mechanism for perpendicular acceleration and heating of ions in the magnetosphere, the solar corona and in astrophysical plasmas.

  14. Materials irradiation facilities at the high-power Swiss proton accelerator complex

    NASA Astrophysics Data System (ADS)

    Wagner, Werner; Dai, Yong; Glasbrenner, Heike; Aebersold, Hans-Ulrich

    2007-04-01

    Within the Swiss proton accelerator complex at the Paul-Scherrer-Institute (PSI), several irradiation facilities are operated for investigation of materials behavior under high-dose irradiation conditions as well as for neutron activation analysis and isotope production. In LiSoR (liquid solid reaction), a liquid metal loop connected to the 72 MeV proton accelerator Injector 1, steel samples are irradiated while being in contact with flowing lead-bismuth-eutectic (LBE) at elevated temperatures and under tensile stress. In the spallation neutron source SINQ, the STIP program (SINQ Target Irradiation Program) allows materials irradiation under realistic spallation conditions, i.e. in a mixed spectrum of 570 MeV protons and spallation neutrons. Hundreds of samples, mainly austenitic and ferritic-martensitic steels such as 316L, T91 or F82H, were irradiated to doses up to 20 dpa as part of STIP. These also included steel samples in contact with liquid Hg and liquid LBE. MEGAPIE (MEGAwatt PIlot Experiment), a liquid metal target employing LBE, operated in SINQ during the second half of 2006, can be taken as a materials irradiation facility on its own. Adjacent to the target position, SINQ houses a neutron irradiation rabbit system serving activation analysis and isotope production.

  15. Comparison of neutron induced fission and capture in Np-237 and Pu-239 irradiated in QUINTA assembly with 660 MeV proton beam

    NASA Astrophysics Data System (ADS)

    Kilim, Stanislaw; Strugalska-Gola, Elzbieta; Szuta, Marcin; Bielewicz, Marcin; Tyutyunnikov, Sergey; Stegailov, Vladimir

    2017-03-01

    Two Np-237 samples and one Pu-239 were irradiated in spallation neutrons produced in ADS setup QUINTA. The accelerated beam consisted of protons of energy 660 MeV. The method was based on gamma-ray spectrometry measurement. During analysis of the spectra several fission products and one actinide were identified. Fission product activities gave the number of fissions. The actinide (Np-238), a result of neutron capture by Np-237 gave the number of captures. In a similar manner the number of fissions in Pu-239 was determined. The Pu-240, a product of neutron capture by Pu-239, activity was impossible to measure.

  16. A study of gamma-ray and neutron radiation in the interaction of a 2 MeV proton beam with various materials.

    PubMed

    Kasatov, D; Makarov, A; Shchudlo, I; Taskaev, S

    2015-12-01

    Epithermal neutron source based on a tandem accelerator with vacuum insulation and lithium target has been proposed, developed and operated in Budker Institute of Nuclear Physics. The source is regarded as a prototype of a future compact device suitable for carrying out BNCT in oncology centers. In this work the measurements of gamma-ray and neutron radiation are presented for the interaction of a 2 MeV proton beam with various materials (Li, C, F, Al, V, Ti, Cu, Mo, stainless steel, and Ta). The obtained results enabled the optimization of the neutron-generating target and the high energy beam transportation path. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Source terms and attenuation lengths for estimating shielding requirements or dose analyses of proton therapy accelerators.

    PubMed

    Sheu, Rong-Jiun; Lai, Bo-Lun; Lin, Uei-Tyng; Jiang, Shiang-Huei

    2013-08-01

    Proton therapy accelerators in the energy range of 100-300 MeV could potentially produce intense secondary radiation, which must be carefully evaluated and shielded for the purpose of radiation safety in a densely populated hospital. Monte Carlo simulations are generally the most accurate method for accelerator shielding design. However, simplified approaches such as the commonly used point-source line-of-sight model are usually preferable on many practical occasions, especially for scoping shielding design or quick sensitivity studies. This work provides a set of reliable shielding data with reasonable coverage of common target and shielding materials for 100-300 MeV proton accelerators. The shielding data, including source terms and attenuation lengths, were derived from a consistent curve fitting process of a number of depth-dose distributions within the shield, which were systematically calculated by using MCNPX for various beam-target shield configurations. The general characteristics and qualities of this data set are presented. Possible applications in cases of single- and double-layer shielding are considered and demonstrated.

  18. Laser acceleration of protons using multi-ion plasma gaseous targets

    DOE PAGES

    Liu, Tung -Chang; Shao, Xi; Liu, Chuan -Sheng; ...

    2015-02-01

    We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO₂ laser pulse with a wavelength of 10 μm—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such amore » laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.« less

  19. Radiation effects on silicon bipolar transistors caused by 3-10 MeV protons and 20-60 MeV bromine ions

    NASA Astrophysics Data System (ADS)

    Li, Xingji; Geng, Hongbin; Lan, Mujie; Liu, Chaoming; Yang, Dezhuang; He, Shiyu

    2010-03-01

    The current gain degradation in silicon NPN bipolar junction transistors (BJTs) was examined under irradiation with 3-10 MeV protons and 20-60 MeV bromine (Br) ions with various dose levels. To characterize the radiation damage of the NPN BJTs, the ionizing dose D i and displacement dose D d as a function of chip depth in the NPN BJTs were calculated for both the protons and Br ions with different energies. Based on the irradiation testing and calculated results, it is shown that the current gain degradation of NPN BJTs is sensitive to the ratio of D d/( D d+ D i) in the sensitive region given by protons and Br ions. The irradiation particles (protons and Br ions), which give larger D d/( D d+ D i) at a given total dose, would generate more severe damage to the NPN BJTs. The reciprocal of the gain variation as a function of the displacement dose was compared, showing that the Messenger-Spratt equation becomes relevant to describe the experimental data, when the ratio of the D d/( D d+ D i) are larger and the displacement dose are higher than a certain value.

  20. Near realtime forecasting of MeV protons on the basis of sub relativistic electrons

    NASA Astrophysics Data System (ADS)

    Labrenz, Johannes; Heber, Bernd; Kuehl, Patrick; Sarlanis, Christos; Malandraki, Olga; Posner, Arik

    2016-04-01

    A major impact on human and robotic space exploration activities is the sudden and prompt occurrence of solar energetic ion events. In order to provide up to an hour warning before these particles arrive at Earth, relativistic electron and below 50 MeV proton data from the Electron Proton Helium Instrument (EPHIN) on SOHO were used to implement the 'Relativistic Electron Alert System for Exploration (REleASE)'. It has been demonstrated that the analysis of relativistic electron time profiles provides a low miss and false alarm rate. High Energy Solar Particle Events foRecastIng and Analysis (HESPERIA) is a project funded within the European Union's Horizon 2020 research and innovation programme (PROTEC-1-2014 Call: Space Weather). Within this project the REleASE forecasting scheme was rewritten in the open access programming language PYTHON and will be made public. As a next step, we have analyzed the possibility to also use, along with relativistic electrons (v > 0.9 c) provided by SOHO, near-relativistic (v <0.8 c) electron measurements from other instruments like the Electron Proton Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE). This would prove to be particularly useful during periods that SOHO does not provide continuous near real-time data. We show that the ACE/EPAM observations can be adapted to the REleASE forecasting scheme to provide reliable SEP forecasts. A comparison of measured and forecast proton intensities by SOHO/EPHIN and ACE/EPAM will be presented. In addition we investigated the false alarm rate and detection probability of solar ion events. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.

  1. 800-MeV proton irradiation of thorium and depleted uranium targets

    SciTech Connect

    Russell, G.J.; Brun, T.O.; Pitcher, E.J.

    1995-10-01

    As part of the Los Alamos Fertile-to-Fissile-Conversion (FERFICON) program in the late 1980`s, thick targets of the fertile materials thorium and depleted uranium were bombarded by 800-MeV protons to produce the fissile materials {sup 233}U and {sup 239}Pu, respectively. The amount of {sup 233}U made was determined by measuring the {sup 233}Pa activity, and the yield of {sup 239}Pu was deduced by measuring the activity of {sup 239}Np. For the thorium target, 4 spallation products and 34 fission products were also measured. For the depleted uranium target, 3 spallation products and 16 fission products were also measured. The number of fissions in each target was deduced from fission product mass-yield curves. In actuality, axial distributions of the products were measured, and the distributions were then integrated over the target volume to obtain the total number of products for each reaction.

  2. Mutation effect of MeV protons on bioflocculant bacteria Bacillus cereus

    NASA Astrophysics Data System (ADS)

    Yang, Y. N.; Ren, N.; Xue, J. M.; Yang, J.; Rong, B. L.

    2007-09-01

    A 3.2 MeV proton beam was used to irradiate bioflocculant bacteria (Bacillus cereus) to achieve mutation. The ion fluence ranged from 1011 to 1014/cm2. Most of the bacteria were killed when the ion fluence reached 1012 ions/cm2. The survival ratio drops in an exponential way on further increasing the ion fluence. The flocculating activity of 7 samples out of 51 showed a positive change, and a perfect mutant C7-23 with a stable high capacity of bioflocculant production was found. RAPD measurements showed that a new lane appears in this sample. The flocculating activity of the C7-23 bacteria increased by factors of 22%, 54% and 217% under pH values of 4, 7 or 10, respectively.

  3. Development of a 20 MeV Dielectric-Loaded Test Accelerator

    SciTech Connect

    Gold, S.H.; Kinkead, A.K.; Gai, W.; Power, J.G.; Konecny, R.; Jing, C.; Long, J.; Tantawi, S.G.; Nantista, C.D.; Fliflet, A.W.; Lombardi, M.; Lewis, D.; Bruce, R.W.; /Unlisted

    2007-04-13

    This paper presents a progress report on a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded test accelerator in the magnicon facility at NRL. The accelerator will be powered by an experimental 11.424-GHz magnicon amplifier that presently produces 25 MW of output power in a {approx}250-ns pulse at up to 10 Hz. The accelerator will include a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate DLA structures up to 0.5 m in length. The DLA structures are being developed by ANL, and shorter test structures fabricated from a variety of dielectric materials have undergone testing at NRL at gradients up to {approx}8 MV/m. SLAC has developed components to distribute the power from the two magnicon output arms to the injector and to the DLA accelerating structure with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, has investigated means to join short ceramic sections into a continuous accelerator tube by a brazing process using an intense 83-GHz beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year.

  4. High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets

    NASA Astrophysics Data System (ADS)

    Brenner, C. M.; Robinson, A. P. L.; Markey, K.; Scott, R. H. H.; Gray, R. J.; Rosinski, M.; Deppert, O.; Badziak, J.; Batani, D.; Davies, J. R.; Hassan, S. M.; Lancaster, K. L.; Li, K.; Musgrave, I. O.; Norreys, P. A.; Pasley, J.; Roth, M.; Schlenvoigt, H.-P.; Spindloe, C.; Tatarakis, M.; Winstone, T.; Wolowski, J.; Wyatt, D.; McKenna, P.; Neely, D.

    2014-02-01

    An all-optical approach to laser-proton acceleration enhancement is investigated using the simplest of target designs to demonstrate application-relevant levels of energy conversion efficiency between laser and protons. Controlled deposition of laser energy, in the form of a double-pulse temporal envelope, is investigated in combination with thin foil targets in which recirculation of laser-accelerated electrons can lead to optimal conditions for coupling laser drive energy into the proton beam. This approach is shown to deliver a substantial enhancement in the coupling of laser energy to 5-30 MeV protons, compared to single pulse irradiation, reaching a record high 15% conversion efficiency with a temporal separation of 1 ps between the two pulses and a 5 μm-thick Au foil. A 1D simulation code is used to support and explain the origin of the observation of an optimum pulse separation of ˜1 ps.

  5. Target irradiation facility and targetry development at 160 MeV proton beam of Moscow linac

    NASA Astrophysics Data System (ADS)

    Zhuikov, Boris L.; Kokhanyuk, Vladimir M.; Konyakhin, Nickolay A.; Vincent, John

    1999-12-01

    A facility has been built and successfully operated with the 160 MeV proton beam of Moscow Meson factory LINAC, Institute for Nuclear Research (INR) of Russian Academy of Science, Troitsk. The facility was created for various isotope production goals as well as for fundamental nuclear investigations at high intensity beam (100 μA and more). An important part of the facility targetry system is a high-intensity beam monitoring collimator device. Measurements of the temperature distribution between collimator sectors, cooling water flow and temperature, and the beam current, provide an opportunity to compute beam losses and beam position. The target holder design allows easy insertion by manipulator and simultaneous bombardment of several different targets of various types and forms, and variation of proton energy on each target over a wide range below 160 MeV. The main target utilized for commercial 82Sr isotope production is metallic rubidium in a stainless-steel container. A regular wet chemistry method has been used in this process to recover radio-strontium. A new targetry technique based on adsorption of radio-strontium from liquid metallic rubidium has been explored and is under development. It was found that strontium may be extracted from molten rubidium on several metallic or oxide flat surfaces, with the temperature of the sorbing material about 130-170°C, and the temperature of the vessel with metallic rubidium about 240-270°C. This makes it possible to provide "on-line" 82Sr production and extraction on a very high intensity beam with the use of circulating liquid rubidium targets. The same idea has been found to be fruitful to extract "on-line" and selectively a number of radionuclides directly from liquid lead targets by chemosorption processes.

  6. Study of the radioactivity induced in air by a 15-MeV proton beam.

    PubMed

    Braccini, S; Ereditato, A; Nesteruk, K P; Scampoli, P; Zihlmann, K

    2015-02-01

    Radioactivity induced by a 15-MeV proton beam extracted into air was studied at the beam transport line of the 18-MeV cyclotron at the Bern University Hospital (Inselspital). The produced radioactivity was calculated and measured by means of proportional counters located at the main exhaust of the laboratory. These devices were designed for precise assessment of air contamination for radiation protection purposes. The main produced isotopes were (11)C, (13)N and (14)O. Both measurements and calculations correspond to two different irradiation conditions. In the former, protons were allowed to travel for their full range in air. In the latter, they were stopped at the distance of 1.5 m by a beam dump. Radioactivity was measured continuously in the exhausted air starting from 2 min after the end of irradiation. For this reason, the short-lived (14)O isotope gave a negligible contribution to the measured activity. Good agreement was found between the measurements and the calculations within the estimated uncertainties. Currents in the range of 120-370 nA were extracted in air for 10-30 s producing activities of 9-22 MBq of (11)C and (13)N. The total activities for (11)C and (13)N per beam current and irradiation time for the former and the latter irradiation conditions were measured to be (3.60 ± 0.48) × 10(-3) MBq (nA s)(-1) and (2.89 ± 0.37) × 10(-3) MBq (nA s)(-1), respectively.

  7. Energetics and energy scaling of quasi-monoenergetic protons in laser radiation pressure acceleration

    SciTech Connect

    Liu Tungchang; Shao Xi; Liu Chuansheng; Su Jaojang; Dudnikova, Galina; Sagdeev, Roald Z.; Eliasson, Bengt; Tripathi, Vipin

    2011-12-15

    Theoretical and computational studies of the ion energy scaling of the radiation pressure acceleration of an ultra-thin foil by short pulse intense laser irradiation are presented. To obtain a quasi-monoenergetic ion beam with an energy spread of less than 20%, two-dimensional particle-in-cell simulations show that the maximum energy of the quasi-monoenergetic ion beam is limited by self-induced transparency at the density minima caused by the Rayleigh-Taylor instability. For foils of optimal thickness, the time over which Rayleigh-Taylor instability fully develops and transparency occurs is almost independent of the laser amplitude. With a laser power of about one petawatt, quasi-monogenetic protons with 200 MeV and carbon ions with 100 MeV per nucleon can be obtained, suitable for particle therapy applications.

  8. Distribution uniformity of laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Zhu, Jun-Gao; Zhu, Kun; Tao, Li; Xu, Xiao-Han; Lin, Chen; Ma, Wen-Jun; Lu, Hai-Yang; Zhao, Yan-Ying; Lu, Yuan-Rong; Chen, Jia-Er; Yan, Xue-Qing

    2017-09-01

    Compared with conventional accelerators, laser plasma accelerators can generate high energy ions at a greatly reduced scale, due to their TV/m acceleration gradient. A compact laser plasma accelerator (CLAPA) has been built at the Institute of Heavy Ion Physics at Peking University. It will be used for applied research like biological irradiation, astrophysics simulations, etc. A beamline system with multiple quadrupoles and an analyzing magnet for laser-accelerated ions is proposed here. Since laser-accelerated ion beams have broad energy spectra and large angular divergence, the parameters (beam waist position in the Y direction, beam line layout, drift distance, magnet angles etc.) of the beamline system are carefully designed and optimised to obtain a radially symmetric proton distribution at the irradiation platform. Requirements of energy selection and differences in focusing or defocusing in application systems greatly influence the evolution of proton distributions. With optimal parameters, radially symmetric proton distributions can be achieved and protons with different energy spread within ±5% have similar transverse areas at the experiment target. Supported by National Natural Science Foundation of China (11575011, 61631001) and National Grand Instrument Project (2012YQ030142)

  9. Solar Energetic Protons at >500 MeV in the Sun's Atmosphere and in Interplanetary Space: The 2012 May 17 Ground Level Event

    NASA Astrophysics Data System (ADS)

    Tylka, A. J.; Dietrich, W. F.; Murphy, R. J.; Ng, C. K.; Share, G. H.; Shea, M. A.; Smart, D. F.

    2013-12-01

    For energetic particles produced at or near the Sun, it is generally recognized that at least two distinct acceleration mechanisms are operating: (1) acceleration at coronal sites of magnetic reconnection, generally associated with flares and (2) acceleration at shocks driven by fast coronal mass ejections (CMEs). It is also generally recognized that both mechanisms can accelerate protons to multi-GeV energies, although the precise ways in which this comes about is still an area of active research. Moreover, when a very large solar energetic particle (SEP) event is observed in interplanetary space, both a large flare and the launch of a fast CME are observed nearly simultaneously (unless the flare occurs behind a limb). Numerous studies have tried to sort out how these two energetic phenomena might contribute to the particles observed in interplanetary space. Are the flare-accelerated particles confined to closed field lines? Or do some of them 'leak' to open field lines, thereby allowing them to contribute to the interplanetary SEPs? If so, how large is the flare contribution relative to particles accelerated by the CME-driven shock? To date, there is no consensus on any of these issues, particularly at the highest energies, where the release of particles from the neighborhood of the Sun generally persists for only a short period of time. Although Cycle 24 has thus far been disappointing in its rate of SEP events, the one Ground Level Event (GLE) observed so far, on 2012 May 17, provides the opportunity to address these issues in a more thorough manner than ever before. Fermi has reported sustained emission of >100 MeV gamma-rays that result from proton-induced pion-production in the solar atmosphere. At 1 AU, we have observations of the GLE from the world-wide neutron network, from which the event-integrated proton spectrum and the time-dependent anisotropy have been extracted. This event was also observed at both STEREO spacecraft, giving us the ability to model

  10. Optimization of Electron Beam Transport for a 3-MeV DC Accelerator

    NASA Astrophysics Data System (ADS)

    Baruah, S.; Bhattacharjee, D.; Tiwari, R.; Sahu, G. K.; Thakur, K. B.; Mittal, K. C.; Gantayet, L. M.

    2012-11-01

    Transport of a low-current-density electron beam is simulated for an electrostatic accelerator system. Representative charged particles are uniformly assigned for emission from a circular indirectly-heated cathode of an axial electron gun. The beam is accelerated stepwise up to energy of 1 MeV electrostatically in a length-span of ~3 m using multiple accelerating electrodes in a column of ten tubes. The simulation is done under relativistic condition and the effect of the magnetic field induced by the cathode-heating filament current is taken into account. The beam diameter is tracked at different axial locations for various settings of the electrode potentials. Attempts have been made to examine and explain data on beam transport efficiency obtained from experimental observations.

  11. Fermilab's Proton Accelerator Complex : World Record Performance and Upgrade Plans

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir

    2017-01-01

    The flagship of Fermilab's long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab's Main Injector. The physics goals of the DUNE require a proton beam with a power of some 2.4 MW at 120 GeV, which is roughly four times the current maximum power. Here I discuss current performance of the Fermilab proton accelerator complex, our plans for construction of the SRF proton linac as key part of the Proton Improvement Plan-II (PIP-II), outline the main challenges toward multi-MW beam power operation of the Fermilab accelerator complex and the staged plan to achieve the required performance over the next 15 years.

  12. Improvement Plans of Fermilab’s Proton Accelerator Complex

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir

    2017-09-01

    The flagship of Fermilab’s long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab’s Main Injector. The physics goals of the DUNE require a proton beam with a power of some 2.4 MW at 120 GeV, which is roughly four times the current maximum power. Here I discuss current performance of the Fermilab proton accelerator complex, our plans for construction of the SRF proton linac as key part of the Proton Improvement Plan-II (PIP-II), outline the main challenges toward multi-MW beam power operation of the Fermilab accelerator complex and the staged plan to achieve the required performance over the next 15 years.

  13. Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center

    SciTech Connect

    S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

    2012-07-01

    A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

  14. Calibration of GafChromic EBT3 for absorbed dose measurements in 5 MeV proton beam and {sup 60}Co γ-rays

    SciTech Connect

    Vadrucci, M. Ronsivalle, C.; Marracino, F.; Montereali, R. M.; Picardi, L.; Piccinini, M.; Vincenti, M. A.; Esposito, G.; De Angelis, C.; Cherubini, R.; Pimpinella, M.

    2015-08-15

    Purpose: To study EBT3 GafChromic film in low-energy protons, and for comparison purposes, in a reference {sup 60}Co beam in order to use it as a calibrated dosimetry system in the proton irradiation facility under construction within the framework of the Oncological Therapy with Protons (TOP)-Intensity Modulated Proton Linear Accelerator for RadioTherapy (IMPLART) Project at ENEA-Frascati, Italy. Methods: EBT3 film samples were irradiated at the Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Legnaro, Italy, with a 5 MeV proton beam generated by a 7 MV Van de Graaff CN accelerator. The nominal dose rates used were 2.1 Gy/min and 40 Gy/min. The delivered dose was determined by measuring the particle fluence and the energy spectrum in air with silicon surface barrier detector monitors. A preliminary study of the EBT3 film beam quality dependence in low-energy protons was conducted by passively degrading the beam energy. EBT3 films were also irradiated at ENEA-National Institute of Ionizing Radiation Metrology with gamma radiation produced by a {sup 60}Co source characterized by an absorbed dose to water rate of 0.26 Gy/min as measured by a calibrated Farmer type ionization chamber. EBT3 film calibration curves were determined by means of a set of 40 film pieces irradiated to various doses ranging from 0.5 Gy to 30 Gy absorbed dose to water. An EPSON Expression 11000XL color scanner in transmission mode was used for film analysis. Scanner response stability, intrafilm uniformity, and interfilm reproducibility were verified. Optical absorption spectra measurements were performed on unirradiated and irradiated EBT3 films to choose the most sensitive color channel to the dose range used. Results: EBT3 GafChromic films show an under response up to about 33% for low-energy protons with respect to {sup 60}Co gamma radiation, which is consistent with the linear energy transfer dependence already observed with higher energy protons, and a negligible dose

  15. Calibration of GafChromic EBT3 for absorbed dose measurements in 5 MeV proton beam and (60)Co γ-rays.

    PubMed

    Vadrucci, M; Esposito, G; Ronsivalle, C; Cherubini, R; Marracino, F; Montereali, R M; Picardi, L; Piccinini, M; Pimpinella, M; Vincenti, M A; De Angelis, C

    2015-08-01

    To study EBT3 GafChromic film in low-energy protons, and for comparison purposes, in a reference (60)Co beam in order to use it as a calibrated dosimetry system in the proton irradiation facility under construction within the framework of the Oncological Therapy with Protons (TOP)-Intensity Modulated Proton Linear Accelerator for RadioTherapy (IMPLART) Project at ENEA-Frascati, Italy. EBT3 film samples were irradiated at the Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Legnaro, Italy, with a 5 MeV proton beam generated by a 7 MV Van de Graaff CN accelerator. The nominal dose rates used were 2.1 Gy/min and 40 Gy/min. The delivered dose was determined by measuring the particle fluence and the energy spectrum in air with silicon surface barrier detector monitors. A preliminary study of the EBT3 film beam quality dependence in low-energy protons was conducted by passively degrading the beam energy. EBT3 films were also irradiated at ENEA-National Institute of Ionizing Radiation Metrology with gamma radiation produced by a (60)Co source characterized by an absorbed dose to water rate of 0.26 Gy/min as measured by a calibrated Farmer type ionization chamber. EBT3 film calibration curves were determined by means of a set of 40 film pieces irradiated to various doses ranging from 0.5 Gy to 30 Gy absorbed dose to water. An EPSON Expression 11000XL color scanner in transmission mode was used for film analysis. Scanner response stability, intrafilm uniformity, and interfilm reproducibility were verified. Optical absorption spectra measurements were performed on unirradiated and irradiated EBT3 films to choose the most sensitive color channel to the dose range used. EBT3 GafChromic films show an under response up to about 33% for low-energy protons with respect to (60)Co gamma radiation, which is consistent with the linear energy transfer dependence already observed with higher energy protons, and a negligible dose-rate dependence in the 2-40 Gy/min range

  16. Novel target design for enhanced laser driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Dalui, Malay; Kundu, M.; Tata, Sheroy; Lad, Amit D.; Jha, J.; Ray, Krishanu; Krishnamurthy, M.

    2017-09-01

    We demonstrate a simple method of preparing structured target for enhanced laser-driven proton acceleration under target-normal-sheath-acceleration scheme. A few layers of genetically modified, clinically grown micron sized E. Coli bacteria cell coated on a thin metal foil has resulted in an increase in the maximum proton energy by about 1.5 times and the total proton yield is enhanced by approximately 25 times compared to an unstructured reference foil at a laser intensity of 1019 W/cm2. Particle-in-cell simulations on the system shows that the structures on the target-foil facilitates anharmonic resonance, contributing to enhanced hot electron production which leads to stronger accelerating field. The effect is observed to grow as the number of structures is increased in the focal area of the laser pulse.

  17. ELECTROMAGNETIC SIMULATIONS OF LINEAR PROTON ACCELERATOR STRUCTURES USING DIELECTRIC WALL ACCELERATORS

    SciTech Connect

    Nelson, S; Poole, B; Caporaso, G

    2007-06-15

    Proton accelerator structures for medical applications using Dielectric Wall Accelerator (DWA) technology allow for the utilization of high electric field gradients on the order of 100 MV/m to accelerate the proton bunch. Medical applications involving cancer therapy treatment usually desire short bunch lengths on the order of hundreds of picoseconds in order to limit the extent of the energy deposited in the tumor site (in 3D space, time, and deposited proton charge). Electromagnetic simulations of the DWA structure, in combination with injections of proton bunches have been performed using 3D finite difference codes in combination with particle pushing codes. Electromagnetic simulations of DWA structures includes these effects and also include the details of the switch configuration and how that switch time affects the electric field pulse which accelerates the particle beam.

  18. HADRON ACCELERATORS: Electron proton instability in the CSNS ring

    NASA Astrophysics Data System (ADS)

    Wang, Na; Qin, Qing; Liu, Yu-Dong

    2009-06-01

    The electron proton (e-p) instability has been observed in many proton accelerators. It will induce transverse beam size blow-up, cause beam loss and restrict the machine performance. Much research work has been done on the causes, dynamics and cures of this instability. A simulation code is developed to study the e-p instability in the ring of the China Spallation Neutron Source (CSNS).

  19. On the acceleration of ions by interplanetary shock waves. 3: High time resolution observations of CIR proton events

    NASA Technical Reports Server (NTRS)

    Pesses, M. E.; Vanallen, J. A.; Tsurutani, B. T.; Smith, E. J.

    1981-01-01

    Observations within + or - 3 hours of corotating interaction region (CIR) shock waves of proton intensities, pitch angle distribution and crude differential energy spectra of the range of 0.6 E sub p 3.4 MeV are presented. The principle result is the evidence for the persistent flow of particles away from the shock. The observations are found to be in good agreement with the hypothesis of local interplanetary shock acceleration by the shock drift and compression mechanisms. The same set of observations strongly suggest that transit time damping does not play an important role in the acceleration of protons to 1 MeV in the immediate vicinity of CIR shocks.

  20. Future laser-accelerated proton beams at ELI-Beamlines as potential source of positron emitters for PET

    NASA Astrophysics Data System (ADS)

    Amato, E.; Italiano, A.; Margarone, D.; Pagano, B.; Baldari, S.; Korn, G.

    2016-04-01

    The development of novel compact PET radionuclide production systems is of great interest to promote the diffusion of PET diagnostics, especially in view of the continuous development of novel, fast and efficient, radiopharmaceutical methods of labeling. We studied the feasibility to produce clinically-relevant amounts of PET isotopes by means of laser-accelerated proton sources expected at the ELI-Beamlines facility where a PW, 30 fs, 10 Hz laser system will be available. The production yields of several positron emitters were calculated through the TALYS software, by taking into account three possible scenarios of broad proton spectra expected, with maximum energies ranging from about 8 MeV to 100 MeV. With the hypothesized proton fluencies, clinically-relevant amounts of radionuclides can be obtained, suitable to prepare single doses of radiopharmaceuticals exploiting modern fast and efficient labeling systems.

  1. Proton linear accelerators: A theoretical and historical introduction

    SciTech Connect

    Lapostolle, P.M.

    1989-07-01

    From the beginning, the development of linear accelerators has followed a number of different directions. This report surveys the basic ideas and general principles of such machines, pointing out the problems that have led to the various improvements, with the hope that it may also aid further progress. After a brief historical survey, the principal aspects of accelerator theory are covered in some detail: phase stability, focusing, radio-frequency accelerating structures, the detailed calculation of particle dynamics, and space-charge effects at high intensities. These developments apply essentially to proton and ion accelerators, and only the last chapter deals with a few aspects relative to electrons. 134 refs.

  2. Proton-proton correlations at small relative momentum in neon-nucleus collisions at E/A=400 and 800 MeV

    NASA Technical Reports Server (NTRS)

    Dupieux, P.; Alard, J. P.; Augerat, J.; Babinet, R.; Bastid, N.; Brochard, F.; Charmensat, P.; De Marco, N.; Fanet, H.; Fodor, Z.; hide

    1988-01-01

    Proton-proton small angle correlations have been measured in neon-nucleus collisions, using the 4 pi detector Diogene, at 400 and 800 MeV per nucleon incident energies. Values of the size of the emitting region are obtained by comparison with the Koonin formula, taking into account the biases of the apparatus. The dependence of the density on target mass and incident energy is also analysed.

  3. Proton-proton correlations at small relative momentum in neon-nucleus collisions at E/A=400 and 800 MeV

    NASA Technical Reports Server (NTRS)

    Dupieux, P.; Alard, J. P.; Augerat, J.; Babinet, R.; Bastid, N.; Brochard, F.; Charmensat, P.; De Marco, N.; Fanet, H.; Fodor, Z.; Fraysse, L.; Girard, J.; Gorodetzky, P.; Gosset, J.; Laspalles, C.; Lemaire, M. C.; L'Hote, D.; Lucas, B.; Marroncle, J.; Montarou, G.; Parizet, M. J.; Poitou, J.; Qassoud, D.; Racca, C.; Schimmerling, W.

    1988-01-01

    Proton-proton small angle correlations have been measured in neon-nucleus collisions, using the 4 pi detector Diogene, at 400 and 800 MeV per nucleon incident energies. Values of the size of the emitting region are obtained by comparison with the Koonin formula, taking into account the biases of the apparatus. The dependence of the density on target mass and incident energy is also analysed.

  4. Proton-proton correlations at small relative momentum in neon-nucleus collisions at E/A=400 and 800 MeV.

    PubMed

    Dupieux, P; Alard, J P; Augerat, J; Babinet, R; Bastid, N; Brochard, F; Charmensat, P; De Marco, N; Fanet, H; Fodor, Z; Fraysse, L; Girard, J; Gorodetzky, P; Gosset, J; Laspalles, C; Lemaire, M C; L'Hôte, D; Lucas, B; Marroncle, J; Montarou, G; Parizet, M J; Poitou, J; Qassoud, D; Racca, C; Schimmerling, W

    1988-01-07

    Proton-proton small angle correlations have been measured in neon-nucleus collisions, using the 4 pi detector Diogene, at 400 and 800 MeV per nucleon incident energies. Values of the size of the emitting region are obtained by comparison with the Koonin formula, taking into account the biases of the apparatus. The dependence of the density on target mass and incident energy is also analysed.

  5. Acceleration of Thermal Protons by Generic Phenomenological Mechanisms

    NASA Astrophysics Data System (ADS)

    Petrosian, Vahé; Kang, Byungwoo

    2015-11-01

    We investigate heating and acceleration of protons from a thermal gas with a generic diffusion and acceleration model, and subject to Coulomb scattering and energy loss, as was done by Petrosian & East for electrons. As protons gain energy their loss to electrons becomes important. Thus, we need to solve the coupled proton-electron kinetic equation. We numerically solve the coupled Fokker-Planck equations and compute the time evolution of the spectra of both particles. We show that this can lead to a quasi-thermal component plus a high-energy nonthermal tail. We determine the evolution of the nonthermal tail and the quasi-thermal component. The results may be used to explore the possibility of inverse bremsstrahlung radiation as a source of hard X-ray emissions from hot sources such as solar flares, accretion disk coronas, and the intracluster medium of galaxy clusters. We find that the emergence of nonthermal protons is accompanied by excessive heating of the entire plasma, unless the turbulence needed for scattering and acceleration is steeper than Kolmogorov and the acceleration parameters, the duration of the acceleration, and/or the initial distributions are significantly fine-tuned. These results severely constrain the feasibility of the nonthermal inverse bremsstrahlung process producing hard X-ray emissions. However, the nonthermal tail may be the seed particles for further re-acceleration to relativistic energies, say by a shock. In the Appendix we present some tests of the integrity of the algorithm used and present a new formula for the energy loss rate due to inelastic proton-proton interactions.

  6. Production of radionuclides in artificial meteorites irradiated isotropically with 600 MeV protons

    NASA Technical Reports Server (NTRS)

    Michel, R.; Dragovitsch, P.; Englert, P.; Herpers, U.

    1986-01-01

    The understanding of the production of cosmogenic nuclides in small meteorites (R is less than 40 cm) still is not satisfactory. The existing models for the calculation of depth dependent production rates do not distinguish between the different types of nucleons reacting in a meteorite. They rather use general depth dependent particle fluxes to which cross sections have to be adjusted to fit the measured radionuclide concentrations. Some of these models can not even be extended to zero meteorite sizes without logical contradictions. Therefore, a series of three thick target irradiations was started at the 600 MeV proton beam of the CERN isochronuous cyclotron in order to study the interactions of small stony meteorites with galactic protons. The homogeneous 4 pi irradiation technique used provides a realistic meteorite model which allows a direct comparison of the measured depth profiles with those in real meteorites. Moreover, by the simultaneous measurement of thin target production cross sections one can differentiate between the contributions of primary and secondary nucleons over the entire volume of the artificial meteorite.

  7. Shielding variation effects for 250 MeV protons on tissue targets.

    PubMed

    Brandl, A; Hranitzky, C; Rollet, S

    2005-01-01

    This paper provides results of computer simulation studies with the goal to analyse issues regarding radiation protection for personnel, patients and third persons involved in hadron therapy treatment. The treatment room and the patient are modelled by simple cylindrical geometries at incident proton energies of 250 MeV. Monte Carlo simulations of the energy and angular dependence of proton, neutron and photon radiation fields and resulting ambient dose equivalent distributions outside the shielding walls are performed. In order to investigate systematic uncertainties due to the shielding materials and inherent to the computer models, various concrete compositions, densities and water contents are modelled, and the influence of simulation parameters on the results obtained is determined. Generally, good agreement is found between results provided by MCNPX and FLUKA computer codes. Variations in neutron ambient dose attenuation from -50 to +/-30% are found due to varying concrete composition. Changes in the water content of the concrete in the order of 8% may cause variations up to 20%.

  8. Dynamic Pressure of Liquid Mercury Target During 800-MeV Proton Thermal Shock Tests

    SciTech Connect

    Allison, S.W.; Andriulli, J.B.; Cates, M.R.; Earl. D.D.; Haines, J.R.; Morrissey, F.X.; Tsai, C.C.; Wender, S.

    2000-02-01

    Described here are efforts to diagnose transient pressures generated by a short-pulse (about 0.5 microseconds) high intensity proton ({approximately} 2 * 10 14 per pulse) beam. Proton energy is 800-MeV. The tests were performed at the Los Alamos Neutron Science Center - Weapons Neutron Research (LANSCE-WNR). Such capability is required for understanding target interaction for the Spallation Neutron Source project as described previously at this conference.1-4 The main approach to effect the pressure measurements utilized the deflection of a diaphragm in intimate contact with the mercury. There are a wide variety of diaphragm-deflection methods used in scientific and industrial applications. Many deflection-sensing approaches are typically used, including, for instance, capacitive and optical fiber techniques. It was found, however, that conventional pressure measurement using commercial pressure gages with electrical leads was not possible due to the intense nuclear radiation enviro nment. Earlier work with a fiber optic strain gauge demonstrated the viability of using fiber optics for this environment.

  9. Enhanced proton acceleration in an applied longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Arefiev, A.; Toncian, T.; Fiksel, G.

    2016-10-01

    Using two-dimensional particle-in-cell simulations, we examine how an externally applied strong magnetic field impacts proton acceleration in laser-irradiated solid-density targets. We find that a kT-level external magnetic field can sufficiently inhibit transverse transport of hot electrons in a flat laser-irradiated target. While the electron heating by the laser remains mostly unaffected, the reduced electron transport during proton acceleration leads to an enhancement of maximum proton energies and the overall number of energetic protons. The resulting proton beam is much better collimated compared to a beam generated without applying a kT-level magnetic field. A factor of three enhancement of the laser energy conversion efficiency into multi-MeV protons is another effect of the magnetic field. The required kT-level magnetic fields are becoming feasible due to a significant progress that has been made in generating magnetic fields with laser-driven coils using ns-long laser pulses. The possibility of improving characteristics of laser-driven proton beams using such fields is a strong motivation for further development of laser-driven magnetic field capabilities.

  10. Enhanced proton acceleration in an applied longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Toncian, Toma; Arefiev, Alexey; Fiksel, Gennady

    2016-10-01

    Using two-dimensional particle-in-cell simulations, we examine how an externally applied strong magnetic impacts proton acceleration in laser-irradiated solid-density targets. We find that a kT-level external magnetic field can sufficiently inhibit transverse transport of hot electrons in a flat laser-irradiated target. While the electron heating by the laser remains mostly unaffected, the reduced electron transport during proton acceleration leads to an enhancement of maximum proton energies and the overall number of energetic protons. The resulting proton beam is much better collimated compared to a beam generated without applying a kT-level magnetic field. A factor of three enhancement of the laser energy conversion efficiency into multi-MeV protons is another effect of the magnetic field. The required kT magnetic fields are becoming feasible due to a significant progress that has been made in generating magnetic fields with laser-driven coils using ns-long laser pulses. The predicted improved characteristics of laser-driven proton beams would be critical for a number of applications. The work was supported by U.S. Department of Energy - National Nuclear Security Administration Cooperative Agreement No. DE-NA0002008. HPC resources were provided by the Texas Advanced Computing Center at The University of Texas.

  11. Enhancing proton acceleration by using composite targets

    SciTech Connect

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-07-10

    Efficient laser ion acceleration requires high laser intensities, which can only be obtained by tightly focusing laser radiation. In the radiation pressure acceleration regime, where the tightly focused laser driver leads to the appearance of the fundamental limit for the maximum attainable ion energy, this limit corresponds to the laser pulse group velocity as well as to another limit connected with the transverse expansion of the accelerated foil and consequent onset of the foil transparency. These limits can be relaxed by using composite targets, consisting of a thin foil followed by a near critical density slab. Such targets provide guiding of a laser pulse inside a self-generated channel and background electrons, being snowplowed by the pulse, compensate for the transverse expansion. The use of composite targets results in a significant increase in maximum ion energy, compared to a single foil target case.

  12. The streaming of 1.3 - 2.3 MeV cosmic-ray protons during periods between prompt solar particle events. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Marshall, F. E.

    1977-01-01

    The anisotropy of 1.3 to 2.3 MeV protons in interplanetary space was measured using the Caltech electron/isotope spectrometer aboard IMP-7 for 317 6 hour periods from 72/273 to 74/2. Periods dominated by prompt solar particle events are not included. The convective and diffusive anisotropies were determined from the observed anisotropy using concurrent solar wind speed measurements and observed energy spectra. The diffusive flow of particles was found to be typically toward the sun, indicating a positive radial gradient in the particle density. This anisotropy was inconsistent with previously proposed sources of low energy proton increases seen at 1 AU which involve continual solar acceleration. The typical properties of this new component of low-energy cosmic rays were determined for this period which is near solar minimum.

  13. Injection of electrons and protons with energies of tens of MeV into L less than 3 on 24 March 1991

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Kolasinski, W. A.; Fillius, R. W.; Mullen, E. G.

    1992-01-01

    On 24 March 1991 instrumentation aboard CRRES observed the almost instantaneous injection of electrons and protons with energies above 15 MeV into the L-region in the range 2-3. The energy spectrum of the injected electrons, a power law (E exp -6) peaked at 15 MeV and continued to at least 50 MeV.

  14. Injection of electrons and protons with energies of tens of MeV into L less than 3 on 24 March 1991

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Kolasinski, W. A.; Fillius, R. W.; Mullen, E. G.

    1992-01-01

    On 24 March 1991 instrumentation aboard CRRES observed the almost instantaneous injection of electrons and protons with energies above 15 MeV into the L-region in the range 2-3. The energy spectrum of the injected electrons, a power law (E exp -6) peaked at 15 MeV and continued to at least 50 MeV.

  15. Estimate of the radiation source term for 18F production via thick H218O targets bombarded with 18 MeV protons

    NASA Astrophysics Data System (ADS)

    Cruzate, Juan Ángel

    2015-12-01

    The positron-emitting radionuclide most important from the point of view of radiation protection is 18F. This isotope is usually produced by bombarding 18O-enriched water with protons. Currently there are few experimental data on the radiation source term generated during these reactions. In addition, presently there is no theoretical estimates of this source term, for use in radiation protection, validated by experimental data. Up till now this term is calculated by using nuclear interactions' simulation codes, such as ALICE91. An estimate of the energy spectra for neutrons and photons, induced by 18 MeV protons on H218O target, have been calculated by using MCNPX code with cross sections from release 0 of ENDF/B VII library for all materials except 18O, for which TENDL-2012 library was used. This estimate was validated against a recent experiment carried out at the Japan Atomic Energy Agency (JAEA). The calculated spectra have generally well reproduced experiments. The results show that the calculated radiation source term may be used to estimate the neutron activation of the accelerator components and the cyclotron building, to calculate the cyclotron shielding, and to carry out radiation protection evaluations in general, for the case of cyclotrons producing 18F by means of the 18O(p,n)18F nuclear reactions, for proton energies up to 18 MeV.

  16. Depth dose characteristics of elongated fields for electron beams from a 20-MeV accelerator

    SciTech Connect

    Sharma, S.C.; Wilson, D.L.

    1985-07-01

    In a Therac-20 linear accelerator, 6--20 MeV electron beams are normally produced by shaping a scanned electron beam through primary x-ray collimators and secondary electron trimmers. The collimator settings range continuously from 2 to 30 cm. Depth dose and field flatness parameters were measured for small elongated fields of the various electron energies. Depth dose of narrow fields defined either by the machine's collimator or lead cutouts agreed with data predicted from small square fields using the ''square-root'' method.

  17. Depth dose characteristics of elongated fields for electron beams from a 20-MeV accelerator.

    PubMed

    Sharma, S C; Wilson, D L

    1985-01-01

    In a Therac-20 linear accelerator, 6-20 MeV electron beams are normally produced by shaping a scanned electron beam through primary x-ray collimators and secondary electron trimmers. The collimator settings range continuously from 2 to 30 cm. Depth dose and field flatness parameters were measured for small elongated fields of the various electron energies. Depth dose of narrow fields defined either by the machine's collimator or lead cutouts agreed with data predicted from small square fields using the "square-root" method.

  18. Estimation of thermal neutron fluences in the concrete of proton accelerator facilities from 36Cl production

    NASA Astrophysics Data System (ADS)

    Bessho, K.; Matsumura, H.; Miura, T.; Wang, Q.; Masumoto, K.; Hagura, H.; Nagashima, Y.; Seki, R.; Takahashi, T.; Sasa, K.; Sueki, K.; Matsuhiro, T.; Tosaki, Y.

    2007-06-01

    The thermal neutron fluence that poured into the shielding concrete of proton accelerator facilities was estimated from the in situ production of 36Cl. The thermal neutron fluences at concrete surfaces during 10-30 years of operation were in the range of 1012-1014 n/cm2. The maxima in thermal neutron fluences were observed at ≈5-15 cm in the depths analyzed for 36Cl/35Cl by AMS. These characteristics imply that thermalization of neutrons occurred inside the concrete. Compared to the several tens of MeV cyclotrons, secondary neutrons penetrate deeper into the concrete at the high-energy accelerators possessing acceleration energies of 400 MeV and 12 GeV. The attenuation length of neutrons reflects the energy spectra of secondary neutrons emitted by the nuclear reaction at the beam-loss points. Increasing the energy of secondary neutrons shifts the maximum in the thermal neutron fluences to deeper positions. The data obtained in this study will be useful for the radioactive waste management at accelerator facilities.

  19. [BIOLOGICAL EFFECTIVENESS OF FISSION SPECTRUM NEUTRONS AND PROTONS WITH ENERGIES OF 60-126 MEV DURING ACUTE AND PROLONGED IRRADIATION].

    PubMed

    Shafirkin, A V

    2015-01-01

    Neutrons of the fission spectrum are characterized by relatively high values of linear energy transfer (LET). Data about their effects on biological objects are used to evaluate the risk of delayed effects of accelerated ions within the same LET range that serve as an experimental model of the nuclei component of galactic cosmic rays (GCR). Additionally, risks of delayed consequences to cosmonaut's health and average lifetime from certain GCR fluxes and secondary neutrons can be also prognosticated. The article deals with comparative analysis of the literature on reduction of average lifespan (ALS) of animals exposed to neutron reactor spectrum, 60-126 MeV protons, and X- and γ-rays in a broad range of radiation intensity and duration. It was shown that a minimal lifespan reduction by 5% occurs due to a brief exposure to neutrons with the absorbed dose of 5 cGy, whereas same lifespan reduction due to hard X- and γ-radiation occurs after absorption of a minimal dose of 100 cGy. Therefore, according to the estimated minimal ALS reduction in mice, neutron effectiveness is 20-fold higher. Biological effectiveness of protons as regards ALS reduction is virtually equal to that of standard types of radiation. Exposure to X- and γ-radiation with decreasing daily doses, and increasing number of fractions and duration gives rise to an apparent trend toward a less dramatic ALS reduction in mice; on the contrary, exposure to neutrons of varying duration had no effect on threshold doses for the specified ALS reductions. Factors of relative biological effectiveness of neutrons reached 40.

  20. Polarized proton acceleration program at the AGS and RHIC

    SciTech Connect

    Lee, Y.Y.

    1995-06-01

    Presented is an overview of the program for acceleration of polarized protons in the AGS and their injection into the RHIC collider. The problem of depolarizing resonances in strong focusing circulator accelerators is discussed. The intrinsic resonances are jumped over by the fast tune jump, and a partial Siberian Snake is used to compensate for over forty imperfection resonances in the AGS. Two sets of full Siberian Snake and spin rotators will be employed in RHIC.

  1. Accelerating slow excited state proton transfer

    PubMed Central

    Stewart, David J.; Concepcion, Javier J.; Brennaman, M. Kyle; Binstead, Robert A.; Meyer, Thomas J.

    2013-01-01

    Visible light excitation of the ligand-bridged assembly [(bpy)2RuaII(L)RubII(bpy)(OH2)4+] (bpy is 2,2′-bipyridine; L is the bridging ligand, 4-phen-tpy) results in emission from the lowest energy, bridge-based metal-to-ligand charge transfer excited state (L−•)RubIII-OH2 with an excited-state lifetime of 13 ± 1 ns. Near–diffusion-controlled quenching of the emission occurs with added HPO42− and partial quenching by added acetate anion (OAc−) in buffered solutions with pH control. A Stern–Volmer analysis of quenching by OAc− gave a quenching rate constant of kq = 4.1 × 108 M−1⋅s−1 and an estimated pKa* value of ∼5 ± 1 for the [(bpy)2RuaII(L•−)RubIII(bpy)(OH2)4+]* excited state. Following proton loss and rapid excited-state decay to give [(bpy)2RuaII(L)RubII(bpy)(OH)3+] in a H2PO4−/HPO42− buffer, back proton transfer occurs from H2PO4− to give [(bpy)2RuaII(L)Rub(bpy)(OH2)4+] with kPT,2 = 4.4 × 108 M−1⋅s−1. From the intercept of a plot of kobs vs. [H2PO4−], k = 2.1 × 106 s−1 for reprotonation by water providing a dramatic illustration of kinetically limiting, slow proton transfer for acids and bases with pKa values intermediate between pKa(H3O+) = −1.74 and pKa(H2O) = 15.7. PMID:23277551

  2. Rapid acceleration of protons upstream of earthward propagating dipolarization fronts

    PubMed Central

    Ukhorskiy, AY; Sitnov, MI; Merkin, VG; Artemyev, AV

    2013-01-01

    [1] Transport and acceleration of ions in the magnetotail largely occurs in the form of discrete impulsive events associated with a steep increase of the tail magnetic field normal to the neutral plane (Bz), which are referred to as dipolarization fronts. The goal of this paper is to investigate how protons initially located upstream of earthward moving fronts are accelerated at their encounter. According to our analytical analysis and simplified two-dimensional test-particle simulations of equatorially mirroring particles, there are two regimes of proton acceleration: trapping and quasi-trapping, which are realized depending on whether the front is preceded by a negative depletion in Bz. We then use three-dimensional test-particle simulations to investigate how these acceleration processes operate in a realistic magnetotail geometry. For this purpose we construct an analytical model of the front which is superimposed onto the ambient field of the magnetotail. According to our numerical simulations, both trapping and quasi-trapping can produce rapid acceleration of protons by more than an order of magnitude. In the case of trapping, the acceleration levels depend on the amount of time particles stay in phase with the front which is controlled by the magnetic field curvature ahead of the front and the front width. Quasi-trapping does not cause particle scattering out of the equatorial plane. Energization levels in this case are limited by the number of encounters particles have with the front before they get magnetized behind it. PMID:26167430

  3. Rapid acceleration of protons upstream of earthward propagating dipolarization fronts.

    PubMed

    Ukhorskiy, A Y; Sitnov, M I; Merkin, V G; Artemyev, A V

    2013-08-01

    [1] Transport and acceleration of ions in the magnetotail largely occurs in the form of discrete impulsive events associated with a steep increase of the tail magnetic field normal to the neutral plane (Bz ), which are referred to as dipolarization fronts. The goal of this paper is to investigate how protons initially located upstream of earthward moving fronts are accelerated at their encounter. According to our analytical analysis and simplified two-dimensional test-particle simulations of equatorially mirroring particles, there are two regimes of proton acceleration: trapping and quasi-trapping, which are realized depending on whether the front is preceded by a negative depletion in Bz . We then use three-dimensional test-particle simulations to investigate how these acceleration processes operate in a realistic magnetotail geometry. For this purpose we construct an analytical model of the front which is superimposed onto the ambient field of the magnetotail. According to our numerical simulations, both trapping and quasi-trapping can produce rapid acceleration of protons by more than an order of magnitude. In the case of trapping, the acceleration levels depend on the amount of time particles stay in phase with the front which is controlled by the magnetic field curvature ahead of the front and the front width. Quasi-trapping does not cause particle scattering out of the equatorial plane. Energization levels in this case are limited by the number of encounters particles have with the front before they get magnetized behind it.

  4. COPPER-64 Production Studies with Natural Zinc Targets at Deuteron Energy up to 19 Mev and Proton Energy from 141 Down to 31 Mev

    NASA Astrophysics Data System (ADS)

    Bonardi, Mauro L.; Birattari, Claudio; Groppi, Flavia; Song Mainard, Hae; Zhuikov, Boris L.; Kokhanyuk, Vladimir M.; Lapshina, Elena V.; Mebel, Michail V.; Menapace, Enzo

    2004-07-01

    High specific activity no-carrier-added 64Cu is a β-/β+ emitting radionuclide of increasing interest for PET imaging, as well as systemic and targeted radioimmunotherapy of tumors. Its peculiarity of intense Auger emitter is still under investigation. The cross-sections for production of 64Cu from Zn target of natural isotopic composition were measured in the deuteron energy range from threshold up to 19 MeV and proton energy range from 141 down to 31 MeV. The stacked-foil technique was used at both K=38 cyclotron of JRC-Ispra of CEC, Italy and 160 MeV intersection point of INR proton-LINAC in Troitsk, Russia. Several Ga, Zn, Cu, Ni, Co, V, Fe and Mn radionuclides were detected in Zn targets at the EOB. Optimized irradiation conditions are reported as a function of deuteron energy and energy loss into the Zn target, as well as target irradiation time and cooling time after radiochemistry. The activity of n.c.a. 64Cu was measured through its only γ emission of 1346 keV (i.e. 0.473 % intensity) both by instrumental and radiochemical methods, due to the non-specificity of annihilation radiation at 511 keV. To this last purpose, it was necessary to carry out a selective radiochemical separation of GaIII radionuclides by liquid/liquid extraction from the bulk of irradiated Zn targets and other spallation products, which remained in the 7 M HCl aqueous phase. Anion exchange chromatography tests had been carried out to separate the 64Cu from all others radionuclides in n.c.a. form. Theoretical calculations of cross-sections were performed with codes EMPIRE II and PENELOPE for deuteron reactions and CEF model and HMS-ALICE hybrid model for proton reactions. The theoretical results are presented and compared with the experimental values.

  5. Short term prediction of E greater than or equal to 10 MeV proton fluxes from solar flares

    NASA Technical Reports Server (NTRS)

    Kuck, G. A.

    1972-01-01

    Both the anisotropic and isotropic diffusion theories can be used to extrapolate proton fluxes for E greater than or equal to 10 meV for over 50% of the particle events. The isotropic diffusion theory uses a diffusion coefficient: D = Mr sup beta. It was found that M and beta tended to be functions of flare position on the solar disk. A measurement of the interplanetary flux in near earth space gives a good indication of the polar cap fluxes. It was found that the 30 MHz absorption over the poles during a PCA is proportional to the square root of the integral proton flux E greater than or equal to 11 meV in interplanetary space, J = KA squared, with K = 8 plus or minus 2 and J in protons/sq cm-sec-ster.

  6. Radiograaff, a proton irradiation facility for radiobiological studies at a 4 MV Van de Graaff accelerator

    NASA Astrophysics Data System (ADS)

    Constanzo, J.; Fallavier, M.; Alphonse, G.; Bernard, C.; Battiston-Montagne, P.; Rodriguez-Lafrasse, C.; Dauvergne, D.; Beuve, M.

    2014-09-01

    A horizontal beam facility for radiobiological experiments with low-energy protons has been set up at the 4 MV Van de Graaff accelerator of the Institut de Physique Nucléaire de Lyon. A homogeneous irradiation field with a suitable proton flux is obtained by means of two collimators and two Au-scattering foils. A monitoring chamber contains a movable Faraday cup, a movable quartz beam viewer for controlling the intensity and the position of the initial incident beam and four scintillating fibers for beam monitoring during the irradiation of the cell samples. The beam line is ended by a thin aluminized Mylar window (12 μm thick) for the beam extraction in air. The set-up was simulated by the GATE v6.1 Monte-Carlo platform. The measurement of the proton energy distribution, the evaluation of the fluence-homogeneity over the sample and the calibration of the monitoring system were performed using a silicon PIPS detector, placed in air in the same position as the biological samples to be irradiated. The irradiation proton fluence was found to be homogeneous to within ±2% over a circular field of 20 mm diameter. As preliminary biological experiment, two Human Head and Neck Squamous Carcinoma Cell lines (with different radiosensitivities) were irradiated with 2.9 MeV protons. The measured survival curves are compared to those obtained after X-ray irradiation, giving a Relative Biological Efficiency between 1.3 and 1.4.

  7. Seed population for about 1 MeV per nucleon heavy ions accelerated by interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.; Klecker, B.; Hovestadt, D.

    1989-01-01

    Data obtained between 1977 and 1982 by the ISEE 1 and ISEE 3 satellites on the composition of heavy ions of about 1 MeV per nucleon, accelerated in interplanetary shock events which followed solar flare events, are examined. It was found that the average relative abundances for C, O, and Fe in the shock events were very close to those found for energetic ions in the solar flares, suggesting that, at these energies, the shock accelerated particles have the solar energetic particles as their seed population. This hypothesis is supported by the fact that the Fe/O ratio in the solar particle events is very strongly correlated with the Fe/O ratio in associated diffusive shock events.

  8. Seed population for about 1 MeV per nucleon heavy ions accelerated by interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.; Klecker, B.; Hovestadt, D.

    1989-01-01

    Data obtained between 1977 and 1982 by the ISEE 1 and ISEE 3 satellites on the composition of heavy ions of about 1 MeV per nucleon, accelerated in interplanetary shock events which followed solar flare events, are examined. It was found that the average relative abundances for C, O, and Fe in the shock events were very close to those found for energetic ions in the solar flares, suggesting that, at these energies, the shock accelerated particles have the solar energetic particles as their seed population. This hypothesis is supported by the fact that the Fe/O ratio in the solar particle events is very strongly correlated with the Fe/O ratio in associated diffusive shock events.

  9. Status of the 1 MeV Accelerator Design for ITER NBI

    SciTech Connect

    Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.

    2011-09-26

    The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D{sup -} at 1 MeV for 3600 sec. In order to realize the beam source, design and R and D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.

  10. Status of the 1 MeV Accelerator Design for ITER NBI

    NASA Astrophysics Data System (ADS)

    Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Sonato, P.; Toigo, V.; Zaccaria, P.; Kraus, W.; Franzen, P.; Heinemann, B.; Inoue, T.; Watanabe, K.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; De Esch, H.

    2011-09-01

    The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D- at 1 MeV for 3600 sec. In order to realize the beam source, design and R&D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.

  11. High intensity proton operation at the Brookhaven AGS accelerator complex

    SciTech Connect

    Ahrens, L.A.; Blaskiewicz, M.; Bleser, E.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Onillon, E.; Reece, R.K.; Roser, T.; Soukas, A.

    1994-08-01

    With the completion of the AGS rf upgrade, and the implementation of a transition {open_quotes}jump{close_quotes}, all of accelerator systems were in place in 1994 to allow acceleration of the proton intensity available from the AGS Booster injector to AGS extraction energy and delivery to the high energy users. Beam commissioning results with these new systems are presented. Progress in identifying and overcoming other obstacles to higher intensity are given. These include a careful exploration of the stopband strengths present on the AGS injection magnetic porch, and implementation of the AGS single bunch transverse dampers throughout the acceleration cycle.

  12. Acceleration of electrons by the wake field of proton bunches

    SciTech Connect

    Ruggiero, A.G.

    1986-01-01

    This paper discusses a novel idea to accelerate low-intensity bunches of electrons (or positrons) by the wake field of intense proton bunches travelling along the axis of a cylindrical rf structure. Accelerating gradients in excess of 100 MeV/m and large ''transformer ratios'', which allow for acceleration of electrons to energies in the TeV range, are calculated. A possible application of the method is an electron-positron linear collider with luminosity of 10/sup 33/ cm/sup -2/ s/sup -1/. The relatively low cost and power consumption of the method is emphasized.

  13. SU-E-T-47: A Monte Carlo Model of a Spot Scanning Proton Beam Based On a Synchrotron Proton Therapy Accelerator

    SciTech Connect

    Xie, C; Lin, H; Jing, J; Chen, C; Cao, R; Pei, X

    2015-06-15

    Purpose: To build the model of a spot scanning proton beam for the dose calculation of a synchrotron proton therapy accelerator, which is capable of accelerating protons from 50 up to 221 MeV. Methods: The spot scanning beam nozzle is modeled using TOPAS code, a simulation tool based on Geant4.9.6. The model contained a beam pipe vacuum window, a beam profile monitor, a drift chamber, two plane-parallel ionization chambers, and a spot-position monitor consisted of a multiwire ionization chamber. A water phantom is located with its upstream surface at the isocenter plane. The initial proton beam energy and anglar deflection are modeled using a Gaussian distribution with FWHM (Full Widths at Half Maximum) deponding on its beam energy. The phase space file (PSF) on a virtual surface located at the center between the two magnets is recorded. PSF is used to analyze the pencil beam features and offset the pencil beam position. The source model parameters are verificated by fitting the simulated Result to the measurement. Results: The simulated percentage depth dose (PDD) and lateral profiles of scanning pencil beams of various incident proton energies are verificated to the measurement. Generally the distance to agreement (DTA) of Bragg peaks is less than 0.2cm. The FWHM of Gaussian anglar distribution was adjusted to fit the lateral profile difference between the simulation and the measurement to less than 2∼3cm. Conclusion: A Monte Carlo model of a spot scanning proton beam was bullt based on a synchrotron proton therapy accelerator. This scanning pencil beam model will be as a block to build the broad proton beam as a proton TPS dose verification tool.

  14. First measurements of laser-accelerated proton induced luminescence

    SciTech Connect

    Floquet, V.; Ceccotti, T.; Dobosz Dufrenoy, S.; Bonnaud, G.; Monot, P.; Martin, Ph.; Gremillet, L.

    2012-09-15

    We present our first results about laser-accelerated proton induced luminescence in solids. In the first part, we describe the optimization of the proton source as a function of the target thickness as well as the laser pulse duration and energy. Due to the ultra high contrast ratio of our laser beam, we succeeded in using targets ranging from the micron scale down to nanometers thickness. The two optimal thicknesses we put in evidence are in good agreement with numerical simulations. Laser pulse duration shows a small influence on proton maximum energy, whereas the latter turns out to vary almost linearly as a function of laser energy. Thanks to this optimisation work, we have been able to acquire images of the proton energy deposition in a solid scintillator.

  15. Shock-Wave Acceleration of Protons on OMEGA EP

    NASA Astrophysics Data System (ADS)

    Haberberger, D.; Froula, D. H.; Pak, A.; Link, A.; Patel, P.; Fiuza, F.; Tochitsky, S.; Joshi, C.

    2016-10-01

    The creation of an electrostatic shock wave and ensuing ion acceleration is studied on the OMEGA EP Laser System at the Laboratory for Laser Energetics. Previous work using a 10- μm CO2 laser in a H2 gas jet shows promising results for obtaining narrow spectral features in the accelerated proton spectra. Scaling the shock-wave acceleration mechanism to the 1- μm-wavelength drive laser makes it possible to use petawatt-scale laser systems such as OMEGA-EP, but involves tailoring of the plasma profile. To accomplish the necessitated sharp rise to near-critical plasma density and a long exponential fall, an 1- μm-thick CH foil is illuminated on the back side by thermal x rays produced from an irradiated gold foil. The plasma density is measured using the fourth-harmonic probe system, the accelerating fields are probed using an orthogonal proton source, and the accelerated protons and ions are detected with a Thomson parabola. These results will be presented and compared with particle-in-cell simulations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and LLNL's Laboratory Directed Research and Development program under project 15-LW-095.

  16. Intense tera-hertz laser driven proton acceleration in plasmas

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Tibai, Z.; Hebling, J.

    2016-06-01

    We investigate the acceleration of a proton beam driven by intense tera-hertz (THz) laser field from a near critical density hydrogen plasma. Two-dimension-in-space and three-dimension-in-velocity particle-in-cell simulation results show that a relatively long wavelength and an intense THz laser can be employed for proton acceleration to high energies from near critical density plasmas. We adopt here the electromagnetic field in a long wavelength (0.33 THz) regime in contrast to the optical and/or near infrared wavelength regime, which offers distinct advantages due to their long wavelength ( λ = 350 μ m ), such as the λ 2 scaling of the electron ponderomotive energy. Simulation study delineates the evolution of THz laser field in a near critical plasma reflecting the enhancement in the electric field of laser, which can be of high relevance for staged or post ion acceleration.

  17. Proton-induced fragmentation of carbon at energies below 100 MeV

    NASA Technical Reports Server (NTRS)

    Schmitz, M.; Streibel, T.; Roecher, H.; Dreute, J.; Hirzebruch, S. E.; Huentrup, G.; Heinrich, Wolfgang

    1994-01-01

    Radiation effects caused by single cosmic ray particles have been studied for many years in radiobiological experiments for different biological objects and biological end-points. Additionally, single event effects in microelectronic devices have gained large interest. There are two fundamental mechanisms by which a single particle can cause radiation effects. On the one hand, a cosmic ray ion with high linear energy transfer can deposit a high dose along its path. On the other hand, in a nuclear collision, a high dose can be deposited by short range particles emitted from the target nucleus. In low earth orbits a large contribution to target fragmentation events originates from trapped protons which are encountered in the South Atlantic Anomaly. These protons have energies up to a few hundred MeV. We study the fragmentation of C, O and Si nuclei - the target nuclei of biological material and microelectronic devices - in nuclear collisions. Our aim is to measure production cross sections, energy spectra, emission directions and charge correlations of the emitted fragments. The present knowledge concerning these data is rather poor. M. Alurralde et al. have calculated cross sections and average energies of fragments produced from Si using the cascade-evaporation model. D.M. Ngo et al. have used the semiempirical cross section formula of Silberberg and Tsao to calculate fragment yields and the statistical model of Goldhaber to describe the reaction kinematics. Cross sections used in these models have uncertainties within a factor of two. Our data will help to test and improve existing models especially for energies below 300 MeV/nucleon. Charge correlations of fragments emitted in the same interaction are of particular importance, since high doses can be deposited if more than one heavy fragment with a short range is produced.

  18. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  19. Measurement of the displacement cross-section of copper irradiated with 125 MeV protons at 12 K

    NASA Astrophysics Data System (ADS)

    Iwamoto, Yosuke; Yoshiie, Toshimasa; Yoshida, Makoto; Nakamoto, Tatsushi; Sakamoto, Masaaki; Kuriyama, Yasutoshi; Uesugi, Tomonori; Ishi, Yoshihiro; Xu, Qiu; Yashima, Hiroshi; Takahashi, Fumiaki; Mori, Yoshiharu; Ogitsu, Toru

    2015-03-01

    To validate Monte Carlo codes for the prediction of radiation damage in metals irradiated by >100 MeV protons, the defect-induced electrical resistivity changes related to the displacement cross-section of copper were measured with 125 MeV proton irradiation at 12 K. The cryogenic irradiation system was developed with a Gifford-McMahon cryocooler to cool the sample via an oxygen-free high-conductivity copper plate by conduction cooling. The sample was a copper wire with a 250-μm diameter and 99.999% purity sandwiched between two aluminum nitride ceramic sheets. The electrical resistivity changes of the copper wire were measured using the four-probe technique. After 125 MeV proton irradiation with 1.45 × 1018 protons/m2 at 12 K, the total resistivity increase was 4.94 × 10-13 Ω m (resistance increase: 1.53 μΩ), while the resistivity of copper before irradiation was 9.44 × 10-12 Ω m (resistance: 29.41 μΩ). The resistivity increase did not change during annealing after irradiation below 15 K. The experimental displacement cross-section for 125 MeV irradiation shows similar results to the experimental data for 1.1 and 1.94 GeV. Comparison with the calculated results indicated that the defect production efficiency in Monte Carlo codes gives a good quantitative description of the displacement cross-section in the energy region >100 MeV.

  20. ACCELERATION OF THERMAL PROTONS BY GENERIC PHENOMENOLOGICAL MECHANISMS

    SciTech Connect

    Petrosian, Vahé; Kang, Byungwoo E-mail: redcrux8@stanford.edu

    2015-11-01

    We investigate heating and acceleration of protons from a thermal gas with a generic diffusion and acceleration model, and subject to Coulomb scattering and energy loss, as was done by Petrosian and East for electrons. As protons gain energy their loss to electrons becomes important. Thus, we need to solve the coupled proton–electron kinetic equation. We numerically solve the coupled Fokker–Planck equations and compute the time evolution of the spectra of both particles. We show that this can lead to a quasi-thermal component plus a high-energy nonthermal tail. We determine the evolution of the nonthermal tail and the quasi-thermal component. The results may be used to explore the possibility of inverse bremsstrahlung radiation as a source of hard X-ray emissions from hot sources such as solar flares, accretion disk coronas, and the intracluster medium of galaxy clusters. We find that the emergence of nonthermal protons is accompanied by excessive heating of the entire plasma, unless the turbulence needed for scattering and acceleration is steeper than Kolmogorov and the acceleration parameters, the duration of the acceleration, and/or the initial distributions are significantly fine-tuned. These results severely constrain the feasibility of the nonthermal inverse bremsstrahlung process producing hard X-ray emissions. However, the nonthermal tail may be the seed particles for further re-acceleration to relativistic energies, say by a shock. In the Appendix we present some tests of the integrity of the algorithm used and present a new formula for the energy loss rate due to inelastic proton–proton interactions.

  1. The Efficiency of the BC-720 Scintillator in a High-Energy (20--800 MeV) Accelerator Neutron Field

    SciTech Connect

    Miles, Leslie H.

    2005-12-01

    High-energy neutron doses (>20 MeV) are of little importance to most radiation workers. However, space and flight crews, and people working around medical and scientific accelerators receive over half of their radiation dose from high-energy neutrons. Unfortunately, neutrons are difficult to measure, and no suitable dosimetry has yet been developed to measure this radiation. In this paper, basic high-energy neutron interactions, characteristics of high-energy neutron environments, present neutron dosimetry, and quantities used in neutron dosimetry are discussed before looking into the potential of the BC-720 scintillator to improve dosimetry. This research utilized 800 MeV protons impinging upon the WNR Facility spallation neutron source at Los Alamos National Laboratory. Time-of-flight methods and a U-238 Fission Chamber were used to aid evaluation of the efficiency of the BC-720. Results showed that the efficiency is finite over the 20–650 MeV energy region studied, although it decreases by a factor of ten between 40 and 100 MeV. This limits the use of this dosimeter to measure doses at sitespecific locations. It also encourages modifications to use this dosimeter for any unknown neutron field. As such, this dosimeter has the potential for a small, lightweight, real-time dose measurement, which could impact neutron dosimetry in all high-energy neutron environments.

  2. Simulation study of neutron production in thick beryllium targets by 35 MeV and 50.5 MeV proton beams

    NASA Astrophysics Data System (ADS)

    Shin, Jae Won; Park, Tae-Sun

    2017-09-01

    A data-driven nuclear model dedicated to an accurate description of neutron productions in beryllium targets bombarded by proton beams is developed as a custom development that can be used as an add-on to GEANT4 code. The developed model, G4Data(Endf7.1), takes as inputs the total and differential cross section data of ENDF/B-VII.1 for not only the charge-exchange 9Be(p,n)9B reaction which produces discrete neutrons but also the nuclear reactions relevant for the production of continuum neutrons such as 9Be(p,pn)8Be and 9Be(p,n α) 5Li . In our benchmarking simulations for two experiments with 35 MeV and 50.5 MeV proton beams impinged on 1.16 and 1.05 cm thick beryllium targets, respectively, we find that the G4Data(Endf7.1) model can reproduce both the total amounts and the spectral shapes of the measured neutron yield data in a satisfactory manner, while all the considered hadronic models of GEANT4 cannot.

  3. Trimming algorithm of frequency modulation for CIAE-230 MeV proton superconducting synchrocyclotron model cavity

    NASA Astrophysics Data System (ADS)

    Li, Pengzhan; Zhang, Tianjue; Ji, Bin; Hou, Shigang; Guo, Juanjuan; Yin, Meng; Xing, Jiansheng; Lv, Yinlong; Guan, Fengping; Lin, Jun

    2017-01-01

    A new project, the 230 MeV proton superconducting synchrocyclotron for cancer therapy, was proposed at CIAE in 2013. A model cavity is designed to verify the frequency modulation trimming algorithm featuring a half-wave structure and eight sets of rotating blades for 1 kHz frequency modulation. Based on the electromagnetic (EM) field distribution analysis of the model cavity, the variable capacitor works as a function of time and the frequency can be written in Maclaurin series. Curve fitting is applied for theoretical frequency and original simulation frequency. The second-order fitting excels at the approximation given its minimum variance. Constant equivalent inductance is considered as an important condition in the calculation. The equivalent parameters of theoretical frequency can be achieved through this conversion. Then the trimming formula for rotor blade outer radius is found by discretization in time domain. Simulation verification has been performed and the results show that the calculation radius with minus 0.012 m yields an acceptable result. The trimming amendment in the time range of 0.328-0.4 ms helps to reduce the frequency error to 0.69% in Simulation C with an increment of 0.075 mm/0.001 ms, which is half of the error in Simulation A (constant radius in 0.328-0.4 ms). The verification confirms the feasibility of the trimming algorithm for synchrocyclotron frequency modulation.

  4. The corrosion of materials in water irradiated by 800 MeV protons

    NASA Astrophysics Data System (ADS)

    Lillard, R. S.; Pile, D. L.; Butt, D. P.

    2000-02-01

    A method for measuring the real-time corrosion rates for Alloy 718, stainless steels (SS) 304L and 316L nuclear grade (NG), aluminum alloys 5052 (Al5052) and 6061 (Al6061), copper (Cu), tantalum (Ta), and tungsten (W) in two separate water systems that were irradiated by 800 MeV protons is presented. The first water system was fabricated entirely of 304 SS, thoroughly cleaned before operation, and employed hydrogen water chemistry (HWC) to mitigate the formation of some of the radiolysis products. The samples were adequately shielded from the irradiation cavity such that only the effects of water chemistry were investigated. Over the course of that irradiation period the corrosion rates for 304L SS, 316L-NG SS, Alloy 718, and Ta were less than 0.12 μm/yr. For Al6061 and Al5052, the corrosion rates were of the order of 0.50-2.0 μm/yr. The corrosion rate of W was relatively high between 5.0 and 30 μm/yr. The second water system, fabricated from copper piping and steel components, was not cleaned prior to operation, and employed no HWC. In comparison to the other system, the corrosion rates in the copper/steel system were 1-3 orders of magnitude higher. These results are discussed in terms of water radiolysis and water impurity levels.

  5. Development and calibration of a Thomson parabola with microchannel plate for the detection of laser-accelerated MeV ions

    SciTech Connect

    Harres, K.; Schollmeier, M.; Nuernberg, F.; Roth, M.; Brambrink, E.; Audebert, P.; Blazevic, A.; Wahl, H.; Flippo, K.; Gautier, D. C.; Hegelich, B. M.; Geissel, M.; Schreiber, J.

    2008-09-15

    This article reports on the development and application of a Thomson parabola (TP) equipped with a (90x70) mm{sup 2} microchannel-plate (MCP) for the analysis of laser-accelerated ions, produced by a high-energy, high-intensity laser system. The MCP allows an online measurement of the produced ions in every single laser shot. An electromagnet instead of permanent magnets is used that allows the tuning of the magnetic field to adapt the field strength to the analyzed ion species and energy. We describe recent experiments at the 100 TW laser facility at the Laboratoire d'Utilization des Lasers Intenses (LULI) in Palaiseau, France, where we have observed multiple ion species and charge states with ions accelerated up to 5 MeV/u (O{sup +6}), emitted from the rear surface of a laser-irradiated 50 {mu}m Au foil. Within the experiment the TP was calibrated for protons and for the first time conversion efficiencies of MeV protons (2-13 MeV) to primary electrons (electrons immediately generated by an ion impact onto a surface) in the MCP are presented.

  6. Development and calibration of a Thomson parabola with microchannel plate for the detection of laser-accelerated MeV ions.

    PubMed

    Harres, K; Schollmeier, M; Brambrink, E; Audebert, P; Blazević, A; Flippo, K; Gautier, D C; Geissel, M; Hegelich, B M; Nürnberg, F; Schreiber, J; Wahl, H; Roth, M

    2008-09-01

    This article reports on the development and application of a Thomson parabola (TP) equipped with a (90x70) mm(2) microchannel-plate (MCP) for the analysis of laser-accelerated ions, produced by a high-energy, high-intensity laser system. The MCP allows an online measurement of the produced ions in every single laser shot. An electromagnet instead of permanent magnets is used that allows the tuning of the magnetic field to adapt the field strength to the analyzed ion species and energy. We describe recent experiments at the 100 TW laser facility at the Laboratoire d'Utilization des Lasers Intenses (LULI) in Palaiseau, France, where we have observed multiple ion species and charge states with ions accelerated up to 5 MeV/u (O(+6)), emitted from the rear surface of a laser-irradiated 50 microm Au foil. Within the experiment the TP was calibrated for protons and for the first time conversion efficiencies of MeV protons (2-13 MeV) to primary electrons (electrons immediately generated by an ion impact onto a surface) in the MCP are presented.

  7. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Veltri, S.; Scisciò, M.; Antici, P.

    2017-03-01

    This paper introduces the first use of laser-generated proton beams as diagnostic for materials of interest in the domain of Cultural Heritage. Using laser-accelerated protons, as generated by interaction of a high-power short-pulse laser with a solid target, we can produce proton-induced X-ray emission spectroscopies (PIXE). By correctly tuning the proton flux on the sample, we are able to perform the PIXE in a single shot without provoking more damage to the sample than conventional methodologies. We verify this by experimentally irradiating materials of interest in the Cultural Heritage with laser-accelerated protons and measuring the PIXE emission. The morphological and chemical analysis of the sample before and after irradiation are compared in order to assess the damage provoked to the artifact. Montecarlo simulations confirm that the temperature in the sample stays safely below the melting point. Compared to conventional diagnostic methodologies, laser-driven PIXE has the advantage of being potentially quicker and more efficient.

  8. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage.

    PubMed

    Barberio, M; Veltri, S; Scisciò, M; Antici, P

    2017-03-07

    This paper introduces the first use of laser-generated proton beams as diagnostic for materials of interest in the domain of Cultural Heritage. Using laser-accelerated protons, as generated by interaction of a high-power short-pulse laser with a solid target, we can produce proton-induced X-ray emission spectroscopies (PIXE). By correctly tuning the proton flux on the sample, we are able to perform the PIXE in a single shot without provoking more damage to the sample than conventional methodologies. We verify this by experimentally irradiating materials of interest in the Cultural Heritage with laser-accelerated protons and measuring the PIXE emission. The morphological and chemical analysis of the sample before and after irradiation are compared in order to assess the damage provoked to the artifact. Montecarlo simulations confirm that the temperature in the sample stays safely below the melting point. Compared to conventional diagnostic methodologies, laser-driven PIXE has the advantage of being potentially quicker and more efficient.

  9. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage

    PubMed Central

    Barberio, M.; Veltri, S.; Scisciò, M.; Antici, P.

    2017-01-01

    This paper introduces the first use of laser-generated proton beams as diagnostic for materials of interest in the domain of Cultural Heritage. Using laser-accelerated protons, as generated by interaction of a high-power short-pulse laser with a solid target, we can produce proton-induced X-ray emission spectroscopies (PIXE). By correctly tuning the proton flux on the sample, we are able to perform the PIXE in a single shot without provoking more damage to the sample than conventional methodologies. We verify this by experimentally irradiating materials of interest in the Cultural Heritage with laser-accelerated protons and measuring the PIXE emission. The morphological and chemical analysis of the sample before and after irradiation are compared in order to assess the damage provoked to the artifact. Montecarlo simulations confirm that the temperature in the sample stays safely below the melting point. Compared to conventional diagnostic methodologies, laser-driven PIXE has the advantage of being potentially quicker and more efficient. PMID:28266496

  10. Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells

    SciTech Connect

    Yogo, A.; Nishikino, M.; Mori, M.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Bolton, P. R.

    2009-05-04

    We report the demonstrated irradiation effect of laser-accelerated protons on human cancer cells. In vitro (living) A549 cells are irradiated with quasimonoenergetic proton bunches of 0.8-2.4 MeV with a single bunch duration of 15 ns. Irradiation with the proton dose of 20 Gy results in a distinct formation of {gamma}-H2AX foci as an indicator of DNA double-strand breaks generated in the cancer cells. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. Unique high-current and short-bunch features make laser-driven proton bunches an excitation source for time-resolved determination of radical yields.

  11. Efficient and stable proton acceleration by irradiating a two-layer target with a linearly polarized laser pulse

    SciTech Connect

    Wang, H. Y.; Yan, X. Q.; Chen, J. E.; He, X. T.; Ma, W. J.; Bin, J. H.; Schreiber, J.; Tajima, T.; Habs, D.

    2013-01-15

    We report an efficient and stable scheme to generate {approx}200 MeV proton bunch by irradiating a two-layer targets (near-critical density layer+solid density layer with heavy ions and protons) with a linearly polarized Gaussian pulse at intensity of 6.0 Multiplication-Sign 10{sup 20} W/cm{sup 2}. Due to self-focusing of laser and directly accelerated electrons in the near-critical density layer, the proton energy is enhanced by a factor of 3 compared to single-layer solid targets. The energy spread of proton is also remarkably reduced. Such scheme is attractive for applications relevant to tumor therapy.

  12. Physics and Novel Schemes of Laser Radiation Pressure Acceleration for Quasi-monoenergetic Proton Generation

    SciTech Connect

    Liu, Chuan S.; Shao, Xi

    2016-06-14

    The main objective of our work is to provide theoretical basis and modeling support for the design and experimental setup of compact laser proton accelerator to produce high quality proton beams tunable with energy from 50 to 250 MeV using short pulse sub-petawatt laser. We performed theoretical and computational studies of energy scaling and Raleigh--Taylor instability development in laser radiation pressure acceleration (RPA) and developed novel RPA-based schemes to remedy/suppress instabilities for high-quality quasimonoenergetic proton beam generation as we proposed. During the project period, we published nine peer-reviewed journal papers and made twenty conference presentations including six invited talks on our work. The project supported one graduate student who received his PhD degree in physics in 2013 and supported two post-doctoral associates. We also mentored three high school students and one undergraduate student of physics major by inspiring their interests and having them involved in the project.

  13. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  14. Acceleration of polarized protons at Saturne: First results

    SciTech Connect

    Arvieu, J.

    1982-03-20

    The accelertor SATURNE is a synchrotron which accelerates particles up to P/Z = 3.8 GeV/c. Thus the maximum energy for protons T/sub p/ is about 3 GeV, and for deuterons T/sub d/ is about 2.3 GeV. It is equipped with a polarized ion source (HYPERION, the name of a satellite of the Saturne planet) of the ''atomic beam'' type producing either protons or deuterons with either vector or tensor polarization. A heavy-ion source (CREYBIS) for production of ions up to mass 40 is now being tested.

  15. Characterization of proton and heavier ion acceleration in ultrahigh-intensity laser interactions with heated target foils.

    PubMed

    McKenna, P; Ledingham, K W D; Yang, J M; Robson, L; McCanny, T; Shimizu, S; Clarke, R J; Neely, D; Spohr, K; Chapman, R; Singhal, R P; Krushelnick, K; Wei, M S; Norreys, P A

    2004-09-01

    Proton and heavy ion acceleration in ultrahigh intensity ( approximately 2 x 10(20) W cm(-2) ) laser plasma interactions has been investigated using the new petawatt arm of the VULCAN laser. Nuclear activation techniques have been applied to make the first spatially integrated measurements of both proton and heavy ion acceleration from the same laser shots with heated and unheated Fe foil targets. Fe ions with energies greater than 10 MeV per nucleon have been observed. Effects of target heating on the accelerated ion energy spectra and the laser-to-ion energy conversion efficiencies are discussed. The laser-driven production of the long-lived isotope (57 )Co (271 days) via a heavy ion induced reaction is demonstrated.

  16. High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV

    SciTech Connect

    Sjue, S. K. L. Mariam, F. G.; Merrill, F. E.; Morris, C. L.; Saunders, A.

    2016-01-15

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane. Comparison with a series of static calibration images demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.

  17. High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV

    NASA Astrophysics Data System (ADS)

    Sjue, S. K. L.; Mariam, F. G.; Merrill, F. E.; Morris, C. L.; Saunders, A.

    2016-01-01

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane. Comparison with a series of static calibration images demonstrates the model's accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.

  18. High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV.

    PubMed

    Sjue, S K L; Mariam, F G; Merrill, F E; Morris, C L; Saunders, A

    2016-01-01

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane. Comparison with a series of static calibration images demonstrates the model's accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.

  19. The precise energy spectra measurement of laser-accelerated MeV/n-class high-Z ions and protons using CR-39 detectors

    NASA Astrophysics Data System (ADS)

    Kanasaki, M.; Jinno, S.; Sakaki, H.; Kondo, K.; Oda, K.; Yamauchi, T.; Fukuda, Y.

    2016-03-01

    The diagnosis method, using a combination of a permanent magnet and CR-39 track detectors, has been developed to separately measure the energy spectrum of the laser-accelerated MeV/n-class high-Z ions and that of MeV protons. The main role of magnet is separating between high-Z ions and protons, not for the usual energy spectrometer, while ion energy was precisely determined from careful analysis of the etch pit shapes and the etch pit growth behaviors in the CR-39. The method was applied to laser-driven ion acceleration experiments using CO2 clusters embedded in a background H2 gas. Ion energy spectra with uncertainty ΔE  =  0.1 MeV n-1 for protons and carbon/oxygen ions were simultaneously obtained separately. The maximum energies of carbon/oxygen ions and protons were determined as 1.1  ±  0.1 MeV and 1.6  ±  0.1 MeV n-1, respectively. The sharp decrease around 1 MeV n-1 observed in the energy spectrum of carbon/oxygen ions could be due to a trace of the ambipolar hydrodynamic expansion of CO2 clusters. Thanks to the combination of the magnet and the CR-39, the method is robust against electromagnetic pulse (EMP).

  20. Lasers As Particle Accelerators In Medicine: From Laser-Driven Protons To Imaging With Thomson Sources

    SciTech Connect

    Pogorelsky, I. V.; Babzien, M.; Polyanskiy, M. N.; Yakimenko, V.; Dover, N. P.; Palmer, C. A. J.; Najmudin, Z.; Shkolnikov, P.; Williams, O.; Rosenzweig, J.; Oliva, P.; Carpinelli, M.; Golosio, B.; Delogu, P.; Stefanini, A.; Endrizzi, M.

    2011-06-01

    We report our recent progress using a high-power, picosecond CO{sub 2} laser for Thomson scattering and ion acceleration experiments. These experiments capitalize on certain advantages of long-wavelength CO{sub 2} lasers, such as their high number of photons per energy unit and beneficial wavelength- scaling of the electrons' ponderomotive energy and critical plasma frequency. High X-ray fluxes produced in the interactions of the counter-propagating laser- and electron-beams for obtaining single-shot, high-contrast images of biological objects. The laser, focused on a hydrogen jet, generated a monoenergetic proton beam via the radiation-pressure mechanism. The energy of protons produced by this method scales linearly with the laser's intensity. We present a plan for scaling the process into the range of 100-MeV proton energy via upgrading the CO{sub 2} laser. This development will enable an advance to the laser-driven proton cancer therapy.

  1. Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus

    NASA Astrophysics Data System (ADS)

    Foster, J. C.; Erickson, P. J.; Omura, Y.; Baker, D. N.; Kletzing, C. A.; Claudepierre, S. G.

    2017-01-01

    Prompt recovery of MeV (millions of electron Volts) electron populations in the poststorm core of the outer terrestrial radiation belt involves local acceleration of a seed population of energetic electrons in interactions with VLF chorus waves. Electron interactions during the generation of VLF rising tones are strongly nonlinear, such that a fraction of the relativistic electrons at resonant energies are trapped by waves, leading to significant nonadiabatic energy exchange. Through detailed examination of VLF chorus and electron fluxes observed by Van Allen Probes, we investigate the efficiency of nonlinear processes for acceleration of electrons to MeV energies. We find through subpacket analysis of chorus waveforms that electrons with initial energy of hundreds of keV to 3 MeV can be accelerated by 50 keV-200 keV in resonant interactions with a single VLF rising tone on a time scale of 10-100 ms.

  2. Development of a gaseous proton-recoil detector for fission cross section measurements below 1 MeV neutron energy

    NASA Astrophysics Data System (ADS)

    Marini, P.; Mathieu, L.; Aïche, M.; Czajkowski, S.; Jurado, B.; Tsekhanovich, I.

    2016-03-01

    The elastic H(n,p) reaction is sometimes used to measure neutron flux, in order to produce high precision measurements. The use of this technique is not straightforward to use below incident neutron energy of 1 MeV, due to a high background in the detected proton spectrum. Experiments have been carried out at the AIFIRA facility to investigate such background and determine its origin and components. Based on these investigations, a gaseous proton-recoil detector has been designed, with a reduced low energy background.

  3. Optimizing laser-driven proton acceleration from overdense targets

    PubMed Central

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range. PMID:27435449

  4. Optimizing laser-driven proton acceleration from overdense targets.

    PubMed

    Stockem Novo, A; Kaluza, M C; Fonseca, R A; Silva, L O

    2016-07-20

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range.

  5. Optimizing laser-driven proton acceleration from overdense targets

    NASA Astrophysics Data System (ADS)

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-07-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range.

  6. Radiation protection measurements around a 12 MeV mobile dedicated IORT accelerator

    SciTech Connect

    Soriani, Antonella; Felici, Giuseppe; Fantini, Mario; Paolucci, Massimiliano; Borla, Oscar; Evangelisti, Giovanna; Benassi, Marcello; Strigari, Lidia

    2010-03-15

    Purpose: The aim of this study is to investigate radioprotection issues that must be addressed when dedicated accelerators for intraoperative radiotherapy (IORT) are used in operating rooms. Recently, a new version of a mobile IORT accelerator (LIAC Sordina SpA, Italy) with 12 MeV electron beam has been implemented. This energy is necessary in some specific pathology treatments to allow a better coverage of thick lesions. At an electron energy of 10 MeV, leakage and scattered x-ray radiation (stray radiation) coming from the accelerator device and patient must be considered. If the energy is greater than 10 MeV, the x-ray component will increase; however, the most meaningful change should be the addition of neutron background. Therefore, radiation exposure of personnel during the IORT procedure needs to be carefully evaluated. Methods: In this study, stray x-ray radiation was measured and characterized in a series of spherical projections by means of an ion chamber survey meter. To simulate the patient during all measurements, a polymethylmethacrylate (PMMA) slab phantom with volume 30x30x15 cm{sup 3} and density 1.19 g/cm{sup 3} was used. The PMMA phantom was placed along the central axis of the beam in order to absorb the electron beams and the tenth value layer (TVL) and half value layer (HVL) of scattered radiation (at 0 deg., 90 deg., and 180 deg. scattering angles) were also measured at 1 m of distance from the phantom center. Neutron measurements were performed using passive bubble dosimeters and a neutron probe, specially designed to evaluate ambient dose equivalent H{sup *}(10). Results: The x-ray equivalent dose measured at 1 m along the beam axis at 12 MeV was 260 {mu}Sv/Gy. The value measured at 1 m at 90 deg. scattering angle was 25 {mu}Sv/Gy. The HVL and TVL values were 1.1 and 3.5 cm of lead at 0 deg., and 0.4 and 1 cm at 90 deg., respectively. The highest equivalent dose of fast neutrons was found to be at the surface of the phantom on the central

  7. Measurements of the Argonne Wakefield Accelerator's low charge, 4 MeV RF photocathode witness beam.

    SciTech Connect

    Power, J.

    1998-04-01

    The Argonne Wakefield Accelerator's (AWA) witness RF photocathode gun produced its first electron beam in April of 1996. We have characterized the charge, energy, emittance and bunch length of the witness beam over the last several months. The emittance Was measured by both a quad scan that fitted for space charge using an in house developed Mathematica routine and a pepper pot technique. The bunch length was measured by imaging Cherenkov light from a quartz plate to a Hamamatsu streak camera with 2 psec resolution. A beam energy of 3.9 Mev was measured with a 6 inch round pole spectrometer while a beam charge was measured with both an ICT and a Faraday Cup. Although the gun will normally be run at 100 pC it has produced charges from 10 pC to 4 nc. All results of the measurements to date are presented here.

  8. A high brightness proton injector for the Tandetron accelerator at Jožef Stefan Institute

    NASA Astrophysics Data System (ADS)

    Pelicon, Primož; Podaru, Nicolae C.; Vavpetič, Primož; Jeromel, Luka; Ogrinc Potocnik, Nina; Ondračka, Simon; Gottdang, Andreas; Mous, Dirk J. M.

    2014-08-01

    Jožef Stefan Institute recently commissioned a high brightness H- ion beam injection system for its existing tandem accelerator facility. Custom developed by High Voltage Engineering Europa, the multicusp ion source has been tuned to deliver at the entrance of the Tandetron™ accelerator H- ion beams with a measured brightness of 17.1 A m-2 rad-2 eV-1 at 170 μA, equivalent to an energy normalized beam emittance of 0.767 π mm mrad MeV1/2. Upgrading the accelerator facility with the new injection system provides two main advantages. First, the high brightness of the new ion source enables the reduction of object slit aperture and the reduction of acceptance angle at the nuclear microprobe, resulting in a reduced beam size at selected beam intensity, which significantly improves the probe resolution for micro-PIXE applications. Secondly, the upgrade strongly enhances the accelerator up-time since H and He beams are produced by independent ion sources, introducing a constant availability of 3He beam for fusion-related research with NRA. The ion beam particle losses and ion beam emittance growth imply that the aforementioned beam brightness is reduced by transport through the ion optical system. To obtain quantitative information on the available brightness at the high-energy side of the accelerator, the proton beam brightness is determined in the nuclear microprobe beamline. Based on the experience obtained during the first months of operation for micro-PIXE applications, further necessary steps are indicated to obtain optimal coupling of the new ion source with the accelerator to increase the normalized high-energy proton beam brightness at the JSI microprobe, currently at 14 A m-2 rad-2 eV-1, with the output current at 18% of its available maximum.

  9. Neutron-proton scattering observables at 325 MeV, the ɛ1 parameter, and the tensor force

    NASA Astrophysics Data System (ADS)

    Chulick, G. S.; Elster, Ch.; Machleidt, R.; Picklesimer, A.; Thaler, R. M.

    1988-04-01

    The sensitivity of neutron-proton elastic scattering observables to variations in the low angular momentum T=0 phase shifts is studied at Elab=325 MeV. It is found that the J=1 coupling parameter ɛ1 is not well determined by existing data. This uncertainty in ɛ1 permits models with quite different tensor forces to describe the extant data. Implications and possible experimental resolution of such ambiguities are discussed.

  10. The scrounge-atron: a proton radiography demonstration accelerator

    SciTech Connect

    Alford, O J; Barnes, P D; Chargin, A K; Hartouni, E F; Hockman, J N; Moore, T L; Pico, R E; Ruggiero, A G

    1998-12-18

    The Scrounge-atron is a concept that could provide a demonstration accelerator for proton radiography. As discussed here, the Scrounge-atron would be capable of providing a 20 GeV beam of ten pulses, 10{sup 11} protons each, spaced 250 ns apart. This beam could be delivered once every minute to a single-axis radiographic station centered at the BEEF facility of the Nevada Test Site. These parameters would be sufficient to demonstrate, in five years, the capabilities of a proton-based Advanced Hydrotest Facility, and could return valuable information to the stockpile program, information that could not be obtained in any other way. The Scrounge-atron could be built in two to three years for $50-100 million. To meet this schedule and cost, the Scrounge-atron would rely heavily on the availability of components from the decommissioned Fermilab Main Ring.

  11. Scalability of the LEU-Modified Cintichem Process: 3-MeV Van de Graaff and 35-MeV Electron Linear Accelerator Studies

    SciTech Connect

    Rotsch, David A.; Brossard, Tom; Roussin, Ethan; Quigley, Kevin; Chemerisov, Sergey; Gromov, Roman; Jonah, Charles; Hafenrichter, Lohman; Tkac, Peter; Krebs, John; Vandegrift, George F.

    2016-10-31

    Molybdenum-99, the mother of Tc-99m, can be produced from fission of U-235 in nuclear reactors and purified from fission products by the Cintichem process, later modified for low-enriched uranium (LEU) targets. The key step in this process is the precipitation of Mo with α-benzoin oxime (ABO). The stability of this complex to radiation has been examined. Molybdenum-ABO was irradiated with 3 MeV electrons produced by a Van de Graaff generator and 35 MeV electrons produced by a 50 MeV/25 kW electron linear accelerator. Dose equivalents of 1.7–31.2 kCi of Mo-99 were administered to freshly prepared Mo-ABO. Irradiated samples of Mo-ABO were processed according to the LEU Modified-Cintichem process. The Van de Graaff data indicated good radiation stability of the Mo-ABO complex up to ~15 kCi dose equivalents of Mo-99 and nearly complete destruction at doses >24 kCi Mo-99. The linear accelerator data indicate that even at 6.2 kCi of Mo-99 equivalence of dose, the sample lost ~20% of Mo-99. The 20% loss of Mo-99 at this low dose may be attributed to thermal decomposition of the product from the heat deposited in the sample during irradiation.

  12. Preliminary Safety Analysis Report (PSAR), The NSLS 200 MeV Linear Electron Accelerator

    SciTech Connect

    Blumberg, L.N.; Ackerman, A.I.; Dickinson, T.; Heese, R.N.; Larson, R.A.; Neuls, C.W.; Pjerov, S.; Sheehan, J.F.

    1993-06-15

    The radiological, fire and electrical hazards posed by a 200 MeV electron Linear Accelerator, which the NSLS Department will install and commission within a newly assembled structure, are addressed in this Preliminary Safety Analysis Report. Although it is clear that this accelerator is intended to be the injector for a future experimental facility, we address only the Linac in the present PSAR since neither the final design nor the operating characteristics of the experimental facility are known at the present time. The fire detection and control system to be installed in the building is judged to be completely adequate in terms of the marginal hazard presented - no combustible materials other than the usual cabling associated with such a facility have been identified. Likewise, electrical hazards associated with power supplies for the beam transport magnets and accelerator components such as the accelerator klystrons and electron gun are classified as marginal in terms of potential personnel injury, cost of equipment lost, program downtime and public impact perceptions as defined in the BNL Environmental Safety and Health Manual and the probability of occurrence is deemed to be remote. No unusual features have been identified for the power supplies or electrical distribution system, and normal and customary electrical safety standards as practiced throughout the NSLS complex and the Laboratory are specified in this report. The radiation safety hazards are similarly judged to be marginal in terms of probability of occurrence and potential injury consequences since, for the low intensity operation proposed - a factor of 25 less than the maximum Linac capability specified by the vendor - the average beam power is only 0.4 watts. The shielding specifications given in this report will give adequate protection to both the general public and nonradiation workers in areas adjacent to the building as well as radiation workers within the controlled access building.

  13. Processing of radioactive waste by the use of low energy ({le} 100 MeV) charged particle accelerators. Optimization problems

    SciTech Connect

    Mushnikov, V.N.; Ozhigov, L.S.; Khizhnyak, N.A.

    1993-12-31

    The radiation processing of long-lived radiotoxic elements is based on transmutation reactions under the action of various particles and energies. Among the different particle sources the most promising is the proton accelerator. The present work studied the process of radiation deactivation in the stationary proton flux as functions of their flux density and energy. The Bateman-Robinson differential equations were solved.

  14. Routine production of copper-64 using 11.7MeV protons

    SciTech Connect

    Jeffery, C. M.; Smith, S. V.; Asad, A. H.; Chan, S.; Price, R. I.

    2012-12-19

    Reliable production of copper-64 ({sup 64}Cu) was achieved by irradiating enriched nickel-64 ({sup 64}Ni, >94.8%) in an IBA 18/9 cyclotron. Nickel-64 (19.1 {+-} 3.0 mg) was electroplated onto an Au disc (125{mu}m Multiplication-Sign 15mm). Targets were irradiated with 11.7 MeV protons for 2 hours at 40{mu}A. Copper isotopes ({sup 60,61,62,64}Cu) were separated from target nickel and cobalt isotopes ({sup 55,57,61}Co) using a single ion exchange column, eluted with varying concentration of low HCl alcohol solutions. The {sup 64}Ni target material was recovered and reused. The {sup 64}Cu production rate was 1.46{+-}0.3MBq/{mu}A.hr/mg{sup 64}Ni(n = 10) (with a maximum of 2.6GBq of {sup 64}Cu isolated after 2hr irradiation at 40uA. Radionuclidic purity of the {sup 64}Cu was 98.7 {+-} 1.6 % at end of separation. Cu content was < 6mg/L (n = 21). The specific activity of {sup 64}Cu was determined by ICP-MS and by titration with Diamsar to be 28.9{+-}13.0GBq/{mu}mol[0.70{+-}0.35Ci/{mu}mol]/({mu}A.hr/mg{sup 64}Ni)(n = 10) and 13.1{+-}12.0GBq/{mu}mol[0.35{+-}0.32Ci/{mu}mol]/({mu}A.hr/mg{sup 64}Ni)(n 9), respectively; which are in agreement, however, further work is required.

  15. Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density

    SciTech Connect

    Bake, Muhammad Ali; Xie Baisong; Shan Zhang; Hong Xueren; Wang Hongyu

    2012-08-15

    The combinational laser radiation pressure and plasma bubble fields to accelerate protons are researched through theoretical analysis and numerical simulations. The dephasing length of the accelerated protons bunch in the front of the bubble and the density gradient effect of background plasma on the accelerating phase are analyzed in detail theoretically. The radiation damping effect on the accelerated protons energy is also considered. And it is demonstrated by two-dimensional particle-in-cell simulations that the protons bunch energy can be increased by using the background plasma with negative density gradient. However, radiation damping makes the maximal energy of the accelerated protons a little reduction.

  16. The effect of stochastic re-acceleration on the energy spectrum of shock-accelerated protons

    SciTech Connect

    Afanasiev, Alexandr; Vainio, Rami; Kocharov, Leon

    2014-07-20

    The energy spectra of particles in gradual solar energetic particle (SEP) events do not always have a power-law form attributed to the diffusive shock acceleration mechanism. In particular, the observed spectra in major SEP events can take the form of a broken (double) power law. In this paper, we study the effect of a process that can modify the power-law spectral form produced by the diffusive shock acceleration: the stochastic re-acceleration of energetic protons by enhanced Alfvénic turbulence in the downstream region of a shock wave. There are arguments suggesting that this process can be important when the shock propagates in the corona. We consider a coronal magnetic loop traversed by a shock and perform Monte Carlo simulations of interactions of shock-accelerated protons with Alfvén waves in the loop. The wave-particle interactions are treated self-consistently, so the finiteness of the available turbulent energy is taken into account. The initial energy spectrum of particles is taken to be a power law. The simulations reveal that the stochastic re-acceleration leads either to the formation of a spectrum that is described in a wide energy range by a power law (although the resulting power-law index is different from the initial one) or to a broken power-law spectrum. The resulting spectral form is determined by the ratio of the energy density of shock-accelerated protons to the wave energy density in the shock's downstream region.

  17. Global numerical modeling of energetic proton acceleration in a coronal mass ejection traveling through the solar corona

    SciTech Connect

    Kozarev, Kamen A.; Opher, Merav; Evans, Rebekah M.; Dayeh, Maher A.; Korreck, Kelly E.; Van der Holst, Bart

    2013-11-20

    The acceleration of protons and electrons to high (sometimes GeV/nucleon) energies by solar phenomena is a key component of space weather. These solar energetic particle (SEP) events can damage spacecraft and communications, as well as present radiation hazards to humans. In-depth particle acceleration simulations have been performed for idealized magnetic fields for diffusive acceleration and particle propagation, and at the same time the quality of MHD simulations of coronal mass ejections (CMEs) has improved significantly. However, to date these two pieces of the same puzzle have remained largely decoupled. Such structures may contain not just a shock but also sizable sheath and pileup compression regions behind it, and may vary considerably with longitude and latitude based on the underlying coronal conditions. In this work, we have coupled results from a detailed global three-dimensional MHD time-dependent CME simulation to a global proton acceleration and transport model, in order to study time-dependent effects of SEP acceleration between 1.8 and 8 solar radii in the 2005 May 13 CME. We find that the source population is accelerated to at least 100 MeV, with distributions enhanced up to six orders of magnitude. Acceleration efficiency varies strongly along field lines probing different regions of the dynamically evolving CME, whose dynamics is influenced by the large-scale coronal magnetic field structure. We observe strong acceleration in sheath regions immediately behind the shock.

  18. Global Numerical Modeling of Energetic Proton Acceleration in a Coronal Mass Ejection Traveling through the Solar Corona

    NASA Astrophysics Data System (ADS)

    Kozarev, Kamen A.; Evans, Rebekah M.; Schwadron, Nathan A.; Dayeh, Maher A.; Opher, Merav; Korreck, Kelly E.; van der Holst, Bart

    2013-11-01

    The acceleration of protons and electrons to high (sometimes GeV/nucleon) energies by solar phenomena is a key component of space weather. These solar energetic particle (SEP) events can damage spacecraft and communications, as well as present radiation hazards to humans. In-depth particle acceleration simulations have been performed for idealized magnetic fields for diffusive acceleration and particle propagation, and at the same time the quality of MHD simulations of coronal mass ejections (CMEs) has improved significantly. However, to date these two pieces of the same puzzle have remained largely decoupled. Such structures may contain not just a shock but also sizable sheath and pileup compression regions behind it, and may vary considerably with longitude and latitude based on the underlying coronal conditions. In this work, we have coupled results from a detailed global three-dimensional MHD time-dependent CME simulation to a global proton acceleration and transport model, in order to study time-dependent effects of SEP acceleration between 1.8 and 8 solar radii in the 2005 May 13 CME. We find that the source population is accelerated to at least 100 MeV, with distributions enhanced up to six orders of magnitude. Acceleration efficiency varies strongly along field lines probing different regions of the dynamically evolving CME, whose dynamics is influenced by the large-scale coronal magnetic field structure. We observe strong acceleration in sheath regions immediately behind the shock.

  19. Microprocessor control and data acquisition at the LLNL 100-MeV accelerator

    SciTech Connect

    Mendonca, M.L.

    1981-05-26

    A distributed microprocessor control and data acquisition network has been designed for implementation on the Lawrence Livermore National Laboratory 100 MeV electron/positron accelerator (LINAC). The system has been designed to be as transparent to the user as possible by stressing responsiveness, reliability, and relevance of data presented to the user. Implementation of the network will take place in modular fashion in three stages, so as to minimize disruption of normal operations. The first elements to be installed will be the beam transport system controls, beam set-up time. Beam diagnostic equipment is now being position monitors, and accelerator operating status monitors. These units will reduce beam set-up time. Beam diagnostic equipment is now being designed that will be used in a second stage implementation. This stage will concentrate on determining beam parameters and allowing the user to optimize the beam for a given parameter. The final stage will be to install experimenter data acquisition equipment. The equipment will augment the presently existing data acquisition system. The completed network will allow a more efficient operation of the LINAC, resulting in reduced experiment costs, and more controllable beam parameters, both of which are major concerns of experimenters.

  20. Further Acceleration of MeV Electrons by a Relativistic Laser Pulse

    NASA Astrophysics Data System (ADS)

    He, Feng; Yu, Wei; Lu, Pei-Xiang; Xu, Han; Shen, Bai-Fei; Qian, Lie-Jia; Li, Ru-Xin; Xu, Zhi-Zhan

    2005-05-01

    With the development of photocathode rf electron gun, electrons with high-brightness and mono-energy can be obtained easily. By numerically solving the relativistic equations of motion of an electron generated from this facility in laser fields modelled by a circular polarized Gaussian laser pulse, we find the electron can obtain high energy gain from the laser pulse. The corresponding acceleration distance for this electron driven by the ascending part of the laser pulse is much longer than the Rayleigh length, and the light amplitude experienced on the electron is very weak when the laser pulse overtakes the electron. The electron is accelerated effectively and the deceleration can be neglected. For intensities around 1019 W.μm2/cm2, an electron's energy gain near 0.1 GeV can be realized when its initial energy is 4.5 MeV, and the final velocity of the energetic electron is parallel with the propagation axis. The energy gain can be up to 1 GeV if the intensity is about 1021 W.μm2/cm2. The final energy gain of the electron as a function of its initial conditions and the parameters of the laser beam has also been discussed.

  1. Shock-wave proton acceleration from a hydrogen gas jet

    NASA Astrophysics Data System (ADS)

    Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly

    2013-04-01

    Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.

  2. Proton shock acceleration using a high contrast high intensity laser

    NASA Astrophysics Data System (ADS)

    Gauthier, Maxence; Roedel, Christian; Kim, Jongjin; Aurand, Bastian; Curry, Chandra; Goede, Sebastian; Propp, Adrienne; Goyon, Clement; Pak, Art; Kerr, Shaun; Ramakrishna, Bhuvanesh; Ruby, John; William, Jackson; Glenzer, Siegfried

    2015-11-01

    Laser-driven proton acceleration is a field of intense research due to the interesting characteristics of this novel particle source including high brightness, high maximum energy, high laminarity, and short duration. Although the ion beam characteristics are promising for many future applications, such as in the medical field or hybrid accelerators, the ion beam generated using TNSA, the acceleration mechanism commonly achieved, still need to be significantly improved. Several new alternative mechanisms have been proposed such as collisionless shock acceleration (CSA) in order to produce a mono-energetic ion beam favorable for those applications. We report the first results of an experiment performed with the TITAN laser system (JLF, LLNL) dedicated to the study of CSA using a high intensity (5x1019W/cm2) high contrast ps laser pulse focused on 55 μm thick CH and CD targets. We show that the proton spectrum generated during the interaction exhibits high-energy mono-energetic features along the laser axis, characteristic of a shock mechanism.

  3. Deep level transient spectroscopy (DLTS) study of defects introduced in antimony doped Ge by 2 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Nyamhere, C.; Das, A. G. M.; Auret, F. D.; Chawanda, A.; Pineda-Vargas, C. A.; Venter, A.

    2011-08-01

    Deep level transient spectroscopy (DLTS) and Laplace-DLTS have been used to investigate the defects created in Sb doped Ge after irradiation with 2 MeV protons having a fluence of 1×10 13 protons/cm 2. The results show that proton irradiation resulted in primary hole traps at E V +0.15 and E V +0.30 eV and electron traps at E C -0.38, E C -0.32, E C -0.31, E C -0.22, E C -0.20, E C -0.17, E C -0.15 and E C -0.04 eV. Defects observed in this study are compared with those introduced in similar samples after MeV electron irradiation reported earlier. E C -0.31, E C -0.17 and E C -0.04, and E V +0.15 eV were not observed previously in similar samples after high energy irradiation. Results from this study suggest that although similar defects are introduced by electron and proton irradiation, traps introduced by the latter are dose dependent.

  4. Energy loss straggling of (0.5 < Ep < 2.0) MeV protons in formvar

    NASA Astrophysics Data System (ADS)

    Djaroum, S.; Damache, S.; Moussa, D.; Ouichaoui, S.; Amari, L.

    2015-07-01

    Energy loss distributions for (0.5 < Ep < 2.0) MeV protons traversing polyvinyl formal have been measured in transmission. Then, they have been analyzed in order to determine energy loss straggling variance data. For avoiding non-stochastic broadenings and single collision events, only energy loss fractions within the range 2 % ⩽ ΔE/E ⩽ 20 % have been considered. The inferred energy loss straggling data are compared to values derived by several theories of the collisional energy straggling and by Yang et al. empirical formula with assuming the validity of the Bragg-Kleeman additivity rule for compounds in all the performed calculations. The obtained results are discussed with distinguishing two projectile velocity regimes delimited by the proton energy Ep ∼ 1.2 MeV. Over the high proton velocity regime, our data are in very consistent with the classical Bohr theory and the Yang et al. empirical formula predicting constant collisional energy loss straggling. It clearly appears that over the low proton velocity regime, our energy loss straggling data are in best overall quantitative agreement with values predicted by the Sigmund-Schinner binary collision stopping theory (the BCAS) involving both the shell and Barkas-Anderson corrections. Besides, the slight low energy-dependent behavior of experimental data shows to be consistent with the predictions of the Bethe-Livingston theory and the Yang et al. empirical formula.

  5. Simulations of the LEDA RFQ 6.7 MeV Accelerator

    NASA Astrophysics Data System (ADS)

    Young, L. M.

    1997-05-01

    The codes PARMTEQM(K. R. Crandall, et. al. "RFQ Design Codes," Los Alamos National Laboratory report LA-UR-96-1836.) and RFQTRAK(N. J. Diserens "RFTRAK User Guide" AECL Research, May 1993.) simulate the beam transport through the Radio Frequency Quadrupole (RFQ) accelerator(L.M. Young, "An 8-meter-long coupled cavity RFQ Linac", Proc. 1994 Intl. LINAC Conf. (Tsukuba, Japan) 178.) for the Low-Energy Demonstration Accelerator (LEDA). They predict 95% transmission for a matched 110-mA proton beam with a normalized-rms emittance of 0.02 π mm mrad. RFQTRAK simulates the effects of arbitrary vane tip misalignments. This RFQ includes some new features in its design. It consists of four resonantly coupled 2-m-long segments that make up its 8-m length. It has higher vane gap voltages at the high-energy end than the low-energy end. The entrance end of the RFQ has lower transverse focusing strength to facilitate beam matching. The exit of the RFQ has a transition cell and a radial matching section(K. R. Crandall "Ending RFQ Vanetips with Quadrupole Symmetry", Proc. 1994 Intl. LINAC Conf. (Tsukuba, Japan) 227.). The exit radial matching section matches the beam into the following accelerator.

  6. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    SciTech Connect

    Morris, C. L.; Bourke, M.; Byler, D. D.; Chen, C. F.; Hogan, G.; Hunter, J. F.; Kwiatkowski, K.; Mariam, F. G.; McClellan, K. J.; Merrill, F.; Morley, D. J.; Saunders, A.

    2013-02-15

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. We also show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods have been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 {mu}m has been demonstrate, 20 {mu}m seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 {mu}m resolution but further development of sources, collimation, and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  7. High order magnetic optics for high dynamic range proton radiography at a kinetic energy 800 MeV

    SciTech Connect

    Sjue, Sky K. L.; Morris, Christopher L.; Merrill, Frank Edward; Mariam, Fesseha Gebre; Saunders, Alexander

    2016-01-14

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the protonimaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane. Furthermore, comparison with a series of static calibrationimages demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.

  8. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets.

    PubMed

    Morris, C L; Bourke, M; Byler, D D; Chen, C F; Hogan, G; Hunter, J F; Kwiatkowski, K; Mariam, F G; McClellan, K J; Merrill, F; Morley, D J; Saunders, A

    2013-02-01

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. We also show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods have been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation, and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  9. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    NASA Astrophysics Data System (ADS)

    Morris, C. L.; Bourke, M.; Byler, D. D.; Chen, C. F.; Hogan, G.; Hunter, J. F.; Kwiatkowski, K.; Mariam, F. G.; McClellan, K. J.; Merrill, F.; Morley, D. J.; Saunders, A.

    2013-02-01

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. We also show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods have been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation, and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  10. High order magnetic optics for high dynamic range proton radiography at a kinetic energy 800 MeV

    DOE PAGES

    Sjue, Sky K. L.; Morris, Christopher L.; Merrill, Frank Edward; ...

    2016-01-14

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the protonimaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane.more » Furthermore, comparison with a series of static calibrationimages demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.« less

  11. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    SciTech Connect

    Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; Chen, Ching-Fong; Hogan, Gary E.; Hunter, James F.; Kwiatkowski, Kris K.; Mariam, Fesseha G.; McClellan, Kenneth J.; Merrill, Frank E.; Morley, Deborah J.; Saunders, Alexander

    2013-02-11

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  12. Traceable charge measurement of the pulses of a 27 MeV electron beam from a linear accelerator

    NASA Astrophysics Data System (ADS)

    Schüller, A.; Illemann, J.; Renner, F.; Makowski, C.; Kapsch, R.-P.

    2017-03-01

    This work presents a detailed description of measuring devices and calibration procedures which enable the nondestructive (non-intercepting) absolute measurement of the charge of individual beam pulses (macro-pulses) from an electron linear accelerator traceable to primary standards with high accuracy, i.e. with an expanded measurement uncertainty < 0.1%. In particular, we demonstrate the readout and calibration of a Bergoz integrating current transformer which is frequently applied at many different types of accelerators as a beam intensity monitor. The current transformer signal is calibrated against the absolute charge measurement by means of a custom-made compact Faraday cup with a high degree of collection efficiency for electron beams in the energy range of 6 MeV to 50 MeV (99.2% at 27 MeV), which is well known from measurements and consistently described by Monte Carlo calculations.

  13. Investigation of activation cross-sections of proton induced nuclear reactions on natMo up to 40 MeV: New data and evaluation

    NASA Astrophysics Data System (ADS)

    Tárkányi, F.; Ditrói, F.; Hermanne, A.; Takács, S.; Ignatyuk, A. V.

    2012-06-01

    Cross-sections of proton induced nuclear reactions on natural molybdenum have been studied in the frame of a systematic investigation of charged particle induced nuclear reactions on metals for different applications. The excitation functions of 93mTc, 93gTc(m+), 94mTc, 94gTc, 95mTc, 95gTc, 96gTc(m+), 99mTc, 90Mo(cum), 93mMo, 99Mo(cum), 90Nb(cum), 92mNb, 95mNb, 95gNb, 96Nb and 88Zr(cum), 89Zr(cum) were measured up to 40 MeV proton energy by a using stacked foil technique and activation method. The main goals of this work were to study the production possibility of the medically important 99mTc and its 99Mo parent nucleus, to get experimental data for accelerator technology, for monitoring of proton beam, for thin layer activation technique and for testing nuclear reaction theories. The experimental data were compared with critically analysed published data and with the results of model calculations, obtained by using the ALICE-IPPE, EMPIRE-II and TALYS codes.

  14. Optical spectroscopy and imaging of colour centres in lithium fluoride crystals and thin films irradiated by 3 MeV proton beams

    NASA Astrophysics Data System (ADS)

    Piccinini, M.; Ambrosini, F.; Ampollini, A.; Carpanese, M.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Vincenti, M. A.; Montereali, R. M.

    2014-05-01

    Lithium fluoride is a well-known dosimeter material and it is currently under investigation also for high-resolution radiation imaging detectors based on colour centre photoluminescence. In order to extend their applications, proton beams of 3 MeV energy, produced by a linear accelerator, were used to irradiate LiF crystals and thin films in the fluence range of 1010-1015 protons/cm2. The irradiation induces the formation of colour centres, mainly the primary F centre and the aggregate F2 and F3+ defects, which are stable at room temperature. By optical pumping in the blue spectral region, the F2 and F3+ centres emit broad photoluminescence bands in the visible spectral range. By conventional fluorescence microscopy, the integrated photoluminescence intensity was carefully measured in LiF crystals and thin films as a function of the irradiation fluence: a linear optical response was obtained in a large range of fluence, which is dependent on the used LiF samples. Colour centres concentrations were estimated in LiF crystals by optical absorption spectroscopy. It was possible to record the transversal proton beam intensity profile by acquiring the photoluminescence image of the irradiated spots on LiF films.

  15. Laser acceleration of monoenergetic protons via a double layer emerging from an ultra-thin foil

    NASA Astrophysics Data System (ADS)

    Eliasson, Bengt; Liu, Chuan S.; Shao, Xi; Sagdeev, Roald; Shukla, Padma K.; Dudnikova, Galina; Liu, T. C.

    2009-11-01

    Theoretical and numerical studies are presented of the acceleration of monoenergetic protons in a double layer formed by the laser irradiation of an ultra-thin film. The ponderomotive force of the laser light pushes the electrons forward, and the induced space charge electric field pulls the ions and makes the thin foil accelerate as a whole. A stable double layer is formed, in which the ions are trapped by the combined electric field and inertial force in the accelerated frame, together with the electrons that are trapped in the well of the ponderomotive and ion electric field. The trapped ions reach monoenergetic energies up to 100 MeV and beyond, making them suitable for cancer treatment. We present an analytic theory for the laser-accelerated ion energy as a function of the laser intensity, foil thickness and the plasma number density. The underlying physics of the trapped and untrapped ions and of the stabilization of the Rayleigh-Taylor instability are discussed.

  16. RESPONSE OF DOSEMETERS IN FIELDS GENERATED BY LASER-ACCELERATED PROTONS.

    PubMed

    Olšovcová, V; Versaci, R; Ambrožová, I; Zelenka, Z; Kaufman, J; Margarone, D; Kim, I J; Jeong, T M

    2016-09-01

    In laser-driven acceleration, ultra-short and intense laser pulses are focussed on targets to generate beams of ionising radiation. One of the most important issues to be addressed is personal monitoring. While traditional dosemeters were designed primarily for measurements in continuous fields, dosemeters for laser laboratories must be capable of working in pulsed fields of pulse length below 1 ps, in a single-shot regime up to the repetition rate of 1 kHz. Responses of conventional dosemeters (films, polyallyldiglycol carbonate, electronic personal dosemeter) to proton bunches of up to 30 MeV energy produced by South Korean PW laser system at the Advanced Photonics Research Institute, Gwangju Institute of Science and Technology were studied, both by means of Monte Carlo simulations and experimentally. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Proposal for an irradiation facility at the TAEK SANAEM Proton Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Demirköz, B.; Gencer, A.; Kiziloren, D.; Apsimon, R.

    2013-12-01

    Turkish Atomic Energy Authority's (TAEK's) Proton Accelerator Facility in Ankara, Turkey, has been inaugurated in May 2012 and is under the process of being certified for commercial radio-isotope production. Three of the four arms of the 30 MeV cyclotron are being used for radio-isotope production, while the fourth is foreseen for research and development of novel ideas and methods. The cyclotron can vary the beam current between 12 μA and 1.2 mA, sufficient for irradiation tests for semiconductor materials, detectors and devices. We propose to build an irradiation facility in the R&D room of this complex, open for use to the international detector development community.

  18. An Observational Test of the Stability of Inner Belt Protons Above 60 Mev Using Measurements Separated By 41 Years

    NASA Astrophysics Data System (ADS)

    Mazur, J. E.; O'Brien, T. P., III; Looper, M. D.; Blake, J. B.; George, J. S.

    2014-12-01

    The relative stability of protons trapped in the inner Van Allen radiation belt is a unique signature of the near-Earth radiation environment. While the outer electron belt changes its topography and intensity on timescales of less than a day, calculations indicate that protons in the deepest portions of the inner belt can remain on drift shells for centuries. The long lifetimes for equatorially mirroring protons have never been experimentally verified because few missions traverse this challenging environment, and those that have attempted to quantify the proton flux there have faced potentially large backgrounds from penetrating protons outside the instrument field of view. Today, the Relativistic Proton Spectrometer (RPS) investigation on board the Van Allen Probes offers a background-free reference and hence a unique opportunity to compare the present state of inner belt protons with prior measurements. In this study we revisit one relatively clean, and possibly the most accurate historical dataset: a Cherenkov proton spectrometer that operated in a highly inclined 132x1932 km orbit in 1971. The OV1-20P proton spectrometer covered the energy range of ~65-550 MeV (completely within the RPS energy range), had good background rejection because of a fast scintillator coincidence requirement, but operated off of a flight battery for only 10 days. The short lifetime of the OV1-20P mission is the primary reason it did not have significant impact on subsequent studies of the inner belt. At the meeting we will report on a comparison of OV1-20P and RPS fluxes at the same magnetic field coordinates. Our 41-year measurement baseline is not anywhere near a continuous record of course, but it is rare in space science that we have the opportunity to measure a trapped radiation environment on the timescale of decades.

  19. Long-term intensity decreases in the 8- to 25-MeV proton fluxes at low L values

    SciTech Connect

    Parsignault, D.R.; Holeman, E.; Filz, R.C.

    1981-12-01

    A five year continuous observation, 1963--1968, of the 8- to 25-MeV proton population, at L<2.0, had shown a monotonic decrease in this population. We have observed the same proton population from 1970 to 1976, using experiments flown on several USAF satellites (72-1, S3-2, S3-3). These data, together with published data from the DIAL satellite, show that the decreases in the proton fluxes first observed from 1963 to 1968 have continued unabated, at least until August 1976, and with the same orginial mean lives. The proton flux at L = 1.35 decayed over the 13-year period (1963--1976) with a mean life tau of 5.7 +- 0.5 years. At L = 1.90,tau was 4.55 +- 0.16 years. However, the proton flux at L = 1.20, which had first been reported as constant, started decreasing approx.1970--1976 with tau = 3.07 +- 0.25 years. Possible explanations for this phenomenon can be divided into the categories of natural and artificial effects. We reviewed these different effects and conclude that most likely we are seeing the decay of the high energy protons redistributed by the 'Starfish' high-altitude nuclear explosion.

  20. Radiation dosimetry of 12 MV photons from a CGR Therac 20 MeV Saturne linear accelerator.

    PubMed

    Nair, R P

    1984-10-01

    Typically useful clinical radiation dosimetry characteristics of 12 MV photon beams from a CGR Therac 20 MeV Saturne linear accelerator are briefly outlined. Central axis percent depth dose data are compared with other published data. Beam profiles for small, medium and large fields are delineated to show the uniformity of beams at various depths.

  1. Normal-conducting scaling fixed field alternating gradient accelerator for proton therapy

    NASA Astrophysics Data System (ADS)

    Garland, J. M.; Appleby, R. B.; Owen, H.; Tygier, S.

    2015-09-01

    In this paper we present a new lattice design for a 30-350 MeV scaling fixed-field alternating gradient accelerator for proton therapy and tomography—NORMA (NOrmal-conducting Racetrack Medical Accelerator). The energy range allows the realization of proton computed tomography and utilizes normal conducting magnets in both a conventional circular ring option and a novel racetrack configuration, both designed using advanced optimization algorithms we have developed in pyzgoubi. Both configurations consist of ten focusing-defocusing-focusing triplet cells and operate in the second stability region of Hills equation. The ring configuration has a circumference of 60 m, a peak magnetic field seen by the beam of <1.6 T , a maximum horizontal orbit excursion of 44 cm and a dynamic aperture of 68 mm mrad—determined using a novel dynamic aperture (DA) calculation technique. The racetrack alternative is realized by adding magnet-free drift space in between cells at two opposing points in the ring, to facilitate injection and extraction. Our racetrack design has a total magnet-free straight lengths of 4.9 m, a circumference of 71 m, a peak magnetic field seen by the beam of <1.74 T , a maximum horizontal orbit excursion of 50 cm and a DA of 58 mm mrad. A transverse magnet misalignment model is also presented for the ring and racetrack configurations where the DA remains above 40 mm mrad for randomly misaligned error distributions with a standard deviation up to 100 μ m .

  2. Proton Acceleration Driven by a Nanosecond Laser from a Cryogenic Thin Solid-Hydrogen Ribbon

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Velyhan, A.; Dostal, J.; Ullschmied, J.; Perin, J. P.; Chatain, D.; Garcia, S.; Bonnay, P.; Pisarczyk, T.; Dudzak, R.; Rosinski, M.; Krasa, J.; Giuffrida, L.; Prokupek, J.; Scuderi, V.; Psikal, J.; Kucharik, M.; De Marco, M.; Cikhardt, J.; Krousky, E.; Kalinowska, Z.; Chodukowski, T.; Cirrone, G. A. P.; Korn, G.

    2016-10-01

    A high-power pulsed laser is focused onto a solid-hydrogen target to accelerate forward a collimated stream of protons in the range 0.1-1 MeV, carrying a very high energy of about 30 J (˜5 % laser-ion conversion efficiency) and extremely large charge of about ˜0.1 mC per laser pulse. This result is achieved for the first time through the combination of a sophisticated target system (H2 thin ribbon) operating at cryogenic temperature (˜10 K ) and a very hot H plasma (˜300 keV "hot electron" temperature) generated by a subnanosecond laser with an intensity of ˜3 ×1016 W /cm2 . Both the H plasma and the accelerated proton beam are fully characterized by in situ and ex situ diagnostics. Results obtained using the ELISE (experiments on laser interaction with solid hydrogen) H2 target delivery system at PALS (Prague) kJ-class laser facility are presented and discussed along with potential multidisciplinary applications.

  3. Proton and Ion Acceleration on the Contrast Upgraded Texas Petawatt Laser

    NASA Astrophysics Data System (ADS)

    McCary, Edward; Roycroft, Rebecca; Jiao, Xuejing; Kupfer, Rotem; Tiwari, Ganesh; Wagner, Craig; Yandow, Andrew; Franke, Philip; Dyer, Gilliss; Gaul, Erhard; Toncian, Toma; Ditmire, Todd; Hegelich, Bjorn; CenterHigh Energy Density Science Team

    2016-10-01

    Recent upgrades to the Texas Petawatt (TPW) laser system have eliminated pre-pulses and reduced the laser pedestal, resulting in improved laser contrast. Previously unwanted pre-pulses and amplified spontaneous emission (ASE) would ionize targets thinner than 1 micron, leaving an under-dense plasma which was not capable of accelerating ions to high energies. After the upgrade the contrast was drastically improved allowing us to successfully shoot targets as thin as 20 nm without plasma mirrors. We have also observed evidence of relativistic transparency and Break-Out Afterburner (BOA) ion acceleration when shooting ultra-thin, nanometer scale targets. Data taken with a wide angle ion spectrometer (IWASP) showed the characteristic asymmetry of BOA in the plane orthogonal to the laser polarization on thin targets but not on micron scale targets. Thick micron scale targets saw improvement as well; shots on 2 μm thick gold targets saw ions with energies up to 100 MeV, which broke the former record proton energy on the TPW. Switching the focusing optic from an f/3 parabolic mirror to an f/40 spherical mirror showed improvement in the number of low energy protons created, and provided a source for hundreds of picosecond heating of aluminum foils for warm dense matter measurements.

  4. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac

    SciTech Connect

    Wu, Q. Ma, H. Y.; Yang, Y.; Sun, L. T.; Zhang, X. Z.; Zhang, Z. M.; Zhao, H. Y.; He, Y.; Zhao, H. W.

    2016-02-15

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.

  5. Measurement of the free neutron-proton analyzing power and spin transfer parameters in the charge exchange region at 790 MeV

    SciTech Connect

    Ransome, R.D.

    1981-07-01

    The free neutron-proton analyzing power and the spin transfer parameters (K/sub NN/, K/sub SS/, K/sub SL/, and K/sub LL/) were measured at the Los Alamos Meson Physics Facility at 790 MeV between 165/sup 0/ and 180/sup 0/ center of mass. A 40% polarized neutron beam incident on a liquid hydrogen target was used. The recoil protons were momentum analyzed with a magnetic spectrometer to isolate elastic scatters. A large solid angle carbon polarimeter was used to measure the proton polarization. The measurements are the first at this energy and are in basic agreement with pre-existing phase shift solutions. The proton-carbon analyzing power was measured between 500 and 750 MeV. An empirical fit to the proton-carbon analyzing power between 100 and 750 MeV was done.

  6. /sup 74,76,78,80,82/Se by inelastic scattering of 64. 8 MeV protons

    SciTech Connect

    Ogino, K.

    1986-01-01

    The inelastic scattering of 64.8 MeV protons has been studied on the stable even XU YSSe isotopes. The inelastically scattered protons were momentum analyzed in a magnetic spectrograph with a resulting energy resolution of approximately 20 keV. Levels up to the excitation energy of about 5 MeV were investigated. Many new levels were observed for the isotopes studied. The angular distributions obtained were compared with the predictions of distorted-wave Born approximation and coupled-channels calculations and a number of new spin assignments were proposed. Several 4 states with comparable strengths were found at about E/sub x/ = 2.0--5.0 MeV, showing large fragmentation of octupole and hexadecapole transition strengths, in contrast to the case of Zn isotopes. The distributions of the transition strengths for the 2 , 3 , and 4 states were compared with the theoretical calculations based on the random-phase-approximation model for spherical nuclei.

  7. Spin decomposition of the responses of Ca-44 and Ca-48 to 300 MeV protons

    SciTech Connect

    F. T. Baker; L. Bimbot; R. W. Fergerson; C. Glashausser; A. Green; O. Hausser; K. Hicks; K. Jones; C. A. Miller; M. Vetterli; R. Abegg; D. Beatty; B. Bonin; B. Castel; X. Y. Chen; V. Cupps; C. Djalali; R. Henderson; K. P. Jackson; R. Jeppesen; K. Nakayama; S. K. Nanda; R. Sawafta; S. Yen

    1991-07-01

    Angular distributions of the double-differential cross section d2σ/dΩ dE(σ) and the spin-flip probability Snn have been measured for inclusive proton inelastic scattering from 44Ca at 290 MeV and from 48Ca at 318 MeV. Excitation energies up to about 50 MeV for 44Ca and 40 MeV for 48Ca have been investigated over the laboratory angular ranges of 3° to 12° for 44Ca and 3° to 9° for 48Ca. Multipole decompositions of angular distributions of both the spin-flip cross section σSnn and the estimated cross section for ΔS=0 transitions have been performed. Distributions of strengths were deduced for ΔL=1, ΔS=0 (the giant dipole), ΔL=2, ΔS=0 (the giant quadrupole), ΔL=0, ΔS=1 (the magnetic dipole), ΔL=1, ΔS=1 (the spin dipole), and ΔL=2, ΔS=1 (the spin quadrupole). The ΔS=0 summed strengths for 44Ca are lower than for 40Ca and 48Ca. The spin-dipole summed strengths are found to be approximately independent of A. For 48Ca, essentially all M1 strength observed was in the 10.23 MeV 1+ state; for 44Ca, M1 strength was observed to be fragmented over a range of 7 to 18 Mev.

  8. The Halloween shock of 2003 as it reached Voyager 2 at ˜73 AU - Two separate acceleration zones and two different spectra for energetic protons

    NASA Astrophysics Data System (ADS)

    Webber, W. R.; Intriligator, D. S.; Decker, R. B.

    2012-11-01

    Motivated by the recent observation that two separate periods of enhanced intensities of solar wind ions at ˜2 times the normal solar wind energy were observed at times of the shock arrival and at the magnetic field maximum at Voyager 2 at 73 AU, arising from the 2003 Halloween event at the Earth, we have re-examined the higher energy proton data from 0.06 to 20 MeV from the LECP and CRS instruments on V2 for this event. We find that there are two separate regions of particle acceleration in this outward propagating merged interaction region. The one near the shock has a much harder proton spectrum extending up to ˜20 MeV, but with a relative paucity of particles below ˜1.0 MeV. The other, near the time of maximum magnetic field fluctuations, is dominated by protons at energies ˜1 MeV or less with a sharp cutoff above 2 MeV. The two regions are separated spatially and the half width of the respective radial intensity distributions at each energy can be used to estimate a local diffusion coefficient. The composite spectrum from these two regions is a power law with a spectral index ˜-1.4 below 1 MeV steepening to -3.2 above ˜2 MeV. This observation has important implications astrophysically, beyond what is seen locally, because most astrophysical observations of accelerated spectra cannot resolve the two components and therefore miss the clues that help identify the particle acceleration mechanisms.

  9. Transverse Anisotropies of 40-90 MeV Solar Energetic Protons: A Re-interpretation

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.; Lario, D.

    2004-05-01

    Zhang et al., [Astrophys. J., 595, 493-499, 2003; J. Geophys. Res., 108, A4, 1154, SSH 4-1, 4-13, 2003] report strong anisotropies of 40-90 MeV protons transverse to the local magnetic field in two solar energetic particle events (2000:196 and 2000:256) observed by Ulysses/COSPIN/HET. They interpret their results in the context of diffusive transport and consequently conclude these events constitute strong evidence for the existence of transverse diffusion in the helisosphere. We see three difficulties with this interpretation. 1) The magnetic field was unusually well ordered during the periods of transverse anisotropies. Theories of transverse diffusion require the presence of irregularities in the magnetic field. 2) Fourier analysis of the angular distribution reveals a second harmonic whose amplitude is comparable to that of the first harmonic. This is inconsistent with diffusive transport (Fick's law) that predicts a dominant first harmonic. 3) Only two such intervals have been identified in a search of the mission-long Ulysses COSPIN data set. The paucity of such intervals is inconsistent with this being a pervasive mode of transport. We have independently analyzed the COSPIN/HET channel H45 data and we confirm the data analysis of Zhang et al. for both events. However, we find that the data are much more consistent with a quantitative interpretation in terms of weak scattering with an evolving field-aligned streaming and a bi-directional anisotropy component in the presence of a gradient anisotropy. The scale of the gradient extracted from the pitch-angle distributions is comparable to that of the flux-rope-like magnetic structures in which it occurs. The above-mentioned three points are thus explained as follows. 1) Weak-scattering is expected in regions of quiet fields. 2) The pitch-angle distribution in both events eventually becomes predominantly bi-directional, indicating a mirroring within the structure. Consequently the significant second harmonic is

  10. Transverse Anisotropies of 40-90 MeV Solar Energetic Protons: A Re-interpretation

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.; Lario, D.

    Zhang et al. [Astrophys. J., 595, 493-499, 2003; J. Geophys. Res., 108, A4, 1154, SSH 4-1, 4-13, 2003] report strong anisotropies of 40-90 MeV protons transverse to the local magnetic field in two solar energetic particle events (2000:196 and 2000:256) observed by Ulysses/COSPIN/HET. They interpret their results in the context of diffusive transport and consequently conclude these events constitute strong evidence for the existence of transverse diffusion in the helisosphere. We see three difficulties with this interpretation. 1) The magnetic field was unusually well ordered during the periods of transverse anisotropies. Theories of transverse diffusion require the presence of irregularities in the magnetic field. 2) Fourier analysis of the angular distribution reveals a second harmonic whose amplitude is comparable to that of the first harmonic. This is inconsistent with diffusive transport (Fick{'}s law) that predicts a dominant first harmonic. 3) Only two such intervals have been identified in a search of the mission-long Ulysses COSPIN data set. The paucity of such intervals is inconsistent with this being a pervasive mode of transport. We have independently analyzed the COSPIN/HET channel H45 data and we confirm the data analysis of Zhang et al. for both events. However, we find that the data are much more consistent with a quantitative interpretation in terms of weak scattering with field-aligned streaming and the presence of a gradient anisotropy. The scale of the gradient extracted from the pitch-angle distributions is comparable to that of the flux-rope-like magnetic structures in which it occurs. The above-mentioned three points are thus explained as follows. 1) Weak-scattering is expected in regions of quiet fields. 2) The pitch-angle distribution in both events eventually becomes predominantly bi-directional. Consequently the significant second harmonic is immediately explained. 3) The conditions for observing a strong gradient anisotropy at these

  11. Prospects of target nanostructuring for laser proton acceleration

    PubMed Central

    Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias

    2017-01-01

    In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser–plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck. PMID:28290479

  12. Prospects of target nanostructuring for laser proton acceleration

    NASA Astrophysics Data System (ADS)

    Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias

    2017-03-01

    In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser–plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.

  13. Residual Nuclide Production by Proton-Induced Reactions on Uranium for Energies between 20 and 70 MeV

    SciTech Connect

    Uosif, M.A.M.; Michel, R.; Herpers, U.; Kubik, P.-W.; Duijvestijn, M.; Koning, A.

    2005-05-24

    Within the HINDAS project, proton-irradiation experiments were performed at the injector cyclotron of the Paul Scherrer Institute at Villigen/Switzerland in order to investigate the production of residual nuclides from natural uranium. The stacked-foil technique was used to cover proton energies between 20 MeV and 70 MeV. Copper targets were used for monitoring the proton beam using the reaction 65Cu (p,n)65Zn. Residual radionuclides were measured by off-line {gamma}-spectrometry. Excitation functions were obtained for the production of 91Y, 95Zr, 95mNb, 99Mo, 103Ru, 112Pd, 115Cd, 124Sb, 126Sb, 127Sb, 132Te, 131I, 134Cs, 136Cs, 137Cs, 140Ba, 141Ce, 144Ce, 147Nd, and 238Np. The experimental data are compared to the sparse results of earlier measurements and with theoretical excitation functions calculated by the newly developed TALYS code. Good agreement between theory and experiment was obtained for product masses up to 115. For higher-mass fission products and for 238Np, there are still systematic deviations between theory and experiment. These deviations are discussed as deficits of the fission model in the heavy part of the fission product distribution.

  14. Residual Nuclide Production by Proton-Induced Reactions on Uranium for Energies between 20 and 70 MeV

    NASA Astrophysics Data System (ADS)

    Uosif, M. A. M.; Michel, R.; Herpers, U.; Kubik, P.-W.; Duijvestijn, M.; Koning, A.

    2005-05-01

    Within the HINDAS project, proton-irradiation experiments were performed at the injector cyclotron of the Paul Scherrer Institute at Villigen/Switzerland in order to investigate the production of residual nuclides from natural uranium. The stacked-foil technique was used to cover proton energies between 20 MeV and 70 MeV. Copper targets were used for monitoring the proton beam using the reaction 65Cu (p,n)65Zn. Residual radionuclides were measured by off-line γ-spectrometry. Excitation functions were obtained for the production of 91Y, 95Zr, 95mNb, 99Mo, 103Ru, 112Pd, 115Cd, 124Sb, 126Sb, 127Sb, 132Te, 131I, 134Cs, 136Cs, 137Cs, 140Ba, 141Ce, 144Ce, 147Nd, and 238Np. The experimental data are compared to the sparse results of earlier measurements and with theoretical excitation functions calculated by the newly developed TALYS code. Good agreement between theory and experiment was obtained for product masses up to 115. For higher-mass fission products and for 238Np, there are still systematic deviations between theory and experiment. These deviations are discussed as deficits of the fission model in the heavy part of the fission product distribution.

  15. Compensations of beamlet deflections for 1 MeV accelerator of ITER NBI

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Mieko; Taniguchi, Masaki; Umeda, Naotaka; Dairaku, Masayuki; Tobari, Hiroyuki; Yamanaka, Haruhiko; Watanabe, Kazuhiro; Inoue, Takashi; de Esch, H. P. L.; Grisham, Larry R.; Boilson, Deirdre; Hemsworth, Ronald S.; Tanaka, Masanobu

    2013-02-01

    Compensation methods of beamlet deflections have been studied in a three dimensional (3D) beam analysis using OPERA-3d code for 1 MeV accelerator of the ITER neutral beam injector (NBI). The beamlet deflection is caused by i) magnetic field generated by permanent magnets embedded in the extraction grid (EXG) for electron suppression and ii) space charge repulsion between the beamlets and beam groups. Moreover, the beamlet deflection is caused due to electric field distortion formed by a grid support structure. In order to compensate the beamlet deflections due to i) and ii), an aperture offset of 0.6 mm was applied in the electron suppression grid (ESG) and a metal bar with 3 mm in thickness, so-called a kerb, was attached around the aperture area at the back side of the ESG, respectively. Detailed configuration of the compensation methods was also considered so as to suppress the beam spread due to the electric field distortion and to lower electric field concentrations at the edge of the kerb. For the beamlets near the grid support structure, the beamlet deflection due to the space charge repulsion could be negated due to the electric field distortion formed by the grid support structure.

  16. Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-01

    An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E < 12.47% for 99% particles). The whole linac comprises mainly E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 1011 n/cm2/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.

  17. RF cavity design and qualification for proton accelerator

    SciTech Connect

    Teotia, Vikas; Malhotra, Sanjay; Ukarde, Priti; Singh, Kumud; Itteera, Janvin; Kumar, Prashant; Sinha, A.K.; Taly, Y.K.; Gupta, S.K.; Singh, P.

    2014-07-01

    Alvarez type Drift Tube Linac (DTL) is used for acceleration of proton beam in low energy section of beta ranging from 0.04 to 0.40. DTL is cylindrical RF cavity resonating in TM010 mode at 352.21 MHz frequency. It consists of array of drift tubes arranged ensuring that DTL centre and Drift Tube centre are concentric. The Drift Tubes also houses Permanent Magnet Quadrupole for transverse focusing of proton beam. A twelve cell prototype of DTL section is designed, developed and fabricated at Bhabha Atomic Research Centre, Trombay. Complete DTL accelerator consists of eight such DTL sections. High frequency microwave simulations are carried out in SOPRANO, vector fields and COMSOL simulation software. This prototype DTL is 1640.56 mm long cavity with 520 mm ID, 600 mm OD and consists of eleven Drift Tubes, two RF end flanges, three slug tuners, six post couplers, three RF field monitors, one RF waveguide coupler, two DN100 vacuum flanges and DTL tank platform with alignment features. Girder based Drift tube mounting arrangement utilizing uncompressing energy of disc springs for optimum combo RF-vacuum seal compression is worked out and implemented. This paper discusses design of this RF vacuum cavity operating at high accelerating field gradient in ultra-high vacuum. Detailed vacuum design and results of RF and vacuum qualifications are discussed. Results on mechanical accuracy achieved on scaled pre-prototype are also presented. Paper summarizes the engineering developments carried out for this RF cavity and brings out the future activities proposed in indigenous development of high gradient RF cavities for ion accelerators. (author)

  18. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    SciTech Connect

    Umeda, N. Kojima, A.; Kashiwagi, M.; Tobari, H.; Hiratsuka, J.; Watanabe, K.; Dairaku, M.; Yamanaka, H.; Hanada, M.

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mm to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.

  19. The microstructure of the 1.4914 MANET martensitic steel before and after irradiation with 590 MeV protons

    NASA Astrophysics Data System (ADS)

    Gavillet, D.; Marmy, P.; Victoria, M.

    1992-09-01

    Optical and transmission electron microscope observations, together with SEM (scanning electron microscope) and ASTEM (analytical scanning transmission electron microscope) microanalysis have been performed in samples of the DIN 1.4914 martensitic steel (MANET cast), both before and after irradiation with 590 MeV protons to doses up to 1 dpa at temperatures between 363 and 703 K. The chemical composition of the different carbide geometries have been obtained. No substantial modification of the carbide and precipitate structure is observed after either deformation under fatigue or after irradiation to 1 dpa at 703 K. No bubbles have been observed in a specimen irradiated to 0.7 dpa, containing 87 appm He.

  20. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    SciTech Connect

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1999-03-01

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by {sup 10}B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase 1/2 clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra, alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark

  1. Measurement of the neutron fields produced by a 62 MeV proton beam on a PMMA phantom using extended range Bonner sphere spectrometers

    NASA Astrophysics Data System (ADS)

    Amgarou, K.; Bedogni, R.; Domingo, C.; Esposito, A.; Gentile, A.; Carinci, G.; Russo, S.

    2011-10-01

    The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments. In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to E<20 MeV if only polyethylene spheres are used, but can be extended to hundreds of MeV by including metal-loaded spheres (extended range BSS, indicated with ERBSS). With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, an ERBSS experiment was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN—LNS (Laboratori Nazionali del Sud), where a proton beam routinely used for ophthalmic cancer treatments is available. The 62 MeV beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. Here the ERBSS of UAB (Universidad Autónoma de Barcelona— Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Frascati) were exposed to characterize the "forward" and "sideward" proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and independently established and

  2. Acceleration of petaelectronvolt protons in the Galactic Centre.

    PubMed

    2016-03-24

    Galactic cosmic rays reach energies of at least a few petaelectronvolts (of the order of 10(15) electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators ('PeVatrons'), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies. Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 10(13) electronvolts) were inferred from recent γ-ray observations. However, none of the currently known accelerators--not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays--has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of γ-rays extending without a cut-off or a spectral break to tens of teraelectronvolts. Here we report deep γ-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outburstsand an outflow from the Galactic Centre. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 10(6)-10(7) years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays.

  3. Production of high-spin isomers in proton induced reactions at 100 500 MeV on 181 Ta

    NASA Astrophysics Data System (ADS)

    Zhuikov, B. L.; Mebel, M. V.; Kokhanyuk, V. M.; Iljinov, A. S.; Zyuzin, A. Yu.; Vincent, J. S.

    2003-11-01

    Cross sections for production of a broad variety of high-spin isomers, i.e., 177 Hfm2 ( 37/ 2- ) , 179 Hfm2 ( 25/ 2- ) , 177 Lum ( 23/ 2- ) , 180 Hfm ( 8- ) , and 178 Tam ( 7- ) from 181 Ta targets irradiated with 100, 145, 200, 350, and 500 MeV protons have been measured by off-line γ -spectroscopy. A radiochemical procedure was used to achieve high sensitivity. Isomer ratios in products ranging down to 10-3 were based on experimentally measured and theoretically calculated cross sections. It was demonstrated that the isomer ratio does not depend essentially on proton energy in the given range. Regularities in formation of isomeric states in different nuclear reactions are discussed.

  4. Nuclear excitation functions of proton-induced reactions (Ep = 35-90 MeV) from Fe, Cu, and Al

    NASA Astrophysics Data System (ADS)

    Graves, Stephen A.; Ellison, Paul A.; Barnhart, Todd E.; Valdovinos, Hector F.; Birnbaum, Eva R.; Nortier, Francois M.; Nickles, Robert J.; Engle, Jonathan W.

    2016-11-01

    Fe, Cu, and Al stacked foils were irradiated by 90 MeV protons at the Los Alamos Neutron Science Center's Isotope Production Facility to measure nuclear cross sections for the production of medically relevant isotopes, such as 52gMn, 54Mn, 48Cr, 55Co, 58mCo and 57Ni. The decay of radioactive isotopes produced during irradiation was monitored using high-purity germanium gamma spectroscopy over the months following irradiation. Proton fluence was determined using the natAl(p,x)22Na, natCu(p,x)62Zn natCu(p,x)65Zn, and natCu(p,x)56Co monitor reactions. Calculated cross sections were compared against literature values and theoretical TALYS predictions. Notably this work includes the first reported independent cross section measurements of natCu(p,x)58mCo and natCu(p,x)58gCo.

  5. Dynamic Strain on Thin Diaphragms of a Mercury Target During 800-MeV Proton Thermal Shock Tests

    SciTech Connect

    Allison, S.W.; Andriulli, J.B.; Cates, M.R.; Earl, D.D.; Haines, J.R.; Morrissey, F.X.; Tsai, C.C.; Wender, S.

    1999-11-13

    Extrinsic Fabry-Perot Interferometric fiber optic sensors were used to measure dynamic strains on thin diaphragms of a liquid mercury target, which was subjected to intense 800-MeV proton thermal shock tests. The mercury target is engineered with very thin end plates or diaphragms (either 0.6 mm or 1.9 mm) for studying large strain effects. During thermal shock tests, the mercury in the target interacted with an intense pulsed beam of 2.4x10{sup 13 protons}. The resulting pressure waves lead to large strains exceeding 250 microstrains on a 0.6-mm diaphragm. Significant factors relative to the accuracy of strain measurements are emphasized, such as the sensor air gap, alignment of sensors, and frequency response of the strain instrument. In this paper, dynamic strains measured on thin diaphragms are described and discussed.

  6. Theoretical study of isotopic production cross-sections in proton-nucleus reactions at 200MeV

    NASA Astrophysics Data System (ADS)

    Sabra, Mohammad S.

    2016-03-01

    As NASA's future plans are likely to include extended human missions in deep space, protections from space radiation take on increased importance. When galactic cosmic rays, mainly protons, interacts with the material of spacecraft, secondary fragments are produced, which contribute substantially to the dose and dose equivalent received by the crew inside. A detailed understanding of the reaction mechanism, as well as a knowledge of cross sections are needed. We analyze energy spectra, angular distributions, and isotopic cross-sections of intermediate-mass fragments (IMFs) from the interaction of 27Al, 59Co, and 197Au with 200 MeV protons. Calculations within the modified statistical model with final state interaction were performed using SAPTON code. General agreement is obtained with the experiment which suggests that most of the IMFs are emitted after equilibrium is reached (i.e. in the evaporation stage).

  7. Radiation parameters of 6 to 20 MeV scanning electron beams from the Saturne linear accelerator.

    PubMed

    Pfalzner, P M; Clarke, H C

    1982-01-01

    Depth doses of the scanning electron beams from the Saturne Therac-20 linear accelerator at nominal energies of 6,9,13,17, and 20 MeV were measured in polystyrene using a thin window parallel plate ionization chamber. Central axis depth dose curves are derived and are analyzed according to the method of Brahme and Svensson. For each of the five electron energies, values are obtained for the most probable energy at the absorber surface Ep,0, the practical range Rp, the 50% range R50, the therapeutic range R85, the electron dose gradients, total collision energy losses, and other radiation parameters, and these are compared to corresponding values for electron beams from a 22 MeV medical microtron and a 20 MeV betatron.

  8. Proton proton total cross-sections at VHE from accelerator data

    NASA Astrophysics Data System (ADS)

    Pérez-Peraza, J.; Sánchez-Hertz, A.; Alvarez-Madrigal, M.; Gallegos-Cruz, A.; Velasco, J.; Faus-Golfe, A.

    2005-06-01

    Up-to-date estimates of proton-proton total cross-sections, σtotpp, at very high energies in the literature were obtained from cosmic rays (>1017 eV) by approximations using the measured proton-air cross-section at these energies. As σtotpp are measured with present day high energy colliders up to nearly 2 TeV in the centre of mass (~1015 eV in the laboratory), several proven theoretical, empirical and semi-empirical parametrizations for interpolation at accelerator energies were used to extrapolate these measured values to get reasonable estimates of cross-sections at higher cosmic ray energies (~1017 eV). The cross-section estimates from these two methods disagree by a discrepancy beyond statistical error. Here we use a phenomenological model based on the 'multiple diffraction' approach to successfully describe data at accelerator energies. Using this model, we then estimate σtotpp at cosmic ray energies. The model free-parameters used in the fit depend on only two physical observables: the differential cross-section and the parameter ρ. The model estimates of σtotpp are then compared with total cross-section data. Using regression analysis, we determine confidence error bands, analysing the sensitivity of our predictions to the data used in the extrapolations. This work reduces the width of the confidence band around 'multiple diffraction' model fits of accelerator data. With the data at 546 GeV and 1.8 TeV, our extrapolations are compatible with only the Akeno cosmic ray data, predicting a slower rise with energy than do other cosmic ray results and other extrapolation methods. We discuss our results within the context of constraints expected from future accelerator and cosmic ray experimental results.

  9. Mitochondrial superoxide anion overproduction in Tet-mev-1 transgenic mice accelerates age-dependent corneal cell dysfunctions.

    PubMed

    Onouchi, Hiromi; Ishii, Takamasa; Miyazawa, Masaki; Uchino, Yuichi; Yasuda, Kayo; Hartman, Phil S; Kawai, Kenji; Tsubota, Kazuo; Ishii, Naoaki

    2012-08-31

    The Tet-mev-1 mouse expressing a mitochondrial complex-II mutated SDHC(V69E) gene controlled by a tetracycline (Tet)-On/Off system can overproduce O(2)(·-) and is a versatile whole-animal model for studying mitochondrial oxidative stress. Here we report a series of age-dependent variations in corneal epithelium, endothelium, and parenchymal cells of the Tet-mev-1 mice relative to wild-type C57BL/6j mice. Measurements of (1) mitochondrial electron transport enzyme activities; (2) O(2)(·-) production; (3) carbonylated protein, and 8-hydroxydeoxyguanosine (8-OHdG) levels as markers of oxidative stress; (4) pathologic analyses under optical and electron microscopy; (5) hematoxylin-eosin or toluidine-blue staining; and (6) immunohistochemistry with an anti-β-catenin antibody were performed in the eye, especially the cornea. Complex II-III activity was decreased by electron leakage between complex II and CoQ. This resulted in increased age-dependent intracellular oxidative stress in the eye of Tet-mev-1 mice. Corneal epithelialization was delayed in Tet-mev-1 mice after 20% ethanol treatment, as the number of cells and mitotic cells decreased in the corneal epithelium of Tet-mev-1 mice compared with that of wild type. The age-dependent decrease in cell number accelerated in the corneal endothelium cells. Moreover, it was suggested that the corneal thickness was decreased by thinning of parenchymal cells with age in Tet-mev-1 mice. These results suggest that mitochondrial oxidative stress with electron transport chain dysfunction can influence pathogenesis and progression of age-related corneal diseases, as well as generalized corneal aging acceleration.

  10. Pionic charge exchange on the proton from 40 to 250 MeV

    NASA Astrophysics Data System (ADS)

    Breitschopf, J.; Bauer, M.; Clement, H.; Cröni, M.; Denz, H.; Friedman, E.; Gibson, E. F.; Meier, R.; Wagner, G. J.

    2006-08-01

    The total cross sections for pionic charge exchange on hydrogen were measured using a transmission technique on thin CH2 and C targets. Data were taken for π- lab energies from 39 to 247 MeV with total errors of typically 2% over the Δ-resonance and up to 10% at the lowest energies. Deviations from the predictions of the SAID phase shift analysis in the 60-80 MeV region are interpreted as evidence for isospin-symmetry breaking in the s-wave amplitudes. The charge dependence of the Δ-resonance properties appears to be smaller than previously reported.

  11. Modifying proton fluence spectra to generate spread-out Bragg peaks with laser accelerated proton beams.

    PubMed

    Schell, S; Wilkens, J J

    2009-10-07

    Currently, energy spectra of laser accelerated proton beams are far from being monoenergetic. For their application in radiation therapy, energy selection systems using magnetic fields have been proposed to single out particles with the desired energy. These systems allow the choice of protons between a lowest and a highest energy. In this work, we present a slight modification that allows us to influence the relative number of particles per energy bin. In fact, the transmitted spectrum can be shaped in such a way that it corresponds to a full spread out Bragg peak delivered simultaneously. This change of the spectrum can be achieved by inserting suitably formed scattering material at the central plane of the energy selection system where the particles are separated in space depending on their energy. With the help of Monte Carlo simulations we analysed both simple wedge geometries and various stacks of lead slices. We found that these configurations can provide energy spectra that naturally produce spread out Bragg peaks within one laser shot. This increases the particle efficiency of the whole system and makes laser accelerated protons more suitable for radiation therapy.

  12. An integral test of FLUKA nuclear models with 160 MeV proton beams in multi-layer Faraday cups

    NASA Astrophysics Data System (ADS)

    Rinaldi, I.; Ferrari, A.; Mairani, A.; Paganetti, H.; Parodi, K.; Sala, P.

    2011-07-01

    Monte Carlo (MC) codes are useful tools to simulate the complex processes of proton beam interactions with matter. In proton therapy, nuclear reactions influence the dose distribution. Therefore, the validation of nuclear models adopted in MC codes is a critical requisite for their use in this field. A simple integral test can be performed using a multi-layer Faraday cup (MLFC). This method allows separation of the nuclear and atomic interaction processes, which are responsible for secondary particle emission and the finite primary proton range, respectively. In this work, the propagation of 160 MeV protons stopping in two MLFCs made of polyethylene and copper has been simulated by the FLUKA MC code. The calculations have been performed with and without secondary electron emission and transport, as well as charge sharing in the dielectric layers. Previous results with other codes neglected those two effects. The impact of this approximation has been investigated and found to be relevant only in the proximity of the Bragg peak. Longitudinal charge distributions computed with FLUKA with both approaches have been compared with experimental data from the literature. Moreover, the contribution of different processes to the measurable signal has been addressed. A thorough analysis of the results has demonstrated that the nuclear and electromagnetic models of FLUKA reproduce the two sets of experimental data reasonably well.

  13. Spin-rotation parameter Q for elastic scattering of 800 MeV polarized protons from WO, UCa, and SYPb

    SciTech Connect

    Fergerson, R.W.

    1985-10-01

    The spin-rotation parameter Q was measured for WO, UCa, and SYPb using the 800 MeV proton beam produced at the Clinton P. Anderson Meson Physics Facility. The experiment was carried out using the High Resolution Spectrometer equipped with a focal-plane polarimeter to determine the scattered polarization components in all three directions. These data (when combined with previous cross section and analyzing power data) determine the amplitude describing the elastic scattering of protons from these spin-zero nuclei to within an overall phase. Q is shown to be more sensitive than either the cross section or analyzing power to differences between the nonrelativistic and relativistic scattering theories that describe the proton-nucleus reaction in terms of fundamental proton-nucleon input. The nonrelativistic predictions for Q generally lie below the data but consistently have the correct structure. The relativistic predictions for the UCa and SYPb Q data are quite good (better than the nonrelativistic predictions). The relativistic predictions for the WO Q data show much more structure than is evident in the data. 51 refs., 39 figs., 4 tabs.

  14. Variations in the Processing of DNA Double-Strand Breaks Along 60-MeV Therapeutic Proton Beams

    PubMed Central

    Chaudhary, Pankaj; Marshall, Thomas I.; Currell, Frederick J.; Kacperek, Andrzej; Schettino, Giuseppe; Prise, Kevin M.

    2016-01-01

    Purpose To investigate the variations in induction and repair of DNA damage along the proton path, after a previous report on the increasing biological effectiveness along clinically modulated 60-MeV proton beams. Methods and Materials Human skin fibroblast (AG01522) cells were irradiated along a monoenergetic and a modulated spread-out Bragg peak (SOBP) proton beam used for treating ocular melanoma at the Douglas Cyclotron, Clatterbridge Centre for Oncology, Wirral, Liverpool, United Kingdom. The DNA damage response was studied using the 53BP1 foci formation assay. The linear energy transfer (LET) dependence was studied by irradiating the cells at depths corresponding to entrance, proximal, middle, and distal positions of SOBP and the entrance and peak position for the pristine beam. Results A significant amount of persistent foci was observed at the distal end of the SOBP, suggesting complex residual DNA double-strand break damage induction corresponding to the highest LET values achievable by modulated proton beams. Unlike the directly irradiated, medium-sharing bystander cells did not show any significant increase in residual foci. Conclusions The DNA damage response along the proton beam path was similar to the response of X rays, confirming the low-LET quality of the proton exposure. However, at the distal end of SOBP our data indicate an increased complexity of DNA lesions and slower repair kinetics. A lack of significant induction of 53BP1 foci in the bystander cells suggests a minor role of cell signaling for DNA damage under these conditions. PMID:26452569

  15. Acceleration of petaelectronvolt protons in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    HESS Collaboration; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balzer, A.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Dewilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lefranc, V.; Lemiére, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Lui, R.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Valerius, K.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Żywucka, N.

    2016-03-01

    Galactic cosmic rays reach energies of at least a few petaelectronvolts (of the order of 1015 electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators (‘PeVatrons’), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies. Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 1013 electronvolts) were inferred from recent γ-ray observations. However, none of the currently known accelerators—not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays—has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of γ-rays extending without a cut-off or a spectral break to tens of teraelectronvolts. Here we report deep γ-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outburstsand an outflow from the Galactic Centre. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 106-107 years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays.

  16. Validity of the relativistic impulse approximation for elastic proton-nucleus scattering at energies lower than 200 MeV

    SciTech Connect

    Li, Z. P.; Hillhouse, G. C.; Meng, J.

    2008-07-15

    We present the first study to examine the validity of the relativistic impulse approximation (RIA) for describing elastic proton-nucleus scattering at incident laboratory kinetic energies lower than 200 MeV. For simplicity we choose a {sup 208}Pb target, which is a spin-saturated spherical nucleus for which reliable nuclear structure models exist. Microscopic scalar and vector optical potentials are generated by folding invariant scalar and vector scattering nucleon-nucleon (NN) amplitudes, based on our recently developed relativistic meson-exchange model, with Lorentz scalar and vector densities resulting from the accurately calibrated PK1 relativistic mean field model of nuclear structure. It is seen that phenomenological Pauli blocking (PB) effects and density-dependent corrections to {sigma}N and {omega}N meson-nucleon coupling constants modify the RIA microscopic scalar and vector optical potentials so as to provide a consistent and quantitative description of all elastic scattering observables, namely, total reaction cross sections, differential cross sections, analyzing powers and spin rotation functions. In particular, the effect of PB becomes more significant at energies lower than 200 MeV, whereas phenomenological density-dependent corrections to the NN interaction also play an increasingly important role at energies lower than 100 MeV.

  17. Design, performance, and calculated error of a Faraday cup for absolute beam current measurements of 600-MeV protons

    NASA Technical Reports Server (NTRS)

    Beck, S. M.

    1975-01-01

    A mobile self-contained Faraday cup system for beam current measurments of nominal 600 MeV protons was designed, constructed, and used at the NASA Space Radiation Effects Laboratory. The cup is of reentrant design with a length of 106.7 cm and an outside diameter of 20.32 cm. The inner diameter is 15.24 cm and the base thickness is 30.48 cm. The primary absorber is commercially available lead hermetically sealed in a 0.32-cm-thick copper jacket. Several possible systematic errors in using the cup are evaluated. The largest source of error arises from high-energy electrons which are ejected from the entrance window and enter the cup. A total systematic error of -0.83 percent is calculated to be the decrease from the true current value. From data obtained in calibrating helium-filled ion chambers with the Faraday cup, the mean energy required to produce one ion pair in helium is found to be 30.76 + or - 0.95 eV for nominal 600 MeV protons. This value agrees well, within experimental error, with reported values of 29.9 eV and 30.2 eV.

  18. A Faraday Cup with high frequency response for a 200 MeV LINAC proton beam

    SciTech Connect

    Zucker, M.S.; Bittner, J.W.

    1991-01-01

    The purpose of this device, composed essentially of coaxial line elements, is monitoring, on a per micropulse basis, the beam intensity of a 200 MeV LINAC at the BNL Radiation Effects Facility. The center conductor of the coaxial line acts as a beam stop. The output pulses are suitable for fast timing. 2 refs., 5 figs.

  19. Deuteron-proton breakup reaction at Ed=7.4 MeV

    NASA Astrophysics Data System (ADS)

    Kröger, H.; Nachabe, A. M.; Slobodrian, R. J.

    1986-04-01

    The reaction d+p-->p+p+n is investigated at Elabd=7.4 MeV. Calculations of the cross section are compared with recent kinematically complete measurements. The Coulomb potential is taken fully into account in the calculations based on the strong approximation of Mo/ller wave operator approach.

  20. Further results in the search for the direct two-proton decay of ^94Ag^m (J^π= 21^+, 6.7 MeV)

    NASA Astrophysics Data System (ADS)

    Cerny, J.; Lee, D. W.; Perajarvi, K.; Moltz, D. M.; Barquest, B. R.; Grossman, L. E.; Jeong, W.; Jewett, C. C.

    2008-10-01

    Both direct one-proton decay and direct two-proton decay of ^94Ag^m from this 0.4 s isomeric state have been reported in experiments utilizing the GSI on-line mass separator [1]. In the latter decay, coincident events between silicon E detectors with a threshold energy of 0.4 MeV and a summed decay energy of 1.9±0.1 MeV were observed with a yield of 350±210 pb in coincidence with γ-decays in the ^92Rh daughter. We utilized our helium-jet system at the LBNL 88-inch cyclotron to repeat this experiment, again employing the ^58Ni(^40Ca,p3n) reaction at 197 MeV. Reaction products were transported via a capillary to a detection area and collected on a slowly rotating wheel in front of an assembly of 24 δEgas-δEgas-ESi detector telescopes with a threshold of 0.4 MeV for identifying protons. Five of these telescopes observe the 0.79 MeV single proton decay from ^94Ag^m at the reported yield of 1.3 nb. In the 240/276 identified proton detector combinations with low background, no proton-proton coincidences have been observed. Data from the remaining 36 detector combinations require a separate analysis, which is in progress. Monte Carlo analyses of our anticipated proton-proton coincidences for both sets of detector combinations will be presented. ^ 1Mukha et al., Nature 439, 298 (2006).

  1. Preliminary consideration of a double, 480 GeV, fast cycling proton accelerator for production of neutrino beams at Fermilab

    SciTech Connect

    Piekarz, Henryk; Hays, Steven; /Fermilab

    2007-03-01

    We propose to build the DSF-MR (Double Super-Ferric Main Ring), 480 GeV, fast-cycling (2 second repetition rate) two-beam proton accelerator in the Main Ring tunnel of Fermilab. This accelerator design is based on the super-ferric magnet technology developed for the VLHC, and extended recently to the proposed LER injector for the LHC and fast cycling SF-SPS at CERN. The DSF-MR accelerator system will constitute the final stage of the proton source enabling production of two neutrino beams separated by 2 second time period. These beams will be sent alternately to two detectors located at {approx} 3000 km and {approx} 7500 km away from Fermilab. It is expected that combination of the results from these experiments will offer more than 3 order of magnitudes increased sensitivity for detection and measurement of neutrino oscillations with respect to expectations in any current experiment, and thus may truly enable opening the window into the physics beyond the Standard Model. We examine potential sites for the long baseline neutrino detectors accepting beams from Fermilab. The current injection system consisting of 400 MeV Linac, 8 GeV Booster and the Main Injector can be used to accelerate protons to 45 GeV before transferring them to the DSF-MR. The implementation of the DSF-MR will allow for an 8-fold increase in beam power on the neutrino production target. In this note we outline the proposed new arrangement of the Fermilab accelerator complex. We also briefly describe the DSF-MR magnet design and its power supply, and discuss necessary upgrade of the Tevatron RF system for the use with the DSF-MR accelerator. Finally, we outline the required R&D, cost estimate and possible timeline for the implementation of the DSF-MR accelerator.

  2. Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven ⁹Be(p, n) boron neutron capture therapy neutron source.

    PubMed

    Hashimoto, Y; Hiraga, F; Kiyanagi, Y

    2015-12-01

    We evaluated the accelerator beam power and the neutron-induced radioactivity of (9)Be(p, n) boron neutron capture therapy (BNCT) neutron sources having a MgF2, CaF2, or AlF3 moderator and driven by protons with energy from 8 MeV to 30 MeV. The optimal moderator materials were found to be MgF2 for proton energies less than 10 MeV because of lower required accelerator beam power and CaF2 for higher proton energies because of lower photon dose rate at the treatment position after neutron irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Experimental studies with two novel silicon detectors for the development of time-of-flight spectrometry of laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Würl, M.; Reinhardt, S.; Rosenfeld, A.; Petasecca, M.; Lerch, M.; Tran, L.; Karsch, S.; Assmann, W.; Schreiber, J.; Parodi, K.

    2017-01-01

    Laser-accelerated proton beams exhibit remarkably different beam characteristics as compared to conventionally accelerated ion beams. About 105 to 107 particles per MeV and msr are accelerated quasi-instantaneously within about 1 ps. The resulting energy spectrum typically shows an exponentially decaying distribution. Our planned approach to determine the energy spectrum of the particles generated in each pulse is to exploit the time-of-flight (TOF) difference of protons with different kinetic energies at 1 m distance from the laser-target interaction. This requires fast and sensitive detectors. We therefore tested two prototype silicon detectors, developed at the Centre for Medical Radiation Physics at the University of Wollongong with a current amplifier, regarding their suitability for TOF-spectrometry in terms of sensitivity and timing properties. For the latter, we illuminated the detectors with short laser pulses, measured the signal current and compared it to the signal of a fast photodiode. The comparison revealed that the timing properties of both prototypes are not yet sufficient for our purpose. In contrast, our results regarding the detectors’ sensitivity are promising. The lowest detectable proton flux at 10 MeV was found to be 25 protons per ns on the detector. With this sensitivity and with a smaller pixelation of the detectors, the timing properties can be improved for new prototypes, making them potential candidates for TOF-spectrometry of laser-accelerated particle beams.

  4. Accelerator measurement of the energy spectra of neutrons emitted in the interaction of 3-GeV protons with several elements

    NASA Technical Reports Server (NTRS)

    Nalesnik, W. J.; Devlin, T. J.; Merker, M.; Shen, B. S. P.

    1972-01-01

    The application of time of flight techniques for determining the shapes of the energy spectra of neutrons between 20 and 400 MeV is discussed. The neutrons are emitted at 20, 34, and 90 degrees in the bombardment of targets by 3 GeV protons. The targets used are carbon, aluminum, cobalt, and platinum with cylindrical cross section. Targets being bombarded are located in the internal circulating beam of a particle accelerator.

  5. Activation calculations for trapped protons below 200 MeV: Appendix

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1991-01-01

    Tables are given displaying of the results of the activation calculations of metal samples and other material aboard the Long Duration Exposure Facility-1 (LDEF-1) and Spacelab-2 with the computer program, PTRAP4. The computer printouts give the reaction, the reactant product, the proton reaction cross sections as a function of the energy of the incident protons, and the activation as a function of distance into the sample from the exposed surface.

  6. Acceleration of solar wind ions to 1 MeV by electromagnetic structures upstream of the Earth's bow shock

    NASA Astrophysics Data System (ADS)

    Stasiewicz, K.; Markidis, S.; Eliasson, B.; Strumik, M.; Yamauchi, M.

    2013-05-01

    We present measurements from the ESA/NASA Cluster mission that show in situ acceleration of ions to energies of 1 MeV outside the bow shock. The observed heating can be associated with the presence of electromagnetic structures with strong spatial gradients of the electric field that lead to ion gyro-phase breaking and to the onset of chaos in ion trajectories. It results in rapid, stochastic acceleration of ions in the direction perpendicular to the ambient magnetic field. The electric potential of the structures can be compared to a field of moguls on a ski slope, capable of accelerating and ejecting the fast running skiers out of piste. This mechanism may represent the universal mechanism for perpendicular acceleration and heating of ions in the magnetosphere, the solar corona and in astrophysical plasmas. This is also a basic mechanism that can limit steepening of nonlinear electromagnetic structures at shocks and foreshocks in collisionless plasmas.

  7. Measurement and modelling of radionuclide production in thick spherical targets irradiated isotropically with 1600 MeV protons

    SciTech Connect

    Michel, R.; Lange, H.J.; Leya, I.; Luepke, M.; Herpers, U.; Meltzow, B.; Roesel, R.; Filges, D.; Cloth, P.; Dragovitsch, P.

    1994-12-31

    Two thick spherical targets made of gabbro and of steel with radii of 25 and 10 cm, respectively, were isotropically irradiated with 1.6 GeV protons at the Saturne accelerator at Laboratoire National Saturne/Saclay in order to simulate the interactions of galactic cosmic ray (GCR) protons with stony and iron meteoroids. The artificial meteoroids contained large numbers of individual small targets of up to 27 elements, in which the depth-dependent production of residual nuclides was measured by {gamma}-, accelerator and conventional mass spectrometry. Theoretical production depth profiles were derived by folding depth-dependent spectra of primary and secondary particles calculated by the HERMES code system with experimental and theoretical production rates shortcomings of the cross section data base can be distinguished and medium-energy neutron cross sections can be improved.

  8. Latest Diagnostic Electronics Development for the PROSCAN Proton Accelerator

    SciTech Connect

    Duperrex, P.A.; Frei, U.; Gamma, G.; Mueller, U.; Rezzonico, L.

    2004-11-10

    New VME-based diagnostic electronics are being developed for PROSCAN, a proton accelerator for medical application presently under construction at PSI. One new development is a VME-based multi-channel logarithmic amplifier for converting current to voltage (LogIV). The LogIV boards are used for measuring current from the multiple wire (harp) profile monitors. The LogIV calibration method, current dependant bandwidth and temperature stability are presented. Another development is a BPM front end, based on the newest digital receiver techniques. Features of this new system are the remote control of the preamplifier stage and the continuous monitoring of each individual signal overall gain. Characteristics of the developed prototype are given.

  9. Catalogue of 55-80 MeV solar proton events extending through solar cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Paassilta, Miikka; Raukunen, Osku; Vainio, Rami; Valtonen, Eino; Papaioannou, Athanasios; Siipola, Robert; Riihonen, Esa; Dierckxsens, Mark; Crosby, Norma; Malandraki, Olga; Heber, Bernd; Klein, Karl-Ludwig

    2017-06-01

    We present a new catalogue of solar energetic particle events near the Earth, covering solar cycle 23 and the majority of solar cycle 24 (1996-2016), based on the 55-80 MeV proton intensity data gathered by the Solar and Heliospheric Observatory/the Energetic and Relativistic Nuclei and Electron experiment (SOHO/ERNE). In addition to ERNE proton and heavy ion observations, data from the Advanced Composition Explorer/Electron, Proton and Alpha Monitor (ACE/EPAM) (near-relativistic electrons), SOHO/EPHIN (Electron Proton Helium Instrument) (relativistic electrons), SOHO/LASCO (Large Angle and Spectrometric Coronagraph) (coronal mass ejections, CMEs) and Geostationary Operational Environmental Satellite (GOES) soft X-ray experiments are also considered and the associations between the particle and CME/X-ray events deduced to obtain a better understanding of each event. A total of 176 solar energetic particle (SEP) events have been identified as having occurred during the time period of interest; their onset and solar release times have been estimated using both velocity dispersion analysis (VDA) and time-shifting analysis (TSA) for protons, as well as TSA for near-relativistic electrons. Additionally, a brief statistical analysis was performed on the VDA and TSA results, as well as the X-rays and CMEs associated with the proton/electron events, both to test the viability of the VDA and to investigate possible differences between the two solar cycles. We find, in confirmation of a number of previous studies, that VDA results for protons that yield an apparent path length of 1 AU < s ≾ 3 AU seem to be useful, but those outside this range are probably unreliable, as evidenced by the anticorrelation between apparent path length and release time estimated from the X-ray activity. It also appears that even the first-arriving energetic protons apparently undergo significant pitch angle scattering in the interplanetary medium, with the resulting apparent path length being

  10. The AWAKE Proton-driven Plasma Wakefield Acceleration Experiment at CERN

    NASA Astrophysics Data System (ADS)

    Muggli, Patric

    2012-10-01

    We are planning an experiment at CERN to accelerate externally injected electrons e^- on the wake driven by a long, self-modulated proton p^+ bunch. In the plan the 12cm-long bunch from the SPS with 10^11 p^+ experiences a two-stream transverse instability that modulates the bunch radius at the plasma wake period. The bunch is focused to 200μm into a plasma with density in the 10^14-10^15cm-3 range. The modulation instability is seeded by co-propagating with the p^+ bunch a short laser pulse that ionizes a gas or vapor. The modulation resonantly drives wakefields to large amplitude. The low energy e^- ( 5-20MeV) produced by a rf-photoinjector gun are injected after the instability has saturated, 3-5m into the plasma and is accelerated to the GeV energy range. The e^- energy spectrum is measured by a large energy acceptance magnetic spectrometer. Bunch modulation diagnostics such as time resolved OTR and electro-optic measurements are also included. The general plans for the experiment as well as the latest developments will be presented.

  11. Efficient production of a collimated MeV proton beam from a polyimide target driven by an intense femtosecond laser pulse

    SciTech Connect

    Nishiuchi, M.; Daido, H.; Yogo, A.; Orimo, S.; Ogura, K.; Ma, J.; Sagisaka, A.; Mori, M.; Pirozhkov, A. S.; Kiriyama, H.; Bulanov, S. V.; Esirkepov, T. Zh.; Choi, I. W.; Kim, C. M.; Jeong, T. M.; Yu, T. J.; Sung, J. H.; Lee, S. K.; Hafz, N.; Pae, K. H.

    2008-05-15

    High-flux energetic protons whose maximum energies are up to 4 MeV are generated by an intense femtosecond titanium:sapphire laser pulse interacting with 7.5, 12.5, and 25 {mu}m thick polyimide tape targets. Laser pulse with an energy of 1.7 J and with a duration of 34 fs is focused with an f/3.4 parabolic mirror giving an intensity of 3x10{sup 19} W cm{sup -2}. The main pulse to amplified spontaneous emission (ASE) intensity contrast ratio is 2.5x10{sup 7}. The conversion efficiency from the laser energy into the proton kinetic energies is achieved to be {approx}3%, which is comparable to or even higher than those achieved in the previous works; using nanometer-thick targets, in combination with the short-pulse lasers that have almost the same pulse width and the intensity but different main pulse to ASE intensity contrast of {approx}10{sup 10} [Neely et al., Appl. Phys. Lett. 89, 021502 (2006)], in which the authors claim that the main mechanism is target normal sheath acceleration; or using the 7.5 {mu}m thick polyimide target, in combination with the short-pulse laser, which has almost the same pulse width and the intensity, but the main pulse to ASE intensity contrast ratio was controlled to be 2.5x10{sup 5} [Yogo et al., Phys. Rev. E 77, 016401 (2008)], in which the authors claim the efficient acceleration by the mechanism of the underdense plasma model. The contrast ratio of the present experiment is in between these two experiments. The possible mechanism of this regime is discussed.

  12. Near-real time forecasts of MeV protons based on sub-relativistic electrons: communicating the outputs to the end users

    NASA Astrophysics Data System (ADS)

    Sarlanis, Christos; Heber, Bernd; Labrenz, Johannes; Kühl, Patrick; Marquardt, Johannes; Dimitroulakos, John; Papaioannou, Athanasios; Posner, Arik

    2017-04-01

    Solar Energetic Particle (SEP) events are one of the most important elements of space weather. Given that the complexity of the underlying physical processes of the acceleration and propagation of SEP events is still a very active research area, the prognosis of SEP event occurrence and their corresponding characteristics remains challenging. In order to provide up to an hour warning time before these particles arrive at Earth, relativistic electron and below 50 MeV proton data from the Electron Proton Helium Instrument (EPHIN) on SOHO were used to implement the 'Relativistic Electron Alert System for Exploration (REleASE)'. The REleASE forecasting scheme was recently rewritten in the open access programming language PYTHON and will be made publicly available. As a next step, along with relativistic electrons (v > 0.9 c) provided by SOHO, near-relativistic (v <0.8 c) electron measurements from other instruments like the Electron Proton Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE) have been utilized. In this work, we demonstrate the real-time outputs derived by the end user from the REleASE using both SOHO/EPHIN and ACE/EPAM. We further, show a user friendly illustration of the outputs that make use of a "traffic light" to monitor the different warning stages: quiet, warning, alert offering a simple guidance to the end users. Finally, the capabilities offered by this new system, accessing both the pictorial and textural outputs REleASE are being presented. This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.

  13. Neutron-proton elastic scattering spin-spin correlation parameter measurements between 500 and 800 MeV. III. Mixtures of CSS, CLS, CLL, and CNN

    NASA Astrophysics Data System (ADS)

    Carlson, V.; Garnett, R.; Hill, D.; Johnson, K. F.; Lopiano, D.; Ohashi, Y.; Shima, T.; Spinka, H.; Stanek, R.; Underwood, D.; Yokosawa, A.; Beddo, M.; Burleson, G.; Faucett, J. A.; Kyle, G.; Rawool-Sullivan, M.; Shimizu, H.; Glass, G.; Nath, S.; Northcliffe, L. C.; Jarmer, J. J.; Jeppesen, R. H.; Tripard, G. E.

    1996-04-01

    Measurements are presented for several mixtures of the spin observables CSS,CSL=CLS, CLL, and CNN for neutron-proton elastic scattering. These data were obtained with a free polarized neutron beam, a polarized proton target, and a large magnetic spectrometer for the outgoing proton. The neutron beam kinetic energies were 484, 567, 634, 720, and 788 MeV. Combining these results with earlier measurements allows the determination of the pure spin observables CSS, CLS, and CLL at 484, 634, and 788 MeV for c.m. angles 25°<=θc.m.<=180° and at 720 MeV for 35°<=θc.m.<=80°. These data make a significant contribution to the knowledge of the isospin-0 nucleon-nucleon scattering amplitudes.

  14. Measurements of production cross sections of 10Be and 26Al by 120 GeV and 392 MeV proton bombardment of 89Y, 159Tb, and natCu targets

    NASA Astrophysics Data System (ADS)

    Sekimoto, S.; Okumura, S.; Yashima, H.; Matsushi, Y.; Matsuzaki, H.; Matsumura, H.; Toyoda, A.; Oishi, K.; Matsuda, N.; Kasugai, Y.; Sakamoto, Y.; Nakashima, H.; Boehnlein, D.; Coleman, R.; Lauten, G.; Leveling, A.; Mokhov, N.; Ramberg, E.; Soha, A.; Vaziri, K.; Ninomiya, K.; Omoto, T.; Shima, T.; Takahashi, N.; Shinohara, A.; Caffee, M. W.; Welten, K. C.; Nishiizumi, K.; Shibata, S.; Ohtsuki, T.

    2015-10-01

    The production cross sections of 10Be and 26Al were measured by accelerator mass spectrometry using 89Y, 159Tb, and natCu targets bombarded by protons with energies Ep of 120 GeV and 392 MeV. The production cross sections obtained for 10Be and 26Al were compared with those previously reported using Ep = 50 MeV-24 GeV and various targets. It was found that the production cross sections of 10Be monotonically increased with increasing target mass number when the proton energy was greater than a few GeV. On the other hand, it was also found that the production cross sections of 10Be decreased as the target mass number increased from that of carbon to those near the mass numbers of nickel and zinc when the proton energy was below approximately 1 GeV. They also increased as the target mass number increased from near those of nickel and zinc to that of bismuth, in the same proton energy range. Similar results were observed in the production cross sections of 26Al, though the absolute values were quite different between 10Be and 26Al. The difference between these production cross sections may depend on the impact parameter (nuclear radius) and/or the target nucleus stiffness.

  15. X-Ray Diffraction Studies of 145 MeV proton-irradiated AlBeMet 162

    SciTech Connect

    Elbakhshwan, Mohamed; McDonald, Kirk T.; Ghose, Sanjit; Zhong, Zhong; Simos, Nikolaos

    2016-08-03

    AlBeMet 162 (Materion Co., formerly Brush Wellman) has been irradiated with 145 MeV protons up to 1.2x1020 cm-2 fluence, with irradiation temperatures in the range of 100-220oC. Macroscopic postirradiation evaluation on the evolution of mechanical and thermal properties was integrated with a comprehensive X-ray- diffraction study using high-energy monochromatic and polychromatic X-ray beams, which offered a microscopic view of the irradiation damage effects on AlBeMet. The study confirmed the stability of the metal-matrix composite, its resistance to proton damage, and the continuing separation of the two distinct phases, fcc aluminum and hcp beryllium, following irradiation. Furthermore, based on the absence of inter-planar distance change during proton irradiation, it was confirmed that the stacking faults and clusters on the Al (111) planes are stable, and thus can migrate from the cascade region and be absorbed at various sinks. XRD analysis of the unirradiated AlBeMet 162 showed clear change in the texture of the fcc phase with orientation especially in the Al (111) reflection which exhibits a “non-perfect” six-fold symmetry, implying lack of isotropy in the composite.

  16. X-Ray Diffraction Studies of 145 MeV proton-irradiated AlBeMet 162

    DOE PAGES

    Elbakhshwan, Mohamed; McDonald, Kirk T.; Ghose, Sanjit; ...

    2016-08-03

    AlBeMet 162 (Materion Co., formerly Brush Wellman) has been irradiated with 145 MeV protons up to 1.2x1020 cm-2 fluence, with irradiation temperatures in the range of 100-220oC. Macroscopic postirradiation evaluation on the evolution of mechanical and thermal properties was integrated with a comprehensive X-ray- diffraction study using high-energy monochromatic and polychromatic X-ray beams, which offered a microscopic view of the irradiation damage effects on AlBeMet. The study confirmed the stability of the metal-matrix composite, its resistance to proton damage, and the continuing separation of the two distinct phases, fcc aluminum and hcp beryllium, following irradiation. Furthermore, based on the absencemore » of inter-planar distance change during proton irradiation, it was confirmed that the stacking faults and clusters on the Al (111) planes are stable, and thus can migrate from the cascade region and be absorbed at various sinks. XRD analysis of the unirradiated AlBeMet 162 showed clear change in the texture of the fcc phase with orientation especially in the Al (111) reflection which exhibits a “non-perfect” six-fold symmetry, implying lack of isotropy in the composite.« less

  17. Simulation of the time evolution of 1 MeV proton microbeam transmission through an insulating macrocapillary

    NASA Astrophysics Data System (ADS)

    Nagy, G. U. L.; Szilasi, S. Z.; Rajta, I.; Tőkési, K.

    2017-09-01

    We present a classical trajectory Monte Carlo simulation of the transmission of 1 MeV H+ microbeam through an insulating macrocapillary. The focused proton beam was launched from the capillary entrance under 1° angle of incidence with respect to the capillary axis. The beam first hit the inner surface of the capillary and the protons were either implanted into the wall of the capillary target or scattered back mostly in forward direction. The formed charge patch on the wall started to deflect the beam due to the Coulomb repulsion. When enough charge accumulated, the deflection angle became large enough to guide the protons through the capillary without close collisions with the surface. During the simulation the charge migration on the capillary surface due to the finite resistivity of the insulator material is taken into account. The time evolution of the transmitted beam was investigated using several incident beam intensities. We found that the efficiency of the guiding depends on the incident beam intensity. In a certain incident intensity range, stable and efficient guiding is observable, which agrees with the experimental observation.

  18. X-Ray Diffraction Studies of 145 MeV proton-irradiated AlBeMet 162

    DOE PAGES

    Elbakhshwan, Mohamed; McDonald, Kirk T.; Ghose, Sanjit; ...

    2016-08-03

    AlBeMet 162 (Materion Co., formerly Brush Wellman) has been irradiated with 145 MeV protons up to 1.2x1020 cm-2 fluence, with irradiation temperatures in the range of 100-220oC. Macroscopic postirradiation evaluation on the evolution of mechanical and thermal properties was integrated with a comprehensive X-ray- diffraction study using high-energy monochromatic and polychromatic X-ray beams, which offered a microscopic view of the irradiation damage effects on AlBeMet. The study confirmed the stability of the metal-matrix composite, its resistance to proton damage, and the continuing separation of the two distinct phases, fcc aluminum and hcp beryllium, following irradiation. Furthermore, based on the absencemore » of inter-planar distance change during proton irradiation, it was confirmed that the stacking faults and clusters on the Al (111) planes are stable, and thus can migrate from the cascade region and be absorbed at various sinks. XRD analysis of the unirradiated AlBeMet 162 showed clear change in the texture of the fcc phase with orientation especially in the Al (111) reflection which exhibits a “non-perfect” six-fold symmetry, implying lack of isotropy in the composite.« less

  19. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    DOE PAGES

    Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; ...

    2013-02-11

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomographymore » on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.« less

  20. Validation of nuclear models in Geant4 using the dose distribution of a 177 MeV proton pencil beam.

    PubMed

    Hall, David C; Makarova, Anastasia; Paganetti, Harald; Gottschalk, Bernard

    2016-01-07

    A proton pencil beam is associated with a surrounding low-dose envelope, originating from nuclear interactions. It is important for treatment planning systems to accurately model this envelope when performing dose calculations for pencil beam scanning treatments, and Monte Carlo (MC) codes are commonly used for this purpose. This work aims to validate the nuclear models employed by the Geant4 MC code, by comparing the simulated absolute dose distribution to a recent experiment of a 177 MeV proton pencil beam stopping in water. Striking agreement is observed over five orders of magnitude, with both the shape and normalisation well modelled. The normalisations of two depth dose curves are lower than experiment, though this could be explained by an experimental positioning error. The Geant4 neutron production model is also verified in the distal region. The entrance dose is poorly modelled, suggesting an unaccounted upstream source of low-energy protons. Recommendations are given for a follow-up experiment which could resolve these issues.

  1. Influence of target properties and laser fluence on energetic protons accelerated by a laser-produced plasma

    SciTech Connect

    Nayuki, Takuya; Oishi, Yuji; Fujii, Takashi; Takano, Kei; Wang, Xiaofang; Andreev, Alexander Alekseevitch; Nemoto, Koshichi; Ueda, Ken-ichi

    2006-08-15

    The dependences of the observed maximum proton energy on laser fluence, and the type and thickness of the target material were studied. The maximum proton energy depended on the laser fluence rather than on the laser intensity for laser pulses with energies between 40 and 430 mJ and pulse durations between 55 and 400 fs. The maximum proton energy increased as the product of target thickness and target mass density decreased. When a polyimide tape target of 7.5 {mu}m thickness was irradiated, the observed maximum proton energy and flux, counted as the number of etched tracks with a solid angle of 0.25 sr, were 3.3{+-}0.1 MeV and 4x10{sup 6}/MeV/shot, respectively. For efficient proton acceleration when a wide ion emission angle is acceptable, polyimide was suitable for the tape target because it contains much hydrogen, and furthermore, it has a low mass density and a high tensile strength.

  2. The heliopause spectrum of galactic electrons below 4 MeV and implications for their re-acceleration.

    NASA Astrophysics Data System (ADS)

    Prinsloo, Phillip; Toit Strauss, Du; Potgieter, Marius

    2016-07-01

    With the availability of observations of electrons at energies exceeding roughly 4 MeV, from e.g. the Voyager and PAMELA missions, their intensity levels and energy distribution are relatively well-known at the heliopause, where input spectra are typically specified in cosmic-ray modulation models. Numerically solving a transport equation that accounts for the re-acceleration of galactic electrons, it becomes essential to specify the heliopause spectrum at very low energies, typically below 4 MeV, because the diffusive shock acceleration process of particles at any given energy is dependent on the spectral shape at lower energies. Informed by the results of both radio data surveys and galactic propagation modelling, a number of scenarios are considered for this very low-energy heliopause spectrum. Assuming rigidity-independent diffusion at the considered energies as an initial assumption, the contribution of re-accelerated electrons to intensity levels is probed for each of the aforementioned scenarios. The magnitudes of the resultant intensity increases are concluded to be highly dependent on the spectral shape specified for the heliopause at these low energies, with the softer distributions predictably yielding greater re-acceleration effects.

  3. Laser-triggered proton acceleration from hydrogenated low-density targets

    NASA Astrophysics Data System (ADS)

    Brantov, A. V.; Obraztsova, E. A.; Chuvilin, A. L.; Obraztsova, E. D.; Bychenkov, V. Yu.

    2017-06-01

    Synchronized proton acceleration by ultraintense slow light (SASL) in low-density targets has been studied in application to fabricated carbon nanotube films. Proton acceleration from low-density plasma films irradiated by a linearly polarized femtosecond laser pulse of ultrarelativistic intensity was considered as result of both target surface natural contamination by hydrocarbons and artificial volumetric doping of low-density carbon nanotube films. The 3D particle-in-cell simulations confirm the SASL concept [A. V. Brantov et al., Synchronized Ion Acceleration by Ultraintense Slow Light, Phys. Rev. Lett. 116, 085004 (2016), 10.1103/PhysRevLett.116.085004] for proton acceleration by a femtosecond petawatt-class laser pulse from realistic low-density targets with a hydrogen impurity, quantify the characteristics of the accelerated protons, and demonstrate a significant increase of their energy compared with the proton energy generated from contaminated ultrathin solid dense foils.

  4. Mechanisms of mutagenesis in human cells exposed to 55 MeV protons

    NASA Technical Reports Server (NTRS)

    Gauny, S.; Wiese, C.; Kronenberg, A.

    2001-01-01

    Protons represent the major type of charged particle radiation in spaceflight environments. The purpose of this study was to assess mutations arising in human lymphoid cells exposed to protons. Mutations were quantitated at the thymidine kinase (TK1) locus in cell lines derived from the same donor: TK6 cells (wt TP53) and WTK1 cells (mutant TP53). WTK1 cells were much more susceptible to mutagenesis following proton exposure than TK6 cells. Intragenic deletions were observed among early-arising TK1 mutants in TK6 cells, but not in WTK1 cells where all of the mutants arose by LOH. Deletion was the predominant mode of LOH in TK6 cells, while allelic recombination was the major mode of LOH in WTK1 cells. Deletions were of variable lengths, from <1 cM to 64 cM, while mutations that arose by allelic recombination often extended to the telomere. In summary, proton exposures elicited many types of mutations at an autosomal locus in human cells. Most involved large scale loss of genetic information, either through deletion or by recombination.

  5. Mechanisms of mutagenesis in human cells exposed to 55 MeV protons

    NASA Technical Reports Server (NTRS)

    Gauny, S.; Wiese, C.; Kronenberg, A.

    2001-01-01

    Protons represent the major type of charged particle radiation in spaceflight environments. The purpose of this study was to assess mutations arising in human lymphoid cells exposed to protons. Mutations were quantitated at the thymidine kinase (TK1) locus in cell lines derived from the same donor: TK6 cells (wt TP53) and WTK1 cells (mutant TP53). WTK1 cells were much more susceptible to mutagenesis following proton exposure than TK6 cells. Intragenic deletions were observed among early-arising TK1 mutants in TK6 cells, but not in WTK1 cells where all of the mutants arose by LOH. Deletion was the predominant mode of LOH in TK6 cells, while allelic recombination was the major mode of LOH in WTK1 cells. Deletions were of variable lengths, from <1 cM to 64 cM, while mutations that arose by allelic recombination often extended to the telomere. In summary, proton exposures elicited many types of mutations at an autosomal locus in human cells. Most involved large scale loss of genetic information, either through deletion or by recombination.

  6. The radiation field measurement and analysis outside the shielding of A 10 MeV electron irradiation accelerator

    NASA Astrophysics Data System (ADS)

    Shang, Jing; Li, Juexin; Xu, Bing; Li, Yuxiong

    2011-10-01

    Electron accelerators are employed widely for diverse purposes in the irradiation-processing industry, from sterilizing medical products to treating gemstones. Because accelerators offer high efficiency, high power, and require little preventative maintenance, they are becoming more and more popular than using the 60Co isotope approach. However, the electron accelerator exposes potential radiation hazards. To protect workers and the public from exposure to radiation, the radiation field around the electronic accelerator must be assessed, especially that outside the shielding. Thus, we measured the radiation dose at different positions outside the shielding of a 10-MeV electron accelerator using a new data-acquisition unit named Mini-DDL (Mini-Digital Data Logging). The measurements accurately reflect the accelerator's radiation status. In this paper, we present our findings, results and compare them with our theoretical calculations. We conclude that the measurements taken outside the irradiation hall are consistent with the findings from our calculations, except in the maze outside the door of the accelerator room. We discuss the reason for this discrepancy.

  7. [Effects of damage and post-radiation reparation of cornea epithelium cells chromosomal apparatus in mice following irradiation by protons with the energy of 25 MeV].

    PubMed

    2012-01-01

    Damage and post-radiation reparation processes were studied in cornea epithelium cells of mice irradiated by protons with the energy of 25 MeV and 60Co gamma-rays singly and in 2 fractions. Protons linear energy transfer (LET) was equal to 2.1 keV/microm, dose rate - 0.5 cGy/s. Animals were irradiated singly by 25 and 750 cGy and doubly (25 + 25; 50 + 50; 125 + 125; 250 + 250 cGy) with a 24-hr interval. Investigations were performed in 24, 72 and 120 hrs. after single and in 24 hrs. after double irradiation. Preparations were analyzed with the anaphase technique. 25 MeV protons were shown to cause more severe damages to the chromosomal apparatus in mammal cells including dramatic suppression of cell division and profuse formation of cells with aberrant mitoses as compared with gamma-induced damages. Exchange-type aberrations were more frequent. There was a reliable decrease of the aberrant mitosis rate in consequence of fractionated irradiation by 25 MeV protons and gamma-rays. On passing 24, 72 and 120 hours, coefficients of relative biological effectiveness (RBE) of 25 MeV protons were equal to 1.4 +/- 0.2; 1.3 +/- 0.1; 1.2 +/- 0.1 for the mitotic index and 1.5 +/- 0.1; 1.3 +/- 0.2; 1.1 +/- 0.1 for aberrant mitosis, respectively.

  8. Some aspects of raceTrack microtron 6.2 MeV accelerator-injector application

    SciTech Connect

    Galaktionov, D.V.; Danilov, A.V.

    1993-12-31

    In the present report the electron continuous wave accelerator-injector is described (energy limit of acceleration is 6.2 MeV, energy homogeneity of beam 0.002, current of beam 150 {mu}kA). We point out the preference of application of continuous beam of charged practicles in some applied tasks in comparison with methods which are existing now. In this report we show the possibility of optimal application of the accelerator in several fields such as: radioisotopic analysis of different substances; investigation of the response of different materials (used in devices which are exposed to radiation) to the impact of electrons and hard photons; and prospect of creation of materials with new properties.

  9. Absolute doubly differential cross sections for ionization of adenine by 1.0-MeV protons

    SciTech Connect

    Iriki, Y.; Kikuchi, Y.; Imai, M.; Itoh, A.

    2011-09-15

    Double-differential ionization cross sections of adenine (C{sub 5}H{sub 5}N{sub 5}) by 1.0-MeV protons have been measured using a vapor-phase adenine target. Ejected electrons were analyzed by a 45 deg. parallel-plate electrostatic spectrometer in an electron energy range from 1 to 1000 eV at electron emission angles from 15 deg. to 165 deg. The effective target thickness of adenine was determined by a Rutherford forward scattering method and a vapor deposition method. Present data are in good agreement with recent calculations. Comparisons were made with other data on various hydrocarbon molecules. It was found that the ionization cross sections of these molecules can be scaled fairly well in terms of the total number of valence electrons.

  10. Activation cross-sections of proton induced reactions on vanadium in the 37-65 MeV energy range

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.

    2016-08-01

    Experimental excitation functions for proton induced reactions on natural vanadium in the 37-65 MeV energy range were measured with the activation method using a stacked foil irradiation technique. By using high resolution gamma spectrometry cross-section data for the production of 51,48Cr, 48V, 48,47,46,44m,44g,43Sc and 43,42K were determined. Comparisons with the earlier published data are presented and results predicted by different theoretical codes (EMPIRE and TALYS) are included. Thick target yields were calculated from a fit to our experimental excitation curves and compared with the earlier experimental yield data. Depth distribution curves to be used for thin layer activation (TLA) are also presented.

  11. Experimental cross-sections for proton induced nuclear reactions on mercury up to 65 MeV

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Tárkányi, F.; Takács, S.; Ditrói, F.; Szücs, Z.; Brezovcsik, K.

    2016-07-01

    Cross-sections for formation of activation products induced by protons on natural mercury targets were measured. Results for 196m,196g,197g(cum), 198m,198g,199g(cum), 200g(cum), 201,202Tl, 194g(cum), 195g(cum), 196g(cum), 198m,199g(cum) Au and 195m,197m,203Hg are presented up to 65 MeV incident particle energy, many of these for the first time. The experimental data are compared with literature values and with the predictions of the TALYS 1.6 code (results taken from TENDL-2015 on-line library), thick target yields were derived and possible applications in biomedical sciences are discussed.

  12. MECHANICAL PROPERTIES AND MICROSTRUCTURE IN LOW ACTIVATION MARTENSITIC STEELS F82H AND OPTIMAX AFTER 800 MEV PROTON IRRADIATION

    SciTech Connect

    Y. DAI; ET AL

    1999-10-01

    Low-activation martensitic steels, F82H (mod.) and Optimax-A, have been irradiated with 800-MeV protons up to 5.9 dpa. The tensile properties and microstructure have been studied. The results show that radiation hardening increases continuously with irradiation dose. F82H has lesser irradiation hardening as compared to Optimax-A in the present work and DIN1.4926 from a previous study. The irradiation embrittlement effects are evident in the materials since the uniform elongation is reduced sharply to less than 2%. However, all the irradiated samples ruptured in a ductile-fracture mode. Defect clusters have been observed. The size and the density of defect clusters increase with the irradiation dose. Precipitates are amorphous after irradiation.

  13. Modified Hecht model qualifying radiation damage in standard and oxygenated silicon detectors from 10 MeV protons

    NASA Astrophysics Data System (ADS)

    Charbonnier, A.; Charron, S.; Houdayer, A.; Lebel, C.; Leroy, C.; Linhart, V.; Pospíšil, S.

    2007-06-01

    The Hecht model describes the charge collection efficiency of semiconductor detectors using the mean free path of the charge carriers. While the fits to data are very good for non-irradiated detectors, modifications to the model are necessary to take into account the structural changes in the detectors induced by their exposure to high particle fluences. A modified model is presented. In this model, the mean free path depends on the shape of the electric field and on the charge carrier lifetimes. The lifetimes were measured experimentally from the front- and back-illuminations of the detectors by 660 nm laser light and by α particles from an 241Am source. This new Hecht model was successfully fitted to alpha and beta charge collection efficiencies of standard and oxygenated silicon detectors after their irradiation by 10 MeV protons with fluences varying from 10 11 to 3×10 14 p/cm 2.

  14. The tensile and fatigue properties of DIN 1.4914 martensitic stainless steel after 590 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Marmy, P.; Victoria, M.

    1992-09-01

    Tensile and low cycle fatigue subsize specimens of DIN 1.4914 martensitic steel (MANET) have been irradiated with 590 MeV protons to doses up to 1 dpa and at temperatures between 363 and 703 K. The helium produced by spallation reactions was measured as 130 appm/dpa. A strong radiation hardening is found, which decreases as the irradiation temperature increases. The tensile elongation is reduced after irradiation, but the fracture mode is always ductile and transgranular. The radition hardening produced at low irradiation temperatures is recovered after annealing at higher temperatures. Continous softening is observed during low cycle fatigue testing. The rate of softening of the irradiated material is stonger than that of the unirradiated material and tends to reach the saturation level of the latter. The irradiation badly affects the fatigue life, particularly in the temperature domain of dynamic strain ageing between 553 and 653 K.

  15. The affect of erbium hydride on the conversion efficience to accelerated protons from ultra-shsort pulse laser irradiated foils

    SciTech Connect

    Offermann, Dustin Theodore

    2008-01-01

    This thesis work explores, experimentally, the potential gains in the conversion efficiency from ultra-intense laser light to proton beams using erbium hydride coatings. For years, it has been known that contaminants at the rear surface of an ultra-intense laser irradiated thin foil will be accelerated to multi-MeV. Inertial Confinement Fusion fast ignition using proton beams as the igniter source requires of about 1016 protons with an average energy of about 3MeV. This is far more than the 1012 protons available in the contaminant layer. Target designs must include some form of a hydrogen rich coating that can be made thick enough to support the beam requirements of fast ignition. Work with computer simulations of thin foils suggest the atomic mass of the non-hydrogen atoms in the surface layer has a strong affect on the conversion efficiency to protons. For example, the 167amu erbium atoms will take less energy away from the proton beam than a coating using carbon with a mass of 12amu. A pure hydrogen coating would be ideal, but technologically is not feasible at this time. In the experiments performed for my thesis, ErH3 coatings on 5 μm gold foils are compared with typical contaminants which are approximately equivalent to CH1.7. It will be shown that there was a factor of 1.25 ± 0.19 improvement in the conversion efficiency for protons above 3MeV using erbium hydride using the Callisto laser. Callisto is a 10J per pulse, 800nm wavelength laser with a pulse duration of 200fs and can be focused to a peak intensity of about 5 x 1019W/cm2. The total number of protons from either target type was on the order of 1010. Furthermore, the same experiment was performed on the Titan laser, which has a 500fs pulse duration, 150J of energy and can be focused to about 3 x 1020 W/cm2. In this experiment 1012 protons were seen from both erbium hydride and

  16. Numerical simulation and optimization of the variable energy 60-1000 MeV proton beams at PNPI synchrocyclotron for testing the radiation resistance of electronics

    NASA Astrophysics Data System (ADS)

    Artamonov, S. A.; Ivanov, E. M.; Ivanov, N. A.; Lebedeva, J. S.; Riabov, G. A.

    2017-01-01

    A universal center for testing electronic components (ECs) for the needs of aviation and space is created in the SC-1000 Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute" (PNPI NRC KI). One of the main instruments of these tests is variable energy protons beams. This paper presents Monte Carlo simulation results for a proton beam with energy of 1000 MeV passing through copper and tungsten degraders, and defines the length of these degraders to obtain energies of 60, 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 MeV. Detailed studies of further transmission of the proton beams along the beam line using the copper degrader are accomplished. Basic theoretical parameters for each proton beam, such as the intensity, the energy heterogeneity, beam size, and uniformity of its spatial distribution are obtained.

  17. Polarized-target asymmetry in pion-proton bremsstrahlung at 298 MeV

    SciTech Connect

    Bosshard, A.; Amsler, C.; Bistirlich, J.A.; van den Brandt, B.; Crowe, K.M.; Doebeli, M.; Doser, M.; Haddock, R.P.; Konter, J.A.; Ljungfelt, S.; Loude, J.F.; Mango, S.; Meyer, C.A.; Perroud, J.P.; Riedlberger, J.; Renker, D.; Schaad, M.; Sober, D.I.; Truoel, P.; Weymuth, P. Lawrence Berkeley Laboratory, University of California at Berkeley, Berkeley California 94720 Paul Scherrer Institut, 5232 Villigen, Paul Scherrer Institut, Department of Physics, University of California at Los Angeles, Los Angeles, California 90024 Institut de Physique Nucleaire, Universite de Lausanne, 1015 Lausanne, Department of Physics, Catholic University of America, Washington, D.C. 10024 )

    1990-05-28

    First data are presented for the polarized-target asymmetry in the reaction {pi}{sup +}{ital p}{r arrow}{pi}{sup +}{ital p}{gamma} at an incident pion energy of 298 MeV. The geometry was chosen to maximize the sensitivity to the radiation of the magnetic dipole moment {mu}{sub {Delta}} of the {Delta}{sup ++}(1232 MeV). A fit of the asymmetry in the cross section {ital d}{sup 5}{sigma}/{ital d}{Omega}{sub {pi}} {ital d}{Omega}{sub {gamma}} {ital dk} as a function of the photon energy {ital k} to predictions from a recent isobar-model calculation with {mu}{sub {Delta}} as the only free parameter yields {mu}{sub {Delta}}=1.64({plus minus}0.19exp{Delta},{plus minus}0.14 theor){mu}{sub {ital p}}. Though this value agrees with bag-model corrections to the SU(6) prediction {mu}{sub {Delta}}=2{mu}{sub {ital p}}, further clarifications on the model dependence of the result are needed, in particular since the isobar model fails to describe both the cross section and the asymmetry at the highest photon energies.

  18. On the retention of high-energy protons and nuclei with charges Z or equal to 2 in large solar flares after the process of their acceleration

    NASA Technical Reports Server (NTRS)

    Volodichev, N. N.; Kuzhevsky, B. M.; Nechaev, O. Y.; Savenko, I. A.

    1985-01-01

    Data which suggest that the protons with energies of up to several GeV should be retained on the Sun after the process of their acceleration are presented. The protons are on the average retained for 15 min, irrespectively of the solar flare heliolatitude and of the accelerated particle energy ranging from 100 MeV to several GeV. It is suggested that the particles are retained in a magnetic trap formed in a solar active region. No Z or = 2 nuclei of solar origin during large solar flares. The absence of the 500 MeV/nucleon nuclei with Z or = 2 may be due to their retention in the magnetic trap which also retains the high-energy protons. During the trapping time the approx. 500 MeV/nucleon nuclei with Z or = 2 may escape due to nuclear interactions and ionization loss.

  19. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    SciTech Connect

    Saini, Arun

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  20. Computing the cross sections of nuclear reactions with nuclear clusters emission for proton energies between 30 MeV and 2.6 GeV

    SciTech Connect

    Korovin, Yu. A.; Maksimushkina, A. V. Frolova, T. A.

    2016-12-15

    The cross sections of nuclear reactions involving emission of clusters of light nuclei in proton collisions with a heavy-metal target are computed for incident-proton energies between 30 MeV and 2.6 GeV. The calculation relies on the ALICE/ASH and CASCADE/INPE computer codes. The parameters determining the pre-equilibrium cluster emission are varied in the computation.

  1. Calculating Variations in Biological Effectiveness for a 62 MeV Proton Beam

    PubMed Central

    Carante, Mario Pietro; Ballarini, Francesca

    2016-01-01

    A biophysical model of radiation-induced cell death and chromosome aberrations [called BIophysical ANalysis of Cell death and chromosome Aberrations (BIANCA)] was further developed and applied to therapeutic protons. The model assumes a pivotal role of DNA cluster damage, which can lead to clonogenic cell death following three main steps: (i) a DNA “cluster lesion” (CL) produces two independent chromosome fragments; (ii) fragment mis-rejoining within a threshold distance d gives rise to chromosome aberrations; (iii) certain aberration types (dicentrics, rings, and large deletions) lead to clonogenic inactivation. The yield of CLs and the probability, f, that a chromosome fragment remains un-rejoined even if other fragment(s) are present within d, were adjustable parameters. The model, implemented as a MC code providing simulated dose–responses directly comparable with experimental data, was applied to pristine and modulated Bragg peaks of the proton beam used to treat eye melanoma at INFN-LNS in Catania, Italy. Experimental survival curves for AG01522 cells exposed to the Catania beam were reproduced, supporting the model assumptions. Furthermore, cell death and chromosome aberrations at different depths along a spread-out Bragg peak (SOBP) dose profile were predicted. Both endpoints showed an increase along the plateau, and high levels of damage were found also beyond the distal dose fall-off, due to low-energy protons. Cell death and chromosome aberrations were also predicted for V79 cells, in the same irradiation scenario as that used for AG01522 cells. In line with other studies, this work indicated that assuming a constant relative biological effectiveness (RBE) along a proton SOBP may be sub-optimal. Furthermore, it provided qualitative and quantitative evaluations of the dependence of the beam effectiveness on the considered endpoint and dose. More generally, this work represents an example of therapeutic beam characterization avoiding the use of

  2. X-ray photoelectron and Raman spectroscopic studies of MeV proton irradiated graphite

    NASA Astrophysics Data System (ADS)

    Mathew, S.; Joseph, B.; Sekhar, B. R.; Dev, B. N.

    2008-07-01

    Poly-crystalline graphite samples were irradiated using 2.25 MeV H + ions with a fluence of 2 × 10 17 ions/cm 2. Magnetic ordering in highly oriented pyrolytic graphite samples have been reported earlier under the similar irradiation conditions [Esquinazi et al., Phys. Rev. Lett. 91 (2003) 227201]. In that study, the authors attribute the observed irradiation induced magnetic ordering to the formation of a mixed sp 2-sp 3 hybridized carbon atoms. In the present study, we report the X-ray photoelectron and Raman spectroscopic studies on pristine and irradiated samples. Irradiated samples are found to show an increased number of sp 3 hybridized carbon atoms. However, the Raman spectrum, specially the second order data, do indicate that the nature of the graphene lattice structure has been preserved in the irradiated samples. The mechanisms for the irradiation induced enhancement in sp 3 hybridization are discussed.

  3. Shielding analysis of proton therapy accelerators: a demonstration using Monte Carlo-generated source terms and attenuation lengths.

    PubMed

    Lai, Bo-Lun; Sheu, Rong-Jiun; Lin, Uei-Tyng

    2015-05-01

    Monte Carlo simulations are generally considered the most accurate method for complex accelerator shielding analysis. Simplified models based on point-source line-of-sight approximation are often preferable in practice because they are intuitive and easy to use. A set of shielding data, including source terms and attenuation lengths for several common targets (iron, graphite, tissue, and copper) and shielding materials (concrete, iron, and lead) were generated by performing Monte Carlo simulations for 100-300 MeV protons. Possible applications and a proper use of the data set were demonstrated through a practical case study, in which shielding analysis on a typical proton treatment room was conducted. A thorough and consistent comparison between the predictions of our point-source line-of-sight model and those obtained by Monte Carlo simulations for a 360° dose distribution around the room perimeter showed that the data set can yield fairly accurate or conservative estimates for the transmitted doses, except for those near the maze exit. In addition, this study demonstrated that appropriate coupling between the generated source term and empirical formulae for radiation streaming can be used to predict a reasonable dose distribution along the maze. This case study proved the effectiveness and advantage of applying the data set to a quick shielding design and dose evaluation for proton therapy accelerators.

  4. Cross-field diffusion of energetic (100 keV to 2 MeV) protons in interplanetary space

    SciTech Connect

    Costa Jr, Edio da; Tsurutani, Bruce T.; Alves, Maria Virgínia; Echer, Ezequiel; Lakhina, Gurbax S. E-mail: costajr.e@gmail.com

    2013-12-01

    Magnetic field magnitude decreases (MDs) are observed in several regions of the interplanetary medium. In this paper, we characterize MDs observed by the Ulysses spacecraft instrumentation over the solar south pole by using magnetic field data to obtain the empirical size, magnetic field MD, and frequency of occurrence distribution functions. The interaction of energetic (100 keV to 2 MeV) protons with these MDs is investigated. Charged particle and MD interactions can be described by a geometrical model allowing the calculation of the guiding center shift after each interaction. Using the distribution functions for the MD characteristics, Monte Carlo simulations are used to obtain the cross-field diffusion coefficients as a function of particle kinetic energy. It is found that the protons under consideration cross-field diffuse at a rate of up to ≈11% of the Bohm rate. The same method used in this paper can be applied to other space regions where MDs are observed, once their local features are well known.

  5. Simultaneous quiet time observations of energetic radiation belt protons and helium ions - The equatorial alpha/p ratio near 1 MeV

    NASA Technical Reports Server (NTRS)

    Fritz, T. A.; Spjeldvik, W. N.

    1979-01-01

    Simultaneous monitoring of energetic helium ions and protons in the earth's radiation belts has been conducted with Explorer 45 in the immediate vicinity of the equatorial plane. Protons were measured from less than 1 keV to 1.6 MeV and also above 3.3 MeV in a channel responsive up to 22 MeV; helium ions were monitored in three passbands: 910 keV to 3.15 MeV, 590 to 910 keV, and 2.0 to 3.99 MeV. Alpha/proton flux ratios were found to vary significantly with energy and location in the radiation belts. At equal energy per nucleon a range of variability for alpha/p from 0.0001 to well above 0.001 was found, and at equal energy per ion the corresponding variability was from 0.001 to above 10. The latter findings emphasize the relative importance of the very energetic helium ions in the overall radiation belt ion populations.

  6. Measurement of a 200 MeV proton beam using a polyurethane dosimeter

    NASA Astrophysics Data System (ADS)

    Heard, Malcolm; Adamovics, John; Ibbott, Geoffrey

    2006-12-01

    PRESAGETM (Heuris Pharma LLC, Skillman, NJ) is a three-dimensional polyurethane dosimeter containing a leuco dye that generates a color change when irradiated. The dosimeter is solid and does not require a container to maintain its shape. The dosimeter is transparent before irradiation and the maximum absorbance of the leuco dye occurs at 633 nm which is compatible with the OCT-OPUSTM laser CT scanner (MGS Research, Inc., Madison, CT). The purpose of this study was to investigate the response of PRESAGETM to proton beam radiotherapy.

  7. Noise performance of 0.35-(mu)m SOI CMOS devices and micropower preamplifier following 63-MeV, 1-Mrad (Si) proton irradiation

    NASA Technical Reports Server (NTRS)

    Binkley, D. M.; Hopper, C. E.; Cressler, J. D.; Mojarradi, M. M.; Blalock, B. J.

    2004-01-01

    This paper presents measured noise for 0.35(mu)m, silicon-on-insulator devices and a micropower preamplifier following 63-MeV, 1-Mrad (Si) proton irradiation. Flicker noise voltage, important for gyros having low frequency output, increases less than 32% after irradiation.

  8. Measurement of the cross sections for the production of the isotopes 74As, 68Ge, 65Zn, and 60Co from natural and enriched germanium irradiated with 100-MeV protons

    NASA Astrophysics Data System (ADS)

    Barabanov, I. R.; Bezrukov, L. B.; Gurentsov, V. I.; Zhuykov, B. L.; Kianovsky, S. V.; Kornoukhov, V. N.; Kohanuk, V. M.; Yanovich, E. A.

    2010-07-01

    The cross sections for the production of the radioactive isotopes 74As, 68Ge, 65Zn, and 60Co in metallic germanium irradiated with 100-MeV protons were measured, the experiments being performed both with germanium of natural isotopic composition and germanium enriched in the isotope 76Ge. The targets were irradiated with a proton beam at the facility for the production of radionuclides at the accelerator of the Institute for Nuclear Research (INR, Moscow). The data obtained will further be used to calculate the background of radioactive isotopes formed by nuclear cascades of cosmic-ray muons in new-generation experiments devoted to searches for the neutrinoless double-beta decay of 76Ge at underground laboratories.

  9. Measurement of the cross sections for the production of the isotopes {sup 74}As, {sup 68}Ge, {sup 65}Zn, and {sup 60}Co from natural and enriched germanium irradiated with 100-MeV protons

    SciTech Connect

    Barabanov, I. R.; Bezrukov, L. B.; Gurentsov, V. I.; Zhuykov, B. L.; Kianovsky, S. V.; Kornoukhov, V. N.; Kohanuk, V. M.; Yanovich, E. A.

    2010-07-15

    The cross sections for the production of the radioactive isotopes {sup 74}As, {sup 68}Ge, {sup 65}Zn, and {sup 60}Co in metallic germanium irradiated with 100-MeV protons were measured, the experiments being performed both with germanium of natural isotopic composition and germanium enriched in the isotope {sup 76}Ge. The targets were irradiated with a proton beam at the facility for the production of radionuclides at the accelerator of the Institute for Nuclear Research (INR, Moscow). The data obtained will further be used to calculate the background of radioactive isotopes formed by nuclear cascades of cosmic-ray muons in new-generation experiments devoted to searches for the neutrinoless double-beta decay of {sup 76}Ge at underground laboratories.

  10. RBE and genetic susceptibility of mouse and rat spermatogonial stem cells to protons, heavy charged particles and 1.5 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Vaglenov, A.; Fedorenko, B.; Kaltenboeck, B.

    The main purpose of the present study is to provide data on RBE and genetic susceptibility in the mouse and the rat when exposed to protons, HZE particles and neutrons. Genetic damage from exposure to 50 MeV and 9 GeV protons, 4 GeV/nucleon helium ions, 4 GeV/nucleon carbon ions and 1.5 MeV neutrons was studied in adult (CBA × C57Bl/6J) F1 mice. Damage from 9 GeV protons and 4 GeV helium ions was studied in adult Wistar rats. The incidence of reciprocal translocations (RT) induced in the spermatogonial stem cells of each species was recorded. RBE values were derived by comparing linear regression coefficients from dose-responses within the same dose-range for each of the radiation types tested and 60Co γ-rays or by means of a direct nonparametric method. RT yields measured after mouse and rat spermatogonial irradiation with protons, heavy charged particles and neutrons fit the linear model of the dose-response relationship. Relative to 60Co γ-rays, RBE values are as follows for mouse spermatogonia: 0.9 for 50 MeV protons; 1.3 for 9 GeV protons; 0.7 for 4 GeV helium ions; and 1.3 for 4 GeV carbon ions. For rat spermatogonia, values were: 1.7 for 9 GeV protons and 1.3 for helium ions. Compared to mice irradiated using the same experimental design, rats were more susceptible to high-LET radiations, with susceptibility assessed by genetic damage to their spermatogonial stem cells. The RBE of 1.5 MeV neutron is about 6.6.

  11. DoPET: an in-treatment monitoring system for proton therapy at 62 MeV

    NASA Astrophysics Data System (ADS)

    Rosso, V.; Belcari, N.; Bisogni, M. G.; Camarlinghi, N.; Cirrone, G. A. P.; Collini, F.; Cuttone, G.; Del Guerra, A.; Milluzzo, G.; Morrocchi, M.; Raffaele, L.; Romano, F.; Sportelli, G.; Zaccaro, E.

    2016-12-01

    Proton beam radiotherapy is highly effective in treating cancer thanks to its conformal dose deposition. This superior capability in dose deposition has led to a massive growth of the treated patients around the world, raising the need of treatment monitoring systems. An in-treatment PET system, DoPET, was constructed and tested at CATANA beam-line, LNS-INFN in Catania, where 62 MeV protons are used to treat ocular melanoma. The PET technique profits from the beta+ emitters generated by the proton beam in the irradiated body, mainly 15-O and 11-C. The current DoPET prototype consists of two planar 15 cm × 15 cm LYSO-based detector heads. With respect to the previous versions, the system was enlarged and the DAQ up-graded during the years so now also anthropomorphic phantoms, can be fitted within the field of view of the system. To demonstrate the capability of DoPET to detect changes in the delivered treatment plan with respect to the planned one, various treatment plans were used delivering a standard 15 Gy fraction to an anthropomorphic phantom. Data were acquired during and after the treatment delivery up to 10 minutes. When the in-treatment phase was long enough (more than 1 minute), the corresponding activated volume was visible just after the treatment delivery, even if in presence of a noisy background. The after-treatment data, acquired for about 9 minutes, were segmented finding that few minutes are enough to be able to detect changes. These experiments will be presented together with the studies performed with PMMA phantoms where the DoPET response was characterized in terms of different dose rates and in presence of range shifters: the system response is linear up to 16.9 Gy/min and has the ability to see a 1 millimeter range shifter.

  12. Cross section and complete set of proton spin observables in p-->d elastic scattering at 250 MeV

    NASA Astrophysics Data System (ADS)

    Hatanaka, K.; Shimizu, Y.; Hirooka, D.; Kamiya, J.; Kitamura, Y.; Maeda, Y.; Noro, T.; Obayashi, E.; Sagara, K.; Saito, T.; Sakai, H.; Sakemi, Y.; Sekiguchi, K.; Tamii, A.; Wakasa, T.; Yagita, T.; Yako, K.; Yoshida, H. P.; Ladygin, V. P.; Kamada, H.; Glöckle, W.; Golak, J.; Nogga, A.; Witała, H.

    2002-10-01

    The angular distributions of the cross section, the proton analyzing power, and all proton polarization transfer coefficients of p-->d elastic scattering were measured at 250 MeV. The range of center-of-mass angles was 10°-165° for the cross section and the analyzing power, and about 10°-95° for the polarization transfer coefficients. These are the first measurements of a complete set of proton polarization observables for p-->d elastic scattering at intermediate energies. The present data are compared with theoretical predictions based on exact solutions of the three-nucleon Faddeev equations and modern realistic nucleon-nucleon potentials combined with three-nucleon forces (3NF), namely, the Tucson-Melbourne (TM) 2π-exchange model, a modification thereof (TM') closer to chiral symmetry, and the Urbana IX model. Large effects of the three-nucleon forces are predicted. The inclusion of the three-nucleon forces gives a good description of the cross section at angles below the minimum. However, appreciable discrepancies between the data and predictions remain at backward angles. For the spin observables the predictions of the TM 3NF model deviate strongly from the other two 3NF models, which are close together, except for Ky'y. In the case of the analyzing power all 3NF models fail to describe the data at the upper half of the angular range. In the restricted measured angular range the polarization transfer coefficients are fairly well described by the TM' and Urbana IX 3NF models, whereas the TM 3NF model mostly fails. The transfer coefficient Ky'y is best described by the Urbana IX but the theoretical description is still insufficient to reproduce the experimental data. These results call for a better understanding of the spin structure of the three-nucleon force and very likely for a full relativistic treatment of the three-nucleon continuum.

  13. Efficient production of reactive oxygen species in neural precursor cells after exposure to 250 MeV protons.

    PubMed

    Giedzinski, Erich; Rola, Radoslaw; Fike, John R; Limoli, Charles L

    2005-10-01

    The space radiation environment is composed of highly energetic ions, dominated by protons, that pose a range of potential health risks to astronauts. Traversals of these particles through certain tissues may compromise the viability and/or function of sensitive cells, including neural precursors found within the dentate subgranular zone of the hippocampus. Irradiation has been shown to deplete these cells in vivo, and reductions of these critical cells are believed to impair neurogenesis and cognition. To more fully understand the mechanisms underlying the behavior of these precursor cells after irradiation, we have developed an in vitro neural precursor cell system and used it to assess acute (0-48 h) changes in ROS and mitochondrial end points after exposure to Bragg-peak protons of 250 MeV. Relative ROS levels were increased at nearly all doses (1-10 Gy) and postirradiation times (6-24 h) compared to unirradiated controls. The increase in ROS after proton irradiation was more rapid than that observed with X rays and showed a well-defined dose response at 6 and 24 h, increasing approximately 10% and 3% per gray, respectively. However, by 48 h postirradiation, ROS levels fell below controls and coincided with minor reductions in mitochondrial content. Use of the antioxidant alpha-lipoic acid (before or after irradiation) was shown to eliminate the radiation-induced rise in ROS levels. Our results corroborate earlier studies using X rays and provide further evidence that elevated ROS are integral to the radioresponse of neural precursor cells.

  14. Dose distributions in a human head phantom for neutron capture therapy using moderated neutrons from the 2.5 meV proton-7Li reaction or from fission of 235U.

    PubMed

    Tanaka, K; Kobayashi, T; Sakurai, Y; Nakagawa, Y; Endo, S; Hoshi, M

    2001-10-01

    The feasibility of neutron capture therapy (NCT) using an accelerator-based neutron source of the 7Li(p,n) reaction produced by 2.5 MeV protons was investigated by comparing the neutron beam tailored by both the Hiroshima University radiological research accelerator (HIRRAC) and the heavy water neutron irradiation facility in the Kyoto University reactor (KUR-HWNIF) from the viewpoint of the contamination dose ratios of the fast neutrons and the gamma rays. These contamination ratios to the boron dose were estimated in a water phantom of 20 cm diameter and 20 cm length to simulate a human head, with experiments by the same techniques for NCT in KUR-HWNIF and/or the simulation calculations by the Monte Carlo N-particle transport code system version 4B (MCNP-4B). It was found that the 7Li(p,n) neutrons produced by 2.5 MeV protons combined with 20, 25 or 30 cm thick D20 moderators of 20 cm diameter could make irradiation fields for NCT with depth-dose characteristics similar to those from the epithermal neutron beam at the KUR-HWNIF.

  15. Optimization of the combined proton acceleration regime with a target composition scheme

    NASA Astrophysics Data System (ADS)

    Yao, W. P.; Li, B. W.; Zheng, C. Y.; Liu, Z. J.; Yan, X. Q.; Qiao, B.

    2016-01-01

    A target composition scheme to optimize the combined proton acceleration regime is presented and verified by two-dimensional particle-in-cell simulations by using an ultra-intense circularly polarized (CP) laser pulse irradiating an overdense hydrocarbon (CH) target, instead of a pure hydrogen (H) one. The combined acceleration regime is a two-stage proton acceleration scheme combining the radiation pressure dominated acceleration (RPDA) stage and the laser wakefield acceleration (LWFA) stage sequentially together. Protons get pre-accelerated in the first stage when an ultra-intense CP laser pulse irradiating an overdense CH target. The wakefield is driven by the laser pulse after penetrating through the overdense CH target and propagating in the underdense tritium plasma gas. With the pre-accelerate stage, protons can now get trapped in the wakefield and accelerated to much higher energy by LWFA. Finally, protons with higher energies (from about 20 GeV up to about 30 GeV) and lower energy spreads (from about 18% down to about 5% in full-width at half-maximum, or FWHM) are generated, as compared to the use of a pure H target. It is because protons can be more stably pre-accelerated in the first RPDA stage when using CH targets. With the increase of the carbon-to-hydrogen density ratio, the energy spread is lower and the maximum proton energy is higher. It also shows that for the same laser intensity around 1022 W cm-2, using the CH target will lead to a higher proton energy, as compared to the use of a pure H target. Additionally, proton energy can be further increased by employing a longitudinally negative gradient of a background plasma density.

  16. Optimization of the combined proton acceleration regime with a target composition scheme

    SciTech Connect

    Yao, W. P.; Li, B. W.; Zheng, C. Y.; Liu, Z. J.; Yan, X. Q.; Qiao, B.

    2016-01-15

    A target composition scheme to optimize the combined proton acceleration regime is presented and verified by two-dimensional particle-in-cell simulations by using an ultra-intense circularly polarized (CP) laser pulse irradiating an overdense hydrocarbon (CH) target, instead of a pure hydrogen (H) one. The combined acceleration regime is a two-stage proton acceleration scheme combining the radiation pressure dominated acceleration (RPDA) stage and the laser wakefield acceleration (LWFA) stage sequentially together. Protons get pre-accelerated in the first stage when an ultra-intense CP laser pulse irradiating an overdense CH target. The wakefield is driven by the laser pulse after penetrating through the overdense CH target and propagating in the underdense tritium plasma gas. With the pre-accelerate stage, protons can now get trapped in the wakefield and accelerated to much higher energy by LWFA. Finally, protons with higher energies (from about 20 GeV up to about 30 GeV) and lower energy spreads (from about 18% down to about 5% in full-width at half-maximum, or FWHM) are generated, as compared to the use of a pure H target. It is because protons can be more stably pre-accelerated in the first RPDA stage when using CH targets. With the increase of the carbon-to-hydrogen density ratio, the energy spread is lower and the maximum proton energy is higher. It also shows that for the same laser intensity around 10{sup 22} W cm{sup −2}, using the CH target will lead to a higher proton energy, as compared to the use of a pure H target. Additionally, proton energy can be further increased by employing a longitudinally negative gradient of a background plasma density.

  17. Elastic scattering of polarized protons on helium three at 800 MeV

    SciTech Connect

    Azizi, A.

    1985-07-01

    A set of spin dependent parameters and cross sections has been measured for polarized p-/sup 3/He elastic scattering over the range of q .7 to 4.2 fm/sup -1/. The experiment was done at the Los Alamos Meson Physics Facility (LAMPF) using the High Resolution Spectrometer (HRS) with a polarized proton beam at .8 GeV. The focal plane polarimeter of the HRS was used to determine the spin direction of the scattered proton. Since /sup 3/He is one of the simplest nuclei, polarized p-/sup 3/He scattering provides a very sensitive test of multiple scattering theories. The theoretical analysis was done by using two different wave functions for /sup 3/He as input to the multiple scattering theory. The theoretical calculations and experimental data together will give us useful information about nucleon-nucleon amplitudes and also help us to obtain a better understanding of the scattering process. 68 refs., 55 figs., 9 tabs.

  18. Performance of timing Resistive Plate Chambers with protons from 200 to 800 MeV

    NASA Astrophysics Data System (ADS)

    Machado, J.; Adamczewski-Musch, J.; Blanco, A.; Boretzky, K.; Cabanelas, P.; Cartegni, L.; Ferreira Marques, R.; Fonte, P.; Fruehauf, J.; Galaviz, D.; Heil, M.; Henriques, A.; . Ickert, G.; Körper, D.; Lopes, L.; Palka, M.; Pereira, A.; Rossi, D.; Simon, H.; Teubig, P.; Traxler, M.; Velho, P.; Altstadt, S.; Atar, L.; Aumann, T.; Bemmerer, D.; Caesar, C.; Charpy, A.; Elekes, Z.; Fiori, E.; Gasparic, I.; Gerbig, J.; Göbel, K.; Heftrich, T.; Heine, M.; Heinz, A.; Holl, M.; Ignatov, A.; Isaak, J.; Johansson, H.; Kelic-Heil, A.; Lederer, C.; Lindberg, S.; Löher, B.; Marganiec, J.; Martensson, M.; Nilsson, T.; Panin, V.; Paschalis, S.; Petri, M.; Plag, R.; Pohl, M.; Rastrepina, G.; Reifarth, R.; Reinhardt, T. P.; Röder, M.; Savran, D.; Scheit, H.; Schrock, P.; Silva, J.; Stach, D.; Strannerdahl, F.; Thies, R.; Wagner, A.; Wamers, F.; Weigand, M.

    2015-01-01

    A prototype composed of four resistive plate chamber layers has been exposed to quasi-monoenergetic protons produced from a deuteron beam of varying energy (200 to 800 AMeV) in experiment S406 at GSI, Darmstadt, Germany. The aim of the experiment is to characterize the response of the prototype to protons in this energy range, which deposit from 1.75 to 6 times more energy than minimum ionizing particles. Each layer, with an active area of about 2000 × 500 mm2, is made of modules containing the active gaps, all in multigap construction. Each gap is defined by 0.3 mm nylon mono-filaments positioned between 2.85 mm thick float glass electrodes. The modules are operated in avalanche mode with a non-flammable gas mixture composed of 90% C2H2F4 and 10% SF6. The signals are readout by a pick-up electrode formed by 15 copper strips (per layer), spaced at a pitch of 30 mm, connected at both sides to timing front end electronics. Results show an uniform efficiency close to 100% along with a timing resolution of around 60 ps on the entire 2000 × 500 mm2 area.

  19. Calculation of proton total reaction cross sections for some target nuclei in incident energy range of 10-600 MeV

    SciTech Connect

    Bueyuekuslu, H.; Kaplan, A.; Aydin, A.; Tel, E.; Yildirim, G.

    2010-10-15

    In this study, proton total reaction cross sections have been investigated for some isotopes such as {sup 12}C, {sup 27}Al, {sup 9}Be, {sup 16}O, {sup 181}Ta, {sup 197}Au, {sup 6}Li, and {sup 14}N by a proton beam up to 600 MeV. Calculation of the proton total cross sections has been carried out by the analytic expression formulated by M.A. Alvi by using Coulomb-modified Glauber theory with the Helm model nuclear form factor. The obtained results have been discussed and compared with the available experimental data and found to be in agreement with each other.

  20. Performance of solenoids versus quadrupoles in focusing and energy selection of laser accelerated protons

    NASA Astrophysics Data System (ADS)

    Hofmann, Ingo

    2013-04-01

    Using laser accelerated protons or ions for various applications—for example in particle therapy or short-pulse radiographic diagnostics—requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. Generally speaking, the two approaches are equivalent in focusing capability, if parameters are such that the solenoid length approximately equals its diameter. The scaling also shows that this is usually not the case above a few MeV; consequently, a solenoid needs to be pulsed or superconducting, whereas the quadrupoles can remain conventional. It is also important that the transmission of the triplet is found only 25% lower than that of the equivalent solenoid. Both systems are equally suitable for energy selection based on their chromatic effect as is shown using an initial distribution following the RPA simulation model by Yan et al. [Phys. Rev. Lett. 103, 135001 (2009PRLTAO0031-900710.1103/PhysRevLett.103.135001].

  1. Dynamics of laser-driven proton acceleration exhibited by measured laser absorptivity and reflectivity

    NASA Astrophysics Data System (ADS)

    Bin, J. H.; Allinger, K.; Khrennikov, K.; Karsch, S.; Bolton, P. R.; Schreiber, J.

    2017-03-01

    Proton acceleration from nanometer thin foils with intense laser pulses is investigated experimentally. We analyzed the laser absorptivity by parallel monitoring of laser transmissivity and reflectivity with different laser intensities when moving the targets along the laser axis. A direct correlation between laser absorptivity and maximum proton energy is observed. Experimental results are interpreted in analytical estimation, exhibiting a coexistence of plasma expansion and light-sail form of radiation pressure acceleration (RPA-LS) mechanisms during the entire proton acceleration process based on the measured laser absorptivity and reflectivity.

  2. A system for monitoring the radiation effects of a proton linear accelerator

    NASA Astrophysics Data System (ADS)

    Skorkin, V. M.; Belyanski, K. L.; Skorkin, A. V.

    2016-12-01

    The system for real-time monitoring of radioactivity of a high-current proton linear accelerator detects secondary neutron emission from proton beam losses in transport channels and measures the activity of radionuclides in gas and aerosol emissions and the radiation background in the environment affected by a linear accelerator. The data provided by gamma, beta, and neutron detectors are transferred over a computer network to the central server. The system allows one to monitor proton beam losses, the activity of gas and aerosol emissions, and the radiation emission level of a linear accelerator in operation.

  3. Dynamics of laser-driven proton acceleration exhibited by measured laser absorptivity and reflectivity

    PubMed Central

    Bin, J. H.; Allinger, K.; Khrennikov, K.; Karsch, S.; Bolton, P. R.; Schreiber, J.

    2017-01-01

    Proton acceleration from nanometer thin foils with intense laser pulses is investigated experimentally. We analyzed the laser absorptivity by parallel monitoring of laser transmissivity and reflectivity with different laser intensities when moving the targets along the laser axis. A direct correlation between laser absorptivity and maximum proton energy is observed. Experimental results are interpreted in analytical estimation, exhibiting a coexistence of plasma expansion and light-sail form of radiation pressure acceleration (RPA-LS) mechanisms during the entire proton acceleration process based on the measured laser absorptivity and reflectivity. PMID:28272471

  4. A system for monitoring the radiation effects of a proton linear accelerator

    SciTech Connect

    Skorkin, V. M. Belyanski, K. L.; Skorkin, A. V.

    2016-12-15

    The system for real-time monitoring of radioactivity of a high-current proton linear accelerator detects secondary neutron emission from proton beam losses in transport channels and measures the activity of radionuclides in gas and aerosol emissions and the radiation background in the environment affected by a linear accelerator. The data provided by gamma, beta, and neutron detectors are transferred over a computer network to the central server. The system allows one to monitor proton beam losses, the activity of gas and aerosol emissions, and the radiation emission level of a linear accelerator in operation.

  5. Evaluation of various operational and dosimetric parameters of an industrial electron beam accelerator of 2 MeV energy

    NASA Astrophysics Data System (ADS)

    Benny, P. G.; Khader, S. A.; Sarma, K. S. S.

    2014-07-01

    An industrial type 2 MeV/20 kW ILU-6 electron beam accelerator is operational in India for development of applications and technology demonstration to the Indian Industry in the field of polymer modifications (cross-linking and degradation). In order to adjust the treatment conditions and to control the good operation of the accelerator, it is necessary to study dose response as a function of various operational parameters. An experimental procedure for calibrating Cellulose Triacetate (CTA) film strip dosimeters in electron beam using total absorption graphite calorimeters is discussed and compared it with the results obtained from gamma calibration. Dosimetry data for process application, where the irradiation target is plane polymer sheet, have been obtained under various operational parameters.

  6. (International Panel on 14 MeV Intense Neutron Source Based on Accelerators for Fusion Materials Study)

    SciTech Connect

    Thoms, K.R.; Wiffen, F.W.

    1991-02-14

    Both travelers were members of a nine-person US delegation that participated in an international workshop on accelerator-based 14 MeV neutron sources for fusion materials research hosted by the University of Tokyo. Presentations made at the workshop reviewed the technology developed by the FMIT Project, advances in accelerator technology, and proposed concepts for neutron sources. One traveler then participated in the initial meeting of the IEA Working Group on High Energy, High Flux Neutron Sources in which efforts were begun to evaluate and compare proposed neutron sources; the Fourth FFTF/MOTA Experimenters' Workshop which covered planning and coordination of the US-Japan collaboration using the FFTF reactor to irradiate fusion reactor materials; and held discussions with several JAERI personnel on the US-Japan collaboration on fusion reactor materials.

  7. Energy loss of MeV protons specularly reflected from metal surfaces

    SciTech Connect

    Juaristi, J.I.

    1996-05-01

    A parameter-free model is presented to study the energy loss of fast protons specularly reflected from metal surfaces. The contributions to the energy loss from excitation of valence-band electrons and ionization of localized target-atom electronic states are calculated separately. The former is calculated from the induced surface wake potential using linear response theory and the specular-reflection model, while the latter is calculated in the first Born approximation. The results obtained are in good agreement with available experimental data. However, the experimental qualitative trend of the energy loss as a function of the angle of incidence is obtained when the valence-band electron model is replaced by localized target atom electron states, though with a worse quantitative agreement. {copyright} {ital 1996 The American Physical Society.}

  8. HUGONIOT MEASUREMENTS AT LOW PRESSURES IN TIN USING 800 MeV PROTON RADIOGRAPHY

    SciTech Connect

    Schwartz, C. L.; Hogan, G. E.; King, N. S. P.; Kwiatkowski, K.; Mariam, F. G.; Merrill, F. E.; Morris, C. L.; Saunders, A.; Marr-Lyon, M.; Rightley, P. M.; McNeil, W. V.

    2009-12-28

    A 20 mm long 8 mm diameter cylindrical tin target has been shocked to a pressure just below the beta->gamma phase change, using a small, low density PETN charge mounted on the opposite side of a thin stainless steel diaphragm. The density jump and shock velocity were measured radiographically at multiple points as the shock wave moved though the sample and the pressure dropped, using the proton radiography facility at LANL. This provided a quasi-continuous record along the principal Hugoniot from a peak shock velocity of 3.27 km/sec to a minimum of 3.09 km/sec. Edge release effects were removed from the data using simple tomographic reconstruction techniques. The data and analysis are presented.

  9. Hugoniot Measurements at Low Pressures in Tin Using 800 MeV proton Radiography

    SciTech Connect

    Schwartz, Cynthia; Hogan, Gary E; King, Nicholas S. P.; Kwiathowski, Kris K.; Mariam, Fesseha G.; Marr-Lyon, Mark; McNeil, Wendy Vogan; Merrill, Frank E.; Morris, Christopher; Rightley, Paul; Saunders, Alexander

    2009-08-05

    A 2cm long 8 mm diameter cylindrical tin target has been shocked to a pressure in the region of the {beta} {yields} {gamma} phase change using a small, low density PETN charge mounted on the opposite side of a stainless steel diaphragm. The density jump and shock velocity were measured radiographically as the shock wave moved through the sample and the pressure dropped, using the proton radiography facility at LANL. This provided a quasi-continuous record of the equations of state along the Hugoniot for the P1 wave from a shock velocity of 3.25 km/sec down to near the sound speed. Edge release effects were removed from the data using tomographic techniques. The data show evidence for a phase transition that extends over a broad pressure range. The data and analysis will be presented.

  10. Gamma Strength Functions and Level Densities from 300 MeV Proton Scatttering at 0°

    NASA Astrophysics Data System (ADS)

    von Neumann-Cosel, Peter; Bassauer, Sergej; Martin, Dirk

    The gamma strength function (GSF) as well as total level densities (LDs) in 208Pb and 96Mo were extracted from high-resolution forward angle inelastic proton scattering data taken at RCNP, Osaka, Japan, and compared to experimental results obtained with the Oslo method in order to test the validity of the Brink-Axel (BA) hypothesis in the energy region of the pygmy dipole resonance. The case of 208Pb is inconclusive because of strong fluctuations of the GSF due to the small level density in a doubly closed-shell nucleus. In 96Mo the data are consistent with the BA hypothesis. The good agreement of LDs provides an independent confirmation of the approach underlying the decomposition of GSF and LDs in Oslo-type experiments.

  11. MeV electron acceleration at 1kHz with <10 mJ laser pulses

    NASA Astrophysics Data System (ADS)

    Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Kuk, Donghoon; Kim, Ki-Yong; Milchberg, Howard

    2016-10-01

    We demonstrate laser driven acceleration of electrons at 1 kHz repetition rate with pC charge above 1MeV per shot using < 10 mJ pulse energies focused on a near-critical density He or H2 gas jet. Using the H2 gas jet, electron acceleration to 0.5 MeV in 10 fC bunches was observed with laser pulse energy as low as 1.3mJ . Using a near-critical density gas jet sets the critical power required for relativistic self-focusing low enough for mJ scale laser pulses to self- focus and drive strong wakefields. Experiments and particle-in-cell simulations show that optimal drive pulse duration and chirp for maximum electron bunch charge and energy depends on the target gas species. High repetition rate, high charge, and short duration electron bunches driven by very modest pulse energies constitutes an ideal portable electron source for applications such as ultrafast electron diffraction experiments and high rep. rate γ-ray production. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.

  12. Neutron cross-sections above 20 MeV for design and modeling of accelerator driven systems

    NASA Astrophysics Data System (ADS)

    Blomgren, J.

    2007-02-01

    One of the outstanding new developments in the field of partitioning and transmutation (P{&}T) concerns accelerator-driven systems (ADS) which consist of a combination of a high-power, high-energy accelerator, a spallation target for neutron production and a sub-critical reactor core. The development of the commercial critical reactors of today motivated a large effort on nuclear data up to about 20 MeV, and presently several million data points can be found in various data libraries. At higher energies, data are scarce or even non-existent. With the development of nuclear techniques based on neutrons at higher energies, nowadays there is a need also for higher-energy nuclear data. To provide alternative to this lack of data, a wide program on neutron-induced data related to ADS for P{&}T is running at the 20-180 MeV neutron beam facility at `The Svedberg Laboratory' (TSL), Uppsala. The programme encompasses studies of elastic scattering, inelastic neutron production, i.e., (n, xn') reactions, light-ion production, fission and production of heavy residues. Recent results are presented and future program of development is outlined.

  13. MeV electron acceleration at 1 kHz with <10 mJ laser pulses

    NASA Astrophysics Data System (ADS)

    Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Kuk, Donghoon; Miao, Bo; Woodbury, Daniel; Kim, Ki-Yong; Milchberg, Howard

    2017-01-01

    We demonstrate laser driven acceleration of electrons to MeV-scale energies at 1 kHz repetition rate using <10 mJ pulses focused on near-critical density He and H2 gas jets. Using the H2 gas jet, electron acceleration to 0.5 MeV in 10 fC bunches was observed with laser pulse energy as low as 1.3 mJ. Increasing the pulse energy to 10 mJ, we measure 1pC charge bunches with >1 MeV energy for both He and H gas jets. Such a high repetition rate, high flux ultrafast source has immediate application to time resolved probing of matter for scientific, medical, or security applications, either using the electrons directly or using a high-Z foil converter to generate ultrafast γ-rays. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.

  14. Simulations of proton beam characteristics for ELIMED Beamline

    NASA Astrophysics Data System (ADS)

    Psikal, Jan; Limpouch, Jiri; Klimo, Ondrej; Vyskocil, Jiri; Margarone, Daniele; Korn, Georg

    2016-03-01

    ELIMED Beamline should demonstrate the capability of laser-based particle accelerators for medical applications, mainly for proton radiotherapy of tumours which requires a sufficient number of accelerated protons with energy about 60 MeV at least. In this contribution, we study the acceleration of protons by laser pulse with parameters accessible for ELIMED Beamline (intensity ∼ 1022 W/cm2, pulse length ∼ 30 fs). In our two-dimensional particle-incell simulations, we observed higher energies of protons for linear than for circular polarization. Oblique incidence of the laser pulse on target does not seem to be favourable for proton acceleration at such high intensities as the accelerated protons are deflected from target normal axis and their energy and numbers are slightly decreased. The expected numbers of accelerated protons in the energy interval 60 MeV ± 5% are calculated between 109 and 1010 per laser shot with estimated proton beam divergence about 20° (FWHM).

  15. The Elemental Analysis of Biological and Environmental Materials Using a 2MEV Proton Beam

    NASA Astrophysics Data System (ADS)

    Arshed, Waheed

    Available from UMI in association with The British Library. A programme has been developed to simulate the proton induced x-ray emission (PIXE) spectra and its uses have been described. The PIXE technique has been applied to the analysis of new biological reference materials which consist of IAEA human diet samples and NIST leaf samples. Homogeneity of these and two existing reference materials, IAEA soil -7 and Bowen's kale, has also been determined at the mug scale. A subsample representative of a material is ascertained by determination of sampling factors for the elements detected in the material. Proton induced gamma-ray emission (PIGE) analysis in conjunction with PIXE has been employed to investigate F and other elemental concentrations found in human teeth samples. The mean F concentration in enamel and dentine parts of teeth followed an age dependent model. Concentrations of Ca and P were found to be higher in the enamel than in the dentine. Analysis of blood and its components in the study of elemental models in sickle cell disease in Nigerians has been carried out. Comparisons revealed that Cl, Ca and Cu were at higher levels whereas K, Fe, Zn and Rb were at lower levels in the whole blood of the sicklers compared to controls. Similar results were obtained for the erythrocytes except that Br was found at higher concentration in erythrocytes of the sicklers. Higher concentrations of Cl, K, Fe and Cu were also observed in plasma of the sicklers compared to controls. PIXE and scanning electron microscopy (SEM) were used in the characterization of the Harmattan dust particulates collected at Kano and Ife. Most of the elements were found to be at higher concentrations as compared to those found in Recife (Brazil) and Toronto (Canada). The value of total suspended particulate was above the relevant national air quality standards. PIXE in conjunction with Rutherford backscattering spectrometry and instrumental neutron activation analysis was employed in the

  16. Role of target material in proton acceleration from thin foils irradiated by ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Tayyab, M.; Bagchi, S.; Ramakrishna, B.; Mandal, T.; Upadhyay, A.; Ramis, R.; Chakera, J. A.; Naik, P. A.; Gupta, P. D.

    2014-08-01

    We report on the proton acceleration studies from thin metallic foils of varying atomic number (Z) and thicknesses, investigated using a 45 fs, 10 TW Ti:sapphire laser system. An optimum foil thickness was observed for efficient proton acceleration for our laser conditions, dictated by the laser ASE prepulse and hot electron propagation behavior inside the material. The hydrodynamic simulations for ASE prepulse support the experimental observation. The observed maximum proton energy at different thicknesses for a given element is in good agreement with the reported scaling laws. The results with foils of different atomic number Z suggest that a judicious choice of the foil material can enhance the proton acceleration efficiency, resulting into higher proton energy.

  17. Accelerated prompt gamma estimation for clinical proton therapy simulations

    NASA Astrophysics Data System (ADS)

    Huisman, Brent F. B.; Létang, J. M.; Testa, É.; Sarrut, D.

    2016-11-01

    There is interest in the particle therapy community in using prompt gammas (PGs), a natural byproduct of particle treatment, for range verification and eventually dose control. However, PG production is a rare process and therefore estimation of PGs exiting a patient during a proton treatment plan executed by a Monte Carlo (MC) simulation converges slowly. Recently, different approaches to accelerating the estimation of PG yield have been presented. Sterpin et al (2015 Phys. Med. Biol. 60 4915-46) described a fast analytic method, which is still sensitive to heterogeneities. El Kanawati et al (2015 Phys. Med. Biol. 60 8067-86) described a variance reduction method (pgTLE) that accelerates the PG estimation by precomputing PG production probabilities as a function of energy and target materials, but has as a drawback that the proposed method is limited to analytical phantoms. We present a two-stage variance reduction method, named voxelized pgTLE (vpgTLE), that extends pgTLE to voxelized volumes. As a preliminary step, PG production probabilities are precomputed once and stored in a database. In stage 1, we simulate the interactions between the treatment plan and the patient CT with low statistic MC to obtain the spatial and spectral distribution of the PGs. As primary particles are propagated throughout the patient CT, the PG yields are computed in each voxel from the initial database, as a function of the current energy of the primary, the material in the voxel and the step length. The result is a voxelized image of PG yield, normalized to a single primary. The second stage uses this intermediate PG image as a source to generate and propagate the number of PGs throughout the rest of the scene geometry, e.g. into a detection device, corresponding to the number of primaries desired. We achieved a gain of around 103 for both a geometrical heterogeneous phantom and a complete patient CT treatment plan with respect to analog MC, at a convergence level of 2% relative

  18. An analytical reconstruction model of the spread-out Bragg peak using laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Tao, Li; Zhu, Kun; Zhu, Jungao; Xu, Xiaohan; Lin, Chen; Ma, Wenjun; Lu, Haiyang; Zhao, Yanying; Lu, Yuanrong; Chen, Jia-er; Yan, Xueqing

    2017-07-01

    With the development of laser technology, laser-driven proton acceleration provides a new method for proton tumor therapy. However, it has not been applied in practice because of the wide and decreasing energy spectrum of laser-accelerated proton beams. In this paper, we propose an analytical model to reconstruct the spread-out Bragg peak (SOBP) using laser-accelerated proton beams. Firstly, we present a modified weighting formula for protons of different energies. Secondly, a theoretical model for the reconstruction of SOBPs with laser-accelerated proton beams has been built. It can quickly calculate the number of laser shots needed for each energy interval of the laser-accelerated protons. Finally, we show the 2D reconstruction results of SOBPs for laser-accelerated proton beams and the ideal situation. The final results show that our analytical model can give an SOBP reconstruction scheme that can be used for actual tumor therapy.

  19. Certain dosimetric features of electrons from a CGR Therac-20 MeV Saturne linear accelerator.

    PubMed

    Nair, R P

    1985-03-01

    Some of the useful clinical radiation characteristics required for treatment planning using the 6,9,13,17, and 20 Me V scanning electron beams obtainable in a CGR Therac-20 Me V Saturne linear accelerator are outlined.

  20. Laser-seeded modulation instability in a proton driver plasma wakefield accelerator

    SciTech Connect

    Siemon, Carl; Khudik, Vladimir; Austin Yi, S.; Shvets, Gennady; Pukhov, Alexander

    2013-10-15

    A new method for initiating the modulation instability (MI) of a proton beam in a proton driver plasma wakefield accelerator using a short laser pulse preceding the beam is presented. A diffracting laser pulse is used to produce a plasma wave that provides a seeding modulation of the proton bunch with the period equal to that of the plasma wave. Using the envelope description of the proton beam, this method of seeding the MI is analytically compared with the earlier suggested seeding technique that involves an abrupt truncation of the proton bunch. The full kinetic simulation of a realistic proton bunch is used to validate the analytic results. It is further used to demonstrate that a plasma density ramp placed in the early stages of the laser-seeded MI leads to its stabilization, resulting in sustained accelerating electric fields (of order several hundred MV/m) over long propagation distances (∼100–1000 m)