Measurements of galactic plane gamma ray emission in the energy range from 10 - 80 MeV
NASA Technical Reports Server (NTRS)
Bertsch, D. L.; Kniffen, D. A.
1982-01-01
A spark chamber gamma ray telescope was developed and flown to observe diffuse gamma ray emission from the central region of the galaxy. The extension of observations down to 10 MeV provides important new data indicating that the galactic diffuse gamma ray spectrum continues as a power law down to about 10 MeV, an observation in good agreement with recent theoretical predictions. Data from other experiments in the range from 100 keV to 10 MeV show a significant departure from the extension of the power-law fit to the medium energy observations reported here, possibly indicating that a different mechanism may be responsible for the emissions below and above a few MeV. The intensity of the spectrum above 10 MeV implies a galactic electron spectrum which is also very intense down to about 10 MeV. Electrons in this energy range cannot be observed in the solar cavity because of solar modulation effects. The galactic gamma ray data are compared with recent theoretical predictions.
Nuclear Resonance Fluorescence of U-235 above 3 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Glen A.; Caggiano, Joseph A.; Miller, Erin A.
Pacific Northwest National Laboratory and Passport Systems have collaborated to conduct measurements to search for a nuclear resonance fluorescence response of U-235 from 3 to 5 MeV using an 8 g sample of highly enriched uranium. These new measurements complement previously reported measurements below 3 MeV. Preliminary analysis indicates that no strong resonances exist for U-235 in this energy range. A second set of measurements focused on a signature search in the 5 to 10 MeV range is still under analysis.
/sup 13/C(/sup 6/Li,t)/sup 16/O reaction in the 20--32 MeV incident energy range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunsolo, A.; Foti, A.; Imme, G.
1980-03-01
The reaction /sup 13/C(/sup 6/Li,t)/sup 16/O has been studied in the 20 --32 MeV incident energy range. Angular distributions have been measured at E/sup 6/Li/=28 MeV; the data have been analyzed in terms of Hauser-Feshbach and exact finite range distorted-wave Born-approximation theories. The extracted relative /sup 3/He spectroscopic strengths show a satisfactory independence from the optical model parameters.
Optimisation of 12 MeV electron beam simulation using variance reduction technique
NASA Astrophysics Data System (ADS)
Jayamani, J.; Termizi, N. A. S. Mohd; Kamarulzaman, F. N. Mohd; Aziz, M. Z. Abdul
2017-05-01
Monte Carlo (MC) simulation for electron beam radiotherapy consumes a long computation time. An algorithm called variance reduction technique (VRT) in MC was implemented to speed up this duration. This work focused on optimisation of VRT parameter which refers to electron range rejection and particle history. EGSnrc MC source code was used to simulate (BEAMnrc code) and validate (DOSXYZnrc code) the Siemens Primus linear accelerator model with the non-VRT parameter. The validated MC model simulation was repeated by applying VRT parameter (electron range rejection) that controlled by global electron cut-off energy 1,2 and 5 MeV using 20 × 107 particle history. 5 MeV range rejection generated the fastest MC simulation with 50% reduction in computation time compared to non-VRT simulation. Thus, 5 MeV electron range rejection utilized in particle history analysis ranged from 7.5 × 107 to 20 × 107. In this study, 5 MeV electron cut-off with 10 × 107 particle history, the simulation was four times faster than non-VRT calculation with 1% deviation. Proper understanding and use of VRT can significantly reduce MC electron beam calculation duration at the same time preserving its accuracy.
NASA Astrophysics Data System (ADS)
Andrews, P. R.; Shute, G. G.; Spicer, B. M.; Collins, S. F.; Officer, V. C.; Wastell, J. M.; Nann, H.; Devins, D. W.; LI, Qingli; Jones, W. P.; Olmer, C.; Bacher, A. D.; Emery, G. T.
1986-11-01
Differential cross sections were measured for the 13C(α, p) 16N reaction at Eα = 118 MeV for an excitation energy range up to 14.5 MeV. Zero-range distorted wave Born approximation (DWBA) calculations were performed using microscopic form factors. Spin-parity assignments are suggested for states at 11.21 MeV (6 -) and 11.81 MeV (7 -) on the basis of Bansal-French-Zamick weak coupling calculations and DWBA calculations. Arguments from 16O(e, e'), 16O(p, p') and the present experiment are given relating to the location of Jπ = 4 -, T = 1 strength in 16N.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwamoto, Yosuke; /JAERI, Kyoto; Taniguchi, Shingo
Neutron energy spectra at 0{sup o} produced from stopping-length graphite, aluminum, iron and lead targets bombarded with 140, 250 and 350 MeV protons were measured at the neutron TOF course in RCNP of Osaka University. The neutron energy spectra were obtained by using the time-of-flight technique in the energy range from 10 MeV to incident proton energy. To compare the experimental results, Monte Carlo calculations with the PHITS and MCNPX codes were performed using the JENDL-HE and the LA150 evaluated nuclear data files, the ISOBAR model implemented in PHITS, and the LAHET code in MCNPX. It was found that thesemore » calculated results at 0{sup o} generally agreed with the experimental results in the energy range above 20 MeV except for graphite at 250 and 350 MeV.« less
NASA Astrophysics Data System (ADS)
Usta, Metin; Tufan, Mustafa Çağatay
2017-11-01
The object of this work is to present the consequences for the stopping power and range values of some human tissues at energies ranging from 1 MeV to 1 GeV and 1-500 MeV, respectively. The considered human tissues are lung, intestine, skin, larynx, breast, bladder, prostate and ovary. In this work, the stopping power is calculated by considering the number of velocity-dependent effective charge and effective mean excitation energies of the target material. We used the Hartree-Fock-Roothaan (HFR) atomic wave function to determine the charge density and the continuous slowing down approximation (CSDA) method for the calculation of the proton range. Electronic stopping power values of tissues results have been compared with the ICRU 44, 46 reports, SRIM, Janni and CasP data over the percent error rate. Range values relate to tissues have compared the range results with the SRIM, FLUKA and Geant4 data. For electronic stopping power results, ICRU, SRIM and Janni's data indicated the best fit with our values at 1-50, 50-250 MeV and 250 MeV-1 GeV, respectively. For range results, the best accordance with the calculated values have been found the SRIM data and the error level is less than 10% in proton therapy. However, greater 30% errors were observed in the 250 MeV and over energies.
NASA Technical Reports Server (NTRS)
Dacostafereiraneri, A.; Bui-Van, A.; Lavigne, J. M.; Sabaud, C.; Vedrenne, G.; Agrinier, B.; Gouiffes, C.
1985-01-01
A time of flight measuring device is the basic triggering system of most of medium and high energy gamma-ray telescopes. A simple gamma-ray telescope has been built in order to check in flight conditions the functioning of an advanced time of flight system. The technical ratings of the system are described. This telescope has been flown twice with stratospheric balloons, its axis being oriented at various Zenital directions. Flight results are presented for diffuse gamma-rays, atmospheric secondaries, and various causes of noise in the 5 MeV-50 MeV energy range.
NASA Astrophysics Data System (ADS)
Cazzaniga, C.; Tardocchi, M.; Croci, G.; Frost, C.; Giacomelli, L.; Grosso, G.; Hjalmarsson, A.; Rebai, M.; Rhodes, N. J.; Schooneveld, E. M.; Gorini, G.
2013-11-01
Measurements of the fast neutron energy spectrum at the ISIS spallation source are reported. The measurements were performed with a Proton Recoil Telescope consisting of a thin plastic foil placed in the neutron beam and two scintillator detectors. Results in the neutron energy range 30 MeV < En < 80 MeV are in good agreement with Monte Carlo simulations of the neutron spectrum.
Silicon exfoliation by hydrogen implantation: Actual nature of precursor defects
NASA Astrophysics Data System (ADS)
Kuisseu, Pauline Sylvia Pokam; Pingault, Timothée; Ntsoenzok, Esidor; Regula, Gabrielle; Mazen, Frédéric; Sauldubois, Audrey; Andreazza, Caroline
2017-06-01
MeV energy hydrogen implantation in silicon followed by a thermal annealing is a very smart way to produce high crystalline quality silicon substrates, much thinner than what can be obtained by diamond disk or wire sawing. Using this kerf-less approach, ultra-thin substrates with thicknesses between 15 μm and 100 μm, compatible with microelectronic and photovoltaic applications are reported. But, despite the benefits of this approach, there is still a lack of fundamental studies at this implantation energy range. However, if very few papers have addressed the MeV energy range, a lot of works have been carried out in the keV implantation energy range, which is the one used in the smart-cut® technology. In order to check if the nature and the growth mechanism of extended defects reported in the widely studied keV implantation energy range could be extrapolated in the MeV range, the thermal evolution of extended defects formed after MeV hydrogen implantation in (100) Si was investigated in this study. Samples were implanted at 1 MeV with different fluences ranging from 6 × 1016 H/cm2 to 2 × 1017 H/cm2 and annealed at temperatures up to 873 K. By cross-section transmission electron microscopy, we found that the nature of extended defects in the MeV range is quite different of what is observed in the keV range. In fact, in our implantation conditions, the generated extended defects are some kinds of planar clusters of gas-filled lenses, instead of platelets as commonly reported in the keV energy range. This result underlines that hydrogen behaves differently when it is introduced in silicon at high or low implantation energy. The activation energy of the growth of these extended defects is independent of the chosen fluence and is between (0.5-0.6) eV, which is very close to the activation energy reported for atomic hydrogen diffusion in a perfect silicon crystal.
Diffuse cosmic gamma rays: Present status of theory and observation
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1972-01-01
Positive diffuse gamma ray flux measurements now exist for energies up to the 100 MeV range. The totality of the observations in the 0.001 to 100 MeV range follow an E to the minus 2nd power trend in the differential isotropic photon spectrum but significant features appear. Possible theoretical interpretations of these features are discussed. New results on the diffuse flux from the galaxy substantiate the pion-decay origin hypothesis for gamma radiation above 100 MeV.
Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V
2015-11-01
The energy range of our earlier measured activation cross-sections data of longer-lived products of deuteron induced nuclear reactions on indium were extended from 40MeV up to 50MeV. The traditional stacked foil irradiation technique and non-destructive gamma spectrometry were used. No experimental data were found in literature for this higher energy range. Experimental cross-sections for the formation of the radionuclides (113,110)Sn, (116m,115m,114m,113m,111,110g,109)In and (115)Cd are reported in the 37-50MeV energy range, for production of (110)Sn and (110g,109)In these are the first measurements ever. The experimental data were compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS 1.6 nuclear model code as listed in the on-line library TENDL-2014. Copyright © 2015 Elsevier Ltd. All rights reserved.
Submillimeter ionoacoustic range determination for protons in water at a clinical synchrocyclotron.
Lehrack, Sebastian; Assmann, Walter; Bertrand, Damien; Henrotin, Sebastien; Herault, Joel; Heymans, Vincent; Stappen, Francois Vander; Thirolf, Peter G; Vidal, Marie; Van de Walle, Jarno; Parodi, Katia
2017-08-18
Proton ranges in water between 145 MeV to 227 MeV initial energy have been measured at a clinical superconducting synchrocyclotron using the acoustic signal induced by the ion dose deposition (ionoacoustic effect). Detection of ultrasound waves was performed by a very sensitive hydrophone and signals were stored in a digital oscilloscope triggered by secondary prompt gammas. The ionoacoustic range measurements were compared to existing range data from a calibrated range detector setup on-site and agreement of better than 1 mm was found at a Bragg peak dose of about 10 Gy for 220 MeV initial proton energy, compatible with the experimental errors. Ionoacoustics has thus the potential to measure the Bragg peak position with submillimeter accuracy during proton therapy, possibly correlated with ultrasound tissue imaging.
Injection of electrons and protons with energies of tens of MeV into L less than 3 on 24 March 1991
NASA Technical Reports Server (NTRS)
Blake, J. B.; Kolasinski, W. A.; Fillius, R. W.; Mullen, E. G.
1992-01-01
On 24 March 1991 instrumentation aboard CRRES observed the almost instantaneous injection of electrons and protons with energies above 15 MeV into the L-region in the range 2-3. The energy spectrum of the injected electrons, a power law (E exp -6) peaked at 15 MeV and continued to at least 50 MeV.
Study of the Most Harmful Solar Energetic Particle for Shielding next Human Space Flights
NASA Astrophysics Data System (ADS)
Komei Yamashiro, Bryan
2015-04-01
Solar energetic particles (SEPs) accelerated by solar events such as flares and coronal mass ejections are radiation risks for humans in space on board the International Space Station (ISS), and will be significant obstacles for future long-duration manned space flight missions. This research supported efforts to improve predictions of large solar storms and aimed for a better understanding of Heliophysics. The main objective was to generate a dated catalog of the highest energy range SEPs measured by the Alpha Magnetic Spectrometer (AMS-02). Using online graphical user interfaces from the satellites, Solar and Heliospeheric Observatory (SOHO) and Geostationary Operational Environmental Satellite (GOES-13, 15), the generated data files from the mounted particle detectors were plotted along a specified energy range. The resulting histograms illustrated the low energy range data from SOHO (4 MeV to 53 MeV) and the low-mid energy range from GOES (0.8 MeV to 500 MeV), which collectively provided a low- to mid-energy range spectrum of the specific event energy ranges versus the SEP proton flux. The high energy range results of the AMS-02 (125 MeV to a few TeV) will eventually be incorporated with the two alternative space satellites of lower energy ranges for a complete analysis across a full SEP energy range. X-ray flux from GOES-15 were then obtained and plotted with the corresponding time to portray initial phenomena of the solar events. This procedure was reproduced for 5 different events determined energetic enough to be measured by AMS-02. The generated plots showed correlation between the different satellite detectors.
NASA Technical Reports Server (NTRS)
Lockwood, J. A.; Webber, W. R.; Friling, L. A.; Macri, J.; Hsieh, L.
1981-01-01
Balloon-borne measurements of the atmospheric and diffuse gamma-ray flux in the energy range 0.4-7.0 MeV with a Compton telescope, which included pulse-shape discrimination of the first scattering detector and a time-of-flight system between the first and second detector elements, are reported. Comparison of the diffuse cosmic gamma-ray flux to the atmospheric gamma rays indicates that 0.2-5.0 MeV is the optimum energy range for measurements made at the top of the earth's atmosphere. The measured total atmospheric gamma-ray flux between zero and 40 deg has an energy spectrum that agrees with the calculations of Ling (1975). Observations indicate that the ratio of the diffuse to atmospheric gamma ray fluxes at 3.5 g/sq cm is a maximum, about 1.0, between 0.7 and 3.0 MeV.
Observation of electrons with energy above 40 MeV at the altitudes 300-350 KM
NASA Astrophysics Data System (ADS)
Galper, A. M.; Grachev, V. M.; Dmitrenko, V. V.; Kirillov-Ugriumov, V. G.; Liakhov, V. A.; Rossomakhina, N. G.; Riumin, V. V.; Ulin, S. E.
The paper presents observations of electrons by the small, scintillator-gas Cerenkov gamma-telescope Elena-F at energies above 40 MeV and at altitudes of 300-350 km. Dependences of the electron fluxes at the 45-250 MeV and 60-460 MeV energy ranges from the vertical cutoff rigidity were measured, and for the equatorial region, the electron fluxes were found to be 193 plus or minus 32 and 160 plus or minus 30 e/sq m-s-sr, respectively, for the two energy ranges. The measured power law index of the differential energy spectrum 2.1 plus or minus 0.3. Results of observations in the region of the Brazil magnetic anomaly are discussed.
Some Nuclear Reaction Rates of Importance for Nucleosynthesis around Mass 45
NASA Astrophysics Data System (ADS)
Mitchell, Leon William
1985-06-01
This thesis describes the measurement of absolute cross sections and the determination of thermonuclear reaction rates for a series of reactions which are of importance in stellar nucleosynthesis. The yield of (gamma)-rays from the reaction ('42)Ca(p,(gamma))('43)Sc has been measured as a function of bombarding energy over the range 0.63 - 3.01 MeV, from ('44)Ca(p,(gamma))('45)Sc over the range 0.775 - 4.00 MeV, from ('42)Ca((alpha),(gamma))('46)Ti over the range 3.62 - 5.62 MeV, from ('42)Ca((alpha),p(gamma))('45)Sc over the range 4.06 - 5.92 MeV, from ('44)Ca(p,p'(gamma))('44)Ca over the range 1.90 - 5.03 MeV and from ('42)Ca(p,p'(gamma))('42)Ca over the range 2.24 - 3.01 MeV. High resolution Ge(Li) detectors have been used for all meas- urements. The cross section of the reaction ('44)Ca(p,n)('44)Sc has been measured from threshold up to a bombarding energy of 5.05 MeV by observation of the 1157 keV (gamma)-ray associated with the residual 3.93 h ('44)Sc activity, and the cross section of ('45)Sc(p,n)('45)Ti has been measured from threshold to a bombarding energy of 4.00 MeV both by observation of the annihilation radiation associated with the residual 3.09 h ('45)Ti activity and by measurement of the total neutron yield with a wide angle BF(,3) tube and paraffin detector. The cross section for the ('42)Ca((alpha),p(,0,1))('45)Sc reaction has been measured over the range 4.78 - 5.92 MeV by observing the emitted protons with a surface barrier detector. Experimental procedures for these measurements are detailed in the thesis, and in particular the efficient preparation of calcium targets with very low levels of ('19)F contamination is discussed. Data from all reactions are compared with the predictions of the statistical model code HAUSER*4, which employs global optical model parameters in the calculation of transmission coefficients and includes width fluctuation corrections. Satisfactory agreement is achieved, being better than a factor of 2 for all reactions except ('45)Sc(p,n)('45)Ti, for which the prediction is higher than the data by a factor of (TURN)2.3. Thermonuclear reaction rates have been calculated from the experimental cross section data for the temperature range 5 x 10('8) - 10('10)K, and the significance of the results for explosive nucleosyn- thesis in stars in discussed. The rates have been parameterized for. use in nucleosynthesis network calculations according to the scheme of Woosley et al. (Wo78). Reference. S. E. Woosley, W. A. Fowler, J. A. Holmes and B. A. Zimmerman. \\At. Nucl. Data Tables 22 (1978) 371.
NASA Technical Reports Server (NTRS)
Hammond, E. C., Jr.; Peters, Kevin; Stober, AL
1984-01-01
The 2aO film, pre-exposed to a series of neutral density filters which on development under standard conditions will produce the standard H-D curve for that film, were then exposed to Alpha paricles with a dose range of 3/10ths rads to 8 rads while varying the energy of the particles using 153 MeV, 70 MeV, and 47 MeV, respectively. An analysis of the film shows that the 3/10th rad dose produces the lowest optical density changes at 70 MeV and 47 MeV. While the optical density readings for the darker patterns seem to oscillate and decrease when exposed to radiation dosages of 3/10th rads to 8 rads.
Blister formation at subcritical doses in tungsten irradiated by MeV protons
NASA Astrophysics Data System (ADS)
Gavish Segev, I.; Yahel, E.; Silverman, I.; Makov, G.
2017-12-01
The material response of tungsten to irradiation by MeV protons has been studied experimentally, in particular with respect to bubble and blister formation. Tungsten samples were irradiated by 2.2 MeV protons at the Soreq Applied Research Accelerator Facility (SARAF) to doses of the order of 1017 protons/cm2 which are below the reported critical threshold for blister formation derived from keV range irradiation studies. Large, well-developed blisters are observed indicating that for MeV range protons the critical threshold is at least an order of magnitude lower than the lowest value reported previously. The effects of fluence, flux, and corresponding temperature on the distribution and characteristics of the obtained blisters were studied. FIB cross sections of several blisters exposed their depth and structure.
Freestanding ultrathin single-crystalline SiC substrate by MeV H ion-slicing
NASA Astrophysics Data System (ADS)
Jia, Qi; Huang, Kai; You, Tiangui; Yi, Ailun; Lin, Jiajie; Zhang, Shibin; Zhou, Min; Zhang, Bin; Zhang, Bo; Yu, Wenjie; Ou, Xin; Wang, Xi
2018-05-01
SiC is a widely used wide-bandgap semiconductor, and the freestanding ultrathin single-crystalline SiC substrate provides the material platform for advanced devices. Here, we demonstrate the fabrication of a freestanding ultrathin single-crystalline SiC substrate with a thickness of 22 μm by ion slicing using 1.6 MeV H ion implantation. The ion-slicing process performed in the MeV energy range was compared to the conventional case using low-energy H ion implantation in the keV energy range. The blistering behavior of the implanted SiC surface layer depends on both the implantation temperature and the annealing temperature. Due to the different straggling parameter for two implant energies, the distribution of implantation-induced damage is significantly different. The impact of implantation temperature on the high-energy and low-energy slicing was opposite, and the ion-slicing SiC in the MeV range initiates at a much higher temperature.
Calibration of imaging plate detectors to mono-energetic protons in the range 1-200 MeV
NASA Astrophysics Data System (ADS)
Rabhi, N.; Batani, D.; Boutoux, G.; Ducret, J.-E.; Jakubowska, K.; Lantuejoul-Thfoin, I.; Nauraye, C.; Patriarca, A.; Saïd, A.; Semsoum, A.; Serani, L.; Thomas, B.; Vauzour, B.
2017-11-01
Responses of Fuji Imaging Plates (IPs) to proton have been measured in the range 1-200 MeV. Mono-energetic protons were produced with the 15 MV ALTO-Tandem accelerator of the Institute of Nuclear Physics (Orsay, France) and, at higher energies, with the 200-MeV isochronous cyclotron of the Institut Curie—Centre de Protonthérapie d'Orsay (Orsay, France). The experimental setups are described and the measured photo-stimulated luminescence responses for MS, SR, and TR IPs are presented and compared to existing data. For the interpretation of the results, a sensitivity model based on the Monte Carlo GEANT4 code has been developed. It enables the calculation of the response functions in a large energy range, from 0.1 to 200 MeV. Finally, we show that our model reproduces accurately the response of more complex detectors, i.e., stack of high-Z filters and IPs, which could be of great interest for diagnostics of Petawatt laser accelerated particles.
Active Remote Detection of Radioactivity Based on Electromagnetic Signatures
2013-08-15
electron with energy eE therefore generates EEe ∆/~ low energy electrons. In the case of Compton absorption, the maximum electron energy is max,))21/(2...γγγ αα EEe += where 2 max, /mcγγα E= . For example, a 1 MeV gamma ray in air generates Compton electrons having a maximum energy of MeV8.0= eE ...and average energy of MeV44.0= eE . It should be noted that the range of high energy electrons is much less than the range of the high energy gammas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carnelli, P. F. F.; Arazi, A.; Cardona, M. A.
2010-08-04
We have measured elastic excitation functions for the {sup 7}Li+{sup 27}Al system, in an energy range close to its Coulomb barrier (E{sub lab} = 8.4 MeV) in steps of 0.25 MeV. For this purpose, an array of eight surface-barrier detectors was used. To get an insight on the background composition (mainly {alpha} particles), a telescope-detector was used for atomic-number identification. Identical measurements for the {sup 6}Li+{sup 27}Al system are planned for the near future.
Neutron-Induced Fission Cross Sections of 240Pu, 243Am, and natW in the Energy Range 1-200 MeV
NASA Astrophysics Data System (ADS)
Laptev, A. B.; Donets, A. Yu.; Dushin, V. N.; Fomichev, A. V.; Fomichev, A. A.; Haight, R. C.; Shcherbakov, O. A.; Soloviev, S. M.; Tuboltsev, Yu. V.; Vorobyev, A. S.
2005-05-01
A long-range research program devoted to measurements of neutron-induced fission cross-sections of actinides and stable isotopes is under way at the GNEIS facility. By now the new series of experiments for measurements of fission cross-section ratios relative to 235U has been completed for 240Pu, 243Am, and natW in a wide energy range of incident neutrons from 1 MeV to 200 MeV in the frame of the ISTC Project ♯1971. The measurements were performed using the multiplate ionization chamber and time-of-flight techniques. The results obtained in this measurement are presented in comparison with the other data.
Renaud, J; Rossomme, S; Sarfehnia, A; Vynckier, S; Palmans, H; Kacperek, A; Seuntjens, J
2016-09-21
In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min -1 , with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user's beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, A; Chen, Y; Ahmad, S
Purpose: Proton therapy exhibits several advantages over photon therapy due to depth-dose distributions from proton interactions within the target material. However, uncertainties associated with protons beam range in the patient limit the advantage of proton therapy applications. To quantify beam range, positron-emitting nuclei (PEN) and prompt gamma (PG) techniques have been developed. These techniques use de-excitation photons to describe the location of the beam in the patient. To develop a detector system for implementing the PG technique for range verification applications in proton therapy, we studied the yields, energy and angular distributions of the secondary particles emitted from a PMMAmore » phantom. Methods: Proton pencil beams of various energies incident onto a PMMA phantom with dimensions of 5 x 5 x 50 cm3 were used for simulation with the Geant4 toolkit using the standard electromagnetic packages as well as the packages based on the binary-cascade nuclear model. The emitted secondary particles are analyzed . Results: For 160 MeV incident protons, the yields of secondary neutrons and photons per 100 incident protons were ~6 and ~15 respectively. Secondary photon energy spectrum showed several energy peaks in the range between 0 and 10 MeV. The energy peaks located between 4 and 6 MeV were attributed to originate from direct proton interactions with 12C (~ 4.4 MeV) and 16O (~ 6 MeV), respectively. Most of the escaping secondary neutrons were found to have energies between 10 and 100 MeV. Isotropic emissions were found for lower energy neutrons (<10 MeV) and photons for all energies, while higher energy neutrons were emitted predominantly in the forward direction. The yields of emitted photons and neutrons increased with the increase of incident proton energies. Conclusions: A detector system is currently being developed incorporating the yields, energy and angular distributions of secondary particles from proton interactions obtained from this study.« less
NASA Astrophysics Data System (ADS)
Renaud, J.; Rossomme, S.; Sarfehnia, A.; Vynckier, S.; Palmans, H.; Kacperek, A.; Seuntjens, J.
2016-09-01
In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min-1, with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user’s beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.
Calibration of a proton beam energy monitor.
Moyers, M F; Coutrakon, G B; Ghebremedhin, A; Shahnazi, K; Koss, P; Sanders, E
2007-06-01
Delivery of therapeutic proton beams requires an absolute energy accuracy of +/-0.64 to 0.27 MeV for patch fields and a relative energy accuracy of +/-0.10 to 0.25 MeV for tailoring the depth dose distribution using the energy stacking technique. Achromatic switchyard tunes, which lead to better stability of the beam incident onto the patient, unfortunately limit the ability of switchyard magnet tesla meters to verify the correct beam energy within the tolerances listed above. A new monitor to measure the proton energy before each pulse is transported through the switchyard has been installed into a proton synchrotron. The purpose of this monitor is to correct and/or inhibit beam delivery when the measured beam energy is outside of the tolerances for treatment. The monitor calculates the beam energy using data from two frequency and eight beam position monitors that measure the revolution frequency of the proton bunches and the effective offset of the orbit from the nominal radius of the synchrotron. The new energy monitor has been calibrated by measuring the range of the beam through water and comparing with published range-energy tables for various energies. A relationship between depth dose curves and range-energy tables was first determined using Monte Carlo simulations of particle transport and energy deposition. To reduce the uncertainties associated with typical scanning water phantoms, a new technique was devised in which the beam energy was scanned while fixed thickness water tanks were sandwiched between two fixed parallel plate ionization chambers. Using a multitude of tank sizes, several energies were tested to determine the nominal accelerator orbit radius. After calibration, the energy reported by the control system matched the energy derived by range measurements to better than 0.72 MeV for all nine energies tested between 40 and 255 MeV with an average difference of -0.33 MeV. A study of different combinations of revolution frequency and radial offsets to test the envelope of algorithm accuracy demonstrated a relative accuracy of +/-0.11 MeV for small energy changes between 126 and 250 MeV. These new measurements may serve as a data set for benchmarking range-energy relationships.
NASA Astrophysics Data System (ADS)
Djaloeis, A.; Alderliesten, C.; Bojowald, J.; Mayer-Böricke, C.; Oelert, W.; Turek, P.
1983-04-01
Angular distributions of 58Ni(3He, d)59Cu transitions leading to the (0.0 MeV, 32-), (0.91 MeV, 52-), and (3.04 MeV, 92+) states in 59Cu have been measured at an incident energy of 130 MeV. The experimental data have been used to study mainly the role of the 3He optical model potential ambiguity in the distorted-wave Born approximation description of the reaction. Satisfactory fits to the data are obtained using a deep helion potential in standard local zero-range calculations. For a shallow 3He potential a comparable description can be achieved if the depth of the real part of the deuteron optical potential is reduced considerably, and nonlocality as well as finite-range corrections are taken into account. Under these conditions, the use of a 3He potential constructed according to the Johnson-Soper prescription yields similar results. NUCLEAR REACTIONS 58Ni (3He, d)59Cu, E=130 MeV; measured dσ(θ)dΩ. Enriched target; DWBA analysis; discussed reaction mechanism.
Detection of sub-MeV dark matter with three-dimensional Dirac materials
NASA Astrophysics Data System (ADS)
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Zurek, Kathryn M.; Grushin, Adolfo G.; Ilan, Roni; Griffin, Sinéad M.; Liu, Zhen-Fei; Weber, Sophie F.; Neaton, Jeffrey B.
2018-01-01
We propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of O (meV ) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculate the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.
Prospects for indirect dark matter searches with MeV photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartels, Richard; Gaggero, Daniele; Weniger, Christoph, E-mail: r.t.bartels@uva.nl, E-mail: d.gaggero@uva.nl, E-mail: c.weniger@uva.nl
2017-05-01
Over the past decade, extensive studies have been undertaken to search for photon signals from dark matter annihilation or decay for dark matter particle masses above ∼1 GeV. However, due to the lacking sensitivity of current experiments at MeV–GeV energies, sometimes dubbed the 'MeV gap', dark matter models with MeV to sub-GeV particle masses have received little attention so far. Various proposed MeV missions (like, e.g., e-ASTROGAM or AMEGO) are aimed at closing this gap in the mid- or long-term future. This, and the absence of clear dark matter signals in the GeV–TeV range, makes it relevant to carefully reconsidermore » the expected experimental instrumental sensitivities in this mass range. The most common two-body annihilation channels for sub-GeV dark matter are to neutrinos, electrons, pions or directly to photons. Among these, only the electron channel has been extensively studied, and almost exclusively in the context of the 511 keV line. In this work, we study the prospects for detecting MeV dark matter annihilation in general in future MeV missions, using e-ASTROGAM as reference, and focusing on dark matter masses in the range 1 MeV–3 GeV. In the case of leptonic annihilation, we emphasise the importance of the often overlooked bremsstrahlung and in-flight annihilation spectral features, which in many cases provide the dominant gamma-ray signal in this regime.« less
GALACTIC COSMIC RAYS IN THE LOCAL INTERSTELLAR MEDIUM: VOYAGER 1 OBSERVATIONS AND MODEL RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cummings, A. C.; Stone, E. C.; Heikkila, B. C.
Since 2012 August Voyager 1 has been observing the local interstellar energy spectra of Galactic cosmic-ray nuclei down to 3 MeV nuc{sup -1} and electrons down to 2.7 MeV. The H and He spectra have the same energy dependence between 3 and 346 MeV nuc{sup -1}, with a broad maximum in the 10–50 MeV nuc{sup -1} range and a H/He ratio of 12.2 ± 0.9. The peak H intensity is ∼15 times that observed at 1 AU, and the observed local interstellar gradient of 3–346 MeV H is -0.009 ± 0.055% AU{sup -1}, consistent with models having no local interstellarmore » gradient. The energy spectrum of electrons ( e {sup -} + e {sup +}) with 2.7–74 MeV is consistent with E {sup -1.30±0.05} and exceeds the H intensity at energies below ∼50 MeV. Propagation model fits to the observed spectra indicate that the energy density of cosmic-ray nuclei with >3 MeV nuc{sup -1} and electrons with >3 MeV is 0.83–1.02 eV cm{sup -3} and the ionization rate of atomic H is in the range of 1.51–1.64 × 10{sup -17} s{sup -1}. This rate is a factor >10 lower than the ionization rate in diffuse interstellar clouds, suggesting significant spatial inhomogeneity in low-energy cosmic rays or the presence of a suprathermal tail on the energy spectrum at much lower energies. The propagation model fits also provide improved estimates of the elemental abundances in the source of Galactic cosmic rays.« less
NASA Astrophysics Data System (ADS)
Troitskaia, E.; Arkhangelskaja, I.; Arkhangelsky, A.; Gan, W.
2013-02-01
Basing on the data of AVS-F apparatus from SONG-D detector onboard CORONAS-F satellite, we have studied the extreme solar event of January 20, 2005 used the 2.223 MeV, 4.44 MeV and 6.13 MeV γ-lines temporal profiles. By the statistical modeling method we calculated the temporal profile of 2.223 MeV line too. Calculations have been performed in assumption of Bessel type of accelerated particles energy spectrum, different 3He content in the region of nuclear reactions and several density models of the solar atmosphere. Comparisons of the results of modeling with observational 2.223 MeV AVS-F/SONG-D data reveal the increasing of the ratio of 3He concentration to 1H one during the flare from 2× 10-5 at the rise phase of the gamma-ray flux up to 2× 10--4 at the decay one. During the same period the spectrum became harder and the density of solar atmosphere increased too. Averaged over full time of 2.223 MeV γ-emission concentration ratio of 3He/1H is equal to (1.40±0.15)×10--4, also the density model with enlarged density up to 2×1017 cm-3 in the lower chromosphere and through the whole photosphere is realized. Besides, we have estimated the spectral index αT that is close to 0.1 for accelerated protons in the range of 1-100 MeV. Using the AVS-F gamma-rays spectral data in the wide range up to 140 MeV, we have obtained the spectral index of s=2.5±0.1 in the case of power law spectrum for energies more than 300 MeV.
EGRET observations of bursts at MeV energies
NASA Astrophysics Data System (ADS)
Catelli, J. R.; Dingus, B. L.; Schneid, E. J.
1998-05-01
We present preliminary results from the analysis of 16 bright bursts that have been observed by the EGRET NaI calorimeter, or TASC. Seven bursts have been imaged in the EGRET spark chamber above 30 MeV, but in most cases the TASC data gives the highest energy spectra available for these bursts. The TASC can obtain spectral and rate information for bursts well outside the field of view of the EGRET spark chambers, and is sensitive in the energy range from 1 to 200 MeV. The spectra for these bursts are mostly consistent with a simple power law with spectral index in the range from 1.7 to 3.7, with several of the brighter bursts showing emission past 100 MeV. No high energy cutoff has been observed. These high energy photons offer important clues to the physical processes involved at the origin of burst emission. For bursts at cosmological distances extremely high bulk Lorentz factors are implied by the presence of MeV and GeV photons which have not been attenuated by pair production with the lower energy photons from the source.
Energy dependence of proton displacement damage factors for bipolar transistors
NASA Astrophysics Data System (ADS)
Summers, Geoffrey P.; Xapsos, Michael A.; Dale, Cheryl J.; Wolicki, Eligius A.; Marshall, Paul
1986-12-01
Displacement damage factors, K(p), have been measured as a function of collector current for proton irradiations of 2N2222A (npn) and 2N2907A (pnp) switching transistors and 2N3055 (npn) power transistors over the energy range 5.0 to 60.3 MeV. The measurements of K(p) were made on specially selected lots of devices and were compared to values of the neutron damage factors, K(n), for 1-MeV displacement damage equivalent neutrons made on the same devices. The results show that, so far as device operation is concerned, the nature of the displacement damage produced by high energy protons and by fission neutrons is essentially the same. Over the energy range studied, protons were found to be more damaging than neutrons. For 5.0 MeV protons Kp/Kn was about 8.5 compared to about 1.8 for 60.3 MeV protons.
On the Search for Nuclear Resonance Fluorescence Signatures of 235U and 238U above 3 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Glen A.; Caggiano, Joseph A.; Bertozzi, William
Abstract–Nuclear resonance fluorescence is a physical process that provides an isotope-specific signature that could be used for the identification and characterization of materials. The technique involves the detection of prompt discrete-energy photons emitted from a sample that is exposed to photons in the MeV energy range. Potential applications of the technique range from detection of high explosives to characterization of special nuclear materials such as 235U. Pacific Northwest National Laboratory and Passport Systems have collaborated to conduct a a pair of measurements to search for a nuclear resonance fluorescence response of 235U above 3 MeV and of 238U above 5more » MeV using an 8 g sample of highly enriched uranium and a 90 g sample of depleted uranium. No new signatures were observed. The minimum detectable integrated cross section for 235U is presented.« less
A novel source of MeV positron bunches driven by energetic protons for PAS application
NASA Astrophysics Data System (ADS)
Tan, Zongquan; Xu, Wenzhen; Liu, Yanfen; Xiao, Ran; Kong, Wei; Ye, Bangjiao
2014-11-01
This paper proposes a novel methodology of MeV positrons generation for PAS application. Feasibility of this proposal analyzed by G4Beamline and Transport have shown reasonable success. Using 2 Hz, 1.6 GeV, 100 ns and 1.5 μC/bunch proton bunches for bombarding a graphite target, about 100 ns e+ bunches are generated. Quasi-monochromatic positrons in the range of 1-10 MeV included in these bunches have a flux of >107/s, peak brightness of 1014/s. A magnetic-confinement beamline is utilized to transport the positrons and a "Fast Beam Chopper" is unprecedentedly extended to chop those relativistic bunches. The positron beam can be finally characterized by the energy range of 1-10 MeV and bunch width from one hundred ps up to 1 ns. Such ultrashort bunches can be useful in tomography-type positron annihilation spectroscopy (PAS) as well as other applications.
Pamela observational capabilities of Jovian electrons component
NASA Astrophysics Data System (ADS)
di Felice, V.; PAMELA Collaboration
PAMELA is a satellite-borne experiment that will be launched in the first half of 2006 It will make long duration measurements of cosmic radiation over an extended energy range 80Mev to 200 GeV Specifically PAMELA will measure the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved 80MeV -- 190 GeV and will search for antinuclei with unprecedented sensitivity Furthermore it will measure the light nuclear component of cosmic rays and investigate phenomena connected with solar and earth physics The apparatus consists of a time of flight system a magnetic spectrometer an electromagnetic imaging calorimeter a shower tail catcher scintillator a neutron detector and an anticoincidence system In this work a study of the PAMELA capabilities to detect Jovian electrons is presented The Jovian magnetosphere is a powerful accelerator of electrons to several tens of MeV as observed at first by Pioneer 10 spacecraft 1973 The propagation of Jovian electrons to Earth is affected by modulation due to Corotating Interaction Regions CIR Their flux at Earth is moreover modulated because every sim 13 months Earth and Jupiter are aligned along the average direction of the Parker spiral of the Interplanetary Magnetic Field PAMELA will be able to measure the high energy tail of the Jovian electrons in the energy range from 50 MeV up to 130 MeV Moreover it will be possible to extract the Jovian component reaccelated at the solar wind termination shock above 130 MeV up to 2 GeV from the galactic flux
A search for gamma rays of 1.5-20.0 MeV from Centaurus A
NASA Technical Reports Server (NTRS)
O'Neill, Terrence; Tumer, O. Tumay; Zych, Allen; White, R. Stephen
1989-01-01
A search for a gamma-ray continuum and lines from Centaurus A is reported. No measurable gamma rays are found in the 1.5-20.0 MeV and 3 sigma upper limits are reported for various energies which are about a factor of two lower than the results reported by von Ballmoos et al. (1987). These upper limits, along with those of SAS 2 and COS B, suggest that the energy distribution turns over in the energy range of 500 keV to a few MeV. A high source temperature of 5 MeV or synchrotron self-Compton models for producing an excess of gamma rays of a few MeV do not appear necessary.
Novel Cosmic-Ray Electron and Positron Constraints on MeV Dark Matter Particles.
Boudaud, Mathieu; Lavalle, Julien; Salati, Pierre
2017-07-14
MeV dark matter (DM) particles annihilating or decaying to electron-positron pairs cannot, in principle, be observed via local cosmic-ray (CR) measurements because of the shielding solar magnetic field. In this Letter, we take advantage of spacecraft Voyager 1's capacity for detecting interstellar CRs since it crossed the heliopause in 2012. This opens up a new avenue to probe DM in the sub-GeV energy/mass range that we exploit here for the first time. From a complete description of the transport of electrons and positrons at low energy, we derive predictions for both the secondary astrophysical background and the pair production mechanisms relevant to DM annihilation or decay down to the MeV mass range. Interestingly, we show that reacceleration may push positrons up to energies larger than the DM particle mass. We combine the constraints from the Voyager and AMS-02 data to get novel limits covering a very extended DM particle mass range, from MeV to TeV. In the MeV mass range, our limits reach annihilation cross sections of order ⟨σv⟩∼10^{-28} cm^{3}/s. An interesting aspect is that these limits barely depend on the details of cosmic-ray propagation in the weak reacceleration case, a configuration which seems to be favored by the most recent B/C data. Though extracted from a completely different and new probe, these bounds have a strength similar to those obtained with the cosmic microwave background-they are even more stringent for p-wave annihilation.
Mackin, Dennis; Polf, Jerimy; Peterson, Steve; Beddar, Sam
2013-01-01
Purpose: The authors investigated how the characteristics of the detectors used in a three-stage Compton camera (CC) affect the CC's ability to accurately measure the emission distribution and energy spectrum of prompt gammas (PG) emitted by nuclear de-excitations during proton therapy. The detector characteristics they studied included the material (high-purity germanium [HPGe] and cadmium zinc telluride [CZT]), Doppler broadening (DB), and resolution (lateral, depth, and energy). Methods: The authors simulated three-stage HPGe and CZT CCs of various configurations, detecting gammas from point sources with energies ranging from 0.511 to 7.12 MeV. They also simulated a proton pencil beam irradiating a tissue target to study how the detector characteristics affect the PG data measured by CCs in a clinical proton therapy setting. They used three figures of merit: the distance of closest approach (DCA) and the point of closest approach (PCA) between the measured and actual position of the PG emission origin, and the calculated energy resolution. Results: For CCs with HPGe detectors, DB caused the DCA to be greater than 3 mm for 14% of the 6.13 MeV gammas and 20% of the 0.511 MeV gammas. For CCs with CZT detectors, DB caused the DCA to be greater than 3 mm for 18% of the 6.13 MeV gammas and 25% of the 0.511 MeV gammas. The full width at half maximum (FWHM) of the PCA in the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\hat z\\end{equation*} \\end{document}z^ direction for HPGe and CZT detectors ranged from 1.3 to 0.4 mm for gammas with incident energy ranging from 0.511 to 7.12 MeV. For CCs composed of HPGe detectors, the resolution of incident gamma energy calculated by the CC ranged from 6% to 1% for gammas with true incident energies from 0.511 to 7.12 MeV. For CCs composed of CZT detectors, the resolution of gamma energy calculated by the CC ranged from 10% to 1% for gammas with true incident energies from 0.511 to 7.12 MeV. For HPGe and CZT CCs in which all detector effect were included, the DCA was less than 3 mm for 75% and 68% of the detected gammas, respectively, and restricting gammas to those having energy greater than 2.0 MeV increased these percentages to 83% and 77% for HPGe and CZT, respectively. Distributions of the true gamma origins and the PCA after detector characteristics had been included showed good agreement on beam range and some loss of resolution for the lateral profile of the PG emission. Characteristic energy lines were evident in the calculated gamma energy spectrum. Conclusions: The authors found the following: (1) DB is the dominant source of spatial and energy resolution loss in the CCs at all energy levels; (2) the largest difference in the spatial resolution of HPGe and CZT CCs is that the spatial resolution distributions of CZT have broader tails. The differences in the FWHM of these distributions are small; (3) the energy resolution of both HPGe and CZT three-stage CCs is adequate for PG spectroscopy; and (4) restricting the gammas to those having energy greater than 2.0 MeV can improve the achievable image resolution. PMID:23298111
Measurements of the 169Tm(n,2n)168Tm cross section between 9.0 and 17.5 MeV
NASA Astrophysics Data System (ADS)
Soter, J.; Bhike, Megha; Krishichayan, Fnu; Finch, S. W.; Tornow, W.
2016-09-01
Measurements of the 169Tm(n,2n)168Tm cross section have been performed in 0.5 MeV intervals for neutron energies ranging from 9.0 MeV to 17.5 MeV in order to resolve discrepancies in the current literature data. The neutron activation technique was used with 90Zr and 197Au as monitor foils. After irradiation, de-excitation gamma rays were recorded off-line with High-Purity Germanium (HPGE) detectors in TUNL's Low-Background Counting Facility. In addition, data for the 169Tm(n,3n)167Tm reaction have also been obtained from 15.5 MeV to 17.5 MeV. The results of these measurements provide the basis for investigating properties of the interial confinement fusion plasma in deuterium-tritium (DT) capsules at the National Ignition Facility located at Lawrence Livermore National Laboratory.
NASA Astrophysics Data System (ADS)
Sharma, Kanika; Bahl, Shaila; Singh, Birendra; Kumar, Pratik; Lochab, S. P.; Pandey, Anant
2018-04-01
BaSO4:Eu nanophosphor is delicately optimized by varying the concentration of the impurity element and compared to the commercially available thermoluminescent dosimeter (TLD) LiF:Mg,Ti (TLD-100) and by extension also to CaSO4:Dy (TLD-900) so as to achieve its maximum thermoluminescence (TL) sensitivity. Further, the energy dependence property of this barite nanophosphor is also explored at length by exposing the phosphor with 1.25 MeV of Co-60, 0.662 MeV of Cs-137, 85 MeV and 65 MeV of Carbon ion beams. Various batches of the phosphor at hand (with impurity concentrations being 0.05, 0.10, 0.20, 0.50 and 1.00 mol%) are prepared by the chemical co-precipitation method out of which BaSO4:Eu with 0.20 mol% Eu exhibits the maximum TL sensitivity. Further, the optimized nanophosphor exhibits a whopping 28.52 times higher TL sensitivity than the commercially available TLD-100 and 1.426 times higher sensitivity than TLD-900, a noteworthy linear response curve for an exceptionally wide range of doses i.e. 10 Gy to 2 kGy and a simple glow curve structure. Furthermore, when the newly optimized nanophosphor is exposed with two different energies of gamma radiations, namely 1.25 MeV of Co-60 (dose range- 10-300 Gy) and 0.662 MeV of Cs-137 (dose range- 1-300 Gy), it is observed that the shape and structure of the glow curves remain remarkably similar for different energies of radiation while the TL response curve shows little to no variation. When exposed to different energies of carbon ion beam BaSO4:Eu displays energy independence at lower doses i.e. from 6.059 to 14.497 kGy. Finally, even though energy independence is lost at higher doses, the material shows high sensitivity to higher energy (85 MeV) of carbon beam compared to the lower energy (65 MeV of C6+) and saturation is apparent only after 121.199 kGy. Therefore the present nanophosphor displays potential as an energy independent TLD.
Balloon test project: Cosmic Ray Antimatter Calorimeter (CRAC)
NASA Technical Reports Server (NTRS)
Christy, J. C.; Dhenain, G.; Goret, P.; Jorand, J.; Masse, P.; Mestreau, P.; Petrou, N.; Robin, A.
1984-01-01
Cosmic ray observations from balloon flights are discussed. The cosmic ray antimatter calorimeter (CRAC) experiment attempts to measure the flux of antimatter in the 200-600 Mev/m energy range and the isotopes of light elements between 600 and 1,000 Mev/m.
Construction of a 1 MeV Electron Accelerator for High Precision Beta Decay Studies
NASA Astrophysics Data System (ADS)
Longfellow, Brenden
2014-09-01
Beta decay energy calibration for detectors is typically established using conversion sources. However, the calibration points from conversion sources are not evenly distributed over the beta energy spectrum and the foil backing of the conversion sources produces perturbations in the calibration spectrum. To improve this, an external, tunable electron beam coupled by a magnetic field can be used to calibrate the detector. The 1 MeV electron accelerator in development at Triangle Universities Nuclear Laboratory (TUNL) utilizes a pelletron charging system. The electron gun shoots 104 electrons per second with an energy range of 50 keV to 1 MeV and is pulsed at a 10 kHz rate with a few ns width. The magnetic field in the spectrometer is 1 T and guiding fields of 0.01 to 0.05 T for the electron gun are used to produce a range of pitch angles. This accelerator can be used to calibrate detectors evenly over its energy range and determine the detector response over a range of pitch angles. Beta decay energy calibration for detectors is typically established using conversion sources. However, the calibration points from conversion sources are not evenly distributed over the beta energy spectrum and the foil backing of the conversion sources produces perturbations in the calibration spectrum. To improve this, an external, tunable electron beam coupled by a magnetic field can be used to calibrate the detector. The 1 MeV electron accelerator in development at Triangle Universities Nuclear Laboratory (TUNL) utilizes a pelletron charging system. The electron gun shoots 104 electrons per second with an energy range of 50 keV to 1 MeV and is pulsed at a 10 kHz rate with a few ns width. The magnetic field in the spectrometer is 1 T and guiding fields of 0.01 to 0.05 T for the electron gun are used to produce a range of pitch angles. This accelerator can be used to calibrate detectors evenly over its energy range and determine the detector response over a range of pitch angles. TUNL REU Program.
Newly Calibrated Observations from the MagEIS Proton Telescopes Aboard the Van Allen Probes
NASA Astrophysics Data System (ADS)
Looper, M. D.; Claudepierre, S. G.; O'Brien, T. P.; Blake, J. B.; Fennell, J. F.; Guild, T. B.; Mazur, J. E.
2017-12-01
In addition to electron detectors, the MagEIS (Magnetic Electron Ion Spectrometer) sensors aboard the Van Allen Probes include telescopes designed to measure protons from about 60 keV to 20 MeV. While both MagEIS telescopes measure protons in the 60-1200 keV energy range, the telescope on Van Allen Probe B houses an additional detector that measures protons in the 1-20 MeV energy range. With the addition of the 1-20 MeV proton measurements, these telescopes bridge the energy ranges of the HOPE and REPT sensors that are also part of the Energetic Particle, Composition, and Thermal Plasma (ECT) sensor suite. We have used the Geant4 radiation-transport code to model the response of the proton telescopes, including backgrounds, and have used this new understanding to prepare a calibrated dataset of their measurements. The newly-calibrated 1-20 MeV proton measurements will be made available to the community for the first time as part of an upcoming ECT data release. We present results from this new dataset during geomagnetically active periods when changes are observed in the outer regions of the inner zone.
Dosimetric characteristics of a MOSFET dosimeter for clinical electron beams.
Manigandan, D; Bharanidharan, G; Aruna, P; Devan, K; Elangovan, D; Patil, Vikram; Tamilarasan, R; Vasanthan, S; Ganesan, S
2009-09-01
The fundamental dosimetric characteristics of commercially available metal oxide semiconductor field effect transistor (MOSFET) detectors were studied for clinical electron beam irradiations. MOSFET showed excellent linearity against doses measured using an ion chamber in the dose range of 20-630cGy. MOSFET reproducibility is better at high doses compared to low doses. The output factors measured with the MOSFET were within +/-3% when compared with those measured with a parallel plate chamber. From 4 to 12MeV, MOSFETs showed a large angular dependence in the tilt directions and less in the axial directions. MOSFETs do not show any dose-rate dependence between 100 and 600MU/min. However, MOSFETs have shown under-response when the dose per pulse of the beam is decreased. No measurable effect in MOSFET response was observed in the temperature range of 23-40 degrees C. The energy dependence of a MOSFET dosimeter was within +/-3.0% for 6-18MeV electron beams and 5.5% for 4MeV ones. This study shows that MOSFET detectors are suitable for dosimetry of electron beams in the energy range of 4-18MeV.
NASA Astrophysics Data System (ADS)
Nie, Y. B.; Ruan, X. C.; Ren, J.; Zhang, S.; Han, R.; Bao, J.; Huang, H. X.; Ding, Y. Y.; Wu, H. C.; Liu, P.; Zhou, Z. Y.
2017-09-01
In order to make benchmark validation of the nuclear data for gallium (Ga), tungsten (W) and beryllium (Be) in existing modern evaluated nuclear data files, neutron leakage spectra in the range from 0.8 to 15 MeV from slab samples were measured by time-of-flight technique with a BC501 scintillation detector. The measurements were performed at China Institute of Atomic Energy (CIAE) using a D-T neutron source. The thicknesses of the slabs were 0.5 to 2.5 mean free path for 14.8 MeV neutrons, and the measured angles were chosen to be 60∘ and 120∘. The measured spectra were compared with those calculated by the continuous energy Monte-Carlo transport code MCNP, using the data from the CENDL-3.1, ENDF/B-VII.1 and JENDL-4.0 nuclear data files, the comparison between the experimental and calculated results show that: The results from all three libraries significantly underestimate the cross section in energy range of 10-13 MeV for Ga; For W, the calculated spectra using data from CENDL-3.1 and JENDL-4.0 libraries show larger discrepancies with the measured ones, especially around 8.5-13.5 MeV; and for Be, all the libraries led to underestimation below 3 MeV at 120∘.
Neutron Scattering Cross Section Measurements for 169Tm via the (n,n') Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alimeti, Afrim; Kegel, Gunter H.R.; Egan, James J.
2005-05-24
The neutron physics group at the University of Massachusetts Lowell (UML) has been involved in a program of scattering cross-section measurements for highly deformed nuclei such as 159Tb, 169Tm, 232Th, 235U, 238U, and 239Pu. Ko et al. have reported neutron inelastic scattering data from 169Tm for states above 100 keV via the (n,n'{gamma}) reaction at incident energies in the 0.2 MeV to 1.0 MeV range. In the present research, in which the time-of-flight method was employed, direct (n,n') measurements of neutrons scattered from 169Tm in the 0.2 to 1.0 MeV range were taken. It requires that our 5.5-MeV Van demore » Graaff accelerator be operated in the pulsed and bunched beam mode producing subnanosecond pulses at a 5-MHz repetition frequency. Neutrons are produced by the 7Li(p,n)7Be reaction using a thin metallic elemental lithium target.« less
Interaction of Superconducting YBa2Cu(sub 3-x)Zn(sub x)O(sub 7-y) with MeV Radiation
NASA Technical Reports Server (NTRS)
Lewis, R. A.; Robertson, G. A.
2005-01-01
When the high Tc superconductor Y-Ba-Cu-O is cooled with liquid nitrogen, the conduction holes form a macroscopic collective or entangled state. While collective effects have been observed with radiation energies up to 5 eV, no high-sensitivity experiments have previously been carried out to search for comparable effects with MeV radiation. Here an experiment using a pair of scintillation counters arranged to search for changes in the natural background of high energy radiation adjacent to a warm and cold Y-Ba-Cu-O superconductor is described. The experiment showed a shift toward higher pulse heights when the SC was cooled, with a 4 standard deviation excess of 9.12+/-2.28 events/ksec over the range of 0 to 18 MeV. The net difference spectrum shows a 5.5 standard deviation excess signal for the range of 3 to 6 MeV.
The Energy Spectrum of Jovian Electrons in Interplanetary Space
NASA Technical Reports Server (NTRS)
Christon, S. P.; Cummings, A. C.; Stone, E. C.; Webber, W. R.
1985-01-01
The energy spectrum of electrons with energies approx 10 to approx 180 MeV measured with the electron telescope on the Voyager 1 and 2 spacecraft in interplanetary space from 1978 to 1983 is studied. The kinetic energy of electrons is determined by double dE/dx measurements from the first two detectors (D sub 1, D sub 2) of a stack of eight solid state detectors and by the range of particle penetration into the remaining six detectors (D sub 3 to D sub 8) which are interleaved with tungsten absorbers. From 1978 to 1983 (radial range approximately 2 to a pproximately 12 AU) electrons of Jovian origin were clearly observable for electrons stopping in D(sub 3(E approximately greater than 4 MeV)) and in D(sub 4 (E approximately greater than 8 MeV)). For electrons stopping in D(sub 5(E approximately greather than 12 MeV)), the jovian flux dominated the galactic electron flux for a period of approximately one year near the encounter with Jupiter. Jovian electrons were also observed in D(sub 6(E approximately greater than 21 MeV)) but not in D(sub 7(E approximately greater than 28 MeV)). A detailed interpretation of the electron variations in all energy channels depends on an accurate subtraction of background induced by energetic protons of a few 100 MeV. This substraction is facilitated by laboratory calibration results at several energies. Further results on the differential energy spectrum of Jovian electrons and limits on the maximum detected energies will be reported.
Development of a Quasi-monoenergetic 6 MeV Gamma Facility at NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Nowicki, Suzanne F.; Hunter, Stanley D.; Parsons, Ann M.
2012-01-01
The 6 MeV Gamma Facility has been developed at NASA Goddard Space Flight Center (GSFC) to allow in-house characterization and testing of a wide range of gamma-ray instruments such as pixelated CdZnTe detectors for planetary science and Compton and pair-production imaging telescopes for astrophysics. The 6 MeV Gamma Facility utilizes a circulating flow of water irradiated by 14 MeV neutrons to produce gamma rays via neutron capture on oxygen (O-16(n,p)N-16 yields O-16* yields O-16 + gamma). The facility provides a low cost, in-house source of 2.742, 6.129 and 7.117 MeV gamma rays, near the lower energy range of most accelerators and well above the 2.614 MeV line from the Th-228 decay chain, the highest energy gamma ray available from a natural radionuclide. The 7.13 s half-life of the N-16 decay allows the water to be irradiated on one side of a large granite block and pumped to the opposite side to decay. Separating the irradiation and decay regions allows for shielding material, the granite block, to be placed between them, thus reducing the low-energy gamma-ray continuum. Comparison between high purity germanium (HPGe) spectra from the facility and a manufactured source, Pu-238/C-13, shows that the low-energy continuum from the facility is reduced by a factor approx. 30 and the gamma-ray rate is approx.100 times higher at 6.129 MeV.
Detection of the high energy component of Jovian electrons at 1 AU with the PAMELA experiment.
NASA Astrophysics Data System (ADS)
Casolino, M.; PAMELA Collaboration
PAMELA is a satellite-borne experiment that will be launched in the first half of 2006 It will make long duration measurements of cosmic radiation over an extended energy range 80Mev to 200 GeV Specifically PAMELA will measure the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved 80MeV - 190 GeV and will search for antinuclei with unprecedented sensitivity Furthermore it will measure the light nuclear component of cosmic rays and investigate phenomena connected with solar and earth physics The apparatus consists of a time of flight system a magnetic spectrometer an electromagnetic imaging calorimeter a shower tail catcher scintillator a neutron detector and an anticoincidence system The Jovian magnetosphere is a powerful accelerator of electrons to several tens of MeV as observed at first by Pioneer 10 spacecraft 1973 The propagation of Jovian electrons to Earth is affected by modulation due to Corotating Interaction Regions CIR Their flux at Earth is moreover modulated because every 13 months Earth and Jupiter are aligned along the average direction of the Parker spiral of the Interplanetary Magnetic Field For its characteristics PAMELA will be able to measure the high energy tail of the Jovian electrons in the energy range from 50 MeV up to 130 MeV With long term observation it will also be possible to detect the Jovian component reaccelated at the solar wind termination shock from the galactic flux
Jeong, Tae Won; Singh, P K; Scullion, C; Ahmed, H; Kakolee, K F; Hadjisolomou, P; Alejo, A; Kar, S; Borghesi, M; Ter-Avetisyan, S
2016-08-01
The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.
NASA Astrophysics Data System (ADS)
Jeong, Tae Won; Singh, P. K.; Scullion, C.; Ahmed, H.; Kakolee, K. F.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.; Ter-Avetisyan, S.
2016-08-01
The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.
Two nucleon systems at m π ~ 450 MeV from lattice QCD
Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; ...
2015-12-23
Nucleon-nucleon systems are studied with lattice quantum chromodynamics at a pion mass ofmore » $$m_\\pi\\sim 450~{\\rm MeV}$$ in three spatial volumes using $$n_f=2+1$$ flavors of light quarks. At the quark masses employed in this work, the deuteron binding energy is calculated to be $$B_d = 14.4^{+3.2}_{-2.6} ~{\\rm MeV}$$, while the dineutron is bound by $$B_{nn} = 12.5^{+3.0}_{-5.0}~{\\rm MeV}$$. Over the range of energies that are studied, the S-wave scattering phase shifts calculated in the 1S0 and 3S1-3D1 channels are found to be similar to those in nature, and indicate repulsive short-range components of the interactions, consistent with phenomenological nucleon-nucleon interactions. In both channels, the phase shifts are determined at three energies that lie within the radius of convergence of the effective range expansion, allowing for constraints to be placed on the inverse scattering lengths and effective ranges. Thus, the extracted phase shifts allow for matching to nuclear effective field theories, from which low energy counterterms are extracted and issues of convergence are investigated. As part of the analysis, a detailed investigation of the single hadron sector is performed, enabling a precise determination of the violation of the Gell-Mann–Okubo mass relation.« less
Calculating Rayleigh scattering amplitudes from 100 eV to 10 MeV. [100 eV to 10 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, J.C.; Reynaud, G.W.; Botto, D.J.
1979-05-01
An attempt is made to explain how to calculate the contribution to elastic photon-atom scattering due to Rayleigh scattering (the scattering off bound electrons) in the photon energy range 100 eV less than or equal to W less than or equal to 10 MeV. All intermediate calculations are described, including the calculation of the potential, bound state wave functions, matrix elements, and final cross sections. 12 references. (JFP)
Low-energy cosmic ray protons from nuclear interactions of cosmic rays with the interstellar medium.
NASA Technical Reports Server (NTRS)
Wang, H. T.
1973-01-01
The intensity of low-energy (less than 100 MeV) protons from nuclear interactions of higher-energy (above 100 MeV) cosmic rays with the interstellar medium is calculated. The resultant intensity in the 10- to 100-MeV range is larger by a factor of 3-5 than the observed proton intensity near earth. The calculated intensity from nuclear interactions constitutes a lower limit on the actual proton intensity in interstellar space.
Gamma emission of the atmosphere in the vicinity of the Earth. [28 keV to 4. 1 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golenetskii, S.V.; Gur'yan, Yu.A.; Il'inskii, V.N.
1975-01-01
The X-ray and ..gamma..-emissions of the earth's atmosphere were measured on Kosmos 461 in the range of 28 keV to 4.1 MeV. The energy spectrum of the emission was measured and the geomagnetic dependence of intensity in the continuous spectrum and in the 0.511-MeV line was determined. Measurements on Kosmos 135 yielded data on the height dependence of the atmospheric ..gamma..-quantum flux. 10 references.
NASA Technical Reports Server (NTRS)
Crannell, C. J.; Crannell, H.; Ramaty, R.
1977-01-01
The flux of 15.11 MeV gamma rays relative to the flux 4.44 MeV gamma rays was calculated from measured cross sections for excitation of the corresponding states of C-12 and from experimental determinations of the branching ratios for direct de-excitation of these states to the ground state. Because of the difference in threshold energies for excitation of these two levels, the relative intensities in the two lines are particularly sensitive to the spectral distribution of energetic particles which excite the corresponding nuclear levels. For both solar and cosmic emission, the observability of the 15.11 MeV line is expected to be enhances by low source-background continuum in this energy range.
NASA Astrophysics Data System (ADS)
Bastid, N.; Alard, J. P.; Arnold, J.; Augerat, J.; Babinet, R.; Biagi, F.; Brochard, F.; Crouau, M.; Charmensat, P.; Dupieux, P.; Fodor, Z.; Fraysse, L.; Girard, J.; Gorodetzky, P.; Gosset, J.; Laspalles, C.; Lemaire, M. C.; Le Merdy, A.; L'hôte, D.; Lucas, B.; Marroncle, J.; Montarou, G.; Parizet, M. J.; Poitou, J.; Qassoud, D.; Racca, C.; Rahmani, A.; Schimmerling, W.; Terrien, Y.; Valette, O.
1990-01-01
Emission of light fragments at small angles is studied in relativistic heavy ion collisions using the Diogene plastic wall for both symmetrical and non-symmetrical target-projectile systems with 400 MeV per nucleon and 800 MeV per nucleon incident neon nuclei. Efficiency of multiplicity measurements in the small angle range for the selection of central or peripheral collisions is confirmed for asymmetric systems. Differential production cross sections of Z = 1 fragments show evidence for the existence of two emitting sources. The apparent temperature of each source is obtained from comparison with a thermodynamical model.
NASA Technical Reports Server (NTRS)
Bastid, N.; Alard, J. P.; Arnold, J.; Augerat, J.; Babinet, R.; Biagi, F.; Brochard, F.; Crouau, M.; Charmensat, P.; Dupieux, P.;
1990-01-01
Emission of light fragments at small angles is studied in relativistic heavy ion collisions using the Diogene plastic wall for both symmetrical and non-symmetrical target-projectile systems with 400 MeV per nucleon and 800 MeV per nucleon incident neon nuclei. Efficiency of multiplicity measurements in the small angle range for the selection of central or peripheral collisions is confirmed for asymmetric systems. Differential production cross sections of Z = 1 fragments show evidence for the existence of two emitting sources. The apparent temperature of each source is obtained from comparison with a thermodynamical model.
Finite-density transition line for QCD with 695 MeV dynamical fermions
NASA Astrophysics Data System (ADS)
Greensite, Jeff; Höllwieser, Roman
2018-06-01
We apply the relative weights method to SU(3) gauge theory with staggered fermions of mass 695 MeV at a set of temperatures in the range 151 ≤T ≤267 MeV , to obtain an effective Polyakov line action at each temperature. We then apply a mean field method to search for phase transitions in the effective theory at finite densities. The result is a transition line in the plane of temperature and chemical potential, with an end point at high temperature, as expected, but also a second end point at a lower temperature. We cannot rule out the possibilities that a transition line reappears at temperatures lower than the range investigated, or that the second end point is absent for light quarks.
NASA Astrophysics Data System (ADS)
Afanasev, S.; Vishnevskiy, A.; Vishnevskiy, D.; Rogachev, A.; Tyutyunnikov, S.
2017-05-01
As part of the Energy & Transmutation project, we are developing a detector for neutrons with energies in the 10-100 MeV range emitted from the target irradiated by a charged-particle beam. The neutron is detected by measuring the time-of-flight and total kinetic energy of the forward-going recoil proton [1] knocked out at a small angle from a thin layer of plastic scintillator, which has to be selected against an intense background created by γ quanta, scattered neutrons, and charged particles. On the other hand, neutron energy has to be measured over the full range with no extra tuning of the detector operation regime. Initial measurements with a source of 14.1-MeV neutrons are reported.
Pitch angle distributions of geomagnetically trapped MeV helium ions during quiet times
NASA Technical Reports Server (NTRS)
Fritz, T. A.; Spjeldvik, W. N.
1982-01-01
It is noted that during geomagnetically quiet conditions, energetic radiation belt helium ion fluxes at MeV energies have been found to exhibit characteristic radial profiles and large pitch angle anisotropies. Compiling data from many experiments, a systematic dependence of this anisotropy with helium ion energy is deduced. Provided a certain approximation holds for the observed pitch angle distributions, an empirical relation is deduced involving the helium ion energy. The range of the total ion energy here is 0.59-9 MeV (148-2250 keV per nucleon). These values are obtained for L shells in the range where L is approximately 2 to 5. The results are compared with theoretical expectations, and a qualitative explanation for the observed trend is suggested.
The 20Ne(d,p) 21Ne Transfer Reaction in Relation to the s-Process Abundances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nsangu, C. T.; Laird, A. M.; Parikh, A.
2016-01-01
A study of the Ne-20(d,p)Ne-21 transfer reaction was performed using the Quadrupole Dipole Dipole Dipole (Q3D) magnetic spectrograph in Garching, Germany. The experiment probed excitation energies in Ne-21 ranging from 6.9 MeV to 8.5 MeV. The aim was to investigate the spectroscopic information of Ne-21 within the Gamow window of core helium burning in massive stars. Further information in this region will help reduce the uncertainties on the extrapolation down to Gamow window cross sections of the O-17(alpha,gamma)Ne-21 reaction. In low metallicity stars, this reaction has a direct impact on s-process abundances by determining the fate of O-16 as eithermore » a neutron poison or a neutron absorber. The experiment used a 22-MeV deuteron beam, with intensities varying from 0.5-1 mu A, and an implanted target of Ne-20 of 7 mu g/cm(2) in 40 mu g/cm(2) carbon foils. Sixteen Ne-21 peaks have been identified in the E-x = 6.9-8.5 MeV range, of which only thirteen peaks correspond to known states. Only the previously-known E-x = 7.960 MeV state was observed within the Gamow window.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budzanowski, A.; Dabrowski, H.; Freindl, L.
1978-03-01
The differential cross sections for ..cap alpha.. particles elastically and inelastically scattered from /sup 5/8Ni (at 29, 34, 38, and 58 MeV) and elastically scattered from /sup 6/0Ni (at 29 and 34 MeV), are measured together with excitation functions in the 25--38 MeV region at 178.5/sup 0/ lab. These data together with the data of 26.5, 32.3, 104, and 139 MEV for /sup 5/8Ni and 32.3 and 104 MeV for /sup 6/0Ni from other sources were analyzed using an optical model with volume and surface absorptions and the Saxon-Woods square form factors. The analysis yielded energy dependent depths of bothmore » real and imaginary parts of the potential and constant geometric parameters. The analytical expressions for depths of the real and both absorption potentials are obtained. The coupled channel calculations using the above optical potential were performed for the first excited state of /sup 5/8Ni. Both elastic scattering data and coupling with the first excited state of /sup 5/8Ni are well reproduced using the above potential in the wide scattering energy range.« less
Detection of sub-MeV dark matter with three-dimensional Dirac materials
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; ...
2018-01-08
Here, we propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of Ο(meV) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculatemore » the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.« less
Detection of sub-MeV dark matter with three-dimensional Dirac materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela
Here, we propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of Ο(meV) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculatemore » the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.« less
The Crab pulsar light curve in the soft gamma ray range: FIGARO II results
NASA Technical Reports Server (NTRS)
Massaro, E.; Agrinier, B.; Barouch, E.; Comte, R.; Costa, E.; Cusumano, G. C.; Gerardi, G.; Lemoine, D.; Mandrou, P.; Masnou, J. L.
1992-01-01
The FIGARO II experiment (a large area, balloon borne, crystal scintillator detector working from 0.15 to 4.3 MeV) observed the Crab pulsar on 1990 Jul. 9 for about seven hours. The study of the pulse profile confirms some structures detected with a low significance during the shorter observation of 1986, and adds new important elements to the picture. In particular, between the two main peaks, two secondary peaks appear centered at phase values 0.1 and 0.3, in the energy range 0.38 to 0.49 MeV; in the same energy range, a spectral feature at 0.44 MeV, interpreted as a redshifted positron annihilation line, was observed during the same balloon flight in the phase interval including the second main peak and the neighboring secondary peak. If the phase interval considered is extended to include also the other secondary peak, the significance of the spectral line appears to increase.
NASA Astrophysics Data System (ADS)
Golnik, C.; Bemmerer, D.; Enghardt, W.; Fiedler, F.; Hueso-González, F.; Pausch, G.; Römer, K.; Rohling, H.; Schöne, S.; Wagner, L.; Kormoll, T.
2016-06-01
The finite range of a proton beam in tissue opens new vistas for the delivery of a highly conformal dose distribution in radiotherapy. However, the actual particle range, and therefore the accurate dose deposition, is sensitive to the tissue composition in the proton path. Range uncertainties, resulting from limited knowledge of this tissue composition or positioning errors, are accounted for in the form of safety margins. Thus, the unverified particle range constrains the principle benefit of proton therapy. Detecting prompt γ-rays, a side product of proton-tissue interaction, aims at an on-line and non-invasive monitoring of the particle range, and therefore towards exploiting the potential of proton therapy. Compton imaging of the spatial prompt γ-ray emission is a promising measurement approach. Prompt γ-rays exhibit emission energies of several MeV. Hence, common radioactive sources cannot provide the energy range a prompt γ-ray imaging device must be designed for. In this work a benchmark measurement-setup for the production of a localized, monoenergetic 4.44 MeV γ-ray source is introduced. At the Tandetron accelerator at the HZDR, the proton-capture resonance reaction 15N(p,α γ4.439)12C is utilized. This reaction provides the same nuclear de-excitation (and γ-ray emission) occurrent as an intense prompt γ-ray line in proton therapy. The emission yield is quantitatively described. A two-stage Compton imaging device, dedicated for prompt γ-ray imaging, is tested at the setup exemplarily. Besides successful imaging tests, the detection efficiency of the prototype at 4.44 MeV is derived from the measured data. Combining this efficiency with the emission yield for prompt γ-rays, the number of valid Compton events, induced by γ-rays in the energy region around 4.44 MeV, is estimated for the prototype being implemented in a therapeutic treatment scenario. As a consequence, the detection efficiency turns out to be a key parameter for prompt γ-rays Compton imaging limiting the applicability of the prototype in its current realization.
7Li(p,n)7Be and 12C(p,n)12N reactions at 200, 300, and 400 MeV
NASA Astrophysics Data System (ADS)
Watson, J. W.; Pourang, R.; Abegg, R.; Alford, W. P.; Celler, A.; El-Kateb, S.; Frekers, D.; Häusser, O.; Helmer, R.; Henderson, R.; Hicks, K.; Jackson, K. P.; Jeppesen, R. G.; Miller, C. A.; Vetterli, M.; Yen, S.; Zafiratos, C. D.
1989-07-01
At 200, 300, and 400 MeV bombarding energies, we measured cross section angular distributions for the 7Li(p,n)7Be(g.s.+0.43 MeV) reaction and 0° cross sections for the 12C(p,n)12N(g.s.) reaction. Systematics of these reactions are presented. The center-of-mass cross section for the 7Li(p,n)7Be(g.s.+0.43 MeV) reaction, when plotted as a function of momentum transfer, is nearly independent of energy. The laboratory cross section for this reaction at 0° in the energy range from 60 to 400 MeV is also independent of energy, having a constant value, to within experimental errors, of 35.5 mb/sr with an estimated uncertainty of +/-1.5 mb/sr.
NASA Astrophysics Data System (ADS)
Burdeinyi, D.; Brudvik, J.; Fissum, K.; Ganenko, V.; Hansen, K.; Isaksson, L.; Livingston, K.; Lundin, M.; Nilsson, B.; Schroder, B.
2017-01-01
The cross section asymmetry of 12C (γ ,p01)11B and 12C (γ ,p2-6)11B reactions has been studied at the energy range 40-55 MeV, using linearly polarized tagged photons of the MAX-lab facility. The asymmetry of the 12C (γ ,p01)11B processes, which assume the one-body mechanism of the reaction, is Σ ≈ 0.82 ± 0.05 for photon energies 45-50 MeV. The asymmetry for the 12C (γ ,p2-6)11B reactions, which produce a maximum at excitation energy ∼ 6 MeV, is Σ ≈ 0.53 ± 0.13 for a photon energy 49 MeV. It is close to the asymmetry of reaction of the free deuteron photodisintegration, and can be resulted from the two-body mechanism of the photon absorption.
{sup 64}Cu levels from the {sup 62 }Ni({sup 3}He,p) reaction at 18 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basak, A.K.; Basher, M.A.; Mondal, A.S.
1997-10-01
The ({sup 3}He,p) reaction has been studied on {sup 62}Ni using a beam of 18 MeV {sup 3}He particles. Angular distributions of the outgoing protons have been measured for 65 levels including the new levels at 2.323, 3.231, 5.043, and 7.339 MeV and the analog states at 6.821 MeV (0{sup + };4) and 8.188 MeV (2{sup +};4) in the angular range {theta}{sub lab}=5{degree}{endash}80 {degree}. Data have been analyzed in terms of the distorted-wave Born approximation (DWBA). The L transfers have been obtained, J{sup {pi}} limits have been assigned, and the normalization constant has been deduced for several low-lying states. {copyright}more » {ital 1997} {ital The American Physical Society}« less
Neutron total cross section measurement at WNR. [215 to 250 MeV experimental techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisowski, P.W.; Moore, M.S.; Morgan, G.L.
1979-01-01
The techniques involved in measuring fast-neutron total cross sections at the Weapons Neutron Facility (WNR) of the Los Alamos Scientific Laboratory are described. Results of total cross section measurements on natural carbon covering the range 2.5 to 250 MeV are presented. 16 references.
Celestial diffuse gamma radiation above 30 MeV observed by SAS-2
NASA Technical Reports Server (NTRS)
Fichtel, C. E.; Kniffen, D. A.; Hartman, R. C.
1973-01-01
The Small Astronomy Satellite (SAS)-2, launched on November 15, 1972, carried into orbit a 32-deck magnetic-core digitized spark chamber gamma ray telescope to study celestial gamma radiation in the energy range above 30 MeV. In the study of several regions with b sub 2 15 deg, a finite, diffuse flux of gamma rays with a steep energy spectrum in the energy region from 35 to 200 MeV is observed. Representing the energy spectrum by a power law of the form dJ/dE = AE to - alpha power over this energy range, alpha is found along with the integral flux above 100 MeV. Combining this result with existing low energy gamma ray data yields an energy spectrum which is not a simple power law in energy, as in the X-ray region, but which demonstrates first an increase and then a decrease in slope, consistent within uncertainties with that predicted by cosmological theories, including the continuous production of high energy gamma rays primarily from neutral pi mesons throughout the history of the universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guttormsen, M.; Goriely, S.; Larsen, A. C.
Here, nuclear level densities (NLDs) and γ-ray strength functions (γSFs) have been extracted from particle-γ coincidences of the 92Zr(p,p´γ) 92Zr and 92Zr (p,dγ) 91Zr reactions using the Oslo method. The new 91,92Zr γSF data, combined with photonuclear cross sections, cover the whole energy range from Eγ ≈ 1.5 MeV up to the giant dipole resonance at Eγ ≈ 17 MeV. The wide-range γSF data display structures at Eγ ≈ 9.5 MeV, compatible with a superposition of the spin-flip M1 resonance and a pygmy E1 resonance. Furthermore, the γSF shows a minimum at Eγ ≈ 2–3 MeV and an increase atmore » lower γ-ray energies. The experimentally constrained NLDs and γSFs are shown to reproduce known (n,γ) and Maxwellian-averaged cross sections for 91,92Zr using the TALYS reaction code, thus serving as a benchmark for this indirect method of estimating (n,γ) cross sections for Zr isotopes.« less
Intercomparison of photon dose measurements at the 8 MeV electron accelerator
NASA Astrophysics Data System (ADS)
Angelescu, T.; Ghiordănescu, N.; Băl ţă ţeanu, N.; Labău, V.; Vasilescu, A.
1997-02-01
Measurements of dose with thermoluminescent detectors (TLD) and an ionisation chamber were performed in the range of 5-70 Gy in the electron bremsstrahlung field with a maximum energy of 8 MeV of the Bucharest linear accelerator. Previous calibration was done with a 60Co source. The results of the intercomparison were used in dosimetry of the n - γ field of the ΣΣ irradiation facility, with a photon spectrum similar to the 8 MeV bremsstrahlung field [T. Angelescu et al., Nucl. Instr. and Meth. A 378 (1996) 594].
Neutron spectroscopy of γ manganese hydride
NASA Astrophysics Data System (ADS)
Antonov, V. E.; Cornell, K.; Dorner, B.; Fedotov, V. K.; Grosse, G.; Kolesnikov, A. I.; Wagner, F. E.; Wipf, H.
2000-02-01
The vibrational spectrum of fcc γ-MnH 0.41 synthesized under high pressure of gaseous hydrogen was studied by inelastic neutron scattering at 2 K in the range of energy transfers from 25 to 400 meV. The fundamental band of optical hydrogen vibrations consists of a peak at 111 meV with a broad shoulder towards higher energies, which extends up to about 140 meV. At higher energy transfers, the spectrum originates from multiphonon neutron scattering and exhibits approximately harmonic behaviour. The results are compared with the available data for other metal hydrides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapaport, J.; Trier, A.
1960-05-01
Parallel with experimental work to measure the ic neutrons between 2 and 3.6 Mev, it was necessary to estimate the theoretical behavior of these cross sections. The statistical theory of Blatt and Weisskopf was used in the calculation. The theoretical results obtained for squarewell and diffuse-well development are compared with the experimental results. (J.S.R.)
The total kinetic energy release in the fast neutron-induced fission of 232Th
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Jonathan; Yanez, Ricardo; Loveland, Walter
Here, the post-emission total kinetic energy release (TKE) in the neutron-induced fission of 232Th was measured (using white spectrum neutrons from LANSCE) for neutron energies from E n=3 to 91MeV. In this energy range the average post-neutron total kinetic energy release decreases from 162.3±0.3 at E n=3 MeV to 154.9±0.3 MeV at E n=91 MeV. Analysis of the fission mass distributions indicates that the decrease in TKE with increasing neutron energy is a combination of increasing yields of symmetric fission (which has a lower associated TKE) and a decrease in the TKE release in asymmetric fission.
BEST medical radioisotope production cyclotrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan
2013-04-19
Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beammore » intensity ranges from 400 {mu}A to 1000 {mu}A, depending on the cyclotron energy and application.« less
The total kinetic energy release in the fast neutron-induced fission of 232Th
King, Jonathan; Yanez, Ricardo; Loveland, Walter; ...
2017-12-15
Here, the post-emission total kinetic energy release (TKE) in the neutron-induced fission of 232Th was measured (using white spectrum neutrons from LANSCE) for neutron energies from E n=3 to 91MeV. In this energy range the average post-neutron total kinetic energy release decreases from 162.3±0.3 at E n=3 MeV to 154.9±0.3 MeV at E n=91 MeV. Analysis of the fission mass distributions indicates that the decrease in TKE with increasing neutron energy is a combination of increasing yields of symmetric fission (which has a lower associated TKE) and a decrease in the TKE release in asymmetric fission.
BEST medical radioisotope production cyclotrons
NASA Astrophysics Data System (ADS)
Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Gelbart, W. Z.; Johnson, Richard R.
2013-04-01
Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 μA to 1000 μA, depending on the cyclotron energy and application [1].
Prompt gamma imaging of proton pencil beams at clinical dose rate
NASA Astrophysics Data System (ADS)
Perali, I.; Celani, A.; Bombelli, L.; Fiorini, C.; Camera, F.; Clementel, E.; Henrotin, S.; Janssens, G.; Prieels, D.; Roellinghoff, F.; Smeets, J.; Stichelbaut, F.; Vander Stappen, F.
2014-10-01
In this work, we present experimental results of a prompt gamma camera for real-time proton beam range verification. The detection system features a pixelated Cerium doped lutetium based scintillation crystal, coupled to Silicon PhotoMultiplier arrays, read out by dedicated electronics. The prompt gamma camera uses a knife-edge slit collimator to produce a 1D projection of the beam path in the target on the scintillation detector. We designed the detector to provide high counting statistics and high photo-detection efficiency for prompt gamma rays of several MeV. The slit design favours the counting statistics and could be advantageous in terms of simplicity, reduced cost and limited footprint. We present the description of the realized gamma camera, as well as the results of the characterization of the camera itself in terms of imaging performance. We also present the results of experiments in which a polymethyl methacrylate phantom was irradiated with proton pencil beams in a proton therapy center. A tungsten slit collimator was used and prompt gamma rays were acquired in the 3-6 MeV energy range. The acquisitions were performed with the beam operated at 100 MeV, 160 MeV and 230 MeV, with beam currents at the nozzle exit of several nA. Measured prompt gamma profiles are consistent with the simulations and we reached a precision (2σ) in shift retrieval of 4 mm with 0.5 × 108, 1.4 × 108 and 3.4 × 108 protons at 100, 160 and 230 MeV, respectively. We conclude that the acquisition of prompt gamma profiles for in vivo range verification of proton beam with the developed gamma camera and a slit collimator is feasible in clinical conditions. The compact design of the camera allows its integration in a proton therapy treatment room and further studies will be undertaken to validate the use of this detection system during treatment of real patients.
Neutron dosimetry in low-earth orbit using passive detectors
NASA Technical Reports Server (NTRS)
Benton, E. R.; Benton, E. V.; Frank, A. L.
2001-01-01
This paper summarizes neutron dosimetry measurements made by the USF Physics Research Laboratory aboard US and Russian LEO spacecraft over the past 20 years using two types of passive detector. Thermal/resonance neutron detectors exploiting the 6Li(n,T) alpha reaction were used to measure neutrons of energies <1 MeV. Fission foil neutron detectors were used to measure neutrons of energies above 1 MeV. While originally analysed in terms of dose equivalent using the NCRP-38 definition of quality factor, for the purposes of this paper the measured neutron data have been reanalyzed and are presented in terms of ambient dose equivalent. Dose equivalent rate for neutrons <1 MeV ranged from 0.80 microSv/d on the low altitude, low inclination STS-41B mission to 22.0 microSv/d measured in the Shuttle's cargo bay on the highly inclined STS-51F Spacelab-2 mission. In one particular instance a detector embedded within a large hydrogenous mass on STS-61 (in the ECT experiment) measured 34.6 microSv/d. Dose equivalent rate measurements of neutrons >1 MeV ranged from 4.5 microSv/d on the low altitude STS-3 mission to 172 microSv/d on the 6 year LDEF mission. Thermal neutrons (<0.3 eV) were observed to make a negligible contribution to neutron dose equivalent in all cases. The major fraction of neutron dose equivalent was found to be from neutrons >1 MeV and, on LDEF, neutrons >1 MeV are responsible for over 98% of the total neutron dose equivalent. Estimates of the neutron contribution to the total dose equivalent are somewhat lower than model estimates, ranging from 5.7% at a location under low shielding on LDEF to 18.4% on the highly inclined (82.3 degrees) Biocosmos-2044 mission. c2001 Elsevier Science Ltd. All rights reserved.
Nuclear Resonance Fluorescence Response of U-235
NASA Astrophysics Data System (ADS)
Warren, Glen
2008-05-01
Nuclear resonance fluorescence (NRF) is a physical process that provides an isotopic-specific signature that could be used for the identification and characterization of materials. The technique involves the detection of prompt discrete-energy photons emitted from a sample, which is exposed to photons in the MeV energy range. Potential applications of the technique range from detection of high explosives to characterization of special nuclear materials. Pacific Northwest National Laboratory and Passport Systems have collaboratively conducted a set of measurements to search for an NRF response of U-235 in the 1.5 to 9 MeV energy range. Results from these measurements will be presented.
Search for Electron Antineutrino Appearance at the Δm2˜1eV2 Scale
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A. A.; Anderson, C. E.; Brice, S. J.; Brown, B. C.; Bugel, L.; Conrad, J. M.; Djurcic, Z.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Gonzales, J.; Grange, J.; Green, C.; Green, J. A.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Katori, T.; Kobilarcik, T.; Linden, S. K.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; Metcalf, W.; Mills, G. B.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Ray, H.; Roe, B. P.; Russell, A. D.; Shaevitz, M. H.; Sorel, M.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Tayloe, R.; Tzanov, M.; van de Water, R. G.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Zeller, G. P.; Zimmerman, E. D.
2009-09-01
The MiniBooNE Collaboration reports initial results from a search for ν¯μ→ν¯e oscillations. A signal-blind analysis was performed using a data sample corresponding to 3.39×1020 protons on target. The data are consistent with background prediction across the full range of neutrino energy reconstructed assuming quasielastic scattering, 200
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vladimirsky, V. V.; Grigor'ev, V. K.; Erofeev, I. A.
2006-03-15
On the basis of experimental data from the 6-m spectrometer of the Institute of Theoretical and Experimental Physics (ITEP, Moscow), an amplitude analysis of 40 553 events of the reaction {pi}{sup -}p {sup {yields}} K{sub S}K{sub S}n induced by a negatively charged pion of energy 40 GeV is performed over a broad momentum transfer range by using a new procedure. The results for vertical bar t vertical bar > 0.1 GeV{sup 2} are obtained for the first time. In particular, resonances of mass 1700 and 1900 MeV and width 120 MeV are discovered in the D{sub +} wave (there weremore » no such resonances for vertical bar t vertical bar < 0.1 GeV{sup 2}). In the region of low momentum transfers, the S wave exhibits a structure that lies in the mass region around 1370 MeV and which requires three resonances for its explanation. Two of these (that of mass 1234 {+-} 6 MeV and width 47 {+-} 33 MeV and that of mass 1478 {+-} 6 MeV and width 119 {+-} 10 MeV) were found in the studies of A. Etkin et al. [Phys. Rev. D 25, 2446 (1982)] and O.N. Baloshin et al. {l_brace}Yad. Fiz. 43, 1487 (1986) [Phys. At. Nucl. 43, 959 (1986)]{r_brace}. The third has a mass of 1389 {+-} 9 MeV and a width of 30 {+-} 24 MeV. At high momentum transfers, the S wave is found to feature resonances that have the following parameters: M = 1328 {+-} 8 MeV and {gamma} = 237 {+-} 20 MeV, M = 1440 {+-} 6 MeV and {gamma} = 121 {+-} 15 MeV, and M = 1776 {+-} 15 MeV and {gamma} 250 {+-} 30 MeV. For the D{sub 0} wave, it is found that, in addition to the well-known resonances f{sub 2}, a{sub 2}, and f'{sub 2}, there appear the following resonances in this wave: a resonance of mass 2005 {+-} 12 MeV and width 209 {+-} 32 MeV and a resonance of mass 2270 {+-} 12 MeV and width 90 {+-} 29 MeV at low vertical bar t vertical bar and a resonance of mass 1659 {+-} 6 and width 152 {+-} 18 and a resonance of mass 2200 {+-} 13 MeV and width 91 {+-} 62 MeV at high vertical bar t vertical bar.« less
Analysis of the vp2 gene sequence of a new mutated mink enteritis parvovirus strain in PR China
2010-01-01
Background Mink enteritis virus (MEV) causes a highly contagious viral disease of mink with a worldwide distribution. MEV has a linear, single-stranded, negative-sense DNA with a genome length of approximately 5,000 bp. The VP2 protein is the major structural protein of the parvovirus encoded by the vp2 gene. VP2 is highly antigenic and plays important roles in determining viral host ranges and tissue tropisms. This study describes the bionomics and vp2 gene analysis of a mutated strain, MEV-DL, which was isolated recently in China and outlines its homologous relationships with other selected strains registered in Genbank. Results The MEV-DL strain can infect F81 cells with cytopathic effects. Pig erythrocytes were agglutinated by the MEV-DL strain. The generation of MEV-DL in F81 cells could infect mink within three months and cause a disease that was similar to that caused by wild-type MEV. A comparative analysis of the vp2 gene nucleotide (nt) sequence of MEV-DL showed that this was more than 99% homologous with other mink enteritis parvoviruses in Genbank. However, the nucleotide residues at positions 1,065 and 1,238 in the MEV-DL strain of the vp2 gene differed from those of all the other MEV strains described previously. It is noteworthy that the mutation at the nucleotide residues position 1,238 led to Asp/Gly replacement. This may lead to structural changes. A phylogenetic tree and sequence distance table were obtained, which showed that the MEV-DL and ZYL-1 strains had the closest inheritance distance. Conclusions A new variation of the vp2 gene exists in the MEV-DL strain, which may lead to structural changes of the VP2 protein. Phylogenetic analysis showed that MEV-DL may originate from the ZYL-1 strain in DaLian. PMID:20540765
NASA Technical Reports Server (NTRS)
Chutjian, A.
1982-01-01
Electron attachment cross sections for the processes SF6-/SF6 and Cl-/CFCl3 are calculated in a local theory using a model in which diatomic-like potential energy curves for the normal modes are constructed from available spectroscopic data. Thermally populated vibrational and rotational levels are included. Good agreement is found with experimental cross sections in the energy range 5-100 meV for a particular choice of potential energy curve parameters.
A new three-tier architecture design for multi-sphere neutron spectrometer with the FLUKA code
NASA Astrophysics Data System (ADS)
Huang, Hong; Yang, Jian-Bo; Tuo, Xian-Guo; Liu, Zhi; Wang, Qi-Biao; Wang, Xu
2016-07-01
The current commercially, available Bonner sphere neutron spectrometer (BSS) has high sensitivity to neutrons below 20 MeV, which causes it to be poorly placed to measure neutrons ranging from a few MeV to 100 MeV. The paper added moderator layers and the auxiliary material layer upon 3He proportional counters with FLUKA code, with a view to improve. The results showed that the responsive peaks to neutrons below 20 MeV gradually shift to higher energy region and decrease slightly with the increasing moderator thickness. On the contrary, the response for neutrons above 20 MeV was always very low until we embed auxiliary materials such as copper (Cu), lead (Pb), tungsten (W) into moderator layers. This paper chose the most suitable auxiliary material Pb to design a three-tier architecture multi-sphere neutron spectrometer (NBSS). Through calculating and comparing, the NBSS was advantageous in terms of response for 5-100 MeV and the highest response was 35.2 times the response of polyethylene (PE) ball with the same PE thickness.
NASA Astrophysics Data System (ADS)
Mikšová, R.; Macková, A.; Malinský, P.
2017-09-01
We have measured the electronic stopping powers of helium and lithium ions in the channelling direction of the Si〈1 0 0〉 crystal. The energy range used (2.0-8.0 MeV) was changed by 200 and 400-keV steps. The ratio α between the channelling and random stopping powers was determined as a function of the angle for 2, 3 and 4 MeV 4He+ ions and for 3 and 6 MeV 7Li+,2+ ions. The measurements were carried out using the Rutherford backscattering spectrometry in the channelling mode (RBS-C) in a silicon-on-insulator material. The experimental channelling stopping-power values measured in the channelling direction were then discussed in the frame of the random energy stopping predictions calculated using SRIM-2013 code and the theoretical unitary convolution approximation (UCA) model. The experimental channelling stopping-power values decrease with increasing ion energy. The stopping-power difference between channelled and randomly moving ions increases with the enhanced initial ion energy. The ratio between the channelling and random ion stopping powers α as a function of the ion beam incoming angle for 2, 3 and 4 MeV He+ ions and for 3 and 6 MeV Li+,2+ ions was observed in the range 0.5-1.
NASA Astrophysics Data System (ADS)
Yasuda, Tetsuya; Iwakiri, Wataru B.; Tashiro, Makoto S.; Terada, Yukikatsu; Kouzu, Tomomi; Enoto, Teruaki; Nakagawa, Yujin E.; Bamba, Aya; Urata, Yuji; Yamaoka, Kazutaka; Ohno, Masanori; Shibata, Shinpei; Makishima, Kazuo
2015-06-01
The 2.1-s anomalous X-ray pulsar 1E 1547.0-5408 exhibited an X-ray outburst on 2009 January 22, emitting a large number of short bursts. The wide-band all-sky monitor (WAM) on-board Suzaku detected at least 254 bursts in the 160 keV-6.2 MeV band over the period of January 22 00:57-17:02 UT from the direction of 1E 1547.0-5408. One of these bursts, which occurred at 06:45:13, produced the brightest fluence in the 0.5-6.2 MeV range, with an averaged 0.16-6.2 MeV flux and extrapolated 25 keV-2 MeV fluence of about 1 × 10-5 erg cm-2 s-1 and about 3 × 10-4 erg cm-2, respectively. After pile-up corrections, the time-resolved WAM spectra of this burst were well-fitted in the 0.16-6.2 MeV range by two-component models; specifically, a blackbody plus an optically thin thermal bremsstrahlung or a combination of a blackbody and a power-law component with an exponential cut-off. These results are compared with previous works reporting the persistent emission and weaker short bursts followed by the same outburst.
The Mushroom: A half-sky energetic ion and electron detector
NASA Astrophysics Data System (ADS)
Hill, M. E.; Mitchell, D. G.; Andrews, G. B.; Cooper, S. A.; Gurnee, R. S.; Hayes, J. R.; Layman, R. S.; McNutt, R. L.; Nelson, K. S.; Parker, C. W.; Schlemm, C. E.; Stokes, M. R.; Begley, S. M.; Boyle, M. P.; Burgum, J. M.; Do, D. H.; Dupont, A. R.; Gold, R. E.; Haggerty, D. K.; Hoffer, E. M.; Hutcheson, J. C.; Jaskulek, S. E.; Krimigis, S. M.; Liang, S. X.; London, S. M.; Noble, M. W.; Roelof, E. C.; Seifert, H.; Strohbehn, K.; Vandegriff, J. D.; Westlake, J. H.
2017-02-01
We present a time-of-flight mass spectrometer design for the measurement of ions in the 30 keV to 10 MeV range for protons (up to 40 MeV and 150 MeV for He and heavy ions, respectively) and 30 keV to 1 MeV range for electrons, covering half of the sky with 80 apertures. The instrument, known as the "Mushroom," owing to its shape, solves the field of view problem for magnetospheric and heliospheric missions that employ three-axis stabilized spacecraft, yet still require extended angular coverage; the Mushroom is also compatible with a spinning spacecraft. The most important new feature of the Mushroom is the method through which uncomplicated electrostatic optics and clean position sensing combine to permit many apertures to fit into a compact, low-mass sensor head (or wedge), several of which (ideally eight) compose a full instrument. Most of the sensor head's volume is an empty, equipotential region, resulting in the modest 250 g mass of each 10-aperture wedge. The Mushroom is capable of separating ion species across most of its energy range and angular field of view. For example, separation of the neighboring 3He and 4He isotopes is excellent; the full width at half maximum mass resolution has been measured to be 0.24 amu to 0.32 amu, respectively. Converting this to a Gaussian width σm in mass m, this represents a σm/m mass resolution better than 0.04. This separation is highly desirable for the flight program for which the first Mushroom was built, the Solar Probe Plus mission. More generally, we estimate the mass resolution to be σm/m ≈ 0.1, but this is energy, mass, and angularly dependent. We also discuss the solid-state detector stack capability, which extends the energy range of protons and helium, with composition, to 100 MeV.
NASA Astrophysics Data System (ADS)
Agosteo, S.; Birattari, C.; Dimovasili, E.; Foglio Para, A.; Silari, M.; Ulrici, L.; Vincke, H.
2005-02-01
The neutron emission from 50 mm thick copper, silver and lead targets bombarded by a mixed proton/pion beam with momentum of 40 GeV/c were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident particle on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135° with respect to the beam direction. Monte Carlo simulations with the FLUKA code were performed to provide a priori information for the unfolding of the experimental data. The spectral fluences show two peaks, an isotropic evaporation component centred at 3 MeV and a high-energy peak sitting around 100-150 MeV. The experimental neutron yields are given in four energy bins: <100 keV, 0.1-20 MeV, 20-500 MeV and 0.5-2 GeV. The total yields show a systematic discrepancy of 30-50%, with a peak of 70% at the largest angles, with respect to the results of the Monte Carlo simulations, which it is believed to be mainly due to uncertainties in the beam normalization factor. Analytic expressions are given for the variation of the integral yield as a function of emission angle and of target mass number.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehta, R.; Duggan, J.L.; Kocur, P.M.
1983-04-01
In this report, the measurements done over the last three decades at various laboratories are surveyed. The elements studied were Xe, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Yb, Hf, Ta, W, Pt, Au, Hg, Pb, Bi, and U. The projectile energies investigated range from 300 keV to 40 MeV for the protons and 250 keV to 2.5 MeV for He/sup +/ ions. Also reported are the M-shell x-ray production cross sections of some rare-earth elements recently measured at NTSU. For these measurements the energy of incident /sup 1/H/sup +/ and /sup 4/He/sup +/ ions ranged from 0.25 tomore » 2.5 MeV. The experimental data are compared to the M-shell ionization cross section predictions of first Born approximation, i.e. the PWBA for direct ionization plus the OBK of Nikolaev for electron capture. Comparison is also made with the theory by Brandt and Lapicki that goes beyond the first Born approximation, i.e. the ECPSSR approach which accounts for the Energy loss, Coulomb deflection and Relativistic effects in the Perturbed Stationary State theory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, R. O.; Beausang, C. W.; Ross, T. J.
2014-07-01
The Pu 236(n,f), Pu 237(n,f) and Pu 238(n,f) cross sections have been inferred by utilizing the surrogate ratio method. Targets of Pu 239 and U 235 were bombarded with 28.5-MeV protons, and the light ion recoils, as well as fission fragments, were detected using the STARS detector array at the K150 Cyclotron at the Texas A&M cyclotron facility. The (p, tf) reaction on Pu 239 and U 235 targets was used to deduce the σ (Pu 236(n,f))/σ(U 232(n,f)) ratio, and the Pu 236(n,f) cross section was subsequently determined for En=0.5–7.5 MeV. Similarly, the (p,df) reaction on the same two targetsmore » was used to deduce the σ(Pu 237(n,f))/σ(U 233(n,f)) ratio, and the Pu 237(n,f) cross section was extracted in the energy range En=0.5–7 MeV. The Pu 238(n,f) cross section was also deduced by utilizing the (p,p') reaction channel on the same targets. There is good agreement with the recent ENDF/B-VII.1 evaluated cross section data for Pu 238(n,f) in the range En=0.5–10.5 MeV and for Pu 237(n,f) in the range En=0.5–7 MeV; however, the Pu 236(n,f) cross section deduced in the present work is higher than the evaluation between 2 and 7 MeV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A'aisah
2014-09-03
In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev butmore » at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.« less
A quiescent state of 3 to 8 MeV radiation belt electrons
NASA Astrophysics Data System (ADS)
Selesnick, R. S.; Blake, J. B.; Kolasinski, W. A.; Fritz, T. A.
During a ∼3 month period in mid-1996 outer radiation belt electrons in the energy range from ∼ 3 to 8 MeV were diffusing inward and decaying in intensity with no internal or external source. Measurements from the HIST instrument on POLAR are used to constrain a model for time dependent lossy radial diffusion of these electrons, and to obtain estimates of a parameterized radial diffusion coefficient and lifetime. For lower energy electrons, of ∼ 1 to 3 MeV, a source at L > 6 is apparent throughout most of the same period.
Gamma ray astronomy and black hole astrophysics
NASA Technical Reports Server (NTRS)
Liang, Edison P.
1990-01-01
The study of soft gamma emissions from black-hole candidates is identified as an important element in understanding black-hole phenomena ranging from stellar-mass black holes to AGNs. The spectra of Cyg X-1 and observations of the Galactic Center are emphasized, since thermal origins and MeV gamma-ray bumps are evident and suggest a thermal-pair cloud picture. MeV gamma-ray observations are suggested for studying black hole astrophysics such as the theorized escaping pair wind, the anticorrelation between the MeV gamma bump and the soft continuum, and the relationship between source compactness and temperature.
Surface phonons on Bi2Sr2CaCu2O8+δ
NASA Astrophysics Data System (ADS)
Phelps, R. B.; Akavoor, P.; Kesmodel, L. L.; Demuth, J. E.; Mitzi, D. B.
1993-11-01
We report measurements of surface optical phonons on Bi2Sr2CaCu2O8+δ with high-resolution electron-energy-loss spectroscopy (HREELS). In addition to peaks near 50 and 80 meV (403 and 645 cm-1), which have been previously observed, our loss spectra exhibit a peak at 26 meV (210 cm-1). Loss spectra were measured at temperatures from 45 to 146 K, and the temperature dependence of the peaks was found to be weak. The 50 and 80 meV peaks shift to lower frequency by ~1.5 meV over this temperature range. All three peaks are attributed to surface optical phonons. The identification of particular bulk modes corresponding to the surface modes observed with HREELS is discussed.
Assessment of underground gamma ray fluxes at a depth of 1230 m
NASA Astrophysics Data System (ADS)
Bakich, A. M.; Omori, M.; Peak, L. S.; Wearne, N. T.
1984-10-01
A sodium iodide crystal detector has been used to measure gamma ray spectra at a depth of 1230 m underground in a silver, lead and zinc mine. Both unshielded and shielded runs using blocks of lead and paraffin were taken. The results are considered in three different energy ranges, 0-3 MeV, 3-6 MeV and greater than 6 MeV. The low energy results are predictable in terms of the familiar isotopes to be expected in the ore body around the detector. The intermediate energy results indicate some residual alpha activity in the crystal assembly whilst the high energy results show a flux of gammas extending well past 10 MeV. Very pure shielding would be required to substantially reduce this flux.
The High Energy Particle Detector (HEPD) for the CSES satellite
NASA Astrophysics Data System (ADS)
Sparvoli, Roberta
2016-04-01
We present the advanced High Energy Particle Detector (HEPD) developed to be installed on the China Seismo-Electromagnetic Satellite (CSES), launch scheduled by the end of 2016. The HEPD instrument aims at studying the temporal stability of the inner Van Allen radiation belts and at investigating precipitation of trapped particles induced by magnetospheric, ionosferic and tropospheric EM emissions, as well as by the seismo-electromagnetic and anthropogenic disturbances. In occasion of many earthquakes and volcanic eruptions, several measurements, on ground and by experiments on LEO satellites revealed: electromagnetic and plasma perturbations, and anomalous increases of high-energy Van Allen charged particle flux. The precipitation of trapped electrons and protons (from a few MeV to several tens of MeV) could be induced by diffusion of particles pitch-angle possibly caused by the seismo-electromagnetic emissions generated before (a few hours) earthquakes. Due to the longitudinal drift along a same L-shell, anomalous particle bursts of precipitating particles could be detected by satellites not only on the epicentral area of the incoming earthquake, but along the drift path. Moreover, the opposite drift directions of positive and negative particles could allow reconstructing the longitude of the earthquake focal area. Although, the earthquake prediction is not within the reach of current knowledge, however the study of the precursors aims at collecting all relevant information that can infer the spatial and temporal coordinates of the seismic events from measurements. At this purposes, it is essential to detect particles in a wide range of energies (because particles of different energies are sensitive to different frequencies of seismo-electromagnetic emissions), with a good angular resolution (in order to separate fluxes of trapped and precipitating particles), and excellent ability to recognize the charge (that determines the direction of the longitudinal drift of precipitating particles). The East-West or West-East drift direction is an essential information to retrieve the longitude of the starting point of the burst precipitation and then to reconstruct the geographical area where the interaction between particles and seismo-electromagnetic emissions occurred. HEPD has been designed to provide good energy resolution and high angular resolution for electrons (3 - 100 MeV) and proton (30 - 200 MeV). The detector consists of two layers of segmented plastic scintillators and a calorimeter, constituted by a tower of scintillator counters. The direction of the incident particle is provided by two planes of double-side silicon micro-strip detectors placed in front of the trigger scintillator planes to limit the effect of Coulomb multiple scattering on the direction measurement. The electron angular resolution varies between 13° at 2.5 MeV and ≤ 1° for energies above 35 MeV. The detector has a wide angular acceptance (>60°) over the full energy range 2.5-100 MeV. The angle-integrated, total acceptance is larger than 100 cm2sr between 2.5 and 35 MeV, decreasing at higher energies (about 40 cm2sr at 100 MeV). The proton angular resolution is ≤1° over the full detection range. The proton integrated-angle, total acceptance is larger than 100 cm2sr between 30 MeV and 150 MeV, decreasing to 60 cm2sr at 200 MeV. The good energy-loss measurement of the silicon track, combined with the energy resolution of the scintillators and calorimeter, allows identifying electrons with acceptable proton background levels (10-5-10-3).
NASA Astrophysics Data System (ADS)
Hue, B. M.; Isataev, T.; Erdemchimeg, B.; Artukh, A. G.; Aznabaev, D.; Davaa, S.; Klygin, S. A.; Kononenko, G. A.; Khuukhenkhuu, G.; Kuterbekov, K.; Lukyanov, S. M.; Mikhailova, T. I.; Maslov, V. A.; Mendibaev, K.; Sereda, Yu M.; Penionzhkevich, Yu E.; Vorontsov, A. N.
2017-12-01
Preliminary results of measurements of the total reaction cross sections σR and neutron removal cross section σ-xn for weakly bound 6He, 8Li, 9Be and 10Be nuclei at energy range (20-35) A MeV with 28Si target is presented. The secondary beams of light nuclei were produced by bombardment of the 22Ne (35 A MeV) primary beam on Be target and separated by COMBAS fragment-separator. In dispersive focal plane a horizontal slit defined the momentum acceptance as 1% and a wedge degrader of 200 μm Al was installed. The Bρ of the second section of the fragment-separator was adjusted for measurements in energy range (20-35) A MeV. Two-neutron removal cross sections for 6He and 10Be and one -neutron removal cross sections 8Li and 9Be were measured.
Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V
2015-04-01
Activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium were extended up to 65MeV by using stacked foil irradiation and gamma spectrometry experimental methods. Experimental cross-sections data for the formation of the radionuclides (159)Dy, (157)Dy, (155)Dy, (161)Tb, (160)Tb, (156)Tb, (155)Tb, (154m2)Tb, (154m1)Tb, (154g)Tb, (153)Tb, (152)Tb and (151)Tb are reported in the 36-65MeV energy range, and compared with an old dataset from 1964. The experimental data were also compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS nuclear reaction model code as listed in the latest on-line libraries TENDL 2013. Copyright © 2015. Published by Elsevier Ltd.
Anaylyzing powers for the reaction π-p-->-->π0n at T-π=161 MeV
NASA Astrophysics Data System (ADS)
Görgen, J. J.; Comfort, J. R.; Averett, T.; Dekorse, J.; Franklin, B.; Ritchie, B. G.; Tinsley, J.; Kyle, G.; Berman, B.; Burleson, G.; Cranston, K.; Klein, A.; Faucett, J. A.; Jarmer, J. J.; Knudson, J. N.; Penttilä, S.; Tanaka, N.; Brinkmöller, B.; Dehnhard, D.; Yen, Y. F.; Høibrråten, S.; Breuer, H.; Flanders, B. S.; Khandaker, M. A.; Naples, D. L.; Zhang, D.; Barlett, M. L.; Hoffmann, G. W.; Purcell, M.
1990-10-01
Analyzing powers for the reaction π-p-->-->π0n were measured at an incident pion energy of T-π=161 MeV with a transversely polarized proton target over the angular range of about 20°-60°. The results are well described by calculations based on current sets of πN phase shifts.
19 F(α,n) thick target yield from 3.5 to 10.0 MeV
Norman, E.B.; Chupp, T.E.; Lesko, K.T.; ...
2015-09-01
Using a target of PbF2, the thick-target yield from the 19F(α,n) reaction was measured from Eα=3.5–10 MeV. From these results, we infer the thick-target neutron yields from targets of F2 and UF6 over this same alpha-particle energy range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delbar, T.; Gregoire, G.; Paic, G.
1978-09-01
Angular distributions for ..cap alpha.. particle elastic scattering by /sup 40,44/Ca and excitation of the 3.73 MeV 3/sup -/ collective state of /sup 40/Ca were measured for incident energies ranging from 40 to 62 MeV. An extensive optical model analysis of these elastic scattering cross sections and other available data, using squared Woods-Saxon form factors, results in potentials with fixed geometry for both real and imaginary parts and depths with smooth energy behavior over a broad incident energy range. These results are discussed in the frame of the semi-classical approximation developed by Brink and Takigawa. The sensitiveness of the calculatedmore » elastic scattering cross sections to the real part of the potentials as a function of the projectile-target distance has been investigated by means of a notch test. Distorted-wave Born-approximtion calculations for the excitation of the 3.73 MeV 3/sup -/ state of /sup 40/Ca are presented.« less
NASA Astrophysics Data System (ADS)
Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.
2015-05-01
The KASCADE-Grande large area (128 m2) Muon Tracking Detector has been built with the aim to identify muons ( Eμthr = 800 MeV) in Extensive Air Showers by track measurements under 18 r.l. shielding. This detector provides high-accuracy angular information (approx. 0.3 °) for muons up to 700 m distance from the shower core. In this work we present the lateral density distributions of muons in EAS measured with the Muon Tracking Detector of the KASCADE-Grande experiment. The density is calculated by counting muon tracks in a muon-to-shower-axis distance range from 100 m to 610 m from showers with reconstructed energy of 1016 -1017 eV and zenith angle θ < 18 ° . In the distance range covered by the experiment, these distributions are well described by functions phenomenologically determined already in the fifties (of the last century) by Greisen. They are compared also with the distributions obtained with the KASCADE scintillator array (Eμthr = 230 MeV) and with distributions obtained using simulated showers.
NASA Astrophysics Data System (ADS)
Szelecsényi, F.; Steyn, G. F.; Kovács, Z.; Vermeulen, C.; van der Meulen, N. P.; Dolley, S. G.; van der Walt, T. N.; Suzuki, K.; Mukai, K.
2005-11-01
Cross-sections of the 66Zn(p,2pn)64Cu and 68Zn(p,x)64Cu nuclear processes were measured on highly enriched zinc targets using the stacked-foil activation technique up to 100 MeV. The new cross-sections were compared to literature data. The optimum energy range for production of 64Cu was found to be 70 → 35 MeV on 66Zn and 37 → 20 MeV on 68Zn. The thick-target yields were determined as 777 MBq/μAh (21.0 mCi/μAh) and 185 MBq/μAh (5.0 mCi/μAh), respectively. The yields of the longer-lived contaminant copper radioisotopes (i.e. 61Cu when using 66Zn as target material and both 61Cu and 67Cu in the case of 68Zn target material) were also calculated. The results obtained from the present study indicate that both reactions are suited for the production of 64Cu at a medium energy cyclotron. The optimum energy ranges are also complementary therefore the potential to utilize tandem targetry exists.
Guttormsen, M.; Goriely, S.; Larsen, A. C.; ...
2017-08-21
Here, nuclear level densities (NLDs) and γ-ray strength functions (γSFs) have been extracted from particle-γ coincidences of the 92Zr(p,p´γ) 92Zr and 92Zr (p,dγ) 91Zr reactions using the Oslo method. The new 91,92Zr γSF data, combined with photonuclear cross sections, cover the whole energy range from Eγ ≈ 1.5 MeV up to the giant dipole resonance at Eγ ≈ 17 MeV. The wide-range γSF data display structures at Eγ ≈ 9.5 MeV, compatible with a superposition of the spin-flip M1 resonance and a pygmy E1 resonance. Furthermore, the γSF shows a minimum at Eγ ≈ 2–3 MeV and an increase atmore » lower γ-ray energies. The experimentally constrained NLDs and γSFs are shown to reproduce known (n,γ) and Maxwellian-averaged cross sections for 91,92Zr using the TALYS reaction code, thus serving as a benchmark for this indirect method of estimating (n,γ) cross sections for Zr isotopes.« less
The Capabilities and Applications of FY-3A/B SEM on Monitoring Space Weather Events
NASA Astrophysics Data System (ADS)
Huang, C.; Li, J.; Yu, T.; Xue, B.; Wang, C.; Zhang, X.; Cao, G.; Liu, D.; Tang, W.
2012-12-01
The Space Environment Monitor (SEM), on board the Chinese meteorological satellites, FengYun-3A/B has the abilities to measure proton flux in 3-300 Mev energy range and electron flux in 0.15-5.7 Mev energy range. SEM can also detect the heavy ion compositions, satellite surface potential, the radiation dose in sensors, and the single events. The space environment information derived from SEM can be utilized for satellite security designs, scientific studies, development of radiation belt models, and space weather monitoring and disaster warning. In this study, the SEM's instrument characteristics are introduced and the post-launch calibration algorithm is presented. The applications in monitoring space weather events and the service for manned spaceflights are also demonstrated.; The protons with particle energy over 10 Mev are called "killer particles". These particles may damage the satellite and cause disruption of satellite's system. The protons flux of 10 M-26 Mev energy band reached 5000 in the SPE caused by a solar flare with CME during the period of 2012.01.23 to 2012.01.27 as shown in the figure. THE COMPARISONS OF HEAVY IONS (2010.11.11-2010.12.15)t;
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, S.; Su, L. Q.; Kon, J.
Photoluminescence (PL) imaging has been shown to be an efficient technique for investigating carrier diffusion in semiconductors. In the past, the measurement was typically carried out by measuring at one wavelength (e.g., at the band gap) or simply the whole emission band. At room temperature in a semiconductor like GaAs, the band-to-band PL emission may occur in a spectral range over 200 meV, vastly exceeding the average thermal energy of about 26 meV. To investigate the potential dependence of the carrier diffusion on the carrier kinetic energy, we performed wavelength selective PL imaging on a GaAs double hetero-structure in amore » spectral range from about 70 meV above to 50 meV below the bandgap, extracting the carrier diffusion lengths at different PL wavelengths by fitting the imaging data to a theoretical model. The results clearly show that the locally generated carriers of different kinetic energies mostly diffuse together, maintaining the same thermal distribution throughout the diffusion process. Potential effects related to carrier density, self-absorption, lateral wave-guiding, and local heating are also discussed.« less
Effect of temperature on the spectral properties of InP/ZnS nanocrystals
NASA Astrophysics Data System (ADS)
Savchenko, S. S.; Vokhmintsev, A. S.; Weinstein, I. A.
2018-01-01
Optical absorption (OA) and photoluminescence (PL) spectra of InP/ZnS core/shell nanocrystals with 2.3 nm average size were investigated in the temperature range of 6.5-296 K. Using second derivative spectrophotometry technique energies of the OA transitions at 296 K in quantum dot (QD) solutions and films are evaluated to be E 1 = 2.37, E 2 = 4.10 and E 3 = 4.68 eV. Temperature shifts of the E 1 and E 2 levels are found to result from interaction with effective phonons of 59 and 37 meV energies, respectively. Herewith the 370 meV half-width of the first exciton absorption peak remains constant due to the dominance of inhomogeneous broadening effects caused by QD parameters distribution. Measured PL spectra have a complex structure and can be described in 6.5-296 K range by two independent Gaussian components associated with exciton and defect-related states. In addition, Stokes shift of 320 meV is observed to decrease at T > 200 K. PL thermal quenching analysis in frame of Mott mechanism points to presence of non-radiative relaxation channel with an activation energy of 74 meV.
NASA Astrophysics Data System (ADS)
Mrigakshi, Alankrita; Hajdas, Wojtek; Marcinkowski, Radoslaw; Xiao, Hualin; Goncalves, Patricia; Pinto, Marco; Pinto, Costa; Marques, Arlindo; Meier, Dirk
2016-04-01
The RADEM instrument will serve as the radiation monitor for the JUICE spacecraft. It will characterize the highly dynamic radiation environment of the Jovian system by measuring the energy spectra of energetic electrons and protons up to 40 MeV and 250 MeV, respectively. It will also determine the directionality of 0.3-10 MeV electrons. Further goals include the detection of heavy ions, and the determination of the corresponding LET spectra and dose rates. Here, the tests of the Electron and Proton Telescopes, and the Directionality Detector of the RADEM Bread-Board model are described. The objective of these tests is to validate RADEM design and physical concept applied therein. The tests were performed at various irradiation facilities at the Paul Scherrer Institute (PSI) where energy ranges relevant for space applications can be covered (electrons: ≤100 MeV and protons: ≤230 MeV). The measured values are also compared with GEANT4 Monte-Carlo Simulation results.
New MPRu instrument for neutron emission spectroscopy at JET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjoestrand, H.; Giacomelli, L.; Andersson Sunden, E.
The MPRu is an upgrade of the magnetic proton recoil (MPR) neutron spectrometer that has been used for 14 MeV DT neutron measurements at JET during the DTE1 (1997) and TTE (2003) campaigns. In this contribution the principles of the MPR and its upgrade will be presented. The MPRu allows measurements of the full range of fusion relevant neutron energies, 1.5-18 MeV, including the 14 MeV DT neutrons, now with significantly reduced background, and also new high-quality measurements of the 2.5 MeV DD neutron component. This improvement is made possible by the use of a new proton recoil detector inmore » combination with custom-built transient recorder cards. The importance of these instrumental improvements for extending the use of the MPRu in diagnosis of D and DT plasmas will be discussed. Results from the first 2.5 MeV measurements performed with the MPRu during JET high level commissioning in April 2006 are presented.« less
High and low energy proton radiation damage in p/n InP MOCVD solar cells
NASA Technical Reports Server (NTRS)
Rybicki, George; Weinberg, Irving; Scheiman, Dave; Vargas-Aburto, Carlos
1995-01-01
InP p(+)nn(+) MOCVD solar cells were irradiated with 0.2 MeV and 10 MeV protons to a fluence of 10(exp 13)/sq cm. The degradation of power output, IV behavior, carrier concentration and defect concentration were observed at intermediate points throughout the irradiations. The 0.2 MeV proton irradiated solar cells suffered much greater and more rapid degradation in power output than those irradiated with 10 meV protons. The efficiency losses were accompanied by larger increases in the recombination currents in the 0.2 MeV proton irradiated solar cells. The low energy proton irradiations also had a larger impact on the series resistance of the solar cells. Despite the radiation induced damage, the carrier concentration in the base of the solar cells showed no reduction after 10 MeV or 0.2 MeV proton irradiations and even increased during irradiation with 0.2 MeV protons. In a DLTS study of the irradiated samples, the minority carrier defects H4 and H5 at E(v) + 0.33 and E(v) + 0.52 eV and the majority carrier defects E7 and E10 at E(c)- 0.39 and E(c)-0.74 eV, were observed. The defect introduction rates for the 0.2 MeV proton irradiations were about 20 times higher than for the 10 MeV proton irradiations. The defect E10, observed here after irradiation, has been shown to act as a donor in irradiated n-type InP and may be responsible for obscuring carrier removal. The results of this study are consistent with the much greater damage produced by low energy protons whose limited range causes them to stop in the active region of the solar cell.
Response of Nanodot Optically Stimulated Luminescence Dosimeters to Therapeutic Electron Beams.
Ponmalar, Y Retna; Manickam, Ravikumar; Sathiyan, S; Ganesh, K M; Arun, R; Godson, Henry Finlay
2017-01-01
Response of Al 2 O 3 :C-based nanoDot optically stimulated luminescence (OSL) dosimeter was studied for the dosimetry of 6, 9, 12, 16, and 20 MeV therapeutic electron beams. With reference to ionization chamber, no change in the response was observed with the change in the energy of electron beams for the field size from 6 cm × 6 cm to 25 cm × 25 cm, dose rates from 100 MU/min to 600 MU/min, and the linearity in the response up to 300 cGy. The fading of the transient signal was higher for 20 MeV electron beam than that of 6 MeV electron beam by about 5% as compared to value at 20 min after irradiation. The depletion of OSL signal per readout in 200 successive readouts was also found to change with dose and energy of electron beam from 6 MeV (9% and 12% per readout at 2 and 10 Gy, respectively) to 20 MeV (9% and 16% at 2 and 10 Gy, respectively). The OSL sensitivity changed in the range from 2% to 6% with accumulated doses from 2 to 8 Gy and with electron energy from 6 to 20 MeV, but the sensitivity could be reset using an optical annealing treatment. Although negligible fading for postirradiation storage from 20 min to several months, acceptable precision and linearity in the desired range, and high reproducibility makes nanoDot dosimeters very attractive for the dosimetry of therapeutic electron beams, a note should be made for changes in sensitivity at doses beyond 2 Gy and electron beams energy dependence in reuse, short-term fading, and signal depletion on repeated readout.
Response of Nanodot Optically Stimulated Luminescence Dosimeters to Therapeutic Electron Beams
Ponmalar, Y. Retna; Manickam, Ravikumar; Sathiyan, S.; Ganesh, K. M.; Arun, R.; Godson, Henry Finlay
2017-01-01
Response of Al2O3:C-based nanoDot optically stimulated luminescence (OSL) dosimeter was studied for the dosimetry of 6, 9, 12, 16, and 20 MeV therapeutic electron beams. With reference to ionization chamber, no change in the response was observed with the change in the energy of electron beams for the field size from 6 cm × 6 cm to 25 cm × 25 cm, dose rates from 100 MU/min to 600 MU/min, and the linearity in the response up to 300 cGy. The fading of the transient signal was higher for 20 MeV electron beam than that of 6 MeV electron beam by about 5% as compared to value at 20 min after irradiation. The depletion of OSL signal per readout in 200 successive readouts was also found to change with dose and energy of electron beam from 6 MeV (9% and 12% per readout at 2 and 10 Gy, respectively) to 20 MeV (9% and 16% at 2 and 10 Gy, respectively). The OSL sensitivity changed in the range from 2% to 6% with accumulated doses from 2 to 8 Gy and with electron energy from 6 to 20 MeV, but the sensitivity could be reset using an optical annealing treatment. Although negligible fading for postirradiation storage from 20 min to several months, acceptable precision and linearity in the desired range, and high reproducibility makes nanoDot dosimeters very attractive for the dosimetry of therapeutic electron beams, a note should be made for changes in sensitivity at doses beyond 2 Gy and electron beams energy dependence in reuse, short-term fading, and signal depletion on repeated readout. PMID:28405107
SU-E-T-146: Beam Energy Spread Estimate Based On Bragg Peak Measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anferov, V; Derenchuk, V; Moore, R
2015-06-15
Purpose: ProNova is installing and commissioning a two room proton therapy system in Knoxville, TN. Beam energy out of the 230MeV cyclotron was measured on Jan 24, 2015. Cyclotron beam was delivered into a Zebra multi layered IC detector calibrated in terms of penetration range in water. The analysis of the measured Bragg peak determines penetration range in water which can be subsequently converted into proton beam energy. We extended this analysis to obtain an estimate of the beam energy spread out of the cyclotron. Methods: Using Monte Carlo simulations we established the correlation between Bragg peak shape parameters (widthmore » at 50% and 80% dose levels, distal falloff) and penetration range for a monoenergetic proton beam. For large uniform field impinging on a small area detector, we observed linear dependence of each Bragg peak parameter on beam penetration range as shown in Figure A. Then we studied how this correlation changes when the shape of Bragg peak is distorted by the beam focusing conditions. As shown in Figure B, small field size or diverging beam cause Bragg peak deformation predominantly in the proximal region. The distal shape of the renormalized Bragg peaks stays nearly constant. This excludes usage of Bragg peak width parameters for energy spread estimates. Results: The measured Bragg peaks had an average distal falloff of 4.86mm, which corresponds to an effective range of 35.5cm for a monoenergetic beam. The 32.7cm measured penetration range is 2.8cm less. Passage of a 230MeV proton beam through a 2.8cm thick slab of water results in a ±0.56MeV energy spread. As a final check, we confirmed agreement between shapes of the measured Bragg peak and one generated by Monte-Carlo code for proton beam with 0.56 MeV energy spread. Conclusion: Proton beam energy spread can be estimated using Bragg peak analysis.« less
Neutron-induced fission cross section of 242Pu from 15 MeV to 20 MeV
NASA Astrophysics Data System (ADS)
Jovančević, N.; Salvador-Castineira, P.; Daraban, L.; Vidali, M.; Heyse, J.; Oberstedt, S.; Hambsch, F.-J.; Bonaldi, C.; Geerts, W.
2017-09-01
Accurate nuclear-data needs in the fast-neutron-energy region have been recently addressed for the development of next generation nuclear power plants (GEN-IV) by the OECD Nuclear Energy Agency (NEA). This sensitivity study has shown that of particular interest is the 242Pu(n,f) cross section for fast reactor systems. Measurements have been performed with quasi-monoenergetic neutrons in the energy range from 15 MeV to 20 MeV produced by the Van de Graaff accelerator of the JRC-Geel. A twin Frisch-grid ionization chamber has been used in a back-to-back configuration as fission fragment detector. The 242Pu(n,f) cross section has been normalized to 238U(n,f) cross section data. The results were compared with existing literature data and show acceptable agreement within 5%.
MeV ion-beam analysis of optical data storage films
NASA Technical Reports Server (NTRS)
Leavitt, J. A.; Mcintyre, L. C., Jr.; Lin, Z.
1993-01-01
Our objectives are threefold: (1) to accurately characterize optical data storage films by MeV ion-beam analysis (IBA) for ODSC collaborators; (2) to develop new and/or improved analysis techniques; and (3) to expand the capabilities of the IBA facility itself. Using H-1(+), He-4(+), and N-15(++) ion beams in the 1.5 MeV to 10 MeV energy range from a 5.5 MV Van de Graaff accelerator, film thickness (in atoms/sq cm), stoichiometry, impurity concentration profiles, and crystalline structure were determined by Rutherford backscattering (RBS), high-energy backscattering, channeling, nuclear reaction analysis (NRA) and proton induced X-ray emission (PIXE). Most of these techniques are discussed in detail in the ODSC Annual Report (February 17, 1987), p. 74. The PIXE technique is briefly discussed in the ODSC Annual Report (March 15, 1991), p. 23.
Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan
2016-01-01
A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10−9 MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal–ventral, ventral–dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. PMID:26661852
Design and experiments of RF transverse focusing in S-Band, 1 MeV standing wave linac
NASA Astrophysics Data System (ADS)
Mondal, J.; Chandan, Shiv; Parashar, S.; Bhattacharjee, D.; Tillu, A. R.; Tiwari, R.; Jayapraksh, D.; Yadav, V.; Banerjee, S.; Choudhury, N.; Ghodke, S. R.; Dixit, K. P.; Nimje, V. T.
2015-09-01
S-Band standing wave (SW) linacs in the range of 1-10 MeV have many potential industrial applications world wide. In order to mitigate the industrial requirement it is required to reduce the overall size and weight of the system. On this context a 2856 M Hz, 1 Me V, bi-periodic on axis coupled self transverse focused SW linac has been designed and tested. The RF phase focusing is achieved by introducing an asymmetric field distribution in the first cell of the 1 MeV linac. The pulsed electron beam of 40 keV, 650 mA and 5 μs duration is injected from a LaB6 thermionic gun. This paper presents the structure design, beam dynamics simulation, fabrication and experimental results of the 1 MeV auto-focusing SW linac.
NASA Astrophysics Data System (ADS)
Tornow, W.; Bhike, M.; Finch, S. W.; Krishichayan
2017-09-01
We report on cross-section measurements for the reactions 76Ge(n,2n)75Ge, 76Ge(n,n'γ)76Ge, 126,127,128Te(n,γ)127,129,131Te, and 136Xe(n,n'γ)136Xe in the neutron energy range between 0.5 MeV and 15 MeV.
The Voyager Cosmic Ray Experiment
NASA Technical Reports Server (NTRS)
Stilwell, D. E.; Davis, W. D.; Joyce, R. M.; Mcdonald, F. B.; Trainor, J. H.; Althouse, W. E.; Cummings, A. C.; Garrard, T. L.; Stone, E. C.; Vogt, R. E.
1979-01-01
The Voyager Cosmic Ray Experiment includes seven dE/dx-E telescopes to measure the energy and charge of particles with atomic numbers from 1 to 26 in the energy range 1-500 MeV/nucleon and to measure electron energy in the range from 3 to 110 MeV. Isotopic composition of hydrogen through sulfur in the range up to 75 Mev/nucleon can also be resolved. The electronic systems include a dual-gain, charge sensitive preamplifier, 4096-channel pulse height analyzers for three parameter analysis of selected events, and an event type readout polling scheme to maximize the use of available telemetry space and to enhance the occurrence of rare events in the data. Details of the detector, electronic and mechanical design are presented.
NASA Astrophysics Data System (ADS)
Kotov, Yu. D.; Arkhangelskaja, I. V.; Arkhangelsky, A. I.; Kuznetsov, S. N.; Glyanenko, A. S.; Kalmykov, P. A.; Amandzholova, D. B.; Samoylenko, V. T.; Yurov, V. N.; Pavlov, A. V.; Chervyakova, O. I.; Afonina, I. V.
The AVS-F apparatus (Russian abbreviation for Amplitude-Time Spectrometry of the Sun) is intended for the solar flares' hard X-ray and gamma-ray emission characteristic studies and for the search and detection of the gamma-ray bursts (GRB). At present over 1,100 events with duration more than 2 s without any coordinate relations to Earth Radiation Belts and South Atlantic Anomaly were separated on the results of preliminary analysis of AVS-F experiment database.About 68 % of the identified events were associated with quasistationary equatorial precipitations-15-30 % count rate increases in the low-energy gamma-band of the AVS-F apparatus over its average value obtained by approximation of these parts with polynomials discovered on some equatorial segments in the ranges of geographic latitude of 25∘ up to +30∘. Several short events with duration of 1-16 ms associated with terrestrial gamma-ray flashes were registered during the experiment. These events were detected above the powerful thunderstorm formations.Solar flares with classes stronger than M1.0 according to the GOES classification were about 7 % of the detected events. Solar flares' hard X-rays and γ-emission were mainly observed during the rise or maximum phases of the emission in the soft X-rays band according to the detectors on board the GOES series satellites data and duration of their registration is less than of the soft X-ray bands. According to the preliminary data analysis gamma-emission with energy over 10 MeV was registered during 12 % of the observed flares. The emission in the energy band E ¿ 100 keV was registered during over 60 faint solar flares (of B and C classes according to the GOES and from several ones γ-quanta with energy up to several tens of MeV were observed.Several spectral line complexes were observed in the spectra of some solar flares stronger than M1.0 in the low-energy gamma-range. Registered spectral features were corresponded to α α-lines, annihilation line, nuclear lines, and neutron capture line on1H (2.223 MeV). In the spectrum of the January 20, 2005 solar flare the feature in the range of 15-21 MeV was detected for the first time. It can be associated with lines of 15.11 MeV (12C +16O) or 20.58 MeV (from neutron radiative capture on3He), or with their combination. Also several e-dominant flares without any gamma-lines in energy spectra were identified. All detected faint solar flares were e-dominant according to the preliminary data analysis.Thin structure with characteristic timescale of 30-160 s was observed at 99 % significance level on some solar flares stronger than M1.0 temporal profiles in the low-energy gamma-band in the energy ranges corresponding to the identified spectral features or whole gamma-band energy boundaries. According to the results of the preliminary analysis during the flare of January 20, 2005, thin structure with timescale from 7 ms to 35 ms was detected at 99 % confidence level in the energy range of 0.1-20 MeV. Some thin structure with characteristic timescale 50-110 s was observed on temporal profiles of several faint events.About 3 % of the identified events were gamma-ray bursts. During some bursts high-energy gamma-emission was observed, for example Emax = 147 ± 3 MeV for GRB050525.
Measurement of the neutron-capture cross section on 63,65Cu between 0.4 and 7.5 MeV
NASA Astrophysics Data System (ADS)
Bray, Isabel; Bhike, Megha; Krishichayan, (None); Tornow, W.
2015-10-01
Copper is currently being used as a cooling and shielding material in most experimental searches for 0 ν β β decay. In order to accurately interpret background events in these experiments, the cross section of neutron-induced reactions on copper must be known. The purpose of this work was to measure the cross section of the 63,65Cu(n, γ)64,66Cu reactions. Data were collected through the activation method at a range of energies from approximately 0.4 MeV to 7.5 MeV, employing the neutron production reactions 3H(p,n)3Heand2H(d,n)3He. Previous data were limited to energies below approximately 3 MeV. The results are compared to predictions from the nuclear data libraries ENDF/B-VII.1 and TENDL-2014.
A direct electron detector for time-resolved MeV electron microscopy
Vecchione, T.; Denes, P.; Jobe, R. K.; ...
2017-03-15
The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here in this paper, we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixelmore » noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less
New COMPTEL results on pulsar studies at MeV energies
NASA Technical Reports Server (NTRS)
Hermsen, W.; Kuiper, L.; Schoenfelder, V.; Strong, A. W.; Bennett, K.; Much, R.; McConnell, M.; Ryan, J.; Carraminana, A.
1997-01-01
The Compton telescope (COMPTEL) onboard the Compton Gamma Ray Observatory (CGRO) detected the pulsar PSR B1951-32 at MeV energies, and found indications of a signal from PSR B0656+14. In the combined spectra from COMPTEL and the energetic gamma ray experiment telescope (EGRET) onboard CGRO, it can be seen that the maximum luminosities of these objects are reached in the COMPTEL energy range. These spectra can be compared with those from four other pulsars observed in MeV energies with COMPTEL. The spectral properties of five of the six pulsars, Vela, PSR B1509-58, PSR B1951-32 and PSR B0656+14, require breaks and bends at MeV energies. The sixth pulsar, the Crab pulsar, approximately follows a power law flux relation from keV to GeV energies. It is concluded that this spectral behavior may play a role in the discrimination between current gamma ray emission models.
A direct electron detector for time-resolved MeV electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecchione, T.; Denes, P.; Jobe, R. K.
The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μmμm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The uniquemore » capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less
A direct electron detector for time-resolved MeV electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecchione, T.; Denes, P.; Jobe, R. K.
The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here in this paper, we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixelmore » noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less
NASA Astrophysics Data System (ADS)
Mulligan, T.; Blake, J. B.; Mewaldt, R. A.; Leske, R. A.
2008-08-01
In mid December 2006 several flares on the Sun occurred in rapid succession, spawning several CMEs and bathing the Earth in multiple solar energetic particle (SEP) events. One such SEP event occurring on December 14 was observed at the Earth just as an interplanetary CME (ICME) from a previous flare on December 13 was transiting the Earth. Although solar wind observations during this time show typical energetic proton fluxes from the prior SEP event and IP shock driven ahead of the ICME, as the ICME passes the Earth unusual energetic particle signatures are observed. Measurements from ACE, Wind, and STEREO show proton flux variations at energies ranging from ~3 MeV up to greater than 70 MeV. Energetic electron signatures from ACE show similar variations. Within the Earth's magnetosphere Polar HIST also sees these proton flux variations at energies greater than 10 MeV while crossing open field lines in the southern polar cap. Although no such variation in the energetic proton flux is observed at the GOES 11 spacecraft in geosynchronous orbit near the subsolar region, differential fluxes observed at GOES 11 and GOES 12 in the 15-40 MeV energy range do show some variability, indicating the signature is observable near dawn and dusk.
Spectroscopic evidence of a new energy scale for superconductivity in H3S.
Capitani, F; Langerome, B; Brubach, J-B; Roy, P; Drozdov, A; Eremets, M I; Nicol, E J; Carbotte, J P; Timusk, T
2017-09-01
The discovery of a superconducting phase in sulfur hydride under high pressure with a critical temperature above 200 K has provided fresh impetus to the search for superconductors at ever higher temperatures. Although this systems displays all the hallmarks of superconductivity, the mechanism through which it arises remains to be determined. Here we provide a first optical spectroscopy study of this superconductor. Experimental results for the optical reflectivity of H 3 S, under hydrostatic pressure of 150 GPa, for several temperatures and over the range 60 to 600 meV of photon energies, are compared with theoretical calculations based on Eliashberg theory. Two significant features stand out: some remarkably strong infrared active phonons at around 160 meV, and a band with a depressed reflectance in the superconducting state in the region from 450 meV to 600 meV. In this energy range H3S becomes more reflecting with increasing temperature, a change that is traced to superconductivity originating from the electron-phonon interaction. The shape, magnitude, and energy dependence of this band at 150 K agrees with our calculations. This provides strong evidence of a conventional mechanism. However, the unusually strong optical phonon suggests a contribution of electronic degrees of freedom.
NASA Astrophysics Data System (ADS)
Arkhangelskaja, I. V.; Arkhangelskiy, A. I.
2016-02-01
The gamma-ray background physical origin for low altitude orbits defined by: diffuse cosmic gamma-emission, atmospheric gamma-rays, gamma-emission formed in interactions of charged particles (both prompt and activation) and transient events such as electrons precipitations and solar flares. The background conditions in the energy range from 0.1 MeV up to several MeV for low altitude orbits differ due to frequency of Earth Radiation Belts - ERBs (included South Atlantic Anomaly - SAA) passes and cosmic rays rigidity. The detectors and satellite constructive elements are activated by trapped in ERBs and moving along magnetic lines charged particles. In this case we propose simplified polynomial model separately for polar and equatorial orbits parts: background count rate temporal profile approximation by 4-5 order polynomials in equatorial regions, and linear approximations, parabolas or constants in polar caps. The polynomials’ coefficients supposed to be similar for identical spectral channels for each analyzed equatorial part taken into account normalization coefficients defined due to Kp-indexes study within period corresponding to calibration coefficients being approximately constants. The described model was successfully applied for the solar flares hard X-ray and gamma-ray emission characteristic studies by AVS-F apparatus data onboard CORONAS-F satellite.
Response functions of Fuji imaging plates to monoenergetic protons in the energy range 0.6-3.2 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonnet, T.; Denis-Petit, D.; Gobet, F.
2013-01-15
We have measured the responses of Fuji MS, SR, and TR imaging plates (IPs) to protons with energies ranging from 0.6 to 3.2 MeV. Monoenergetic protons were produced with the 3.5 MV AIFIRA (Applications Interdisciplinaires de Faisceaux d'Ions en Region Aquitaine) accelerator at the Centre d'Etudes Nucleaires de Bordeaux Gradignan (CENBG). The IPs were irradiated with protons backscattered off a tantalum target. We present the photo-stimulated luminescence response of the IPs together with the fading measurements for these IPs. A method is applied to allow correction of fading effects for variable proton irradiation duration. Using the IP fading corrections, amore » model of the IP response function to protons was developed. The model enables extrapolation of the IP response to protons up to proton energies of 10 MeV. Our work is finally compared to previous works conducted on Fuji TR IP response to protons.« less
Radiation-assisted grafting of vinylidene chloride onto high-density polyethylene
NASA Astrophysics Data System (ADS)
Nagesh, N.; Dokhale, P. A.; Bhoraskar, V. N.
1999-06-01
6 MeV electrons and Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays were used for grafting vinylidene chloride (VDC) onto high-density polyethylene (HDPE) samples. The HDPE samples were immersed in vinylidene chloride and irradiated either with Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays or with 6 MeV electrons. In both cases, the radiation dose was varied in the range 1.25-7.5 kGy. The grafted samples were characterized by IR spectroscopy to obtain information about the chemical bonds and with the 14 MeV neutron activation analysis technique for estimating the number of chlorine atoms. The formation of stable bonds between the VDC molecules and the polymer chains could be achieved either with 6 MeV electrons or with Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays. Both the number of chlorine atoms and the sample-surface conductivity increased with the radiation dose but the increases achieved with 6 MeV electrons were greater than those achieved with Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays.
Signatures of particle acceleration at SN 1987A
NASA Technical Reports Server (NTRS)
Gaisser, T. K.; Stanev, Todor; Harding, Alice K.
1989-01-01
At least eight experiments are currently monitoring SN 1987A for photons or neutrinos with energies in the TeV range or higher. Observation of such signals would indicate that the supernova is the site of acceleration of charged particles to even higher energies. The way that the acceleration might occur is discussed, and the prospects for detection of such signals in light of current limits on power in the supernova from sources other than the nickel-cobalt-iron decay chain are evaluated. It is pointed out that signals of particle acceleration may show up in continuum MeV gamma rays as well as in the 100 MeV range.
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A.; Smith, L. S.; Soli, G. A.; Thieberger, P.; Wegner, H. E.
1985-01-01
Single-Event Upset (SEU) response of a bipolar low-power Schottky-diode-clamped TTL static RAM has been observed using Br ions in the 100-240 MeV energy range and O ions in the 20-100 MeV range. These data complete the experimental verification of circuit-simulation SEU modeling for this device. The threshold for onset of SEU has been observed by the variation of energy, ion species and angle of incidence. The results obtained from the computer circuit-simulation modeling and experimental model verification demonstrate a viable methodology for modeling SEU in bipolar integrated circuits.
Energy spectra variations of high energy electrons in magnetic storms observed by ARASE and HIMAWARI
NASA Astrophysics Data System (ADS)
Takashima, T.; Higashio, N.; Mitani, T.; Nagatsuma, T.; Yoshizumi, M.
2017-12-01
The ARASE spacecraft was launched in December 20, 2016 to investigate mechanisms for acceleration and loss of relativistic electrons in the radiation belts during space storms. The six particle instruments with wide energy range (a few eV to 10MeV) are onboard the ARASE spacecraft. Especially, two particle instruments, HEP and XEP observe high energy electron with energy range from 70keV to over 10Mev. Those instruments observed several geomagnetic storms caused by coronal hole high speed streams or coronal mass ejections from March in 2017. The relativistic electrons in the outer radiation belt were disappeared/increased and their energy spectra were changed dynamically in some storms observed by XEP/HEP onboard the ARASE spacecraft. In the same time, SEDA-e with energy range 200keV-4.5MeV for electron on board the HIMAWARI-8, Japanese weather satellite on GEO, observed increase of relativistic electron in different local time. We will report on energy spectra variations of high energy electrons including calibrations of differential flux between XEP and HEP and discuss comparisons with energy spectra between ARAE and HIMAWARI that observed each storm in different local time.
Fusion product losses due to fishbone instabilities in deuterium JET plasmas
NASA Astrophysics Data System (ADS)
Kiptily, V. G.; Fitzgerald, M.; Goloborodko, V.; Sharapov, S. E.; Challis, C. D.; Frigione, D.; Graves, J.; Mantsinen, M. J.; Beaumont, P.; Garcia-Munoz, M.; Perez von Thun, C.; Rodriguez, J. F. R.; Darrow, D.; Keeling, D.; King, D.; McClements, K. G.; Solano, E. R.; Schmuck, S.; Sips, G.; Szepesi, G.; Contributors, JET
2018-01-01
During development of a high-performance hybrid scenario for future deuterium-tritium experiments on the Joint European Torus, an increased level of fast ion losses in the MeV energy range was observed during the instability of high-frequency n = 1 fishbones. The fishbones are excited during deuterium neutral beam injection combined with ion cyclotron heating. The frequency range of the fishbones, 10-25 kHz, indicates that they are driven by a resonant interaction with the NBI-produced deuterium beam ions in the energy range ⩽120 keV. The fast particle losses in a much higher energy range are measured with a fast ion loss detector, and the data show an expulsion of deuterium plasma fusion products, 1 MeV tritons and 3 MeV protons, during the fishbone bursts. An MHD mode analysis with the MISHKA code combined with the nonlinear wave-particle interaction code HAGIS shows that the loss of toroidal symmetry caused by the n = 1 fishbones affects strongly the confinement of non-resonant high energy fusion-born tritons and protons by perturbing their orbits and expelling them. This modelling is in a good agreement with the experimental data.
The mini-calorimeter of the AGILE satellite
NASA Astrophysics Data System (ADS)
Labanti, C.; Marisaldi, M.; Fuschino, F.; Galli, M.; Argan, A.; Bulgarelli, A.; Costa, E.; Di Cocco, G.; Gianotti, F.; Tavani, M.; Trifoglio, M.
2006-06-01
AGILE is a small space mission of the Italian Space Agency (ASI) devoted to astrophysics in the gamma-ray energy range 30 MeV - 50 GeV, and in the X-ray band 15 keV - 45 keV. The AGILE Payload is composed of three instruments: a gamma-ray imager based on a Tungsten-Silicon Tracker (ST), for observations in the gamma ray energy range 30 MeV - 50 GeV, a Silicon based X-ray detector, Super-Agile (SA), for imaging in the range 15 keV - 40 keV and a CsI(Tl) Mini-Calorimeter (MCAL) that detects gamma rays or particle energy deposits between 300 keV and 200 MeV. The payload is currently fully integrated and the satellite is expected to be launched in the second half of 2006. MCAL is composed of 30 CsI(Tl) scintillator detectors with the shape of a bar with photodiode readout at both ends, arranged in two orthogonal layers. MCAL can work both as a slave of the ST and as an independent gamma-ray detector for the detection of transients and Gamma Ray Bursts. In this paper a detailed description of MCAL is presented together with the first on ground calibration results.
MCNPX simulation of proton dose distribution in homogeneous and CT phantoms
NASA Astrophysics Data System (ADS)
Lee, C. C.; Lee, Y. J.; Tung, C. J.; Cheng, H. W.; Chao, T. C.
2014-02-01
A dose simulation system was constructed based on the MCNPX Monte Carlo package to simulate proton dose distribution in homogeneous and CT phantoms. Conversion from Hounsfield unit of a patient CT image set to material information necessary for Monte Carlo simulation is based on Schneider's approach. In order to validate this simulation system, inter-comparison of depth dose distributions among those obtained from the MCNPX, GEANT4 and FLUKA codes for a 160 MeV monoenergetic proton beam incident normally on the surface of a homogeneous water phantom was performed. For dose validation within the CT phantom, direct comparison with measurement is infeasible. Instead, this study took the approach to indirectly compare the 50% ranges (R50%) along the central axis by our system to the NIST CSDA ranges for beams with 160 and 115 MeV energies. Comparison result within the homogeneous phantom shows good agreement. Differences of simulated R50% among the three codes are less than 1 mm. For results within the CT phantom, the MCNPX simulated water equivalent Req,50% are compatible with the CSDA water equivalent ranges from the NIST database with differences of 0.7 and 4.1 mm for 160 and 115 MeV beams, respectively.
Optical properties of InGaN thin films in the entire composition range
NASA Astrophysics Data System (ADS)
Kazazis, S. A.; Papadomanolaki, E.; Androulidaki, M.; Kayambaki, M.; Iliopoulos, E.
2018-03-01
The optical properties of thick InGaN epilayers, with compositions spanning the entire ternary range, are studied in detail. High structural quality, single phase InxGa1-xN (0001) films were grown heteroepitaxially by radio-frequency plasma assisted molecular-beam epitaxy on freestanding GaN substrates. Their emission characteristics were investigated by low temperature photoluminescence spectroscopy, whereas variable angle spectroscopic ellipsometry was applied to determine the complex dielectric function of the films, in the 0.55-4.0 eV photon range. Photoluminescence lines were intense and narrow, in the range of 100 meV for Ga-rich InGaN films (x < 0.3), around 150 meV for mid-range composition films (0.3 < x < 0.6), and in the range of 50 meV for In-rich alloys (x > 0.6). The composition dependence of the strain-free emission energy was expressed by a bowing parameter of b = 2.70 ± 0.12 eV. The films' optical dielectric function dispersion was obtained by the analysis of the ellipsometric data employing a Kramers-Kronig consistent parameterized optical model. The refractive index dispersion was obtained for alloys in the entire composition range, and the corresponding values at the band edge show a parabolic dependence on the InN mole fraction expressed by a bowing parameter of b = 0.81 ± 0.04. The bowing parameter describing the fundamental energy bandgap was deduced to be equal to 1.66 ± 0.07 eV, consistent with the ab initio calculations for statistically random (non-clustered) InGaN alloys.
NASA Astrophysics Data System (ADS)
Argan, A.; Piano, G.; Tavani, M.; Trois, A.
2016-04-01
We study the capability of the AGILE gamma ray space mission in detecting magnetospheric particles (mostly electrons) in the energy range 10-100 MeV. Our measurements focus on the inner magnetic shells with L ≲ 1.2 in the magnetic equator. The instrument characteristics and a quasi-equatorial orbit of ˜500 km altitude make it possible to address several important properties of the particle populations in the inner magnetosphere. We review the on board trigger logic and study the acceptance of the AGILE instrument for particle detection. We find that the AGILE effective geometric factor (acceptance) is R≃50 cm2 sr for particle energies in the range 10-100 MeV. Particle event reconstruction allows to determine the particle pitch angle with the local magnetic field with good accuracy. We obtain the pitch angle distributions for both the AGILE "pointing" phase (July 2007 to October 2009) and the "spinning" phase (November 2009 to present). In spinning mode, the whole range (0-180 degrees) is accessible every 7 min. We find a pitch angle distribution of the "dumbbell" type with a prominent depression near α = 90° which is typical of wave-particle resonant scattering and precipitation in the inner magnetosphere. Most importantly, we show that AGILE is not affected by solar particle precipitation events in the magnetosphere. The satellite trajectory intersects magnetic shells in a quite narrow range (1.0 ≲ L ≲ 1.2); AGILE then has a high exposure to a magnetospheric region potentially rich of interesting phenomena. The large particle acceptance in the 10-100 MeV range, the pitch angle determination capability, the L shell exposure, and the solar-free background make AGILE a unique instrument for measuring steady and transient particle events in the inner magnetosphere.
NASA Astrophysics Data System (ADS)
Toyokawa, Masakazu; Yahiro, Masanobu; Matsumoto, Takuma; Kohno, Michio
2018-02-01
An important current subject is to clarify the properties of chiral three-nucleon forces (3NFs) not only in nuclear matter but also in scattering between finite-size nuclei. Particularly for elastic scattering, this study has just started and the properties are not understood for a wide range of incident energies (E_in). We investigate basic properties of chiral 3NFs in nuclear matter with positive energies by using the Brueckner-Hartree-Fock method with chiral two-nucleon forces at N3LO and 3NFs at NNLO, and analyze the effects of chiral 3NFs on 4He elastic scattering from targets ^{208}Pb, ^{58}Ni, and ^{40}Ca over a wide range of 30 ≲ E_in/A_P ≲ 200 MeV by using the g-matrix folding model, where A_P is the mass number of the projectile. In symmetric nuclear matter with positive energies, chiral 3NFs make the single-particle potential less attractive and more absorptive. The effects mainly come from the Fujita-Miyazawa 2π-exchange 3NF and become slightly larger as E_in increases. These effects persist in the optical potentials of 4He scattering. As for the differential cross sections of 4He scattering, chiral-3NF effects are large for E_in/A_P ≳ 60 MeV and improve the agreement of the theoretical results with the measured ones. Particularly for E_in/A_P ≳ 100 MeV, the folding model reproduces measured differential cross sections pretty well. Cutoff (Λ) dependence is investigated for both nuclear matter and 4He scattering by considering two cases of Λ=450 and 550 MeV. The uncertainty coming from the dependence is smaller than chiral-3NF effects even at E_in/A_P=175 MeV.
High and Low Energy Proton Radiation Damage in p/n InP MOCVD Solar Cells
NASA Technical Reports Server (NTRS)
Rybicki, George; Weinberg, Irv; Scheiman, Dave; Vargas-Aburto, Carlos; Uribe, Roberto
1995-01-01
InP p(+)/n/n(+) solar cells, fabricated by metal organic chemical vapor deposition, (MOCVD) were irradiated with 0.2 MeV and 10 MeV protons to a fluence of 10(exp 13)/sq cm. The power output degradation, IV behavior, carrier concentration and defect concentration were observed at intermediate points throughout the irradiations. The 0.2 MeV proton-irradiated solar cells suffered much greater and more rapid degradation in power output than those irradiated with 10 MeV protons. The efficiency losses were accompanied by larger increases in the recombination currents in the 0.2 MeV proton-irradiated solar cells. The low energy proton irradiations also had a larger impact on the series resistance of the solar cells. Despite the radiation induced damage, the carrier concentration in the base of the solar cells showed no reduction after 10 MeV or 0.2 MeV proton irradiations and even increased during irradiation with 0.2 MeV protons. In a deep level transient spectroscopy (DLTS) study of the irradiated samples, the minority carrier defects H4 and H5 at E(sub v) + 0.33 and E(sub v) + 0.52 eV and the majority carrier defects E7 and El0 at E(sub c) - 0.39 and E(sub c) - 0.74 eV, were observed. The defect introduction rates for the 0.2 MeV proton irradiations were about 20 times higher than for the 10 MeV proton irradiations. The defect El0, observed here after irradiation, has been shown to act as a donor in irradiated n-type InP and may be responsible for obscuring carrier removal. The results of this study are consistent with the much greater damage produced by low energy protons whose limited range causes them to stop in the active region of the solar cell.
Ducret, J-E; Batani, D; Boutoux, G; Chancé, A; Gastineau, B; Guillard, J-C; Harrault, F; Jakubowska, K; Lantuejoul-Thfoin, I; Leboeuf, D; Loiseau, D; Lotode, A; Pès, C; Rabhi, N; Saïd, A; Semsoum, A; Serani, L; Thomas, B; Toussaint, J-C; Vauzour, B
2018-02-01
The SEPAGE diagnostic will detect charged particles (electrons, protons, and ions) accelerated in the interaction of the PETAL (PETawatt Aquitaine Laser) laser with its targets on the LMJ (Laser MegaJoule)-PETAL laser facility. SEPAGE will be equipped with a proton-radiography front detector and two Thomson parabolas (TP), corresponding to different ranges of the particle energy spectra: Above 0.1 MeV for electrons and protons in the low-energy channel, with a separation capability between protons and 12 C 6+ up to 20 MeV proton energy and above 8 MeV for the high-energy channel, with a separation capability between protons and 12 C 6+ up to 200 MeV proton kinetic energy. This paper presents the calibration of the SEPAGE's low-energy channel TP at the Tandem facility of Orsay (France) with proton beams between 3 and 22 MeV and carbon-ion beams from 5.8 to 84 MeV. The magnetic and electric fields' integrals were determined with an accuracy of 10 -3 by combining the deflections measured at different energies with different target thicknesses and materials, providing different in-target energy losses of the beam particles and hence different detected energies for given beam energies.
NASA Astrophysics Data System (ADS)
Ducret, J.-E.; Batani, D.; Boutoux, G.; Chancé, A.; Gastineau, B.; Guillard, J.-C.; Harrault, F.; Jakubowska, K.; Lantuejoul-Thfoin, I.; Leboeuf, D.; Loiseau, D.; Lotode, A.; Pès, C.; Rabhi, N.; Saïd, A.; Semsoum, A.; Serani, L.; Thomas, B.; Toussaint, J.-C.; Vauzour, B.
2018-02-01
The SEPAGE diagnostic will detect charged particles (electrons, protons, and ions) accelerated in the interaction of the PETAL (PETawatt Aquitaine Laser) laser with its targets on the LMJ (Laser MegaJoule)-PETAL laser facility. SEPAGE will be equipped with a proton-radiography front detector and two Thomson parabolas (TP), corresponding to different ranges of the particle energy spectra: Above 0.1 MeV for electrons and protons in the low-energy channel, with a separation capability between protons and 12C6+ up to 20 MeV proton energy and above 8 MeV for the high-energy channel, with a separation capability between protons and 12C6+ up to 200 MeV proton kinetic energy. This paper presents the calibration of the SEPAGE's low-energy channel TP at the Tandem facility of Orsay (France) with proton beams between 3 and 22 MeV and carbon-ion beams from 5.8 to 84 MeV. The magnetic and electric fields' integrals were determined with an accuracy of 10-3 by combining the deflections measured at different energies with different target thicknesses and materials, providing different in-target energy losses of the beam particles and hence different detected energies for given beam energies.
The reliability studies of nano-engineered SiGe HBTs using Pelletron accelerator
NASA Astrophysics Data System (ADS)
Prakash, A. P. Gnana; Praveen, K. C.; Pushpa, N.; Cressler, John D.
2015-05-01
The effects of high energy ions on the electrical characteristics of silicon-germanium heterojunction bipolar transistors (SiGe HBTs) were studied in the total dose of ranging from 600 krad to 100 Mrad (Si). The two generations (50 GHz and 200 GHz) of SiGe HBTs were exposed to 50 MeV lithium, 75 MeV boron and 100 MeV oxygen ions. The electrical characteristics of SiGe HBTs were studied before and after irradiation. The SiGe HBTs were exposed to 60Co gamma radiation in the same total dose. The results are systematically compared in order to understand the interaction of ions and ionizing radiation with SiGe HBTs.
Cross sections for proton-induced reactions on natSb up to 68 MeV
NASA Astrophysics Data System (ADS)
Mosby, M. A.; Birnbaum, E. R.; Nortier, F. M.; Engle, J. W.
2017-12-01
Nuclear excitation functions for proton induced reactions on antimony targets have been measured up to 68 MeV using stacked foil activation techniques at the Crocker Laboratory of the University of California at Davis. Measurements made are expected to be useful in production of therapeutic radionuclides 119Sb (via production of its parents 119mTe and 119gTe) and 117mSn. This work extends the energy coverage of available data upwards by approximately 30 MeV into a range relevant to medium-energy radionuclide production facilities like the Isotope Production Facility in Los Alamos, New Mexico and the Brookhaven Linear Isotope Producer in Upton, New York.
He and Au ion radiation damage in sodalite, Na4Al3Si3O12Cl
NASA Astrophysics Data System (ADS)
Vance, Eric R.; Gregg, Daniel J.; Karatchevtseva, Inna; Davis, Joel; Ionescu, Mihail
2014-10-01
Sodalite, a candidate ceramic for the immobilisation of pyroprocessing nuclear waste, showed no observable lattice dilatation in grazing incidence X-ray diffraction when irradiated with up to 1017 5 MeV He ions/cm2. However micro-Raman scattering showed considerable spectral broadening characteristic of radiation damage near the end of the ∼22 μm He range. Partial amorphism plus nepheline formation was observed in grazing incidence X-ray diffraction when sodalite was irradiated by 1016 12 MeV Au ions/cm2. Nepheline appeared less susceptible to 12 MeV Au ion damage than sodalite, with ∼25% less amorphous fraction at 1016 ions/cm2.
New techniques in neutron data measurements above 30 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisowski, P.W.; Haight, R.C.
1991-01-01
Recent developments in experimental facilities have enabled new techniques for measurements of neutron interactions above 30 MeV. Foremost is the development of both monoenergetic and continuous neutron sources using accelerators in the medium energy region between 100 and 800 MeV. Measurements of the reaction products have been advanced by the continuous improvement in detector systems, electronics and computers. Corresponding developments in particle transport codes and in the theory of nuclear reactions at these energies have allowed more precise design of neutron sources, experimental shielding and detector response. As a result of these improvements, many new measurements are possible and themore » data base in this energy range is expanding quickly.« less
Adequacy of damped dynamics to represent the electron-phonon interaction in solids
Caro, A.; Correa, A. A.; Tamm, A.; ...
2015-10-16
Time-dependent density functional theory and Ehrenfest dynamics are used to calculate the electronic excitations produced by a moving Ni ion in a Ni crystal in the case of energetic MeV range (electronic stopping power regime), as well as thermal energy meV range (electron-phonon interaction regime). Results at high energy compare well to experimental databases of stopping power, and at low energy the electron-phonon interaction strength determined in this way is very similar to the linear response calculation and experimental measurements. This approach to electron-phonon interaction as an electronic stopping process provides the basis for a unified framework to perform classicalmore » molecular dynamics of ion-solid interaction with ab initio type nonadiabatic terms in a wide range of energies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey
2015-04-15
Purpose: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Methods: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0–6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dosemore » distributions was evaluated. Results: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4–6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0–4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. Conclusions: The authors demonstrate that relative dose distributions for VHEE beams of 50–70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrov, M.P.; Bell, R.; Budny, R.V.
1998-07-01
This paper presents studies of ICRF-driven H+ minority ions in TFTR (Tokamak Fusion Test Reator) deuterium plasmas using primarily passive Ho flux detection in the energy range of 0.2-1.0 MeV with some corroborating active (lithium pellet charge exchange) measurements. It is shown that in the passive mode the main donors for the neutralization of H+ ions in this energy range are C5+ ions. The measured effective H+ tail temperatures range from 0.15 MeV at an ICRF power of 2 MW to 0.35 MeV at 6 MW. Analysis of the ICRF-driven H+ ion energy balance has been performed on the basismore » of the dependence of effective H+ temperatures on the plasma parameters. The analysis showed that H+ confinement times are comparable with their slowing-down times and tended to decrease with increasing ICRF power. Radial redistribution of ICRF-driven H+ ions was detected when giant sawtooth crashes occurred during the ICRF heating. The redistribution affected ions with energy below 0.7-0.8 MeV. The sawtooth crashes displace H+ ions outward along the plasma major radius into the stochastic ripple diffusion domain were those ions are lost in about 10 milliseconds. These observations are consistent with the model of the redistribution of energetic particles developed previously to explain the results of deuterium-tritium alpha-particle redistribution due to sawteeth observed in TFTR. The experimental data are also consistent with ORBIT code simulations of H+ stochastic ripple diffusion losses.« less
NASA Astrophysics Data System (ADS)
Gnana Prakash, A. P.; Pradeep, T. M.; Hegde, Vinayakprasanna N.; Pushpa, N.; Bajpai, P. K.; Patel, S. P.; Trivedi, Tarkeshwar; Bhushan, K. G.
2017-12-01
NPN transistors and N-channel depletion metal oxide semiconductor field effect transistors (MOSFETs) were irradiated with 5 MeV protons and 60Co gamma radiation in the dose ranging from 1 Mrad(Si) to 100 Mrad(Si). The different electrical characteristics of the NPN transistor such as Gummel characteristics, excess base current (ΔIB), dc current gain (hFE), transconductance (gm), displacement damage factor (K) and output characteristics were studied as a function of total dose. The different electrical characteristics of N-channel MOSFETs such as threshold voltage (Vth), density of interface trapped charges (ΔNit), density of oxide trapped charges (ΔNot), transconductance (gm), mobility (µ) and drain saturation current (IDSat) were studied systematically before and after irradiation in the same dose ranges. A considerable increase in the base current (IB) and decrease in the hFE, gm and collector saturation current (ICSat) were observed after irradiation in the case of the NPN transistor. In the N-channel MOSFETs, the ΔNit and ΔNot were found to increase and Vth, gm, µ and IDSat were found to decrease with increase in the radiation dose. The 5 MeV proton irradiation results of both the NPN transistor and N-channel MOSFETs were compared with 60Co gamma-irradiated devices in the same dose ranges. It was observed that the degradation in 5 MeV proton-irradiated devices is more when compared with the 60Co gamma-irradiated devices at higher total doses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draeger, E; Chen, H; Polf, J
2016-06-15
Purpose: To report on the initial developments of a clinical 3-dimensional (3D) prompt gamma (PG) imaging system for proton radiotherapy range verification. Methods: The new imaging system under development consists of a prototype Compton camera to measure PG emission during proton beam irradiation and software to reconstruct, display, and analyze 3D images of the PG emission. For initial test of the system, PGs were measured with a prototype CC during a 200 cGy dose delivery with clinical proton pencil beams (ranging from 100 MeV – 200 MeV) to a water phantom. Measurements were also carried out with the CC placedmore » 15 cm from the phantom for a full range 150 MeV pencil beam and with its range shifted by 2 mm. Reconstructed images of the PG emission were displayed by the clinical PG imaging software and compared to the dose distributions of the proton beams calculated by a commercial treatment planning system. Results: Measurements made with the new PG imaging system showed that a 3D image could be reconstructed from PGs measured during the delivery of 200 cGy of dose, and that shifts in the Bragg peak range of as little as 2 mm could be detected. Conclusion: Initial tests of a new PG imaging system show its potential to provide 3D imaging and range verification for proton radiotherapy. Based on these results, we have begun work to improve the system with the goal that images can be produced from delivery of as little as 20 cGy so that the system could be used for in-vivo proton beam range verification on a daily basis.« less
NASA Astrophysics Data System (ADS)
Strugalska-Gola, Elzbieta; Bielewicz, Marcin; Kilim, Stanislaw; Szuta, Marcin; Tyutyunnikov, Sergey
2017-03-01
This work was performed within the international project "Energy plus Transmutation of Radioactive Wastes" (E&T - RAW) for investigations of energy production and transmutation of radioactive waste of the nuclear power industry. 89Y (Yttrium 89) samples were located in the Quinta assembly in order to measure an average high neutron flux density in three different energy ranges using deuteron and proton beams from Dubna accelerators. Our analysis showed that the neutron density flux for the neutron energy range 20.8 - 32.7 MeV is higher than for the neutron energy range 11.5 - 20.8 MeV both for protons with an energy of 0.66 GeV and deuterons with an energy of 2 GeV, while for deuteron beams of 4 and 6 GeV we did not observe this.
Gamma-Ray Spectra & Variability of Cygnus X-1 Observed by BATSE
NASA Technical Reports Server (NTRS)
Ling, J. C.; Wheaton, A.; Wallyn, P.; Mahoney, W. A.; Paciesas, W. W.; Harmon, B. A.; Fishman, G. J.; Zhang, S. N.; Hua, X. M.
1996-01-01
We present new BATSE Earth occultation observations of the 25 keV-1.8 MeV spectrum and variability of Cygnus X-1 made between August 1993 and May 1994. We observed that the normal soft gamma-ray spectrum (gamma2) of Cygnus X-1 has two components: a Comptonized part seen below 30keV, and a high-energy tail in the 0.3-2 MeV range.
Search for a pentaquark decaying to Ξ-π-
NASA Astrophysics Data System (ADS)
Link, J. M.; Yager, P. M.; Anjos, J. C.; Bediaga, I.; Castromonte, C.; Machado, A. A.; Magnin, J.; Massafferri, A.; de Miranda, J. M.; Pepe, I. M.; Polycarpo, E.; Dos Reis, A. C.; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sánchez-Hernández, A.; Uribe, C.; Vázquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J. P.; Frisullo, V.; O'Reilly, B.; Segoni, I.; Stenson, K.; Butler, J. N.; Cheung, H. W. K.; Chiodini, G.; Gaines, I.; Garbincius, P. H.; Garren, L. A.; Gottschalk, E.; Kasper, P. H.; Kreymer, A. E.; Kutschke, R.; Wang, M.; Benussi, L.; Bianco, S.; Fabbri, F. L.; Zallo, A.; Reyes, M.; Cawlfield, C.; Kim, D. Y.; Rahimi, A.; Wiss, J.; Gardner, R.; Kryemadhi, A.; Chung, Y. S.; Kang, J. S.; Ko, B. R.; Kwak, J. W.; Lee, K. B.; Cho, K.; Park, H.; Alimonti, G.; Barberis, S.; Boschini, M.; Cerutti, A.; D'Angelo, P.; Dicorato, M.; Dini, P.; Edera, L.; Erba, S.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.; Davenport, T. F.; Arena, V.; Boca, G.; Bonomi, G.; Gianini, G.; Liguori, G.; Lopes Pegna, D.; Merlo, M. M.; Pantea, D.; Ratti, S. P.; Riccardi, C.; Vitulo, P.; Göbel, C.; Otalora, J.; Hernandez, H.; Lopez, A. M.; Mendez, H.; Paris, A.; Quinones, J.; Ramirez, J. E.; Zhang, Y.; Wilson, J. R.; Handler, T.; Mitchell, R.; Engh, D.; Hosack, M.; Johns, W. E.; Luiggi, E.; Nehring, M.; Sheldon, P. D.; Vaandering, E. W.; Webster, M.; Sheaff, M.; Focus Collaboration
2008-03-01
We present a search for a pentaquark decaying strongly to Ξ-π- in γN collisions at a center-of-mass energy up to 25 GeV /c2. Finding no evidence for such a state in the mass range of 1480 MeV /c2 to 2400 MeV /c2, we set limits on the yield and on the cross section times branching ratio relative to Ξ∗(1530) 0.
Energy monitoring device for 1.5-2.4 MeV electron beams
NASA Astrophysics Data System (ADS)
Fuochi, P. G.; Lavalle, M.; Martelli, A.; Kovács, A.; Mehta, K.; Kuntz, F.; Plumeri, S.
2010-03-01
An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.
Upper limit on the inner radiation belt MeV electron intensity.
Li, X; Selesnick, R S; Baker, D N; Jaynes, A N; Kanekal, S G; Schiller, Q; Blum, L; Fennell, J; Blake, J B
2015-02-01
No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment on board Colorado Student Space Weather Experiment CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because their flux level is orders of magnitude higher than the background, while higher-energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about 1 order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt. Quantified upper limit of MeV electrons in the inner beltActual MeV electron intensity likely much lower than the upper limitMore detailed understanding of relativistic electrons in the magnetosphere.
Upper limit on the inner radiation belt MeV electron intensity
Li, X; Selesnick, RS; Baker, DN; Jaynes, AN; Kanekal, SG; Schiller, Q; Blum, L; Fennell, J; Blake, JB
2015-01-01
No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment on board Colorado Student Space Weather Experiment CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because their flux level is orders of magnitude higher than the background, while higher-energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about 1 order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt. Key Points Quantified upper limit of MeV electrons in the inner belt Actual MeV electron intensity likely much lower than the upper limit More detailed understanding of relativistic electrons in the magnetosphere PMID:26167446
Howell, Rebecca M; Burgett, E A
2014-09-01
Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire energy range being measured, i.e., thermal to 250 MeV. The authors used the neutron fluence spectrum to demonstrate experimentally the contribution of neutrons with different energies to the total dose equivalent and in particular the contribution of high-energy neutrons (≥20 MeV). These are valuable reference data that can be directly compared with Monte Carlo and experimental data in the literature.
Howell, Rebecca M.; Burgett, E. A.
2014-01-01
Purpose: Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. Methods: The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. Results: The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. Conclusions: The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire energy range being measured, i.e., thermal to 250 MeV. The authors used the neutron fluence spectrum to demonstrate experimentally the contribution of neutrons with different energies to the total dose equivalent and in particular the contribution of high-energy neutrons (≥20 MeV). These are valuable reference data that can be directly compared with Monte Carlo and experimental data in the literature. PMID:25186404
Plastic fiber scintillator response to fast neutrons
NASA Astrophysics Data System (ADS)
Danly, C. R.; Sjue, S.; Wilde, C. H.; Merrill, F. E.; Haight, R. C.
2014-11-01
The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.
Plastic fiber scintillator response to fast neutrons.
Danly, C R; Sjue, S; Wilde, C H; Merrill, F E; Haight, R C
2014-11-01
The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.
NASA Astrophysics Data System (ADS)
Gurbich, A. F.; Bokhovko, M. V.
2018-04-01
The alpha elastic scattering cross-sections for Ni, Cu, and Y were measured at the energies above the onset of the non-Rutherford scattering. The obtained experimental data along with data from literature were incorporated into the theoretical analysis in the framework of the optical model. The optimization of the model parameters provided a basis for the calculations of the differential cross-sections for Z = 28-38 elements in the energy range up to 10 MeV. The obtained cross sections were made available for common use through the SigmaCalc web site at http://sigmacalc.iate.obninsk.ru/.
Reaction mechanisms in 12C(γ,pp) near 200 MeV
NASA Astrophysics Data System (ADS)
Hackett, E. D.; McDonald, W. J.; Opper, A. K.; Quraan, M. A.; Rodning, N. L.; Rozon, F. M.; Feldman, G.; Kolb, N. R.; Pywell, R. E.; Skopik, D. M.; Tiller, D. E.; Vogt, J. M.; Korkmaz, E.; O'rielly, G. V.
1996-03-01
Inclusive 12C(γ,pp) cross sections have been measured with tagged photons in the range Eγ=187-227 MeV using the Saskatchewan-Alberta Large Acceptance Detector (SALAD). The large angular acceptance allowed the measurement of noncoplanar pp emission. The cross sections were compared to a Monte Carlo intranuclear cascade calculation. Agreement was reasonable for the shapes of the cross sections but the calculated total cross section was 3.9 times larger than the data.
Albedo gamma-rays observation at energies above 30 MeV
NASA Astrophysics Data System (ADS)
Galper, A. M.; Grachev, V. M.; Dmitrenko, V. V.; Kirillov-Ugriumov, V. G.; Liakhov, V. A.; Prokhorova, L. A.; Riumin, V. V.; Ulin, S. E.
Albedo gamma-ray observations are presented, which were carried out with the small gamma-ray telescope Elena-F on Salyut-6 at the 30-410 MeV and 50-420 MeV energy ranges. For the equatorial region from 15.0-17.5 GV, the albedo gamma-ray fluxes are 40 plus or minus 20 ph/sq m-s-sr, and the measured power law index of the differential energy spectrum is 1.6 plus or minus 0.5. The orbital station data are compared with simultaneous observations performed on a balloon, and the power law index of the differential energy spectrum of albedo gamma-rays measured by the balloon amounts to 2.1 plus or minus 0.4.
{sup 25}Na and {sup 25}Mg fragmentation on {sup 12}C at 9.23 MeV per nucleon at TRIUMF
DOE Office of Scientific and Technical Information (OSTI.GOV)
St-Onge, Patrick; Boisjoli, Mark; Fregeau, Marc-Olivier
2012-10-20
HERACLES is a multidetector that is used to study heavy-ion collisions, with ion beams with an energy range between 8 to 15 MeV per nucleon. It has 78 detectors axially distributed around the beam axis in 6 rings allowing detection of multiple charged fragments from nuclear reactions. HERACLES has 4 different types of detectors, BC408/BaF{sub 2} phoswich, Si/CsI(Tl) telescope, BC408/BC444 phoswich and CsI(Tl) detectors. The multidetector has been run with a radioactive {sup 25}Na beam and a stable {sup 25}Mg beam at 9.23 MeV per nucleon on a carbon target.
s-wave threshold in electron attachment - Results in 2-C4F6 and CFCl3 at ultra-low electron energies
NASA Technical Reports Server (NTRS)
Chutjian, A.; Alajajian, S. H.; Ajello, J. M.; Orient, O. J.
1984-01-01
Electron attachment lineshapes and cross sections are reported for the processes 2-C4F6(-)/2-C4F6 and Cl(-)/CFCl3 at electron energies of 0-120 and 0-140 meV, and at resolutions of 6 and 7 meV (FWHM), respectively. As in previous measurements in CCl4 and SF6, the results show resolution-limited narrow structure in the cross section at electron energies below 15 meV. This structure arises from the divergence of the s-wave cross section in the limit of zero electron energy. Comparisons are given with swarm-measured results, and with collisional ionization (high-Rydberg attachment) data in this energy range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockwood, J.A.; Webber, W.R.; Friling, L.A.
1981-09-15
Results are presented from a balloon flight at Palestine, Texas, in 1978 to measure the atmospheric and diffuse ..gamma..-ray flux in the energy range 0.4--7.0 MeV. The observations were made with a Compton telescope which included pulse-shape discrimination of the first scattering detector and a time-of-flight system between the first and second detector elements. The total downward ..gamma..-ray flux at 3.7 g cm/sup -2/ is given by the spectrum 3.1 x 10/sup -2/ x E/sup -1.74/ (photons cm/sup -2/ s/sup -1/ MeV/sup -1/ sr/sup -1/) for 0.5
Fabrication of monolithic microfluidic channels in diamond with ion beam lithography
NASA Astrophysics Data System (ADS)
Picollo, F.; Battiato, A.; Boarino, L.; Ditalia Tchernij, S.; Enrico, E.; Forneris, J.; Gilardino, A.; Jakšić, M.; Sardi, F.; Skukan, N.; Tengattini, A.; Olivero, P.; Re, A.; Vittone, E.
2017-08-01
In the present work, we report on the monolithic fabrication by means of ion beam lithography of hollow micro-channels within a diamond substrate, to be employed for microfluidic applications. The fabrication strategy takes advantage of ion beam induced damage to convert diamond into graphite, which is characterized by a higher reactivity to oxidative etching with respect to the chemically inert pristine structure. This phase transition occurs in sub-superficial layers thanks to the peculiar damage profile of MeV ions, which mostly damage the target material at their end of range. The structures were obtained by irradiating commercial CVD diamond samples with a micrometric collimated C+ ion beam at three different energies (4 MeV, 3.5 MeV and 3 MeV) at a total fluence of 2 × 1016 cm-2. The chosen multiple-energy implantation strategy allows to obtain a thick box-like highly damaged region ranging from 1.6 μm to 2.1 μm below the sample surface. High-temperature annealing was performed to both promote the graphitization of the ion-induced amorphous layer and to recover the pristine crystalline structure in the cap layer. Finally, the graphite was removed by ozone etching, obtaining monolithic microfluidic structures. These prototypal microfluidic devices were tested injecting aqueous solutions and the evidence of the passage of fluids through the channels was confirmed by confocal fluorescent microscopy.
Unusual solar energetic proton fluxes at 1 AU within an interplanetary CME
NASA Astrophysics Data System (ADS)
Mulligan, T.; Blake, J. B.; Mewaldt, R. A.
In mid December 2006 several flares on the Sun occurred in rapid succession, spawning several CMEs and bathing the Earth in multiple solar energetic particle (SEP) events. One such SEP occurring on December 15th was observed at the Earth just as an interplanetary CME (ICME) from a previous flare on December 13th was transiting the Earth. Although solar wind observations during this time show typical energetic proton fluxes from the prior SEP and IP shock driven ahead of the ICME, as the ICME passes the Earth unusual energetic particle signatures are observed. Measurements from ACE, Wind, and STEREO show unusual proton flux variations at energies ranging from ~3 MeV up to greater than 70 MeV. Within the Earth’s magnetosphere Polar HIST also sees unusual proton flux variations at energies greater than 10 MeV while crossing open field lines in the southern polar cap. However, no such variation in the energetic proton flux is observed at the GOES 10 or GOES 11 spacecraft in geosynchronous orbit. Differential fluxes observed at GOES 12 in the 15-40 MeV energy range show some variation. However, the overall energetic particle signature within the ICME at GEO orbits remains unclear. This event illustrates the need for caution when using GEO data in statistical studies of SEP events and in interplanetary models of energetic particle transport to 1 AU.
NASA Astrophysics Data System (ADS)
Mares, Vladimir; Trinkl, Sebastian; Iwamoto, Yosuke; Masuda, Akihiko; Matsumoto, Tetsuro; Hagiwara, Masayuki; Satoh, Daiki; Yashima, Hiroshi; Shima, Tatsushi; Nakamura, Takashi
2017-09-01
This paper describes the results of neutron spectrometry and dosimetry measurements using an extended range Bonner Sphere Spectrometer (ERBSS) with 3He proportional counter performed in quasi-mono-energetic neutron fields at the ring cyclotron facility of the Research Center for Nuclear Physics (RCNP), Osaka University, Japan. Using 100 MeV and 296 MeV proton beams, neutron fields with nominal peak energies of 96 MeV and 293 MeV were generated via 7Li(p,n)7Be reactions. Neutrons produced at 0° and 25° emission angles were extracted into the 100 m long time-of-flight (TOF) tunnel, and the energy spectra were measured at a distance of 35 m from the target. To deduce the corresponding neutron spectra from thermal to the nominal maximum energy, the ERBSS data were unfolded using the MSANDB unfolding code. At high energies, the neutron spectra were also measured by means of the TOF method using NE213 organic liquid scintillators. The results are discussed in terms of ambient dose equivalent, H*(10), and compared with the readings of other instruments operated during the experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duggan, J.L.; Kocur, P.M.; Price, J.L.
1985-10-01
L-shell x-ray production cross sections by /sub 1//sup 1/H/sup +/ ions are reported. The data are compared to the first Born approximation (plane-wave Born approximation for direct ionization and Oppenheimer-Brinkman-Kramers approximation for electron capture) and to the ECPSSR (energy-loss and Coulomb-deflection effects, perturbed stationary-state approximation with relativistic correction) theory. The energy of the protons ranged from 0.25 to 2.5 MeV in steps of 0.25 MeV. The targets used in these measurements were /sub 28/Ni, /sub 29/Cu, /sub 32/Ge, /sub 33/As, /sub 37/Rb, /sub 38/Sr, /sub 39/Y, /sub 40/Zr, and /sub 46/Pd. The first Born theory generally agrees with the datamore » found in the literature at high energies and overpredicts them below 1.5 MeV. The ECPSSR predictions are in better agreement with experimental cross sections. At 0.25 MeV our data, however, are underestimated by this theory and tend to agree with the first Born approximation.« less
Measurement and analysis of gamma-rays emitted from spent nuclear fuel above 3 MeV.
Rodriguez, Douglas C; Anderson, Elaina; Anderson, Kevin K; Campbell, Luke W; Fast, James E; Jarman, Kenneth; Kulisek, Jonathan; Orton, Christopher R; Runkle, Robert C; Stave, Sean
2013-12-01
The gamma-ray spectrum of spent nuclear fuel in the 3-6 MeV energy range is important for active interrogation since gamma rays emitted from nuclear decay are not expected to interfere with measurements in this energy region. There is, unfortunately, a dearth of empirical measurements from spent nuclear fuel in this region. This work is an initial attempt to partially fill this gap by presenting an analysis of gamma-ray spectra collected from a set of spent nuclear fuel sources using a high-purity germanium detector array. This multi-crystal array possesses a large collection volume, providing high energy resolution up to 16 MeV. The results of these measurements establish the continuum count-rate in the energy region between 3 and 6 MeV. Also assessed is the potential for peaks from passive emissions to interfere with peak measurements resulting from active interrogation delayed emissions. As one of the first documented empirical measurements of passive emissions from spent fuel for energies above 3 MeV, this work provides a foundation for active interrogation model validation and detector development. © 2013 Elsevier Ltd. All rights reserved.
Unexplained Excess of Electronlike Events from a 1-GeV Neutrino Beam
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Nelson, R. H.; Nguyen, V. T.; Nienaber, P.; Nowak, J. A.; Ouedraogo, S.; Patterson, R. B.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Sodeberg, M.; Sorel, M.; Spentzouris, P.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.
2009-03-01
The MiniBooNE Collaboration observes unexplained electronlike events in the reconstructed neutrino energy range from 200 to 475 MeV. With 6.46×1020 protons on target, 544 electronlike events are observed in this energy range, compared to an expectation of 415.2±43.4 events, corresponding to an excess of 128.8±20.4±38.3 events. The shape of the excess in several kinematic variables is consistent with being due to either νe and ν¯e charged-current scattering or νμ neutral-current scattering with a photon in the final state. No significant excess of events is observed in the reconstructed neutrino energy range from 475 to 1250 MeV, where 408 events are observed compared to an expectation of 385.9±35.7 events.
Development of a Telescope for Medium-Energy Gamma-Ray Astronomy
NASA Technical Reports Server (NTRS)
Hunter, Stanley D.
2010-01-01
Since the launch of AGILE and FERMI, the scientific progress in high-energy (E(sub gamma) greater than approximately 200 MeV) gamma-ray science has been, and will continue to be dramatic. Both of these telescopes cover a broad energy range from approximately 20 MeV to greater than 10 GeV. However, neither instrument is optimized for observations below approximately 200 MeV where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. Hence, while significant progress from current observations is expected, there will nonetheless remain a significant sensitivity gap in the medium-energy (approximately 0.1-200 MeV) regime; the lower end of this range remains largely unexplored whereas the upper end will allow comparison with FERMI data. Tapping into this unexplored regime requires significant improvements in sensitivity. A major emphasis of modern detector development, with the goal of providing significant improvements in sensitivity in the medium-energy regime, focuses on high-resolution electron tracking. The Three-Dimensional Track Imager (3-DTI) technology being developed at GSFC provides high resolution tracking of the electron-positron pair from gamma-ray interactions from 5 to 200 MeV. The 3-DTI consists of a time projection chamber (TPC) and 2-D cross-strip microwell detector (MWD). The low-density and homogeneous design of the 3-DTI, offers unprecedented sensitivity by providing angular resolution near the kinematic limit. Electron tracking also enables measurement of gamma-ray polarization, a new tool to study astrophysical phenomenon. We describe the design, fabrication, and performance of a 30x30x30 cubic centimeters 3-DTI detector prototype of a medium-energy gamma-ray telescope.
Development of a Telescope for Medium-Energy Gamma-ray Astronomy
NASA Technical Reports Server (NTRS)
Sunter, Stan
2012-01-01
Since the launch of AGILE and FERMI, the scientific progress in high-energy (Eg greater than approximately 200 MeV) gamma-ray science has been, and will continue to be dramatic. Both of these telescopes cover a broad energy range from approximately 20 MeV to greater than 10 GeV. However, neither instrument is optimized for observations below approximately 200 MeV where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. Hence, while significant progress from current observations is expected, there will nonetheless remain a significant sensitivity gap in the medium-energy (approximately 0.1-200 MeV) regime; the lower end of this range remains largely unexplored whereas the upper end will allow comparison with FERMI data. Tapping into this unexplored regime requires significant improvements in sensitivity. A major emphasis of modern detector development, with the goal of providing significant improvements in sensitivity in the medium-energy regime, focuses on high-resolution electron tracking. The Three-Dimensional Track Imager (3-DTI) technology being developed at GSFC provides high resolution tracking of the electron-positron pair from gamma-ray interactions from 5 to 200 MeV. The 3-DTI consists of a time projection chamber (TPC) and 2-D cross-strip microwell detector (MWD). The low-density and homogeneous design of the 3-DTI, offers unprecedented sensitivity by providing angular resolution near the kinematic limit. Electron tracking also enables measurement of gamma-ray polarization, a new tool to study astrophysical phenomenon. We describe the design, fabrication, and performance of a 30x30x30 cm3 3-DTI detector prototype of a medium-energy gamma-ray telescope.
Theoretical detection limit of PIXE analysis using 20 MeV proton beams
NASA Astrophysics Data System (ADS)
Ishii, Keizo; Hitomi, Keitaro
2018-02-01
Particle-induced X-ray emission (PIXE) analysis is usually performed using proton beams with energies in the range 2∼3 MeV because at these energies, the detection limit is low. The detection limit of PIXE analysis depends on the X-ray production cross-section, the continuous background of the PIXE spectrum and the experimental parameters such as the beam currents and the solid angle and detector efficiency of X-ray detector. Though the continuous background increases as the projectile energy increases, the cross-section of the X-ray increases as well. Therefore, the detection limit of high energy proton PIXE is not expected to increase significantly. We calculated the cross sections of continuous X-rays produced in several bremsstrahlung processes and estimated the detection limit of a 20 MeV proton PIXE analysis by modelling the Compton tail of the γ-rays produced in the nuclear reactions, and the escape effect on the secondary electron bremsstrahlung. We found that the Compton tail does not affect the detection limit when a thin X-ray detector is used, but the secondary electron bremsstrahlung escape effect does have an impact. We also confirmed that the detection limit of the PIXE analysis, when used with 4 μm polyethylene backing film and an integrated beam current of 1 μC, is 0.4∼2.0 ppm for proton energies in the range 10∼30 MeV and elements with Z = 16-90. This result demonstrates the usefulness of several 10 MeV cyclotrons for performing PIXE analysis. Cyclotrons with these properties are currently installed in positron emission tomography (PET) centers.
NASA Astrophysics Data System (ADS)
Hwang, Dae Hee; Hong, Ser Gi; Kim, Jae Cheon; Kim, Gi Dong; Kim, Yong Kyun
2015-10-01
RAON is a Korean heavy-ion accelerator complex that is planned to be built by 2021. Deuterons (53 MeV) and protons (88 MeV) accelerated by using a low-energy driver linac (SCL1) are delivered to the neutron production target in the Neutron Science Facility (NSF) to produce high-energy neutrons in the interval from 1 to 88 MeV with high fluxes of the order of 1012 n/cm2-sec. The repetition rate of the neutron beam ranges from 1 kHz to 1 MHz, and the maximum beam current is ~12 μA at 1 MHz. The beam width is 1 ~ 2 ns. The high-energy and high-rate fast neutrons are used to estimate accurate neutron-induced cross sections for various nuclides at the NSF. A MICROMEGAS (MICRO Mesh Gaseous Structure), which is a gaseous detector initially developed for tracking in high-rate, high-energy physics experiments, is tentatively being considered as a neutron beam monitor. It can be used to measure both the energy distribution and the flux of the neutron beam. In this study, a MICROMEGAS detector for installation at the NSF was designed and investigated. 6Li, 10B, 235U and 238U targets are being considered as neutron/charged particle converters. For the low-energy region, 6Li(n,α)t and 10B(n,α)7Li are used in the energy range from thermal to 1 MeV. 235U(n,f) and 238U(n,f) reactions are used for high-energy region up to 90 MeV. All calculations are performed by using the GEANT4 toolkit.
NASA Astrophysics Data System (ADS)
Tran, D. T.; Ong, H. J.; Nguyen, T. T.; Tanihata, I.; Aoi, N.; Ayyad, Y.; Chan, P. Y.; Fukuda, M.; Hashimoto, T.; Hoang, T. H.; Ideguchi, E.; Inoue, A.; Kawabata, T.; Khiem, L. H.; Lin, W. P.; Matsuta, K.; Mihara, M.; Momota, S.; Nagae, D.; Nguyen, N. D.; Nishimura, D.; Ozawa, A.; Ren, P. P.; Sakaguchi, H.; Tanaka, J.; Takechi, M.; Terashima, S.; Wada, R.; Yamamoto, T.; RCNP-E372 Collaboration
2016-12-01
We have measured for the first time the charge-changing cross sections (σCC) of C-1612 on a 12C target at energies below 100 A MeV. To analyze these low-energy data, we have developed a finite-range Glauber model with a global parameter set within the optical-limit approximation which is applicable to reaction cross section (σR) and σCC measurements at incident energies from 10 A to 2100 A MeV. Adopting the proton-density distribution of 12C known from the electron-scattering data, as well as the bare total nucleon-nucleon cross sections and the real-to-imaginary-part ratios of the forward proton-proton elastic scattering amplitude available in the literatures, we determine the energy-dependent slope parameter βp n of the proton-neutron elastic differential cross section so as to reproduce the existing σR and interaction cross-section data for 12C+12C over a wide range of incident energies. The Glauber model thus formulated is applied to calculate the σR's of 12C on a 9Be and 27Al targets at various incident energies. Our calculations show excellent agreement with the experimental data. Applying our model to the σR and σCC for the so-called neutron-skin 16C nucleus, we reconfirm the importance of measurements at incident energies below 100 A MeV. The proton root-mean-square radii of C-1612 are extracted using the measured σCC's and the existing σR data. The results for C-1412 are consistent with the values from the electron scatterings, demonstrating the feasibility, usefulness of the σCC measurement, and the present Glauber model.
The AGILE Mission and Gamma-Ray Bursts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longo, Francesco; INFN, section of Trieste; Tavani, M.
2007-05-01
The AGILE Mission will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational at the beginning of 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources, Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a largemore » field of view covering {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV. The broadband detection of GRBs and the study of implications for particle acceleration and high energy emission are primary goals of the mission. AGILE can image GRBs with 2-3 arcminute error boxes in the hard X-ray range, and provide broadband photon-by photon detection in the 15-45 keV, 03-50 MeV, and 30 MeV-30 GeV energy ranges. Microsecond on-board photon tagging and a {approx} 100 microsecond gamma-ray detection deadtime will be crucial for fast GRB timing. On-board calculated GRB coordinates and energy fluxes will be quickly transmitted to the ground by an ORBCOMM transceiver. AGILE is now (January 2007) undergoing final satellite integration and testing. The PLS V launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.« less
Liquid Li based neutron source for BNCT and science application.
Horiike, H; Murata, I; Iida, T; Yoshihashi, S; Hoashi, E; Kato, I; Hashimoto, N; Kuri, S; Oshiro, S
2015-12-01
Liquid lithium (Li) is a candidate material for a target of intense neutron source, heat transfer medium in space engines and charges stripper. For a medical application of BNCT, epithermal neutrons with least energetic neutrons and γ-ray are required so as to avoid unnecessary doses to a patient. This is enabled by lithium target irradiated by protons at 2.5 MeV range, with utilizing the threshold reaction of (7)Li(p,n)(7)Be at 1.88 MeV. In the system, protons at 2.5 MeV penetrate into Li layer by 0.25 mm with dissipating heat load near the surface. To handle it, thin film flow of high velocity is important for stable operation. For the proton accelerator, electrostatic type of the Schnkel or the tandem is planned to be employed. Neutrons generated at 0.6 MeV are gently moderated to epithermal energy while suppressing accompanying γ-ray minimum by the dedicated moderator assembly. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gamma ray detection with long NaI/Tl/ scintillator bars
NASA Technical Reports Server (NTRS)
Zych, A. D.; Tumer, O. T.; Dayton, B.
1983-01-01
Test measurements with a prototype NaI(Tl) scintillator for energy, position, and timing measurements in gamma ray astronomy are reported. The scintillator bar is 100 x 5 x 5 cu cm in size, and allows detection of the arrival times and pulse heights of signals from two photomultiplier tubes, one at each end of the bar. Data is gathered on the energy loss, linear position, and time-of-flight of gamma ray interactions within the bar over an energy range of 0.5-20 MeV. A mean attenuation coefficient of 0.015/cm has been determined, as have a FWHM resolution of 5 cm, 9.4%, and 10 nsec at an energy of 0.662 MeV. At 1.25 MeV the timing resolution was 6 nsec, and at 6.13 MeV the spatial resolution was 2.2 cm. The instrument is a prototype of a Compton scatter telescope being constructed for two balloon flights, one each in the Northern and Southern Hemispheres, in 1984.
^235U(n,xnγ) Excitation Function Measurements Using Gamma-Ray Spectroscopy at GEANIE
NASA Astrophysics Data System (ADS)
Younes, W.; Becker, J. A.; Bernstein, L. A.; Archer, D. E.; Stoyer, M. A.; Hauschild, K.; Drake, D. M.; Johns, G. D.; Nelson, R. O.; Wilburn, S. W.
1998-04-01
The ^235U(n,xn) cross sections (where x<=2) have previously been measured at several incident neutron energies. In particular, the ^235U(n,2n) cross section has been measured(J. Frehaut et al.), Nucl. Sci. Eng. 74,29 (1980). reliably up to peak near E_n≈ 11 MeV, but not along the tail which is predicted by some(M.B. Chadwick, private communication.) codes to yield significant (e.g. >= 10% of peak) cross section out to E_n≈ 30 MeV. We have measured gamma-ray spectra resulting from ^235U(n,xn) as a function of neutron energy in the range 1 MeV <~ En <~ 200 MeV using the GEANIE spectrometer at the LANSCE/WNR ``white'' neutron source. We will present excitation functions for the de-excitation gamma rays in ^234,235U compared to predictions from the Hauser-Feshbach-preequilibrium code GNASH(M.B. Chadwick and P.G. Young, Los Alamos Report No. LA-UR-93-104, 1993.).
Superconducting gap symmetry in the superconductor BaFe1.9Ni0.1As2
NASA Astrophysics Data System (ADS)
Kuzmicheva, T. E.; Kuzmichev, S. A.; Sadakov, A. V.; Gavrilkin, S. Yu.; Tsvetkov, A. Yu.; Lu, X.; Luo, H.; Vasiliev, A. N.; Pudalov, V. M.; Chen, Xiao-Jia; Abdel-Hafiez, Mahmoud
2018-06-01
We report on the Andreev spectroscopy and specific heat of high-quality single crystals of BaFe1.9Ni0.1As2 . The intrinsic multiple Andreev reflection spectroscopy reveals two anisotropic superconducting gaps ΔL≈3.2 -4.5 meV , ΔS≈1.2 -1.6 meV (the ranges correspond to the minimum and maximum value of the coupling energy in the kxky plane). The 25 %-30 % anisotropy shows the absence of nodes in the superconducting gaps. Using a two-band model with s -wave-like gaps ΔL≈3.2 meV and ΔS≈1.6 meV , the temperature dependence of the electronic specific heat can be well described. A linear magnetic field dependence of the low-temperature specific heat offers further support of s -wave type of the order parameter. We find that a d -wave or single-gap BCS theory under the weak-coupling approach cannot describe our experiments.
1 MeV, 10 kW DC electron accelerator for industrial applications
NASA Astrophysics Data System (ADS)
Nayak, B.; Acharya, S.; Bhattacharjee, D.; Bakhtsingh, R. I.; Rajan, R.; Sharma, D. K.; Dewangan, S.; Sharma, V.; Patel, R.; Tiwari, R.; Benarjee, S.; Srivastava, S. K.
2016-03-01
Several modern applications of radiation processing like medical sterilization, rubber vulcanization, polymerization, cross-linking and pollution control from thermal power stations etc. require D.C. electron accelerators of energy ranging from a few hundred keVs to few MeVs and power from a few kilowatts to hundreds of kilowatts. To match these requirements, a 3 MeV, 30 kW DC electron linac has been developed at BARC, Mumbai and current operational experience of 1 MeV, 10 kW beam power will be described in this paper. The LINAC composed mainly of Electron Gun, Accelerating Tubes, Magnets, High Voltage source and provides 10 kW beam power at the Ti beam window stably after the scanning section. The control of the LINAC is fully automated. Here Beam Optics study is carried out to reach the preferential parameters of Accelerating as well as optical elements. Beam trials have been conducted to find out the suitable operation parameters of the system.
Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan
2016-03-01
A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10(-9) MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Study of p-4He total reaction cross-section using Glauber and Coulomb-modified Glauber models
NASA Astrophysics Data System (ADS)
Tag El-Din, Ibrahim M. A.; Taha, M. M.; Hassan, Samia S. A.
2014-02-01
The total nuclear reaction cross-section σR for p-4He in the energy range from 25 MeV to 1000 MeV is calculated within Glauber and Coulomb-modified Glauber models. The Coulomb-modified Glauber model (CMGM) is introduced via modification of the Coulomb trajectory of the projectile from a straight line, and calculation of the effective radius of interaction. The effects of in-medium nucleon-nucleon (NN) total cross-section, phase variation, high order momentum transfer component of nucleon-nucleon elastic scattering amplitude and Pauli blocking are studied. It is pointed out that the phase variation of the nucleon-nucleon amplitude plays a significant role in describing σR with γ = -1.6 fm2 at in-medium nuclear density ϱ = 0 and γ = -2 fm2 at ϱ = 0.17 fm-3 in the whole energy range. A remarkable fit to the available experimental data is obtained by invoking Pauli blocking and high order momentum transfer of nucleon-nucleon (NN) elastic scattering amplitude for Ep < 100 MeV.
Channeling Radiation Experiment at Fermilab ASTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihalcea, D.; Edstrom, D. R.; Piot, P.
2015-06-01
Electron beams with moderate energy ranging from 4 to 50 MeV can be used to produce x-rays through the Channeling Radiation (CR) mechanism. Typically, the xray spectrum from these sources extends up to 140 keV and this range covers the demand for most practical applications. The parameters of the electron beam determine the spectral brilliance of the x-ray source. The electron beam produced at the Fermilab new facility Advanced Superconducting Test Accelerator (ASTA) meets the requirements to assemble an experimental high brilliance CR xray source. In the first stage of the experiment the energy of the beam is 20 MeV and due to the very low emittance (more » $$\\approx 100$$ nm ) at low bunch charge (20 pC) the expected average brilliance of the x-ray source is about $10^9$ photons/[s- $(mm-mrad)^2$-0.1% BW]. In the second stage of the experiment the beam energy will be increased to 50 MeV and consequently the average brilliance will increase by a factor of five. Also, the x-ray spectrum will extend from about 30 keV to 140 keV« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darafsheh, A; Kassaee, A; Finlay, J
Purpose: Range verification in proton therapy is of great importance. Cherenkov light follows the photon and electron energy deposition in water phantom. The purpose of this study is to investigate the connection between Cherenkov light generation and radiation absorbed dose in a water phantom irradiated with proton beams. Methods: Monte Carlo simulation was performed by employing FLUKA Monte Carlo code to stochastically simulate radiation transport, ionizing radiation dose deposition, and Cherenkov radiation in water phantoms. The simulations were performed for proton beams with energies in the range 50–600 MeV to cover a wide range of proton energies. Results: The mechanismmore » of Cherenkov light production depends on the initial energy of protons. For proton energy with 50–400 MeV energy that is below the threshold (∼483 MeV in water) for Cherenkov light production directly from incident protons, Cherenkov light is produced mainly from the secondary electrons liberated as a result of columbic interactions with the incident protons. For proton beams with energy above 500 MeV, in the initial depth that incident protons have higher energy than the Cherenkov light production threshold, the light has higher intensity. As the slowing down process results in lower energy protons in larger depths in the water phantom, there is a knee point in the Cherenkov light curve vs. depth due to switching the Cherenkov light production mechanism from primary protons to secondary electrons. At the end of the depth dose curve the Cherenkov light intensity does not follow the dose peak because of the lack of high energy protons to produce Cherenkov light either directly or through secondary electrons. Conclusion: In contrast to photon and electron beams, Cherenkov light generation induced by proton beams does not follow the proton energy deposition specially close to the end of the proton range near the Bragg peak.« less
SU-E-T-470: Beam Performance of the Radiance 330 Proton Therapy System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazaryan, H; Nazaryan, V; Wang, F
2014-06-01
Purpose: The ProTom Radiance 330 proton radiotherapy system is a fully functional, compact proton radiotherapy system that provides advanced proton delivery capabilities. It supports three-dimensional beam scanning with energy and intensity modulation. A series of measurements have been conducted to characterize the beam performance of the first installation of the system at the McLaren Proton Therapy Center in Flint, Michigan. These measurements were part of the technical commissioning of the system. Select measurements and results are presented. Methods: The Radiance 330 proton beam energy range is 70–250 MeV for treatment, and up to 330 MeV for proton tomography and radiography.more » Its 3-D scanning capability, together with a small beam emittance and momentum spread, provides a highly efficient beam delivery. During the technical commissioning, treatment plans were created to deliver uniform maps at various energies to perform Gamma Index analysis. EBT3 Gafchromic films were irradiated using the Planned irradiation maps. Bragg Peak chamber was used to test the dynamic range during a scan in one layer for high (250 MeV) and Low (70 MeV) energies. The maximum and minimum range, range adjustment and modulation, distal dose falloff (80%–20%), pencil beam spot size, spot placement accuracy were also measured. The accuracy testing included acquiring images, image registration, receiving correction vectors and applying the corrections to the robotic patient positioner. Results: Gamma Index analysis of the Treatment Planning System (TPS) data vs. Measured data showed more than 90% of points within (3%, 3mm) for the maps created by the TPS. At Isocenter Beam Size (One sigma) < 3mm at highest energy (250 MeV) in air. Beam delivery was within 0.6 mm of the intended target at the entrance and the exit of the beam, through the phantom. Conclusion: The Radiance 330 Beam Performance Measurements have confirmed that the system operates as designed with excellent clinical performance specifications. Hovakim Nazaryan, Vahagn Nazaryan and Fuhua Wang are employees of ProTom International, Inc. who contributed to the development and completed the technical commissioning of the Radiance 330 proton therapy delivery system manufactured by ProTom International.« less
NASA Astrophysics Data System (ADS)
Krishichayan; Bhike, Megha; Finch, S. W.; Howell, C. R.; Tonchev, A. P.; Tornow, W.
2017-05-01
Photofission cross-section ratios of 235U and 238U have been measured using monoenergetic photon beams at the HIγS facility of TUNL. These measurements have been performed in small energy steps between 9.0 and 16.6 MeV using a dual-fission ionization chamber. Measured cross-section ratios are compared with the previous experimental data as well as with the recent evaluated nuclear data library ENDF.
Scintillator-fiber charged-particle track-imaging detector
NASA Technical Reports Server (NTRS)
Binns, W. R.; Israel, M. H.; Klarmann, J.
1983-01-01
A scintillator-fiber charged-particle track-imaging detector has been developed using a bundle of square cross-section plastic scintillator fiber optics, proximity focused onto an image intensified Charge Injection Device (CID) camera. Detector to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei have been exposed and images of their tracks are obtained. This paper presents details of the detector technique, properties of the tracks obtained, and range measurements of 15 MeV protons stopping in the fiber bundle.
Kosmos 856 and Kosmos 914 measurements of high-energy diffuse gamma rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinkin, L.F.; Nagornykh, Y.I.
1982-09-01
The measurements by the Kosmos 856 and Kosmos 914 satellites of diffuse cosmic ..gamma.. rays with photon energies above 100 MeV are discussed. Integrated energy spectra for the 100--4000 MeV energy range are given for galactic lattitudes Vertical BarbVertical Bar< or =30/sup 0/ and Vertical BarbVertical Bar>30/sup 0/. The form of the spectra suggests that at high lattitudes there may still be some contribution from the galactic component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Englbrecht, F; Parodi, K; Trinkl, S
2016-06-15
Purpose: To simulate secondary neutron radiation-fields produced at different positions during phantom irradiation inside a scanning proton therapy gantry treatment room. Further, to identify origin, energy distribution and angular emission as function of proton beam energy. Methods: GEANT4 and FLUKA Monte-Carlo codes were used to model the relevant parts of the treatment room in a gantry-equipped pencil beam scanning proton therapy facility including walls, floor, metallic gantry-components, patient table and the homogeneous PMMA target. The proton beams were modeled based on experimental beam ranges in water and spot shapes in air. Neutron energy spectra were simulated at 0°, 45°, 90°more » and 135° relative to the beam axis at 2m distance from isocenter, as well as 11×11 cm2 fields for 75MeV, 140MeV, 200MeV and for 118MeV with 5cm PMMA range-shifter. The total neutron energy distribution was recorded for these four positions and proton energies. Additionally, the room-components generating secondary neutrons in the room and their contributions to the total spectrum were identified and quantified. Results: FLUKA and GEANT4 simulated neutron spectra showed good general agreement in the whole energy range of 10{sup −}9 to 10{sup 2} MeV. Comparison of measured spectra with the simulated contributions of the various room components helped to limit the complexity of the room model, by identifying the dominant contributions to the secondary neutron spectrum. The iron of the bending magnet and counterweight were identified as sources of secondary evaporation-neutrons, which were lacking in simplified room models. Conclusion: Thorough Monte-Carlo simulations have been performed to complement Bonner-sphere spectrometry measurements of secondary neutrons in a clinical proton therapy treatment room. Such calculations helped disentangling the origin of secondary neutrons and their dominant contributions to measured spectra, besides providing a useful validation of widely used Monte-Carlo packages in comparison to experimental data. Cluster of Excellence of the German Research Foundation (DFG) “Munich-Centre for Advanced Photonics (MAP)”.« less
NASA Astrophysics Data System (ADS)
Devito, R. P.; Khoa, Dao T.; Austin, Sam M.; Berg, U. E. P.; Loc, Bui Minh
2012-02-01
Background: Analysis of data involving nuclei far from stability often requires the optical potential (OP) for neutron scattering. Because neutron data are seldom available, whereas proton scattering data are more abundant, it is useful to have estimates of the difference of the neutron and proton optical potentials. This information is contained in the isospin dependence of the nucleon OP. Here we attempt to provide it for the nucleon-208Pb system.Purpose: The goal of this paper is to obtain accurate n+208Pb scattering data and use it, together with existing p+208Pb and 208Pb(p,n)208BiIAS* data, to obtain an accurate estimate of the isospin dependence of the nucleon OP at energies in the 30-60-MeV range.Method: Cross sections for n+208Pb scattering were measured at 30.4 and 40.0 MeV, with a typical relative (normalization) accuracy of 2-4% (3%). An angular range of 15∘ to 130∘ was covered using the beam-swinger time-of-flight system at Michigan State University. These data were analyzed by a consistent optical-model study of the neutron data and of elastic p+208Pb scattering at 45 and 54 MeV. These results were combined with a coupled-channel analysis of the 208Pb(p,n) reaction at 45 MeV, exciting the 0+ isobaric analog state (IAS) in 208Bi.Results: The new data and analysis give an accurate estimate of the isospin impurity of the nucleon-208Pb OP at 30.4 MeV caused by the Coulomb correction to the proton OP. The corrections to the real proton OP given by the CH89 global systematics were found to be only a few percent, whereas for the imaginary potential it was greater than 20% at the nuclear surface. On the basis of the analysis of the measured elastic n+208Pb data at 40 MeV, a Coulomb correction of similar strength and shape was also predicted for the p+208Pb OP at energies around 54 MeV.Conclusions: Accurate neutron scattering data can be used in combination with proton scattering data and (p,n) charge exchange data leading to the IAS to obtain reliable estimates of the isospin impurity of the nucleon OP.
Status of the GAMMA-400 Project
NASA Technical Reports Server (NTRS)
Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Gusakov, Yu. V.; Farber, M. O.;
2013-01-01
The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV-3 TeV is presented. The angular resolution of the instrument, 1-2 deg at E(gamma) approximately 100 MeV and approximately 0.01 at E(gamma) greater than 100 GeV, its energy resolution is approximately 1% at E(gamma) greater than 100 GeV, and the proton rejection factor is approximately 10(exp 6) are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.
NASA Astrophysics Data System (ADS)
Weissman, L.; Kreisel, A.; Hirsh, T.; Aviv, O.; Berkovits, D.; Girshevitz, O.; Eisen, Y.
2015-01-01
The cross sections of 63Cu(d,p)64Cu and natCu(d,x)65Zn were determined for deuteron beam energy range of 2.77-5.62 MeV at the SARAF Phase I variable energy LINAC. Thin copper foils were irradiated by a deuteron beam followed up by measurement of the produced activation at the Soreq NRC low-background γ-counting system. The results are consistent with data in the literature, but are of better accuracy. The data are important for assessment of the activation of components of Radio Frequency Quadrupole injectors and Medium Energy Beam Transport beam dumps in modern deuteron LINACs.
Activation cross-sections of proton induced reactions on vanadium in the 37-65 MeV energy range
NASA Astrophysics Data System (ADS)
Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.
2016-08-01
Experimental excitation functions for proton induced reactions on natural vanadium in the 37-65 MeV energy range were measured with the activation method using a stacked foil irradiation technique. By using high resolution gamma spectrometry cross-section data for the production of 51,48Cr, 48V, 48,47,46,44m,44g,43Sc and 43,42K were determined. Comparisons with the earlier published data are presented and results predicted by different theoretical codes (EMPIRE and TALYS) are included. Thick target yields were calculated from a fit to our experimental excitation curves and compared with the earlier experimental yield data. Depth distribution curves to be used for thin layer activation (TLA) are also presented.
Ditrói, F; Tárkányi, F; Takács, S; Hermanne, A; Ignatyuk, A V
2017-10-01
Excitation functions were measured in the 31-49.2MeV energy range for the nat Pd(d,xn) 111,110m,106m,105,104g,103 Ag, nat Pd(d,x) 111m,109,101,100 Pd, nat Pd(d,x), 105,102m,102g,101m,101g,100,99m,99g Rh and nat Pd(d,x) 103,97 Ru nuclear reactions by using the stacked foil irradiation technique. The experimental results are compared with our previous results and with the theoretical predictions calculated with the ALICE-D, EMPIRE-D and TALYS (TENDL libraries) codes. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Han-Xiong; Ruan, Xi-Chao; Chen, Guo-Chang; Zhou, Zu-Ying; Li, Xia; Bao, Jie; Nie, Yang-Bo; Zhong, Qi-Ping
2009-08-01
The light output function of a varphi50.8 mm × 50.8 mm BC501A scintillation detector was measured in the neutron energy region of 1 to 30 MeV by fitting the pulse height (PH) spectra for neutrons with the simulations from the NRESP code at the edge range. Using the new light output function, the neutron detection efficiency was determined with two Monte-Carlo codes, NEFF and SCINFUL. The calculated efficiency was corrected by comparing the simulated PH spectra with the measured ones. The determined efficiency was verified at the near threshold region and normalized with a Proton-Recoil-Telescope (PRT) at the 8-14 MeV energy region.
Rocco, Noemi; Lovato, Alessandro; Benhar, Omar
2016-12-23
Here, the electromagnetic responses of carbon obtained from the Green's function Monte Carlo and spectral function approaches using the same dynamical input are compared in the kinematical region corresponding to momentum transfer in the range 300–570 MeV. The results of our analysis, aimed at pinning down the limits of applicability of the approximations involved in the two schemes, indicate that the factorization ansatz underlying the spectral function formalism provides remarkably accurate results down to momentum transfer as low as 300 MeV. On the other hand, it appears that at 570 MeV relativistic corrections to the electromagnetic current not included inmore » the Monte Carlo calculations may play a significant role in the transverse channel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocco, Noemi; Lovato, Alessandro; Benhar, Omar
Here, the electromagnetic responses of carbon obtained from the Green's function Monte Carlo and spectral function approaches using the same dynamical input are compared in the kinematical region corresponding to momentum transfer in the range 300–570 MeV. The results of our analysis, aimed at pinning down the limits of applicability of the approximations involved in the two schemes, indicate that the factorization ansatz underlying the spectral function formalism provides remarkably accurate results down to momentum transfer as low as 300 MeV. On the other hand, it appears that at 570 MeV relativistic corrections to the electromagnetic current not included inmore » the Monte Carlo calculations may play a significant role in the transverse channel.« less
NASA Technical Reports Server (NTRS)
Imhof, W. L.; Gaines, E. E.; Mcglennon, J. P.; Baker, D. N.; Reeves, G. D.; Belian, R. D.
1994-01-01
Analyses are presented for the first high-time resolution multisatellite study of the spatial and temporal characteristics of a relativistic electron enhancement event with a rapid onset. Measurements of MeV electrons were made from two low-altitude polar orbiting satellites and three spacecraft at synchronous altitude. The electron fluxes observed by the low-altitude satellites include precipitating electrons in both the bounce and drift loss cones as well as electrons that are stably trapped, whereas the observations at geosynchronous altitude are dominated by the trapped population. The fluxes of greater than 1 MeV electrons at low-satellite altitude over a wide range of L shells tracked very well the fluxes greater than 0.93 MeV at synchronous altitude.
Flavor-singlet meson decay constants from Nf=2 +1 +1 twisted mass lattice QCD
NASA Astrophysics Data System (ADS)
Ottnad, Konstantin; Urbach, Carsten; ETM Collaboration
2018-03-01
We present an improved analysis of our lattice data for the η - η' system, including a correction of the relevant correlation functions for residual topological finite size effects and employing consistent chiral and continuum fits. From this analysis we update our physical results for the masses Mη=557 (11 )stat(03 )χ PT MeV and Mη'=911 (64 )stat(03 )χ PT MeV , as well as the mixing angle in the quark flavor basis ϕ =38.8 (2.2 )stat(2.4 )χPT ∘ in excellent agreement with other results from phenomenology. Similarly, we include an analysis for the decay constant parameters, leading to fl=125 (5 )stat(6 )χ PT MeV and fs=178 (4 )stat(1 )χ PT MeV . The second error reflects the uncertainty related to the chiral extrapolation. The data used for this study has been generated on gauge ensembles provided by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical flavors of Wilson twisted mass fermions. These ensembles cover a range of pion masses from 220 MeV to 500 MeV and three values of the lattice spacing. Combining our data with a prediction from chiral perturbation theory, we give an estimate for the physical η , η'→γ γ decay widths and the singly-virtual η , η'→γ γ* transition form factors in the limit of large momentum transfer.
Considerations about projectile and target X-rays induced during heavy ion bombardment
NASA Astrophysics Data System (ADS)
Fernandes, F.; Bauer, D. V.; Duarte, A.; Ferrari, T. M.; Niekraszewicz, L. A. B.; Amaral, L.; Dias, J. F.
2018-02-01
In this work we present some results concerning the X-rays emitted by heavy ions during target bombardment. In this case, Cl4+ and Cl5+ ions with energies from 4 MeV to 10 MeV were employed to irradiate vitreous carbon planchets. Moreover, total X-ray production cross sections of titanium X-rays induced by chlorine ions were obtained as well for the same energy range. Only inner shell transitions were considered in the present work. The titanium target consisted of a thin film deposited over vitreous carbon planchets. The results indicate that the projectile X-ray yields increase as a function of the bombarding energy for the present energy range. Effects due to projectile charge state appears to be of minor importance at these low ion velocities. It is shown that a simple exponential function can represent the continuum background of such complex spectra. The chlorine transition rates Kβ/Kα obtained from chlorine acting as a projectile interacting with a carbon target are about half the value when compared to the chlorine Kβ/Kα ratios obtained when a LiCl target is bombarded with C+ and C3+ ions with energies from 2 MeV to 6 MeV. As far as the total X-ray production cross sections of Ti induced by chlorine ions are concerned, the ECPSSR theory underestimates the Ti total X-rays production cross sections by several orders of magnitude. The role of electron capture and possible mechanisms responsible for these effects are discussed.
NASA Astrophysics Data System (ADS)
Schleifer, E.; Bruner, N.; Eisenmann, S.; Botton, M.; Pikuz, S. A., Jr.; Faenov, A. Y.; Gordon, D.; Zigler, A.
2011-05-01
Compact sources of high energy protons (50-500MeV) are expected to be key technology in a wide range of scientific applications 1-8. Particularly promising is the target normal sheah acceleration (TNSA) scheme 9,10, holding record level of 67MeV protons generated by a peta-Watt laser 11. In general, laser intensity exceeding 1018 W/cm2 is required to produce MeV level protons. Enhancing the energy of generated protons using compact laser sources is very attractive task nowadays. Recently, nano-scale targets were used to accelerate ions 12,13. Here we report on the first generation of 5.5-7.5MeV protons by modest laser intensities (4.5 × 1017 W/cm2) interacting with H2O nano-wires (snow) deposited on a Sapphire substrate. In this setup, the plasma near the tip of the nano-wire is subject to locally enhanced laser intensity with high spatial gradients, and confined charge separation is obtained. Electrostatic fields of extremely high intensities are produced, and protons are accelerated to MeV-level energies. Nano-wire engineered targets will relax the demand of peak energy from laser based sources.
The hidden dynamics of relativistic electrons (0.7-1.5 MeV) in the inner zone and slot region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claudepierre, Seth G.; O'Brien, T. P.; Fennell, J. F.
We present measurements of relativistic electrons (0.7–1.5 MeV) in the inner zone and slot region obtained by the Magnetic Electron and Ion Spectrometer (MagEIS) instrument on Van Allen Probes. The data presented are corrected for background contamination, which is primarily due to inner-belt protons in these low-L regions. We find that ~1 MeV electrons were transported into the inner zone following the two largest geomagnetic storms of the Van Allen Probes era to date, the March and June 2015 events. As ~1 MeV electrons were not observed in Van Allen Probes data in the inner zone prior to these twomore » events, the injections created a new inner belt that persisted for at least 1.5 years. In contrast, we find that electrons injected into the slot region decay on much faster timescales, approximately tens of days. Furthermore, we find no evidence of >1.5 MeV electrons in the inner zone during the entire time interval considered (April 2013 through September 2016). The energies we examine thus span a transition range in the steeply falling inner zone electron spectrum, where modest intensities are observed at 0.7 MeV, and no electrons are observed at 1.5 MeV. To validate the results obtained from the background corrected flux measurements, we also present detailed pulse-height spectra from individual MagEIS detectors. These measurements confirm our results and also reveal low-intensity inner zone and slot region electrons that are not captured in the standard background corrected data product. Lastly, we briefly discuss efforts to refine the upper limit of inner zone MeV electron flux obtained in earlier work.« less
The hidden dynamics of relativistic electrons (0.7-1.5 MeV) in the inner zone and slot region
Claudepierre, Seth G.; O'Brien, T. P.; Fennell, J. F.; ...
2017-03-15
We present measurements of relativistic electrons (0.7–1.5 MeV) in the inner zone and slot region obtained by the Magnetic Electron and Ion Spectrometer (MagEIS) instrument on Van Allen Probes. The data presented are corrected for background contamination, which is primarily due to inner-belt protons in these low-L regions. We find that ~1 MeV electrons were transported into the inner zone following the two largest geomagnetic storms of the Van Allen Probes era to date, the March and June 2015 events. As ~1 MeV electrons were not observed in Van Allen Probes data in the inner zone prior to these twomore » events, the injections created a new inner belt that persisted for at least 1.5 years. In contrast, we find that electrons injected into the slot region decay on much faster timescales, approximately tens of days. Furthermore, we find no evidence of >1.5 MeV electrons in the inner zone during the entire time interval considered (April 2013 through September 2016). The energies we examine thus span a transition range in the steeply falling inner zone electron spectrum, where modest intensities are observed at 0.7 MeV, and no electrons are observed at 1.5 MeV. To validate the results obtained from the background corrected flux measurements, we also present detailed pulse-height spectra from individual MagEIS detectors. These measurements confirm our results and also reveal low-intensity inner zone and slot region electrons that are not captured in the standard background corrected data product. Lastly, we briefly discuss efforts to refine the upper limit of inner zone MeV electron flux obtained in earlier work.« less
Krauss, A; Kapsch, R-P
2018-02-06
For the ionometric determination of the absorbed dose to water, D w , in high-energy electron beams from a clinical accelerator, beam quality dependent correction factors, k Q , are required. By using a water calorimeter, these factors can be determined experimentally and potentially with lower standard uncertainties than those of the calculated k Q factors, which are tabulated in various dosimetry protocols. However, one of the challenges of water calorimetry in electron beams is the small measurement depths in water, together with the steep dose gradients present especially at lower energies. In this investigation, water calorimetry was implemented in electron beams to determine k Q factors for different types of cylindrical and plane-parallel ionization chambers (NE2561, NE2571, FC65-G, TM34001) in 10 cm × 10 cm electron beams from 6 MeV to 20 MeV (corresponding beam quality index R 50 ranging from 1.9 cm to 7.5 cm). The measurements were carried out using the linear accelerator facility of the Physikalisch-Technische Bundesanstalt. Relative standard uncertainties for the k Q factors between 0.50% for the 20 MeV beam and 0.75% for the 6 MeV beam were achieved. For electron energies above 8 MeV, general agreement was found between the relative electron energy dependencies of the k Q factors measured and those derived from the AAPM TG-51 protocol and recent Monte Carlo-based studies, as well as those from other experimental investigations. However, towards lower energies, discrepancies of up to 2.0% occurred for the k Q factors of the TM34001 and the NE2571 chamber.
NASA Astrophysics Data System (ADS)
Krauss, A.; Kapsch, R.-P.
2018-02-01
For the ionometric determination of the absorbed dose to water, D w, in high-energy electron beams from a clinical accelerator, beam quality dependent correction factors, k Q, are required. By using a water calorimeter, these factors can be determined experimentally and potentially with lower standard uncertainties than those of the calculated k Q factors, which are tabulated in various dosimetry protocols. However, one of the challenges of water calorimetry in electron beams is the small measurement depths in water, together with the steep dose gradients present especially at lower energies. In this investigation, water calorimetry was implemented in electron beams to determine k Q factors for different types of cylindrical and plane-parallel ionization chambers (NE2561, NE2571, FC65-G, TM34001) in 10 cm × 10 cm electron beams from 6 MeV to 20 MeV (corresponding beam quality index R 50 ranging from 1.9 cm to 7.5 cm). The measurements were carried out using the linear accelerator facility of the Physikalisch-Technische Bundesanstalt. Relative standard uncertainties for the k Q factors between 0.50% for the 20 MeV beam and 0.75% for the 6 MeV beam were achieved. For electron energies above 8 MeV, general agreement was found between the relative electron energy dependencies of the k Q factors measured and those derived from the AAPM TG-51 protocol and recent Monte Carlo-based studies, as well as those from other experimental investigations. However, towards lower energies, discrepancies of up to 2.0% occurred for the k Q factors of the TM34001 and the NE2571 chamber.
Plan of production of MeV laser electron photons at SPring-8
NASA Astrophysics Data System (ADS)
Arimoto, Y.; Ohkuma, H.; Suzuki, S.; Tamura, K.; Kumagai, N.; Okajima, S.; Fujiwara, M.
2001-10-01
MeV photons at SPring-8 are produced by backward Compton scattering (BCS) of far infrared (FIR) laser photons from a 8 GeV electron beam. The MeV photons are a powerful probe to study nuclear physics, astro-nuclear physics, nuclear engineering, condensed matter physics, etc. owing to their attractive properties such as small emittance, high intensity, high polarization, etc. The 10 MeV photons which can be produced by the BCS process between the 8 GeV electron of SPring-8 storage ring and FIR laser photons with a wavelength of ~100 μm have a great advantage. Since energy loss of the electron due to the BCS process is smaller than energy acceptance of the storage ring (±160 MeV), the stored electron beam is not lost. A stable CO_2-pumped FIR laser with the wavelength of ~100 μm is practically using as a probe of plasma diagnostics at a nuclear fusion reactor. Furthermore, since the laser has many oscillations in wide wavelength region, the BCS photons in wide range can be obtained. We plan to produce the MeV laser electron photons by the BCS at SPring-8. For these purpose, we are now developing a high power CO_2-pumped FIR laser. Up to now ~1.5 watts CW laser action at a wavelength of 118.8 μm has been achieved. In this meeting, we will present a current status of the FIR laser system, a plan of construction of the test beam-line for the production of MeV photons at SPring-8, and future plan of this project.
Biltekin, Fatih; Yeginer, Mete; Ozyigit, Gokhan
2015-07-01
We analysed the effects of field size, depth, beam modifier and beam type on the amount of in-field and out-of-field neutron contamination for medical linear accelerators (linacs). Measurements were carried out for three high-energy medical linacs of Elekta Synergy Platform, Varian Clinac DHX High Performance and Philips SL25 using bubble detectors. The photo-neutron measurements were taken in the first two linacs with 18 MV nominal energy, whereas the electro-neutrons were measured in the three linacs with 9 MeV, 10 MeV, 15 MeV and 18 MeV. The central neutron doses increased with larger field sizes as a dramatic drop off was observed in peripheral areas. Comparing with the jaws-shaped open-field of 10 × 10 cm, the motorised and physical wedges contributed to neutron contamination at central axis by 60% and 18%, respectively. The similar dose increment was observed in MLC-shaped fields. The contributions of MLCs were in the range of 55-59% and 19-22% in Elekta and Varian linacs comparing with 10 × 10 and 20 × 20 cm open fields shaped by the jaws, respectively. The neutron doses at shallow depths were found to be higher than the doses found at deeper regions. The electro-neutron dose at the 18 MeV energy was higher than the doses at the electron energies of 15 MeV and 9 MeV by a factor of 3 and 50, respectively. The photo- and electro-neutron dose should be taken into consideration in the radiation treatment with high photon and electron energies. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
A search for energetic ion directivity in large solar flares
NASA Astrophysics Data System (ADS)
Vestrand, W. Thomas
One of the key observational questions for solar flare physics is: What is the number, the energy spectrum, and the angular distribution of flare accelerated ions? The standard method for deriving ion spectral shape employs the ratio of influences observed on the 4-7 MeV band to the narrow neutron capture line at 2.223 MeV. The 4-7 MeV band is dominated by the principal nuclear de-excitation lines from C-12 and O-16 which are generated in the low chromosphere by the direct excitation or spallation of nuclei by energetic ions. In contrast, the narrow 2.223 MeV line is produced by the capture of thermal neutrons on protons in the photosphere. These capture neutrons are generated by energetic ion interactions and thermalized by scattering in the solar atmosphere. In a series of papers, Ramaty, Lingenfelter, and their collaborators have calculated the expected ratio of fluence in the 4-7 MeV band to the 2.223 MeV line for a wide range of energetic ion spectral shapes (see, e.g. Hua and Lingenfelter 1987). Another technique for deriving ion spectral shapes and angular distributions uses the relative strength of the Compton tail associated with the 2.223 MeV neutron capture line (Vestrand 1988, 1990). This technique can independently constrain both the angular and the energy distribution of the energetic parent ions. The combination of this tail/line strength diagnostic with the line/(4-7) MeV fluence ratio can allow one to constrain both properties of the energetic ion distributions. The primary objective of our Solar Maximum Mission (SMM) guest investigator program was to study measurements of neutron capture line emission and prompt nuclear de-excitation for large flares detected by the Solar Maximum Mission/ Gamma-Ray Spectrometer (SMM/GRS) and to use these established line diagnostics to study the properties of flare accelerated ions.
NASA Technical Reports Server (NTRS)
Burns, A. L.; Krimigis, S. M.
1972-01-01
The absolute intensity of geomagnetically trapped protons in the energy ranges from 0.52 to 4.0 MeV and from 0.90 to 1.8 MeV has been measured with the solid-state proton detector on the satellite Injun 4 for the period from Mar. 1 to May 31, 1965. A study of the temporal variations of these fluxes associated with the Apr. 17, 1965, magnetic storm shows a general redistribution of these protons for L greater than 2.5. The effect of the sudden commencement was a general depression in the intensities and a hardening of the energy spectra, although the intensities recovered to their prestorm level during the initial phase. The major redistribution was apparently initiated by the polar substorm. During the recovery phase, a secondary peak developed in the intensity profile at L of about 3.5 for 0.52-MeV protons that had no counterpart at this energy at the equator. No such peak was observed for 0.9-MeV protons.
Freeman, C G; Fiksel, G; Stoeckl, C; Sinenian, N; Canfield, M J; Graeper, G B; Lombardo, A T; Stillman, C R; Padalino, S J; Mileham, C; Sangster, T C; Frenje, J A
2011-07-01
A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at the University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.
NASA Technical Reports Server (NTRS)
Aprile, Elena
1994-01-01
An instrument is described which will provide a direct image of gamma-ray line or continuum sources in the energy range 300 keV to 10 MeV. The use of this instrument to study the celestial distribution of the (exp 26)Al isotope by observing the 1.809 MeV deexcitation gamma-ray line is illustrated. The source location accuracy is 2' or better. The imaging telescope is a liquid xenon time projection chamber coupled with a coded aperture mask (LXe-CAT). This instrument will confirm and extend the COMPTEL observations from the Compton Gamma-Ray Observatory (CGRO) with an improved capability for identifying the actual Galactic source or sources of (exp 26)Al, which are currently not known with certainty. sources currently under consideration include red giants on the asymptotic giant branch (AGB), novae, Type 1b or Type 2 supernovae, Wolf-Rayet stars and cosmic-rays interacting in molecular clouds. The instrument could also identify a local source of the celestial 1.809 MeV gamma-ray line, such as a recent nearby supernova.
YAP(Ce) crystal characterization with proton beam up to 60 MeV
NASA Astrophysics Data System (ADS)
Randazzo, N.; Sipala, V.; Aiello, S.; Lo Presti, D.; Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.
2008-02-01
A YAP(Ce) crystal was characterized with a proton beam up to 60 MeV. Tests were performed to investigate the possibility of using this detector as a proton calorimeter. The size of the crystal was chosen so that the proton energy is totally lost inside the medium. The authors propose to use the YAP(Ce) crystal in medical applications for proton therapy. In particular, in proton computed tomography (pCT) project it is necessary as a calorimeter in order to measure the proton residual energy after the phantom. Energy resolution, linearity, and light yield were measured in the Laboratori Nazionali del Sud with the CATANA proton beam [ http://www.lns.infn.it/CATANA/CATANA] and the results are shown in this paper. The crystal shows a good resolution (3% at 60 MeV proton beam) and it shows good linearity for different proton beam energies (1% at 30-60 MeV energy range). The crystal performances confirm that the YAP(Ce) crystal represents a good solution for these kinds of application.
Determination of Neutron Spectra in a Graphite Sphere for Fusion Reactor Studies
NASA Astrophysics Data System (ADS)
Bashter, I. B.; Cooper, P. N.
Calculated and experimental results for the neutron spectra at different radii in a graphite sphere irradiated with 14.1 MeV neutrons were shown to be in satisfactory agreement over the energy range 14.1 to 1.8 MeV neutrons. A group of curves were constructed which gives the radius of a graphite sphere shield required to attenuate the neutron intensity to a certain value. The data set used in the present work, with carbon-12 cross section, is shown to be useful for spherical calculations.Translated AbstractDie Bestimmung der Neutronenspektren in einer GraphitkugelDie Übereinstimmung experimentell bestimmter und berechneter Neutronenspektren in Abhängigkeit vom Ort in einer Graphitkugel wird in einem Energiebereich von 14,1 bis 1,8 MeV (bei einer Ausgangsenergie von 14,1 MeV je Neutron) gezeigt. Eine Gruppe von Kurven wird konstruiert, die den für eine bestimmte Dämpfung der Neutronenintensität notwendigen Radius einer Graphitkugel angeben. Es wird nachgewiesen, daß die in der Arbeit benutzte Datenbank für den 12C-Wirkungsquerschnitt in sphärischen Geometrien anwendbar ist.
NASA Astrophysics Data System (ADS)
Sobolev, Yu. G.; Penionzhkevich, Yu. E.; Aznabaev, D.; Zemlyanaya, E. V.; Ivanov, M. P.; Kabdrakhimova, G. D.; Kabyshev, A. M.; Knyazev, A. G.; Kugler, A.; Lashmanov, N. A.; Lukyanov, K. V.; Maj, A.; Maslov, V. A.; Mendibayev, K.; Skobelev, N. K.; Slepnev, R. S.; Smirnov, V. V.; Testov, D.
2017-11-01
New experimental measurements of the total reaction cross sections for the 6He + natSi and 9Li + natSi processes in the energy range of 5 to 40 A MeV are presented. A modified transmission method based on high-efficiency detection of prompt n-γ radiation has been used in the experiment. A bump is observed for the first time in the energy dependence σR( E) at E ˜ 10-30 A MeV for the 9Li + natSi reaction, and existence of the bump in σR( E) at E ˜ 10-20 A MeV first observed in the standard transmission experiments is experimentally confirmed for the 6He + natSi reaction. Theoretical analysis of the measured 6He + natSi and 9Li + natSi reaction cross sections is performed within the microscopic double folding model. Disagreement is observed between the experimental and theoretical cross sections in the region of the bump at the energies of 10 to 20 A MeV, which requires further study.
Spectrum of atmospheric gamma rays to 10 MeV at lambda = 40 deg. [as function of altitude
NASA Technical Reports Server (NTRS)
Peterson, L. E.; Schwartz, D. A.; Ling, J. C.
1973-01-01
Results of measurements of the differential counting rate spectra due to atmospheric gamma rays as a function of altitude to 3.6 g/sq cm over Texas. Two gain settings and a 128-channel pulse height analyzer were used to cover the range from 0.2 to 10 MeV. The detector was a 7.6 x 7.6 cm NaI crystal, which was surrounded on five sides by a 2-cm-thick plastic anticoincidence shield for charged particle rejection. The system had a nearly isotropic response to photons above 0.2 MeV. The spectrum at ceiling appeared as a steep continuum with a power-law index of about 1.4. The only obvious feature was the 0.51-MeV positron annihilation line. The spectral shape was independent for depths less than 20 g/sq cm, the absolute intensity varying in proportion to the intensity of the cosmic ray secondary charged particles. Also, at depths less than 30 g/sq cm the observed flux variation with altitude can be described in terms of an empirical depth-dependent source function.
Toxicological and radiological safety of chicken meat irradiated with 7.5 MeV X-rays
NASA Astrophysics Data System (ADS)
Song, Beom-Seok; Lee, Yunjong; Park, Jong-Heum; Kim, Jae-Kyung; Park, Ha-Young; Kim, Dong-Ho; Kim, Chang-Jong; Kang, Il-Jun
2018-03-01
This study was conducted to evaluate the toxicological and radiological safety of chicken meat that had been irradiated at 30 kGy with 7.5 MeV X-rays. In a sub-chronic toxicity study, ICR mice were fed X-ray-irradiated chicken meat at 2500 mg/kg body weight daily for 90 days, and no mortality or abnormal clinical signs were observed throughout the study period. However, several hematological and serum biochemical parameters of the ICR mice differed significantly from those in the control group; nevertheless, the observed values were all within the normal range for the respective parameters. In addition, no toxicological effects were determined in male or female mice. Furthermore, no differences in gamma-ray spectrometric patterns were detected between the non-irradiated and irradiated samples, indicating that the radioactivity induced by 7.5 MeV X-ray irradiation was below the detection limit. These results tentatively suggest that chicken meat irradiated with 7.5 MeV X-rays would be safe for human consumption in terms of toxicology and radiology.
Measurement of 0.511-MeV gamma rays with a balloon-borne Ge/Li/ spectrometer
NASA Technical Reports Server (NTRS)
Ling, J. C.; Mahoney, W. A.; Willett, J. B.; Jacobson, A. S.
1977-01-01
A collimated high-resolution gamma ray spectrometer was flown on a balloon over Palestine, Texas, on June 10, 1974, to obtain measurements of the terrestrial and extraterrestrial 0.511-MeV gamma rays. The spectrometer consists of four 40-cu-cm Ge(Li) crystals operating in the energy range 0.06-10 MeV; this cluster of detectors is surrounded by a CsI(Na) anticoincidence shield. This system is used primarily to allow measurements of the two escape peaks associated with high-energy gamma ray lines. It also allows a measurement of the background component of the 0.511-MeV flux produced by beta(+) decays in materials inside the CsI(Na) shield. It is shown that the measurements of the atmospheric fluxes are consistent with earlier results after allowance is made for an additional component of the background due to beta(+) decays produced by neutron- and proton-initiated interactions with materials in and near the detector. Results of the extraterrestrial flux require an extensive detailed analysis of the time-varying background because of activation buildup and balloon spatial drifts.
Spectra and angular distributions of atmospheric gamma rays from 0.3 to 10 MeV at lambda = 40 deg
NASA Technical Reports Server (NTRS)
Ling, J. C.; Gruber, D. E.
1977-01-01
Measurements of the spectral and angular distributions of atmospheric gamma sq cm rays in the energy range 0.3-10 MeV over Palestine, Texas, at residual depths of 2.5 and 70 g/sq cm are reported. In confirmation of the general features of a model prediction, the measurements show at 2.5 g/sq cm upward moving fluxes greater than the downward moving fluxes, the effect increasing with energy, and approximate isotropy at 70 g/sq cm. Numerous characteristic gamma-ray lines were observed, most prominently at 0.511, 1.6, 2.3, 4.4, and 6.1 MeV. Their intensities were also compared with model predictions. Observations were made with an actively shielded scintillator counter with two detectors, one of aperture 50 deg FWHM and the other of 120 deg FWHM. Above 1 MeV, contributions to the counting rate from photons penetrating the shield annulus and from neutron interactions were large; they were studied by means of a Monte Carlo code and are extensively discussed.
Determination of the η‧-nucleus optical potential
NASA Astrophysics Data System (ADS)
Nanova, M.; Metag, V.; Paryev, E. Ya.; Bayadilov, D.; Bantes, B.; Beck, R.; Beloglazov, Y. A.; Böse, S.; Brinkmann, K.-T.; Challand, Th.; Crede, V.; Dahlke, T.; Dietz, F.; Drexler, P.; Eberhardt, H.; Elsner, D.; Ewald, R.; Fornet-Ponse, K.; Friedrich, S.; Frommberger, F.; Funke, Ch.; Gottschall, M.; Gridnev, A.; Grüner, M.; Gutz, E.; Hammann, Ch.; Hammann, D.; Hannappel, J.; Hartmann, J.; Hillert, W.; Hoffmeister, P.; Honisch, Ch.; Jaegle, I.; Kaiser, D.; Kalinowsky, H.; Kammer, S.; Keshelashvili, I.; Kleber, V.; Klein, F.; Klempt, E.; Krusche, B.; Lang, M.; Lopatin, I. V.; Maghrbi, Y.; Makonyi, K.; Müller, J.; Odenthal, T.; Piontek, D.; Schaepe, S.; Schmidt, Ch.; Schmieden, H.; Schmitz, R.; Seifen, T.; Thiel, A.; Thoma, U.; van Pee, H.; Walther, D.; Wendel, Ch.; Wiedner, U.; Wilson, A.; Winnebeck, A.; Zenke, F.
2013-12-01
The excitation function and momentum distribution of η‧ mesons have been measured in photon induced reactions on 12C in the energy range of 1250-2600 MeV. The experiment was performed with tagged photon beams from the ELSA electron accelerator using the Crystal Barrel and TAPS detectors. The data are compared to model calculations to extract information on the sign and magnitude of the real part of the η‧-nucleus potential. Within the model, the comparison indicates an attractive potential of -(37±10(stat)±10(syst)) MeV depth at normal nuclear matter density. Since the modulus of this depth is larger than the modulus of the imaginary part of the η‧-nucleus potential of -(10±2.5) MeV, determined by transparency ratio measurements, a search for resolved η‧-bound states appears promising.
Spacecraft-produced neutron fluxes on Skylab
NASA Technical Reports Server (NTRS)
Quist, T. C.; Furst, M.; Burnett, D. S.; Baum, J. H.; Peacock, C. L., Jr.; Perry, D. G.
1977-01-01
Estimates of neutron fluxes in different energy ranges are reported for the Skylab spacecraft. Detectors composed of uranium, thorium, and bismuth foils with mica as a fission track recorder, as well as boron foils with cellulose acetate as an alpha-particle recorder, were deployed at different positions in the Orbital Workshop. It was found that the Skylab neutron flux was dominated by high energy (greater than 1 MeV) contributions and that there was no significant time variation in the fluxes. Firm upper limits of 7-15 neutrons/sq cm-sec, depending on the detector location in the spacecraft, were established for fluxes above 1 MeV. Below 1 MeV, the neutron fluxes were about an order of magnitude lower. The neutrons are interpreted as originating from the interactions of leakage protons from the radiation belt with the spacecraft.
Measurement of the energy and time resolution of a undoped CsI + MPPC array for the Mu2e experiment
Atanova, O.; Cordelli, M.; Corradi, G.; ...
2017-02-13
This paper describes the measurements of energy and time response and resolution of a 3 x 3 array made of undoped CsI crystals coupled to large area Hamamatsu Multi Pixel Photon Counters. The measurements have been performed using the electron beam of the Beam Test Facility in Frascati (Rome, Italy) in the energy range 80-120 MeV. The measured energy resolution, estimated with the FWHM, at 100 MeV is 16.4%. This resolution is dominated by the energy leakage due to the small dimensions of the prototype. The time is reconstructed by fitting the leading edge of the digitized signals and applyingmore » a digital constant fraction discrimination technique. A time resolution of about 110 ps at 100 MeV is achieved.« less
Gamma ray measurements with photoconductive detectors using a dense plasma focus.
May, M J; Brown, G V; Halvorson, C; Schmidt, A; Bower, D; Tran, B; Lewis, P; Hagen, C
2014-11-01
Photons in the MeV range emitted from the dense plasma focus (DPF) at the NSTec North Las Vegas Facility have been measured with both neutron-damaged GaAs and natural diamond photoconductive detectors (PCDs). The DPF creates or "pinches" plasmas of various gases (e.g., H2, D2, Ne, Ar., etc.) that have enough energy to create MeV photons from either bremsstrahlung and/or (n,n(')) reactions if D2 gas is used. The high bandwidth of the PCDs enabled the first ever measurement of the fast micro-pinches present in DPF plasmas. Comparisons between a slower more conventional scintillator/photomultiplier tube based nuclear physics detectors were made to validate the response of the PCDs to fast intense MeV photon signals. Significant discrepancies in the diamond PCD responses were evident.
Exploring the influence of transfer channels on fusion reactions: The case of 40 Ca + 58,64 Ni
Bourgin, D.; Courtin, S.; Haas, F.; ...
2015-01-29
Fusion cross sections have been measured in the 40Ca + 58Ni and 40Ca + 64Ni systems at beam energies ranging from E lab = 104.75 MeV to 153.5 MeV using the Laboratori Nazionali di Legnaro electrostatic deflector. Distributions of barriers have been extracted from the experimental data. Preliminary coupled channel calculations were performed and hints of effects of neutron transfers on the fusion below the barrier in the 40Ca + 64Ni are discussed.
Method for detecting moisture in soils using secondary cosmic radiation
Condreva, Kenneth
2003-12-16
Water content in a soil is determined by measuring the attenuation of secondary background cosmic radiation as this radiation propagates through a layer of soil and water. By measuring the attenuation of secondary cosmic radiation in the range of 5 MeV-15 MeV it is possible to obtain a relative measure of the water content in a soil layer above a suitable radiation detector and thus establish when and how much irrigation is needed. The electronic circuitry is designed so that a battery pack can be used to supply power.
NASA Technical Reports Server (NTRS)
Chutjian, A.; Alajajian, S. H.
1987-01-01
Dissociative electron attachment to F2 has been observed in the energy range 0-140 meV, at a resolution of 6 meV (full width at half maximum). Results show conclusively a sharp, resolution-limited threshold behavior consistent with an s-wave cross section varying as sq rt of epsilon. Two accurate theoretical calculations predict only p-wave behavior varying as the sq rt of epsilon. Several nonadiabatic coupling effects leading to s-wave behavior are outlined.
NASA Astrophysics Data System (ADS)
Shen, H.; Zhao, Q.; Zhang, F. S.; Sushko, Gennady B.; Korol, Andrei V.; Solov'yov, Andrey V.
2018-06-01
Planar channeling of 855 MeV electrons and positrons in straight and bent tungsten (1 1 0) crystal is simulated by means of the MBN EXPLORER software package. The results of simulations for a broad range of bending radii are analyzed in terms of the channel acceptance, dechanneling length, and spectral distribution of the emitted radiation. Comparison of the results with predictions of other theories as well as with the data for (1 1 0) oriented diamond, silicon and germanium crystals is carried out.
Krishichayan,; Bhike, Megha; Finch, S. W.; ...
2017-05-01
Photofission cross-section ratios of 235U and 238U have been measured using monoenergetic photon beams from the High Intensity Gamma-ray Source facility at the Triangle Universities Nuclear Laboratory. These measurements have been performed in small energy steps between 9.0 and 16.6 MeV using a dual-fission ionization chamber. The measured cross-section ratios are compared with the previous experimental data as well as with the recent evaluated nuclear data library ENDF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belloni, F.; Milazzo, P. M.; Calviani, M.
2012-01-01
Neutron-induced fission cross section measurements of 233U, 243Am and 241Am relative to 235U have been carried out at the neutron time-of-flight facility n TOF at CERN. A fast ionization chamber has been employed. All samples were located in the same detector; therefore the studied elements and the reference 235U target are subject to the same neutron beam.
NASA Astrophysics Data System (ADS)
Wan Chan Tseung, H.; Kaspar, J.; Tolich, N.
2011-10-01
An experimental test of the electron energy scale linearities of SNO+ and EJ-301 scintillators was carried out using a Compton spectrometer with electrons in the energy range 0.09-3 MeV. The linearity of the apparatus was explicitly demonstrated. It was found that the response of both types of scintillators with respect to electrons becomes non-linear below ˜0.4 MeV. An explanation is given in terms of Cherenkov light absorption and re-emission by the scintillators.
The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory
NASA Technical Reports Server (NTRS)
Ryan, James M.; Lockwood, John A.
1989-01-01
The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented.
Modelling PET radionuclide production in tissue and external targets using Geant4
NASA Astrophysics Data System (ADS)
Amin, T.; Infantino, A.; Lindsay, C.; Barlow, R.; Hoehr, C.
2017-07-01
The Proton Therapy Facility in TRIUMF provides 74 MeV protons extracted from a 500 MeV H- cyclotron for ocular melanoma treatments. During treatment, positron emitting radionuclides such as 1C, 15O and 13N are produced in patient tissue. Using PET scanners, the isotopic activity distribution can be measured for in-vivo range verification. A second cyclotron, the TR13, provides 13 MeV protons onto liquid targets for the production of PET radionuclides such as 18F, 13N or 68Ga, for medical applications. The aim of this work was to validate Geant4 against FLUKA and experimental measurements for production of the above-mentioned isotopes using the two cyclotrons. The results show variable degrees of agreement. For proton therapy, the proton-range agreement was within 2 mm for 11C activity, whereas 13N disagreed. For liquid targets at the TR13 the average absolute deviation ratio between FLUKA and experiment was 1.9±2.7, whereas the average absolute deviation ratio between Geant4 and experiment was 0. 6±0.4. This is due to the uncertainties present in experimentally determined reaction cross sections.
Griswold, Justin R; Medvedev, Dmitri G.; Engle, Jonathan W.; ...
2016-09-28
Actinium-225 and 213Bi have been used successfully in targeted alpha therapy (TAT) in preclinical and clinical research. This paper is a continuation of research activities aiming to expand the availability of 225Ac. The high energy proton spallation reaction on natural thorium metal target has been utilized to produce millicurie quantities of 225Ac. The results of sixteen irradiation experiments of Th metal at beam energies between 78 and 200 MeV are summarized in this work. Irradiations have been conducted at Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL), while target dissolution and processing was carried out at Oak Ridgemore » National Laboratory (ORNL). Excitation functions for actinium and thorium isotopes as well as for some of the fission products are presented. The cross sections for production of 225Ac range from 3.6 to 16.7 mb in the incident proton energy range of 78 to 192 MeV. Based on these data, production of Curie quantities of 225Ac is possible by irradiating a 5.0 g cm -2232Th target for 10 days in either BNL or LANL proton irradiation facilities.« less
Measurement of Neutron Reaction Cross Sections between 8 and 14 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mannhart, Wolf; Schmidt, Dankwart
2005-05-24
Cross-section measurements were performed with special emphasis on access to the 'blind spot' in the neutron energy range from 10 to 13 MeV. The use of a conventional D(d,n) neutron source in combination with TOF measurements of the D(d,np) break-up component allows the precise determination of monoenergetic cross-section data in this range. The procedure is demonstrated with the measurement of the cross sections of 64Zn(n,p)64Cu, 64Zn(n,2n)63Zn, 63Cu(n,2n)62Cu, and 65Cu(n,2n)64Cu. With all reaction products being strong positron emitters, the radioactivity-counting process has been optimised for a perfect registration of the associated annihilation radiation.
Measurement of Neutron Reaction Cross Sections between 8 and 14 MeV
NASA Astrophysics Data System (ADS)
Mannhart, Wolf; Schmidt, Dankwart
2005-05-01
Cross-section measurements were performed with special emphasis on access to the "blind spot" in the neutron energy range from 10 to 13 MeV. The use of a conventional D(d,n) neutron source in combination with TOF measurements of the D(d,np) break-up component allows the precise determination of monoenergetic cross-section data in this range. The procedure is demonstrated with the measurement of the cross sections of 64Zn(n,p)64Cu, 64Zn(n,2n)63Zn, 63Cu(n,2n)62Cu, and 65Cu(n,2n)64Cu. With all reaction products being strong positron emitters, the radioactivity-counting process has been optimised for a perfect registration of the associated annihilation radiation.
Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H; Back, N L; Eder, D C
2007-12-10
The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction ofmore » the absolute calibration to other spectrometer setting at this electron energy range.« less
NASA Astrophysics Data System (ADS)
Cvetinović, A.; Spitaleri, C.; Spartá, R.; Rapisarda, G. G.; Puglia, S. M. R.; La Cognata, M.; Cherubini, S.; Guardo, G. L.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Romano, S.; Sergi, M. L.; Tumino, A.
2018-06-01
The 10B(p ,α0)7Be excitation function has been studied in a wide energy range, from 2.2 MeV down to astrophysical energies, reproducing the cross section above and below the Coulomb barrier in a single experiment. An optimized experimental setup ensured good energy resolution and for the first time a clear separation of α0 and α1 channels of the 10B+2H interaction has been achieved by applying the Trojan Horse method. An improved normalization of the Trojan Horse bare-nucleus astrophysical S (E )-factor to direct data was performed and a value of Ue=391 ±74 eV was obtained for the electron screening potential.
3He(γ,pp)n cross sections with tagged photons below the Δ resonance energy
NASA Astrophysics Data System (ADS)
Kolb, N. R.; Feldman, G.; O'rielly, G. V.; Pywell, R. E.; Skopik, D. M.; Hackett, E. D.; Quraan, M. A.; Rodning, N. L.
1996-11-01
Cross sections have been measured for the 3He(γ,pp)n reaction with tagged photons in the range Eγ =161-208 MeV using the Saskatchewan-Alberta Large Acceptance Detector (SALAD). The protons were detected over a range of polar angles of 40°-140° and azimuthal angles of 0°-360° with an energy threshold of 40 MeV. Comparisons are made with a microscopic calculation which includes one-, two-, and three-nucleon absorption mechanisms. One- and two-nucleon processes, including final-state interactions, are unable to account for the measured cross sections. The addition of three-nucleon absorption diagrams gives roughly the right strength, but the distribution in phase space is in disagreement with the data.
Electron response of some low-Z scintillators in wide energy range
NASA Astrophysics Data System (ADS)
Swiderski, L.; Marcinkowski, R.; Moszynski, M.; Czarnacki, W.; Szawlowski, M.; Szczesniak, T.; Pausch, G.; Plettner, C.; Roemer, K.
2012-06-01
Light yield nonproportionality and the intrinsic resolution of some low atomic number scintillators were studied by means of the Wide Angle Compton Coincidence (WACC) technique. The plastic and liquid scintillator response to Compton electrons was measured in the energy range of 10 keV up to 4 MeV, whereas a CaF2:Eu sample was scanned from 3 keV up to 1 MeV. The nonproportionality of the CaF2:Eu light yield has characteristics typical for inorganic scintillators of the multivalent halides group, whereas tested organic scintillators show steeply increasing nonproportionality without saturation point. This is in contrast to the behavior of all known inorganic scintillators having their nonproportionality curves at saturation above energies between tens and several hundred keV.
Impact of the material composition on proton range variation - A Monte Carlo study
NASA Astrophysics Data System (ADS)
Wu, S. W.; Tung, C. J.; Lee, C. C.; Fan, K. H.; Huang, H. C.; Chao, T. C.
2015-11-01
In this study, we used the Geant4 toolkit to demonstrate the impacts of the material composition of tissues on proton range variation. Bragg curves of different materials subjected to a 250 MeV mono-energy proton beam were simulated and compared. These simulated materials included adipose, heart, brain, cartilage, cortical bone and water. The results showed that there was significant proton range deviation between Bragg curves, especially for cortical bone. The R50 values for a 250 MeV proton beam were approximately 39.55 cm, 35.52 cm, 37.00 cm, 36.51 cm, 36.72 cm, 22.53 cm, and 38.52 cm in the phantoms that were composed completely of adipose, cartilage, tissue, heart, brain, cortical bone, and water, respectively. Mass density and electron density were used to scale the proton range for each material; electron density provided better range scaling. In addition, a similar comparison was performed by artificially setting all material density to 1.0 g/cm3 to evaluate the range deviation due to chemical components alone. Tissue heterogeneity effects due to density variation were more significant, and less significant for chemical composition variation unless the Z/A was very different.
NASA Astrophysics Data System (ADS)
Jansson, K.; Gustavsson, C.; Al-Adili, A.; Hjalmarsson, A.; Andersson-Sundén, E.; Prokofiev, A. V.; Tarrío, D.; Pomp, S.
2015-09-01
Measurements of neutron-induced fission cross-sections and light-ion production are planned in the energy range 1-40 MeV at the upcoming Neutrons For Science (NFS) facility. In order to prepare our detector setup for the neutron beam with continuous energy spectrum, a simulation software was written using the Geant4 toolkit for both measurement situations. The neutron energy range around 20 MeV is troublesome when it comes to the cross-sections used by Geant4 since data-driven cross-sections are only available below 20 MeV but not above, where they are based on semi-empirical models. Several customisations were made to the standard classes in Geant4 in order to produce consistent results over the whole simulated energy range. Expected uncertainties are reported for both types of measurements. The simulations have shown that a simultaneous precision measurement of the three standard cross-sections H(n,n), 235U(n,f) and 238U(n,f) relative to each other is feasible using a triple layered target. As high resolution timing detectors for fission fragments we plan to use Parallel Plate Avalanche Counters (PPACs). The simulation results have put some restrictions on the design of these detectors as well as on the target design. This study suggests a fissile target no thicker than 2 μm (1.7 mg/cm2) and a PPAC foil thickness preferably less than 1 μm. We also comment on the usability of Geant4 for simulation studies of neutron reactions in this energy range.
Delpeut, Sébastien; Sawatsky, Bevan; Wong, Xiao-Xiang; Frenzke, Marie; Cattaneo, Roberto; von Messling, Veronika
2017-06-01
In addition to humans, only certain nonhuman primates are naturally susceptible to measles virus (MeV) infection. Disease severity is species dependent, ranging from mild to moderate for macaques to severe and even lethal for certain New World monkey species. To investigate if squirrel monkeys ( Saimiri sciureus ), which are reported to develop a course of disease similar to humans, may be better suited than macaques for the identification of virulence determinants or the evaluation of therapeutics, we infected them with a green fluorescent protein-expressing MeV. Compared to cynomolgus macaques ( Macaca fascicularis ) infected with the same virus, the squirrel monkeys developed more-severe immunosuppression, higher viral load, and a broader range of clinical signs typical for measles. In contrast, infection with an MeV unable to interact with the epithelial receptor nectin-4, while causing immunosuppression, resulted in only a mild and transient rash and a short-lived elevation of the body temperature. Similar titers of the wild-type and nectin-4-blind MeV were detected in peripheral blood mononuclear cells and lymph node homogenates, but only the wild-type virus was found in tracheal lavage fluids and urine. Thus, our study demonstrates the importance of MeV interactions with nectin-4 for clinical disease in the new and better-performing S. sciureus model of measles pathogenesis. IMPORTANCE The characterization of mechanisms underlying measles virus clinical disease has been hampered by the lack of an animal model that reproduces the course of disease seen in human patients. Here, we report that infection of squirrel monkeys ( Saimiri sciureus ) fulfills these requirements. Comparative infection with wild-type and epithelial cell receptor-blind viruses demonstrated the importance of epithelial cell infection for clinical disease, highlighting the spread to epithelia as an attractive target for therapeutic strategies. Copyright © 2017 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Bonardi, Mauro L.; Birattari, Claudio; Groppi, Flavia; Song Mainard, Hae; Zhuikov, Boris L.; Kokhanyuk, Vladimir M.; Lapshina, Elena V.; Mebel, Michail V.; Menapace, Enzo
2004-07-01
High specific activity no-carrier-added 64Cu is a β-/β+ emitting radionuclide of increasing interest for PET imaging, as well as systemic and targeted radioimmunotherapy of tumors. Its peculiarity of intense Auger emitter is still under investigation. The cross-sections for production of 64Cu from Zn target of natural isotopic composition were measured in the deuteron energy range from threshold up to 19 MeV and proton energy range from 141 down to 31 MeV. The stacked-foil technique was used at both K=38 cyclotron of JRC-Ispra of CEC, Italy and 160 MeV intersection point of INR proton-LINAC in Troitsk, Russia. Several Ga, Zn, Cu, Ni, Co, V, Fe and Mn radionuclides were detected in Zn targets at the EOB. Optimized irradiation conditions are reported as a function of deuteron energy and energy loss into the Zn target, as well as target irradiation time and cooling time after radiochemistry. The activity of n.c.a. 64Cu was measured through its only γ emission of 1346 keV (i.e. 0.473 % intensity) both by instrumental and radiochemical methods, due to the non-specificity of annihilation radiation at 511 keV. To this last purpose, it was necessary to carry out a selective radiochemical separation of GaIII radionuclides by liquid/liquid extraction from the bulk of irradiated Zn targets and other spallation products, which remained in the 7 M HCl aqueous phase. Anion exchange chromatography tests had been carried out to separate the 64Cu from all others radionuclides in n.c.a. form. Theoretical calculations of cross-sections were performed with codes EMPIRE II and PENELOPE for deuteron reactions and CEF model and HMS-ALICE hybrid model for proton reactions. The theoretical results are presented and compared with the experimental values.
SU-F-P-49: Comparison of Mapcheck 2 Commission for Photon and Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, J; Yang, C; Morris, B
2016-06-15
Purpose: We will investigate the performance variation of the MapCheck2 detector array with different array calibration and dose calibration pairs from different radiation therapy machine. Methods: A MapCheck2 detector array was calibrated on 3 Elekta accelerators with different energy of photon (6 MV, 10 MV, 15 MV and 18 MV) and electron (6 MeV, 9 MeV, 12 MeV, 15 MeV, 18 MeV and 20 MeV) beams. Dose calibration was conducted by referring a water phantom measurement following TG-51 protocol and commission data for each accelerator. A 10 cm × 10 cm beam was measured. This measured map was morphed bymore » applying different calibration pairs. Then the difference was quantified by comparing the doses and similarity using gamma analysis of criteria (0.5 %, 0 mm). Profile variation was evaluated on a same dataset with different calibration pairs. The passing rate of an IMRT QA planar dose was calculated by using 3 mm and 3% criteria and compared with respect to each calibration pairs. Results: In this study, a dose variation up to 0.67% for matched photons and 1.0% for electron beams is observed. Differences of flatness and symmetry can be as high as 1% and 0.7% respectively. Gamma analysis shows a passing rate ranging from 34% to 85% for the standard 10 × 10 cm field. Conclusion: Our work demonstrated that a customized array calibration and dose calibration for each machine is preferred to fulfill a high standard patient QA task.« less
Upper limit on the inner radiation belt MeV electron intensity
NASA Astrophysics Data System (ADS)
Li, X.; Selesnick, R. S.; Baker, D. N.; Jaynes, A. N.; Kanekal, S. G.; Schiller, Q.; Blum, L.; Fennell, J.; Blake, J. B.
2015-02-01
No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment on board Colorado Student Space Weather Experiment CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because their flux level is orders of magnitude higher than the background, while higher-energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about 1 order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt.
A new Predictive Model for Relativistic Electrons in Outer Radiation Belt
NASA Astrophysics Data System (ADS)
Chen, Y.
2017-12-01
Relativistic electrons trapped in the Earth's outer radiation belt present a highly hazardous radiation environment for spaceborne electronics. These energetic electrons, with kinetic energies up to several megaelectron-volt (MeV), manifest a highly dynamic and event-specific nature due to the delicate interplay of competing transport, acceleration and loss processes. Therefore, developing a forecasting capability for outer belt MeV electrons has long been a critical and challenging task for the space weather community. Recently, the vital roles of electron resonance with waves (including such as chorus and electromagnetic ion cyclotron) have been widely recognized; however, it is still difficult for current diffusion radiation belt models to reproduce the behavior of MeV electrons during individual geomagnetic storms, mainly because of the large uncertainties existing in input parameters. In this work, we expanded our previous cross-energy cross-pitch-angle coherence study and developed a new predictive model for MeV electrons over a wide range of L-shells inside the outer radiation belt. This new model uses NOAA POES observations from low-Earth-orbits (LEOs) as inputs to provide high-fidelity nowcast (multiple hour prediction) and forecast (> 1 day prediction) of the energization of MeV electrons as well as the evolving MeV electron distributions afterwards during storms. Performance of the predictive model is quantified by long-term in situ data from Van Allen Probes and LANL GEO satellites. This study adds new science significance to an existing LEO space infrastructure, and provides reliable and powerful tools to the whole space community.
Evaluation of a scattering correction method for high energy tomography
NASA Astrophysics Data System (ADS)
Tisseur, David; Bhatia, Navnina; Estre, Nicolas; Berge, Léonie; Eck, Daniel; Payan, Emmanuel
2018-01-01
One of the main drawbacks of Cone Beam Computed Tomography (CBCT) is the contribution of the scattered photons due to the object and the detector. Scattered photons are deflected from their original path after their interaction with the object. This additional contribution of the scattered photons results in increased measured intensities, since the scattered intensity simply adds to the transmitted intensity. This effect is seen as an overestimation in the measured intensity thus corresponding to an underestimation of absorption. This results in artifacts like cupping, shading, streaks etc. on the reconstructed images. Moreover, the scattered radiation provides a bias for the quantitative tomography reconstruction (for example atomic number and volumic mass measurement with dual-energy technique). The effect can be significant and difficult in the range of MeV energy using large objects due to higher Scatter to Primary Ratio (SPR). Additionally, the incident high energy photons which are scattered by the Compton effect are more forward directed and hence more likely to reach the detector. Moreover, for MeV energy range, the contribution of the photons produced by pair production and Bremsstrahlung process also becomes important. We propose an evaluation of a scattering correction technique based on the method named Scatter Kernel Superposition (SKS). The algorithm uses a continuously thickness-adapted kernels method. The analytical parameterizations of the scatter kernels are derived in terms of material thickness, to form continuously thickness-adapted kernel maps in order to correct the projections. This approach has proved to be efficient in producing better sampling of the kernels with respect to the object thickness. This technique offers applicability over a wide range of imaging conditions and gives users an additional advantage. Moreover, since no extra hardware is required by this approach, it forms a major advantage especially in those cases where experimental complexities must be avoided. This approach has been previously tested successfully in the energy range of 100 keV - 6 MeV. In this paper, the kernels are simulated using MCNP in order to take into account both photons and electronic processes in scattering radiation contribution. We present scatter correction results on a large object scanned with a 9 MeV linear accelerator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langner, U; Langen, K
Purpose: To investigate the effect of spot size variation as function of gantry angle on the quality of treatment plans for pencil beam scanning proton plans. Method: Three homogeneous 26×26×7cm dose volumes with different ranges and SOBPs were delivered on the matrixxPT 2D array at gantry angles of 0 and 270 degrees. The spot size sigma varies by 1.8, 7.8, and 1.4%, for nominal energies of 215, 183, and 103 MeV (Range 29, 22, and 8cm, respectively). The resulting dose planes are compared and evaluated with the gamma index for 2%/2mm and 1%/1mm criteria. Results: Patient specific QA is performedmore » at a gantry angle of 0 degrees. However, beam sigmas vary as function of gantry angle because of the beam optics for each gantry. This will cause differences between the delivered and planned treatment plans. Delivered plans were compared and a gamma pass rate of 96.5% for criteria of 2%/2mm and 91.4% for 1%/1mm were seen for plans with a nominal energy of 183 MeV. For plans with a nominal energy of 103 MeV, gamma pass rates of 97.3% for 2%/2mm and 91.5% for 1%/1mm were seen. For plans with a nominal energy of 215 MeV the pass rate was 99.8% for 1%/1mm between the two gantry angles. Conclusion: Differences in beam sigma of up to 7.8% do not cause significant differences in the dose distribution of different spot size gammas.« less
NASA Astrophysics Data System (ADS)
Febbraro, M.; Becchetti, F. D.; Torres-Isea, R. O.; Riggins, J.; Lawrence, C. C.; Kolata, J. J.; Howard, A. M.
2017-08-01
The (d ,n ) reaction has been studied with targets of 9Be, 11B, 13C, N,1514, and 19F at Ed=16 MeV using a deuterated liquid-scintillator array. Advanced spectral unfolding techniques with accurately measured scintillator response functions were employed to extract neutron energy spectra without the need for long-path neutron time-of-flight. An analysis of the proton-transfer data at forward angles to the ground states of the final nuclei, using finite-range distorted-wave Born approximation analysis with common bound-state, global, and local optical-model parameter sets, yields a set of self-consistent spectroscopic factors. These are compared with the results of several previous time-of-flight measurements, most done many years ago for individual nuclei at lower energy and often analyzed using zero-range transfer codes. In contrast to some of the earlier published data, our data generally compare well with simple shell-model predictions, with little evidence for uniform quenching (reduction from shell-model values) that has previously been reported from analysis of nucleon knock-out reactions. Data for low-lying excited states in 14N from 13C(d ,n ) also is analyzed and spectroscopic information relevant to nuclear astrophysics obtained. A preliminary study of the radioactive ion beam induced reaction 7Be(d ,n ) , E (7Be)=30 MeV was carried out and indicates further improvements are needed for such measurements, which require detection of neutrons with En<2 MeV .
Distinguishing 3He and 4He with the Electron Proton Telescope (EPT) on Solar Orbiter
NASA Astrophysics Data System (ADS)
Boden, S.; Kulkarni, S. R.; Steinhagen, J.; Tammen, J.; Martin-Garcia, C.; Wimmer-Schweingruber, R. F.; Boettcher, S. I.; Seimetz, L.; Ravanbakhsh, A.; Elftmann, R.; Schuster, B.; Kulemzin, A.; Kolbe, S.; Mahesh, Y.; Knieriem, V.; Yu, J.; Kohler, J.; Panitzsch, L.; Terasa, C.; Boehm, E.; Rodriguez-Pacheco, J.; Prieto, M.; Gomez-Herrero, R.
2015-12-01
The Electron Proton Telescope (EPT) is one of the sensors of the Energetic Particle Detector (EPD) for the Solar Orbiter mission, which will provide key measurements to address particle acceleration at and near the Sun. The EPD suite consists of four different sensors (STEP, SIS, EPT and HET) which together will resolve the energetic particle spectrum from 2 keV to 20 MeV for electrons, 3 keV to 100 MeV for protons and circa 100 keV/nuc to 100 MeV/nuc for heavier ions.EPT itself is primarily designed to cleanly separate and measure electrons in the energy range from 20 - 400 keV and protons from 20 - 7000 keV. To achieve this, EPT uses two back-to-back solid state detectors with a magnet system to deflect electrons on one side and a Polyimide foil to stop protons below ~400 keV on the other side. The two detectors then serve as each other's anti-coincidence. Additionally this setup also allows us to measure penetrating particles with deposited energies in the 1 MeV to 40 MeV range. Looking at the ratio of deposited energy in the two detectors versus total deposited energy allows us to differentiate between protons and alpha particles. Distinguishing 3He from 4He will be challenging, but possible provided good knowledge of the instrument, high-fidelity modeling and a precise calibration of EPT. Here, we will present feasibility studies leading to a determination of the 3He / 4He ratio with EPT.
The Spectrum of Isotropic Diffuse Gamma-Ray Emission Between 100 Mev and 820 Gev
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Brandt, T. J.; Hays, E.;
2014-01-01
The gamma-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse gamma-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 plus or minus 0.02 and a break energy of (279 plus or minus 52) GeV using our baseline diffuse Galactic emission model. The total intensity attributed to the IGRB is (7.2 plus or minus 0.6) x 10(exp -6) cm(exp -2) s(exp -1) sr(exp -1) above 100 MeV, with an additional +15%/-30% systematic uncertainty due to the Galactic diffuse foregrounds.
NASA Astrophysics Data System (ADS)
Gooden, M. E.; Bredeweg, T. A.; Champine, B.; Combs, D. C.; Finch, S.; Hayes-Sterbenz, A.; Henry, E.; Krishichayan, Rundberg, R.; Tornow, W.; Wilhelmy, J.; Yeamans, C.
2017-08-01
At the National Ignition Facility, experiments are being performed to measure charged-particle stopping powers in the previously unexplored warm dense plasma regime. These measurements are done using reaction-in-flight (RIF) neutrons from an inertial confinement fusion system. RIF neutrons are produced with a continuum of energies up to 30 MeV. By making activation measurements utilizing threshold reactions for neutrons in the energy range of 15
Gooden, M. E.; Bredeweg, T. A.; Champine, B.; ...
2017-08-01
At the National Ignition Facility, experiments are being performed to measure charged-particle stopping powers in the previously unexplored warm dense plasma regime. These measurements are done using reaction-in-flight (RIF) neutrons from an inertial confinement fusion system. RIF neutrons are produced with a continuum of energies up to 30 MeV. By making activation measurements utilizing threshold reactions for neutrons in the energy range of 15 < E n < 30 MeV , the number of RIF neutrons can be determined and from this the stopping power of the deuterium and tritium ions that produced the RIF neutrons can be inferred. Currently,more » the 169 Tm ( n , 3 n ) 167 Tm reaction has been used. However, in an effort to provide a secondary complimentary measurement, efforts are underway to make use of the 209 Bi ( n , 4 n ) 206 Bi reaction, with a threshold of 22.5 MeV. The cross sections were measured at the 10 MV tandem Van De Graaff accelerator at the Triangle Universities Nuclear Laboratory with quasimonoenergetic neutrons between 23.5 and 30.5 MeV, where few previous measurements have been made. Cross-section data are compared to calculations and other available measurements.« less
Influence of annealing atmosphere on formation of electrically-active defects in rutile TiO2
NASA Astrophysics Data System (ADS)
Zimmermann, C.; Bonkerud, J.; Herklotz, F.; Sky, T. N.; Hupfer, A.; Monakhov, E.; Svensson, B. G.; Vines, L.
2018-04-01
Electronic states in the upper part of the bandgap of reduced and/or hydrogenated n-type rutile TiO2 single crystals have been studied by means of thermal admittance and deep-level transient spectroscopy measurements. The studies were performed at sample temperatures between 28 and 300 K. The results reveal limited charge carrier freeze-out even at 28 K and evidence the existence of dominant shallow donors with ionization energies below 25 meV. Interstitial atomic hydrogen is considered to be a major contributor to these shallow donors, substantiated by infrared absorption measurements. Three defect energy levels with positions of about 70 meV, 95 meV, and 120 meV below the conduction band edge occur in all the studied samples, irrespective of the sample production batch and the post-growth heat treatment used. The origin of these levels is discussed in terms of electron polarons, intrinsic point defects, and/or common residual impurities, where especially interstitial titanium atoms, oxygen vacancies, and complexes involving Al atoms appear as likely candidates. In contrast, no common deep-level defect, exhibiting a charge state transition in the 200-700 meV range below the conduction band edge, is found in different samples. This may possibly indicate a strong influence on deep-level defects by the post-growth heat treatments employed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gooden, M. E.; Bredeweg, T. A.; Champine, B.
At the National Ignition Facility, experiments are being performed to measure charged-particle stopping powers in the previously unexplored warm dense plasma regime. These measurements are done using reaction-in-flight (RIF) neutrons from an inertial confinement fusion system. RIF neutrons are produced with a continuum of energies up to 30 MeV. By making activation measurements utilizing threshold reactions for neutrons in the energy range of 15 < E n < 30 MeV , the number of RIF neutrons can be determined and from this the stopping power of the deuterium and tritium ions that produced the RIF neutrons can be inferred. Currently,more » the 169 Tm ( n , 3 n ) 167 Tm reaction has been used. However, in an effort to provide a secondary complimentary measurement, efforts are underway to make use of the 209 Bi ( n , 4 n ) 206 Bi reaction, with a threshold of 22.5 MeV. The cross sections were measured at the 10 MV tandem Van De Graaff accelerator at the Triangle Universities Nuclear Laboratory with quasimonoenergetic neutrons between 23.5 and 30.5 MeV, where few previous measurements have been made. Cross-section data are compared to calculations and other available measurements.« less
Calibration of the radiation monitor onboard Akebono using Geant4
NASA Astrophysics Data System (ADS)
Asai, Keiko; Takashima, Takeshi; Koi, Tatsumi; Nagai, Tsugunobu
Natural high-energy electrons and protons (keV-MeV) in the space contaminate the data re-ciprocally. In order to calibrate the energy ranges and to remove data contamination on the radiation monitor (RDM) onboard the Japanese satellite, Akebono (EXOS-D), the detector is investigated using the Geant4 simulation toolkit of computational particle tracing. The semi-polar orbiting Akebono, launched in February 1989, is active now. This satellite has been observed the space environment at altitudes of several thousands km. The RDM instrument onboard Akebono monitors energetic particles in the Earth's radiation belt and gives important data accumulated for about two solar cycles. The data from RDM are for electrons in three energy channels of 0.3 MeV, protons in three energy channels of ¿ 30 MeV, and alpha particles in one energy channels of 15-45 MeV. The energy ranges are however based on information of about 20 years ago so that the data seem to include some errors actuary. In addition, these data include contamination of electrons and protons reciprocally. Actuary it is noticed that the electron data are contaminated by the solar protons but unknown quantitative amount of the contamination. Therefore we need data calibration in order to correct the energy ranges and to remove data contamination. The Geant4 simulation gives information of trajectories of incident and secondary particles whose are interacted with materials. We examine the RDM monitor using the Geant4 simulation. We find from the results that relativistic electrons of MeV behave quite complicatedly because of particle-material interaction in the instrument. The results indicate that efficiencies of detection and contamination are dependent on energy. This study compares the electron data from Akebono RDM with the simultaneous observation of CRRES and tries to lead the values of correction for each of the energy channels.
Local chiral potentials with Δ -intermediate states and the structure of light nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piarulli, M.; Girlanda, L.; Schiavilla, R.
We present fully local versions of the minimally non-local nucleon-nucleon potentials constructed in a previous paper [M. Piarulli et al., Phys. Rev. C 91, 024003 (2015)], and use them in hypersperical-harmonics and quantum Monte Carlo calculations of ground and excited states of 3H, 3He, 4He, 6He, and 6Li nuclei. The long-range part of these local potentials includes oneand two-pion exchange contributions without and with Δ isobars in the intermediate states up to order Q3 (Q denotes generically the low momentum scale) in the chiral expansion, while the short-range part consists of contact interactions up to order Q4. The low-energy constantsmore » multiplying these contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either 0–125 MeV or 0–200 MeV, and to the deuteron binding energy and nn singlet scattering length. Fits to these data are performed for three models characterized by long- and short-range cutoffs, RL and RS respectively, ranging from (RL,RS) = (1.2, 0.8) fm down to (0.8, 0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less
NASA Astrophysics Data System (ADS)
Hammond, R. B.; Paulter, N. G.; Wagner, R. S.
1984-08-01
Cross-correlation measurements of the response of photoconductor pulsers and sampling gates excited by a femtosecond laser are reported. The photoconductors were fabricated in microstrip transmission line structures on Si-on-sapphire, semiinsulating GaAs, and semiinsulating InP wafers. The photoconductor sampling gates were ion beam-damaged to produce short carrier lifetimes (less than 3 ps in one case). Damage was introduced with 6 MeV Ne-20 on the Si-on-sapphire, 2 MeV H-2 on the GaAs, and 2 MeV He-4 on the InP. Doses in the range 10 to the 12th - 10 to the 15th were used. Results show circuit limits to the time resolution in correlation measurements from two sources: (1) RC time constants due to photoconductor gap capacitance and transmission line characteristic impedance and (2) dispersion in microstrip transmission lines.
Hall mobility and photoconductivity in TlGaSeS crystals
NASA Astrophysics Data System (ADS)
Qasrawi, A. F.; Gasanly, N. M.
2013-01-01
In this work, the fundamental properties of the TlGaSeS single crystals are investigated by means of temperature dependent electrical resistivity and Hall mobility. The crystal photo-responsibility as function of illumination intensity and temperature is also tested in the temperature range of 350-160 K. The study allowed the determination of acceptor centers as 230 and 450 meV below and above 260 K, and recombination centers as 181, 363, and 10 meV at low, moderate, and high temperatures, respectively. While the temperature-dependent Hall mobility behaved abnormally, the photoconductivity analysis reflected an illumination intensity dependent recombination center. Namely, the recombination center increased from 10 to 90 meV as the light intensity increased from 27.9 to 76.7 mW cm-2, respectively. That strange behavior was attributed to the temporary shift in Fermi level caused by photoexcitation.
Geomagnetically trapped light isotopes observed with the detector NINA
NASA Astrophysics Data System (ADS)
Bakaldin, A.; Galper, A.; Koldashov, S.; Korotkov, M.; Leonov, A.; Mikhailov, V.; Murashov, A.; Voronov, S.; Bidoli, V.; Casolino, M.; De Pascale, M.; Furano, G.; Iannucci, A.; Morselli, A.; Picozza, P.; Sparvoli, R.; Boezio, M.; Bonvicini, V.; Cirami, R.; Vacchi, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; De Marzo, C.; Adriani, O.; Papini, P.; Spillantini, P.; Straulino, S.; Vannuccini, E.; Ricci, M.; Castellini, G.
2002-08-01
The detector New Instrument for Nuclear Analysis (NINA) aboard the satellite Resurs-01-N4 detected hydrogen and helium isotopes geomagnetically trapped, while crossing the South Atlantic Anomaly. Deuterium and tritium at L shell < 1.2 were unambiguously recognized. The 3He and 4He power law spectra, reconstructed at L shell = 1.2 and B < 0.22 G, have indices equal to 2.30 +/- 0.08 in the energy range 12-50 MeV nucleon-1 and 3.4 +/- 0.2 in 10-30 MeV nucleon-1, respectively. The measured 3He/4He ratio and the reconstructed deuterium profile as a function of L shell bring one to the conclusion that the main source of radiation belt light isotopes at Resurs altitudes (~800 km) and for energy greater than 10 MeV nucleon-1 is the interaction of trapped protons with residual atmospheric helium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edstrom Jr., D.; et al.
The low-energy section of the photoinjector-based electron linear accelerator at the Fermilab Accelerator Science & Technology (FAST) facility was recently commissioned to an energy of 50 MeV. This linear accelerator relies primarily upon pulsed SRF acceleration and an optional bunch compressor to produce a stable beam within a large operational regime in terms of bunch charge, total average charge, bunch length, and beam energy. Various instrumentation was used to characterize fundamental properties of the electron beam including the intensity, stability, emittance, and bunch length. While much of this instrumentation was commissioned in a 20 MeV running period prior, some (includingmore » a new Martin- Puplett interferometer) was in development or pending installation at that time. All instrumentation has since been recommissioned over the wide operational range of beam energies up to 50 MeV, intensities up to 4 nC/pulse, and bunch structures from ~1 ps to more than 50 ps in length.« less
Optimization of laser-plasma injector via beam loading effects using ionization-induced injection
NASA Astrophysics Data System (ADS)
Lee, P.; Maynard, G.; Audet, T. L.; Cros, B.; Lehe, R.; Vay, J.-L.
2018-05-01
Simulations of ionization-induced injection in a laser driven plasma wakefield show that high-quality electron injectors in the 50-200 MeV range can be achieved in a gas cell with a tailored density profile. Using the PIC code Warp with parameters close to existing experimental conditions, we show that the concentration of N2 in a hydrogen plasma with a tailored density profile is an efficient parameter to tune electron beam properties through the control of the interplay between beam loading effects and varying accelerating field in the density profile. For a given laser plasma configuration, with moderate normalized laser amplitude, a0=1.6 and maximum electron plasma density, ne 0=4 ×1018 cm-3 , the optimum concentration results in a robust configuration to generate electrons at 150 MeV with a rms energy spread of 4% and a spectral charge density of 1.8 pC /MeV .
Radiation damage in dielectric and semiconductor single crystals (direct observation)
NASA Astrophysics Data System (ADS)
Adawi, M. A.; Didyk, A. Yu.; Varichenko, V. S.; Zaitsev, A. M.
1998-11-01
The surfaces of boron-doped synthetic and natural diamonds have been investigated by using the scanning tunnelling microscope (STM) and the scanning electronic microscope (SEM) before and after irradiating the samples with 40Ar (25 MeV), 84Kr (210 MeV) and 125Xe (124 MeV) ions. The structures observed after irradiation showed craters with diameters ranging from 3 nm up to 20 nm, which could be interpreted as single ion tracks and multiple hits of ions at the nearest positions of the surface. In the case of argon ion irradiation, the surface was found to be completely amorphous, but after xenon irradiation one could see parts of surface without amorphism. This can be explained by the influence of high inelastic energy losses. The energy and temperature criteria of crater formation as a result of heavy ion irradiation are introduced.
The response of CR-39 nuclear track detector to 1-9 MeV protons
Sinenian, N.; Rosenberg, M. J.; Manuel, M.; ...
2011-10-28
The response of CR-39 nuclear track detector (TasTrak®) to protons in the energy range of 0.92-9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. The effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather thanmore » the age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.« less
5 MeV Proton irradiation effects on 200 GHz silicon-germanium heterojunction bipolar transistors
NASA Astrophysics Data System (ADS)
Gnana Prakash, A. P.; Hegde, Vinayakprasanna N.; Pradeep, T. M.; Pushpa, N.; Bajpai, P. K.; Patel, S. P.; Trivedi, Tarkeshwar; Cressler, J. D.
2017-12-01
The total dose effects of 5 MeV proton and Co-60 gamma irradiation in the dose range from 1 to 100 Mrad on advanced 200 GHz Silicon-Germanium heterojunction bipolar transistors (SiGe HBTs) are investigated. The SRIM simulation study was conducted to understand the energy loss of 5 MeV proton ions in SiGe HBT structure. Pre- and post-radiation DC figure of merits such as forward- and inverse-mode Gummel characteristics, excess base current, DC current gain and output characteristics were used to quantify the radiation tolerance of the devices. The results show that the proton creates a significant amount of damages in the surface and bulk of the transistor when compared with gamma irradiation. The SiGe HBTs shows robust ionizing radiation tolerance even up to a total dose of 100 Mrad for both radiations.
On the Search for Nuclear Resonance Fluorescence Signatures of 235U and 238U above 3 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Glen A.; Caggiano, Joseph A.; Bertozzi, William
Nuclear resonance fluorescence is a physical process that provides an isotope-specific signature that could be used for the identification and characterization of materials. The technique involves the detection of prompt discrete-energy photons emitted from a sample that is exposed to MeV-energy photons. Potential applications of the technique range from detection of high explosives to characterization of special nuclear materials such as 235U. Pacific Northwest National Laboratory and Passport Systems have collaborated to conduct a pair of measurements to search for a nuclear resonance fluorescence response of 235U above 3 MeV and of 238U above 5 MeV using an 8 gmore » sample of highly enriched uranium and a 90 g sample of depleted uranium. No new signatures were observed. The minimum detectable integrated cross section for 235U is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazavov, A.; Ding, H. -T.; Hegde, P.
In this paper, we investigate the phase structure of QCD with three degenerate quark flavors as a function of the degenerate quark masses at vanishing baryon number density. We use the highly improved staggered quarks on lattices with temporal extent N τ = 6 and perform calculations for six values of quark masses, which in the continuum limit correspond to pion masses in the range 80 MeV ≲ m π ≲ 230 MeV. By analyzing the volume and temperature dependence of the chiral condensate and chiral susceptibility, we find no direct evidence for a first-order phase transition in this rangemore » of pion mass values. Finally, relying on the universal scaling behaviors of the chiral observables near an anticipated chiral critical point, we estimate an upper bound for the critical pion mass m c π ≲ 50 MeV, below which a region of first-order chiral phase transition is favored.« less
First direct detection limits on sub-GeV dark matter from XENON10.
Essig, Rouven; Manalaysay, Aaron; Mardon, Jeremy; Sorensen, Peter; Volansky, Tomer
2012-07-13
The first direct detection limits on dark matter in the MeV to GeV mass range are presented, using XENON10 data. Such light dark matter can scatter with electrons, causing ionization of atoms in a detector target material and leading to single- or few-electron events. We use 15 kg day of data acquired in 2006 to set limits on the dark-matter-electron scattering cross section. The strongest bound is obtained at 100 MeV where σ(e)<3×10(-38) cm2 at 90% C.L., while dark-matter masses between 20 MeV and 1 GeV are bounded by σ(e)<10(-37) cm2 at 90% C.L. This analysis provides a first proof of principle that direct detection experiments can be sensitive to dark-matter candidates with masses well below the GeV scale.
Fast neutron detection with a segmented spectrometer
NASA Astrophysics Data System (ADS)
Langford, T. J.; Bass, C. D.; Beise, E. J.; Breuer, H.; Erwin, D. K.; Heimbach, C. R.; Nico, J. S.
2015-01-01
A fast neutron spectrometer consisting of segmented plastic scintillator and 3He proportional counters was constructed for the measurement of neutrons in the energy range 1-200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130°N, 77.218°W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.
NASA Astrophysics Data System (ADS)
Taddeucci, T. N.; Rapaport, J.; Bainum, D. E.; Goodman, C. D.; Foster, C. C.; Gaarde, C.; Larsen, J.; Goulding, C. A.; Horen, D. J.; Masterson, T.; Sugarbaker, E.
1982-02-01
Information concerning the ratio of the isovector effective interaction strengths |JστJτ| may be obtained from the ratio of (p,n) Gamow-Teller and isobaric analog state 0° differential cross sections. We have examined 0° (p,n) data for the energy range 5-200 MeV and find that for energies larger than 50 MeV and for targets with A=7-42 the product of the interaction-strength and distortion-factor ratios |JστJτ|(NστNτ)12 appears to be mass independent and linear as a function of bombarding energy. NUCLEAR REACTIONS 7Li, 13, 14C, 26Mg, 37Cl, 41Ca(p,n), measured σ(θ=0°), GT, IAS transitions, Ep=60-200 MeV. Deduced energy dependence, interaction strength ratio |JστJτ|.
The 10B(p,α)7Be S(E)-factor from 5 keV to 1.5 MeV using the Trojan Horse Method
NASA Astrophysics Data System (ADS)
Puglia, Sebastiana Maria Regina; Spitaleri, Claudio; La Cognata, Marco; Lamia, Livio; Broggini, Carlo; Caciolli, Antonio; Carlin, Nelson; Cherubini, Silvio; Cvetinovic, Alexandra; D'Agata, Giuseppe; Dell'aquila, Daniele; Depalo, Rosanna; Gulino, Marisa; Guardo, Giovanni Luca; Indelicato, Iolanda; Lombardo, Ivano; Menegazzo, Roberto; Munhoz, Marcelo Gimenez; Pizzone, Rosario Gianluca; Rapisarda, Giuseppe Gabriele; Rigato, Valentino; Romano, Stefano; Sergi, Maria Letizia; Souza, Francisco; Sparta, Roberta; Tudisco, Salvo; Tumino, Aurora
2018-01-01
The 10B(p,α)7Be reaction is the main responsible for the 10B destruction in stellar interior [1]. In such environments this p-capture process occurs at a Gamow energy of 10 keV and takes places mainly through a resonant state (Ex = 8.701 MeV) of the compound 11C nucleus. Thus a resonance right in the region of the Gamow peak is expected to significantly influence the behavior of the astrophysical S(E)-factor. The 10B(p,α)7Be reaction was studied via the Trojan Horse Method (THM) applied to the 2H(10B,α7Be)n in order to extract the astrophysical S(E)-factor in a wide energy range from 5 keV to 1.5 MeV.
Modeling the effects of low-LET cosmic rays on electronic components.
Keating, A; Goncalves, P; Pimenta, M; Brogueira, P; Zadeh, A; Daly, E
2012-08-01
The effects of cosmic radiation in single cells, organic tissues and electronics are a major concern for space exploration and manned missions. Standard heavy ions radiation tests employ ion cocktails with energy of the order of 10 MeV per nucleon and with a linear energy transfer ranging from a few MeV cm(2) mg(-1) to hundreds of MeV cm(2) mg(-1). In space, cosmic rays show significant fluxes at energies up to the order of GeV per nucleon. The present work aims at investigating single event damage due to low-, high- and very-high-energy ions. The European Space Agency reference single event upset monitor data are used to support the discussion. Finally, the effect of ionization induced directly by primary particles and ionization induced by recoils produced in an electronic device is investigated for different types of devices.
Experimental measurement of 12C+16O fusion at stellar energies
NASA Astrophysics Data System (ADS)
Fang, X.; Tan, W. P.; Beard, M.; deBoer, R. J.; Gilardy, G.; Jung, H.; Liu, Q.; Lyons, S.; Robertson, D.; Setoodehnia, K.; Seymour, C.; Stech, E.; Vande Kolk, B.; Wiescher, M.; deSouza, R. T.; Hudan, S.; Singh, V.; Tang, X. D.; Uberseder, E.
2017-10-01
The total cross section of the 12C+16O fusion reaction has been measured at low energies to investigate the role of this reaction during late stellar evolution burning phases. A high-intensity oxygen beam, produced by the 5 MV pelletron accelerator at the University of Notre Dame, impinged on a thick, ultrapure graphite target. Protons and γ rays were simultaneously measured in the center-of-mass energy range from 3.64 to 5.01 MeV for singles and from 3.73 to 4.84 MeV for coincidence events, using silicon and Ge detectors. Statistical model calculations were employed to interpret the experimental results. The emergence of a new resonance-like broad structure and a decreasing trend in the S -factor data towards lower energies (opposite to previous data) are found for the 12C+16O fusion reaction. Based on these results the uncertainty range of the reaction rate within the temperature range of late stellar burning environments is discussed.
Rosenberg, M J; Zylstra, A B; Frenje, J A; Rinderknecht, H G; Johnson, M Gatu; Waugh, C J; Séguin, F H; Sio, H; Sinenian, N; Li, C K; Petrasso, R D; Glebov, V Yu; Hohenberger, M; Stoeckl, C; Sangster, T C; Yeamans, C B; LePape, S; Mackinnon, A J; Bionta, R M; Talison, B; Casey, D T; Landen, O L; Moran, M J; Zacharias, R A; Kilkenny, J D; Nikroo, A
2014-10-01
A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ∼1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF.
Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; ...
2014-10-10
A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in themore » filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Frenje, J. A.
2014-10-01
A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in themore » filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF.« less
Design and construction of the Mini-Calorimeter of the AGILE satellite
NASA Astrophysics Data System (ADS)
Labanti, C.; Marisaldi, M.; Fuschino, F.; Galli, M.; Argan, A.; Bulgarelli, A.; Di Cocco, G.; Gianotti, F.; Tavani, M.; Trifoglio, M.
2009-01-01
AGILE is a small space mission of the Italian Space Agency (ASI) devoted to gamma-ray and hard-X astrophysics, successfully launched on April 23, 2007. The AGILE Payload is composed of three instruments: a gamma-ray imager based on a tungsten-silicon tracker (ST), for observations in the gamma ray energy range 30 MeV-50 GeV, a Silicon based X-ray detector, SuperAGILE (SA), for imaging in the range 18-60 keV and a CsI(Tl) Mini-Calorimeter (MCAL) that detects gamma rays or charged particles energy loss in the range 300 keV-100 MeV. MCAL is composed of 30 CsI(Tl) scintillator bars with photodiode readout at both ends, arranged in two orthogonal layers. MCAL can work both as a slave of the ST and as an independent gamma-ray detector for transients and gamma-ray bursts detection. In this paper a detailed description of MCAL is presented together with its performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharathi, M. N.; Vinayakprasanna, N. H.; Prakash, A. P. Gnana, E-mail: gnanaprakash@physics.uni-mysore.ac.in
The total dose effects of 80 MeV C{sup 6+} ions on the DC electrical characteristics of Silicon NPN rf power transistors have been studied in the dose range of 100 krad to 100 Mrad. The SRIM simulation was used to understand the energy loss and range of the ions in the transistor structure. The different electrical parameters such as Gummel characteristics, excess base current (ΔI{sub B} = I{sub Bpost} - I{sub Bpre}), dc forward current gain (h{sub FE}), transconductance (g{sub m}), displacement damage factor (K) and output characteristics (V{sub CE}-I{sub C}) were studied systematically before and after irradiation. The significantmore » degradation in base current (I{sub B}) and h{sub FE} was observed after irradiation. Isochronal annealing study was conducted on the irradiated transistors to analyze the recovery in different electrical parameters. These results were compared with {sup 60}C0 gamma irradiation results in the same dose range.« less
NASA Astrophysics Data System (ADS)
Tárkányi, F.; Hermanne, A.; Ditrói, F.; Takács, S.; Ignatyuk, A. V.
2018-07-01
In the frame of a systematical study of light ion induced nuclear reactions on hafnium, activation cross sections for proton induced reactions were investigated. Excitation functions were measured in the 38-65 MeV energy range for the natHf(p,xn)180g,177,176,175,173Ta, natHf(p,x)180m,179m,175,173,172,171Hf, 177g,173,172,171,170,169Lu and natHf(p,x)169Yb reactions by using the activation method, combining stacked foil irradiation and off line gamma ray spectroscopy. The experimental results are compared with earlier results in the overlapping energy range, and with the theoretical predictions of the ALICE IPPE and EMPIRE theoretical codes and of the TALYS code reported in the TENDL-2015 and TENDL-2017 libraries. The production routes of 172Lu (and its parent 172Hf) and of 169Yb are reviewed.
Study of imaging plate detector sensitivity to 5-18 MeV electrons
NASA Astrophysics Data System (ADS)
Boutoux, G.; Rabhi, N.; Batani, D.; Binet, A.; Ducret, J.-E.; Jakubowska, K.; Nègre, J.-P.; Reverdin, C.; Thfoin, I.
2015-11-01
Imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. We calibrated at the ELSA electron beam facility (CEA DIF) the five different available types of IPs (namely, MS-SR-TR-MP-ND) to electrons from 5 to 18 MeV. In the context of diagnostic development for the PETawatt Aquitaine Laser (PETAL), we investigated the use of stacks of IP in order to increase the detection efficiency and get detection response independent from the neighboring materials such as X-ray shielding and detector supports. We also measured fading functions in the time range from a few minutes up to a few days. Finally, our results are systematically compared to GEANT4 simulations in order to provide a complete study of the IP response to electrons over the energy range relevant for PETAL experiments.
Itoga, Toshiro; Asano, Yoshihiro; Tanimura, Yoshihiko
2011-07-01
Superheated drop detectors are currently used for personal and environmental dosimetry and their characteristics such as response to neutrons and temperature dependency are well known. A new bubble counter based on the superheated drop technology has been developed by Framework Scientific. However, the response of this detector with the lead shell is not clear especially above several tens of MeV. In this study, the response has been measured with quasi-monoenergetic and monoenergetic neutron sources with and without a lead shell. The experimental results were compared with the results of the Monte Carlo calculations using the 'Event Generator Mode' in the PHITS code with the JENDL-HE/2007 data library to clarify the response of this detector with a lead shell in the entire energy range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Shin-ichi; Ito, Takahiro; Nakamura, Eiken
A high-energy-resolution angle-resolved photoemission beamline in the vacuum-ultraviolet (VUV) region has been designed for a 750 MeV synchrotron light source UVSOR-II. The beamline equips an APPLE-II-type undulator with the horizontally/vertically linear and right/left circular polarizations, a modified Wadsworth-type monochromator and a high-resolution photoelectron analyzer. The monochromator covers the photon energy range of 6 - 40 eV. The energy resolution (hv/{delta}hv) and the photon flux on samples are expected to be 2 x 104 and 1012 photons/sec at 10 eV, 4 x 104 and 5 x 1011 photons/sec at 20 eV, and 6 x 104 and 1011 photons/sec at 40 eV,more » respectively. The beamline provides the high-resolution angle-resolved photoemission spectroscopy less than 1 meV in the whole VUV energy range.« less
The p+ 6He interaction from Ec.m.=0.5 to 25 MeV
NASA Astrophysics Data System (ADS)
Mackintosh, R. S.
2004-09-01
The p- 6He potential has been determined by inverting the S-matrix, calculated from single-channel RGM without absorption, over the energy range Ec.m.=0.5,1.0,…,25 MeV. Energy-dependent IP inversion was used, but with energy-independent spin-orbit terms. A potential with odd- and even-parity components reproduces Slj( E) from l=0 to l=4 over the whole energy range. The central components of the potential have a smooth, predominantly linear, energy dependence that is consistent with global phenomenology. We compare the similar neutron- 6Li (IAS) interaction. Various features in the potentials deserve explanation. The procedure employed here could extract dynamic polarization potentials for the p- 6He interaction from Slj( E) from multichannel RGM calculations, should these become available.
NASA Astrophysics Data System (ADS)
Kozyrev, E. A.; Solodov, E. P.; Akhmetshin, R. R.; Amirkhanov, A. N.; Anisenkov, A. V.; Aulchenko, V. M.; Banzarov, V. S.; Bashtovoy, N. S.; Berkaev, D. E.; Bondar, A. E.; Bragin, A. V.; Eidelman, S. I.; Epifanov, D. A.; Epshteyn, L. B.; Erofeev, A. L.; Fedotovich, G. V.; Gayazov, S. E.; Grebenuk, A. A.; Gribanov, S. S.; Grigoriev, D. N.; Ignatov, F. V.; Ivanov, V. L.; Karpov, S. V.; Kasaev, A. S.; Kazanin, V. F.; Korobov, A. A.; Koop, I. A.; Kozyrev, A. N.; Krokovny, P. P.; Kuzmenko, A. E.; Kuzmin, A. S.; Logashenko, I. B.; Lukin, P. A.; Lysenko, A. P.; Mikhailov, K. Yu.; Okhapkin, V. S.; Perevedentsev, E. A.; Pestov, Yu. N.; Popov, A. S.; Razuvaev, G. P.; Rogovsky, Yu. A.; Ruban, A. A.; Ryskulov, N. M.; Ryzhenenkov, A. E.; Shebalin, V. E.; Shemyakin, D. N.; Shwartz, B. A.; Shwartz, D. B.; Sibidanov, A. L.; Shatunov, Yu. M.; Talyshev, A. A.; Vorobiov, A. I.; Yudin, Yu. V.
2018-04-01
The process e+e- →K+K- has been studied using 1.7 ×106 events from a data sample corresponding to an integrated luminosity of 5.7 pb-1 collected with the CMD-3 detector in the center-of-mass energy range 1010-1060 MeV. The cross section is measured with about 2% systematic uncertainty and is used to calculate the contribution to the anomalous magnetic moment of the muon aμK+K- = (19.33 ± 0.40) ×10-10, and to obtain the ϕ (1020) meson parameters. We consider the relationship between the e+e- →K+K- and e+e- → KS0 KL0 cross sections and compare it to the theoretical prediction.
PAMELA observational capabilities of Jovian electrons
NASA Astrophysics Data System (ADS)
di Felice, V.; Casolino, M.; de Simone, N.; Picozza, P.
PAMELA is a satellite-borne experiment that has been launched on June 15th, 2006. It is designed to make long duration measurements of cosmic radiation over an extended energy range. Specifically, PAMELA is able to measure the cosmic ray antiproton and positron spectra over the largest energy range ever achieved and will search for antinuclei with unprecedented sensitivity. Furthermore, it will measure the light nuclear component of cosmic rays and investigate phenomena connected with solar and earth physics. The apparatus consists of: a time of flight system, a magnetic spectrometer, an electromagnetic imaging calorimeter, a shower tail catcher scintillator, a neutron detector and an anticoincidence system. In this work a study of the PAMELA capabilities to detect electrons is presented. The Jovian magnetosphere is a powerful accelerator of electrons up to several tens of MeV as observed at first by Pioneer 10 spacecraft (1973). The propagation of Jovian electrons to Earth is affected by modulation due to Corotating Interaction Regions (CIR). Their flux at Earth is, moreover, modulated because every ˜13 months Earth and Jupiter are aligned along the average direction of the Parker spiral of the Interplanetary Magnetic Field. PAMELA will be able to measure the high energy tail of the Jovian electrons in the energy range from 50 up to 130 MeV. Moreover, it will be possible to extract the Jovian component reaccelerated at the solar wind termination shock (above 130 MeV up to 2 GeV) from the galactic flux.
The e-ASTROGAM mission. Exploring the extreme Universe with gamma rays in the MeV - GeV range
NASA Astrophysics Data System (ADS)
De Angelis, A.; Tatischeff, V.; Tavani, M.; Oberlack, U.; Grenier, I.; Hanlon, L.; Walter, R.; Argan, A.; von Ballmoos, P.; Bulgarelli, A.; Donnarumma, I.; Hernanz, M.; Kuvvetli, I.; Pearce, M.; Zdziarski, A.; Aboudan, A.; Ajello, M.; Ambrosi, G.; Bernard, D.; Bernardini, E.; Bonvicini, V.; Brogna, A.; Branchesi, M.; Budtz-Jorgensen, C.; Bykov, A.; Campana, R.; Cardillo, M.; Coppi, P.; De Martino, D.; Diehl, R.; Doro, M.; Fioretti, V.; Funk, S.; Ghisellini, G.; Grove, E.; Hamadache, C.; Hartmann, D. H.; Hayashida, M.; Isern, J.; Kanbach, G.; Kiener, J.; Knödlseder, J.; Labanti, C.; Laurent, P.; Limousin, O.; Longo, F.; Mannheim, K.; Marisaldi, M.; Martinez, M.; Mazziotta, M. N.; McEnery, J.; Mereghetti, S.; Minervini, G.; Moiseev, A.; Morselli, A.; Nakazawa, K.; Orleanski, P.; Paredes, J. M.; Patricelli, B.; Peyré, J.; Piano, G.; Pohl, M.; Ramarijaona, H.; Rando, R.; Reichardt, I.; Roncadelli, M.; Silva, R.; Tavecchio, F.; Thompson, D. J.; Turolla, R.; Ulyanov, A.; Vacchi, A.; Wu, X.; Zoglauer, A.
2017-10-01
e-ASTROGAM (`enhanced ASTROGAM') is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV - the lower energy limit can be pushed to energies as low as 150 keV, albeit with rapidly degrading angular resolution, for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and the promise of eLISA.
Genetic effects on heavy ions in drosophila
NASA Technical Reports Server (NTRS)
Kale, P. G.
1986-01-01
Drosophila sex-linked recessive lethal mutation test was used to study the dose response relation and relative biological effectiveness of heavy ions. The experiments were performed using the heavy ion beams at BEVALAC of Lawrence Berkeley Laboratory. These experiments were undertaken according to the proposed milestones and included Ne-20, A-40 and Fe-65 ions with respective energies of 600 MeV, 840 MeV and 850 MeV. At these energies several doses of these radiations ranging from 20 to 1280 R were used. Space radiation exposure to astronauts is supposed to be quite low and therefore very low dose experiments i.e., 20 R, were also performed for the three ions. The mutation response was measured in all germ cell types i.e., spermatozoa, spermatids, spermatocytes and spermatogonia of treated Drosophila males. A linear dose frequency relation was observed for most of the range except at high doses where the saturation effect was observed. Also, a very significant difference was observed among the sensitivity of the four germ cell stages where spermatozoa and spermatids were more sensitive. At the higher doses of this range, most of the spermatogonia and spermatocytes were killed. Although comparative and identical experiments with X-rays or neutrons have not been performed, the compassion of our data with the ones available in literature suggest that the heavy ions have a high rbe and that they are several times more effective than low LET X-rays. The rbe compared to neutrons however appears to be only slightly higher.
16O resonances near 4α threshold through 12C (6Li,d ) reaction
NASA Astrophysics Data System (ADS)
Rodrigues, M. R. D.; Borello-Lewin, T.; Miyake, H.; Horodynski-Matsushigue, L. B.; Duarte, J. L. M.; Rodrigues, C. L.; de Faria, P. Neto; Cunsolo, A.; Cappuzzello, F.; Foti, A.; Agodi, C.; Cavallaro, M.; di Napoli, M.; Ukita, G. M.
2014-11-01
Several narrow alpha resonant 16O states were detected through the 12C (6Li,d ) reaction, in the range of 13.5 to 17.5 MeV of excitation energy. The reaction was measured at a bombarding energy of 25.5 MeV employing the São Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion technique. Experimental angular distributions associated with natural parity quasi-bound states around the 4α threshold are presented and compared to DWBA predictions. The upper limit for the resonance widths obtained is near the energy resolution (15 keV).
Mapping the demise of collective motion in nuclei at high excitation energy
NASA Astrophysics Data System (ADS)
Santonocito, D.; Blumenfeld, Y.; Maiolino, C.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Del Zoppo, A.; Hongmei, F.; Migneco, E.; Piattelli, P.; Sapienza, P.; Auditore, L.; Cardella, G.; De Filippo, E.; La Guidara, E.; Monrozeau, C.; Papa, M.; Pirrone, S.; Rizzo, F.; Trifiró, A.; Trimarchi, M.; Huang, H. X.; Wieland, O.
2018-07-01
High energy gamma-rays from the 116Sn + 24Mg reaction at 23A MeV were measured using the MEDEA detector at LNS - INFN Catania. Combining this new data with previous measurements yields a detailed view of the quenching of the Giant Dipole Resonance as a function of excitation energy in nuclei of mass A in the range 120 ÷ 132. The transition towards the disappearance of the dipole strength, which occurs around 230 MeV excitation energy, appears to be remarkably sharp. Current phenomenological models give qualitative explanations for the quenching but cannot reproduce its detailed features.
The 235U prompt fission neutron spectrum measured by the Chi-Nu project at LANSCE
Gomez, J. A.; Devlin, M.; Haight, R. C.; ...
2017-09-13
The Chi-Nu experiment aims to accurately measure the prompt fission neutron spectrum for the major actinides. At the Los Alamos Neutron Science Center (LANSCE), fission can be induced with neutrons ranging from 0.7 MeV and above. Using a two arm time-of-flight (TOF) technique, the fission neutrons are measured in one of two arrays: a 22- 6Li glass array for lower energies, or a 54-liquid scintillator array for outgoing energies of 0.5 MeV and greater. Presented here are the collaboration's preliminary efforts at measuring the 235U PFNS.
Observations of solar flare photon energy spectra from 20 keV to 7 MeV
NASA Technical Reports Server (NTRS)
Yoshimori, M.; Watanabe, H.; Nitta, N.
1985-01-01
Solar flare photon energy spectra in the 20 keV to 7 MeV range are derived from the Apr. 1, Apr. 4, apr. 27 and May 13, 1981 flares. The flares were observed with a hard X-ray and a gamma-ray spectrometers on board the Hinotori satellite. The results show that the spectral shape varies from flare to flare and the spectra harden in energies above about 400 keV. Effects of nuclear line emission on the continuum and of higher energy electron bremsstrahlung are considered to explain the spectral hardening.
First results on the 32S+40, 48Ca reactions at 17.7A MeV studied with GARFIELD setup at LNL
NASA Astrophysics Data System (ADS)
Piantelli, S.; Valdré, S.; Barlini, S.; Casini, G.; Colonna, M.; Baiocco, G.; Bini, M.; Bruno, M.; Camaiani, A.; Cicerchia, M.; Cinausero, M.; D'Agostino, M.; Degerlier, M.; Fabris, D.; Gramegna, F.; Kravchuck, V. L.; Mabiala, J.; Marchi, T.; Morelli, L.; Olmi, A.; Ottanelli, P.; Pasquali, G.; Pastore, G.
2017-11-01
The ^{32} S+ ^{40,48} Ca systems at 17A MeV have been characterized both for fusion and for peripheral events thanks to the GARFIELD setup, which covers a wide angular range and has high granularity; moreover, isotopic identification for forward emitted ions up to Z around 15 is obtained. The main evidences reported here concern pre-equilibrium emission, which was put into evidence in fusion-evaporation events, and isospin diffusion observed studying the average N/ Z of the Quasi-Projectile as a function of the target isospin.
Analyzing power Ay(θ) of n-3He elastic scattering between 1.60 and 5.54 MeV.
Esterline, J; Tornow, W; Deltuva, A; Fonseca, A C
2013-04-12
Comprehensive and high-accuracy n-3He elastic scattering analyzing power Ay(θ) angular distributions were obtained at five incident neutron energies between 1.60 and 5.54 MeV. The data are compared to rigorous four-nucleon calculations using high-precision nucleon-nucleon potential models; three-nucleon force effects are found to be very small. The agreement between data and calculations is fair at the lower energies and becomes less satisfactory with increasing neutron energy. Comparison to p-3He scattering over the same energy range exhibits unexpectedly large isospin effects.
Neutron production at 0° from the 40Ca+H reaction at Elab=357A and 565A MeV
NASA Astrophysics Data System (ADS)
Tuvè, C.; Albergo, S.; Boemi, D.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Greiner, L.; Guzik, T. G.; Insolia, A.; Knott, C. N.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Reito, S.; Romanski, J.; Russo, G. V.; Soutoul, A.; Testard, O.; Tull, C. E.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.
1997-08-01
Neutrons produced in the 40Ca+H reaction at Elab=357A and 565A MeV have been detected using a three-module version of the multifunctional neutron spectrometer MUFFINS. The detector covered a narrow angular range around the beam in the forward direction (0°-3.2°). Semi-inclusive neutron production cross sections, at the two energies, are reported together with neutron energy spectra, angular, rapidity, and transverse momentum distributions. Comparison with a Boltzmann-Nordheim-Vlasov approach + phase space coalescence model is discussed.
Level structure of sup 52 Cr from the sup 51 V( sup 3 He, d ) reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basher, M.A.; Siddique, H.R.; Husain, A.
1992-04-01
The {sup 51}V({sup 3}He,{ital d}){sup 52}Cr reaction has been studied at 15 MeV using the tandem Van de Graaff accelerator and the multichannel magnetic spectrograph of the Nuclear Physics Laboratory, Oxford. Angular distributions have been measured for levels up to {ital E}{sub {ital x}}=8.6 MeV over the laboratory angular range {theta}=3.75{degree}--71.25{degree}. Data are analyzed in terms of the distorted wave Born approximation theory of the direct reaction. The {ital l} transfers and the spectroscopic factors are obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baroni, A.; Schiavilla, R.
Cross sections for inclusive neutrino scattering off deuteron induced by neutral and charge-changing weak currents are calculated from threshold up to 150 MeV energies in a chiral effective field theory including high orders in the power counting. The contributions beyond leading order (LO) in the weak current are found to be small, and increase the cross sections obtained with the LO transition operators by a couple of percent over the whole energy range (0--150) MeV. Furthermore, the cutoff dependence is negligible, and the predicted cross sections are within ~2% of, albeit consistently larger than, corresponding predictions obtained in conventional meson-exchangemore » frameworks.« less
The 235U prompt fission neutron spectrum measured by the Chi-Nu project at LANSCE
NASA Astrophysics Data System (ADS)
Gomez, J. A.; Devlin, M.; Haight, R. C.; O'Donnell, J. M.; Lee, H. Y.; Mosby, S. M.; Taddeucci, T. N.; Kelly, K. J.; Fotiades, N.; Neudecker, D.; White, M. C.; Talou, P.; Rising, M. E.; Solomon, C. J.; Wu, C. Y.; Bucher, B.; Buckner, M. Q.; Henderson, R. A.
2017-09-01
The Chi-Nu experiment aims to accurately measure the prompt fission neutron spectrum for the major actinides. At the Los Alamos Neutron Science Center (LANSCE), fission can be induced with neutrons ranging from 0.7 MeV and above. Using a two arm time-of-flight (TOF) technique, the fission neutrons are measured in one of two arrays: a 22-6Li glass array for lower energies, or a 54-liquid scintillator array for outgoing energies of 0.5 MeV and greater. Presented here are the collaboration's preliminary efforts at measuring the 235U PFNS.
Laser-Compton photon radiography for nondestructive test of bulk materials
NASA Astrophysics Data System (ADS)
Toyokawa, Hiroyuki; Ohgaki, Hideaki; Kudo, Katshuhisa; Takeda, Naoto; Mikado, Tomohisa; Yamada, Kawakatsu
2001-12-01
Experimental results of transmission photon radiography of bulk materials using the laser-Compton photon beam in the energy range of 2-20 MeV are given. The purpose of this work is to demonstrate the effectiveness and to survey a potential need and a technical limit of the present method for industrial application, such as nondestructive test of bulk materials. Several radiographs of metals, ceramics, and concrete were measured with the present method. Position resolution of the system was measured with using 10 MeV photon beam and slit. It was less than 1 mm.
Neutron radiative capture cross section of Cu,6563 between 0.4 and 7.5 MeV
NASA Astrophysics Data System (ADS)
Newsome, I.; Bhike, M.; Krishichayan, Tornow, W.
2018-04-01
Natural copper is commonly used as cooling and shielding medium in detector arrangements designed to search for neutrinoless double-β decay. Neutron-induced background reactions on copper could potentially produce signals that are indistinguishable from the signals of interest. The present work focuses on radiative neutron capture experiments on Cu,6563 in the 0.4 to 7.5 MeV neutron energy range. The new data provide evaluations and model calculations with benchmark data needed to extend their applicability in predicting background rates in neutrinoless double-β decay experiments.
Distance and spectrum of the Apollo gamma-ray burst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilman, D.; Metzger, A.E.; Parker, R.H.
1980-03-15
The ..gamma..-ray spectrometer on Apollo 16 obtained spectral information with good energy resolution from more than 2500 burst photons in the energy range 0.06--5.16 MeV. The spectrum from 2 keV to 2 MeV, observed at X-ray energies by the Apollo X-ray spectrometer, is fitted by a thermal bremsstrahlung spectrum with kT=500 keV. The success of the fit implies that the source is optically thin, and it follows that it must be closer than 50 pc. Absence of spectral variability suggests that the burst results from isothermal changes in emission measure.
Minding the MeV gap: The indirect detection of low mass dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boddy, Kimberly K.; Kumar, Jason, E-mail: jkumar@hawaii.edu
2016-06-21
We consider the prospects for the indirect detection of low mass dark matter which couples dominantly to quarks. If the center of mass energy is below about 280 MeV, the kinematically allowed final states will be dominated by photons and neutral pions, producing striking signatures at gamma ray telescopes. In fact, an array of new instruments have been proposed, which would greatly improve sensitivity to photons in this energy range. We find that planned instruments can improve on current sensitivity to dark matter models of this type by up to a few orders of magnitude.
NASA Astrophysics Data System (ADS)
Xue, Yuanyuan; Wang, Zujun; Zhang, Fengqi; Bian, Jingying; Yao, Zhibin; He, Baoping; Liu, Minbo; Sheng, Jiangkun; Ma, Wuying; Dong, Guantao; Jin, Junshan
2018-04-01
Charge transfer inefficiency (CTI) is an important parameter for photodiode (PPD) CMOS image sensors (CISs). A test system was built and used to measure the CTI of PPD CIS devices at different integration times. The radiation effects of 3 MeV and 10 MeV protons on the CTI were investigated. The experiments were carried out at the EN Tandem Van de Graaff accelerator at proton fluences in the range 1010 to 1011 p/cm2. The CTI was measured within the 2 h following proton radiations. The dependence of CTI on integration time, proton energy and fluence were investigated. The CTI was observed to increase after proton irradiation: with the effect of irradiation with 3 MeV proton being more severe than that with 10 MeV protons. The CTI was also observed to decrease with increasing integration time, which is thought to be related to the charge density in the space charge region (SCR) of the CIS devices. This work has provided a simple method to measure the CTI and helped us to understand proton radiation effects on the CTI of PPD CISs.
M-shell electron capture and direct ionization of gold by 25-MeV carbon and 32-MeV oxygen ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, M.C.; McDaniel, F.D.; Duggan, J.L.
1984-01-01
M-shell x-ray production cross sections have been measured for thin solid targets of Au for 25 MeV /sup 12/C/sup q+/ (q = 4, 5, 6) and for 32 MeV /sup 16/O/sup q+/ (q = 5, 7, 8). The microscopic cross sections were determined from measurements made with targets ranging in thickness from 0.5 to 100 ..mu..g/cm/sup 2/. For projectiles with one or two K-shell vacancies, the M-shell x-ray production cross sections are found to be enhanced over those by projectiles without a K-shell vacancy. The sum of direct ionization to the continuum (DI) and electron capture (EC) to the L,more » M, N ... shells and EC to the K-shell of the projectile have been extracted from the data. The results are compared to the predictions of first Born theories i.e. PWBA for DI and OBK of Nikolaev for EC and the ECPSSR approach that accounts for energy loss, Coulomb deflection and relativistic effects in the perturbed stationary state theory. 25 references, 3 figures, 1 table.« less
EGRET High Energy Capability and Multiwavelength Flare Studies and Solar Flare Proton Spectra
NASA Technical Reports Server (NTRS)
Chupp, Edward L.
1997-01-01
UNH was assigned the responsibility to use their accelerator neutron measurements to verify the TASC response function and to modify the TASC fitting program to include a high energy neutron contribution. Direct accelerator-based measurements by UNH of the energy-dependent efficiencies for detecting neutrons with energies from 36 to 720 MeV in NaI were compared with Monte Carlo TASC calculations. The calculated TASC efficiencies are somewhat lower (by about 20%) than the accelerator results in the energy range 70-300 MeV. The measured energy-loss spectrum for 207 MeV neutron interactions in NaI were compared with the Monte Carlo response for 200 MeV neutrons in the TASC indicating good agreement. Based on this agreement, the simulation was considered to be sufficiently accurate to generate a neutron response library to be used by UNH in modifying the TASC fitting program to include a neutron component in the flare spectrum modeling. TASC energy-loss data on the 1991 June 11 flare was transferred to UNH. Also included appendix: Gamma-rays and neutrons as a probe of flare proton spectra: the solar flare of 11 June 1991.
Forecasting E > 50-MeV Proton Events with the Proton Prediction System (PPS)
NASA Astrophysics Data System (ADS)
Kahler, S. W.; White, S. M.; Ling, A. G.
2017-12-01
Forecasting solar energetic (E > 10 MeV) particle (SEP) events is an important element of space weather. While several models have been developed for use in forecasting such events, satellite operations are particularly vulnerable to higher-energy (> 50 MeV) SEP events. Here we validate one model, the proton prediction system (PPS), which extends to that energy range. We first develop a data base of E > 50-MeV proton events > 1.0 proton flux units (pfu) events observed on the GOES satellite over the period 1986 to 2016. We modify the PPS to forecast proton events at the reduced level of 1 pfu and run PPS for four different solar input parameters: (1) all > M5 solar X-ray flares; (2) all > 200 sfu 8800-MHz bursts with associated > M5 flares; (3) all > 500 sfu 8800-MHz bursts; and (4) all > 5000 sfu 8800-MHz bursts. For X-ray flare inputs the forecasted event peak intensities and fluences are compared with observed values. The validation contingency tables and skill scores are calculated for all groups and used as a guide to use of the PPS. We plot the false alarms and missed events as functions of solar source longitude.
Absolute prompt-gamma yield measurements for ion beam therapy monitoring
NASA Astrophysics Data System (ADS)
Pinto, M.; Bajard, M.; Brons, S.; Chevallier, M.; Dauvergne, D.; Dedes, G.; De Rydt, M.; Freud, N.; Krimmer, J.; La Tessa, C.; Létang, J. M.; Parodi, K.; Pleskač, R.; Prieels, D.; Ray, C.; Rinaldi, I.; Roellinghoff, F.; Schardt, D.; Testa, E.; Testa, M.
2015-01-01
Prompt-gamma emission detection is a promising technique for hadrontherapy monitoring purposes. In this regard, obtaining prompt-gamma yields that can be used to develop monitoring systems based on this principle is of utmost importance since any camera design must cope with the available signal. Herein, a comprehensive study of the data from ten single-slit experiments is presented, five consisting in the irradiation of either PMMA or water targets with lower and higher energy carbon ions, and another five experiments using PMMA targets and proton beams. Analysis techniques such as background subtraction methods, geometrical normalization, and systematic uncertainty estimation were applied to the data in order to obtain absolute prompt-gamma yields in units of prompt-gamma counts per incident ion, unit of field of view, and unit of solid angle. At the entrance of a PMMA target, where the contribution of secondary nuclear reactions is negligible, prompt-gamma counts per incident ion, per millimetre and per steradian equal to (124 ± 0.7stat ± 30sys) × 10-6 for 95 MeV u-1 carbon ions, (79 ± 2stat ± 23sys) × 10-6 for 310 MeV u-1 carbon ions, and (16 ± 0.07stat ± 1sys) × 10-6 for 160 MeV protons were found for prompt gammas with energies higher than 1 MeV. This shows a factor 5 between the yields of two different ions species with the same range in water (160 MeV protons and 310 MeV u-1 carbon ions). The target composition was also found to influence the prompt-gamma yield since, for 300/310 MeV u-1 carbon ions, a 42% greater yield ((112 ± 1stat ± 22sys) × 10-6 counts ion-1 mm-1 sr-1) was obtained with a water target compared to a PMMA one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisschoff, D.; Potgieter, M. S., E-mail: 20056950@nwu.ac.za
Cosmic-ray observations made by the Voyager 1 spacecraft outside the dominant modulating influence of the heliosphere finally allow the comparison of computed galactic spectra with experimental data at lower energies. These computed spectra, based on galactic propagation models, can now be compared with observations at low energies by Voyager 1 and at high energies by the PAMELA space detector at Earth. This improves understanding of basic propagation effects and also provides solar modulation studies with reliable input spectra from 1 MeV to 100 GeV. We set out to reproduce the Voyager 1 electron observations in the energy range of 6-60more » MeV, as well as the PAMELA electron spectrum above 10 GeV, using the GALPROP code. By varying the source spectrum and galactic diffusion parameters, specifically the rigidity dependence of spatial diffusion, we find local interstellar spectra that agree with both power-law spectra observed by Voyager 1 beyond the heliopause. The local interstellar spectrum between ∼1 MeV and 100 GeV indicates that it is the combination of two power laws, with E {sup –(1.45} {sup ±} {sup 0.15)} below ∼100 MeV and E {sup –(3.15} {sup ±} {sup 0.05)} above ∼100 MeV. A gradual turn in the spectral shape matching the power laws is found, between 2.0 ± 0.5) GeV and (100 ± 10) MeV. According to our simplified modeling, this transition is caused primarily by galactic propagation effects. We find that the intensity beyond the heliopause at 10 MeV is (350 ± 50) electrons m{sup –2} s{sup –1} sr{sup –1} MeV{sup –1}, decreasing to (50 ± 5) electrons m{sup –2} s{sup –1} sr{sup –1} MeV{sup –1} at 100 MeV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toltz, Allison; Hoesl, Michaela; Schuemann, Jan
Purpose: A method to refine the implementation of an in vivo, adaptive proton therapy range verification methodology was investigated. Simulation experiments and in-phantom measurements were compared to validate the calibration procedure of a time-resolved diode dosimetry technique. Methods: A silicon diode array system has been developed and experimentally tested in phantom for passively scattered proton beam range verification by correlating properties of the detector signal to the water equivalent path length (WEPL). The implementation of this system requires a set of calibration measurements to establish a beam-specific diode response to WEPL fit for the selected ‘scout’ beam in a solidmore » water phantom. This process is both tedious, as it necessitates a separate set of measurements for every ‘scout’ beam that may be appropriate to the clinical case, as well as inconvenient due to limited access to the clinical beamline. The diode response to WEPL relationship for a given ‘scout’ beam may be determined within a simulation environment, facilitating the applicability of this dosimetry technique. Measurements for three ‘scout’ beams were compared against simulated detector response with Monte Carlo methods using the Tool for Particle Simulation (TOPAS). Results: Detector response in water equivalent plastic was successfully validated against simulation for spread out Bragg peaks of range 10 cm, 15 cm, and 21 cm (168 MeV, 177 MeV, and 210 MeV) with adjusted R{sup 2} of 0.998. Conclusion: Feasibility has been shown for performing calibration of detector response for a given ‘scout’ beam through simulation for the time resolved diode dosimetry technique.« less
NASA Technical Reports Server (NTRS)
Kundu, M. R.; White, S. M.; Gopalswamy, N.; Lim, J.
1994-01-01
We present comparisons of multiwavelength data for a number of solar flares observed during the major campaign of 1991 June. The different wavelengths are diagnostics of energetic electrons in different energy ranges: soft X-rays are produced by electrons with energies typically below 10 keV, hard X-rays by electrons with energies in the range 10-200 keV, microwaves by electrons in the range 100 keV-1 MeV, and millimeter-wavelength emission by electrons with energies of 0.5 MeV and above. The flares in the 1991 June active period were remarkable in two ways: all have very high turnover frequencies in their microwave spectra, and very soft hard X-ray spectra. The sensitivity of the microwave and millimeter data permit us to study the more energetic (greater than 0.3 MeV) electrons even in small flares, where their high-energy bremsstrahlung is too weak for present detectors. The millimeter data show delays in the onset of emission with respect to the emissions associated with lower energy electrons and differences in time profiles, energy spectral indices incompatible with those implied by the hard X-ray data, and a range of variability of the peak flux in the impulsive phase when compared with the peak hard X-ray flux which is two orders of magnitude larger than the corresponding variability in the peak microwave flux. All these results suggest that the hard X-ray-emitting electrons and those at higher energies which produce millimeter emission must be regarded as separate populations. This has implications for the well-known 'number problem' found previously when comparing the numbers of non thermal electrons required to produce the hard X-ray and radio emissions.
Design of a transportable high efficiency fast neutron spectrometer
Roecker, C.; Bernstein, A.; Bowden, N. S.; ...
2016-04-12
A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV andmore » a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm 2 rising to 5000 cm 2. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm 2 and 2500 cm 2. As a result, the multiplicity mode was found to be sensitive to the incident neutron angular distribution.« less
A neutron beam facility for radioactive ion beams and other applications
NASA Astrophysics Data System (ADS)
Tecchio, L. B.
1999-06-01
In the framework of the Italian participation in the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involved in the design and construction of same prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has already been supported financially and the work is in progress. In this context LNL has proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by means of the ISOL method. The final goal is the production of neutron rich RIBs with masses ranging from 30 to 150 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is expected to be developed in about 10 years from new and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). During that period the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production and to the neutron physics, is proposed. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed. Besides the RIBs production, neutron beams for the BNCT applications and neutron physics are also planned.
The radioactive ion beams facility project for the legnaro laboratories
NASA Astrophysics Data System (ADS)
Tecchio, Luigi B.
1999-04-01
In the frame work of the Italian participation to the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involving in the design and construction of prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has been already financially supported and the work is actually in progress. In this context, the LNL has been proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by using the ISOL method. The final goal consists in the production of neutron rich RIBs with masses ranging from 80 to 160 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is proposed to be developed in about 10 years from now and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). In such period of time is proposed the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production, to the BNCT applications and to the neutron physics. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dollar, Franklin; Matsuoka, Takeshi; McGuffey, Christopher
2010-11-04
Recent simulations show that an idealized, high intensity, short pulse laser can generate quasi-monoenergetic proton beams with energies over 100 MeV in an interaction with a thin film. However, most short pulse laser facilities with sufficient intensity have difficulty controlling the nanosecond and picosecond contrast necessary to realize such a regime. Experiments were performed to investigate proton and ion acceleration from a high contrast, short pulse laser by employing dual plasma mirrors along with a deformable mirror at the HERCULES laser facility at the Center for Ultrafast Optical Sciences, University of Michigan. Plasma mirrors were characterized, allowing a 50% throughputmore » with an intensity contrast increase of 105. The focal spot quality was also exceptional, showing a 1.1 micron full width at half maximum (FWHM) focal diameter. Experiments were done using temporally cleaned 30 TW, 32 fs pulses to achieve an intensity of up to 10{sup 21} Wcm{sup -2} on Si{sub 3}N{sub 4} and Mylar targets with thicknesses ranging 50 nm to 13 microns. Proton beams with energy spreads below 2 MeV were observed from all thicknesses, peaking with energies up to 10.3 MeV and an energy spread of 0.8 MeV. Similar narrow energy spreads were observed for oxygen, nitrogen, and carbon at the silicon nitride thickness of 50 nm with energies up to 24 MeV with an energy spread of 3 MeV, whereas the energy spread is greatly increased at a larger thickness. Maximum energies were confirmed with CR39 track detectors, while a Thomson ion spectrometer was used to gauge the monoenergetic nature of the beam.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roecker, C.; Bernstein, A.; Bowden, N. S.
A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV andmore » a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm 2 rising to 5000 cm 2. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm 2 and 2500 cm 2. As a result, the multiplicity mode was found to be sensitive to the incident neutron angular distribution.« less
NASA Technical Reports Server (NTRS)
Atwell, William; Tylka, Allan J.; Dietrich, William; Rojdev, Kristina; Matzkind, Courtney
2016-01-01
In an earlier paper (Atwell, et al., 2015), we investigated solar particle event (SPE) radiation exposures (absorbed dose) to small, thinly-shielded spacecraft during a period when the sunspot number (SSN) was less than 30. These SPEs contain Ground Level Events (GLE), sub-GLEs, and sub-sub-GLEs (Tylka and Dietrich, 2009, Tylka and Dietrich, 2008, and Atwell, et al., 2008). GLEs are extremely energetic solar particle events having proton energies extending into the several GeV range and producing secondary particles in the atmosphere, mostly neutrons, observed with ground station neutron monitors. Sub-GLE events are less energetic, extending into the several hundred MeV range, but do not produce secondary atmospheric particles. Sub-sub GLEs are even less energetic with an observable increase in protons at energies greater than 30 MeV, but no observable proton flux above 300 MeV. In this paper, we consider those SPEs that occurred during 1973-2010 when the SSN was greater than 30 but less than 50. In addition, we provide probability estimates of absorbed dose based on mission duration with a 95% confidence level (CL). We also discuss the implications of these data and provide some recommendations that may be useful to spacecraft designers of these smaller spacecraft.
Displacement damage calculations in PHITS for copper irradiated with charged particles and neutrons
NASA Astrophysics Data System (ADS)
Iwamoto, Yosuke; Niita, Koji; Sawai, Tomotsugu; Ronningen, R. M.; Baumann, Thomas
2013-05-01
The radiation damage model in the Particle and Heavy Ion Transport code System (PHITS) uses screened Coulomb scattering to evaluate the energy of the target primary knock-on atom (PKA) created by the projectile and the “secondary particles,” which include all particles created from the sequential nuclear reactions. We investigated the effect of nuclear reactions on displacement per atom (DPA) values for the following cases using a copper target: (1) 14 and 200 MeV proton incidences, (2) 14 and 200 MeV/nucleon 48Ca incidences, and (3) 14 and 200 MeV and reactor neutrons incidences. For the proton incidences, the ratio of partial DPA created by protons to total decreased with incident proton energy and that by the secondary particles increased with proton energy. For 48Ca beams, DPA created by 48Ca is dominant over the 48Ca range. For the 14 and 200 MeV neutron incidences, the ratio of partial DPA created by the secondary particles increases with incident neutron energy. For the reactor neutrons, copper created by neutron-copper nuclear elastic scattering contributes to the total DPA. These results indicate that inclusion of nuclear reactions and Coulomb scattering are necessary for DPA estimation over a wide energy range from eV to GeV.
Effect of pH on H2O2 production in the radiolysis of water.
Roth, Olivia; LaVerne, Jay A
2011-02-10
The yields of hydrogen peroxide have been measured in the radiolysis of aqueous solutions of acrylamide, bromide, nitrate, and air in the pH range of 1-13. Hydrogen peroxide is the main stable oxidizing species formed in the radiolysis of water, and its long-term yield is found to be very sensitive to the system used in the measurements. Experiments with γ-irradiation combined with model calculations show that the primary yields of hydrogen peroxide are nearly independent of pH in the range of 2-12. Slightly higher primary yields are suggested at very low pH in particular when O(2) is present, while the yields seem to decrease at very high pH. Irradiations were performed with 5 MeV H ions, 5 MeV He ions, and 10 MeV C ions to evaluate the intratrack and homogeneous kinetic contributions to H(2)O(2) formation with different ions. Many of the trends in hydrogen peroxide yields with pH observed with γ-irradiations are observed with irradiation by the heavy ions. The lower yields of radicals in the homogeneous phase with the heavier ions tend to minimize the effects of radicals on the hydrogen peroxide yields at long times.
NASA Astrophysics Data System (ADS)
Alawiah, A.; Intan, A. M.; Bauk, S.; Abdul-Rashid, H. A.; Yusoff, Z.; Mokhtar, M. R.; Wan Abdullah, W. S.; Mat Sharif, K. A.; Mahdiraji, G. A.; Mahamd Adikan, F. R.; Tamchek, N.; Noor, N. M.; Bradley, D. A.
2013-05-01
Thermoluminescence (TL) flat optical fibers (FF) have been proposed as radiation sensor in medical dosimetry for both diagnostic and radiotherapy applications. A flat optical fiber with nominal dimensions of (3.226 × 3.417 × 0.980) mm3 contains pure silica SiO2 was selected for this research. The FF was annealed at 400°C for 1 h before irradiated. Kinetic parameters and dosimetric glow curve of TL response were studied in FF with respect to electron irradiation of 6 MeV, 15 MeV and 21 MeV using linear accelerator (LINAC) in the dose range of 2.0-10.0 Gy. The TL response was read using a TLD reader Harshaw Model 3500. The Time-Temperature-Profile (TTP) of the reader used includes; initial preheat temperature of 80°C, maximum readout temperature is 400°C and the heating rate of 30°Cs-1. The proposed FF shows excellent linear radiation response behavior within the clinical relevant dose range for all of these energies, good reproducibility, independence of radiation energy, independence of dose rate and exhibits a very low thermal fading. From these results, the proposed FF can be used as radiation dosimeter and favorably compares with the widely used of LiF:MgTi dosimeter in medical radiotherapy application.
Griswold, J R; Medvedev, D G; Engle, J W; Copping, R; Fitzsimmons, J M; Radchenko, V; Cooley, J C; Fassbender, M E; Denton, D L; Murphy, K E; Owens, A C; Birnbaum, E R; John, K D; Nortier, F M; Stracener, D W; Heilbronn, L H; Mausner, L F; Mirzadeh, S
2016-12-01
Actinium-225 and 213 Bi have been used successfully in targeted alpha therapy (TAT) in preclinical and clinical research. This paper is a continuation of research activities aiming to expand the availability of 225 Ac. The high-energy proton spallation reaction on natural thorium metal targets has been utilized to produce millicurie quantities of 225 Ac. The results of sixteen irradiation experiments of thorium metal at beam energies between 78 and 192MeV are summarized in this work. Irradiations have been conducted at Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL), while target dissolution and processing was carried out at Oak Ridge National Laboratory (ORNL). Excitation functions for actinium and thorium isotopes, as well as for some of the fission products, are presented. The cross sections for production of 225 Ac range from 3.6 to 16.7mb in the incident proton energy range of 78-192MeV. Based on these data, production of curie quantities of 225 Ac is possible by irradiating a 5.0gcm -2 232 Th target for 10 days in either BNL or LANL proton irradiation facilities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of the nuclear medium on α -cluster excitation in 6Li
NASA Astrophysics Data System (ADS)
Yamagata, Tamio; Nakayama, Shintaro; Akimune, Hidetoshi; Miyamoto, Syuji
2017-04-01
The giant dipole resonance (GDR) in 6Li was investigated via the 6Li(γ ,x n ) reactions by using quasi-mono-energy γ rays in an energy range from 4.9 to 53.6 MeV. The γ rays were generated via Compton backscattering of Nd laser photons with relativistic energy electrons in an electron storage ring, NewSUBARU. The energy resolution in a full width at half maximum of γ ray was simulated to be 5 % at 50 MeV. Photoneutrons were detected with a 4 π -type neutron detector consisting of 41 3He-gas proportional counters. The (γ ,n ) cross sections were dominant, while the (γ ,2 n ) and (γ ,3 n ) cross sections were negligibly small. The energy integral of photoneutron cross sections up to 53.6 MeV was 59 MeV mb , which exhausted 65 % of the Thomas-Reiche-Kuhn sum rule. The GDR in 6Li was found to consist of mainly two components. The peak energy and the width for the low-energy component were Er=12 ±1 MeV and Γ =21 ±2 MeV . Those for the high-energy component were Er=33 ±2 MeV and Γ =30 ±2 MeV. The low-energy component corresponded to the GDR in 6Li. The high-energy component was inferred to be the GDR owing to an α -cluster excitation in 6Li. The existence of this component was recently proposed and was suggested by the experimental studies of the (p ,p') , (3He,t ) , and (7Li,7Be) reactions. The observed resonance shape of the high-energy component was well reproduced by modifying the GDR shape of a theoretical prediction for 4He at Er=26 MeV with Γ =20 MeV ; with increasing the excitation energy by 7 MeV (Q value was more negative), widening the width by 1.5 ±0.1 times, and decreasing a peak height by 0.29 ±0.02 times. As a result, the magnitude of the energy integral of the cross sections for the high-energy component observed in the present work was 0.86 ±0.06 times that in the theoretical prediction of the 4He(γ ,n ) reaction. It is a well-known fact that a frequency of a vibrating system is inversely proportional to the size of the system. We suggest that in excitation of the α cluster in 6Li, the mass of the α cluster increases by 7 ±2 MeV , the size of the α cluster in 6Li is smaller than that of the free 4He by ˜20 % , and the width of the GDR is broader than that of 4He by 1.5 times owing to the nuclear medium effect.
Gamallo, Pablo; Akpinar, Sinan; Defazio, Paolo; Petrongolo, Carlo
2014-08-21
We present the adiabatic quantum dynamics of the proton-transfer reaction H((2)S) + HeH(+)(X(1)Σ(+)) → H2(+)(X(2)Σg(+)) + He((1)S) on the HeH2(+) X̃(2)Σ(+) RMRCI6 (M = 6) PES of C. N. Ramachandran et al. ( Chem. Phys. Lett. 2009, 469, 26). We consider the HeH(+) molecule in the ground vibrational–rotational state and obtain initial-state-resolved reaction probabilities and the ground-state cross section σ0 and rate constant k0 by propagating time-dependent, coupled-channel, real wavepackets (RWPs) and performing a flux analysis. Three different wavepackets are propagated to describe the wide range of energies explored, from cold (0.0001 meV) to hyperthermal (1000 meV) collision energies, and in a temperature range from 0.01 to 2000 K. We compare our time-dependent results with the time-independent ones by D. De Fazio and S. Bovino et al., where De Fazio carried out benchmark coupled-channel calculations whereas Bovino et al. employed the negative imaginary potential and the centrifugal-sudden approximations. The RWP cross section is in good agreement with that by De Fazio, except at the lowest collision energies below ∼0.01 meV, where the former is larger than the latter. However, neither the RWP and De Fazio results possess the huge resonance in probability and cross section at 0.01 meV, found by Bovino et al., who also obtained a too low σ0 at high energies. Therefore, the RWP and De Fazio rate constants compare quite well, whereas that by Bovino et al. is in general lower.
NASA Astrophysics Data System (ADS)
Bazavov, A.; Bhattacharya, Tanmoy; DeTar, C. E.; Ding, H.-T.; Gottlieb, Steven; Gupta, Rajan; Hegde, P.; Heller, Urs M.; Karsch, F.; Laermann, E.; Levkova, L.; Mukherjee, Swagato; Petreczky, P.; Schmidt, Christian; Soltz, R. A.; Soeldner, W.; Sugar, R.; Vranas, Pavlos M.
2012-08-01
We calculate the quadratic fluctuations of net baryon number, electric charge and strangeness as well as correlations among these conserved charges in (2+1)-flavor lattice QCD at zero chemical potential. Results are obtained using calculations with tree-level improved gauge and the highly improved staggered quark actions with almost physical light and strange quark masses at three different values of the lattice cutoff. Our choice of parameters corresponds to a value of 160 MeV for the lightest pseudoscalar Goldstone mass and a physical value of the kaon mass. The three diagonal charge susceptibilities and the correlations among conserved charges have been extrapolated to the continuum limit in the temperature interval 150MeV≤T≤250MeV. We compare our results with the hadron resonance gas (HRG) model calculations and find agreement with HRG model results only for temperatures T≲150MeV. We observe significant deviations in the temperature range 160MeV≲T≲170MeV and qualitative differences in the behavior of the three conserved charge sectors. At T≃160MeV quadratic net baryon number fluctuations in QCD agree with HRG model calculations, while the net electric charge fluctuations in QCD are about 10% smaller and net strangeness fluctuations are about 20% larger. These findings are relevant to the discussion of freeze-out conditions in relativistic heavy ion collisions.
Scintillation detector efficiencies for neutrons in the energy region above 20 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickens, J.K.
1991-01-01
The computer program SCINFUL (for SCINtillator FUL1 response) is a program designed to provide a calculated complete pulse-height response anticipated for neutrons being detected by either an NE-213 (liquid) scintillator or an NE-110 (solid) scintillator in the shape of a right circular cylinder. The point neutron source may be placed at any location with respect to the detector, even inside of it. The neutron source may be monoenergetic, or Maxwellian distributed, or distributed between chosen lower and upper bounds. The calculational method uses Monte Carlo techniques, and it is relativistically correct. Extensive comparisons with a variety of experimental data havemore » been made. There is generally overall good agreement (less than 10% differences) of results for SCINFUL calculations with measured integral detector efficiencies for the design incident neutron energy range of 0.1 to 80 MeV. Calculations of differential detector responses, i.e. yield versus response pulse height, are generally within about 5% on the average for incident neutron energies between 16 and 50 MeV and for the upper 70% of the response pulse height. For incident neutron energies between 50 and 80 MeV, the calculated shape of the response agrees with measurements, but the calculations tend to underpredict the absolute values of the measured responses. Extension of the program to compute responses for incident neutron energies greater than 80 MeV will require new experimental data on neutron interactions with carbon. 32 refs., 6 figs., 2 tabs.« less
Scintillation detector efficiencies for neutrons in the energy region above 20 MeV
NASA Astrophysics Data System (ADS)
Dickens, J. K.
The computer program SCINFUL (for SCINtillator FUL1 response) is a program designed to provide a calculated complete pulse-height response anticipated for neutrons being detected by either an NE-213 (liquid) scintillator or an NE-110 (solid) scintillator in the shape of a right circular cylinder. The point neutron source may be placed at any location with respect to the detector, even inside of it. The neutron source may be monoenergetic, or Maxwellian distributed, or distributed between chosen lower and upper bounds. The calculational method uses Monte Carlo techniques, and it is relativistically correct. Extensive comparisons with a variety of experimental data were made. There is generally overall good agreement (less than 10 pct. differences) of results for SCINFUL calculations with measured integral detector efficiencies for the design incident neutron energy range of 0.1 to 80 MeV. Calculations of differential detector responses, i.e., yield versus response pulse height, are generally within about 5 pct. on the average for incident neutron energies between 16 and 50 MeV and for the upper 70 pct. of the response pulse height. For incident neutron energies between 50 and 80 MeV, the calculated shape of the response agrees with measurements, but the calculations tend to underpredict the absolute values of the measured responses. Extension of the program to compute responses for incident neutron energies greater than 80 MeV will require new experimental data on neutron interactions with carbon.
First Measurement of the 19F(α, p)22Ne Reaction at Energies of Astrophysical Relevance
NASA Astrophysics Data System (ADS)
Pizzone, R. G.; D'Agata, G.; La Cognata, M.; Indelicato, I.; Spitaleri, C.; Blagus, S.; Cherubini, S.; Figuera, P.; Grassi, L.; Guardo, G. L.; Gulino, M.; Hayakawa, S.; Kshetri, R.; Lamia, L.; Lattuada, M.; Mijatović, T.; Milin, M.; Miljanić D., Đ.; Prepolec, L.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Skukan, N.; Soić, N.; Tokić, V.; Tumino, A.; Uroić, M.
2017-02-01
The observational 19F abundance in stellar environments systematically exceeds the predicted one, thus representing one of the unsolved challenges for stellar modeling. It is therefore clear that further investigation is needed in this field. In this work, we focus our attention on the measurement of the {}19{{F}}{(α ,p)}22{Ne} reaction in the astrophysical energy range, between 0.2 and 0.8 MeV (far below the Coulomb barrier, 3.8 MeV), as it represents the main destruction channel in He-rich environments. The lowest energy at which this reaction has been studied with direct measurements is ˜0.66 MeV, covering only the upper tail of the Gamow window, causing the reaction-rate evaluation to be based on extrapolation. To investigate lower energies, the {}19{{F}}{(α ,p)}22{Ne} reaction has been studied by means of the Trojan horse method, applied to the quasi-free {}6{Li}{{(}19{{F}},{p}22{Ne})}2{{H}} reaction at E beam = 6 MeV. The indirect cross section of the {}19{{F}}{(α ,p)}22{Ne} reaction at energies ≲1 MeV was extracted, fully covering the astrophysical region of interest and overlapping existing direct data for normalization. Several resonances have been detected for the first time inside the Gamow window. The reaction rate has been calculated, showing an increase up to a factor of 4 with respect to the literature at astrophysical temperatures. This might lead to potential major astrophysical implications.
Ultrasensitive tunability of the direct bandgap of 2D InSe flakes via strain engineering
NASA Astrophysics Data System (ADS)
Li, Yang; Wang, Tianmeng; Wu, Meng; Cao, Ting; Chen, Yanwen; Sankar, Raman; Ulaganathan, Rajesh K.; Chou, Fangcheng; Wetzel, Christian; Xu, Cheng-Yan; Louie, Steven G.; Shi, Su-Fei
2018-04-01
InSe, a member of the layered materials family, is a superior electronic and optical material which retains a direct bandgap feature from the bulk to atomically thin few-layers and high electronic mobility down to a single layer limit. We, for the first time, exploit strain to drastically modify the bandgap of two-dimensional (2D) InSe nanoflakes. We demonstrated that we could decrease the bandgap of a few-layer InSe flake by 160 meV through applying an in-plane uniaxial tensile strain to 1.06% and increase the bandgap by 79 meV through applying an in-plane uniaxial compressive strain to 0.62%, as evidenced by photoluminescence (PL) spectroscopy. The large reversible bandgap change of ~239 meV arises from a large bandgap change rate (bandgap strain coefficient) of few-layer InSe in response to strain, ~154 meV/% for uniaxial tensile strain and ~140 meV/% for uniaxial compressive strain, representing the most pronounced uniaxial strain-induced bandgap strain coefficient experimentally reported in 2D materials. We developed a theoretical understanding of the strain-induced bandgap change through first-principles DFT and GW calculations. We also confirmed the bandgap change by photoconductivity measurements using excitation light with different photon energies. The highly tunable bandgap of InSe in the infrared regime should enable a wide range of applications, including electro-mechanical, piezoelectric and optoelectronic devices.
Search for Doppler-shifted gamma-ray emission from SS 433 using the SMM spectrometer
NASA Technical Reports Server (NTRS)
Geldzahler, B. J.; Share, G. H.; Kinzer, R. L.; Magura, J.; Chupp, E. L.
1989-01-01
Data accumulated from 1980 to 1983 with the Gamma Ray Spectrometer aboard NASA's Solar Maximum Mission (SMM) satellite were searched for evidence of red and blue Doppler-shifted 1.37 MeV Mg-24 nuclear lines from SS 433. The SMM data base covers 270 days when SS 433 was in the field of view and includes periods of radio flaring and quiescence. No evidence was found for Doppler-shifted line emission in any of the spectra. The range of 3-sigma upper limits for individual 9 day integration periods was 0.0008-0.0023 photons/sq cm per sec for the blue beam, encompassing the reported about 1.5 MeV line, and 0.0008-0.002 photons/sq cm per sec for the red beam, encompassing the reported about 1.2 MeV line; the average 3-sigma upper limit in each beam for shifted about 1.37 MeV lines is 0.0015 photons/sq cm per sec for single 9 day integrations. The 3-sigma upper limit on 1.37 MeV gamma-ray emission over 23 9-day integration intervals for the red beam and 28 intervals for the blue beam is 0.0002 photons/sq cm per sec. These new limits from SMM can be reconciled with the HEAO 3 results only if SS 433 emits gamma radiation at or above the SMM sensitivity limit on rare occasions due to variable physical conditions in the system.
NASA Astrophysics Data System (ADS)
Gadioli, E.; Cavinato, M.; Fabrici, E.; Gadioli Erba, E.; Birattari, C.; Mica, I.; Solia, S.; Steyn, G. F.; Förtsch, S. V.; Lawrie, J. J.; Nortier, F. M.; Stevens, T. G.; Connell, S. H.; Sellschop, J. P. F.; Cowley, A. A.
1999-08-01
The results of measured inclusive double differential cross section of α particles emitted in the interaction of 12C ions with 59Co and 93Nb at incident energies of 300 and 400 MeV are presented. The analysis of these data allows us to isolate the contributions of the different reaction mechanisms, thereby confirming previous conclusions of a comprehensive analysis of a large number of excitation function, forward recoil ranges and angular distributions of residues produced in the interaction of 12C with a target nucleus in the same mass range. In particular, the probabilities associated with α-particle reemission following incomplete fussion processes have been reaffirmed. Several refinements to the theoretical model proposed in earlier studies of the interaction of 12C with nuclei are presented.
Positron production by x rays emitted by betatron motion in a plasma wiggler.
Johnson, D K; Auerbach, D; Blumenfeld, I; Barnes, C D; Clayton, C E; Decker, F J; Deng, S; Emma, P; Hogan, M J; Huang, C; Ischebeck, R; Iverson, R; Joshi, C; Katsouleas, T C; Kirby, N; Krejcik, P; Lu, W; Marsh, K A; Mori, W B; Muggli, P; O'Connell, C L; Oz, E; Siemann, R H; Walz, D; Zhou, M
2006-10-27
Positrons in the energy range of 3-30 MeV, produced by x rays emitted by betatron motion in a plasma wiggler of 28.5 GeV electrons from the SLAC accelerator, have been measured. The extremely high-strength plasma wiggler is an ion column induced by the electron beam as it propagates through and ionizes dense lithium vapor. X rays in the range of 1-50 MeV in a forward cone angle of 0.1 mrad collide with a 1.7 mm thick tungsten target to produce electron-positron pairs. The positron spectra are found to be strongly influenced by the plasma density and length as well as the electron bunch length. By characterizing the beam propagation in the ion column these influences are quantified and result in excellent agreement between the measured and calculated positron spectra.
Long-range magnetic order and interchain interactions in the S = 2 chain system MnCl 3 (bpy)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fishman, Randy S.; Shinozaki, Shin-ichi; Okutani, Akira
Here,more » a compound with very weakly interacting chains, MnCl 3(bpy), has attracted a great deal of attention as a possible S = 2 Haldane chain. However, long-range magnetic order of the chains prevents the Haldane gap from developing below 11.5 K. Based on a four-sublattice model, a description of the antiferromagnetic resonance (AFMR) spectrum up to frequencies of 1.5 THz and magnetic fields up to 50 T indicates that the interchain coupling is indeed quite small but that the Dzaloshinskii-Moriya interaction produced by broken inversion symmetry is substantial (0.12 meV). In addition, the antiferromagnetic, nearest-neighbor interaction within each chain (3.3 meV) is significantly stronger than previously reported. The excitation spectrum of this S = 2 compound is well described by a 1/S expansion about the classical limit.« less
Long-range magnetic order and interchain interactions in the S = 2 chain system MnCl 3 (bpy)
Fishman, Randy S.; Shinozaki, Shin-ichi; Okutani, Akira; ...
2016-09-28
Here,more » a compound with very weakly interacting chains, MnCl 3(bpy), has attracted a great deal of attention as a possible S = 2 Haldane chain. However, long-range magnetic order of the chains prevents the Haldane gap from developing below 11.5 K. Based on a four-sublattice model, a description of the antiferromagnetic resonance (AFMR) spectrum up to frequencies of 1.5 THz and magnetic fields up to 50 T indicates that the interchain coupling is indeed quite small but that the Dzaloshinskii-Moriya interaction produced by broken inversion symmetry is substantial (0.12 meV). In addition, the antiferromagnetic, nearest-neighbor interaction within each chain (3.3 meV) is significantly stronger than previously reported. The excitation spectrum of this S = 2 compound is well described by a 1/S expansion about the classical limit.« less
NASA Technical Reports Server (NTRS)
Cao, D. S.; Kimball, A. W.; Stringfellow, G. B.
1990-01-01
This paper describes growth of (Al/x/Ga/1-x)0.51In0.49P layers (with x from 0 to 1) lattice-matched to (001)-oriented GaAs substrates by atmospheric-pressure OMVPE, using trimethylindium, trimethylaluminum, and trimethylgallium and PH3 as source materials in a horizontal reactor. Excellent surface morphologies were obtained over the entire range of Al compositions at a growth temperature of 680 C. Photoluminescence (PL) was observed for all samples with x values not below 0.52, with PL peak energies as high as 2.212 eV. The PL FWHM for Ga(0.51)In(0.49)P was 7.2 meV at 10 K and 35 meV at 300 K. At 10 K, the PL intensity was nearly a constant over the composition range from x = 0 to 0.52.
Nuclear Resonance Fluorescence of U-235
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Glen A.; Caggiano, Joseph A.; Hensley, Walter K.
Nuclear resonance fluorescence is a physical process that provides an isotopic-specific signature that could be used for the identification and characterization of materials. The technique involves the detection of prompt discrete-energy photons emitted from a sample which is exposed to photons in the MeV energy range. Potential applications of the technique range from detection of high explosives to characterization of special nuclear materials. One isotope of significant interest is 235U. Pacific Northwest National Laboratory and Passport Systems have collaborated to conduct measurements to search for a nuclear resonance fluorescence response of 235U below 3 MeV using a 200 g samplemore » of highly enriched uranium. Nine 235U resonances between 1650 and 2010 keV were identified in the preliminary analysis. Analysis of the measurement data to determine the integrated cross sections of the resonances is in progress.« less
Planck constraint on relic primordial black holes
NASA Astrophysics Data System (ADS)
Clark, Steven J.; Dutta, Bhaskar; Gao, Yu; Strigari, Louis E.; Watson, Scott
2017-04-01
We investigate constraints on the abundance of primordial black holes (PBHs) in the mass range 1015- 1017 g using data from the cosmic microwave background (CMB) and MeV extragalactic gamma-ray background (EGB). Hawking radiation from PBHs with lifetime greater than the age of the Universe leaves an imprint on the CMB through modification of the ionization history and the damping of CMB anisotropies. Using a model for redshift-dependent energy injection efficiencies, we show that a combination of temperature and polarization data from Planck provides the strongest constraint on the abundance of PBHs for masses ˜1015- 1016 g , while the EGB dominates for masses ≳1016 g . Both the CMB and EGB now rule out PBHs as the dominant component of dark matter for masses ˜1016- 1017 g . Planned MeV gamma-ray observatories are ideal for further improving constraints on PBHs in this mass range.
High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjue, S. K. L., E-mail: sjue@lanl.gov; Mariam, F. G.; Merrill, F. E.
2016-01-15
Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the imagemore » plane. Comparison with a series of static calibration images demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.« less
NASA Astrophysics Data System (ADS)
Andreani, C.; Senesi, R.; Paccagnella, A.; Bagatin, M.; Gerardin, S.; Cazzaniga, C.; Frost, C. D.; Picozza, P.; Gorini, G.; Mancini, R.; Sarno, M.
2018-02-01
This paper presents a neutron accelerated study of soft errors in advanced electronic devices used in space missions, i.e. Flash memories performed at the ChipIr and VESUVIO beam lines at the ISIS spallation neutron source. The two neutron beam lines are set up to mimic the space environment spectra and allow neutron irradiation tests on Flash memories in the neutron energy range above 10 MeV and up to 800 MeV. The ISIS neutron energy spectrum is similar to the one occurring in the atmospheric as well as in space and planetary environments, with intensity enhancements varying in the range 108- 10 9 and 106- 10 7 respectively. Such conditions are suitable for the characterization of the atmospheric, space and planetary neutron radiation environments, and are directly applicable for accelerated tests of electronic components as demonstrated here in benchmark measurements performed on flash memories.
High order magnetic optics for high dynamic range proton radiography at a kinetic energy 800 MeV
Sjue, Sky K. L.; Morris, Christopher L.; Merrill, Frank Edward; ...
2016-01-14
Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the protonimaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane.more » Furthermore, comparison with a series of static calibrationimages demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.« less
Local chiral potentials with Δ -intermediate states and the structure of light nuclei
Piarulli, M.; Girlanda, L.; Schiavilla, R.; ...
2016-11-28
In this paper, we present fully local versions of the minimally nonlocal nucleon-nucleon potentials constructed in a previous paper [Piarulli et al., Phys. Rev. C 91, 024003 (2015)], and use them in hypersperical harmonics and quantum Monte Carlo calculations of ground and excited states ofmore » $^3$H, $^3$He, $^4$He, $^6$He, and $^6$Li nuclei. The long-range part of these local potentials includes one- and two-pion exchange contributions without and with $$\\Delta$$-isobars in the intermediate states up to order $Q^3$ ($Q$ denotes generically the low momentum scale) in the chiral expansion, while the short-range part consists of contact interactions up to order $Q^4$. The low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either 0–125 MeV or 0–200 MeV, and to the deuteron binding energy and $nn$ singlet scattering length. Fits to these data are performed for three models characterized by long- and short-range cutoffs, $$R_{\\rm L}$$ and $$R_{\\rm S}$$, respectively, ranging from $$(R_{\\rm L},R_{\\rm S})=(1.2,0.8)$$ fm down to $(0.8,0.6)$ fm. Finally, the long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less
Local chiral potentials with Δ -intermediate states and the structure of light nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piarulli, M.; Girlanda, L.; Schiavilla, R.
In this paper, we present fully local versions of the minimally nonlocal nucleon-nucleon potentials constructed in a previous paper [Piarulli et al., Phys. Rev. C 91, 024003 (2015)], and use them in hypersperical harmonics and quantum Monte Carlo calculations of ground and excited states ofmore » $^3$H, $^3$He, $^4$He, $^6$He, and $^6$Li nuclei. The long-range part of these local potentials includes one- and two-pion exchange contributions without and with $$\\Delta$$-isobars in the intermediate states up to order $Q^3$ ($Q$ denotes generically the low momentum scale) in the chiral expansion, while the short-range part consists of contact interactions up to order $Q^4$. The low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either 0–125 MeV or 0–200 MeV, and to the deuteron binding energy and $nn$ singlet scattering length. Fits to these data are performed for three models characterized by long- and short-range cutoffs, $$R_{\\rm L}$$ and $$R_{\\rm S}$$, respectively, ranging from $$(R_{\\rm L},R_{\\rm S})=(1.2,0.8)$$ fm down to $(0.8,0.6)$ fm. Finally, the long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less
Scintillator-fiber charged particle track-imaging detector
NASA Technical Reports Server (NTRS)
Binns, W. R.; Israel, M. H.; Klarmann, J.
1983-01-01
A scintillator-fiber charged-particle track-imaging detector was developed using a bundle of square cross section plastic scintillator fiber optics, proximity focused onto an image intensified charge injection device (CID) camera. The tracks of charged particle penetrating into the scintillator fiber bundle are projected onto the CID camera and the imaging information is read out in video format. The detector was exposed to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei and images of their tracks were obtained. Details of the detector technique, properties of the tracks obtained, and preliminary range measurements of 15 MeV protons stopping in the fiber bundle are presented.
VizieR Online Data Catalog: Fermi-LAT flaring gamma-ray sources from FAVA (Ackermann+, 2013)
NASA Astrophysics Data System (ADS)
Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; Dalton, M.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Inoue, Y.; Jackson, M. S.; Jogler, T.; Johannesson, G.; Johnson, W. N.; Kamae, T.; Kataoka, J.; Kawano, T.; Knodlseder, J.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nemmen, R.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Raino, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Romoli, C.; Roth, M.; Sanchez-Conde, M.; Scargle, J. D.; Schulz, A.; Sgro, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Suson, D. J.; Takahashi, H.; Takeuchi, Y.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Tronconi, V.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Winer, B. L.; Wood, K. S.; Wood, M.; Yang, Z.
2015-01-01
We applied FAVA (Fermi All-sky Variability Analysis) to the first 47 months of Fermi/LAT observations (2008 August 4 to 2012 July 16 UTC), in weekly time intervals. The total number of weeks is 206. We considered two ranges of gamma-ray energy, E>100MeV and E>800MeV, to increase the sensitivity for spectrally soft and hard flares, respectively. We generate measured and expected count maps with a resolution of 0.25deg2 per pixel. We found LAT counterparts for 192 of the 215 FAVA sources. Most of the associated sources, 177, are AGNs. (2 data files).
Elastic Scattering of 65 MeV Protons from Several Nuclei between 16O and 209Bi
NASA Astrophysics Data System (ADS)
Ahmed, Syed; Akther, Parvin; Ferdous, Nasima; Begum, Amena; Gupta, Hiranmay
1997-10-01
Elastic scattering of 65 MeV polarized protons from twenty five nuclei ranging from 16O to 209Bi have been analysed within the framework of the nine parameter optical model. A set of optical model parameters has been obtained which shows the systematic behaviour of the target mass dependence of the real potential, volume integral and the r.m.s. radius. The isotopic spin dependence of the real potential has also been studied. Parameters obtained by fitting the elastic scattering data have been able to reproduce the pickup and stripping reaction cross sections as studied in a few cases.
Determination of the fast-neutron-induced fission cross-section of 242Pu at nELBE
NASA Astrophysics Data System (ADS)
Kögler, Toni; Beyer, Roland; Junghans, Arnd R.; Schwengner, Ronald; Wagner, Andreas
2018-03-01
The fast-neutron-induced fission cross section of 242Pu was determined in the energy range of 0.5 MeV to 10MeV at the neutron time-of-flight facility nELBE. Using a parallel-plate fission ionization chamber this quantity was measured relative to 235U(n,f). The number of target nuclei was thereby calculated by means of measuring the spontaneous fission rate of 242Pu. An MCNP 6 neutron transport simulation was used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets.
{sup 16}O resonances near 4α threshold through {sup 12}C({sup 6}Li,d) reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, M. R. D.; Borello-Lewin, T.; Miyake, H.
2014-11-11
Several narrow alpha resonant {sup 16}O states were detected through the {sup 12}C({sup 6}Li,d) reaction, in the range of 13.5 to 17.5 MeV of excitation energy. The reaction was measured at a bombarding energy of 25.5 MeV employing the São Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion technique. Experimental angular distributions associated with natural parity quasi-bound states around the 4α threshold are presented and compared to DWBA predictions. The upper limit for the resonance widths obtained is near the energy resolution (15 keV)
Status of the EDDA experiment at COSY
NASA Astrophysics Data System (ADS)
Scobel, W.; EDDA Collaboration; Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Dohrmann, F.; Dorner, G.; Drüke, V.; Ernst, J.; Eversheim, P. D.; Filges, D.; Gasthuber, M.; Gebel, R.; Groß, A.; Groß-Hardt, R.; Hinterberger, F.; Jahn, R.; Lahr, U.; Langkau, R.; Lippert, G.; Mayer-Kuckuk, T.; Maschuw, R.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz gen Schieck, H.; Petry, H. R.; Prasuhn, D.; von Przewoski, B.; Rohdjeß, H.; Rosendaal, D.; von Rossen, P.; Scheid, H.; Schirm, N.; Schwandt, F.; Stein, H.; Theis, D.; Weber, J.; Wiedmann, W.; Woller, K.; Ziegler, R.
1993-07-01
The EDDA experiment is designed to study p + p excitation functions with high energy resolution and narrow step size in the kinetic energy range from 250 MeV to 2500 MeV at the Cooler Synchrotron COSY. Measurements during the accelertion phase in conjunction with internal targets will allow to achieve a fast and precise energy variation. Prototypes of the detector elements and the fiber target have been extensively tested with proton and electron beams; the detector performance and trigger efficiency have been studied in Monte Carlo simulations. In this contribution, results concerning detector design, prototype studies, Monte Carlo simulations and the anticipated detector resolutions will be reported.
Accelerators for E-beam and X-ray processing
NASA Astrophysics Data System (ADS)
Auslender, V. L.; Bryazgin, A. A.; Faktorovich, B. L.; Gorbunov, V. A.; Kokin, E. N.; Korobeinikov, M. V.; Krainov, G. S.; Lukin, A. N.; Maximov, S. A.; Nekhaev, V. E.; Panfilov, A. D.; Radchenko, V. N.; Tkachenko, V. O.; Tuvik, A. A.; Voronin, L. A.
2002-03-01
During last years the demand for pasteurization and desinsection of various food products (meat, chicken, sea products, vegetables, fruits, etc.) had increased. The treatment of these products in industrial scale requires the usage of powerful electron accelerators with energy 5-10 MeV and beam power at least 50 kW or more. The report describes the ILU accelerators with energy range up to 10 MeV and beam power up to 150 kW.The different irradiation schemes in electron beam and X-ray modes for various products are described. The design of the X-ray converter and 90° beam bending system are also given.
Characterization of a 6Li enriched Cs2LiYCl6:Ce scintillator and its application as a γ-ray detector
NASA Astrophysics Data System (ADS)
Qin, Jianguo; Lai, Caifeng; Lu, Xinxin; Zheng, Pu; Zhu, Tonghua; Liu, Rong; Ye, Bangjiao; Zhang, Xinwei
2018-04-01
In this work, we characterize the γ-ray response and efficiency for a cylindrical inorganic Cs2LiYCl6:Ce detector 1‧‧ in diameter and 1‧‧ in height. The energy resolution and linearity are obtained from 21 γ-rays with energies ranging from 0.026 to 2.447 MeV. In addition, the neutron γ-ray discrimination is validated by measuring a 252Cf radioisotope. Gamma-ray response functions and matrix below 7 MeV are simulated using a Monte Carlo approach and validated through the unfolded γ-ray spectra.
Level density parameter behaviour at high excitation energy
NASA Astrophysics Data System (ADS)
D'Arrigo, A.; Giardina, G.; Taccone, A.
1991-06-01
We present a formalism to calculate the intrinsic (without collective effects) and effective (with collective effects) level density parameters over a wide range of excitation energy up to 180 MeV. The behaviour of aint and aeff as an energy function is shown for several typical nuclei (115Cd, 129Te, 148Pm, 173Yb, 192Ir and 248Cm). Moreover, local systematics of the parameter aeff as a function of the neutron number N, also for nuclei extremely far from the β-line, is shown for some typical nuclei (Rb, Pd, Sn, Ba and Hg) at excitation energies of 15, 80 and 150 MeV.
Skyshine line-beam response functions for 20- to 100-MeV photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brockhoff, R.C.; Shultis, J.K.; Faw, R.E.
1996-06-01
The line-beam response function, needed for skyshine analyses based on the integral line-beam method, was evaluated with the MCNP Monte Carlo code for photon energies from 20 to 100 MeV and for source-to-detector distances out to 1,000 m. These results are compared with point-kernel results, and the effects of bremsstrahlung and positron transport in the air are found to be important in this energy range. The three-parameter empirical formula used in the integral line-beam skyshine method was fit to the MCNP results, and values of these parameters are reported for various source energies and angles.
NASA Astrophysics Data System (ADS)
Bhike, Megha; Tornow, W.; Krishichayan, Tonchev, A. P.
2017-02-01
Measurements of fission product yields play an important role for the understanding of fundamental aspects of the fission process. Recently, neutron-induced fission product-yield data of
Suppression of Baryon Diffusion and Transport in a Baryon Rich Strongly Coupled Quark-Gluon Plasma
NASA Astrophysics Data System (ADS)
Rougemont, Romulo; Noronha, Jorge; Noronha-Hostler, Jacquelyn
2015-11-01
Five dimensional black hole solutions that describe the QCD crossover transition seen in (2 +1 ) -flavor lattice QCD calculations at zero and nonzero baryon densities are used to obtain predictions for the baryon susceptibility, baryon conductivity, baryon diffusion constant, and thermal conductivity of the strongly coupled quark-gluon plasma in the range of temperatures 130 MeV ≤T ≤300 MeV and baryon chemical potentials 0 ≤μB≤400 MeV . Diffusive transport is predicted to be suppressed in this region of the QCD phase diagram, which is consistent with the existence of a critical end point at larger baryon densities. We also calculate the fourth-order baryon susceptibility at zero baryon chemical potential and find quantitative agreement with recent lattice results. The baryon transport coefficients computed in this Letter can be readily implemented in state-of-the-art hydrodynamic codes used to investigate the dense QGP currently produced at RHIC's low energy beam scan.
Self absorption of alpha and beta particles in a fiberglass filter.
Luetzelschwab, J W; Storey, C; Zraly, K; Dussinger, D
2000-10-01
Environmental air sampling uses fiberglass filters to collect particulate matter from the air and then a gas flow detector to measure the alpha and beta activity on the filter. When counted, the filter is located close to the detector so the alpha and beta particles emerging from the filter travel toward the detector at angles ranging from zero to nearly 90 degrees to the normal to the filter surface. The particles at small angles can readily pass through the filter, but particles at large angles pass through a significant amount of filter material and can be totally absorbed. As a result, counting losses can be great. For 4 MeV alpha particles, the filter used in this experiment absorbs 43% of the alpha particles; for 7.5 MeV alphas, the absorption is 13%. The measured beta activities also can have significant counting losses. Beta particles with maximum energies of 0.2 and 2.0 MeV have absorptions of 44 and 2%, respectively.
Chiral phase structure of three flavor QCD at vanishing baryon number density
Bazavov, A.; Ding, H. -T.; Hegde, P.; ...
2017-04-12
In this paper, we investigate the phase structure of QCD with three degenerate quark flavors as a function of the degenerate quark masses at vanishing baryon number density. We use the highly improved staggered quarks on lattices with temporal extent N τ = 6 and perform calculations for six values of quark masses, which in the continuum limit correspond to pion masses in the range 80 MeV ≲ m π ≲ 230 MeV. By analyzing the volume and temperature dependence of the chiral condensate and chiral susceptibility, we find no direct evidence for a first-order phase transition in this rangemore » of pion mass values. Finally, relying on the universal scaling behaviors of the chiral observables near an anticipated chiral critical point, we estimate an upper bound for the critical pion mass m c π ≲ 50 MeV, below which a region of first-order chiral phase transition is favored.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, R.M.; Browne, J.C.
1982-08-27
The neutron-induced fission cross sections of /sup 242m/Am and /sup 245/Cm have been measured over an energy range of 10/sup -4/ eV to approx. 20 MeV in a series of experiments at three facilities during the past several years. The combined results of these measurements, in which only sub-milligram quantities of enriched isotopes were used, yield cross sections with uncertainties of approximately 5% below 10 MeV relative to the /sup 235/U standard cross section used to normalize the data. We summarize the resonance analysis of the /sup 242m/Am(n,f) cross section in the eV region. Hauser-Feshbach statistical calculations of the detailedmore » fission cross sections of /sup 235/U and /sup 245/Cm have been carried out over the energy region from 0.1 to 5 MeV and these results are compared with our experimental data.« less
Materials for Low-Energy Neutron Radiation Shielding
NASA Technical Reports Server (NTRS)
Singleterry, Robert C., Jr.; Thibeault, Sheila A.
2000-01-01
Various candidate aircraft and spacecraft materials were analyzed and compared in a low-energy neutron environment using the Monte Carlo N-Particle (MCNP) transport code with an energy range up to 20 MeV. Some candidate materials have been tested in particle beams, and others seemed reasonable to analyze in this manner before deciding to test them. The two metal alloys analyzed are actual materials being designed into or used in aircraft and spacecraft today. This analysis shows that hydrogen-bearing materials have the best shielding characteristics over the metal alloys. It also shows that neutrons above 1 MeV are reflected out of the face of the slab better by larger quantities of carbon in the material. If a low-energy absorber is added to the material, fewer neutrons are transmitted through the material. Future analyses should focus on combinations of scatterers and absorbers to optimize these reaction channels and on the higher energy neutron component (above 50 MeV).
Matching the laser generated p bunch into a crossbar-H drift tube linac
NASA Astrophysics Data System (ADS)
Almomani, A.; Droba, M.; Ratzinger, U.; Hofmann, I.
2012-05-01
Proton bunches with energies up to 30 MeV have been measured at the PHELIX laser. Because of the laser-plasma interactions at a power density of about 4×1019W/cm2, a total yield of 1.5×1013protons was produced. For the reference energy of 10 MeV, the yield within ±0.5MeV was exceeding 1010protons. The important topic for a further acceleration of the laser generated bunch is the matching into the acceptance of an rf accelerator stage. With respect to the high space charge forces and the transit energy range, only drift tube linacs seem adequate for this purpose. A crossbar H-type (CH) cavity was chosen as the linac structure. Optimum emittance values for the linac injection are compared with the available laser generated beam parameters. Options for beam matching into a CH structure by a pulsed magnetic solenoid and by using the simulation codes LASIN and LORASR are presented.
Horio, Takuya; Maeda, Satoshi; Kishimoto, Naoki; Ohno, Koichi
2006-09-28
Ionic-state-resolved collision energy dependence of Penning ionization cross sections for OCS with He*(2(3)S) metastable atoms was measured in a wide collision energy range from 20 to 350 meV. Anisotropic interaction potential for the OCS-He*(2(3)S) system was obtained by comparison of the experimental data with classical trajectory simulations. It has been found that attractive potential wells around the O and S atoms are clearly different in their directions. Around the O atom, the collinear approach is preferred (the well depth is ca. 90 meV), while the perpendicular approach is favored around the S atom (the well depth is ca. 40 meV). On the basis of the optimized potential energy surface and theoretical simulations, stereo reactivity around the O and S atoms was also investigated. The results were discussed in terms of anisotropy of the potential energy surface and the electron density distribution of molecular orbitals to be ionized.
NASA Astrophysics Data System (ADS)
Zhang, L.; Jia, M. C.; Gong, J. J.; Xia, W. M.
2017-12-01
The mass attenuation coefficient of various Lead-Boron Polyethylene samples which can be used as the photon shielding materials in marine reactor, have been simulated using the MCNP-5 code, and compared with the theoretical values at the photon energy range 0.001MeV—20MeV. A good agreement has been observed. The variations of mass attenuation coefficient, linear attenuation coefficient and mean free path with photon energy between 0.001MeV to 100MeV have been plotted. The result shows that all the coefficients strongly depends on the photon energy, material atomic composition and density. The dose transmission factors for source Cesium-137 and Cobalt-60 have been worked out and their variations with the thickness of various sample materials have also been plotted. The variations show that with the increase of materials thickness the dose transmission factors decrease continuously. The results of this paper can provide some reference for the use of the high effective shielding material Lead-Boron Polyethyene.
Deformation effect in the fast neutron total cross section of aligned /sup 59/Co
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasoli, U.; Pavan, P.; Toniolo, D.
1983-05-01
The variation of the total neutron cross section, ..delta..sigma/sub align/, on /sup 59/Co due to nuclear alignment of the target has been measured over the energy range from 0.8 to 20 MeV employing a cobalt single crystal with a 34% nuclear alignment. The results show that ..delta..sigma/sub align/ oscillates from a minimum of -5% at about 2.5 MeV to a maximum of +1% at about 10 MeV. The data were successfully fitted by optical model coupled-channel calculations. The coupling terms were deduced from a model representing the /sup 59/Co nucleus as a vibrational /sup 60/Ni core coupled to a protonmore » hole in a (1f/sub 7/2/) shell, without free parameters. The optical model parameters were determined by fitting the total cross section, which was independently measured. The theoretical calculations show that, at lower energies, ..delta..sigma/sub align/ depends appreciably on the coupling with the low-lying levels.« less
Performances of BNL high-intensity synchrotrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weng, W.T.
1998-03-01
The AGS proton synchrotron was completed in 1960 with initial intensity in the 10 to the 10th power proton per pulse (ppp) range. Over the years, through many upgrades and improvements, the AGS now reached an intensity record of 6.3 {times} 10{sup 13} ppp, the highest world intensity record for a proton synchrotron on a single pulse basis. At the same time, the Booster reached 2.2 {times} 10{sup 13} ppp surpassing the design goal of 1.5 {times} 10{sup 13} ppp due to the introduction of second harmonic cavity during injection. The intensity limitation caused by space charge tune spread andmore » its relationship to injection energy at 50 MeV, 200 MeV, and 1,500 MeV will be presented as well as many critical accelerator manipulations. BNL currently participates in the design of an accumulator ring for the SNS project at Oak Ridge. The status on the issues of halo formation, beam losses and collimation are also presented.« less
Enrichment of very heavy nuclei in the composition of solar accelerated particles.
NASA Technical Reports Server (NTRS)
Mogro-Campero, A.; Simpson, J. A.
1972-01-01
Measurement of the abundances of the nuclei C, N, O, Ne, Mg, Si, Ar, and Ca and the group Cr-Co relative to oxygen from seven solar energetic-particle events in the energy range from about 14 to 61 MeV per nucleon with a solid-state detector telescope on the OGO-5 satellite, 1968-1971. The differential energy spectra of O (14 to 29 MeV per nucleon) and Cr-Co (3 to 61 MeV per nucleon) have a spectral index of about (-3) for a power law in kinetic energy. The relative abundances of C, N, O, and Ne are in excellent agreement with emulsion studies. However, when compared with the solar photospheric and coronal abundances, the OGO-5 measurements show a large enhancement of relative abundances beginning with Si, and extending to the Cr-Co group. The enhancement over the solar and universal abundances is in rough agreement with the composition of the galactic cosmic radiation.
Tests of a solution-grown stilbene scintillator in mono-energetic neutron beams of 565 keV and 5 MeV
NASA Astrophysics Data System (ADS)
Dioni, Luca; Gressier, Vincent; Nardin, Gaëlle; Jacqmin, Robert; Stout, Brian; Sumini, Marco
2018-02-01
The results of measurements performed with a solution-grown stilbene scintillator placed in reference mono-energetic neutron fields are presented. The ∅ 25 mm organic scintillator was positioned in 5 MeV and 565 keV neutron fields delivered by the AIFIRA facility at CENBG. The goal of the experiment was to assess the performance of the solution-grown stilbene crystal (n- γ discrimination, response, anisotropy, sensitivity) relative to that of a BC501A liquid scintillator of larger size. Neutron pulse height spectra after gamma discrimination are compared. The results show that the stilbene crystal not only has a better discrimination capability than the BC501A (35% higher FoM) at 5 MeV, but is also able to separate neutrons from gamma-rays at 565 keV and below, a range where the BC501A is inoperative. This study also confirms the anisotropy of the crystal response, as already observed by other groups at different energies.
Measurement of the e +e -→π +π - cross section between 600 and 900 MeV using initial state radiation
Ablikim, M.
2015-11-28
We extract the e +e -→π +π - cross section in the energy range between 600 and 900 MeV, exploiting the method of initial state radiation. A data set with an integrated luminosity of 2.93 fb -1 taken at a center-of-mass energy of 3.773 GeV with the BESIII detector at the BEPCII collider is used. The cross section is measured with a systematic uncertainty of 0.9%. We extract the pion form factor |F π| 2 as well as the contribution of the measured cross section to the leading-order hadronic vacuum polarization contribution to (g-2) μ. In conclusion, we find thismore » value to be a π μ π,LO (600–900 MeV) = (368.2 ±2.5 stat±3.3 sys) ·10 -10, which is between the corresponding values using the BaBar or KLOE data.« less
Precise charge measurement for laser plasma accelerators
NASA Astrophysics Data System (ADS)
Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; van Tilborg, Jeroen; Smith, Alan; Rodgers, Dave; Donahue, Rick; Byrne, Warren; Leemans, Wim
2011-10-01
A comprehensive study of charge diagnostics was conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. Using an integrating current transformer as a calibration reference, the sensitivity of the Lanex Fast was found to decrease by 1% per 100 MeV increase of the energy. By using electron beams from LPA, cross calibrations of the charge were carried out with an integrating current transformer, scintillating screen (Lanex from Kodak), and activation based measurement. The diagnostics agreed within ~8%, showing that they all can provide accurate charge measurements for LPAs provided necessary cares. Work supported by the Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Performance study of the neutron-TPC
NASA Astrophysics Data System (ADS)
Huang, Meng; Li, Yulan; Niu, Libo; Deng, Zhi; Cheng, Xiaolei; He, Li; Zhang, Hongyan; Fu, Jianqiang; Yan, Yangyang; Cai, Yiming; Li, Yuanjing
2017-02-01
Fast neutron spectrometers will play an important role in the future of the nuclear industry and nuclear physics experiments, in tasks such as fast neutron reactor monitoring, thermo-nuclear fusion plasma diagnostics, nuclear reaction cross-section measurement, and special nuclear material detection. Recently, a new fast neutron spectrometer based on a GEM (Gas Electron Multiplier amplification)-TPC (Time Projection Chamber), named the neutron-TPC, has been under development at Tsinghua University. It is designed to have a high energy resolution, high detection efficiency, easy access to the medium material, an outstanding n/γ suppression ratio, and a wide range of applications. This paper presents the design, test, and experimental study of the neutron-TPC. Based on the experimental results, the energy resolution (FWHM) of the neutron-TPC can reach 15.7%, 10.3% and 7.0% with detection efficiency higher than 10-5 for 1.2 MeV, 1.81 MeV and 2.5 MeV neutrons respectively. Supported by National Natural Science Foundation of China (11275109)
NASA Astrophysics Data System (ADS)
Paramanik, Dipak; Varma, Shikha
2008-04-01
The controlled formation of nano-dots, using ion beams as tool, has become important as it offers a unique method to generate non-equilibrium phases with novel physical properties and structures with nano-dimensions. We have investigated the creation of self assembled nano- dots on InP(111) surfaces after 3 keV as well as 1.5 MeV ion beams at a large range of fluences. We have studied the Scaling exponents of the evolved surfaces by utilizing the technique of Scanning Probe Microscopy (SPM). At keV energies ripening of the nano-dots is seen below a critical time whereas an inverse ripening is observed for longer durations. At the critical time square shaped array of nano --dots are observed. The dots are characterized by narrow height and size distributions. Nano dots have also been observed at MeV ion irradiations. Their size distribution though broad at lowest fluence decreases for larger fluences.
Fast neutron response of 6Li-depleted CLYC detectors up to 20 MeV
NASA Astrophysics Data System (ADS)
D`Olympia, N.; Chowdhury, P.; Jackson, E. G.; Lister, C. J.
2014-11-01
The response of 6Li-depleted Cs2LiYCl6 (CLYC) to high-energy neutrons has been investigated using a pair of 1 in.×1 in. crystals. These are the first two detectors of their kind, which will comprise a 16-element array for studies in fast neutron spectroscopy. Their thermal neutron response has been compared with standard CLYC crystals with a 6Li enrichment of 95%, demonstrating excellent suppression of the overwhelming thermal neutron background. The response to mono-energetic neutrons over a range of 0.5 to 20 MeV was tested. From this, the response function, energy resolution, and pulse-shape discrimination up to 20 MeV were characterized. Detailed Monte Carlo investigations with MCNPX have been used to show that the dominant reaction mechanisms contributing to the observed response are 35Cl(n,p) and 35Cl(n,α). Preliminary investigations have also demonstrated the possibility for separating events from these two reactions.
NASA Astrophysics Data System (ADS)
Liang, Wei; Zhu, Fei; Ling, Yunhan; Liu, Kezhao; Hu, Yin; Pan, Qifa; Chen, Limin; Zhang, Zhengjun
2018-05-01
Mechanical and structural evolutions of single-crystalline silicon irradiated by a series of doses 1 MeV Au+ ions and Cu+ ions are characterized by Surface laser-acoustic wave spectroscopy by (LA wave), Rutherford backscattering spectrometry and channeling (RBS/C) and transmission electron microscopy (TEM). The behavior of implanted Au+ and Cu+ ions was also simulated by using Stopping and range of ions in matter (SRIM) software package, respectively. It is demonstrated that LA wave and RBS could be applied for accurate evaluation of the TEM observed amorphous layer's thickness. The modified mechanical properties depend on the species and the dose of implantation. For 1 MeV Au+ ions, the threshold dose of completely amorphous is 5 × 1014 atoms/cm2, while the one for Cu+ ions is 5 × 1015 atoms/cm2. Upon completely amorphous, the young's modulus and layer density decreased significantly while saturated with the dose increasing sequentially.
Nuclear physics for materials technology
NASA Astrophysics Data System (ADS)
Conlon, T. W.
1987-04-01
Although particle accelerators have traditionally been used to further our knowledge of nuclear physics, the last decade or so has seen a rapid growth of their involvement in materials technology — both to modify materials and to provide analytical information at the atomic level that cannot be obtained in other ways. The deployment of ion beams in these areas has occurred in three phases: first the exploitation of keV ion beams (in ion implantation and SIMS) then MeV light ion beams (using RBS, NRA, PIXE analysis and TLA) and currently MeV heavy ion beams, together with the associated fast recoil atoms and nuclei that they produce in interactions with materials. This trend has been accompanied by the gradual assimilation of methods such as energy analysis, microbeam focussing, particle identification, time of flight and coincidence techniques, etc., which were first developed for experimental nuclear physics use. Current examples of developments in the MeV range relevant to phases 2 and 3 are given.
Optical signature of Weyl electronic structures in tantalum pnictides Ta P n (P n = P, As)
NASA Astrophysics Data System (ADS)
Kimura, Shin-ichi; Yokoyama, Hiroko; Watanabe, Hiroshi; Sichelschmidt, Jörg; Süß, Vicky; Schmidt, Marcus; Felser, Claudia
2017-08-01
To investigate the electronic structure of Weyl semimetals Ta P n (P n = P, As), optical conductivity [σ (ω )] spectra are measured over a wide range of photon energies and temperatures, and these measured values are compared with band calculations. Two significant structures can be observed: a bending structure at ℏ ω ˜85 meV in TaAs, and peaks at ℏ ω ˜ 50 meV (TaP) and ˜30 meV (TaAs). The bending structure can be explained by the interband transition between saddle points connecting a set of W2 Weyl points. The temperature dependence of the peak intensity can be fitted by assuming the interband transition between saddle points connecting a set of W1 Weyl points. Owing to the different temperature dependence of the Drude weight in both materials, it is found that the Weyl points of TaAs are located near the Fermi level, whereas those of TaP are further away.
Detailed characterization of the LLNL imaging proton spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasmus, A. M., E-mail: rasmus@lanl.gov, E-mail: arasmus@umich.edu; University of Michigan, Ann Arbor, Michigan 48109; Hazi, A. U.
2016-11-15
Ultra-intense short pulse lasers incident on solid targets (e.g., thin Au foils) produce well collimated, broad-spectrum proton beams. These proton beams can be used to characterize magnetic fields, electric fields, and density gradients in high energy-density systems. The LLNL-Imaging Proton Spectrometer (L-IPS) was designed and built [H. Chen et al., Rev. Sci. Instrum. 81, 10D314 (2010)] for use with such laser produced proton beams. The L-IPS has an energy range of 50 keV-40 MeV with a resolving power (E/dE) of about 275 at 1 MeV and 21 at 20 MeV, as well as a single spatial imaging axis. In ordermore » to better characterize the dispersion and imaging capability of this diagnostic, a 3D finite element analysis solver is used to calculate the magnetic field of the L-IPS. Particle trajectories are then obtained via numerical integration to determine the dispersion relation of the L-IPS in both energy and angular space.« less
NIST Calibration of a Neutron Spectrometer ROSPEC.
Heimbach, Craig
2006-01-01
A neutron spectrometer was acquired for use in the measurement of National Institute of Standards and Technology neutron fields. The spectrometer included options for the measurement of low and high energy neutrons, for a total measurement range from 0.01 eV up to 17 MeV. The spectrometer was evaluated in calibration fields and was used to determine the neutron spectrum of an Americium-Beryllium neutron source. The calibration fields used included bare and moderated (252)Cf, monoenergetic neutron fields of 2.5 MeV and 14 MeV, and a thermal-neutron beam. Using the calibration values determined in this exercise, the spectrometer gives a good approximation of the neutron spectrum, and excellent values for neutron fluence, for all NIST calibration fields. The spectrometer also measured an Americium-Beryllium neutron field in a NIST exposure facility and determined the field quite well. The spectrometer measured scattering effects in neutron spectra which previously could be determined only by calculation or integral measurements.
Low-lying dipole strength of the open-shell nucleus 94Mo
NASA Astrophysics Data System (ADS)
Romig, C.; Beller, J.; Glorius, J.; Isaak, J.; Kelley, J. H.; Kwan, E.; Pietralla, N.; Ponomarev, V. Yu.; Sauerwein, A.; Savran, D.; Scheck, M.; Schnorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zilges, A.; Zweidinger, M.
2013-10-01
The low-lying dipole strength of the open-shell nucleus 94Mo was studied via the nuclear resonance fluorescence technique up to 8.7 MeV excitation energy at the bremsstrahlung facility at the Superconducting Darmstadt Electron Linear Accelerator (S-DALINAC), and with Compton backscattered photons at the High Intensity γ-ray Source (HIγS) facility. In total, 83 excited states were identified. Exploiting polarized quasi-monoenergetic photons at HIγS, parity quantum numbers were assigned to 41 states excited by dipole transitions. The electric dipole-strength distribution was determined up to 8.7 MeV and compared to microscopic calculations within the quasiparticle phonon model. Calculations and experimental data are in good agreement for the fragmentation, as well as for the integrated strength. The average decay pattern of the excited states was investigated exploiting the HIγS measurements at five energy settings. Mean branching ratios to the ground state and first excited 21+ state were extracted from the measurements with quasi-monoenergetic photons and compared to γ-cascade simulations within the statistical model. The experimentally deduced mean branching ratios exhibit a resonance-like maximum at 6.4 MeV which cannot be reproduced within the statistical model. This indicates a nonstatistical structure in the energy range between 5.5 and 7.5 MeV.
Launch of the space experiment PAMELA
NASA Astrophysics Data System (ADS)
Casolino, M.; Picozza, P.; Altamura, F.; Basili, A.; De Simone, N.; Di Felice, V.; De Pascale, M. P.; Marcelli, L.; Minori, M.; Nagni, M.; Sparvoli, R.; Galper, A. M.; Mikhailov, V. V.; Runtso, M. F.; Voronov, S. A.; Yurkin, Y. T.; Zverev, V. G.; Castellini, G.; Adriani, O.; Bonechi, L.; Bongi, M.; Taddei, E.; Vannuccini, E.; Fedele, D.; Papini, P.; Ricciarini, S. B.; Spillantini, P.; Ambriola, M.; Cafagna, F.; De Marzo, C.; Barbarino, G. C.; Campana, D.; De Rosa, G.; Osteria, G.; Russo, S.; Bazilevskaja, G. A.; Kvashnin, A. N.; Maksumov, O.; Misin, S.; Stozhkov, Yu. I.; Bogomolov, E. A.; Krutkov, S. Yu.; Nikonov, N. N.; Bonvicini, V.; Boezio, M.; Lundquist, J.; Mocchiutti, E.; Vacchi, A.; Zampa, G.; Zampa, N.; Bongiorno, L.; Ricci, M.; Carlson, P.; Hofverberg, P.; Lund, J.; Orsi, S.; Pearce, M.; Menn, W.; Simon, M.
2008-08-01
PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range (protons 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50 MeV-270 GeV) and search for antimatter with a precision of the order of 10 -8. The experiment, housed on board the Russian Resurs-DK1 satellite, was launched on June 15th, 2006 in a 350 × 600 km orbit with an inclination of 70°. The detector is composed of a series of scintillator counters arranged at the extremities of a permanent magnet spectrometer to provide charge, time-of-flight, and rigidity information. Lepton/hadron identification is performed by a silicon-tungsten calorimeter and a neutron detector placed at the bottom of the device. An anticounter system is used offline to reject false triggers coming from the satellite. In self-trigger mode the calorimeter, the neutron detector, and a shower tail catcher are capable of an independent measure of the lepton component up to 2 TeV. In this work we describe the experiment, its scientific objectives, and the performance in the first months after launch.
Detection of nuclear gamma rays from Centaurus A
NASA Technical Reports Server (NTRS)
Hall, R. D.; Walraven, G. D.; Djuth, F. T.; Haymes, R. C.; Meegan, C. A.
1976-01-01
Results are reported for an observation of nuclear gamma rays in the energy range between 0.033 and 12.25 MeV from Centaurus A using a balloon-borne actively collimated NaI(Tl) crystal scintillation counter. The observing procedure is outlined, no systematic errors are found in the data, and power-law fits to the source's energy spectrum are attempted. A power law of approximately 0.86E to the -1.9 power photon/sq cm/sec per keV is shown to give an acceptable fit to the continuum, and the detection of two gamma-ray lines at 1.6 and 4.5 MeV, respectively, is discussed. It is found that the low-energy gamma-ray luminosity of Cen A is 9.4 by 10 to the 43rd power erg/sec for a distance of 5 Mpc and that Cen A is apparently variable in low-energy gamma radiation. It is suggested that the broad feature detected at 1.6 MeV may be due to three blended lines (possibly excited Ne-20, Mg-24, and Si-28), the 4.5-MeV line is most likely due to deexcitation of excited C-12, and the nuclear excitation results from either cosmic-ray bombardment of Cen A's interstellar medium or nucleosynthesis within the source.
Measurement of the 7Li(γ,t)4He reaction between 4 and 11 MeV
NASA Astrophysics Data System (ADS)
Pain, Steven; Matei, Catalin; Munch, Michael; Brune, Carl; Febbraro, Michael; Karwowski, Hugon; Walter, David; P-10-16 Experiment Collaboration
2017-09-01
The discrepancy in the primordial 7Li abundance, as derived from stellar observations and nucleosynthesis calculations at WMAP baryonic density, is sensitive to alpha capture rates on 3He and 3H. The 3He(α, γ)7Be reaction has been well studied over a wide range of energies, but for 3H(α, γ)7Li discrepancies exist in measurements below ECM = 1 MeV, and limited data above 1.2 MeV do not sufficiently constrain the contribution from higher-lying resonances at astrophysical energies. To contribute to the understanding of this process we have measured cross sections and angular distributions for the time-reversed 7Li(γ, α)3H reaction. The measurement was performed at the HIGS facility at the Triangle Universities Nuclear Laboratory (TUNL) using quasi-monoenergetic ( 3 % resolution) photon energies between 4 and 11 MeV. Tritons and alpha particles were detected in silicon detectors of SIDAR surrounding the 7Li target, and the beam intensity was monitored using multiple techniques. Details of the measurement, including the challenges of charged-particle measurements with gamma-ray beams, and preliminary results will be presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, M.C.; McDaniel, F.D.; Duggan, J.L.
1984-01-01
L-shell x-ray production cross sections in /sub 60/Nd, /sub 64/Gd, /sub 67/Ho, /sub 70/Yb, /sub 79/Au and /sub 82/Pb have been measured for incident 25 MeV /sub 6//sup 12/C/sup +q/(q = 4,5,6) and 32 MeV /sub 8//sup 16/O/sup +q/(q = 5,7,8) ions. Measurements were made on targets ranging in thickness from 1 to 100 ..mu..g/cm/sup 2/. Echancement in the L-shell x-ray production cross section for projectiles with one or two K-shell vacancies over those for projectiles with no K-shell vacancies is observed. The sum of direct ionization to the continuum (DI) plus electron capture (EC) to the L,M,N ... shellsmore » and EC to the K-shell of the projectile have been extracted from the data. Calculations in the first Born approximation are approx. 10 times larger than the data. Predictions of the ECPSSR theory that accounts for the energy-loss, Coulomb deflection, perturbed-stationary state, and relativistic effects are in good agreement with the data for both ions.« less
The 2-MEV model: Constancy of adolescent environmental values within an 8-year time frame
NASA Astrophysics Data System (ADS)
Bogner, F. X.; Johnson, B.; Buxner, S.; Felix, L.
2015-08-01
The 2-MEV model is a widely used tool to monitor children's environmental perception by scoring individual values. Although the scale's validity has been confirmed repeatedly and independently as well as the scale is in usage within more than two dozen language units all over the world, longitudinal properties still need clarification. The purpose of the present study therefore was to validate the 2-MEV scale based on a large data basis of 10,676 children collected over an eight-year period. Cohorts of three different US states contributed to the sample by responding to a paper-and-pencil questionnaire within their pre-test initiatives in the context of field center programs. Since we used only the pre-program 2-MEV scale results (which is before participation in education programs), the data were clearly unspoiled by any follow-up interventions. The purpose of analysis was fourfold: First, to test and confirm the hypothesized factorized structure for the large data set and for the subsample of each of the three states. Second, to analyze the scoring pattern across the eight years' time range for both preservation and utilitarian preferences. Third, to investigate any age effects in the extracted factors. Finally, to extract suitable recommendations for educational implementation efforts.
Time-of-flight mass measurements for nuclear processes in neutron star crusts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estrade, Alfredo; Matos, M.; Schatz, Hendrik
2011-01-01
The location of electron capture heat sources in the crust of accreting neutron stars depends on the masses of extremely neutron-rich nuclei. We present first results from a new implementation of the time-of-flight technique to measure nuclear masses of rare isotopes at the National Supercon- ducting Cyclotron Laboratory. The masses of 16 neutron-rich nuclei in the Sc Ni element range were determined simultaneously, improving the accuracy compared to previous data in 12 cases. The masses of 61V, 63Cr, 66Mn, and 74Ni were measured for the first time with mass excesses of 30.510(890) MeV, 35.280(650) MeV, 36.900(790) MeV, and 49.210(990) MeV,more » respectively. With the measurement of the 66Mn mass, the location of the two dominant heat sources in the outer crust of accreting neutron stars, which exhibit so called superbursts, is now experimentally constrained. We find that the location of the 66Fe 66Mn electron capture transition occurs sig- nificantly closer to the surface than previously assumed because our new experimental Q-value is 2.1 MeV smaller than predicted by the FRDM mass model. The results also provide new insights into the structure of neutron-rich nuclei around N = 40.« less
Film Vetoes for Alpha Background Rejection in Bolometer Detectors
NASA Astrophysics Data System (ADS)
Deporzio, Nicholas; Bucci, Carlo; Canonica, Lucia; Divacri, Marialaura; Cuore Collaboration; Absurd Team
2015-04-01
This study characterizes the effectiveness of encasing bolometer detectors in scintillator, metal ionization, and more exotic films to veto alpha radiation background. Bolometers are highly susceptible to alpha background and a successful veto should boost the statistical strength, speed, and signal-background ratio of bolometer particle searches. Plastic scintillator films are cooled to bolometer temperatures and bombarded with 1.4 MeV to 6.0 MeV alpha particles representative of detector conditions. Photomultipliers detect the keV range scintillation light and produce a veto signal. Also, layered films of a primary metal, dielectric, and secondary metal, such as gold-polyethylene-gold films, are cooled to milli-kelvin temperatures and biased with 0.1V to 100V to produce a current signal when incident 1.4 MeV to 6.0 MeV alpha particles ionize conduction paths through the film. Veto signals are characterized by their affect on bolometer detection of 865 keV target signals. Similar methods are applied to more exotic films. Early results show scintillator films raise target signal count rate and suppress counts above target energy by at least a factor of 10. This indicates scintillation vetoes are effective and that metal ionization and other films under study will also be effective.
Medvedev, Dmitri G; Mausner, Leonard F; Pile, Philip
2015-07-01
This paper reports results of experiments at Brookhaven Linac Isotope Producer (BLIP) aiming to investigate effective production of positron emitting radioisotope (86)Y by the low energy (86)Sr(p,n) reaction. BLIP is a facility at Brookhaven National Laboratory designed for the proton irradiation of the targets for isotope production at high and intermediate proton energies. The proton beam is delivered by the Linear Accelerator (LINAC) whose incident energy is tunable from 200 to 66 MeV in approximately 21 MeV increments. The array was designed to ensure energy degradation from 66 MeV down to less than 20 MeV. Aluminum slabs were used to degrade the proton energy down to the required range. The production yield of (86)Y (1.2+/-0.1 mCi (44.4+/-3.7) MBq/μAh) and ratio of radioisotopic impurities was determined by assaying an aliquot of the irradiated (86)SrCl2 solution by gamma spectroscopy. The analysis of energy dependence of the (86)Y production yield and the ratios of radioisotopic impurities has been used to adjust degrader thickness. Experimental data showed substantial discrepancies in actual energy propagation compared to energy loss calculations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Development and Characterization of a High Sensitivity Segmented Fast Neutron Spectrometer (FaNS-2)
Langford, T.J.; Beise, E.J.; Breuer, H.; Heimbach, C.R.; Ji, G.; Nico, J.S.
2016-01-01
We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and 3He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a 3He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated 252Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra are unfolded using a Singular Value Decomposition method, demonstrating a 5% energy resolution at 14 MeV. Finally, we discuss plans for measuring the surface and underground cosmogenic neutron spectra with FaNS-2. PMID:27226807
Exchange interaction between the triplet exciton and the localized spin in copper-phthalocyanine.
Wu, Wei
2014-06-14
Triplet excitonic state in the organic molecule may arise from a singlet excitation and the following inter-system crossing. Especially for a spin-bearing molecule, an exchange interaction between the triplet exciton and the original spin on the molecule can be expected. In this paper, such exchange interaction in copper-phthalocyanine (CuPc, spin-½) was investigated from first-principles by using density-functional theory within a variety of approximations to the exchange correlation, ranging from local-density approximation to long-range corrected hybrid-exchange functional. The magnitude of the computed exchange interaction is in the order of meV with the minimum value (1.5 meV, ferromagnetic) given by the long-range corrected hybrid-exchange functional CAM-B3LYP. This exchange interaction can therefore give rise to a spin coherence with an oscillation period in the order of picoseconds, which is much shorter than the triplet lifetime in CuPc (typically tens of nanoseconds). This implies that it might be possible to manipulate the localized spin on Cu experimentally using optical excitation and inter-system crossing well before the triplet state disappears.
The detection of ultra-relativistic electrons in low Earth orbit
NASA Astrophysics Data System (ADS)
Katsiyannis, Athanassios C.; Dominique, Marie; Pierrard, Viviane; Rosson, Graciela Lopez; Keyser, Johan De; Berghmans, David; Kruglanski, Michel; Dammasch, Ingolf E.; Donder, Erwin De
2018-01-01
Aims: To better understand the radiation environment in low Earth orbit (LEO), the analysis of in-situ observations of a variety of particles, at different atmospheric heights, and in a wide range of energies, is needed. Methods: We present an analysis of energetic particles, indirectly detected by the large yield radiometer (LYRA) instrument on board ESA's project for on-board autonomy 2 (PROBA2) satellite as background signal. Combining energetic particle telescope (EPT) observations with LYRA data for an overlapping period of time, we identified these particles as electrons with an energy range of 2 to 8 MeV. Results: The observed events are strongly correlated to geo-magnetic activity and appear even during modest disturbances. They are also well confined geographically within the L = 4-6 McIlwain zone, which makes it possible to identify their source. Conclusions: Although highly energetic particles are commonly perturbing data acquisition of space instruments, we show in this work that ultra-relativistic electrons with energies in the range of 2-8 MeV are detected only at high latitudes, while not present in the South Atlantic Anomaly region.
Attenuation of thermal neutrons by an imperfect single crystal
NASA Astrophysics Data System (ADS)
Naguib, K.; Adib, M.
1996-06-01
A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3 - 40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range.
Two detector arrays for fast neutrons at LANSCE
NASA Astrophysics Data System (ADS)
Haight, R. C.; Lee, H. Y.; Taddeucci, T. N.; O'Donnell, J. M.; Perdue, B. A.; Fotiades, N.; Devlin, M.; Ullmann, J. L.; Laptev, A.; Bredeweg, T.; Jandel, M.; Nelson, R. O.; Wender, S. A.; White, M. C.; Wu, C. Y.; Kwan, E.; Chyzh, A.; Henderson, R.; Gostic, J.
2012-03-01
The neutron spectrum from neutron-induced fission needs to be known in designing new fast reactors, predicting criticality for safety analyses, and developing techniques for global security application. The experimental data base of fission neutron spectra is very incomplete and most present evaluated libraries are based on the approach of the Los Alamos Model. To validate these models and to provide improved data for applications, a program is underway to measure the fission neutron spectrum for a wide range of incident neutron energies using the spallation source of fast neutrons at the Weapons Neutron Research (WNR) facility at the Los Alamos Neutron Science Center (LANSCE). In a double time-of-flight experiment, fission neutrons are detected by arrays of neutron detectors to increase the solid angle and also to investigate possible angular dependence of the fission neutrons. The challenge is to measure the spectrum from low energies, down to 100 keV or so, to energies over 10 MeV, where the evaporation-like spectrum decreases by 3 orders of magnitude from its peak around 1 MeV. For these measurements, we are developing two arrays of neutron detectors, one based on liquid organic scintillators and the other on 6Li-glass detectors. The range of fission neutrons detected by organic liquid scintillators extends from about 600 keV to well over 10 MeV, with the lower limit being defined by the limit of pulse-shape discrimination. The 6Li-glass detectors have a range from very low energies to about 1 MeV, where their efficiency then becomes small. Various considerations and tests are in progress to understand important contributing factors in designing these two arrays and they include selection and characterization of photomultiplier tubes (PM), the performance of relatively thin (1.8 cm) 6Li-glass scintillators on 12.5 cm diameter PM tubes, use of 17.5 cm diameter liquid scintillators with 12.5 cm PM tubes, measurements of detector efficiencies with tagged neutrons from the WNR/LANSCE neutron beam, and efficiency calibration with 252Cf spontaneous fission neutrons. Design considerations and test results are presented.
NASA Astrophysics Data System (ADS)
Amgarou, K.; Bedogni, R.; Domingo, C.; Esposito, A.; Gentile, A.; Carinci, G.; Russo, S.
2011-10-01
The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments. In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to E<20 MeV if only polyethylene spheres are used, but can be extended to hundreds of MeV by including metal-loaded spheres (extended range BSS, indicated with ERBSS). With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, an ERBSS experiment was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN—LNS (Laboratori Nazionali del Sud), where a proton beam routinely used for ophthalmic cancer treatments is available. The 62 MeV beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. Here the ERBSS of UAB (Universidad Autónoma de Barcelona— Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Frascati) were exposed to characterize the "forward" and "sideward" proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and independently established and calibrated, is important for guaranteeing the robustness of the measured spectra and estimating their overall uncertainties.
Ion therapy for uveal melanoma in new human eye phantom based on GEANT4 toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahdipour, Seyed Ali; Mowlavi, Ali Asghar, E-mail: amowlavi@hsu.ac.ir; ICTP, Associate Federation Scheme, Medical Physics Field, Trieste
Radiotherapy with ion beams like proton and carbon has been used for treatment of eye uveal melanoma for many years. In this research, we have developed a new phantom of human eye for Monte Carlo simulation of tumors treatment to use in GEANT4 toolkit. Total depth−dose profiles for the proton, alpha, and carbon incident beams with the same ranges have been calculated in the phantom. Moreover, the deposited energy of the secondary particles for each of the primary beams is calculated. The dose curves are compared for 47.8 MeV proton, 190.1 MeV alpha, and 1060 MeV carbon ions that havemore » the same range in the target region reaching to the center of tumor. The passively scattered spread-out Bragg peak (SOBP) for each incident beam as well as the flux curves of the secondary particles including neutron, gamma, and positron has been calculated and compared for the primary beams. The high sharpness of carbon beam's Bragg peak with low lateral broadening is the benefit of this beam in hadrontherapy but it has disadvantages of dose leakage in the tail after its Bragg peak and high intensity of neutron production. However, proton beam, which has a good conformation with tumor shape owing to the beam broadening caused by scattering, can be a good choice for the large-size tumors.« less
NASA Astrophysics Data System (ADS)
Sun, M. L.; Peng, H. B.; Duan, B. H.; Liu, F. F.; Du, X.; Yuan, W.; Zhang, B. T.; Zhang, X. Y.; Wang, T. S.
2018-03-01
Borosilicate glass has potential application for vitrification of high-level radioactive waste, which attracts extensive interest in studying its radiation durability. In this study, sodium borosilicate glass samples were irradiated with 4 MeV Kr17+ ion, 5 MeV Xe26+ ion and 0.3 MeV P+ ion, respectively. The hardness of irradiated borosilicate glass samples was measured with nanoindentation in continuous stiffness mode and quasi continuous stiffness mode, separately. Extrapolation method, mean value method, squared extrapolation method and selected point method are used to obtain hardness of irradiated glass and a comparison among these four methods is conducted. The extrapolation method is suggested to analyze the hardness of ion irradiated glass. With increasing irradiation dose, the values of hardness for samples irradiated with Kr, Xe and P ions dropped and then saturated at 0.02 dpa. Besides, both the maximum variations and decay constants for three kinds of ions with different energies are similar indicates the similarity behind the hardness variation in glasses after irradiation. Furthermore, the hardness variation of low energy P ion irradiated samples whose range is much smaller than those of high energy Kr and Xe ions, has the same trend as that of Kr and Xe ions. It suggested that electronic energy loss did not play a significant role in hardness decrease for irradiation of low energy ions.
Calorimetry of electron beams and the calibration of dosimeters at high doses
NASA Astrophysics Data System (ADS)
Humphreys, J. C.; McLaughlin, W. L.
Graphite or metal calorimeters are used to make absolute dosimetric measurements of high-energy electron beams. These calibrated beams are then used to calibrate several types of dosimeters for high-dose applications such as medical-product sterilization, polymer modification, food processing, or electronic-device hardness testing. The electron beams are produced either as continuous high-power beams at approximately 4.5 MeV by d.c. type accelerators or in the energy range of approximately 8 to 50 MeV using pulsed microwave linear accelerators (linacs). The continuous beams are generally magnetically scanned to produce a broad, uniform radiation environment for the processing of materials of extended lateral dimensions. The higher-energy pulsed beams may also be scanned for processing applications or may be used in an unscanned, tightly-focused mode to produce maximum absorbed dose rates such as may be required for electronic-device radiation hardness testing. The calorimeters are used over an absorbed dose range of 10 2 to 10 4 Gy. Intercomparison studies are reported between National Institute of Standards and Technology (NIST) and UK National Physical Laboratory (NPL) graphite disk calorimeters at high doses, using the NPL 10-MeV linac, and agreement was found within 1.5%. It was also shown that the electron-beam responses of radiochromic film dosimeters and alanine pellet dosimeters can be accurately calibrated by comparison with calorimeter readings.
NASA Astrophysics Data System (ADS)
Cyamukungu, Mathias; Benck, Sylvie; Borisov, Stanislav; Grégoire, Ghislain; Cabrera, Juan; Bonnet, Jean-Luc; Desoete, Bart; Preud'homme, Frank; Semaille, Christophe; Creve, Glenn; De Saedeleer, Juergen; Ilsen, Stijn; De Busser, Luc; Pierrard, Viviane; Bonnewijn, Sabrina; Maes, Jeroen; Van Ransbeeck, Emiel; Neefs, Eddy; Lemaire, Joseph; Valtonen, Eino; Punkkinen, Risto; Anciaux, Michel; Litefti, Karim; Brun, Nicolas; Pauwels, Dirk; Quevrin, Cyril; Moreau, Didier; Helderweirt, Anuschka; Hajdas, Wojtek; Nieminen, Petteri
2014-12-01
This paper provides a detailed description of the Energetic Particle Telescope (EPT) accommodated on board the PROBA-V satellite launched on May 7th, 2013 on a LEO, 820 km altitude, 98.7 ° inclination and a 10:30-11:30 Local Time at Descending Node. The EPT is an ionizing particle spectrometer that was designed based on a new concept and the most advanced signal processing technologies: it performs in-flight electron and ion discrimination and classifies each detected particle in its corresponding physical channels from which the incident spectrum can be readily reconstructed. The detector measures electron fluxes in the energy range 0.5-20 MeV, proton fluxes in the energy range 9.5-300 MeV and He-ion fluxes between 38 and 1200 MeV. The EPT is a modular configurable instrument with customizable maximum energy, field of view angle, geometrical factor and angular resolution. Therefore, the features of the currently flying instrument may slightly differ from those described in past or future configurations. After a description of the instrument along with the data acquisition and analysis procedures, the first particle fluxes measured by the EPT will be shown and discussed. The web-site located at http://web.csr.ucl.ac.be/csr_web/probav/ which daily displays measured fluxes and other related studies will also be briefly described.
The Neutrons for Science Facility at SPIRAL-2
NASA Astrophysics Data System (ADS)
Ledoux, X.; Aïche, M.; Avrigeanu, M.; Avrigeanu, V.; Audouin, L.; Balanzat, E.; Ban-détat, B.; Ban, G.; Barreau, G.; Bauge, E.; Bélier, G.; Bem, P.; Blideanu, V.; Borcea, C.; Bouffard, S.; Caillaud, T.; Chatillon, A.; Czajkowski, S.; Dessagne, P.; Doré, D.; Fallot, M.; Farget, F.; Fischer, U.; Giot, L.; Granier, T.; Guillous, S.; Gunsing, F.; Gustavsson, C.; Jacquot, B.; Jansson, K.; Jurado, B.; Kerveno, M.; Klix, A.; Landoas, O.; Lecolley, F. R.; Lecouey, J. L.; Majerle, M.; Marie, N.; Materna, T.; Mrazek, J.; Negoita, F.; Novak, J.; Oberstedt, S.; Oberstedt, A.; Panebianco, S.; Perrot, L.; Plompen, A. J. M.; Pomp, S.; Ramillon, J. M.; Ridikas, D.; Rossé, B.; Rudolf, G.; Serot, O.; Simakov, S. P.; Simeckova, E.; Smith, A. G.; Sublet, J. C.; Taieb, J.; Tassan-Got, L.; Tarrio, D.; Takibayev, A.; Thfoin, I.; Tsekhanovich, I.; Varignon, C.
2014-05-01
The Neutrons For Science (NFS) facility is a component of SPIRAL-2 laboratory under construction at Caen (France). SPIRAL-2 is dedicated to the production of high intensity Radioactive Ions Beams (RIB). It is based on a high-power linear accelerator (LINAG) to accelerate deuterons beams in order to produce neutrons by breakup reactions on a C converter. These neutrons will induce fission in 238U for production of radioactive isotopes. Additionally to the RIB production, the proton and deuteron beams delivered by the accelerator will be used in the NFS facility. NFS is composed of a pulsed neutron beam and irradiation stations for cross-section measurements and material studies. The beams delivered by the LINAG will allow producing intense neutron beams in the 100 keV-40 MeV energy range with either a continuous or quasi-mono-energetic spectrum. At NFS available average fluxes will be up to 2 orders of magnitude higher than those of other existing time-of-flight facilities in the 1 MeV - 40 MeV range. NFS will be a very powerful tool for fundamental physics and application related research in support of the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. The facility and its characteristics are described, and several examples of the first potential experiments are presented.
Radiation hardness study of semi-insulating GaAs detectors against 5 MeV electrons
NASA Astrophysics Data System (ADS)
Šagátová, A.; Zaťko, B.; Nečas, V.; Sedlačková, K.; Boháček, P.; Fülöp, M.; Pavlovič, M.
2018-01-01
A radiation hardness study of Semi-Insulating (SI) GaAs detectors against 5 MeV electrons is described in this paper. The influence of two parameters, the accumulative absorbed dose (from 1 to 200 kGy) and the applied dose rate (20, 40 or 80 kGy/h), on detector spectrometric properties were studied. The accumulative dose has influenced all evaluated spectrometric properties and also negatively affected the detector CCE (Charge Collection Efficiency). We have observed its systematic reduction from an initial 79% before irradiation down to about 51% at maximum dose of 200 kGy. Relative energy resolution was also influenced by electron irradiation. Its degradation was obvious in the range of doses from 24 up to a maximum dose of 200 kGy, where an increase from 19% up to 31% at 200 V reverse voltage was noticed. On the other hand, a global increase of detection efficiency with accumulative absorbed dose was observed for all samples. Concerning the actual detector degradation we can assume that the tested SI GaAs detectors will be able to operate up to a dose of 300 kGy at least, when irradiated by 5 MeV electrons. The second investigated parameter of irradiation, the dose rate of chosen ranges, did not greatly alter the spectrometric properties of studied detectors.
Precision imaging of 4.4 MeV gamma rays using a 3-D position sensitive Compton camera.
Koide, Ayako; Kataoka, Jun; Masuda, Takamitsu; Mochizuki, Saku; Taya, Takanori; Sueoka, Koki; Tagawa, Leo; Fujieda, Kazuya; Maruhashi, Takuya; Kurihara, Takuya; Inaniwa, Taku
2018-05-25
Imaging of nuclear gamma-ray lines in the 1-10 MeV range is far from being established in both medical and physical applications. In proton therapy, 4.4 MeV gamma rays are emitted from the excited nucleus of either 12 C* or 11 B* and are considered good indicators of dose delivery and/or range verification. Further, in gamma-ray astronomy, 4.4 MeV gamma rays are produced by cosmic ray interactions in the interstellar medium, and can thus be used to probe nucleothynthesis in the universe. In this paper, we present a high-precision image of 4.4 MeV gamma rays taken by newly developed 3-D position sensitive Compton camera (3D-PSCC). To mimic the situation in proton therapy, we first irradiated water, PMMA and Ca(OH)2 with a 70 MeV proton beam, then we identified various nuclear lines with the HPGe detector. The 4.4 MeV gamma rays constitute a broad peak, including single and double escape peaks. Thus, by setting an energy window of 3D-PSCC from 3 to 5 MeV, we show that a gamma ray image sharply concentrates near the Bragg peak, as expected from the minimum energy threshold and sharp peak profile in the cross section of 12 C(p,p) 12 C*.
Pasta nucleosynthesis: Molecular dynamics simulations of nuclear statistical equilibrium
NASA Astrophysics Data System (ADS)
Caplan, M. E.; Schneider, A. S.; Horowitz, C. J.; Berry, D. K.
2015-06-01
Background: Exotic nonspherical nuclear pasta shapes are expected in nuclear matter at just below saturation density because of competition between short-range nuclear attraction and long-range Coulomb repulsion. Purpose: We explore the impact nuclear pasta may have on nucleosynthesis during neutron star mergers when cold dense nuclear matter is ejected and decompressed. Methods: We use a hybrid CPU/GPU molecular dynamics (MD) code to perform decompression simulations of cold dense matter with 51 200 and 409 600 nucleons from 0.080 fm-3 down to 0.00125 fm-3 . Simulations are run for proton fractions YP= 0.05, 0.10, 0.20, 0.30, and 0.40 at temperatures T = 0.5, 0.75, and 1.0 MeV. The final composition of each simulation is obtained using a cluster algorithm and compared to a constant density run. Results: Size of nuclei in the final state of decompression runs are in good agreement with nuclear statistical equilibrium (NSE) models for temperatures of 1 MeV while constant density runs produce nuclei smaller than the ones obtained with NSE. Our MD simulations produces unphysical results with large rod-like nuclei in the final state of T =0.5 MeV runs. Conclusions: Our MD model is valid at higher densities than simple nuclear statistical equilibrium models and may help determine the initial temperatures and proton fractions of matter ejected in mergers.
Long-term mortality and cancer risk in irradiated rhesus monkeys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, D.H.
1991-05-01
Continuous, 24-year observations on a group of 358 rhesus monkeys reveal that life shortening from exposure to protons in the energy range encountered in the Van Allen belts and solar proton events is influenced primarily by the dose rather than by the energy of radiation. Life shortening in groups exposed to similar surface doses of 138- to 2300-MeV and 32- to 55-MeV protons are not significantly different, but the low-energy protons are associated with more deaths in the early years, while the high-energy protons contribute more to mortality in later years. In males, the most significant cause of life shorteningmore » is nonleukemia cancers. In females, radiation increased the risk of endometriosis (an abnormal proliferation of the lining of the uterus) which resulted in significant mortality in the years before early detection and treatment methods were employed. Animals exposed to 55-MeV protons had a high incidence of malignant brain tumors with latent periods ranging from 13 months to 20 years. The first fatal cancer among nonirradiated controls occurred 18 years after the study began. Analysis of the dose-response data supports the 1989 guidelines of the NCRP for maximum permissible radiation exposures in astronauts (NCRP, Guidance on Radiation Received in Space Activities, Report No. 98, National Council on Radiation Protection and Measurements, Bethesda, MD, 1989).« less
NASA Astrophysics Data System (ADS)
Gauthier, N.; Fennell, A.; Prévost, B.; Uldry, A.-C.; Delley, B.; Sibille, R.; Désilets-Benoit, A.; Dabkowska, H. A.; Nilsen, G. J.; Regnault, L.-P.; White, J. S.; Niedermayer, C.; Pomjakushin, V.; Bianchi, A. D.; Kenzelmann, M.
2017-04-01
Magnetic frustration and low dimensionality can prevent long-range magnetic order and lead to exotic correlated ground states. SrDy2O4 consists of magnetic Dy3 + ions forming magnetically frustrated zigzag chains along the c axis and shows no long-range order to temperatures as low as T =60 mK. We carried out neutron scattering and ac magnetic susceptibility measurements using powder and single crystals of SrDy2O4 . Diffuse neutron scattering indicates strong one-dimensional (1D) magnetic correlations along the chain direction that can be qualitatively accounted for by the axial next-nearest-neighbor Ising model with nearest-neighbor and next-nearest-neighbor exchange J1=0.3 meV and J2=0.2 meV, respectively. Three-dimensional (3D) correlations become important below T*≈0.7 K. At T =60 mK, the short-range correlations are characterized by a putative propagation vector k1 /2=(0 ,1/2 ,1/2 ) . We argue that the absence of long-range order arises from the presence of slowly decaying 1D domain walls that are trapped due to 3D correlations. This stabilizes a low-temperature phase without long-range magnetic order, but with well-ordered chain segments separated by slowly moving domain walls.
Evaluation of the radiation hazard for ion-beam analysis with MeV external proton beams (X-IBA)
NASA Astrophysics Data System (ADS)
Hofsäss, Hans
2018-07-01
MeV ion beams which are extracted into air or He atmosphere are used in many labs for proton-induced X-ray emission (PIXE), proton induced gamma ray emission (PIGE) or Rutherford backscattering (RBS) to analyze samples which are difficult or impossible to handle in vacuum. When MeV proton beams are extracted into air through thin Kapton foils or nowadays thin silicon nitride membranes, the protons will interact with air, as well as elements present in the analyzed samples. Typically the range of MeV protons in air is several cm, in Helium atmosphere several 10 cm and in human skin around 100 μm. Besides the severe radiation hazard in case of a direct exposure of skin with protons, there are a manifold of nuclear reactions or inelastic proton scattering processes which may cause activation of air and target materials but also prompt radiation. The radiation hazard associated with the direct and scattered beam, nuclear reaction products and radionuclide production in air have been discussed in a publication by Doyle et al. in 1991 which was used as a reference in several later publications. I have reevaluated the radiation hazards for external proton beams with up to 4.5 MeV using proton reaction cross sections taken from the JANIS book of proton induced cross sections. The radionuclide production in air is about 3 orders of magnitude lower compared to values given in the 1991 publication. Radionuclide production as well as generation of prompt alpha, gamma and neutron radiation in target materials for elements up to molybdenum is also evaluated.
The band structure of birefractive CdGa2S4 crystals
NASA Astrophysics Data System (ADS)
Stamov, I. G.; Syrbu, N. N.; Parvan, V. I.; Zalamai, V. V.; Tiginyanu, I. M.
2013-11-01
In this paper, we report on the spectral dependence of Δn=no-ne for CdGa2S4 single crystals for shorter and longer wavelengths than the isotropic wavelength λ0=485.7 nm (300 K). It was established that Δn is positive at λ>λ0 and it is negative in the spectral range λ<λ0. The isotropic wavelength λ0 exhibits blue spectral shift with temperature decreasing. The ground and excited states of three excitonic series A, B and C with binding energies of 53 meV, 52 meV and 46 meV, respectively, were found out at 10 K. The effective masses of electrons for k=0 were derived from the calculation of excitonic spectra: mc∥(Е∥с)=0.21m0 and mc⊥(Е⊥с)=0.19m0. The holes masses are equal to 0.59m0 and 0.71m0 for Е∥с and Е⊥с, respectively. The value of valence bands splitting, V1-V2, by crystalline field equals 24 meV, and V2-V3 splitting due to the spin-orbital interaction equals to 130 meV. The optical functions n, k, ε1 and ε2 for Е⊥с and Е∥с polarizations were calculated by means of Kramers-Kronig analyses in the energy interval 3-6 eV. The evidenced features are discussed taking into account the results of new theoretical calculations of CdGa2S4 band structure.
A Statictical Study of 3He Enhancement in the High-Energy Solar Particles
NASA Astrophysics Data System (ADS)
Laivola, Jarno; Torsti, J.; Kocharov, L.
2003-07-01
Energetic particle observations of the ERNE instrument (the Energetic and Relativistic Nuclei and Electron experiment) onboard the Solar and Heliospheric Observatory enable the measurements of the 3 He flux beyond 15 MeV nucleon-1 with a good statistical resolution. An overview of the ERNE observations for the period from 8 February 1999 to 7 December 2000 is reported and a comprehensive statistical study is performed to learn regularities of 3 He enhancements in the high-energy range of 15-30 MeV nucleon -1 . Significant intensities of 3 He are detected in all event days with 4 He intensity exceeding ≈ 0.5 ion per (m2 s sr MeV nucleon-1 ). The abundance ratio 3 He/4 He is measured to vary within the range ˜ 0.003-2, which is well above the corresponding solar wind value. A histogram of the daily 3 He/4 He ratio reveals a sharp maximum at 3 He/4 He ≈ 0.01. Observations and analysis The early studies of the 3 He-rich solar energetic particle (SEP) events are mostly made in low energies, ˜ 1 MeV nucleon-1 , (Ko charov & Ko charov 1984, Reames, Meyer, & von Rosenvinge 1994, and references therein) but some measurements beyond 10 MeV nucleon-1 has been also carried out (Clayton, Guzik, & Wefel 2000, Bakaldin et al. 2003, Torsti et al. 2002, 2003, and references therein). This survey of SEP events is based on the particle flux measurements by ERNE/HED particle telescope (Torsti et al. 1995) from 8 February 1999 till 7 December 2000. Both helium isotop es, 3 He and 4 He, were detected in the energy channel 15-30 MeV nucleon-1 and the average geometric factor for the studied isotop es in this channel is 30.5 cm2 sr. During the selected period there were some data gaps lasting from few hours to couple of days when either the spacecraft, or more often, the instrument was not in the observation mode. There were also a couple of strong solar events, like the events in 14 July 2000 and 9 November 2000, producing the extreme particle fluxes exceeding the analysis capacity of ERNE. In those o ccasions, the data have been excluded from the analysis. Figure 1 plots time profiles of 3 He and 4 He daily count rates during 19992000. The slowly-changing line in the uppermost panel shows a lower limit for
Up-, down-, strange-, charm-, and bottom-quark masses from four-flavor lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazavov, A.; Bernard, C.; Brambilla, N.
We calculate the up-, down-, strange-, charm-, and bottom-quark masses using the MILC highly improved staggered-quark ensembles with four flavors of dynamical quarks. We use ensembles at six lattice spacings ranging frommore » $$a\\approx0.15~$$fm to $0.03~$fm and with both physical and unphysical values of the two light and the strange sea-quark masses. We use a new method based on heavy-quark effective theory (HQET) to extract quark masses from heavy-light pseudoscalar meson masses. Combining our analysis with our separate determination of ratios of light-quark masses we present masses of the up, down, strange, charm, and bottom quarks. Our results for the $$\\overline{\\text{MS}}$$-renormalized masses are $$m_u(2~\\text{GeV}) = 2.118(38)~$$MeV, $$m_d(2~\\text{GeV}) = 4.690(54)~$$MeV, $$m_s(2~\\text{GeV}) = 92.52(69)~$$MeV, $$m_c(3~\\text{GeV}) = 984.3(5.6)~$$MeV, and $$m_c(m_c) = 1273(10)~$$MeV, with four active flavors; and $$m_b(m_b) = 4197(14)~$$MeV with five active flavors. We also obtain ratios of quark masses $$m_c/m_s = 11.784(22)$$, $$m_b/m_s = 53.93(12)$$, and $$m_b/m_c = 4.577(8)$$. The result for $$m_c$$ matches the precision of the most precise calculation to date, and the other masses and all quoted ratios are the most precise to date. Moreover, these results are the first with a perturbative accuracy of $$\\alpha_s^4$$. As byproducts of our method, we obtain the matrix elements of HQET operators with dimension 4 and 5: $$\\overline{\\Lambda}_\\text{MRS}=552(30)~$$MeV in the minimal renormalon-subtracted (MRS) scheme, $$\\mu_\\pi^2 = 0.06(22)~\\text{GeV}^2$$, and $$\\mu_G^2(m_b)=0.38(2)~\\text{GeV}^2$$. The MRS scheme [Phys. Rev. D97, 034503 (2018), arXiv:1712.04983 [hep-ph
SU-F-T-69: Correction Model of NIPAM Gel and Presage for Electron and Proton PDD Measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, C; Lin, C; Tu, P
Purpose: The current standard equipment for proton PDD measurement is multilayer-parallel-ion-chamber. Disadvantage of multilayer-parallel-ion-chamber is expensive and complexity manipulation. NIPAM-gel and Presage are options for PDD measurement. Due to different stopping power, the result of NIPAM-gel and Presage need to be corrected. This study aims to create a correction model for NIPAM-gel and Presage PDD measurement. Methods: Standard water based PDD profiles of electron 6MeV, 12MeV, and proton 90MeV were acquired. Electron PDD profile after 1cm thickness of NIPAM-gel added on the top of water was measured. Electron PDD profile with extra 1cm thickness of solid water, PTW RW3, wasmore » measured. The distance shift among standard PDD, NIPAM-gel PDD, and solid water PDD at R50% was compared and water equivalent thickness correction factor (WET) was calculated. Similar process was repeated. WETs for electron with Presage, proton with NIPAM-gel, and proton with Presage were calculated. PDD profiles of electron and proton with NIPAM-gel and Presage columns were corrected with each WET. The corrected profiles were compared with standard profiles. Results: WET for electron 12MeV with NIPAM-gel was 1.135, and 1.034 for electron 12Mev with Presage. After correction, PDD profile matched to the standard profile at the fall-off range well. The difference at R50% was 0.26mm shallower and 0.39mm deeper. The same WET was used to correct electron 6MeV profile. Energy independence of electron WET was observed. The difference at R50% was 0.17mm deeper for NIPAM-gel and 0.54mm deeper for Presage. WET for proton 90MeV with NIPAM-gel was 1.056. The difference at R50% was 0.37 deeper. Quenching effect at Bragg peak was revealed. The underestimated dose percentage at Bragg peak was 27%. Conclusion: This correction model can be used to modify PDD profile with depth error within 1mm. With this correction model, NIPAM-gel and Presage can be practical at PDD profile measurement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Y. John
2016-06-15
Purpose: To obtain an improved precise gamma efficiency calibration curve of HPGe (High Purity Germanium) detector with a new comprehensive approach. Methods: Both of radioactive sources and Monte Carlo simulation (CYLTRAN) are used to determine HPGe gamma efficiency for energy range of 0–8 MeV. The HPGe is a GMX coaxial 280 cm{sup 3} N-type 70% gamma detector. Using Momentum Achromat Recoil Spectrometer (MARS) at the K500 superconducting cyclotron of Texas A&M University, the radioactive nucleus {sup 24} Al was produced and separated. This nucleus has positron decays followed by gamma transitions up to 8 MeV from {sup 24} Mg excitedmore » states which is used to do HPGe efficiency calibration. Results: With {sup 24} Al gamma energy spectrum up to 8MeV, the efficiency for γ ray 7.07 MeV at 4.9 cm distance away from the radioactive source {sup 24} Al was obtained at a value of 0.194(4)%, by carefully considering various factors such as positron annihilation, peak summing effect, beta detector efficiency and internal conversion effect. The Monte Carlo simulation (CYLTRAN) gave a value of 0.189%, which was in agreement with the experimental measurements. Applying to different energy points, then a precise efficiency calibration curve of HPGe detector up to 7.07 MeV at 4.9 cm distance away from the source {sup 24} Al was obtained. Using the same data analysis procedure, the efficiency for the 7.07 MeV gamma ray at 15.1 cm from the source {sup 24} Al was obtained at a value of 0.0387(6)%. MC simulation got a similar value of 0.0395%. This discrepancy led us to assign an uncertainty of 3% to the efficiency at 15.1 cm up to 7.07 MeV. The MC calculations also reproduced the intensity of observed single-and double-escape peaks, providing that the effects of positron annihilation-in-flight were incorporated. Conclusion: The precision improved gamma efficiency calibration curve provides more accurate radiation detection and dose calculation for cancer radiotherapy treatment.« less
TU-H-CAMPUS-TeP3-03: Dose Enhancement by Gold Nanoparticles Around the Bragg Peak of Proton Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, J; Sutherland, K; Hashimoto, T
2016-06-15
Purpose: To make clear the spatial distribution of dose enhancement around gold nanoparticles (GNPs) located near the proton Bragg peak, and to evaluate the potential of GNPs as a radio sensitizer. Methods: The dose enhancement by electrons emitted from GNPs under proton irradiation was estimated by Geant4 Monte Carlo simulation toolkit in two steps. In an initial macroscopic step, 100 and 195 MeV proton beams were incident on a water cube, 30 cm on a side. Energy distributions of protons were calculated at four depths, 50% and 75% proximal to the Bragg peak, 100% peak, and 75% distal to themore » peak (P50, P75, Peak, and D75, respectively). In a subsequent microscopic step, protons with the energy distribution calculated above were incident on a 20 nm diameter GNP in a nanometer-size water box and the spatial distribution of dose around the GNP was determined for each energy distribution. The dose enhancement factor (DEF) was also deduced. Results: The dose enhancement effect was spread to several tens of nanometers in the both depth and radial directions. The enhancement area increased in the order of P50, P75, Peak, and D75 for both cases with 100 and 195 MeV protons. In every position around the Bragg peak, the 100 MeV beam resulted in a higher dose enhancement than the 195 MeV beam. At P75, the average and maximum DEF were 3.9 and 17.0 for 100 MeV, and 3.5 and 16.2 for 195 MeV, respectively. These results indicate that lower energy protons caused higher dose enhancement in this incident proton energy range. Conclusion: The dose enhancement around GNPs spread as the position in the Bragg peak region becomes deeper and depends on proton energy. It is expected that GNPs can be used as a radio sensitizer with consideration of the location and proton beam energy.« less
The Jovian electron spectrum and synchrotron radiation at 375 cm
NASA Technical Reports Server (NTRS)
Birmingham, T. J.
1975-01-01
The synchrotron radiation expected at Earth from the region L=2.9-5 R sub J of Jupiter's magnetosphere is calculated using the Pioneer 10 electron model. The result is approximately 21 flux units (f.u.). This value is to be compared with 6.0 + or - 0.7 f.u., the flux density of synchrotron radiation measured from Jupiter's entire magnetosphere in ground-based radio observations. Most of the radiation at 375 cm is emitted by electrons in the 1 to 10 MeV range. If the electron model used for calculations is cut off below 10 MeV, the calculated flux is reduced to approximately 4 f.u., a level compatible with the radio observations.
Optical spectroscopy of bulk GaN crystals grown from a Na-Ga melt
NASA Astrophysics Data System (ADS)
Skromme, B. J.; Palle, K. C.; Poweleit, C. D.; Yamane, H.; Aoki, M.; DiSalvo, F. J.
2002-11-01
Colorless transparent platelet and prismatic GaN crystals up to 3-4 mm, grown from a Na-Ga melt (0.6-0.7 mol fraction of Na) at temperatures of 700-800 °C in a modest (5 MPa) pressure of N2, are characterized using Raman scattering, room and low temperature photoluminescence, and reflectance. They exhibit sharp free and bound exciton luminescence features (down to 0.22 meV full width at half maximum), including multiple excited states. Residual Mg and Zn acceptors and a 33.6 meV donor (possibly ON) are identified. Raman spectra suggest free carrier concentrations down to the low to mid 1016 cm-3 range.
The ^58,60Ni(n,α) Reactions from Threshold to 50 MeV
NASA Astrophysics Data System (ADS)
Haight, R. C.; Bateman, F. B.; Sterbenz, S. M.; Chadwick, M. B.; Young, P. G.; Grimes, S. M.; Wasson, O. A.; Vonach, H.; Maier-Komor, P.
1996-10-01
Information on nuclear level densities over a wide range of excitation energies can be obtained from data on (n,α) reactions.(M. B. Chadwick et al., this meeting) We have measured α-particle emission cross sections, angular distributions and emission spectra for neutrons up to 50 MeV on targets of ^58Ni and ^60Ni using the pulsed spallation source of fast neutrons at the Los Alamos Neutron Science Center. The results will be compared with our previous measurements on ^59Co.(S. M. Grimes et al., Nuclear Science and Engineering in press) The possibilities of extending this method to much heavier nuclides will be discussed.
Inclusive neutrino scattering off the deuteron at low energies in chiral effective field theory
Baroni, A.; Schiavilla, R.
2017-07-19
Cross sections for inclusive neutrino scattering off deuteron induced by neutral and charge-changing weak currents are calculated from threshold up to 150 MeV energies in a chiral effective field theory including high orders in the power counting. The contributions beyond leading order (LO) in the weak current are found to be small, and increase the cross sections obtained with the LO transition operators by a couple of percent over the whole energy range (0--150) MeV. Furthermore, the cutoff dependence is negligible, and the predicted cross sections are within ~2% of, albeit consistently larger than, corresponding predictions obtained in conventional meson-exchangemore » frameworks.« less
Reaction-in-Flight neutrons as a test of stopping power in degenerate plasmas
NASA Astrophysics Data System (ADS)
Hayes, A. C.; Cerjan, C. J.; Jungman, G.; Fowler, M. M.; Gooden, M. E.; Grim, G. P.; Henry, E.; Rundberg, R. S.; Sepke, S. M.; Schneider, D. H. G.; Singleton, R. L.; Tonchev, A. P.; Wilhelmy, J. B.; Yeamans, C. B.
2016-05-01
Cryogenically cooled inertial confinement fusion capsule designs are suitable for studies of reaction-in-flight (RIF) neutrons. RIF neutrons occur when energetically up-scattered ions undergo DT reactions with a thermal ion in the plasma, producing neutrons in the energy range 9-30 MeV. The knock-on ions lose energy as they traverse the plasma, which directly affects the spectrum of the produced RIF neutrons. Here we present measurements from the National Ignition Facility (NIF) of RIF neutrons produced in cryogenic capsules, with energies above 15 MeV. We show that the measured RIFs probe stopping under previously unexplored degenerate plasma conditions and constrain stopping models in warm dense plasma conditions.
Ion shaking in the 200 MeV XLS-ring
NASA Astrophysics Data System (ADS)
Bozoki, E.; Kramer, S. L.
1992-03-01
It has been shown that ions, trapped inside the beam's potential, can be removed by the clearing electrodes when the amplitude of the ion oscillation is increased by vertically shaking the ions. We will report on a similar experiment in the 200 MeV XLS ring. The design of the ion clearing system for the ring and the first results obtained were already reported. In the present series of experiments, RF voltage was applied on a pair of vertical strip-lines. The frequency was scanned in the range of the ion (from H2 to CO2) bounce frequencies in the ring (1-10 MHz). The response of the beam size, vertical betatron tune, and lifetime was studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, J.
Relative and absolute populations of 19 levels in beam-foil--excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n$sup -3$, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. Themore » overpopulation decreases with increasing principal quantum number.« less
An investigation on some of the tumor treatment cases using x-rays and electron beams
NASA Astrophysics Data System (ADS)
Ucar, Burcu; Yigitoglu, Ibrahim; Arslan Kabalay, Ipek; Altiparmak, Duygu; Kilicaslan, Sinem
2015-07-01
In this work, we discussed some of the applications which X-rays and electron beam used in radiotherapy for tumor treatments. This study has been performed at Radiation Oncology Department, Medicine Faculty in Gaziosmanpasa University by using the VARIAN CLINICA DHX linear accelerator which is operated in the range of 6 MeV - 15 MeV. Processes for the treatments that X-rays used for pancreas, bladder and prostate tumors and the processes that the electron beam used for some of the derm tumors are studied. Effects of X-rays and electron beams to treatments process are examined and the obtained results are presented comparatively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bueyuekuslu, H.; Kaplan, A., E-mail: kaplan@fef.sdu.edu.t; Aydin, A.
2010-10-15
In this study, proton total reaction cross sections have been investigated for some isotopes such as {sup 12}C, {sup 27}Al, {sup 9}Be, {sup 16}O, {sup 181}Ta, {sup 197}Au, {sup 6}Li, and {sup 14}N by a proton beam up to 600 MeV. Calculation of the proton total cross sections has been carried out by the analytic expression formulated by M.A. Alvi by using Coulomb-modified Glauber theory with the Helm model nuclear form factor. The obtained results have been discussed and compared with the available experimental data and found to be in agreement with each other.
NASA Astrophysics Data System (ADS)
Baglin, C.; Baird, S.; Bassompierre, G.; Borreani, G.; Brient, J.-C.; Broll, C.; Brom, J.-M.; Bugge, L.; Buran, T.; Burq, J.-P.; Bussière, A.; Buzzo, A.; Cester, R.; Chemarin, M.; Chevallier, M.; Escoubes, B.; Fay, J.; Ferroni, S.; Gracco, V.; Guillaud, J.-P.; Khan-Aronsen, E.; Kirsebom, K.; Kylling, A.; Ille, B.; Lambert, M.; Leistam, L.; Lundby, A.; Macri, M.; Marchetto, F.; Menichetti, E.; Mörch, Ch.; Mouellic, B.; Olsen, D.; Pastrone, N.; Petrillo, L.; Pia, M. G.; Poole, J.; Poulet, M.; Rinaudo, G.; Santroni, A.; Severi, M.; Skjevling, G.; Stapnes, S.; Stugu, B.; R704 Collaboration
1986-04-01
This experiment has been performed at the CERN Intersecting Storage Rings to study the direct formation of charmonium states in antiproton-proton annihilations. The experimental program has partly been devoted to an inclusive scan for overlinepp → J/ψ + X in the range 3520-3530 MeV/ c2. A cluster of five events has been observed in a narrow energy band, centred on the centre of gravity of the 3P J states where the 1P 1 is expected to be. When interpreted as a new resonace, these data yield a mass m = 3525.4±0.8 MeV/ c2.
NASA Astrophysics Data System (ADS)
Sood, R. K.; Waldron, L.; Rochester, G. K.; Sumner, T. J.; Frye, G.; Jenkins, T.; Staubert, R.; Kendziorra, E.; Ubertini, P.; Bazzano, A.
1992-08-01
Analysis of the data obtained from two flights of a balloonborne gamma-ray detector to observe SN 1987A was completed. The detector, which included a spark chamber to determine the arrival directions of the photons, was sensitive in the energy range 50-500 MeV. The 95 percent confidence upper limit to the flux on day 55 after the explosion has been established to be 1.1 x 10 exp -5 photons/sq cm/s and on day 407 to be 3.4 x 10 exp -5 photons/sq cm/s. These limits are compared with various theoretical predictions.
Characteristics of bursts observed by the SMM Gamma-Ray Spectrometer
NASA Technical Reports Server (NTRS)
Share, G. H.; Messina, D. C.; Iadicicco, A.; Matz, S. M.; Rieger, E.; Forrest, D. J.
1992-01-01
The Gamma Ray Spectrometer (GRS) on the SMM completed close to 10 years of highly successful operation when the spacecraft reentered the atmosphere on December 2, 1989. During this period the GRS detected 177 events above 300 keV which have been classified as cosmic gamma-ray bursts. A catalog of these events is in preparation which will include time profiles and spectra for all events. Visual inspection of the spectra indicates that emission typically extends into the MeV range, without any evidence for a high-energy cutoff; 17 of these events are also observed above 10 MeV. We find no convincing evidence for line-like emission features in any of the time-integrated spectra.
Energy response of glass bead TLDs irradiated with radiation therapy beams
NASA Astrophysics Data System (ADS)
Jafari, S. M.; Jordan, T. J.; Hussein, M.; Bradley, D. A.; Clark, C. H.; Nisbet, A.; Spyrou, N. M.
2014-11-01
Glass beads are a novel TL dosimeter in radiotherapy. An important characteristic of TL dosimeters is their energy response, especially when intended for use in radiotherapy applications over a wide range of energies (typically from X-rays generated at 80 kVp up to 25 MV photon and MeV electron beams). In this paper, the energy response of glass beads (Mill Hill, Japan) is investigated for their TL response to kV X-rays from an orthovoltage radiotherapy unit and also for MV photon and MeV electron beams from a medical linear accelerator. The experimental findings show that for photon and electron beams, the TL response of this particular glass bead, normalised to unity for 6 MV X-rays (TPR20/10=0.670), decreases to 0.96±0.02 for 15 MV X-rays (TPR20/10=0.761) and to 0.95±0.01 for 20 MeV electron beams (R50,D=8.35 cm). This compares favourably with other TLD materials such as LiF and also alanine dosimeters that are readout with an EPR system. For kV X-rays, the response increases to 4.52±0.05 for 80 kV X-rays (HVL=2.4 mm Al) which approaches 3 times that of LiF TLDs and 5 times that of alanine. In conclusion, the particular glass beads, when used as a dosimeter material, show a relatively small energy dependence over the megavoltage range of clinically relevant radiation qualities, being clearly advantageous for accurate dosimetry. Conversely, the energy response is significant for photon beam energies covering the kV range. In both circumstances, in dosimetric evaluations the energy response needs to be taken into account.
NASA Technical Reports Server (NTRS)
Rydberg, Bjorn; Heilbronn, Lawrence; Holley, William R.; Lobrich, Markus; Zeitlin, Cary; Chatterjee, Aloke; Cooper, Priscilla K.
2002-01-01
Accelerated helium ions with mean energies at the target location of 3-7 MeV were used to simulate alpha-particle radiation from radon daughters. The experimental setup and calibration procedure allowed determination of the helium-ion energy distribution and dose in the nuclei of irradiated cells. Using this system, the induction of DNA double-strand breaks and their spatial distributions along DNA were studied in irradiated human fibroblasts. It was found that the apparent number of double-strand breaks as measured by a standard pulsed-field gel assay (FAR assay) decreased with increasing LET in the range 67-120 keV/microm (corresponding to the energy of 7-3 MeV). On the other hand, the generation of small and intermediate-size DNA fragments (0.1-100 kbp) increased with LET, indicating an increased intratrack long-range clustering of breaks. The fragment size distribution was measured in several size classes down to the smallest class of 0.1-2 kbp. When the clustering was taken into account, the actual number of DNA double-strand breaks (separated by at least 0.1 kbp) could be calculated and was found to be in the range 0.010-0.012 breaks/Mbp Gy(-1). This is two- to threefold higher than the apparent yield obtained by the FAR assay. The measured yield of double-strand breaks as a function of LET is compared with theoretical Monte Carlo calculations that simulate the track structure of energy depositions from helium ions as they interact with the 30-nm chromatin fiber. When the calculation is performed to include fragments larger than 0.1 kbp (to correspond to the experimental measurements), there is good agreement between experiment and theory.
NASA Astrophysics Data System (ADS)
Sarria, David; Lebrun, Francois; Blelly, Pierre-Louis; Chipaux, Remi; Laurent, Philippe; Sauvaud, Jean-Andre; Prech, Lubomir; Devoto, Pierre; Pailot, Damien; Baronick, Jean-Pierre; Lindsey-Clark, Miles
2017-07-01
With a launch expected in 2018, the TARANIS microsatellite is dedicated to the study of transient phenomena observed in association with thunderstorms. On board the spacecraft, XGRE and IDEE are two instruments dedicated to studying terrestrial gamma-ray flashes (TGFs) and associated terrestrial electron beams (TEBs). XGRE can detect electrons (energy range: 1 to 10 MeV) and X- and gamma-rays (energy range: 20 keV to 10 MeV) with a very high counting capability (about 10 million counts per second) and the ability to discriminate one type of particle from another. The IDEE instrument is focused on electrons in the 80 keV to 4 MeV energy range, with the ability to estimate their pitch angles. Monte Carlo simulations of the TARANIS instruments, using a preliminary model of the spacecraft, allow sensitive area estimates for both instruments. This leads to an averaged effective area of 425 cm2 for XGRE, used to detect X- and gamma-rays from TGFs, and the combination of XGRE and IDEE gives an average effective area of 255 cm2 which can be used to detect electrons/positrons from TEBs. We then compare these performances to RHESSI, AGILE and Fermi GBM, using data extracted from literature for the TGF case and with the help of Monte Carlo simulations of their mass models for the TEB case. Combining this data with the help of the MC-PEPTITA Monte Carlo simulations of TGF propagation in the atmosphere, we build a self-consistent model of the TGF and TEB detection rates of RHESSI, AGILE and Fermi. It can then be used to estimate that TARANIS should detect about 200 TGFs yr-1 and 25 TEBs yr-1.
Interatomic potentials for Cd, Zn, and Hg from absorption spectra
NASA Astrophysics Data System (ADS)
Su, Ching-Hua; Liao, Pok-Kai; Huang, Yu; Liou, Shian-Shyang; Brebrick, R. F.
1984-07-01
The absorption coefficient has been measured over a 65 nm range in the red wing of the 213.8 nm line for Zn vapor at 1000 °C. It has also been measured in the blue wing and over a 60 nm range in the red wing of the 228.7 nm line for Cd vapor at five temperatures between 642 and 955 °C and over a 75 nm range in the red wing of the 253.7 nm line for Hg vapor at five temperatures between 460 and 860 °C. These data are analyzed in terms of the statistical theory of broadening. Oscillator strengths of 1.42±0.01 and 1.61±0.06 are obtained for, respectively, the Cd line and the Zn line. Pair potentials for both the ground and lowest excited state are also obtained in all three cases. For Cd this is done assuming no functional form and then assuming Lennard-Jones potentials. Both methods agree and give a ground state minimum of -47.5 meV at 0.482 nm separation and an excited state minimum of -1.06 eV at 0.410 nm. A functional form is required for the less extensive Zn data and the Lennard-Jones form leads to a range of possibilities including ground and excited state minima of -56 meV at 0.400 nm and -1.30 eV at 0.330 nm, respectively, which are in fair agreement with the theoretical calculations. For Hg the experiments indicate a single excited state and a ground state with a minimum of -55 meV. Assuming no functional form for the pair potentials, taking the excited state as doubly degenerate, and assuming the transition probability from the ground to excited state is one-sixth of the free atom value gives points along the ground and excited state potentials that join smoothly with other experimental results and agree well with the calculation of Baylis for the ground state.
Novel scintillation detector design and performance for proton radiography and computed tomography.
Bashkirov, V A; Schulte, R W; Hurley, R F; Johnson, R P; Sadrozinski, H F-W; Zatserklyaniy, A; Plautz, T; Giacometti, V
2016-02-01
Proton computed tomography (pCT) will enable accurate prediction of proton and ion range in a patient while providing the benefit of lower radiation exposure than in x-ray CT. The accuracy of the range prediction is essential for treatment planning in proton or ion therapy and depends upon the detector used to evaluate the water-equivalent path length (WEPL) of a proton passing through the object. A novel approach is presented for an inexpensive WEPL detector for pCT and proton radiography. A novel multistage detector with an aperture of 10 × 37.5 cm was designed to optimize the accuracy of the WEPL measurements while simplifying detector construction and the performance requirements of its components. The design of the five-stage detector was optimized through simulations based on the geant4 detector simulation toolkit, and the fabricated prototype was calibrated in water-equivalent millimeters with 200 MeV protons in the research beam line of the clinical proton synchrotron at Loma Linda University Medical Center. A special polystyrene step phantom was designed and built to speed up and simplify the calibration procedure. The calibrated five-stage detector was tested in the 200 MeV proton beam as part of the pCT head scanner, using a water phantom and polystyrene slabs to verify the WEPL reconstruction accuracy. The beam-test results demonstrated excellent performance of the new detector, in good agreement with the simulation results. The WEPL measurement accuracy is about 3.0 mm per proton in the 0-260 mm WEPL range required for a pCT head scan with a 200 MeV proton beam. The new multistage design approach to WEPL measurements for proton CT and radiography has been prototyped and tested. The test results show that the design is competitive with much more expensive calorimeter and range-counter designs.
Novel scintillation detector design and performance for proton radiography and computed tomography
Schulte, R. W.; Hurley, R. F.; Johnson, R. P.; Sadrozinski, H. F.-W.; Zatserklyaniy, A.; Plautz, T.; Giacometti, V.
2016-01-01
Purpose: Proton computed tomography (pCT) will enable accurate prediction of proton and ion range in a patient while providing the benefit of lower radiation exposure than in x-ray CT. The accuracy of the range prediction is essential for treatment planning in proton or ion therapy and depends upon the detector used to evaluate the water-equivalent path length (WEPL) of a proton passing through the object. A novel approach is presented for an inexpensive WEPL detector for pCT and proton radiography. Methods: A novel multistage detector with an aperture of 10 × 37.5 cm was designed to optimize the accuracy of the WEPL measurements while simplifying detector construction and the performance requirements of its components. The design of the five-stage detector was optimized through simulations based on the geant4 detector simulation toolkit, and the fabricated prototype was calibrated in water-equivalent millimeters with 200 MeV protons in the research beam line of the clinical proton synchrotron at Loma Linda University Medical Center. A special polystyrene step phantom was designed and built to speed up and simplify the calibration procedure. The calibrated five-stage detector was tested in the 200 MeV proton beam as part of the pCT head scanner, using a water phantom and polystyrene slabs to verify the WEPL reconstruction accuracy. Results: The beam-test results demonstrated excellent performance of the new detector, in good agreement with the simulation results. The WEPL measurement accuracy is about 3.0 mm per proton in the 0–260 mm WEPL range required for a pCT head scan with a 200 MeV proton beam. Conclusions: The new multistage design approach to WEPL measurements for proton CT and radiography has been prototyped and tested. The test results show that the design is competitive with much more expensive calorimeter and range-counter designs. PMID:26843230
Randers-Pehrson, Gerhard; Marino, Stephen A.; Garty, Guy; Harken, Andrew; Brenner, David J.
2015-01-01
A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n)3He and D(d,n)3He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima. PMID:26273118
Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Garty, Guy; Harken, Andrew; Brenner, David J
2015-09-11
A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n) 3 He and D(d,n) 3 He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9 Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.
Elastically Decoupling Dark Matter.
Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai
2016-06-03
We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1 fb range.
Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.
2007-01-01
We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.
The evaluation of experimental data in fast range for n + 56Fe(n,inl)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Jing; Herman, M.; Ge, Zhigang
Iron is one of the five materials selected for evaluation within the pilot international evaluation project CIELO. Analysis of experimental data for n+ 56Fe reaction is the basis for constraining theoretical calculations and eventual creation of the evaluated file. The detail analysis was performed for inelastic cross sections of neutron induced reactions with 56Fe in the fast range up to 20 MeV where there are significant differences among the main evaluated libraries, mainly caused by the different inelastic scattering cross section measurements. Gamma-ray production cross sections provide a way to gain experimental information about the inelastic cross section. Large discrepanciesmore » between experimental data for the 847-keV gamma ray produced in the 56Fe(n,n 1'γ) reaction were analyzed. In addition, experimental data for elastic scattering cross section between 9.41~11 MeV were used to deduce the inelastic cross section from the unitarity constrain.« less
Radiation damage induced in Al2O3 single crystal by 90 MeV Xe ions
NASA Astrophysics Data System (ADS)
Zirour, H.; Izerrouken, M.; Sari, A.
2015-12-01
Radiation damage induced in Al2O3 single crystal by 90 MeV Xe ions were investigated by optical absorption measurements, Raman spectroscopy and X-ray diffraction (XRD) techniques. The irradiations were performed at the GANIL accelerator in Caen, France for the fluence in the range from 1012 to 6 × 1013 cm-2 at room temperature under normal incidence. The F+ and F22+ centers kinetic as a function of fluence deduced from the optical measurements explains that the single defects (F and F+) aggregate to F center clusters (F2 , F2+, F22+) during irradiation at high fluence (>1013 cm-2). Raman and XRD analysis reveal a partial disorder of 40% of Al2O3 in the studied fluence range in accordance with Kabir et al. (2008) study. The result suggests that this is due to the stress relaxation process which occurs at high fluence (>1013 cm-2).
Antiferromagnetic Resonance and Terahertz Continuum in α - RuCl 3
Little, A.; Wu, Liang; Lampen-Kelley, P.; ...
2017-11-28
We report measurements of optical absorption in the zigzag antiferromagnet α-RuCl 3 as a function of temperature T , magnetic field B , and photon energy ℏ ω in the range ~ 0.3 –8.3 meV, using time-domain terahertz spectroscopy. Polarized measurements show that threefold rotational symmetry is broken in the honeycomb plane from 2 to 300 K. We find a sharp absorption peak at 2.56 meV upon cooling below the Néel temperature of 7 K at B = 0 that we identify as the magnetic-dipole excitation of a zero-wave-vector magnon, or antiferromagnetic resonance (AFMR). With the application of B ,more » the AFMR broadens and shifts to a lower frequency as long-range magnetic order is lost in a manner consistent with transitioning to a spin-disordered phase. From a direct, internally calibrated measurement of the AFMR spectral weight, we place an upper bound on the contribution to the dc susceptibility from a magnetic excitation continuum.« less
The evaluation of experimental data in fast range for n + 56Fe(n,inl)
Qian, Jing; Herman, M.; Ge, Zhigang; ...
2017-09-13
Iron is one of the five materials selected for evaluation within the pilot international evaluation project CIELO. Analysis of experimental data for n+ 56Fe reaction is the basis for constraining theoretical calculations and eventual creation of the evaluated file. The detail analysis was performed for inelastic cross sections of neutron induced reactions with 56Fe in the fast range up to 20 MeV where there are significant differences among the main evaluated libraries, mainly caused by the different inelastic scattering cross section measurements. Gamma-ray production cross sections provide a way to gain experimental information about the inelastic cross section. Large discrepanciesmore » between experimental data for the 847-keV gamma ray produced in the 56Fe(n,n 1'γ) reaction were analyzed. In addition, experimental data for elastic scattering cross section between 9.41~11 MeV were used to deduce the inelastic cross section from the unitarity constrain.« less
Magnetic Excitations and Continuum of a Possibly Field-Induced Quantum Spin Liquid in α -RuCl3
NASA Astrophysics Data System (ADS)
Wang, Zhe; Reschke, S.; Hüvonen, D.; Do, S.-H.; Choi, K.-Y.; Gensch, M.; Nagel, U.; Rõõm, T.; Loidl, A.
2017-12-01
We report on terahertz spectroscopy of quantum spin dynamics in α -RuCl3 , a system proximate to the Kitaev honeycomb model, as a function of temperature and magnetic field. We follow the evolution of an extended magnetic continuum below the structural phase transition at Ts 2=62 K . With the onset of a long-range magnetic order at TN=6.5 K , spectral weight is transferred to a well-defined magnetic excitation at ℏω1=2.48 meV , which is accompanied by a higher-energy band at ℏω2=6.48 meV . Both excitations soften in a magnetic field, signaling a quantum phase transition close to Bc=7 T , where a broad continuum dominates the dynamical response. Above Bc, the long-range order is suppressed, and on top of the continuum, emergent magnetic excitations evolve. These excitations follow clear selection rules and exhibit distinct field dependencies, characterizing the dynamical properties of a possibly field-induced quantum spin liquid.
A long-lived relativistic electron storage ring embedded in Earth's Outer Van Allen belt
Baker, D. N.; Kanekal, S. G.; Hoxie, V. C.; ...
2013-02-28
Since their discovery over 50 years ago, the Earth’s Van Allen radiation belts are thought to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is comprised predominantly of mega-electron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days depending primarily on external forcing by the solar wind. Thus, the spatially separated inner zone is comprised of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations revealmore » an isolated third ring, or torus, of high-energy (E > 2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for over four weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage.« less
Limit on the production of a new vector boson in e+e- → Uγ, U → π+π- with the KLOE experiment
NASA Astrophysics Data System (ADS)
Anastasi, A.; Babusci, D.; Bencivenni, G.; Berlowski, M.; Bloise, C.; Bossi, F.; Branchini, P.; Budano, A.; Caldeira Balkeståhl, L.; Cao, B.; Ceradini, F.; Ciambrone, P.; Curciarello, F.; Czerwiński, E.; D'Agostini, G.; Danè, E.; De Leo, V.; De Lucia, E.; De Santis, A.; De Simone, P.; Di Cicco, A.; Di Domenico, A.; Di Salvo, R.; Domenici, D.; D'Uffizi, A.; Fantini, A.; Felici, G.; Fiore, S.; Gajos, A.; Gauzzi, P.; Giardina, G.; Giovannella, S.; Graziani, E.; Happacher, F.; Heijkenskjöld, L.; Ikegami Andersson, W.; Johansson, T.; Kamińska, D.; Krzemien, W.; Kupsc, A.; Loffredo, S.; Mandaglio, G.; Martini, M.; Mascolo, M.; Messi, R.; Miscetti, S.; Morello, G.; Moricciani, D.; Moskal, P.; Palladino, A.; Papenbrock, M.; Passeri, A.; Patera, V.; Perez del Rio, E.; Ranieri, A.; Santangelo, P.; Sarra, I.; Schioppa, M.; Silarski, M.; Sirghi, F.; Tortora, L.; Venanzoni, G.; Wiślicki, W.; Wolke, M.
2016-06-01
The recent interest in a light gauge boson in the framework of an extra U(1) symmetry motivates searches in the mass range below 1 GeV. We present a search for such a particle, the dark photon, in e+e- → Uγ, U →π+π- based on 28 million e+e- →π+π- γ events collected at DAΦNE by the KLOE experiment. The π+π- production by initial-state radiation compensates for a loss of sensitivity of previous KLOE U →e+e-, μ+μ- searches due to the small branching ratios in the ρ- ω resonance region. We found no evidence for a signal and set a limit at 90% CL on the mixing strength between the photon and the dark photon, ɛ2, in the U mass range between 527 and 987MeV. Above 700 MeV this new limit is more stringent than previous ones.
8B + 208Pb Elastic Scattering at Coulomb Barrier Energies
NASA Astrophysics Data System (ADS)
La Commara, M.; Mazzocco, M.; Boiano, A.; Boiano, C.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Strano, E.; Torresi, D.; Yamaguchi, H.; Kahl, D.; Di Meo, P.; Grebosz, J.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Iwasa, N.; Jeong, S. C.; Jia, H. M.; Kim, Y. H.; Kimura, S.; Kubono, S.; Lin, C. J.; Miyatake, H.; Mukai, M.; Nakao, T.; Nicoletto, M.; Sakaguchi, Y.; Sánchez-Benítez, A. M.; Soramel, F.; Teranishi, T.; Wakabayashi, Y.; Watanabe, Y. X.; Yang, L.; Yang, Y. Y.
2018-02-01
The scattering process of weakly-bound nuclei at Coulomb barrier energies provides deep insights on the reaction dynamics induced by exotic nuclei. Within this framework, we measured for the first time the scattering process of the short-lived Radioactive Ion Beam (RIB) 8B (Sp = 0.1375 MeV) from a 208Pb target at 50 MeV beam energy. The 8B RIB was produced by means of the in-flight facility CRIB (RIKEN, Japan) with an average intensity on target of 10 kHz and a purity about 25%. Elastically scattering ions were detected in the angular range θc.m. = 10°-160° by means of the detector array EXPADES. A preliminary optical model analysis indicates a total reaction cross section of about 1 b, a value, once reduced, 2-3 times larger than those obtained for the reactions induced by the stable weakly-bound projectiles 6,7Li on a 208Pb target in the energy range around the Coulomb barrier.
NASA Astrophysics Data System (ADS)
Paul, Sabyasachi; Sahoo, G. S.; Tripathy, S. P.; Sharma, S. C.; Joshi, D. S.; Bandyopadhyay, T.
2018-02-01
181Ta is a commonly used backing material for many targets in nuclear reaction studies. When the target thickness is less than the range of bombarded projectiles, the interaction via Ta(p,n) reactions in the backing can be a significant source of background. In this study, the neutron spectral yields from the reaction of protons of different energies (between 6 to 20 MeV) with a thick Ta target were determined using CR-39 detectors. The results from this study can be used as a correction factor in such situations. The parameters of registered tracks in CR-39 were analysed using an in-house image analysing program autoTRAK_n and then to derive the associated dose values. The spectral yields obtained experimentally were compared with those obtained from the theoretical calculations. The neutron yield was found to increase with increase in projectile energy mainly due to the opening of reaction channels from (p, n) to (p, 3n).
8B + 208Pb Elastic Scattering at Coulomb Barrier Energies
NASA Astrophysics Data System (ADS)
La Commara, M.; Mazzocco, M.; Boiano, A.; Boiano, C.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Strano, E.; Torresi, D.; Yamaguchi, H.; Kahl, D.; Di Meo, P.; Grebosz, J.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Iwasa, N.; Jeong, S. C.; Jia, H. M.; Kim, Y. H.; Kimura, S.; Kubono, S.; Lin, C. J.; Miyatake, H.; Mukai, M.; Nakao, T.; Nicoletto, M.; Sakaguchi, Y.; Sánchez-Benítez, A. M.; Soramel, F.; Teranishi, T.; Wakabayashi, Y.; Watanabe, Y. X.; Yang, L.; Yang, Y. Y.
2017-11-01
The scattering process of weakly-bound nuclei at Coulomb barrier energies provides deep insights on the reaction dynamics induced by exotic nuclei. Within this framework, we measured for the first time the scattering process of the short-lived Radioactive Ion Beam (RIB) 8B (S p = 0.1375 MeV) from a 208Pb target at 50 MeV beam energy. The 8B RIB was produced by means of the in-flight facility CRIB (RIKEN, Japan) with an average intensity on target of 10 kHz and a purity about 25%. Elastically scattering ions were detected in the angular range θc.m. = 10°-160° by means of the detector array EXPADES. A preliminary optical model analysis indicates a total reaction cross section of about 1 b, a value, once reduced, 2-3 times larger than those obtained for the reactions induced by the stable weakly-bound projectiles 6,7Li on a 208Pb target in the energy range around the Coulomb barrier.
Freeze-out conditions in heavy ion collisions from QCD thermodynamics.
Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Mukherjee, Swagato; Petreczky, P; Schmidt, C; Smith, D; Soeldner, W; Wagner, M
2012-11-09
We present a determination of freeze-out conditions in heavy ion collisions based on ratios of cumulants of net electric charge fluctuations. These ratios can reliably be calculated in lattice QCD for a wide range of chemical potential values by using a next-to-leading order Taylor series expansion around the limit of vanishing baryon, electric charge and strangeness chemical potentials. From a computation of up to fourth order cumulants and charge correlations we first determine the strangeness and electric charge chemical potentials that characterize freeze-out conditions in a heavy ion collision and confirm that in the temperature range 150 MeV ≤ T ≤ 170 MeV the hadron resonance gas model provides good approximations for these parameters that agree with QCD calculations on the 5%-15% level. We then show that a comparison of lattice QCD results for ratios of up to third order cumulants of electric charge fluctuations with experimental results allows us to extract the freeze-out baryon chemical potential and the freeze-out temperature.
Directly Detecting MeV-Scale Dark Matter Via Solar Reflection
NASA Astrophysics Data System (ADS)
An, Haipeng; Pospelov, Maxim; Pradler, Josef; Ritz, Adam
2018-04-01
If dark matter (DM) particles are lighter than a few MeV /c2 and can scatter off electrons, their interaction within the solar interior results in a considerable hardening of the spectrum of galactic dark matter received on Earth. For a large range of the mass versus cross section parameter space, {me,σe}, the "reflected" component of the DM flux is far more energetic than the end point of the ambient galactic DM energy distribution, making it detectable with existing DM detectors sensitive to an energy deposition of 10 -103 eV . After numerically simulating the small reflected component of the DM flux, we calculate its subsequent signal due to scattering on detector electrons, deriving new constraints on σe in the MeV and sub-MeV range using existing data from the XENON10/100, LUX, PandaX-II, and XENON1T experiments, as well as making projections for future low threshold direct detection experiments.
Modification of codes NUALGAM and BREMRAD, Volume 1
NASA Technical Reports Server (NTRS)
Steyn, J. J.; Huang, R.; Firstenberg, H.
1971-01-01
The NUGAM2 code predicts forward and backward angular energy differential and integrated distributions for gamma photons and fluorescent radiation emerging from finite laminar transport media. It determines buildup and albedo data for scientific research and engineering purposes; it also predicts the emission characteristics of finite radioisotope sources. The results are shown to be in very good agreement with available published data. The code predicts data for many situations in which no published data is available in the energy range up to 5 MeV. The NUGAM3 code predicts the pulse height response of inorganic (NaI and CsI) scintillation detectors to gamma photons. Because it allows the scintillator to be clad and mounted on a photomultiplier as in the experimental or industrial application, it is a more practical and thus useful code than others previously reported. Results are in excellent agreement with published Monte Carlo and experimental data in the energy range up to 4.5 MeV.
NASA Astrophysics Data System (ADS)
Lokhande, Rajkumar M.; More, Chaitali V.; Surung, Bharat S.; Pawar, Pravina P.
2017-12-01
We have computed radiological parameters of some C- H- N- O based amine group bio material in the energy range 122-1330 keV with the gamma ray count by narrow beam geometry. The NaI(Tl) detector with 8 K multichannel analyser was used having resolution 6.8% at 663 keV. The energy absorption buildup factor (EABF) was determined by using Geometric Progression (G-P) fitting method up to penetration depth of 40 mfp at energy 0.015-15 MeV. The NIST XCOM data were compared with the experimental value and we observed (3-5%) difference. The comparative study of effective atomic number and effective electron density in the energy range 122-1330 keV using Gaussian fit for accuracy were performed. The amino acid has the highest EABF value at 0.1 MeV and the variation in EABF with penetration depth up to 1-40 mean free path (mfp). The calculated radiological data of biological material are applicable in medical physics and dosimetry.
Cross section measurements at LANSCE for defense, science and applications
Nelson, Ronald O.; Schwengner, R.; Zuber, K.
2015-05-28
The Los Alamos Neutron Science Center (LANSCE) has three neutron sources that are used for nuclear science measurements. These sources are driven by an 800 MeV proton linear accelerator and cover an energy range from sub-thermal to hundreds of MeV. Research at the facilities is performed under the auspices of a US DOE user program under which research proposals are rated for merit by a program advisory committee and are scheduled based on merit and availability of beam time. A wide variety of instruments is operated at the neutron flight paths at LANSCE including neutron detector arrays, gamma-ray detector arrays,more » fission fragment detectors, and charged particle detectors. These instruments provide nuclear data for multiple uses that range from increasing knowledge in fundamental science to satisfying data needs for diverse applications such as nuclear energy, global security, and industrial applications. In addition, highlights of recent research related to cross sections measurements are presented, and future research initiatives are discussed.« less
Pellin, M. J.; Yacout, Abdellatif M.; Mo, Kun; ...
2016-01-14
The combination of MeV/Nucleon ion irradiation (e.g. 133 MeV Xe) and high energy synchrotron x-ray characterization (e.g. at the Argonne Advanced Photon Source, APS) provides a powerful characterization method to understand radiation effects and to rapidly screen materials for the nuclear reactor environment. Ions in this energy range penetrate ~10 μm into materials. Over this range, the physical interactions vary (electronic stopping, nuclear stopping and added interstitials). Spatially specific x-ray (and TEM and nanoindentation) analysis allow individual quantification of these various effects. Hard x-rays provide the penetration depth needed to analyze even nuclear fuels. Here, this combination of synchrotron x-raymore » and MeV/Nucleon ion irradiation is demonstrated on U-Mo fuels. A preliminary look at HT-9 steels is also presented. We suggest that a hard x-ray facility with in situ MeV/nucleon irradiation capability would substantially accelerate the rate of discovery for extreme materials.« less
SKYSHINEIII. Calculating Effects of Structure Design on Neutron Dose Rates in Air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lampley, C.M.; Andrews, C.M.; Wells, M.B.
1988-12-01
SKYSHINE was designed to aid in the evaluation of the effects of structure geometry on the gamma-ray dose rate at given detector positions outside of a building housing gamma-ray sources. The program considers a rectangular structure enclosed by four walls and a roof. Each of the walls and the roof of the building may be subdivided into up to nine different areas, representing different materials or different thicknesses of the same material for those positions of the wall or roof. Basic sets of iron and concrete slab transmission and reflection data for 6.2 MeV gamma-rays are part of the SKYSHINEmore » block data. These data, as well as parametric air transport data for line-beam sources at a number of energies between 0.6 MeV and 6.2 MeV and ranges to 3750 ft, are used to estimate the various components of the gamma-ray dose rate at positions outside of the building. The gamma-ray source is assumed to be a 6.2 MeV point-isotropic source. SKYSHINE-III provides an increase in versatility over the original SKYSHINE code in that it addresses both neutron and gamma-ray point sources. In addition, the emitted radiation may be characterized by an energy emission spectrum defined by the user. A new SKYSHINE data base is also included.« less
NASA Astrophysics Data System (ADS)
Huyan, X.; Naviliat-Cuncic, O.; Voytas, P.; Chandavar, S.; Hughes, M.; Minamisono, K.; Paulauskas, S. V.
2018-01-01
The yield of photons produced by electrons slowing down in CsI and NaI was studied with four electromagnetic physics constructors included in the Geant4 toolkit. The subsequent absorption of photons in detector geometries used for measurements of the β spectrum shape was also studied with a focus on the determination of the absorption fraction. For electrons with energies in the range 0.5-4 MeV, the relative photon yields determined with the four Geant4 constructors differ at the level of 10-2 in amplitude and the relative absorption fractions differ at the level of 10-4 in amplitude. The differences among constructors enabled the estimation of the sensitivity to Geant4 simulations for the measurement of the β energy spectrum shape in 6He decay using a calorimetric technique with ions implanted in the active volume of detectors. The size of the effect associated with photons escaping the detectors was quantified in terms of a slope which, on average, is respectively - 5 . 4 %/MeV and - 4 . 8 %/MeV for the CsI and NaI geometries. The corresponding relative uncertainties as determined from the spread of results obtained with the four Geant4 constructors are 0.0067 and 0.0058.
NASA Astrophysics Data System (ADS)
Radu, R.; Pintilie, I.; Nistor, L. C.; Fretwurst, E.; Lindstroem, G.; Makarenko, L. F.
2015-04-01
This work is focusing on generation, time evolution, and impact on the electrical performance of silicon diodes impaired by radiation induced active defects. n-type silicon diodes had been irradiated with electrons ranging from 1.5 MeV to 27 MeV. It is shown that the formation of small clusters starts already after irradiation with high fluence of 1.5 MeV electrons. An increase of the introduction rates of both point defects and small clusters with increasing energy is seen, showing saturation for electron energies above ˜15 MeV. The changes in the leakage current at low irradiation fluence-values proved to be determined by the change in the configuration of the tri-vacancy (V3). Similar to V3, other cluster related defects are showing bistability indicating that they might be associated with larger vacancy clusters. The change of the space charge density with irradiation and with annealing time after irradiation is fully described by accounting for the radiation induced trapping centers. High resolution electron microscopy investigations correlated with the annealing experiments revealed changes in the spatial structure of the defects. Furthermore, it is shown that while the generation of point defects is well described by the classical Non Ionizing Energy Loss (NIEL), the formation of small defect clusters is better described by the "effective NIEL" using results from molecular dynamics simulations.
NASA Astrophysics Data System (ADS)
Beddar, A. S.; Tailor, R. C.
2004-04-01
A new approach to intraoperative radiation therapy led to the development of mobile linear electron accelerators that provide lower electron energy beams than the usual conventional accelerators commonly encountered in radiotherapy. Such mobile electron accelerators produce electron beams that have nominal energies of 4, 6, 9 and 12 MeV. This work compares the absorbed dose output calibrations using both the AAPM TG-51 and TG-21 dose calibration protocols for two types of ion chambers: a plane-parallel (PP) ionization chamber and a cylindrical ionization chamber. Our results indicate that the use of a 'Markus' PP chamber causes 2 3% overestimation in dose output determination if accredited dosimetry-calibration laboratory based chamber factors \\big(N_{{\\rm D},{\\rm w}}^{{}^{60}{\\rm Co}}, N_x\\big) are used. However, if the ionization chamber factors are derived using a cross-comparison at a high-energy electron beam, then a good agreement is obtained (within 1%) with a calibrated cylindrical chamber over the entire energy range down to 4 MeV. Furthermore, even though the TG-51 does not recommend using cylindrical chambers at the low energies, our results show that the cylindrical chamber has a good agreement with the PP chamber not only at 6 MeV but also down to 4 MeV electron beams.
Computational and Experimental Studies of the Radiation Response of Gd2Ti2O7 Pyrochlore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devanathan, Ram; Weber, William J.
2005-12-16
The structure and property changes in Gd2Ti2O7 (polycrystalline pyrochlore) were examined following irradiation with 1 MeV Kr+, 0.6 MeV Bi+ and 4 MeV Au2+ ions over the temperature range 30-950 K. Gd2Ti2O7 readily amorphizes with a low temperature (30 K) critical dose for amorphization of {approx} 0.15 displacements per atom (dpa). The critical temperature above which amorphization does not occur is about 1190 K. Nano-indentation studies reveal that the structural changes were accompanied by decreases of 15% in the Young's modulus. 1 MeV Kr+ irradiation of amorphous Gd2Ti2O7 at 1065 K resulted in ion-beam-assisted recrystallization. These experimental studies were complementedmore » with molecular dynamics simulations of low energy recoils in Gd2Ti2O7 and Gd2Zr2O7 using a Buckingham type potential. The displacement threshold energy surface in both pyrochlores is highly anisotropic. Displacement energies are higher for all sublattices in the titanate pyrochlore compared to the zirconate. Ti sublattice displacements require energies in excess of 100 eV, and result in multiple displacements and defect clusters. The formation of these clusters might impede dynamic defect recovery and facilitate amorphization.« less
NASA Astrophysics Data System (ADS)
Soto-Bernal, Tzinnia Gabriela; Baltazar-Raigosa, Antonio; Medina-Castro, Diego; Vega-Carrillo, Hector Rene
2017-10-01
The electron, photon, and neutron spectra produced during the interaction between monoenergetic electron beams (8, 10, 12, 15, and 18 MeV) and a 0.05 cm-thick tungsten scattering foil were estimated using Monte Carlo method. Incoming electrons is a pencil beam that after collide with the foil acquires a broader distribution peaked in the same direction of the incoming electrons. Electron spectra show the influence of the binding energy of electrons in the tungsten shells and the increase of the electron fluence. In the interaction between the electrons in the beam and the tungsten atoms in the foil, bremsstrahlung and characteristic photons are produced. These photons are also peaked in the same direction of the incoming beam, and the electron fluence increases as the energy of the electron beam raises. The electron and photon spectra have particles whose energy is larger than the binding energy of neutron in the nucleus. Thus neutron production was noticed for 10, 12, 15, and 18 MeV electron beam. The neutron fluence becomes larger as the energy of the electron beam increases, the neutron spectra are mainly evaporation neutrons for 10 and 12 MeV, and for 15 and 18 MeV knock-on neutrons are also produced. Neutrons are produced in the foil volume having a quasi-isotropic distribution.
The Energetic Particle Detector Suite for Solar Orbiter
NASA Astrophysics Data System (ADS)
Wimmer-Schweingruber, Robert F.; Rodriguez-Pacheco, J.; Lin, R. P.; Mason, G. M.; Heber, B.; Valtonen, E.; Sanchez, S.; Blanco, J.; Prieto, M.; Martin, C.; Ho, G.; Andrews, B.; Burmeister, S.; Boettcher, S.; Kulkarni, S. R.; Seimetz, L.; Schuster, B.
Multiple processes in the solar atmosphere or near the Sun are capable of energizing electrons and ions which are remotely observed as Solar Energetic Particle (SEP) events. SEP events are of great interest not only because they can cause large radiation increases in the interplanetary space and over the Earth's polar regions, but also because they are part of a broad range of astrophysical sources of energetic particles. Since astrophysical particle accelerators cannot be studied directly, SEPs provide the best opportunity to study all aspects of the problem, namely the acceleration process itself and the ways in which the particles escape the source and travel to remote sites. The Energetic Particle Detector (EPD) addresses two primary science goals of Solar Orbiter: 1) What are the sources of energetic particles and how are they accelerated to high energy? 2) How are solar energetic particles released from their sources and distributed in time? To address these questions, the Energetic Particle Detector (EPD) suite consists of five sensors measuring electrons, protons, and ions from helium to iron, and operating at partly overlapping energy ranges from 2 keV up to 200 MeV/n. The five EPD sensors are the SupraThermal Elec-trons, Ions, Neutrals (STEIN) sensor, the Suprathermal Ion Spectrograph (SIS), the Electron Proton Telescope (EPT), the Low Energy Telescope (LET), and the High Energy Telescope (HET). All sensors share a Common Data Processing Unit (CDPU), and EPT and HET share a common E-Box. EPT/HET and LET consist of two separate sensors with multiple viewing directions. The overall energy coverage achieved with the EPD sensors is 0.002 MeV to 20 MeV for electrons, 0.003 MeV to 100 MeV for protons, 0.008 MeV/n to 200 MeV/n for heavy ions (species-dependent), and 3 keV 30 keV for neutral atoms.
NASA Astrophysics Data System (ADS)
Kühl, P.; Banjac, S.; Dresing, N.; Gomez-Herrero, R.; Heber, B.; Klassen, A.; Terasa, C.
2014-12-01
Ground Level Enhancements are solar energetic particle events that show a significant intensity increase at energies that can be measured by ground based instrumentation, i.e. neutron monitors. In the recent history 71 GLEs have been recorded. The last one was the May 17, 2012 event that has not only been measured by more than one neutron monitor but also by sophisticated instrumentation in space like PAMELA and the Electron Proton Helium INstrument (EPHIN) aboard SOHO. The January 6, 2014 solar energetic particle (SEP) event led to an intensity increase of about 3 percent at both South Pole neutron monitors and was considered by Thakur et al. (2014) to be a GLE. Since only one pair of neutron monitors show an unambiguous increase the energy spectra for this event can only be determined by spacecraft like e.g. PAMELA or SOHO/EPHIN. We show that the Electron Proton Helium INstrument at Langragian point L1 is capable to measure the proton energy spectra of solar energetic particle events at energies between 150 MeV and above 700 MeV. A GEANT Monte Carlo simulation has been performed to determine the energy response function of EPHIN for electrons, protons and heavier ions. As a result of this calculation we developed a method using energy loss information of particles measured in the detector stack that allow to derive the proton energy spectra in the range from about 150 MeV to more than 700 MeV. In order to validate our method we compared our results to the one obtained by PAMELA that was published by Bazilevskaya et al. (2013) for the May 2012 event. Furthermore, the January 6, 2014 event spectrum in the given energy range is presented and discussed in comparison to the May 2012 event.
NASA Astrophysics Data System (ADS)
Bhatia, C.; Fallin, B. F.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E.; Bredeweg, T. A.; Fowler, M. M.; Moody, W.; Rundberg, R. S.; Rusev, G. Y.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.
2015-06-01
Using dual-fission chambers each loaded with a thick (200 -400 -mg /c m2) actinide target of 235 ,238U or 239Pu and two thin (˜10 -100 -μ g /c m2) reference foils of the same actinide, the cumulative yields of fission products ranging from 92Sr to 147Nd have been measured at En= 8.9 MeV . The 2H(d ,n ) 3He reaction provided the quasimonoenergetic neutron beam. The experimental setup and methods used to determine the fission product yield (FPY) are described, and results for typically eight high-yield fission products are presented. Our FPYs for 235U(n ,f ) , 238U(n ,f ) , and 239Pu(n ,f ) at 8.9 MeV are compared with the existing data below 8 MeV from Glendenin et al. [Phys. Rev. C 24, 2600 (1981), 10.1103/PhysRevC.24.2600], Nagy et al. [Phys. Rev. C 17, 163 (1978), 10.1103/PhysRevC.17.163], Gindler et al. [Phys. Rev. C 27, 2058 (1983), 10.1103/PhysRevC.27.2058], and those of Mac Innes et al. [Nucl. Data Sheets 112, 3135 (2011), 10.1016/j.nds.2011.11.009] and Laurec et al. [Nucl. Data Sheets 111, 2965 (2010), 10.1016/j.nds.2010.11.004] at 14.5 and 14.7 MeV, respectively. This comparison indicates a negative slope for the energy dependence of most fission product yields obtained from 235U and 239Pu , whereas for 238U the slope issue remains unsettled.
Single-turn extraction from a K110 AVF cyclotron by flat-top acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurashima, Satoshi; Miyawaki, Nobumasa; Okumura, Susumu
2009-03-15
Single-turn extraction from the Japan Atomic Energy Agency AVF cyclotron with a K number of 110 using a flat-top (FT) acceleration system has been achieved to reduce the energy spread of an ion beam for microbeam formation with energy up to hundreds of MeV and to increase extraction efficiency from the cyclotron. In order to generate a FT waveform voltage using the fifth-harmonic frequency on a dee electrode, a FT resonator was designed using MAFIA code to achieve downsizing and low power consumption. The FT resonator, coupled to the main resonator through a coupling capacitor, covered the full range ofmore » the fifth harmonic frequency from 55 to 110 MHz. Various ion beams, accelerated using different acceleration harmonic modes of h=1 and 2, such as 220 MeV {sup 12}C{sup 5+} (h=2), 260 MeV {sup 20}Ne{sup 7+} (h=2), and 45 MeV H{sup +} (h=1), were developed by FT acceleration. A clear turn separation of the beam bunches was successfully observed at the extraction region of the large-scale AVF cyclotron with number of revolutions greater than 200. As a result, high extraction efficiency (over 95%) from the cyclotron was achieved. Single-turn extraction was confirmed by counting the number of beam bunches out of the cyclotron for an injected beam pulsed by a beam chopping system in the injection line. The energy spread of the 260 MeV {sup 20}Ne{sup 7+} beam was measured using an analyzing magnet, and we verified a reduction in the energy spread from {delta}E/E=0.1% to 0.05% by single-turn extraction after FT acceleration.« less
Neutron-induced fission cross section of 240Pu from 0.5 MeV to 3 MeV
NASA Astrophysics Data System (ADS)
Salvador-Castiñeira, P.; Bryś, T.; Eykens, R.; Hambsch, F.-J.; Göök, A.; Moens, A.; Oberstedt, S.; Sibbens, G.; Vanleeuw, D.; Vidali, M.; Pretel, C.
2015-07-01
240Pu has recently been pointed out by a sensitivity study of the Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) to be one of the isotopes whose fission cross section lacks accuracy to meet the upcoming needs for the future generation of nuclear power plants (GEN-IV). In the High Priority Request List (HPRL) of the OECD, it is suggested that the knowledge of the 240Pu(n ,f ) cross section should be improved to an accuracy within 1-3 %, compared to the present 5%. A measurement of the 240Pu cross section has been performed at the Van de Graaff accelerator of the Joint Research Center (JRC) Institute for Reference Materials and Measurements (IRMM) using quasi-monoenergetic neutrons in the energy range from 0.5 MeV to 3 MeV. A twin Frisch-grid ionization chamber (TFGIC) has been used in a back-to-back configuration as fission fragment detector. The 240Pu(n ,f ) cross section has been normalized to three different isotopes: 237Np(n ,f ) , 235U (n ,f ) , and 238U (n ,f ) . Additionally, the secondary standard reactions were benchmarked through measurements against the primary standard reaction 235U (n ,f ) in the same geometry. A comprehensive study of the corrections applied to the data and the associated uncertainties is given. The results obtained are in agreement with previous experimental data at the threshold region. For neutron energies higher than 1 MeV, the results of this experiment are slightly lower than the ENDF/B-VII.1 evaluation, but in agreement with the experiments of Laptev et al. (2004) as well as Staples and Morley (1998).
New Measurements of Inner Belt Proton Flux Gradients From the Van Allen Probes Mission
NASA Astrophysics Data System (ADS)
Mazur, J. E.; O'Brien, T. P.; Looper, M. D.; George, J. S.; Blake, J. B.
2013-12-01
Prior studies of 10's of MeV inner belt protons in low Earth orbit have established that the atmospheric density gradient produces a proton flux gradient because of losses to the atmosphere and the comparable sizes of the proton qyroradius and atmosphere scale height. The observable is an east-west asymmetry in the proton flux that has been reported using many low-Earth orbit missions going back to the first nuclear emulsion flights in 1963. We will revisit this low-altitude east-west effect as well as higher-altitude gradients with new measurements from the Relativistic Proton Spectrometer (RPS) on the Van Allen Probes spacecraft. RPS is a particle spectrometer designed to measure the flux, angular distribution, and energy spectrum of protons from ~60 MeV to ~2000 MeV with good rejection of penetrating backgrounds by requiring a 10-fold coincidence in its stack of silicon detectors. The Van Allen Probes orbit allows for a survey of proton gradients not only at low altitudes but also as high as the outer trapping limit at McIlwain L shell L~3 corresponding to ~13,000 km altitude. The 60 MeV proton gyroradius varies from ~50 to 700 km in this altitude range. The 1-second sampling of RPS and the nominal 5 rpm rotation rate of the Van Allen Probes yields a sensitive measure of proton gradients. This is the first time that a single mission can address the gradients and trapping of high-energy protons throughout the inner belt. We will report on preliminary flux gradients of >61 MeV protons observed during the first year of the mission using RPS and ancillary geophysical data.
ORANGE: a Monte Carlo dose engine for radiotherapy.
van der Zee, W; Hogenbirk, A; van der Marck, S C
2005-02-21
This study presents data for the verification of ORANGE, a fast MCNP-based dose engine for radiotherapy treatment planning. In order to verify the new algorithm, it has been benchmarked against DOSXYZ and against measurements. For the benchmarking, first calculations have been done using the ICCR-XIII benchmark. Next, calculations have been done with DOSXYZ and ORANGE in five different phantoms (one homogeneous, two with bone equivalent inserts and two with lung equivalent inserts). The calculations have been done with two mono-energetic photon beams (2 MeV and 6 MeV) and two mono-energetic electron beams (10 MeV and 20 MeV). Comparison of the calculated data (from DOSXYZ and ORANGE) against measurements was possible for a realistic 10 MV photon beam and a realistic 15 MeV electron beam in a homogeneous phantom only. For the comparison of the calculated dose distributions and dose distributions against measurements, the concept of the confidence limit (CL) has been used. This concept reduces the difference between two data sets to a single number, which gives the deviation for 90% of the dose distributions. Using this concept, it was found that ORANGE was always within the statistical bandwidth with DOSXYZ and the measurements. The ICCR-XIII benchmark showed that ORANGE is seven times faster than DOSXYZ, a result comparable with other accelerated Monte Carlo dose systems when no variance reduction is used. As shown for XVMC, using variance reduction techniques has the potential for further acceleration. Using modern computer hardware, this brings the total calculation time for a dose distribution with 1.5% (statistical) accuracy within the clinical range (less then 10 min). This means that ORANGE can be a candidate for a dose engine in radiotherapy treatment planning.
High-energy photon interrogation for nonproliferation applications
NASA Astrophysics Data System (ADS)
Jones, J. L.; Blackburn, B. W.; Watson, S. M.; Norman, D. R.; Hunt, A. W.
2007-08-01
There is an immediate need for technologies that can successfully address homeland security challenges related to the inspection of commercial rail, air and maritime-cargo container inspections for nuclear and radiological devices. The pulsed photonuclear assessment (PPA) technology, developed through collaboration between Idaho National Laboratory (INL), Los Alamos National Laboratory (LANL) and the Idaho Accelerator Center (IAC) has demonstrated the ability to detect shielded/unshielded nuclear material primarily through the analysis of delayed neutrons and gamma-rays produced via photonuclear reactions. Because of current food irradiation limitations, however, most active photon (i.e. bremsstrahlung) interrogation studies have been performed with electron beam energies at or below 10 MeV. While this energy limit currently applies to cargo inspections, the World Health Organization has indicated that higher energy electron beam operations could be considered for future operations. Clinical applications using photon energies well in excess of 10 MeV are already well established. Notwithstanding the current limitation of 10 MeV, there is a definite advantage in using higher photon energies for cargo inspections. At higher energies, several phenomena contribute to increased sensitivity in regards to detecting shielded nuclear material. Two of the most important are: (1) increased ability for source photons to penetrate shielding; and (2) enhanced signature production via increased (γ,n) and (γ,f) cross-sections in materials such as 235U and 239Pu directly leading to faster inspection throughput. Experimental assessments have been conducted for various electron beam energies from 8 to 25 MeV. Increases of up to three orders of magnitude in delayed signatures have been measured over these energy ranges. Through the continued investigation into PPA-based inspection applications using photon energies greater than 10 MeV, higher detection sensitivities with potentially lower delivered dose to cargo and increased throughput may be realized.
Microstructured snow targets for high energy quasi-monoenergetic proton acceleration
NASA Astrophysics Data System (ADS)
Schleifer, E.; Nahum, E.; Eisenmann, S.; Botton, M.; Baspaly, A.; Pomerantz, I.; Abricht, F.; Branzel, J.; Priebe, G.; Steinke, S.; Andreev, A.; Schnuerer, M.; Sandner, W.; Gordon, D.; Sprangle, P.; Ledingham, K. W. D.; Zigler, A.
2013-05-01
Compact size sources of high energy protons (50-200MeV) are expected to be key technology in a wide range of scientific applications 1-8. One promising approach is the Target Normal Sheath Acceleration (TNSA) scheme 9,10, holding record level of 67MeV protons generated by a peta-Watt laser 11. In general, laser intensity exceeding 1018 W/cm2 is required to produce MeV level protons. Another approach is the Break-Out Afterburner (BOA) scheme which is a more efficient acceleration scheme but requires an extremely clean pulse with contrast ratio of above 10-10. Increasing the energy of the accelerated protons using modest energy laser sources is a very attractive task nowadays. Recently, nano-scale targets were used to accelerate ions 12,13 but no significant enhancement of the accelerated proton energy was measured. Here we report on the generation of up to 20MeV by a modest (5TW) laser system interacting with a microstructured snow target deposited on a Sapphire substrate. This scheme relax also the requirement of high contrast ratio between the pulse and the pre-pulse, where the latter produces the highly structured plasma essential for the interaction process. The plasma near the tip of the snow target is subject to locally enhanced laser intensity with high spatial gradients, and enhanced charge separation is obtained. Electrostatic fields of extremely high intensities are produced, and protons are accelerated to MeV-level energies. PIC simulations of this targets reproduce the experimentally measured energy scaling and predict the generation of 150 MeV protons from laser power of 100TW laser system18.
NASA Astrophysics Data System (ADS)
Bhike, Megha; Fallin, B.; Gooden, M. E.; Ludin, N.; Tornow, W.
2015-01-01
Measurements of the neutron radiative-capture cross section of 124Xe have been performed for the first time for neutron energies above 100 keV. In addition, data for the 124Xe(n ,2 n )123Xe reaction cross section have been obtained from threshold to 14.8 MeV to cover the entire energy range of interest, while previous data existed only at around 14 MeV. The results of these measurements provide the basis for an alternative and sensitive diagnostic tool for investigating properties of the inertial confinement fusion plasma in deuterium-tritium (DT) capsules at the National Ignition Facility located at Lawrence Livermore National Laboratory. Here, areal density ρ R (density × radius) of the fuel, burn asymmetry, and fuel-ablator mix are of special interest. The 124Xe(n ,γ )125Xe reaction probes the down-scattered neutrons, while the 124Xe(n ,2 n )123Xe reaction provides a measure of the 14 MeV direct neutrons.
NASA Astrophysics Data System (ADS)
Tsoi, S.; Cardona, M.; Lauck, R.; Alawadhi, H.; Lu, X.; Grimsditch, M.; Ramdas, A. K.
2005-03-01
Optical properties of ZnO, a wide gap semiconductor with wurtzite structure, have generated renewed interest in the material in the context of opto-electronic phenomena and applications. The A, B, and C excitons of ZnO, arising from the combined effects of crystal field and spin-orbit splittings of the valence band, are investigated in the temperature range 5- 400 K, exploiting electro-, photo-, and wavelength-modulated reflectivity. The specimens studied have natural isotopic composition. The temperature dependence of the A, B, and C excitonic band gaps, fitted with a two harmonic oscillator modelootnotetextM. Cardona, Phys. Status. Solidi b 220, 5 (2000); R. Pä'ssler, J. Appl. Phys. 89, 6235 (2001) following Manj'on et al.ootnotetextF. J. Manj'on et al., Solid State Commun. 128, 35 (2003), yields the magnitudes of the zero-point renormalizations 262 meV (A), 227 meV (B), and 249 meV (C), respectively. Isotopically controlled ZnO is currently being investigated to determine the isotopic mass dependence of the zero-point renormalizations.
NASA Astrophysics Data System (ADS)
Spjeldvik, W. N.; Fritz, T. A.
1981-11-01
Observations of MeV heavy ions obtained by Explorer 45 in an equatorial earth orbit during a 7 month period in 1972 are presented, including data from four major magnetic storms. The spacecraft contained a heavy ion detector telescope and heavy ion discriminator electronics. Heavy ions were distinguished from protons and electrons, and He ions and ions heavier than F were recorded on separate data channels. The L equals 2.25 to L equals 4 zones were probed, and it was found that the relative enhancement in heavy ion fluxes in the radiation belts over the prestorm ion flux intensities tends to increase with increasing ion mass and/or increasing ion energy in the MeV range. The radial profiles of ions with nucleon number greater than nine peak at L equals 2.9, and MeV ions in this class decay on time scales from 23 days at L equals 3.25 to 55 days at L equals 2.25. Indirect evidence indicated a solar source for the very heavy ions in the magnetosphere.
The solar gamma ray spectrum between 4 and 8 MeV
NASA Technical Reports Server (NTRS)
Ramaty, R.; Kozlovsky, B.; Suri, A. N.
1976-01-01
The properties of nuclear gamma ray emission in the 4 to 8 MeV range were evaluated. This emission consists of broad and narrow lines resulting from nuclear reactions of energetic H, He, C and O nuclei with ambient matter. Calculations were compared with observations of the 1972, August 4 flare and show that: (1) essentially all the observed radiation in the 4 to 8 MeV region is to the superposition of broad and narrow lines of nuclear origin with almost no contribution from other mechanisms; (2) the accelerated particles in the energy region from about 10 to 100 MeV/amu have a relatively flat Energy spectrum; (3) the calculated gamma ray spectrum, obtained from an isotropic distribution of accelerated particles, fits the observed spectrum better than the spectrum derived from an anisotropic distribution for which the particles' velocity vectors point towards the photosphere; and (4) it is possible to set a stringent upper limit on the ratio of relativistic electrons to protons in flares, consistent with the small, but finite, electron-to-proton ratio in galactic cosmic rays.
Identification and imaging of modern paints using Secondary Ion Mass Spectrometry with MeV ions
NASA Astrophysics Data System (ADS)
Bogdanović Radović, Iva; Siketić, Zdravko; Jembrih-Simbürger, Dubravka; Marković, Nikola; Anghelone, Marta; Stoytschew, Valentin; Jakšić, Milko
2017-09-01
Secondary Ion Mass Spectrometry using MeV ion excitation was applied to analyse modern paint materials containing synthetic organic pigments and binders. It was demonstrated that synthetic organic pigments and binder components with molecular masses in the m/z range from 1 to 1200 could be identified in different paint samples with a high efficiency and in a single measurement. Different ways of mounting of mostly insulating paint samples were tested prior to the analysis in order to achieve the highest possible yield of pigment main molecular ions. As Time-of-Flight mass spectrometer for MeV Secondary Ion Mass Spectrometry is attached to the heavy ion microprobe, molecular imaging on cross-sections of small paint fragments was performed using focused ions. Due to the fact that molecules are extracted from the uppermost layer of the sample and to avoid surface contamination, the paint samples were not embedded in the resin as is usually done when imaging of paint samples using different techniques in the field of cultural heritage.
Barium iodide and strontium iodide crystals and scintillators implementing the same
Payne, Stephen A.; Cherepy, Nerine J.; Hull, Giulia E.; Drobshoff, Alexander D.; Burger, Arnold
2016-11-29
In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV, where the strontium iodide material is characterized by a volume not less than 1 cm.sup.3. In another embodiment, a scintillator optic includes europium-doped strontium iodide providing at least 50,000 photons per MeV, where the europium in the crystal is primarily Eu.sup.2+, and the europium is present in an amount greater than about 1.6%. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, where a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 and 1.0, the scintillator optic is a crystal that provides at least 50,000 scintillation photons per MeV and energy resolution of less than about 5% at 662 keV, and the crystal has a volume of 1 cm.sup.3 or more; the scintillator optic contains more than about 2% europium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedurin, M.; Jing, Y.; Stratakis, D.
The Brookhaven National Laboratory. Accelerator Test Facility (BNL ATF) is currently undergoing a major upgrade (ATF-II). Together with a new location and much improved facilities, the ATF will see an upgrade in its major capabilities: electron beam energy and quality and CO 2 laser power. The electron beam energy will be increased in stages, first to 100-150 MeV followed by a further increase to 500 MeV. Combined with the planned increase in CO 2 laser power (from 1-100 TW), the ATF-II will be a powerful tool for Advanced Accelerator research. A high-brightness electron beam, produced by a photocathode gun, willmore » be accelerated and optionally delivered to multiple beamlines. Besides the energy range (up to a possible 500 MeV in the final stage) the electron beam can be tailored to each experiment with options such as: small transverse beam size (<10 um), short bunch length (<100 fsec) and, combined short and small bunch options. This report gives a detailed overview of the ATFII capabilities and beamlines configuration.« less
NASA Astrophysics Data System (ADS)
Goodman, S. A.; Auret, F. D.; Meyer, W. E.
1994-05-01
Radiation damage effects were studied in n-GaAs grown by organo-metallic vapour phase epitaxy (OMVPE) for a wide range of alpha-particle (2.0 MeV and 5.4 MeV) and proton (2.0 MeV) particle fluences, using an americium-241 (Am-241) radio-nuclide and a linear Van de Graaff accelerator as the particle sources. The samples were irradiated at 300 K, after fabricating palladium Schottky barrier diodes (SBDs) on the 1.2 × 10 16 cm 3 Si-doped epitaxial layers. The irradiation-induced defects are characterized using conventional deep level transient spectroscopy (DLTS). A correlation is made between the change in SBD characteristics and the quantity and type of defects introduced during irradiation. It is shown that the two parameters most susceptible to this irradiation are the reverse leakage current of the SBDs and the free carrier density of the epilayer. The introduction rate and the "signatures" of the alpha-particle and proton irradiation-induced defects are calculated and compared to those of similar defects introduced during electron irradiation.
Self-organized microstructures induced by MeV ion beam on silicon surface
NASA Astrophysics Data System (ADS)
Ahmad, Muthanna
2017-02-01
Micro patterning of self organized structure on silicon surface is induced by ion implantation of energetic (MeV) copper ions. This work reports for the first time the ability of using energetic ions for producing highly ordered ripples and dots of micro sizes. The experiments are realized at the Tandem ion beam accelerator (3 MV) at the IBA laboratory of the Atomic Energy Commission of Syria. Similarly to nano patterning formed by slow ions, the formation of micro patterned structures dots and ripples is observed to be depending on the angle of ion beam incidence, energy and ion fluence. The observation of such microstructures formation is limited to a range of ion energies (few MeV) at fluence higher than 1.75 × 1017 ion cm-2. The patterned surface layer is completely amorphousized by the ion implantation. Shadowing effect is observed in the formation of microripples and superstructures in the top of ripples. The superstructure develops new morphology that is not observed before. This morphology has butterfly shape with symmetry in its structure.
Stopping power for 4.8-6.8 MeV C ions along [1 1 0] and [1 1 1] directions in Si
NASA Astrophysics Data System (ADS)
Yoneda, Tomoaki; Horikawa, Junsei; Saijo, Satoshi; Arakawa, Masakazu; Yamamoto, Yukio; Yamamoto, Yasukazu
2018-06-01
The stopping power for C ions with energies in the range of 4.8-6.8 MeV were investigated in a SIMOX (Separation by IMplanted OXygen into silicon) structure of Si(1 0 0)/SiO2/Si(1 0 0). Backscattering spectra were measured for random and channeling incidence along the [1 1 0] and [1 1 1] axes. The scattering angle was set to 90° to avoid an excessive decrease of the kinematic factor. The ratios of [1 1 0] and [1 1 1] channeling to the random stopping power were determined to be around 0.65 and 0.77 for 4.8-6.8 MeV ions, respectively. The validity of the impact parameter dependent stopping power calculated using Grande and Schiwietz's CasP (convolution approximation for swift particles) code was confirmed. The C ion trajectories and flux distributions in crystalline silicon were calculated by Monte Carlo simulation. The stopping power calculated with the CasP code is almost in agreement with the experimental results within the accuracy of measurement.
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Reames, D. V.; Wenzel, K.-P.; Rodriguez-Pacheco, J.
1990-01-01
The abundances and spectra of 1-10 MeV per nucleon protons, He-3, He-4, C, O, and Fe have been exmained during solar quiet periods from 1978 to 1987 in an effort to investigate the recent suggestion by Wenzel et al. (1990) that the ions may be of solar origin. It is found that the intensities of the ions, other than O, fall by an order of magnitude between solar maximum and solar minimum, and that the greater than 1 MeV per nucleon ions exhibit weak streaming away from the sun. More significantly, the quiet-time ions during solar maximum have He-3-rich and Fe-rich abundances which are established characteristics of small impulsive solar flares. Thus, it is suggested that small unresolved impulsive flares make a substantial contribution to the 'quiet-time' fluxes. He-4 from these flares may also contribute strongly to the ion spectra that were reported for the 35-1600 keV energy range by Wenzel et al.
Search for a Hypothetical 16.7 MeV Gauge Boson and Dark Photons in the NA64 Experiment at CERN
NASA Astrophysics Data System (ADS)
Banerjee, D.; Burtsev, V. E.; Chumakov, A. G.; Cooke, D.; Crivelli, P.; Depero, E.; Dermenev, A. V.; Donskov, S. V.; Dusaev, R. R.; Enik, T.; Charitonidis, N.; Feshchenko, A.; Frolov, V. N.; Gardikiotis, A.; Gerassimov, S. G.; Gninenko, S. N.; Hösgen, M.; Jeckel, M.; Karneyeu, A. E.; Kekelidze, G.; Ketzer, B.; Kirpichnikov, D. V.; Kirsanov, M. M.; Konorov, I. V.; Kovalenko, S. G.; Kramarenko, V. A.; Kravchuk, L. V.; Krasnikov, N. V.; Kuleshov, S. V.; Lyubovitskij, V. E.; Lysan, V.; Matveev, V. A.; Mikhailov, Yu. V.; Peshekhonov, D. V.; Polyakov, V. A.; Radics, B.; Rojas, R.; Rubbia, A.; Samoylenko, V. D.; Tikhomirov, V. O.; Tlisov, D. A.; Toropin, A. N.; Trifonov, A. Yu.; Vasilishin, B. I.; Vasquez Arenas, G.; Volkov, P. V.; Volkov, V.; Ulloa, P.; NA64 Collaboration
2018-06-01
We report the first results on a direct search for a new 16.7 MeV boson (X ) which could explain the anomalous excess of e+e- pairs observed in the excited
Determination of layer-dependent exciton binding energies in few-layer black phosphorus
Zhang, Guowei; Chaves, Andrey; Huang, Shenyang; Wang, Fanjie; Xing, Qiaoxia; Low, Tony; Yan, Hugen
2018-01-01
The attraction between electrons and holes in semiconductors forms excitons, which largely determine the optical properties of the hosting material, and hence the device performance, especially for low-dimensional systems. Mono- and few-layer black phosphorus (BP) are emerging two-dimensional (2D) semiconductors. Despite its fundamental importance and technological interest, experimental investigation of exciton physics has been rather limited. We report the first systematic measurement of exciton binding energies in ultrahigh-quality few-layer BP by infrared absorption spectroscopy, with layer (L) thickness ranging from 2 to 6 layers. Our experiments allow us to determine the exciton binding energy, decreasing from 213 meV (2L) to 106 meV (6L). The scaling behavior with layer numbers can be well described by an analytical model, which takes into account the nonlocal screening effect. Extrapolation to free-standing monolayer yields a large binding energy of ~800 meV. Our study provides insights into 2D excitons and their crossover from 2D to 3D, and demonstrates that few-layer BP is a promising high-quality optoelectronic material for potential infrared applications. PMID:29556530
Aerogel Cherenkov detector for characterizing the intense flash x-ray source, Cygnus, spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Y., E-mail: yhkim@lanl.gov; Herrmann, H. W.; McEvoy, A. M.
2016-11-15
An aerogel Cherenkov detector is proposed to measure the X-ray energy spectrum from the Cygnus—intense flash X-ray source operated at the Nevada National Security Site. An array of aerogels set at a variety of thresholds between 1 and 3 MeV will be adequate to map out the bremsstrahlung X-ray production of the Cygnus, where the maximum energy of the spectrum is normally around 2.5 MeV. In addition to the Cherenkov radiation from aerogels, one possible competing light-production mechanism is optical transition radiation (OTR), which may be significant in aerogels due to the large number of transitions from SiO{sub 2} clustersmore » to vacuum voids. To examine whether OTR is a problem, four aerogel samples were tested using a mono-energetic electron beam (varied in the range of 1–3 MeV) at NSTec Los Alamos Operations. It was demonstrated that aerogels can be used as a Cherenkov medium, where the rate of the light production is about two orders magnitude higher when the electron beam energy is above threshold.« less
Aad, G.; Abajyan, T.; Abbott, B.; ...
2014-07-01
Ameasurement is presented of themore » $$\\phi $$×BR($$\\phi $$ →K < sup > + < /sup > K < sup > - < /sup > ) production cross section at √s = 7 TeV using pp collision data corresponding to an integrated luminosity of 383 μb -1, collected with the ATLAS experiment at the HC. Selection of $$\\phi $$(1020) mesons is based on the identification of charged kaons by their energy loss in the pixel detector. The differential cross section ismeasured as a function of the transverse momentum, pT,$$\\phi $$ , and rapidity, y$$\\phi $$, of the $$\\phi $$(1020) meson in the fiducial region 500 < pT,$$\\phi $$ < 1200MeV, |y$$\\phi $$ | < 0.8, kaon p T,K > 230 MeV and kaon momentum p K < 800 MeV. The integrated $$\\phi $$(1020)-meson production cross section in this fiducial range is measured to be sφ×BR($$\\phi $$ →K < sup > + < /sup > K < sup > - < /sup > ) = 570 ± 8 (stat) ± 66 (syst) ± 20 (lumi) μb.« less
Two-stage free electron laser research
NASA Astrophysics Data System (ADS)
Segall, S. B.
1984-10-01
KMS Fusion, Inc. began studying the feasibility of two-stage free electron lasers for the Office of Naval Research in June, 1980. At that time, the two-stage FEL was only a concept that had been proposed by Luis Elias. The range of parameters over which such a laser could be successfully operated, attainable power output, and constraints on laser operation were not known. The primary reason for supporting this research at that time was that it had the potential for producing short-wavelength radiation using a relatively low voltage electron beam. One advantage of a low-voltage two-stage FEL would be that shielding requirements would be greatly reduced compared with single-stage short-wavelength FEL's. If the electron energy were kept below about 10 MeV, X-rays, generated by electrons striking the beam line wall, would not excite neutron resonance in atomic nuclei. These resonances cause the emission of neutrons with subsequent induced radioactivity. Therefore, above about 10 MeV, a meter or more of concrete shielding is required for the system, whereas below 10 MeV, a few millimeters of lead would be adequate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emtsev, V. V., E-mail: emtsev@mail.ioffe.ru; Abrosimov, N. V.; Kozlovskii, V. V.
2016-10-15
Electrical properties of defects formed in n-Si(FZ) following 8 and 15 MeV proton irradiation are investigated by Hall effect measurements over the wide temperature range of T ≈ 25 to 300 K. Close attention is paid to the damaging factor of proton irradiation, leaving aside passivation effects by hydrogen. The concept of defect production and annealing processes being accepted in the literature so far needs to be reconsidered. Contrary to expectations the dominant impurity-related defects produced by MeV protons turn out to be electrically neutral in n-type material. Surprisingly, radiation acceptors appear to play a minor role. Annealing studies ofmore » irradiated samples of such complex defects as a divacancy tied to a phosphorus atom and a vacancy tied to two phosphorus atoms. The latter defect features high thermal stability. Identification of the dominant neutral donors, however, remains unclear and will require further, more detailed, studies. The electric properties of the material after proton irradiation can be completely restored at T = 800°C.« less
SEARCH FOR EXTRATERRESTRIAL ANTINEUTRINO SOURCES WITH THE KamLAND DETECTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gando, A.; Gando, Y.; Ichimura, K.
2012-02-01
We present the results of a search for extraterrestrial electron antineutrinos ({nu}-bar{sub e}'s) in the energy range 8.3 MeV < E{sub {nu}}-bar{sub e} < 31.8 MeV using the KamLAND detector. In an exposure of 4.53 kton-year, we identify 25 candidate events. All of the candidate events can be attributed to background, most importantly neutral current atmospheric neutrino interactions, setting an upper limit on the probability of {sup 8}B solar {nu}{sub e}'s converting into {nu}-bar{sub e}'s at 5.3 Multiplication-Sign 10{sup -5} (90% CL), if we assume an undistorted {nu}-bar{sub e} shape. This limit corresponds to a solar {nu}-bar{sub e} flux ofmore » 93 cm{sup -2} s{sup -1} or an event rate of 1.6 events (kton - year){sup -1} above the energy threshold (E{sub {nu}}-bar{sub e}>=8.3 MeV). The present data also allows us to set more stringent limits on the diffuse supernova neutrino flux and on the annihilation rates for light dark matter particles.« less
Precision Measurement of the p ( e , e ' p ) π 0 Reaction at Threshold
Chirapatpimol, K.; Shabestari, M. H.; Lindgren, R. A.; ...
2015-05-13
New results are reported from a measurement ofmore » $$\\pi^0$$ electroproduction near threshold using the p(e, e´p) π⁰ reaction. The experiment was designed to determine precisely the energy dependence of $s-$ and $p-$wave electromagnetic multipoles as a stringent test of the predictions of Chiral Perturbation Theory (ChPT). The data were taken with an electron beam energy of 1192 MeV using a two-spectrometer setup in Hall A at Jefferson Lab. For the first time, complete coverage of the $$\\phi^*_{\\pi}$$ and $$\\theta^*_{\\pi}$$ angles in the $$p \\pi^0$$ center-of-mass was obtained for invariant energies above threshold from 0.5 MeV up to 15 MeV. The 4-momentum transfer $Q^2$ coverage ranges from 0.05 to 0.155 (GeV/c)$^2$ in fine steps. A simple phenomenological analysis of our data shows strong disagreement with $p-$wave predictions from ChPT for $Q^2>0.07$ (GeV/c)$^2$, while the $s-$wave predictions are in reasonable agreement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, X; Wu, H; Rosen, L
Purpose: To treat superficial target e.g. chest wall, head&neck or cranial cases, we commissioned two range shifter(RS) in Raystation4.0 with 7.37cm(RS1) and 4.1cm(RS2) Water Equivalent Thickness(WET) respectively. However, current beam model has limitations due to the secondary scattered proton. This study provides a detailed and critical commission data and provides suggestions for using RS in clinic. Methods: RS’ WET was verified by Multi-Layer Ionization Chamber from 120MeV to 226.7MeV before TPS modeling. Spot characteristics were measured using 2D scintillate detector at ISO with different air gap. A 8×8×10cm3 cube is created in 8cm depth of water to verify the absolutemore » dose accuracy. Plans were created with different air gap using both RS. Absolute dose verification was measured along the central axis from distal end to surface using PPC05. 10 clinical RS2 plans were measured using MatriXXPT in 3 planes (proximal, distal and midSOBP). Results: RS material’s proton stopping power is energy dependent(from 70MeV to 226.7MeV) ranging from 7.42 to 7.31cm and from 4.10 to 4.03cm respectively. We chose 7.37cm (RS1) and 4.10cm (RS2) to favor the low and median proton energy. With different air gap(3cm to 32cm), spot size expands from 3.2mm to 5.5mm(RS1) and from 3.1mm to 4.1mm(RS2) respectively(226.7MeV in air, 1-sigma). For the absolute dose verification, the larger air gap and shallower depth causes larger discrepancy between TPS and measurements. All 10 clinical plans with 5–10cm air gap passed gamma index 95% with 3%/3mm criteria and outputs differences were within 3%. Conclusion: We strongly recommend each institution to verify the WET independently and choose the value to fit the clinical needs. To minimize the output difference in Raystation4.0 while avoid potential collision to the patient, we recommend to use 5–10cm air gap to minimize the output difference within 2% and preferably use RS with smaller WET if possible.« less
Exchange interaction between the triplet exciton and the localized spin in copper-phthalocyanine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wei, E-mail: wei.wu@ucl.ac.uk
2014-06-14
Triplet excitonic state in the organic molecule may arise from a singlet excitation and the following inter-system crossing. Especially for a spin-bearing molecule, an exchange interaction between the triplet exciton and the original spin on the molecule can be expected. In this paper, such exchange interaction in copper-phthalocyanine (CuPc, spin-1/2 ) was investigated from first-principles by using density-functional theory within a variety of approximations to the exchange correlation, ranging from local-density approximation to long-range corrected hybrid-exchange functional. The magnitude of the computed exchange interaction is in the order of meV with the minimum value (1.5 meV, ferromagnetic) given by themore » long-range corrected hybrid-exchange functional CAM-B3LYP. This exchange interaction can therefore give rise to a spin coherence with an oscillation period in the order of picoseconds, which is much shorter than the triplet lifetime in CuPc (typically tens of nanoseconds). This implies that it might be possible to manipulate the localized spin on Cu experimentally using optical excitation and inter-system crossing well before the triplet state disappears.« less
A new method to detect anisotropic electron events with SOHO/EPHIN
NASA Astrophysics Data System (ADS)
Banjac, Saša; Kühl, Patrick; Heber, Bernd
2016-07-01
The EPHIN instrument (Electron Proton Helium INstrument) forms a part of the COSTEP experiment (COmprehensive SupraThermal and Energetic Particle Analyzer) within the CEPAC collaboration on board of the SOHO spacecraft (SOlar and Heliospheric Observatory). The EPHIN sensor is a stack of six solid-state detectors surrounded by an anti-coincidence. It measures energy spectra of electrons in the range 250 keV to >8.7 MeV, and hydrogen and helium isotopes in the range 4~MeV/n to >53~MeV/n. In order to improve the isotopic resolution, the first two detectors have been segmented: 5 segments form a ring enclosing a central segment. This does not only allow to correct the energy-losses in the detectors for the different path-length in the detectors but allows also an estimation of the arrival direction of the particles with respect to the sensor axis. Utilizing an extensive GEANT 4 Monte-Carlo simulation of the sensor head we computed the scattering-induced modifications to the input angular distribution and developed an inversion method that takes into account the poor counting statistics by optimizing the corresponding algorithm. This improvement makes it possible for the first time to detect long lasting anisotropies in the 1~MeV-3~MeV electron flux with a single telescope on a three-axis stabilized spacecraft. We present the method and its application to several events with strong anisotropies. For validation, we compare our data with the WIND-3DP results.
Search for Neutrinos in Super-Kamiokande Associated with the GW170817 Neutron-star Merger
NASA Astrophysics Data System (ADS)
Abe, K.; Bronner, C.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kato, Y.; Kishimoto, Y.; Marti, Ll.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, Y.; Nakano, Y.; Nakayama, S.; Orii, A.; Pronost, G.; Sekiya, H.; Shiozawa, M.; Sonoda, Y.; Takeda, A.; Takenaka, A.; Tanaka, H.; Tasaka, S.; Yano, T.; Akutsu, R.; Kajita, T.; Nishimura, Y.; Okumura, K.; Tsui, K. M.; Labarga, L.; Fernandez, P.; Blaszczyk, F. d. M.; Kachulis, C.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Tobayama, S.; Bian, J.; Elnimr, M.; Kropp, W. R.; Locke, S.; Mine, S.; Weatherly, P.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Ganezer, K. S.; Hill, J.; Kim, J. Y.; Lim, I. T.; Park, R. G.; Li, Z.; O’Sullivan, E.; Scholberg, K.; Walter, C. W.; Gonin, M.; Imber, J.; Mueller, Th. A.; Ishizuka, T.; Nakamura, T.; Jang, J. S.; Choi, K.; Learned, J. G.; Matsuno, S.; Amey, J.; Litchfield, R. P.; Ma, W. Y.; Uchida, Y.; Wascko, M. O.; Catanesi, M. G.; Intonti, R. A.; Radicioni, E.; De Rosa, G.; Ali, A.; Collazuol, G.; Ludovici, L.; Cao, S.; Friend, M.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Abe, KE.; Hasegawa, M.; Suzuki, A. T.; Takeuchi, Y.; Hayashino, T.; Hirota, S.; Jiang, M.; Mori, M.; Nakamura, KE.; Nakaya, T.; Wendell, R. A.; Anthony, L. H. V.; McCauley, N.; Pritchard, A.; Fukuda, Y.; Itow, Y.; Murase, M.; Muto, F.; Mijakowski, P.; Frankiewicz, K.; Jung, C. K.; Li, X.; Palomino, J. L.; Santucci, G.; Viela, C.; Wilking, M. J.; Yanagisawa, C.; Fukuda, D.; Ishino, H.; Ito, S.; Kibayashi, A.; Koshio, Y.; Nagata, H.; Sakuda, M.; Xu, C.; Kuno, Y.; Wark, D.; Di Lodovico, F.; Richards, B.; Molina Sedgwick, S.; Tacik, R.; Kim, S. B.; Cole, A.; Thompson, L.; Okazawa, H.; Choi, Y.; Ito, K.; Nishijima, K.; Koshiba, M.; Suda, Y.; Yokoyama, M.; Calland, R. G.; Hartz, M.; Martens, K.; Murdoch, M.; Quilain, B.; Simpson, C.; Suzuki, Y.; Vagins, M. R.; Hamabe, D.; Kuze, M.; Okajima, Y.; Yoshida, T.; Ishitsuka, M.; Martin, J. F.; Nantais, C. M.; Tanaka, H. A.; Towstego, T.; Konaka, A.; Chen, S.; Wan, L.; Minamino, A.; The Super-Kamiokande Collaboration
2018-04-01
We report the results of a neutrino search in Super-Kamiokande (SK) for coincident signals with the first detected gravitational wave (GW) produced by a binary neutron-star merger, GW170817, which was followed by a short gamma-ray burst, GRB170817A, and a kilonova/macronova. We searched for coincident neutrino events in the range from 3.5 MeV to ∼100 PeV, in a time window ±500 s around the gravitational wave detection time, as well as during a 14-day period after the detection. No significant neutrino signal was observed for either time window. We calculated 90% confidence level upper limits on the neutrino fluence for GW170817. From the upward-going-muon events in the energy region above 1.6 GeV, the neutrino fluence limit is {16.0}-0.6+0.7 ({21.3}-0.8+1.1) cm‑2 for muon neutrinos (muon antineutrinos), with an error range of ±5° around the zenith angle of NGC4993, and the energy spectrum is under the assumption of an index of ‑2. The fluence limit for neutrino energies less than 100 MeV, for which the emission mechanism would be different than for higher-energy neutrinos, is also calculated. It is 6.6 × 107 cm‑2 for anti-electron neutrinos under the assumption of a Fermi–Dirac spectrum with average energy of 20 MeV.
Luminescence imaging of water during alpha particle irradiation
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Toshito, Toshiyuki
2016-05-01
The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of 241Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.
Niu, Shuqiang; Huang, Dao-Ling; Dau, Phuong D; Liu, Hong-Tao; Wang, Lai-Sheng; Ichiye, Toshiko
2014-03-11
Broken-symmetry density functional theory (BS-DFT) calculations are assessed for redox energetics [Cu(SCH 3 ) 2 ] 1-/0 , [Cu(NCS) 2 ] 1-/0 , [FeCl 4 ] 1-/0 , and [Fe(SCH 3 ) 4 ] 1-/0 against vertical detachment energies (VDE) from valence photoelectron spectroscopy (PES), as a prelude to studies of metalloprotein analogs. The M06 and B3LYP hybrid functionals give VDE that agree with the PES VDE for the Fe complexes, but both underestimate it by ∼400 meV for the Cu complexes; other hybrid functionals give VDEs that are an increasing function of the amount of Hartree-Fock (HF) exchange and so cannot show good agreement for both Cu and Fe complexes. Range-separated (RS) functionals appear to give a better distribution of HF exchange since the negative HOMO energy is approximately equal to the VDEs but also give VDEs dependent on the amount of HF exchange, sometimes leading to ground states with incorrect electron configurations; the LRC- ω PBEh functional reduced to 10% HF exchange at short-range give somewhat better values for both, although still ∼150 meV too low for the Cu complexes and ∼50 meV too high for the Fe complexes. Overall, the results indicate that while HF exchange compensates for self-interaction error in DFT calculations of both Cu and Fe complexes, too much may lead to more sensitivity to nondynamical correlation in the spin-polarized Fe complexes.
Assessment of Quantum Mechanical Methods for Copper and Iron Complexes by Photoelectron Spectroscopy
2015-01-01
Broken-symmetry density functional theory (BS-DFT) calculations are assessed for redox energetics [Cu(SCH3)2]1–/0, [Cu(NCS)2]1–/0, [FeCl4]1–/0, and [Fe(SCH3)4]1–/0 against vertical detachment energies (VDE) from valence photoelectron spectroscopy (PES), as a prelude to studies of metalloprotein analogs. The M06 and B3LYP hybrid functionals give VDE that agree with the PES VDE for the Fe complexes, but both underestimate it by ∼400 meV for the Cu complexes; other hybrid functionals give VDEs that are an increasing function of the amount of Hartree–Fock (HF) exchange and so cannot show good agreement for both Cu and Fe complexes. Range-separated (RS) functionals appear to give a better distribution of HF exchange since the negative HOMO energy is approximately equal to the VDEs but also give VDEs dependent on the amount of HF exchange, sometimes leading to ground states with incorrect electron configurations; the LRC-ωPBEh functional reduced to 10% HF exchange at short-range give somewhat better values for both, although still ∼150 meV too low for the Cu complexes and ∼50 meV too high for the Fe complexes. Overall, the results indicate that while HF exchange compensates for self-interaction error in DFT calculations of both Cu and Fe complexes, too much may lead to more sensitivity to nondynamical correlation in the spin-polarized Fe complexes. PMID:24803858
Existence of a Size-Dependent Stokes Shift in CsPbBr 3 Perovskite Nanocrystals
Brennan, Michael C.; Zinna, Jessica; Kuno, Masaru
2017-05-31
The existence of a size-dependent Stokes shift is observed in CsPbBr 3 perovskite nanocrystals for the first time. Stokes shifts range from ~100 to 30 meV for particles with edge lengths between ~4 and 12 nm, respectively.
Existence of a Size-Dependent Stokes Shift in CsPbBr 3 Perovskite Nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennan, Michael C.; Zinna, Jessica; Kuno, Masaru
The existence of a size-dependent Stokes shift is observed in CsPbBr 3 perovskite nanocrystals for the first time. Stokes shifts range from ~100 to 30 meV for particles with edge lengths between ~4 and 12 nm, respectively.
A simple procedure for the estimation of neutron skyshine from proton accelerators.
Stevenson, G R; Thomas, R H
1984-01-01
Recent calculations of neutron diffusion at an air/ground interface have enabled the establishment of a very simple procedure for estimating neutron dose equivalent at large distances from proton accelerators in the energy range 10 MeV to several tens of GeV.
Is a massive tau neutrino just what cold dark matter needs?
NASA Technical Reports Server (NTRS)
Dodelson, Scott; Gyuk, Geza; Turner, Michael S.
1994-01-01
The cold dark matter (CDM) scenario for structure formation in the Universe is very attractive and has many successes; however, when its spectrum of density perturbations is normalized to the COBE anisotropy measurement the level of inhomogeneity predicted on small scales is too large. This can be remedied by a tau neutrino of mass 1 MeV - 10MeV and lifetime 0.1 sec - 100 sec whose decay products include electron neutrinos because it allows the total energy density in relativistic particles to be doubled without interfering with nucleosynthesis. The anisotropies predicted on the degree scale for 'tau CDM' are larger than standard CDM. Experiments at e(sup +/-) collides may be able to probe such a mass range.
Bhatia, C.; Fallin, B. F.; Gooden, M. E.; ...
2015-06-05
Using dual-fission chambers each loaded with a thick (200–400–mg/cm 2) actinide target of 235,238U or 239Pu and two thin (~10–100–μg/cm 2) reference foils of the same actinide, the cumulative yields of fission products ranging from 92Sr to 147Nd have been measured at E n = 8.9MeV. The 2H(d,n) 3He reaction provided the quasimonoenergetic neutron beam. Here, the experimental setup and methods used to determine the fission product yield (FPY) are described, and results for typically eight high-yield fission products are presented.